CA IDMS™

DML Reference Guide for PLI
Release 18.5.00, 3rd Edition

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for yourinformational purposes onlyandis subject to change or withdrawalby CAata nytime. This
Documentationis proprietaryinformation of CAand maynotbe copied, transferred, reproduced, disclosed, modified or
duplicated, inwhole orin part, without the prior written consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copiesof the Documentation forinternal use by you and your employeesin connection with
thatsoftware, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The rightto print or otherwise make available copiesof the Documentation is limited to the period during which the applicable
license for such software remains in fullforce and effect. Should the license terminate foranyreason, itis your responsibility to
certifyin writing to CAthatall copies and partial copies of the Documentation have beenreturnedto CA ordestroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CAPROVIDES THISDOCUMENTATION “AS IS” WITHOU TWARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FORA PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILLCABE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THISDOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IFCA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCHLOSS OR DAMAGE.

The use of anysoftware product referencedinthe Documentationis governed by the applicable license agreement and such
license agreementis not modified inanywaybythe terms ofthis notice.

The manufacturer of this Documentationis CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Governmentis subject to the restrictions
setforth in FARSections 12.212,52.227-14,and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
theirsuccessors.

Copyright © 2014 CA. All rights reserved. All trademarks, trade names, service marks, and |l ogos referenced herein belongto
theirrespective companies.

CA Technologies Product References

This document references the following CA products:
m CA ADS™

m CAIDMS™/DB

m CAIDMS™/DC

= CAIDMS™ UCF

m DC/UCF

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one sitewhere you canaccess the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

m Onlineandtelephone contactinformation for technical assistanceand customer
services

m [nformationabout user communities and forums
m Product and documentation downloads
m CA Support policies and guidelines

m Other helpful resources appropriate for your product
Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
cansend a message to techpubs@ca.com.

To providefeedback about CA Technologies product documentation, complete our
shortcustomer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Documentation Chandes

The following documentation updates were made for the 18.5.00,2nd and 3rd Edition
releases of this documentation:

IDMS_STATUS Routine Used Under Batch (see page 55), Output from the DML
Precompiler (see page 372), Output from the PL/I Compiler (see
page 378)—Updated the code inthe context of IDMS-STATUS.

IDMS DB Communications Block (see page 32), 18-Byte Communications Blocks (see
page 415)—Updated the tables and field descriptions.

The following documentation updates were made for the 18.5.00 release of this
documentation:

IDMS STATUS Routine (see page 55)—Routine updated to displaylastdbkey, page
group, and database-key format.

READY (see page 249)—The description of the FORCE option was added.

Online Debugger Syntax (see page 419)—This new appendix was previously
availableinthe Programming Quick Reference Guide.

ACCEPT TRANSACTION STATISTICS (see page 102)—Added a sample of the
TRANSACTION_STATISTICS to the description of the INTO parameter.

INCLUDE IDMS (see page 66)—Added the TRANSACTION_STATISTICS parameter.

Contents

Chapter 1: Introduction 11
SYNtAX DIaGram CONVENTIONSecuiiuiiiiiiiteiieriesie sttt et e st et e st s e sre s s e st e stesaesbesbeesee e e s s et assesaesseeseesse st e tesessessasseeasantantantassessenen 11
Chapter 2: Introduction to CA IDMS Data Manipulation Languade 15
(2ol g I e o Yol LIy ' =TRSOOSR 15
ONIINE PrOCESSING....cuieeieererirteteistseeteststeseesee e esesssassesestesesessssesasessesasasesesssanessesenssesestsessesesentsesesenessesensssesenssssesesenessesanens 16
Programming in the CAIDMS ENVIirONMENT c..c.eciiiiiiiieieerieisieeeesteee et te e e sae s te s e s sta s s e saesessessesessanessessassssensasessensesassans 17
NAVIZATONAI DMLttt ettt et e te st ete st e e ebe st ese et e s ebe st e st ebesassesansasesbass et assesessebeseebassesesbassssansesentans 18
SOL DMLttt ettt et bbb bbbttt bttt ettt 19
LR DIMIL 1tteteeteeiteete st st sttt s e sttt sb e st ssae st e b e et e be e e e st e s aae s et e saeeeaae s et e sseesae e ae e se e be e seeebe e bt et e e be e eeeaseeaesasesbeenteeareeates
(07 D11 S DO = R A= 42 1= LT
Compiling and Executing Programs
COMPITING PrOZIamS...cv ettt ettt ettt sttt se et e b st s bRt b e st e e e b et e e b e st e e snene e s enenas
EXECULING PrOZIramS ..ottt sttt ettt ettt s ettt e s b e st e s e e sseese e st e s et e basaesaesaeestentenae s e seeneeseessessansensansansanes
Callable Services and Common Facilities
Callabl @ SEIVICES ...ttt ettt sttt st b et s bt E st e s R R et s s R e s s R e bt e R e sttt ne s e renenea
COMMON FACHITIES ..ttt sttt st sttt s a et s bk e etk s et st e b e ke et e b e se et ebe et ebese e st eaeneestebenens
Chapter 3: DML Precompiler Options 27
DiCtONArY REAAY OVEITIUE......eciiieeiieeetctetee ettt ettt et st et e st e et e e et e e e se st e s e e s e sbassesesseseesessesessansesesbantesensasessansesasans 27

PL/I Compiler Option Usage

Comment Generation

LiST GENMEIATION ...ttt ettt ettt ettt e b e e e s b et e b et e st e b et e b e s b et e be s e e aeeb et e s e sbene e b et e et eae b enesb et ese s entsb et ebesaenteneebans
LOE SUPPIESSTON. ..ttt et et s e st st st et e st et e sbe s bt et et et et e b e besbesae s st e st e ssess e s st ese e Rt e a e e st emsens e s e s st eat et e sensessessesaeeneentensansensases 29
Chapter 4: Communications Blocks and Error Detection 31
COMMUNTCATIONS BIOCKS ...ttt sttt a e s e et e s e se et esene e e besese et esene s esenanesesasensres 31
IDMS DB COMMUNTICATIONS BlOCK....cciiiuiuiiririeiiieieiee ettt sttt st a sttt st sttt bbb et ene 32
LRC BIOCK ittt ettt ettt ettt et st e et e e et e et ese et e s s aseebe s eseebensebe b eReebeneebeehenses et eseeRensebeeaeneetenseneeneseneetans 38
IDMS DC COMMUNTICATIONS BlOCK....ciiiiieuiiririeierieieiee ettt ettt sttt sttt et st b ettt sttt se et ne 39
ERROR _STATUS Field @Nnd COUBSocoueriieriereieiteeetesteee et este e te st e st e e e s besseseste s sbesaesestassebestassssensasessansesasasessanseneesensesessans 43
MajJOr @Nd MINOT COUES ...ttt et ettt et e et e s e st se b et s b e st s s b ese s eneneaees 44
DB SEATUS COUBS ...euvuiuiirieieirieieiertrte ettt sttt ettt b et s be et s b bt s b e s et b e s et et e b e s et st e b e s et s b e b e ne b e b e et ek e st st b et ebenesebesensene 44
DC SEATUS COUBS ...euvuiuiririeueriristeeeerte et te sttt te e e s tese et s s e et saese et esesesessebesese b ese st st esese e et esese s ssesese s asene s ebeseae s ebesenesesasensens 50

Error Detection

Contents 5

IDIMS_STATUS ROULINE ..ottt b s bbb s b bt ens 55

Effects of Nonzero Status 0N IDMS_STATUS ..ottt siereee et te st se e sse s ess e e sae s s e sassessessesesssnsssensans 58
Chapter 5: Required PL/I Declaratives 59
DECLARE IDIMS ...ttt tte st te st e st e et e se e e st e e ae et e st e saesse e e e s st e eaeesaeaasee s eesaseeaeesseaseesseenseasseanseanseenseanseensesnseeneessaenneeesesnseenees 59
DECLARE IDIMISP LI cutiitiitietieiteeetetestesiesiesie st et e st essesaestesse st essassassasbassesussssessensessessessesnssnsensensansensensesssensensensessessessesseensensensensenses 59
DECLARE IDIMSDCP ... ettt et st e st ste e te e sae et e sae st e s saeaaeetesaeesaeesaaesaeasaeesaeesaeasaeesseesseeseanseanseenseanseeseesseensesstasanesasansseanees 60
DECLARE SQILXQI ...eeviiiriieiieieeieeietestesiesesie st e stestessessessessesssessassassassessessesssensensessessessesssensensensensensessesssensensensessessessesseesensessessanses 60
DECLARE ADDR BUILTIN ..utiitietertesteresettestesessteestessseesaessessaesasesssesssesssesssesssesseessesssessssessessssensesssesssesssesnsesssesssesssesssesssessessees 60
DECLARE ABORTooovveveveeeessesessssseeseesssssssssssssessssssssssssssseesessssssssssssessssssssssssssesessssssssssssseessssssssssssssseessssssssssssesessssssssssssoeee 60
DECLARE IDIMSP ...ttt et esite st st sae e bt s ste et e st estesbestesatesaeesatasatessaesasesaeesasasaeessaeseeseesseenseensaenseensesaseensesasesanessesasesnnes 60
Chapter 6: DML Precompiler-Directive Statements 61
DECLARE SUBSCHEMA ... ettt ettt st e st st s st sb e s besbe s e et et e b et e s aesbeeae e st et et e basbasbesae s st e st esaesaesseesteneensansansansanss 61
DECLARE IMAP ..ottt sttt set ettt sttt st e s bt e st e et e et e st e s aee s et e s ae e s e e s et e s aeesae e aeess e e be e se e be e se e b e ease et e saseentesatasaseentenasesnees 65
INCLUDE IDIMS ...ttt s e sttt st ettt e sa e st st et et e b e be s b e saesae s s s e ssesaessesae e st ea e e nt et e s e b e saeeat et e s tesesbessessesseeneansansansanses 66
INCLUDE IDMS (IMAP _BINDS)cteuieteeetiteieteeees e seetesteestesaesestesastessessesessesestensesassessssassesessansesessessesensessssensesessassesensessssensesessans 74
INCLUDE IDMS IMODULE ...ttt sttt ettt st estt st st e ste st e s ste st e see e e e s e e sseesaeesaeesseasseesseesssesseasseanseeseenseentesnseansesnsesnsesntesseesneen 74
INCLUDE IDMS (SUBSCHEMA _BINDS) ...ocuiiitetiuieietetiisietetssteteseseesess s sastesesesssetassssesessssesessssssesasassssesassnsesesensssssessnsssesesensssesennns 75
INCLUDE IDMS (SUBSCHEMA _RECORD _BINDS) ...coutiteieteieteeteietesteteeteste e etesee e sae e eteaesessessesessassssessessssansesassassessasessssensesessans 76
Chapter 7: Data Manipulation Landuage Statements 77
FUNCEIONS O DIMIL STATEIMENTS ...ttt ettt et te st e st e st et st et e be st ese st e s e e b et e beseebassebensasesbansesessensssenbesessensesensans

DatabASE FUNCEIONS...uiiteiiitiieieetre ettt sttt st e e b et e s e et e st s ee s e se s enesseseeseseensesessensesensenessnnsssensans

Data Communications Functions.........cceeeeune

DML Statements Grouped by Function
DML Statements (Databas@) ...ccccecieieiirieeeieeets ettt e sttt ettt e bese st et e se st ebeseasebesesa st ebeseetesesnasene
DML Statements (Data Communications)

ABEND (DC/UCF)

ACCEPT (DC/UCF)

ACCEPT BIND RECORD .ccooootoeeeeeeeeeeeeeessseeeseesesesssssssessssssssesssssssssssessssessssssssssssssssessssesssssssssssssasssssssssssssssssssssssssssssssssennessssn 91
ACCEPT DBKEY FROM CURRENCY .ocoooeereoeeeeeeeeeeeeessesesesssesssessssssessssssssssssssssessessessssesssssssssesssessssssssssssssssessssessssessssssssensssssse 92
ACCEPT DBKEY RELATIVE TO CURRENCY ..ovvvveeeeeeereseseessesseeseesesesssssssssssssssesessessssssssssssssssessessssssssssssssssessssssssssssssessssensssosn 94
ACCEP T IDIMIS STATISTICS eeeeeeeeeeeeeesesseeeeseeeeessesssesssseeseesssssssssseeseseesssesssesssssssssssssessssessssesssssssesessssssssssssssessssssssssseseenssess 97
ACCEPT PAGE_INFO ovovoeeeeeeseeeeeeeeeeeeeeeeesesseeeeseesssessssessessssees s sesssssessesses e essssseseesesessesesessssseseeessssssessssessesensssesessssssssssseeeesssse 99
ACCEPT PROCEDURE CONTRO L LOCATION ..cooooeeeeeeeeeeeeeeeeeeeesesseseeseesessessesssssssssessssesssssssssssessssesssssesssnsssssssesesssssesennsssssn 101
ACCEPT TRANSACTION STATISTICS (DC/UCE) oooeeeeeeeeeeeeeeeeeeeesessseeseesesseeseamessessssessssssseeesessssssssssssssseeesssssssssssssssseeesssssssn 102
ATTACH (DC/UCF) covvvvveveeeereseeseeeseseeeseessesssssssssesssssessesessssssssssssssesssssssesssssssssssesssessssessssssssssssessessssssssssssssseesssssssesssssssssseeenssesee 108
BIND IMIAP (DC/UCF) w.rereeeeeeeeeeeeeasssseeeeseeeeeeeesessssssesessessssessessessssesssssssessssssesssseesssesseesassessesesesssessssmeesssessesssssseeeessessssseeseses 110
BIND PROCEDURE .eovvreeeneeseeeeeeeeeeseesseesessssssssesesssesssesessessssessessessssssessssssssssseesssssssssssssseesssessessssssssssssessessssssssssssseseenssssssessseses 112

6 DML Reference GuideforPLI

BIND RECORD ...ttt bbb bbb e bbb bbb e bR s h bbb s b e bbb e b b e b b
BIND RUN_UNIT

BIND TASK (DC/UCE) werereeeeeveeeeeeeeasesseeeeseesesesesessssssesessessssseesssessssesesssssesessssesssseesssesesesassesssssesssssessssenssssssessssssseeseesssssssessseses 118
BIND TRANSACTION STATISTICS (DC/UCE) wevurrreeeeeeeeeeeeeeeeesssseesesssssseessssssssssesessssesesssesssesssssssssssesssssssssssssssssssesssssssseseseses 119
CHANGE PRIORITY (DC/UCE) weeeeeeeeeeeeeaeseseeseesseseeeeesesseseseeesesssssssssssessssesssssssessesssesssssessssesesesssessssssssssssssessseessssssssssssesseenns 120
CHECK TERMINAL (DC/UCF) oo eeeeeeeeeeeesesseeessseseseesesssssssssssssssssssssssessssssssssssssesssessssssssssssesessssesssssssssssssesseseessssssssssssessenens 121
COMMIT
CONNECT oo eeeeeeeeeseseesee e eesesseesses e eessseeseesse s e s e e es e eeeseeeese s s s e seeseeeeeseesesessesssssesmseeesssssssesssseseeeens 124
DC RETURN (DC/UCF) woreeeeeeeeeeeeeesseeeesseeeeeesssssssssesessessssssssssessssesessssssssssssesssseesssssssesassesssssesssssssssssssessesssssssssessesessssessseees 126
DELETE QUEUE (DC/UCF) wvvveeeeeeeeeeeseeeeeeeeeeeeeeessssseseseesessssesesesessssssesssssesesesssesseseesesssseesesssssssssssssssssssessssssssssssssesesesssssssssssseees 129
DELETE SCRATCH (DC/UCE) ovvveeeeeereeeeeeeeeeeeeeeseesessesessssssssssssssesssssssssssssssssssessesessessesssssssssssssseees 131
DELETE TABLE (DC/UCF)
DEQUEUE (DC/UCF) wertreeeeeeeeeeeeeeeesssseeesssssesesesssssssssssssssssssessssssssssessssssesessesesssssesssssssemaesssssesesssssssssemesesssssssssssssemsensssssssssseses
DISCONNECT wvevvveeeeeeeeaes e seeeeeesssssess e esesssesesssessseseesesesssssssessseeeeesesseesssssesseseesesssssesesesesseseessssessesesesssesessssssseesessesssessseseees
END LINE TERMINAL SESSION (DC/UCE) ovooeeueereeeeeeeeeeeeeeeeeeeseseesesssseeeessssesssseesessseesssssssssssssssssssssssessssssessssssesesessssssssseeseees 137
END TRANSACTION STATISTICS (DC/UCF) coveeeeerameeeeeeseeeeeeeeeesssessesesssssseeesssssssssesesssssemsssssssessssssssssssesssessesssssssssssessssssssesessses 138
ENDPAGE (DC/UCF)
ENQUE UE (DC/UCF)
ERASE c.veovoeeeeeeeeeeeeeeeseesssese e eesessesessees s eeeesese e e e e e e e e s eeerreees
ERASE (LRF) s ovveeeeeeeessnseeseseseesseeessesssesee s ssesssesessses e sesesesesee s e ese s es e 222eeeeee s s e sesseeesesseesesssssssenessssssssseseses
FIND/OBTAIN wooooooeeeeeeeeese e eeeeeeesessessse e sssesssesessesseessesssssssssssesssseeessessessesessseesessesssssessssesseseessssessssessesssessesssssssssssssessesereseees
FIND/OBTAIN CALC/DUPLICATE
FIND/OBTAIN CURRENT ...cooovoveeeeeeesa e eeeeeesesasssssssesssessssssssssessesesessssssssssssesssesesesssssesssssssssssssssssssssssssssssssssssssesenssssssn
FIND/OBTAIN DBKEY ...oooeeeeeeeeeeeeeeesseseeesseeeessessesessssesssessseseesessessseesessssssssesasessssessssessseessssessessssesssssseeeesssesessssssseeeeesseses
FIND/OBTAIN OWNER weoeeeeeveveeeeeeeeeeseseeeeseeseessessssesesssessssseesesssssessssssssessesssssssssssesssssesessssssesssssssssseesssssssssssssssseseessesee
FIND/OBTAIN WITHIN SET USING SORT KEY ..eorereeeveeeeeeeeeesseseeesseseessesessssssesessesssssesssssesseesssssssssssssssssssesessssssesesssesen 161

FIND/OBTAIN WITHIN SET/AREA
LN OO

GET QUEUE (DC/UCF) ovveeeeeeeeeeeeeeeeeeeeeeeeeesesssseseesssessseeessssessssessesssssessssesssseessssssesessesessssssessssesesessessssesssessssssessessesssssesesssssesenens
GET SCRATCH (DC/UCE) wovoeeereeeeeeeeeeeeeeeeeeeesssesesssssssseeessssssssssssesssssesessssssssessssssssesesssssssssssssssssesessesssssssssssssesesssessssssssssssssssnees
GET STORAGE (DC/UCK) .o eeeeeeeeeesesssesessesessseesssssesseseesessssssssssesssssessssssessssssesssssssssssssssssssessesssessssssessessesssssssessssseseeens
GET TIME (DC/UCE) eevveeeeeeeeeseseeeeeeeeseeeeeesesssseseeessessseessaesessseessesssssssessesssssesesessessessesssssssssssssesesesssssessessssssseeseesesssssssessssssseenns

INQUIRE MAP (DC/UCF)
MOVING MapP-REIATEA DAta c..cveeiereereieiiceerie ettt ettt b et e b et senenes

Testing for Global Map INPUL CONITIONS.....cccciiieiiceeerieee ettt e sa e te e e aese st e b e e e se st esessansesenes 192
TESTING fOr CUMSON POSITION 1.ttt ettt ettt ettt b et bese st s s et ese e ebese e e esennneesenenessesasen 193
Testing for INPUL Error CONAitiONS......cciiiireeieeerie ettt sa et e e s b e e e s e s esesaanesseaesesaenes 194
KEEP CURRENT
KEEP LONGTERM (DC/UCE) cuuvururieeeerireieseeisesesssesssessssssssssesssssssssssssssssssssssssessssssssssssssssessssssssssssessssssssssnssssesssnssenssssesssssssssnens 200

Contents 7

LOAD TABLE (DC/UCE) reeeevveeeeeeeesesseeeeesseeeeeesessssssessssesssssssesessssesesssssesesessesssseesessseeesssssssssesssssessssmessesssesssssssseseesssssssssrseses
IVIAP TN (DC/UCF) oot eeeeeeeeeesss e eesesesssesssssseeseseessssesesses s sssssesssssesseseesesssseesasssesseseessssessssessssssesssssssssesssesssssseseseees
IVIAP OUT (DC/UCK) vt eeeeeeeeeeesssseeseeeesesesesesssssseseseessssesseses s ssesesesessesssseesesssseesasesseesesesssessssesssesssssssssssssemeesssssseeessees
MAP OUTIN (DC/UCE) cooveeeevrrveerreees

MODIFY MAP (DC/UCF)
IVIODIEY RECORD ..ooveeeeeeeeseeeeeeeeeessssseesessssesesessssssssessssessseeesesessesese s sesesseseesseseesesssssemeeesesessesssssessesssesssssssssssssemeessssssseseseses
MODIFY RECORD (LRF)
OBTAIN (LRF).......
POST (DC/UCF)
PUT QUEUE (DC/UCE) rreeeeeeeeeeeeeesseseeeesseeeeesessssssssesessesssseesesesessesesssssessssesesssseesessseeeeeessessesessssssssssmessssssssessssesensessesssssesseees
PUT SCRATCH (DC/UCF) oo eeeeeeeessssssssesssessssssssssssssssesessssssssssssesssseessssssssssssesssssssssssssssssesssssssssssssssessesssssssssseees
READ LINE FROM TERMINAL (DC/UCF)
READ TERMINAL (DC/UCE) ovvveeeeeeeeeseeeeeeeeeeeeeeesssssesessssssessesesssesssssssssesssssssesssssssessssssssesemessssessssssssssseesssssssssssssssseseessssssssssseses

RETURN (DC/UCF) ovvtemeeveeeeeeeeeoseeseeesseessessessssesseesssssseessssesesesesssessessesessesessessesessesssessesssssessessesessessesesnesssesessssessesssssesesssssessessnes
2 1 7 Y 1 S S
SEND MESSAGE (DC/UCHE) c.vtiuiitetetiisteteetete et e e e tete e et s sebe s st e s s ebesassssesebasessesetassssesasssesessss s esetesssseseseasebaseasssebesnanasesasan
SET TIMER (D C/UCE) ettt ettt ettt ettt e s et e s et et e se s et eseas s et esessnsesenseseseteas s et essss et et esensesesenssesessasssetensasasetenen
SINAP (DC/UCF) ovetetetereteteteteietetete ettt ettt ettt bbb ss s as s s s s e s as s s asasas s s s s s s ss b s s aseb s s s s s abas e s e bbb et b s esesesesesebesssssnsetesesesas
STARTP AGE (DC/UCF) c.tteeieteteeeteteteeete ettt ettt e s e se s e s et e s et ess et esessas s et esess s esasseseseseas s et esessasesetensnseseassesessasasebessasesetann
STORE RECORD .ortiiiiteitetetestestes ettt estestessesaesaesat et e ssessassassassesstsst e st essestesaesaeentensensensensessesbessesssensensessessesnsentensensensensessassennes
STORE RECORD (LRF) .uteuiteieteteietete e ste et s te e eteete s te st eteste e et e ebaseesesteseebasaese b essssansaseese s esataneesa st ensesesseseebeaeseeteneebessensetaneasertan
TRANSFER (DC/UCF) cuuiutiiietrieeeseststsestesssssesetssssssssssssssesesssesesesesesesesesssasesesesasesesesssssesesssssssssssssssesesssssensssssnsssssasssnsnsssssssnsasnsnns
WAIT (DC/UCF) ovvveereeeeeeereeeeeeeseeseeseseesesesssesseesessseassesseseseeseseeseesssesessssaseesseeenesseeeneesssseeesssseeesssseseessseseesssseseessseesesssasesseneseess
WRITE JOURNAL (DC/UGCF) vttt eete st s ettt s et eve et et eseas et esese s s esessasasessasasesessasesesesensesesessasasensasssetennnssesenen
WRITE LINE TO TERMINAL (DC/UCF) .etitetetetetereteieteieietetesssesssasssasas s s ssassssasssssssssssssssssssasssssssassssssssesssssssesssssssesssssssesssesens
WRITE LOG (DC/UCF) catetieeieteteeetetetee ettt te ettt ae ettt e st et e et et et ess s et esass s et ebessnsetasassesetassasesesassesesetassebetasssetessasatebessanasesasan
WRITE PRINTER (DC/UCF) ovtetiteteteteteteteteteteteteteeees st sssss s as s s s st sssasasasasasssssasasssssasasasasssssessssssssssssssssssssssesesesesesesesesesesasns
WRITE TERMINAL (DC/UCF) couiitetetiieteteeteteteieete e te et e et et ete st ebesa st ebebaas st ebeba st ebesass st et esssesesssssesetasssetaseassessasssebesnansesanan
WRITE THEN READ TERIMINAL (DC/UCKE) c.ucuititeueeeeitetectsietesiessesesesssssesesssssesasssssns 297
Logical-Record Clauses (WHERE @NA ON) ..ottt te et e te e s ste st e e be s s be st esesbe s e be st anseseete s ebessesessensesenes 301
WWHERE ClaUS B...uvveviuiieieieierieteiesesteteestsseteestete et seete e e sese e stesesesssassanessesesensesesansssesesentssesssensssesenesesenensssesenensssesssnnsssesaens 301
ON ClAUSE ettt ettt ettt sttt b et bbb st e b e b et sa e b e st s e b e st s e b en e s e e b e b e s et eb ek ene st ebe st b ebebe et et eneat s ebenensesenenens 306

Appendix A: DML Precompile, PL/I Compile, and Link-Edit JCL 309

COMPITING @ PL/ PrOZIam .uucucicieueieieieietetetetetetseseess s ssssses s s s st sssas s sssas s s as s s s s s sasas st sss st s st s s sas s sssssstebesesesesesesesasasasas 309
(ST Ye [T 7 L@ 1 SRR 311
UNGEE Z/VSE ...oteeeeeteteeeeeeteteee ettt ettt et es et e s s et es et ess s st et ess st esesese st et esess et et esenses et esessesesessssesesensesetensnsesesensasesesensesennaen 315
0T Te LYo 7 A [OOSR 326

LiNK-Edit CONSTABIATIONS ..c.evieeiiiieieieiieieieesteeeste et e st st e s et se s et e et e te s e et ese et eseseneseesese et eaesenensesenenseseseneseesesanensens 329

Passing Parameters 10 the PreCOMPIlEr ...ttt a sttt e st e s s e e sae st esesaenessanes 330

8 DML Reference Guide for PLI

O PtiONAl PAT@MELEIS....ucuiiviieeeteeeteeerte ettt ettt et be e et e e et e st ese et essebe b ese et e st ens et e sese et eneeb et eneetaseeseetensebessensetansesertan 330

Appendix B: Call Formats 333
CA IDIMS/D B Call FOIMATS . ccuiitiiiiiiiiiit et estest e ettt e st estessessessessesssesbessessesaessesassntentensessessessssssessessensensessessessssnsensensessessessessesnes 333
CONTIOL STATEMENTS ...ttt sttt sttt et b e st et s b et e ae st et e b et e ne st e st eaesbeneesenseneebaneesenean 334
MOifICAtiON STALEMENTS ..ottt stttk et b e bt b et se b e e e et esenesenenen 339
RELMEVAT STATEMENTS ...vevieeieieiecre ettt sttt ettt s a et e s e s et et e seae e s s e bese st esesanseseseasssetesanensesnsn 340
ACCEPT Statements
LRF DML STaT@MEBNTS ...ttt st e e b e bt e ae st et e b e b e b e sb e sbe et et e b e b e b e beeneenes 350
CA IDMS/DC Call FOPMATS ..uviuireiiiriieeiieeieesteteete et ssesaestssetesestestsssstestesessestssestssessestssessentesessesestentesessentasenteseseesesessessesessanessen 352
Program Management STAtEMENTS ..ottt sttt s e st e s e sa e st e e b e st e snesanesanesanens 352
Storage Management STATEMENTS ..ottt s s ettt b e b e s b st et et e b e sbessesnesneenean 352
Task ManagemeEnt STAtEMENTS ...ccciiiirieiieeese ettt st et e e et e e e b e s s et e sessessese s esesaanessessensenenss 353
Time ManagemMeENt STATEMENTSciiiiieeee ettt e et e sa e et e et e st e s ee st e saeesaeesatesueesanesseessaasseansassrnanes 353
SCratCh ManagemMENT STAtISTICS ..viveiiriiierieiree sttt ettt a et et b e s e e s be e eaesse e sbesenesteneaneann 354
Queue ManNagEMENT STATEMENTSivciiiiieiertceere ettt te s e et e st e et e st e st e saa e s st e sseesasesstesbeesseensessesnsesasesnses 354
Terminal ManagemeNnt STAtEMENTSccicririeeirreerr ettt r e neenen 355
L1 TR YA = 1T 4 1=T o RO R ST 356
RECOVEIY STAtEMENTS ...t ettt b bt ettt et e b e be s b e sbe et e b e be b e sbeebesnesais 357
DC_BATCH STAtEMENT ittt et s e s b saesae et et et e e e s b e e besse et et et et esaesbeseesaeenbensansansassansenaes 358
Appendix C: Keywords 359
Appendix D: Notes to Teleprocessing Monitor Users 363
NOTES ettt st ettt b e b e be b e e b e e b e e b e b e b e R e e R e oA e e R e SR e e b et e eheshe e RE e R e et e b e b e b e eb e e Rt et et et e benbenbenresrent 363
Appendix E: Sample Programs and Database Definition 365
CA IDMS/DC Programming CONSIAEIAtIONSc.ceeeieieteieieieteeteteeeeteteae e ete e et e tetessebete s ssebese st esetassssesessssesesaasssesessasasesasan 365
SAMPIE BAtCR PrOSram.. ittt sttt et ettt e s bt e s s b e e e s et e st e se st ene b e st eseseseesessenesbesesessaneesansan 367
Batch INPUL tO the DML PrECOMPILENcv ittt ettt ettt e e e b se st eseesensesestaneesenes 367
OULPUL from the DML PrECOMPIIENuieiieeeeiietetceee ettt ettt b et e a s s e e e sesnsessssesanens 372
Output from the PL/I Compiler
SAMPIE ONIINE PIrOZIAM ..ottt te et et et et e e e be st ese et eseebe b ese b e ssesaebessese et ensebe st eseeteneaseesaneebessenseteneesensan
APPIICAtION COMPONENTS ..vouiitiieiieieeeite ettt ettt s st et e e s a e s b e e e s et ese e b et e e sse s esesaessesessasessensesesnnsesesansssnnes
Application RUNTIME REQUITEIMENTSvciitiieieieiee ettt ettt et et et et st e e be s ebesbe e besbasteseebaseesensesassansesenes 390
ONnline INPUL t0 the DML PreCOMPILEN ...ccuiiiieiieerereee ettt ettt et s et e e saesae e sbesaenessaneesenean 390
Output from the DML Precompiler
OULPUL FrOmM the P L/ COMPITEN ettt st st ettt et s s st sssesesetesesas
EMPLOYEE Database Defi MitiON......c.cieeieireerie ettt ettt st bbbttt sttt b et ene

Contents 9

Appendix F: Considerations for IBM Landguade Environment 409

ConSiderations ADOUT LE RUNTIME ...cc.iviiiiiieie ettt es et et e ste e e e s e s e sa e b e sbesbesbeebsessesessessesseessensensensansensensenanenes

Running LE-Compliant Compiler Programs Under CA IDMS/DC
Supported LE FUNCLIONS ..ottt
Unsupported LE Functions

Appendix G: 18-Byte Communications Blocks 415
OVEIVIBW ..ttt ettt sttt et s e et e e e e s s et e st s et e e st s et e e et ea e s e eaeea e e s e e e aE b e a e e et s e ae b eaeee e e b eae e st s emt b et ene b enees et e e ebensenenbeneeneneen 415
Appendix H: Online Debudger Syntax 419
General Registers Symbols
DC/UCF System Symboils...............
AdAress SYMDOIS @NA IMTAIKEIS.......cvvirieeiirieirieee ettt sttt et e e e ba s e et et e s e s se s esesaestesessesessensesessensesesansssenes 420
L L= G}V 0 41 oo KOTSRS
PrOZIram SYMDOIS ...t e b e et R bRt e e R n R e nn e
Syntax: Data Field Names
SYNTAX: LINE NUMD EIS ..ttt ettt e sttt e s e et e et et esese e st e b ene st esebene e esenesaesensnesesesanens
Syntax: QUalifying Program SYMDOIS ...ttt sttt sse e 421

Expression Operators
Delimiterscoeeeereeneereeeeeeeen

SYNTAX AT ettt ettt R e R R et R e Rt e et e R e et R et Rt n et r et nt sre et e
SYNTAXI DEBUG ...ttt ettt sttt et sa sttt t et et e st e s be et e e e aesaesseeseese e st eat et e nbesbesaeeseeseetenbenseaessenasan
L= R = OO SRS SRR
SYNTAX: TOUSER ..ottt ettt ettt sa sttt et et et et e s b e st et e s e saesseese e st e st et e s e basbesaesae e st et esensensessessean
S NEAX: LIS T ettt ettt et s e s a e s b e s b e e bt et e et e e a e e s et e e b e e a b e et e e a e e e Rt e eae e e R e e eaeeea b e e Rt e e ae e be e re et e e are et e enreenres
SYNTAXI IMIENU L.ttt e e et bt et e et b e s et b e et a et b e e et n et enenaes
Syntax: PROMPT
Syntax: QUALIFY
SYNEAXT QUUIT ittt sttt ettt ettt st b et b et s e e b e st e b et s e b ea e s e ek e b e s et s b e b ene b e be et e b e st e st ebenenenbesenenensesenens
Syntax: RESUME
SYNEAXE SET ettt ettt ettt e st e st st s st e b e s b e s b e s s e e se e st e st et et et e she e Rt e Rt et et e s e R e e R e e Rt e Rt e he b e nhenResheeRe e Rt et e nebenaeeneeneen
SYNTAXI SINAP ettt ettt st st e s e st e e st e s at e st e e s be e st e e bt e b e s e te e b e ea e e e R e e s Rt e e aeesae e bt e nae e At e e Reeeae e he e ae et e e se e te e beenres
SYNTAXI WHERE ...ttt ettt et ettt ettt e b e s b e st et e s e s s e s s e e st e st e st e ateab e bessesaesse e st et ensensensessesnean

Index 427

10 DML Reference Guidefor PLI

Chapter 1: Introduction

This document presents navigational and LRF DML statements for use in CA IDMS/DB
databaseand CA IDMS/DC and CA IDMS UCF data communication environments.

Most data communication DML statements are applicablein both CA IDMS/DC and CA
IDMS UCF environments. The acronym DC/UCF is used to represent this.

This document is intended for use by PL/I programmers who run programs againstCA
IDMS/DB databases and who want to use the DC/UCF system facilities.

This section contains the followingtopics:

Syntax Diagram Conventions (see page 11)

Syntax Diagram Conventions

The syntax diagrams presented in this guide use the following notation conventions:
UPPERCASE OR SPECIAL CHARACTERS

Represents arequired keyword, partial keyword, character, or symbol that must be
entered completely as shown.

lowercase

Represents an optional keyword or partial keyword that, if used, must be entered
completely as shown.

italicized lowercase

Represents avaluethat you supply.

lowercase bold

Represents a portion of the syntaxshownin greater detail atthe end of the syntax
or elsewhere inthe document.

Points to the defaultina listof choices.

Indicates the beginning of a complete piece of syntax.

> g
»<4

Indicates the end of a complete piece of syntax.

>
>

Indicates thatthe syntax continues on the next line.

v

Chapter 1: Introduction 11

Syntax Diagram Conventions

Indicates thatthe syntax continues on this line.

»
|

Indicates thatthe parameter continues on the next line.

v

Indicates thata parameter continues on this line.
»— parameter ———»

Indicates a required parameter.
> parameter —»
parameter

Indicates a choiceof required parameters. You must select one.

>
»

v

L parameter -

Indicates an optional parameter.

v

parameter :'
parameter

Indicates a choice of optional parameters. Select one or none.

- parameter ——»

Indicates thatyou canrepeat the parameter or specify more than one parameter.

'ameter — L5
»>—¥— parameter

Indicates thatyou must enter a comma between repetitions of the parameter.

12 DML Reference Guide for PLI

Syntax Diagram Conventions

Sample Syntax Diagram

The following sample explains howthe notation conventions are used:

Required portion of parameter

Beginning of Required Optional portion of parameter

the syntax parameter Syntax continues

User-supplied value I on the next line
5

Syntax continues on this line Comma required between repetition

Required parameter Repetition allowed
Select one

I .
y— KEWDI\Q\D—{aHaﬂIe

varrable
wariabfle
varrable

Optional keyword
Select one or none
Portion of syntax End of the syntax
Default expanded elsewhere

» \ L]
t KEYWORD variable
KEYWORD

Chapter 1: Introduction 13

Chapter 2: Introduction to CA IDMS Data
Manipulation Landquade

The CA IDMS Data Manipulation Language (DML) consists of statements that direct CA
IDMS/DB databaseand data communications processing. You code DML statements in
the program sourceas ifthey are a part of the host language. You usethe DML PL/I
compiler (also called the DMLP processor)to convert DML statements into standard PL/I
statements. The DMLP processor also performs source-level error checking.

Your program uses different sets of DML statements, depending on whether its
operating environment is batch or online. For example, a batch programuses only
database DML statements. An online program uses data communications DML
statements and canalsousedatabase DML statements.

This section contains the followingtopics:

Batch Processing (seepage 15)

Programminginthe CA IDMS Environment (see page 17)
Compilingand Executing Programs (see page 22)
CallableServices and Common Facilities (see page 25)

Batch Processing

Batch processingtypicallyinvolveslargevolumes of transactions, sequential processing,
and output inthe form of files and reports. Batch programs use database DML
statements only. Data Manipulation Language Statements contains allthe DML
commands, listed alphabetically. In this list, CAIDMS/DC DML commands are
distinguished from CA IDMS/DB DML commands.

The followingfigureillustrates the flow of a typical batch application. Inputto DEPTRPT
consists of department IDs. Output consists of a listing of departments and their
employees. The error report lists thedepartment IDs of missingand empty
departments.

Chapter 2: Introduction to CAIDMS Data Manipulation Language 15

Batch Processing

Typical Batch Program Flow

CA-IDMS/DB

DEPTDB
DATABASE

TRANSACTION
REPORT

- DEPTRPT
INFILE PROGRAM

Online Processing

Onlineprocessingtypically involves transaction requests entered from terminals
connected directly to the computer, transactionresults displayed atthe terminal,
multiplerequests from multiplesources, and sharing one copy of a program among
multipleusers. Additionally, online processingisimmediate. The processingof large
volumes of transactionsfrom multipleonlineusers requires fastresponsetime. Online
programs use data communications DML statements and canincludedatabase DML
statements.

The followingfigureillustrates the flow of a typical onlineapplication. EMPDISP
retrieves information for an operator-specified employee ID. Output to the terminal
consists of DEPARTMENT, EMPLOYEE, JOB, and OFFICE information.

16 DML Reference Guide for PLI

Programming in the CA IDMS Environment

Typical Online Program Flow

TERBMINAL 1

TERMINAL 2

DEPTDB
DATABASE

TERMINAL 3

IDMS-DC/UCF

STORAGE
TERMINAL
1

EMPDISP

STORAGE
TERMINAL
2

STORAGE
TERMINAL
3

Programming in the CA IDMS Environment

CA IDMS statements are either database or data communications statements. This
section provides overview information and a more detailed subsection on each of the
three types of database DML statements and on data communications statements.

Database Statements

Databasestatements perform retrieval and update functions in either the batch or the
onlineenvironment. These statements access databaserecords and sets,one record at
atime.

The three types of databasestatements areas follows:
m Navigational DML

= SQL DML
m Logical Record Facility DML

Chapter 2: Introduction to CAIDMS Data Manipulation Language 17

Programming in the CA IDMS Environment

You canincludedatabase DML statements in batch programs or combine them with
data communications DML statements inonline programs that requiredatabaseaccess.

Data Communications Statements

Navidgational DML

Data communications statements request data communications services,such as
services for online programs.

Note: Ifyou usea teleprocessing (TP) monitor other than CAIDMS/DC, use CA IDMS/DB
DML statements only. Your TP monitor provides data communications services.

More information:

DML Precompiler-Directive Statements (see page 61)

Navigational DMLstatements allowyouto access databaserecords and sets one record
atatime, and to check and maintain currencyinorder to assurecorrectresults.
Navigational DMLstatements give you control over error checking and flexibilityin
choosingdatabaseaccess strategy. To use this type of DML statement, you must have a
thorough knowledge of the databasestructure. For an Example of a data structure
diagram, see Sample Programs and Database Definition.

Navigational DMLstatements provide:

m Control over error checking — You can check on the results of processingeach
statement.

m Flexibility in choosing database access strategy — You can enter the database
either sequentially (area sweep) by usinga symbolic-key value (CALC orindex), or
by usinga database-key value (DIRECT).

There are four types of navigational DMLstatements:

m Control statements initiateand terminate processing, effect recovery, prevent
concurrent updates, and evaluate set conditions.

m Retrieval statements locatedata in the databaseand make it availableto the
application program.

18 DML Reference Guide for PLI

Programming in the CA IDMS Environment

m Modification statements update the database.

m Accept statements pass databasekeys, storageaddress information,and statistics
to the program.

Example of Navigational DML Statements

SQL DML

The followingfigureillustrates a databasestructure containing two owner records
(EMPLOYEE andJOB) that shareone member record (EMPOSITION), and lists the
statements used to find employee and job information.To obtain EMPLOYEE and JOB
information, you would retrieve an EMPLOYEE record, the firstEMPOSITION recordin
the EMP_EMPOSITION set, and the owner record inthe JOB_EMPOSITION set.

JOB
440 | vc|296] CALG
JOB_ID_0440 [oN| Emp D 0415229
ORG_DEMG_REGION OBTAIN CALC RECORD (EMPLOYEE);
CALL IDMS_STATUS;
FIND FIRST RECORD (EMPOSITION)
SET (EMP_EMPOSITION);
JOB_EMPOSITION CALL IDMS_STATUS;
NPO OM NEXT OBTAIN OWNER SET (JOB_EMPOSITION);
CALL IDMS_STATUS
|
EMPOSITION EMPLOYEE
420 [F [28 [viA 415 |F [116]cALc
EMP_EMPOSITION | EMP_EMPOSITION EMP_ID_0415 | on
EMP_DEMO _REGION NPO MA FIRST EMP_DEMGC_REGION

You canuseSQL DML to access the same databases you access using navigational DML.
Additionally,youcanuseSQL DML to access databases thathave been defined using
SQL DDL.

Using SQL DML, you do not have to be familiar with databasestructureand your
programs do not have to includedatabasenavigation logic.

You can perform the following functions using SQLDML statements:
m Select rows

m Update rows

m Delete rows

m [nsertrows

Chapter 2: Introduction to CAIDMS Data Manipulation Language 19

Programming in the CA IDMS Environment

Note:

LRF DML

For more information aboutSQL DML statements, see the CA IDMS SQL Reference
Guide.

For information aboutembedding SQL statements in application programs, seethe
CA IDMS SQL Programming Guide.

LRF (Logical Record Facility) statements allow you to access fields from multiple
databaserecords as ifthey are data fields ina singlerecord. You specify selection
criteria (usingthe WHERE clause) toaccess only the logical records you need.

Using LRF, you do not have to be familiar with databasestructureand your programs do
not have to includedatabasenavigation logic.

This

manual describes these LRF DML statements:

ERASE deletes alogical record as specified in the path definition
MODIFY modifies a logicalrecord as specified in the path definition
OBTAIN retrieves a logical record as specified in the path definition

STORE stores a logicalrecord as specified in the path definition

Note: You must use the 48-character setfor PL/I programs containing LRF DML (see PL/I
Compiler Option Usage (see page 28)).

Note:

For more information on path definition, see the CA IDMS Navigational DML
Programming Guide.

For more information on the Logical Record Facility, see the CA IDMS Logical Record
Facility Guide.

Example of LRF DML Statements

The followingfigureillustrates the EMP_JOB_LR record. This recordis a logical LRF
record that contains the EMPLOYEE record, OFFICE record, and JOB record.

OBTAIN FIRST RECORD (EMP_JOB_LR)
EMP_JOB_LR WHERE EMP_ID_0145 ='0023"
T ON LR_STATUS (LR_ERROR)

CALL IDMS_STATUS;

20 DML Reference Guide for PLI

Programming in the CA IDMS Environment

CA IDMS/DC Statements

CA IDMS/DC and CA IDMS UCF arefullyintegrated with CA IDMS/DB and the dictionary.
They allowyou to request both data communications and databaseservices through
standard subroutinecalls generated (by the DML precompiler) from DML statements.

Example of a PL/I Data Stream with CAIDMS/DC Statements

The followingis a typical PL/I data stream containing DML statements. The CA IDMS/DC
MAP IN, MAP OUT, and DC RETURN statements map ina user-specified employee ID,
retrieve and display thespecified information, and perform a DC RETURN naming TSK02
as the next task to be performed.

BIND MAP (EMPMAPLR);
BIND MAP (EMPMAPLR) RECORD (EMPLOYEE);
ACCEPT TASK CODE INTO (TASK_ CODE IN);
IF TASK CODE IN = 'TSKO1' THEN

GO TO INITIAL MAPOUT;
MAP IN (EMPMAPLR);

Database DML statements

MAP OUT (EMPMAPLR)

OUTPUT DATA YES

MESSAGE (DISPLAY MESSAGE) LENGTH (80);
DC RETURN NEXT TASK CODE ('TSK02');

Types of Online CAIDMS/DC Statements

Online CA IDMS/DC statements request that the DC/UCF system perform data
communications services. There are ninetypes of online CA IDMS/DC DML statements:

® Program management statements govern flow of control and abend processing.

m Storage management statements allocateandreleasevariablestorage.

m Task management statements provideruntime services thatenhance control over
task processing.

m Time management statements obtainthe time and date, and define time-related
events.

m Scratch management statements create, delete, or retrieve records from the
scratch area.

® Queue management statements create, delete, or retrieve records ina queue area.

Chapter 2: Introduction to CAIDMS Data Manipulation Languadge 21

Compiling and Executing Programs

m Terminal management statements transfer data between the application program
anda terminal.

m Utility function statements retrieve task-related information or statistics, send
messages, and monitor access to databaserecords.

m Recovery statements perform functions relatingto database, scratch,and queue
arearecovery in the event of a system failure.

Compiling and Executing Programs

A PL/I programcontains PL/l code and DML statements. The DML precompiler converts
DML statements into PL/I CALL statements and copies information maintained in the
dictionaryintothe sourcefile. You canthen compile, link edit,and execute the
application program.The compilation and runtime processes aredescribed separately
below.

Compiling Programs

These three components prepare a PL/I DML program for execution:
m The DML precompiler
m The PL/I compiler

m The linkageeditor
Step 1—DML Precompiler
The DML Precompiler Converts DML Statements

The DML precompiler converts DML statements inthe sourceprogram to PL/I CALL
statements and copies information maintainedin the dictionaryinto the application
program. For Example, the DML precompiler could copy databaserecord descriptions,
map records, map definitions, and other predefined modules (suchas communications
blocks)into the program.

Output from the DML precompileris a sourcefile, which serves as input to the PL/I

compiler,and anoptional sourcelisting. The output file differs from the sourceinput to
the DML precompilerin the following ways:

m Source code (such as the IDMS DB communications blockand the IDMS_STATUS
routine) has been added to the program.

m DML statements have been replaced by PL/I CALL statements and changed to
comment entries.

22 DML Reference Guidefor PLI

Compiling and Executing Programs

Additionally,the DML precompiler produces a listing of the followingerrors:

Step 2—PL/I Compiler

Incorrect DML entries
Statements inconsistentwith the program's declared subschema view
Any other error conditions detected during DMLP processing

Warning messages indicating source code conditions thatcould adversely affect run
units usingthe program

The PL/I Compiler Compiles the Source into an Object Program

The PL/I compiler compiles the source programafter the DML precompiler has
processed it successfully. Output from the PL/I compiler consists of an object program
anda sourcelistingthatincludes any generated diagnostics.

Step 3—Linkade Editor

The Linkage Editor Links the Object Program

The linkage editor link edits the object program into a specified load library. Qutput
from the linkage editor consists of aload module (or phase)and a link map.

More information:

DML Precompile, PL/I Compile, and Link-Edit JCL (see page 309)

Chapter 2: Introduction to CAIDMS Data Manipulation Languade 23

Compiling and Executing Programs

PL/I Program Compile

The followingfigureillustrates a PL/I program compile.

PL/I SQURCE
PRCGRAM

WITH DML
STATEMENTS
* STEP 1
IDMSDMLP PML
COMPILER LISTING

PL/I

SOURCE

PL/I SOURCE
PL/ LISTING &
COMPILER 7| DIAGNOSTICS

OBJECT
PROGRAM
LINK MAP
LOAD LINKAGE
LIBRARY EDITCR
LOAD
MODULE

Executing Programs

At runtime, CA IDMS requests are treated as application programsubroutinecalls.
When anapplication program executes a CA IDMS/DB or CA IDMS/DC subroutinecall,
control passes to either CAIDMS/DB or CA IDMS/DC, which then processes the
requested function.

24 DML Reference Guide for PLI

Callable Services and Common Facilities

A CA IDMS/DC program must be defined to the CA IDMS/DC system inwhichit will
operate. The program can be defined either at system generation or at runtime by using
a DCMT VARY DYNAMIC PROGRAM command.

Note: For more information about DCMT VARY DYNAMIC PROGRAM, see the CA IDMS
System Tasks and Operator Commands Guide.

PL/I Features You Cannot Use

You cannot use the following PL/I features in programs running under CA IDMS/DC:

® Any statement associated with file management: OPEN, CLOSE, DELETE, LOCATE,
RELEASE, UNLOCK

m |/Ostatements: GET, READ, WRITE, REWRITE

m Any special featurethat could generate a supervisor call (SVC): DATE, FETCH,
DISPLAY, DELAY, WAIT, HALT, EVENT, COMPLETION, TIME, ATTN, ONCOUNT,
ONKEY, ONFILE, ONSYSLOG

m The compileoption: FLOW

m SPIE and STAE options (the DC/UCF system detects all runtimeerrors.

Usingthese features inhibits system performance and can causethe DC/UCF system to
abend.

Callable Services and Common Facilities

Callable Services

CA IDMS provides callableservices and common facilities to use with your application
programs.

The callableservices include:

m The IDMSCALC utility thatlets you sortinput into target page sequence.

m The IDMSINO1 facility thatlets you perform miscellaneous CAIDMS functions.
m The TCP/IP socket program interfacethat lets you communicate with another

TCP/IP application.

Note: For more information aboutusingthese callableservices,seethe CA IDMS
Callable Services Guide.

Chapter 2: Introduction to CAIDMS Data Manipulation Languadge 25

Callable Services and Common Facilities

Common Facilities

The

common facilities include:

The Command Facility thatlets you submitcommand statements ina batch or
onlineenvironment.

The Online Compiler Text Editor that lets you edit compiler output and resubmit it
as inputusingthe CA IDMS development tools.

The Transfer Control Facility thatlets you transfer between CA IDMS development
tools.

The SYSIDMS parameter filethat contains parameters that you canaddto a batch
jobrunninginlocal mode or under the central version.These parameters let you
specify environment requirements, runtime directives, and operating
system-dependent information.

Note: For more information aboutusingthese common facilities and the SYSIDMS
parameter file, see the CA IDMS Common Facilities Guide.

26 DML Reference Guidefor PLI

Chapter 3: DML Precompiler Options

DML precompiler options are features of the DML programming environment that you
select to customize the environment for your application program. This chapter
describes these options and their associated Syntax.

You code the DML precompiler options as special formatentries in the PL/l sourcecode
input to the DML precompiler. Use the compiler options to:

m Override the DDLDML area default usage mode

m Enablethe printing of dictionary and subschema comments

m Control the generation of DML precompiler sourcelistings

m Suppress the logging of program activity statistics

This chapter provides a discussion of each of the compiler options.

This section contains the followingtopics:

Dictionary Ready Override (see page 27)
PL/I Compiler Option Usage (see page 28)
Comment Generation (see page 28)

List Generation (see page 29)

Log Suppression (see page 29)

Dictionary Ready Override

Syntax

The DDLDML area is the main area of the dictionaryaccessed by the DML precompiler.
Your application programcanready the DDLDML area usingvarious usage mode
options.The default mode is shared update usage. Shared update usage mode readies
the DDLDML area for both retrieval and update. This mode also allows concurrently
executing run units to ready the DDLDML area inshared update or shared retrieval
usage mode. Your program canoverride the default usage mode by specifyingeither
retrieval or protected update usage.

M

>>—|: /*RETRIEVAL*/]
/*PROTECTED_UPDATE*/

Begin this Syntax in column 2.

Chapter 3: DML Precompiler Options 27

PL/I Compiler Option Usage

Parameters

RETRIEVAL

Readies the DDLDML area for retrieval only. Itallows other concurrently executing
run units to open the areainsharedretrieval, shared update, protected retrieval, or
protected update usage modes.

Note: If your program readies the DDLDML area for retrieval only, no program
activity statisticscan belogged.

PROTECTED_UPDATE

Readies the DDLDML area for both retrieval and update. It allows other
concurrently executing run units to ready the area inretrieval usage mode only.The
protected update usage mode prevents concurrentupdate of the area by run units
executing inthe same DC/UCF system.

Specify the dictionaryready override statement before all sourceinputstatements.

PL/I Compiler Option Usade

Syntax

The PROCESS statement is used to allowcompile-timeoptions to be specified for each
compilation.

Note: For more information aboutthese options, see a PL/I programming guide.

»»—— * PROCESS options;

M

Begin this Syntax in column 1.

Ifyou usethe PROCESS statement, itmust follow the dictionaryready override
statement. If you do not use the dictionaryready overridestatement, the PROCESS
statement must precede all sourceinputstatements.

Comment Generation

Syntax

SCHEMA_COMMENTS generates the printing of the dictionary and subschema
comments ina DML precompiler sourcelisting.

X

»»— /*SCHEMA_COMMENTS*/

Begin this Syntax in column 2.

28 DML Reference Guide for PLI

List Generation

Code the SCHEMA_COMMENTS statement after the dictionaryreadyoverrideand
PROCESS CHARSET statements, ifany, and before any sourceinput statement.

Note: Ifyou do notincludethe SCHEMA_COMMENTS statement inyour source
program, the DML precompiler does not generate comment lines.

List Generation

Syntax

Parameters

The listgeneration option determines whether or not a DML sourcelistingis generated.

You canturn sourcelisting generation on or off any number of times inyour source
program. Do this by insertingappropriate NODMLIST/DMLIST entries inthe code.

Note: DML always produces a listing of error messages. The DMLIST option controls
output of the processor sourcelistingonly.

I

/*NODMLIST*/ <
L /+pMLIST*/ —]

Begin this Syntax in column 2.

NODMLIST

Tells the DML precompiler not to generate the sourcelistingfor the statements that
follow. NODMLIST is the default.

DMLIST

Tells the DML precompiler to generate the source listing for the statements that
follow.

Log Suppression

The NO_ACTIVITY_LOG option suppresses the logging of program activity statistics. The
DML precompiler generates and logs the following programactivity statistics unlessyou
use the NO_ACTIVITY_LOG option:

® Programname
® language
m Date lastcompiled

m Number of lines

Chapter 3: DML Precompiler Options 29

Log Suppression

m Number of compilations

m Date created

m Subschema name (if any)
m Filestatistics
m Databaseaccess statistics (records and modules copied fromthe dictionary;

subprograms called; and records, sets, and areas accessed by DML verbs)

Note: Program activity statisticscannotbelogged if you ready the DDLDML area for
retrieval only or use a read-only dictionary. Fileactivity statisticscannotbelogged if you
code both registered and unregistered program files in one OPEN statement.

Syntax

»»— /*NO_ACTIVITY_LOG*/

)4

Begin this Syntax in column 2.

The NO_ACTIVITY_LOG statement must followthe dictionaryready overrideand
PROCESS CHARSET statements, ifany.

30 DML Reference Guide for PLI

Chapter 4. Communications Blocks and
Error Detection

This chapter describes the communications blocks available under CA IDMS/DC and CA
IDMS/DB. These blocks return status information aboutrequested databaseand data
communications services to the application program. This chapter also describes the
ERROR_STATUS fieldinthe IDMS DB and IDMS DC communications blocks, error codes,
and error detection routines.

This section contains the followingtopics:

Communications Blocks (see page 31)
ERROR_STATUS Fieldand Codes (see page 43)
Error Detection (see page 54)

Communications Blocks

Communications blocks return status information aboutrequested database (CA
IDMS/DB) and data communications (CA IDMS/DC and CA IDMS UCF) services to the
application program. Depending on the usage mode (LR, DML, or MIXED) defined in the
subschema, your program uses one or two of the followingblocks:

= [DMS DB communications block—The IDMS DB communications blockis used
when your program specifies the BATCH operating mode.

m Logical-record request control (LRC) block—The LRC blockis used when the
subschema usage mode is either LR or MIXED. The DML precompiler copies the LRC
block with either the IDMS DB communications block (operating mode of BATCH) or
the IDMS DC communications block (operating mode of IDMS_DC or DC_BATCH).

m IDMS DC communications block—The IDMS DC communications blockis used
when your program specifies either IDMS_DC or DC_BATCH operating mode.

More information:

DECLARE SUBSCHEMA (see page 61)

Chapter 4: Communications Blocks and Error Detection 31

Communications Blocks

IDMS DB Communications Block

Your program uses the IDMS DB communications block when the operating mode is
BATCH. This communications blockserves as aninterface between the database
management system (DBMS) andyour application program. Whenever a run unitissues
a call tothe DBMS for a databaseoperation, the DBMS returns information about the
outcome of the requested serviceto your program's IDMS DB communications block.

Your program instructs the DML precompiler to copy the data description (called
SUBSCHEMA_CTRL) of the IDMS DB communications block fromthe data dictionaryinto
program variablestorage. You accomplish this by codingan INCLUDE IDMS
(SUBSCHEMA_CTRL) statement inyour program.

Note: For more information on INCLUDE IDMS, see INCLUDE IDMS (see page 66).

You should examinethe ERROR_STATUS field of the IDMS DB communications block
after every call tothe DBMS. Depending on the valuecontainedinthis field, you should
perform the IDMS_STATUS routine. For more information,see ERROR_STATUS Fieldand
Codes, later inthis chapter. For Example, ifthe ERROR_STATUS field contains the value
0307 whilewalkinga set, your programshould perform end-of-set processing.
Otherwise, your program should perform the IDMS_STATUS routine.

Layout of the IDMS DB Communications Block

The following figure shows the layoutof the 16-byte IDMS DB communications block.
Note that the layoutof the block differs for application programs runningunder CICS.

Note: For more information aboutthe 18-byte IDMS DB communications block, see
18-Byte Communications Blocks (see page 415).

32 DML Reference Guide for PLI

Communications Blocks

| IDMS DB 16-byte communications block

Length
Field Data Type (bytes) Initial Value

¥l 8 PROGRAM-NAME Alphanumeric 8 Program Name

9 12 ERROR-STATUS Alphanumeric 4 '1400'

13 16 DBKEY Binary 4 (Fullword) 0000

17 32 | RECORD-NAME Alphanumeric 16 Spaces

33 48 | AREA-NAME Alphanumeric 16 Spaces

49 64 | ERROR-SET Alphanumeric 16 Spaces

65 80 | ERROR-RECORD Alphanumeric 16 Spaces

81 96 | ERROR-AREA Alphanumeric 16 Spaces
**1 97 100 PAGE-INFO Binary 4(Fullword) 0000

97 1% IDBMSCOM-AREA Alphanumeric 100 Low Values

197 200 DIRECT-DBKEY Binary 4(Fullword) 0000

201 207 DATABASE-STATUS Alphanumeric 7 Spaces

208 FILLER 1

209 212 RECORD-O0CCUR Binary 4 (Fullword) 0000

213 216 DML - SEQUENCE Binary 4(Fullword) 0000

* word aligned

** PAGE_INFO GROUP overlays bytes 97 and 98 and PAGE INFO DBK FORMAT
overlays bytes 99 and 100. Both of these fields are binary datatype,

each with a length of two bytes. Suggested initial values for
both are 00. Together these two fields represent PAGE_INFO.

Fields Containing Program Status Information

The following IDMS DB fields contain programstatus information:
PROGRAM_NAME

Alphanumeric field that contains the name of the program being executed. The
DML precompilerinitializes thisfield automatically, if the program contains an
INCLUDE IDMS (SUBSCHEMA_BINDS) statement. If you do not includethis
statement inyour program, you mustinitialize the field.

Chapter 4: Communications Blocks and Error Detection 33

Communications Blocks

ERROR_STATUS

Alphanumeric field that contains a valueindicating the outcome of the last DML
statement executed. The DML precompilerinitializes the ERROR_STATUS field to
1400.The DBMS updates this field after each databaseservicerequest and before
returning control to the program. The DBMS updates this field whether or not the
request was processed successfully.

For details onthe ERROR_STATUS fieldandits use, see ERROR_STATUS Fieldand
Codes, later inthis chapter.

If your program consists of more than one run unit, it must reinitialize the
ERROR_STATUS fieldto 1400 after finishingonerun unit and before bindingthe
next.

DBKEY

Binary fullword field thatcontains the database key of the lastrecord accessed by
the run unit. For Example, after successful execution of a FIND command, the DBMS
updates DBKEY with the databasekey of the located record. If the call to the DBMS
resultsinanerror condition, DBKEY remains unchanged.

RECORD_NAME

Alphanumeric field that contains the name of the lastrecord successfully accessed
by the run unit. This fieldis leftjustified and padded with spaces on the right.

AREA_NAME

Alphanumeric field that contains the name of the lastarea successfully accessed by
the run unit. This fieldis leftjustified and padded with spaces on the right.

ERROR_SET

Alphanumericfield that contains the name of the setinvolvedinthe lastoperation
that produced an error condition. This fieldis leftjustified and padded with spaces
on the right.

ERROR_RECORD

Alphanumeric field that contains the name of the record involvedinthe last
operation that produced an error condition. This field is leftjustified and padded
with spaces onthe right.

ERROR_AREA

Alphanumeric field that contains the name of the area involvedinthe last operation
that produced an error condition. This field is leftjustified and padded with spaces
on the right.

IDBMSCOM_AREA

Alphanumericfield thatis usedinternally by the DBMS for specification of runtime
functioninformation.

34 DML Reference Guide for PLI

Communications Blocks

PAGE_INFO

Two binary halfwords thatrepresent the page information associated with the last
record accessed by the run unit. PAGE_INFO is not changed if the call to the DBMS
results ina non-zero status. The firsthalfword (PAGE_INFO_GROUP) represents the
page group number. The second halfword (PAGE_INFO_DBK_FORMAT) represents
the db-key radix.

The db-key radix portion of the page information canbe used ininterpreting a
db-key for display purposes andin formattinga db-key from page and line numbers.
The db-key radix represents the number of bits withina db-key valuethatare
reserved for the linenumber of a record. By default, this valueis 8, meaning that up
to 255 records can be stored on a single page of the area.Given a db-key, you can
separateits associated page number by dividingthedb-key by 2 raised to the
power of the db-key radix. For Example, if the db-key radixis 4, youwould divide
the db-key valueby 2**4. The resultingvalueis the page number of the db-key. To
separatethe linenumber, you would multiply the page number by 2 raised to the
power of the db-key radix and subtractthis valuefrom the db-key value. The result
would be the linenumber of the db-key. The followingtwo formulas can be used to
calculatethe page andlinenumbers from a db-key value:

Page-number = db-key value/ (2 ** db-key radix)
Line-number = db-key value- (page-number * (2 ** db-key radix))
DIRECT_DBKEY

Binary fullword field that contains either a db-key valuethat you specify or a null
db-key valueof -1. This field is used to store records with a location mode of
DIRECT. Because the DBMS does not update this field, you must initialize
DIRECT_DBKEY. This field can be used only when storinga record ina native VSAM
relativerecord data set (RRDS). You must initialize DIRECT_DBKEY to the relative
record number of the record being stored.

DATABASE_STATUS
Alphanumeric field reserved for use by the DBMS.
FILLER

Field used to ensure binary fullword alignment.

RECORD_OCCUR

Binary fullword field that contains a record occurrence sequence identifier used
internally by the DBMS.

DML_SEQUENCE

Binary fullword field thatcontains the source-level sequence number generated by
the DML precompiler. The DML precompiler updates this field before each call to
the DBMS if you specify DEBUG inthe DECLARE SUBSCHEMA statement. The
runtime system does not use this field.

Chapter 4: Communications Blocks and Error Detection 35

Communications Blocks

Updating Fields in the IDMS DB Communications Block

After a call tothe DBMS, one or more of these fields may have been updated,
depending on the DML statement issued and whether the statement executed
successfully.

Example of Updated Fields
The followingfigureillustrates theIDMS DB communications block fields updated by

successful and unsuccessful callstothe DBMS; only those fields accessed by the runtime
system are shown.

Key for this figure:

* Iftrue, the fieldis setto zoned decimal zeroes (0000). If false, the field is set to
1601.

0 The fieldis set to zoned decimal zeroes.

Y The fieldis updated.

C The fieldis cleared to spaces.

N The fieldis set to null db-key value(-1)

nn Specific minor status code

36 DML Reference Guide for PLI

Communications Blocks

SUCCESSFUL IRELCCESSAIL
P|E|D|R|A|E|E|E|P|D F E 0D R|&|E|E|E|P]|D
R|R|B|E|R|R|R|R|A|TI R R E|E|R|R|R|F|&]1
0|R|E|C|E|R|R|R|E|R 1] R K|C|E|R|R|R|G|ER
E|O0|E|D|A|D|D|D|E]|E 4 1] E|O|&|D|DQ|0O|E]|E
R|AR|Y|R|-]JR|AR]JAR|-]E R R Y/ R|-|R|R|R|-]C
Al - DJH|-|R|-]T|T A - oDIH|-]|-]-]1]T
|5 -|A|S5]|-|A|NR]| - H 5 - | & |5 |R|&|H| -
- T H|H|E|R|R|F|D - T H| HW|E|E|R|F|D
WA A|E|T|E|E|DO|B [& E|E|T|C|E|Q]|B
AT H C|A K A T H oA K
L E o] E H u E R E
E| 5 R t E 5 u] ¥
u]
Cantral statements
EIND RUK-URIT 0 R
EIND RECORD 0 14mn Y 9|y
EIND PRICEDURE 0 14mn Y 9|y
RE&DY 0 FErn [I o I
FINISH 0D|H|C c|c|cC &lrn c|c|¢c
COMMIT (&LL) 0D|H|C c|jc|c 12rn c|c|¢c
ROLLEEE {COHTIRUE) 0| H|C C|JC|C 1%rn c|cj]¢cC
KEEP {EXCLUSIVE) gy |r|c|cc|y Enn Y Y|y
IF SET s | T|Y|T|C)C|C|Y 16on Y 9|y
IF KIT SET s | T|Y¥|T|C)C|C|Y 160 Y 9|
Eetrieval statements
FIND/OBETEIR RECORD pyr|y|r|c|c|cy|y E3nn Y Y|y
GET RECORD pyr|y|r|c|c|cy|y E5nn Y Y|y
RETURR RECORD gy |r|c|cc|y 1T Y Y|y
Madification statements
STORE RECORD gy |r|c|cycyy 1Zmn Y 9|y
COMKRECT RECORD pyr|y|r|c|c|cy|y &rn YIY |y
HMIOIFY RECORED pyr|y|r|c|c|cy|y EErn YIY |y
DIZCORKECT RECORD pyr|y|r|c|c|cy|y 1lrn Y Y|y
ERASE RECORD oDJH|¥Y|T|C|C|C E2rn Y Y|y
Beccept statements
ECCEPT DEKEY FROM CURREMCY 0 ClC|C 15on Y 9|y
ECCEPT DEKEY REL TO CURRERCY 0 ClC|C 15on Y 9|y
ECCEPT 1DMS STATISTICS 0 c|lc|c 15mn YIY |y
ECCEPT BIKD RECORD 0 c|c|c 1irn Y Y|y
ECCEPT PROCEDVRE 0 c|c|c Ern Y Y|y
ECCEPT PESE_THFD 0 ClC|C 1inn Y Y|y

Chapter 4: Communications Blocks and Error Detection 37

Communications Blocks

LRC Block

Your program uses the logical-record requestcontrol (LRC) block when the subschema
usage mode is LR or MIXED. The LRC block provides aninterface between the Logical
Record Facility (LRF) and the application program.Itpasses information abouta
logical-record requestto LRF and returns path status information about the processing
of the request to the program. You use the LRC blockin conjunction with the IDMS DB
or IDMS DC communications block.

Your program instructs the DML precompiler to copy the data description (called
SUBSCHEMA_LR_CTRL) of the LRC block from the data dictionaryinto programvariable
storage. You accomplish this by codingan INCLUDE IDMS (SUBSCHEMA_LR_CTRL)
statement inyour program.

Note: For more information on INCLUDE IDMS, see INCLUDE IDMS (see page 66).

You should examinethe LR_STATUS field of the LRC block after every call to LRF to
determine the status of the call after processing.|fthe DBMS returns the value
LR_ERROR, you should examine the ERROR_STATUS field of the IDMS DB or IDMS DC
communications block.

Layout of the LRC Block

The following figureshows the layoutof the LRC block.

LRC BLOCK

Length Suggested

Field Data Type (bytes) Initial Value
1 2 LRC-LRPXELNG Binary 2 (Halfword) 00
3 4 LRC-MAXVXP Binary 2 (Halfword) ©0
5 8 LRIDENT Alphanumeric 4 'LRC"
9 16 LRVERB Alphanumeric 8 Spaces
17 32 LRNAME Alphanumeric 16 Spaces
33 48 LR-STATUS Alphanumeric 16 Spaces
49 64 FILLER R 16
65: - : (variable-length)|PXE Mixed

* word aligned

38 DML Reference Guide for PLI

Communications Blocks

Description of Fields

The LRC block contains the followingfields:
LRC_LRPXELNG

Specifies the length of the LRC block
LRC_MAXVXP

Specifies the length of the work area required to evaluate the WHERE clause.
LRIDENT

Contains the constant LRC followed by a space.
LRVERB

Contains the verb passed to the Logical Record Facility.
LRNAME

Contains the name of the logical record beingaccessed.
LR_STATUS

Contains the path status of a logical-record request. Path statuses are 1- to
16-character strings; they can be either standard or defined in the subschema by
the DBA. LRF provides three standard path statuses:LR_FOUND, LR_NOT_FOUND,
and LR_ERROR.

Note: For more information on path statuses, see Logical-Record Clauses (WHERE
and ON).

FILLER
Work area used internally by the Logical Record Facility.
PXE (WHERE clause)

Contains the expansion of the WHERE clause;itcancontainfrom 0 to 512 1-byte
elements. The 512-byte limitcan be raised or lowered by usingthe SIZE parameter
of the INCLUDE IDMS (SUBSCHEMA_LR_CTRL) statement.

Note: For more information aboutthe SIZE parameter and the INCLUDE IDMS
statement, see INCLUDE IDMS (see page 66).

IDMS DC Communications Block

The IDMS DC communications block replaces theIDMS DB communications block when
the operating mode is either IDMS_DC or DC_BATCH. At runtime, the DC/UCF system
uses the IDMS DC communications block to pass information about the outcome of
requested data communications and databaseservices toanapplication program.

Chapter 4: Communications Blocks and Error Detection 39

Communications Blocks

Your program instructs the DML precompiler to copy the data description (called
SUBSCHEMA_CTRL) of the IDMS DC communications block fromthe dictionaryinto
program variablestorage. You accomplish this by codingan INCLUDE IDMS
(SUBSCHEMA_CTRL) statement inyour program.

Note: For more information aboutINCLUDE IDMS, see INCLUDE IDMS (see page 66).
You should examinethe ERROR_STATUS field of the IDMS DC communications block
after every call tothe DBMS. Depending on the valuecontainedinthis field, you should

perform the IDMS_STATUS routine.

Note: For more information, see ERROR_STATUS Fieldand Codes (see page 43).

Layout of the IDMS DC Communications Block

The followingfigureshows the layoutof the 16-byte IDMS DC communications block.

16-byte IDMS DC communications block

Field Data Type (tiggg? %g%%?g{e\d/alue
¥l 8 PROGRAM Alphanumeric 8 Program Name
9 12 ERROR_STATUS Alphanumeric 4 '1400'
13 16 DBKEY Binary 4 (Fullword) 0000
17 32 |RECORD_NAME Alphanumeric 16 Spaces
33 48 |AREA NAME Alphanumeric 16 Spaces
49 64 |ERROR_SET Alphanumeric 16 Spaces
65 80 |ERROR_RECORD Alphanumeric 16 Spaces
81 9 |ERROR_AREA Alphanumeric 16 Spaces
** 97 100 PAGE_INFO Binary 4 (Fullword) 0000
97 |..|196 |IDBMSCOM_AREA Alphanumeric 100 Spaces
197 200| DIRECT_DBKEY Binary 4 0000
201 ' |30@ |DCBMSCOM_AREA Alphanumeric 100 Spaces
301 304 SSC_ERRSTAT_SAVE Alphanumeric 4 Spaces
305 308 SSC_DMLSEQ_SAVE Binary 4 (Fullword) 0000
309 312 DML_SEQUENCE Binary 4 (Fullword) 0000
313 316 RECORD_OCCUR Binary 4 (Fullword) 0000
317 320 SUBSCHEMA_CTRL_END Alphanumeric 4 Spaces

40 DML Reference Guide for PLI

Communications Blocks

Description of Fields

* word aligned

** PAGE_INFO GROUP overlays bytes 97 and 98 and

PAGE INFO DBK FORMAT overlays bytes 99 and 100.

Both of these fields are binary datatype each

having a length of two bytes. Suggested initial values for
both are 00. Together these two fields represent PAGE INFO.

Note: For more information aboutthe 18-byte IDMS DC communications block, see
18-Byte Communications Blocks (see page 415)

The IDMS DC communications block contains thefollowing fields:
PROGRAM

Contains your application program's name. If you code an INCLUDE
IDMS(SUBSCHEMA_BINDS) statement in your program, the DML precompiler
initializes this field automatically. If you do not includethis statement in your
program, you must initializethe field.

ERROR_STATUS

Contains a valueindicatingthe outcome of the last DML statement executed. The
DML precompilerinitializes the ERROR_STATUS field to 1400. The DC/UCF system
updates this field after a requested databaseor data communications servicecall
and before returning control to your program. The DC/UCF system updates this
field whether or not the request was processed successfully.

If your program consists of more than one run unit, it must reinitialize the
ERROR_STATUS fieldto 1400 after finishingonerun unit and before bindingto the
next.

Note: For more information aboutthe ERROR_STATUS fieldandits use, see
ERROR_STATUS Fieldand Codes (see page 43).

DBKEY

Contains the databasekey of the lastrecord accessed by the run unit. For example,
after successful execution ofa FIND command, the DBMS updates DBKEY with the
databasekey of the located record. Ifthe databasecall resultsinanerror condition,
DBKEY remains unchanged.

RECORD_NAME

Contains the name of the lastrecord accessed successfully by the run unit. This field
is left justified and padded with spaces on the right.

Chapter 4: Communications Blocks and Error Detection 41

Communications Blocks

AREA_NAME

Contains the name of the lastarea accessed successfully by the run unit. This field is
left justified and padded with spaces on the right.

ERROR_SET

Contains the name of the set involvedinthe lastoperationto produce anerror
condition. This fieldis leftjustified and padded with spaces onthe right.

ERROR_RECORD

Contains the name of the record involvedin the lastoperation to produce an error
condition. This fieldis leftjustified and padded with spaces on the right.

ERROR_AREA

Contains the name of the area involvedinthe lastoperationto produce anerror
condition. This fieldis leftjustified and padded with spaces on the right.

IDBMSCOM_AREA
Used internally by the DBMS for specification of runtime information.
PAGE_INFO

Two binary halfwords thatrepresent the page information associated with the last
record accessed by the run unit. PAGE_INFO is not changed if the call to the DBMS
results ina non-zero status. The firsthalfword (PAGE_INFO_GROUP) represents the
page group number. The second halfword (PAGE_INFO_DBK_FORMAT) represents
the db-key radix.

The db-key radix portion of the page information canbe used ininterpreting a
db-key for display purposes and in formattinga db-key from page and line numbers.
The db-key radix represents the number of bits withina db-key valuethatare
reserved for the linenumber of a record. By default, this valueis 8, meaning that up
to 255 records can be stored on a single page of the area.Given a db-key, you can
separateits associated page number by dividingthedb-key by 2 raised to the
power of the db-key radix. For example, ifthe db-key radixis 4,youwould divide
the db-key valueby 2**4. The resultingvalueis the page number of the db-key. To
separatethe linenumber, you would multiply the page number by 2 raised to the
power of the db-key radix and subtractthis valuefrom the db-key value. The result
would be the linenumber of the db-key. The followingtwo formulas can be used to
calculatethe page andlinenumbers from a db-key value:

Page-number = db-key value/ (2 ** db-key radix)

Line-number = db-key value- (page-number * (2 ** db-key radix))

42 DML Reference Guide for PLI

ERROR_STATUS Field and Codes

DIRECT_DBKEY

Contains either a user-specified db-key value or a null db-key value of -1. This field
is used to store records with a location mode of DIRECT. Becausethe DC/UCF does
not update this field, you mustinitialize DIRECT_DBKEY.

A note for native VSAM users:use the DIRECT_DBKEY field only when storinga
record ina native VSAM relativerecord dataset (RRDS). You mustinitialize
DIRECT_DBKEY to the relativerecord number of the record being stored.

DCBMSCOM_AREA

Used internally by the DC/UCF system for specification of runtime function
information.

SSC_ERRSTAT_SAVE

Used by the IDMS_STATUS routine to save a nonzero ERROR_STATUS inthe event
of an abend.

SSC_DMLSEQ_SAVE

Used by the IDMS_STATUS routine to save the value of DML_SEQUENCE inthe
event of anabend.

DML_SEQUENCE

Contains the source-level sequence number generated by the DML precompiler.
The DML precompiler updates this field before each call to the system if you specify
DEBUG inthe DECLARE SUBSCHEMA statement. The runtime system does not use
this field.

RECORD_OCCUR
Contains arecord occurrence sequence identifier used internally by the system.
SUBSCHEMA_CTRL_END

Marks the end of the IDMS DC communications block.

ERROR_STATUS Field and Codes

You canusethe ERROR_STATUS field of the IDMS or IDMS DC communications block to
determine ifa DML request was processed successfully. The DBMS or the DC system
returns avalueto the ERROR_STATUS fieldindicatingtheresultof each DML request.
For more information aboutusingthe ERROR_STATUS field, see Error Detection.

LRF users: You should check the LR_STATUS field of the LRC block before checking the
ERROR_STATUS field.

Chapter 4: Communications Blocks and Error Detection 43

ERROR_STATUS Field and Codes

Major and Minor Codes

The ERROR_STATUS fieldis a four-byte zoned decimal field. The firsttwo bytes
represent a major code; the second two bytes represent a minor code. Major codes
identify the function performed; minor codes describethe status of that function.

Value of Codes

A valueof 0000 indicates successful completion of the requested function. A value
other than 0000 indicates completion of the functionin a manner that may or may
not be in error, depending on your expectations. For example, 0326
(DB-REC-NOT-FOUND) should be anticipated after FIND CALC retrieval;this allows
you to trap the conditionand continue processing.

DB status codes have a major code inthe range 01 to 20. They occur duringdatabase
access inbatch or onlineprocessing. DCstatus codes have a major code in the range 30
to 51.They occurinonlineor DC_BATCH processing.Status codes with a major code of
00 applyto all DMLfunctions. DB status codes and DC status codes are discussed
separately below.

DB Status Codes

The followingtables listDBmajor and minor codes and their meanings.

Note: For a complete description of DB runtime status codes, see the CA IDMS Status
Codes chapter in CA IDMS Messages and Codes Guide.

DB Status Codes

The followingtables list DB major and minor codes and their meanings.

Major DB Status Codes

Major Database Function

Code

00 Any DML statement
01 FINISH

02 ERASE

03 FIND/OBTAIN

05 GET

06 KEEP

07 CONNECT

44 DML Reference Guide for PLI

ERROR_STATUS Field and Codes

Major Database Function

Code

08 MODIFY

09 READY

11 DISCONNECT

12 STORE

14 BIND

15 ACCEPT

16 IF

17 RETURN

18 COMMIT

19 ROLLBACK

20 LRF requests

Minor DB Status Codes

Minor Database Function Status

Code

00 Combined with a major code of 00, this code indicates successful completion
of the DML operation. Combined with a nonzero major code, this code
indicates thatthe DML operation was not completed successfully dueto
central version causes, such as time-outs and program checks.

01 An area has not been readied. When this code is combined with a major
code of 16, an IFoperation has resultedinavalidfalse condition.

02 Either the db-key used with a FIND/OBTAIN DB-KEY statement or the direct
db-key suggested for a STORE is not within the page range for the specified
record name.

03 Invalid currency for the named record, set, or area. This can only occur when
arun unitissharinga transaction with other databasesessions.The 03
minor status is returned ifthe run unittries to retrieve or update a record
usinga currency that has been invalidated because of changes made by
another databasesessionthatis sharingthe sametransaction.

04 The occurrence count of a variably occurring element has been specified as
either less than zero or greater than the maximum number of occurrences
defined in the control element.

05 The specified DML function would have violated a duplicates -not-allowed

option for a CALC, sorted, or index set.

Chapter 4: Communications Blocks and Error Detection 45

ERROR_STATUS Field and Codes

Minor
Code

Database Function Status

06

No currency has been established for the named record, set, or area.

07

The end of a set, area, or index has been reached or the set is empty.

08

The specified record, set, procedure, or LR verb is notinthe subschema or
the specified recordis nota member of the set.

09

The area has been readied with anincorrectusage mode.

10

An existingaccess restriction or subschema usage prohibits execution of the
specified DML function. For LRF users,the subschema inuse allows accessto
databaserecords only. Combined with a major code of 00, this code means
the program has attempted to access a databaserecord, but the subschema
inuse allows accessto logical records only.

11

The record cannotbe stored inthe specified area due to insufficientspace.

12

There is no db-key for the recordto be stored. This is a system internal error
andshould be reported.

13

A current record of run unit either has not been established or has been
nullified by a previous ERASE statement.

14

The CONNECT statement cannot be executed because the requested record
has been defined as a mandatory automatic member of the set.

15

The DISCONNECT statement cannot be executed because the requested
record has been defined as a mandatory member of the set.

16

The record cannotbe connected to a set of which itis already a member.

17

The transaction manager encountered an error.

18

The record has not been bound.

19

The run unit's transaction was forced to back out.

20

The current record is not the same type as the specified record name.

21

Not all areas beingused have been readied inthe correct usage mode.

22

The record name specifiedis notcurrentlya member of the set name
specified.

23

The area name specifiedis either not inthe subschema or not an extent
area; or the record name specified has notbeen defined withinthe area
name specified.

25

No currency has been established for the named set.

26

No duplicates existfor the named record or the record occurrences cannot
be found.

46 DML Reference Guide for PLI

ERROR_STATUS Field and Codes

Minor
Code

Database Function Status

28

The run unithas attempted to ready anarea that has been readied
previously.

29

The run unithas attempted to placealockon a recordthat is locked already
by another run unit. A deadlockresults. Unless the run unitissued either a
FIND/OBTAIN KEEP EXCLUSIVE or a KEEP EXCLUSIVE, the rununitis aborted.

30

An attempt has been made to erase the owner record of a nonempty set.

31

The retrieval statement format conflicts with the record's location mode.

32

An attempt to retrieve a CALC/DUPLICATE record was unsuccessful;the
value of the CALC fieldinvariablestorageis notequal to the value of the
CALC control element inthe current record of run unit.

33

At leastone setin which the record participates has notbeen includedinthe
subschema.

40

The WHERE clauseinan OBTAIN NEXT logical-record requestis inconsistent
with a previous OBTAIN FIRST or OBTAIN NEXT command for the same
record. Previously specified criteria, such asreference to a key field, have
been changed. A path status of LR-ERROR is returned to the LRC block.

41

The subschema contains no path that matches the WHERE clauseina
logical-record request. A path status of LR-ERROR is returned to the LRC
block.

42

An ON clauseincluded inthe path by the DBA specified return of the
LR-ERROR path status to the LRC block; anerror has occurred while
processingthe LRF request.

43

A programcheck has been recognized duringevaluation of a WHERE clause;
the program check indicates thateither a WHERE clause has specified
comparison of a packed decimal field to an unpacked nonnumeric data field,
or datainvariablestorageor a databaserecord does not conformto its
description. A path status of LR-ERROR is returned to the LRC block unless
the DBA has included an ON clauseto override this actionin the path.

