

DML Reference Guide for PLI
Release 18.5.00, 3rd Edition

CA IDMS™

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at a ny time. This

Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or
duplicated, in whole or in part, without the prior wri tten consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable

l i cense for such software remains in full force and effect. Should the license terminate for any reason, i t is your responsibility to
certi fy in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOU T WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,

DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such

l icense agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions

set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2014 CA. Al l rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA products:

■ CA ADS™

■ CA IDMS™/DB

■ CA IDMS™/DC

■ CA IDMS™ UCF

■ DC/UCF

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at

http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Documentation Changes

The following documentation updates were made for the 18.5.00, 2nd and 3rd Edition
releases of this documentation:

■ IDMS_STATUS Routine Used Under Batch (see page 55), Output from the DML
Precompiler (see page 372), Output from the PL/I Compiler (see

page 378)—Updated the code in the context of IDMS-STATUS.

■ IDMS DB Communications Block (see page 32), 18-Byte Communications Blocks (see
page 415)—Updated the tables and field descriptions.

The following documentation updates were made for the 18.5.00 release of this

documentation:

■ IDMS STATUS Routine (see page 55)—Routine updated to display last dbkey, page
group, and database-key format.

■ READY (see page 249)—The description of the FORCE option was added.

■ Online Debugger Syntax (see page 419)—This new appendix was previously
available in the Programming Quick Reference Guide.

■ ACCEPT TRANSACTION STATISTICS (see page 102)—Added a sample of the

TRANSACTION_STATISTICS to the description of the INTO parameter.

■ INCLUDE IDMS (see page 66)—Added the TRANSACTION_STATISTICS parameter.