44

The WHERE clauseina logical-record requestdoes not supply a key element
(sortkey, CALC key, or db-key) expected by the path. A path status of
LR-ERROR is returned to the LRC block.

45

Duringevaluation of a WHERE clause, a program check has been recognized
because a subscriptvalueis neither greater than 0 nor less thanits
maximum allowed value plus 1. A path status of LR-ERROR is returned to the
LRC block unless the DBA has included an ON clauseto overridethis action
inthe path.

Chapter 4: Communications Blocks and Error Detection 47

ERROR_STATUS Field and Codes

Minor
Code

Database Function Status

46

A programcheck has revealed an arithmetic exception (for example:
overflow, underflow, significance, divide) duringevaluation ofa WHERE
clause. A path status of LR-ERROR is returned to the LRC block unless the
DBA hasincluded an ON clauseto overridethis actioninthe path.

53

The subschema definition of an indexed set does not match the indexed
set's physicalstructurein the database.

54

Either the prefix length of an SR51 recordis less than zero or the data length
is less thanor equal to zero.

55

An invalid length has been defined for a variable-length record.

56

An insufficientamount of memory to accommodate the CA IDMS
compression/decompression routines is available.

57

A retrieval-only rununithas detected aninconsistencyinanindexthat
should causean 1143 abend, but optional APAR bit 216 has been turned on.

58

An attempt was made to rollbackupdates inalocal modeprogram. Updates
made to an area duringa local mode program's execution cannotbe
automaticallyrolled out. The area must be manually recovered.

60

A record occurrence type is inconsistent with the set named inthe
ERROR-SET fieldinthe IDMS communications block. This code usually
indicates a broken chain.

61

No record can be found for aninternal db-key. This code usuallyindicates a
broken chain.

62

A system-generated db-key points to a record occurrence, but no record
with that db-key can be found. This code usuallyindicates a broken chain.

63

The DBMS cannotinterpret the DML functionto be performed. When
combined with a major code of 00, this code means invalid function
parameters have been passed on the call tothe DBMS. For LRF users,a
WHERE clauseincludes a keyword that is longer than the 32 characters
allowed.

64

The record cannotbe found; the CALC control element has not been defined
properlyinthe subschema.

65

The databasepage read was not the page requested.

66

The area specifiedis notavailablein the requested usage mode.

67

The subschema invoked does not match the subschema objecttables.

68

The CICS interfacewas not started.

48 DML Reference Guide for PLI

ERROR_STATUS Field and Codes

Minor Database Function Status

Code

69 A BIND RUN-UNIT may not have been issued;the CV may be inactiveor not
accepting new run units; or the connection with the CV may have been
broken due to time out or other factors. When combined with a major code
of 00, this code means the program has been disconnected from the DBMS.

70 The databasewill notready properly;a JCL erroris the probablecause.

71 The page range or page group for the area being readied or the page
requested cannot be found inthe DMCL.

72 There is insufficient memory to dynamically load a subschema or database
procedure.

73 A central version run unit will exceed the MAXERUS valuespecified at
system generation.

74 The dynamicload of a module has failed. If operating under the central
version, a subschema or database procedure module either was not found in
the data dictionaryor the load (coreimage) library or, ifloaded, will exceed
the number of subschema and databaseprocedures provided for at system
generation.

75 A readerror has occurred.

76 A write error has occurred.

77 The run unithas not been bound or has been bound twice. When combined
with a major code of 00, this code means either the program is nolonger
signed on to the subschema or the variablesubschema tables have been
overwritten.

78 An area waitdeadlock has occurred.

79 The run unithas requested more db-key locks thanare availableto the
system.

80 The target node is either not activeor has been disabled.

81 The converted subschema requires specified databasename to be inthe
DBNAME table.

82 The subschema must be named inthe DBNAME table.

83 An error has occurredinaccessingnative VSAM data sets.

87 The owner and member records for a set to be updated are notinthe same
page group or do not have the same db-key radix.

91 The subschema requires a DBNAME to do the bind run unit.

92 No subschema areas map to DMCL.

93 A subschema area symbolic was notfound in DMCL.

Chapter 4: Communications Blocks and Error Detection 49

ERROR_STATUS Field and Codes

Minor
Code

Database Function Status

94

The specified dbname is neither a dbname defined inthe DBNAME table,
nor a SEGMENT defined inthe DMCL.

95

The specified subschema failed DBTABLE mappingusingthe specified
dbname.

Note: For a complete description of DB runtime status codes, see the chapter "CA IDMS
Status Codes" inthe Messages and Codes Guide.

DC Status Codes

The followingtables listthe DC major and minor codes and their meanings.

Major DC Status Codes
Major Function
Code
00 Any DML statement
30 TRANSFER CONTROL
31 WAIT/POST
32 GET STORAGE/FREE STORAGE
33 SET ABEND EXIT/ABEND CODE
34 LOAD/DELETE TABLE
35 GET TIME/SET TIMER
36 WRITE LOG
37 ATTACH/CHANGE PRIORITY
38 BIND/ACCEPT/END TRANSACTION STATISTICS
39 ENQUEUE/DEQUEUE
40 SNAP
43 PUT/GET/DELETE SCRATCH
44 PUT/GET/DELETE QUEUE
45 BASIC MODE TERMINAL MANAGEMENT
46 MAPPING MODE TERMINAL MANAGEMENT
47 LINE MODE TERMINAL MANAGEMENT

50 DML Reference Guide for PLI

ERROR_STATUS Field and Codes

Major
Code

Function

48

ACCEPT/WRITE PRINTER

49

SEND MESSAGE

50

COMMIT TASK/ROLLBACK TASK/FINISH TASK/WRITE JOURNAL

51

KEEP LONGTERM

58

SVC SEND/RECEIVE

Minor DC Status Codes

Minor
Code

Function Status

00

Combined with a major code of 00, this code indicates either successful
completion of the DML function or that all tested resources have been
enqueued.

01

The requested operation cannotbe performed immediately; waiting will
causea deadlock.

02

Either there is insufficientstorageinthe storage pool or the storage
required for control blocks is unavailable.

03

The scratch area ID cannotbe found.

04

Either the queue ID (header) cannotbe found or a pagingsessionwasin
progress when a second STARTPAGE command was received (that is,an
implied ENDPAGE was processed before this STARTPAGE was executed
successfully).

05

The specified scratchrecord ID or queue record cannot be found.

06

No resource control element (RCE) exists for the queue record; currency has
not been established.

07

Either an 1/O error has occurred or the queue upper limithas been reached.

08

The requested resourceis not available.

09

The requested resource is available.

10

New storage has been assigned.

11

A maximum task condition exists.

12

The named taskcodeis invalid.

13

The named resource cannot be found.

14

The requested module is defined as nonconcurrentandis currentlyin use.

Chapter 4: Communications Blocks and Error Detection 51

ERROR_STATUS Field and Codes

Minor
Code

Function Status

15

The named module has been overlaid and cannotbe reloaded immediately.

16

The specifiedinterval control element (ICE) address cannotbe found.

17

The record has been replaced.

18

No printer terminals have been defined for the current DC system.

19

The return areais too small;data has been truncated.

20

An 1/0, program-not-found, or potential-deadlock status condition exists.

21

The message destination is undefined, the longterm ID cannot be found, or
a KEEP LONGTERM request was issued by a nonterminal task.

22

A record already exists for the scratch area specified.

23

No storageor resource control element (RCE) could be allocated for the
replyarea.

24

The maximum number of outstandingreplies has been exceeded.

25

An attention interrupt has been received.

26

There is a logical errorinthe output data stream.

27

A permanent 1/0O error has occurred.

28

The terminal dial-uplineis disconnected.

29

An invalid parameter has been passedinthe listsetup by the DML
processor.

30

The named function has not yet been implemented.

31

An invalid parameter has been passed;the TRB, LRB, or MRB contains an
invalidfield; or the request is invalid becauseof a possiblelogic errorinthe
application program.Ina DC-BATCH environment, a possiblecauseis that
the record length specified by the command exceeds the maximum length
based on the packet size.

32

The derived length of the specified variablestorageis negative or zero.

33

Either the named table or the named map cannot be found inthe data
dictionaryloadarea.

34

The named variable-storagearea mustbe an 01-level entry inthe LINKAGE
SECTION.

35

A GET STORAGE requestisinvalid becausethe LINKAGE SECTION variable
has already been allocated.

36

The program either was not defined during system generation or is marked
out-of-service.

52 DML Reference Guide for PLI

ERROR_STATUS Field and Codes

Minor Function Status

Code

37 A GET STORAGE operandis invalid becausethe specified variablestorage
areaisinthe WORKING-STORAGE SECTION instead of the LINKAGE SECTION.

38 Either no GET STORAGE operand was specified or the specified LINKAGE
SECTION variablehas notbeen allocated.

39 The terminal device being used is out of service.

40 NOIO has been specified butthe datastream cannotbe found.

41 An IF operation resultedina valid truecondition.

42 The named map does not support the terminal deviceinuse.

43 A linel/Osession has been cancelled by the terminal operator.

44 The referenced field does not participateinthe specified map; a possible
causeis aninvalid subscript.

45 An invalid terminal type is associated with the issuingtask.

46 A terminal I/O error has occurred.

47 The named area has not been readied.

48 The run unithas not been bound.

49 NOWAIT has been specified but WAIT is required.

50 Statistics arenotbeing kept.

51 A lock manager error occurred duringthe processing of a KEEP LONGTERM
request

52 The specified tableis missingorinvalid.

53 An error occurred from a user-written edit routine.

54 Either there isinvalidinternal data or a data conversion error has occurred.

55 The user-written edit routine cannotbe found.

56 No DFLDS have been defined for the map.

57 The ID cannotbe found, is not a long-term permanent ID, or is being used by
another run unit.

58 Either the LRID cannotbe found, the maximum number of concurrent task
threads was exceeded, or anattempt was made to rollback database
changes inlocal mode.

59 An erroroccurred intransferringthe KEEP LONGTERM request to IDMSKEEP

60 The requested KEEP LONGTERM lockidwas alreadyinusewith a different

page group

Chapter 4: Communications Blocks and Error Detection 53

Error Detection

Minor Function Status

Code

63 Invalid function parameters havebeen passed on the call tothe DBMS.

64 No detail exists currently for update; no action has been taken.
Alternatively, the requested node for a header or detail is either not present
or not updated.

68 There are no more updated details to MAP IN or the amount of storage
defined for pageable maps at sysgenis insufficient. In the latter case,
subsequent MAP OUT DETAIL statements areignored.

72 No detail occurrence, footer, or header fields existto be mapped out by a
MAP OUT RESUME command, or the scratch record that contains the
requested detail could not be accessed. The latter caseis a mappinginternal
error and should be reported.

76 The firstscreen page has been transmitted to the terminal.

77 Either the program is no longer signed on to the subschema or the variable
subschema tables have been overwritten.

80 The target node is either not activeor has been disabled.

97 An error was encountered processinga syncpointrequest; check the log for
details.

98 An unsupported COBOL compiler option (for example, DEBUG) has been
specified foran online programor a program runningin a batch region has
issued a DML verb thatis only valid when runningonline under CA
IDMS/DC/UCF.

99 An unexpected internal return code has been received; the terminal device

is out of service.

Note: For a complete description of DC runtime status codes, see the chapter "CA IDMS
Status Codes" inthe Messages and Codes Guide.

Error Detection

The valuereturned to the ERROR_STATUS field must be checked after each DML
request. When usingthe Logical Record Facility, youshould check the LR_STATUS field
of the LRC block before checkingthe ERROR_STATUS field.

54 DML Reference Guide for PLI

Error Detection

IDMS_STATUS Routine

IDMS_STATUS is anerror-checkingroutine includedin the dictionary. You can copy
IDMS_STATUS into your program by codingthe INCLUDE IDMS MODULE statement:

INCLUDE IDMS (IDMS STATUS);

Note: For more information aboutthis statement, see INCLUDE IDMS MODULE (see
page 74).

IDMS_STATUS Routine Used Under Batch

The following code is copied into batch programs by the INCLUDE IDMS (IDMS_STATUS)
statement:

IDMS STATUS: PROC;
DECLARE IDMSIN1 ENTRY OPTIONS(INTER,ASSEMBLER);
IF ERROR STATUS='0000' THEN GOTO END STATUS;

PUT SKIP EDIT ('PROGRAM NAME ------ ', PROGRAM,
'"ERROR STATUS ------ ", ERROR STATUS,
"ERROR RECORD ------ ", ERROR RECORD,
"ERROR SET --------- ', ERROR SET,
'"ERROR AREA -------- ", ERROR AREA,
'LAST GOOD RECORD --', RECORD NAME,
'LAST GOOD AREA ----', AREA NAME)

(A(19) ,X(5),A(8),SKIP,A(19) ,X(5),A(4),
5(SKIP,A(19) ,X(5),A(16)));
SSC_INO1 REQ CODE = 39;
SSC_INO1 REQ RETURN = 0;
SSC_STATUS LABEL = ' *;
DO UNTIL (SSC_INO1 REQ RETURN > 0);
CALL IDMSIN1 (IDBMSCOM(41),
SSC_INO1 REQ WK,
SUBSCHEMA CTRL,
IDBMSCOM(1),
DML_SEQUENCE,
SSC_STATUS_LINE);
IF SSC_INO1 REQ RETURN > 4 THEN
PUT SKIP EDIT ('DML SEQUENCE ------ *, DML_SEQUENCE)
(A(19),X(5),F(10));
ELSE
PUT SKIP EDIT (SSC_STATUS LABEL, '---',
SSC_STATUS VALUE)
(A(16),A(3),X(5),A(12));
END;
ROLLBACK;
CALL ABORT;
END_STATUS: END;

Chapter 4: Communications Blocks and Error Detection 55

Error Detection

IDMS_STATUS Routine Used Under a DC/UCF System

The followingcode is copied into DC/UCF programs by the INCLUDE IDMS
(IDMS_STATUS) statement:

IDMS_STATUS: PROC;
IF ERROR STATUS='0000' THEN GOTO END STATUS;
SSC_ERRSTAT SAVE=ERROR STATUS;
SSC_DMLSEQ_SAVE=DML_SEQUENCE;
SNAP FROM (SUBSCHEMA CTRL) TO (SUBSCHEMA CTRL END);
ABEND CODE (SSC_ERRSTAT SAVE);

END_STATUS: END;

IDMS_STATUS abends your program if the ERROR_STATUS field contains a nonzero
value. Becausesome values do not indicate processingerrors, your programshould
check ERROR_STATUS for nonzero values before callingIDMS_STATUS.

Common Status Codes
The followingvalues arethe common codes to check before callingor executing
IDMS_STATUS:
0307
End of set, area, orindex
0326
No record found
0001 to 9999
Any nonzero status
0000 to 9999
Any status
31013201 34013901
Waiting will causea deadlock
32023204
Insufficientspaceavailable
4303

ID cannotbe found

56 DML Reference Guide for PLI

Error Detection

4404

Queue header cannotbe found
43054404

Record cannot be found
3908

Resource not available
3909

Resourceis available
3210

New spaceallocated
3711

Maximum attached tasks
4317

Record has been replaced
4319441945194719

Return area too small;data has been truncated
45254625

Attention interrupt received
4743

The DC/UCF session was canceled by the operator
Pageable Map Status Codes

The followingvalues arethe status codes returned when using pageable maps:
4604
Second consecutive STARTPAGE
4664
No current detail
4668
All updated details mapped in or pageablemap spaceexceeded
4672

Nothing to map out

Chapter 4: Communications Blocks and Error Detection 57

Error Detection

4676
Firstpage transmitted
4680
A complete map page was built

When IDMS_STATUS executes, it exits immediately if the error-status checkindicates
successful completion of the function (ERROR_STATUS of 0000).

Effects of Nonzero Status on IDMS_STATUS

This section describes the effects of nonzero status conditions on IDMS_STATUS
execution. The effects depend on the operating mode (BATCH or IDMS_DC) of the
application program.

Effect When the Operating Mode Is BATCH

When the operatingmode is BATCH, a nonzero error status causes IDMS_STATUS to:

m Printstatus information onthe unsuccessful function

m Issuearollback

m Abend the program

The status information retrieved from the IDMS DB communications blockincludes
program name, error status, error record, error set, error area, record name (the last
record successfully accessed), area name (the lastarea successfully accessed), page
number andlineindex of the dbkey (the lastrecord accessed by the run unit), dbkey in

hexadecimal format, page group, and database-key format (associated with the last
record accessed by the run unit), and DML sequence number.

Effect When the Operating Mode Is IDMS_DC

When the operatingmode is IDMS_DC, a nonzero error status causes IDMS_STATUS to:
m Snap the IDMS DC communications block (SUBSCHEMA_CTRL)

m Abend the program

The status information retrieved from the IDMS DC communications blockincludes
program name, error status, error record, error set, error area, record name (the last
record successfullyaccessed), area name (the lastarea successfully accessed),and the
DML sequence number.

58 DML Reference Guide for PLI

Chapter 5: Required PL/I Declaratives

This chapter describes the following PL/I declarative statements:
m DECLARE IDMS (for BATCH mode)

m DECLARE IDMSPLI (for IDMS_DC mode)

m DECLARE IDMSDCP (for DC_BATCH mode)

m DECLARE SQLXQ1 (for embedded SQL DML statements)

m DECLARE ADDR BUILTIN

m DECLARE ABORT

= DECLARE IDMSP

Note: For non-reentrant PL/I programs compiled under Release 2.3 of PL/I or earlier,
you must specify OPTIONS (MAIN) inthe PL/I PROCEDURE statement for the entry
procedure. For reentrant PL/I Release 2.3 or earlier programs, you must specify
OPTIONS (MAIN,REENTRANT). For AD/CYCLE (LE-COMPLIANT) PL/I programs,you must
specify OPTIONS (REENTRANT,FETCHABLE).

This section contains the followingtopics:

DECLARE IDMS (see page 59)
DECLARE IDMSPLI (see page 59)
DECLARE IDMSDCP (see page 60)
DECLARE SQLXQ1 (see page 60)
DECLARE ADDR BUILTIN (see page 60)
DECLARE ABORT (see page 60)
DECLARE IDMSP (see page 60)

DECLARE IDMS

Includethe IDMS ENTRY statement for applications executingin BATCH mode.

DECLARE IDMS ENTRY OPTIONS (INTER, ASSEMBLER);
pcL ——

M

DECLARE IDMSPLI

Includethe IDMSPLI ENTRY statement for onlineapplicationsexecutingin IDMS_DC
mode.

M

DECLARE IDMSPLI ENTRY OPTIONS (INTER, ASSEMBLER);
Lol —T

Chapter 5: Required PL/I Declaratives 59

DECLAREIDMSDCP

DECLARE IDMSDCP

Includethe IDMSDCP ENTRY statement for applications executingin DC_BATCH mode.

DECLARE IDMSDCP ENTRY OPTIONS (INTER, ASSEMBLER); >«
L opc —

DECLARE SQLXQ1

Includethe SQLXQ1 ENTRY statement for applications with embedded SQL DML
statements.

I

DECLARE SQLXQ1 ENTRY OPTIONS (INTER, ASSEMBLER);
pcL ——

DECLARE ADDR BUILTIN

Includethe ADDR BUILTIN statement sothat all databaseandonlineapplication
programs can use the PL/I ADDR function.

DECLARE ADDR BUILTIN;
L pcl —T

M

DECLARE ABORT

Includethe ABORT ENTRY OPTIONS statement to specify entry options for ABORT.

DECLARE ABORT ENTRY OPTIONS (INTER, ASSEMBLER);
pcL ——

)4

DECLARE IDMSP

Includethe IDMSP ENTRY statement if your onlineapplication passes parameters using
the TRANSFER statement.

DECLARE IDMSP ENTRY;
L pcl —T

I

60 DML Reference Guide for PLI

Chapter 6: DML Precompiler-Directive
Statements

This chapter describes the DML precompiler-directive statements. With the
precompiler-directive statements, you instructthe DML precompiler to copy source
code from the dictionaryinto your PL/l application program.

If your program accesses the database, itinvokes a subschema andissues DML
statements. Therefore, itmust includeat leasta DECLARE SUBSCHEMA statement. This
statement identifies the subschema your program uses and the operating environment
inwhichit executes. If your programincludes a DECLARE SUBSCHEMA statement, the
DML precompiler automatically generates required source-code components, so you
canomit all other precompiler-directive statements.

If your program does not access the database, it does not require DML
precompiler-directive statements.

Note: In this chapter, references to the IDMS communications block apply to both the
IDMS DB and IDMS DC communications blocks.

This section contains the followingtopics:

DECLARE SUBSCHEMA (see page 61)

DECLARE MAP (see page 65)

INCLUDE IDMS (see page 66)

INCLUDE IDMS (MAP_BINDS) (see page 74)

INCLUDE IDMS MODULE (see page 74)

INCLUDE IDMS (SUBSCHEMA BINDS) (see page 75)

INCLUDE IDMS (SUBSCHEMA RECORD_BINDS) (see page 76)

DECLARE SUBSCHEMA

Application programs thataccess the databaserequirethe DECLARE SUBSCHEMA
statement. This statement:

m |dentifies a subschema view to the DML precompiler. The subschema that you
name inthis statement determines the CA IDMS/DB record descriptions thatthe
DML precompiler can copy into your program from the data dictionary.

m |dentifies your program to the DML precompiler.

Chapter 6: DML Precompiler-Directive Statements 61

DECLARE SUBSCHEMA

m Identifies the operating mode (protocol)and environment under which the
program executes. The operating mode determines the form and content of calling
sequences produced by the DML precompiler.

m Specifies whether to number each DML command for identification duringerror
reporting (debug sequencing).

Syntax
»»—— DECLARE >
L (subschema-name SUBSCHEMA, schema-name SCHEMA .
L VERSION version-number]
C —) —
, program-name PROGRAM .]
VERSION version-number
" L mopE ¢ BATCH < y 3 e
IDMS_DC
DC_BATCH
mode
- L pesuc - g
> SUBSCHEMA NAVES LENGTH (16 y I >
- —E 18 :]_
Parameters

subschema-name SUBSCHEMA,schema-name SCHEMA

Specifies the subschema and schema view of the database used by your program.
The subschema and schema definitions mustalready existin the data dictionary. If
your DBA preregisters program names valid for the subschema inthe data
dictionary, the program name that you specify inthe program-name parameter
(described below) must be associated with this subschema in the dictionary.

VERSION version-number

Optionally qualifies schema-name with a version number. Version-number must be
aninteger inthe range 1 through 9999.The defaultis the highest version number
defined in the data dictionary for schema-name.

62 DML Reference Guide for PLI

DECLARE SUBSCHEMA

program-name PROGRAM

Optionally specifies the name of your program. If you preregistered this programin
the data dictionary, make surethat program-name matches the name in the data
dictionary. Otherwise, the DML precompiler will notrecognize the program.

VERSION version-number

Optionally qualifies program-name with a version number (for example, for
purposes of testing or development). version-number must be an integer inthe
range 1 through 9999. Version-number defaults to the highest number defined in
the data dictionary for the program, or defaults to 1 ifthe programis notregistered
inthe dictionary.

MODE

Identifies the operating mode used by the DML precompiler to generate call
statements for the program's DML statements.

BATCH

Specifies that your programexecutes in batch mode. The DBMS copies the
IDMS DB communications blockinto programvariablestorageand generates
standard CALL sequences. BATCH is the default.

IDMS_DC

Specifies that your program executes in IDMS_DC mode. The DBMS copies the
IDMS DC communications blockinto programvariablestorageand generates
CA IDMS/DC CALL sequences for CA IDMS/DC requests.

DC_BATCH

Specifies that your programexecutes in DC-BATCH mode. The DBMS copies the
IDMS DC communications blockinto programvariablestorageand generates
DC_BATCH CALL sequences for CA IDMS/DC requests.

DC_BATCH allows you to use all of the database DML commands, and also the
following CA IDMS/DC DML commands:

= BIND
. COMMIT TASK
m DELETE QUEUE

m FINISH

m GET QUEUE
m PUT QUEUE
= ROLLBACK

m WRITE PRINTER

You specify MODE DC_BATCH to access CAIDMS/DC queues and printers from
batch applications running under the DC/UCF system.

Chapter 6: DML Precompiler-Directive Statements 63

DECLARE SUBSCHEMA

mode

Indicates thatyour program executes ina special environment, determined by
the databaseadministrator. Special environments include user-defined
operating modes and teleprocessing monitors. The DML precompiler copies the
appropriatecommunications block into programvariablestorageand
generates operating-mode-specific CALL sequences.

Acceptable values for mode are:
m CICS
m CICS_EXEC

= INTERCOMM

m PL1F
= PL1OPT
= SHADOW

m TASKMASTER
DEBUG

Instructs the DML precompiler to placea unique DML sequence number inthe
IDMS communications block for each DML statement. These numbers appearin
columns 82 through 89 of the PL/I compiler output listing, in the form DMLPnnnn.
The DML precompiler generates numbers to identify the sequence in which DML
statements appearinthe program. Depending on the error routine defined by the
DBA, you canuse the DML sequence number to help debug your program.

If you do not specify DEBUG, the DML precompiler does not associate sequence
numbers with sourcestatements.

16/18

Specifies either 16 bytes or 18 bytes for the followingfields inthe IDMS
communications block: RECORD_NAME, AREA_NAME, ERROR_SET,
ERROR_RECORD, and ERROR_AREA.

Example

The followingexampleillustrates howto use the DECLARE SUBSCHEMA statement. In
this Example, DECLARE SUBSCHEMA accesses the EMPSS09 subschema of the EMPSCH
schema for a programnamed PLITST. The programruns under the IDMS_DC operating
mode and includes DEBUG sequencing.

DECLARE (EMPSS09 SUBSCHEMA,EMPSCHM SCHEMA,PLITST PROGRAM)
MODE (IDMS_DC)
DEBUG;

64 DML Reference Guide for PLI

DECLARE MAP

DECLARE MAP

The DECLARE MAP statement:

®m Indicates tothe DML precompiler that your program uses mapping-mode terminal
1/0

m Defines the program's maps
Repeat the DECLARE MAP statement as many times as required to define each map

used by your program. Code DECLARE MAP statements for all of your maps before the
firstINCLUDE IDMS statement.

Syntax
»»—— DECLARE (map-name MAP = N) >
VERSION version-number
g L TYPE (STANDARD <«) >
T EXTENDED i PAGING
Parameters

map-name MAP

Specifies the name of a map used by the program. Map-name must be the 1- to
8-character name of a map defined in the dictionary.

VERSION version-number

Optionally qualifies thenamed map with a version number. Version-number must
be aninteger inthe range 1 through 9999 that is associated with the named map in
the data dictionary.

TYPE

Specifies whether the map request block (MRB) builtfor the map will bestandard
or extended.

STANDARD

Specifies that the map has standard 3270 terminal attributes. STANDARD is the
default.

EXTENDED

Specifies that the map has extended 3279 terminal attributes. You canuse such
mappingfeatures as color, blinking fields, and reversevideo for your
application programs runningunder 3279-type terminals.

PAGING

Specifies that the named map is a pageablemap. For more information on pageable
maps, see MAP IN (DC/UCF) , and MAP OUT (DC/UCF), or refer to the CA IDMS
Mapping Facility Guide.

Chapter 6: DML Precompiler-Directive Statements 65

INCLUDEIDMS

Example

The followingexampleillustrates howto use the DECLARE MAP statement to access the
EMPMAPLR map:

DECLARE (EMPMAPLR MAP);

INCLUDE IDMS

You can code INCLUDE IDMS statements inyour application programto copy source
code into the program. The data dictionary containsoneor more items of source code
that correspond to each INCLUDE IDMS statement parameter. Accordingly, your choice
of Parameters determines the items of code copied from the data dictionaryintoyour
program. The Syntax rules for INCLUDE IDMS (shown below) describethe INCLUDE IDMS
statement Parameters with their associated items of source code.

The sourcecode that you copy into your program depends on the usage mode defined
inthe program's subschema. The subschema usage modes are DML, LR, and MIXED.
These usage modes determine your program's source code requirements; thus, they
determine whether the program canaccess databaserecords only, logicalrecords only,
or both databaserecords andlogical records. Do not code INCLUDE IDMS statements to
copy items that conflictwith your program's subschema usage mode. For example, do
not code SUBSCHEMA LR_CTRL ifyour program's subschema usage mode is DML.

Subschema Usage Modes

The followingtabledescribes subschema usage modes and the source code each
requires.

Subschema usage Description and required source code
mode

DML Allows a program to access databaserecords only. DML requires
the followingsourcecode items:

m The IDMS communications block through which the
application programand the DBMS communicate. For more
details, see Communications Blocks and Error Detection.

m The descriptions of the records to which the subschema
permits access.

66 DML Reference Guide for PLI

INCLUDEIDMS

Subschema usage Description and required source code

mode
LR Allows a program to access logical records only. LR requires the
following sourcecode items:

m The IDMS communications block through which LRF and the
DBMS communicate. For more details,see Communications
Blocks and Error Detection.

m The logical-record request control (LRC) block through which
the application programand LRF communicate. For more
details, see Communications Blocks and Error Detection.

m The descriptions of the logical records contained in the
subschema.

MIXED Allows a program to access both databaserecords andlogical

records. MIXED requires the followingsourcecodeitems:

m The IDMS communications block, through which LRF and the
DBMS communicate. For more details, see Communications
Blocks and Error Detection.

m The description of all records to which the subschema
permits access.

m The logical-record requestcontrol (LRC) block, through which
the application programand the Logical Record Facility
communicate. For more details, see Communications Blocks
and Error Detection.

m The descriptions of all logical records contained in the
subschema.

Usage of MIXED mode is not recommended for the following
reasons:

m Issuingbothlogical-record and databaserequests requires
that your program take into accountthe databasecurrencies
maintainedinthe paths used to servicelogical-record
requests.

m Accessingboth logical recordsand databaserecords in the
same program candiminish theprogram's independence
from the databasestructure. This could interfere with the
execution of paths invoked to providerequested
logical-record access.

m Llogical-record path processing caninterferewith program
access todatabaserecords.You may need to insert a DML
statement after a logical-record requestto reestablish the
appropriatecurrency.

Chapter 6: DML Precompiler-Directive Statements 67

INCLUDEIDMS

Syntax

L level-number -

Parameters

[
»—— (—¥v— SUBSCHEMA _DML_LR DESCRIPTION

— (SUBSCHEMA_LR_CTRL)

v

INCLUDE IDMS

— SUBSCHEMA_DESCRIPTION —— L attribute i
— SUBSCHEMA_CTRL ——————
— SUBSCHEMA_RECORDS

— record-name
L version-number J L attribute —-|

— TRANSACTION_STATISTICS

— SUBSCHEMA_LR_DESCRIPTION T m
— SUBSCHEMA_LR_CONTROL :I attribute
— SUBSCHEMA_LR_RECORDS

— LR (logical-record-name) n]
attribute

— MAPS
— MAP map-name L attribute i
— MAP_CONTROLS
— MAP_CONTROL map-name
L MAP_RECORDS

L SIZE 1rc-block-size J L attribute]

level-number INCLUDE IDMS

Instructs the DML precompiler to copy sourcecode into your programat the
INCLUDE IDMS statement's location.

The optional level-number clauseinstructs the DML precompiler to copy
descriptions into your programat a different level than the level specifiedin the
data dictionary. Level-number must be aninteger inthe range 01 through 99. Ifyour
program specifies level-number, the DML precompiler copies the firstlevel of code
to the level specified by level-number and adjusts all other levels accordingly. If your
program does not specify level-number, the descriptions copied by the DML
precompiler have the same level numbers as originally specified in the dictionary.

Usingthe level-number clausecan causeunpredictableresults ifrecordfields are
defined with a SYNCHRONIZED clause.Such fields may containslack bytes, inserted
to ensure correctalignment. Because CA IDMS/DB and CA IDMS/DC do not regard
slack bytes as functional, fields that contain such bytes may be misrepresented.
Therefore, you should ensure that all fields and records arestructured properly.

68 DML Reference Guide for PLI

INCLUDEIDMS

SUBSCHEMA_DML_LR_DESCRIPTION
Copies all components required to access both databaseandlogical records:
m SUBSCHEMA_CTRL
m SUBSCHEMA_RECORDS
m SUBSCHEMA_LR_CTRL
m SUBSCHEMA_LR_RECORDS

You specify SUBSCHEMA_DML_LR_DESCRIPTION onlyifthe subschema usage mode
is MIXED. Do not specify SUBSCHEMA _DML_LR_DESCRIPTION if the usagemode is
DML or LR.

SUBSCHEMA_DESCRIPTION

Copies all components required to access databaserecords:

m SUBSCHEMA_CTRL

m SUBSCHEMA_RECORDS

Do not specify SUBSCHEMA_DESCRIPTION ifthe subschema usage mode is LR.
SUBSCHEMA_CTRL

Copies the IDMS DB communications block data description. Ifthe operating mode
is IDMS_DC or DC_BATCH, SUBSCHEMA_CTRL copies the IDMS DC communications
block.

SUBSCHEMA_RECORDS

Copies the descriptions of all records contained in the subschema.The DML
precompiler may copy into your program PL/I synonyms defined for the subschema
records inthe data dictionary, accordingto the rules of synonym usage. Do not
specify SUBSCHEMA_RECORDS ifthe subschema usage mode is LR.

Note: When copyinga schema-owned record, the DML precompiler adds up to 7
bytes, if necessary, to make the record length divisible by 8 for doubleword
alignment.

Chapter 6: DML Precompiler-Directive Statements 69

INCLUDEIDMS

record-name VERSION version-number attribute

Copies the description of a record defined inthe dictionary. Do not specify record if
the subschema's usage mode is LR.

record-name

Specifies the name of the record to be copied. It can be the primary name of a
record stored in the data dictionary, ora synonym.

Schema-owned records cannotbe copiedinto non CA IDMS programs.These
are programs that neither use a subschema nor access the database. However,
a synonym defined for a schema-owned record can be copied intoa non CA
IDMS program. You use the VERSION clausetoidentify the synonym.

Ifthe DMLP processor cannotfind a record named record-name inthe
dictionary, itsearches for a module by that name. The module, which may have
been stored usingthe DDDL compiler, presumably contains a definition of
records notincludedinthe subschema.If an operating mode is associated with
the named record or module inthe data dictionary,itmust agree with the
mode in effect for your program. (See "DECLARE SUBSCHEMA", earlierinthis
chapter.)

Note: For more information aboutassociating operating modes with records,
see the CA IDMS IDD DDDL Reference Guide.

VERSION version-number

Optionally qualifies IDD records, butnot schema-owned records, with a version
number. Version-number must be aninteger inthe range 1 through 9999.
Version-number defaults to the highest version number of the record defined in
the data dictionary for the languageand operating mode under which the
program compiles.

attribute

Optionally allows you to instructthe DML precompiler to include PL/I attributes
inthe PL/I DECLARE statement. The DML precompiler generates the PL/I
DECLARE statement for the record that you specifyin record-name.

TRANSACTION_STATISTICS

Copies the definition of the transaction statistics block (TSB) with a length of 560
bytes. This block can be used inthe ACCEPT TRANSACTION STATISTICS or END
TRANSACTION STATISTICS DML statements.

70 DML Reference Guide for PLI

INCLUDEIDMS

SUBSCHEMA_LR_DESCRIPTION
Copies all components required to access logical records:
m SUBSCHEMA_CTRL
m SUBSCHEMA LR CTRL
m SUBSCHEMA_LR_RECORDS

Do not specify SUBSCHEMA_LR_DESCRIPTION if the subschema's usagemode is
DML.

SUBSCHEMA_LR_CONTROL

Copies the SUBSCHEMA_CTRL and SUBSCHEMA LR_CTRL components. Do not
specify SUBSCHEMA LR_CONTROL ifthe subschema usagemode is DML.

SUBSCHEMA_LR_RECORDS

Copies the descriptions of all logical records defined in the subschema. All
participating databaserecords become 02-level group fields. This allows your
program to reference the portion of a logicalrecord correspondingto a database
record as a group field. Do not specify SUBSCHEMA_LR_RECORDS ifthe subschema
usage mode is DML.

Note: When copyinga schema-owned record, the DML precompiler adds up to 7
bytes, if necessary, to make the record length divisible by 8 for doubleword
alignment.

LR (logical-record-name)

Copies the description of an individual logical record contained in the subschema:
do not include LR if the subschema usage mode is DML.

logical-record-name
Names the logical record.
attribute

Optionally allows you to instructthe DML precompiler to include PL/I attributes
inthe PL/I DECLARE statement. The DML precompiler generates the PL/I
DECLARE statement for the logicalrecord thatyou specifyin
logical-record-name.

MAPS

Copies the map request block (MRB) and map records for the maps that you specify
with DECLARE MAP statements.

Chapter 6: DML Precompiler-Directive Statements 71

INCLUDEIDMS

MAP

Copies the MRB and map records associated with the named map. The map's
version number defaults to the version number that you specify for this map inthe
DECLARE MAP statement.

map-name
Names the map.
attribute

Attribute optionallyallowsyouto instructthe DML precompiler to include PL/I
attributes inthe PL/I DECLARE statement. The DML precompiler generates the
PL/I DECLARE statement for the map that you specifyin map-name.

MAP_CONTROLS
Copies the MRBs for the maps that you specify in DECLARE MAP statements.
MAP_CONTROL

Copies the MRB for the named map. The map's version number defaults to the
version number that you specify for this mapinthe DECLARE MAP statement.

map-name
Names a map.
attribute

Optionally allows you to instructthe DML precompiler to include PL/I attributes
inthe PL/I DECLARE statement. The DML precompiler generates the PL/I
DECLARE statement for the map that you specifyin map-name.

MAP_RECORDS

Copies the map records for the maps that you specify in DECLARE MAP statements.
SUBSCHEMA_LR_CTRL

Copies the LRC block data description.

Do not specify SUBSCHEMA_LR_CTRL ifthe subschema usage mode is DML.
SIZE (Irc-block-size)

Optionally specifies thesize of that portion of the LRC block that contains
information aboutthe logical-record-request WHERE clause (PXE).

Lrc-block-size defaults to 512 bytes. If you include Irc-block-size, you should specify
asize largeenough to accommodate the most complex WHERE clauseinthe
program. The default, 512, is largeenough to include approximately 32 operators,
operands,and literals.

72 DML Reference Guide for PLI

INCLUDEIDMS

Lrc-block-size must be a positiveinteger inthe range 0 through 9999. You specifya
valueof 0 if none of the logical-record requests issued by the programincludes a
WHERE clause. You calculate Irc-block-size as follows:

1. Multiply the greatest number of operands and operators ina single WHERE
clauseby 16 bytes.

2. Add the number of bytes, rounded up to the nearest multiple of 8, associated
with the data field for each operand thatis a keyword, a program variable,or a
logical-record field named in the OF LR clause.

3. Add the length, rounded up to the nearest multipleof 8, of each operand that
is a character literal.

4. Add 12 bytes for each operand thatis a numeric literal.

INCLUDE IDMS Code

The following figure shows the code that the DML precompiler copies into program
variablestoragefor each INCLUDE IDMS statement parameter.

source code components krought in from the
data dictionary by the DMLP Processor

g
g v/ 8/8
@ Q- = (¢]
) o Ny Uy
-~ O = <
X US) o’ o« o é“
9/ 3 S/ 3/ 3 F
ALY Ny X Ny X >
g/ &/ § zg/g/g/ 8
Q¥ o
S/ 3/ ¢ 3/8/8/)§
§/§/ 8 g/§/8/ ¢
3 > S S > > S
INCLUDE IDMS @ @ g @ @ 9 9
SUBSGHEMA_DML_LR_DESCRIPTION | X X X X
2
| =
2 | SUBSCHEMA_DESCRIPTION X X
& | SUBSGHEMA_CTRL X
:f, SUBSCHEMA_RECORDS X
E record-name X
a
3 | SUBSCHEMA _LR_DESCRIPTION X X | x X
2 | sUBSCHEMA_LR_CONTROL X x | x
SUBSCHEMA LR CTRL X
SUBSCHEMA_LR_RECORDS X
LR logical-record-name X

Chapter 6: DML Precompiler-Directive Statements 73

INCLUDEIDMS (MAP_BINDS)

INCLUDE IDMS (MAP_BINDS)

Syntax

Parameters

INCLUDE IDMS (MAP_BINDS) copies map- and map-record-specific BIND MAP
statements for all maps thatyou specify with DECLARE MAP statements.

X

L INCLUDE IDMS (MAP_BINDS); a

INCLUDE IDMS (MAP_BINDS)

Copies map- and map-record-specific BIND MAP statements for all maps thatyou
specify with DECLARE MAP statements.

If your program uses a map, itrequires a BIND MAP statement for the map and for
each associated maprecord. The BIND MAP statement identifies the location of the
MRB andinitializes fields within the MRB. If you code the INCLUDE IDMS
(MAP_BINDS) statement inyour program, the DML processor automatically copies
appropriate BIND MAP statements into your program. For more information on the
BIND MAP statement, see BIND MAP (DC/UCF).

You mustindividually bind map records associated with logical records.

INCLUDE IDMS MODULE

Syntax

Parameters

INCLUDE IDMS (module-name) copies procedure source statements defined by the
databaseadministrator as modules inthe dictionary.

v)
L INCLUDE IDMS (module-name

L
M

L VERSION version-number —

INCLUDE IDMS (module-name)

Copies procedure source statements defined by the DBA as modules inthe
dictionary. Module-name specifies the name of a module previously defined by the
DBA usingthe DDDL compiler (refer to the CA IDMS IDD DDDL Reference Guide).
The availablePL/I standard modules are:

= IDMS_STATUS
m IDMS_STATUS (mode is IDMS_DC)

74 DML Reference Guide for PLI

INCLUDEIDMS (SUBSCHEMA_BINDS)

The DML precompilerinserts the module into your programat the location of the
INCLUDE IDMS MODULE statement, without modification.Ifthe module contains
DML statements, the DML precompiler examines and expands them within the
context of your program's subschema view and compile mode, as ifthey were
coded directly.

Note: The INCLUDE IDMS MODULE statement can precede the DECLARE
SUBSCHEMA statement if the module it copies does not contain DML statements.

You cannest INCLUDE IDMS MODULE statements. This means that code invoked by
an INCLUDE IDMS MODULE entry can itselfcontain INCLUDE IDMS MODULE
statements. However, make surethat a copied module does not copy itself.

VERSION version-number

Optionally qualifies module-name with a version number. Version-number must be
aninteger inthe range 1 through 9999.

There are two defaults for version-number, depending on whether:

m There is aversion of the module that you name with module-name whichis
operating-mode-specific. In this case, the defaultis the version number of this
module. Ifthere aretwo or more mode-specific versions of the module,
version-number defaults to the highestversion number among these versions.

m Thereisaversionof the module that you name with module-name whichis
non-operating-mode-specific,and there exists no operating-mode-specific
version.Inthis case, the defaultis the version number of this module. Ifthere
are two or more non-mode-specific versions of the module, version-number
defaults to the highestversion number among these versions.

If no version of the module exists inthe dictionary,an error condition results. For
more information, see the CA IDMS Messages and Codes Guide.

INCLUDE IDMS (SUBSCHEMA_BINDYS)

INCLUDE IDMS (SUBSCHEMA_BINDS):

Initializes the PROGRAM_NAME fieldinthe IDMS DB communications block

Copies a standard BIND RUN_UNIT statement and appropriatestandard BIND
RECORD commands for each CA IDMS/DB record in your program's variable
storage.

This statement does not generate BIND RECORD statements for logicalrecords. Your
program does not need them. INCLUDE IDMS (SUBSCHEMA_BINDS) only generates
BINDS for subschema records explicitly copied into your program by INCLUDE IDMS
statements.

Chapter 6: DML Precompiler-Directive Statements 75

INCLUDEIDMS (SUBSCHEMA_RECORD_BINDS)

Do not use the INCLUDE IDMS (SUBSCHEMA _BINDS) statement when bindingseveral
records to the samelocation.Instead,code BIND RUN_UNIT and BIND RECORD
statements separately for each record. This allows youto includea CALL IDMS_STATUS
statement after each BIND RECORD statement to check the ERROR_STATUS field.

Note: The INCLUDE IDMS (SUBSCHEMA_BINDS) statement does not automatically
generate BIND RECORD statements when more than one copy of a given database
record description (includingsynonyms)is presentin the program. For such records,
issueindividual BIND RECORD statements to bind the records to the correct location.

Syntax

X

L INCLUDE IDMS (SUBSCHEMA_BINDS) ; -

INCLUDE IDMS (SUBSCHEMA_RECORD_BINDS)

INCLUDE IDMS SUBSCHEMA_RECORD_BINDS copies appropriatestandard BIND
record-name statements for each CA IDMS/DB recordinthe program.

In cases where more than one copy of a given databaserecord description (including
synonyms)is present inthe program, INCLUDE IDMS SUBSCHEMA_RECORD_BINDS will
not automatically generate bind record statements. Individual bind record statements
must be issued to bind the record to the correct location.

Do not use the INCLUDE IDMS SUBSCHEMA_RECORD_BINDS statement when binding
several records to the same location. Instead, code DML BIND statements for each
record.

Syntax

)

L INCLUDE IDMS (SUBSCHEMA_RECORD_BINDS) ;]

76 DML Reference Guide for PLI

Chapter 7: Data Manipulation Lanquade
Statements

This chapter describes the Data Manipulation Language (DML) that applies to CA
IDMS/DB, CA IDMS/DC, and CA IDMS UCF.

Note: The DC/UCF references inthis chapter include both the CA IDMS/DC and CA IDMS
UCF products.

DML consists of statements that enable you to access the database management system
(DBMS) andto request Logical Record Facility (LRF) and data communications services.
This chapter presents the followinginformation:

m Tables describingthe databaseand data communications functions of DML
statements

m Tables groupingthe DML statements by function
Discussions of each DML statement (statements are inalphabetical order). Discussions

includean overall description of the statement, Syntax, parameter descriptions,and
examples

Important! When you review the Syntax for each DML statement, note that you must
code the Parameters in the order in which they are shown.

Chapter 7: Data Manipulation Language Statements 77

INCLUDEIDMS (SUBSCHEMA_RECORD_BINDS)

This section contains the followingtopics:

Functions of DML Statements (see page 79)

DML Statements Grouped by Function (see page 81)
ABEND (DC/UCF) (see page 88)

ACCEPT (DC/UCF) (see page 89)

ACCEPT BIND RECORD (see page 91)

ACCEPT DBKEY FROM CURRENCY (see page 92)
ACCEPT DBKEY RELATIVE TO CURRENCY (see page 94)
ACCEPT IDMS STATISTICS (see page 97)

ACCEPT PAGE_INFO (see page 99)

ACCEPT PROCEDURE CONTROL LOCATION (see page 101)
ACCEPT TRANSACTION STATISTICS (DC/UCF) (see page 102)
ATTACH (DC/UCF) (see page 108)

BIND MAP (DC/UCF) (see page 110)

BIND PROCEDURE (see page 112)

BIND RECORD (see page 113)

BIND RUN_UNIT (see page 115)

BIND TASK (DC/UCF) (see page 118)

BIND TRANSACTION STATISTICS (DC/UCF) (see page 119)
CHANGE PRIORITY (DC/UCF) (see page 120)

CHECK TERMINAL (DC/UCF) (see page 121)

COMMIT (see page 122)

CONNECT (see page 124)

DC RETURN (DC/UCF) (see page 126)

DELETE QUEUE (DC/UCF) (see page 129)

DELETE SCRATCH (DC/UCF) (see page 131)

DELETE TABLE (DC/UCF) (see page 133)

DEQUEUE (DC/UCF) (see page 134)

DISCONNECT (see page 135)

END LINE TERMINAL SESSION (DC/UCF) (see page 137)
END TRANSACTION STATISTICS (DC/UCF) (see page 138)
ENDPAGE (DC/UCF) (see page 140)

ENQUEUE (DC/UCF) (see page 140)

ERASE (see page 143)

ERASE (LRF) (see page 149)

FIND/OBTAIN (see page 150)

FINISH (see page 170)

FREE STORAGE (DC/UCF) (see page 171)

GET (see page 173)

GET QUEUE (DC/UCF) (see page 174)

GET SCRATCH (DC/UCF) (see page 178)

GET STORAGE (DC/UCF) (see page 181)

GET TIME (DC/UCF) (see page 185)

IF (see page 187)

INQUIRE MAP (DC/UCF) (see page 189)

KEEP CURRENT (see page 198)

KEEP LONGTERM (DC/UCF) (see page 200)

LOAD TABLE (DC/UCF) (see page 205)

78 DML Reference Guide for PLI

Functions of DML Statements

MAP_IN (DC/UCF) (see page 207)

MAP OUT (DC/UCF) (see page 213)

MAP OUTIN (DC/UCF) (see page 219)

MODIFY MAP (DC/UCF) (see page 223)

MODIFY RECORD (see page 230)

MODIFY RECORD (LRF) (see page 234)

OBTAIN (LRF) (see page 236)

POST (DC/UCF) (see page 238)

PUT QUEUE (DC/UCF) (see page 239)

PUT SCRATCH (DC/UCF) (see page 241)

READ LINE FROM TERMINAL (DC/UCF) (see page 244)
READ TERMINAL (DC/UCF) (see page 246)

READY (see page 249)

RETURN (DC/UCF) (see page 252)

ROLLBACK (see page 255)

SEND MESSAGE (DC/UCF) (see page 257)

SET TIMER (DC/UCF) (see page 259)

SNAP (DC/UCF) (see page 263)

STARTPAGE (DC/UCF) (see page 265)

STORE RECORD (see page 268)

STORE RECORD (LRF) (see page 273)

TRANSFER (DC/UCF) (see page 275)

WAIT (DC/UCF) (see page 277)

WRITE JOURNAL (DC/UCF) (see page 279)

WRITE LINE TO TERMINAL (DC/UCF) (see page 281)
WRITE LOG (DC/UCF) (see page 284)

WRITE PRINTER (DC/UCF) (see page 290)

WRITE TERMINAL (DC/UCF) (see page 295)

WRITE THEN READ TERMINAL (DC/UCF) (see page 297)
Logical-Record Clauses (WHERE and ON) (see page 301)

Functions of DML Statements

This section describes the 14 categories of DML statements. There are 6 categories of
database(CA IDMS/DB) functions.There are 8 categories of data communications
(DC/UCF system) functions.

Chapter 7: Data Manipulation Language Statements 79

Functions of DML Statements

Database Functions

The followingis a listofthe 6 database DML functions:
m Control statements:
— Initiateand terminate processing
- Effect recovery
— Prevent concurrent retrieval and update of databaserecords
- Evaluate set conditions

m Retrieval statements locaterecords inthe databaseand make them availableto the
application program.

m Modification statements add new records to the databaseand modify and delete
existingrecords.

m Accept statements move special informationsuch as databasekeys, storage
addresses,and statistics fromthe DBMS to program variablestorage.

m Logical-record statements retrieve, modify, store, and erase logical records.

m Recovery statements perform functions relatingto database,scratch,and queue
arearecovery in the event of a system failure. These functions:

— Establish checkpoints inthejournal filefor database, scratch, and queue
records used by the issuingtask

- Roll backuser database, scratch,and queue areas to the lastcheckpoint
established

— Establishanend-of-task checkpointandrelinquish control of all database,
scratch,and queue areas associated with the issuingtask

- Write user-defined records to the journal file

Data Communications Functions

The followingis a listofthe 8 data communications DML functions:
® Program management statements:

— Pass andreturn control from one programto another

— Load anddelete programs andtables

— Define exit routines to be performed before an abnormal programtermination
(abend)

— Forcean abend condition

m Storage management statements allocateandreleasevariablestorage.

80 DML Reference Guide for PLI

DML Statements Grouped by Function

m Task management statements:
- Initiatea new task
— Change the dispatchingpriority of the issuingtask
- Enqueue and dequeue system resources
— Signal thata taskis to waitpending completion of an event
— Postanevent control block (ECB), indicating completion of an event

m Time management statements obtainthe time and date and define time-related
events. These events include:

- Placingtheissuingtaskina waitstate for a specified amount of time
— Postinga user-specified ECB after a specified interval
- Initiatinga new task after a specifiedinterval

m Scratch management statements create, delete, or retrieve records from the
scratcharea.

® Queue management statements create, delete, or retrieve records from the queue
area.

m Terminal management statements transfer data between the application program
andthe terminal.

m Utility function statements:
— Request retrieval of task-related information
- Request a memory dump of selected parts of storage
— Retrieve and send a predefined message stored inthe data dictionary
— Send aspecified message to one or more users or logical terminals
— Collect, retrieve, and write DC/UCF system statisticson a transaction basis

— Establishlongtermdatabaselocks and monitor access to databaserecords used
across tasks during a pseudo-conversational transaction

DML Statements Grouped by Function

The two tables inthis sectionlistand describethe DML statements by their database
and data communications functions, respectively.

Chapter 7: Data Manipulation Language Statements 81

DML Statements Grouped by Function

DML Statements (Database)

The followingtablelists CAIDMS/DB DML statements by function.

Note: You canuseCA IDMS/DB statements ina DC/UCF system environment. However,
you cannot use DC/UCF system statements inthe CA IDMS/DB environment.

Function

DML Statement

Description

Control

BIND RUN-UNIT

Signs on the application programto
the DBMS

BIND RECORD

Establishes addressabilityinvariable
storage for one or more records
includedinthe program's subschema

BIND PROCEDURE

Establishes communication between
the application programanda
DBA-defined databaseprocedure

READY

Prepares databaseareas for processing

FINISH

Commits changes made to the
databasethrough anindividualrun
unit or through all database sessions
associated with a task

Evaluates the presence of member
recordsinaset ora record's
membership status and specifies
action based on the outcome

COMMIT

Commits changes made to the
databasethrough anindividualrun
unit or through all databasesessions
associated with a task

ROLLBACK

Rolls back uncommitted changes made
to the databasethrough anindividual
run unitor through all database
sessions associated with a task

KEEP CURRENT

Places anexplicitshared or exclusive
lockon arecord thatis current of run
unit, record, set, or area

Retrieval

FIND/OBTAIN DBKEY

Accesses a record usinga db-key
previously saved by the program

FIND/OBTAIN CURRENT

Accesses a record using previously
established currencies

82 DML Reference Guide for PLI

DML Statements Grouped by Function

Function DML Statement Description
FIND/OBTAIN WITHIN SET/AREA Accesses a record based on its logical
location withina set orits physical
locationwithinanarea
FIND/OBTAIN OWNER Accesses the owner record of a set
occurrence
FIND/OBTAIN CALC/DUPLICATE Accesses a record usingits CALC-key
value
FIND/OBTAIN USING SORT KEY Accesses arecord inasorted set using
its sort-key value
GET Moves all data associated with a
previouslylocated record into program
variablestorage
RETURN Retrieves the databaseand symbolic
keys of an indexed record entry
Modificatio STORE Adds a new record to the database
n
MODIFY Changes the contents of an existing
record
CONNECT Links a record to a set
DISCONNECT Removes a member record from a set
ERASE Deletes arecord from the database
Accept ACCEPT DBKEY FROM Saves the db-key and optionally the

CURRENCY

page information of the current record
of run unit, record type, set, orarea

ACCEPT DBKEY RELATIVE TO
CURRENCY

Saves the db-key and optionally the
page information of the next, prior, or
owner record relativeto the current
record of a set

ACCEPT IDMS STATISTICS

Returns system runtime statistics to
the program

ACCEPT BIND RECORD

Returns a record's bind address to the
program

ACCEPT PAGE_INFO

Returns page information for a given
record to the program

Chapter 7: Data Manipulation Language Statements 83

DML Statements Grouped by Function

Function DML Statement Description
ACCEPT PROCEDURE Returns information from the
application programinformation block
associated with a databaseprocedure
to the program
Logical ERASE Deletes alogical record
Record
Facility
MODIFY Modifies a logical record
OBTAIN Accesses a logical record
STORE Stores a logicalrecord
Recovery COMMIT Commits changes made to the
databasethrough anindividualrun
unit or through all databasesessions
associated with a task
FINISH Commits changes made to the
databasethrough anindividualrun
unit or through all databasesessions
associated with a task
ROLLBACK Rolls back uncommitted changes made

to the databasethrough anindividual
run unitor through all database
sessions associated with a task

WRITE JOURNAL

Writes user-defined records to the
journal file

DML Statements (Data Communications)

The followingtablelists DC/UCF DML statements by function.

Note: You cannotuse DC/UCF system statements inthe CA IDMS/DB environment.

Function

DML Statement

Description

Program
Management

TRANSFER (LINK)

Passes control to
another program with
the expectation of
receivingit back

84 DML Reference Guide for PLI

DML Statements Grouped by Function

Function DML Statement Description

TRANSFER (XCTL) Passes control to
another program with
no expectation of
receivingit back

DC RETURN Returns control to the
next higher level calling
program

LOAD TABLE Loads a programor

table into the DC/UCF
program pool

DELETE TABLE Signals thata program
has finished usinga
programora tablein
the program pool

ABEND Abnormally terminates
the issuingtask
Storage GET STORAGE Allocates variable
Management storage from a DC/UCF
storage pool
FREE STORAGE Frees all or partofa
block of variablestorage
Task ATTACH Attaches a new task
Management within DC/UCF
CHANGE PRIORITY Changes the dispatching
priority of the issuing
task
ENQUEUE Acquires aresourceor a
listofresources
DEQUEUE Releases a resource
WAIT Relinquishes control to

DC/UCF while awaiting
completion of an event

POST Posts an event control
block (ECB)
Time GET TIME Obtains the time and
Management date from the system
SET TIMER Defines a time-delayed
event

Chapter 7: Data Manipulation Language Statements 85

DML Statements Grouped by Function

Function DML Statement Description
Scratch PUT SCRATCH Stores a scratch record
Management
GET SCRATCH Retrieves a scratch
record
DELETE SCRATCH Deletes a scratchrecord
Queue PUT QUEUE Stores a queue record
Management
GET QUEUE Retrieves a queue
record
DELETE QUEUE Deletes a queue record
Terminal READ TERMINAL Requests a synchronous
Management or asynchronous data

(Basic Mode)

transfer from the
terminal to program
variablestorage

WRITE TERMINAL

Requests a synchronous
or asynchronous data
transfer from program
variablestoragetothe
terminal buffer

WRITE THEN READ TERMINAL

Requests a synchronous
or asynchronous data
transfer from program
variablestoragetothe
terminal buffer; and on
a terminal operator
signal,backtovariable
storage

CHECK TERMINAL

Ensures that a
previouslyissued
asynchronous /O
operationis complete

Terminal
Management
(Line Mode)

READ LINE FROM TERMINAL

Requests a synchronous
data transfer from the
terminal to the issuing
program

86 DML Reference Guide for PLI

DML Statements Grouped by Function

Function

DML Statement

Description

WRITE LINE TO TERMINAL

Requests a synchronous
or asynchronous data
transfer from the
issuingprogramto the
terminal

END LINE TERMINAL SESSION

Terminates the current
linel/Osession

WRITE PRINTER

Requests transmission
of datafrom ataskto a
printer

Terminal
Management
(Mapping Mode)

MAP IN

Requests a transfer of
data from the terminal
to programvariable
storage

MAP OUT

Requests a transfer of
data from program
variablestoragetothe
terminal

MAP OUTIN

Requests a transfer of
data from program
variablestoragetothe
terminal; and, upon a
terminal operator
signal,backtovariable
storage

INQUIRE MAP

Obtains information or
tests conditions
concerningthe previous
mapping operation

MODIFY MAP

Requests modifications
of mapping options for
amap

STARTPAGE

Begins a map paging
session and specifies
options for that session

ENDPAGE

Terminates a map
pagingsession

Utility

BIND MAP

Identifies the location of
a map request block
(MRB) andinitializes the
MRB's fields

Chapter 7: Data Manipulation Language Statements 87

ABEND (DC/UCF)

Function DML Statement Description
ACCEPT Retrieves task-related
information
SNAP Requests a memory

dump of selected parts
of storage

SEND MESSAGE

Sends a message to a
user, logical terminal, or
listof users or logical
terminals

BIND TRANSACTION STATISTICS

Defines the beginning of
atransactionforthe
purpose of collecting
transaction statistics

ACCEPT TRANSACTION STATISTICS

Returns the contents of
the transaction statistics
block (TSB) to program
variablestorage

END TRANSACTION STATISTICS

Defines the end of a
transaction

KEEP LONGTERM

Either modifies a prior
KEEP LONGTERM
request or enables
databaselongterm locks
or databasemonitoring
for records, sets, or
areas

WRITE LOG

Retrieves a message
from the data dictionary
andsends itto a
predefined destination

ABEND (DC/UCF)

The ABEND statement terminates the issuingtaskabnormally. Optionally, ABEND also
writes a task dump to the log file. Upon completion of the ABEND function, the DBMS
returns processing control to the DC/UCF system program-control module.

Syntax

NODUMP «

»»—— ABEND CODE (abend-code) l:
DUMP

M

88 DML Reference Guide for PLI

ACCEPT (DC/UCF)

Parameters

Example

Status Codes

ABEND CODE(abend-code)

Specifies a 4-character abend code that you select. Abend-code can be the symbolic
name of a variablestoragefield containingtheabend code, or the code itself
enclosedinsinglequotation marks.

Note: Because the abend code that you specify appears inthe system log and
displaysatthe task's terminal, you should not usesystem abend codes.

NODUMP/DUMP

Specifies whether the system writes a formatted task dump to the logfile. The
defaultis NODUMP.

In this example, ABEND terminates the issuingtaskabnormally,issuingthe code U876,
and writes a task dump to the logfile:

ABEND CODE('U876")
DUMP;

Because the DBMS passes control to the system program-control module, your program
does not have to check the ERROR_STATUS field.

ACCEPT (DC/UCF)

The ACCEPT statement retrieves the followingtask-related information:

m Current taskcode

m Taskidentifier

m Llogical terminal identifier

m Physicalterminal identifier

m DC/UCF system version

m User identifier (the ID of the usersigned on to the task's logical terminal)
m Physicalterminal screen dimensions

m System ID

Chapter 7: Data Manipulation Language Statements 89

ACCEPT (DC/UCF)

Syntax

)4

»»—— ACCEPT TASK CODE—— INTO (return-location);
TASK 1D ——
LTERM ID —]
PTERM ID —
SYSVERSION —
USER 1D —
SCREENSIZE —
SYSTEM 1D —

Parameters.

TASK CODE
Specifies the 1-to 8-character code that invokes the current task.
TASK ID

Specifies the taskidentifier assigned by the system. The taskidentifieris a unique
sequence number stored ina FIXED BINARY(31) field. At system startup, the
DC/UCF system sets the ID to 0. Each time a task executes, the system increments
the ID by 1.

LTERM ID

Specifies the 1-to 8-characteridentifier of the logical terminal associated with the
current task. Ifthe current task has no associated logical terminal, the system
returns spaces (null value).

PTERM ID

Specifies the 1-to 8-characteridentifier of the physical terminal associated with the
current task. Ifthe current task has no associated physical terminal, the system
returns spaces (null value).

SYSVERSION

Specifies the version number of the current DC/UCF system. The version number is
aninteger inthe range 0 through 9999 stored in a halfword binary numeric field.

USER ID

Specifies the 32-characteridentifier of the user signed on to the logical terminal
associated with the current task. If no user is signed on, the system returns spaces
(null value).

SCREENSIZE

Specifies the screen dimensions of the current task's associated physical terminal.
The system returns the screen sizeto a field divided into two FIXED BINARY(15)
fields.The firstfield contains therow; the second field contains the column. For
example, values of 24 in the firsthalfword and 80 in the second halfword represent
a 24-lineby 80-character screen. If the current task has no associated terminal, the
system returns a null valueof 0.

90 DML Reference Guide for PLI

ACCEPT BIND RECORD

Example

Status Codes

SYSTEM ID

Specifies the 8 character name (nodename) by which the DC/UCF system is known
to other nodes inthe DC/UCF communications network.

INTO (return-location)

Specifies the location to which the DC/UCF system returns the requested
task-related information. Return-location specifies the symbolic nameof a
user-defined field. The pictures and usages of this field and of the requested data
must be compatible.

The following ACCEPT statements illustrateretrievingthe ID of the current taskand the
id of the user signed on to the task's associated logical terminal:

ACCEPT TASK ID INTO (TASK ID);
ACCEPT USER ID INTO (USER ID);

Upon completion of the ACCEPT function, the ERROR_STATUS fieldinthe IDMS DC
communications block indicates the outcome of the operation:

Status code Meaning
0000 The request was serviced successfully.
4829 An invalid parameter was passed from the program.

ACCEPT BIND RECORD

Currency

Syntax

The ACCEPT BIND RECORD statement moves the bind address of a record to a specified

locationin programvariablestorage. Usually, a subprogramuses this statement to
acquirethe address ofa record.

The ACCEPT BIND RECORD statement updates no currencies. However, your program
must establish currency for the record type whose bind address itrequires.

»»—— ACCEPT BIND RECORD (record-name) INTO (bind-address);)

Chapter 7: Data Manipulation Language Statements 91

ACCEPT DBKEY FROM CURRENCY

Example

Status Codes

record-name

Specifies the record whose bind address will becopiedinto the specified locationin
variablestorage. Record-name must be a record previously bound by the run unit.

INTO (bind-address)
Specifies the variable-storagelocation to which CA IDMS/DB and the system return
the record's bind address. Bind-address is defined as a FIXED BINARY(31) field. After

the ACCEPT BIND RECORD statement executes, bind-address contains a storage
address, not a databasekey.

This example uses ACCEPT BIND RECORD to move the bind address for the EMPLOYEE
record to location REG1 in the requesting subprogram:

ACCEPT BIND RECORD (EMPLOYEE) INTO (REG1);

Upon completion of the ACCEPT BIND RECORD function, the ERROR_STATUS fieldinthe
IDMS DB communications block indicates the outcome of the operation:

Status code Meaning
0000 The request was serviced successfully.
1508 The subschema does not contain the named record.

ACCEPT DBKEY FROM CURRENCY

Currency

Syntax

The ACCEPT DBKEY FROM CURRENCY statement moves the db-key and optionally the
page information of the current record of run unit, record type, set, or areato a
specifiedlocationin programvariablestorage. By usinga FIND/OBTAIN DBKEY
statement, you candirectly access records whose db-keys you save usingthe ACCEPT
DBKEY FROM CURRENCY statement.

ACCEPT DBKEY FROM CURRENCY does not update currencies.

v

RECORD (record-name) —
SET (set name)

»»—— ACCEPT CURRENCY E
AREA (area-name)

»— INTO (db-key-field) [T >«
PAGE INFO INTO (page-info-location

92 DML Reference Guide for PLI

ACCEPT DBKEY FROM CURRENCY

Parameters

Example

RECORD (record-name)

Saves the db-key of the record current of the specified record type intothe location
specified by db-key-field.

SET (set-name)

Saves the db-key of the record current of the specified setinto the location
specified by db-key-field.

AREA (area-name)

Saves the db-key of the record current of the specified area into the location
specified by db-key-field.

INTO (db-key-field)
Identifies the locationinvariablestoragethat will containthedb-key of the
specified record. Db-key-field must be a FIXED BINARY(31) field.

Note: Ifyou omit the RECORD, SET, or AREA qualifiers, the DBMS saves the db-key
of the record current of run unit.

INTO (page-info-location)

Specifies the name of the four-byte field that can be defined either as a group field
or as a fullword field (PICS9(8) COMP). Identifies the locationinvariablestorage
that contains page information for the specified record type. Upon successful
completion of this statement, the firsttwo bytes of the field contain the page group
number and the lasttwo bytes containa db-key radix thatcanbe used for
interpreting dbkeys.

The following example:
1. Establishes arecord,named EMPLOYEE, as current of run unit

2. Savesthe record's db-key ina location named SAVED_DBKEY and saves the page
information of the recordina location named SAVED_PGINFO, usingthe ACCEPT
DBKEY FROM CURRENCY statement

3. Accesses the EMPLOYEE record occurrenceusingthe saved db-key
EMP_ID 0415 = EMP_ID IN;

FIND CALC RECORD (EMPLOYEE);
ACCEPT CURRENCY INTO (SAVED DBKEY) PAGE_INFO INTO (SAVED PGINFO);

OBTAIN DBKEY (SAVED DBKEY);

Chapter 7: Data Manipulation Language Statements 93

ACCEPT DBKEY RELATIVE TO CURRENCY

Status Codes

Upon completion of the ACCEPT DBKEY FROM CURRENCY function, the ERROR_STATUS
fieldinthe IDMS DB communications blockindicates the outcome of the operation:

0000

The request was serviced successfully.
1506

Currency was not established for the named record or set.
1508

The subschema does not contain the named record or set. Your program probably
invoked the wrong subschema.

1523

The subschema does not contain the named area.

ACCEPT DBKEY RELATIVE TO CURRENCY

Currency

Syntax

The ACCEPT DBKEY RELATIVE TO CURRENCY statement moves a selected db-key and
optionallyits pageinformationtoa specified locationin programvariablestorage. The
db-key moved to variablestoragecan be the db-key of the next, prior, or owner record
relativeto the current record of set.

This version of the ACCEPT statement allows you tosave the db-key of a record withina
set without actually havingto access therecord. By usinga FIND/OBTAIN DBKEY
statement, you candirectly access records whose db-keys you save usingthe ACCEPT
DBKEY RELATIVE TO CURRENCY statement.

Note: You must establish set currency before usingthis statement. If no set currency is
established, the DBMS returns 0000 to the ERROR_STATUS field and -1 to the db-key
field.

ACCEPT DBKEY RELATIVE TO CURRENCY does not update anycurrencies.

PRIOR

»»—— ACCEPT CURRENCY SET (set name) —E NEXT INTO (db-key-field) —»
OWNER

: >«

»
»

L PAGE INFO INTO (page—im‘o—location)—I

94 DML Reference Guide for PLI

ACCEPT DBKEY RELATIVE TO CURRENCY

Parameters

SET (set-name)

Identifies the record whose db-key will be moved into the location specified by
db-key, described below. Set-name must be a setincludedinthe subschema.

When arecord declared as anoptional or manual member of a setisaccessed, it
does not become current of set unless itis connected to an occurrence of the set. If
the record is not connected to an occurrence of the set, an attempt to access the
owner record will locateinstead the owner of the current record of set. In such
cases,usethe OWNER optionto determine whether the retrieved record is actually
a set member before executing the ACCEPT DBKEY RELATIVE TO CURRENCY
statement. You cando this with the IF statement, described laterin this chapter.

NEXT

Saves the db-key of the next recordrelativeto the record current of the
specified set. You cannotrequest NEXT currency unless the specified set has
prior pointers. Prior pointers ensurethat the next pointer inthe prefix of the
current record does not point to a logically deleted record.

No indication of an end-of-set conditionis possiblefor the NEXT or PRIOR
options. A retrieval command must be issued to determine whether the next or
prior recordinthe set occurrenceis the owner record.

Native VSAM users: You cannotrequest NEXT currency for sets defined for
native VSAM records.

PRIOR

Saves the db-key of the prior record relativeto the record current of the
specified set. You cannotrequest PRIOR currency unless the specified set has
prior pointers.

No indication of an end-of-set conditionis possiblefor the NEXT or PRIOR
options. A retrieval command must be issued to determine whether the next or
priorrecordinthe set occurrenceis the owner record.

Native VSAM users: You cannotrequest PRIOR currency for sets defined for
native VSAM records.

Chapter 7: Data Manipulation Language Statements 95

ACCEPT DBKEY RELATIVE TO CURRENCY

OWNER

Saves the db-key of the owner of the record current of the specified set. A
request for OWNER CURRENCY cannot be executed unless the specified sethas
owner pointers. However, ifthe current record of the named setis the owner
record occurrence, a request for OWNER currency returns the db-key of the
record itself. This will happen even ifthe set does not have owner pointers.

Native VSAM users: You cannotrequest OWNER currency for sets defined for
native VSAM records.

INTO (db-key-field)

Identifies the locationinvariablestoragethat will containthedb-key of the
requested record. Db-key must be a FIXED BINARY(31) field.

INTO (page-info-location)

Example

Specifies the name of the four-byte field that can be defined either as a group
field or as a fullword field (PICS9(8) COMP). Identifies the locationinvariable
storage that contains pageinformation for the specified record type. Upon
successful completion of this statement, the firsttwo bytes of the field contain
the page group number and the lasttwo bytes containa db-key radixthat can
be used for interpreting dbkeys.

The following statements access the EMP_EXPERTISE set and savethe db-key of the
owner record of the SKILL_EXPERTISE set:

EMP_ID 0415 = '0119';

FIND CALC RECORD (EMPLOYEE);

FIND FIRST SET (EMP_EXPERTISE);

ACCEPT CURRENCY SET (SKILL EXPERTISE) OWNER
INTO (SAVE DBKEY);

Status Codes

Upon completion of the ACCEPT DBKEY RELATIVE TO CURRENCY function, the
ERROR_STATUS fieldinthe IDMS DB communications blockindicates the outcome of
the operation:

Status code Meaning

0000

The request was serviced successfully.

1508

The subschema does not containthe named set. Your program
probablyinvoked the wrong subschema.

96 DML Reference Guide for PLI

ACCEPT IDMS STATISTICS

ACCEPT IDMS STATISTICS

Syntax

Parameter

The ACCEPT IDMS STATISTICS statement copies systemruntime statisticslocated in the
program's statistics block to programvariablestorage. Whilea run unit executes, your
program canissue ACCEPT IDMS STATISTICS as many times as required. For example,
you might want to request databasestatisticsafter storinga variable-length record. This
allows you to determine whether the entire record was stored in one place, or
fragments were placedinanoverflow area.

The ACCEPT IDMS STATISTICS statement does not reset any of the statistics fields to
zero. IDMS statistics block fieldsarereset only when you issuea FINISH command.

You canusethe ACCEPT IDMS STATISTICS statement in both the navigationaland Logical
Record Facility (LRF) environments.

»»—— ACCEPT IDMS_STATISTICS INTO (db-statistics-field);

v

I—EXTENDED (db-stat-extended)4,

db-statistics-field

M

Identifies the field (in programvariablestorage) the system runtime statistics
contained in IDMS_STATISTICS areto be copied to. Db-statistics-field is defined as
analigned, 100-byte field.

The DBMS copies IDMS_STATISTICS data to db-statistics-field accordingto the following

format:

DECLARE
01 DB_STATISTICS,

03
03
03
03
03
03
03
03
03
03
03
03

DATE_TODAY
TIME_TODAY
PAGES READ
PAGES WRITTEN
PAGES REQUESTED
CALC_TARGET
CALC_OVERFLOW
VIA TARGET

VIA OVERFLOW
LINES REQUESTED
RECS QURRENT
CALLS TO_IDMS

CHAR(8),
CHAR(8),

FIXED
FIXED
FIXED
FIXED
FIXED
FIXED
FIXED
FIXED
FIXED
FIXED

BINARY(31),
BINARY(31),
BINARY(31),
BINARY (31),
BINARY(31),
BINARY(31),
BINARY(31),
BINARY(31),
BINARY(31),
BINARY(31),

Chapter 7: Data Manipulation Language Statements 97

ACCEPT IDMS STATISTICS

03 FRAGMENTS STORED FIXED BINARY(31),
03 RECS RELOCATED FIXED BINARY(31),
*03 LOCKS REQUESTED FIXED BINARY(31),
*03 SEL LOCKS HELD FIXED BINARY(31),
*03 UPD LOCKS HELD FIXED BINARY(31),
(
(

*03 RUN_UNIT_ID FIXED BINARY(31),
*03 TASK_ID FIXED BINARY(31),
*03 LOCAL_ID CHAR(8),
03 FILLER CHAR(8) ;

*Applies to CA IDMS/DB central version only

The LOCAL_ID field consists of the 4-byte identifier of the interface in which the run unit
originated (for example, BATC, DBDC, or CICS) and a uniqueidentifier (fullword binary
value) assigned to the run unit by that interface. For batch and z/VM run units, this
identifier specifies theinternal machinetime. For CICS run units, this identifier specifies
the CICS transaction number assigned to the run unit.

To displaytheoriginatinginterfaceidentifier and the run-unitidentifier for a program,
you can move the LOCAL-ID field to a work field:

01 WORK LOCAL ID,
02 WORK_LOCAL ORIGIN CHAR(4),
02 WORK_LOCAL NUMBER FIXED BINARY(31);

Alternatively, your DBA can modify the DB_STATISTICS record from the data dictionary
to define two subordinatefields for the LOCAL _ID field.The DB_STATISTICS record
describes the IDMS statistics block. To use this record, code the following statement in
program variablestorage:

01 INCLUDE IDMS (DB STATISTICS);
db-stat-extended

Identifies the field (in programvariablestorage) the extended system runtime
statistics contained in IDMS_STATISTICS areto be copiedto Db-stat-extended is
defined as analigned, 100-byte field.

The DBMS copies IDMS_STATISTICS data to db-stat-extended accordingto the following
format:

01 DB-STAT-EXTENDED

03 SR8-SPLITS FIXED BINARY (31),
03 SR8-SPAWNS FIXED BINARY (31),
03 SR8-STORES FIXED BINARY (31),
03 SR8-ERASES FIXED BINARY (31),
03 SR7-STORES FIXED BINARY (31),
03 SR7-ERASES FIXED BINARY (31),

03 BINARY-SEARCHES-TOTAL FIXED BINARY (31),
03 LEVELS-SEARCHED-TOTAL FIXED BINARY (31),

98 DML Reference Guide for PLI

ACCEPT PAGE_INFO

Example

Status Codes

03 ORPHANS-ADOPTED FIXED BINARY (31),
03 LEVELS-SEARCHED-BEST FIXED BINARY (31),
03 LEVELS-SEARCHED-WORST FIXED BINARY (31),
03 FILLEROOOL FIXED BINARY (31);

This record layoutcan be copied from the data dictionary. Code the following statement
inprogram variablestorage:

01 INCLUDE IDMS (DB STAT EXTENDED).

Note: For more information aboutthe CA IDMS statistics blocks, seethe CA IDMS
Database Administration Guide.

The following statements:

1. Establishcurrencyforthe sets in which a new EXPERTISE record will participateas a
member

2. Store the EXPERTISE record
3. Move statisticsaboutthe stored EXPERTISE record to the DB_STATISTICS locationin

mainstorage

EMP_ID 0415 = EMP_ID IN;
FIND CALC RECORD (EMPLOYEE);

SKILL ID IN = SKILL ID 0455;

FIND CALC RECORD (SKILL);

STORE RECORD (EXPERTISE);

ACCEPT IDMS STATISTICS INTO (DB STATISTICS);

Upon completion of the ACCEPT IDMS STATISTICS function, the ERROR_STATUS fieldin
the IDMS DB communications blockindicates the outcome of the operation:

0000
The request was serviced successfully.
1518

The databasestatisticslocation was nota valid address.

ACCEPT PAGE_INFO

The ACCEPT PAGE_INFO statement moves the page informationfora given recordto a
specified locationin programvariablestorage. Page information thatis savedin this
manner is availablefor subsequent directaccess by usinga FIND/OBTAIN DBKEY
statement.

Chapter 7: Data Manipulation Language Statements 99

ACCEPT PAGE_INFO

Syntax

Parameters

Example

Status Codes

»»— ACCEPT PAGE_INFO RECORD (record-name) INTO (page-info-location) — >«

RECORD (record-name)

Specifies the record whose page information will beplacedinthe specifiedlocation.
INTO (page-info-location)

Specifies the name of the four-byte field that may be defined either as a group field

or as a fullword field (PICS9(8) COMP). Identifies the locationinvariablestorage

that contains page information for the specified record type. Upon successful

completion of this statement, the firsttwo bytes of the field contain the page group

number and the lasttwo bytes containa db-key radixthatmay be used for
interpreting dbkeys.

The following example retrieves the page information for the DEPARTMENT record.

01 W PG_INFO.
03 W GRP_NWM FIXED BINARY 15,
03 W DBK_FORMAT FIXED BINARY 15,

ACCEPT PAGE INFO RECORD (DEPARTMENT) INTO (W PG INFO)

After completion of the ACCEPT PAGE_INFO statement, the ERROR-STATUS fieldinthe
IDMS communications blockindicates the outcome of the operation:

0000
The request has been serviced successfully.

1508

The named record is notinthe subschema.The program has probablyinvoked the
wrong subschema.

100 DML Reference Guide for PLI

ACCEPT PROCEDURE CONTROL LOCATION

ACCEPT PROCEDURE CONTROL LOCATION

Syntax

Parameters

Example

Status Codes

The ACCEPT PROCEDURE CONTROL LOCATION statement copies the application
program information blockto a specified locationin programvariablestorage. This
256-byte blockis associated with a previously defined database procedure. The program
information blockacquires its information through the BIND PROCEDURE statement,
described later inthis chapter. The database procedure may have updated the
information.

Only programs running under the central version, but in a different region/partition,
should usethe ACCEPT PROCEDURE CONTROL LOCATION statement.

Note: For more information aboutthe application programinformation block, see the
CA IDMS Database Administration Guide.

»»—— ACCEPT PROCEDURE (procedure-name) INTO (procedure-control-location); —»«

procedure-name

Specifies the name of the databaseprocedurewhose application program
information block will be copiedinto variablestorage. procedure-name must refer
to an 8-characterfieldinvariablestorage.

INTO (procedure-control-location)

Specifies the fullword-aligned 256-byte locationinvariablestorageto which the
DBMS copies the application programinformation block.

The following statement copies the application programinformation block used by the
procedure identifiedin the CHECK_ALL fieldin mainstorage to the locationidentified as
CHECK_IT in mainstorage:

ACCEPT PROCEDURE (CHEQK ALL) INTO (CHECK IT);

Upon completion of the ACCEPT PROCEDURE CONTROL LOCATION function, the
ERROR_STATUS fieldinthe IDMS DB communications blockindicates the outcome of
the operation:

0000

The request was serviced successfully.

Chapter 7: Data Manipulation Language Statements 101

ACCEPT TRANSACTION STATISTICS (DC/UCF)

1508
The subschema does not contain the named procedure.
1518

The procedure control location was not a valid address.

ACCEPT TRANSACTION STATISTICS (DC/UCF)

The ACCEPT TRANSACTION STATISTICS statement copies the contents of the transaction
statisticsblock (TSB) to a specified locationin programvariablestorage. Optionally, the
statement canalsowritethe TSB to the DC/UCF logfileand you can define the length of

the TSB.
Syntax
»»—— ACCEPT TRANSACTION STATISTICS >
WRITE < :|
NOWRITE
L INTO (return-stat-data-location)]
> T - >«
LENGTH= 388 4—_|——'
T tsb-length
Parameters

WRITE/NOWRITE
Specifies whether the TSB is written to the system logfile.
Default: WRITE

INTO (return-stat-data-location)

Specifies the location to which the system copies the TSB. Return-stat-data-location
is the symbolic name of a user-defined field. Return-stat-data-location is a
fullword-aligned 388-byte field (you can customize the length usingthe LENGTH=
parameter).

The data copied from the TSB to return-stat-data-location is formatted as follows:

01 RETURN_STAT DATA LOC V
03 SYS RESG® FIXED BIN (31) RESERVED
03 SYS RESO1 FIXED BIN (31) RESERVED
03 PROG CALL FIXED BIN (31) # OF PROGRAMS CALLED
03 PROG LOAD FIXED BIN (31) # OF PROGRAMS LOADED
03 TERM READ FIXED BIN (31) # OF TERMINAL READS
03 TERM WRITE FIXED BIN (31) # OF TERMINAL WRITES

102 DML Reference Guide for PLI

ACCEPT TRANSACTION STATISTICS (DC/UCF)

03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03
03

TERM_ERROR
STORAGE_GET
SCRATCH_GET
SCRATCH_PUT
SCRATCH_DEL
QUEUE_GET
QUEUE_PUT
QUEUE_DEL
GET TIME
SET_TIME

DB CALLS
MAX_STACK
USER TIME
SYS_TIME
WAIT TIME
RCE_USED
RLE_USED
DPE_USED
STG_HI_MARK
FREESTG_REQ
SYS_SERV
SYS RES10
SYS RES11
PAGES READ
PAGES WRIT
PAGES REQ
CALC_NO
CALC OF

VIA NO

VIA OF

RECS REQ
RECS_CURR
DBMS_CALLS

RECS RELO
TOT_LOCKS
SHR_LOCKS
NSH_LOCKS
FREE_LOCKS
SR8_SPLITS
SR8_SPAWNS

FIXED BIN (31) # OF TERMINAL ERRORS
FIXED BIN (31) # OF STORAGE GETS
FIXED BIN (31) # OF SCRATCH GETS
FIXED BIN (31) # OF SCRATCH PUTS
FIXED BIN (31) # OF SCRATCH DELETES

FIXED
FIXED
FIXED
FIXED
FIXED
FIXED
FIXED
FIXED
FIXED
FIXED
FIXED
FIXED
FIXED

BIN
BIN
BIN
BIN
BIN
BIN
BIN
BIN
BIN
BIN
BIN
BIN
BIN

(31) # OF QUEUE GETS
(31) # OF QUEUE PUTS

(31) # OF QUEUE DELETES

(31) # OF GET TIMES

(31) # OF SET TIMES

(31) +# OF DATABASE CALLS

(31) MAX WORDS USED IN STACK
(31) USER MODE TIME (10**-4 SEC)
(31) SYS MODE TIME (10**-4 SEC)

(31) WAIT TIME (10**-4 SEC)
(31) # OF RCE'S USBD
(31) # OF RLE'S USED
(31) # OF DPE'S USED

FIXED BIN (31) STORAGE HIGH WATER MARK

FIXED BIN (31) # FREE STORAGE REQUESTS
FIXED BIN (31) # SYSTEM SERVICE CALLS
FIXED BIN (31) RESERVED

FIXED BIN (31) RESERVED

FIXED BIN (31) # OF PAGES READ

FIXED BIN (31) # OF PAGES WRITTEN
FIXED BIN (31) # OF PAGES REQUESTED
FIXED BIN (31) # OF CALC RECS NO OFLOW
FIXED BIN (31) # OF CALC RECS OFLOW
FIXED BIN (31) # OF VIA RECS NO OFLOW
FIXED BIN (31) # OF VIA RECS OFLOW
FIXED BIN (31) # OF RECS REQUESTED
FIXED BIN (31) # OF RECS CURR OF RU

FIXED BIN (31) # OF DBMS CALLS
FRAG STORED FIXED BIN (31) # OF FRAGMENTS STORED
FIXED BIN (31) # OF RECS RELOCATED
FIXED BIN (31) TOTAL # OF LOCKS
FIXED BIN (31) # OF SHARE LOCKS
FIXED BIN (31) # OF NON-SHARE LOCKS
FIXED BIN (31) # OF LOCKS FREE'D
FIXED BIN (31) # OF SR8 SPLITS

FIXED BIN (31) # OF SR8 SPAWNS

Chapter 7: Data Manipulation Language Statements 103

ACCEPT TRANSACTION STATISTICS (DC/UCF)

03 SR8 _STORED FIXED BIN (31) # OF SR8S STORED

03 SR8 ERASED FIXED BIN (31) # OF SR8S ERASED

03 SR7 STORED FIXED BIN (31) # OF SR7S STORED

03 SR7 ERASED FIXED BIN (31) # OF SR7S ERASED

03 BTREE SRCH FIXED BIN (31) # OF BTREE SEARCHES

03 BTREE LEVL FIXED BIN (31) # OF BTREE LEVELS SEARCHED

03 ORPHAN ADOPT FIXED BIN (31) # OF ORPHANS ADOPTED

03 LVL SRCH BEST FIXED BIN (15) # LEVEL SEARCHES (BEST CASE)
03 LVL_SRCH_WORST FIXED BIN (15) # LEVEL SEARCHES (WORST CASE)
03 RECS_UPD FIXED BIN (31) # OF RECS UPDATED

03 PAGE_INCACHE FIXED BIN (31) # OF PAGES FOUND IN CACHE

03 PAGE_INPRFET FIXED BIN (31) # OF PAGES FOUND IN PREFETCH
03 SYS RES12 FIXED BIN (31) RESERVED

03 SYS RES13 FIXED BIN (31) RESERVED

03 SYS RES20 FIXED BIN (31) RESERVED

03 SYS RES21 FIXED BIN (31) RESERVED

03 USER_ID CHAR (32) DC USER ID

03 LTERM ID CHAR (8) LOGICAL TERMINAL ID

03 USER SUPP_ID CHAR (8) USER-SUPPLIED ID

03 BIND DATE DEC FIXED (7) DATE BIND COMMAND ISSUED

03 BIND TIME FIXED BIN (31) TIME BIND COMMAND ISSUED

03 TRANSTAT_FLGS FIXED BIN (31) FOWR 1-BYTE FLAGS

03 SYS RES30 FIXED BIN (31) RESERVED

03 SYS RES31 FIXED BIN (31) RESERVED

03 SQL_COMMAND FIXED BIN (31) # OF SQL COMMANDS EXECUTED

03 SQL_FETCH FIXED BIN (31) # OF SQL ROWS FETCHED

03 SQL_INSERT FIXED BIN (31) # OF SQL ROWS INSERTED

03 SQL UPDATE FIXED BIN (31) # OF SQL ROWS UPDATED

03 SQL DELETE FIXED BIN (31) # OF SQL ROWS DELETED

03 SQL SORTS FIXED BIN (31) # OF SQL SORTS PERFORMED

03 SQL ROW SORT FIXED BIN (31) # OF SQL ROWS SORTED

03 SQL_MIN RSORT FIXED BIN (31) MINIMUM ROWS SORTED

03 SQL_MAX RSORT FIXED BIN (31) MAXIMUM ROWS SORTED

03 SQL_AM RECOMP FIXED BIN (31) # OF AM RECOMPILES

03 SYS RES32 FIXED BIN (31) RESERVED

03 SYS RES33 FIXED BIN (31) RESERVED
03 SYS RES34 FIXED BIN (31) RESERVED
03 SYS RES35 FIXED BIN (31) RESERVED
03 SYS RES36 FIXED BIN (31) RESERVED
03 SYS RES37 FIXED BIN (31) RESERVED
03 SYS RES38 FIXED BIN (31) RESERVED
03 SYS RES39 FIXED BIN (31) RESERVED

104 DML Reference Guide for PLI

ACCEPT TRANSACTION STATISTICS (DC/UCF)

If you extend the length to 560 bytes, the full TRANSACTION_STATISTICS arealso
included.The followingblock can be expanded usingthe
INCLUDE IDMS(TRANSACTION_STATISTICS) statement:

DECLARE 1

DECLARE 1

TRANSACTION STATISTICS,

3 TSB_STATS R18 CHARACTER (560);

TSB STATS R17 BASED(ADDR

(TRANSACTION STATISTICS.TSB STATS R18)),

2

N N NDNNN

DECLARE 1

N N NDNNNNN

DECLARE 1

NN NDNDNNNNNDNDNN

DECLARE 1

N NNNNNN

TSB_DC_STATS CHARACTER (108),
TSB_DB_STATS CHARACTER (72),

TSB_IX STATS CHARACTER (40),
TSB_DB_STATS EXTENDED CHARACTER (20),
TSB_HDR CHARACTER (68),

TSB_SQL_STATS CHARACTER (80),
TSB_STATS DCX CHARACTER (168);

TSB_STATS DCX1 BASED (ADDR(TSB STATS DCX)),
TSB_STATS DCX_FILLER CHARACTER (8),
TSB_SYS MODE CPU_TOD FIXED BINARY (63),
TSB_SYS_ZIIP ON_CP_TOD FIXED BINARY (63),
TSB_SYS_ZIIP ON ZIIP TOD FIXED BINARY (63),
TSB_USER MODE_CPU_TOD FIXED BINARY (63),
TSB_TCB_CPU_TIME TOD FIXED BINARY (63),
TSB_SRB_CPU_TIME TOD FIXED BINARY (63),
TSB_STATS DCX_FILLO1 CHARACTER (112);

TSB_SQL_STATS1 BASED(ADDR(TSB SQL_STATS)),

SYS_INTERM4 CHARACTER (8),
SQL_COMMANDS FIXED BINARY (31),
SQL_FETCH FIXED BINARY (31),
SQL_INSERT FIXED BINARY (31),
SQL_UPDATE FIXED BINARY (31),
SQL_DELETE FIXED BINARY (31),
SQL_SORTS FIXED BINARY (31),
SQL_ROWSORT FIXED BINARY (31),
SQL_MINRSORT FIXED BINARY (31),
SQL_MAXRSORT FIXED BINARY (31),
SQL_AMCMPL FIXED BINARY (31),
SQL_RESERVED CHARACTER (32);

TSB_HDR1 BASED (ADDR(TSB_HDR)),
SYS_INTERNB CHARACTER (8),
USER ID CHARACTER (32),

LTERM ID CHARACTER (8),

USER SUPP_ID CHARACTER (8),
BIND DATE FIXED DECIMAL(7,0),
BIND TIME FIXED BINARY (31),
TRANSTAT FLGS FIXED BINARY (31);

Chapter 7: Data Manipulation Language Statements

105

ACCEPT TRANSACTION STATISTICS (DC/UCF)

DECLARE 1 TSB DB STATS EXTENDED1 BASED(ADDR(TSB DB STATS EXTENDED)),
2 RECS UPD FIXED BINARY (31),
2 PAGE INCACHE FIXED BINARY (31),
2 PAGE INPREFET FIXED BINARY (31),
2 RESERVED (HARACTER (8);
DECLARE 1 TSB IX STATS1 BASED(ADDR(TSB_IX STATS)),
SR8_SPLITS FIXED BINARY (31),
SR8_SPAWN FIXED BINARY (31),
SR8 STORE FIXED BINARY (31),
SR8 ERASE FIXED BINARY (31),
SR7_STORE FIXED BINARY (31),
SR7_ERASE FIXED BINARY (31),
BTREE_SRCH FIXED BINARY (31),
BTREE_LEVEL FIXED BINARY (31),
ORPHANS FIXED BINARY (31),
BTREE_LEV B FIXED BINARY (15),
BTREE LEV W FIXED BINARY (15);
DECLARE 1 TSB DB STATS1 BASED(ADDR(TSB DB STATS)),
SYS_INTERN2 CHARACTRR (8),
PAGES READ FIXED BINARY (31),
PAGES WRIT FIXED BINARY (31),
PAGES_REQ FIXED BINARY (31),
CALC_NO FIXED BINARY (31),
CALC_OF FIXED BINARY (31),
VIA NO FIXED BINARY (31),
VIA OF FIXED BINARY (31),
RECS REQ FIXED BINARY (31),
RECS _CURR FIXED BINARY (31),
DB CALLS FIXED BINARY (31),
FRAG_STORED FIXED BINARY (31),
RECS RELO FIXED BINARY (31),
TOT _LOCKS FIXED BINARY (31),
SHR LOCKS FIXED BINARY (31),
NSH LOCKS FIXED BINARY (31),
LOCKS FREED FIXED BINARY (31);
DECLARE 1 TSB DC STATS1 BASED(ADDR(TSB DC_STATS)),
SYS_INTERN1 CHARACTRR (8),
PROG_CALL FIXED BINARY (31),
PROG_LOAD FIXED BINARY (31),
TERM _READ FIXED BINARY (31),
TERM_WRITE FIXED BINARY (31),
TERM_ERROR FIXED BINARY (31),
STORAGE GET FIXED BINARY (31),
SCRATCH GET FIXED BINARY (31),
SCRATCH PUT FIXED BINARY (31),
SCRATCH DEL FIXED BINARY (31),

N NNNNNDNDNNDNNDNNDNNDNNNNNNDNN N NNNNNDNNNNNNN

N NNNNDNNNNDN

106 DML Reference Guide for PLI

ACCEPT TRANSACTION STATISTICS (DC/UCF)

Example

Status Codes

QUEUE_GET FIXED BINARY (31),
QUEUE_PUT FIXED BINARY (31),
QUEUE DEL FIXED BINARY (31),
GET TIME FIXED BINARY (31),
SET_TIME FIXED BINARY (31),
DB_SRVREQ FIXED BINARY (31),
MAX_STACK FIXED BINARY (31),
USER TIME FIXED BINARY (31),
SYS TIME FIXED BINARY (31),
WAIT TIME FIXED BINARY (31),
MAX RCE_USED FIXED BINARY (31),
MAX RLE_USED FIXED BINARY (31),
MAX DPE_USED FIXED BINARY (31),
STG HI MARK FIXED BINARY (31),
FREESTG REQ FIXED BINARY (31),
SYS SERV FIXED BINARY (31);

3
3

N NNNDNDNDNNDNNNNDNNDNNDN

LENGTH=

Specifies the length of the returned TSB. To retrieve all statisticsincludingthe DC
extended statisticssectionthatrecords CPU times inthe Time of Day (TOD) format,
specify LENGTH=560.

tsb-length

Specifies either the symbolic name of a user-defined field that contains the
length of the TSB, or the length expressed as a numeric constant.

Limits: Integer of 388 or greater

Default: Ifyou do not specify a tsb-length, the first388 bytes of the TSB are
returned.

The following statement returns the contents of the TSB to STATISTICS_BLOCK and
writes transaction statistics to the logfile:

ACCEPT TRANSACTION STATISTICS
WRITE
INTO (STATISTICS BLOCK);

Upon completion of the ACCEPT TRANSACTION STATISTICS function, the ERROR_STATUS
field inthe IDMS DC communications blockindicates the outcome of the operation:

Status code Meaning

0000 The request was serviced successfully.

Chapter 7: Data Manipulation Language Statements 107

ATTACH (DC/UCF)

Status code

Meaning

3801

The transaction statistics block has no storageavailable. Waiting
would causea deadlock.

3813

No transaction statistics block exists. No BIND TRANSACTION
STATISTICS request was issued.

3831

Either the parameter listis invalid or nological terminal element
(LTE) is associated with the issuingtask.

3850

The collection of transaction statistics or task statistics was not
enabled duringsystem generation.

ATTACH (DC/UCF)

The ATTACH statement instructs the system to initiatea new task by acquiringthe

necessary control blocks and storageand by addingthe taskto its dispatchinglist. The

system initializes the attached taskand queues itfor execution. The issuing program
receives control accordingto normal dispatching priority.

Syntax

»»—— ATTACH TASK CODE (task-code)

Parameters

NOWAIT

TASK CODE (task-code)

, >
L PRIORITY (priority) J ':WAIT 4:'

Specifies the 1-to 8-character code of the taskto be initiated. Task-code is the
symbolic name of a user-defined field containingthe task code or the task code
itself, enclosed in single quotation marks. The referenced task code must have been
defined during system generation or dynamically, by using the DCMT VARY
DYNAMIC TASK command.

Note: For more information about DCMT VARY DYNAMIC TASK, see the CA IDMS
System Tasks and Operator Commands Guide.

PRIORITY (priority)

Specifies the dispatching priority of the attached task. Priority can be the symbolic
name of a user-defined fixed binaryfield containingthedispatchingpriority,ora
numeric constant.Valid priorities arenumeric values ranging from 000 through 240.
Priority defaults to the priority established during system generation for the
specified task code, terminal, and user.

108 DML Reference Guide for PLI

ATTACH (DC/UCF)

Example

Status Codes

WAIT/NOWAIT

Specifies whether the issuingtaskwaits ifa maximumtask condition prevents the
system from attachingthe taskimmediately:

WAIT

Specifies that the issuingtask waits until the maximum task condition nolonger
exists and the system can attach the specified task. WAIT is the default.

NOWAIT

Specifies that the issuingtask does notwait for the system to attach the task. If
you specify NOWAIT, your programshould check the ERROR_STATUS fieldin
the IDMS DC communications block to determine whether the ATTACH request
completed. If ERROR_STATUS contains thevalue3711, indicatingthata
maximum task condition exists, then the request was not serviced and your
program should perform alternative processing beforereissuing the ATTACH
request.

The following code initiates task TASKATCH and assigns thetask a dispatching priority of
199:

ATTACH TASK CODE (TASKATCH)
PRIORITY (199)
NOWAIT;

Upon completion of the ATTACH function, the ERROR_STATUS field of the IDMS DC
communications blockindicates theoutcome of the operation:

0000
The request was serviced successfully.
3711

The task cannot be attached becausethe maximum number of tasks has already
been attached.

3712
The specified task code is not defined to the DC/UCF system.
3758

The task cannot be attached becausethe maximum number of concurrenttask
threads was exceeded.

3799

The requested task could not be attached becausethe current user is not
authorized to execute the task.

Chapter 7: Data Manipulation Language Statements 109

BIND MAP (DC/UCF)

BIND MAP (DC/UCF)

Syntax

The BIND MAP statement identifies the location of a specified map request block (MRB)
andinitializes MRB fields. For each MRB used by your program, code a global BIND MAP
statement. Global BIND MAP statements omit the RECORD (record-name) parameter.
For each record defined to a map, code a record-specific BIND MAP statement.
Record-specific BIND MAP statements includethe RECORD (record-name) parameter.

Global and Record-Specific Versions of BIND MAP

The global and record-specific versions of the BIND MAP statement function as follows:

m Global—The BIND MAP statement applies tothe map as a whole. Itinitializes the
entire MRB and fillsinfieldsthatapply to the map ingeneral.

m Record-specific—The BIND MAP statement applies only tothe named map record.
Itinitializes thevariable-storageaddress of the named record inthe MRB.

Typically, your programissues a global BIND MAP statement for each map, followed by
a BIND MAP statement for each map record used by the program.

Including BIND MAP Statements Automatically

You canrequest the DML precompiler to includeglobal and record-specific BIND MAP
statements automatically by usingthe INCLUDE IDMS MAP_BINDS statement (see DML
Precompiler-Directive Statements). This statement includes the necessary BINDS for all
maps and map records defined for the program.

Altering the Address for a Map Record

Your program can alter the storage address fora map record atanytime by issuing
another BIND MAP statement for that record. After the initial global bind, allmap
records are considered unbound. Map operations that usethose records have no effect
on storage. After bindinga map recordto a storage address with a record-specific bind,
subsequent map operations use that address to access the record. To unbind a map
record, issuea record-specific BIND MAP statement that specifies the TO NULL option.

»»—— BIND MAP (map-name)

v

L RECORD (record-name)

M

» .
» | N

L [
TO —~ NULL .

(record-location)

110 DML Reference Guide for PLI

BIND MAP (DC/UCF)

Parameters

Example

Status Codes

map-name

Initializes the MRB associated with the named map. Map-name is the 1- to
8-character name of an existing map. The map version defaults to the version that
you specify for the map with the DECLARE MAP statement.

RECORD (record-name)

Initializes the variable-storageaddress of the named record in the MRB.
Record-name is the 1-to 32-character name of a record used by the map.

TO NULL/(record-location)

Optionally requests thatthe named record be unbound or specifies the address to
which the record will bebound:

NULL
Requests that the DBMS not bind the named record.
record-location

Specifies the address to which the named record will be bound. Record-location
is the symbolic name of a user-defined field that contains the address;
record-location defaults to record-name. Subsequent 1/0 operations will use
this area of storage for any operation associated with the record.

The following statements bindthe map EMPMAPLR andits five associated map records:

BIND MAP (EMPMAPLR);
BIND MAP (EMPMAPLR) RECORD (EMPLOYEE);
BIND MAP (EMPMAPLR) RECORD (DEPARTMENT);
BIND MAP (EMPMAPLR) RECORD (JOB);
BIND MAP (EMPMAPLR) RECORD (OFFICE);

()

BIND MAP (EMPMAPLR) RECORD (EMP-DATE-WORK-REC);

Upon completion of the BIND MAP function, the ERROR_STATUS fieldinthe IDMS DC
communications blockindicates the outcome of the operation:

0000

The request was serviced successfully.
1472

Insufficientmemory is availablefor load or storageallocation.
1474

An attempt to load a module from the load library or DDLDCLOD failed.

Chapter 7: Data Manipulation Language Statements 111

BIND PROCEDURE

BIND PROCEDURE

Syntax

Parameters

Example

The BIND PROCEDURE statement establishes communication between your program
and a DBA-written databaseprocedure (for example, a security routine). Use this
statement onlyinthose instances in which the DBA-written procedure requires more
information from your programthan the DBMS provides. Such instances areunusual.
Usually, you will notbe aware of which procedures gain control before or after various
DML functions.

You canusethe BIND PROCEDURE statement in both the navigationaland Logical
Record Facility (LRF) environments.

»»—— BIND PROCEDURE (procedure-name) TO (procedure-control-location); —»«

procedure-name

Specifies the name of the DBA-written databaseprocedure for which you want to
establish addressability. Procedure-name must refer to an 8-character fieldin
variablestorage.

TO (procedure-control-location)

Specifies the location to which the named procedure will be bound.
Procedure-control-location is a fullword-aligned 256-bytearea invariablestorage.

If your program runs in a different partition than the central version, it may need to
pass information to the databaseprocedure. When the DBMS invokes the database
procedure, itcopies this information fromthe programstorage area identified by
procedure-control-location intothe IDMS application programinformation block.
The information passedis the informationin procedure-control-location when the
BIND PROCEDURE was performed; itis not the informationinthe program's storage
at the time of the procedure call.

The following statement binds the procedure with the variablename PROGCHEK to the
256-byte area PROC_CTL:

BIND PROCEDURE (PROGCHEK) TO (PROC_CTL);

112 DML Reference Guide for PLI

BIND RECORD

Status Codes

BIND RECORD

Syntax

Upon completion of the BIND PROCEDURE function, the ERROR_STATUS fieldinthe
IDMS DB communications block indicates the outcome of the operation:

0000

The request was serviced successfully.
1400

The DBMS cannot recognize the BIND PROCEDURE statement. This code usually
indicates thatthe IDMS DB communications block (SUBSCHEMA_CTRL) is not
aligned on a fullword boundary.

1408
The subschema does not contain the named procedure.
1418
The procedure was improperly bound to location 0.
1472
Not enough memory is availabletoload the database procedure dynamically.
1474

An attempt to load a module from the loadlibrary or DDLDCLOD failed.

The BIND RECORD statement establishes addressability for a record in program variable
storage. In most cases, you do not have to issueindividual BIND RECORD statements,
sincethe INCLUDE IDMS SUBSCHEMA_BINDS statement generates the necessary
statements as a group. (see DML Precompiler-Directive Statements). Nevertheless, you
canissueBIND RECORD commands separately as necessary (for Example, to bind
several records to the same storage location).Inany case, you must establish
addressability for each subschema record used by your program.

After each BIND RECORD statement, your program should perform the IDMS_STATUS
routine to ensure that the statement executed successfully.

»»—— BIND RECORD (record-name) H EEEm— |

L TO (record-location) -

Chapter 7: Data Manipulation Language Statements 113

BIND RECORD

Parameters

(record-name)

Names the record bound to alocationinvariablestorage. The location corresponds
to the record description copiedinto the program. Record-name must specify a
record included in the subschema.

TO (record-location)

Optionally allows you to bind the record to a specific location. Thedata defined in
record-location must be identical inlengthto the data defined in record-name.

Note: Be careful when usingthe TO (record-location) option. Source-object
mismappingcanresultfrom improper use. If your program contains more than one
copy of a given databaserecord description, you must be sureto bind the proper
record description atthe proper time.

Example

The following statement binds the EMPLOYEE record:
BIND RECORD (EMPLOYEE);
Status Codes
Upon completion of the BIND RECORD function, the ERROR_STATUS fieldinthe IDMS
DB communications blockindicates the outcome of the operation:
0000
The request was serviced successfully.
1400

The DBMS cannot recognize the BIND RECORD statement. This code usually
indicates thatthe IDMS DB communications block (SUBSCHEMA_CTRL) is not
aligned on a fullword boundary.

1408

The subschema does not contain the named record. Your program probably
invoked the wrong subschema.

1418
The record was improperly bound to location 0.
1472

Insufficientmemory is availabletoload a database procedure dynamically.

1474

An attempt to load a module from the load library or DDLDCLOD failed.

114 DML Reference Guide for PLI

BIND RUN_UNIT

BIND RUN_UNIT

The BIND RUN_UNIT statement:

m Establishes arununitforaccessingthedatabase

m |dentifies the location of the IDMS DB communications block being used
m Names the subschema to be loaded for the rununit

m Names the node under whichthe run unitwill execute

m |dentifies the databaseto be accessed

m |dentifies the dictionaryinwhicha subschema resides

m Identifies the node that controls the dictionary

BIND RUN_UNIT must be the firstfunctional DMLcall passed to the DBMS atexecution
time. BIND RUN_UNIT must logically precedeall other DML statements (for example,
BIND RECORD, READY, FIND) inyour program.

When You Do Not Need BIND RUN_UNIT

Ifyou usethe INCLUDE IDMS SUBSCHEMA_BINDS statement (see DML
Precompiler-Directive Statements) inyour program, you do not need the BIND
RUN_UNIT statement. INCLUDE IDMS SUBSCHEMA BINDS automaticallyinvokes the
necessary binds.

Program Registration

Some sites require programregistration, thatis, they require all programs to be
registered inthe dictionary beforecompilation.Ifyoursiterequires program
registration, your program must initializethe PROGRAM_NAME field of the IDMS
communications block either automatically or manually:

Automatically

A PL/I assignment statement automatically generated by INCLUDE IDMS
SUBSCHEMA_BINDS moves the program name to the PROGRAM_NAME field.

Manually

You code a PL/I assignmentstatement prior to the BIND RUN_UNIT statement. For
Example:

PROGRAM_NAME = 'EMPDISP';

You canusethe BIND RUN_UNIT statement in both the navigational and Logical Record
Facility (LRF) environments.

Chapter 7: Data Manipulation Language Statements 115

BIND RUN_UNIT

Syntax
»»—— BIND RUN_UNIT T] >
SUBSCHEMA (subschema-name)
g DBNODE —_,— (nodename) - .
NODENAME
L DBNAME (database-name) JL DICTNODE (nodename) —I
L DICTNAME (dictionary-name)]
Parameters

SUBSCHEMA (subschema-name)

Identifies a subschema view other than that specified in the DECLARE SUBSCHEMA
statement. Subschema-name must be the 1-to 8-character name of a subschema.

Note: You should usethe SUBSCHEMA subschema-name option carefully. Improper
use canleadto mismappingbetween the named subschema and record
descriptions invariablestorage.

DBNODE/NODENAME (nodename)

Specifies the node where the databaseresides. Nodename is either the symbolic
name of a user-defined 8-characterfieldinvariablestorage or the node name itself,
enclosedinsinglequotation marks.The keywords DBNODE and NODENAME are
synonymous.

DBNAME (database-name)

Names the databaseto be accessed by the run unit. Database-name is either the
symbolic name of a user-defined 8-character fieldinvariablestorage, or the
databasenameitselfenclosedinsinglequotation marks.

DICTNODE (nodename)

Names the node that controls the data dictionary where the subschema resides.
Nodename is either the symbolic name of a user-defined 8-character fieldin
variablestorage, or the nodename itselfenclosedinsingle quotation marks.

DICTNAME (dictionary-name)

Names the dictionary where the subschema resides. Dictionary-name is either the
symbolic name of a user-defined 8-character fieldinvariablestorage, or the
dictionary nameitselfenclosedinsingle quotation marks.

Note: Specifying DBNODE, DBNAME, DICTNODE, and DICTNAME as BIND RUN_UNIT
parameters overrides any corresponding parameters set usingthe system DCUF SET
statement (online) or the SYSIDMS job stream parameters (batch).

116 DML Reference Guide for PLI

BIND RUN_UNIT

Example

Status Codes

More information:

m For more about DCUF SET, see the CA IDMS System Tasks and Operator Commands
Guide.

m For information aboutSYSIDMS, see the CA IDMS Common Facilities Guide.

The following example illustrates howa batch programaccesses a subschema,
EMPSS01, stored indictionary PRODICT1 atnode DEVT. The run unitaccesses database
PRODDBI1 at the same node.

BIND RUN_UNIT SUBSCHEMA (EMPSSO1) NODENAME (DEVT)
DBNAME (PRODDB1) DICTNODE (DEVT) DICTNAME (PRODICT1);

Upon completion of the BIND RUN_UNIT function, the ERROR_STATUS fieldinthe IDMS
DB communications blockindicates the outcome of the operation:

0000
The request was serviced successfully.
1400

The DBMS cannot recognize the BIND RUN_UNIT statement. This code usually
indicates thatthe IDMS DB communications block (SUBSCHEMA_CTRL) is not
aligned on a fullword boundary.

1417

The transaction manager encountered an error. See the log for additional
information.

1467
The subschema invoked does not match the subschema objecttables.
1469

The run unitis not bound to the DBMS. This code indicates thatthe central version
is not active, that the central versionis notaccepting new rununits, or that the run
unit's connection to the central versionis broken due to timeout or other factors, as
noted on the CV log.

1470

A journal filewill notopen (local mode only); the most probablecauseis thatthe
JCL doesn't correctly specify the journal file.

Chapter 7: Data Manipulation Language Statements 117

BIND TASK (DC/UCF)

1472
The available memory is insufficientto load a subschema or databaseprocedure
dynamically.

1473

The central versionis not accepting new run units.
1474

The subschema was not found inthe dictionaryloadarea orinthe loadlibrary.
1477

The run unitwas already bound.
1480

The node specifiedinthe DBNODE clauseis notactiveor was disabled fromthe
system generation configuration.

1481
IDMS does not know the databasespecified inthe DBNAME clause.
1482

The named subschema is notvalid under the databasespecifiedinthe DBNAME
clause.

1483

The availablememory is insufficientto allocate native VSAM work areas.

BIND TASK (DC/UCF)

Syntax

The BIND TASK statement initiates a systemtask when the operating mode is
DC_BATCH. This statement establishes communication with the DC/UCF system and, if
accessingsystemqueues, allocates a packet-data movement buffer to contain the
gqueue data. Once a taskis started, the program canissueany number of consecutive
BIND-READY-FINISH sequences.

»»—— BIND TASK

v

M

L NODENAME (nodename)]

118 DML Reference Guide for PLI

BIND TRANSACTION STATISTICS (DC/UCF)

Parameters

Example

Status Codes

NODENAME (nodename)

Specifies the 1-to 8-character name of the node to which the taskwill be bound.
Nodename is either the symbolic name of a user-defined field that contains the
node name or the node name itselfenclosed insingle quotation marks. The
specified node name must match the node named inthe DDS statement atsystem
generation.

The following statement establishes communication with a DC/UCF system:

BIND TASK;

Upon completion of the BIND TASK function, the ERROR_STATUS fieldinthe IDMS DC
communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

BIND TRANSACTION STATISTICS (DC/UCF)

Syntax

The BIND TRANSACTION STATISTICS statement defines the beginning of a transaction
for the purposes of collecting transaction statistics. The system allocates a block of
storage in whichto accumulatethese statistics. Becausethis blockis owned by the
logical terminal associated with the current task, the BIND TRANSACTION STATISTICS
statement cannot be used with nonterminal tasks.

Note: Ifa transaction statistics block (TSB) is already allocated for the logical terminal
associated with the current task, the BIND request clears the block and writes any
previouslyaccumulated transaction statistics to the logfile.

When a BIND TRANSACTION STATISTICS request is issued, the system assigns the
transaction a 40-character identifier; the first32 characters arethe identifier of the
signed-on user (ifany) and the lasteight characters arethe identifier of the logical
terminal associated with the current task.

»»—— BIND TRANSACTION STATISTICS;

M

Chapter 7: Data Manipulation Language Statements 119

CHANGE PRIORITY (DC/UCF)

Example

Status Codes

The following example illustrates the BIND TRANSACTION STATISTICS statement:

BIND TRANSACTION STATISTICS;

Upon completion of the BIND TRANSACTION STATISTICS function, the ERROR_STATUS
fieldinthe IDMS DC communications blockindicates the outcome of the operation:

0000

The request has been serviced successfully; any existingtransaction statistics block
was written to the logfile before being cleared.

3801

Storage for the transaction statistics blockis notavailable; to waitwould causea
deadlock.

3810
A new transaction statistics block has been allocated.
3831

Either the parameter listis invalid or nological terminal element (LTE) is associated
with the issuingtask.

3850

The collection of transaction statistics or task statistics hasnotbeen enabled during
system generation.

CHANGE PRIORITY (DC/UCF)

Syntax

The CHANGE PRIORITY statement changes the dispatching priority of the issuingtask.

The new dispatching priority applies only to the current execution of the task. CHANGE
PRIORITY does not relinquish control to another taskand cannot be used to alter the
priority of other tasks.

»»—— CHANGE PRIORITY TO (priority);

)

Parameter
priority

Specifies a new dispatchingpriority for the issuingtask. Priority is either the
symbolic name of a user-defined field that contains the priority value, or the value
itself expressed as a numeric constantinthe range 0 through 240.

120 DML Reference Guide for PLI

CHECK TERMINAL (DC/UCF)

Example

Status Codes

The following Example changes the dispatching priority of the issuingtaskto the value
containedinthe PRIORITY_210 field:

CHANGE PRIORITY TO (PRIORITY 210);

Upon completion of the CHANGE PRIORITY function, the ERROR_STATUS fieldinthe
IDMS DC communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

CHECK TERMINAL (DC/UCF)

Syntax

Status Codes

The CHECK TERMINAL statement tests whether a previouslyissued asynchronous /0
operationis complete. If a READ TERMINAL, WRITE TERMINAL, or WRITE THEN READ
TERMINAL request specifies the NOWAIT option, the program mustissuea CHECK
TERMINAL request before specifyingany other 1/O operation. Ifthe 1/0 operationis not
complete, the system suspends task execution. When the |/0 operationis complete, the
task resumes execution accordingtoits established dispatching priority.

»»—— CHECK TERMINAL;

X

Upon completion of the CHECK TERMINAL function, the ERROR_STATUS fieldinthe
IDMS DC communications block indicates the outcome of the operation:

0000
The request has been serviced successfully.
4519

The input area specified for the return of datais too small;the returned data has
been truncated to fit the availablespace.

4525

The output operation has been interrupted; the terminal operator has pressed
ATTENTION or BREAK.

4526

A logical error (for example, an invalid control character) has been encountered in
the output data stream.

Chapter 7: Data Manipulation Language Statements 121

COMMIT

COMMIT

Syntax

4527

A permanent |/O error has occurred during processing.
4528

The dial-up linefor the terminal being used has been disconnected.
4531

The terminal request block (TRB) contains aninvalid field, indicating a possibleerror
inthe program's parameters.

4539

The terminal device associated with the issuingtaskis outofservice.

The COMMIT statement commits changes made to the databasethrough anindividual
run unitor through all databasesessionsassociated with a task. A task-level commit also
commits all changes madein conjunction with scratch, queue, and printactivity.

Ifthe commit applies toanindividual rununitandthe run unitis sharingits transaction

with another databasesession, the run unit's changes may not be committed at the
time the COMMIT statement is executed.

Note: For more information aboutthe impact of transaction sharing, see the CA IDMS
Navigational DML Programming Guide.

Run units (and SQL sessions)impacted by the COMMIT statement remain active after
the operationis complete.

The COMMIT statement is usedin both the navigationaland logical record facility
environments. The COMMIT TASK statement isalsousedinanSQL programming
environment.

Currency

Use of the ALL option, asin COMMIT ALL, sets all currenciesto null.

M

»>—— COMMIT
Lorask 4 L oacny 4

122 DML Reference Guide for PLI

COMMIT

Parameters

Example

Status Codes

TASK

Commits the changes made by all scratch, queue, and printactivityandall top-level
run units associated with the current task. Its impact on SQL sessions associated
with the task depends on whether those sessions aresuspended and whether their
transactions areeligibleto be shared.

More information:

For more information aboutthe impact of a COMMIT TASK statement on SQL
sessions,seethe CA IDMS SQL Programming Guide.

For more information aboutrun units and the impact of COMMIT TASK, see the CA
IDMS Navigational DML Programming Guide.

(ALL)

Releases all currency locks held onrecords in database, scratch,and queue areas
associated with the issuingtask (COMMITTASK ALL) or run unit(COMMIT ALL) and
sets all currencies to null.

The following statement commits changes made by the run unitthrough whichitis
issued:

COMMIT;

Upon completion of the COMMIT function, the ERROR_STATUS fieldinthe IDMS DB
communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.
5031

The specified request is invalid; the program may containalogicerror.
5097

An error was encountered processinga syncpointrequest; check the log for details.

Chapter 7: Data Manipulation Language Statements 123

CONNECT

CONNECT

Syntax

Parameters

Example

The CONNECT statement establishes a record occurrenceas a member of a set
occurrence. The specified record must be defined as an optional automatic, optional
manual, or mandatory manual member of the set.

Native VSAM users: The CONNECT statement is notvalidsinceall sets in native VSAM
data sets must be defined as mandatory automatic.
Before executing the CONNECT statement, satisfy theseconditions:

m Ready all areas affected either explicitly orimplicitly by the CONNECT statement in
one of the update usage modes (see READY later in this chapter).

m Establishthespecified record as current of its record type.

m Establishtheoccurrence of the set into which the specified record will be
connected. The current record of set determines the set occurrence and, ifset
order is NEXT or PRIOR, the position atwhich the specified record will beconnected
withinthe set.

Currency

Following successful execution of a CONNECT statement, the specified record is current
of run unit, its record type, its area,andall sets in whichitcurrently participates.

»»—— CONNECT RECORD (record-name) SET (set-name);

X

RECORD (record-name)

Specifies the record type to be connected. Record-name must be a recordincluded
inthe subschema and must be defined as an optional automatic, optional manual,
or mandatory manual member of the set to which itis being connected.

SET (set-name)

Specifies the set to which the member record is to be connected. Set-name must be
aset includedinthe subschema. The recordis connected to the set inaccordance
with the ordering rules defined for that setinthe schema.

The following statement connects the current EMPLOYEE record to the current
occurrence of the OFFICE_EMPLOYEE set:

CONNECT RECORD (EMPLOYEE) SET (OFFICE_EMPLOYEE);

124 DML Reference Guide for PLI

CONNECT

DEPARTMEN
5200

EMPLOYEE
600

Status Codes

EMPLOYEE

The followingfigureillustrates the steps required to connect an EMPLOYEE record to an
occurrence of the OFFICE_EMPLOYEE set. To connect EMPLOYEE 459 to OFFICE 1in the
OFFICE_EMPLOYEE set, establish EMPLOYEE 459 as current of record type, locate the
proper occurrence of the OFFICE record, and issuethe CONNECT command.

EMPLOYEE

459 28

DEPARTMENT
410 | F | 56
DEPT_ID_0410

QFFIGE
450 ||= |76 |CALC
OFFICE_GODE_0450

[cac
[on

[on

ORG_DEMO_REGION ORG_DEMO_REGION

DEPT_EMPLOYEE

NPO OA

ASC (EMP_LAST_NAME_0415
EMP_FIRST_NAME_0415) DL

OFFICE_EMPLOYEE

10 OA

ASG (EMP_LAST_NAME 0415
EMP_FIRST_NAME_0415) DL

EMPLOYEE

215 |F |118 |CALC
EMP_ID_0415
EMP_DEMQ_REGION

[on

CURRENGIES
RUN UNIT, RECORD, SET, AREA

= =
[8/8/3
<O
W) 4y g
£ o/l 5/ 8
5/ = o o
£ /& # ¢/ 5/ 5/ 3
2 = & u & - u
) @ Q 3 i & Q Q
z /&g /e /& /&) a
3 Iy Iy &
& §/&/8 &/ o s
DEPT_ID =5200 5200 | 5200 5200 5200
FIND GALG RECORD (DEPARTMENT);
OBTAIN FIRST REGORD (EMPLOYEE), 6200 | 458 250 5200 | ase
SET (DEPT_EMPLOYEE); 459
OFFICE_CODE=1;
" 15200 | 459 1| 459 1 1| 459
FIND CALG REGORD (QFFICE);
CONNECT RECORD (EMPLOYEE)
SET (OFFICE. EMPLOYEE), 459 | 5200 | 459 1| 459 | as9 1| 459

Upon completion of the CONNECT function,the ERROR_STATUS fieldinthe IDMS DB
communications blockindicates the outcome of the operation:

0000

The request has been serviced successfully.

0705

The CONNECT would violatea duplicates-not-allowed option.

Chapter 7: Data Manipulation Language Statements 125

DC RETURN (DC/UCF)

0706
Currency has not been established for the named record or set.
0708

The named record is notinthe subschema.The program has probablyinvoked the
wrong subschema.

0709
The named record's area has not been readied in one of the update usage modes.
0710

The subschema specifies anaccess restriction that prohibits connecting the named
record inthe named set.

0714

The CONNECT statement cannot be executed because the named record has been
defined as a mandatory automatic member of the set.

0716
The record cannotbe connected to asetinwhichitis alreadya member.
0721

An area other than the area of the named record has been readied with an
incorrectusage mode.

0725

Currency has not been established for the named set type.

DC RETURN (DC/UCF)

The DC RETURN statement returns control to a programat the next higher level within a
task. Additionally, you can use the DC RETURN statement to specify:

B The next taskto beinitiated on the same terminal

m Recovery procedures for abend routines established by SET ABEND EXIT (STAE)
functions

m The actionto be taken by the system if the terminal operator fails toinitiatethe
next task

Control Returns to the Program or System

Followinga DC RETURN request, control returns to the program atthe next higher level
withinthe task. Ifthe issuingprogramis the highest level program, control returns to
the system. Any DC RETURN statement canincludea NEXT TASK CODE option to specify
the next taskto beinitiated by the system. However, the position of the issuing program
within the task governs whether the specified task will,infact, receive control.

126 DML Reference Guide for PLI

DC RETURN (DC/UCF)

When the system receives control from the highest level program thatissueda DC
RETURN NEXT TASK CODE request, the specified taskis executed immediately if the
specified task code has been assigned the NOINPUT attribute duringsystem generation;
ifthe task code was assigned the INPUT attribute, the task executes only when the
terminal operator presses an attention identifier (AID) key. Typical AID keys includeall
PA and PF keys, ENTER, and CLEAR.

Syntax
»»—— DC RETURN T n >
NEXT TASK CODE (next-task-code)
I
L TIMEOUT —V—E INTERVAL (t1'meout-1'nterva1)4~,—\—|
PROGRAM (timeout-program)
Parameters

NEXT TASK CODE (next-task-code)

Specifies the 1-to 8-character code associated with a taskto be initiated on the
same terminal. Next-task-code is either the symbolic nameof a user-defined field
that contains the task code or the taskcode itselfenclosedinsinglequotation
marks. The specified task code must be defined to the system under which the task
is running, either during system generation or at runtime, by usinga DCMT VARY
DYNAMIC TASK command.

Note: For more information about DCMT VARY DYNAMIC TASK, see the CA IDMS
System Tasks and Operator Commands Guide.

TIMEOUT

Specifies the action the system is to take if the terminal operator fails to enter data
required to initiatea task. This parameter overrides resourcetimeout interval and
program specifications established during system generation.

INTERVAL (timeout-interval)

Specifies the time, in seconds, that can elapsebefore the system releases the
resources held by the terminal on which the taskis executing. Timeout-interval
is either the symbolic namefor a user-defined FIXED BINARY(31) field that
contains the timeout interval or the interval itself expressed as a numeric
constant.

Chapter 7: Data Manipulation Language Statements 127

DC RETURN (DC/UCF)

PROGRAM (timeout-program)

Specifies the 1-to 8-character name of the program to be invoked when the
specified timeout interval has been reached. This program handles and releases
resources held by the terminal on which the task was executing.
Timeout-program is either the symbolic nameof a user-defined field that
contains the program name or the name itselfenclosedinsinglequotation
marks.The specified programmust be defined to the system either during
system generation or at runtime by usinga DCMT VARY DYNAMIC PROGRAM
command.

Note: For more information about DCMT VARY DYNAMIC PROGRAM, see the
CA IDMS System Tasks and Operator Commands Guide.

Example

The following statement illustrates the use of DC RETURN. The task code associated with
MENU_TASK_CODE, ifdefined with the INPUT parameter, will be invoked the next time
the terminal operator presses an attention identifier (AID) key; if MENU_TASK_CODE is
defined with the NOINPUT parameter, itwill be invoked immediately.

DC RETURN
NEXT TASK CODE (MENU TASK CODE);

The followingfigureillustrates how the system executes a task when DC RETURN
statements withinthree programs specify the NEXT TASK CODE option.

In DC RETURN Processing Task A invokes program A. Program A links to program B,
whichinturn links to programC. Program Cissues a DCRETURN NEXT TASK CODE ('Z')
request; control returns to program B. ProgramB contains a DC RETURN NEXT TASK
CODE ('Y') request, which takes precedence over program C's DC RETURN specification.
Control returns to programA, which issues a DCRETURN NEXT TASK CODE ('X') request.
Because programA is atthe highestlevel inthe task,task X will beinvoked.

128 DML Reference Guide for PLI

DELETE QUEUE (DC/UCF)

DC/UCF SYSTEM

TASK X
TASK A fmm e e e :
PROGRAM X
PROGRAM A
. (RETURN)
] . “C-T-----------]
DC RETURN
NEXT TASK CODE |
X
| |
|
|
|
(LINK B) ,
» PROGRAM B |
|
i (RETURN)
DC RETURN «t oo
NEXT TASK CODE | o
[
(LINK C)

DC RETURN

|
|
|
> PROGRAM C |
. |
NEXT TASK CODE :

Status Codes

Because control is returned to the next-higher level, there is no need to check the
ERROR_STATUS field.

DELETE QUEUE (DC/UCF)

The DELETE QUEUE statement deletes all or partof a queue. Ifonly one queue record is
deleted, the system maintains currency within the queue by savingthe nextand prior
currencies of the deleted record.

Syntax

»»— DELETE QUEUE ; >
L 10 (queue-id) — I:CURRENT 4:'
ALL

Chapter 7: Data Manipulation Language Statements 129

DELETE QUEUE (DC/UCF)

Parameters
ID (queue-id)

Specifies the 1-to 16-character ID of the queue that contains the record to be
deleted. Queue-id is either the symbolic name of a user-defined field that contains
the ID or the IDitselfenclosedinsinglequotation marks.If the queue ID is not
specified,a blankIDis assumed.

CURRENT

Deletes the current record of the queue associated with the requesting task.
CURRENT is the default.

ALL

Deletes all records inthe queue and the queue header id.
Example

The following statement deletes the currentrecord inthe RES_Q queue:

DELETE QUEUE
ID ('RES Q')
CURRENT;

Status Codes

Upon completion of the DELETE QUEUE function, the ERROR_STATUS fieldinthe IDMS
DC communications blockindicates the outcome of the operation:
0000
The request has been serviced successfully.
4404
The requested queue header record cannotbe found.
4405

The requested queue record cannot be found.

130 DML Reference Guide for PLI

DELETE SCRATCH (DC/UCF)

4406

No resourcecontrol element (RCE) exists for the queue record, indicatingthat
currency has not been established.

4407

A databaseerror occurred during queue processing. Acommon causeis a DBKEY

deadlock. For a PUT QUEUE operation, this code canalso mean that the queue
upper limithas been reached.

Ifa databaseerror has occurred, there areusually beother messages inthe
CA-IDMS/DC/UCF logindicatinga problemencountered in RHDCRUAL, the internal

Run Unit Manager. Ifa deadlock has occurred, messages DC0O01000 and DC001002
arealsoproduced.

4431

The parameter listis invalid.

DELETE SCRATCH (DC/UCF)

The DELETE SCRATCH statement deletes one scratch recordor all records inthescratch
area.

Syntax

»»—— DELETE SCRATCH-

v

L AREA 1D (scratch-area-id) —

v

CURRENT
FIRST
LAST
NEXT
PRIOR
ALL
RECORD ID (scratch-record-id) —

)

L RETURN RECORD ID INTO (return-scratch-record-id)]

Parameters

AREA ID (scratch-area-id)

Specifies the 1-to 8-character ID of the scratch area associated with the scratch
records being deleted. Scratch-area-id is either the symbolic name of a user-defined
field that contains the scratch area ID or the IDitself enclosed insingle quotation

marks. If the AREA ID parameter is not specified, the system assumes anarea ID of
8 blanks.

CURRENT

Deletes the currentrecord inthe specified scratch area (thatis, that record most
recently referenced by another scratch function). CURRENT is the default.

Chapter 7: Data Manipulation Language Statements 131

DELETE SCRATCH (DC/UCF)

Example

Status Codes

FIRST

Deletes the firstrecordinthe specified scratch area.
LAST

Deletes the lastrecordin the specified scratch area.
NEXT

Deletes the next record inthe specified scratch area.
PRIOR

Deletes the priorrecordinthe specifiedscratch area.
ALL

Deletes all records inthe specified scratcharea.
RECORD ID (scratch-record-id)

Deletes the record identified by scratch-record-id. Scratch-record-id is the symbolic
name of a user-defined field that contains the ID.

RETURN RECORD ID INTO (return-scratch-record-id)

Specifies the locationinthe programto which the system will return the ID of the
lastrecord deleted by means of the DELETE SCRATCH function.
Return-scratch-record-id is the symbolic name of a user-defined 4-byte field.

The following statement deletes the scratchrecordthatis prior tothe currentscratch
record and returns the ID of the deleted record to the SCR_REC_ID field:

DELETE SCRATCH
PRIOR
RETURN RECORD ID INTO (SCR REC ID);

Upon completion of the DELETE SCRATCH function, the ERROR_STATUS fieldinthe IDMS
DC communications blockindicates the outcome of the operation:

0000

The request has been serviced successfully.
4303

The requested scratch area ID cannot be found.
4305

The requested scratch record ID cannotbe found.

132 DML Reference Guide for PLI

DELETE TABLE (DC/UCF)

4307
An 1/O error has occurred during processing.
4331

The parameter listis invalid.

DELETE TABLE (DC/UCF)

Syntax

Example

Status Codes

The DELETE TABLE statement notifies the system that the issuingtask has finished using
atable that has been loadedinto the program pool by usingthe LOAD TABLE function.
DELETE TABLE does not physically delete reusabletables from the program pool;rather,
it decrements the in-use count maintained by the DC/UCF system. An in-usecount of 0
signalstothe system that the spaceoccupied by the tablecan be reused.

»»—— DELETE TABLE FROM (table-location-pointer);

)

Parameter
table-location-pointer

Specifies a tablelocation where the in-use count maintained by the system is to be
decremented. Table-location-pointer specifies the variable-storage pointer location
that was set when the table was loaded via a LOAD TABLE request.

The following example releases a previously loaded tablefrom the locationinvariable
storage identified by RATE_TABLE_PTR:

DELETE TABLE FROM (RATE TABLE_PTR);

Upon completion of the DELETE TABLE function, the ERROR_STATUS fieldinthe IDMS
DC communications blockindicates the outcome of the operation:

Status code Meaning
0000 The request has been serviced successfully.
3433 The specified tablewas not loaded by the task.

Chapter 7: Data Manipulation Language Statements 133

DEQUEUE (DC/UCF)

DEQUEUE (DC/UCF)

Syntax

Parameters

Example

Status Codes

The DEQUEUE statement releases resources acquired by the issuingtaskwithan
ENQUEUE request. Acquired resources not released explicitly witha DEQUEUE request
arereleased automaticallyattasktermination.

»»—— DEQUEUE L ALL ; —>d
' 0 |
¥— NAME (resource-id) LENGTH (resource-id-length)

ALL
Releases all resources acquired by the issuingtask by means of ENQUEUE requests.
NAME (resource-id)

Specifies the resources to be dequeued and supplies thelength of each resource:
Resource-id is the symbolic name of a user-defined field that contains the 1- to
255-character resource ID. Multiple NAME parameters must be separated by at
leastone blank.

LENGTH (resource-id-length)

Specifies either the symbolic name of a user-defined FIXED BINARY(31) field that
contains the length of the resourcelD, or the length itself expressed as a numeric
constant.

The following statement releases all theresources enqueued by the issuingtask:

DEQUEUE NAME (PAYROLL_LOCK)
LENGTH (16);

Upon completion of the DEQUEUE function, the ERROR_STATUS fieldinthe IDMS DC
communications blockindicates the outcome of the operation:

0000
The request has been serviced successfully.
3913

At leastone resourcelD cannotbe found; all resources thatwere located have been
dequeued.

3931

The parameter listis invalid.

134 DML Reference Guide for PLI

DISCONNECT

DISCONNECT

DEPARTMEN
3200

The DISCONNECT statement cancels the current membership of a record occurrenceina
set occurrence. The named record must be defined as an optional member of the
named set.

Native VSAM users: The DISCONNECT statement is not validsinceallsets in native
VSAM data sets must be defined as mandatory automatic.

Before executing the DISCONNECT statement, satisfy the following conditions:

m Ready all areas affected either explicitly orimplicitly by the DISCONNECT statement
with one of the three update usage modes (see READY, later in this chapter).

m Establishthenamed record as current of its record type.

m Make surethat the named record currently participates as a member in an
occurrence of the named set.

Following successful execution of the DISCONNECT statement, the named record can no
longer be accessed through the set for which membership was canceled. The
disconnected record canstill beaccessed either by means of a complete scan of the
areainwhichit participates or directly throughits db-key, if known. A disconnected
record canalsobeaccessed either through any other sets in which itparticipates as a
member or ifit has a location mode of CALC.

Currency

A successfully executed DISCONNECT statement nullifies currencyinthespecified set.
However, next, prior,and owner of set are maintained, enabling continued access
withinthe set. The disconnected recordis current of run unit, its record type, its area,
andany other sets inwhich it participates. The followingfigureillustrates the steps
required to disconnectan EMPLOYEE record from an occurrence of the
OFFICE_EMPLOYEE set.

To disconnect EMPLOYEE 4 from OFFICE 1 of the OFFICE_EMPLOYEE set, enter the
databaseon OFFICE 1, establish EMPLOYEE 4 as current of the EMPLOYEE record type,
anddisconnectit from the OFFICE_EMPLOYEE set.

DEPARTMENT OFFICE
410 |F |56 |CALC 150 |F |7G |CALC
DEPT_ID_0410 | DN QFFICE_CODE_0450 | DN

ORG_DEMQ_REGICON ORG_DEMO_REGION

OFFICE_EMPLOYEE

10 OA

A5G (EMP_LAST_NAME_g415
EMP_FIRST_NAME_0415) DL

DEPT_EMPLOYEE

NPO CA

ASC (EMP_LAST_NAME 0415
EMP_FIRST_NAME_0415) DL

EMPLOYEE
115 |F |11e |CALC
EMP_ID_0415 [on

EMPLOYEE
28

EMP_DEMO_REGION

Chapter 7: Data Manipulation Language Statements 135

DISCONNECT

CURRENCIES
RUN UNIT, RECORD, SET, AREA

=
Ww &/ 8/3
N
W o g /&
& §/8/¢/4
N g/l /f/8
= 8‘ ~ 1y Uz w" g Ly
S/g)Ejs])i]g]5]8
PN o A s
3 Iy & [
2/lz/&/8/81/8§/&) &
OFFICE_CQDE=1; ; , ,]
FIND GALC RECORD (OFFICE);
FIND FIRST RECORD (EMPLOYEE} s . ; . ; .
SET (OFFICE_EMPLOYEE);
DISGONNECT RECORD (EMPLOYEE)
SET (OFFICE_EMPLOYEE); 4 4 1 4| NPQI 1 4

Syntax
»»—— DISCONNECT RECORD (record-name) SET (set-name); >«
Parameters
RECORD (record-name)
Specifies the record type to be disconnected. Record-name must be a record
includedinthe subschema and must be defined as an optional member of the
specified set.
SET (set-name)
Specifies the set from which the named record will be disconnected. Set-name must
be asetincludedinthe subschema.
Example

The following statement disconnects the current EMPLOYEE record from the
OFFICE_EMPLOYEE set:

DISCONNECT RECORD (EMPLOYEE) SET (OFFICE EMPLOYEE);

136 DML Reference Guide for PLI

END LINE TERMINAL SESSION (DC/UCF)

Status Codes

Upon completion of the DISCONNECT function, the ERROR_STATUS fieldinthe IDMS DB
communications blockindicates the outcome of the operation:

0000

The request has been serviced successfully.
1106

Currency has not been established for the named record.
1108

The named record is notinthe subschema.The program has probablyinvoked the
wrong subschema.

1109
The named record's area has not been readied in one of the update usage modes.
1110

The subschema specifies anaccess restriction that prohibits use of the DISCONNECT
statement.

1115

The DISCONNECT statement cannot be executed because the named record has
been defined as a mandatory member of the set.

1121

An area other than the area that contains the named record has been readied with
anincorrectusage mode.

1122

The named record is notcurrently a member of the specified set.

END LINE TERMINAL SESSION (DC/UCF)

Syntax

The END LINE TERMINAL SESSION statement terminates the currentline-mode /O
session. All output data lines thatremain inthe current buffer and all pages queued for
asynchronous I/O operations are deleted.

M

»»—— END LINE TERMINAL session ;

Chapter 7: Data Manipulation Language Statements 137

END TRANSACTION STATISTICS (DC/UCF)

Example

The following statement terminates aline mode I/O session:

END LINE TERMINAL SESSION;
Status Codes

There are no codes associated with the END LINE TERMINAL SESSION command.

END TRANSACTION STATISTICS (DC/UCF)

The END TRANSACTION STATISTICS statement defines the end of a transaction. The
transaction typically ends when the issuingtask terminates. Optionally, END
TRANSACTION STATISTICS canbe used to write the transaction statistics block (TSB) to
the system log fileand to return the TSB to a preallocated locationinvariablestorage.
You candefine the length of the TSB.

Syntax
»»>—— END TRANSACTION STATISTICS >
WRITE « :‘
NOWRITE
L INTO (return-stat-data-location) | "
" LenoTi- —— 388 >
L tsb-length
Parameters

WRITE/NOWRITE
Specifies whether the TSB is written to the system logfilewhen the task terminates.
Default: WRITE

INTO (return-stat-data-location)

Specifies the location to which the system copies the TSB. Return-stat-data-location
is the symbolic name of a user-defined field. Return-stat-data-location is a
fullword-aligned 388-byte field (you can customize the length usingthe LENGTH=
parameter).

138 DML Reference Guide for PLI

END TRANSACTION STATISTICS (DC/UCF)

Example

Status Codes

LENGTH=

Specifies the length of the returned TSB . To retrieve all statisticsincluding the DC

extended statisticssection thatrecords CPU times inthe Time of Day (TOD) format,
specify LENGTH=560.

tsb-length

Specifies either the symbolic name of a user-defined field that contains the
length to be returned, or the length expressed as a numeric constant.

Limits: Integer of 388 or greater

Default: Ifyou do not specify a tsb-length, the first388 bytes of the TSB are
returned.

The following statement ends a transaction, writes statisticsto the logfile,and returns a
copy of the TSB to the STATISTICS_BLOCK field:

END TRANSACTION STATISTICS
WRITE
INTO (STATISTICS BLOCK);

Upon completion of the END TRANSACTION STATISTICS function, the ERROR_STATUS
fieldinthe IDMS DC communications block indicates the outcome of the operation:

0000
The request has been serviced successfully.

3801

Storage for the transaction statistics blockisnotavailable; to waitwould causea
deadlock.

3813

No transaction statistics block exists;a BIND TRANSACTION STATISTICS request has
not been issued.

3831

Either the parameter listis invalid or nologicalterminal element (LTE) is associated
with the issuingtask.

3850

The collection of transaction statistics or task statistics has notbeen enabled during
system generation.

Chapter 7: Data Manipulation Language Statements 139

ENDPAGE (DC/UCF)

ENDPAGE (DC/UCF)

The ENDPAGE statement terminates a map pagingsession,clearsthescratchrecord for
the session,and clears themap pagingoptions for the completed session. A
STARTPAGE/ENDPAGE pairencloses commands thathandlea pageablemap at runtime.
The STARTPAGE command is discussed later in this chapter.

Syntax

M

»»—— ENDPAGE session ;
Example

The following statement ends a map pagingsession:

ENDPAGE SESSION;
Status Codes

Upon completion of the ENDPAGE function, the ERROR_STATUS fieldinthe IDMS DC
communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

ENQUEUE (DC/UCF)

The ENQUEUE statement acquires or tests the availability of a resource or list of
resources.Resources are defined duringinstallation and system generation and typically
includestorageareas, common routines, queues, and processor time.

An enqueued resourcecan be exclusiveorshared:

m Exclusive—Theresourceis owned exclusively by the issuingtaskandis notavailable
to any other tasks.The system prohibits other tasks from obtainingresources that
have been ENQUEUED exclusively.

Note: An exclusive ENQUEUE request prohibits another task from enqueuing a
resource by name; however, itdoes not prohibitthe use of the resource by another
task. Therefore, to effect true resource protection, you must enqueue and dequeue
resources consistently.

m Shared—The resourceis availableto all tasks. The system allows other tasks to
issuenonexclusive ENQUEUE requests for the resources, permitting the resources
to be shared.

140 DML Reference Guide for PLI

ENQUEUE (DC/UCF)

Syntax
»»— ENQUEUE >
VAIT <
NOWATT
TEST
»—v— NAME (resource-id) LENGTH (resource-id-length) L. e
EXCLUSIVE < :'
SHARED
Parameters
WAIT

Specifies that the system is to wait for all resources to be freed ifitcannot service
the request immediately. WAIT is the default.

NOWAIT

Specifies that the system is not to waitto acquireresources thatare not currently
available. If NOWAIT is specified, the program should checkthe ERROR_STATUS
fieldinthe IDMS DC communications block to determine if the function has been
completed. Ifthe ERROR_STATUS valueis 3901, indicatingthata resourcecould not
be obtained immediately, the request has not been serviced and the program
should perform alternative processing before reissuingthe NOWAIT request.

TEST

Tests the availability of the specified resources. If TEST is specified, the program
should checkthe ERROR_STATUS fieldinthe IDMS DC communications block to
determine the outcome of the test.

NAME (resource-id)

Specifies the character ID that names the resource. Resource-id must be a
user-defined field that contains the resource ID. The resourcelD isa 1to 255 byte
character stringused to identify the resource upon which an enqueue is to be setor
tested. Any character stringmay be defined as longas all programs thataccess the
resource usethe samename and the nameis uniquerelativeto all other names
used to identify other resources within the CV.

LENGTH (resource-id-length)

Specifies the symbolic name of either a user-defined FIXED BINARY(31) field that
contains the length of the resourcelD or the length itself expressed as a numeric
constant.

EXCLUSIVE/SHARED

Assigns the exclusive or shared attribute to the named resource. The default
attribute is EXCLUSIVE.

Chapter 7: Data Manipulation Language Statements 141

ENQUEUE (DC/UCF)

Example

Status Codes

The following statement enqueues the CODE_VALUE and PAYROLL_LOCK resources.
CODE_VALUE isreserved for exclusiveuseby the issuingtask; PAYROLL_LOCK can be
shared.

ENQUEUE
WAIT
NAME (CODE VALUE) LENGTH (10)
NAME (PAYROLL LOCK) LENGTH (16) SHARED;

The following statement tests the availability of the resource whose identifieris
containedinthe RESOURCE_NAME field:

ENQUEUE
TEST
NAME (RESOURCE_NAME) LENGTH (RESOURCE NAME LENGTH);

Upon completion of an ENQUEUE functionto acquire resources,the ERROR_STATUS
fieldinthe IDMS DC communications block indicates the outcome of the operation:

0000
The request has been serviced successfully.
3901

At leastone of the requested resources cannot be enqueued immediately; to wait
would causea deadlock. No new resources have been acquired.

3908

At leastone of the requested exclusiveresources is currently owned by another
task. No new resources have been acquired.

3931
The parameter listis invalid.

Upon completion of an ENQUEUE functionto test resources,the ERROR_STATUS
fieldinthe IDMS DC communications block indicates the outcome of the operation:

0000
All requested resources are available.
3908

At leastone of the tested resources is already owned by another task.

142 DML Reference Guide for PLI

ERASE

ERASE

3909

At leastone of the tested resources is not yet owned by another taskandis
availableto the issuingtask.

3931

The parameter listis invalid.

The ERASE statement performs the followingfunctions:

m Disconnects the specified record from all setoccurrences in whichitparticipates as
a member andlogically or physically deletes the record from the database

m Optionallyerases allrecords thatare mandatory members of set occurrences
owned by the specified record

m Optionallydisconnects or erases allrecords thatare optional members of set
occurrences owned by the specified record

ERASE is a two-step procedure that firstcancels the existing membership of the named
record inspecific setoccurrences and then releases for reuse the spaceoccupied by the
named record and its db-key. Erased records are unavailablefor further processing by
any DML statement.

Before executing the ERASE statement, satisfy the following conditions:

m Ready all areas thatareaffected either implicitly or explicitly in one of the update
usage modes (see READY later in this chapter).

m Includeandreadyinanupdate usagemode all sets in which the specified record
participates as a member.

Includeinthe subschema all sets in which the specified record participates as owner
either directly or indirectly (for example, as owner of a set with a member that is owner
of another set) and all member record types inthose sets.

m Includeinthe subschema all records thatparticipate either implicitly or explicitly as
owners.

m Establishthespecified record as current of run unit.

Chapter 7: Data Manipulation Language Statements 143

ERASE

Syntax

Parameters

»»—— ERASE RECORD (record-name) E

Currency

Following successful execution of an ERASE statement, currency is nullified for all record
types involvedin the erase both explicitlyand implicitly. Run unitand area currency
remainunchanged. Next, prior,and owner currencies arepreserved for sets from which
the lastrecord occurrence was erased. These currencies enableyou to retrieve the next
or priorrecords within the area or the next, prior, or owner records within the setin
which the erased record participated. An attempt to retrieve erased records resultsin
anerror condition.

M

PERMANENT —
SELECTIVE —
ALL ——

RECORD (record-name)

Names the record type to be erased. Record-name must be a record included in the
subschema. The current of record-name must be current of run unit. Unless the
PERMANENT, SELECTIVE, or ALL qualifier follows, anerror condition results if the
named recordis the owner of any nonempty set occurrences.

Native VSAM users: ERASE RECORD (record-name) is the only form of the ERASE
statement valid for records in a native VSAM key-sequenced data sets (KSDS) or
relative-record data sets (RRDS); the ERASE statement is not valid for a native VSAM
entry-sequenced data sets (ESDS).

PERMANENT

Erases the specified record and all mandatory member record occurrences owned
by the specified record. Optional member records aredisconnected. If any of the
erased mandatory members arethemselves the owner of any set occurrences, the
ERASE statement is executed on suchrecords as if they were directly the object
record of an ERASE PERMANENT statement (that is, all mandatory members of such
sets arealsoerased). This process continues until all directand indirect members
have been processed.

SELECTIVE

Erases the specified record and all mandatory member record occurrences owned
by the specified record. Optional member records areerased ifthey do not
currently participate as members in other set occurrences. All erased member
records that are themselves the owners of anyset occurrences aretreated as if
they were the object of an ERASE SELECTIVE statement.

144 DML Reference Guide for PLI

ERASE

Example

ALL

Erases the specified record and all mandatory and optional member record
occurrences owned by the specified record. All erased member records that are
themselves the owners of anyset occurrences aretreated as ifthey were the object

record of an ERASE ALL statement.

The followingfour figures illustrate use of the three parameters of the ERASE statement.
Note that the outcome of the ERASE statement varies based on the qualifier specified
(PERMANENT, SELECTIVE, orALL). Although all three qualifierscauseallmandatory
members owned by the specified record to be erased, they differ in their effect on

optional members.

DEPT TCHR
0A
MA OA
FOREIGN @\ suBJ CLASS
LANGUAGES MA

Chapter 7: Data Manipulation Language Statements 145

ERASE

SPIRQ
TUTUO

FOREIGN
LANGUAGES

ERASE RECORD (DEPT) PERMANENT,;

{assuming that FOREIGN LANGUAGES is
current of run unit)

The Foreign Languages Department can no
longer be funded, so it is deleted from the
database along with its subjects and classes.
The teachers will be reassigned to other
departments.

Erases the foreign language record and
all mandatory members; disconnects
optional members.

ERASE RECORD (TCHR) SELECTIVE;

(assuming that WON HAN is current of
the run unit)

Won Han has quit in the middle of the
semester. His classes will be finished by
another teacher, so only Won Han is erased.
(Remember that an unqualified ERASE
command cannot be used to erase the owner
of a non-empty set.)

Erases the TCHR record occurrence, mandatory
members (none, TCHR_CLASS is QA}, and
opticnal orphans (none, CHI is in the
SUBJ_CLASS set).

146 DML Reference Guide for PLI

ERASE

sPiRo ERASE RECORD (TCHR) ALL;
TUTUO (assuming that Won Han is current of

run unit)

No one is available to teach Won Han's
classes, so both he and his classes are
deleted from the database.

Erases the TCHR record occurrence and
all mandatory and optional members.

FOREIGN
LANGUAGES

The followingfigure shows the effect each of the parameters has on currency.

CURRENCIES: RUN UNIT, RECORD, SET, AREA

RUN DEPT TCHR | SUBJ CLASS DEPT_ DEPT_ TCHR_ SUBJ_ SCHOCL _

UNIT TCHR SUBJ CLASS CLASS REGICH
ESTABLISHED | FOREIGN | FOREIGN FRENCH | CHI I. | FOREIGW | FOREIGN [CHI I. | FREMNCH | FOREIGN
CURRENCIES LANG. LANG. LANG. LANG. LANG.
ERASE DEPT FOREIGH | HULL HULL NULL WP NULL NP WULL FOREIGN
PERMANENT LANG. LANG.
ESTABLISHED | WON HAN | FOREIGN [WON CHI I. | WOM FOREIGN | WOM CHI I. [WOM
CURRENCIES LANG. HAN HAN LANG. HAN HAN
ERASE TCHR WON HAN | FOREIGM | MNULL CHI I. | HP FOREIGH [NP CHI I. [WOM
SELECTIVE LANG. LANG. HAN
ESTABLISHED | WON HAN HON FRENCH WON FREMCH WON FRENCH | WON
CURRENCIES HAN HAN HAN HAN
ERASE TCHR WON HAN NULL | FRENCH [MULL WP FREMCH NP WP WON
ALL HAN

Chapter 7: Data Manipulation Language Statements 147

ERASE

Status Codes

Upon completion of the ERASE function,the ERROR_STATUS fieldinthe IDMS DB
communications blockindicates the outcome of the operation:

0000

The request has been serviced successfully.
0208

The object record is notinthe specified subschema.
0209

The named record's area has not been readied in one of the three update usage
modes.

0210

The subschema specifies anaccess restriction that prohibits use of the ERASE
statement.

0213

A current record of run unit has either not been established or has been nullified by
a previous ERASE statement.

0217

A db-key has been encountered that contains a longterm permanent lock.
0220

The current record of run unitis not the same record type as the named record.
0221

An area other than the area of the specified record has been readied with an
incorrectusage mode.

0225

Currency has not been established. Only OBTAIN statements update index set
currencies.

0226

A broken chain has been encountered inthe process of executing an ERASE ALL,
PERMANENT, or SELECTIVE.

0230
An attempt has been made to erase the owner record of a nonempty set.
0233

Either erasure of the record occurrenceis not allowed in this subschema or all sets
inwhich the record participates havenot been includedinthe subschema.

148 DML Reference Guide for PLI

ERASE (LRF)

ERASE (LRF)

Syntax

0260

A record occurrence has been encountered whose type is inconsistent with the set
named inthe ERROR_SET field of the IDMS DB communications block; probable
causes area broken chainorimproper databasedescription.

0261

No record can be found for a pointer db-key. The probablecauseis a brokenchain.

The ERASE statement deletes alogical-record occurrence. The ERASE statement does
not necessarily resultinthedeletion of all or any of the database records used to create
the specified logicalrecord. The path selected to servicean ERASE logical-record request
performs whatever databaseaccess operations the DBA has specified to servicethe
request. For example, ifa DEPARTMENT loses an employee, the EMP_JOB_LR logical
record that contains information aboutthat employee would be erased. However, only
the information aboutthe former employee would be erased from the database, notall
the information aboutthe department; thatis, EMPLOYEE information would be erased,
but not DEPARTMENT, JOB, or OFFICE information.

LRF uses field values presentin the variable-storagelocation reserved for the logical
record to update the database. You canspecifyanalternativestorage location from
which LRF is to take field values to make the appropriateupdates to the database.

»»—— ERASE RECORD (logical-record-name)

v

v

L FROM (alt-logical-record) JL WHERE (boolean-expression) i

M

L ON LR _STATUS (path-status) imperative-statement]
RECORD (logical-record-name)

Names the logicalrecordto be deleted. Unless the FROM clause (see below) is
included, LRF uses field values present in the variable-storagelocation reserved for
the logical record to make any necessary updates to the database.
Logical-record-name must specify a logical record defined in the subschema.

FROM (alt-logical-record)

Names analternativevariable-storagelocation fromwhich LRF is to obtain field
values to perform the appropriatedatabase updates inresponseto this request.
When erasinga logicalrecord thathas been previouslyretrieved into an alternative
storage location, usethe FROM clauseto name the same location specifiedin the
OBTAIN request. If the FROM clauseis included in the ERASE statement,
alt-logical-record must identify a recordlocation defined in programvariable
storage.

Chapter 7: Data Manipulation Language Statements 149

FIND/OBTAIN

WHERE (boolean-expression)

Specifies the selection criteria to be applied to the specified logical record. For
details on codingthis clause, see Logical-Record Clauses (WHEREand ON) at the
end of this chapter.

ON LR_STATUS (path-status) imperative-statement

Specifies the action to be taken if path-status is returned to the LR_STATUS fieldin
the LRC block. Path-status must be a 1- to 16-character alphanumeric value. For
details on codingthis clause, see Logical-Record Clauses (WHEREand ON) at the
end of this chapter.

Example

The following example illustrates a requestto eraseall occurrences of a former
employee's EMP_INSURANCE_LR logicalrecord.The DBA-designated path status
ALL_ERASED indicates thatall occurrences of the EMP_INSURANCE_LR logical record
have been erased.

ERASE RECORD (EMP_INSURANCE_LR)
WHERE (EMP_ID 0415 EQ '0316')
ON LR _STATUS (ALL ERASED) CALL EMP_INS DELETION RPT;

D, M, and F under Coverage inthe followingfigureare physically erased fromthe
databaseas aresultof the ERASE RECORD (EMP_INSURANCE_LR) statement. As defined
by the DBA, the ERASE EMP_INSURANCE_LR path group logically deletes all of the
specified EMP_INSURANCE_LR occurrences, but physically deletes onlythe D, M, and F
COVERAGE records.

EMPLOYEE INS-PLAN COVERAGE
316 001
LOGICAL-RECORD
OCCURRENCES 316 002
DELETED
316 001

FIND/OBTAIN

The FIND statement locates a record occurrence in the database;the OBTAIN statement
locates a record and moves the data associated with the record to the record buffers.
Because the FIND and OBTAIN command statements have identical formats,they are
discussed together.

150 DML Reference Guide for PLI

FIND/OBTAIN

Six FIND/OBTAIN Formats

The six formats of the FIND/OBTAIN statement areas follows:

m FIND/OBTAIN CALC/DUPLICATE accesses a record occurrence by usingits CALC key
value.

m FIND/OBTAIN CURRENT accesses arecord occurrenceby usingestablished
currencies.

m FIND/OBTAIN DBKEY accesses a record occurrenceby usingits databasekey.
m FIND/OBTAIN OWNER accesses the owner record of a set occurrence.

® FIND/OBTAIN WITHIN SET USING SORT KEY accesses a record occurrenceina
sorted set by usingits sort-key value.

= FIND/OBTAIN WITHIN SET/AREA accesses arecordoccurrencebasedon its logical
location withina set or on its physical location withinanarea.

Each format of the FIND/OBTAIN statement is discussed separatelyinthe following
subsections.

SHARED and EXCLUSIVE Locks

You canplacelocks onlocated record occurrences by usingthe KEEP clauseofa
FIND/OBTAIN statement. The KEEP clausesets a shared or exclusivelock:

m KEEP places asharedlockon the located record occurrence. Other concurrently
executing run units canaccess butnot update the locked record.

m KEEP EXCLUSIVE places anexclusivelockonthe located record occurrence. Other
concurrently executing run units can neither access nor update the locked record.

More information:

KEEP CURRENT (see page 198)

FIND/OBTAIN CALC/DUPLICATE

The FIND/OBTAIN CALC/DUPLICATE statement locates a record based on the valueof an
element defined as a CALC key inthe record. The specified record must be stored i nthe
databasewith a location mode of CALC. Before issuing the FIND/OBTAIN
CALC/DUPLICATE statement, you mustinitializea fieldin programvariablestorage with
the CALC-key value.

You canusethe DUPLICATE option to access duplicaterecords with the same CALC-key
valueas the record thatis currentof record type, provided that a FIND/OBTAIN CALC
statement has previouslyaccessed an occurrence of the same record type.

Chapter 7: Data Manipulation Language Statements 151

FIND/OBTAIN

Currency

Followingsuccessful execution of a FIND/OBTAIN CALC/DUPLICATE statement, the
accessed record becomes the current record of run unit, its record type, its area, and all
sets inwhichitcurrently participates as member or owner.

Syntax
FIND CALC >
OBTAIN 1L KEEP | L ANY _
L excLusive - I—DUPLICATE J
»—— RECORD (record-name) ; >«
Parameters
FIND/OBTAIN CALC/DUPLICATE RECORD (record-name)
Locates the record specified by record-name based on its CALC-key value:
CALC/ANY
Locates the firstor only occurrence of the designated record type whose CALC
key matches the valueof the CALC dataitem inprogram variablestorage. CALC
and ANY are synonyms.
DUPLICATE
Locates the next record with the same CALC key valueas the current of record
type. Use of the DUPLICATE optionrequires prior selection of an occurrence of
the same record type with the CALC option. Ifthe value of the CALC key in
variablestorageis notequal to the CALC-key field of the current of record type,
anerror status of 0332 is returned.
KEEP EXCLUSIVE
Places a shared (KEEP) or exclusive (KEEP EXCLUSIVE) lock on the accessed record.
Example

To retrieve an occurrence of the EMPLOYEE record by usingthe FIND/OBTAIN
CALC/DUPLICATE statement, you must firstinitializethe variable-storagefield that
contains the CALC-control element. The followingstatements initialize the CALC field
EMP_ID_0415 andretrieve an occurrence of the EMPLOYEE record:

EMP_ID 0415 = EMP_ID IN;
OBTAIN CALC RECORD (EMPLOYEE);

152 DML Reference Guide for PLI

FIND/OBTAIN

Status Codes

Upon completion of the FIND/OBTAIN CALC/DUPLICATE function, the ERROR_STATUS
fieldinthe IDMS DB communications blockindicates the outcome of the operation:

0000

The request has been serviced successfully.
0301

The area in which the named record participates has notbeen readied.
0306

A successful FIND/OBTAIN CALC has not yet been executed (applies to the
DUPLICATE option only).

0308

The named record is notinthe subschema.The program probablyinvoked the
wrong subschema.

0310

The subschema specifies anaccess restriction that prohibits retrieval of the named
record.

0318

The record has not been bound.
0326

The record cannotbe found or no more duplicates existfor the named record.
0331

The retrieval statement format conflicts with the record's location mode.
0332

The valueof the CALC dataitem in program variablestoragedoes not equal the
valueof the CALC dataitem inthe current record (applies to the DUPLICATE option
only).

0364

The CALC-control element has not been described correctly either inthe program
or inthe subschema.

0370

A databasefilewill notopen properly.

Chapter 7: Data Manipulation Language Statements 153

FIND/OBTAIN

Ifthe KEEP parameter is specifiedina FIND/OBTAIN statement, and an error occurs
during KEEP processing, the major code 06 is returned.

Note: For more information, see KEEP CURRENT (see page 198) laterin this chapter. The
major code 03 is returned ifan error occurs during FIND/OBTAIN processing.

FIND/OBTAIN CURRENT

Syntax

Parameters

Example

The FIND/OBTAIN CURRENT statement locates the record thatis current of its record
type, set, or area.This form of the FIND/OBTAIN statement is an efficient means of
establishingthe appropriaterecordas currentof run unit before executing a DML
statement that utilizes run-unitcurrency (for example, ACCEPT, IF, GET, MODIFY,
ERASE).

Currency
Followingsuccessful execution of a FIND/OBTAIN CURRENT statement, the accessed

record is currentof run unit, its record type, its area,andall setsinwhichitcurrently
participates as member or owner.

v

FIND CURRENT
L 08TAIN - L keep a - '
EXCLUSIVE

RECORD (record-name) — ’
SET (set-name) ——
AREA (area-name)

M

FIND/OBTAIN CURRENT

Locates the current record occurrence of a specified record type, set, or area.
KEEP EXCLUSIVE

Places a shared (KEEP) or exclusive (KEEP EXCLUSIVE) lock on the accessed record.
RECORD (record-name)/SET (set-name)/AREA (area-name)

Specifies that the current record of the named record type, set, or areais to be
accessed.

The followingfigureillustrates use of the FIND/OBTAIN CURRENT statement to establish
the proper record as currentof run unit before the record is modified.

154 DML Reference Guide for PLI

FIND/OBTAIN

Assume that you enter the databaseon DEPARTMENT 5100 by using CALC retrieval.You
examine EMPLOYEE 466 by usingwithinset retrieval and obtain further information
from its owner OFFICE record (OFFICE 8). OFFICE 8 becomes current of run unit. Before
modifying EMPLOYEE 466, you mustissuethe FIND CURRENT statement to reestablish
EMPLOYEE 466 as current of run unit.

DEPARTMENT OFFICE
418 [F [s6 [oac as0 [F [76 [cac
DEPT_ID_0410 [on OFFIGE_CODE_0450 [on
QRG_DEMO_REGION ORG_DEMO_REGION
DEPT_EMPLOYEE OFFICE_EMPLOYEE
NPO DA 10 0A
EMPLOYEE EMPLOYEE ASC (EMP_LAST_NAME_0415 ASC (EMP_LAST NAME_0415
467 466 EMP_FIRST_NAME_0415) DL EMP_FIRST_NAME_0415) DL
EMPLOYEE

115 |F |11s |CALC
EMP_ID_0415 [on

EMP_DEMO_REGION

CURRENCIES
RUN UNIT, RECORD, SET, AREA

z [=
o 8)8]3
(<]
g /e /&g
s s/e/5)¢8
[&' = Qo Q
AR $ /&g /5] 3
= ~ pN u I u' a4 iy
Sjfe /o /d /oo f 9/ A9
= a a Iy a & 9] a
) i I I3
/&8 /&s/8/&d/6/8/ &
DEPT_ID =5100 5100 | 5100 5100 5100
FIND CALC RECORD {DEPARTMENT);
OBTAIN FIRST 466 | 5100 | 466 466 | 466 | 5100 | 466
SET (DEPT_EMPLOVEE);
OBTAIN OWNER 8 | 5100 | 468 8| 466 8 8| 466
SET (OFFICE_EMPLOYEE);
FIND CURRENT RECORD (EMPLOYEE);| 466 | 5100 | 466 8| 466 | 466 8| 466
MODIFY RECORD (EMPLOYEE); 466 [5100 | 466 8 | 466 | 466 8 | 466

Note: For more information about MODIFY statement andits use, see MODIFY RECORD
(see page 230).

Chapter 7: Data Manipulation Language Statements 155

FIND/OBTAIN

Status Codes

Upon completion of the FIND/OBTAIN CURRENT function, the ERROR_STATUS fieldin
the IDMS DB communications blockindicates the outcome of the operation:

0000

The request has been serviced successfully.
0301

The area in which the named record participates has notbeen readied.
0306

Currency has not been established for the named record, set, or area.
0308

The named record or set is notinthe subschema.The program has probably
invoked the wrong subschema.

0310

The subschema specifies anaccess restriction that prohibits retrieval of the named
record.

0313

A current record of run unit either has not been established or has been nullified by
a previous ERASE statement.

0323

The specified area name has not been included inthe subschema invoked.

Ifthe KEEP parameter is specifiedina FIND/OBTAIN statement, and an error occurs
during KEEP processing,the major code 06 is returned.

Note: For more information, see KEEP CURRENT (see page 198),later inthis chapter.
The major code 03 is returned if an error occurs during FIND/OBTAIN processing.

FIND/OBTAIN DBKEY

The FIND/OBTAIN DBKEY statement locates a record occurrencedirectly by usinga
databasekey that has been stored previously by the program. The DML ACCEPT
statement, discussed earlier inthis chapter, or the PL/l assignmentstatement canbe
used to save a db-key. Any record in the program's subschema can be accessed directly
inthis manner, regardless of its location mode.

Native VSAM users: This statement is not valid for accessing data records in a native
VSAM key-sequenced data set (KSDS).

156 DML Reference Guide for PLI

FIND/OBTAIN

Syntax

Parameters

Currency

After successful execution of a FIND/OBTAIN DBKEY statement, the accessed record
becomes the current record of run unit, its record type, its area, and all sets in whichiit
currently participates as member or owner. Inaddition,the RECORD_NAME field of the
IDMS DB communications blockis updated with the name of the accessed record.

Note that currencyis not used to determine the specified record of the FIND/OBTAIN
DBKEY statement; the record is identified byits db-key and, optionally, byits record

type.

v

FIND
L ogTAIN — L keep I_ - |
EXCLUSTVE

DBKEY (db-key-v) C] >«
PAGE_INFO (page-info-v)
=] DBKEY (db-key-v)
RECORD (record-name)

FIND/OBTAIN DBKEY (db-key-v)

Locates a record directly by usinga db-key valuecontainedin program variable
storage. (db-key-v) is a FIXED BINARY(31) fullword field thatidentifies the location
inprogram variablestoragethat contains a db-key previously saved by the
program.

If a record name has been specified, (db-key-v) must contain the db-key of an
occurrence of the named record type.