Contents 5

Contents

Chapter 1: Introduction 11

Syntax Diagram Conventions ... 11

Chapter 2: Introduction to CA IDMS Data Manipulation Language 15

Batch Processing... 15

Online Processing ... 16

Programming in the CA IDMS Environment .. 17

Navigational DML ... 18

SQL DML... 19

LRF DML ... 20

CA IDMS/DC Statements ... 21

Compiling and Executing Programs .. 22

Compiling Programs... 22
Executing Programs ... 24

Callable Services and Common Facilities ... 25

Callable Services ... 25

Common Facilities .. 26

Chapter 3: DML Precompiler Options 27

Dictionary Ready Override.. 27

PL/I Compiler Option Usage ... 28

Comment Generation.. 28

List Generation ... 29

Log Suppression.. 29

Chapter 4: Communications Blocks and Error Detection 31

Communications Blocks .. 31

IDMS DB Communications Block ... 32

LRC Block.. 38

IDMS DC Communications Block ... 39

ERROR_STATUS Field and Codes ... 43
Major and Minor Codes .. 44

DB Status Codes.. 44

DC Status Codes.. 50

Error Detec tion ... 54

6 DML Reference Guide for PLI

IDMS_STATUS Routine .. 55

Effects of Nonzero Status on IDMS_STATUS ... 58

Chapter 5: Required PL/I Declaratives 59

DECLARE IDMS .. 59

DECLARE IDMSPLI... 59

DECLARE IDMSDCP ... 60

DECLARE SQLXQ1 ... 60

DECLARE ADDR BUILTIN.. 60

DECLARE ABORT ... 60

DECLARE IDMSP .. 60

Chapter 6: DML Precompiler-Directive Statements 61

DECLARE SUBSCHEMA... 61

DECLARE MAP ... 65

INCLUDE IDMS .. 66

INCLUDE IDMS (MAP_BINDS) ... 74

INCLUDE IDMS MODULE ... 74

INCLUDE IDMS (SUBSCHEMA_BINDS) .. 75

INCLUDE IDMS (SUBSCHEMA_RECORD_BINDS) ... 76

Chapter 7: Data Manipulation Language Statements 77

Functions of DML Statements .. 79

Database Functions.. 80

Data Communications Functions... 80

DML Statements Grouped by Function .. 81

DML Statements (Database) .. 82

DML Statements (Data Communications) ... 84

ABEND (DC/UCF) .. 88

ACCEPT (DC/UCF) ... 89
ACCEPT BIND RECORD ... 91

ACCEPT DBKEY FROM CURRENCY ... 92

ACCEPT DBKEY RELATIVE TO CURRENCY ... 94

ACCEPT IDMS STATISTICS.. 97

ACCEPT PAGE_INFO ... 99

ACCEPT PROCEDURE CONTROL LOCATION ...101

ACCEPT TRANSACTION STATISTICS (DC/UCF) ...102

ATTACH (DC/UCF) ...108

BIND MAP (DC/UCF) ..110

BIND PROCEDURE ..112

Contents 7

BIND RECORD..113

BIND RUN_UNIT ...115

BIND TASK (DC/UCF) ..118

BIND TRANSACTION STATISTICS (DC/UCF) ..119

CHANGE PRIORITY (DC/UCF) ..120

CHECK TERMINAL (DC/UCF) ...121

COMMIT...122

CONNECT ...124

DC RETURN (DC/UCF) ..126

DELETE QUEUE (DC/UCF) ..129

DELETE SCRATCH (DC/UCF) ..131

DELETE TABLE (DC/UCF) ..133
DEQUEUE (DC/UCF) ...134

DISCONNECT ...135

END LINE TERMINAL SESSION (DC/UCF) ..137

END TRANSACTION STATISTICS (DC/UCF) ..138

ENDPAGE (DC/UCF) ..140

ENQUEUE (DC/UCF) ...140

ERASE..143

ERASE (LRF)..149

FIND/OBTAIN ..150

FIND/OBTAIN CALC/DUPLICATE ..151

FIND/OBTAIN CURRENT ..154

FIND/OBTAIN DBKEY..156

FIND/OBTAIN OWNER ...159

FIND/OBTAIN WITHIN SET USING SORT KEY ...161

FIND/OBTAIN WITHIN SET/AREA...164

FINISH ...170

FREE STORAGE (DC/UCF) ..171

GET ..173

GET QUEUE (DC/UCF) ..174
GET SCRATCH (DC/UCF) ..178

GET STORAGE (DC/UCF) ..181

GET TIME (DC/UCF) ..185

IF ..187

INQUIRE MAP (DC/UCF) ..189

Moving Map-Related Data ...189

Testing for Global Map Input Conditions...192

Testing for Cursor Position ...193

Testing for Input Error Conditions...194

KEEP CURRENT..198

KEEP LONGTERM (DC/UCF) ..200

8 DML Reference Guide for PLI

LOAD TABLE (DC/UCF) ...205

MAP IN (DC/UCF) ..207

MAP OUT (DC/UCF) ..213

MAP OUTIN (DC/UCF) ..219

MODIFY MAP (DC/UCF) ...223

MODIFY RECORD ..230

MODIFY RECORD (LRF) ..234

OBTAIN (LRF) ...236

POST (DC/UCF) ..238

PUT QUEUE (DC/UCF) ..239

PUT SCRATCH (DC/UCF) ..241

READ LINE FROM TERMINAL (DC/UCF) ..244
READ TERMINAL (DC/UCF) ...246

READY ...249

RETURN (DC/UCF) ..252

ROLLBACK ..255

SEND MESSAGE (DC/UCF)...257

SET TIMER (DC/UCF) ..259

SNAP (DC/UCF) ...263

STARTPAGE (DC/UCF) ..265

STORE RECORD ...268

STORE RECORD (LRF) ...273

TRANSFER (DC/UCF) ...275

WAIT (DC/UCF) ...277

WRITE JOURNAL (DC/UCF) ...279

WRITE LINE TO TERMINAL (DC/UCF) ..281

WRITE LOG (DC/UCF) ...284

WRITE PRINTER (DC/UCF) ...290

WRITE TERMINAL (DC/UCF) ...295

WRITE THEN READ TERMINAL (DC/UCF) ..297

Logical-Record Clauses (WHERE and ON) ..301
WHERE Clause...301

ON Clause ..306

Appendix A: DML Precompile, PL/I Compile, and Link-Edit JCL 309

Compiling a PL/I Program ...309

Under z/OS ..311

Under z/VSE...315

Under z/VM ...326

Link-Edit Considerations ...329

Passing Parameters to the Precompiler ...330

Contents 9

Optional Parameters..330

Appendix B: Call Formats 333

CA IDMS/DB Call Formats ...333

Control Statements ..334

Modification Statements ..339

Retrieval Statements ...340

ACCEPT Statements ...347

LRF DML Statements..350

CA IDMS/DC Call Formats ...352

Program Management Statements ..352

Storage Management Statements ..352
Task Management Statements ..353

Time Management Statements ...353

Scratch Management Statistics ...354

Queue Management Statements ..354

Terminal Management Statements ..355

Utility Statements ..356

Recovery Statements...357

DC_BATCH Statement ...358

Appendix C: Keywords 359

Appendix D: Notes to Teleprocessing Monitor Users 363

Notes ..363

Appendix E: Sample Programs and Database Definition 365

CA IDMS/DC Programming Considerations ...365

Sample Batch Program ..367

Batch Input to the DML Precompiler ..367

Output from the DML Precompiler...372

Output from the PL/I Compiler..378

Sample Online Program ..388

Application Components ..389

Application Runtime Requirements ..390

Online Input to the DML Precompiler ..390

Output from the DML Precompiler...392

Output from the PL/I Compiler..396

EMPLOYEE Database Definition...408

10 DML Reference Guide for PLI

Appendix F: Considerations for IBM Language Environment 409

Considerations About LE Runtime...410

Running LE-Compliant Compiler Programs Under CA IDMS/DC ..410

Supported LE Functions ..414

Unsupported LE Functions..414

Appendix G: 18-Byte Communications Blocks 415

Overview ..415

Appendix H: Online Debugger Syntax 419

General Registers Symbols ...419

DC/UCF System Symbols...420

Address Symbols and Markers...420

User Symbols...421

Program Symbols ...421

Syntax: Data Field Names ...421

Syntax: Line Numbers..421

Syntax: Qualifying Program Symbols ..421

Expression Operators ..421

Delimiters ..422

Debugger Commands ..422

Syntax: AT ..422
Syntax: DEBUG ..423

Syntax: EXIT ...423

Syntax: IOUSER ...423

Syntax: LIST..423

Syntax: MENU ...423

Syntax: PROMPT ...423

Syntax: QUALIFY ...424

Syntax: QUIT..424

Syntax: RESUME ...424

Syntax: SET ..424

Syntax: SNAP ...424

Syntax: WHERE ...425

Index 427

Chapter 1: Introduction 11

Chapter 1: Introduction

This document presents navigational and LRF DML statements for use in CA IDMS/DB
database and CA IDMS/DC and CA IDMS UCF data communication environments.

Most data communication DML statements are applicable in both CA IDMS/DC and CA
IDMS UCF environments. The acronym DC/UCF is used to represent this.

This document is intended for use by PL/I programmers who run programs against CA
IDMS/DB databases and who want to use the DC/UCF system facil ities.

This section contains the following topics:

Syntax Diagram Conventions (see page 11)

Syntax Diagram Conventions

The syntax diagrams presented in this guide use the following notation conventions:

UPPERCASE OR SPECIAL CHARACTERS

Represents a required keyword, partial keyword, character, or symbol that must be

entered completely as shown.

lowercase

Represents an optional keyword or partial keyword that, if used, must be entered

completely as shown.

italicized lowercase

Represents a value that you supply.

lowercase bold

Represents a portion of the syntax shown in greater detail at the end of the syntax
or elsewhere in the document.

◄─

Points to the default in a l ist of choices.

►►────────────────────

Indicates the beginning of a complete piece of syntax.

────────────────────►◄

Indicates the end of a complete piece of syntax.

─────────────────────►

Indicates that the syntax continues on the next l ine.

►─────────────────────

Syntax Diagram Conventions

12 DML Reference Guide for PLI

Indicates that the syntax continues on this l ine.

────────────────────►─

Indicates that the parameter continues on the next l ine.

─►────────────────────

Indicates that a parameter continues on this l ine.

►── parameter ─────────►

Indicates a required parameter.

►──┬─ parameter ─┬─────►
 └─ parameter ─┘

Indicates a choice of required parameters. You must select one.

►──┬─────────────┬─────►
 └─ parameter ─┘

Indicates an optional parameter.

►──┬─────────────┬─────►
 ├─ parameter ─┤
 └─ parameter ─┘

Indicates a choice of optional parameters. Select one or none.

 ┌─────────────┐
►─▼─ parameter ─┴──────►

Indicates that you can repeat the parameter or specify more than one parameter.

 ┌─── , ─────────┐
►─▼─ parameter ───┴──────►

Indicates that you must enter a comma between repetitions of the parameter.

Syntax Diagram Conventions

Chapter 1: Introduction 13

Sample Syntax Diagram

The following sample explains how the notation conventions are used:

Chapter 2: Introduction to CA IDMS Data Manipulation Language 15

Chapter 2: Introduction to CA IDMS Data
Manipulation Language

The CA IDMS Data Manipulation Language (DML) consists of statements that direct CA

IDMS/DB database and data communications processing. You code DML statements in
the program source as if they are a part of the host language. You use the DML PL/I
compiler (also called the DMLP processor) to convert DML statements into standard PL/I
statements. The DMLP processor also performs source-level error checking.

Your program uses different sets of DML statements, depending on whether its
operating environment is batch or online. For example, a batch program uses only

database DML statements. An online program uses data communications DML
statements and can also use database DML statements.

This section contains the following topics:

Batch Processing (see page 15)

Programming in the CA IDMS Environment (see page 17)
Compiling and Executing Programs (see page 22)
Callable Services and Common Facil ities (see page 25)

Batch Processing

Batch processing typically involves large volumes of transactions, sequential processing,
and output in the form of fi les and reports. Batch programs use database DML
statements only. Data Manipulation Language Statements contains all the DML
commands, l isted alphabetically. In this l ist, CA IDMS/DC DML commands are

distinguished from CA IDMS/DB DML commands.

The following figure il lustrates the flow of a typical batch application. Input to DEPTRPT
consists of department IDs. Output consists of a l isting of departments and their

employees. The error report l ists the department IDs of missing and empty
departments.

Batch Processing

16 DML Reference Guide for PLI

Typical Batch Program Flow

Online Processing

Online processing typically involves transaction requests entered from terminals

connected directly to the computer, transaction resul ts displayed at the terminal,
multiple requests from multiple sources, and sharing one copy of a program among
multiple users. Additionally, online processing is immediate. The processing of large
volumes of transactions from multiple online users requires fast response time. Online

programs use data communications DML statements and can include database DML
statements.

The following figure il lustrates the flow of a typical online application. EMPDISP

retrieves information for an operator-specified employee ID. Output to the terminal
consists of DEPARTMENT, EMPLOYEE, JOB, and OFFICE information.

Programming in the CA IDMS Environment

Chapter 2: Introduction to CA IDMS Data Manipulation Language 17

Typical Online Program Flow

Programming in the CA IDMS Environment

CA IDMS statements are either database or data communications statements. This
section provides overview information and a more detailed subsection on each of the
three types of database DML statements and on data communications statements.