Ifa record name has not been specified and the subschema includes areas with
different page information values, then:

m IfPAGE_INFO has been specified, (db-key-v) must contain the db-key of an
occurrence of a record type whose page information matches that specified.

m IfPAGE_INFO has not been specified, (db-key-v) must contain the db-key of an
occurrence of a record type whose page information matches that of the
record thatis currentof run unit.

Ifa record name has not been specifiedandall areasinthesubschema have the
same page informationvalue, (db-key-v) can contain the db-key of an occurrence of
anyrecord type inthe subschema.

KEEP EXCLUSIVE

Places a shared (KEEP) or exclusive (KEEP EXCLUSIVE) lock on the accessed record.

Chapter 7: Data Manipulation Language Statements 157

FIND/OBTAIN

Example

Status Codes

PAGE_INFO (page-info-v)

Specifies page information thatis used to determine the area with which the db-key
is associated. If neither record name nor PAGE_INFO is specified and the subschema
includes areas with different page information values, the page information
associated with the record that is current of rununitis used.

Note: Page informationis only usedif the subschema includes areas with different
page information values;otherwise, itis ignored.

page-info-v is a field that identifies the location within programvariablestorage
containingthe page information associated with the specified db-key. It may be
defined either as a fullword field or as a group field consisting of two halfwords.

RECORD (record-name)

Optionallyidentifies therecord type of the requested record. If specified,
record-name must name arecord thatisincludedinthe subschema.

The following statement locates the occurrence of the HOSPITAL_CLAIM record whose
db-key matches the valueof a fieldin programvariablestorage called SAVED_KEY:

FIND RECORD (HOSPITAL CLAIM) DBKEY (SAVED KEY);

The located record becomes current of run unit, current of the HOSPITAL CLAIM record
type, current of the INS_DEMO_REGION area, and current of the COVERAGE_CLAIMS
set.

Upon completion of the FIND/OBTAIN DBKEY function,the ERROR_STATUS field inthe
IDMS DB communications blockindicates the outcome of the operation:

0000

The request has been serviced successfully.
0301

The area in which the named record participates has notbeen readied.
0302

The db-key is inconsistentwith the area in which the record is stored. Either the
db-key has not been initialized properly or the record name is incorrect.

0308

The named record is notinthe subschema.The program has probablyinvoked the
wrong subschema.

158 DML Reference Guide for PLI

FIND/OBTAIN

0310

The subschema specifies anaccess restriction that prohibits retrieval of the named
record.

0326

The record cannotbe found; record occurrence not correct type
0370

A databasefilewill notopen properly.
0371

The requested page cannotbe found inthe DMCL.

Ifthe KEEP parameter is specifiedina FIND/OBTAIN statement, and an error occurs
during KEEP processing,the major code 06 is returned. For more information, see KEEP
CURRENT, laterinthis chapter. The major code 03 is returned ifanerror occurs during
FIND/OBTAIN processing.

FIND/OBTAIN OWNER

The FIND/OBTAIN OWNER statement locates the owner record of the current
occurrence of a set. This statement can be used to retrieve the owner record of any set
whether or not that set has been assigned owner pointers.

Native VSAM users: The FIND/OBTAIN OWNER statement is not valid since owner
records are not defined in native VSAM data sets.

Currency

Inorder to execute a FIND/OBTAIN OWNER statement, currency must be established for
the specified set.

Note: When arecord declared as an optional or manual member of a setis retrieved, it
is notestablished as currentof setif itis not currently connected to the specifiedset. A
subsequent attempt to retrieve the owner record will locateinstead the owner of the
current record of set. Insuch cases, you should determine whether the retrieved record
is actually a member inthe specified set before executing the FIND/OBTAIN OWNER
statement. The IF MEMBER statement, explained laterin this chapter, canbe used for
this purpose.

Following successful execution of a FIND/OBTAIN OWNER statement, the accessed
record becomes the current record of run unit, its record type, its area,and all setsin
whichit currently participates as member or owner. Ifthe current record of set is the
owner record when the statement is executed, currency withinthe specified set
remains unchanged.

Chapter 7: Data Manipulation Language Statements 159

FIND/OBTAIN

OWNER SET (set-name); —— >«

Specifies the set whose owner record is to be retrieved. Set-name must be a set

Places a shared (KEEP) or exclusive (KEEP EXCLUSIVE) lock on the accessed record.

Syntax
FIND
L ogTAIN — L keep I_ B
EXCLUSIVE
Parameters
FIND/OBTAIN OWNER SET (set-name)
includedinthe subschema.
KEEP EXCLUSIVE
Example

The followingfigureillustrates use of the FIND/OBTAIN OWNER statement to move
through the database.

EMPLOYEE
158

EMPLOYEE
69

EMPLOYEE
49

EMPLOYEE
100

DEPARTMENT

OFFICE

a10 |F |5a

[caLc

450 |F |7a |CALC

DEPT_ID 0410

|DN

QFFICE_GODE_0450

|DN

QRG_DEMQ_REGION

QRG_DEMQ_REGION

DEFT_EMPLOYEE
NPO QA

ASC (EMP_LAST_NAME_0415
EMP_FIRST_NAME_0415) DL

OFFICE_EMPLOYEE
10 OA

EMPLOYEE

415 |F

|1|s |CALC

EMFP_ID_041

5 [on

EMP_DEMO_REGION

ASC (EMP_LAST_NAME 0415
EMP_FIRST_NAME_0415) DL

CURRENCIES

RUN UNIT, RECORD, SET, AREA

o
w5 /8
Uy Al 33 &
w [s) 4 4y
A
£ o /& /5 /%
-4
I g/5/8/8%
£ = N w T ' o [
> 3 3 Q ! Q 9 9
= Q; a Iy -3 @< o a
) i & &4 i @
@ (=) 5 Q Q o Q 5
DEPT_ID = 2000 2000 | 2000 2000 2000
OBTAIN CALC RECORD (DEPARTMENT);
OBTAIN FIRST 11 | 2000 1 11 11 | 2000 11
SET (DEPT_EMPLOYEE);
QOBTAIN OWNER 2 | 2000 11 2 11 2 2 11
SET (OFFICE_EMPLOYEE);

160 DML Reference Guide for PLI

FIND/OBTAIN

Status Codes

Upon completion of the FIND/OBTAIN OWNER function, the ERROR_STATUS fieldinthe
IDMS DB communications block indicates the outcome of the operation:

0000
The request has been serviced successfully.
0301
The area inwhich the object record participates has notbeen readied.
0306
Currency has not been established for the record, set, orarea.
0308

The named setis notinthe subschema.The programhas probablyinvoked the
wrong subschema.

0310

The subschema specifies anaccess restriction that prohibits retrieval of the object
record.

0360

A record occurrence has been encountered whose record type is not a member or
owner of the setasitis definedinthe subschema.

0370

A databasefilewill notopen properly.
Ifthe KEEP parameter is specifiedina FIND/OBTAIN statement, and an error occurs
during KEEP processing, the major code 06 is returned. For more information, see KEEP

CURRENT, laterinthis chapter. The major code 03 is returned ifanerror occurs during
FIND/OBTAIN processing.

FIND/OBTAIN WITHIN SET USING SORT KEY

The FIND/OBTAIN WITHIN SET USING SORT KEY statement locates a member record ina
sorted set. Sorted sets are ordered inascending or descending sequence based on the
value of a sort-control element in each member record. The search begins with either
the current of set or the owner of the current of set and always proceeds through the
setinthe nextdirection.

Chapter 7: Data Manipulation Language Statements 161

FIND/OBTAIN

Syntax

Parameters

Before issuingthis statement, you must initializethe sort-control element in program
variablestorage. The record occurrence selected will havea key valueequal to the value
of the sort-control element. If more thanone record occurrencecontains a sortkey
equal to the key valueinvariablestorage, the firstsuch record will be selected.

You canuseFIND/OBTAIN WITHIN SET USING SORT KEY to access both sorted chained
sets and sorted index sets.

Note: Ina batch environment, sorted sets can be processed more efficiently by sorting
the input transactions.

Currency

Followingsuccessful execution of a FIND/OBTAIN WITHIN SET USING SORT KEY
statement, the accessed record becomes current of run unit, its record type, its area,
andall sets inwhichitcurrently participates as member or owner. If a member record
with the requested sort-key valueis not found, the current of set is nullified but the next
of setand prior of set aremaintained. The next of setis the member record with the
next higher sort-key value (or next lower for descending sets) than the requested value;
the prior of setis the member record with the next lower value (or higher for
descending sets) than requested. Becausethese currencies aremaintained, the program
canwalkthe set to do a generic search on the sort-key value.

FIND RECORD (record-name) ——————— »
L 08TAIN < L keep I_ - |
EXCLUSIVE

»— SET (set-name) —I_———_]— USING (sort-field-name);
CURRENT

)

FIND/OBTAIN RECORD (record-name) SET (set-name)

Specifies the record type and sorted set name. The search begins with the owner of
the current record of the specified set.

KEEP EXCLUSIVE
Places a shared (KEEP) or exclusive (KEEP EXCLUSIVE) lock on the accessed record.
CURRENT

Indicates thatthe search begins with the currencies already established for the
specified set.

Ifthe key valuefor the record thatis current of set is higher than the key value of
the requested record (assumingascendingsetorder), a NOT FOUND condition
results.Ina descending set order, ifthe key valuefor the record that is currentof
setis lower thanthe key value of the requested record, a NOT FOUND condition
results.

162 DML Reference Guide for PLI

FIND/OBTAIN

Example

Status Codes

USING (sort-field-name)

Specifies the sort-control element to be used insearchingthe sorted set.
Sort-field-name is either the name of the sort-control element inthe record or the
symbolicnameof afieldinvariablestoragethatcontains the value of the
sort-control element.

Note: The value coded for sort-field-name canonly specifya singlefield name. If the
sortkey is comprised of multiplefields, the valuecoded should represent a
group-level field.The elementary elements must be inthe same sequence as the
correspondingfields within the set's schema definition. The data formats for the
elementary fields must also match the formats of the correspondingfields in the
databaserecord's definition.

The following example illustrates theuse of a FIND/OBTAIN WITHIN SET USING SORT
KEY statement. Assume that the SKILL_NAME_NDX set is orderedin ascendingsequence
based on the value stored in SKILL_NAME_0455 ineach SKILL record occurrence.
Retrieval of a SKILL record with a skillnameequal to PL/I is accomplished by coding the
following statements:

SKILL NAME 0455 = 'PL/I';
FIND RECORD (SKILL) SET (SKILL NAME NDX)
USING (SKILL NAME 0455);

Upon completion of the FIND/OBTAIN WITHIN SET USING SORT KEY function, the
ERROR_STATUS fieldinthe IDMS DB communications blockindicates the outcome of
the operation:

0000
The request has been serviced successfully.
0057

A retrieval-only rununithas detected aninconsistencyinanindexthat should cause
an 1143 abend, but optional APAR bit 216 has been turned on.

0301

The area inwhich the named record participates has notbeen readied.
0306

Currency has not been established for the named set.
0308

Either the named record or setis notinthe subschema or the named record is not a
member of the named set. The program has probablyinvoked the wrong
subschema.

Chapter 7: Data Manipulation Language Statements 163

FIND/OBTAIN

0310

The subschema specifies anaccess restriction that prohibits retrieval of the named
record.

0326

The record cannotbe found.
0331

The retrieval statement format conflicts with the record's location mode.
0360

A record occurrence has been encountered whose record type is not a member or
owner of the setasitis definedinthe subschema.

0370

A databasefilewill notopen properly.

Ifthe KEEP parameter is specifiedin a FIND/OBTAIN statement, and an error occurs
during KEEP processing, the major code 06 is returned.

Note: For more information, see KEEP CURRENT (see page 198), later inthis chapter.
The major code 03 is returned if an error occurs during FIND/OBTAIN processing.

FIND/OBTAIN WITHIN SET/AREA

The FIND/OBTAIN WITHIN SET/AREA statement locates records either logically, based
on set relationships, or physically, based on databaselocation. Theformats of this
statement allowyou either to access seriallyeachrecordinasetor area or to select
specific occurrences of a given record type withinthe set or area.

Selecting from a Set

The followingrules apply to the selection of member records withina set:

m The set occurrence used as the basis for the operationis determined by the current
record of the specified set. Set currency must be established before attempting to
access records within a set.

m The next or priorrecord withina set is the subsequent or previous record relativeto
the current record of the named set inthe logical order of the set. The priorrecord
inaset canbe retrieved only ifthe set has been assigned prior pointers.

m The firstorlastrecord withina setis the firstor lastmember occurrence in terms of
the logical order of the set. The selected record is the same as would be selected if
the current of set were the owner record and the next or priorrecord had been
requested. The lastrecordinaset can be retrieved onlyifthe set has prior pointers.

164 DML Reference Guide for PLI

FIND/OBTAIN

The nth occurrenceof a record within a set can be retrieved by specifyinga
sequence number thatidentifies the position of the recordinthe set. The DBMS
begins its search with the owner of the current of set for the specified setand
continues until itlocates the nth record or encounters an end-of-set condition. If
the specified sequence number is negative, the search proceeds inthe prior
direction within the set. A negative sequence number canbe used onlyif the set
has prior pointers;a sequence number of O produces an error status of 0304.

When an end-of-set condition occurs, the owner record occurrence of the set
becomes the current record of run unit, current of its record type, current of its
area, and current record of only the setinvolved in this operation. Currency of other
sets inwhich the specified record participates as owner or member remains
unaffected.

Note: If OBTAIN has been specified, the contents of the owner record arenot
moved to program variablestorage (thatis, OBTAIN under these circumstances is
treated as a FIND).

Native VSAM users: When an end-of-set condition occurs, all currencies remain
unchanged.

Selecting from an Area

The followingrules apply to the selection of records withinan area:

m The firstrecord occurrence withinanarea is the one with the lowest databasekey;
the lastrecordis the one with the highest databasekey.

m The next record withinanarea is the one with the next higher databasekey relative
to the current record of the named area; the priorrecordis the one with the next
lower databasekey relativeto the current of area.

m The firstorlastor nth recordinan area must be retrieved to establish thecorrect
starting position before next or prior records arerequested.

Currency

Following successful execution ofa FIND/OBTAIN WITHIN SET/AREA statement, the
accessed record becomes the current record of run unit, its record type, its area, and all
sets inwhichitcurrently participates as member or owner.

When an end-of-set condition occurs selecting records within a set, the owner record
occurrence of the set becomes the current record of run unit, its record type, its area,
andonly the set involved in this operation. Currency of other sets in which the specified
record participates as owner or member remains unaffected.

Chapter 7: Data Manipulation Language Statements 165

FIND/OBTAIN

Syntax
FIND NEXT >
L 08TAIN < L keep a B 'L FIRsT
EXCLUSIVE LAST
PRIOR
NTH (sequence-number) —
> SET (set-name) ; >«
L RECORD (record-name) JL AREA (area-name) Il
Parameters

FIND/OBTAIN SET (set-name)/AREA (area-name)

Locates a record based on its location within a set or area. Set-name/area-name
specifies the set or area that will be searched and must identifya set orarea
includedinthe subschema.

KEEP EXCLUSIVE

Places a shared (KEEP) or exclusive (KEEP EXCLUSIVE) lock on the accessed record.
NEXT

Accesses the next record inthe specified set or area relativeto the current record.
FIRST

Accesses the firstrecordinthe specified set or area.
LAST

Accesses the lastrecordinthe specified set or area.The specified set must have
prior pointers.

PRIOR

Accesses the priorrecordinthe specified set or area relativeto the current record.
The specified set must have prior pointers.

NTH (sequence-number)

Accesses the nth record inthe specified set or area. Sequence-number must either
be a positive or negative number or any numeric field that contains a nonzero value
used by the DBMS insearchingfor the nth record occurrence. If sequence is
negative, the specified set must have prior pointers.

Native VSAM users: FIRST, LAST, and NTH (sequence) options arenot validfora
native VSAM KSDS with spanned records.

RECORD (record-name)

Specifies that withina set orarea, only occurrences of the named record type will
be accessed. Record-name must be defined as a member of the specified setor
contained within the specified area.

166 DML Reference Guide for PLI

FIND/OBTAIN

Example

The followingfigureillustrates theretrieval of records inan occurrence of the
DEPT_EMPLOYEE set.

The FIND CALC statement establishes currencyinthe DEPT_EMPLOYEE set. Member
EMPLOYEE records arethen retrieved by a series of OBTAIN WITHIN SET statements.
EMPLOYEE 106is the lastrecordinthe set and the next OBTAIN statement returns an

end-of-set condition, positioning run-unitcurrency atthe owner of the set,

DEPARTMENT 2000.

EMPLOYEE
69
EMPLOYEE
100

DEPARTMENT
210 |F |56 |CALC

DEFT_ID_0419 | DN

‘ORG_DEMO_REGION

DEPT_EMPLOYEE

NPO OA

ASC (EMP_LAST_NAME_0415
EMP_FIRST_NAME_0415) DL

EMPLOYEE

415 [F [116 [GAC
EMP_ID_0415 [on
EMP_DEMQ_REGION

CURRENCIES
RUN UNIT, RECORD, SET, AREA

=
W/ &/8/8
w5 /§/)§&
£ o /& /5/ 5

s /¥ /&%) 5[5 =

= = A &G w' u uy

= z Q £~ Q Q 9

3/8/8/5/&/8) 3%
g/dd /&g /d) oo T
DEFT_ID = 2000
- 2000 | 2000

FIND CALC RECORD (DEPARTMENT); 2000 2000
OBTAIN FIRST SET 69 |2000 | 69 | 69 | 69 2000 | 69
(DEPT_EMPLOYEE};
OBTAIN NEXT SET 100 | 2000 | 100 | 100 | 100 | 2000 [100
(DEPT_EMPLOYEE);
OBTAIN NTH (5) 106 | 2000 | 106 | 106 | 106 | 2000 | 106
SET (DEPT_EMPLOYEE);
OBTAIN NEXT SET 2000 | 2000 | 106 2000 | 106 | 2000 | 106 | ERROR-STATUS
(DEPT_EMPLOYEE); OF '0307"

Chapter 7: Data Manipulation Language Statements 167

FIND/OBTAIN

The followingfigureillustrates special considerationsrelating to the retrieval of records
inanarea that contains multiplerecord types.

A sweep of the EMP_DEMO_REGION is performed, retrieving sequentially each
EMPLOYEE recordand all records intheassociated EMPLOYEE_EXPERTISE set. The first
command retrieves EMPLOYEE 119. Subsequent OBTAIN WITHIN SET statements
retrieve the associated EXPERTISE records and establish currency on EXPERTISE 03. The
FIND CURRENT statement is used to reestablish the proper position before retrieving
EMPLOYEE 48. If FIND CURRENT EMPLOYEE is not specified, an attempt to retrieve the
next EMPLOYEE recordinthe area would return EMPLOYEE 23.

EMPOSITION EMPLOYEE EXPERTISE

a20[F [28 [via ns[F [118]cac _ fazs]F Js v
EMP_EMPOSITION | EMP_EMPOSITION EMP_ID_0415 | DN ,Eq'gS]E‘);PERTISE EMP_EXPERTISE
EMP_DEMO_REGION NPO MA FIRST EMP_DEMO_REGION DES SKILL LEVEL 0425 DF | EMP_DEMO_REGION

EMP-DEMO-REGICN AREA

EMPOSITION
002

\ EXPERTISE
o

EMPLOYEE EXPERTISE
.8 04

PAGE 7000 PAGE 7001 PAGE 7002
CURRENCIES
AUN UNIT, RECORD, SET, AREA
3
g /g
£/8
I L (9]
S8 /E /)& 3
= a a 23 a
P
& & & & b
OBTAIN FIRST REGORD (EMPLOYEE)
AREA (EMP_DEMO_REGION); 119 119 11g | 118
OBTAIN FIRST RECORD (EXPERTISE)
SET (EMP_EXPERTISE); 04 119 04 a4 04
OBTAIN NEXT RECORD (EXPERTISE)
SET (EMP_EXPERTISE); 03 119 a3 03 03
FIND CURRENT RECORD (EMPLOYEE);| 119 119 03 118 119
OBTAIN NEXT REGORD (EMPLOYEE) | 18 03
AREA EMP_DEMO_REGION); 48 48

168 DML Reference Guide for PLI

FIND/OBTAIN

Status Codes

Upon completion of the FIND/OBTAIN WITHIN SET/AREA function,the ERROR_STATUS
fieldinthe IDMS DB communications blockindicates the outcome of the operation:

0000
The request has been serviced successfully.
0057

A retrieval-only rununithas detected aninconsistencyinanindexthatshould cause
an 1143 abend, but optional APAR bit 216 has been turned on.

0301
The area inwhich the named record participates has notbeen readied.
0304

Either a sequence number of O or a variablefield that contains a value of O was
specified for the named record.

0306

Currency has not been established for the named record, set, or area.
0307

Either the end of the set or the area was reached or the setis empty.
0308

Either the named record or setis not in the subschema or the named record is not
defined as a member of the named set. The programhas probablyinvoked the
wrong subschema.

0310

The subschema specifies anaccess restriction that prohibits retrieval of the named
record.

0323

Either the area name specified has not been included in the subschema invoked or
the record name specified has not been defined withinthe named area.

0326
The record cannotbe found.
0360

A record occurrence has been encountered whose record type is not a member or
owner of the setasitis definedinthe subschema.

Chapter 7: Data Manipulation Language Statements 169

FINISH

FINISH

Syntax

Parameters

0370

A databasefilewill notopen properly.

Ifthe KEEP parameter is specifiedina FIND/OBTAIN statement, and an error occurs
during KEEP processing,the major code 06 is returned. For more information, see KEEP
CURRENT, laterinthis chapter. The major code 03 is returned ifanerror occurs during
FIND/OBTAIN processing.

The FINISH statement commits changes made to the databasethrough an individual run
unit or through all databasesessionsassociated with a task. A task-level finish also
commits all changes madein conjunction with scratch, queue, and printactivity.

Ifthe finishappliestoanindividualrununitandthe run unitis sharingits transaction
with another databasesession, the run unit's changes may not be committed at the
time the FINISH statement is executed. For more information on the impactof
transaction sharing, refer to CA IDMS Navigational DML Programming Guide.

Run units (and SQL sessions) impacted by the FINISH statement end, and their access to
the databaseis terminated.

The FINISH statement is used in both the navigationaland logical record facility
environments. The FINISH TASK statement is alsousedinanSQL programming
environment.

Currency

Followingthe successful execution of a FINISH request, all currencies are setto null;the
issuing programor task cannotperform databaseaccess through animpacted run unit
without executing another BIND/READY sequence.

)

»— FINISH
L sk

TASK

Commits the changes made by all scratch, queue, and printactivityand all top-level
run units associated with the current taskand terminates those run units. Its impact
on SQL sessions associated with the task depends on whether those sessionsare
suspended and whether their transactions areeligibleto be shared.

170 DML Reference Guide for PLI

FREE STORAGE (DC/UCF)

Example

Status Codes

Note:

m For more information aboutthe impact of a FINISH TASK statement on SQL
sessions, seethe CA IDMS SQL Programming Guide.

m For more informationaboutrun units and the impact of FINISHTASK, see the CA
IDMS Navigational DML Programming Guide.

The following statement commits changes made by the run unitthrough whichitis
issued and terminates that run unit:

FINISH;

Upon completion of the FINISH function, the ERROR_STATUS fieldinthe IDMS DB
communications blockindicates theoutcome of the operation:

0000

The request has been serviced successfully.
5031

The specified request is invalid; the program may containalogicerror.
5097

An error was encountered processinga syncpointrequest; check the log for details.

FREE STORAGE (DC/UCF)

Syntax

The FREE STORAGE statement instructs the system to releaseall ora partofa
variable-storagearea.The storageto be released must have been acquired by means of
a GET STORAGE request inthe issuingtask or by another task runningon the same
terminal as the issuingtask. A partial releaseisvalid onlyfor user storage; shared
storage must be freed inits entirety.

»»—— FREE STORAGE >

»—E STGID (storage-id) i —><
FOR (storage-location)

L FROM (start-free-storage-location) -

Chapter 7: Data Manipulation Language Statements 171

FREE STORAGE (DC/UCF)

Parameters
STGID (storage-id)

Specifies the 4-character identifier of the variablestoragearea to be released.
Storage-id is either the symbolic name of a user-defined field that contains the ID or
the ID itselfenclosed in single quotation marks.

FOR (storage-location)
Specifies the variable-storage entry of the storagearea to be released.
FROM (start-free-storage-location)

Releases a portion of the variable-storagearea defined as user storage.
Start-free-storage-location is the symbolic name of a user-defined field that
contains the starting point of the storage area to be released. The system releases
storage from the specified location to the end of the storage area.

Example

The following example releases the storage area identified as 09PA:

FREE STORAGE STGID ('@9PA');
Status Codes
Upon completion of the FREE STORAGE function, the ERROR_STATUS fieldin the IDMS
DC communications blockindicates the outcome of the operation:
0000
The request has been serviced successfully.
3213
The requested storage ID cannotbe found.
3232

The derived length of the variable-storageareais zero or negative.

172 DML Reference Guide for PLI

GET

GET

Syntax

Example

Status Codes

The GET statement transfers the contents of a specified record occurrence from the
record buffer into programvariablestorage. Elements inthe specified record are moved
to their respective locations invariablestorageaccordingto the subschema view of the
record. The transferred elements will appearinstorageatthe locationtowhichthe
record has been bound (for further details, see BIND RECORD earlier in this chapter).

Currency
The GET statement operates only on the record thatis currentof run unit. Following

successful execution of a GET statement, the accessed recordis current of run unit, its
record type, its area,and all sets in which it participates as member or owner.

»»— GET

M

L RECORD (record-name) —l

Parameter
RECORD (record-name)

Optionally specifies therecord type of the current of run unit. If this optional clause
is used, the current of run unitmust be an occurrence of the named record type.

The following statement moves the record thatis currentof rununit (in this case, the
OFFICE record) from the record buffer into program variablestorage:

GET RECORD (OFFICE);

Upon completion of the GET function, the ERROR_STATUS fieldin the IDMS DB
communications blockindicates theoutcome of the operation:

0000
The request has been serviced successfully.
0506

Currency has not been established.

Chapter 7: Data Manipulation Language Statements 173

GET QUEUE (DC/UCF)

0508

The named record is notinthe subschema.The program has probablyinvoked the
wrong subschema.

0510

The subschema specifies anaccess restriction that prohibits retrieval of the named
record.

0513

A current record of run unit either has not been established or has been nullified by
a previous ERASE statement.

0518
The record has not been bound.
0520
The current record is not the same type as the named record.
0526
The requested record has been erased.
0555

An invalid length has been returned for a variable-length record.

GET QUEUE (DC/UCF)

Syntax

The GET QUEUE statement retrieves a queue record and placesitinastoragearea
associated with the issuing program. Ifthe queue record is larger than the designated
storage area, the record is truncated. The system automatically deletes the retrieved
record from the queue unless the GET QUEUE statement explicitly keeps the record in
the queue.

»»— GET QUEUE

v

L ID (queue-id)] NEXT <«
FIRST
LAST
PRIOR
SEQUENCE (sequence-number) —
RECORD ID (queue-record-id) —

|: DELETE « LOCK « :' I:WAIT —4'
KEEP NOLOCK NOWAIT «

»— INTO (return-queue-data-location)

v

v

v

>—-|: TO (end-queue-data-location)]
MAX LENGTH (queue-data-max-length)

)

L RETURN LENGTH INTO (queue-data-actual-length)]

174 DML Reference Guide for PLI

GET QUEUE (DC/UCF)

Parameters

ID (queue-id)

Specifies the 1-to 16-character ID of the queue associated with the record to be
retrieved. Queue-id is either the symbolic name of a user-defined field that contains
the ID, or the IDitselfenclosedin single quotation marks. If the queue ID is not
specified,a null ID of 16 blanks is assumed.

NEXT/FIRST/LAST/PRIOR/SEQUENCE (sequence)/RECORD ID (queue-record-id)
Specifies the queue record to be retrieved:
NEXT

Retrieves the next recordinthe queue. If currency has not been established, NEXT
is equivalentto FIRST. NEXT is the default.

FIRST

Retrieves the firstrecordinthe queue.
LAST

Retrieves the lastrecordinthe queue.
PRIOR

Retrieves the priorrecordinthe queue. Ifcurrency has not been established, PRIOR
is equivalentto LAST.

SEQUENCE (sequence)

Retrieves the queue record identified by sequence. Sequence is either the symbolic
name of a user-defined field that contains the sequence number of the record, or
the sequence number itself expressed as a numeric constant.

RECORD ID (queue-record-id)

Retrieves the recordidentified by queue-record-id. Queue-record-id is the symbolic
name of the FIXED BINARY(31) field that contains the queue record ID returned by
the PUT QUEUE function.

DELETE/KEEP

Specifies whether the queue record will bedeleted from the queue after itis passed
to the requesting program:

DELETE

Deletes the record from the queue. Note that if DELETE is specified andthe record
has been truncated, the truncated data is lost. DELETE is the default.

KEEP

Keeps the recordinthe queue.

Chapter 7: Data Manipulation Language Statements 175

GET QUEUE (DC/UCF)

LOCK/NOLOCK

These parameters have been non-functional since CAIDMS Release12.0. They are
included as parameters for release compatibility. Queue record lockingis
performed as part of the standard databaselockingroutines since CAIDMS Release
12.0.

WAIT/NOWAIT

Specifies whether the issuingtaskis tosuspend execution if the requested record
cannot be found inthe queue:

WAIT
Suspends task execution until the requested queue exists.
NOWAIT

Continues task execution inthe event of a nonexistent queue. An ERROR_STATUS
valueof 4405 indicates thatthe requested queue record cannotbe found. NOWAIT
is the default.

INTO (return-queue-data-location)

Indicates the program variable-storage entry of the data area reserved for the
requested queue record. Return-queue-data-location is the symbolic nameof a
user-defined field. The length of the data area is determined by one of the following
specifications:

TO (end-queue-data-location)

Indicates the end of the program variable-storageentry reserved for the requested
queue record andis specified followingthelastdata-item entry in
return-queue-data-location. End-queue-data-location is the symbolic name of either
a user-defined dummy byte field or a field that contains a data item not associated
with the requested queue record.

MAX LENGTH (queue-data-max-length)

Explicitly defines the length of the data area reserved for the requested queue
record. Queue-data-max-length is either the symbolic name of the user-defined
field that contains the length of the queue record's data, or the length itself
expressed as a numeric constant.

RETURN LENGTH INTO (queue-data-actual-length)

Specifies the location to which the system will return the actual length of the
retrieved queue record. Queue-data-actual-length is the symbolic name of a
user-defined 4-byte field. If the record has been truncated, the valuereturned to
this field is the actual length of the queue record before truncation.

176 DML Reference Guide for PLI

GET QUEUE (DC/UCF)

Example

The following example retrieves the firstrecordinthe RES_Q queue, return itto the
PEND_RES field,and keep the record inthe queue:

GET QUEUE
ID ('RES Q')
FIRST
KEEP
INTO (PEND RES) MAX LENGTH (125);

Status Codes

Upon completion of the GET QUEUE function, the ERROR_STATUS field of the IDMS DC
communications block indicates the outcome of the operation:

0000
The request has been serviced successfully.
4404
The requested queue header record cannotbe found.
4405
The requested queue record cannot be found.
4407

A databaseerror occurred during queue processing. Acommon causeis a DBKEY
deadlock. For a PUT QUEUE operation, this code canalso mean that the queue
upper limithas been reached.

Ifa databaseerror has occurred, there areusually beother messages inthe
CA-IDMS/DC/UCF log indicatinga problemencountered in RHDCRUAL, the internal
Run Unit Manager. Ifa deadlockhas occurred, messages DC0O01000 and DC001002
arealsoproduced.

4419

The program storage area specified for return of the queue recordis too small; the
returned record has been truncated as appropriatetofit the availablespace.

4431

The parameter listis invalid.In DC_BATCH, this code signifies thatthe specified
record length has exceeded the maximum length based on the packet size.

4432

The derived length of the queue record data area is negative.

Chapter 7: Data Manipulation Language Statements 177

GET SCRATCH (DC/UCF)

GET SCRATCH (DC/UCF)

The GET SCRATCH statement obtains a scratchrecordand placesitinastoragearea
associated with the issuing program. The storage area must already beallocated to the
requesting task; no implicit GET STORAGE functionis performed duringthe GET
SCRATCH operation. Ifthe scratchrecordis larger than the designated storage area,
datais truncated.

Syntax
»»—— GET SCRATCH T] >
AREA ID (scratch-area-id)
T NEXT < ‘: DELETE < .
FIRST KEEP
LAST
CURRENT
PRIOR
RECORD ID (scratch-record-id) —
»— INTO (return-scratch-data-location) >
>—-|: TO (end-scratch-data-location)] >
MAX LENGTH (scratch-data-max-length)
L RETURN LENGTH INTO (scratch-data-actual-length) g4
Parameters

AREA ID (scratch-area-id)

Identifies the scratch area associated with the record being retrieved.
Scratch-area-id is either the symbolic name of a user-defined field that contains the
1- to 8-character scratch area ID or the ID itselfenclosed in single quotation marks.
If AREA IDis not specified,anarea ID of eight blanks is assumed.

NEXT/FIRST/LAST/CURRENT/PRIOR/RECORD ID (scratch-record-id)
Specifies the scratchrecord to be retrieved:
NEXT

Retrieves the next recordinthe scratch area.NEXT is the default.

FIRST
Retrieves the firstrecordinthe scratch area.
LAST

Retrieves the lastrecordinthe scratcharea.

CURRENT

Retrieves the current recordin the scratch area;the current recordis the
record most recently referenced by another scratch function.

178 DML Reference Guide for PLI

GET SCRATCH (DC/UCF)

PRIOR
Retrieves the priorrecordinthe scratcharea.
RECORD ID (scratch-record-id)

Retrieves the specified scratch record. Scratch-record-id is the symbolic name
of a user-defined FIXED BINARY(31) field that contains the 4-byte scratch
record ID.

DELETE/KEEP

Specifies whether the scratch record will bedeleted from the scratch area afteritis
passedto the requesting program:

DELETE

Deletes the record from the scratch area.|f DELETE is specified and the record
has been truncated, the truncated datais lost. To maintain currencyfollowinga
DELETE request, the system saves the next and prior currencies of the scratch
area.DELETE is the default.

KEEP
Keeps the recordinthe scratcharea.
INTO (return-scratch-data-location)

Specifies the programvariable-storage entry of the data area to which the system
will return the scratch record. Return-scratch-data-location is the symbolic name of
a user-defined field. The length of the data areais determined by one of the
following specifications:

TO (end-scratch-data-location)

Indicates the end of the data area to which the system will return the scratch
record andis specified followingthelastdata-itementry in
return-scratch-data-location. End-scratch-data-location isthe symbolic name of
either a user-defined dummy byte field or a field that contains a data item not
associated with the scratch record.

MAX LENGTH (scratch-data-max-length)

Specifies the length, in bytes, of the data area associated with the requested
scratchrecord. Scratch-data-max-length is either the symbolic nameof a
program variable-storagefield thatcontains the length, or the length itself
expressed as a numeric constant.

RETURN LENGTH INTO (scratch-data-actual-length)

Specifies the symbolic name of the program variable-storage entry to which the
system will return the actual length of the requested scratch record.Ifthe record
has been truncated, scratch-data-actual-length will containthe length of the full,
untruncated scratch record.

Chapter 7: Data Manipulation Language Statements 179

GET SCRATCH (DC/UCF)

Example

The following statement returns the contents of the current record inthe scratch area
to the variable-storagearea defined by WORK_PROC_AREA and
END_WORK_PROC_AREA:

GET SCRATCH
CURRENT
INTO (WORK PROC AREA) TO (END WORK PROC AREA);

Status Codes
Upon completion of the GET SCRATCH function, the ERROR_STATUS field of the IDMS
DC communications blockindicates the outcome of the operation:
0000
The request has been serviced successfully.
4303
The requested scratch area ID cannot be found.
4305
The requested scratch record ID cannotbe found.
4307
An I/Oerror has occurred during processing.
4319

The program storage area specified for return of the scratch recordis too small; the
returned record has been truncated to fit the availablespace.

4331
The parameter listis invalid.
4332

The derived length of the scratch recordis negative.

180 DML Reference Guide for PLI

GET STORAGE (DC/UCF)

GET STORAGE (DC/UCF)

The GET STORAGE statement is used either to acquirevariablestoragefrom a system
storage pool or to obtain the address of a previouslyacquired storagearea.Once
acquired, the storageis availablefor use:

m By theissuingtaskonly(userstorage)

m By subsequent tasks runningonthe same terminal (user kept storage)

m Byalltasksinthesystem (shared or shared kept storage)

Storage availability is governed by GET STORAGE parameter specifications.

Syntax
»»—— GET STORAGE FOR (storage-data-location) >
»—E TO (end-storage-data-location) >
LENGTH (storage-data-length)
»—— POINTER (storage-data-location-pointer) T] >
WAIT < :l KEEP
NOWAIT
LONG <_—] USER <:| L 161D (storage-id) —
SHORT SHARED
L VALUE (initial-value) -
LOCATION IS ANY « :l_l
T BELOW
Parameters

FOR (storage-data-location)

Specifies the variableassociated with the storage area being acquired.
Storage-data-location is a user-assigned symbolic name.

TO (end-storage-data-location)

Indicates the end of the data area for which the system will acquirestorage. If this
option is specified, storage-data-location must be declared as a PL/I structure
variable. End-storage-data-location is the symbolic name of either a user-defined
dummy byte field or a variablefield notassociated with the storage area.

End-storage-data-location is specified after the lastelementary data-item entry in
the structure.

Chapter 7: Data Manipulation Language Statements 181

GET STORAGE (DC/UCF)

LENGTH (storage-data-length)

Explicitly defines the length of the data area associated with the requested storage
area. This option is specifiedin placeof TO (end-storage-data-location). If the
LENGTH option is used, then no restrictions areplaced on the data type; thatis,
storage-data-location does not have to be defined as a PL/I structure variable.
Storage-data-length is a user-assigned fixed binaryfield containingthe storage
length, or the length itself expressed as a numeric constant.

POINTER (storage-data-location-pointer)

Specifies the user-assigned pointer variable associated with storage-data-location.
Storage-data-location-pointer is defined invariablestorage with the pointer
attribute. Upon successful completion of the GET STORAGE request, the system
returns the address of the storage area to storage-data-location-pointer.

WAIT/NOWAIT

Specifies whether the issuingtaskis to waitfor sufficientstorageinthe event that
storage is not immediately availableto meet the requirements of the GET STORAGE
request:

WAIT

Specifies that the issuingtask will waituntil sufficientstorageis availableina
storage pool. WAIT is the default.

NOWAIT

Specifies that the issuingtask will notwaitfor storageto become availableifan
insufficientstorage condition exists. [f NOWAIT is specified, the programshould
check the ERROR_STATUS fieldinthe IDMS DC communications block to
determine ifthe GET STORAGE request has been completed. Ifthe
ERROR_STATUS valueis 3202, the program should perform alternative
processing before reissuing the GET STORAGE request.

KEEP

Optionally specifies whether the storagearea will be used by subsequent tasks
executing on the same logical terminal. When KEEP is specified, the storage area
canbe accessed by subsequent tasks; otherwise the storagearea cannotbe
accessed by subsequent tasks.

Note: For a more information about KEEP parameter, see the CA IDMS Navigational
DML Programming Guide.

182 DML Reference Guide for PLI

GET STORAGE (DC/UCF)

LONG/SHORT

Specifies whether the system should allocatethe storage from the bottom or the
top of a storage pool:

LONG

Allocates storagefrom the bottom of the storage pool. You should specify
LONG when allocatingkeptstorage to be held across pseudo-converses. LONG
is the default.

SHORT

Allocates storagefrom the top of the storage pool. You should specify SHORT
when allocating small pieces of storage for a short duration.

An incorrect LONG/SHORT specification will notaffect normal program
execution; however, itmay affect the overall performance of the DC/UCF
system.

USER/SHARED

Specifies whether access to the storage areais to be restricted to the issuingtaskor
isto be availabletoall tasks inthesystem:

USER

Specifies that only the issuingtaskcanaccess thestoragearea or, if KEEP is
specified, only subsequent tasks executing on the same terminal. USER is the
default.

Note: During system execution, a programdefined at system generation with
the NOPROTECT option canaccess any storagearea within the system,
includingan area associated exclusively with another task. Thus, the USER
attribute may not protect the storage area being acquired. However, storage
areas can be protected on a system-wide or program-by-program basis during
system generation and by the modes specified when storageis allocated.

SHARED

Specifies that anytaskin the system canaccess and modify the acquired
storage. Each task must establish addressability to the storage area by explicitly
issuing a GET STORAGE request.

STGID (storage-id)

Specifies the 4-character ID associated with the storage area. The STGID parameter
must be specified with GET STORAGE requests for either previouslyallocated
storage areas or areas to be reallocated. Storage-id is either the symbolic nameof a
user-defined field that contains the storage ID, or the IDitselfenclosed insingle
guotation marks.

Chapter 7: Data Manipulation Language Statements 183

GET STORAGE (DC/UCF)

The specified storage ID must be unique; although multiplevariable-storageareas
(thatis,one shared and the others user) can have the same ID, only one such area

canbe owned by a given task ata time. To access the IDMS DC common work area,
specify STGID 'CWA'".

Note: Ifthe STGID parameter specifies theaddress of an existingstoragearea, the
USER/SHARED parameter must specify the same option as that specifiedinthe GET
STORAGE statement that originally allocated the storage area.

VALUE (initial-value)

Specifies (for new storage only) the valueto which the storagearea will be
initialized before it is returned to the issuing program. Initial-value specifies either
the symbolic name of a user-defined field that contains the initial value or the value
itselfenclosedinsinglequotation marks. All bytes of the acquired storagearea are
initialized to the same value.

LOCATION IS ANY/BELOW

Specifies that storage must be allocated from below the 16-megabyte line (BELOW)
oris eligiblefor allocation abovethe 16-megabyte line (ANY). ANY is the default.

Example

The following statement allocates theshared kept storage area, 09PA, and initializes it
to all zeros:

GET STORAGE FOR (EMPLMENU KEPT STORAGE)
TO (EMPLMENU KEPT STORAGE END)
NOWAIT
KEEP
SHORT
SHARED
STGID ('O9PA')

VALUE (LOW VALUE);

Status Codes

Upon completion of the GET STORAGE function, the ERROR_STATUS field of the IDMS
DC communications blockindicates the outcome of the operation:

0000

The request has been serviced successfully.

3201

The requested storage cannot be allocated immediately;to waitwould causea
deadlock.

3202

The requested storage cannot be allocated becauseinsufficientspaceexists inthe
storage pool.

184 DML Reference Guide for PLI

GET TIME (DC/UCF)

3210

The request specified a storageID that did not previously exist; the required space
has been allocated.

3231
The request specifies aninvalid parameter list.
3232

The requested length is zero or negative. The request cannot be serviced because
the variablestorageThe request cannotbe serviced because the specified 01-level

GET TIME (DC/UCF)

Syntax

Parameters

The GET TIME statement obtains the time of day and date from the operating system.
The system time is returned to the issuingtaskin either fixed binary, packed decimal, or
edited format. The dateis returned to the program in packed decimal format.

»»— GET TIME I

v

BINARY < —
DECIMAL —

E INTO (return-time) J
EDIT

I

L DATE INTO (return-date) J

BINARY/DECIMAL/EDIT

Specifies the format in which the time is to be returned to the issuing program. The
requested formats can be fixed binary, decimal, or edited. In all cases, the returned
valueindicates the time since midnight:

BINARY

Returns the time in pure (absolute) binary formatrepresenting the elapsed
time sincemidnightin ten-thousandths of a second. If BINARY is specified, the
field associated with return-time must be a fixed binary field capable of holding
anumber atleastas largeas the number of ten-thousandths seconds ina day
(864,000,000). This option provides the finest resolution of time available.
BINARY is the default.

Chapter 7: Data Manipulation Language Statements 185

GET TIME (DC/UCF)

DECIMAL

Returns the time inthe format ohhmmssttttc (padded zero, hours, minutes,
seconds, ten-thousandths of a second, and sign). If DECIMAL is specified, the
field associated with return-time should be declared as FIXED DECIMAL(11).

EDIT

Returns the time as an edited character stringinthe format hh:mm:ss:hh
(hours, minutes, seconds, hundredths of a second). The field size and type
associated with return-time should be defined as CHAR(11).

INTO (return-time)

Specifies the field to which the system will return the time. Return-time is the
symbolic name of a user-defined field to which the current time will bereturned.
The required field sizeand type depend on the requested format, as described
above.

DATE INTO (return-date)

Specifies the field to which the system will return the date obtained from the
operating system. Return-date is the symbolic name of the user-defined field to
whichthe Juliandateis returned. The Julian dateis returned in FIXED DECIMAL(7)
format: Oyyydddc (padded zero, current year relativeto 1900, date, and sign). For
example, 0099365C would represent December 31, 1999.0100001C would
represent January 1, 2000.

Example
The following statement returns the current time and date to the CURRENT_TIME and
CURRENT_DATE fields, respectively:
GET TIME
EDIT INTO (CURRENT TIME)
DATE INTO (CURRENT DATE);
Status Codes

Upon completion of the GET TIME function, the only possiblevaluein the
ERROR_STATUS field of the IDMS DC communications blockis 0000.

186 DML Reference Guide for PLI

IF

IF

Syntax

Parameters

The IF statement allows the program to test for the presence of member record
occurrences ina set and to determine the membership status of a record occurrencein
a specified set; once the set has been evaluated, the IF statement specifies further
action based on the outcome of the evaluation. For example, an IF statement might be
used to determine whether a set occurrenceis empty and,if itis empty, to erase the
owner record.

Note: DML IF statements cannotbe nested within PL/I IF statements. An alternative
approachis toplace DML IF statements within DO...END blocks, or their equivalents.

Native VSAM users: The |F statement is not valid for sets defined with member records
that are stored in native VSAM datasets.

Depending on its format, the |F statement uses set or run-unitcurrency. The object set
occurrence of an IF statement is determined by the owner of the current record of the
named set; the object record occurrence is determined by the current of run unit.

Each IF statement contains a conditional phraseand animperative statement. When an
IFisissued,the DML precompilerfirstgenerates a call to the DBMS to execute the
conditional phrase;the results of the test determine whether or not the imperative
statement is executed.

»»— IF SET (set-name) EMPTY THEN imperative-statement;—»«
E NOT 3 L MEMBER I

IF SET (set-name) EMPTY THEN imperative-statement

Evaluates the current owner occurrence of the named set for the presence of
member record occurrences and, depending on the outcome of the evaluation,
executes the imperative statement. Set-name must specify a set included inthe
subschema.

If NOT is specified, the imperative statement is executed onlyif the named set has
one or more member records (thatis, ERROR_STATUS is 1601).If NOT is omitted,
the imperative statement is executed onlyifthe set is empty (thatis,
ERROR_STATUS is 0000).

Chapter 7: Data Manipulation Language Statements 187

IF

Example

Status Codes

IF SET (set-name) MEMBER THEN imperative-statement

Determines whether the current record of run unit participates as a member inany
occurrence of the named set and, depending on the outcome of the evaluation,
executes the imperative statement. Set-name must specifya set includedinthe
subschema.

If NOT is specified, the imperative statement is executed onlyif the named record is
not a member of the named set (that is, ERROR_STATUS is 1601).If NOT is omitted,

the imperative statement is executed onlyifthe record is a member of the set (that
is, ERROR_STATUS is 0000).

The following statement tests the COVERAGE_CLAIMS set for existing CLAIMS members
and, if no occurrences of the CLAIMS record are found (ERROR_STATUS is 0000), moves
a message to that effect to the location CLAIMS_WS:

Ifthe current occurrence of the COVERAGE_CLAIMS set contains oneor more
occurrences of the CLAIMS record (ERROR_STATUS is 1601), the assignmentstatement
isignored andthe next statement in the programis executed.

IF SET (COVERAGE CLAIMS) EMPTY
THEN CLAIMS WS = 'NONE';

The following statement verifies that the EMPLOYEE record thatis currentof run unitis
not a member of the current occurrence of the OFFICE_EMPLOYEE set before code is
executed to connect the EMPLOYEE record to that set:

Ifthe EMPLOYEE record is not a member of the OFFICE_EMPLOYEE set (ERROR_STATUS
is 1601), the program performs the LINK_SET procedure. Ifthe EMPLOYEE record is
already a member of the OFFICE_EMPLOYEE set (ERROR_STATUS is 0000),the CALL
statement isignored and the next statement inthe programis executed.

IF NOT SET (OFFICE_EMPLOYEE) MEMBER
THEN CALL LINK SET;

Upon completion of the IF function, the ERROR_STATUS fieldinthe IDMS DB
communications blockindicates the outcome of the operation:

0000

Either the set is empty or the record that is currentof run unitis a member of the
set.

1601

Either the set is not empty or the record thatis current of run unitis not a member
of the set.

188 DML Reference Guide for PLI

INQUIRE MAP (DC/UCF)

INQUIRE MAP

1606
Currency has not been established for the named set.
1608

Either an invalid setname has been specified or the current record of run unitis not
a member of the named set.

1613

A current record of run unit either has not been established or has been nullified by
a preceding ERASE statement.

(DC/UCF)

The INQUIRE MAP statement is used after a map inputrequest to accomplish one of the
followingactions related to the inputoperation:

m Move map-related informationintovariablestorage
m Test for conditions relatingto global map input operations
m Test specific mapfields for the presence of the cursor

m Test for conditions relating to specific map fields
Each of these actions is discussed on the following pages.

The followingrules apply to INQUIRE MAP statements:

m [fany of the test conditions arerequested, INQUIRE MAP must specify a statement
that will be executed ifthe conditionis found to be true.

m An INQUIRE MAP statement can specify only one field-oriented inquiry. This inquiry
canbe specified aloneorincombination witha map-specificinquiry.

Moving Map-Related Data

Syntax

This version of the INQUIRE MAP statement moves one of the following map-related
dataitems into variablestorage:

m The attention ID (AID) key used
m The current cursor position (rowand column)

m The entered length of a specific mapinputfield

»»—— INQUIRE MAP (map-name)

v

»—— MOVE AID TO (aid-indicator) ; —p <«
CURSOR TO (cursor-row) (cursor-column)
IN LENGTH FOR (field-name) TO (field-length)

Chapter 7: Data Manipulation Language Statements 189

INQUIRE MAP (DC/UCF)

Parameters
INQUIRE MAP (map-name)

Specifies the map for which the inquiryis beingmade. Map-name is the 1- to
8-character name of a map that must correspondto a map name specifiedin the
DECLARE MAP statement, as describedin DML Precompiler-Directive Statements.

MOVE
Moves screen-related information to program variablestorage:
AID TO (aid-indicator)

Returns the attention ID to the specified locationinvariablestorage.
Aid-indicator is the symbolic name of a 1-byte user-defined field that will beset
to the 3270 AID character received inthe lastmap input request. The following
table lists the AID characters associated with each 3270-type control key.

190 DML Reference Guide for PLI

INQUIRE MAP (DC/UCF)

Key AID character
ENTER """ (single quote)
CLEAR ' ' (underscore)
PF1 SR

PF2 2!

PF3 '3

PF4 ‘4!

PF5 '5!

PF6 '6'

PF7 7'

PF8 '8!

PF9 '9'

PF10 !

PF11 '

PF12 @'

PF13 'A'

PF14 B

PF15 'C!

PF16 'D'

PF17 'E'

PF18 'F'

PF19 'G'

PF20 'H'

PF21 I"

PF22 ¢!

PF23 "

PF24 <!

PAO1 '%'

PAQO2 >

PAO3 Y

CURSOR TO (cursor-row) (cursor-column)

Returns the cursoraddress fromthe lastmap inputfunction to the specified
locationin programvariablestorage. Cursor-row and cursor-column arethe
symbolic names of user-defined FIXED BINARY(15) fields to which the row and
column cursor address will bereturned.

Chapter 7: Data Manipulation Language Statements 191

INQUIRE MAP (DC/UCF)

IN LENGTH FOR (field-name) TO (field-length)

Returns the length, in bytes, of the data inthe named map field to the specified
locationin programvariablestorage. Field-name is the name of the map field
for which the length is beingrequested; field-length is the symbolic name of a
user-defined fixed binaryfield.

Example

The following example illustrates the use of an INQUIRE MAP statement to move the
3270 AID character received inthe lastmap inputrequest to DC_AID_IND_V:

INQUIRE MAP (EMPMAPLR)
MOVE AID TO (DC_AID IND V);

Testing for Global Map Input Conditions

This version of the INQUIRE MAP statement tests for one of the followingglobal map
input conditions:

m Ifthe screenwas not formatted before the inputoperation was performed

m |fone or more inputfields were truncated when transferred to variable-storage
data fields

m Ifone or more inputfields were modified on the screen before being transferred

m Ifone or more fields thatwere modified on the screen are undefined in the map

being used
Syntax
»»—— INQUIRE MAP (map-name) >
»—— IF INPUT UNFORMATTED THEN imperative-statement; >«
TRUNCATED
CHANGED
EXTRANEOUS
Parameters

MAP (map-name)

Specifies the map for which the inquiryis beingmade. Map-name is the 1- to
8-character name of a map that must correspondto a map name specifiedinthe
DECLARE MAP statement, as describedin DML Precompiler-Directive Statements.

192 DML Reference Guide for PLI

INQUIRE MAP (DC/UCF)

Example

IF INPUT UNFORMATTED/TRUNCATED/CHANGED/EXTRANEO US

Tests the outcome of the lastmapinput request for conditions relatingto the data
input to the program:

UNFORMATTED

Tests whether the screen had been formatted before the input operationwas
performed.

TRUNCATED

Tests whether any of the map fields were truncated when transferred to
variable-storagedata fields.

CHANGED

Tests whether any of the map fields actually had been mapped to
variable-storage data fields when the map inputoperation was performed.

EXTRANEOUS

Tests whether the input data stream contained any data from a field not
defined to the map. Ifthis conditionis true, the undefined data fieldis ignored
by the system.

THEN imperative-statement

Specifies the action to be taken when the test conditionis true.
Imperative-statement can be a singlePL/l statement, a DML statement, or a nested
block of PL/I and DML statements.

The following example illustrates an INQUIRE MAP statement that tests to determine if
anyfields inthe EMPMAPLR map have been truncated and, ifso, requests that the
system perform the DATA_TRUNC routine:

INQUIRE MAP (EMPMAPLR)
IF INPUT TRUNCATED
THEN CALL DATA TRUNC;

Testing for Cursor Position

Syntax

This version of the INQUIRE MAP statement tests a specified map field for the presence
of the cursor.

»»—— INQUIRE MAP (map-name) >

»—— IF CURSOR AT DFLD (field-name) THEN imperative-statement;— >«

Chapter 7: Data Manipulation Language Statements 193

INQUIRE MAP (DC/UCF)

Parameters

Example

MAP (map-name)

Specifies the map for which the inquiryis beingmade. Map-name is the 1- to
8-character name of a map that must correspondto a map name specifiedin the
DECLARE MAP statement, as describedin DML Precompiler-Directive Statements.

IF CURSOR AT DFLD (field-name)

Determines whether the cursor was inthe named map field duringthe lastmap
input operation. Field-name identifies the field within the named map to be tested.

THEN imperative-statement

Specifies the action to be taken when the test conditionis true.
Imperative-statement canbe asinglePL/l statement, a DML statement, or a nested
block of PL/I and DML statements.

The following example illustrates an INQUIRE MAP statement that tests for the
presence of the cursorinthe PASSED_DATA 01 data field;if the cursoris presentin this
field, the CHECK_2 routineis performed:

INQUIRE MAP (EMPMAPLR)
IF CURSOR AT DFLD (EMP_LAST NAME 0415)
THEN CALL CHECK 2;

Testing for Input Error Conditions

This version of the INQUIRE MAP statement tests:

m Whether map fields have been modified.

m Whether map fields have been erased by operator action.
m Whether map fields have been truncated.

m Whether the specified map fields areeither inerror (the error flaghas been set on
for those fields) or are correct(the error flaghas been set off); this option applies
onlyto those maps and map fields for which automatic editing is enabled.

194 DML Reference Guide for PLI

INQUIRE MAP (DC/UCF)

Syntax

»»—— INQUIRE MAP (map-name)
CURRENT
ALL

NONE
ANY
SOME
ALL BUT 1 CURRENT

L EXCEPT

ALL
NONE
ANY
SOME

ALL BUT P
T EXCEPT
T
—v— DFLD (field-name) I

DATA YES

NO —
ERASE —
TRUNCATED —
IDENTICAL —
DIFFERENT —

v

— IF -

v

111711

DFLD (field-name) |

-

v

)4

»— THEN imperative-statement;

Parameters
MAP (map-name)

Specifies the map for which the inquiryis beingmade. Map-name is the 1- to
8-character name of a map that must correspondto a map name specifiedinthe
DECLARE MAP statement, as describedin DML Precompiler-Directive Statements.

IF CURRENT/ALL/NONE/ANY/SOME/ALL BUT (EXCEPT) CURRENT
Specifies the map fields to which the test applies:
CURRENT

Applies the test onlyto the current field;thatis, the map field that was
referenced inthe last MODIFY MAP or INQUIRE MAP statement issued by the
program. Ifthe last MODIFY MAP or INQUIRE MAP statement specified a field
list,no currency exists.

ALL
Specifies that the test is true ifall map fields meet the specified condition.
NONE

Specifies that the test is true if none of the map fields meet the specified
condition.

ANY

Specifies that the test is true if one or more of the map fields meet the
specified condition.

Chapter 7: Data Manipulation Language Statements 195

INQUIRE MAP (DC/UCF)

SOME

Specifies that the test is true if one or more but not all of the map fields meet
the specified condition.

ALL BUT CURRENT

Specifies that the test is true ifall of the map fields except for the current field
meet the specified condition. The keywords BUT and EXCEPT are synonymous.

IF ALL/NONE/ANY/SOME/ALL BUT DFLD (field-name)
Specifies the extent to which the condition applies tothe map fields.
ALL

Specifies that the test is true ifall of the named map fields meet the specified
condition. ALL is the default.

NONE

Specifies that the test is true if none of the named map fields meet the
specified condition.

ANY

Specifies that the test is true if one or more of the named map fields meet the
specified condition.

SOME

Specifies that the test is true if one or more but not all of the named map fields
meet the specified condition.

ALLBUT

(Release 10.2 only) specifies thatthe test is true ifall of the data fields except
the named map fields meet the specified condition. The keywords BUT and
EXCEPT are synonymous.

IF DFLD (field-name)

Specifies the individual map fields to which the test conditions apply. Field-name
must be the name of a field within the named map. Multiple DFLD specifications
must be separated by atleastone blank.

DATA IS
Specifies the inputtest condition.
YES
Determines ifthe terminal operator entered data inthe named map fields.
NO

Determines ifthe terminal operator did not enter data inthe named map
fields.

196 DML Reference Guide for PLI

INQUIRE MAP (DC/UCF)

ERASE

Determines if data has been erased from the named map fields.

TRUNCATED

Determines if data has been truncated inthe named map fields.

IDENTICAL

Determines whether input dataisidentical tothe map data currentlyinthe
program's variablestorage. IDENTICAL is true in either of the followingcases:

m The field's modified data tag (MDT) is off. On mapin, the MDT typicallyis
off ifthe user did not type anycharacters inthe field.

m The MDT is on, but each characterinthe inputdata is exactlythe same as
datainvariablestorage,includingcapitalization.

DIFFERENT
Determines whether input datais different from the map data currentlyin the

program's variablestorage. DIFFERENT is true if the field's MDT is onand at
leastone input character differs from the datainvariablestorage.

EDIT
Automatic editing/error handlingtests for errors inthe named map fields.

Note: Ifthe EDIT parameter is specified, automatic editing must be enabled for the
map and for each of the named map fields.

ERROR

Determines ifthe named map fields were found to be inerror duringautomatic
editing.

CORRECT

Determines if the named map fields were found to be correct duringautomatic
editing.
THEN imperative-statement

Specifies the action to be taken when the test conditionis true.

Imperative-statement canbe asinglePL/l statement, a DML statement, or a nested
block of PL/I and DML statements.

Chapter 7: Data Manipulation Language Statements 197

KEEP CURRENT

Example

Status Codes

The following example determines if automatic editing has detected erroneous datain
anyfieldinthe EMPMAPLR map; ifso, the program modifies the map temporarily to
displaytheerroneous fields with the bright and blinking attributes:

INQUIRE MAP (EMPMAPLR)
IF ANY EDIT ERROR
THEN MODIFY MAP (EMPMAPLR) TEMPORARY
FOR ALL ERROR FIELDS
ATTRIBUTES BRIGHT BLINK;

Upon completion of the INQUIRE MAP function, the ERROR_STATUS field of the IDMS
DC communications blockindicates the outcome of the operation:

0000

The request has been serviced successfully.
4629

An invalid parameter has been passed from the program.
4641

The test condition has been found to be true. (This conditionis tested for
automatically by PL/I DML expansion statements.)

4644

The referenced map fieldis notinthe specified map; a possiblecauseis a reference
to aninvalid map field subscript.

4656

The referenced map contains no data fields.

KEEP CURRENT

Syntax

The KEEP CURRENT statement places an explicitshared or exclusivelockona record
thatis current of run unit, record, set, or area.Locks placed on records through the KEEP
CURRENT function are maintained for the duration of the databasetransaction or until
explicitly released by means of the COMMIT or FINISH statements.

RECORD (record-name) —
SET (set-name) —

»»—— KEEP CURRENT e |
L EXCLUSIVE Bl E
AREA (area-name)

198 DML Reference Guide for PLI

KEEP CURRENT

Parameters

Example

Status Codes

EXCLUSIVE

Specifies to placean exclusivelockonthe current record of run unit, record, set, or
area.|f you do not specify EXCLUSIVE, the record receives a shared lock by default.

RECORD (record-name)/SET (set-name)/AREA (area-name)

Specifies to placethe lockon the current record of the named record type, set, or
area.

The following example places an exclusivelock onthe current EMPLOYEE record
occurrence:

KEEP EXCLUSIVE CURRENT RECORD (EMPLOYEE);

Upon completion of the KEEP function, the ERROR_STATUS fieldinthe IDMS DB
communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.
0606

Currency has not been established for the named record, set, or area.
0608

Either the named record or setis notinthe subschema or the current record of run
unitis nota member of the named set.

0610

The program's subschema specifies anaccess restriction that prohibits execution of
the KEEP function.

0623

The named areais notinthe subschema.
0626

The record to be kept has been erased.
0629

Deadlock occurred duringlocking of target record.

Chapter 7: Data Manipulation Language Statements 199

KEEP LONGTERM (DC/UCF)

KEEP LONGTERM (DC/UCF)

The KEEP LONGTERM statement establishes longtermrecord locks and/or monitors
access torecords between tasks.Longterm databaselocks areusedin
pseudo-conversational transactionsand can beshared or exclusive:

m Longtermshared locks allow other run units to access thelocked record but
prevent run units from updating the record as longas the lockis maintained.

m Longterm exclusive locks prevent other rununits from accessingthe locked record.
However, run units executing on the logical terminal associated with the issuing
taskare notrestricted from accessingthe locked record. Therefore, subsequent
tasksinatransactioncanaccessthelocked record and complete the database
processingrequired by the transaction.

Ifa record has been locked with a KEEP LONGTERM or KEEP request, restrictions exist
on the type of lockthat can be placed on that record by other run units. These
restrictions arebased on existinglocks and whether the requesting run unitis executing
on the same logical terminal astherun unit that originally placed the lock on the record.
The followingtableillustrates theserestrictions.

Locks disallowed for
other run units

Locks in effect Locks allowed for other run units

Shared Shared and longterm shared Exclusiveand longterm
exclusive
Exclusive None Shared, exclusive,

longterm shared, and
longterm exclusive

For run units on other
terminals:exclusiveand
longterm exclusive

For all rununits:shared and longterm
shared

Longterm shared

For run units on the same terminal:
exclusiveand longterm exclusive

For run units on other
terminals:shared,
exclusive, longterm
shared, longterm
exclusive

For run units on the same terminal:
shared, exclusive, longterm shared,
and longterm exclusive

Longterm exclusive

Tasks can monitor databaseactivity associated with a specified record duringa
pseudo-converse and, ifdesired, can placea longterm lock on the record being
monitored. A subsequent task canthen make inquiries aboutthatdatabaseactivity for
the record and take the appropriateaction.

200 DML Reference Guide for PLI

KEEP LONGTERM (DC/UCF)

The DC/UCF system maintains information on databaseactivity by usingfive bitflags,
each of whichis either turned on (binary 1) or turned off (binary0). This informationis
returned to the programas a numeric value. The bitassignments, the corresponding
numeric valuereturned to the program, and a description of the associated database
activity follow:

Numeric Bit Description

value assignment

16 X'00000010"' The record was physically deleted.

8 X'00000008"' The record was logically deleted.

4 X'00000004" The record's prefix was modified; that is,a set

operation (for Example, CONNECT or DISCONNECT)
occurredinvolvingthe record.

2 X'00000002' The record's data was modified.

1 X'00000001"' The record was obtained.

To determine the action or combination of actions thathas occurred, you cancompare
the numeric valuereturned to the programwith an appropriate constant. For example:

m |fthe returned valueis 0,no databaseactivity occurred for the specified record.

m |fthe returned valueis 2,the record's data was modified.

m Ifthe returned valueis 2 or greater, the record was alteredin some way.

m Ifthe returned valueis 8 or greater, the record was deleted.

The maximum possiblevalueis 31, indicatingthatall theabove actions occurred for the
specified record.

You may prefer to monitor databaseactivity across a pseudo-converserather than to
set longterm locks. Monitoring does not restrictaccess to databaserecords, sets, or
areas by other run units; however, it does enablea programto test a record for
alterations madeby other run units. The presence of longterm locks can prevent other
run units from accessinglocked records for an undesirableamountof time if, duringa
pseudo-converse, the terminal operator fails to enter a response. If longterm locks are
used, you may want to release them at specifiedintervals.

Note: For more information aboutthe use of timeout intervals,seethe CA IDMS System
Generation Guide.

Chapter 7: Data Manipulation Language Statements 201

KEEP LONGTERM (DC/UCF)

Syntax

Parameters

\ 4

»»—— KEEP LONGTERM (T {\LL »]
ongterm-i

»—— NOTIFY CURRENT RECORD (record-name) ;>
_E SET (set-name)
AREA (area-name)

SHARE — T CURRENT RECORD (record-name)
= EXCLUSIVE —E SET (set-name) EWAIT <

AREA (area-name) NOWAIT
NODEADLOCK —
— upgrade-specification
RETURN NOTIFICATION INTO (return-location)
— RELEASE

Expansion of upgrade-specification

»h

v

L UPGRADE SHARE
! EXCLUSIVE L RETURN NOTIFICATION INTO (return-location)]

M

g I

WAIT «
NOWAIT
NODEADLOCK —

LONGTERM (ALL)/ (longterm-id)

Specifies the 1-to 16-characteridentifier thatwill be usedin subsequent KEEP
LONGTERM requests to upgrade or releasea longterm lock or to make inquiries
about databaseactivity associated with the specified record. Longterm-id is either
the symbolic name of a user-defined field that contains the longterm ID, or the ID
itselfenclosedinsingle quotation marks.

ALL is used only with the RELEASE parameter (described below) to request that the
systemrelease all longterm locks kept for the logical terminal associated with the
current task.

NOTIFY CURRENT RECORD (record-name)/SET (set-name) /AREA (area-name)

Monitors databaseactivity associated with the current occurrence of the named
record type or the current record of the named set or area. When NOTIFY CURRENT
is specified, the system initializes a preallocated location in the program to contain
information on databaseactivity for the specified record.

SHARE/EXCLUSIVE CURRENT RECORD (record-name)/SET (set-name)/AREA
(area-name)

Specifies that the current occurrence of the named record type or the current
record of the named set or area will receivea longterm shared (SHARE) or longterm
exclusive (EXCLUSIVE) lock.

202 DML Reference Guide for PLI

KEEP LONGTERM (DC/UCF)

upgrade-specification

Upgrades a previous KEEP LONGTERM NOTIFY CURRENT request by placinga shared
(SHARE) or exclusive (EXCLUSIVE) longterm lock on the record identified by
longterm-id.

WAIT

Requests the issuingtasktowait for the existinglockto be released. Ifthe wait
would causea deadlock, the system terminates the taskabnormally. WAITis the
default.

NOWAIT
Requests the issuingtask notto waitfor the existinglockto be released.
NODEADLOCK

Requests the issuingtasktowait for the existinglockto be released, unlesstodo so
would causea deadlock. If the waitwould causea deadlock, the system returns
control to the task.

RETURN NOTIFICATION INTO (return-location)

Returns information on databaseactivity for that record. Return-location is the
symbolic name of a user-defined FIXED BINARY(31) field that contains the program
variable-storage entry of the data area to whichthe system will return the
information.

TEST RETURN NOTIFICATION INTO (return-location)

Requests that the system return information on databaseactivity associated with
the record identified by longterm-id to a previously allocated locationinthe
program's storage. Return-location is the symbolic name of a user-defined FIXED
BINARY(31) field that contains the program variable-storage entry of the data area
to whichthe system will return the information.

TEST must specify a longterm lock ID that matches the longterm lock ID specifiedin
a previous KEEP LONGTERM NOTIFY CURRENT request.

RELEASE

Releases the longterm lock for the recordidentified by longterm-id or all record
locks (ALL) owned by the logical terminal associated with the current task. RELEASE
alsoreleases theinformation associated with a previous KEEP LONGTERM NOTIFY
request.

Chapter 7: Data Manipulation Language Statements 203

KEEP LONGTERM (DC/UCF)

Example

Status Codes

The steps below illustratethe use of the KEEP LONGTERM statement:

1. Begin monitoring databaseactivities for the current occurrence of the EMPLOYEE
record by coding:

KEEP LONGTERM (KEEP_ID)
NOTIFY CURRENT RECORD (EMPLOYEE);

2. Return statistics of databaseactivities for the record identified by KEEP_ID into
STAT_VALUE by coding:

KEEP LONGTERM (KEEP_ID) TEST RETURN NOTIFICATION
INTO (STAT VALUE);

3. Depending on the valuereturned to STAT_VALUE, you may want to puta longterm
shared lock on the EMPLOYEE record identified by KEEP_ID by coding:

KEEP LONGTERM (KEEP_ID) UPGRADE SHARE;
4. Upon processing, releaseall longtermlocks by coding:

KEEP LONGTERM (ALL) RELEASE;

Upon completion of the KEEP LONGTERM function, the ERROR-STATUS fieldinthe IDMS
DC communications blockindicates the outcome of the operation:

0000
The request has been serviced successfully.
5101

The NODEADLOCK option has been specified; however, to waitwould causea
deadlock. Control has returned to the issuingtask.

5102
Unable to obtain storage for the required KEEP LONGTERM control blocks.
5105

Either the requested recordtype cannotbe found or currency has not been
established.

5113
The required area control block was not found in the DMCL.
5121

Either the requested longterm ID cannot be found or the KEEP LONGTERM request
was issued by a nonterminal task.

204 DML Reference Guide for PLI

LOAD TABLE (DC/UCF)

5123

The specified area cannotbe found.
5131

The parameter listis invalid.
5147

The KEEP LONGTERM area has not been readied.
5148

The run unitassociated with the KEEP LONGTERM request has not been bound.
5149

The NOWAIT option has been specified; however, a waitis required.
5151

A lock manager error occurred duringthe processing of the KEEP LONGTERM
request.

5159
An erroroccurred intransferringthe KEEP LONGTERM request to IDMSKEEP.
5160

The requested KEEP LONGTERM lockID was alreadyin usewith a different page
group.

5161

The requested KEEP LONGTERM lock ID was alreadyin usewith a different BDKey
format.

LOAD TABLE (DC/UCF)

The LOAD TABLE statement instructs the system to load a table (module or program)
into the programpool.

»»— LOAD TABLE (table-name) POINTER (table-location-pointer) ;>
E WAIT « E‘
NOWAIT

Chapter 7: Data Manipulation Language Statements 205

LOAD TABLE (DC/UCF)

Parameters

Example

table-name

Specifies the 1-to 8-character name of the table to be loaded. Table is either the
symbolic name of a user-defined field that contains the table, or the name itself
enclosedinsinglequotation marks.

POINTER (table-location-pointer)

Specifies the pointer variablefor referencing the loaded table. After the tablehas
been loaded, the pointer contains the address of the beginning of the table.

WAIT

Requests the issuingtasktowait until sufficientstorage becomes available. If WAIT
is specified and the system encounters aninsufficientstorage condition, the issuing
taskis placedinaninactivestate; when the LOAD TABLE functionis completed,
control returns to the issuingtaskaccordingtoits previously established
dispatchingpriority. WAITis the default.

NOWAIT

Requests the issuingtask notto waitfor storage to become available. [f NOWAIT is
specified, the system returns a value of 3402 to the ERROR_STATUS field when an
insufficient storage condition exists.

The followingsourcecode defines the data required for use with the LOAD TABLE
request:

DCL STATECON POINTER POINTER;
DCL 1 STATECON(50) BASED (STATECON POINTER),
3 STATE ABB CHAR(2),
3 STATE FULL CHAR(15);

The following statement loads the STATECON table into the program variable-storage
areaidentified by the pointer STATECON_POINTER:

LOAD TABLE (STATECON)
POINTER (STATECON_POINTER);

206 DML Reference Guide for PLI

MAP IN (DC/UCF)

Status Codes

Upon completion of the LOAD TABLE function, the ERROR_STATUS fieldinthe IDMS DC
communications blockindicates the outcome of the operation:

0000
The request has been serviced successfully.
3401

The requested module cannotbe loaded immediately due to insufficientstorage; to
waitwould causea deadlock.

3402

The requested module cannotbe loaded because insufficientstorageexists in the
program pool.

3407

The requested module cannotbe loaded because an /O error has occurred during
processing.

3414

The requested module cannotbe loaded because ithas been defined as noncurrent
andis currentlyinuse.

3415

The requested module has been overlaid temporarilyinthe programpool and
cannot be reloaded immediately.

3436

Either the requested programis not defined inthe program definition table (PDT)
andis marked out of service, or null PDEs arenot specified or validin this system.

MAP IN (DC/UCF)

The MAP IN statement requests a synchronous transfer of data from map fields on the
screen to the correspondingvariable-storage data fields. The MAP IN statement canalso
be used to transfer data from anarea invariablestoragethat contains a 3270-likedata
stream to map-related variable-storage data fields; this is referred to as a native-mode
data transfer.

Chapter 7: Data Manipulation Language Statements 207

MAP IN (DC/UCF)

Syntax

v

»»—— MAP IN (map-name)

10
L INPUT DATA —E YES:,-‘
NO

NOIO DATASTREAM FROM (mapped-data-location)

»

v

> [
T TO (end-mapped-data-locatm,—J
MAX LENGTH (data-length)

»

detail-specification —'
HEADER
PAGE (page-number) :‘
MODIFIED

Expansion of detail-specification

v

X

A 4

L DETAIL NEXT «
FIRST

L RETURNKEY (data-field) i
KEY (keg-name)
SEQUENCE_NUMBER (sequence-field)

L RETURNKEY (data-fi eld)—I

RETURNKEY (data-field)

X

g I

L PAGE (page-number) = L moprF1ED —

Parameters
map-name

Specifies the 1-to 8-character name of a map specified by the DECLARE MAP
statement, as described in DML Precompiler-Directive Statements.

I0/NOIO
Specifies the type of data transfer associated with the MAP IN request:
10 INPUT DATA YES/NO

Transfers data from map fields to variable-storagedata fields thatare
associated with the specified map.

INPUT DATA YES/NO

Specifies whether the contents of map fields will be moved to variable-storage
data fields (YES) or left unchanged (NO). This specification applies to all
variable-storage data fields unless overridden by an INPUT DATA IS YES/NO
clauseina previouslyissued MODIFY MAP request.

208 DML Reference Guide for PLI

MAP IN (DC/UCF)

NOIO DATASTREAM FROM (mapped-data-location)

Transfers data from anarea in programvariablestorageto the variable-storage
data fields that correspond to the specified map. No terminal I/Ois associated
with the request.

Mapped-data-location is the symbolic name of a user-defined field that
contains the program variable-storage entry of the data stream to be read by
the system. The length of the data stream is determined through one of the
following specifications:

TO (end-mapped-data-location)

Indicates the end of the program variable-storage entry that contains the data
stream andis specified followingthelastdata-item entry in
mapped-data-location. End-mapped-data-location is the symbolic name of
either a user-defined dummy byte field or a field that contains a data item not
associated with the input data stream.

MAX LENGTH (data-length)

Explicitly defines the length, in bytes, of the input data stream. Data-length is
either the symbolic nameof a user-defined field that contains the length of the
data stream, or the length itselfexpressed as a numeric constant.

detail-specification

Specifies (for pageable maps only) that the MAP IN operationis to retrieve data
from a modified detail occurrence (MDT set on). The contents of all mapfieldsin
the detail occurrenceare retrieved unless MODIFIED is specified for the MAP IN
DETAIL statement; MODIFIED causes only modified fields to be retrieved.

Note: For more information about pageable maps, see the CA IDMS Mapping
Facility Guide.

NEXT

Retrieves the next sequential modified detail occurrence. An end-of-data
condition (ERROR_STATUS is 4668)is returnedin either of the followingcases:

m No detail occurrences have been modified.

m All modified detail occurrences have been mapped inalready.

NEXT is the default.

Chapter 7: Data Manipulation Language Statements 209

MAP IN (DC/UCF)

FIRST

Retrieves the firstavailable modified detail occurrence. The optional
RETURNKEY (data-field) clausespecifies thename of a variablefieldin which
the system stores the 4-byte key value (ifany) associated with the retrieved
detail occurrence. If no valueis associated with the detail occurrence, the
system sets data-field to zero. Data-field, which does not have to be fullword
aligned, is the symbolic name of either a CHAR(4) or a FIXED BINARY(31) field
that contains the key value.

Note: A valueis associated with a detail occurrence by usingthe KEY parameter
ina MAP OUT DETAIL command for that occurrence.

An end-of-data conditionresults if all modified data occurrences already have
been mapped in.

KEY (key)

Retrieves a modified detail occurrencebased on the valueassociated with the
detail occurrence. Key is the name of a FIXED BINARY(31) field.

Note: A valueis associated with a detail occurrence by usingthe KEY parameter
inthe MAP OUT DETAIL command for that occurrence.

A detail-not-found conditionis returned in either of the followingcases:
m The specified occurrenceis not a modified detail occurrence.

m No detail occurrencewith the specified valueis found.

SEQUENCE_NUMBER (sequence-field-name)

Retrieves a detail occurrenceby sequence number. Detail occurrences are built
at runtime by the application programand arestored inthe sequence in which
they are created. Sequence-field-name is a FIXED BINARY(31) field.

A detail-not-found conditionis returned in either of the followingcases:
m The specified occurrenceis not a modified detail occurrence.

m No detail occurrencewith the specified valueis found.

The optional RETURNKEY (data-field) clausespecifies thename of a variable
fieldin which the system stores the 4-byte key value(if any) associated with
the retrieved detail occurrence. If no valueis associated with the detail
occurrence, the system sets data-field to zero. Data-field, which does not have
to be fullwordaligned, is the symbolic name of either a CHAR(4) or a FIXED
BINARY(31) field that contains thekey value.

RETURNKEY (data-field)

Performs the same operation as the NEXT clause(described previously) and
specifies the name of a variablefieldin which the system stores the 4-byte
value(ifany) associated with the retrieved detail occurrence. If no valueis
associated with the detail occurrence, the system sets data-field to 0.
Data-field, which does not have to be fullword aligned, is the symbolic name of
either a CHAR(4) or a FIXED BINARY(31) field that contains the key value.

210 DML Reference Guide for PLI

MAP IN (DC/UCF)

PAGE (page-number)

Specifies (for pageable maps only) the name of a variablefieldin which to store
the current value of the SPAGE field on mapin. Page-number is defined as a
FIXED BINARY(31) field.

MODIFIED

Specifies (for pageable maps only) that, within a modified detail occurrence,
only modified fields (MDT set on) are to be retrieved inthe MAP IN operation.

HEADER

Specifies (for pageable maps only) that the MAP IN operationis to retrieve the
contents of data fields inthe header and footer areas.The contents of all data fields
inthe header andfooter areas areretrieved unless MODIFIED is specified for the
MAP IN HEADER statement; MODIFIED causes only modified fields to be retrieved.

PAGE (page-number)

Specifies (for pageable maps only) the name of a variablefield in which to store
the current value of the SPAGE field on mapin. Page-number is defined as a
FIXED BINARY(31) field.

MODIFIED

Specifies (for pageable maps only) that, within a modified detail occurrence,
only modified header fields (MDT set on) areto be retrieved in the MAP IN
operation.

Example

The following statement reads the EMPMAPLR map. Data values aretransferred from
map fields onthe EMPMAPLR map to the correspondingvariable-storagedata fields.
Subsequent commands can evaluatethe inputvalues and perform appropriate
processing.

MAP IN (EMPMAPLR)
INPUT DATA YES;

The following statement maps inthe next modified detail occurrence of the EMPMAPPG
map:

MAP IN (EMPMAPPG)
DETAIL
NEXT;

Chapter 7: Data Manipulation Language Statements 211

MAP IN (DC/UCF)

Status Codes

Upon completion of the MAP IN function, the ERROR_STATUS field of the IDMS DC
communications blockindicates the outcome of the operation:

0000

The request has been serviced successfully.
4627

A permanent |/O error has occurred during processing.
4628

The dial-up linefor the terminal has been disconnected.
4631

The map request block (MRB) contains aninvalidfield, indicatinga possibleerrorin
the program's parameters.

4632

The derived length of the specified mapinput data area is zero or negative.
4633

The map load module named inthe MRB cannot be found.
4638

The specified programvariablestorageentry has not been allocated.
4639

The terminal being used is out of service.
4640

The NOIO option has been specified but the requested data stream cannot be
found.

4642
The requested map does not supportthe terminal device being used.
4652

The specified edit or code tableeither cannotbe found or is invalid for use with the
named map.

4654

A data conversion error has occurred;internal map data does not match the map's
data description.

4655

The user-written edit routine specified for the named map cannotbe found.

212 DML Reference Guide for PLI

MAP OUT (DC/UCF)

4664

The requested node for a header or detail was either not present or not updated.

4668

No more modified detail occurrences require mapin.

4672

The scratch record that contains the requested detail could not be accessed
(internal error).

MAP OUT (DC/UCF)

The MAP OUT statement creates or modifies detail occurrences for a pageablemap or
requests a transfer of data from variable-storage data fields to map fields on the
terminal screen. MAP OUT canalsobe usedto transfer data to another areainprogram
variablestorage;this is referred to as a native mode data transfer.

Syntax

»»—— MAP OUT (map-name)

v

WAIT < :|
NOWATT

v

>
I: io-specification —4'
no-io-specification

|
DETAIL
NEW < ﬂ L key (key) —
CURRENT
RESUME
L PAGE —— CURRENT « —
NEXT
PRIOR
LAST
FIRST
(page-number) —
Expansion of io-specification
OUTPUT —
DATA YES I TT]
NO —— L NEWPAGE LITERALS
—E ERASE
ATTRibute —

>
>

)

[

L MESSAGE (message-text) T T0 (end-message-data-location)__—l—|
LENGTH (message-data-length)

Chapter 7: Data Manipulation Language Statements 213

MAP OUT (DC/UCF)

Expansion of no-io-specification

A 4

L NOIO DATASTREAM INTO (mapped-data-location)

»

TO (end-mapped-data-location)
L MAX LENGTH (max-data-length) —

A 4

—» I

L RETURN LENGTH INTO (data-actual-length)]

M

Parameters
map-name

Specifies the 1-to 8-character name of a map specified by the DECLARE MAP
statement, as described in DML Precompiler-Directive Statements.

WAIT

Specifies that the data transfer will be synchronous. The system places the issuing
taskinan inactivestate. When the MAP OUT operationis complete, the task

resumes processingaccordingtoits established dispatching priority. WAIT is the
default.

NOWAIT

Specifies that the data transfer will be asynchronous;the task will continue
executing. If NOWAIT is specified, the program mustissuea CHECK TERMINAL
before performing any other |/O operation.

io-specification

Specifies the type of data transfer associated with the MAP OUT request. 10 (the
default) specifies thatthe data transferis to a terminal device.

OUTPUT
Specifies (for I/O requests only) screen-display options for the data being output:
DATA

Specifies whether the variable-storage data fields areto be transmitted to the
terminal. This specification applies toall variable-storage data fields unless
overridden by an OUTPUT DATA clauseina previouslyissued MODIFY MAP
request. The followingoptions apply:

YES Transmits the contents of variable-storage data fields to the
corresponding map fields.

NO Does not transmitthe contents of variable-storagedata fields to the
corresponding map fields. However, ifthe automatic error-handlingfacility
detects an errorinany field, the system will transmitthe applicable
attribute bytes.