Database Statements

Database statements perform retrieval and update functions in either the batch or the
online environment. These statements access database records and sets, one record at

a time.

The three types of database statements are as follows:

■ Navigational DML

■ SQL DML

■ Logical Record Facil ity DML

Programming in the CA IDMS Environment

18 DML Reference Guide for PLI

You can include database DML statements in batch programs or combine them with
data communications DML statements in online programs that require database access.

Data Communications Statements

Data communications statements request data communications services, such as
services for online programs.

Note: If you use a teleprocessing (TP) monitor other than CA IDMS/DC, use CA IDMS/DB

DML statements only. Your TP monitor provides data communications services.

More information:

DML Precompiler-Directive Statements (see page 61)

Navigational DML

Navigational DML statements allow you to access database records and sets one record
at a time, and to check and maintain currency in order to assure correct results.
Navigational DML statements give you control over error checking and flexibil ity in

choosing database access strategy. To use this type of DML statement, you must have a
thorough knowledge of the database structure. For an Example of a data structure
diagram, see Sample Programs and Database Definition.

Navigational DML statements provide:

■ Control over error checking ─ You can check on the results of processing each
statement.

■ Flexibility in choosing database access strategy ─ You can enter the database

either sequentially (area sweep) by using a symbolic-key value (CALC or index), or
by using a database-key value (DIRECT).

There are four types of navigational DML statements:

■ Control statements initiate and terminate processing, effect recovery, prevent
concurrent updates, and evaluate set conditions.

■ Retrieval statements locate data in the database and make it available to the

application program.

Programming in the CA IDMS Environment

Chapter 2: Introduction to CA IDMS Data Manipulation Language 19

■ Modification statements update the database.

■ Accept statements pass database keys, storage address information, and statistics

to the program.

Example of Navigational DML Statements

The following figure il lustrates a database structure containing two owner records
(EMPLOYEE and JOB) that share one member record (EMPOSITION), and lists the
statements used to find employee and job information. To obtain EMPLOYEE and JOB
information, you would retrieve an EMPLOYEE record, the first EMPOSITION record in

the EMP_EMPOSITION set, and the owner record in the JOB_EMPOSITION set.

SQL DML

You can use SQL DML to access the same databases you access using navigational DML.
Additionally, you can use SQL DML to access databases that have been defined using
SQL DDL.

Using SQL DML, you do not have to be familiar with database structure and your
programs do not have to include database navigation logic.

You can perform the following functions using SQL DML statements:

■ Select rows

■ Update rows

■ Delete rows

■ Insert rows

Programming in the CA IDMS Environment

20 DML Reference Guide for PLI

Note:

■ For more information about SQL DML statements, see the CA IDMS SQL Reference

Guide.

■ For information about embedding SQL statements in application programs, see the
CA IDMS SQL Programming Guide.

LRF DML

LRF (Logical Record Facil ity) statements allow you to access fields from multiple
database records as if they are data fields in a single record. You specify selection
criteria (using the WHERE clause) to access only the logical records you need.

Using LRF, you do not have to be familiar with database structure and your programs do
not have to include database navigation logic.

This manual describes these LRF DML statements:

■ ERASE deletes a logical record as specified in the path definition

■ MODIFY modifies a logical record as specified in the path definition

■ OBTAIN retrieves a logical record as specified in the path definition

■ STORE stores a logical record as specified in the path definition

Note: You must use the 48-character set for PL/I programs containing LRF DML (see PL/I

Compiler Option Usage (see page 28)).

Note:

■ For more information on path definition, see the CA IDMS Navigational DML

Programming Guide.

■ For more information on the Logical Record Facil ity, see the CA IDMS Logical Record
Facility Guide.

Example of LRF DML Statements

The following figure il lustrates the EMP_JOB_LR record. This record is a logical LRF
record that contains the EMPLOYEE record, OFFICE record, and JOB record.

Programming in the CA IDMS Environment

Chapter 2: Introduction to CA IDMS Data Manipulation Language 21

CA IDMS/DC Statements

CA IDMS/DC and CA IDMS UCF are fully integrated with CA IDMS/DB and the dictionary.
They allow you to request both data communications and database services through
standard subroutine calls generated (by the DML precompiler) from DML statements.

Example of a PL/I Data Stream with CA IDMS/DC Statements

The following is a typical PL/I data stream containing DML statements. The CA IDMS/DC
MAP IN, MAP OUT, and DC RETURN statements map in a user-specified employee ID,

retrieve and display the specified information, and perform a DC RETURN naming TSK02
as the next task to be performed.

BIND MAP (EMPMAPLR);

BIND MAP (EMPMAPLR) RECORD (EMPLOYEE);

ACCEPT TASK CODE INTO (TASK_CODE_IN);

IF TASK_CODE_IN = 'TSK01' THEN

 GO TO INITIAL_MAPOUT;

MAP IN (EMPMAPLR);

 .

 .

 .

Database DML statements

 .

 .

 .

MAP OUT (EMPMAPLR)

 OUTPUT DATA YES

 MESSAGE (DISPLAY_MESSAGE) LENGTH (80);

DC RETURN NEXT TASK CODE ('TSK02');

Types of Online CA IDMS/DC Statements

Online CA IDMS/DC statements request that the DC/UCF system perform data
communications services. There are nine types of online CA IDMS/DC DML statements:

■ Program management statements govern flow of control and abend processing.

■ Storage management statements allocate and release variable storage.

■ Task management statements provide runtime services that enhance control over

task processing.

■ Time management statements obtain the time and date, and define time-related
events.

■ Scratch management statements create, delete, or retrieve records from the
scratch area.

■ Queue management statements create, delete, or retrieve records in a queue area.

Compiling and Executing Programs

22 DML Reference Guide for PLI

■ Terminal management statements transfer data between the application program
and a terminal.

■ Utility function statements retrieve task-related information or statistics, send

messages, and monitor access to database records.

■ Recovery statements perform functions relating to database, scratch, and queue
area recovery in the event of a system failure.

Compiling and Executing Programs

A PL/I program contains PL/I code and DML statements. The DML precompiler converts

DML statements into PL/I CALL statements and copies information maintained in the
dictionary into the source fi le. You can then compile, l ink edit, and execute the
application program. The compilation and runtime processes are described separately

below.

Compiling Programs

These three components prepare a PL/I DML program for execution:

■ The DML precompiler

■ The PL/I compiler

■ The linkage editor

Step 1—DML Precompiler

The DML Precompiler Converts DML Statements

The DML precompiler converts DML statements in the source program to PL/I CALL
statements and copies information maintained in the dictionary into the application
program. For Example, the DML precompiler could copy database record descriptions,
map records, map definitions, and other predefined modules (such as communications

blocks) into the program.

Output from the DML precompiler is a source fi le, which serves as input to the PL/I

compiler, and an optional source listing. The output fi le differs from the source input to
the DML precompiler in the following ways:

■ Source code (such as the IDMS DB communications block and the IDMS_STATUS
routine) has been added to the program.

■ DML statements have been replaced by PL/I CALL statements and changed to
comment entries.

Compiling and Executing Programs

Chapter 2: Introduction to CA IDMS Data Manipulation Language 23

Additionally, the DML precompiler produces a l isting of the following errors:

■ Incorrect DML entries

■ Statements inconsistent with the program's declared subschema view

■ Any other error conditions detected during DMLP processing

■ Warning messages indicating source code conditions that could adversely affect run
units using the program

Step 2—PL/I Compiler

The PL/I Compiler Compiles the Source into an Object Program

The PL/I compiler compiles the source program after the DML precompiler has
processed it successfully. Output from the PL/I compiler consists of an object program

and a source listing that includes any generated diagnostics.