214 DML Reference Guide for PLI

MAP OUT (DC/UCF)

ERASE Does not transmitthe contents of variable-storagedata fields and
fills the corresponding map fields with null values.

ATTRIBUTE Transmits only the attribute bytes for variable-storage data
fields.Data inthe record buffer is not sent to the terminal.

NEWPAGE

Activates the erase-write function; the system clears the screen and transmits
both literal and variablefields to the map. If NEWPAGE is not specified, the
system will write over any existingscreen display withoutfirsterasingit. The
keywords NEWPAGE and ERASE are synonymous.

To eraseindividual map fields, usethe OUTPUT DATA ERASE option of the
MODIFY MAP statement (described later inthis chapter). To request the
system to eraseall screen fields and to activatethe erase-write function, the
MAP OUT statement must specify OUTPUT DATA ERASE NEWPAGE.

LITERALS

Transmits literal fields as well as variable-storage data fields to the terminal. If
LITERALS is notspecified, the system will writeliteral fieldstothe map only
when a MAP OUT request specifies the NEWPAGE option.

MESSAGE (message-text)

Specifies (for 10 requests only) the message to be displayedinthe map's
message area. Message-text is the symbolic name of a program
variable-storage entry that contains the message text.

Note: The MESSAGE parameter canonlybe used with MAP OUT DETAIL if the
SMESSAGE fieldis associated with the detail occurrenceat map generation. To
reference a message stored inthe data dictionary, usethe ACCEPT TEXT INTO
parameter of the WRITE LOG statement (explained later in this chapter) to copy
the message into message-text.

TO (end-message-data-location) Specifies the end of the program
variable-storage entry that contains the message text andis specified
followingthe lastdata item in message-text. End-message-data-location is
the symbolic name of either a user-defined dummy byte field or a field
that contains a data item not associated with the output data stream.

LENGTH (message-data-length) Defines the length, in bytes, of the
message text. Message-data-length is either the symbolic nameof a
user-defined field that contains the length or the length itself expressed as
anumeric constant.

no-io-specification

Transfers data from variable-storage data fields associated with the named map to
another area of program variablestorage; no terminal I/Ois associated with the
request. Mapped-data-location is the symbolic name of a user-defined field that
contains the program variable-storage entry to which the data will betransferred.

Chapter 7: Data Manipulation Language Statements 215

MAP OUT (DC/UCF)

TO (end-mapped-data-location)

Indicates the end of the program variable-storage entry for the output data
stream andis specified followingthelastdata-item entry in
mapped-data-location. End-mapped-data-location is the symbolic name of
either a user-defined dummy byte field or a field that contains a data item not
associated with the output data stream.

MAX LENGTH (data-length)

Defines the maximum length of the output data stream. Data-length is either
the symbolic name of the user-defined fixed binary field that contains the
length of the data stream or the length itself expressed as a numeric constant.

The optional RETURN LENGTH INTO (data-actual-length) clausespecifies the
program variable-storage entry to which the system will return the length, in
bytes, of the output data stream. Ifthe data stream has been truncated,
data-actual-length contains the length before truncation.

DETAIL

Specifies (for pageable maps only) that the MAP OUT command is to create or
modify a detail occurrence, and optionally associates a numeric key value with the
occurrence.

Note: For more information about pageable maps, see the CA IDMS Mapping
Facility Guide.

NEW

Creates a detail occurrence of a pageable map. Occurrences aredisplayedin
the order in which they arecreated by the application program.NEW is the
default.

CURRENT

Modifies the detail occurrencethat was referenced by the most recent MAP IN
DETAIL or MAP OUT DETAIL statement.

KEY (key)

Optionally specifies a valueto be associated with the created or modified detail
occurrence. The 4-byte numeric valueis not displayed on the terminal screen. Key is
the name of a FIXED BINARY(31) field that contains the db-key of the database
record associated with the detail occurrence.

When the KEY parameter is used with the MAP OUT DETAIL CURRENT command,
the specified valuereplaces the value (ifany) previously associated with the detail
occurrence.

216 DML Reference Guide for PLI

MAP OUT (DC/UCF)

Example

RESUME PAGE

Specifies (for pageable maps only) the page of detail occurrences to be mapped out
to the terminal:

CURRENT

Specifies that the current pageis to be redisplayed. If no page has been

displayed, the first page of the pageablemap is displayed. CURRENT is the
default.

NEXT

Specifies that the page that follows the current pageis to be displayed. Ifno
page follows the current page, the current page is redisplayed.

PRIOR

Specifies that the page that precedes the current page is to be displayed.Ifno
page precedes the current page, the current pageis redisplayed.

FIRST
Specifies that the firstavailable page of detail occurrences is to be displayed.
LAST

Specifies that the page of detail occurrences with the highest available page
number is to be displayed.

page-number

Specifies a variablefield thatcontains the number of the page to be displayed.
Page-number is defined as a FIXED BINARY(31) field. A page number is storedin
the variablefield by a preceding MAP IN PAGE (page-number) statement that
names the same numeric variablefield.

The following statement writes all literal and data fields associated with the EMPMAPLR
map to the terminal:

MAP OUT (EMPMAPLR)
OUTPUT DATA YES
NEWPAGE
MESSAGE (INITIAL MESSAGE) LENGTH (80);

The following statement maps out the current detail; no terminal I/Ois associated with
this request if the first page of the pageablemap is not yet filled:

MAP OUT (EMPMAPPG)
DETAIL
KEY (DBKEY);

Chapter 7: Data Manipulation Language Statements 217

MAP OUT (DC/UCF)

Status Codes

Upon completion of the MAP OUT function, the ERROR_STATUS fieldinthe IDMS DC
communications blockindicates the outcome of the operation:

0000
The request has been serviced successfully.
4625

The output operation has been interrupted; the operator has pressed ATTENTION
or BREAK.

4626

A logical error (for Example, an invalid control character) has been encountered in
the output data stream.

4627

A permanent 1/0O error has occurred during processing.
4628

The dial-up linefor the terminal has been disconnected.
4631

The map request block (MRB) contains aninvalidfield, indicatinga possibleerrorin
the program's parameters.

4632

The derived length of the specified map output data area is zero or negative.
4633

The map load module named inthe MRB cannot be found.
4638

The program variable-storage entry specified for return of the output data stream
has not been allocated.

4639
The terminal being used is out of service.
4640

The NOIO option has been specified but the requested data stream cannot be
found.

4642

The requested map does not supportthe terminal device being used.

218 DML Reference Guide for PLI

MAP OUTIN (DC/UCF)

4652

The specified edit or code tableeither cannotbe found or is invalid for use with the
named map.

4653
An error has occurredina user-written edit routine.
4654

A data conversion error has occurred;internal map data does not match the map's
data description.

4655
The user-written edit routine specified for the named map cannotbe found.
4664

There is no current detail occurrenceto be updated (MAP OUT DETAIL CURRENT
only). No actionis taken.

4668

The amount of storage defined for pageable maps at system generation time is

insufficient. No actionis taken. This and subsequent MAP OUT DETAIL statements
areignored.

4672

No detail occurrence, footer, or header fields existto be mapped out by a MAPOUT
RESUME command.

4676

The firstscreen page has been transmitted to the terminal.
4680

The lastdetail for a screen was written; a map page is complete and ready to be
transmitted to the terminal.

MAP OUTIN (DC/UCF)

The MAP OUTIN statement requests an output data transfer (MAP OUT) followed by an
input data transfer (MAP IN). MAP OUTIN combines the functions of the MAP OUT and
MAP IN requests; however, it cannotbe used to perform pageable map functions or
native mode data transfers. By definition, the MAP OUTIN request is synchronous;it
forces the program to be conversational.

Chapter 7: Data Manipulation Language Statements 219

MAP OUTIN (DC/UCF)

Syntax
»»—— MAP OUTIN (map-name) >
" T outeur >
L DATA YES N ': NEWPAGE :' L LITERALS i
NO ———— ERASE
ERASE ‘
ATTRibute —
L INPUT DATA YES
Lo
» I_ e |
MESSAGE (message-text) T TO (end-message-data-location) :’—I
LENGTH (data-length)
Parameters

map-name

Specifies the 1-to 8-character name of a map specified by the DECLARE MAP
statement, as described in DML Precompiler-Directive Statements.

OUTPUT
Specifies screen display-options for the data being output:
DATA YES/NO/ERASE/ATTRIBUTE

Specifies whether variable-storagedata fields areto be transmitted to the
terminal.This specification applies to all variable-storage data fields unless
overridden by an OUTPUT DATA YES/NO clauseina previouslyissued MODIFY
MAP request.

YES Transmits the contents of variable-storage data fields to the
corresponding map fields.

NO Does not transmitthe contents of variable-storagedata fields to the
corresponding map fields. However, ifthe automatic error handlingfacility
detects an errorinany field, the system will transmitthe applicable
attribute bytes.

ERASE Does not transmitthe contents of variable-storagedata fields and
fills the corresponding map fields with null values.

ATTRIBUTE Transmits only the attribute bytes for variable-storage data
fields. Data inthe record buffer is not sent to the terminal.

NEWPAGE

Activates the erase-write function; the system clears the screen and transmits
both literal and variablefields to the map. If NEWPAGE is not specified, the
system will write over any existingscreen display withoutfirsterasingit. The
keywords NEWPAGE and ERASE are synonymous.

220 DML Reference Guide for PLI

MAP OUTIN (DC/UCF)

Example

To eraseindividual map fields, usethe OUTPUT DATA ERASE option of the
MODIFY MAP statement (described later inthis chapter). To request that the
system erase all screen fields and activatethe erase-write function, the MAP
OUT statement must specify OUTPUT DATA ERASE NEWPAGE.

LITERALS

Transmits literal fields as well as variable-storage data fields to the terminal. If
LITERALS is notspecified, the system will writeliteral fieldsto the map only
when a MAP OUT request specifies the ERASE option.

INPUT DATA YES/NO

Specifies whether the contents of map fields will be moved to variable-storagedata
fields (YES) or left unchanged (NO).

This specification applies to all variable-storage data fields unless overridden by an
INPUT DATA YES/NO clauseina previouslyissued MODIFY MAP request.

MESSAGE (message-text)

Specifies the message to be displayedinthe map's message area. Message-text is
the symbolic name of a program variable-storage entry that contains the message
text. The length of the message text is determined by one of the following
specifications:

TO (end-message-data-location)

Specifies the end of the programvariable-storage entry that contains the
message text and is specified following the lastdata item in message-text.
End-message-data-location is the symbolic name of either a user-defined
dummy byte field or a field that contains a data item not associated with the
output data stream.

LENGTH (data-length)

Defines the length in bytes of the message text. Data-length is either the
symbolic name of a user-defined field that contains the length, or the length
itself expressed as a numeric constant.

Note: To reference a message stored inthe data dictionary, usethe ACCEPT TEXT
INTO parameter of the WRITE LOG statement (described later in this chapter) to
copy the message into message-text.

The following statement erases the screen, transmits literal and variable map fields (null
values), and performs a mapin operation when the operator presses an AID key:

MAP OUTIN (EMPMAPLR)
OUTPUT DATA ERASE NEWPAGE

INPUT DATA YES;

Chapter 7: Data Manipulation Language Statements 221

MAP OUTIN (DC/UCF)

Status Codes

Upon completion of the MAP OUTIN function, the ERROR_STATUS fieldinthe IDMS DC
communications blockindicates the outcome of the operation:

0000
The request has been serviced successfully.
4625

The 1/0 operation has been interrupted; the terminal operator has pressed
ATTENTION or BREAK.

4626

A logical error (for Example, an invalid control character) has been encountered in
the output data stream.

4627

A permanent 1/0O error has occurred during processing.
4628

The dial-up linefor the terminal is disconnected.
4631

The map request block (MRB) contains aninvalidfield, indicatinga possibleerrorin
the program's parameters.

4633
The map load module named inthe MRB cannot be found.
4639
The terminal being used is out of service.
4642
The requested map does not supportthe terminal device being used.
4652

The specified edit or code tableeither cannotbe found or is invalid for usewith the
named map.

4653
An error has occurredina user-written edit routine.
4654

A data conversion error has occurred;internal map data does not match the map's
data description.

4655

The user-written edit routine specified for the named map cannotbe found.

222 DML Reference Guide for PLI

MODIFY MAP (DC/UCF)

MODIFY MAP (DC/UCF)

The MODIFY MAP statement requests that the system modify optionsinthe map
request block (MRB) for a map; modifications can bedesignated as permanent or
temporary. Requested revisions can befield-specific, map-specific, or both; field-specific
revisions apply tothe map's variabledata fields.

Note: The MODIFY MAP statement parameters used to revise predefined map and/or
map data field attributes have no defaults. Ifa MODIFY MAP parameter is not specified,
the applicableoption remains setto the value specified atmap generation or to the
valuespecifiedina previouslyissued MODIFY MAP PERMANENT statement.

Syntax

»»—— MODIFY MAP (map-name)

PERMANENT <:| L CURSOR AT T (cursor-row) (cursor-column) j—l
TEMPORARY DFLD (field-name)

»

v

v

v

|— WCC —‘lv RESETMDT__—I——IJ

NOMDT

oy
T
T

NLCR
40CR ﬁ
64CR
80CR

> L FOR — ALL BUT T CURRENT | >
T EXCEPT
— ALL FIELDS
E CORRECT 3
ERROR
T
V- DFLD (field-name) * A4
I_— ALL «
ALL BUT
L EXCEPT
'— DFLD (field-name) *
BACKSCAN —_| -
NOBACKSCAN
L OUTPUT DATA YES I INPUT DATA T YES
NO ———— NO
ERASE
ATTRIBUTE —

v

g RIGHT JUSTIFY —I
RS -

PAD (pad-character) :| L eprT [ERROR —_|—|
NOPAD CORRECT

v
v

Chapter 7: Data Manipulation Language Statements 223

MODIFY MAP (DC/UCF)

—
»

v

REQUIRED :I L ERROR MESSAGE T ACTIVE
OPTIONAL SUPPRESS

]

)

>
>

«

L ATTRIBUTES

— SKIP ————
ALPHAMERIC

= NUMERIC il
PROTECTED T

= UNPROTECTED

DISPLA

|
BRIGHT

— DETECT ———
MDT e E—

T NOMDT
BLINK __l—

—E NOBLII%IK 0
REVERSE VIDE

—E NORMAL_VIDEO j
UNDERSCORE —

T NOUNDERSCORE

— NOCOLOR
BLUE
RED
PINK
GREEN ——
TURQUOISE —

YELLOW —
WHITE

Parameters
map-name

Specifies the 1-to 8-character name of a map specified by the DECLARE MAP
statement, as described in DML Precompiler-Directive Statements.

PERMANENT

Specifies that modifications will apply to all mapping mode /O requests issued until
the program terminates or until a subsequent MODIFY MAP request overrides the
requested revisions. PERMANENT is the default.

TEMPORARY

Specifies that modifications willapply only to the next mapping mode I/O request
(thatis, MAP IN, MAP OUT, or MAP OUTIN).

224 DML Reference Guide for PLI

MODIFY MAP (DC/UCF)

CURSOR AT

Identifies the screen location atwhich the cursor will be positioned during output
operations.

cursor-row cursor-column

Specifies a row and column on the terminal screen to which the cursor will be
moved. Cursor-row is either the symbolic name of a FIXED BINARY(15) field that
contains the row valueor the valueitself expressed as a numeric constant.
Cursor-column is either the symbolic name of a FIXED BINARY(15) field that
contains the columnvalue or the value itsel f expressed as a numeric constant.

DFLD (field-name)

Specifies that the cursor will bemoved to the firstpositioninthespecified
field. Field-name must be the name of a map field.

wcc

Specifies the write-control-character (WCC) options requested for the output
operation.

Note: Ifa MODIFY MAP request alters any WCC option, the system resets
unspecified options to the followingvalues:

m NOMDT

= NOKBD

m NOALARM
RESETMDT/NOMDT

Specifies whether the modified data tags (MDTs) for the map fields will be
reset (turned off) automatically when the map is displayed. When NOMDT isin
effect, the associated data is retransmitted to variable-storage data fields
duringthe next MAP IN request.

RESETKBD/NOKBD

Specifies whether the keyboard will (RESETKBD) or will not (NOKBD) be
unlocked automatically when the map is displayed.

ALARM/NOALARM

Specifies whether the terminal audiblealarm (ifinstalled) will sound
automatically when the map is displayed.

STARTPRT/NOPRT

Specifies (for 3280-type printers only) whether the contents of the terminal
buffer will be printed automatically when the data has been transmitted to the
terminal.

Chapter 7: Data Manipulation Language Statements 225

MODIFY MAP (DC/UCF)

NLCR/40CR/64CR/80CR

FOR

Specifies the characters-per-line formatting for 3280-type printer output and is
meaningful onlyif the STARTPRT option has been specified.

NLCR Specifies thatno lineformatting will be performed on the printer
output. Printing will begin on a new lineonlyifthe printer encounters new
line (NL) and carriage control (CR) characters.

40CR Specifies that the contents of the 3280-type printer buffer will be
printed at 40 characters per line.

64CR Specifies that the contents of the 3280-type printer buffer will be
printed at 64 characters per line.

80CR Specifies that the contents of the 3280-type printer buffer will be
printed at 80 characters per line.

Specifies the map fields to be modified or excluded from modification

ALL BUT CURRENT

Modifies all fields exceptthe current field. The current field is the map field
that was referenced inthe last MODIFY MAP or INQUIRE MAP request issued
by the program. However, if that request referenced a listof fields rather than
asinglemap field, no currency exists and all map fields are modified.

ALL CORRECT/ERROR FIELDS

Modifies either all fields found to be correct or all fields found to be inerror
duringautomatic editing or by a user-written edit module.

If either ALL CORRECT FIELDS or ALL ERROR FIELDS is specified,automatic
editing must be enabled for the map.

ALL/ALL BUT DFLD (field-name)

Explicitly specifies thefields to be modified or excluded from modification.
DFLD (field-name) names the map fields to be modified or excluded from
modification. Field-name must be a map field. Multiple DFLD specifications
come from only one record and must be separated by at leastone blank.Field
names that are not unique within the program must be qualified with the name
of the associated record. Likewise, multiply-occurring fields mustbe qualified
with the appropriatesubscripts. Multiple DFLDs areseparated by at leastone
blank (for Example, HOSPITAL_CLAIM.DIAGNOSIS_0430(1)
HOSPITAL_CLAIM.DIAGNOSIS_0430(2) HOSPITAL_CLAIM.DIAGNOSIS_0430(3)).

ALL Specifies that all named map fields will receivethe requested
modifications.ALL is the default.

ALL BUT Specifies that all map fields except those named will receivethe
requested modifications.

226 DML Reference Guide for PLI

MODIFY MAP (DC/UCF)

BACKSCAN/NOBACKSCAN

Indicates whether the system is to backscanthespecified fields to remove
trailing blanks before performing a mapout operation. If BACKSCAN is specified,
onlycharacters up to the lastnonblankwill besent to the terminal;fields
remaining on the screen will contain whatever characters were present before
the MAP OUT or MAP OUTIN request was issued.fthe MAP OUT or MAP
OUTIN request specifies the ERASE option, the system erases the contents of all
terminal data fields.

OUTPUT DATA YES/NO/ERASE/ATTRIBUTE

Specifies whether map fields will beset to the value of the corresponding
variable-storage data fields (YES), left unchanged (NO), or erased (ERASE), or
whether onlythe attribute byte (ATTRIBUTE) is transmitted duringan output
operation.

INPUT DATA YES/NO

Specifies whether map fields will be moved automatically to the corresponding
variable-storagedata fields duringaninputoperation.

RIGHT/LEFT JUSTIFY

Indicates whether the variable-storagefields should beright- or left-justified on
input.

PAD (pad-character)/NOPAD
Indicates whether variable-storage data fields will be padded on input.

PAD (pad-character) Pads the field on the right(if rightjustified) or left (if
left justified) with the specified character. Pad-character can be the
symbolic name of the field (CHAR(1)) containingthe pad character, or the
padcharacteritselfenclosedinsingle quotation marks.

NOPAD Does not padthe fields.

EDIT ERROR/CORRECT

Explicitly sets theerror flagon (ERROR) or off (CORRECT) for the specified map
fields.Ifthis parameter is specified, automatic editing must be enabled for the
map.

The abilitytoset the error flagenables programs to perform their own editing
andvalidationin addition to that provided by the automatic editing feature. On
a MAPOUT operation, ifany fieldis flagged to be in error, then for all fields
(both correctand incorrect) only attribute bytes are transmitted; no datais
moved from programvariablestorageto the screen.

Chapter 7: Data Manipulation Language Statements 227

MODIFY MAP (DC/UCF)

REQUIRED/OPTIONAL

Indicates whether the terminal operator will berequired to enter datainthe
specified map fields. An error results on mapinif REQUIRED is specified and the
terminal operator fails to enter datainarequired field.

If this parameter is specified, automatic editing must be enabled for the map
and for the specified map fields.

ERROR MESSAGE ACTIVE

Enables display of the error message associated with the field. Typically, you
enable display of an error message only after specifying ERROR MESSAGE
SUPPRESS for the map in a previous MODIFY MAP PERMANENT statement.

ERROR MESSAGE SUPPRESS

Disables display of the error message associated with the field. When the map
is redisplayed becauseof errors, the error message defined for the map field
will notbe displayed even ifthe field contains editerrors.

Use of this parameter allows you flexibilityin handling error messages. For
instance,you can code a data validation moduleto suppress a map field's
default error message to enable a different error message to be displayed for
that field.

ATTRIBUTES

Indicates the 3270-and 3279-type terminal display attributes for the specified map
fields.If multipleattributes are specified, they must be separated by at leastone
blank.Onlythe named attributes will be modifiedinthe map's MRB.

SKIP

Indicates thatthe cursor will berepositioned automatically over the map fields
to the next unprotected field. If SKIP is specified, the specified map fields are
assigned the NUMERIC and PROTECTED attributes (described below)
automatically.

ALPHAMERIC/NUMERIC

Indicates whether the data input to the map fields by the terminal operator can
be alphanumeric (any character onthe 3270 keyboard) or numeric. If the
terminal does not have the numericlock option, a specification of NUMERIC is
ignored.

PROTECTED/UNPROTECTED

Indicates whether the specified map fields will be protected from data entry or
will beavailablefor data entry or modification by the terminal operator.
UNPROTECTED cannot be specifiedif SKIP has been specified.

228 DML Reference Guide for PLI

MODIFY MAP (DC/UCF)

DISPLAY/DARK/BRIGHT

Indicates whether the specified map fields will bedisplayedinnormal
(DISPLAY) or bright (BRIGHT) intensity or will notbe displayed (DARK). DARK
cannot be specified if DETECT has been specified.

DETECT

Indicates whether the specified map fields will be detectable by a light pen. All
fields assigned the BRIGHT attribute are automatically detectable by a light
pen.

MDT/NOMDT

Indicates whether the modified data tag will (MDT) or will not(NOMDT) be set
automatically for the map fields when displayed.

BLINK/NOBLINK

Indicates (3279s only) whether the specified map fields will bedisplayed with
blinking characters.

REVERSE_VIDEO/NORMAL_VIDEO

Indicates (3279s only) whether the specified map fields will bedisplayedin
reverse video (background and character colors reversed) orin normal video.

UNDERSCORE/NOUNDERSCO RE

Indicates (3279s only) whether the specified map fields will bedisplayed with
underlined characters.

NOCOLOR

Specifies (for 3279s only) that the map fields will notbe displayed with color
attributes.

BLUE/RED/PINK/GREEN/TURQUOISE/Y ELLOW/WHITE

Indicates (3279s only) thatthe specified map fields will bedisplayed with one
of the seven availablecolor attributes.

Note: UNDERSCORE, REVERSE_VIDEO, and BLINK aremutually exclusive;thatis, they
canbe specifiedin conjunction with other attributes but cannot be specified with each
other. For Example, neither REVERSE_VIDEO nor UNDERSCORE canbe assignedto a
field for which the BLINK attribute has been defined.

Chapter 7: Data Manipulation Language Statements 229

MODIFYRECORD

Example
The following statement positions the cursoratEMP_ID_0415 and prohibits the
terminal operator from entering data inany field except EMP_ID_0415 and
DEPT_ID_0415:
MODIFY MAP (EMPMAPLR) TEMPORARY
CURSOR AT DFLD (EMP ID 0415)
FOR ALL BUT DFLD (EMP_ID 0415) DFLD (DEPT ID 0415)
ATTRIBUTES PROTECTED;
The following statement sets the edit flag on for the TASK_CODE_01 field, thereby
overridingautomatic editingand error handling for the next mapinrequest:
MODIFY MAP (EMPMAPLR) TEMPORARY
FOR DFLD (TASK CODE 01)
EDIT ERROR;
Status Codes
Upon completion of the MODIFY MAP function, the ERROR_STATUS fieldinthe IDMS DC
communications blockindicates the outcome of the operation:
0000
The request has been serviced successfully.
4629
An invalid parameter has been passed from the program.
4644
The map fieldis notinthe specified map; a possiblecauseis a reference to an
invalid map field subscript.
4656
The referenced map contains no data fields.

The MODIFY RECORD statement replaces element values of the specified record
occurrence in the databasewith new element values defined in programvariable
storage.

230 DML Reference Guide for PLI

MODIFYRECORD

Steps Before Using MODIFY RECORD

Before executing the MODIFY RECORD statement, satisfy thefollowing conditions:

Ready all areas affected either implicitly or explicitly in one of the update usage
modes (see READY later in this chapter).

Establish thespecified record as current of run unit. Ifthe record thatis currentof
run unitis notanoccurrence of the specified record, an error conditionresults.

The values of all elements defined for the specified recordinthe program's
subschema view must be invariablestorage. If the MODIFY RECORD statement is
not preceded by an OBTAIN statement, you must initializethe appropriatevalues.
The best practice, however, is to precede MODIFY RECORD with an OBTAIN
statement to ensure that all the elements inthe modified record are present in
variablestorage.

Modifying CALC- and Sort-Control Elements

The following special considerations apply to modification of CALC- and sort-control
elements:

If modification of a CALC- or sort-control element will violatea
duplicates-not-allowed option, the record is not modified and an error condition
results.

Ifa CALC-control element is modified, successful execution of the MODIFY RECORD
statement enables the record to be accessed on the basis of its new CALC-key
value. The db-key of the specified recordis not changed.

Ifa sort-control element is to be modified, the sorted set in which the specified
record participates mustbe included in the subschema invoked by the program. A
record occurrencethat is a member of a set not defined inthe subschema canbe
modified if the undefined set is not sorted.

If any of the modified elements inthe specified record are defined as s ort-control
elements for any set occurrencein whichthatrecord is currently a member, the set
occurrence is examined. If necessary, the specified recordis disconnected and
reconnected inthe set occurrence to maintain the set order specifiedinthe
schema.

Considerations for Native VSAM Users

The following special considerations apply to the modification of records in native VSAM

datasets:

The length of arecord inanentry-sequenced dataset (ESDS) cannotbe changed
even ifthe records arevariablelength.

The prime key for a key-sequenced dataset(KSDS) cannotbe modified.

Chapter 7: Data Manipulation Language Statements 231

MODIFYRECORD

Syntax

Example

Status Codes

Currency
The specified record must be established as currentof run unit.
Following successful execution of the MODIFY RECORD statement, the modified record

becomes the current record of run unit, its record type, its area, and all sets in whichiit
participates as member or owner.

»»—— MODIFY RECORD (record-name);

)

Parameter
record-name

Defines the named record occurrence, as specifiedin programvariablestorage.
Record-name must specify a record type includedinthe subschema.

The following Example illustrates the steps involved in modifyingan occurrence of the
EMPLOYEE record. Assume that the employee address is to be changed.

1. Retrieve the desired EMPLOYEE record, moving its contents to variablestorage:

EMP_ID 0415 = EMP_ID IN;
OBTAIN CALC RECORD (EMPLOYEE);

2. Update the valueof the EMP_ADDRESS_0415 field by moving the new address into
the proper locationinthe EMPLOYEE record:

EMP_ADDRESS 0415 = NEW ADDRESS;

3. Issuea MODIFY RECORD statement to return all data items inthe EMPLOYEE record
to the database:

MODIFY RECORD (EMPLOYEE);

Upon completion of the MODIFY RECORD function, the ERROR_STATUS fieldinthe IDMS
DB communications blockindicates the outcome of the operation:

0000
The request has been serviced successfully.
0804

The OCCURS DEPENDING ON item is less than 0 or greater than the maximum
number of occurrences of the control element.

232 DML Reference Guide for PLI

MODIFYRECORD

0805

Modification of the record would violatea duplicates -not-allowed option for a CALC
record, a sorted set, or anindex set.

0806
Currency has not been established for the named record.
0808

The specified record cannot be found. The record name has probably been
misspelled.

0809
The named record's area has not been readied in one of the update usage modes.
0810

The subschema specifies anaccess restriction that prohibits modification of the
named record.

0811
There is insufficientspaceto hold the modified variable-length record occurrence.
0813

A current record of run unit has not been established or has been nullified by a
previous ERASE statement.

0818

The record has not been bound.
0820

The current record of run unitis not the same type as the named record.
0821

An area other than the area of the named record has been readied with an
incorrectusage mode.

0825
No current record of set type has been established.
0833

At leastone sorted set in which the named record participates has notbeen
included inthe subschema.

0855

An invalid length has been defined for a variablelength record.

Chapter 7: Data Manipulation Language Statements 233

MODIFYRECORD (LRF)

0860

A record occurrence has been encountered whose type is inconsistent with the set
named inthe ERROR_SET field of the IDMS DB communications block; probable
causes include:a broken chainandimproper databasedescription.

0883

Either the length of a record ina native VSAM ESDS has been changed or a prime
key ina native VSAM KSDS has been modified.

MODIFY RECORD (LRF)

Syntax

Parameters

The MODIFY RECORD statement changes field values inanexistinglogical-record
occurrence. LRF uses the field values presentin the variable-storagelocation reserved
for the logical record to update the appropriatedatabaserecords.You canoptionally
specifyanalternativevariablestoragelocation fromwhich the changed field values are
to be obtained.

»»—— MODIFY RECORD (logical-record-name)

v

v

L FROM (alt-logical-record-location) JL WHERE (boolean-expression) |

X

T : , i
ON LR STATUS (path-status) imperative-statement

logical-record-name

Defines the named logical-record occurrence, as specified in programvariable
storage. Unless the FROM clauseis specified (see below), the field values used to
update the databasearetaken from the areain program variablestoragereserved
for the named logical record. Logical-record-name must specify a logical record
defined in the subschema.

FROM (alt-logical-record-location)

Names analternativevariable-storagelocation fromwhich the field values used to
perform the requested modificationareto be obtained. When modifyinga logical
record that was retrieved into analternativelocationinvariablestorage,the FROM
clauseshould namethe same location specified inthe OBTAIN request. Ifthe FROM
clauseisincludedinthe MODIFY RECORD statement, alt-logical-record-location
must identify a record location defined in program variablestorage.

234 DML Reference Guide for PLI

MODIFYRECORD (LRF)

WHERE boolean-expression

Specifies the selection criteria to be applied to the named logical record. For details
on codingthe WHERE clause, see Logical-Record Clauses (WHEREand ON) at the
end of this chapter.

ON LR_STATUS (path-status) imperative-statement

Specifies the action to be taken if path-status is returned to the LR_STATUS fieldin
the LRC block. Path-status must be a 1- to 16-character alphanumeric value. For
details on codingthis clause, see Logical-Record Clauses (WHEREand ON) at the
end of this chapter.

Example

The following Example illustrates the steps taken to modify an occurrence of the
EMP_SKILL_LR logicalrecord. Assume that the skill level for employee 120is to be
upgraded from 02 (COMPETENT_0425) to 03 (PROFICIENT_0425).

1. Retrieve the desiredlogical-record occurrence:

OBTAIN FIRST RECORD (BEMP_SKILL LR)
WHERE (EMP_ID 0415 = '0120°
AND SKILL ID 0455 = '3610'
AND SKILL LEVEL 0425 = '02');

2. Update the SKILL LEVEL 0425 field:
SKILL LEVEL 8425 = '03';

3. Issuethe MODIFY RECORD (LRF) statement for the updated EMP_SKILL_LR logical
record:

MODIFY RECORD (EMP_SKILL LR);

LRF retrieves the EMP_SKILL LR logicalrecord where EMP_ID_0415 ='0120/,
SKILL ID_0455 ='3610', and SKILL_LEVEL 0425 ='02'. The EXPERTISE occurrence
represents the only data physically modified inthe database.

EMP_SKILL LR

EMPLOYEE EXPERTISE SKILL

120 04 7620
120 03 3710
120 02 (now 03) 3610

Chapter 7: Data Manipulation Language Statements 235

OBTAIN (LRF)

OBTAIN (LRF)

The OBTAIN statement retrieves the named logical recordand placesitinthe
variable-storagelocationreserved for that logical record. The OBTAIN statement can be
issuedto retrieve a singlelogicalrecord,oritcanbe issuediniterativelogictoretrieve
all logical records that meet criteria specified inthe WHERE clause. Additionally, the
OBTAIN statement canspecify that the retrieved logical recordis to be placedintoan
alternativevariablestoragelocation.

Syntax
»»—— OBTAIN RECORD (logical-record-name) >
E FIRST ;'
NEXT «
L INTO (alt-logical-record-location) JL WHERE (boolean-expression) 47
L ON LR STATUS (path-status) imperative-statement a
Parameters

FIRST

Retrieves the firstoccurrence of the logical record. OBTAIN FIRST is typically used to
retrieve the firstina series of logical-record occurrences following the iterative
retrieval of a different series of logical-record occurrences.

NEXT

Retrieves a (subsequent) occurrence of the named logicalrecord,inthe order
specified by the DBA inthe path. OBTAIN NEXT is typicallyissuediniterativelogicto
retrieve a series of logical-record occurrences (possibly including the first).

When LRF receives repeated OBTAIN NEXT commands, it replaces field valuesin
program variablestorage with new values obtained through repeated access to the
appropriatedatabaserecords, thereby supplyingthe program with new
occurrences of the desired logical record.

Ifan OBTAIN FIRST statement is followed by an OBTAIN NEXT statement to retrieve
a series of occurrences of the same logical record, the OBTAIN statements must
directLRF to the same path. For this reason, you must ensure that the selection
criteria specified inthe WHERE clausethataccompanies the OBTAIN FIRST and
OBTAIN NEXT statements describethe same attributes of the desired logicalrecord.

Ifthe programissues an OBTAIN NEXT statement withoutissuingan OBTAIN FIRST,
or ifthe lastpath status returned for the path was LR_NOT_FOUND, LRF interprets
the OBTAIN NEXT as OBTAIN FIRST. After LR_ERROR or a DBA-defined pathstatus,
LRF does not interpret OBTAIN NEXT as OBTAIN FIRST.

236 DML Reference Guide for PLI

OBTAIN (LRF)

Example

RECORD (Logical-record-name)

Defines the named logical record occurrence, as specifiedin programvariable
storage. Logical-record-name must specify a logical record defined in the
subschema.

INTO (alt-logical-record-location)

Specifies an alternativelocationinvariablestorageinto which LRF will placethe
retrieved logicalrecord. Any subsequent MODIFY, STORE, or ERASE statements for a
logical record placed in alt-logical-record-location should name that area as the one
from which LRF will obtain the data to be used to update the logical record.

WHERE (boolean-expression)

Specifies the selection criteria tobe applied to the named logical record. For details
on codingthis clause, see Logical-Record Clauses (WHEREand ON) at the end of this
chapter.

ON LR_STATUS (path-status) imperative-statement

Specifies the actionto be taken if path-status is returned to the LR_STATUS fieldin
the LRC block. Path-status must be a 1- to 16-character alphanumeric value. For
details on codingthis clause, see Logical-Record Clauses (WHEREand ON) at the
end of this chapter.

The following Example illustrates the use of the OBTAIN NEXT statement to retrieve a
series of logical-record occurrences. The program issues the OBTAIN NEXT statement
iteratively to retrieve the firstand all subsequentoccurrences of the EMP_JOB_LR
logical record for all employees in the specified department.

GET_AN_ORDER: PROC OPTIONS(MAIN);
DEPT_ID 0410 = DEPT ID IN;
OBTAIN NEXT RECORD (EMP_JOB_LR)
WHERE (DEPT ID 0410 = DEPT ID 0410 OF LR);
IF LR STATUS = 'LR ERROR' THEN
CALL ERROR PROCESSING;
IF LR STATUS = 'LR NOT FOUND' THEN
CALL END PROCESSING;

GO TO GET AN ORDER;
END GET AN ORDER;

Chapter 7: Data Manipulation Language Statements 237

POST (DC/UCF)

The followingfigureillustrates theinformation retrieved by each OBTAIN NEXT

statement.
DEPARTMENT EMPLOYEE OFFICE Joe

ONE OCCURRENCE

OF EMP_JOB_LR 5100 466 8 SNOWBLOWER
5100 467 8 WINDKEEPER
5100 334 5 RAINDANCE
5100 457 8 STURM UND

DRANG

The EMP_JOB_LR logical record consists of DEPARTMENT, OFFICE, EMPLOYEE, andJOB
information.

POST (DC/UCF)

The POST statement alters an event control block (ECB) either by postingitto indicate
completion of an event upon which another task is waiting, or by clearingitto an
unposted status.

Note: Programs postingand waiting on ECBs are responsiblefor clearing ECBs before
issuing subsequent WAIT requests.

Syntax

M

»»— POST T EVENT (ecb-name)
EVENT NAME (ecb-id) ‘ﬁ—l
CLEAR
Parameters

EVENT (ecb)

Identifies the ECB to be posted. Ecb is the symbolic nameof a user-defined area
composed of three binary fullword fieldsthatcontain the ECB. Program-allocated
ECBs are cleared by setting ecb to zero.

EVENT NAME (ecb-id)

Specifies the 4-character symbolic ID of the ECB to be posted or cleared. Ecb-id is
either the symbolic nameof a user-defined field that contains the ECB ID, or the ID
itselfenclosedinsingle quotation marks.

CLEAR

Specifies that the ECB identified by ecb-id is cleared to an unposted status.

238 DML Reference Guide for PLI

PUT QUEUE (DC/UCF)

Example

The following Example posts the event whose ECB identifierisinthe FOUND_ECB field
andto clearthe ECB to an unposted status:

POST
EVENT NAME (FOUND ECB)
CLEAR;

Status Codes

Upon completion of the POST function, the only possiblevalueinthe ERROR_STATUS
field of the IDMS DC communications blockis 0000.

PUT QUEUE (DC/UCF)

The PUT QUEUE statement stores a queue record in either the DDLDCRUN or the
DDLDCQUE area of the data dictionary. The DC/UCF system assigns an ID to the queue
record and places itatthe beginningor end of its associated queue.

Syntax

\ 4

»»—— PUT QUEUE
L ID (queue-id) a ': E%E_?_T
<

»—— FROM (queue-data-location) T [gNé%dzqueue-gata-{ocat;c))n)_—f—b
queue-data-lengt

v

" L RETURN RECORD ID INTO (return-queue-record-id) —

)

L RETENTION (queue-retention-period) —

Parameters
ID (queue-id)

Directs the queue record to a previously defined queue. Queue-id is either the
symbolic name of a user-defined alphanumeric field that contains the 1- to
16-character ID, or the IDitselfenclosed insingle quotation marks. If a queue IDis
not specified,a null ID of 16 blanks is assumed.

FIRST/LAST

Specifies whether the queue record is to be placed at the beginningor end of the
queue. The defaultis LAST.

Chapter 7: Data Manipulation Language Statements 239

PUT QUEUE (DC/UCF)

FROM (queue-data-location)

Specifies the programvariable-storage entry associated with the data to be stored
inthe queue record. Queue-data-location is the symbolic name of a user-defined
field.

TO (end-queue-data-location)

Indicates the end of the program variable-storage entry that contains the data
to be stored inthe queue andis specified followingthelastdata-itementry in
queue-data-location. End-queue-data-location is the symbolic name of a
user-defined dummy byte field or a field that contains a data item not
associated with the queue record.

LENGTH (queue-data-length)

Explicitly defines the length, in bytes, of the area that contains the data to be
stored inthe queue record. Queue-data-length is either the symbolic nameof a
user-defined field that contains the length or the length itself expressedas a
numeric constant.

RETURN RECORD ID INTO (return-queue-record-id)

Specifies the location in the programto which the system will return the system
assigned ID of the queue record. Return-queue-record-id isthe symbolic name of a
user-defined FIXED BINARY(31) field.The returned ID is used to reference the
queue record insubsequent GET QUEUE and DELETE QUEUE statements.

RETENTION (queue-retention-period)

Specifies the time, indays, that the system will retain the queue inthe data
dictionary. At system startup, queues havingexpired retention periods aredeleted
automatically by the system. The retention period begins when the firstrecordis
stored inthe queue.

Queue-retention-period is either the symbolic name of a user-defined fixed binary
field that contains the retention period or the retention period itself expressed as a
numeric constantinthe range 0 through 255. A retention period of 255 indicates
that the queue is never to be deleted automatically by the system. The specified
retention period takes precedence over retention periods associated with
previously defined queues. The RETENTION parameter is ignored if the record being
allocatedis notthe firstrecordinthe queue.

Note: IfRETENTION is omitted, the default retention period for dynamic queues is
taken. For more information on the default retention period for dynamic queues, see
the CA IDMS System Generation guide.

240 DML Reference Guide for PLI

PUT SCRATCH (DC/UCF)

Example

Status Codes

The following Example allocates a queue record in the beginning of the RES_Q queue,
return the 1D of the record to the Q_REC_ID field, and retain the queue for 45 days:

PUT QUEUE
ID ('RES-Q')
FIRST
FROM (NEW RES) TO (END NEW_RES)
RETURN RECORD ID INTO (Q REC_ID)
RETENTION (45);

Upon completion of the PUT QUEUE function,the ERROR_STATUS fieldinthe IDMS DC
communications block indicates the outcome of the operation:

0000
The request has been serviced successfully.
4407

A databaseerror occurred during queue processing. Acommon causeis a DBKEY
deadlock. For a PUT QUEUE operation, this code canalso mean that the queue
upper limithas been reached.

Ifa databaseerror has occurred, there areusually be other messages inthe
CA-IDMS/DC/UCF logindicatinga problemencountered in RHDCRUAL, the internal
Run Unit Manager. Ifa deadlockhas occurred, messages DC0O01000 and DC001002
arealsoproduced.

4431

The parameter listis invalid; under DC-BATCH, this status indicates thatthe
specified record length exceeds the maximum length based on the packet size.

4432

The derived length of the specified queue recordis either zero or negative.

PUT SCRATCH (DC/UCF)

The PUT SCRATCH statement stores or replaces a scratchrecordinthe DDLDCSCR area
of the data dictionary. For new records, PUT SCRATCH generates anindexentry ina
scratch area associated with the issuingtask. Ifthe scratch area does not already exist,
the system allocates itdynamicallyin thestorage pool.

Chapter 7: Data Manipulation Language Statements 241

PUT SCRATCH (DC/UCF)

Syntax

»»—— PUT SCRATCH

L AREA ID (scratch-area-id) —

LENGTH (scratch-data-location-1

»— FROM (scratch-data-location) T TO (end-scratch-data-location) —_|—>
ength)

»
| 2

L RECORD ID (scratch-record-id) —L—J—'
REPLACE

Parameters

X

L RETURN RECORD ID INTO (scratch-record-id) ll

AREA ID (scratch-area-id)

FRO

Specifies the 1-to 8-character ID of the scratch area associated with the record
being allocated. Scratch-area-id is either the symbolic name of a user-defined field
that contains the ID or the IDitselfenclosed insingle quotation marks. If AREA ID is
not specified,an area ID of eight blanks is assumed.

M (scratch-data-location)

Specifies the data to be stored inthe scratch record. Scratch-data-location is the

symbolic name of a user-defined program variable-storage entry that contains the
data.

TO (end-scratch-data-location)

Indicates the end of the data area to be stored inthe scratchrecordandis
specified following the lastdata-itementry in scratch-data-location.
End-scratch-data-location is the symbolic name of either a user-defined

dummy byte field or a field that contains a data item not associated with the
scratch data beingstored.

LENGTH (scratch-data-location-length)

Defines the length, in bytes, of the data area. Scratch-data-location-length is

the symbolic name of a user-defined field that contains the length or the length
itself expressed as a numeric constant.

RECORD ID (scratch-record-id)

Specifies the ID of the scratch record being stored. Scratch-record-id is either the
symbolic name of a user-defined FIXED BINARY(31) field that contains the ID or the

D itself expressed as a numeric constant.

242 DML Reference Guide for PLI

PUT SCRATCH (DC/UCF)

Example

Status Codes

REPLACE

Specifies that the scratch recordidentified by scratch-record-id replaces an existing
scratch record. If REPLACE is specified and the scratchrecord identified by
scratch-record-id does not exist, the record is stored and a status valueof 0000is
returned.

RETURN RECORD ID INTO (scratch-record-id)

Requests that the system return the automatically assigned ID of a scratch record to
the program. Return-scratch-record-id is the symbolic nameof a user-defined field
into which the system will placethe 4-byte scratchrecord ID.

The following statement replaces the scratch recordidentified by SCR_REC_ID with data
inthe WORK_PROC_AREA field:

PUT SCRATCH
FROM (WORK PROC AREA) LENGTH (125)
RECORD ID (SCR REC ID) REPLACE;

Upon completion of the PUT SCRATCH function, the ERROR_STATUS fieldinthe IDMS
DC communications blockindicates the outcome of the operation:

0000

The request to add a scratch record has been serviced successfully.
4305

The requested scratch record ID cannotbe found.
4307

An I/Oerror has occurred during processing.
4317

The request to replacea scratchrecord has been serviced successfully.
4322

The request to add a scratch record cannotbe serviced becausethe specified
scratchrecord already exists inthe scratch area and REPLACE has not been
specified.

4331
The parameter listis invalid.
4332

The derived length of the specified scratch recordis either zero or negative.

Chapter 7: Data Manipulation Language Statements 243

READ LINE FROM TERMINAL (DC/UCF)

READ LINE FROM TERMINAL (DC/UCF)

The READ LINE FROM TERMINAL statement requests a synchronous, line-by-linetransfer
of data from the terminal to the issuingprogram.

Syntax
»»—— READ LINE FROM TERMINAL >
L ECHO 1L NOBACKPAGE il
»— INTO (input-data-location) -[TO (end-input-data-location)] >
MAX LENGTH (input-data-location-max-length)
L RETURN LENGTH INTO (input-data-actual-length) i
Parameters

ECHO

Requests (for 3270-type devices only) that the system to save the line of data being
inputinthe current page (as displayed on the screen). If ECHO is not specified, data
entered will notbe retained and, therefore, will notbe availablefor review by the
terminal operator.

NOBACKPAGE

Requests (for 3270-type devices only) that the system not save previouslyinput
pages inascratcharea. |f NOBACKPAGE is specified, the terminal operator canview
onlythe current page of data. NOBACKPAGE is valid only with the firstinputrequest
inalinemode session.

INTO (input-data-location)

Indicates the program variable-storage entry reserved for the inputdata.
Input-data-location is the symbolic name of a user-defined field. The length of the
data areais determined by one of the following specifications:

TO (end-input-data-location)

Indicates the end of programvariablestoragereserved for the inputdata
streamandis specified followingthelastdata-item entry in
input-data-location. End-input-data-location is the symbolic name of either a
user-defined dummy byte field or a field that contains a data item not
associated with the data area reserved for the input data stream.

MAX LENGTH (input-data-location-max-length)

Defines the length, in bytes, of the inputdata stream. Input-data-max-length is
either the symbolic nameof a user-defined field that contains the length of the
data area, or the length itself expressed as a numeric constant.

Ifthe inputdata streamis larger thanthe data areareserved in program
variablestorage, the system truncates the data to fit the availablespace.

244 DML Reference Guide for PLI

READ LINE FROM TERMINAL (DC/UCF)

Example

Status Codes

RETURN LENGTH INTO (input-data-actual-length)

Indicates the location to which the system will return the actual length of the input
data stream. Input-data-actual-length is the symbolic name of a user-defined field.
Ifthe data stream has been truncated, input-data-actual-length contains the
original length before truncation.

The following statement reads the specified data from a 3270-type device into the
specified locationinthe program and echoes the inputdata on the screen:

READ LINE FROM TERMINAL
ECHO
INTO (EMPL DATA) TO (END_EMPL DATA);

The following statement reads the specified data into the programwithout saving pages
associated with the linel/O session:

READ LINE FROM TERMINAL
NOBACKPAGE
INTO (EMPL DATA) MAX LENGTH (8)
RETURN LENGTH INTO (REC DATA LENGTH);

Upon completion of the READ LINE FROM TERMINAL function, the ERROR_STATUS field
inthe IDMS DC communications blockindicates the outcome of the operation:

0000

The request has been serviced successfully.
4707

A logical or permanent 1/0 error has been encountered inthe input data stream.
4719

The input area specified for the return of datais too small;the returned data has
been truncated to fit the availablespace.

4731

The linerequest block (LRB) contains aninvalidfield, indicatinga possibleerrorin
the program's parameters.

4732

The derived length of the specified lineinputarea is zero or negative.

Chapter 7: Data Manipulation Language Statements 245

READ TERMINAL (DC/UCF)

4738

The specified programvariable-storage entry has not been allocated as required. A
prior GET STORAGE request must be issued.

4743

The linel/O session has been canceled;the terminal operator has pressed CLEAR
(3270s), ATTENTION (2741s), or BREAK (teletypes).

READ TERMINAL (DC/UCF)

The READ TERMINAL statement requests a synchronous or asynchronous basicmode
data transfer from the terminal to program variablestorage.

Syntax
»»—— READ TERMINAL >
WAIT < :|
NOWAIT
g |—|: MODIFIED FROM POSITION (screen-position) i "
BUFFER -1 P
»— INTO (input-data-location) T TO (end-input-data-location) —_|—>
MAX LENGTH (input-data-max-length)
" L RETURN LENGTH INTO (input-data-actual-length) — o
Parameters
WAIT

Specifies that the read operation will besynchronous;the issuingtaskwill
automatically relinquish control to the system and must wait for completion of the
read operation before processingcan continue. WAIT is the default.

NOWAIT

Specifies that the read operation will beasynchronous;theissuingtask will
continue executing.

Note: If NOWAIT is specified, the program must issuea CHECK TERMINAL request
(described later in this chapter) before performing any other 1/0 operations.

246 DML Reference Guide for PLI

READ TERMINAL (DC/UCF)

MODIFIED/BUFFER

Requests (for 3270-type devices only) that the system transfer data to the
application programwithoutrequiringthe terminal operator to signal completion
of data entry.

MODIFIED
Reads all modified fields in theterminal buffer into variablestorage.
BUFFER

Executes a READ BUFFER command that reads the entire contents of the
terminal buffer into variablestorage.

FROM POSITION (screen-position)

Defines the buffer address (screen position) atwhich the read will start.
Screen-position is either the symbolic name of a user-defined FIXED BINARY(31)
field or the address itselfenclosed in single quotation marks.

INTO (input-data-location)

Specifies the data area reserved for the input data stream. This parameter is not
specified for asynchronous requests that usethe CHECK TERMINAL statement to
allocatestoragefor the input buffer. Input-data-location is the symbolic name of a
user-defined field.

Ifthe inputdata stream is larger than the specified data area, the system truncates
the data to fit the availablespace.

TO (end-input-data-location)

Indicates the end of the data area reserved for the inputdata streamand is
specified followingthe lastdata-itementry ininput-data-location.
End-input-data-location is the symbolic name of either a user-defined dummy
byte field or a field that contains a data item not associated with the data area
reserved for the input data stream.

MAX LENGTH (input-data-max-length)

Defines the length, in bytes, of the data area reserved for the inputdata
stream. Input-data-max-length is either the symbolic nameof a user-defined
field that contains the length of the data area, or the length itself expressed as
a numeric constant.

RETURN LENGTH INTO (input-data-actual-length)

Indicates the location to which the system will return the actual length of the input
data stream. Input-data-actual-length is the symbolic nameof a user-defined field.
Ifthe data stream has been truncated, input-data-actual-length contains the
original length before truncation.

Chapter 7: Data Manipulation Language Statements 247

READ TERMINAL (DC/UCF)

Example

Status Codes

The following statement illustrates a basicmode request to read data from the terminal
to the specified locationinvariablestorage:

READ TERMINAL
WAIT
INTO (TERM LINE) TO (END TERM LINE);

Upon completion of the READ TERMINAL function, the ERROR_STATUS fieldinthe IDMS
DC communications blockindicates the outcome of the operation:

000
The request has been serviced successfully.
4519

The input area specified for the return of data to the issuing programis too small;
the returned data has been truncated to fit the availablespace.

4527

A permanent |/O error has occurred during processing.
4528

The dial-up linefor the terminal has been disconnected.
4531

The terminal request block (TRB) contains aninvalid field, indicating a possibleerror
inthe program's parameters.

4532
The derived length of the specified inputdata areais zero or negative.
4535

Storage for the inputbuffer cannotbe acquired becausethe specified program
variable-storageentry has been previously allocated; no 1/0 has been performed.

4539

The terminal device associated with the issuingtaskis outofservice.

248 DML Reference Guide for PLI

READY

READY

Syntax

The READY statement prepares a databasearea for access by DML functions and
specifies the usage mode of the area.

The DBA canspecify default usage modes inthe subschema.Run-units that use sucha
subschema need not issueany READY statements; the areas areautomaticallyreadied
inthe predefined usage modes. However, ifarun-unitissues a READY statement for one
area, it mustissue READY statements for all areasthatitwill access unlessthe FORCE
option was specified for the default usage mode. Areas usingthe default usage mode
combined with the FORCE option areautomaticallyreadied even if the run-unitalready
issued READY for other areas.

PROTECTED and EXCLUSIVE Options

The specified usage mode can be qualified witha PROTECTED option to prevent
concurrent update or an EXCLUSIVE optionto prevent concurrent use of areas by other
run units executing under the CA IDMS/DB central version.Each area canbe readied in
its own usage mode. Usage modes can be changed by executing a FINISH statement (see
FINISH), then startinga new run unit by issuinga BIND RUN_UNIT statement, the
appropriate BIND RECORD statements, and a READY statement specifyingthe new
usage mode.

Ready Areas Individually or Together

When the rununitreadies databaseareas,allareas can bereadied with a single READY
statement or eacharea to be accessed can be readied individually. All areas affected
explicitly orimplicitly by the DML statements issued by the run unit must be readied.
Other areas included inthe subschema need not be readied.

Position of READY Statements

The READY statement canappear anywhere within anapplication program; however, to
avoid runtime deadlock, the best practiceis toready all areas beforeissuingany other
DML statements. A BIND RUN_UNIT statement must be processed successfully beforea
READY statement can be issued.

You canusethe READY statement in both navigational and Logical Record Facility (LRF)
environments.

»»—— READY T T N |
AREA (area-name) :I T RETRIEVAL «]J

PROTECTED UPDATE
EXCLUSIVE

Chapter 7: Data Manipulation Language Statements 249

READY

Parameters

AREA (area-name)

Opens only the specified area. Area-name must be an area includedinthe
subschema. If area-name is not specified, the READY statement opens all areas
included inthe subschema.

RETRIEVAL

Opens the area for retrieval only and allows other concurrently executing run
units to open the same area inany usage mode other than one thatis
exclusive. RETRIEVAL is the default.

UPDATE

Opens the area for both retrieval and update and allows other concurrently
executing run units to open the same area inany usage mode other thanone
thatis exclusiveor protected.

PROTECTED

Prevents concurrentupdate of the area by run units executing under the same
central version.Once a run unit has readied an area with the PROTECTED option, no
other run unitcanready that areainany UPDATE usage mode until the firstrununit
releases itby means of the FINISH statement (see FINISH earlier in this chapter). A
run unitcannot ready an area with the PROTECTED optionifanother rununithas
readied the area in UPDATE usage mode or with the EXCLUSIVE option.

If neither PROTECTED nor EXCLUSIVE is specified, the default usage mode of shared
is invoked.

Ifa READY statement would resultina usage mode conflictforanarea, while
running under the CA IDMS/DB central version, the run unitissuingthe READY is
placedinawait state on the firstfunctional databasecall.

EXCLUSIVE

Prevents concurrentuse of the area by any other run unitexecuting under the CA
IDMS/DB central version.Once a run unithas readied an area with the EXCLUSIVE
option, no other rununit canready thatarea inany usage mode until the firstrun
unitreleases it.

If neither PROTECTED nor EXCLUSIVE is specified, the default usage mode of shared
isinvoked.

Ifa READY statement would resultina usage mode conflictforanarea, while
running under the CA IDMS/DB central version, the run unitissuingthe READY is
placedina wait state on the firstfunctional databasecall.

Note: Modification statements involving areas opened in one of the update usage
modes arenot validifthey affect sets thatincluderecords inanarea opened inone
of the retrieval usage modes.

250 DML Reference Guide for PLI

READY

Example

Status Codes

The following statement readies all subschema areas ina usagemode of PROTECTED
UPDATE:

READY PROTECTED UPDATE;

Upon completion of the READY function,the ERROR_STATUS fieldinthe IDMS DB
communications block indicates the outcome of the operation:

0000
The request has been serviced successfully.
0910

The subschema specifies an access restriction that prohibits readyingthe area in the
specified usage mode.

0923

The named areais notinthe subschema.
0928

The run unithas attempted to ready anarea that has been readied previously.
0966

The areais not availablein the requested usagemode. Ifrunninginlocal mode, the

areais locked againstupdate. If runningunder the central version, either the areais
offlineto the central version, or an update usage mode was requested and the area
isinretrieval mode to the central version.

0970
The databasewill notready properly;a JCL erroris the probablecause.
0971

The page group/page range for the area being readied could not be found in the
DMCL.

0978

A READY has been issued after the firstfunctional call;itis recommended that all
areas be readied before the firstfunctional callisissued.

Chapter 7: Data Manipulation Language Statements 251

RETURN (DC/UCF)

RETURN (DC/UCF)

The RETURN statement retrieves the databasekey for anindexed record without
retrieving the record itself, thus establishing currencyinthe indexed set. The record's
symbolickey is moved into the data fields within the recordin program variablestorage.
The contents of all non-key fields for the record are unpredictable after the execution of
the RETURN verb. Optionally, the program canindicatethatthe symbolic key canbe
moved into some other specified variablestoragelocation.

Current of indexis established by:

m Successful execution of the RETURN statement, which sets current of index at the
index entry from which the databasekey was retrieved.

m Astatus code of 1707 (end of index), which sets currency on the index owner. The
DBMS returns the owner's databasekey.

m A status code of 1726 (index entry not found), which sets current of index as
follows:

— Between the two entries that are higher and lower than the specified value
- After the highestentry, ifthe specified valueis higher thanall index entries
- Before the lowest entry, ifthe specified valueis lower than all index entries

You canusethe RETURN statement in navigational and Logical Record Facility (LRF)
environments.

Note: The DML precompiler views anincorrectly formatted RETURN statement as a PL/I
RETURN functionand does not flagthe error. The incorrect RETURN DML statement is
passed to the PL/I precompiler without expansionintoa CALL statement, causing
compile-time errors.

Syntax
»»—— RETURN CURRENCY SET (index-set-name) >
FIRST
LAST
NEXT
PRIOR
»— INTO (db-key-field) T = e |
KEY INTO (symbolic-key-field)
Parameters

RETURN CURRENCY SET (index-set-name)
Identifies the indexed set from which the specified databasekey is to be returned.
FIRST

Retrieves the databasekey for the firstindex entry.

252 DML Reference Guide for PLI

RETURN (DC/UCF)

LAST
Retrieves the databasekey for the lastindex entry.
NEXT

Retrieves the databasekey for the index entry following current of index. If the
current of index is the lastentry, a status code of 1707 (end of index) is
returned.

PRIOR

Retrieves the databasekey for the index entry preceding current of index. If the
current of index is the firstentry, a status code of 1707 (end of index) is
returned.

INTO (db-key)

Identifies the field to which the databasekey is returned. Db-key is the symbolic
name of a user-defined FIXED BINARY(31) field.

KEY INTO (symbolic-key)

Saves the symbolic key (CALC, sort, orindex) of the specified record. Symbolic-key is
the name of a user-defined alphanumeric field into which the symbolic key of the
specified record will bereturned. Symbolic-key must be large enough to contain the
largestcontiguous or noncontiguous symbolic key.

Ifthe KEY INTO clauseis notspecified, the key will be moved into the corresponding
fields inthe user record's storage.

Syntax

»»—— RETURN USING (index-key-value) SET (index-set-name)

»—— INTO (db-key-field) T] ;e
KEY INTO (symbolic-key-field)

v

Parameters
RETURN USING (index-key-value)

Retrieves the databasekey for the firstindex entry whose symbolic key equals
index-key-value (If no such entry exists, a status of 1726 (index entry not found) is
returned.):

SET (index-set-name)

Identifies the indexed set from which the specified databasekey is to be
returned.

Chapter 7: Data Manipulation Language Statements 253

RETURN (DC/UCF)

INTO (db-key)

Identifies the field to which the databasekey is returned. Db-key is the
symbolic name of a user-defined FIXED BINARY (31)field.

KEY INTO (symbolic-key)

Saves the symbolic key (CALC, sort, orindex) of the specified record.
Symbolic-key is the name of a user-defined alphanumeric field into which the
symbolic key of the specified record will bereturned. Symbolic-key must be
largeenough to containthe largestcontiguous or noncontiguous symbolic key.

Ifthe KEY INTO clauseis notspecified, the key will be moved into the
correspondingfields inthe userrecord's storage.

Example
The following RETURN statement retrieves the databasekey for the firstindex entry in
the EMP_LNAME_NDX set and moves the record's symbolic key intothe INT_INDEX_KEY
field.
RETURN CURRENCY SET (BMP-LNAME-NDX)
FIRST INTO (INT-INDEX-KEY);
Status Codes

Upon completion of the RETURN function, the ERROR_STATUS fieldinthe IDMS DB
communications blockindicates the outcome of the operation:

0000
The request has been serviced successfully.

0057

A retrieval-only rununithas detected aninconsistencyinanindexthat should cause
an 1143 abend, but optional APAR bit 216 has been turned on.

1701

The area in which the object record or its index owner participates has notbeen
readied.

1707
Either the end of the indexed set has been reached or the indexed setis empty.
1725

Currency has not been established for the specified indexed set.

254 DML Reference Guide for PLI

ROLLBACK

ROLLBACK

1726
Record not found.
1763

The indexed set has not been registered with IDMSIXUD for the subschema in use.

The ROLLBACK statement rolls back uncommitted changes made to the database
through an individualrun unitor through all databasesessions associated with a task. A
task-level rollbackalso backs outall uncommitted changes made in conjunction with
scratch, queue, and print activity.

Whether the changes areautomatically backed outdepends on the execution
environment:

m Ifthe changes were made under the control of a central versionthatis journaling to
adiskfile, they are backed out automatically. Thecentral version continues to
process other applications during recovery.

m The changes are not backed out automatically under the following circumstances:

— Ifthe changes were made under the control of a central version thatis
journalingto a tape file.

— Ifthe changes were made inlocal mode.

Inthese cases,the ROLLBACK statement causes the affected areas to remain locked
againstsubsequentaccess by other databasesessions. They must be manually
recovered. If changes cannot be backed out and CONTINUE was specified on the
rollbackrequest, a non-zero error status is returned to the applicationandifthe
request was for anindividual run unit, that run unitis terminated.

Note: For more information about manual recovery, see the CA IDMS Database
Administration Guide.

If CONTINUE is notspecified, run units (and SQL sessions) impacted by the ROLLBACK
statement end, andtheir access to the databaseis terminated. If CONTINUE is specified,
impacted databasesessionsremain active after the operationis complete.

The ROLLBACK statement is used in both the navigational and logical record facility
environments. The ROLLBACK TASK statement isalsousedinanSQL programming
environment.

Currency
Followinga ROLLBACK statement, all currencies aresetto null.Unless the CONTINUE

option is specified, the issuing programor task cannot perform databaseaccess through
animpacted run unit without executing another BIND/READY sequence.

Chapter 7: Data Manipulation Language Statements 255

ROLLBACK

Syntax

Parameters

Example

Status Codes

M

»»—— ROLLBACK
L task </ L continue) <

TASK

Rolls back the uncommitted changes made by all scratch, queue, and print activity
and all top-level run units associated with the current taskand terminates those run
units. Its impacton SQL sessions associated with the task depends on whether
those sessions aresuspended and whether their transactionsareeligibleto be
shared.

More information:

For more information aboutthe impact of a ROLLBACK TASK statement on SQL
sessions,seethe CA IDMS SQL Programming Guide.

For more information aboutrun units and the impact of ROLLBACK TASK, see the CA
IDMS Navigational DML Programming Guide.

CONTINUE

Central version only. Causes the affected run units and SQL sessionstoremain
activeafter their changes arebacked out. Databaseaccess can beresumed without
reissuing BIND and READY statements.

Note: The CONTINUE option should not be used inlocal mode if databasechanges
have been made.

The following statement reverses the effects of the run unitthrough whichitisissued
and terminates the rununit:

ROLLBACK;

Upon completion of the ROLLBACK function,the ERROR_STATUS fieldinthe IDMS DB
communications block indicates the outcome of the operation:

0000
The request has been serviced successfully.
1958

CONTINUE was specified and databasechanges could not be backed out. The run
unit has been terminated.

5031

The specified request is invalid; the program may contain alogicerror.

256 DML Reference Guide for PLI

SEND MESSAGE (DC/UCF)

5058
TASK CONTINUE was specified and databasechanges could notbe backed out.
5097

An error was encountered processinga syncpointrequest; check the log for details.

SEND MESSAGE (DC/UCF)

Syntax

Parameters

The SEND MESSAGE statement sends a message to another terminal or user or to a
group of terminals or users defined as a destination duringsystem generation. The SEND
MESSAGE function does not employ the data dictionary messagearea; instead, the
system places each message ina queue, sendingthe message to the appropriate
terminal only when itis possibleto do sowithout disrupting executingtasks. Typically,
the system sends queued messages to a terminal the next time the ENTER NEXT TASK
CODE messageis displayed.

»»—— SEND MESSAGE TO DEST ID (destination-id)
E ONLY 43 USER ID (user-id) £—>
ALWAY'S LTERM ID (lterm-id)

»—— FROM (message-location) T [gNé$ﬂdEmgggg§§—{gﬁg%;’}gn)_—l— ; ———p<

ONLY/ALWAYS

Specifies whether the systemis to queue the message if the specified destination,
user, or terminal is notcurrently available:

ONLY

Sends the message immediately if the destination, user, or terminal is
available,and not to queue the message for subsequent transmissionifthe
destination, user, or terminal is not available.

Note: IfONLY is specified with the DEST ID option (described below) andif
some, but not all, of a group of users or terminals in the destinationare
available, the system will send the message to those available. The sender will
not be aware of any unsuccessful transmissions.

ALWAYS

Sends the message immediately if the destination, user, or terminal is
available,and to queue the message for later transmissionif thedestination,
user, or terminal is notavailable.

Chapter 7: Data Manipulation Language Statements 257

SEND MESSAGE (DC/UCF)

TO
Specifies the destination, user, or logical terminal to receive the message:
DEST ID (destination-id)

Identifies the recipient of the message as a destination. The specified
destination must have been defined duringsystem generation. Destination-id is
either the symbolic nameof a user-defined field that contains the destination
ID orthe ID itselfenclosed in quotation marks.

USER ID (user-id)

Identifies the user to receive a message. The specified user can be signed on to
any terminal. User-id is the symbolic nameof a user-defined field that contains
the user ID.

LTERM ID (Iterm-id)

Identifies the logical terminal to receive the message. Lterm-id is either the
symbolic name of a user-defined field that contains the terminal ID or the id
itselfenclosed in quotation marks.

FROM (message-location)

Specifies the programvariable-storage entry that contains thetext of the message
to be sent. Message-location is the symbolic name of a user-defined field. The
length of the message text is determined by one of the following specifications:

TO (end-message-location)

Indicates the end of the program variable-storage entry that contains the
message text and is specified following the lastfield in message-location.
End-message-location is the symbolic name of either a user-defined dummy
byte field or a field that contains a data item not associated with the message
text.

LENGTH (message-length)

Defines the length, in bytes, of the message text. Message-length is either the
symbolic name of a user-defined field that contains the length or the length
itself expressed as a numeric constant.

Examples

The following statement sends the message inthe TERM_MESS field to the logical
terminal KENNEDYA:

SEND MESSAGE ALWAYS
TO LTERM ID ('KENNEDYA')
FROM (TERM MESS) TO (END TERM MESS);

258 DML Reference Guide for PLI

SET TIMER (DC/UCF)

Status Codes

The following statement sends the message inthe TERM_MESS fieldto the user KYJOE2:

SEND MESSAGE
TO USER ID ('KYJOE2')
FROM (TERM MESS) TO (END TERM MESS);

The following statement sends the message inthe TERM_MESS field to the destination
ALL:

SEND MESSAGE
TO DEST ID ('ALL')
FROM (TERM MESS) TO (END TERM MESS);

Upon completion of the SEND MESSAGE function,the ERROR_STATUS fieldinthe IDMS
DC communications blockindicates the outcome of the operation:

0000

The request has been serviced successfully.
4907

An I/Oerror has occurred during processing.
4921

The specified message recipienthas not been defined.
4931

The parameter listis invalid.
4932

The derived length of the specified messagedata areais zero or negative.
4938

The specified programvariablestoragehas notbeen allocated, as required. A GET
STORAGE request must be issued.

SET TIMER (DC/UCF)

The SET TIMER statement defines an event that is to occur after a specified time interval
or cancels the effect of a previouslyissued SET TIMER request. Usingthe SET TIMER
function, a program can:

m Delaytask processingfor a specified period of time
m PostanECB at the end of a specified period of time

m Initiateataskat the end of a specified period of time

Chapter 7: Data Manipulation Language Statements 259

SET TIMER (DC/UCF)

Syntax

»»—— SET TIMER —— WAIT
—E POST

»

v

START
CANCEL

v

L INTERVAL (time-before-action-taken) SECONDS —)

A 4

v

v

L EVENT (post-ecb) JL TASK CODE (start-task-code)

\ 4

L PRIORITY (priority) l

L TIMER ID (ice-address) —|

v

—

v

L DATA FROM (start-task-data-location)

T TO (end-start-task-data-location)

Parameters

M

LENGTH (start-task-data-location)

WAIT/POST/START/CANCEL

Establishes a time-related event or cancels a previously requested time-dependent
action.

WAIT

Places theissuingtaskina waitstateand instructs thesystem to redispatch the
issuingtaskafter the specified time interval elapses. Because WAIT relinquishes
control until the time interval has elapsed, a subsequent SET TIMER request
cannot be used to cancel this WAITrequest.

POST

Posts a user-specified ECB after the specified time interval elapses;theissuing
task continues to run. If POST is specified, the EVENT parameter (described
below) must also bespecified.

START

Initiates a user-specified task after the specified time interval elapses. |f START
is specified, the TASK CODE parameter (described below) mustalso be
specified.

CANCEL

Cancels the effect of a previouslyissued SETTIMER request.

INTERVAL (time-before-action-taken) SECONDS

Specifies (for WAIT, POST, START requests only) the time in seconds from the
issuanceofa SET TIMER request atwhich the requested event will occur.
Time-before-action-taken is either the symbolic name of a user-defined field that
contains the time interval or the interval itself expressed as a numeric constant.

260 DML Reference Guide for PLI

SET TIMER (DC/UCF)

Note: For efficiency reasons, the time when the event is to occuris calculated by
addingthe time-before-action-taken valueto the time at which the last TICKER
interval expired. Therefore, the actual interval beforethe event occurs mayvary
plus or minus from time-before-action-taken by anamount up to the TICKER
interval.

For more information aboutthe TICKER interval, see the CA IDMS System
Generation Guide.

EVENT (post-ech)

Specifies (for POST requests only) the ECB to be posted. Post-ecb is the symbolic
name of a user-defined area composed of three binary fullword fields thatcontain
the ECB.

TASK CODE (start-task-code)

Specifies (for START requests only)the 1-to 8-character code of the taskto be
initiated. Start-task-code is either the symbolic name of the user-defined field that
contains the task code or the task code itselfenclosed in quotation marks. The
specified task code must have been defined to the system duringsystem generation
or atruntime with a DCMT VARY DYNAMIC TASK command.

PRIORITY (priority)

Specifies a dispatching priority for the task. Priority is either the symbolic nameof a
user-defined field that contains the priority or the priorityitselfexpressed as a
numeric constantinthe range 0 through 240. The new task's priority defaults to the
priority defined for that task code.

TIMER ID (ice-address)

Specifies (for POST, START, CANCEL requests only) the address of the interval
control element (ICE) associated with the timed event. Ice-address is the symbolic
name of a user-defined FIXED BINARY(31) field. If either POST or START has been
specified, ice-address references a field to which the system will returnthe ICE
address.If CANCEL has been specified, ice-address references the field that contains
the ICE address returned by the system followinga SET TIMER POST or SET TIMER
START request.

Note: The TIMER ID parameter must be specified with SET TIMER POST and SET
TIMER START requests ifthe program is to issuesubsequent SET TIMER CANCEL
requests.

DATA FROM (start-task-data-location)

Specifies (for START requests only) the user data to be passed to the new task.
Start-task-data-location is the symbolic name of a user-defined field that contains
the data to be passed.The length of the data areais determined by one of the
following specifications:

Chapter 7: Data Manipulation Language Statements 261

SET TIMER (DC/UCF)

TO (end-start-task-data-location)

Indicates the end of the data area being passedto the new taskandis specified
followingthe lastdata-item entry in start-task-data-location.
End-start-task-data-location is the symbolic name of either a user-defined
dummy byte field or a field that contains a data item not associated with the
data area being passed.

LENGTH (start-task-data-location)

Specifies the length, in bytes, of the data area. Start-task-data-location is either
the symbolic name of a user-defined program variablestoragefield that
contains the length of the data area or the length itself expressed as a numeric
constant.

Note: When the new taskis started, the first programwhich receives control in the
new task canaccess this data by observingthe following conventions:

m The receiving program must access the data as though ithad been passed by an
Assembler program.

m The data will be preceded by a half-word field containingthelength of the
original data.

Examples

The following statement places the issuingtaskinawaitstate and redispatches itafter
nine seconds have elapsed:

SET TIMER WAIT
INTERVAL (9) SECONDS;

The following statement posts the event PODB after fiveseconds have elapsed:

SET TIMER POST
INTERVAL (5) SECONDS
EVENT ('PODB')

TIMER ID (TMR ID);

The followingcode declares a data field, starts the SPSG task after five seconds have
elapsed,and passes the specified data to the task:

DECLARE 1 PASSED DATA,
2 PASSED FIXED FIXED,
2 PASSED CHAR CHAR(20),
2 PASSED END CHAR(1);
SET TIMER START
INTERVAL (5) SECONDS
TASK CODE ('SPSG')
DATA FROM (PASSED DATA) TO (PASSED END);

262 DML Reference Guide for PLI

SNAP (DC/UCF)

The following code in the program invoked by task SPSG establishes accessto the data
passed by the above SET TIMER START command:

SPSGPRG: PROC (PARMIN DUMMY)
OPTIONS (MAIN,REENTRANT) REORDER;
DECLARE 1 PARMIN DUMMY FIXED;
DECLARE 1 PARMIN BASED (ADDR(PARMIN DUMMY)),
2 PASSED DATA LENGTH FIXED BIN(15),
2 PASSED DATA,
3 PASSED FIXED FIXED,
3 PASSED CHAR CHAR(20);

The following statement cancels the timed event referenced by TMR-ID:

SET TIMER CANCEL
TIMER ID (TMR ID);

Status Codes

Upon completion of the SET TIMER function, the ERROR_STATUS fieldinthe IDMS DC
communications blockindicates the outcome of the operation:

0000
The request has been serviced successfully.
3516

The interval control element (ICE) specified fora SET TIMER CANCEL request cannot
be found.

3532

The derived length of the data area is negative.

SNAP (DC/UCF)

The SNAP statement requests a memory snap of one or all of the followingareas:

m Task areas—Includes all resources associated with the issuingtask, as well as the
task control element (TCE) and dispatch control element (DCE) for the task.
Information displayed by the snapis formatted with headers.

m System areas—Includes areas for all tasks and internal system control blocks. Task
areas arenot itemized separately.Information displayed by the snapis formatted
with headers.

Chapter 7: Data Manipulation Language Statements 263

SNAP (DC/UCF)

m Specified locations in memory—Includes one or more areas of memory specifically
requested by location andlength. The information displayedis notformatted with
headers.

The areas requested inthe SNAP request are written to the system log file, whichis
defined during system generation as a sequential datasetor a dictionaryarea.

Syntax
»»—— SNAP >
L TITLE (title) -
T
»—v— ALL I ; >
— SYSTEM
— TASK
T
“—v— FROM (begin-snap-location) TO (end-snap-location)_‘,—-‘—
T LENGTH (snap-length)
Parameters

TITLE (title)

Specifies the titleto be printed at the beginning of each page of the snap. If
requested, atitle must contain 134 characters;the firstcharacteris reserved for use
by the system, and the second character must be a valid ASA carriage control
character (blank, 0, 1, +, or -). Title is the symbolic name of a user-defined field that
contains the title.

ALL/SYSTEM/TASK
Requests a formatted snap of specified areas.
ALL

Writes a snap of both taskand system areas.Areas associated with the issuing
taskare formatted separately from the system areas.(Taskareas arealso
included with the system areas but arenot itemized by task.)

SYSTEM
Writes a snap of system areas.
TASK
Writes a snap of taskareas.
FROM (begin-snap-location)

Werites a snap of the specified memory location. Begin-snap-location is the symbolic
name of a user-defined field that indicates the startinglocation of the area to be
snapped.

264 DML Reference Guide for PLI

STARTPAGE (DC/UCF)

Example

Status Codes

TO (end-snap-location)

Indicates the end of the area to be snappedand is specified followingthe last
data-item to be includedin the snap. End-snap-location is the symbolic name of
either a user-defined dummy byte field or a field that contains a data item not
associated with the area requested inthe snap.

LENGTH (snap-length)

Defines the length, in bytes, of the area to be included inthe snap. Snap-length
is either the symbolic name of a user-defined field that contains the length of
the data area, or the length itself expressed as a numeric constant.

The following Example illustrates a SNAP statement that writes a memory snap of the
specified memory location:

SNAP TITLE (SNAP_TITLE)
FROM (START LOC) TO (END LOC);

Upon completion of the SNAP function,the ERROR_STATUS fieldinthe system
communications blockindicates the outcome of the operation:

0000
The request has been serviced successfully.

4032

The derived length of the specified snap storageareais zero or negative.

STARTPAGE (DC/UCF)

Syntax

The STARTPAGE statement initiates a pagingsession.ltcan be followed by any number
of DML commands, including MAP IN and MAP OUT commands. The map pagingsession
is terminated by an ENDPAGE command (or by another STARTPAGE command, if oneis
encountered before an ENDPAGE command).

Note: Only one pageablemap canbe handled by the statements enclosed by a given
STARTPAGE/ENDPAGE pair.

»»—— STARTPAGE session (map-name)

> T
WAIT BACKPAGE « :' |: UPDATE « :l ‘: AUTODISPLAY « :l
NOWAIT « — NOBACKPAGE BROWSE NOAUTODISPLAY

RETURN —

v

»

Chapter 7: Data Manipulation Language Statements 265

STARTPAGE (DC/UCF)

Parameters

map-name

Specifies the 1-to 8-character name of a map specified by the DECLARE MAP
statement, as described in DML Precompiler-Directive Statements. The STARTPAGE
command must precede any commands (such as MAP IN) that specify operations to
be performed usingthe map.

WAIT/NOWAIT/RETURN

Specifies the runtime flow of control when the operator presses a control key.

WAIT

Specifies that runtime mapping automatically handles pagingtransactionsthat
do not causedata to be updated. Control is passed to the programwhen the
terminal operator presses a control key that requests an update or nonpaging
operation.

NOWAIT

Specifies that runtime mapping automatically handles all pagingand update
transactions. Control is passed to the programonly when neither an update nor
a pagingrequest is made when the operator presses a control key. NOWAIT is
the default.

RETURN

Specifies that runtime mapping does not handleany terminal transactionsin
the pagingsession.Control is passed to the programwhenever the operator
presses a control key.

Runtime mapping does not update program variablestorageunless a MAP IN
command is issued. In cases where the operator can update data,itis
recommended that WAIT or RETURN be specified for the sessionsothatdata
canbe retrieved asitis updated.

BACKPAGE/NOBACKPAGE

Specifies whether the terminal operator candisplaya previous map page.

BACKPAGE

Specifies that the operator candisplay previous pages of detail occurrences.
BACKPAGE is the default.

266 DML Reference Guide for PLI

STARTPAGE (DC/UCF)

NOBACKPAGE

Specifies that the operator cannotdisplay any pageof detail occurrences with a
page number lower than the current page number. Modifications madeona
given page of the map must be requested by MAP IN statements inthe
application programbefore a MAP OUT RESUME command is issued. The
previous page of detail occurrences is deleted from the session scratch record
when a new map pageis displayed.

Note: NOBACKPAGE cannot be assigned if UPDATE and NOWAIT are specified
for the session.

UPDATE/BROWSE
Specifies whether the terminal operator can modify map data fields.
UPDATE

Specifies that the terminal operator can modify variablemap fields, subject to
restrictions specified for the map either at map definition time or by
statements inthe program. UPDATE is the default.

BROWSE

Specifies that the terminal operator can modify only the page field (ifany) of
the map. The MDTs for variablefields onthe map canbe set on onlyaccording
to specifications madeeither inthe map definition or by statements in the
program.

AUTODISPLAY/NOAUTODISPLAY

Specifies whether to override the automatic mapout that occurs when the first
page of a map is built.

AUTODISPLAY

Enables automatic display of the pageable map's first page. AUTODISPLAY is
the default.

NOAUTODISPLAY

Disables automatic display of the pageablemap's firstpage. You display the
firstpage manually by usinga MAP OUT RESUME statement.

Example

The following statement initiates a pagingsessioninwhich theoperator can page
forward and backward within the pageable map but can make no modifications:

STARTPAGE SESSION (EMPMAPPG)
NOWAIT BACKPAGE BROWSE;

Chapter 7: Data Manipulation Language Statements 267

STORE RECORD

Status Codes

Upon completion of the STARTPAGE function, the ERROR_STATUS fieldinthe IDMS DC
communications blockindicates the outcome of the operation:

0000
The request has been serviced successfully.
4604

A pagingsessionwas alreadyin progress when this STARTPAGE command was
received. An implied ENDPAGE was processed before this STARTPAGE was
successfully executed.

STORE RECORD

The STORE RECORD statement performs the followingfunctions:
m Acquires spaceand a databasekey for a new record occurrence inthe database

m Transfers the value of the appropriateelements from program variablestorageto
the specified record occurrence inthe database

m Connects the new record occurrence to all sets for whichitis defined as an
automatic member

Steps Before Executing STORE RECORD

Before executing the STORE RECORD statement, satisfy thefollowingconditions:

m Ready all areas affected either implicitly or explicitly in one of the update usage
modes (see READY, earlierinthis chapter).

m Make surethe program initializes all control elements (that is, CALC andsorted set
control fields).

m Ifthe record being stored has a location mode of DIRECT, initialize the contents of
DIRECT_DBKEY (positions 197-200 of the IDMS communications block, as described
in Communications Blocks and Error Detection) with a suggested db-key valueor a
null db-key valueof -1.

m Ifthe recordis to be stored ina native VSAM relative-record data set (RRDS),
initialize the contents of DIRECT_DBKEY with the relative-record number that
represents the location within the data set where the recordis to be stored.

m Includeinthe subschema all sets in which the named record is definedas an
automatic member, andthe owner record of each of those sets. Sets for which the
named recordis defined as a manual member need not be defined inthe
subschema sincethe STORE RECORD statement does not access thosesets. (An
automatic member is connected automatically to the selected set occurrence when
the record is stored; a manual member is not connected automatically to the
selected set occurrence.)

268 DML Reference Guide for PLI

STORE RECORD

Ifthe record being stored has a location mode of VIA, establish currency for that
VIA set, regardless of whether the record being stored is an automatic or manual
member of that set. Current of the VIA set provides the suggested page for the
record being stored.

Establish currency for all set occurrences in which the stored record will participate
as anautomatic member. Depending on set order, the STORE RECORD statement
uses currency as follows:

— Ifthe named record is defined as a member of a set thatis ordered FIRST or
LAST, the record thatis current of set establishes theset occurrenceto which
the new record will be connected.

— Ifthe named record is defined as a member of a set thatis ordered NEXT or
PRIOR, the record thatis currentof set establishes theset occurrence into
which the new record will be connected and determines its position within the
set.