Step 3—Linkage Editor

The Linkage Editor Links the Object Program

The linkage editor l ink edits the object program into a specified load library. Output

from the linkage editor consists of a load module (or phase) and a l ink map.

More information:

DML Precompile, PL/I Compile, and Link-Edit JCL (see page 309)

Compiling and Executing Programs

24 DML Reference Guide for PLI

PL/I Program Compile

The following figure il lustrates a PL/I program compile.

Executing Programs

At runtime, CA IDMS requests are treated as application program subroutine calls.
When an application program executes a CA IDMS/DB or CA IDMS/DC subroutine call,
control passes to either CA IDMS/DB or CA IDMS/DC, which then processes the

requested function.

Callable Services and Common Facilities

Chapter 2: Introduction to CA IDMS Data Manipulation Language 25

A CA IDMS/DC program must be defined to the CA IDMS/DC system in which it will
operate. The program can be defined either at system generation or at runtime by using

a DCMT VARY DYNAMIC PROGRAM command.

Note: For more information about DCMT VARY DYNAMIC PROGRAM, see the CA IDMS
System Tasks and Operator Commands Guide.

PL/I Features You Cannot Use

You cannot use the following PL/I features in programs running under CA IDMS/DC:

■ Any statement associated with fi le management: OPEN, CLOSE, DELETE, LOCATE,
RELEASE, UNLOCK

■ I/O statements: GET, READ, WRITE, REWRITE

■ Any special feature that could generate a supervisor call (SVC): DATE, FETCH,
DISPLAY, DELAY, WAIT, HALT, EVENT, COMPLETION, TIME, ATTN, ONCOUNT,
ONKEY, ONFILE, ONSYSLOG

■ The compile option: FLOW

■ SPIE and STAE options (the DC/UCF system detects all runtime errors.

Using these features inhibits system performance and can cause the DC/UCF s ystem to
abend.

Callable Services and Common Facilities

CA IDMS provides callable services and common facil ities to use with your application
programs.

Callable Services

The callable services include:

■ The IDMSCALC util ity that lets you sort input into target page sequence.

■ The IDMSIN01 facil ity that lets you perform miscellaneous CA IDMS functions.

■ The TCP/IP socket program interface that lets you communicate with another

TCP/IP application.

Note: For more information about using these callable services, see the CA IDMS
Callable Services Guide.

Callable Services and Common Facilities

26 DML Reference Guide for PLI

Common Facilities

The common facil ities include:

■ The Command Facil ity that lets you submit command statements in a batch or
online environment.

■ The Online Compiler Text Editor that lets you edit compiler output and resubmit it
as input using the CA IDMS development tools.

■ The Transfer Control Facil ity that lets you transfer between CA IDMS development
tools.

■ The SYSIDMS parameter fi le that contains parameters that you can add to a batch
job running in local mode or under the central version. These parameters let you
specify environment requirements, runtime directives, and operating
system-dependent information.

Note: For more information about using these common facil ities and the SYSIDMS
parameter fi le, see the CA IDMS Common Facilities Guide.

Chapter 3: DML Precompiler Options 27

Chapter 3: DML Precompiler Options

DML precompiler options are features of the DML programming environment that you

select to customize the environment for your application program. This chapter
describes these options and their associated Syntax.

You code the DML precompiler options as s pecial format entries in the PL/I source code
input to the DML precompiler. Use the compiler options to:

■ Override the DDLDML area default usage mode

■ Enable the printing of dictionary and subschema comments

■ Control the generation of DML precompiler source listings

■ Suppress the logging of program activity statistics

This chapter provides a discussion of each of the compiler options.

This section contains the following topics:

Dictionary Ready Override (see page 27)
PL/I Compiler Option Usage (see page 28)

Comment Generation (see page 28)
List Generation (see page 29)
Log Suppression (see page 29)

Dictionary Ready Override

The DDLDML area is the main area of the dictionary accessed by the DML precompiler.
Your application program can ready the DDLDML area using various usage mode
options. The default mode is shared update usage. Shared update usage mode readies
the DDLDML area for both retrieval and update. This mode also allows concurrently

executing run units to ready the DDLDML area in shared update or shared retrieval
usage mode. Your program can override the default usage mode by specifying either
retrieval or protected update usage.

Syntax

►►─┬─ /*RETRIEVAL*/ ────────┬───────────────────────────────────────►◄
 └─ /*PROTECTED_UPDATE*/ ─┘

Begin this Syntax in column 2.

PL/I Compiler Option Usage

28 DML Reference Guide for PLI

Parameters

RETRIEVAL

Readies the DDLDML area for retrieval only. It allows other concurrently executing
run units to open the area in shared retrieval, shared update, protected retrieval, or

protected update usage modes.

Note: If your program readies the DDLDML area for retrieval only, no program
activity statistics can be logged.

PROTECTED_UPDATE

Readies the DDLDML area for both retrieval and update. It allows other
concurrently executing run units to ready the area in retrieval usage mode only. The

protected update usage mode prevents concurrent update of the area by run units
executing in the same DC/UCF system.

Specify the dictionary ready override statement before all source input statements.

PL/I Compiler Option Usage

The PROCESS statement is used to allow compile-time options to be specified for each

compilation.

Note: For more information about these options, see a PL/I programming guide.

Syntax

►►─── * PROCESS options; ─────────────────────────────────────►◄

Begin this Syntax in column 1.

If you use the PROCESS statement, it must follow the dictionary ready override
statement. If you do not use the dictionary ready override statement, the PROCESS
statement must precede all source input statements.

Comment Generation

SCHEMA_COMMENTS generates the printing of the dictionary and subschema
comments in a DML precompiler source listing.

Syntax

►►─── /*SCHEMA_COMMENTS*/ ──►◄

Begin this Syntax in column 2.

List Generation

Chapter 3: DML Precompiler Options 29

Code the SCHEMA_COMMENTS statement after the dictionary ready override and
PROCESS CHARSET statements, if any, and before any source input statement.

Note: If you do not include the SCHEMA_COMMENTS statement in your source
program, the DML precompiler does not generate comment lines.

List Generation

The list generation option determines whether or not a DML source listing is generated.

You can turn source listing generation on or off any number of times in your source
program. Do this by inserting appropriate NODMLIST/DMLIST entries in the code.

Note: DML always produces a l isting of error messages. The DMLIST option controls
output of the processor source listing only.

Syntax

►►─┬─ /*NODMLIST*/ ◄ ──┬───►◄
 └─ /*DMLIST*/ ──────┘

Begin this Syntax in column 2.

Parameters

NODMLIST

Tells the DML precompiler not to generate the source listing for the statements that
follow. NODMLIST is the default.

DMLIST

Tells the DML precompiler to generate the source listing for the statements that

follow.

Log Suppression

The NO_ACTIVITY_LOG option suppresses the logging of program activity statistics. The
DML precompiler generates and logs the following program activity statistics unless you

use the NO_ACTIVITY_LOG option:

■ Program name

■ Language

■ Date last compiled

■ Number of l ines

Log Suppression

30 DML Reference Guide for PLI

■ Number of compilations

■ Date created

■ Subschema name (if any)

■ File statistics

■ Database access statistics (records and modules copied from the dictionary;
subprograms called; and records, sets, and area s accessed by DML verbs)

Note: Program activity statistics cannot be logged if you ready the DDLDML area for

retrieval only or use a read-only dictionary. File activity statistics cannot be logged if you
code both registered and unregistered program files in one OPEN statement.

Syntax

►►── /*NO_ACTIVITY_LOG*/ ───►◄

Begin this Syntax in column 2.

The NO_ACTIVITY_LOG statement must follow the dictionary ready override and
PROCESS CHARSET statements, if any.

Chapter 4: Communications Blocks and Error Detection 31

Chapter 4: Communications Blocks and
Error Detection

This chapter describes the communications blocks available under CA IDMS/DC and CA

IDMS/DB. These blocks return status information about requested database and data
communications services to the application program. This chapter also describes the
ERROR_STATUS field in the IDMS DB and IDMS DC communications blocks, error codes,
and error detection routines.

This section contains the following topics:

Communications Blocks (see page 31)
ERROR_STATUS Field and Codes (see page 43)
Error Detection (see page 54)

Communications Blocks

Communications blocks return status information about requested database (CA
IDMS/DB) and data communications (CA IDMS/DC and CA IDMS UCF) services to the
application program. Depending on the usage mode (LR, DML, or MIXED) defined in the
subschema, your program uses one or two of the following blocks:

■ IDMS DB communications block—The IDMS DB communications block is used
when your program specifies the BATCH operating mode.

■ Logical-record request control (LRC) block—The LRC block is used when the
subschema usage mode is either LR or MIXED. The DML precompiler copies the LRC
block with either the IDMS DB communications block (operating mode of BATCH) or

the IDMS DC communications block (operating mode of IDMS_DC or DC_BATCH).

■ IDMS DC communications block—The IDMS DC communications block is used
when your program specifies either IDMS_DC or DC_BATCH operating mode.

More information:

DECLARE SUBSCHEMA (see page 61)

Communications Blocks

32 DML Reference Guide for PLI

IDMS DB Communications Block

Your program uses the IDMS DB communications block when the operating mode is
BATCH. This communications block serves as an interface between the database
management system (DBMS) and your application program. Whenever a run unit issues

a call to the DBMS for a database operation, the DBMS returns information about the
outcome of the requested service to your program's IDMS DB communications block.

Your program instructs the DML precompiler to copy the data description (called

SUBSCHEMA_CTRL) of the IDMS DB communications block from the data dictionary into
program variable storage. You accomplish this by coding an INCLUDE IDMS
(SUBSCHEMA_CTRL) statement in your program.

Note: For more information on INCLUDE IDMS, see INCLUDE IDMS (see page 66).

You should examine the ERROR_STATUS field of the IDMS DB communications block
after every call to the DBMS. Depending on the value contained in this field, you should

perform the IDMS_STATUS routine. For more information, see ERROR_STATUS Field and
Codes, later in this chapter. For Example, if the ERROR_STATUS field contains the value
0307 while walking a set, your program should perform end-of-set processing.
Otherwise, your program should perform the IDMS_STATUS routine.

Layout of the IDMS DB Communications Block

The following figure shows the layout of the 16-byte IDMS DB communications block.
Note that the layout of the block differs for application programs running under CICS.

Note: For more information about the 18-byte IDMS DB communications block, see
18-Byte Communications Blocks (see page 415).

Communications Blocks

Chapter 4: Communications Blocks and Error Detection 33

 ┌───────────────────────────────────────┐
 │ IDMS DB 16-byte communications block │
 └───────────────────────────────────────┘
 Length
 Field Data Type (bytes) Initial Value
 ┌──────────┐
 *│ 1 8 │ PROGRAM-NAME Alphanumeric 8 Program Name
 ├────────┬─┘
 │ 9 12 │ ERROR-STATUS Alphanumeric 4 '1400'
 ├────────┤
 │ 13 16 │ DBKEY Binary 4(Fullword) 0000
 ├────────┴───┐
 │ 17 32 │ RECORD-NAME Alphanumeric 16 Spaces
 ├────────────┤
 │ 33 48 │ AREA-NAME Alphanumeric 16 Spaces
 ├────────────┤
 │ 49 64 │ ERROR-SET Alphanumeric 16 Spaces
 ├────────────┤
 │ 65 80 │ ERROR-RECORD Alphanumeric 16 Spaces
 ├────────────┤
 │ 81 96 │ ERROR-AREA Alphanumeric 16 Spaces
 ├─────────┬──┘
**│ 97 100 │ PAGE-INFO Binary 4(Fullword) 0000
 └─────────┘
 ┌──────────┐
 │ 97 196 │ IDBMSCOM-AREA Alphanumeric 100 Low Values
 ├──────────┤
 │ 197 200 │ DIRECT-DBKEY Binary 4(Fullword) 0000
 └──────────┘
 ┌─────────┐
 │ 201 207 │ DATABASE-STATUS Alphanumeric 7 Spaces
 ├─────┬───┘
 │ 208 │ FILLER ... 1 ...
 ├─────┴───┐
 │ 209 212 │ RECORD-OCCUR Binary 4(Fullword) 0000
 ├─────────┤
 │ 213 216 │ DML-SEQUENCE Binary 4(Fullword) 0000
 └─────────┘

 * word aligned
** PAGE_INFO_GROUP overlays bytes 97 and 98 and PAGE_INFO_DBK_FORMAT

 overlays bytes 99 and 100. Both of these fields are binary datatype,

 each with a length of two bytes. Suggested initial values for

 both are 00. Together these two fields represent PAGE_INFO.

Fields Containing Program Status Information

The following IDMS DB fields contain program status information:

PROGRAM_NAME

Alphanumeric field that contains the name of the program being executed. The
DML precompiler initializes this field automatically, if the program contains an
INCLUDE IDMS (SUBSCHEMA_BINDS) statement. If you do not include this

statement in your program, you must initialize the field.

Communications Blocks

34 DML Reference Guide for PLI

ERROR_STATUS

Alphanumeric field that contains a value indicating the outcome of the last DML

statement executed. The DML precompiler initializes the ERROR_STATUS field to
1400. The DBMS updates this field after each database service request and before
returning control to the program. The DBMS updates this field whether or not the

request was processed successfully.

For details on the ERROR_STATUS field and its use, see ERROR_STATUS Field and
Codes, later in this chapter.

If your program consists of more than one run unit, it must reinitialize the

ERROR_STATUS field to 1400 after finishing one run unit and before binding the
next.

DBKEY

Binary fullword field that contains the database key of the last record accessed by
the run unit. For Example, after successful execution of a FIND command, the DBMS
updates DBKEY with the database key of the located record. If the call to the DBMS

results in an error condition, DBKEY remains unchanged.

RECORD_NAME

Alphanumeric field that contains the name of the last record successfully accessed
by the run unit. This field is left justified and padded with spaces on the r ight.

AREA_NAME

Alphanumeric field that contains the name of the last area successfully accessed by

the run unit. This field is left justified and padded with spaces on the right.

ERROR_SET

Alphanumeric field that contains the name of the set involved in the last operation
that produced an error condition. This field is left justified and padded with spaces
on the right.

ERROR_RECORD

Alphanumeric field that contains the name of the record involved in the last
operation that produced an error condition. This field is left justified and padded

with spaces on the right.

ERROR_AREA

Alphanumeric field that contains the name of the area involved in the last operation
that produced an error condition. This field is left justified and padded with spaces

on the right.

IDBMSCOM_AREA

Alphanumeric field that is used internally by the DBMS for specification of runtime
function information.

Communications Blocks

Chapter 4: Communications Blocks and Error Detection 35

PAGE_INFO

Two binary halfwords that represent the page information associated with the last

record accessed by the run unit. PAGE_INFO is not changed if the call to the DBMS
results in a non-zero status. The first halfword (PAGE_INFO_GROUP) represents the
page group number. The second halfword (PAGE_INFO_DBK_FORMAT) represents

the db-key radix.