— Ifthe named record is defined as a member of a sorted set, the record thatis
current of set establishesthe set occurrence into which the new record will be
connected. The DBMS compares the sortkey of the new record with the sort
key of the current record of set to determine ifthe new record can be inserted
into the set by movement inthe next direction.If itcan, the current of set
remains positioned atthe record thatis current of set and the new recordis
inserted. If itcannot, the DBMS finds the owner of the current of set (not
necessarily the current occurrence of the owner record type) and moves as far
forwardinthe next directionasis necessaryto determine the logicalinsertion
point for the new record.

Location Modes

A recordis stored in the databasebased on the location mode specified in the schema
definition of the record. The location modes are as follows:

CALC—The record being stored is placed on or near a page calculated by IDMS DB
from a control element (the CALC key) in the record.

VIA—The record being stored is placed either as closeas possibleto the current of
set (if current of set and member record occurrences sharea common page range)
or inthe same relative positioninthe member record's page range as the current of
setisinits associated page range (if current of set and member record occurrences
do not sharea common page range).

Chapter 7: Data Manipulation Language Statements 269

STORE RECORD

Syntax

Example

m DIRECT—The record being stored is placed on or near a user-specified page as
determined by the valueinthe DIRECT_DBKEY field of the IDMS DB
communications block. If DIRECT_DBKEY contains a valid db-key for the record
being stored, the DBMS assigns a db-key on the same page if spaceis availableto
the new record occurrence. Otherwise, it assignsthenext availabledb-key, subject
to the page-range limits of the record being stored. If DIRECT_DBKEY contains a
valueof -1, the firstdb-key availableinthe page range in which the record is to be
stored is assigned to the record. Inany case, the db-key of the stored record
occurrence is returned to DBKEY (positions 13-16inthe CA IDMS/DB
communications block). The contents of DIRECT_DBKEY remain unchanged.

Currency

Following successful execution ofa STORE RECORD statement, the stored record
becomes current of run unit, its record type, its area,andall sets in whichitparticipates
as owner or automatic member.

»»—— STORE RECORD (record-name);

)

Parameter
record-name

Defines the named record occurrence, as specifiedin programvariablestorage.
Record-name must specify a record type includedinthe subschema.

The ordering rules for each set govern the insertion point of the specified recordin
the set.

The followingfigureillustrates the steps necessaryto add a new EMPLOYEE record to
the database.Since EMPLOYEE is defined as an automatic member of both the
DEPT_EMPLOYEE and OFFICE_EMPLOYEE sets, currency must be established in each of
those sets before issuingthe STORE RECORD.

270 DML Reference Guide for PLI

STORE RECORD

The firsttwo DML statements establish OFFICE 1 and DEPARTMENT as current of the
OFFICE_EMPLOYEE and DEPT_EMPLOYEE sets, respectively. When EMPLOYEE 27 is
stored, itis connected automaticallytoeachset.

DEPARTMENT OFFICE
a10 |F |56 |CALC 450 |F |7ﬁ |CALC
DEPT_ID_0410 [on OFFICE_CODE_0450 [on
ORG_DEMO_REGION ORG_DEMO_REGION

DEPT_EMPLOYEE QFFICE_EMPLOYEE
EMPLOYEE NPO OA 10 0A
o EMPLOYEE ASC (EMP_LAST_NAME_0415 ASG (EMP_LAST_NAME_0415
28 476 EMP_FIRST_NAME_0415) DL EMP_FIRST_NAME_0415) DL
4 y]
EMPLOYEE

EMPLOYEE 415 [r [1s [cac

472

EMP_ID_0415 DN

EMP_DEMO_REGION

CURRENCIES
RUN UNIT, RECGRD, SET, AREA

z =
w/8/5/38
N 8] & g
& o /a/f 5/ 5
n [e] o
£/ &/ & 4 g/ S/ 8
= ~ 2 w 5 ol & 0
SIE1& g8 E]E) 8
Q a
e} [M & I & a0
T Q g/ 8 Q o Q &
OFFICE_CODE = OFFICE_CODE_IN;
FIND CALC RECORD (OFFICE); ;] ;
DEPT_ID =DEPT_ID_IN;
FIND CALC RECORD (DEPARTMENT); | 3100 [3100 113100 1| 3100
STORE RECORD (EMPLOYEE); 27 | 3100 27 1 27 27 | 3100 27

Status Codes

Upon completion of the STORE RECORD function,the ERROR_STATUS fieldinthe IDMS
DB communications blockindicates the outcome of the operation:

0000
The request has been serviced successfully.
1201

The area in which the named record is to be stored has not been readied.

Chapter 7: Data Manipulation Language Statements 271

STORE RECORD

1202

The suggested DIRECT_DBKEY valueis not within the page rangefor the named
record.

1205

Storage of the record would violatea duplicates-not-allowed option for a CALC
record, a sorted set, or anindex set.

1208

The named record is notinthe subschema.The program has probablyinvoked the
wrong subschema.

1209
The named record's area has not been readied in one of the update usage modes.
1210

The subschema specifies anaccess restriction that prohibits storage of the named
record.

1211
The record cannotbe stored inthe area because of insufficientspace.
1212

The record cannotbe stored because no db-key is available. This is a system
internal error.

1218
The record has not been bound.
1221

An area other than the area of the named record occurrence has been readied with
anincorrectusage mode.

1225

A set occurrence has not been established for each set in which the named record is
to be stored.

1233

At leastone setin whichthe record participates as an automatic member has not
been includedinthe subschema.

1253

The subschema definition of an indexed set does not match the indexed set's
physicalstructureinthe database.

1254

Either the prefix length of an SR51 recordis less than zero or the data length is less
than or equal to zero.

272 DML Reference Guide for PLI

STORE RECORD (LRF)

1255
An invalid length has been defined for a variablelength record.
1260

A record occurrence that was encountered inthe process of connecting automatic
sets is inconsistent with the set named inthe ERROR_SET field of the CA IDMS/DB
communications block; probablecauses includea broken chain orimproper
databasedescription.

1261

The record cannotbe stored because of broken chains inthe database.

STORE RECORD (LRF)

Syntax

Parameters

The STORE RECORD statement updates the databasewith field values for a
logical-record occurrence. STORE RECORD does not necessarilyresultinstoring new
occurrences of all or any of the databaserecords that participateinthe logical record;
the path selected to servicea STORE RECORD logical-record request performs whatever
databaseaccess operations the DBA has specified to servicethe request. For Example, if
anexisting department gets a new employee, only the new employee information will
be stored inthe database;the department information need not be stored inthe
databasebecauseit already exists.

LRF uses field values presentin the variable-storagelocationreserved for the logical
record to make the appropriate updates to the database.You canoptionallynamean
alternativestorage location fromwhich the new field values areto be obtained to
perform the requested store operation.

»»—— STORE RECORD (logical-record-location)

v

v

>
L FROM (alt-logical-record-location) L WHERE (boolean-expression)]

M

)

L ON LR STATUS (path-status) imperative-statement]

logical-record-name

Names the logicalrecordto be stored. Unless the FROM clause(seebelow) is
included, LRF uses field values present in the variable-storagelocation reserved for
the specified logical record to make the appropriate updates to the database.
Logical-record-name must specify a logical record defined in the subschema.

Chapter 7: Data Manipulation Language Statements 273

STORE RECORD (LRF)

Example

FROM (alt-logical-record-location)

Names analternativevariablestoragelocationthatcontains the field values to be
used to make appropriateupdates to the database. When storinga logical record
that has previously been retrieved into an alternativevariablestoragelocation, use
the FROM clauseto name the same area specifiedin the OBTAIN request. If the
FROM clauseisincludedinthe STORE RECORD statement,
alt-logical-record-location must identify a record location defined in program
variablestorage.

WHERE (boolean expression)
Specifies selection criteria to be applied to the object logical record.

For details on codingthe WHERE clause, see Logical-Record Clauses (WHERE and
ON) atthe end of this chapter.

ON LR_STATUS (path-status) imperative-statement

Specifies the action to be taken if path-status is returned to the LR_STATUS fieldin
the LRC block. Path-status must be a 1- to 16-character alphanumeric value.

For details on codingthis clause, see Logical-Record Clauses (WHERE and ON) at the
end of this chapter.

The following Example illustrates the steps necessaryto store a new logical record,
EMP-INSURANCE-LR, for a given employee:

EMP_ID 0415 = EMP ID IN;

INS PLAN CODE 0435 = INS PLAN IN;
SELECTION DATE 0400 = S DATE IN;
TERMINATION DATE 0400 = T DATE IN;
TYPE 0400 = TYPE IN;

INS PLAN CODE 0400 = PLAN IN;
STORE RECORD (EMP_INSWRANCE LR);

The followingfigureillustrates thenew occurrence of the record EMP_INSURANCE_LR.
The new occurrence of EMP_INSURANCE_LR consists of EMPLOYEE 149, INS_PLAN 001,
and COVERAGE 'D'. The COVERAGE occurrencerepresents the only data physically
added to the database.

EMPLOYEE INS-PLAN COVERAGE
149 002 M
149 002 F

ONE OCGURRENCE .
149 001 %%

OF EMP-INS-LR 2

274 DML Reference Guide for PLI

TRANSFER (DC/UCF)

TRANSFER (DC/UCF)

The TRANSFER statement is used to:

m Establishlinkagewith a specified programandto pass control and anoptional
parameter listtothat program. The program issuingthe TRANSFER RETURN request
expects return of control at the instructionimmediately following the TRANSFER
statement when the linked program terminates or issues a DCRETURN request.

m Transfer control and an optional parameter listto a specified program. The program
issuingthe TRANSFER NORETURN request does not expect return of control.

Passing Parameters from a Non-PL/I Program

Syntax

If parameters are passedto a PL/l program from a non-PL/l program (CA ADS, COBOL,
and Assembler), special codemustbe used inthe PL/I program. A partial sampleof this
code is shown below:

SAMPPROC: PROCEDURE (F1,F2,F3) OPTIONS (MAIN,REENTRANT);

DCL (F1,F2,F3) POINTER;

DCL (SAMPSUBS SUBSCHEMA, SAMPSCHY SCHEMA) MODE (IDMS DC) DEBUG;
DCL IDMS ENTRY OPTIONS (INTER,ASM);

DCL IDMSP ENTRY;

DCL PASSED FIELD 1 FIXED BIN (31) BASED(ADDR(F1));

INCLUDE IDMS (SUBSCHEMA CTRL BASED(ADDR(F2)));

INCLUDE IDMS (RECORD AA BASED(ADDR(F3)));

rest of code

Here, a non-PL/l program has transferred control to this sample program, passingthree
parameters. The firstis binary fullword. The second is the address of the subschema
control block that the program will use. The thirdis an CA IDMS/DB record. Note that
dummy parameters are set up to provideaddresses on which to basethe structures that
areactually passed.

Refer to the PL/I programmer's reference for your site for more information on passing
parameters to a PL/l programfrom an Assembler program.

Note: The section (inthe samereference) on invoking PL/I programs from COBOL
programs is not relevant. Ina DC/UCF environment, you must code the PL/I programas
shown in the previous sample.

;>
RETURN [| . — _l
LINK —— (—v— parameter)
NORETURN <« —

»»— TRANSFER TO (program-name) E
XCTL

Chapter 7: Data Manipulation Language Statements 275

TRANSFER (DC/UCF)

Parameters
TO (program-name)
Specifies the 1-to 8-character name of the program to which control is transferred.
Program-name is either the symbolic nameof a user-defined field that contains the
program name, or the name itselfenclosedin quotation marks.
RETURN/NORETURN
Specifies whether control will be returned to the calling program.
RETURN
Establishes linkage with the specified program, expecting return of control.The
keywords RETURN and LINK are synonymous.
NORETURN
Transfers control to the specified program, not expecting return of control.The
keywords NORETURN and XCTL are synonymous.NORETURN is the default.
parameter
Passes oneor more parameters (data items) to the programreceiving control.
Parameter is the symbolic name of a user-defined field that contains the names of
the data items to be passed. Multiple parameter specifications mustbe separated
with a blank.
To useparameter, the DECLARE IDMSP ENTRY statement is required. For details on
this PL/I declarative, see Required PL/I Declaratives.
If parameter is specified, the data items being passed are defined in program
variablestoragefor both the calling programandthe linked program. The program
receiving control mustincludea corresponding parameter clauseinits PROCEDURE
statement.
Examples

The following statement transfers control to the program inthe PROGRAM_NAME field;
the issuing programexpects return of control:

TRANSFER TO (PROGRAM_NAME)
LINK;

The following statement transfers control to PROGRAMD and passes three data items
(FIELD_1, FIELD_2, and FIELD_3) to the program; the issuing programdoes not expect
return of control:

TRANSFER TO ('PROGRAMD')
NORETURN
(FIELD 1, FIELD 2, FIELD 3);

276 DML Reference Guide for PLI

WAIT (DC/UCF)

Status Codes

Upon completion of the TRANSFER function,the ERROR_STATUS fieldinthe IDMS DC
communications blockindicates the outcome of the operation:

0000

The request has been serviced successfully.
3020

The request cannotbe serviced becausean 1/0, program-not-found, or potential
deadlockerror has occurred.

WAIT (DC/UCF)

The WAIT statement relinquishes control either to the system, pending completion of
one or more events, orto a higher priority ready-to-runtask. If control is relinquished to
waitfor the completion of one or more events, an event control block (ECB) must be
defined for each event. If an ECB is already posted when the WAIT is issued, the task is
redispatched immediately and control does not pass to another task.

Syntax
L rVENT (ermy
p»—— WAIT LONG < v— EVENT (ecb) . >
L SHorT EVENT NAME (ecb-id)
REDISPATCH
L STALL INTERVAL (stall-interval) —I
Parameters

LONG/SHORT
Specifies whether the waitis expected to be of long-term or short-term duration.
LONG

Specifies that the waitis expected to be long-term. LONG should be specified
for all waits expected to lasta second or more (for Example, terminal input).
LONG is the default.

SHORT

Specifies that the waitis expected to be short-term. SHORT should be specified
for all waits expected to lastless thana second (for Example, a disk1/0).

Chapter 7: Data Manipulation Language Statements 277

WAIT (DC/UCF)

EVENT/EVENT NAME
Specifies an event upon whichthe issuingtaskisto wait.
EVENT (ecb)

Defines one or more ECBs upon which the task will wait. ecb is the symbolic
name of a user-defined area that contains three binary fullword fields that

containthe ECB. Multiple EVENT parameters must be separated by at leastone
blank.

EVENT NAME (ecb-id)

Specifies the 4-character symbolic ID of the ECB upon which the task will wait.
Ecb-id is either the symbolic nameof a user-defined field that contains the ECB
ID, or the IDitselfenclosed in quotation marks. Multiple EVENT NAME
parameters cannotbe specified.

REDISPATCH

Specifies that the issuingtask wishes to relinquish control to any higher priority
ready-to-run task before being redispatched.

STALL INTERVAL (stall-interval)

Indicates the time, in wall-clock seconds, thatthe system is to suspend processing
of the issuingtask. Stall-interval is the symbolic name of a user-defined fixed binary
field containingthe stall interval, or the interval itself expressed as a numeric
constant.

Example

The following statement requests a short-term wait on the event PODB:

WAIT
SHORT
EVENT NAME ('PODB');

Status Codes

Upon completion of the WAIT function, the ERROR_STATUS fieldinthe IDMS DC
communications blockindicates the outcome of the operation:

0000
The request has been serviced successfully.
3101

To waiton the specified ECB would causea deadlock.

278 DML Reference Guide for PLI

WRITE JOURNAL (DC/UCF)

WRITE JOURNAL (DC/UCF)

Syntax

Parameters

The WRITE JOURNAL statement writes a task-defined record to the journal file. Records
written to the journal file with the WRITE JOURNAL function will beavailableto
user-defined exit routines duringa task-or system-initiated rollback.

\ 4

»»—— WRITE JOURNAL
|: WAIT ﬁ |: SPAN < j
NOWAIT < NOSPAN

»—— FROM (record-location) T TO (end-record-location) ;| —————»«
LENGTH (record-length)

WAIT/NOWAIT

Specifies whether the issuingtaskis towaitfor completion of the WRITE JOURNAL
function before resuming execution:

WAIT

Specifies that the issuingtask will waitfor completion of the physicall/O
associated with the WRITE JOURNAL function before resuming execution. This
option will causethesystem to write a partially filled buffer to the journal file.

NOWAIT

Specifies that the issuingtask will not waitfor completion of the WRITE
JOURNAL function; the journal record will remainin a storage buffer until a
future request necessitates writing the buffer to the journal file. NOWAIT is the
default.

SPAN

Indicates thatthe system will writethe record across several journalfileblocks, if
necessary.SPAN is the default.

Note: In general, the SPAN option provides better spaceutilizationinthejournal
filethan NOSPAN becauseitincreases theaverage fullness of each block.

NOSPAN

Indicates thatthe system will writethe recordto a singlejournal fileblock;ifitis
longer than the journal block, therecord will besplit.

When arecord is shorter than a journal fileblock, based on spaceavailablein the
current journal block, the system will either placethe record inthe block, splitit
across multipleblocks (SPAN), or write it to a new block after the current blockis
written (NOSPAN).

Chapter 7: Data Manipulation Language Statements 279

WRITE JOURNAL (DC/UCF)

The following considerationsapply to usingan exit routine to retrieve journal file
records duringrecovery:

m |fa WRITEJOURNAL statement issued before a failurespecified the SPAN
option, records may have been written across several journal blocks. To
retrieve these records, the exit routine will beinvoked once for each segment
of each record to be retrieved.

m Ifa WRITEJOURNAL statement issued before a failurespecified the NOSPAN
option andrecords written to the journal fileareshorter than journal blocks,
the exit routine need only be concerned with the complete records.

FROM (record-location)

Defines the program variable-storage entry of the record to be written to the
journal file. Record-location is the symbolic name of a user-defined field. The length
of the record area is determined by one of the followingspecifications:

TO (end-record-location)

Indicates the end of the record area to be written to the journal fileandis
specified followingthe lastdata-itementry in record-location.
End-record-location is the symbolic name of either a user-defined dummy byte
field or a field that contains a data item not associated with the record being
written to the journal file.

LENGTH (record-length)

Defines the length, in bytes, of the record to be written to the journal file.
Record-length is either the symbolic name of the user-defined field that
contains the length, or the length itself expressed as a numeric constant.

Example

The following statement writes the JOURNAL_DATA record to the journal file, spanning
itacross several blocksif necessary:

WRITE JOURNAL SPAN
FROM (JOURNAL DATA) TO (END JOURNAL DATA);

Status Codes

Upon completion of the WRITE JOURNAL function,the ERROR_STATUS fieldinthe IDMS
DC communications blockindicates the outcome of the operation:

0000
The request has been serviced successfully.
5002

Storage is notavailablefor the required control blocks.

280 DML Reference Guide for PLI

WRITE LINE TO TERMINAL (DC/UCF)

5032
The derived length of the specifiedjournal recordis zero or negative.
5097

An invalid status has been received from DBIO/DBMS; check the system log for
details.

WRITE LINE TO TERMINAL (DC/UCF)

The WRITE LINE TO TERMINAL statement transfers data from program variablestorage
to aterminal. WRITE LINE TO TERMINAL also establishes, modifies, and deletes page
header lines.

Data transfers requested by WRITE LINE TO TERMINAL statements can be synchronous
or asynchronous:

m Synchronous—After asynchronous request, control passes to the system. The
system places the issuingtaskinaninactivestate. For non-3270 devices, control
does not return to the issuing programuntil the WRITE LINE TO TERMINAL request
is complete. For 3270-type devices, all lines of output are saved in a buffer; the
buffer is not transmitted to the terminal until itis full.

The transfer of a lineto the buffer will resultina processing delay; however, control
returns to the program immediately followingthe request. Ifthe lineof data fills
the buffer, the entire page of data must be transmitted to the terminal.In this case,
control does not return to the issuing programuntil the terminal operator responds
by pressing ENTER. Thus, the program is made conversational.

m Asynchronous—After anasynchronous request, control returns immediately to the
issuing program. Thereafter, each time the programissues a linemode I/O request,
the system automatically checks to determine ifthe lastasynchronousrequesthas
completed and, therefore, whether a new data transfer canbe initiated.

With asynchronous requests, programs can buffer all required pages of output
without suspendingtask execution duringthe actual transmission of data. However,
the task canoptionally terminate itself, thereby freeing resources and allowingthe
terminal operator to review the buffered output.

The system processes I/O requests inthe sequence received from the task; thus, ifa
program issues a synchronous WRITELINE TO TERMINAL request after issuingoneor
more asynchronous requests, the system will complete all I/O requests before returning
control to the issuingprogram.

Chapter 7: Data Manipulation Language Statements 281

WRITE LINE TO TERMINAL (DC/UCF)

The WRITE LINE TO TERMINAL request issued automatically by the system to empty
partially filled buffers upon completion of a taskis synchronous;therefore, the terminal
operator canview all screens and catch up with processingatthattime. Ifan application
allows theterminal operator to interrupt or terminate processingatsome pointwithina
task,a synchronous WRITELINE TO TERMINAL request must be issued to suspend
processing whileawaitingan operator response.

Syntax
»»—— WRITE LINE TO TERMINAL T a
WAIT <:| |: NEWPAGE :I NOBACKPAGE
NOWAIT ERASE
»—— FROM (output-data-location) T TO (end—output-data—location)_—l—b
LENGTH (output-data-length)
L HEADER (header-1ine-number) —J
Parameters

WAIT

Specifies that the write operation is synchronous;the issuingtaskautomatically
relinquishes control and mustwaitfor completion of the output operation before
processingcan continue. WAIT is the default.

NOWAIT

Specifies that the write operation is asynchronous; the issuing task continues
executing.

NEWPAGE

Writes the output data linebeginningon a new page. For 3270-type devices, the
NEWPAGE option forces the system to output the contents of the current buffer,
even ifthe buffer is not full. The keywords NEWPAGE and ERASE are synonymous.

NOBACKPAGE

Specifies (for 3270-type devices only) that pages output ina scratcharea arenot to
be kept. If NOBACKPAGE is specified, the terminal operator canview only the
current page of output. NOBACKPAGE is valid only with the first1/O request inaline
mode session.

FROM (output-data-location)

Identifies the programvariable-storage entry of the data to be transferred to the
terminal device, or the page-header line being created, modified, or deleted.
Output-data-location is the symbolic name of a user-defined field. The length of the
output data stream is determined by one of the followingspecifications:

282 DML Reference Guide for PLI

WRITE LINE TO TERMINAL (DC/UCF)

TO (end-output-data-location)

Indicates the end of the program variable-storage entry that contains the
output data stream and is specified following the lastdata-itementry in
output-data-location. End-output-data-location is the symbolic name of either
a user-defined dummy byte field or a field that contains a data item not
associated with the output data.

LENGTH (output-data-length)

Defines the length, in bytes, of the output data area. Output-data-length is
either the symbolic nameof a user-defined field that contains the length of the
data area, or the length itself expressed as a numeric constant.

Note: Ifthe WRITE LINE TO TERMINAL statement is being used to delete a
page-header line, output-data-length must be zero.

HEADER (header-line-number)

Specifies the number of the page header linebeingcreated, modified, or deleted.
Header-line-number is either the symbolic name of a user-defined field that
contains the header linenumber, or the header linenumber itself expressed as a
numeric constant.

Examples
The following statement defines the valueof a data area as a header to be displayed at
the top of each new page written to the terminal:
WRITE LINE TO TERMINAL
FROM (EMPL HEAD) TO (END EMPL HEAD)
HEADER (1);
The following statement writes the valueinthe specified data area to a new page on the
terminal:
WRITE LINE TO TERMINAL
NOWAIT NEWPAGE
FROM (EMPL RPT) LENGTH (60);
Status Codes

Upon completion of the WRITE LINE TO TERMINAL function, the ERROR_STATUS fieldin
the IDMS DC communications block indicates the outcome of the operation:

0000
The request has been serviced successfully.
4707

A logical or permanent I/O error has occurred during processing.

Chapter 7: Data Manipulation Language Statements 283

WRITE LOG (DC/UCF)

4731

The linerequest block (LRB) contains aninvalidfield, indicatinga possibleerrorin
the program's parameters.

4732
The derived length of the specified lineoutput areais zero or negative.
4738

The specified programvariable-storage entry has not been allocated as required. A
GET STORAGE request must beissued.

4743

The linel/O session has been canceled;the terminal operator has pressed CLEAR
(3270s), ATTENTION (2741s), or BREAK (teletypes).

WRITE LOG (DC/UCF)

The WRITE LOG statement retrieves a predefined message from the message area of the
data dictionaryand optionally writes the message to a specified locationin program
variablestorage. Retrieved messages are sent to the destination specifiedin the
message definition; typical destinationsarethe operator's console and the system log
file.If the operator's console has been defined as the message destination, the WRITE
LOG statement canrequest a reply. When a replyis requested, control is not returned

to the issuingtaskuntil thereply is received.

Message ID and Severity Code

The message ID specifiedinthe WRITE LOG statement is a 7-digitnumber. The firstsix
(most significant) digits makeup the actual messagelD used to retrieve the message
from the data dictionary;the seventh digitis a severity code. This severity code s
predefined inthe dictionaryandis retrieved along with the message text to indicatethe
actionto be taken after the message is written to the log. The followingtableshows
severity codes and corresponding systemactions.

Severity code Corresponding action by the system

0 Return control to the issuing programand continue processing.

1 Snap all taskresources and return control to the issuing
program.

2 Snap all systemareas and return control to the issuing
program.

3 Snap all taskresources and abend the task with a taskabend

code of D002.

284 DML Reference Guide for PLI

WRITE LOG (DC/UCF)

Severity code Corresponding action by the system

4 Snap all systemareas and abend the task with a taskabend
code of D0O02.

5 Terminate the task with a taskabend code of D002.

6 Undefined.

7 Undefined.

8 Snap all systemareas and abend the system with a system

abend code of 3996.

9 Terminate the system with a system abend code of 3996.

Message IDs That Are Not in the Dictionary

Ifa WRITE LOG statement specifies a messagelD thatis notinthe dictionary, the system
will usea prototype message but will performthe action associated with the severity
code specifiedinthe WRITE LOG request.

Messages Containing Symbolic Parameters

Messages stored in the data dictionary can contain symbolic Parameters. Symbolic
Parameters, identified by an ampersand (&). followed by a 2-digitnumeric identifier,
canappearinany order withinthe message. The WRITE LOG statement can specify
replacement values for one or more symbolic Parameters; however, the position of
replacement values within the WRITE LOG request must correspond exactly with the
2-digitnumericidentifier in the message text. For Example, the firstvaluespecified
corresponds to &01., the second to &02., and soforth.

Syntax

»»—— WRITE LOG MESSAGE ID (message-id)

v

v

L PARMS —#— FROM (parm-location) T T0 (end—parm—locat1'on)—~,—|—l
LENGTH (parm-length)

v

L REPLY INTO (reply-location) TO (end-reply-location) —J—I
L MAX LENGTH (reply-max-length)

L TEXT INTO (text-return-location) T T0 (end—text—return—location)__—l—
MAX LENGTH (text-max-length)

. > &
» 5 L)

L MESSAGE_PREFIX T YES<_—J—I L TEXT ONLY i
NO

Chapter 7: Data Manipulation Language Statements 285

WRITE LOG (DC/UCF)

Parameters

MESSAGE ID (message-id)

Specifies the 7-digitmessage|D. The firstsix digitsspecify thelD of the message;
the seventh digitspecifies the message's severity code. Message-id is either the
symbolic name of a user-defined FIXED BINARY(31) field that contains the message
ID, or the IDitself expressed as a numeric constant. Message IDs 000001 through
900000 arereserved for use by the system; the WRITE LOG statement can specify
any number in the range 900001 through 999999.

Note: The message length must be seven digits. The system will always interpretthe last
digitas the severity level. If you request message 987659 and do not code a severity
level of zero (that is, 9876590) you areactually requesting that message 098765 be
written to the logand that the system should be terminated with a 3996 abend code.

Note: When messages are added to the data dictionary for use with the WRITE LOG
statement, they are assigned an 8-character identification number;the firsttwo
characters areDC. A request for message 987654 retrieves DC987654.

PARMS FROM (parm-location)

Supplies replacement values for one or more symbolic parameters stored with the
message text. Parm-location is the symbolic nameof a user-defined field that
contains the program variable-storage entry of the replacement parameter.

TO (end-parm-location)

Indicates the end of the program variable-storage entry that contains the
replacement parameter and is specified followingthe lastdataitemin
parm-location. End-parm-location is the symbolic name of either a user-defined
dummy byte field or a field that contains a data item not associated with the
replacement parameter.

LENGTH (parm-length)

Defines the length, in bytes, of the replacement parameter. Parm-location is either
the symbolic name of a user-defined field that contains the length or the length
itself expressed as a numeric constant.

The following WRITE LOG statement replaces a symbolic parameter with the
contents of the FLT_NO field:

WRITE LOG MESSAGE ID (9000160)
PARMS FROM (FLT NO) TO (END FLT NO);

286 DML Reference Guide for PLI

WRITE LOG (DC/UCF)

Each replacement parameter must begin with a 1-byte field from which the system
obtains the length (in hexadecimal) of the parameter. This 1-byte field cannot be
displayed.

Consider the following Example:

03 FLT NO,
05 FILLER CHAR (1),
05 FLT PARM CHAR (6) INIT ('AAA201'),
05 END FLT NO CHAR (1);

REPLY INTO (reply-location)

Specifies the programvariable-storage entry of the area reserved for a reply to the
message issued by the WRITE LOG request. Reply-location is the symbolic name of a
user-defined field. The length of the reply area is determined by one of the
following specifications:

TO (end-reply-location)

Indicates the end of the program variable-storageentry reserved for the reply
andis specified followingthelastfieldin reply-location. End-reply-location is
the symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the reply.

MAX LENGTH (reply-max-length)

Defines the maximum length, in bytes, of the area reserved for the reply.
Reply-max-length is either the symbolic name of a user-defined field that
contains the length, or the length itself expressed as a numeric constant.

TEXT INTO (text-return-location)

Specifies that the contents of the named message, alongwith anyreplacement
parameters, are to be written to the issuing program. Text-return-location is the
symbolic name of a user-defined 1- to 132-character alphanumeric field that
contains the program variable-storage entry to which the message text is to be
returned. The length of the returned text is determined by one of the following
specifications:

TO (end-text-return-location)

Indicates the end of the program variable-storageentry reserved for the text
andis specified followingthelastdata item in text-return-location.
End-text-return-location is the symbolic name of either a user-defined dummy
byte field or a field that contains a data item not associated with the returned
text.

MAX LENGTH (text-max-length)

Defines the maximum length, in bytes, of the program variable-storageentry
reserved for the returned message text. Text-max-length is either the symbolic
name of a user-defined field that contains the text length, or the length itself
expressed as a numeric constant.

Chapter 7: Data Manipulation Language Statements 287

WRITE LOG (DC/UCF)

MESSAGE_PREFIX YES/NO
Specifies the format of the message prefix.
YES
Indicates thatthe message text is preceded by:
IDMS DCnnnnnnn Vssssss REPLYnn

DCnnnnnnnis the message number, Vssssss is the system number, and
REPLYnn is the message's system-supplied reply number (present onlyifthe
REPLY parameter is used). YES is the default.

NO
Indicates thatthe message text is preceded by:
DCnnnnnnn
DCnnnnnnnis the message number.

TEXT ONLY

Indicates thatthe message text is output with no prefix.

288 DML Reference Guide for PLI

WRITE LOG (DC/UCF)

Example

Status Codes

The followingfigureillustrates a WRITE LOG statement that supplies three replacement
parameters.

Task A issues a WRITELOG request for message 900121, specifyingvalues toreplace
symbolic parameters &01., &02., and &03. stored with the message text. The system

sends the message to its destination, which has been defined as the logical terminal
associated with the issuingtask.

MESSAGE SOURCE AS INPUT TO IDD

ADD MESSAGE NAME IS DC800121
MESSAGE SEVERITY IS 0
DESTINATION 1S TERMINAL IDD UTILITY (BATCH RUN)
MESSAGE IS 'FLIGHT &01 FROM
802 TO &03 FULLY BOOKED

DATA

TERMINAL A DICTIONARY
FLIGHT AAA201 FROM MESSAGE
LA TO NY FULLY AREA

BOOKED

WRITE LOG REQUEST

WRITE LOG MESSAGE ID (9001210)

PARMS FROM (FLT_NO} TO (END_FLT _NO)
FROM (DPT_CITY) TO (END_DPT _CITY)
FROM (ARV_CITY) TO (END_ARV_CITY);

WHERE: FLT_NO =AAA201
DPT_CITY =LA
ARV_CITY =NY

Upon completion of the WRITE LOG function, the ERROR_STATUS field of the IDMS DC
communications blockindicates theoutcome of the operation:

0000
The request has been serviced successfully.

3623

No storageor resource control element (RCE) can be allocated for the specified
replyarea.

Chapter 7: Data Manipulation Language Statements 289

WRITE PRINTER (DC/UCF)

3624

The maximum number of outstandingreplies has been exceeded; a maximum of 98
messages can be awaitingreplyat a given time.

3631

The parameter listis invalid.

WRITE PRINTER (DC/UCF)

The WRITE PRINTER statement transmits data from a task to a terminal defined to the
system as a printer device during system generation. Any type of terminal can be
designated as a printer; however, the terminal is usually a hard-copy device.

The system does not transmitdata directly from program variablestorageto the
terminal.Rather, datais passedto a queue maintained by the system, and from the
queue to the printer. The data stream passed to the queue by the WRITE PRINTER
request contains only data; the system adds the necessarylineand device control
characters when itwrites the data to the printer.

Note: Native mode data streams (thatis, those that contain device-control information
as well as user data) canalsobe transmitted with a WRITE PRINTER request. This
capabilityisuseful informatting reports for 3280-type printers.

Each lineof data transmitted ina WRITE PRINTER request is considered a record. Each
record is associated with a report inthe print queue. A report consists of one or more
records.Any task can have up to 256 active print reports. A program canissuemultiple
WRITE PRINTER requests, each specifyinga different report. Because the system
maintains therecords associated with each report individually, records associated with
one report are not interspersed with records associated with other reports when
printed.

WRITE PRINTER Directs Reports to Print Classes and Destinations

The WRITE PRINTER request candirectreports to print classes and to destinations:

m Print classes—During system generation, one or more printclasses areassociated
with each terminal designated as a printer. For each report, the firstrecord
transmitted to the printqueue by means of a WRITE PRINTER request establishes
the printclass for thatreport. The report will be printed on the firstavailable
printer thatis assigned the same printclass.

m Destinations—Destinations aregroups of terminals, printers, or users. If
destinations havebeen defined duringsystem generation, the WRITE PRINTER
request candirecta report to a destination.Reports sent to printer destinations are
printed on the firstavailable printer for the destination, regardless of printclass.

290 DML Reference Guide for PLI

WRITE PRINTER (DC/UCF)

The system prints a report only when that report is completed, either explicitly as part
of a WRITE PRINTER request or implicitly when the issuingtask terminates.

Affect of Termination

Normal task termination, a FINISH TASK request, or a COMMIT TASK request will end all
of the task's reports. Queued reports aremade eligiblefor printing.

Abnormal task termination (abend) or a ROLLBACK TASK request will causeany queued
reports belongingto the taskto be deleted.

Syntax
»»—— WRITE PRINTER T | >
|: NEWPAGE :| ENDRPT
ERASE
> n] FROM (message-location) T TO (end-message-location)
L NATIVE LENGTH (message-length)
SCREEN CONTENTS
"T o TC I
PIES (14—_|—) REPORT ID (14—_|—)
L copy-count L report-id
g CLASS (printer-class) | g
DESTINATION (printer-destination) —L—J—.
ALL
L HOLD JL KEEP -
Parameters

NEWPAGE

Specifies that the data stream will be printed beginning on a new page. The
keywords NEWPAGE and ERASE are synonymous.

ENDRPT

Indicates thatthe data stream constitutes the lastrecordinthe specified report.
When ENDRPT is specified, the report can be printed before the issuingtask has
terminated. However, the programmust issuea COMMIT TASK request to signal
the system to printthe ended report. A subsequent WRITE PRINTER request with
the same report id will starta separatereport.

Chapter 7: Data Manipulation Language Statements 291

WRITE PRINTER (DC/UCF)

FROM (message-location)

Specifies the programvariable-storage entry of the data to be transmitted to the
printqueue. Message-location is the symbolic name of a user-defined field. The
length of the data area is determined by one of the followingspecifications:

TO (end-message-location)

Indicates the end of the program variable-storage entry that contains the data
to be transmitted to the printqueue and is specified following the last
data-item entry in message-location. End-message-location is the symbolic
name of either a user-defined dummy byte field or a field that contains a data
item not associated with the output data.

LENGTH (message-length)

Defines the length, in bytes, of the data stream. Message-length is either the
symbolic name of a user-defined field that contains the length of the data, or
the length itself expressed as a numeric constant.

NATIVE

Specifies that the data stream contains device-control characters. If NATIVE is not
specified, the system automaticallyinserts the necessary characters.

SCREEN CONTENTS

Specifies (for 3270-type devices only) that the contents of the currently displayed
screen are to be transmitted to the print queue. If SCREEN CONTENTS is specified
with a non-3270 terminal or a remote 3270 terminal runningunder TCAM, an error
condition results.

COPIES (1/copy-count)

Specifies the number of copies of the report to be printed. The specified copy count
must be aninteger inthe range 1 through 255; the defaultis 1. Copy-count is either
the symbolic name of a user-defined field that contains the copy count, or the
countitselfexpressed as a numeric constant.

REPORT ID (1/report-id)

Specifies the identifier of the report to be printed. The specifiedidentifier mustbe
aninteger inthe range 1 through 255; the defaultis 1. Report-id is either the
symbolic name of a user-defined field that contains the report ID, or the ID itself
expressed as a numeric constant.

292 DML Reference Guide for PLI

WRITE PRINTER (DC/UCF)

Example

CLASS (printer-class)

Specifies the printclasstowhich the report will beassigned. Valid printclasses are
1 through 64; the defaultis 1. Printer-class is either the symbolic name of a
user-defined field that contains the printclass, or the class itself expressed as a
numeric constant.

DESTINATION (printer-destination)

Specifies the 1-to 8-character destination to which the report will be routed.
Printer-destination is either the symbolic name of a user-defined field that contains
the destination, or the destinationitselfenclosed in quotation marks. The specified
destination must have been defined duringsystem generation.

ALL

Specifies that the reportis to be printed on all of the printers belongingto the
specified destination. The report will be printed, one printer ata time, and saved
until ithas been printed on each of the printers associated with the destination.

CLASS/DESTINATION

Specifies a printclass or destination (terminal, printer, or user). Specify this
parameter only for the firstlineofeach report. Ifyou specifyno classor
destination, the defaultprint classassigned to the issuingtask's physical terminal
duringsystem generation is used.

HOLD

Specifies that a queued report will be held without being printed. The specified
report will be held until a DCMT VARY REPORT report-name RELEASE command is
issued atruntime.

KEEP

Specifies that the system will keep the report inthe printqueue after ithas been
printed. The report can be released for printingwitha DCMT VARY REPORT
report-name RELEASE command. In this way, the report can be printed several
times. A KEPT report can be deleted from the printqueue manually (usinga DCMT
VARY REPORT report-name DELETE command at runtime) or automatically (when
the queue retention period has been exceeded).

The following statement associates the data inthe specified location with report32in
the printqueue and prints itbeginningon a new page. Report 32 will printon the first
terminal assigned to print class 3 when the program notifies the system that the report
is complete or when the task terminates.

WRITE PRINTER
NEWPAGE
FROM (PASSGR RPT) TO (END PASSGR RPT)
REPORT ID (32)
CLASS (3);

Chapter 7: Data Manipulation Language Statements 293

WRITE PRINTER (DC/UCF)

Status Codes

The following statement prints three copies of the current screen contents on a printer
associated with destination A, and keeps the contents of the report inthe printqueue
after it has printed:

WRITE PRINTER
SCREEN CONTENTS
COPIES (3)
DESTINATION ('A')
KEEP;

Upon completion of the WRITE PRINTER function, the ERROR_STATUS fieldinthe IDMS
DC communications blockindicates the outcome of the operation:

0000
The request has been serviced successfully.
4807
An 1/O error has occurred while placingthe record in the print queue.
4818
The current system definition contains no logical terminal-printer associations.
4821
The specified printer destinationis undefined or is not a printer.
4831
The parameter listis invalid.
4832
The derived length of the specified printer output data areais zero or negative.
4838

The specified programvariable-storage entry has not been allocated as required. A
GET STORAGE request for the specified variable mustbe issued before the WRITE
PRINTER statement.

4845

A WRITE PRINTER SCREEN CONTENTS request cannot be serviced because the
terminal associated with the issuingtaskis nota 3270-type device or is a remote
3270 device runningunder TCAM.

4846

A terminal 1/O error has occurred.

294 DML Reference Guide for PLI

WRITE TERMINAL (DC/UCF)

WRITE TERMINAL (DC/UCF)

The WRITE TERMINAL statement requests a synchronous or asynchronous data transfer
from program variablestorageto the terminal buffer.

Syntax
»»—— WRITE TERMINAL >
WAIT « :I NEWPAGE
NOWAIT ERASE
EAU]
ERASE ALL UNPROTECTED
»—— FROM (output-data-location) T TO (end-output-data-location) ; —pd
LENGTH (output-data-length)
Parameters

WAIT/NOWAIT

Indicates whether the write operation is to be synchronous or asynchronous.
WAIT
Specifies that the write operation will besynchronous;the issuingtask will

automatically relinquish control to the system and waitfor completion of the
write operation before continuing processing. WAITis the default.

NOWAIT

Specifies that the write operation will beasynchronous;theissuingtask will
continue executing.

Note: If NOWAIT is specified, the program must issuea CHECK TERMINAL
request (described earlier in this section) before performing any other 1/0
operation.

NEWPAGE/EAU

Specifies the mechanismto be used with the write operation.

NEWPAGE

Activates the page-eject (SYSINOUT devices) or erase-write (3270-type devices)
mechanismto erasethe contents of a screen. If NEWPAGE is not specified, the
WRITE TERMINAL request will write over rather than erase data displayed on
the terminal. The keywords NEWPAGE and ERASE are synonymous.

EAU

Activates (for 3270-type devices only) the erase-all-unprotected mechanism.
Followinga WRITE TERMINAL EAU function, only protected fields remain on the

terminal.If EAU is specified, the FROM clause(described below) need not be
specified.

Chapter 7: Data Manipulation Language Statements 295

WRITE TERMINAL (DC/UCF)

FROM (output-data-location)

Specifies the programvariable-storage entry of the output data stream.
Output-data-location is the symbolic name of a user-defined field. The length of the
output data stream is determined by one of the followingspecifications:

TO (end-output-data-location)

Indicates the end of the output data stream and is specified followingthe last
data-item entry in output-data-location. End-output-data-location is the
symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the output data stream.

LENGTH (output-data-length)

Defines the length, in bytes, of the output data stream. Output-data-length is
either the symbolic name of a user-defined field that contains the length of the
data area, or the length itself expressed as a numeric constant.

Example

The following statement illustrates an asynchronous basic moderequest to write data
to the terminal from the specified locationin programvariablestorage:

WRITE TERMINAL
NOWAIT
FROM (TERM LINE) LENGTH (72);

Status Codes

Upon completion of the WRITE TERMINAL function, the ERROR_STATUS fieldinthe
IDMS DC communications block indicates the outcome of the operation:
0000

The request has been serviced successfully.

4525

The output operation has been interrupted; the terminal operator has pressed
ATTENTION or BREAK.

4526

A logical error (for Example, an invalid control character) has been encountered in
the output data stream.

4527
A permanent |/O error has occurred during processing.
4528

The dial-up linefor the terminal has been disconnected.

296 DML Reference Guide for PLI

WRITE THEN READ TERMINAL (DC/UCF)

4531

The terminal request block (TRB) contains aninvalidfield,indicatinga possibleerror
inthe program's parameters.

4532

The derived length of the specified output data area is zero or negative.

4539

The terminal associated with the issuingtaskis outofservice.

WRITE THEN READ TERMINAL (DC/UCF)

The WRITE THEN READ TERMINAL statement requests a transfer of data from program
variablestoragetothe terminal buffer and, when the terminal operator has completed
entering data, a transfer of that data backto program variablestorage.

Syntax

M»— WRITE ——————— READ TERMINAL >
THEN WAIT < :]
NOWAIT

v

NEWPAGE
ERASE ——

EAU]
ERASE ALL UNPROTECTED

v

MODIFIED FROM POSITION (screen-position) -
|: BUFFER —I

»—— FROM (output-data-location) T IENC(;?ﬂdEOUtpUt_gata_%Ocat;]?n)—_l—b
output-data-lengt

»—— INTO (input-data-location) T TO (end-input-data-location) —__|—>
MAX LENGTH (input-data-max-length)

»d
»4

" L RETURN LENGTH INTO (input-data-actual-length) —

Parameters
WAIT/NOWAIT

Indicates whether the |/O operation is to be synchronous or asynchronous.
WAIT
Specifies that the 1/0 operation will besynchronous;the issuingtask will

automatically relinquish control to the system and must wait for completion of
the 1/0 operation before processingcan continue. WAIT is the default.

Chapter 7: Data Manipulation Language Statements 297

WRITE THEN READ TERMINAL (DC/UCF)

NOWAIT

Specifies that the I/O operation will beasynchronous;theissuingtask will
continue executing.

Note: If NOWAIT is specified, the program must issuea CHECK TERMINAL
request (described earlier inthis chapter) before performing any other 1/0
operation.

NEWPAGE/EAU

Specifies the mechanismto be used with the write operation:

NEWPAGE

Activates the page-eject (SYSINOUT devices) or erase-write (3270-type devices)
mechanismto erasethe contents of a screen. If NEWPAGE is not specified, the
WRITE TERMINAL request will write over rather than erase data displayed on
the terminal.The keywords NEWPAGE and ERASE are synonymous.

EAU

Activates (for 3270-type devices only) the erase-all-unprotected mechanism.
Followinga WRITE TERMINAL EAU function, only protected fields remain on the

terminal.If EAU is specified, the FROM clause(described below) need not be
specified.

MODIFIED/BUFFER

Transfers (for 3270-type devices only) data to the application program without
requiringthe terminal operator to signal completion of data entry.

MODIFIED

Reads all modified fields in theterminal buffer into program variablestorage.

BUFFER

Executes a READ BUFFER command that reads the entire contents of the
terminal buffer into the program variablestorage.

FROM POSITION (screen-position)

Defines the buffer address (screen position) atwhich the read will start.
Screen-position is either the symbolic name of a user-defined FIXED BINARY(31)
field or the address itself enclosed in quotation marks.

298 DML Reference Guide for PLI

WRITE THEN READ TERMINAL (DC/UCF)

FROM (output-data-location)

Specifies the programvariable-storage entry of the output data stream.
Output-data-location is the symbolic name of a user-defined field. The length of the
output data stream is determined by one of the followingspecifications:

TO (end-output-data-location)

Indicates the end of the output data stream and is specified followingthe last
data-item entry in output-data-location. End-output-data-location is the
symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the output data stream.

LENGTH (output-data-length)

Defines the length, in bytes, of the output data stream. Output-data-length is
either the symbolic name of a user-defined field that contains the length of the
data stream, or the length itself expressed as a numeric constant.

INTO (input-data-location)

Specifies the programvariable-storage entry of the data area reserved for the input
data stream. Input-data-location is the symbolic name of a user-defined field. The
length of the inputdata streamis determined by one of the followingspecifications:

TO (end-input-data-location)

Indicates the end of the data area reserved for the inputdata streamand is
specified following the lastdata-itementry in input-data-location.
End-input-data-location is the symbolic name of either a user-defined dummy
byte field or a field that contains a data item not associated with the data area
reserved for the input data stream.

MAX LENGTH (input-data-max-length)

Defines the length, in bytes, of the data area reserved for the inputdata
stream. Input-data-max-length is either the symbolic name of a user-defined
field that contains the length of the data stream, or the length itself expressed
as a numeric constant.

Ifthe inputdata streamis larger thanthe data areareserved in program
variablestorage, the system truncates the data stream to fit the available
space.

RETURN LENGTH INTO (input-data-actual-length)

Indicates the location to which the system will return the actual length of the input
data stream. Input-data-actual-length is the symbolic nameof a user-defined field.
Ifthe data stream has been truncated, input-data-actual-length contains the
original length before truncation.

Chapter 7: Data Manipulation Language Statements 299

WRITE THEN READ TERMINAL (DC/UCF)

Example

Status Codes

The following statement illustrates a basicmode request to write data from the
program (OUTPUT_LINE) to the terminal, read the data from the terminal to the
specified location (INPUT_LINE) inthe program, and return the actual length of the
input data stream (LINE_LENGTH) to variablestorage:

WRITE THEN READ TERMINAL
WAIT
FROM (OUTPUT LINE) TO (END INPUT LINE)
INTO (INPUT LINE) MAX LENGTH (80)
RETURN LENGTH INTO (LINE LENGTH);

Upon completion of the WRITE THEN READ TERMINAL function,the ERROR_STATUS
fieldinthe IDMS DC communications block indicates the outcome of the operation:

0000
The request has been serviced successfully.
4519

The input area specified for the return of datais too small;the returned data has
been truncated to fit the availablespace.

4525

The output operation has been interrupted; the terminal operator has pressed
ATTENTION or BREAK.

4526

A logical error (for Example, an invalid control character) has been encountered in
the output data stream.

4527

A permanent |/O error has occurred.

4528

The dial-up linefor the terminal has been disconnected.
4531

The terminal request block (TRB) contains aninvalid field, indicating a possibleerror
inthe program's parameters.

4532
The derived length of the specified /O data area is zero or negative.
4535

Storage for the inputbuffer cannotbe acquired becaus ethe specified program
variable-storageentry has been allocated.

300 DML Reference Guide for PLI

Logical-Record Clauses (WHERE and ON)

4538

The specified programvariable-storage entry has not been allocated and the GET
STORAGE option has not been specified.

4539

The terminal device associated with the issuingtaskis outofservice.

Lodical-Record Clauses (WHERE and ON)

WHERE Clause

Logical-record clauses are used with any of the four DML statements thataccess logical
records (thatis, OBTAIN, MODIFY, STORE, or ERASE). The logical-record clauses areas
follows:

m WHERE—Specifies criteria usedto selectand/or criteria usedto limitthe selection
of logical-record occurrences.

m ON—Tests for a specific path status returned to indicatetheresultof a
logical-record DML statement.

The following subsections describethe WHERE and ON clauses.

The WHERE clause has two major functions:

To direct the program to a path, predefined inthe subschema by the DBA and
transparentto the application program. This allows you to access the database without
issuing words connected by boolean operators (AND, OR, and NOT). The format of the
WHERE clausefollows PL/I Syntax rules (that is, operands or operators are separated by
a blank).

m Note: Ifyou usethe WHERE clause, you must specify the 48-character setinyour
source program; IDng specific instructions for navigating the database.

m To specify selection criteria to be applied to alogical record. This allows the
program to specify attributes of the desired logical record, thereby reducingthe
need for the program to inspect multiplelogical records toisolatethe logical record
of interest.

Chapter 7: Data Manipulation Language Statements 301

Logical-Record Clauses (WHERE and ON)

The WHERE clauseis issuedinthe form of a boolean expression that consists of
comparisons and kMSDMLP assumes the use of the 48-character setwhen it generates
LRF code. For more information, see DML Precompiler Options.

v

»»—— WHERE (C dba-designated-keyword
I_E NOT__—I—I comparison

v |
—y

") ————><
AND dba-designated-keyword :,—I
& — Ll: NOT_—I—. L comparison
T)

Expansion of comparison

literal — ﬁg#‘éﬁégs_——»
V;rﬂmgag;lexpr;gg%gﬁﬁned-var1able-f1e1d-name — 1 C EQ_—,—-
T T
TS T
T LT T
LT
L

literal >«

v— group—id:l— variable-field-name
v— group-id.:]— logical-record-field-name

arithmetic-expression

|:OF LR:I

Parameters
dba-designated-keyword

Specifies a DBA-designated keyword to be applied to the logicalrecord thatis the
object of the command. Dba-designated-keyword is a keyword specified by the DBA
thatis applicabletothe logicalrecord namedin the command; itcan be no longer
than 32 characters. The keyword represents an operation to be performed at the
path level and serves only to route the logical-record requestto the appropriate,
predetermined path.

A path must existto servicearequest thatissues dba-designated-keyword. If no
such path exists, the DML precompiler flags this condition by issuingan error
message.

comparison

Specifies a comparison operation to be performed, usingthe indicated operands
andoperators. Italsoserves to direct the logical-record requestto a path.

Individual comparisonsand keywords are connected by the boolean operators AND,
OR, and NOT. Parentheses can be used to clarify a multiple-comparison boolean
expression or to override the precedence of operators.

302 DML Reference Guide for PLI

Logical-Record Clauses (WHERE and ON)

literalidd-defined-variable-field-na mearithmetic-expression

Identifies a left or right comparison operand.

literal

Specifies a literal value. Literal can be anyalphanumeric or numericliteral.
Alphanumeric literals mustbe enclosed in quotation marks.

idd-defined-variable-field-na me

Specifies a program variablestoragefield predefined inthe dictionary.
Idd-defined-variable-field-name must be an elementary element. It cannotbe a
group element. Group elements canonlybe used for qualification.

The optional qualifier group-id uniquely identifies the named variablefield. This
qualifierisrequired if idd-defined-variable-field-name is not unique within
program variablestorage. Group-id names the group element that contains the
field. A maximum of 15 different group-id qualifiers can bespecified to identify
as many as 15 levels of group elements.

arithmetic-expression

Specifies an arithmetic expression designated as a unary minus (-), unary plus
(+), simplearithmetic operation, or compound arithmetic operation. Arithmetic
operators permitted inanarithmetic expressionareadd (+), subtract(-),
multiply (*), and divide (/). Operands can be literals, variable-storagefields, and
logical-record fields as described above. On the left side of the comparisonyou
cannot usea key value.

CONTAINS/MATCHES/EQ/NE/GT/LT/GE/LE

Specifies the comparison operator. Operators areevaluated in the followingorder:

1.
2.

Comparisons enclosed in parentheses

Arithmetic, comparison,and boolean operators by order of precedence, from
highest to lowest:

Unary plus or minus inanarithmetic expression
Multiplication or divisioninan arithmetic expression
Addition or subtractioninan arithmetic expression
MATCHES or CONTAINS comparison operators

EQ, NE, GT, LT, GE, LE comparison operators

NOT boolean operator

AND boolean operator

OR boolean operator

Chapter 7: Data Manipulation Language Statements 303

Logical-Record Clauses (WHERE and ON)

3.

From left to right within operators of equal precedence

CONTAINS

Is true if the valueof the right operand occurs in the value of the left operand.
Both operands included with the CONTAINS operator must be alphanumeric
values and elementary elements.

MATCHES

EQ

NE

GT

LT

GE

LE

Is true if each character in the left operand matches a corresponding character
inthe right operand (the mask). When MATCHES is specified, LRF compares the
left operand with the mask, one character ata time, moving from left to right.
The resultof the match is either true or false:the resultis true if the end of the
maskis reached before encountering a character in the left operand that does
not match a corresponding character in the mask. The resultis falseif LRF
encounters a character in the left operandthat does not match a mask
character.

Three special characters can beused inthe maskto perform pattern matching:
@, which matches anyalphabetic character; #, which matches any numeric
character;and *, which matches any alphabetic or numeric character. Both the
left operand and the mask must be alphanumeric values and elementary
elements.

Is true if the valueof the left operand is equal to the value of the rightoperand.

Is true if the value of the left operand is not equal to the value of the right
operand.

Is true if the valueof the left operand is greater than the value of the right
operand.

Is true if the valueof the left operand is less than the value of the right
operand.

Is true if the value of the left operand is greater than or equal to the value of
the right operand.

Is true if the valueof the left operand is less than or equal to the valueof the
rightoperand.

304 DML Reference Guide for PLI

Logical-Record Clauses (WHERE and ON)

Examples

logical-record-field-name

Specifies a data field that participates inthe named logical record.
Logical-record-field-name must be an elementary element. It cannot be a group
element. Group elements canonlybe used for qualification.

The optional qualifier group-id uniquely identifies the named logical-record field.
This qualifieris required if logical-record-field-name is not unique withinall
subschema records, includingthosethat are not part of the logical record,and all
non CA IDMS/DB records copied into the program. Group-id names the group
element or databaserecord that contains the field. A maximum of 15 different
group-id qualifierscan bespecified to identify as many as 15 levels of group
elements.

The optional OF LR parameter specifies thatthe value of the named field atthe
time that the request is issued will be used throughout processing of the request. If
the valueof the field changes duringrequest processing, LRF will continueto use
the original value. Ifthe OF LR entry is notincluded and the value of the field
changes duringrequest processing, the new field valueinvariablestoragewill be
used if the fieldis required for further request processing.

Usage of the WHERE Clause

Ifthe WHERE clausecompares a CALC-key field to a literal, the literal's format must
correspond exactly to the CALC-key definition.Enclosethe literal in quotation marks
ifthe CALC key has a usage of DISPLAY, and use leading zeros if the literal consists
of fewer characters thanthe field's picture. For example, if the calc-key-field CALC
key is defined as CHAR (3), code the WHERE clauseas follows:

WHERE (calc-key-field) EQ '054';

The WHERE clausecan containas many comparisonsand keywords as required to
specify the criteria to be applied to the logical record. If necessary, the value of the
SIZE parameter inthe INCLUDE IDMS SUBSCHEMA LR_CTRL statement can be
increased to accommodate very largeand complex WHERE clausespecifications.
Processingefficiencyis notaffected by the composition of the WHERE clause (other
than the logical order of the operators, as noted below), since LRF automatically
uses the most efficient path to process the logical-record request.

The followinglogical-record requestuses a DBA-designated keyword
(PROGRAMMER_ANALYSTS) to direct LRF to a DBA-defined access path:

OBTAIN NEXT RECORD (EMP_JOB_LR)
WHERE (PROGRAMMER ANALYSTS);

The followinglogical-record request uses boolean selection criteria to specify the
desired occurrence of EMP_JOB_LR:

OBTAIN RECORD (EMP_JOB LR)
WHERE (OFFICE_CODE 0450 EQ '001');

Chapter 7: Data Manipulation Language Statements 305

Logical-Record Clauses (WHERE and ON)

ON Clause

Syntax

The ON clausetests for a specific path status returned to indicatethe resultof the
statement. If LRF returns the specified path status, the imperative statement includedin
the ON clauseis executed; if the specified path status is notreturned, the imperative
statement includedinthe ON clauseis ignored and IDMS_STATUS is performed.

The ON clausetests fora standard or DBA-defined path status, which isinthe form of a
1- to 16-character unquoted string. Path statuses areissued during execution of the
path selected to servicethe request.

Standard Path Statuses

Standard path statuses areas follows:

»»—— ON LR _STATUS (path-status) imperative-statement;

LR_FOUND—Returned when the logical-record requesthas been successfully
executed. This status can be returned as the resultof any of the four LRF DML
statements. When LR_FOUND is returned, the ERROR_STATUS fieldinthe IDMS
communications block contains 0000.

LR_NOT_FOUND—Returned when the logical record specified cannotbe found,
either because no suchrecord exists or becauseall such occurrences havealready
been retrieved. This status can be returned as the resultof any of the four LRF DML
statements, providedthatthe path to which LRF is directed includes retrieval | ogic.
When LR_NOT_FOUND is returned, the ERROR_STATUS fieldinthe IDMS
communications block contains 0000.

Note: A successful STORE canreturn LR_NOT_FOUND ifits WHERE clause
references alogical-record field and the STORE path performs no OBTAINSs.

LR_ERROR—returned when a logical-record requestis issuedincorrectly or when
anerror occurs inthe processing of the path selected to servicethe request. When
LR_ERROR is returned, the type of error-status code returned to the programinthe
ERROR_STATUS fieldinthe IDMS DB communications block differs accordingto the
type of error:

— When the erroroccurs inthe logical-record request, the ERROR_STATUS field
contains anerror-status codeissued by LRF (major code of 20).

— When anerror occurs in logical-record path processing, the ERROR_STATUS
field contains an error-status codeissued by the DBMS (major code from 00 to
19).

Note: For more information abouterror-status codes, see Communications
Blocks and Error Detection.

M

306 DML Reference Guide for PLI

Logical-Record Clauses (WHERE and ON)

Parameters

Example

Status Codes

path-status

Names the path status that will betested. Path-status must be a 1-to 16-character
alphanumeric value.

imperative-statement

Specifies the programactionto be taken ifthe indicated path status results from
the logical-record request.

The following statements usethe pathstatus LR_NOT_FOUND intwo different ways. If
LR_NOT_FOUND occurs followingthe initial statement, an LR_MISSING messageis
output; if LR_LNOT_FOUND occurs insubsequent statements, an END_OF_LR messageis
output.

OBTAIN FIRST RECORD (EMP JOB LR)
WHERE (OFFICE CODE ©450 EQ OFFICE CODE IN);
ON LR STATUS (LR NOT FOUND)
CALL LR MISSING;

OBTAIN NEXT RECORD (EMP_JOB LR)
WHERE (OFFICE CODE 0450 EQ OFFICE CODE_IN);
ON LR STATUS (LR NOT FOUND)
CALL END OF LR;

CALL OBTAIN REST LR;

The following codes are returned to the ERROR_STATUS fieldinthe IDMS DB or IDMS
DC communications block when an LR_ERROR path status is returned to the LR_STATUS
fieldinthe LRC block:

2001

The requested logical record was notfound in the subschema.(The path DML
statement, EVALUATE, returns 0000iftrue, and 2001 iffalse.)

2008

The named record is notinthe subschema, or the specified request is not permitted
for the named record.

Chapter 7: Data Manipulation Language Statements 307

Logical-Record Clauses (WHERE and ON)

2010
The subschema prohibits accesstological records.
2018

A path command has attempted to access a databaserecordthat has not been
bound.

2040

The WHERE clauseinan OBTAIN NEXT command directed LRF to a different
processing path than did the WHERE clausein the preceding OBTAIN command for
the same logical record.

2041

The request's WHERE clausecannotbe matched to a path inthe subschema.
2042

The logical-record path for the request specifies return of the LR_ERROR status.
2043

Bad orinconsistentdata was encountered inthe logical-record buffer during
evaluation of the request's WHERE clause.

2044

The request's WHERE clausedoes not includedata required by the logical-record
path.

2045

A subscriptvalueina WHERE clauseis either less than zero or greater than its
maximum allowed value.

2046

A programcheck has revealed an arithmetic exception (for Example, overflow,
underflow, significance, divide) during evaluation of a WHERE clause.

2063

The request's WHERE clause contains a keyword that exceeds the 16-character
maximum.

2064

The path command has attempted to access a CALC data item that has not been
defined properly inthe subschema.

2072

The request's WHERE clauseis toolong to be evaluatedin the availableworkarea.

308 DML Reference Guide for PLI

Appendix A: DML Precompile, PL/I Compile,
and Link-Edit JCL

This appendix presents the JCL used to prepare PL/I sourcecode that contains DML
statements. Link-edit considerationsarealsodiscussed.JCLsamples areincluded.

This section contains the followingtopics:

Compilinga PL/I Program (see page 309)
Link-Edit Considerations (see page 329)
Passing Parameters to the Precompiler (see page 330)

Compiling a PL/I Program

To compilea PL/I program under the DML precompiler:

1. Execute the program IDMSDMLP

2. Execute the PL/I compiler

3. Linkedit

Input to IDMSDMLP consists of sourcecode written in PL/I and DML, protocol/control
information,anddictionaryrecord descriptions. Outputfrom IDMSDMLP includes:

m AsourcePL/l program

m A DML sourcelistinganddiagnostics

Input to the PL/I compiler consists of the source program produced by IDMSDMLP.
Output includes:

m An object program

m PL/I listings

Input to the linkage editor consists of the object program produced by the PL/I compiler.
Output includes:

m Aloadmodule

m Alink-editmap

Appendix A: DML Precompile, PL/T Compile, and Link-Edit JCL 309

Compiling aPL/I Program

The followingfigureillustrates thesteps involved in compilinga PL/I program.

PL/I SOURCE
PRCGRAM

WITH DML
STATEMENTS

* STEP

IDMSDMLP

DML

COMPILER

PL/I

SOURCE

PL/

LISTING

PL/I SOURCE
LISTING &

CCMPILER

OBJECT

PROGRAM

LOAD LINKAGE
LIBRARY EDITOR

DIAGNOSTICS

LINK MAP

LOAD
MODULE

The JCL used to compileand linkeditthe DMLP sourcestatements under the CA
IDMS/DB central version areshown in this appendix. Local mode considerationsare

noted where appropriate.

Note: IBM PL/I compilers runningunder z/VSE do not generate reentrant code.
Accordingly,ifyour applicationsarelarge, multipleuser deadlocks mayresultbecause

of spacelimitations.

310 DML Reference Guide for PLI

Compiling aPL/T Program

Under z/0S

Executing Under the Central Version

IDMSDMLP (Central Version) (z/0S)

//***

//** PRECOMPILE PL/I PROGRAM *x
//***
//precomp EXEC PGM=IDMSDMLP,REGION=1024K,

// PARM='optional parameters'

//STEPLIB DD DSN=idms.dba. loadlib,DISP=SHR

// DD DN=idms.custom. loadlib,DISP=SHR

// DD DSN=1idms. cagjload,DISP=SHR
//sysctl DD DSN=idms.sysctl,DISP=SHR
//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR
//SYS001 DD UNIT=disk,SPACE=(TRK, (10,10))
//5YS002 DD UNIT=disk,SPACE=(TRK, (10,10))
//5YS003 DD UNIT=disk,SPACE=(TRK, (10,10))
//SYSPCH DD DSN=&&source,DISP=(NEW,PASS),

// UNIT=disk,SPACE=(TRK, (10,5) ,RLSE),

// DCB=(RECFM=FB, LRECL=80,BLKSIZE=3120)
//SYSLST DD SYSOUT=A

//SYSIDMS DD *

DMCL=dmc1- name

DICTNAME=dictionary-name

Other SYSIDMS parameters, as appropriate

/*

//SYSIPT DD *

PL/I DML source statements

/*
[Rk ok kR kol ol kRl Rkl kol ok ok ek ko ok
//** COMPILE PL/I PROGRAM *x

//***

//plicmp EXEC PGM=IELOAA,REGION=300K,

// PARM="'DECK, LIST, OFFSET,STORAGE, NOP'

//STEPLIB DD DSN=sysl.pliopt,DISP=SHR

//SYSUT1 DD UNIT=disk,SPACE=(1024,(200,50),,CONTIG,ROUND),

// DCB=BLKSIZE=6144

//SYSPUNCH DD DSN=&&object,DISP=(NEW, PASS),
// UNIT=disk,SPACE=(TRK, (10,5),RLSE),
// DCB=(RECFM=FB, LRECL=80,BLKSIZE=3120)

//SYSPRINT DD SYSOUT=A
//SYSIN DD DSN=&&source,DISP=(0LD,DELETE)

//***

/1%* LINK PROGRAM MODULE +ox
//***
//link EXEC PGM=HEWL,REGION=300K, PARM='LET,LIST XREF'

//SYSUTL DD UNIT=disk,SPACE=(TRK, (20,5))

Appendix A: DML Precompile, PL/I Compile, and Link-Edit JCL 311

Compiling aPL/I Program

//SYSLIB DD DSN=sysl.plibase,DISP=SHR

//vanilla DD DSN=idms. cagjload,DISP=SHR

//custom DD DSN=idms.custom. loadlib,DISP=SHR

//SYSLMOD DD DSN=idms.custom. loadlib,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSLIN DD DSN=&&object,DISP=(0LD,DELETE)

// DD *

INCLUDE vanilla(IDMS) Required, except omit for CICS

INCLUDE vanilla(IDMSCANC) Required for BATCH and DC_BATCH
if using IDMS STATUS module

INCLUDE custom(IDMSOPTI) Optional; BATCH and DC BATCH only

INCLUDE custom(IDMSCINT) Required for CICS, otherwise omit

ENTRY userentry

NAME userprog(R)

/*

/7*

Note: The link of CICS application programs thatuse IDMSCINT must incorporateJCL to
resolve external reference DFHEI1. The particular JCLdepends on the nature and
language of your application. See the appropriate|IBM CICS application programming
documentation for details.

optional parameters

options that control various aspects of the precompile process. See “Passing
Parameters to the Precompiler (see page 330)” for a complete description of the
options.

precomp

Name of the precompilestep
Runtime Parameters

To specifya dictionary or DMCL to access atruntime, you caninclude DICTNAME and
DMCL parameters ina SYSIDMS DD statement inthe JCL (see previous sampleJCL).

Note: For more information aboutSYSIDMS runtime parameters, see the CA IDMS
Common Facilities Guide.

312 DML Reference Guide for PLI

Compiling aPL/T Program

Executing in Local Mode

IDMSDMLP (Local Mode) (z/0S)

//***

//** PRECOMPILE PL/I PROGRAM *k
//***
//precomp EXEC PGM=IDMSDMLP,REGION=1024K,

// PARM="'optional parameters'

//STEPLIB DD DSN=idms.dba. loadlib,DISP=SHR

// DD DSN=idms.custom. loadlib,DISP=SHR

// DD DSN=idms. cagjload,DISP=SHR
//dictb DD DSN=idms.appldict.ddldml,DISP=SHR
//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR
//sysjrnl DD DSN=idms. tapejrnl,DISP=(NEW, CATLG) ,UNIT=tape
//5YS001 DD UNIT=disk,SPACE=(TRK, (10,10))
//5YS002 DD UNIT=disk,SPACE=(TRK, (10,10))
//5YS003 DD UNIT=disk,SPACE=(TRK, (10,10))
//SYSPCH DD DSN=&&source,DISP=(NEW,PASS),

// UNIT=disk,SPACE=(TRK, (10,5),RLSE),

// DCB=(RECFM=FB, LRECL=80,BLKSIZE=3120)
//SYSLST DD SYSOUT=A

//SYSIDMS DD *

DMCL=dmc1-name

DICTNAME=dictionary-name

Other SYSIDMS parameters, as appropriate

/*

//SYSIPT DD *

PL/I DML source statements

/*
] /FFRRRRR Rk R KRR RO R ORI R KRR RO R RO
//** COMPILE PL/I PROGRAM ok

//***

//plicmp EXEC PGM=IELOAA,REGION=300K,

// PARM='DECK, LIST, OFFSET,STORAGE, NOP'

//STEPLIB DD DSN=sysl.pliopt,DISP=SHR

//SYSUT1 DD UNIT=disk,SPACE=(1024,(200,50),,CONTIG,ROUND),

// DCB=BLKSIZE=6144

//SYSPUNCH DD DSN=&&object,DISP=(NEW,PASS),
// UNIT=disk,SPACE=(TRK, (10,5),RLSE),
// DCB=(RECFM=FB, LRECL=80,BLKSIZE=3120)

//SYSPRINT DD SYSOUT=A
//SYSIN DD DSN=&&source,DISP=(0LD,DELETE)

[[FFRFHAAAAAAAAAFAAFAAARFAAF A FFFAKAKKKKKKAKAAAAAAAAAAAAAAAAAAAAA K

//** LINK PROGRAM MODULE *x

//***

//link EXEC PGM=HEWL,REGION=300K, PARM='LET,LIST,XREF'

Appendix A: DML Precompile, PL/I Compile, and Link-Edit JCL 313

Compiling aPL/I Program

//SYSUT1 DD UNIT=disk,SPACE=(TRK, (20,5))

//SYSLIB DD DSN=sysl.plibase,DISP=SHR

//vanilla DD DSN=idms.cagjload,DISP=SHR

//custom DD DSN=idms.custom. loadlib,DISP=SHR

//SYSLMOD DD DSN=idms. custom. loadlib,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSLIN DD DSN=&&object,DISP=(0LD,DELETE)

// Db *

INCLUDE vanilla(IDMS) Required, except omit for CICS

INCLUDE vanilla(IDMSCANC) Required for BATCH and DC_BATCH
if using IDMS STATUS module

INCLUDE custom(IDMSOPTI) optional; BATCH and DC BATCH only

INCLUDE custom(IDMSCINT) Required for CICS, otherwise omit

ENTRY userentry

NAME userprog(R)

/*

//*

dictdb

DDname of the application dictionary definitionarea
idms.appldict.ddidml

Dataset name of the application dictionary definition area
sysjrnl

DDname of the tape journal file
idms.tapejrnl

Dataset name of the tape journal file
tape

Symbolic device name

Note: For information aboutother variables, seethe table followingthe JCL for central
version.

314 DML Reference Guide for PLI

Compiling aPL/T Program

Under z/VSE

Executing Under the Central Version

IDMSDMLP (z/VSE)

* stepl
// EXEC PROC=IDMSLBLS
// UPSI b
// DLBL idmspch, 'temp.dmlp',0
// EXTENT sys020,nnnnnn,, ,ssss, 1111
// ASSGN sys020,DISK,VOL=nnnnnn,SHR
// EXEC IDMSDMLP
DMCL=dmc1-name
DICTNAME=dictionary-name
Other optional SYSIDMS parameters
/*
PL/I DML source statements
/*
* step2
// DLBL IJSYSIN, 'temp.dmlp',0
// EXTENT SYSIPT,nnnnnn
ASSGN SYSIPT,DISK,VOL=nnnnnn,SHR
// OPTION CATAL,NODECK,NOSYM
PHASE userprog,*
// EXEC PL/I
* step3
CLOSE SYSIPT,SYSRDR
ENTRY (dmlp)
// EXEC LNKEDT
/*

Note: You candefine a SYSCTL filein the JCL to override the IDMSOPTI statement for the
back-end system:

// DLBL sysctl, 'idms.sysctl', DA
// EXTENT sys008, nnnnnn
// ASSGN sys008,DISK,VOL=nnnnnn,SHR

IDMSLBLS
Procedure containingall of the file definitions required by the system

Note: For a complete listing of IDMSLBLS, see "IDMSLBLS procedure", later inthis
section.

Appropriate UPSI switch, 1-8 characters, if specified in the IDMSOPTI module

Appendix A: DML Precompile, PL/I Compile, and Link-Edit JCL 315

Compiling aPL/I Program

idmspch

Filename of datasetoutput from the DML precompiler
temp.dmlp

FileID of the datasetoutput from the DML precompiler
sys020

Logical unitassignment of DMLP output
nnnnnn

Volume serial identifier of appropriatedisk volume
dmcl-name

Name of the DMCL to access atruntime
dictionary-name

Name of the dictionarytoaccess atruntime
SSSS

Startingtrack (CKD) or block (FBA) of disk extent
[}

Number of tracks (CKD) or blocks (FBA) of disk extent
userprog

Name of programinthe library
dmlp

Name of PL/I| DML module
sysctl

Filename of the SYSCTL file
idms.sysctl

FilelD of the SYSCTL file
sys008

Logical unitassignmentof the SYSCTL file
SYSIDMS Parameters

You canuseSYSIDMS parameters to specify information aboutyour runtime
environment. The SYSIDMS parameters DICTNAME and DMCL areused inthis JCL
stream.

Note: For information aboutother optional SYSIDMS parameters, see the CA IDMS
Common Facilities Guide.

316 DML Reference Guide for PLI

Compiling aPL/T Program

Output to Disk or Tape File

To route punched output to a sequential diskfileor to a tape file, use a SYSPCH
statement inthe JCL.

Executing in Local Mode

To execute IDMSDMLP inlocal mode:
m Remove the UPSI statement

m Add the following statements inthe IDMSDMLP step:

// TLBL sysjrnl, 'idms.tapejrnl',,nnnnnn,, f
// ASSGN sys009,TAPE ,VOL=nnnnnn

sysjrnl
Filename of the tape journalfile
idms.tapejrnl

FileID of the tapejournalfile

Filenumber of the tape journal file
sys009

Logical unitassignmentfor journal file
INCLUDE Statements

Provide INCLUDE statements inlocal modeor central version JCL as follows.Placethe
following statements inthe second step, before EXEC PL/I:

ACTION NOAUTO Prevents multiple inclusions of IDMS
INCLUDE IDMS IDMS interface for use with COMRG
INCLUDE IDMSOPTI You can omit IDMSOPTI for local mode
INCLUDE IDMSCANC Local mode abort entry point

(omit IDMSCANC if TP application)
INCLUDE IDMSCINT For CICS only, replaces INCLUDE IDMS
IDMSLBLS Procedure

IDMSLBLS is a procedure that contains file definitions for the dictionaries, sample
databases, diskjournalfiles,and SYSIDMS file provided duringinstallation.

Appendix A: DML Precompile, PL/I Compile, and Link-Edit JCL 317

Compiling aPL/I Program

You cantailor thefollowing IDMSLBLS procedure (provided atinstallation) to reflect the
filenames and definitions in useat your site. Reference IDMSLBLS as shown in the
previous z/VSE JCL job stream.

LIBDEFS
// LIBDEF *,SEARCH=idmslib.sublib
// LIBDEF *,CATALOG=user.sublib
/* LABELS
// DLBL idmslib,'idms.library',1999/365
// EXTENT ,nnnnnn,,,ssss,1500
// DLBL dccat, 'idms.system.dccat',61999/365,DA
// EXTENT SYSnnn,nnnnmn,,,ssss,3l
// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR
// DLBL dccatl, 'idms.system.dccatlod',1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,6
// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR
// DLBL dccatx, 'idms.system.dccatx',1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,11l
// ASSGN SYSnnn,DISK,VOL=nnnnnn, SHR
// DLBL dcdml,"'idms.system.ddldnl',1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,101
// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR
// DLBL dclod, 'idms.system.ddldclod',1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,21
// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR
// DLBL dclog, 'idms.system.ddldclog',h1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,401
// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR
// DLBL dcrun,'idms.system.ddldcrun',1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,68
// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR
// DLBL dcscr, 'idms.system.ddldcscr',1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,135
// ASSGN SYSnnn,DISK,VOL=nnnnnn, SHR
// DLBL dcmsg,'idms.sysmsg.ddldcmsg',h1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,201
// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR
// DLBL dclscr,'idms.sysloc.ddlocscr',1999/365,DA

318 DML Reference Guide for PLI

Compiling aPL/I Program

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dirldb,'idms.sysdirl.ddldml',61999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,201

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dirllod, 'idms.sysdirl.adldclod',1999/365,DA
// EXTENT SYSnnn,nnnnmn,,,ssss,2

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL empdemo, 'idms.empdemol',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,1l

// ASSGN SYSnnn,DISK,VOL=nnnnnn, SHR

// DLBL 1insdemo,'idms.insdemol',1999/365,DA

// EXTENT SYSnnn,nnnnmn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL orgademo, 'idms.orgdemol',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL empldem, 'idms.sqldemo.empldemo',1999/365,DA
// EXTENT SYSnnn,nnnnmn,,,ssss,1l

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL infodem,'idms.sqldemo.infodemo',1999/365,DA
// EXTENT SYSnnn,nnnnnn, ,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL projdem,'idms.projseg.projdemo',1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL 1indxdem, 'idms.sqldemo.indxdemo',1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sysctl, 'idms.sysctl',1999/365,SD

// EXTENT SYSnnn,nnnnmn,,,ssss,?2

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL secdd, 'idms.sysuser.ddlsec',1999/365,DA

// EXTENT SYSnnn,nnnnnn, ,,ssss,26

Appendix A: DML Precompile, PL/I Compile, and Link-Edit JCL 319

Compiling aPL/I Program

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dictdb, 'idms.appldict.adldml',1999/365,DA
// EXTENT SYSnnn,nnnnmn,,,ssss,51

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dloddb, 'idms.appldict.adldclod',1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,51

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sqldd, 'idms.syssql.ddlcat',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,101

// ASSGN SYSnnn,DISK,VOL=nnnnnn, SHR

// DLBL sqllod, 'idms.syssql.ddlcatl',61999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,51

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sqlxdd, 'idms.syssql.ddlcatx',61999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,26

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asfdnl,'idms.asfdict.ddldml',b1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,201

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asflod, 'idms.asfdict.asflod',1999/365,DA
// EXTENT SYSnnn,nnnnnn, ,,ssss,401

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asfdata, 'idms.asfdict.asfdata',1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,201

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL ASFDEFN, 'idms.asfdict.asfdefn',1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,101

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL jljml,'idms.j1jrnl"',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j2jml, 'idms.j2jrnl',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j3jml, 'idms.j3jrnl"',1999/365,DA

// EXTENT SYSnnn,nnnnnn, ,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn, SHR

// DLBL SYSIDMS, '#SYSIPT',0,SD

/+

/*

idmslib.sublib
Name of the sublibrary within thelibrary containing CAIDMS modules
user.sublib

Name of the sublibrary within thelibrary containing user modules

320 DML Reference Guide for PLI

Compiling aPL/T Program

idmslib

Name of the filecontaining CAIDMS modules
idms.library

ID associated with the file containing CAIDMS modules
SYSnnn

Logical unitof the volume for which the extent is effective
nnnnnn

Volume serial identifier of appropriatedisk volume
SSSS

Starting track (CKD) or block (FBA) of disk extent
dccat

Filename of the system dictionary catalog (DDLCAT) area
idms.system.dccat

ID of the system dictionary catalog (DDLCAT) area
dccatl

Filename of the system dictionary catalogload (DDLCATLOD) area
idms.system.dccatlod

ID of the system dictionary catalogload (DDLCATLOD) area
dccatx

Name of the system dictionary catalogindex (DDLCATX) area
idms.system.dccatx

ID of the system dictionary catalogindex (DDLCATX) area
dcdml

Name of the system dictionary definition (DDLDML) area
idms.system.ddldml

ID of the system dictionary definition (DDLDML) area
dclod

Name of the system dictionary definition load (DDLDCLOD) area
idms.system.ddldclod

ID of the system dictionary definition load (DDLDCLOD) area
dclog

Name of the system logarea (DDLDCLOG) area

Appendix A: DML Precompile, PL/I Compile, and Link-Edit JCL 321

Compiling aPL/I Program

idms.system.ddldclog

ID of the system log (DDLDCLOG) area
dcrun

Name of the system queue (DDLDCRUN) area
idms.system.ddldcrun

ID of the system queue (DDLDCRUN) area
descr

Name of the system scratch (DDLDCSCR) area
idms.system.ddlIdcscr

ID of the system scratch (DDLDCSCR) area
dcmsg

Name of the system message (DDLDCMSG) area
idms.sysmsg.ddldcmsg

ID of the system message (DDLDCMSG) area
dclscr

Name of the local modesystem scratch (DDLOCSCR) area
idms.sysloc.ddlocscr

ID of the local modesystem scratch (DDLOCSCR) area
dirldb

Name of the IDMSDIRL definition (DDLDML) area
idms.sysdirl.ddidmli

ID of the IDMSDIRL definition (DDLDML) area
dirllod

Name of the IDMSDIRL definition load (DDLDCLOD) area
idms.sysdirl.dirllod

ID of the IDMSDIRL definition load (DDLDCLOD) area
empdemo

Name of the EMPDEMO area
idms.empdemol

ID of the EMPDEMO area

322 DML Reference Guide for PLI

Compiling aPL/T Program

insdemo

Name of the INSDEMO area
idms.insdemo1

ID of the INSDEMO area
orgdemo

Name of the ORGDEMO area
idms.orgdemo1

ID of the ORDDEMO area
empldem

Name of the EMPLDEMO area
idms.sqldemo.empldemo

ID of the EMPLDEMO area
infodem

Name of the INFODEMO area
idms.sqldemo.infodemo

ID of the INFODEMO area
projdem

Name of the PROJDEMO area
idms.projseg.projdemo

ID of the PROJDEMO area
indxdem

Name of the INDXDEMO area
idms.sgldemo.indxdemo

ID of the INDXDEMO area
sysctl

Name of the SYSCTL file
idms.sysct/

ID of the SYSCTL file
secdd

Name of the system user catalog (DDLSEC) area

Appendix A: DML Precompile, PL/T Compile, and Link-Edit JCL 323

Compiling aPL/I Program

idms.sysuser.ddisec

ID of the system user catalog (DDLSEC) area
dictdb

Name of the application dictionary definitionarea
idms.appldict.ddidml

ID of the application dictionary definition (DDLDML) area
dloddb

Name of the application dictionary definitionload area
idms.appldict.ddidclod

ID of the application dictionary definition load (DDLDCLOD) area
sqldd

Name of the SQL catalog (DDLCAT) area
idms.syssql.ddicat

ID of the SQL catalog (DDLCAT) area
sqllod

Name of the SQL catalogload (DDLCATL) area
idms.syssql.ddlcat|

ID of SQL catalogload (DDLCATL) area
sqixdd

Name of the SQL catalogindex (DDLCATX) area
idms.syssql.ddlcatx

ID of the SQL catalogindex (DDLCATX) area
asfdml

Name of the asfdictionary definition (DDLDML) area
idms.asfdict.ddidml

ID of the asfdictionary definition (DDLDML) area
asflod

Name of the asfdictionary definition load (ASFLOD) area
idms.asfdict.asflod

ID of the asfdictionary definition load (ASFLOD) area

324 DML Reference Guide for PLI

Compiling aPL/T Program

asfdata

Name of the asfdata (ASFDATA) area
idms.asfdict.asfdata

ID of the asfdata area (ASFDATA) area
ASFDEFN

Name of the asfdata definition (ASFDEFN) area
idms.asfdict.asfdefn

ID of the asfdata definition area (ASFDEFN) area
jljrnl

Name of the firstdiskjournalfile
idms.j1jrnl

ID of the firstdiskjournalfile
j2jrnl

Name of the second diskjournal file
idms.j2jrn/

ID of the second diskjournal file
j3jrnl

Name of the third diskjournal file
idms.j3jrnl

ID of the third diskjournal file
SYSIDMS

Name of the SYSIDMS parameter file

Appendix A: DML Precompile, PL/I Compile, and Link-Edit JCL 325

Compiling aPL/I Program

Under z/VM

Executing Under the Central Version

IDMSDMLP (z/VM)

FILEDEF SYSIPT DISK sysipt data a (RECFM F LRECL ppp BLKSIZE nnn

FILEDEF SYSP(H DISK prgnme PL/I A

FILEDEF SYSIDMS DISK sysidms parms a (RECFM F LRECL ppp BLKSZE nnn

EXEC IDMSFD

OSRUN IDMSDMLP PARM='CVMACH=vmid' DML precompile step

FILEDEF TEXT DISK prgnme TEXT A

GLOBAL TXTLIB plilibvs IDMSLIB1

PL/I prgnme (OSDECK APOST LIB PL/I caompile step

TXTLIB DEL utextlib prgnme

TXTLIB ADD utextlib prgnme

FILEDEF SYSLMOD uloadlib LOADLIB a (RECFM V LRECL 1024 BLKSIZE 1 024

FILEDEF objlibl DISK IDMSLIB1 TXTLIB A

FILEDEF objlib DISK utextlib TXTLIB a

FILEDEF SYSLIB DISK plilibvs TXTLIB p

LKED linkctl (LIST XREF LET MAP RENT NOTERM PRINT SIZE 512K 64K
Link edit step

sysipt data a

Filename, filetype, and filemode of the filethat contains PL/I DML source
statements

ppp

Record length of the data file
nnn

Blocksize of the data file
prgnme

Filename of the PL/I program
sysidms parms a

Filename, filetype, and filemode of the filethat contains SYSIDMS parameters
(parameters that define your runtime environment)

vmid
ID of the virtual machinerunningthe CA IDMS/DB central version
plilibvs

Filename of the library thatcontains PL/I logic modules

326 DML Reference Guide for PLI

Compiling aPL/T Program

utextlib

Filename of the user text library
uloadlib

Filename of the userloadlibrary
objlib1

DDname of the first CA IDMS/DB object library
objlib

DDname of the user object library
plilibvs

Filename of the library thatcontains PL/I logic modules
linkctl

Filename of the filethat contains the linkage editor control statements
How to Edit the SYSIDMS File

To edit the SYSIDMS file, enter these z/VM commands:

XEDIT sysidms parms a (NOPROF
INPUT

SYSIDMS parameters
FILE

To run IDMSDMLP, includethe DMCL and DICTNAME SYSIDMS parameters.