The db-key radix portion of the page information can be used in interpreting a
db-key for display purposes and in formatting a db-key from page and line numbers.
The db-key radix represents the number of bits within a db-key value that are

reserved for the line number of a record. By default, this value is 8, meaning that up
to 255 records can be stored on a single page of the area. Given a db-key, you can
separate its associated page number by dividing the db-key by 2 raised to the
power of the db-key radix. For Example, if the db-key radix is 4, you would divide

the db-key value by 2**4. The resulting value is the page number of the db-key. To
separate the line number, you would multiply the page number by 2 raised to the
power of the db-key radix and subtract this value from the db-key value. The result

would be the line number of the db-key. The following two formulas can be used to
calculate the page and line numbers from a db-key value:

Page-number = db-key value / (2 ** db-key radix)

Line-number = db-key value - (page-number * (2 ** db-key radix))

DIRECT_DBKEY

Binary fullword field that contains either a db-key value that you specify or a null

db-key value of -1. This field is used to store records with a location mode of
DIRECT. Because the DBMS does not update this field, you must initialize
DIRECT_DBKEY. This field can be used only when storing a record in a native VSAM
relative record data set (RRDS). You must initialize DIRECT_DBKEY to the relative

record number of the record being stored.

DATABASE_STATUS

Alphanumeric field reserved for use by the DBMS.

FILLER

Field used to ensure binary fullword alignment.

RECORD_OCCUR

Binary fullword field that contains a record occurrence sequence identifier used

internally by the DBMS.

DML_SEQUENCE

Binary fullword field that contains the source-level sequence number generated by
the DML precompiler. The DML precompiler updates this field before each call to

the DBMS if you specify DEBUG in the DECLARE SUBSCHEMA statement. The
runtime system does not use this field.

Communications Blocks

36 DML Reference Guide for PLI

Updating Fields in the IDMS DB Communications Block

After a call to the DBMS, one or more of these fields ma y have been updated,
depending on the DML statement issued and whether the statement executed
successfully.

Example of Updated Fields

The following figure il lustrates the IDMS DB communications block fields updated by
successful and unsuccessful calls to the DBMS; only those fields accessed by the runtime

system are shown.

Key for this figure:

* If true, the field is set to zoned decimal zeroes (0000). If false, the field is set to
1601.

0 The field is set to zoned decimal zeroes.

Y The field is updated.

C The field is cleared to spaces.

N The field is set to null db-key value (-1)

nn Specific minor status code

Communications Blocks

Chapter 4: Communications Blocks and Error Detection 37

Communications Blocks

38 DML Reference Guide for PLI

LRC Block

Your program uses the logical -record request control (LRC) block when the subschema
usage mode is LR or MIXED. The LRC block provides an interface between the Logical
Record Facil ity (LRF) and the application program. It passes information about a

logical-record request to LRF and returns path status information about the processing
of the request to the program. You use the LRC block in conjunction with the IDMS DB
or IDMS DC communications block.

Your program instructs the DML precompiler to copy the data descr iption (called
SUBSCHEMA_LR_CTRL) of the LRC block from the data dictionary into program variable

storage. You accomplish this by coding an INCLUDE IDMS (SUBSCHEMA_LR_CTRL)
statement in your program.

Note: For more information on INCLUDE IDMS, see INCLUDE IDMS (see page 66).

You should examine the LR_STATUS field of the LRC block after every call to LRF to
determine the status of the call after processing. If the DBMS returns the value

LR_ERROR, you should examine the ERROR_STATUS field of the IDMS DB or IDMS DC
communications block.

Layout of the LRC Block

The following figure shows the layout of the LRC block.

 ┌───────────┐
 │ LRC BLOCK │
 └───────────┘
 Length Suggested
 Field Data Type (bytes) Initial Value
┌───────┐
│ 1 2 │ LRC-LRPXELNG Binary 2 (Halfword) 00
├───────┤
│ 3 4 │ LRC-MAXVXP Binary 2 (Halfword) 00
├───────┴──┐
│ 5 8 │ LRIDENT Alphanumeric 4 'LRC'
├──────────┴───┐
│ 9 16 │ LRVERB Alphanumeric 8 Spaces
├──────────────┴────┐
│ 17 32 │ LRNAME Alphanumeric 16 Spaces
├───────────────────┤
│ 33 48 │ LR-STATUS Alphanumeric 16 Spaces
├───────────────────┤
│ 49 64 │ FILLER ... 16 ...
├───┬───┬───────────┴─────┐
│ 65 ... (variable-length)│PXE Mixed
└───┴───┴─────────────────┘
* word aligned

Communications Blocks

Chapter 4: Communications Blocks and Error Detection 39

Description of Fields

The LRC block contains the following fields:

LRC_LRPXELNG

Specifies the length of the LRC block

LRC_MAXVXP

Specifies the length of the work area required to evaluate the WHERE clause.

LRIDENT

Contains the constant LRC followed by a space.

LRVERB

Contains the verb passed to the Logical Record Facil ity.

LRNAME

Contains the name of the logical record being accessed.

LR_STATUS

Contains the path status of a logical-record request. Path statuses are 1- to

16-character strings; they can be either standard or defined in the subschema by
the DBA. LRF provides three standard path statuses: LR_FOUND, LR_NOT_FOUND,
and LR_ERROR.

Note: For more information on path statuses, see Logical -Record Clauses (WHERE

and ON).

FILLER

Work area used internally by the Logical Record Facil ity.

PXE (WHERE clause)

Contains the expansion of the WHERE clause; it can contain from 0 to 512 1 -byte

elements. The 512-byte l imit can be raised or lowered by using the SIZE parameter
of the INCLUDE IDMS (SUBSCHEMA_LR_CTRL) statement.

Note: For more information about the SIZE parameter and the INCLUDE IDMS

statement, see INCLUDE IDMS (see page 66).

IDMS DC Communications Block

The IDMS DC communications block replaces the IDMS DB communications block when
the operating mode is either IDMS_DC or DC_BATCH. At runtime, the DC/UCF system

uses the IDMS DC communications block to pass information about the outcome of
requested data communications and database services to an application program.

Communications Blocks

40 DML Reference Guide for PLI

Your program instructs the DML precompiler to copy the data description (called
SUBSCHEMA_CTRL) of the IDMS DC communications block from the dictionary into

program variable storage. You accomplish this by coding an INCLUDE IDMS
(SUBSCHEMA_CTRL) statement in your program.

Note: For more information about INCLUDE IDMS, see INCLUDE IDMS (see page 66).

You should examine the ERROR_STATUS field of the IDMS DC communications block
after every call to the DBMS. Depending on the value contained in this field, you should
perform the IDMS_STATUS routine.

Note: For more information, see ERROR_STATUS Field and Codes (see page 43).

Layout of the IDMS DC Communications Block

The following figure shows the layout of the 16-byte IDMS DC communications block.