Note: For more information aboutSYSIDMS, see the CA IDMS Common Facilities Guide.

Appendix A: DML Precompile, PL/I Compile, and Link-Edit JCL 327

Compiling aPL/I Program

How to Create the SYSIPT File

To create the SYSIPT file, enter these z/VM commands:

XEDIT sysipt data a (NOPROF
INPUT

DML source statements

FILE
How to Create the LINKCTL File

To create the LINKCTL file, enter these z/VM commands:

XEDIT linkctl data a (NOPROF

INPUT

INCLUDE objlib(prgnme)

INCLUDE objlib1(IDMS) IDMS is required, omit for CICS
INCLUDE objlibl(IDMSCINT) IDMS is required for CICS only
INCLUDE objlibl(IDMSCANC) IDMSCANC for BATCH and DC BATCH
ENTRY prgnme

NAME prgnme (R)

FILE

Executing in Local Mode
To execute IDMSDMLP inlocal mode, remove the CVMACH parameter from OSRUN, and
do one of the following:

m Link IDMSDMLP with an IDMSOPTI program that specifies local execution mode

m Specify *LOCAL* as the firstinputparameter inthe filespecifiedinthe FILEDEF
SYSIPT statement

m Modify the OSRUN statement, as follows:
OSRUN IDMSDMLP PARM='*LOCAL*'

Note: This optionis valid onlyif the OSRUN command is issued froma System
Product Interpreter or from an EXEC2 file.

328 DML Reference Guide for PLI

Link-Edit Considerations

Link-Edit Considerations

The modules involvedinthe link editof an application programcontain sixexternal
references. Some must be resolved depending on the mode of operation. Check
unresolved references againstthe followingtableto ensure proper linkageto the

program.

Reference Referenced by Resolved by Comments

ABORT Application IDMSCANC Should be resolved

IDMS Application IDMS Must be resolved

IDMSOPTI1 IDMS IDMSOPTI Must be resolved under

module z/0S if using the central

version without a SYSCTL
file,and under z/VSE if
usingthe central version

IDMSWAIT1 IDMS IDMSWAIT Must be resolved if

user-written wait program
is desired; otherwise,
system routineis used

1. Under z/0S, IDMSOPTI is a weak external reference (WXTRN).

Appendix A: DML Precompile, PL/I Compile, and Link-Edit JCL 329

Passing Parameters to the Precompiler

Passing Parameters to the Precompiler

A number of parameters can be provided to control the action taken by the
precompiler.The parameters can be specifiedin one of three ways:

An IDMSPPRM module can be compiled with parameter values thatare always
appropriateto a particular operatingsystemor clientsite. IDMSPPRM must be a
stand-aloneassembler modulethat will beloaded by the precompiler at run-time. The
module must consistofa string of characters terminated by a binary zero.

A PARM= clausecanbecoded on the EXEC statement that i nvokes IDMSDMLC ina z/0OS,
or z/VSE environment or on the OSRUN statement thatinvokes IDMSDMLC ina CMS
environment. Any option thatis specified onthe EXEC or OSRUN statement will take
precedence over the same parameter if itis coded with a different valuein the
IDMSPPRM module.

A PARM= statement can be coded as a SYSIDMS inputparameter. See CA IDMS
Common Facilities Guidefor more information about using SYSIDMS. Any option thatis
specifiedinthe PARM= statement will take precedence over the same parameter ifitis
coded with a different value in the IDMSPPRM module. Note thatif PARM= is specified
both as a SYSIDMS input statement and on an EXEC or OSRUN statement, the PARM=
clauseonthe EXEC or OSRUN statement will be ignored completely.

Precompiler Options: Parameter options availableto code inthe EXEC statement of the
precompilestep are:

Optional Parameters
LIST/NOLIST

Determines whether or nota DML sourcelistingis generated. DMLIST/NODMLIST in
the sourcecode overrides this parameter.

DICTNAME

Specifies the dictionary you want to access. DICTNAME canalsobespecifiedas a
SYSIDMS parameter.

DEBUG=CARD

Causes eachinput record from sourceto be written to SYSLST as itis processed.
This allows you to identify any records that may causea processingloop.

SCHEMA = schema-name

Specifies the defaultschema-name qualifier for the precompiler to use when
processingan INCLUDE TABLE statement that does not supply a qualifier.

330 DML Reference Guide for PLI

Passing Parameters to the Precompiler

NOINSTALL
Specifies that the precompiler should only check Syntax.
SQL=NO/89/FIPS/DISABLED

Specifies the SQL Syntax standard that the precompiler should apply when checking
the validity of SQL statements inthe program.

Option NO is the default; means that compliancewith a named SQL standardis not
checked or enforced, and all CAIDMS/DB extensions are permitted.

Option 89 directs the precompiler to use ANSI X3.135-1989 (Rev), Database
Language SQL with integrity enhancement as the standard for compliance.

Option FIPS directs the precompiler to use FIPS PUB 127-1, Database Language SQL
as the standard for compliance.

Option DISABLED directs the precompiler not to process any SQL commands
(denoted by EXEC SQL Syntax) inthe program.

DATE=ISO/USA/EUR/JIS

Specifies the format of the DATE data type to be used for communication between
the program and the databasewhen the access moduleis executed.

TIME=ISO USA EUR/JIS

Specifies the format of the TIME data type to be used for communication between
the program and the databasewhen the access moduleis executed.

Note: For more information about EXEC PGM parameters thatare applicableto SQL
access, see the CAIDMS SQL Programming Guide.

EXPAND88=YES/NO

Specifies whether to expand level-88 condition names into named constants from
records that are copied into the program with the INCLUDE IDMS statement. The
precompilerignores level-88 condition names that specify more than one value.

To avoid compileerrors, ensure your PL/I compiler supports named constants
before usingthis option.

Note: For more information aboutSQL-related parameter options, see the CA IDMS SQL
Programming Guide.

Site-specific Parameters: The followingsamplewill directthe precompiler not to
produce a listing of the source program. When assembled, the resultantload module
must be named IDMSPPRM.

EDBPPARM CSECT

DC C’NOLIST'

DC X'00’

END

Appendix A: DML Precompile, PL/T Compile, and Link-Edit JCL 331

Appendix B: Call Formats

This appendix contains the call formats used by CA IDMS/DB and CA IDMS/DC to
execute DML commands. Each DML function can be coded usingstandard CALL
statements.

The tables in this appendix present the function codes and arguments that are passed to
CA IDMS/DB and CA IDMS/DC for execution of a DML command.

About Arguments 0 and 1
Note the followinginformation aboutarguments 0 and 1 when you review the tablesin

this appendix:

m Argument 0—This argument is passed for all functions.ltcontains
SUBSCHEMA-CTRL, the IDMS DB or IDMS DC communications block.

m Argument 1—CAIDMS/DB passes the IDBMSCOM arrayas argument1. CA
IDMS/DC passes the DCBMSCOM arrayas argument 1.

Example of a Call Format

The following Example shows the expanded call formatfor a BIND RECORD statement
(BIND EMPLOYEE):

CALL 'IDMS' (SUBSCHEMA CTRL
, IDBMSCOM (48)
, 'EMPLOYEE
,BMPLOYEE;
);

Order of Expansions

CA IDMS/DB call expansionsarepresented first, CA IDMS/DC expansions second.
Formats aregrouped indifferent tables accordingto statement function.

This section contains the followingtopics:

CA IDMS/DB Call Formats (seepage 333)
CA IDMS/DC Call Formats (see page 352)

CA IDMS/DB Call Formats

CA IDMS/DB passes theIDBMSCOM arrayas argument 1.

Arguments marked with asterisks have defaultvalues.

Appendix B: Call Formats 333

CAIDMS/DB Call Formats

Control Statements
Major Database (1) (2) (3) (4) (5)
Functi Statement Calling
on (in COBOL Argum
Code pmL) ents
(nn)
14 BIND RUN- 59 IDMS DB subschema-name*
UNIT Communic
ations
Block*
BIND 59 IDMS DB subschema-name
RUN-UNIT FOR Communic
subschema- ations
hame Block*
BIND 59 IDMS DB subschema-name* subschema-control* nodename
RUN-UNIT Communic OR
NODENAME ations
N subschema-Ir-control
nodename Block *
BIND 59 IDMS DB subschema-name subschema-control* nodename
RUN-UNIT FOR Communic OR
ations subschema-Ir-control
subschema-na Block* *
me
NODENAME
nodename
BIND 59 IDMS DB subschema-name subschema-control* nodename
RUN-UNIT FOR Communic OR
ations subschema-Ir-control
subschema-na Block* *

me
DBNAME

database-nam
e

334 DML Reference Guide for PLI

CAIDMS/DB Call Formats

Major Database (1) (2) (3) (4) (5)
Functi Statement Calling
on (in COBOL Argum
Code pmL) ents
(nn)
BIND 59 IDMS DB subschema-name* subschema-control* nodename
RUN-UNIT Communic OR
NODENAME ations subschema-Ir-control
nodename Block* *
DBNAME
database-nam
e
BIND 59 IDMS DB subschema-name subschema-control* nodename
RUN-UNIT FOR Communic OR
ations subschema-Ir-control
subschema-na Block* *
me
NODENAME
nodename
DBNAME
database-nam
e
BIND 48 record-id record-location*
record-name
BIND 48 record-id record-location
record-name
TO
record-locatio
n
BIND 48 record-id record-location

record-locatio
n

WITH

record-name

Appendix B: Call Formats 335

CAIDMS/DB Call Formats

Major
Functi
on
Code

Database
Statement

(in coBOL
DML)

(1) (2) (3) (4)
Calling

Argum

ents

(nn)

(5)

BIND
PROCEDURE

FOR

procedure-na
me

TO

procedure-

control-locatio
n

73 procedure- procedure-control-
name location

09

READY

37

READY
area-name

37 area-name

READY
area-name

USAGE-MODE
IS

RETRIEVAL

37 area-name

READY
area-name

USAGE-MODE
IS

PROTECTED
RETRIEVAL

39 area-name

READY
area-name

USAGE-MODE
IS

EXCLUSIVE
RETRIEVAL

40 area-name

336 DML Reference Guide for PLI

CAIDMS/DB Call Formats

Major
Functi
on
Code

Database (1) (2) 3)
Statement Calling

(in COBOL Argum
DML) ents

(nn)

(4)

(5)

READY 36 area-name
area-name

USAGE-MODE
IS

UPDATE

READY 38 area-name
area-name

USAGE-MODE
IS

PROTECTED
UPDATE

READY 41 area-name
area-name

USAGE-MODE
IS

EXCLUSIVE
UPDATE

READY o
USAGE-MODE

IS ...

**Choose
function

code from
36-41,

as shown
above

01

FINISH 02

18

COMMIT 66

COMMIT ALL 95

19

ROLLBACK 67

Appendix B: Call Formats 337

CAIDMS/DB Call Formats

Major Database (1) (2) (3) (4) (5)
Functi Statement Calling
on (in COBOL Argum
Code pp) ents
(nn)

ROLLBACK 96

CONTINUE
06 KEEP CURRENT 87

KEEP 88

EXCLUSIVE

CURRENT
KEEP CURRENT 89 record-na
me

record-name

KEEP 90 record-na
EXCLUSIVE me
CURRENT

record-name

KEEP CURRENT 91 set-name
WITHIN

set-name

KEEP 93 set-name
EXCLUSIVE

CURRENT
WITHIN

set-name

KEEP CURRENT 93 area-name
WITHIN

area-name

KEEP 94 area-name
EXCLUSIVE

CURRENT
WITHIN

area-name

16 IF set-name 64 set-name
IS EMPTY

338 DML Reference Guide for PLI

CAIDMS/DB Call Formats

Major Database (1) (2) (4) (5)
Functi Statement Calling
on (in COBOL Argum
Code pp) ents
(nn)
IF set-name 65 set-name

ISNOT
EMPTY...

(Upon return to user run-unit, the Error Status indicator='0000'

if setis empty;' 1601'if not empty.)

IF set-name_ 60 set-name
MEMBER ...
IF NOT 62 set-name
set-name
MEMBER ...

(Upon return to user run-unit, the Error Status indicator =' 0000’

ifthe record(currentof run unit) is linked into the specified set;
'1601'ifitis not a member.)

Modification Statements

Major Database Statement (1) Calling (2) (3) (4) (5)
Functio (i, coBoL DML) Arguments
n Code (nn)
12 STORE record-name 42 record-name
07 CONNECT 44 record-name set-name
record-name TO
set-name
08 MODIFY 35 record-name
record-name
11 DISCONNECT 46 record-name set-name

record-name
FROM set-name

Appendix B: Call Formats 339

CAIDMS/DB Call Formats

Major Database Statement (1) calling (2) (3) (4) (5)
Functio (i, coBoL DML) Arguments
n Code (nn)
02 ERASE record-name_ 52 record-name
ERASE record-name 03 record-name
PERMANENT
MEMBERS
ERASE record-name 53 record-name
SELECTIVE
MEMBERS
ERASE record-name 4 record-name
ALL MEMBERS
Retrieval Statements
Major Database (1) (2) (3) (4) (5)
Functi Statement Calling
on (in coBOL DML) Argum
Code ents
(nn)
03 FIND DB-KEY 75 db-key
db-key
FIND 06 record-name db-key
record-name
DB-KEY IS
db-key
FIND DB-KEY 29 dbkey page-info
db-key
PAGE_INFO
page-info
FIND CURRENT 30
FIND CURRENT 07 record-name

record-name

340 DML Reference Guide for PLI

CAIDMS/DB Call Formats

Major
Functi
on
Code

Database
Statement

(in COBOL DML)

(1)
Calling
Argum
ents

(nn)

(2)

3) (4)

(5)

FIND CURRENT

WITHIN
set-name

08

set-name

FIND CURRENT
WITHIN

area-name

09

area-name

FIND NEXT
WITHIN

set-name

14

set-name

FIND NEXT
record-name

WITHIN
set-name

10

record-name

set-name

FIND PRIOR

WITHIN
set-name

16

set-name

FIND PRIOR
record-name

WITHIN
set-name

12

record-name

set-name

FIND FIRST

WITHIN
set-name

20

set-name

FIND FIRST
record-name,

WITHIN
set-name_

18

record-name

set-name

FIND LAST

WITHIN
set-name

24

set-name

Appendix B: Call Formats 341

CAIDMS/DB Call Formats

Major Database (1)
Functi Statement Calling

on (in coBOL DML) Argum
Code ents

(nn)

(2) 3) (4) (5)

FIND LAST 22
record-name,

WITHIN
set-name

record-name set-name

FIND 78
sequence-numb
er

WITHIN
set-name

set-name sequence-nu
mber

FIND 76
sequence-numb
er_

record-name

WITHIN
set-name

record-name set-name sequence-number

FIND NEXT 15
WITHIN

area-name

area-name

FIND NEXT 11
record-name
WITHIN

area-name

record-name area-name

FIND PRIOR 17
WITHIN

area-name

area-name

FIND PRIOR 13
record-name,
WITHIN

Area-name

record-name area-name

FIND FIRST 21
WITHIN

area-name

area-name

342 DML Reference Guide for PLI

CAIDMS/DB Call Formats

Major Database (1) (2) (3) (4) (5)
Functi Statement Calling
on (in coBOL DML) Argum
Code ents
(nn)
FIND FIRST 19 record-name area-name
record-name
WITHIN
area-name
FIND LAST 25 area-name
WITHIN
area-name
FIND LAST 23 record-name area-name
record-name
WITHIN
area-name
FIND 79 area-name sequence-nu
sequence-numb mber
er
WITHIN
area-name
FIND 77 record-name area-name sequence-number
sequence-numb
er
record-name
WITHIN
area-name
FIND OWNER 31 set-name
WITHIN
set-name
FIND CALC (ANY) 32 record-name
record-name
FIND DUPLICATE 50 record-name

record-name

Appendix B: Call Formats 343

CAIDMS/DB Call Formats

Major Database (1) (2) (3) (4) (5)
Functi Statement Calling
on (in coBOL DML) Argum
Code ents
(nn)
FIND 33 record-name set-name sort-field-name

record-name_
WITHIN

set-name
USING

sort-field-name

FIND 51 record-name set-name sort-field-name

record-name
WITHIN
set-name

CURRENT
USING

sort-field-name

OBTAIN (any of the above FIND record selection expressions.)
Call generated consists of arguments described above for the
FIND in question plus anadditionalargument of IDBMSCOM

(43) function. For example:

OBTAIN CALC 32 record-name IDBMSCOM
record (43)

OBTAIN PRIOR 12 record-name
record-name

WITHIN
set-name

KEEP/KEEP EXCLUSIVE (any of the above FIND/OBTAIN

record selection expressions.)

Call generated consists of arguments described above for the
FIND/OBTAIN in question plus one of the followingadditional
IDBMSCOM function:

KEEP. oottt v IDBMSCO M(87)

KEEP EXCLUSIVE........... IDBMSCOM(88)

For example:

344 DML Reference Guide for PLI

CAIDMS/DB Call Formats

Major Database (1) (2) (3) (4) (5)
Functi Statement Calling
on (in coBOL DML) Argum
Code ents
(nn)
OBTAIN KEEP 32 record-name IDBMSCOM IDBMSCOM
CALC (43) (87)
record-name
FIND KEEP 30 IDBMSCOM
EXCLUSIVE (88)
CURRENT
05 GET 43
GET 34 record-name
record-name
17 RETURN db-key 81 index-set-name db-key symbolic-key
FROM
index-set-name
CURRENCY
KEY INTO
symbolic-key
RETURN db-key 82 index-set-name db-key symbolic-key
FROM
index-set-name
FIRST
KEY INTO
symbolic-key
RETURN db-key 83 index-set-name db-key symbolic-key

FROM

index-set-name
LAST
KEY INTO

symbolic-key

Appendix B: Call Formats 345

CAIDMS/DB Call Formats

Major Database (1) (2) (4) (5)
Functi Statement Calling
on (in coBOL DML) Argum
Code ents
(nn)
RETURN db-key 84 index-set-name symbolic-key
FROM
index-set-name
NEXT
KEY INTO
symbolic-key
RETURN db-key 85 index-set-name symbolic-key
FROM
index-set-name
PRIOR
KEY INTO
symbolic-key
RETURN db-key 86 index-set-name index-key-key symbolic-key
FROM

index-set-name
USING

index-key-value
KEY INTO
symbolic-key

346 DML Reference Guide for PLI

CAIDMS/DB Call Formats

ACCEPT Statements

Major
Functio
n Code

Database
Statement

(in COBOL DMIL)

(1)
Calling
Argumen
ts

(nn)

(2)

3)

() (5)

15

ACCEPT db-key

FROM
CURRENCY

54

db-key

ACCEPT db-key

FROM
CURRENCY

page-info

db-key

28

page-info

ACCEPT db-key
FROM
record-name
CURRENCY

record-name

db-key

ACCEPT db-key
FROM
record-name
CURRENCY

page-info

record-name

db-key

28 page-in
fo

ACCEPT db-key
FROM
set-name
CURRENCY

57

set-name

db-key

ACCEPT db-key
FROM
set-name
CURRENCY

page-info

57

set-name

db-key

28 page-in
fo

ACCEPT db-key
FROM
area-name
CURRENCY

56

area-name

db-key

Appendix B: Call Formats 347

CAIDMS/DB Call Formats

Major
Functio
n Code

Database
Statement

(in COBOL DML)

(1)
Calling
Argumen
ts

(nn)

(2)

3)

(4)

(5)

ACCEPT db-key
FROM
area-name
CURRENCY

page-info

56

area-name

db-key

28

page-in
fo

ACCEPT db-key
FROM
set-name

NEXT
CURRENCY

68

set-name

db-key

ACCEPT db-key
FROM
set-name

NEXT
CURRENCY

page -info

68

set-name

db-key

28

page-in

ACCEPT db-key
FROM
set-name

PRIOR
CURRENCY

69

set-name

db-key

ACCEPT db-key
FROM
set-name

PRIOR
CURRENCY

page -info

69

set-name

db-key

28

page-in
fo

ACCEPT db-key
FROM
set-name

OWNER
CURRENCY

70

set-name

db-key

348 DML Reference Guide for PLI

CAIDMS/DB Call Formats

Major
Functio
n Code

Database (1) (2)
Statement Calling

(in coBOL DML) Argumen
ts

(nn)

(3) (4) (5)

ACCEPT db-key 70
FROM
set-name

OWNER
CURRENCY

page -info

set-name

db-key 28 page-in

fo

ACCEPT 71
db-statistics

FROM

IDMS
STATISTICS

db-statistics

ACCEPT 72
bind-address
FROM
record-name
BIND

record-name

bind-address

ACCEPT 74
procedure-contr
ol-location

FROM

procedure-name

procedure-nam
e

PROCEDURE

procedure-control-locati
on

ACCEPT 28
page-info-locati

on FOR

record-name

record-name location

page-info

Appendix B: Call Formats 349

CAIDMS/DB Call Formats

LRF DML Statements

Major Database (1) (2) (3) (4) (5)
Functi Statement Calling
on (in COBOL DML) Argume
Code nts
(nn)
20 OBTAIN FIRST 99 subschema-Ir-ctrl* logical-record-location*
logical-record-na
me
OBTAIN FIRST 99 subschema-Ir-ctrl* logical-record-location*
logical-record-na
me
INTO
alt-logical-record
location
OBTAIN NEXT 99 subschema-Ir-ctrl* logical-record-location*
logical-record-na
me
OBTAIN NEXT 99 subschema-Ir-ctrl* logical-record-location*
logical-record-na
me
INTO
alt-logical-record
location
MODIFY 99 subschema-Ir-ctrl* logical-record-location*

logical-record-na
me

350 DML Reference Guide for PLI

CAIDMS/DB Call Formats

Major
Functi
on
Code

Database
Statement

(in COBOL DML)

(1) (2)
Calling
Argume

nts

(nn)

(3) (4) (5)

MODIFY
logical-record-

name
FROM

alt-logical-record

location

99 subschema-lr-ctrl*

alt-logical-record-location*

STORE
logical-record-na
me

99 subschema-lr-ctrl*

logical-record-location*

STORE
logical-record-

name
FROM

alt-logical-record

location

99 subschema-Ir-ctrl*

alt-logical-record-location*

ERASE
logical-record-na
me

99 subschema-Ir-ctrl*

logical-record-location*

ERASE
logical-record-

name
FROM

alt-logical-record

location

99 subschema-lr-ctrl*

alt-logical-record-location*

To differentiate between the LRF DML statements, the DML

precompiler places the name of the verb issuedinto the LRC

Block (subschema-Ir-ctrl).

Appendix B: Call Formats 351

CAIDMS/DC Call Formats

CA IDMS/DC Call Formats

CA IDMS/DC passes the DCBMSCOM arrayas argument 1.

Note: CA IDMS/DC also passes information in the DCSTR, DCFLG, and DCNUM fields of

the SUBSCHEMA-CTRL block.

Program Manadement Statements

Major Communic Callin (2) (3) (4) (5)
Functi ations g (1)
on statement argum
Code (in COBOL ents
DML)
(nn)
30 TRANSFER 23 DCFLG1 DCSTR2 parameter
CONTROL
30 DCRETURN 19
34 LOAD 15 01-level-program-location end-01-level-program-location
TABLE
34 DELETE 5 01-level-program-location
TABLE
33 SET ABEND 20
EXIT
(STATE)
33 ABEND 1

Storade Manadement Statements

Majo Communicat Calling (2) (3) (4) (5)
r ions (1)
Funct statement argume
ion (in COBOL nts
Code DML)
(nn)
32 GET 13 01-level-storage-data-location end-storage-data-location
STORAGE

352 DML Reference Guide for PLI

CAIDMS/DC Call Formats

Majo Communicat Calling (2) (3) (4) (5)
r ions (1)
Funct statement argume
ion (in COBOL nts
Code DML)
(nn)
32 FREE 10 01-level-storage-data-location start-free-storage-location
STORAGE
Task Management Statements
Major Communic Calling (1) (2) (3) (4) (5)
Functi ations arguments
on statement (nn)
Code

37 ATTACH 3

37 CHANGE 4

PRIORITY
39 ENQUEUE 9 DCFLG1 DCBMSCOM DCBMSCOM(length) resource-id..
(mode)
39 DEQUEUE 8 DCFLG1 DCBMSCOM resource-id..
(length)
31 WAIT 24 ecb
31 POST 16 ecb
Time Management Statements
Major Communic Calling (1) (2) (3) (4) (5)
Functi ations arguments
on statement (nn)
Code (in COBOL
DML)
35 GET TIME 14 return-time return-date
35 SET TIMER 21 start-task-data-location end-start-task-data-location

Appendix B: Call Formats 353

CAIDMS/DC Call Formats

Major Communic Calling (1) (2) (3) (4) (5)
Functi ations arguments
on statement nn)
Code (in COBOL
DML)
35 SET TIMER 21 post- ecb
(post)
Scratch Management Statistics
Maj Communic Calling (2) (3) (4) (5)
or ations (1)

Func statement argume
tion (in COBOL nts

Cod DML) (nn)

e

43 PUT 18 scratch-data-location end-scratch-data-location
SCRATCH

43 GET 12 return-scratch-data-location end-scratch-data-location
SCRATCH

43 DELETE 7
SCRATCH

Queue Manadement Statements

Maj Communica Calling (2) (3) (4)
or tions (1)
Func statement argumen

tion (jh cogoL ts

(5)

Code DML) (m
44 PUT QUEUE 17 queue-data-location end-queue-data-location
44 GET QUEUE 11 return-queue-data-location end-queue-data-location
44 DELETE 6

QUEUE

354 DML Reference Guide for PLI

CAIDMS/DC Call Formats

Terminal Management Statements

Majo Communicat Calling (2) (3) (4) (5)
r ions (1)
Funct statement argume
ion (in COBOL nts
Code DML) (nn)
45 READ 30 input-data-locat end-input-data
TERMINAL ion -location
45 WRITE 30 output-data-loc end-output-da
TERMINAL ation ta-location
45 WRITE THEN 30 output-data-loc end-output-da input-data-location end-input-data-locatio
READ ation ta-location n
TERMINAL
45 CHECK 31 input-data-locat end-input-data
TERMINAL ion -location
47 READ LINE 32 input-data-locat end-input-data
FROM ion -location
TERMINAL
47 WRITE LINE 32 output-data-loc end-output-da
TO ation ta-location
TERMINAL
47 END LINE 32
TERMINAL
SESSION
48 WRITE 37 message-locatio end-message-I|
PRINTER n ocation
46 MAP IN (I0) 34 MRB-mapname
46 MAP IN 34 MRB-mapname mapped-data-l end-mapped-data-lo
(NOl0) ocation cation
46 MAP IN 34 MRB-mapname data-field-nam sequence-field-name page-number
(paging) (a) e
46 MAP IN 34 MRB-mapname key page-number
(paging) (b)
46 MAP OUT 34 MRB-mapname message-text end-message-data-lo
(10) cation
OR

DCBMSCOM (length)

Appendix B: Call Formats 355

CAIDMS/DC Call Formats

Majo Communicat Calling (2) (3) (4) (5)
r ions (1)
Funct statement argume
ion (in COBOL nts
Code DML) (nn)
46 MAP IN 34 MRB-mapname mapped-data-l end-mapped-data-
(NOI0) ocation location
46 MAP OUT 34 MRB-mapname message-text end-message-data-lo key
(paging) cation
OR
DCBMSCOM (length)
46 MAP OUTIN 34 MRB-mapname message-text end-message-data-lo
cation
OR
DCBMSCOM (length)
46 MODIFY 93 MRB-mapname MRE MRB-FLDLST
MAP
46 INQUIRE 92 MRB-mapname MRE
MAP (a)
46 INQUIRE 92 MRB-mapname
MAP (b)
46 INQUIRE 92 MRB-mapname MRE
MAP (c)
46 INQUIRE 92 MRB-mapname MRB-FLDLST
MAP (d)
46 STARTPAGE 40 MRB-mapname
46 ENDPAGE 41
Utility Statements
Majo Communica Calling (2) (3) (4) (5)
r tions (1)
Funct statement argum
ion (in COBOL ents
Code DML)
(nn)
48 ACCEPT 2 return-location

356 DML Reference Guide for PLI

CAIDMS/DC Call Formats

Majo Communica Calling (2) (3) (4) (5)

r tions (1)

Funct statement argum

ion (in COBOL ents

Code DML)

(nn)

40 SNAP 22 DCSTR1 DCSTR1 (6) DCSTR1 (7) title (8)
begin-dump-loc end-dump-location DCBMSCOM(1)
ation

49 SEND 38 user-id message-locatio end-message-location

MESSAGE n
38 BIND 28
TRANSACTI
ON
STATISTICS
38 ACCEPT 28 return-statistics-d
TRANSACTI ata-location
ON
STATISTICS
38 END 28 return-statistics-d
TRANSACTI ata-location
ON
STATISTICS
51 KEEP 29 record-name
LONGTERM set-name
area-name
36 WRITELOG 25 text-return-locatio end-text-return reply-location end-reply-location
n -location (6) (7)
parameter-location ~ end-parameter-loca
tion

Recovery Statements

Major Communic Calling (2) (3) (4) (5)

Functio ations (1)

n Code statement argument

(in COBOL s
DML) (nn)
50 COMMIT 66

Appendix B: Call Formats 357

CAIDMS/DC Call Formats

Major Communic Calling (2) (3) (4) (5)
Functio ations (1)
n Code statement argument
(in COBOL s
DML) (nn)
50 COMMIT 27
TASK
50 FINISH 02
50 FINISH 27
TASK
50 ROLLBACK 67
50 ROLLBACK 27
TASK
50 WRITE 26 record-location end-record-location
JOURNAL

DC_BATCH Statement

Major Communications Calling (1) (2) (3) (4) (5)
Function statement (in arguments

Code COBOL DML) (nn)

14 BIND-TASK 28 DCSTR2

358 DML Reference Guide for PLI

Appendix C: Keywords

This appendix contains a list of keywords recognized by the DML precompiler,including
words applicableinthe CA IDMS/DC environment only. All keywords marked with an
asteriskarealsoreserved words. Reserved words cannotbe used for user-defined
element, record, set, procedure, or area names.

Note: The method of parsingused by the IDMSDMLP preprocessor is significantly
different in CA IDMS release 12.0 and later releases from that usedin priorreleases. The
current parsing method looks atindividual words inthesourcecode. If itencounters a
keyword, it assumes that the keyword should be expanded and tries to do so. Invalid
use of reserved words canthus resultin either codingerrors or Syntax errors. For
example, ifyou use FIND as a variable, the parser will tryto handleitas the DML verb

FIND.

*ABEND INTERNAL *REMARKS
ABORT INTERVAL REPLACE

*ACCEPT INTO REPLY
AID INVOKED REPORT
ALARM I0 REQUIRED
ALL IS REREAD
ALPHAMERIC JOURNAL RESETKBD
ALWAYS JUSTIFY RESETMDT
ANY *KEEP RESUME
AREA KEY RETENTION
ASSIGN LAST RETURNKEY
AT LEAVE RETRIEVAL

*ATTACH LEFT RETRY
ATTRIBUTES LENGTH *RETURN
BACKPAGE LEVELS REVERSE_VIDEO
BACKSCAN LINE REVERSED

*BIND LINK REWIND
BLINK *LINKAGE RIGHT
BLUE LIST *ROLLBACK
BRIGHT LITERALS RUN
BROWSE *LOAD RUN_UNIT
BUFFER LOCK *SCHEMA
BUT LOG SCRATCH
BY LONG SCREEN
CALC LONGTERM SCREENSIZE

*CALL LR SECONDS

Appendix C: Keywords 359

CAIDMS/DC Call Formats

CANCEL LSSC_NODN *SECTION
*CHANGE LTERM *SELECT
CHANGED MANUAL SELECTIVE
*CHECK *MAP *SEND
CLASS MAP_BINDS SEQUENCE
CLEAR MAP_CONTROL SEQUENCE -NUMBER
CODE MAP CONTROLS ~ SESSION
*COMMIT MAP RECORDS *SET
CoMP MAPS SHARE
COMP 3 MAX SHARED
*CONNECT MDT SHORT
CONTENTS ~ MEMBER SKIP
CONTINUE ~ MEMBERS SKIP1
CONTROL MESSAGE SKIP2
COPIES MODE SKIP3
*COPY MODIFIED SNAP
CORRECT ~ *MODIFY SOME
CURRENCY ~ MODULE SPAN
CURRENT MOVE STANDARD
CURSOR MRB_FLDLST START
DARK NAME STARTPAGE
*DATA NATIVE STARTPRT

sQL
DATABASE KEY NEWPAGE STATISTICS
DATASTREAM NEXT STGID
DATE NLCR *STOP
DB NO STORAGE
DB_KEY NOALARM *STORE
DBNAME NOBACKPAGE SUBSCHEMA AREANAMES
*DC NOBACKSCAN SUBSCHEMA BINDS
DEBUG NOBLINK SUBSCHEMA CONTROL
*DECLARATIVES NOCOLOR SUBSCHEMA CTRL
*DELETE NODEADLOCK SUBSCHEMA DESCRIPTION
*DEQUEUE NODENAME SUBSCHEMA DML -LR-
DEST NODUMP DESCRIPTION
DESTINATION NOIO SUBSCHEMA_LR - CONTROL
DETAIL NOKBD SUBSCHEMA_LR-CTRL
DETECT NOLOCK SUBSCHEMA LR-
DFLD NOMDT DESCRIPTION
*DISCONNECT ~ NONE SUBSCHEMA_LR-NAMES
DISP NOPAD SUBSCHEMA LR-RECORDS
DISPLAY NOPRT SUBSCHEMA NAMES
DIVISION NORETURN SUBSCHEMA RECNAMES

SUBSCHEMA RECORD BINDS
DUMP NORMAL SUBSCHEMA RECORDS
DUPLICATE ~ NORMAL VIDEO SUBSCHEMA-SETNAMES

360 DML Reference Guide for PLI

CAIDMS/DC Call Formats

EAU NOSPAN
ECHO NOT
EDIT *NOTE
EJECT NOTIFICATION
EMPTY NOTIFY
*END NOUNDERSCORE
ENDPAGE NOWAIT
ENDRPT NOWRITE
*ENQUEUE NULL
*ENTRY NUMERIC
*ENVIRONMENT *OBTAIN
*ERASE OF
ERROR OFF
EVENT ON
EXCEPT ONLY
EXCLUSIVE *OPEN
EXIT OPTIONAL
EXITS ouT

EXTENDED OUTIN
EXTERNAL OUTPUT
EXTRANEOUS OWNER

FIELD PAD
FIELDS PAGE
FILE PAGE_INFO
*FIND PAGING
*FINISH PARMS
FIRST PERMANENT
FOR PINK
*FREE POSITION
FROM *POST
*GET PREFIX
GREEN PRINTER
HEADER PRIOR
HOLD PRIORITY
I0 PRIVACY
*ID *PROCEDURE
*IDENTIFICATION PROGRAM
IDMS *PROGRAM_ID
*IDMS_CONTROL PROTECTED
IDMS_RECORDS PROTOCOL

IDMS STATISTICS PTERM

SUBSCHEMA_SSNAME

SYSTEM

SYSVERSION

TABLE

TASK

TEMPORARY

TERMINAL

TEST

TEXT

THEN

TIME

TIMEOUT

TIMER

TITLE

0

TRACE

TRANSACTION
*TRANSFER

TRUNCATED

TURQUOISE

TYPE

UNDERSCORE

UNFORMATTED

UNPROTECTED

UPDATE

UPGRADE

USAGE_MODE

USER

USING

VALUE

VERSION
HWATT

wee

WHERE

WHITE

WITH

WITHIN
*WORKING STORAGE
HWRITE

XCTL

YELLOW

Appendix C: Keywords 361

CAIDMS/DC Call Formats

*IF *PUT

IGNORED QUEUE

IN *READ
INCREMENTED *READY

INPUT RECORD
*INQUIRE RED
INTENT REDISPATCH

RELEASE

YES

40CR
64CR
80CR

362 DML Reference Guide for PLI

Appendix D: Notes to Teleprocessing
Monitor Users

Notes

This appendix describes special considerationsrelatingto application programsrunning
under teleprocessing (TP) monitors supported by DC/UCF systems (that is, CICS,
INTERCOMM, SHADOW, and TASK/MASTER).

This section contains the followingtopics:

Notes (see page 363)

Whilethere are no special codingrequirements for TP-monitor transactions, the
following guidelines should beadhered to:

DML statements should be coded sothatall databaserequests (for Example, BIND,
READY, OBTAIN, FINISH) are executed together whenever possibletoachieve maximum
efficiency and ease of recovery.

For each TP monitor, you should check with the DBA to determine the operating
mode (protocol)installed. The proper mode must then be specifiedinthe MODE
clauseof the DECLARE SUBSCHEMA statement.

The DML precompiler should be executed before the TP-monitor precompiler.

For CICS, INTERCOMM, and SHADOW applications, the mode, as installed, may
require the inclusion of additional statements in each program. These requirements
andthe applicablemodes are outlined in the followingtable.

Note: The same rules apply to the INCLUDE IDMS statements used to insert
logical-record source code components into the program: SUBSCHEMA_CTRL,
SUBSCHEMA_LR_CTRL, and SUBSCHEMA_LR_RECORDS shouldbe copiedinto the
program (except under CICS_EXEC, components should be copiedinto the
program).

Appendix D: Notes to Teleprocessing Monitor Users 363

Notes

TP monitor If mode is...

Code these statements

CICs CICS_STANDARD

*DECLARE

1 TWA BASED (TPTR), 3 FILLER, 3 INCLUDE
IDMS(SUBSCHEMA_CTRL), 3 INCLUDE

IDMS(SUBSCHEMA_RECORDS), ADDRESS
TWA(TPTR);

or
**NCLUDE IDMS(SUBSCHEMA_CTRL);
INCLUDE IDMS(SUBSCHEMA_RECORDS);

(A CICS GETMAIN must be issued for the
SUBSCHEMA_CTRL and for each RECORD being
copied.)

INCLUDE IDMS(IDMS_WAIT);

CICS CICS_EXEC

INCLUDE IDMS(SUBSCHEMA_CTRL);
INCLUDE IDMS(SUBSCHEMA_RECORDS);

INTERCOMM INTERCOMM

INCLUDE IDMS(SUBSCHEMA_CTRL);
INCLUDE IDMS(SUBSCHEMA_RECORDS);

SHADOW SHADOW

INCLUDE IDMS(SUBSCHEMA_CTRL);
INCLUDE IDMS(SUBSCHEMA_RECORDS);

* |f SUBSCHEMA_CTRL, SUBSCHEMA_RECORDS, andadditional data does not exceed

4,096 bytes.

** |f SUBSCHEMA_CTRL, SUBSCHEMA_RECORDS, andadditional data exceeds 4,096

bytes.

364 DML Reference Guide for PLI

Appendix E: Sample Programs and
Database Definition

This appendix contains:

m CA IDMS/DC programming considerations

m AsamplePL/I batch program

m AsamplePLl/l onlineprogram

m Asampledatabasedefinition - The EMPLOYEE database

The sampleprograms access the EMPLOYEE database.The databaseis shownina
diagramatthe end of this appendix.

This section contains the followingtopics:

CA IDMS/DC Programming Considerations (seepage 365)
Sample Batch Program (see page 367)

Sample Online Program (see page 388)

EMPLOYEE Database Definition (see page 408)

CA IDMS/DC Programming Considerations

These programming considerations consistof PL/I-specific details relevantto designing
CA IDMS/DC programs:

m Reentrant codeis programcode that does not modify itself during program
execution. CA IDMS/DC multithreads all task requests through a single copy of a
reentrant program. The CA IDMS/DC defaultfor PL/I programs is reentrant. To
ensure that your program is reentrant, itmust be compiled with the REENTRANT
option of the PROCEDURE statement. Some PL/I compilers do not support
reentrancy. If your compiler does not supportreentrancy, your programs must be
declared to CAIDMS/DC as NONREENTRANT.

m Usethe COUNT and REPORT execution options to capture statistics inthe CA
IDMS/DC log. You can use these statisticsto optimize storagerequirements and to
analyze program performance.

Appendix E: Sample Programs and Database Definition 365

CA IDMS/DC Programming Considerations

m Avoid using GET STORAGE repeatedly for relatively smallareas when most tasks in
the system are accessinglarger areas.|tmay be more advantageous to declarePL/I
variables explicitlyand allow CA IDMS/DC and PL/I to manage the storage. Internal
management of storage for PL/I declared variables is handledin the same way
under IDMS/DC as itis inthe batch environment, with one exception. When PL/I
code would normallyissuean operating system request for storage, CA IDMS/DC
satisfies therequest from the storage pool. Once a block of storage is allocated, itis
managed as described in the PL/I programmer's guide for your installation.

m Usethe REPORT execution option to determine the amount of storage actually used
during program execution. Use the report statistics to set the ISA SIZE for the
program inthe CA IDMS/DC system generation.

m The PL/I COUNT and FLOW options can be used to gather the followingstatistics:
— The number of times each procedureis called
- The amount of storage used during PL/I program execution.

To usethese options, refer to the PL/I programmer's guide for your installation. The
following considerations apply to the use of these options under CA IDMS/DC:

- The statisticsarewritten to the CAIDMS/DC system log rather thanto an
external file.The statisticsrecord type is MESSAGES.

— The statisticsarenot written to the logifthe program terminates execution
with anIDMS_DC RETURN statement. The programmust use the PL/I RETURN
statement. After statisticsarewritten to the log, CA IDMS/DC passes control to
the next higher programinthe transactionthread, as ifan CA IDMS/DC
RETURN had been coded.

— The REPORT and COUNT options should not be used together, sincethe COUNT
option adds storageoverhead. Accordingly, report statistics would not be
accurate.

— The REPORT and COUNT options are not intended to be usedina production
environment. Their use adds considerablestorageand CPU overhead under CA
IDMS/DC, justas itwould ina batch environment. Once the statistics have
been gathered, these options should be removed from the program.

366 DML Reference Guide for PLI

Sample Batch Program

Sample Batch Program

The following PL/I batch program accesses databaserecords using navigational DML
statements. The following figureshows the programas itappearsinthe various stages
of the compilation process. You create a program using PL/l and DML statements. This
programis inputto the DML precompiler, which produces a listingthatcontains
diagnosticsand, optionally, DML source statements. The expanded code is inputto the
PL/I compiler, which generates a listing of the fully expanded code and diagnostics.

/
IDMSDMLP
PL/l and PL/I COMPILER
DML SOQURCE COMPILER
STATEMENTS
4 i

DMLP DIAGNOSTICS
AND
OPTIONAL
SQURCE LISTING

PL/1 SQURCE
LISTING AND

DIAGNOSTICS

Batch Input to the DML Precompiler

The followingis samplebatch inputto the DML precompiler for PL/I.

//SYSIPT DD *
/*RETRIEVAL*/
/*DMLIST*/
/*NO_ACTIVITY LOG*/
/*SCHEMA COMMENTS*/
DEPTRPT: PROC OPTIONS (MAIN) REORDER;
/* DECLARE SUBSCHEMA AND MODE */
DCL (EMPSSGL SUBSCHEMA, EMPSCHM SCHEMA VERSION 100)
MODE (BATCH) DEBUG;

/* REQUIRED DECLARATIVES */
DCL IDMS ENTRY OPTIONS(INTER,ASM);
DCL ABORT ENTRY OPTIONS(INTER,ASM);
DCL ADDR BUILTIN;

Appendix E: Sample Programs and Database Definition 367

Sample Batch Program

/* CONSTANTS */
DCL DEPT HEADER CHAR (11) INIT ('DEPT REPORT');
DCL 1 HEAD LINE,
5 HEAD DEPT ID CHAR (9) INIT ('DEPT ID '),
5 HEAD BMP ID (HAR (8) INIT ('EMP ID '),
5 HEAD LNAME (HAR (17) INIT ('LAST NAME "),
5 HEAD FNAME (HAR (10) INIT ('FIRST NAME');

DCL PRTHEAD CHAR (44) DEFINED HEAD LINE;

/* LOGICAL CONSTANTS */

DCL YES BIT(1) INIT ('1'B);
DCL NO BIT(1) INIT ('0'B);
DCL EOF BIT(1) INIT ('0'B);

DCL 1 PROGRAM FLAGS,
5 DB END OF SET BIT(1) INIT ('O'B);

/* FILE DECLARATIONS */
DCL INFILE FILE RECORD INPUT ENV (F BLKSIZE(80));
DCL OUTFILE FILE RECORD OUTPUT ENV (F RECSIZE(133) CTLASA);
DCL SYSPRINT FILE PRINT;
/* THE FOLLOWING RECORDS ARE DEFINED THROUGH IDD. */
/* THE DML PRECOMPILER AUTOMATICALLY CONVERTS HYPHENS */
/* TO UNDERSCORES. */

INCLUDE IDMS (DEPT-IN-REC);
INCLUDE IDMS (PRT-OUT-REC);
/* REDEFINE PRT QUT REC */
DCL PRTREC (HAR (44) DEFINED PRT OUT REC;

DCL 1 PRINT AREA,
5 CC CHARR (1),
5 PRINT LINE CHAR (132);

DCL 1 SPACES CHAR (132) INIT ((132) ' ');
/* POSSIBLE VALUES FOR CC */

DCL 1 CONTROL_CHARACTERS,
5 NEW_PAGE CHAR (1) INIT ('1'),

5 SINGLE SPACE CHAR (1) INIT (' "),
5 DOUBLE_SPACE CHAR (1) INIT ('0"),
5 TRIPLE SPACE CHAR (1) INIT ('-'),
5 OVERPRINT CHAR (1) INIT ('+');

368 DML Reference Guide for PLI

Sample Batch Program

INCLUDE IDMS (SUBSCHEMA CTRL);
INCLUDE IDMS (DEPARTMENT);
INCLUDE IDMS (EMPLOYEE);

/***/

/* PROCESSING FOLLOWS */
/* OPEN THE FILES */
/* INFILE — INPUT */
/* OUTFILE — OUTPUT */

/* SYSPRINT — USED BY IDMS_STATUS */
OPEN FILE (INFILE);
OPEN FILE (OUTFILE);
OPEN FILE (SYSPRINT);
ON ENDFILE (INFILE) EOF = YES;

/* BIND RUN UNIT AND RECORDS EXPLICITLY */
BIND RUN UNIT
NODENAME ('')
DBNAME ('');

CALL IDMS STATUS;

BIND RECORD (EMPLOYEE);

CALL IDMS STATUS;

BIND RECORD (DEPARTMENT);

CALL IDMS STATUS;

READY;

CALL IDMS_STATUS;

READ FILE (INFILE) INTO (DEPT_IN REC);

DO WHILE (EOF);

DB_END OF SET = NO;
DEPT_ID 0410 = DEPT ID IN;
OBTAIN CALC RECORD (DEPARTMENT);
/* 0326 MEANS */
/* DEPT NOT FOUND */
IF ERROR STATUS = '0326' THEN CALL NO DEPT;
ELSE
DO;
IF SET (DEPT EMPLOYEE) EMPTY THEN CALL NO EMP;
ELSE
CALL NEW DEPT;
DO UNTIL (DB END OF SET);
OBTAIN NEXT RECORD (EMPLOYEE)
SET (DEPT_EMPLOYEE) ;
IF ERROR STATUS = '0307' THEN
DB _END OF SET = YES;

Appendix E: Sample Programs and Database Definition 369

Sample Batch Program

ELSE
CALL IDMS STATUS;

IF DB_END OF SET THEN

DO;

/* MOVE FIELDS TO */

/* OUTPUT RECORD */
DEPT ID OUT = DEPT ID 0410;
EMP ID QUT = EMP ID 0415;

EMP_LNAME OUT = EMP_LAST NAVE 0415;
EMP_FNAME OUT = EMP_FIRST NAME 0415;
cc = DOUBLE_SPACE;

PRINT_LINE = SPACES;
PRINT_LINE = PRTREC;
CALL PRINT_A LINE;
END; /* END PRINTING DO */
END; /* END DO UNTIL */
END; /* END 0326 ELSE DO */

READ FILE (INFILE) INTO (DEPT IN REC);
END; /* END DO WHILE EOF */
CALL END PROCESSING;

NEW DEPT: PROC;
PRINT LINE = SPACES; /* NEW PAGE FOR EACH */
CC = NEW PAGE; /* DEPARTMENT ~ */
PRINT LINE = DEPT HEADER;
CALL PRINT A LINE;
PRINT LINE = SPACES;
CC = DOUBLE SPACE;
PRINT LINE = DEPT ID 0410;
CALL PRINT A LINE;
PRINT LINE = SPACES;
CC = DOUBLE SPACE;
PRINT LINE = PRTHEAD;
CALL PRINT A LINE;
END NEW DEPT;
NO_DEPT: PROC;

PRINT LINE = SPACES;

CC = NEW_PAGE;

PRINT LINE = DEPT ID IN;

CALL PRINT A LINE;

PRINT LINE = SPACES;

CC = DOUBLE_SPACE;

PRINT LINE = '** DEPARTMENT SPECIFIED ABOVE NOT

FOUND **';

370 DML Reference Guide for PLI

Sample Batch Program

CALL PRINT A LINE;
END NO_DEPT;
NO_EMP: PROC;
PRINT LINE = SPACES;
CC = NEW PAGE;
PRINT LINE = DEPT ID IN;
CALL PRINT A LINE;

PRINT LINE = SPACES;

CC = DOUBLE_SPACE;

PRINT LINE = DEPT ID 0410;
CALL PRINT A LINE;

PRINT LINE = SPACES;
CC = DOUBLE_SPACE;
PRINT LINE = '** DEPARTMENT SPECIFIED IS EMPTY ***';
CALL PRINT A LINE;
END NO_EMP;

END_PROCESSING: PROC;
FINISH;
CLOSE FILE (INFILE);
CLOSE FILE (OUTFILE);
CLOSE FILE (SYSPRINT);
END END PROCESSING;

PRINT A LINE: PROC;
WRITE FILE (OUTFILE) FROM (PRINT AREA);
END PRINT A LINE;

INCLUDE IDMS (IDMS_STATUS);

END DEPTRPT;

Appendix E: Sample Programs and Database Definition 371

Sample Batch Program

Output from the DML Precompiler

The following shows the sample program as output from the DML precompiler.

Sincethe /*DMLIST*/ option is specified, printed output consists of expanded code as
well as diagnostics. This outputis in the following format:

Heading—The top of each page of the listing contains the name of the DML
precompiler being used (IDMSDMLP), the release number of the processor, the
name of the listing (Listing of Messages), the date, the time, and the page number.

Input listing and DML precompiler-generated code—The body of the printout
contains the program inputlistingalong with the DML precompiler-generated code,
formatted as follows:

Colu

mn

Explanation

1

Sequence numbers generated by the DML precompiler

12

Line numbers generated by the DML precompiler

19

Line numbers generated by the user program

26

Text of the PL/I sourcecode including text generated by the DML
precompiler

IDMSDMLP nn.n

DMLP

Warning and Error Messages—Diagnostics are imbedded inthe inputlistingand
DML precompiler-generated code followingthe errant lines of sourcecode. Fora
complete description of DML precompiler error messages, refer to CA IDMS
Messages and Codes Guide.

00001
00002
00003
00004
00005
00006
00008
00009

CA, INC. DML PROCESSOR FOR PL/I DATE TIME PAGE
- - LISTING OF MESSAGES - - m/dd/yy hhmmsshh 0001

/*RETRIEVAL*/
/*DMLIST*/
/*NO_ACTIVITY LOG*/
/*SCHEMA_COMMENTS*/
DEPTRPT: PROC OPTIONS (MAIN) REORDER;
/* DECLARE SUBSCHEMA AND MODE */
DCL (EMPSSO1 SUBSCHEMA, EMPSCHM SCHEMA VERSION 100)
MODE (BATCH) DEBUG;

372 DML Reference Guide for PLI

Sample Batch Program

00010

00011 /* REQUIRED DECLARATIVES */

00012 DCL IDMS ENTRY OPTIONS(INTER,ASM);

00013 DCL ABORT ENTRY OPTIONS(INTER,ASM);

00014 DCL ADDR BUILTIN;

00015

00016 /* CONSTANTS */

00017 DCL DEPT HEADER CHAR (11) INIT ('DEPT REPORT');
00018 DCL 1 HEAD_LINE,

00019 5 HEAD DEPT_ID CHAR (9) INIT ('DEPT ID '),
00020 5 HEAD_ EMP_ID CHAR (8) INIT ('EMP ID '),
00021 5 HEAD_LNAME CHAR (17) INIT ('LAST NAME "),
00022 5 HEAD_FNAME CHAR (10) INIT ('FIRST NAME');
00023

00024 DCL PRTHEAD CHAR (44) DEFINED HEAD LINE;
00025

00026 /* LOGICAL CONSTANTS */

00027 DCL YES BIT(1) INIT ('1'B);

00028 DCL NO BIT(1) INIT ('0'B);

00029 DCL EOF BIT(1) INIT ('0'B);

00030

00031 DCL 1 PROGRAM_FLAGS,

00032 5 DB END OF SET BIT(1) INIT ('0'B);

00033

00034 /* FILE DECLARATIONS */

00035 DCL INFILE FILE RECORD INPUT ENV (F BLKSIZE(80));
00036 DCL OUTFILE FILE RECORD OUTPUT ENV (F RECSIZE(133) CTLASA);
00037 DCL SYSPRINT FILE PRINT;

00038

00039 /* THE FOLLONING RECORDS ARE DEFINED THROUGH IDD. */
00040 /* THE DML PRECOMPILER AUTOMATICALLY CONVERTS HYPHENS */
00041 /* TO UNDERSCORES. */

00042

DMLP 00044 INCLUDE IDMS (DEPT-IN-REC);
DMLP 00049 INCLUDE IDMS (PRT-OUT-REC);

00058

00059 /* REDEFINE PRT_OUT REC */

00060 DCL PRTREC CHAR (44) DEFINED PRT_OUT REC;
00061

00062 DCL 1 PRINT AREA,

00063 5CC CHAR (1),

00064 5 PRINT_LINE CHAR (132);

00065

00066 DCL 1 SPACES CHAR (132) INIT ((132) ' ');
00067

00068 /* POSSIBLE VALUES FOR CC */

00069 DCL 1 CONTROL_CHARACTERS,

Appendix E: Sample Programs and Database Definition 373

Sample Batch Program

00070
00071
00072
00073
00074
00075
00077
001063
00110
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
DMLPOOGO1 00154
00155
00156
00167
00168
DMLPOGO2 00170
00179
DMLPOO03 00181
00190
DMLPOO0G4 00192
00199
00200
00201
00202
00203
00204

DMLP
DMLP

DMLP

5 NEW_PAGE

5 SINGLE_SPACE
5 DOUBLE_SPACE
5 TRIPLE SPACE
5 OVERPRINT

CHAR (1) INIT ('1'),
CHAR (1) INIT (' "),
CHAR (1) INIT ('0'),
CHAR (1) INIT ('-'),

CHAR (1) INIT ('+');

INCLUDE IDMS (SUBSCHEMA CTRL);
INCLUDE IDMS (DEPARTMENT);

INCLUDE IDMS (EMPLOYEE);

/**M*********/

/* PROCESSING FOLLOWS */
/* OPEN THE FILES */
/* INFILE — INPUT */
/* OUTFILE — OUTPUT */

/* SYSPRINT — USED BY IDMS STATUS */
OPEN FILE (INFILE);
OPEN FILE (OUTFILE);
OPEN FILE (SYSPRINT);
ON ENDFILE (INFILE) EOF = YES;

/* BIND RUN UNIT AND RECORDS EXPLICITLY */
BIND RUN_UNIT
NODENAME ('')
DBNAME ('');

CALL IDMS_STATUS;
BIND RECORD (EMPLOYEE);

CALL IDMS_ STATUS;
BIND RECORD (DEPARTMENT);

CALL IDMS STATUS;
READY;

CALL IDMS STATUS;

READ FILE (INFILE) INTO (DEPT IN REC);

DO WHILE (EOF);

DB_END OF SET = NO;

374 DML Reference Guide for PLI

Sample Batch Program

00205 DEPT ID 0410 = DEPT ID IN;

DMLPOOO5 06207 OBTAIN CALC RECORD (DEPARTMENT);

00216 /* 0326 MEANS ~ */

00217 /* DEPT NOT FOUND */

00218 IF ERROR STATUS = '0326' THEN CALL NO DEPT;
00219 ELSE

00220 DO;

DMLPOOO6 06222 IF SET (DEPT EMPLOYEE) EMPTY
00231 THEN CALL NO EMP;
00232 ELSE
00233 CALL NEW DEPT;

00234 DO UNTIL (DB END OF SET);

DMLPOOO7 00236 OBTAIN NEXT RECORD (EMPLOYEE)

00237 SET (DEPT EMPLOYEE);

00247 IF ERROR STATUS = '0307' THEN

00248 DB END OF SET = YES;

00249 ELSE

00250 CALL IDMS STATUS;

00251 IF DB END OF SET THEN

00252 DO;

00253 /* MOVE FIELDS TO */

00254 /* OUTPUT RECORD */

00255 DEPT ID OUT = DEPT ID 0410;

00256 EMP ID OUT = EMP_ID 0415;

00257 EMP_LNAME OUT = EMP_LAST NAME 0415;
00258 EMP_FNAME OUT = EMP_FIRST NAME 0415;
00259 cc = DOUBLE SPACE;

00260 PRINT LINE = SPACES;

00261 PRINT LINE = PRTREC;

00262 CALL PRINT A LINE;

00263 END; /* END PRINTING DO */

00264 END; /* END DO UNTIL */

00265 END; /* END 0326 ELSE DO */

00266

00267 READ FILE (INFILE) INTO (DEPT IN REC);
00268 END; /* END DO WHILE EOF */

00269 CALL END PROCESSING;

00270

00271 NEW DEPT: PROC;

00272 PRINT LINE = SPACES; /* NEW PAGE FOR EACH */
00273 CC = NEW PAGE; /* DEPARTMENT %/

Appendix E: Sample Programs and Database Definition 375

Sample Batch Program

00274
00275
00276
00277
00278
00279
00280
00281
00282
00283
00284
00285
00286
00287
00288
00289
00290
00291
00292
00293
00294
00295
00296
00297
00298
00299
00300
00301
00302
00303
00304
00305
00306
00307
00308
00309
00310
00311
00312

PRINT LINE = DEPT HEADER;
CALL PRINT A LINE;

PRINT LINE = SPACES;

CC = DOUBLE SPACE;

PRINT LINE = DEPT ID 0410;
CALL PRINT A LINE;

PRINT LINE = SPACES;
CC = DOUBLE_SPACE;
PRINT LINE = PRTHEAD;
CALL PRINT A LINE;

END NBW DEPT;

NO_DEPT: PROC;
PRINT LINE = SPACES;
CC = NEW_PAGE;
PRINT LINE = DEPT ID IN;
CALL PRINT A LINE;
PRINT LINE = SPACES;
CC = DOUBLE SPACE;
PRINT LINE = '** DEPARTMENT SPECIFIED ABOVE NOT FOUND **';
CALL PRINT A LINE;
END NO DEPT;

NO_EMP: PROC;
PRINT LINE = SPACES;
CC = NEW_PAGE;
PRINT LINE = DEPT ID IN;
CALL PRINT A LINE;

PRINT LINE = SPACES;
CC = DOUBLE_SPACE;
PRINT LINE = DEPT ID 0410;
CALL PRINT A LINE;

PRINT_LINE = SPACES;
CC = DOUBLE_SPACE;

376 DML Reference Guide for PLI

Sample Batch Program

00313 PRINT LINE = '** DEPARTMENT SPECIFIED IS EMPTY *+*';
00314 CALL PRINT A LINE;
00315 END NO EMP;
00316
00317 END PROCESSING: PROC;

DMLPOGGS 06319 FINISH;
00326 CLOSE FILE (INFILE);
00327 CLOSE FILE (OUTFILE);
00328 CLOSE FILE (SYSPRINT);
00329 END END_PROCESSING;
00330
00331 PRINT A LINE: PROC;
00332 WRITE FILE (OUTFILE) FROM (PRINT AREA);
00333 END PRINT A LINE;
00334
00335

DMLP 00336 INCLUDE IDMS (IDMS STATUS);
00337 IDMS STATUS: PROC;
00338 /* THE IDMS_STATUS PROCEDURE IS CALLED BY THE USER AFTER
00339 /* EACH IDMS COMMAND HAS BEEN ISSUED AND CHECKS HAVE BEEN
00340 /* MADE FOR ANY EXPECTED NON-ZERO ERROR STATUS CONDITIONS.
00341 /* IT DETECTS A NON-ZERO ERROR STATUS AND ABNORMALLY
00342 /* TERMINATES THE PROGRAM ACCORDINGLY.
00343 DECLARE IDMSIN ENTRY OPTIONS (INTER,ASSEMBLER);
00344 IF ERROR STATUS='0000' THEN GOTO END STATUS;
00345 PUT SKIP EDIT ('PROGRAM NAME ------ *, PROGRAM,
00346 'ERROR STATUS ------ *, ERROR_STATLUS,
00347 'ERROR RECORD ------ *, ERROR_RECORD,
00348 'ERROR SET --------- ', ERROR SET,
00349 'ERROR AREA -------- ', ERROR AREA,
00350 'LAST GOOD RECORD --', RECORD NAME,
00351 'LAST GOOD AREA ----', AREA NAME)
00352 (A(19),X(5),A(8) ,SKIP,A(19) ,X(5) ,A(4),
00353 5(SKIP,A(19),X(5),A(16)));
00354 SSC_ INO1 REQ CODE = 39;
00355 SSC_INO1 REQ RETURN = 0;
00356 SSC STATUS LABEL = ' ';
00357 DO UNTIL (SSC INO1 REQ RETURN > 0);
00358 CALL IDMSIN1 (IDBMSCOM(41),
00359 SSC_INO1 REQ WK,
00360 SUBSCHEMA CTRL,
00361 IDBMSCOM(1),
00362 DML_SEQUENCE,
00363 SSC_STATUS_LINE);

*/
*/
*/
*/
*/

Appendix E: Sample Programs and Database Definition 377

Sample Batch Program

00364 IF SSC_INO1 REQ RETURN > 4 THEN

00365 PUT SKIP EDIT ('DML SEQUENCE ------ *, DML SEQUENCE)
00366 (A(19),X(5),F(10));

00367 ELSE

00368 PUT SKIP EDIT (SSC_STATUS LABEL, '---',

00369 SSC_STATUS_VALUE)

00370 (A(16),A(3),X(5),A(12));

00371 END;

DMLPOOG9 00372 ROLLBACK;
00373 CALL ABORT;
00374 END_STATUS: END;
00375
00376 END DEPTRPT

Output from the PL/I Compiler

The following shows the samplebatch program after processing by the PL/I compiler.
The original codeis further expanded and includes the following:

®m Line numbers generated by the PL/I compiler
m CA IDMS call statements for the requested DML functions

m Diagnostic messages

For details on the expanded code generated by the DML precompiler,see Call Formats.

PL/I OPTIMIZING COMPILER /*RETRIEVAL*/ PAGE 2
SOURCE LISTING
STMT LEV NT

/*RETRIEVAL*/
/¥DMLIST*/
/*NO_ACTIVITY LOG*/
/*SCHEMA COMMENTS*/
1 © DEPTRPT: PROC OPTIONS (MAIN) REORDER;
/* DECLARE SUBSCHEMA AND MODE */
/*
DCL (EMPSSO1 SUBSCHEMA, EMPSCHM SCHEMA VERSION 160)
MODE (BATCH) DEBUG;
*/

378 DML Reference Guide for PLI

Sample Batch Program

w

10

11

12
13
14

15

16

(o]

(o]

/* REQUIRED DECLARATIVES */
DCL IDMS ENTRY OPTIONS(INTER,ASM);
DCL ABORT ENTRY OPTIONS(INTER,ASM);
DCL ADDR BUILTIN;

/* CONSTANTS */

DCL DEPT HEADER CHAR (11) INIT ('DEPT REPORT');
DCL 1 HEAD_LINE,

5 HEAD DEPT_ID CHAR (9) INIT ('DEPT ID '),

5 HEAD_ EMP_ID CHAR (8) INIT ('EMP ID '),

5 HEAD_LNAME CHAR (17) INIT ('LAST NAME "),
5 HEAD_FNAME CHAR (10) INIT ('FIRST NAME');

DCL PRTHEAD (HAR (44) DEFINED HEAD LINE;

/* LOGICAL CONSTANTS */

DCL YES BIT(1) INIT ('1'B);
DCL NO BIT(1) INIT ('0'B);
DCL EOF BIT(1) INIT ('0'B);

DCL 1 PROGRAM_FLAGS,

5 DB END OF SET BIT(1) INIT ('O'B);

/* FILE DECLARATIONS */

DCL INFILE FILE RECORD INPUT ENV (F BLKSIZE(80));

DCL OUTFILE FILE RECORD OUTPUT ENV (F RECSIZE(133) CTLASA);
DCL SYSPRINT FILE PRINT;

/* THE FOLLOWING RECORDS ARE DEFINED THROUGH IDD. */
/* THE DML PRECOMPILER AUTOMATICALLY CONVERTS HYPHENS */
/* TO UNDERSCORES. */

/*

INCLUDE IDMS (DEPT-IN-REC);
0 DECLARE 1 DEPT IN REC,

2 DEPT ID IN PICTURE '(4)9',
2 DEPT FILLER CHARACTER (76);
/*

INCLUDE IDMS (PRT-OUT-REC);

*/

0 DECLARE 1 PRT OUT REC,

2 DEPT_ID OUT CHARACTER (4),

PRT_FILL 5 CHARACTER (5) INITIAL (' ‘'),
EMP_ID OUT CHARACTER (4),

PRT_FILL 4 CHARACTER (4) INITIAL (' '),
EMP_LNAME_OUT CHARACTER (15),

PRT_FILL 2 CHARACTER (2) INITIAL (' '),
EMP_FNAME_OUT CHARACTER (10);

N N NDNNN

Appendix E: Sample Programs and Database Definition 379

Sample Batch Program

17

18

19

20

/* REDEFINE PRT OUT REC */
10 DCL PRTREC CHAR (44) DEFINED PRT OUT REC;

10 DCL 1 PRINT AREA,
5 CC CHAR (1),
5 PRINT LINE AR (132);

10 DCL 1 SPACES CHAR (132) INIT ((132) ' ');
/* POSSIBLE VALUES FOR CC */
10 DCL 1 CONTROL_CHARACTERS,
NEW_PAGE CHAR (1) INIT ('1"),

)

SINGLE SPACE CHAR (1) INIT (' '),

DOUBLE SPACE CHAR (1) INIT ('0'),

TRIPLE SPACE CHAR (1) INIT ('-'),

OVERPRINT CHAR (1) INIT ('+");
/*

(SO, O, RO, BN

INCLUDE IDMS (SUBSCHEMA CTRL);

*

21 DECLARE 1 SUBSCHEMA CTRL,

3 PROGRAM CHARACTER (8) INITIAL (' ') ,

ERROR STATUS CHARACTER (4) INITIAL ('1400') ,
DBKEY FIXED BINARY (31),

RECORD NAME CHARACTER (16) INITIAL (' ') ,
AREA NAME CHARACTER (16) INITIAL (' ') ,
ERROR SET CHARACTER (16) INITIAL (' ') ,
ERROR RECORD CHARACTER (16) INITIAL (' ') ,
ERROR AREA CHARACTER (16) INITIAL (' ') ,
IDBMSCOM AREA CHARACTER (100) INITIAL (LOW(100)) ,
DIRECT DBKEY FIXED BINARY (31),
DATABASE_STATUS,

5 DBSTATMENT CODE CHARACTER (2),

5 DBSTATUS CODE CHARACTER (5),

3 FILLEROOO1 CHARACTER (1),

3 RECORD OCQUR FIXED BINARY (31),

W wwwwwwwww

380 DML Reference Guide for PLI

Sample Batch Program

3 DML SEQUENCE FIXED BINARY (31);
22 DECLARE 1 RIDBMSCOM BASED (ADDR(SUBSCHEMA CTRL.IDBMSCOM AREA)),
3 PAGE_INFO,
5 PAGE_INFO GROUP FIXED BINARY (15),
5 PAGE INFO DBK FORMAT FIXED BINARY (15),
3 SSC_IDMS STATUS WRK,
5 SSC_INOL REQ WK,
7 SSC_INO1 REQ CODE FIXED BINARY (31),
7 SSC_INO1 REQ RETURN FIXED BINARY (31),
5 SSC_STATUS LINE,
7 SSC_STATUS LABEL CHARACTER (16),
7 SSC_STATUS VALUE CHARACTER (12),
3 FILLEROOO2 CHARACTER (60);
23 DECLARE 1 IDBMSCOM (100) BASED(ADDR(SUBSCHEMA CTRL.IDBMSCOM AREA))
CHARACTRR (1);
24 DECLARE 1 AREA RNAME BASED(ADDR(SUBSCHEMA CTRL.AREA NAME)),
3 SSC_DNO CHARACTER (8),
3 SSC_DNA CHARACTER (8);
25 DECLARE 1 RRECORD NAME BASED (ADDR(SUBSCHEMA CTRL.RECORD NAME)),
3 SSC_NODN (HARACTER (8),
3 SSC DBN CHARACTER (8);
26 1 0 DECLARE 1 SUBSCHEMA CTRL,
PROGRAM CHARACTER (8) INITIAL (' '),
ERROR STATUS CHARACTER (4) INITIAL ('1400'),
DBKEY FIXED BINARY (31),
RECORD NAME CHARACTER (16) INITIAL (' '),
AREA NAME CHARACTER (16) INITIAL (' '),
ERROR SET CHARACTER (16) INITIAL (' '),
ERROR RECORD CHARACTER (16) INITIAL (' '),
ERROR AREA CHARACTER (16) INITIAL (' '),
IDBMSCOM AREA,
5 IDBMSCOM (100) CHARACTER (1),
3 DIRECT DBKEY FIXED BINARY (31),
3 DATABASE STATUS,
5 DBSTATMENT CODE CHARACTER (2),
5 DBSTATUS CODE CHARACTER (5),
3 FILLEROOO1 CHARACTER (1),
3 RECORD OCCUR FIXED BINARY (31),
3 DML SEQUENCE FIXED BINARY (31);
27 1 0 DECLARE 1 AREA RNAME BASED (ADDR(SUBSCHEMA CTRL.AREA NAME)),
3 SSC_DNO CHARACTER (8),
3 SSC_DNA CHARACTER (8);

W wwwwwwww

Appendix E: Sample Programs and Database Definition 381

Sample Batch Program

28 1 0 DECLARE 1 RRECORD NAME BASED(ADDR(SUBSCHEMA CTRL.RECORD NAME)),
3 SSC_NODN CHARACTER (8),
3 SSC_DBN CHARACTER (8);
/*
INCLUDE IDMS (DEPARTMENT);
*/
28 1 0 DECLARE 1 DEPARTMENT,
2 DEPT ID 0410 PICTURE '(4)9',
2 DEPT NAME 0410 CHARACTER (45),
2 DEPT HEAD ID 0410 PICTURE '(4)9',
2 FILLEROGO2 CHARACTER (3);
/*
INCLUDE IDMS (EMPLOYEE);
*/
30 1 0 DECLARE 1 EMPLOYEE,
2 EMP_ID 0415 PICTWRE '(4)9",
2 EMP_NAME 0415,
3 EMP_FIRST NAME 0415 CHARACTER (10),
3 EMP_LAST NAME_0415 CHARACTER (15),
2 EMP_ADDRESS 0415,
3 EMP_STREET 0415 CHARACTER (20),
3 EMP_CITY 0415 CHARACTER (15),
3 EMP STATE 0415 CHARACTER (2),
3 EMP_ZIP 0415,
4 EMP_ZIP FIRST FIVE 0415 CHARACTER (5),
4 EMP_ZIP LAST FOUR 0415 CHARACTER (4),
2 EMP_PHONE_ 0415 PICTURE '(10)9',
2 STATUS 0415 CHARACTER (2),
2 SS_NUMBER 0415 PICTURE '(9)9',
2 START DATE 0415,
3 START YEAR 0415 PICTURE '(2)9',
3 START MONTH 0415 PICTURE '(2)9',
3 START DAY 0415 PICTURE '(2)9',
2 TERMINATION DATE 0415,
3 TERMINATION YEAR 0415 PICTURE '(2)9',
3 TERMINATION MONTH 0415 PICTURE '(2)9',
3 TERMINATION DAY 0415 PICTURE '(2)9',
2 BIRTH DATE 0415,
3 BIRTH YEAR 0415 PICTURE '(2)9',
3 BIRTH MONTH 0415 PICTURE '(2)9',
3 BIRTH DAY 0415 PICTURE '(2)9',
2 FILLEROGO3 CHARACTER (2),
2 FILLEROGO4 CHARACTER (4);

/***/

/* PROCESSING FOLLOWS */
/* OPEN THE FILES */
/* INFILE — INPUT */

382 DML Reference Guide for PLI

Sample Batch Program

31
32
33
34

35
36
37
38
39

40

41

42
43
44

45
46

47
48

]
[cN-NoXo)

L = =

/* OUTFILE — OUTPUT */
/* SYSPRINT — USED BY IDMS STATUS */
OPEN FILE (INFILE);
OPEN FILE (OUTFILE);
OPEN FILE (SYSPRINT);
ON ENDFILE (INFILE) EOF = YES;

/* BIND RUN UNIT AND RECORDS EXPLICITLY */

/*
BIND RUN UNIT DMLP0OOO1
NODENAME ('')
DBNAME ('');
*/
0 /* IDMS PL/I DML EXPANSION */ DO;
1 DML SEQUENCE=1;
1 SSC _NODN="'";
1 SSC DBN="";
1 CALL IDMS (SUBSCHEMA CTRL
, IDBMSCOM (59)
,SUBSCHEMA CTRL
, 'EMPSSO1 '
1); END;
0 CALL IDMS STATUS;
/*
BIND RECORD (EMPLOYEE); DMLPO002
*/
0 /* IDMS PL/I DML EXPANSION */ DO;
1 DML SEQUENCE=2;
1 CALL IDMS (SUBSCHEMA CTRL
, IDBMSCOM (48)
, '"EMPLOYEE !
,EMPLOYEE
1); END;
0 CALL IDMS STATUS;
/*
BIND RECORD (DEPARTMENT); DMLP0O0O3
*/
/* IDMS PL/I DML EXPANSION */ DO;
1 DML SEQUENCE=3;

Appendix E: Sample Programs and Database Definition 383

Sample Batch Program

49 11 CALL IDMS (SUBSCHEMA CTRL
, IDBMSCOM (48)
, 'DEPARTMENT '
,DEPARTMENT
50 11); END;
51 10 CALL IDMS STATUS;
/*
READY; DM_PO0O4
*/
52 10 /* IDMS PL/I DML EXPANSION */ DO;
53 11 DML _SEQUENCE=4;
54 11 CALL IDMS (SUBSCHEMA CTRL
, IDBMSCOM (37)
5 11); END;
56 10 CALL IDMS STATUS;
57 10 READ FILE (INFILE) INTO (DEPT_IN REC);
58 10 DO WHILE (EOF);
50 11 DB END OF SET = NO;
60 11 DEPT ID 0410 = DEPT ID IN;
/*
OBTAIN CALC RECORD (DEPARTMENT); DMLPOGGS
*/
61 11 /* IDMS PL/I DML EXPANSION */ DO;
62 12 DML _SEQUENCE=5;
63 12 CALL IDMS (SUBSCHEMA CTRL
, IDBMSCOM (32)
, 'DEPARTMENT '
, IDBMSCOM (43)
64 12); END;

/* 0326 MEANS */
/* DEPT NOT FOUND */

65 11 IF ERROR STATUS = '0326' THEN CALL NO DEPT;
66 11 ELSE
DO;
/*
IF SET (DEPT EMPLOYEE) BMPTY DMLPOOO6
*/
67 12 /* IDMS PL/I DML EXPANSION */ DO;
68 13 DML SEQUENCE=6;
69 13 CALL IDMS (SUBSCHEMA CTRL

, IDBMSCOM (64)
, 'DEPT-EMPLOYEE '

384 DML Reference Guide for PLI

Sample Batch Program

70
71

72

73

74
75
76

77
78

79

80

81
82
83
84
85
86
87
88
89
920
91

92
93
94

95
96
97
98
99

e I = T T = T B = I Sy S
N W RSP

=
[y

=
(<}

N NDNDN -
[clcol ool o]

S

=

); END;
IF ERROR STATUS='0000"
THEN CALL NO EMP;
ELSE
CALL NEW DEPT;
DO UNTIL (DB END OF SET);

/*
OBTAIN NEXT RECORD (EMPLOYEE) DMLP0OOO7
SET (DEPT_EMPLOYEE);
*/
/* IDMS PL/I DML EXPANSION */ DO;

DML SEQUENCE=7;
CALL IDMS (SUBSCHEMA CTRL
, IDBMSCOM (10)
, 'EMPLOYEE '
, 'DEPT-EMPLOYEE '
, IDBMSCOM (43)
); END;
IF ERROR STATUS = '0307' THEN
DB _END OF SET = YES;
ELSE
CALL IDMS STATUS;
IF DB_END OF SET THEN
DO;
/* MOVE FIELDS TO */
/* OUTPUT RECORD */
DEPT_ID OUT = DEPT ID 0410;
EMP_ID OUT = EMP_ID 0415;
EMP_LNAME OUT = EMP_LAST NAME 0415;
EMP_FNAME OUT = EMP_FIRST NAME 0415;
cC = DOUBLE SPACE;
PRINT LINE = SPACES;
PRINT LINE = PRTREC;
CALL PRINT A LINE;
END; /* END PRINTING DO */
END; /* END DO UNTIL */
END; /* END 0326 ELSE DO */

READ FILE (INFILE) INTO (DEPT_IN REC);
END; /* END DO WHILE EOF */
CALL END_PROCESSING;

NEW_DEPT: PROC;
PRINT LINE = SPACES; /* NEW PAGE FOR EACH */
CC = NEW_PAGE; /* DEPARTMENT ~ */
PRINT LINE = DEPT HEADER;
CALL PRINT A LINE;

Appendix E: Sample Programs and Database Definition 385

Sample Batch Program

100 20 PRINT LINE = SPACES;

101 20 CC = DOUBLE_SPACE;

102 20 PRINT LINE = DEPT ID 0410;
103 20 CALL PRINT A LINE;

104 20 PRINT LINE = SPACES;

105 2 0 CC = DOUBLE_SPACE;

106 20 PRINT LINE = PRTHEAD;

107 20 CALL PRINT A LINE;

108 2 © END NEW DEPT;

109 16 NO DEPT: PROC;

110 2 0 PRINT LINE = SPACES;

111 20 CC = NEW_PAGE;

112 20 PRINT LINE = DEPT ID IN;
113 20 CALL PRINT A LINE;

114 20 PRINT LINE = SPACES;

115 20 CC = DOUBLE_SPACE;

116 2 0 PRINT LINE = '** DEPARTMENT SPECIFIED ABOVE NOT FOND **';
117 20 CALL PRINT A LINE;

118 2 0 END NO DEPT;

119 10 NO EMP: PROC;

120 20 PRINT LINE = SPACES;

121 20 CC = NEW_PAGE;

122 20 PRINT LINE = DEPT ID IN;
123 20 CALL PRINT A LINE;

124 20 PRINT LINE = SPACES;

125 20 CC = DOUBLE_SPACE;

126 20 PRINT LINE = DEPT ID 0410;
127 20 CALL PRINT A LINE;

128 20 PRINT LINE = SPACES;

129 20 CC = DOUBLE_SPACE;

130 20 PRINT LINE = '** DEPARTMENT SPECIFIED IS EMPTY ***';
131 20 CALL PRINT A LINE;

386 DML Reference Guide for PLI

Sample Batch Program

132

133

134
135
136

137
138
139
140

141

142
143
144

145

146
147

148

149
150
151
152
153

N N NDNN N

=

0 END NO_EMP;

0 END PROCESSING: PROC;

/*
FINISH; DMLPOOO8
*/
0 /* IDMS PL/I DML EXPANSION */ DO;
1 DML_SEQUENCE=8;
CALL IDMS (SUBSCHEMA CTRL
, IDBMSCOM (2)
1); END;
0 CLOSE FILE (INFILE);
0 CLOSE FILE (OUTFILE);
0 CLOSE FILE (SYSPRINT);
O END END PROCESSING;
0 PRINT A LINE: PROC;

2 0 WRITE FILE (OUTFILE) FROM (PRINT AREA);

N N NNDN
H O O o o

(o]

END PRINT A LINE;

INCLUDE IDMS (IDMS STATUS);
*/

0 IDMS_STATUS: PROC;
/* THE IDMS STATUS PROCEDURE IS CALLED BY THE USER AFTER */
/* EACH IDMS COMMAND HAS BEEN ISSUED AND CHECKS HAVE BEEN */
/* MADE FOR ANY EXPECTED NON-ZERO ERROR STATUS CONDITIONS. */
/* IT DETECTS A NON-ZERO ERROR STATUS AND ABNORMALLY */
/* TERMINATES THE PROGRAM ACCORDINGLY. */
0 DECLARE IDMSIN1 ENTRY OPTIONS(INTER,ASSEMBLER);
0 IF ERROR STATUS='0000' THEN GOTO END_ STATUS;

0 PUT SKIP EDIT ('PROGRAM NAME ', PROGRAM,
"ERROR STATUS ', ERROR STATUS,
"ERROR RECORD ', ERROR RECORD,
'"ERROR SET —— ', ERROR SET,
'"ERROR AREA —— ', ERROR AREA,
"LAST GOOD RECORD —', RECORD NAME,
"LAST GOOD AREA ——', AREA NAME)

(A(19),X(5),A(8),SKIP,A(19) ,X(5) ,A(4),
5(SKIP,A(19),X(5),A(16)));
SSC_INO1 REQ CODE = 39;
SSC_INO1 REQ RETURN = 0;
SSC_STATUS LABEL = ' ';
DO UNTIL (SSC_IN®1 REQ RETLRN > 0);
CALL IDMSIN1 (IDBMSCOM(41),

Appendix E: Sample Programs and Database Definition 387

Sample Online Program

SSC_INO1 REQ WK,
SUBSCHEMA CTRL,
IDBMSCOM(1),
DML_SEQUENCE,
SSC_STATUS_LINE);
154 21 IF SSC_INO1 REQ RETURN > 4 THEN
PUT SKIP EDIT ('DML SEQUENCE ------ *, DML_SEQUENCE)
(A(19),X(5),F(10));
156 21 ELSE
PUT SKIP EDIT (SSC STATUS LABEL, '---',
SSC_STATUS VALUE)
(A(16),A(3),X(5),A(12));

158 21 END;

/*

ROLLBACK;

*/
159 20 /* IDMS PL/I DML EXPANSION */ DO;
160 21 DML SEQUENCE=9;
161 21 CALL IDMS (SUBSCHEMA CTRL

, IDBMSCOM (67)

162 21); END;

163 2 0 CALL ABORT;
164 2 O END STATUS: END;

165 1 0 END DEPTRPT;

Sample Online Program

The following CA IDMS/DC applicationillustrates the structure of CA IDMS/DC programs
that accept data from a terminal operator and retrieve information from the database.
The application program highlights the following databaseand data communications
features:

m Mapping mode inputand output
m Automatic editing and error handling
m Pseudo-conversational transactions

The application's components, runtime requirements, and DML code are describedin
the followingsubsections.