 ┌──┐
 │ 16-byte IDMS DC communications block │
 └──┘
 Length Suggested
 Field Data Type (bytes) Initial Value
 ┌──────────────┐
 *│ 1 8 │ PROGRAM Alphanumeric 8 Program Name
 ├──────────┬───┘
 │ 9 12 │ ERROR_STATUS Alphanumeric 4 '1400'
 ├──────────┤
 │ 13 16 │ DBKEY Binary 4 (Fullword) 0000
 ├──────────┴───────┐
 │ 17 32 │RECORD_NAME Alphanumeric 16 Spaces
 ├──────────────────┤
 │ 33 48 │AREA_NAME Alphanumeric 16 Spaces
 ├──────────────────┤
 │ 49 64 │ERROR_SET Alphanumeric 16 Spaces
 ├──────────────────┤
 │ 65 80 │ERROR_RECORD Alphanumeric 16 Spaces
 ├──────────────────┤
 │ 81 96 │ERROR_AREA Alphanumeric 16 Spaces
 ├──────────────────┘
**│ 97 100 │ PAGE_INFO Binary 4 (Fullword) 0000
 └──────────┘
 ┌──────────┬──┬────┐
 │ 97 │..│196 │IDBMSCOM_AREA Alphanumeric 100 Spaces
 ├────────┬─┘ └────┘
 │ 197 200│ DIRECT_DBKEY Binary 4 0000
 ├────────┴─┐ ┌────┐
 │ 201 │. │300 │DCBMSCOM_AREA Alphanumeric 100 Spaces
 ├─────────┬┘ └────┘
 │ 301 304 │ SSC_ERRSTAT_SAVE Alphanumeric 4 Spaces
 ├─────────┤
 │ 305 308 │ SSC_DMLSEQ_SAVE Binary 4 (Fullword) 0000
 ├─────────┤
 │ 309 312 │ DML_SEQUENCE Binary 4 (Fullword) 0000
 ├─────────┤
 │ 313 316 │ RECORD_OCCUR Binary 4 (Fullword) 0000
 ├─────────┤
 │ 317 320 │ SUBSCHEMA_CTRL_END Alphanumeric 4 Spaces
 └─────────┘

Communications Blocks

Chapter 4: Communications Blocks and Error Detection 41

 * word aligned

** PAGE_INFO_GROUP overlays bytes 97 and 98 and

PAGE_INFO_DBK_FORMAT overlays bytes 99 and 100.

Both of these fields are binary datatype each

having a length of two bytes. Suggested initial values for

both are 00. Together these two fields represent PAGE_INFO.

Note: For more information about the 18-byte IDMS DC communications block, see
18-Byte Communications Blocks (see page 415)

Description of Fields

The IDMS DC communications block contains the following fields:

PROGRAM

Contains your application program's name. If you code an INCLUDE
IDMS(SUBSCHEMA_BINDS) statement in your program, the DML precompiler
initializes this field automatically. If you do not i nclude this statement in your

program, you must initialize the field.

ERROR_STATUS

Contains a value indicating the outcome of the last DML statement executed. The

DML precompiler initializes the ERROR_STATUS field to 1400. The DC/UCF system
updates this field after a requested database or data communications service call
and before returning control to your program. The DC/UCF system updates this
field whether or not the request was processed successfully.

If your program consists of more than one run unit, it must reinitialize the
ERROR_STATUS field to 1400 after finishing one run unit and before binding to the
next.

Note: For more information about the ERROR_STATUS field and its use, see

ERROR_STATUS Field and Codes (see page 43).

DBKEY

Contains the database key of the last record accessed by the run unit. For example,
after successful execution of a FIND command, the DBMS updates DBKEY with the

database key of the located record. If the database call results in an error condition,
DBKEY remains unchanged.

RECORD_NAME

Contains the name of the last record accessed successfully by the run unit. This field

is left justified and padded with spaces on the right.

Communications Blocks

42 DML Reference Guide for PLI

AREA_NAME

Contains the name of the last area accessed successfully by the run unit. This field is

left justified and padded with spaces on the right.

ERROR_SET

Contains the name of the set involved in the last operation to produce an error

condition. This field is left justified and padded with spaces on the right.

ERROR_RECORD

Contains the name of the record involved in the last operation to produce an error
condition. This field is left justified and padded with spaces on the right.

ERROR_AREA

Contains the name of the area involved in the last operation to produce an error
condition. This field is left justified and padded with spaces on the right.

IDBMSCOM_AREA

Used internally by the DBMS for specification of runtime information.

PAGE_INFO

Two binary halfwords that represent the page information associated with the last
record accessed by the run unit. PAGE_INFO is not changed if the call to the DBMS

results in a non-zero status. The first halfword (PAGE_INFO_GROUP) represents the
page group number. The second halfword (PAGE_INFO_DBK_FORMAT) represents
the db-key radix.

The db-key radix portion of the page information can be used in interpreting a
db-key for display purposes and in formatting a db-key from page and line numbers.
The db-key radix represents the number of bits within a db-key value that are
reserved for the line number of a record. By default, this value is 8, meaning that up

to 255 records can be stored on a single page of the area. Given a db-key, you can
separate its associated page number by dividing the db-key by 2 raised to the
power of the db-key radix. For example, if the db-key radix is 4, you would divide

the db-key value by 2**4. The resulting value is the page number of the db-key. To
separate the line number, you would multiply the page number by 2 raised to the
power of the db-key radix and subtract this value from the db-key value. The result
would be the line number of the db-key. The following two formulas can be used to

calculate the page and line numbers from a db-key value:

Page-number = db-key value / (2 ** db-key radix)

Line-number = db-key value - (page-number * (2 ** db-key radix))

ERROR_STATUS Field and Codes

Chapter 4: Communications Blocks and Error Detection 43

DIRECT_DBKEY

Contains either a user-specified db-key value or a null db-key value of -1. This field

is used to store records with a location mode of DIRECT. Because the DC/UCF does
not update this field, you must initialize DIRECT_DBKEY.

A note for native VSAM users: use the DIRECT_DBKEY field only when storing a

record in a native VSAM relative record dataset (RRDS). You mus t initialize
DIRECT_DBKEY to the relative record number of the record being stored.

DCBMSCOM_AREA

Used internally by the DC/UCF system for specification of runtime function

information.

SSC_ERRSTAT_SAVE

Used by the IDMS_STATUS routine to save a nonzero ERROR_STATUS in the event
of an abend.

SSC_DMLSEQ_SAVE

Used by the IDMS_STATUS routine to save the value of DML_SEQUENCE in the
event of an abend.

DML_SEQUENCE

Contains the source-level sequence number generated by the DML precompiler.
The DML precompiler updates this field before each call to the system if you specify

DEBUG in the DECLARE SUBSCHEMA statement. The runtime system does not use
this field.

RECORD_OCCUR

Contains a record occurrence sequence identifier used internally by the system.

SUBSCHEMA_CTRL _END

Marks the end of the IDMS DC communications block.

ERROR_STATUS Field and Codes

You can use the ERROR_STATUS field of the IDMS or IDMS DC communications block to
determine if a DML request was processed successfully. The DBMS or the DC system

returns a value to the ERROR_STATUS field indicating the result of each DML request.
For more information about using the ERROR_STATUS field, see Error Detection.

LRF users: You should check the LR_STATUS field of the LRC block before checking the
ERROR_STATUS field.

ERROR_STATUS Field and Codes

44 DML Reference Guide for PLI

Major and Minor Codes

The ERROR_STATUS field is a four-byte zoned decimal field. The first two bytes
represent a major code; the second two bytes represent a minor code. Major codes
identify the function performed; minor codes describe the status of that function.

Value of Codes

A value of 0000 indicates successful completion of the requested function. A value
other than 0000 indicates completion of the function in a manner that may or may
not be in error, depending on your expectations. For example, 0326

(DB-REC-NOT-FOUND) should be anticipated after FIND CALC retrieval; this allows
you to trap the condition and continue processing.

DB status codes have a major code in the range 01 to 20. They occur during database
access in batch or online processing. DC status codes have a major code in the range 30
to 51. They occur in online or DC_BATCH processing. Status codes with a major code of

00 apply to all DML functions. DB status codes and DC status codes are discussed
separately below.