388 DML Reference Guide for PLI

Sample Online Program

Application Components

The application comprisesa program,two tasks,a map, and a subschema:

m Program—The EMPDISP program either performs a MAP OUT to starta sessionor
performs a MAP IN, databaseaccess,anda MAP OUT.

m Tasks—The task codes EMPDISP and EMPDISP2 affect the program flow of control:

- EMPDISP causes the program to perform the FIRST_TIME portion of the
program, mappingout the empty screen.

— EMPDISP2 causes the programto perform the SECOND_TIME portion of the
program, mappingin the data, checking the AID byte, performing the database
access portion of the program, and mappingout either an error message or
employee data.

m Map—The applicationuses a map named EMPLMAP to communicate with the
terminal operator. The followingillustrates the EMPLMAP map.

*kk EMPLOYEE INFORMATION SCREEN ***
BMPLOYEE ID:

FIRST NAME:
LAST NAME :

ADDRESS :

TYPE AN EMPLOYEE ID AND PRESS ENTER ** PRESS PA1 TO EXIT

The EMPLMAP definition specifies:
— Sixliteral fields (including the title EMPLOYEE INFORMATION SCREEN).

— Seven variabledata fields, to contain: EMPLOYEE D, LAST NAME, FIRST NAME,
and ADDRESS.

- Automatic editing for the EMPLOYEE IDfield specifies thatthe fieldisinerrorif
the ID you entered does not comply with the field's external picture (PIC 9(4)).

- Messages are output inthe SMESSAGE field.

m Subschema—The application uses the EMPSS0O1 subschema.

Appendix E: Sample Programs and Database Definition 389

Sample Online Program

Application Runtime Requirements

T

he following requirements must be met to execute the sampleapplication under CA

IDMS/DC:

Online Input to the

T

Define and generate the EMPLMAP map.

Compile andlink editthe EMPDISP program into a load library thatis identified to
CA IDMS/DC.

Define the EMPDISP program to the CAIDMS/DC system either by submitting
PROGRAM statements to the system generation compiler or by usingthe DCMT
VARY DYNAMIC PROGRAM command at runtime.

Define the EMPLMAP map and the EMPSS01 subschema to the CA IDMS/DC system
by submitting PROGRAM statements to the system generation compiler. Maps and
subschemas aredefined automaticallyatsystemstartupif null programdefinition
elements (PDEs) have been allocated for them at system generation.

DML Precompiler

he followingis the PL/I online programinput to the DML precompiler.

/*RETRIEVAL*/

/*DMLIST*/

/*NO_ACTIVITY LOG*/

/*SCHEMA_COMMENTS*/

EMPDISP: PROC OPTIONS (MAIN) REORDER;

DCL (EMPSSO1 SUBSCHEMA, EMPSCHM SCHEMA VERSION 100)
MODE (IDMS DC) DEBUG;

DCL IDMSPLI ENTRY OPTIONS(INTER,ASM);

DCL ADDR BUILTIN;

DCL STRING BUILTIN;

DCL (EMPLMAP MAP) TYPE (STANDARD);

DCL TASK_CODE HAR (8);
DCL EMPDISP CHAR (8) INIT ('EMPDISP');
DCL EMPDISP2 CHAR (8) INIT ('EMPDISP2');

DCL DC AID IND V CHAR (1);
/* LOGICAL CONSTANTS */
DCL YES BIT(1) INIT ('1'B);
DCL NO BIT(1) INIT ('0'B);
DCL 1 PROGRAM MESSAGES,
3 DISPLAY MSG CHAR (36)
INIT (' EMPLOYEE INFORMATION DISPLAYED '),
3 NOT_FOUND MSG CHAR (37)
INIT (' SPECIFIED EMPLOYEE NUMBER NOT FOUND ');

390 DML Reference Guide fo

rPLI

Sample Online Program

INCLUDE IDMS (SUBSCHEMA CTRL);

INCLUDE IDMS (EMPLOYEE);
INCLUDE IDMS (MAP_CONTROLS);
/* PROCESSING FOLLOWS */

MAIN LINE: BEGIN;
/* ESTABLISH ADDRESSABILITY FOR */
BIND MAP (EMPLMAP);
CALL IDMS_STATUS;
BIND MAP (EMPLMAP) RECORD (EMPLOYEE);
CALL IDMS_STATUS;
/* DETERMINE THE TASK CODE */
ACCEPT TASK CODE INTO (TASK CODE);
CALL IDMS_STATUS;

IF TASK CODE = EMPDISP
THEN CALL FIRST TIME;
IF TAK CODE = EMPDISP2
THEN CALL SECOND TIME;

/* OTHERWISE RETURN TO IDMS DC */
DC RETURN;

FIRST_TIME: PROC;

MODIFY MAP (EMPLMAP)
FOR ALL BUT DFLD (EMP_ID 0415)
ATTRIBUTES PROTECTED;

MAP OUT (EMPLMAP)
I0 OUTPUT DATA YES NEWPAGE;
CALL IDMS STATUS;
DC RETURN NEXT TASK CODE(EMPDISP2);
END FIRST TIME;

SECOND_TIME: PROC;
MAP IN (EMPLMAP)
10 INPUT DATA YES;
CALL IDMS STATUS;
/* CHECK WHICH PF KEY WAS PRESSED */
INQUIRE MAP(EMPLMAP)
MOVE AID TO (DC_AID IND V);

/* STOP IF PAL (%) WAS PRESSED */
IF DC_AID IND V = '%'

Appendix E: Sample Programs and Database Definition 391

Sample Online Program

THEN DC RETURN;
BIND RUN WNIT;
CALL IDMS STATUS;
BIND RECORD (EMPLOYEE);
CALL IDMS STATUS;
READY AREA (EMP DEMO REGION);
CALL IDMS STATUS;

/* OBTAIN THE RECORD */
OBTAIN CALC RECORD (EMPLOYEE);
IF ERROR_STATUS = '0326' THEN CALL NO_EMP;
CALL IDMS STATUS;
FINISH;
CALL IDMS STATUS;
/* TRANSMIT THE DATA BACK TO THE SCREEN */

MAP OUT (EMPLMAP)

I0 OUTPUT DATA YES NEWPAGE

MESSAGE (DISPLAY MSG) LENGTH(36);
CALL IDMS STATUS;
DC RETURN NEXT TASK CODE (EMPDISP2);

END SECOND TIME;

NO_EMP: PROC;
/* DO THIS IF EMPLOYEE NOT FOUND */

MAP OUT (EMPLMAP)

I0 OUTPUT DATA YES NEWPAGE

MESSAGE (NOT_FOUND_MSG) LENGTH(37);
CALL IDMS STATUS;
DC RETURN NEXT TASK CODE(EMPDISP2);
END NO_EMP;

INCLUDE IDMS (IDMS STATUS);
END MAIN LINE; /* END MAIN LINE */
END EMPDISP;

Output from the DML Precompiler

The followingis the onlineprogramas ithas been output from the DML precompiler.

IDMSDMLP nn.n CA, INC. DML PROCESSOR FOR PL/I DATE TIME PAGE
- - LISTING OF MESSAGES - - mm/dd/yy hhmmsshh 0001

00001 /*RETRIEVAL*/

00002 /*DMLIST*/

00003 /*NO ACTIVITY LOG*/

00004 /*SCHEMA COMMENTS*/

00005 EMPDISP: PROC OPTIONS (MAIN) REORDER;

392 DML Reference Guide for PLI

Sample Online Program

DMLP 00007 DCL (EMPSSO1 SUBSCHEMA, EMPSCHM SCHEMA VERSION 100)
00008 MODE (IDMS DC) DEBUG;
00009 DCL IDMSPLI ENTRY OPTIONS(INTER,ASM);
00010 DCL ADDR BUILTIN;
00011 DCL STRING BUILTIN;
DMLP 00013 DCL (EMPLMAP MAP) TYPE (STANDARD);

00014
00015 DCL TASK CODE CHARR (8);
00016 DCL EMPDISP CHAR (8) INIT ('EMPDISP');
00017 DCL EMPDISP2 CHAR (8) INIT ('EMPDISP2');
00018 DCL DC_AID IND V CHAR (1);
00019 /% LOGICAL CONSTANTS */
00020 DCL YES BIT(1) INIT ('1'B);
00021 DCL NO BIT(1) INIT ('0'B);
00022 DCL 1 PROGRAM MESSAGES,
00023 3 DISPLAY MSG CHAR (36)
00024 INIT (' EMPLOYEE INFORMATION DISPLAYED '),
00025 3 NOT_FOUND MSG CHAR (37)
00026 INIT (' SPECIFIED EMPLOYEE NUMBER NOT FOUND ');
00027
DMLP 00029 INCLUDE IDMS (SUBSCHEMA CTRL);
00160

DMLP 00102 INCLUDE IDMS (EMPLOYEE);
DMLP 00133 INCLUDE IDMS (MAP_CONTROLS);

00171

00172 /* PROCESSING FOLLOWS */

00173

00174 MAIN LINE: BEGIN;

00175 /* ESTABLISH ADDRESSABILITY FOR */
DMLPOOO1 00177 BIND MAP (EMPLMAP);

00208 CALL IDMS STATUS;
DMLPO002 00210 BIND MAP (EMPLMAP) RECORD (EMPLOYEE);

00219 CALL IDMS STATUS;

00220 /* DETERMINE THE TASK CODE */
DMLPOO03 00222 ACCEPT TASK CODE INTO (TASK CODE);

00231 CALL IDMS STATUS;

00232

00233 IF TASK CODE = EMPDISP

00234 THEN CALL FIRST TIME;

00235 IF TASK CODE = EMPDISP2

Appendix E: Sample Programs and Database Definition 393

Sample Online Program

DMLP0OO04

DMLPO005

DMLPOO06

DMLPOOO7

DMLPOOO8

DMLPOOO9

DMLPOO10

DMLPOO11

DMLPOO12

DMLP0O13

DMLP0OO14

00236
00237
00238
00239
00240
00242
00249
00250
00252
00253
00254
00267
00269
00270
00284
00286
00295
002%
00297
0029
00300
00314
00315
00317
00318
00328
00329
00330
00331
00333
00340
00342
00351
00353
00362
00364
00372
00373
00375
00384

THEN CALL SECOND TIME;

/* OTHERWISE RETURN TO IDMS-DC */
DC RETURN;

FIRST _TIME: PROC;

MODIFY MAP (BMPLMAP)
FOR ALL BUT DFLD (EMP_ID 0415)
ATTRIBUTES PROTECTED;

MAP OUT (EMPLMAP)
I0 OUTPUT DATA YES NEWPAGE;
CALL IDMS_STATUS;
DC RETURN NEXT TASK CODE(EMPDISP2);

END FIRST TIME;

SECOND_TIME: PROC;
MAP IN (EMPLMAP)
10 INPUT DATA YES;
CALL IDMS STATUS;
/* CHECK WHICH PF KEY WAS PRESSED */
INQUIRE MAP(EMPLMAP)
MOVE AID TO (DC_AID IND V);

/* STOP IF PAL (%) WAS PRESSED */
IF DC_AID IND V = 'S’
THEN
DC RETURN;

BIND RUN UNIT;
CALL IDMS STATUS;
BIND RECORD (EMPLOYEE);
CALL IDMS STATUS;
READY AREA (EMP DEMO REGION);
CALL IDMS STATUS;
/* OBTAIN THE RECORD */
OBTAIN CALC RECORD (EMPLOYEE);
IF ERROR STATUS = '0326' THEN CALL NO EMP;

394 DML Reference Guide for PLI

Sample Online Program

DMLP0OO15

DMLP0OO16

DMLPOO17

DMLPOO18

DMLP0OO19

DMLP

DMLP0020

DMLP0OO21

00385
00387
003%
00395
00397
00398
0039
00415
00417
00426
00427
00428
00429
00430
00432
00433
00434
00450
00452
00461
00462
00464
00465
00466
00467
00468
00469
00470
00471
00472
00473
00474
00475
00477
00490
00492
00501
00502
00503

CALL IDMS STATUS;
FINISH;
CALL IDMS STATUS;
/* TRANSMIT THE DATA BACK TO THE SCREEN */

MAP OUT (EMPLMAP)

I0 OUTPUT DATA YES NEWPAGE

MESSAGE (DISPLAY MSG) LENGTH(36);
CALL IDMS STATUS;
DC RETURN NEXT TASK CODE(EMPDISP2);

END SECOND_TIME;

NO BMP: PROC;
/* DO THIS IF EMPLOYEE NOT FOUND */

MAP OUT (EMPLMAP)

I0 OUTPUT DATA YES NEWPAGE

MESSAGE (NOT_FOUND MSG) LENGTH(37);
CALL IDMS STATUS;
DC RETURN NEXT TASK CODE(EMPDISP2);
END NO EMP;

INCLUDE IDMS (IDMS STATUS);

IDMS_STATUS: PROC;
/* THE IDMS STATUS PROCEDURE MAY BE CALLED BY THE USER AFTER */
/* EACH IDMS COMMAND HAS BEEN ISSUED AND (HECKS HAVE BEEN */
/* MADE FOR ANY EXPECTED NON_ZERO ERROR STATUS CONDITIONS. */
/* IT DETECTS A NON_ZERO ERROR_STATUS AND TERMINATES THE */
/* PROGRAM WITH A SNAP OF THE SUBSCHEMA CTRL AREA AND AN */
/* ABEND WITH THE ERROR STATUS AS THE ABEND CODE. */

IF ERROR STATUS='0000"' THEN GOTO END_STATUS;

SSC ERRSTAT_SAVE=ERROR STATUS; /* SAVE THE ERROR STATUS */

SSC DMLSEQ SAVE=DML SEQUENCE; /* SAVE DML SEQUENCE */
/* SNAP THE SUBSCHEMA CTRL AREA */

SNAP FROM (SUBSCHEMA CTRL) TO (SUBSCHEMA CTRL END);
/* ABEND */

ABEND CODE (SSC ERRSTAT SAVE);

END STATUS: END;

END MAIN LINE; /* END MAIN LINE */

END EMPDISP;

Appendix E: Sample Programs and Database Definition 395

Sample Online Program

Output from the PL/I Compiler

The followingis the PL/I programas output by the PL/I compiler.

PL/I OPTIMIZING COMPILER /*RETRIEVAL*/ PAGE
SOURCE LISTING
STMT LEV NT

/*RETRIEVAL*/
/*DMLIST*/
/*NO_ACTIVITY LOG*/
/*SCHEMA_COMVENTS*/
1 0 EMPDISP: PROC OPTIONS (MAIN) REORDER;
/*
DCL (EMPSS@1 SUBSCHEMA, EMPSCHM SCHEMA VERSION 100)
MODE (IDMS DC) DEBUG;
*/
2 10 DCL IDMSPLI ENTRY OPTIONS(INTER,ASM);
10 DCL ADDR BUILTIN;
4 10 DL STRING BUILTIN;

w

/*
DCL (EMPLMAP MAP) TYPE (STANDARD);
*/

DCL TASK CODE CHAR (8);

DCL EMPDISP CHAR (8) INIT ('EMPDISP');
DCL EMPDISP2 CHAR (8) INIT ('EMPDISP2');
DCL DC_AID IND V. CHAR (1);

/* LOGICAL CONSTANTS */

9 10 DL YES BIT(1) INIT ('1'B);

10 DCL NO BIT(1) INIT ('0'B);

11 10 DCL 1 PROGRAM MESSAGES,

3 DISPLAY MSG CHAR (36)

INIT (' EMPLOYEE INFORMATION DISPLAYED '),
3 NOT_FOUND MSG CHAR (37)

INIT (' SPECIFIED EMPLOYEE NUMBER NOT FOUND ');

0o N o U
R R e
o o o o

=
(o}

/*
INCLUDE IDMS (SUBSCHEMA CTRL);
*/
12 1 0 DECLARE 1 SUBSCHEMA CTRL,
3 PROGRAM CHARACTER (8) INITIAL (' '),
3 ERROR STATUS CHARACTER (4) INITIAL ('1400'),
3 DBKEY FIXED BINARY (31),
3 RECORD NAME CHARACTER (16) INITIAL (' '),
3 AREA_NAME CHARACTER (16) INITIAL (' '),
3 ERROR SET CHARACTER (16) INITIAL (' '),

396 DML Reference Guide for PLI

Sample Online Program

3 ERROR RECORD CHARACTER (16) INITIAL (' '),

3 ERROR AREA CHARACTER (16) INITIAL (' '),

3 IDBMSCOM AREA,

5 IDBMSCOM (100) CHARACTER (1),

3 DIRECT DBKEY FIXED BINARY (31),

3 DCBMSCOM AREA,

5 DCBMSCOM (100) CHARACTER (1),

3 DCCALIGN AREA,

5 FILLEROOO1 CHARACTER (4),

5 DCCALIGN FLOAT BINARY (53),

5 FILLER0OOO2 CHARACTER (8);
13 1 0 DECLARE 1 SSC_ERRSAVE AREA BASED (ADDR(SUBSCHEMA CTRL.DCCALIGN_AREA)),

3 SSC_ERRSTAT_SAVE CHARACTRR (4),

3 SSC DMLSEQ SAVE FIXED BINARY (31),

3 DML SEQUENCE FIXED BINARY (31),

3 RECORD OCCUR FIXED BINARY (31),

3 SUBSCHEMA CTRL END CHARACTER (4);
14 1 0 DECLARE 1 DCCFN AREA BASED (ADDR(SUBSCHEMA CTRL.DCBMSCOM AREA)),
FILLEROO®3 CHARACTER (44),
DCCSTRL CHARACTRR (16),
DCCNUML FIXED BINARY (
DCCNUM2 FIXED BINARY (31),
DCCNUM3 FIXED BINARY (
DCCFLGL FIXED BINARY (
DCCFLG2 FIXED BINARY (15),
DCCFLG3 FIXED BINARY
DCCFLGA FIXED BINARY
DCCFLG5 FIXED BINARY
DCCFLG6 FIXED BINARY
FILLEROOO4 CHARACTER
DCCDBLWK CHARACTER (8
15 1 0 DECLARE 1 DCCPT AREA BASED

3 FILLEROOO5 CHARACTER

3 DCCPT1 POINTER,

3 DCCPT2 POINTER;
16 1 0 DECLARE 1 DCCPN_AREA BASED (ADDR(SUBSCHEMA CTRL.DCBMSCOM AREA)),

3 FILLEROOO6 CHARACTER (44),

3 DCCPNWM1 FIXED DECIMAL(11,0),

3 FILLEROOO7 CHARACTER (10),

3 DCCPNWM2 FIXED DECIMAL(7,0);

W wwwwwwwwwwww

’

ADDR (SUBSCHEMA CTRL.DCBMSCOM AREA)),

(
(
(
(
(
)
(
(60),

Appendix E: Sample Programs and Database Definition 397

Sample Online Program

17

18

19

20

21

22

23

0 DECLARE 1 DCCSTR _AREA3 BASED (ADDR(SUBSCHEMA CTRL.DCBMSCOM AREA)),
3 FILLEROOO8 CHARACTER (44),
3 DCCSTR4 CHARACTRR (4),
3 DCCSTRS CHARACTRR (4),
3 DCCSTR3 CHARACTRR (8);
0 DECLARE 1 DCCSTR AREA2 BASED (ADDR(SUBSCHEMA CTRL.DCBMSCOM AREA)),
3 FILLEROOO9 CHARACTER (44),
3 DCCSTR2 CHARACTRR (8);
0 DECLARE 1 DCCSTR_AREA1 BASED (ADDR(SUBSCHEMA CTRL.DCBMSCOM AREA)),
3 FILLEROO10 CHARACTER (44),
3 DCCSTR6 CHARACTRR (32),
3 DCCNUHL FIXED BINARY (15),
3 FILLEROO11 CHARACTER (2),
3 DC_ABEND_CODE CHARACTER (4);
0 DECLARE 1 DCCPLI_DEFS BASED (ADDR(SUBSCHEMA CTRL.DCBMSCOM AREA)),
3 DCCR14SV FIXED BINARY (31),
3 DCCPARMS (10) FIXED BINARY (31);
0 DECLARE 1 AREA RNAME BASED (ADDR(SUBSCHEMA CTRL.AREA NAME)),
3 SSC_DNO CHARACTRR (8),
3 SSC_DNA CHARACTRR (8);
0 DECLARE 1 RRECORD NAME BASED (ADDR(SUBSCHEMA CTRL.RECORD NAME)),
3 SSC_NODN CHARACTER (8),
3 SSC_DBN CHARACTRR (8);

/*
INCLUDE IDMS (EMPLOYEE);
*/
0 DECLARE 1 BMPLOYEE,
2 EMP_ID 0415 PICTWRE '(4)9",
2 EMP_NAME 0415,
3 EMP_FIRST NAME 0415 CHARACTER (10),
3 EMP_LAST NAME 0415 CHARACTER (15),
2 EMP_ADDRESS 0415,
3 EMP_STREET 0415 CHARACTER (20),
3 EMP_CITY 0415 CHARACTER (15),
3 EMP_STATE 0415 CHARACTER (2),
3 EMP_ZIP 0415,
4 EMP_ZIP FIRST FIVE 0415 CHARACTER (5),
4 EMP_ZIP LAST FOLR 0415 CHARACTER (4),
2 EMP_PHONE 0415 PICTURE '(10)9',
2 STATUS 0415 CHARACTER (2),
2SS NUMBER 0415 PICTURE '(9)9',
2 START DATE 0415,
3 START YEAR 0415 PICTURE '(2)9',
3 START MONTH 0415 PICTURE '(2)9',
3 START DAY 0415 PICTURE '(2)9',
2 TERMINATION DATE 0415,
3 TERMINATION YEAR 0415 PICTURE '(2)9',

398 DML Reference Guide for PLI

Sample Online Program

3 TERMINATION MONTH 0415 PICTURE '(2)9',
3 TERMINATION DAY 0415 PICTURE '(2)9',
2 BIRTH DATE 0415,
3 BIRTH YEAR 0415 PICTURE '(2)9',
3 BIRTH MONTH 0415 PICTURE '(2)9"',
3 BIRTH DAY 0415 PICTURE '(2)9',
2 FILLEROO12 CHARACTER (2),
2 FILLEROO13 CHARACTER (4);
/*
INCLUDE IDMS (MAP_CONTROLS);
*/
24 1 0 DECLARE 1 MRB_EMPLMAP,
5 MRB_EMPLMAP_ID CHARACTER (8),
5 MRB_EMPLMAP MCOMP_VER,
8 MRB_EMPLMAP MCOMP DATE CHARACTER (8),
8 MRB_EMPLMAP MCOMP TIME CHARACTER (6),
8 MRB_EMPLMAP MCOMP VERID CHARACTER (2),
MRB_EMPLMAP SUBSCHEMA CHARACTER (8),
MRB_EMPLMAP FLGS (4) CHARACTER (1),
FILLEROO14 CHARACTER (6),
MRB_EMPLMAP NFLDS FIXED BINARY (15
MRB_EMPLMAP NRECS FIXED BINARY (15
MRB_EMPLMAP RECOF FIXED BINARY (15
MRB_EMPLMAP PERM CURSOR CHARACTER
MRB_EMPLMAP TEMP CURSOR CHARACTER
1
1

’
’
’
2

)
)
)
(
(2

),
),
MRB_EMPLMAP PERM WCC CHARACTER (
MRB_EMPLMAP TEMP WCC CHARACTER (
MRB_EMPLMAP_CURSOR CHARACTER (2),
MRB_EMPLMAP AID CHARACTER (1),
MRB_EMPLMAP_INPUT FLGS CHARACTER (1),
MRB_EMPLMAP_SEGVIEW CHARACTER (1),
FILLERO®15 CHARACTER (1),
MRB_EMPLMAP MREO FIXED BINARY (15),
MRB_EMPLMAP ERR CNT FIXED BINARY (15),

)I
)I

MRB_EMPLMAP_XTYP CHARACTER (1),
FILLEROO16 CHARACTER (1),
MRB_EMPLMAP_MRE XLEN FIXED BINARY (15),
MRB_EMPLMAP_MRB XLEN FIXED BINARY (15),

MRB_EMPLMAP MRE (8),

Ul Ul UL Ul U1 UL U1 U1 U1 U1 UL U U1 UT UL UL U1 U1 U1 U1 U1 Dl

8 MRB_EMPLMAP_MRE FLGS (8) CHARACTER (1),
8 MRB_EMPLMAP MRE INLEN FIXED BINARY (15),

MRB_EMPLMAP_ATTR FLGS (4) CHARACTER (1),
MRB_EMPLMAP_ CURR MFLD FIXED BINARY (15),

8 MRB_EMPLMAP MRE PAD CHAR (2) CHARACTER (1),

8 MRB EMPLMAP MRE FLG2 (2) CHARACTER (1),

5 MRB_EMPLMAP RECS (1) FIXED BINARY (31),
5 MRB_EMPLMAP END CHARACTRR (1),
5 MRB_EMPLMAP_MRE SUB FIXED BINARY (15);

Appendix E: Sample Programs and Database Definition 399

Sample Online Program

25

26
27
28
29

30
31

32

33

34

35

36

37

38

39

40

41

42

43
44
45
46

N N NN

N N NN
<)

/*

<)

PROCESSING FOLLOWS */

MAIN LINE: BEGIN;
/* ESTABLISH ADDRESSABILITY FOR */

/*
BIND MAP (EMPLMAP); DMLPGOO1
*/
/* IDMS PL/I DML EXPANSION */ DO;

DML SEQUENCE=1;
DCCFLG1,DCCFLG2,DCANUM1 , DCCNUM2=0;
CALL IDMSPLI (SUBSCHEMA CTRL

,DCBMSCOM (90)

,MRB_EMPLMAP

,MRB EMPLMAP_END

); END;
STRING(MRB EMPLMAP MCOMP VER)=
'11/04/87172444R2" ;
MRB_EMPLMAP SUBSCHEMA=
'EMPSSO1';
MRB EMPLMAP ID=
'EMPLMAP' ;
MRB_EMPLMAP_NFLDS=
8;
RB_EMPLMAP NRECS=
1
MRB_EMPLMAP RECOF=
112;
MRB_EMPLMAP MREO=
76;
MRB_EMPLMAP XTYP=
0
MRB_EMPLMAP MRE XLEN=
0;
RB_EMPLMAP MRB XLEN=

0;

MRB_EMPLMAP SEGVIEW=

N

CALL IDMS STATUS;
/*
BIND MAP (EMPLMAP) RECORD (EMPLOYEE); DMLPGO0O2
*/

/* IDMS PL/I DML EXPANSION */ DO;

DML SEQUENCE=2;

DCCFLG1,DCCFLG2,DCANUM1, DCCNUM2=0;

CALL IDMSPLI (SUBSCHEMA CTRL

,DCBMSCOM (91)
,MRB EMPLMAP RECS (1)

400 DML Reference Guide for PLI

Sample Online Program

47
48

49
50
51
52
53

54
55
56

57

58

59
60
61
62

63

64

65
66
67
68
69
70
71

N NNNN

N
=

N N NN

<]

W wwwwww
I = B S R SN)

H R R RO

,EMPLOYEE
); END;
CALL IDMS STATLS;
/* DETERMINE THE TASK CODE */
/*
ACCEPT TASK CODE INTO (TASK CODE); DMLPOOGO3
*/
/* IDMS PL/I DML EXPANSION */ DO;
DML SEQUENCE=3;
DCCFLG1,DCCFLG2,DCANUM1, DCCNUM2=0;
DCCNUM1=1;
CALL IDMSPLI (SUBSCHEMA CTRL
,DCBMSCOM (2)
); END;
TASK_CODE=DCCSTRG;
CALL IDMS STATLS;

IF TASK CODE = EMPDISP
THEN CALL FIRST TIME;

IF TASK CODE = EMPDISP2
THEN CALL SECOND TIME;

/* OTHERWISE RETURN TO IDMS DC */

/*
DC RETURN; DMLP00O04
*/
/* IDMS PL/I DML EXPANSION */ DO;
DML_SEQUENCE=4;
DCCFLG1,DCCFLG2,DCANUML, DCCNUM2=0;
CALL IDMSPLI (SUBSCHEMA CTRL
,DCBMSCOM (19)
); END;
0 FIRST TIME: PROC;
/*
MODIFY MAP (EMPLMAP) DMLPOOO5

FOR ALL BUT DFLD (EMP_ID 0415)
ATTRIBUTES PROTECTED;

*/
/* IDMS PL/I DML EXPANSION */ DO;
DML_SEQUENCE=5;
DCCFLG1,DCCFLG2,DCANUMI, DCCNUM2=0;
DCCNUM1=8;
DCCFLG1=768;
DCCFLG3=0;
DCCFLG4=0;

Appendix E: Sample Programs and Database Definition 401

Sample Online Program

72 31 CALL IDMSPLI (SUBSCHEMA CTRL
,DCBMSCOM (93)
,MRB_EMPLMAP
,MRB EMPLMAP MRE (1)
73 31); END;
/*
MAP OUT (EMPLMAP) DMLPO0O06
I0 OUTPUT DATA YES NEWPAGE;
*/
74 30 /* IDMS PL/I DML EXPANSION */ DO;
75 31 DML _SEQUENCE=6;
76 31 DCCFLG1,DCCFLG2,DCANUM1 , DCCNUM2=0;
77 31 DCCFLG1=5;
78 31 DCCFLG2=16;
79 31 DCCFLG3=1;
80 31 DCCFLG4=0;
81 31 DCCFLG5=0;
82 31 DCCFLG6=1;
83 31 CALL IDMSPLI (SUBSCHEMA CTRL
,DCBMSCOM (34)
,MRB_EMPLMAP
84 31); END;
85 3 0 CALL IDMS STATUS;
/*
DC RETURN NEXT TASK CODE(EMPDISP2); DMLPOGO7
*/
86 30 /* IDMS PL/I DML EXPANSION */ DO;
87 31 DML SEQUENCE=7;
88 31 DCCFLG1,DCCFLG2,DCANUM1 , DCCNUM2=0;
89 31 DCCSTR2=EMPDISP2;
9 31 DCCFLG1=128;
91 31 CALL IDMSPLI (SUBSCHEMA CTRL
,DCBMSCOM (19)
2 31); END;
93 3 0 END FIRST TIME;
94 2 0 SECOND TIME: PROC;
/*
MAP IN (EMPLMAP) DMLPOGO8
I0 INPUT DATA YES;
*/
95 30 /* IDMS PL/I DML EXPANSION */ DO;
9% 31 DML SEQUENCE=8;
97 31 DCCFLG1,DCCFLG2,DCANUMI , DCCNUM2=0;
98 31 DCCFLG1=6;
9 31 DCCFLG2=4;
100 31 DCCFLG3=0;

402 DML Reference Guide for PLI

Sample Online Program

101
102
103
104

105
106

107
108
109
110
111

112
113

114

115
116
117

118

119
120
121
122

123
124

w w w w
e i

w

w w w ww
[S Y O

w

w w w w
= RO

DCCFLG4=0;
DCCFLG5=0;
DCCFLG6=0;
CALL IDMSPLI (SUBSCHEMA CTRL
,DCBMSCOM (34)
,MRB_EMPLMAP
1); END;
0 CALL IDMS STATUS;
/* CHEK WHICH PF KEY WAS PRESSED */
/*
INQUIRE MAP(EMPLMAP) DMLPOOO9
MOVE AID TO (DC AID IND V);
*/
/* IDMS PL/I DML EXPANSION */ DO;
DML SEQUENCE=9;
DCCFLG1,DCCFLG2,DCCNUM1, DCONUM2=0;
DCCNUM1=7;
CALL IDMSPLI (SUBSCHEMA CTRL
,DCBMSCOM (92)
,MRB_EMPLMAP
1); END;
0 DC_AID IND V=DCCSTR2;

/* STOP IF PAL (%) WAS PRESSED */
0 IF DC AID IND V = 'S’
THEN DMLPOO10
/*
DC RETLRN;
*/
/* IDMS PL/I DML EXPANSION */ DO;
1 DML SEQUENCE=16;
DCCFLG1,DCCFLG2,DCCNUM1 , DCONUM2=0);
CALL IDMSPLI (SUBSCHEMA CTRL
,DCBMSCOM (19)
1); END;

/*
BIND RUN UNIT; DMLPOO11
*/
/* IDMS PL/I DML EXPANSION */ DO;
DML SEQUENCE=11;
DCCFLG1,DCCFLG2,DCCNUM1, DCQNUM2=0;
CALL IDMSPLI (SUBSCHEMA CTRL
, IDBMSCOM (59)
,SUBSCHEMA CTRL
, '"EMPSSO1 !
1); END;
0 CALL IDMS STATUS;

Appendix E: Sample Programs and Database Definition 403

Sample Online Program

/*
BIND RECORD (EMPLOYEE); DMLPOO12
*/
125 30 /* IDMS PL/I DML EXPANSION */ DO;
126 31 DML SEQUENCE=12;
127 31 DCCFLG1,DCCFLG2,DCCNUM1, DCANUM2=0;
128 31 CALL IDMSPLI (SUBSCHEMA CTRL
, IDBMSCOM (48)
, 'EMPLOYEE !
,EMPLOYEE
129 31); END;
130 3 0 CALL IDMS STATUS;
/*
READY AREA (EMP_DEMO REGION); DMLP0O13
*/
131 30 /* IDMS PL/I DML EXPANSION */ DO;
132 31 DML SEQUENCE=13;
133 31 DCCFLG1,DCCFLG2,DCCNUM1 , DCANUM2=0 ;
134 31 CALL IDMSPLI (SUBSCHEMA CTRL

, IDBMSCOM (37)
, 'EMP-DEMO-REGION '
135 31); END;
136 3 0 CALL IDMS_STATUS;
/* OBTAIN THE RECORD */

/*
OBTAIN CALC RECORD (EMPLOYEE); DMLPOO14
*/
137 30 /* IDMS PL/I DML EXPANSION */ DO;
138 31 DML_SEQUENCE=14;
139 31 DCCFLG1,DCCFLG2,DCCNUML, DCANUM2=0;
140 31 CALL IDMSPLI (SUBSCHEMA CTRL
, IDBMSCOM (32)
, '"EMPLOYEE '
, IDBMSCOM (43)
141 31); END;
142 3 0 IF ERROR STATUS = '0326' THEN CALL NO EMP;
143 3 0 CALL IDMS_STATUS;
/*
FINISH; DM_POO15
*/
144 30 /* IDMS PL/I DML EXPANSION */ DO;
145 31 DML_SEQUENCE=15;
146 31 DCCFLG1,DCCFLG2,DCCNUML, DCAONUM2=0;
147 31 CALL IDMSPLI (SUBSCHEMA CTRL
, IDBMSCOM (2)
148 1); END;

149 3 0 CALL IDMS STATUS;
/* TRANSMIT THE DATA BACK TO THE SCREEN */

404 DML Reference Guide for PLI

Sample Online Program

/*
MAP OUT (EMPLMAP) DMLPOO16
IO OUTPUT DATA YES NEWPAGE

MESSAGE (DISPLAY MSG) LENGTH(36);

*/
150 30 /* IDMS PL/I DML EXPANSION */ DO;
151 31 DML SEQUENCE=16;
152 31 DCCFLG1,DCCFLG2,DCCNUM1, DCAONUM2=0 ;
153 31 DCCFLG1=5;
154 31 DCCFLG2=16;
155 31 DCCFLG3=1;
156 31 DCCFLG4=4;
157 31 DCCFLG5=0;
158 31 DCCFLG6=1;
159 31 CALL IDMSPLI (SUBSCHEMA CTRL
,DCBMSCOM (34)
,MRB_EMPLMAP
,DISPLAY MSG
,DCBMSCOM (36)
160 31); END;
161 3 0 CALL IDMS STATUS;
/*
DC RETURN NEXT TASK CODE(EMPDISP2); DMLPOO17
*/
162 30 /* IDMS PL/I DML EXPANSION */ DO;
163 31 DML SEQUENCE=17;
164 31 DCCFLG1,DCCFLG2,DCCNUM1 , DCONUM2=0;
165 31 DCCSTR2=EMPDISP2;
166 31 DCCFLG1=128;
167 31 CALL IDMSPLI (SUBSCHEMA CTRL
,DCBMSCOM (19)
168 31); END;

169 3 0 END SECOND_TIME;

170 2 0 NO EMP: PROC;
/* DO THIS IF EMPLOYEE NOT FOUND */
/*
MAP OUT (EMPLMAP) DMLP0O18
IO OUTPUT DATA YES NEWPAGE
MESSAGE (NOT_FOUND MSG) LENGTH(37);

*/
171 30 /* IDMS PL/I DML EXPANSION */ DO;
172 31 DML_SEQUENCE=18;
173 31 DCCFLG1,DCCFLG2,DCCNUML, DCANUM2=0 ;
174 31 DCCFLG1=5;
175 31 DCCFLG2=16;
176 31 DCCFLG3=1;

Appendix E: Sample Programs and Database Definition 405

Sample Online Program

177
178
179
180

181
182

183
184
185
186
187
188

189
190

191

192
193
194

31 DCCFLG4=4;
31 DCCFLG5=0;
31 DCCFLG6=1;
31 CALL IDMSPLI (SUBSCHEMA CTRL
,DCBMSCOM (34)
,MRB_EMPLMAP
,NOT_FOUND_MSG
,DCBMSCOM (37)
31); END;
3 0 CALL IDMS STATUS;
/*
DC RETURN NEXT TASK CODE(EMPDISP2); DMLPOG19
*/
30 /* IDMS PL/I DML EXPANSION */ DO;
31 DML SEQUENCE=19;
31 DCCFLG1,DCCFLG2,DCCNUM1, DCONUM2=0;
31 DCCSTR2=EMPDISP2;
31 DCCFLG1=128;
31 CALL IDMSPLI (SUBSCHEMA CTRL
,DCBMSCOM (19)
31); END;
3 0 END NO EMP;
/*

INCLUDE IDMS (IDMS_STATUS);

*/

2 0 IDMS_STATUS: PROC;

/*
/*
/%
/%
/%
/%

30

30

30
/%

THE IDMS_STATUS PROCEDURE MAY BE CALLED BY THE USER AFTER */
EACH IDMS COMMAND HAS BEEN ISSUED AND CHECKS HAVE BEEN */
MADE FOR ANY EXPECTED NON_ZERO ERROR STATUS CONDITIONS. */
IT DETECTS A NON_ZERO ERROR STATUS AND TERMINATES THE */
PROGRAM WITH A SNAP OF THE SUBSCHEMA CTRL AREA AND AN */
ABEND WITH THE ERROR STATUS AS THE ABEND CODE. */

IF ERROR STATUS='0000' THEN GOTO END STATUS;

SSC_ERRSTAT SAVE=ERROR STATUS; /* SAVE THE ERROR STATUS */

SSC DMLSEQ SAVE=DML SEQUENCE; /* SAVE DML SEQUENCE */
SNAP THE SUBSCHEMA CTRL AREA */

/*

SNAP FROM (SUBSCHEMA CTRL) TO (SUBSCHEMA CTRL END);

*/

406 DML Reference Guide for PLI

Sample Online Program

195 30 /* IDMS PL/I DML EXPANSION */ DO;
19 31 DML SEQUENCE=20;
197 31 DCCFLG1,DCCFLG2,DCCNUML, DCAONUM2=0;
198 31 CALL IDMSPLI (SUBSCHEMA CTRL
,DCBMSCOM (22)
,DCCSTR1
,DCCSTR1
,DCCSTR1

, SUBSCHEMA_CTRL
, SUBSCHEMA_CTRL_END
,DCBMSCOM (1)

199 31); END;
/* ABEND */
/*
ABEND CODE (SSC_ERRSTAT SAVE);
*/
200 30 /* IDMS PL/I DML EXPANSION */ DO;
201 31 DML SEQUENCE=21;
202 31 DCCFLG1,DCCFLG2,DCCNUM1, DCONUM2=0;
203 31 DCCSTR4=SSC_ERRSTAT SAVE;
204 31 DCCFLG1=2;
205 31 CALL IDMSPLI (SUBSCHEMA CTRL
,DCBMSCOM (1)
206 31); END;
207 3 O END STATUS: END;
208 2 0 END MAIN LINE; /* END MAIN LINE */
209 1 0 END EMPDISP;

Appendix E: Sample Programs and Database Definition 407

EMPLOYEE Database Definition

EMPLOYEE Database Definition

The followingis a data structurediagram for the EMPLOYEE database. Most of the
Examples used inthis manual (includingthesampleprograms in this appendix) use the
EMPLOYEE database.

DEPARTMENT OFFICE
a0 [r Jso Jeac as0 [F oo Jeac
DEPT-ID-0410 Jon OFFICE-CODE [on
JOB- 111 LE-NDX SKILL-NAME-NDX
Von ORG-DEMO-REGION ORG-DEMO-REGION Ton
ASC TITLE-0440 DN DEPTEMPLOYEE OFFICE-EMPLOYEE ASC SKILL-NAME-0455 DN
NPO DA 10 oA
108 ASC {EMP-LAST-NAME-0415 ASC {EMP-LAST-NAME.0415 SKILL
EMP-FIRST-NAME-0415) DL EMP-HIHSI -NAME-0415) DL
440 |rc 286 |carc) ! 455 |[F |76 |cac
JOB-ID-0440 DN SKILL-ID-0455 N
ORG-DEMO-REGION ORG-DEMO-REGION
EMP-NAME-NDX
Lon SKILL-EXPERTISE
JOB-EMPOSITION ASC (EMP-LAST-NAME 10 MA
NPO GM NEXI EMP-FIRS|-NAME-0425) DL DES SKILL-LEVEL DF
EMPOSIION EMPLOYEE EXPERIISE
120 [F Jos Juin as[r JiisJeac w2s]r o Jwa
EMP-EMPOSITION | EMP-ID-0415 DN EMP-EXPERTISE |
EMP-EMPOSITION EMP-EXPERTISE
EMP-DEMO-REGION i tits EMP-DEMO-REGION e EMP-DEMG-REGION
DES SKILL-LEVEL-0425 DF
REPORTSTO MANAGES
EMP-COVERAGE
NPO OM NEXI npo maNexi | EPERVERS
STRUCTURE COVERAGE
wo|r e Jwa awo |r Jis Jwia
MANAGES | EMP-COVERAGE |
EMP-DEMO-REGION INS-DEMO-REGION
COVERAGE-CLAIMS
NP MA LAST
INSURANGE-PLAN HOSPITAL-CLAIM NON-HOSP-GLAIM DENTAL-CLAIM
435 |rc_ |12 |cmc 430 [F Jz02 [via ass |v J100d vin 405 [v 30 Jwia
INS-PLAN-CODE-0435 | DN COVERAGE-GLAIMS | COVERAGE-CLAIMS | COVERAGE-CLAIMS |
INS-DEMO-REGION INS-DEMO-REGIGN INS-DEMO-REGION INS-DEMO-REGION

408 DML Reference Guide for PLI

Appendix F: Considerations for IBM
Languade Environment

What Is IBM Language Environment (LE)?

LE is a runtime environment that replaces the language-specific runtime environments
that existed previously. For Example, PL/I hadits own runtime environment; COBOL I
had another. CA IDMS can execute programs that are designed to use the LE runtime
environment. ltcanalsoexecute programs compiled with pre-LE compilers thatuse the
LE runtime environment.

Note: This appendixonly applies to runtime support in CA IDMS/DC. Itdoes not applyto
batch or CICS programs that access CA IDMS.

Language Environment has had several names for different operating systems and
releaselevels.The term "LE" will beused inthis document to refer to the any of the
followingunless otherwise noted:

m LE/370
m LE for z/0S and z/VM

m LE for z/VSE

How Can You Use LE with CA IDMS/DC?

To execute online programs usingthe LE runtime libraries, follow these steps to bringup
your CA IDMS environment:

1. Ensurethatthe CAIDMS system has been generated with a 24-bitreentrant pool
thatis largeenough to containthe IBM-supplied LE application programinterface
module CEEPIPI. The size of this module is approximately 100K.

2. Ensurethatthe CAIDMS system has been generated with an XA reentrant pool that
is largeenough to maintainresidencefor several IBM-supplied LE support modules.
Allow 1 megabyte for these programs.

3. Includethe LE runtime loadlibraries in the CDMSLIB loadlib concatenation before
any other IBM languageloadlibsthatyou areusing.

This section contains the followingtopics:

Considerations About LE Runtime (see page 410)

Running LE-Compliant Compiler Programs Under CA IDMS/DC (see page 410)
Supported LE Functions (see page 414)

Unsupported LE Functions (see page 414)

Appendix F: Considerations for IBM Language Environment 409

Considerations About LE Runtime

Considerations About LE Runtime

Running Pre-LE Programs

There are restrictions thatapply when you run pre-LE programs under LE runtime within
CA IDMS/DC. Pre-LE programs are programs that were compiled with a non-LE
compliantcompiler,such as PL/I Release 2.3.

Some of these restrictions arealready documented elsewhere inthe DML Reference
manuals. Additional restrictions for LE are:
m Programs compiled under PL/I Release 2.3 and earlier must run without storage

protection.

The IBM LE support module CEEPIPI must be loaded once before any PL/I program is
run. This is most easily done by defining CEEPIPI as RESIDENT in the CA IDMS/DC sysgen
usingthe following Syntax:

ADD PROGRAM CEEPIPI CONCURRENT ENABLED LANGUAGE ASSEMBLER
NONOVERLABYABLE PROGRAM PROTECT REENTRANT RESIDENT REUSABLE .

m Restrictions mentioned inthe IBM documentation apply.

Note: Running pre-LE programs with LE runtime can degrade performance insome
circumstances. If you notice poor performance you should consider recompiling the
programs with the newer compiler.

Running LE Programs

LE programs are programs that were compiled with a LE-compliant compiler.CA
IDMS/DC supports these LE-compliant compilers:

m PL/I for z/VM
m PL/I for z/OS

For convenience, PL/I programs compiled with an LE-compliant compiler arereferred to
as "LE PL/I" programs below.

Running LE-Compliant Compiler Programs Under CA IDMS/DC

This section describes whatyou need to do to compile, link,and run a program
compiled with an LE-compliantcompiler.

General Preparation

The next paragraph describes howto prepare LE-compiled programs for use with CA
IDMS/DC:

410 DML Reference Guidefor PLI

Running LE-Compliant Compiler Programs Under CAIDMS/DC

For non-reentrant PL/I programs compiled under Release 2.3 or earlier, you must
specify OPTIONS (MAIN) inthe PL/I PROCEDURE statement for the entry procedure. For
reentrant PL/I Release 2.3 or earlier programs, you must specify OPTIONS
(MAIN,REENTRANT). For AD/CYCLE (LE-COMPLIANT), PL/I programs,you must specify
OPTIONS (REENTRANT,FETCHABLE).

Note: RHDCLENT/RHDCLINT, requiredinearlierreleases,is notneeded for DC/UCF at
releaselevels 14.1 and above.

Runtime Options

The IBM Language Environment provides numerous options which control how
programs operate at runtime. The defaultvalues aredesigned to be suitableina batch
environment. Therefore, itis necessaryto modify some values for applications which
areto runina DC/UCF onlinesystem.

Note: As stated inthe introduction, the information in this appendix does not apply to
programs which run ina CICS or other region even ifthey access CAIDMS using DML or
SQL commands. It does apply to programs which runa DC/UCF onlinesystem which are
invoked from another front-end using CA IDMS UCF, suchas an CA ADS application
whichis accessed using UCFCICS from a CICS front-end.

The IBM Language Environment provides a number of ways to specify runtime options.
Four methods are supported for CA IDMS/DC online programs:

1. Modify, assemble,and linkthe IBM-supplied CEEUOPT module. Link the resulting
module with each application program. Product Documentation Change LI8624
contains a sampleversion of CEEUOPT with values that areappropriate for most
online CA IDMS applications. Also consultthesection "Creating an
Application-Specific Runtime Options Module" in IBM's LE Installationand
Customization Manual.

2. Assemble and linka CEEUOPT module as previously described.Link the resulting
module with RHDCLEFE. Make sure that RHDCLEFE is defined inthe CF/UCF Sysgen
as described under "Performance Improvements Using RHDCLEFE" later in this
guide. This option affects only COBOL programs. This is the recommended option
for all online COBOL applications.

3. Assembleand linka specialized CEEDOPT module.

Note: This method is notavailablefor z/OS Version 1.10 and higher. Use method 1
or method 4 for non-COBOL applicationson z/OS Version 1.10 and higher.

If this method is chosen, special copies of the IBM modules CEEBINIT and CEEPIPI
must be maintained for usewith online DC/UCF systems only. Due to maintenance
considerations, this method is not recommended for COBOL applications. Itis
needed for PL/I programs compiled with a non-LE-compliant compiler. For further
information on usingthis method, see Product Documentation Change LI23664.

Appendix F: Considerations for IBM Language Environment 411

Running LE-Compliant Compiler Programs Under CAIDMS/DC

4. Assemble and linka specialized CEEROPT module.

Note: This method is notavailablefor z/OS Version 1.9 and lower or for VSE. Use
method 1 or method 3 for PL/I programs with those operating systems.

If this method is chosen,a CEEROPT load module can be created to override desired
options. Like CEEUOPT, and unlike CEEDOPT, you only need to specify those options
which are to be different from the installation default LE run-time options.The
resultantload module must be includedinaloadlibraryinthe CDMSLIB
concatenation ahead of the default SCEERUN load library.

Note: CEEROPT will beloadedina CA IDMS region only if your CEEPRMxx member
specifies CEEROPT(ALL).

For more information on usingthis method, see IBM documentation

Except as discussed below, the IBM-supplied defaultruntime options can be used with
any site-specific desired modifications. Note that the MSGFILE parameter isignored and
messages are sent to the CA IDMS logfile.

Recommended settings for certain parameters are as shown below. For more details
about these parameters, see the IBM Language Environment for 0S/390 Customization
manual.

m ABTERMENC=(RETCODE) or ABTERMENC=(ABEND)

This parameter affects the actiontaken when an LE enclaveends with an unhandled
condition of severity 2 or higher. If RETCODE code is specified, the DC task will
abend with message DC128004. If ABEND is specified, the DC task will abend with a
Uxxx where xxx corresponds to the hexadecimal value of the user abend code set
by LE. For Example, an LE user abend 4093 would resultina DC taskabend with
code UFFD.

= ALL31=(ON)

This parameter will minimizethe amount of below-the-line storage, which will be
allocated by LE. This parameter requires that no COBOL programs are compiled
with compiler option DATA(24) and that no programs which will utilize the runtime
LE are linked AMODE(24).

= INTERRUPT=(OFF)

Attention interrupts are handled by the CA IDMS/DC system and not by LE runtime
support. Application PL/I programs can test for attention interrupts usingthe
DC-ATTN-INT condition name under LE justas with earlier PL/I runtime
environments.

= POSIX=(OFF)
POSIXis not supported under DC/UCF.

412 DML Reference Guide for PLI

Running LE-Compliant Compiler Programs Under CAIDMS/DC

RPTSTG=(OFF) or RPTSTG=(ON)

Normally OFF should be specified. OFF must be specified for systems prior to
Release 14.1.

The purpose of RPTSTG is to determine the storage utilization for a particular
application.The reportis produced at the end of a LE process andis written to the
CA IDMS logfile. For efficiency reasons, the termination phase of LE processingis
normally notexecuted inan online DC environment. Ifitis necessaryto obtain
storage information for a particular application, optional bit 196 can be set (see
Appendix K, "Optional Online COBOLFunctionality"in CAIDMS DML Reference
Guide for COBOL). Note that this option adversely affects performance. Storage
reports aretherefore normally produced onlyina test or development system.

TERMTHDACT=(QUIET) or TERMTHDACT=(TRACE)

This option controls the extent of LE runtime information which will be supplied
when an application terminates. All messages will bewritten to the DC logfile.

TRAP=(ON) or TRAP=(OFF)

IfON is specified, programchecks inan LE application willresultin IBM LE
error-handlingbeing put into effect. PL/I-specific and LE messages will bewritten to
the log. After these messages arewritten and the LE process ends abnormally, the
DC task will abend with message DC128004 and a tasksnap will betaken.

If OFF is specified, programchecks inan LE application willresultinanimmediate
tasksnap.Thisis similartothe resultina PL/I Release 2.3 runtime environment. No
LE messages related to the program check will be written. Furthermore, ifany PL/I
applicationsareincludedinthe onlinesystem, any ON ERROR clauses will notbe
handled properly.

In addition to the parameters above, we strongly recommend that you usesmaller
values than the default ones for the various heap (e.g., ANYHEAP, BELOWHEAP, HEAP)
andstack (e.g., LIBSTACK, STACK) parameters sincethese are allocated ona taskthread
basis.Storageallocationis mostefficientif relatively largevalues arespecified as sixteen
bytes less thana multipleof 4096.Smaller values than 4096 should be set for some
parameters to avoid wasting storage. The followingvalues have been found to be
suitablefor most DC/UCF systems:

ANYHEAP=(2032,8176,ANYWHERE,FREE)
BELOWHEAP=(496,496,FREE)
HEAP=(2032,4080,ANYWHERE,KEEP,4080,4080)
LIBSTACK=(100,2032,FREE)
NONONIPTSTACK=(4080,4080,BELOW,KEEP)
STACK=(4080,8176,ANY,KEEP)
STORAGE=(NONE,NONE,NO NE,4080)
THREADHEAP=(2032,4080, ANYWHERE,KEEP)

Appendix F: Considerations for IBM Language Environment 413

Supported LE Functions

Supported LE Functions

CA IDMS/DC supports these LE functions:

m Math services

m National languagesupportservices

CA IDMS/DC also supports storage management services, but for performance reasons,
they are not recommended. The storage management services are:

m CEECRHP: Create heap segment

m CEECZST: Re-allocate(changesize of) heap storage

m CEEDSHP: Discard heap segment

m CEEFRST: Free heap storage

m CEEGTST: Get heap storage

Unsupported LE Functions

CA IDMS/DC does not supportthe followingLE functions:
m CEE3PRM: Get exec parms

m CEETDU: Call IMS

m CEETEST: Invoke debugging environment

m Date andtime services— Use the DML GET TIME command instead

414 DML Reference Guide for PLI

Appendix G: 18-Byte Communications

Blocks

Overview

This appendix describes where to specify an 18-byte communications block and contains
figures showingthese blocks.
This section contains the followingtopics:

Overview (see page 415)

As analternativeto usingthe 16-byte IDMS DB and IDMS DC communications blocks,
you canspecify 18-byte blocks. The difference between 16-byte blocks and 18-byte
blocks is thatan 18-byte block contains an additional 18-bytefiller field,and the
followingfields are 18 bytes instead of 16 bytes:

= RECORD_NAME
= AREA NAME

= ERROR_SET

= ERROR_RECORD
m ERROR_AREA

Note: For more information aboutthe fields in IDMS DB and IDMS DC communications
blocks, see IDMS DB Communications Block (see page 32)and IDMS DC Communications

Block (see page 39).
Where to Specify the 18-Byte Block

For PL/I, you specify an 18-byte communications block in the SUBSCHEMA_NAMES
LENGTH clauseof the DECLARE SUBSCHEMA precompiler-directive statement.

Note: For more information, see DECLARE SUBSCHEMA (see page 61).

Appendix G: 18-Byte Communications Blocks 415

18-Byte IDMS DB Block

The followingfigureshows the 18-byte IDMS DB communications block:

*
[y
[e)

9 12
13 16

17 34

35 52

53 70

71 88

89 106

107

**1 125 128

:

125
225 228

229 235
236
237 240

241 244

. 224

245 300

* word aligned

Field
PROGRAM-NAME
ERROR-STATUS
DBKEY
RECORD-NAME
AREA-NAME
FILLER
ERROR-SET
ERROR-RECORD
ERROR-AREA
PAGE - INFO

IDBMSCOM-AREA
DIRECT-DBKEY

DATABASE - STATUS

FILLER
RECORD-0CCUR
DML -SEQUENCE
FILLER

Data Type
Alphanumeric
Alphanumeric
Binary
Alphanumeric
Alphanumeric
Alphanumeric
Alphanumeric
Alphanumeric
Alphanumeric

Binary

Alphanumeric

Binary

Alphanumeric

Binary

Binary

Alphanumeric

Length
(bytes)

8

4

4 (Fullword)
18

18

18

18

18

18

4 (Fullword)

100
4(Fullword)

7

1

4 (Fullword)
4 (Fullword)
56

Initial Value

Program Name

'1400'

0000

Spaces
Spaces
Spaces
Spaces
Spaces
Spaces
0000

Low Values

0000

Spaces

0000

0000

Spaces

** PAGE-INFO-GROUP overlays bytes 125 and 126 and PAGE-INFO-DBK-FORMAT
overlays bytes 127 and 128. Both of these fields are binary datatype,
each with a length of two bytes. Suggested initial values for
both are 00. Together these two fields represent PAGE-INFO.

416 DML Reference Guidefor PLI

Overview

18-Byte IDMS DC Block

The following figureshows the 18-byte IDMS DC communications block:

* %

*

)

9 12

13 16

17 34

35 52

53 70

71 88

89 106

107 124

125 128

125 | .|224

225 228

229 235

236 |

237

241

245

301

401

405 408

409 412

word aligned

Field
PROGRAM-NAME
ERROR-STATUS
DBKEY
RECORD-NAME
AREA-NAME
FILLER
ERROR-SET
ERROR-RECORD
ERROR-AREA
PAGE - INFO

IDBMSCOM-AREA
DIRECT-DBKEY
DATABASE - STATUS
FILLER
RECORD-0CCUR

DML - SEQUENCE
FILLER
DBMSCOM-AREA
SSC-ERRSTAT - SAVE
SSC-DMLSEQ-SAVE

Data Type
Alphanumeric
Alphanumeric
Binary
Alphanumeric
Alphanumeric
Alphanumeric
Alphanumeric
Alphanumeric
Alphanumeric

Binary

Alphanumeric
Binary

Alphanumeric

Binary
Binary
Alphanumeric
Alphanumeric
Alphanumeric

Binary

SUBSCHEMA-CTRL-END Alphanumeric

Length
(bytes)

8

4

4 (Fullword)
18

18

18

18

18

18

4 (Fullword)

100

4 (Fullword)
7

1

4 (Fullword)
4 (Fullword)
56

100

4

4 (Fullword)
4

Initial Value
Program Name
'1400'

0000

Spaces
Spaces
Spaces
Spaces
Spaces
Spaces

0000

Low Values
0000

Spaces

0000

0000
Spaces

Low Values
0000

0000

0000

** PAGE-INFO-GROUP overlays bytes 125 and 126 and PAGE-INFO-DBK-FORMAT
overlays bytes 127 and 128. Both of these fields are binary datatype,
each with a length of two bytes. Suggested initial values for

both are 00. Together these two fields represent PAGE-INFO.

Appendix G: 18-Byte Communications Blocks 417

Appendix H: Online Debugger Syntax

This section contains the following topics:

General Registers Symbols (see page 419)
DC/UCF System Symbols (see page 420)
Address Symbols and Markers (see page 420)
User Symbols (see page 421)

Program Symbols (see page 421)

Expression Operators (see page 421)
Delimiters (see page 422)

Debugger Commands (see page 422)

General Registers Symbols

General registersincludethe registers used by the program at the time of execution
andthe registers used by the DC/UCF system. The programstatus word (PSW) and

register definitions arealways preceded by a colon (:) and are specified by these
symbols:

m :PSW for the current program status word

m :Rnfor the user programregister at the time of interrupt, where n represents the
number of the register and can have a valueof 0 through 15

:REGS for all user programregisters at the time of interrupt

m :SRn for a DC/UCF system register at the time of interrupt, where n represents the
number of the register and can have a valueof 0 through 15

:SREGS for all DC/UCF system registers atthe time of interrupt

Important! A singledebug expression canreference only one general register.

Appendix H: Online DebuggerSyntax 419

DC/UCF System Symbols

DC/UCF System Symbols

Certain DC/UCF system symbols alsofunction as debugger entities, and you can refer to
them duringa debugging session.Acolon (:) must precede each symbol.These are the
valid symbols:

:BAT

Specifies the baseaddress tablefor session.
:CSA

Specifies the DC/UCF common storage area.
:DLB

Specifies the debug local block, control block required for debugging session.
:LTE

Specifies the current logical terminal element.
:PTE

Specifies the current physical terminal element.
:TCE

Specifies the current task control element.
:VECT

Specifies the vector table for debugger.

Important! A singledebug expression canreference only one system entity.

Address Symbols and Markers

Symbol Symbol Name Designated Location

@ At sign Absolute address

S Dollarsign Load address

¢ Cent sign Address of current dialogprocess

420 DML Reference Guidefor PLI

UserSymbols

User Symbols

m :DRn for a debugger general register, where n represents the number of the
register and can have a valueof 0 through 15

m :DREGS for all debugger registers
m :H1 and:H2 for halfword 1 and halfword 2
m :F1and:F2 forfullword 1 and fullword 2
m :UCHR for a 48-byte character area
You canalsoreferto specified sections of this area:
- :UCO, the first16 bytes
— :UC16, the next 16 bytes
- :UC32, the last16 bytes

Program Symbols

Syntax: Data Field Names

»»—— data-field-name n >«
IN :[-— record-name
OF
Syntax: Line Numbers
»»—— # [ine-number >
> IN T current-process-name ," >
OF included-module-name C]
OCCurrence occurrence-number
Syntax: Qualifying Program Symbols
»>—— process-name - . - program-symbol »><

Expression Operators

Operator Meaning

+ Addition

- Subtraction

Appendix H: Online DebuggerSyntax 421

Delimiters

Operator Meaning
* Multiplication
/ Division
Delimiters
Delimiter Meaning
* Asterisk
Blank
) Comma
= Equal sign
! Exclamation point
- Hyphen
% Percent sign
Period
+ Plus sign
/ Slash

Debudger Commands

Syntax: AT

ADD Format

»»— AT debug-expression

v

T
BEFore —[MAXimum <«

— Lrer co——
count execution-count

v

execution-
g L EVE >
ry 1 « ON «
L execution-count IGNore
INQUIRE Format
p—— AT ALL INQuire >
L debug-expression - ON
IGNore —
OFF

422 DML Reference Guide for PLI

Debugger Commands

Syntax: DEBUG

Syntax: EXIT

Syntax: IOUSER

Syntax: LIST

Syntax: MENU

Syntax: PROMPT

ADD format

»»—— DEBug PROgram < —
DIAlog
MAP ———

SS
TABle

INQUIRE format

— entity-name
L VERsion version-number |

»—— DEBug entity-name C] T INQuire_—I——N
T VERsion version-number l OFF

ALL

»p»— EXIt

M

»»— I0User

MEMORY Format

M

List begin-debug-expression
JL Memory J

Display

v

TO end-debug-expression 4_| C
byte-count-number X
LENgth XC

ATTRIBUTES Format

»—E List — T SESsion ATTributes
Display

)

)

»»— MENu

L screen-name |

X

»»—— PROmpt

M

Appendix H: Online DebuggerSyntax 423

Debugger Commands

Syntax: QUALIFY

RESET Format

v

»— QUALlify PROCess process-name
L DIAlog dialog-name -

X

L VERsion version-number -

INQUIRE Format

)

»»—— QUALify INQuire

Syntax: QUIT

M

»»— QUIt

Syntax: RESUME

M

»»—— RESume
LL—J_E debug-expression :,—'
AT ABEnd

Syntax: SET

MEMORY Format

>>—|: Set debug-expression >
Vary JL Memory il I: EQUals

data-field-name >«
H halfword —— | |: RESEt
F fullword — X NOReset «

XC

X hex-value
C character-string —
P packed-value

ATTRIBUTES Format

X

HEX

»»— Set E CHAr
BOTh

Syntax: SNAP

v

»— SNAp T TASK T

begin-debug-expression
L—[TO end-debug-expression 4_‘
byte-count-number
LENgth

L TITle title —J

M

424 DML Reference Guide for PLI

Debugger Commands

Syntax: WHERE

»»—— WHEre

M

Appendix H: Online Debugger Syntax 425

Index

B

basic mode ¢ 246, 249, 295,297, 301
READ TERMINAL e 246, 249
WRITE TERMINAL e 295, 297
WRITE THEN READ TERMINAL ¢ 297,301

C

CALL sequences ¢ 61
CA IDMS/DB ¢ 61
Non CA IDMS/DC TP monitors * 61
compiler options ¢ 27, 28, 29
comment generation e 28, 29
dictionaryreadyoverridee 27,28
listgeneration e 29
logsuppression 29
PL/I compiler optionusage * 28
control statements ¢ 170,187,189, 198,249, 252,
255, 257
FINISH « 170
IFe 187,189
KEEP CURRENT e 198
READY e 249,252
ROLLBACK e 255, 257
cursor position ¢223
MODIFY MAP e 223

D

DC_BATCH e« 61
allowableDMLcommands ¢ 61
destination e 257, 290
SEND MESSAGE e 257
WRITE PRINTER e 290
DML precompilere 22,27,31,32,61,77,309, 311,
315, 326,333, 359, 363
execution of 22, 309
general discussion ¢ 22
keywords ¢ 359
precompiler options ¢ 27,31
precompiler-directive statements ¢ 61, 77
with non-IDMS DC TP monitor ¢ 363
DML statements * 79, 81, 84, 88
functions ¢ 79, 81
grouped by DB functions ¢ 84
grouped by DC functions ¢ 84, 88

dump < 88, 89
ABEND e 88, 89

E

execution options ¢ 365
COUNT e 365
FLOW e 365
REPORT ¢ 365

I

IDMS CALL sequences ¢ 61
CA IDMS/DC » 61
DC_BATCH » 61
IDMS DB communications block 38
IDMS DC communications block ¢ 39, 43
field descriptions 39
INCLUDE IDMS MAP_BINDS statement ¢ 112,113,
115
INCLUDE IDMS SUBSCHEMA_BINDS statement e 115,
118
INQUIRE MAP ¢ 189, 192,193,194
general discussion ¢ 189
moving map-related data e 189
testing for cursor position ¢ 193,194
testing for global mapinputconditions ¢ 192,
193
testing for inputerror conditions ¢ 194
integrated indexing* 161
FIND/OBTAIN WITHIN SET USING SORT KEY « 161

J

journal filee279, 281
WRITE JOURNAL ¢ 279, 281

K

kept storage e 171,173, 181,185
FREE STORAGE 171,173
GET STORAGE ¢ 181, 185

L

linemode © 244,246, 281, 284
READ LINE FROM TERMINAL e 244, 246
WRITE LINE TO TERMINAL » 281,284

Index 427

Logical Record Facility 234, 236,238, 273,275,
301, 306,309
error codes ¢ 306, 309
logical-record clauses 301, 309
MODIFY RECORD e 234,236
OBTAIN RECORD e 236, 238
ONclause* 306
STORE RECORD e 273,275
WHERE clause 301, 306
logical-record clauses 301, 306
general discussion ¢ 301
ONclause 306
WHERE ¢ 301, 306
logical-record request control (LRC) block ¢ 38
field descriptions 38

M

map ¢ 194,213,223
attributes ¢ 223
fieldliste194
message area e 213
modifying e 223
mapping mode ¢ 189, 198,207,213, 219, 223,230,
265, 268
INQUIRE MAP « 189, 198
MAP IN e 207,213
MAP OUT » 213,219
MAP OUTIN ¢ 219,223
MODIFY MAP ¢ 223,230
STARTPAGE ¢ 265, 268
modification statements » 230, 234, 268,273
MODIFY RECORD ¢ 230, 234
STORE RECORD e 268, 273

N

native mode ¢ 207,290
MAP IN e 207
WRITE PRINTER ¢ 290

0

ON clause(LRF) ¢ 306
expanded Syntax ¢ 306

P

page information ¢ 99, 101, 102
ACCEPT PAGE_INFO e 99

page=end.KEEP LONGTERM e 205
page=end KEEP LONGTERM e 205

page=end.RETURN e 255
page=end RETURN e 255
page=start.RETURN e 252
page=start RETURN e 252
PL/I operating modes ¢ 61
standard PL/l operating modes ¢ 61
PL/I program, samples ¢ 367, 388,408, 409,415
batch ¢ 367
considerationsfor IBM Language Environment e
409
onlinee 388
precompiler options 31
logsuppression ¢ 31
precompiler-directivestatements ¢ 61, 65, 66, 74,
75,76
DECLARE MAP e 65,66
DECLARE SUBSCHEMA e 61, 65
INCLUDE IDMS e 66, 74
INCLUDE IDMS (MAP_BINDS) ¢ 74
INCLUDE IDMS (SUBSCHEMA_BINDS) 75,76
INCLUDE IDMS MODULE e 74,75
printe 290
classes ®290
destinations ¢ 290
queues * 290
program management e 133,134, 205,207, 275, 277
DELETE TABLE » 133,134
LOAD TABLE e 205,207
TRANSFER e 275,277

Q

gueue management ¢ 174,178,239, 241
GET QUEUE 174,178
PUT QUEUE e 239,241
queues 118,119,129, 131,133,134, 135,137,
138, 140,143,149, 150
BIND TASK 118,119
DELETE QUEUE e 129,131
DEQUEUE e 134,135
ENQUEUE e 140, 143

R

record locks 200
KEEP CURRENT e 200
recovery ¢ 255,257,279, 281
ROLLBACK e 255, 257
WRITE JOURNAL e« 279,281

428 DML Reference Guide for PLI

retrieval statements ¢ 150, 151, 154,156, 159, 161,

164,170,173,174,236,238
FIND/OBTAIN ¢ 150, 151
FIND/OBTAIN CALC/DUPLICATE e 151,154
FIND/OBTAIN CURRENT e 154, 156
FIND/OBTAIN DBKEY e 156,159
FIND/OBTAIN OWNER ¢ 159,161
FIND/OBTAIN WITHIN SET USING SORT KEY e

161, 164

FIND/OBTAIN WITHIN SET/AREA e 164,170
GET » 173,174
OBTAIN RECORD » 236, 238

S

scratchmanagement » 178,181, 241, 244
GET SCRATCH 178,181
PUT SCRATCH e 241,244
see=callformats call expansions ¢ 359
see=DMLprecompiler DMLP precompiler e 23, 24,
25,26
see=error-statuscodes IDMS DC communications
block e 39
see=precompileroptions DML precompiler options e
27
see=programexpansionelement(PXE) PXE ¢ 38,39
see=READY dictionaryreadyoverridee 27
see=SETTIMER time interval e 259
see=writecontrolcharacter(WCC) WCC » 223
Sequential Processing Facility ® 255
RETURN e 255
status codes ¢ 54, 55,59
storage management ¢ 171,173, 181,185
FREE STORAGE 171,173
GET STORAGE e 181, 185
subschema usagemodes ® 66
DML e 66
LR ¢ 66
MIXED e 66

T

tables ¢ 133, 134, 205, 207
DELETE TABLE e 133,134
LOAD TABLE e 205,207
taskmanagement ¢ 238,239,277, 279
POST » 238, 239
WAIT e 277,279
teleprocessing monitors ¢ 61, 363, 365
notes to users of ® 363, 365

operating modes for use with ¢ 61
terminal management ¢ 189,198, 207, 213,219,
223,230,244, 246, 249, 265, 268, 290, 295, 297,
301
INQUIRE MAP 189, 198
MAP IN e 207,213
MAP OUT 213,219
MAP OUTIN e 219,223
MODIFY MAP e 223,230
READ LINE FROM TERMINAL e 244,246
READ TERMINAL e 246, 249
STARTPAGE e 265, 268
WRITE PRINTER e 290, 295
WRITE TERMINAL e 295, 297
WRITE THEN READ TERMINAL e 297,301
time management ¢ 185,187, 259, 263
GET TIME » 185, 187
SET TIMER e 259,263
transaction statistics block (TSB) 102, 108,110,
119,120,121, 122,124,126, 129,138, 140
ACCEPT TRANSACTION STATISTICS » 102,108
BIND TRANSACTION STATISTICS ¢ 119, 120
END TRANSACTION STATISTICS 138,140
TRANSFER e 275
NORETURN (XCTL) parameter ¢ 275
RETURN (LINK) parameter ¢ 275

u

user storagee 171,173,181, 185
FREE STORAGE ¢ 171,173
GET STORAGE e« 181, 185
utility functions 89, 91, 92, 94, 97, 99, 200, 205,
257,259,263, 265, 284,290
ACCEPT « 89,91
KEEP LONGTERM e 200, 205
SEND MESSAGE e 257,259
WRITE LOG ¢ 284, 290

W

WHERE clause (LRF) « 301
expanded Syntax ¢ 301

Index 429

	CA IDMS DML Reference Guide for PLI
	CA Technologies Product References
	Contact CA Technologies
	Documentation Changes
	Contents
	1: Introduction
	Syntax Diagram Conventions

	2: Introduction to CA IDMS Data Manipulation Language
	Batch Processing
	Typical Batch Program Flow
	Online Processing
	Typical Online Program Flow

	Programming in the CA IDMS Environment
	Database Statements
	Data Communications Statements
	Navigational DML
	Example of Navigational DML Statements

	SQL DML
	LRF DML
	Example of LRF DML Statements

	CA IDMS/DC Statements
	Example of a PL/I Data Stream with CA IDMS/DC Statements
	Types of Online CA IDMS/DC Statements

	Compiling and Executing Programs
	Compiling Programs
	Step 1--DML Precompiler
	Step 2--PL/I Compiler
	Step 3--Linkage Editor
	PL/I Program Compile

	Executing Programs
	PL/I Features You Cannot Use

	Callable Services and Common Facilities
	Callable Services
	Common Facilities

	3: DML Precompiler Options
	Dictionary Ready Override
	Syntax
	Parameters

	PL/I Compiler Option Usage
	Syntax

	Comment Generation
	Syntax

	List Generation
	Syntax
	Parameters

	Log Suppression
	Syntax

	4: Communications Blocks and Error Detection
	Communications Blocks
	IDMS DB Communications Block
	Layout of the IDMS DB Communications Block
	Fields Containing Program Status Information
	Updating Fields in the IDMS DB Communications Block
	Example of Updated Fields

	LRC Block
	Layout of the LRC Block
	Description of Fields

	IDMS DC Communications Block
	Layout of the IDMS DC Communications Block
	Description of Fields

	ERROR_STATUS Field and Codes
	Major and Minor Codes
	DB Status Codes
	Major DB Status Codes
	Minor DB Status Codes

	DC Status Codes
	Major DC Status Codes
	Minor DC Status Codes

	Error Detection
	IDMS_STATUS Routine
	IDMS_STATUS Routine Used Under Batch
	IDMS_STATUS Routine Used Under a DC/UCF System
	Common Status Codes
	Pageable Map Status Codes

	Effects of Nonzero Status on IDMS_STATUS
	Effect When the Operating Mode Is BATCH
	Effect When the Operating Mode Is IDMS_DC

	5: Required PL/I Declaratives
	DECLARE IDMS
	DECLARE IDMSPLI
	DECLARE IDMSDCP
	DECLARE SQLXQ1
	DECLARE ADDR BUILTIN
	DECLARE ABORT
	DECLARE IDMSP

	6: DML Precompiler-Directive Statements
	DECLARE SUBSCHEMA
	Syntax
	Parameters
	Example

	DECLARE MAP
	Syntax
	Parameters
	Example

	INCLUDE IDMS
	Subschema Usage Modes
	Syntax
	Parameters
	INCLUDE IDMS Code

	INCLUDE IDMS (MAP_BINDS)
	Syntax
	Parameters

	INCLUDE IDMS MODULE
	Syntax
	Parameters

	INCLUDE IDMS (SUBSCHEMA_BINDS)
	Syntax

	INCLUDE IDMS (SUBSCHEMA_RECORD_BINDS)
	Syntax

	7: Data Manipulation Language Statements
	Functions of DML Statements
	Database Functions
	Data Communications Functions

	DML Statements Grouped by Function
	DML Statements (Database)
	DML Statements (Data Communications)

	ABEND (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	ACCEPT (DC/UCF)
	Syntax
	Parameters.
	Example
	Status Codes

	ACCEPT BIND RECORD
	Currency
	Syntax
	Example
	Status Codes

	ACCEPT DBKEY FROM CURRENCY
	Currency
	Syntax
	Parameters
	Example
	Status Codes

	ACCEPT DBKEY RELATIVE TO CURRENCY
	Currency
	Syntax
	Parameters
	Example
	Status Codes

	ACCEPT IDMS STATISTICS
	Syntax
	Parameter
	Example
	Status Codes

	ACCEPT PAGE_INFO
	Syntax
	Parameters
	Example
	Status Codes

	ACCEPT PROCEDURE CONTROL LOCATION
	Syntax
	Parameters
	Example
	Status Codes

	ACCEPT TRANSACTION STATISTICS (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	ATTACH (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	BIND MAP (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	BIND PROCEDURE
	Syntax
	Parameters
	Example
	Status Codes

	BIND RECORD
	Syntax
	Parameters
	Example
	Status Codes

	BIND RUN_UNIT
	When You Do Not Need BIND RUN_UNIT
	Syntax
	Parameters
	Example
	Status Codes

	BIND TASK (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	BIND TRANSACTION STATISTICS (DC/UCF)
	Syntax
	Example
	Status Codes

	CHANGE PRIORITY (DC/UCF)
	Syntax
	Example
	Status Codes

	CHECK TERMINAL (DC/UCF)
	Syntax
	Status Codes

	COMMIT
	Syntax
	Parameters
	Example
	Status Codes

	CONNECT
	Syntax
	Parameters
	Example
	Status Codes

	DC RETURN (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	DELETE QUEUE (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	DELETE SCRATCH (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	DELETE TABLE (DC/UCF)
	Syntax
	Example
	Status Codes

	DEQUEUE (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	DISCONNECT
	Syntax
	Parameters
	Example
	Status Codes

	END LINE TERMINAL SESSION (DC/UCF)
	Syntax
	Example
	Status Codes

	END TRANSACTION STATISTICS (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	ENDPAGE (DC/UCF)
	Syntax
	Example
	Status Codes

	ENQUEUE (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	ERASE
	Syntax
	Parameters
	Example
	Status Codes

	ERASE (LRF)
	Syntax
	Example

	FIND/OBTAIN
	FIND/OBTAIN CALC/DUPLICATE
	Syntax
	Parameters
	Example
	Status Codes

	FIND/OBTAIN CURRENT
	Syntax
	Parameters
	Example
	Status Codes

	FIND/OBTAIN DBKEY
	Syntax
	Parameters
	Example
	Status Codes

	FIND/OBTAIN OWNER
	Syntax
	Parameters
	Example
	Status Codes

	FIND/OBTAIN WITHIN SET USING SORT KEY
	Syntax
	Parameters
	Example
	Status Codes

	FIND/OBTAIN WITHIN SET/AREA
	Syntax
	Parameters
	Example
	Status Codes

	FINISH
	Syntax
	Parameters
	Example
	Status Codes

	FREE STORAGE (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	GET
	Syntax
	Example
	Status Codes

	GET QUEUE (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	GET SCRATCH (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	GET STORAGE (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	GET TIME (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	IF
	Syntax
	Parameters
	Example
	Status Codes

	INQUIRE MAP (DC/UCF)
	Moving Map-Related Data
	Syntax
	Parameters
	Example

	Testing for Global Map Input Conditions
	Syntax
	Parameters
	Example

	Testing for Cursor Position
	Syntax
	Parameters
	Example

	Testing for Input Error Conditions
	Syntax
	Parameters
	Example
	Status Codes

	KEEP CURRENT
	Syntax
	Parameters
	Example
	Status Codes

	KEEP LONGTERM (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	LOAD TABLE (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	MAP IN (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	MAP OUT (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	MAP OUTIN (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	MODIFY MAP (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	MODIFY RECORD
	Syntax
	Example
	Status Codes

	MODIFY RECORD (LRF)
	Syntax
	Parameters
	Example

	OBTAIN (LRF)
	Syntax
	Parameters
	Example

	POST (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	PUT QUEUE (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	PUT SCRATCH (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	READ LINE FROM TERMINAL (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	READ TERMINAL (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	READY
	Syntax
	Parameters
	Example
	Status Codes

	RETURN (DC/UCF)
	Syntax
	Parameters
	Syntax
	Parameters
	Example
	Status Codes

	ROLLBACK
	Syntax
	Parameters
	Example
	Status Codes

	SEND MESSAGE (DC/UCF)
	Syntax
	Parameters
	Examples
	Status Codes

	SET TIMER (DC/UCF)
	Syntax
	Parameters
	Examples
	Status Codes

	SNAP (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	STARTPAGE (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	STORE RECORD
	Syntax
	Example
	Status Codes

	STORE RECORD (LRF)
	Syntax
	Parameters
	Example

	TRANSFER (DC/UCF)
	Passing Parameters from a Non-PL/I Program
	Syntax
	Parameters
	Examples
	Status Codes

	WAIT (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	WRITE JOURNAL (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	WRITE LINE TO TERMINAL (DC/UCF)
	Syntax
	Parameters
	Examples
	Status Codes

	WRITE LOG (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	WRITE PRINTER (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	WRITE TERMINAL (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	WRITE THEN READ TERMINAL (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	Logical-Record Clauses (WHERE and ON)
	WHERE Clause
	Parameters
	Examples

	ON Clause
	Syntax
	Parameters
	Example
	Status Codes

	A: DML Precompile, PL/I Compile, and Link-Edit JCL
	Compiling a PL/I Program
	Under z/OS
	Runtime Parameters

	Under z/VSE
	SYSIDMS Parameters

	Under z/VM

	Link-Edit Considerations
	Passing Parameters to the Precompiler
	Optional Parameters

	B: Call Formats
	Example of a Call Format
	CA IDMS/DB Call Formats
	Control Statements
	Modification Statements
	Retrieval Statements
	ACCEPT Statements
	LRF DML Statements

	CA IDMS/DC Call Formats
	Program Management Statements
	Storage Management Statements
	Task Management Statements
	Time Management Statements
	Scratch Management Statistics
	Queue Management Statements
	Terminal Management Statements
	Utility Statements
	Recovery Statements
	DC_BATCH Statement

	C: Keywords
	D: Notes to Teleprocessing Monitor Users
	Notes

	E: Sample Programs and Database Definition
	CA IDMS/DC Programming Considerations
	Sample Batch Program
	Batch Input to the DML Precompiler
	Output from the DML Precompiler
	Output from the PL/I Compiler

	Sample Online Program
	Application Components
	Application Runtime Requirements
	Online Input to the DML Precompiler
	Output from the DML Precompiler
	Output from the PL/I Compiler

	EMPLOYEE Database Definition

	F: Considerations for IBM Language Environment
	Considerations About LE Runtime
	Running LE-Compliant Compiler Programs Under CA IDMS/DC
	Supported LE Functions
	Unsupported LE Functions

	G: 18-Byte Communications Blocks
	Overview

	H: Online Debugger Syntax
	General Registers Symbols
	DC/UCF System Symbols
	Address Symbols and Markers
	User Symbols
	Program Symbols
	Syntax: Data Field Names
	Syntax: Line Numbers
	Syntax: Qualifying Program Symbols

	Expression Operators
	Delimiters
	Debugger Commands
	Syntax: AT
	Syntax: DEBUG
	Syntax: EXIT
	Syntax: IOUSER
	Syntax: LIST
	Syntax: MENU
	Syntax: PROMPT
	Syntax: QUALIFY
	Syntax: QUIT
	Syntax: RESUME
	Syntax: SET
	Syntax: SNAP
	Syntax: WHERE

	Index