DB Status Codes

The following tables l ist DB major and minor codes and their meanings.

Note: For a complete description of DB runtime status codes, see the CA IDMS Status
Codes chapter in CA IDMS Messages and Codes Guide.

DB Status Codes

The following tables l ist DB major and minor codes and their meanings.

Major DB Status Codes

Major
Code

Database Function

00 Any DML statement

01 FINISH

02 ERASE

03 FIND/OBTAIN

05 GET

06 KEEP

07 CONNECT

ERROR_STATUS Field and Codes

Chapter 4: Communications Blocks and Error Detection 45

Major
Code

Database Function

08 MODIFY

09 READY

11 DISCONNECT

12 STORE

14 BIND

15 ACCEPT

16 IF

17 RETURN

18 COMMIT

19 ROLLBACK

20 LRF requests

Minor DB Status Codes

Minor
Code

Database Function Status

00 Combined with a major code of 00, this code indicates successful completion
of the DML operation. Combined with a nonzero major code, this code

indicates that the DML operation was not completed successfully due to
central version causes, such as time-outs and program checks.

01 An area has not been readied. When this code is combined with a major

code of 16, an IF operation has resulted in a valid false condition.

02 Either the db-key used with a FIND/OBTAIN DB-KEY statement or the direct
db-key suggested for a STORE is not within the page range for the specified
record name.

03 Invalid currency for the named record, set, or area. This can only occur when
a run unit is sharing a transaction with other database sessions. The 03
minor status is returned if the run unit tries to retrieve or update a record

using a currency that has been invalidated because of changes made by
another database session that is sharing the same transaction.

04 The occurrence count of a variably occurring element has been specified as
either less than zero or greater than the maximum number of occurrences

defined in the control element.

05 The specified DML function would have violated a duplicates -not-allowed
option for a CALC, sorted, or index set.

ERROR_STATUS Field and Codes

46 DML Reference Guide for PLI

Minor
Code

Database Function Status

06 No currency has been established for the named record, set, or area.

07 The end of a set, area, or index has been reached or the set i s empty.

08 The specified record, set, procedure, or LR verb is not in the subschema or

the specified record is not a member of the set.

09 The area has been readied with an incorrect usage mode.

10 An existing access restriction or subschema usage prohibits execution of the
specified DML function. For LRF users, the subschema in use allows access to

database records only. Combined with a major code of 00, this code means
the program has attempted to access a database record, but the subschema
in use allows access to logical records only.

11 The record cannot be stored in the specified area due to insufficient space.

12 There is no db-key for the record to be stored. This is a system internal error
and should be reported.

13 A current record of run unit either has not been established or has been

nullified by a previous ERASE statement.

14 The CONNECT statement cannot be executed because the requested record
has been defined as a mandatory automatic member of the set.

15 The DISCONNECT statement cannot be executed because the requested

record has been defined as a mandatory member of the set.

16 The record cannot be connected to a set of which it is already a member.

17 The transaction manager encountered an error.

18 The record has not been bound.

19 The run unit's transaction was forced to back out.

20 The current record is not the same type as the specified record name.

21 Not all areas being used have been readied in the correct usage mode.

22 The record name specified is not currently a member of the set name
specified.

23 The area name specified is either not in the subschema or not an extent

area; or the record name specified has not been defined within the area
name specified.

25 No currency has been established for the named set.

26 No duplicates exist for the named record or the record occurrences cannot

be found.

ERROR_STATUS Field and Codes

Chapter 4: Communications Blocks and Error Detection 47

Minor
Code

Database Function Status

28 The run unit has attempted to ready an area that has been readied
previously.

29 The run unit has attempted to place a lock on a record that is locked already

by another run unit. A deadlock results. Unless the run unit issued either a
FIND/OBTAIN KEEP EXCLUSIVE or a KEEP EXCLUSIVE, the run unit is aborted.

30 An attempt has been made to erase the owner record of a nonempty set.

31 The retrieval statement format conflicts with the record's location mode.

32 An attempt to retrieve a CALC/DUPLICATE record was unsuccessful; the
value of the CALC field in variable storage is not equal to the value of the
CALC control element in the current record of run unit.

33 At least one set in which the record participates has not been included in the

subschema.

40 The WHERE clause in an OBTAIN NEXT logical-record request is inconsistent
with a previous OBTAIN FIRST or OBTAIN NEXT command for the same

record. Previously specified criteria, such as reference to a key field, have
been changed. A path status of LR-ERROR is returned to the LRC block.

41 The subschema contains no path that matches the WHERE clause in a
logical-record request. A path status of LR-ERROR is returned to the LRC

block.

42 An ON clause included in the path by the DBA specified return of the
LR-ERROR path status to the LRC block; an error has occurred while

processing the LRF request.

43 A program check has been recognized during evaluation of a WHERE clause;
the program check indicates that either a WHERE clause has specified
comparison of a packed decimal field to an unpacked nonnumeric data field,

or data in variable storage or a database record does not conform to its
description. A path status of LR-ERROR is returned to the LRC block unless
the DBA has included an ON clause to override this action in the path.

44 The WHERE clause in a logical-record request does not supply a key element
(sort key, CALC key, or db-key) expected by the path. A path status of
LR-ERROR is returned to the LRC block.

45 During evaluation of a WHERE clause, a program check has been recognized

because a subscript value is neither greater than 0 nor less than its
maximum allowed value plus 1. A path status of LR-ERROR is returned to the
LRC block unless the DBA has included an ON clause to override this action
in the path.

ERROR_STATUS Field and Codes

48 DML Reference Guide for PLI

Minor
Code

Database Function Status

46 A program check has revealed an arithmetic exception (for example:
overflow, underflow, significance, divide) during evaluation of a WHERE
clause. A path status of LR-ERROR is returned to the LRC block unless the

DBA has included an ON clause to override this action in the path.

53 The subschema definition of an indexed set does not match the indexed
set's physical structure in the database.

54 Either the prefix length of an SR51 record is less than zero or the data length

is less than or equal to zero.

55 An invalid length has been defined for a variable-length record.

56 An insufficient amount of memory to accommodate the CA IDMS
compression/decompression routines is available.

57 A retrieval-only run unit has detected an inconsistency in an index that
should cause an 1143 abend, but optional APAR bit 216 has been turned on.

58 An attempt was made to rollback updates in a local mode program. Updates

made to an area during a local mode program's execution cannot be
automatically rolled out. The area must be manually recovered.

60 A record occurrence type is inconsis tent with the set named in the
ERROR-SET field in the IDMS communications block. This code usually

indicates a broken chain.

61 No record can be found for an internal db-key. This code usually indicates a
broken chain.

62 A system-generated db-key points to a record occurrence, but no record
with that db-key can be found. This code usually indicates a broken chain.

63 The DBMS cannot interpret the DML function to be performed. When
combined with a major code of 00, this code means invalid function

parameters have been passed on the call to the DBMS. For LRF users, a
WHERE clause includes a keyword that is longer than the 32 characters
allowed.

64 The record cannot be found; the CALC control element has not been defined
properly in the subschema.

65 The database page read was not the page requested.

66 The area specified is not available in the requested usage mode.

67 The subschema invoked does not match the subschema object tables.

68 The CICS interface was not started.

ERROR_STATUS Field and Codes

Chapter 4: Communications Blocks and Error Detection 49

Minor
Code

Database Function Status

69 A BIND RUN-UNIT may not have been issued; the CV may be inactive or not
accepting new run units; or the connection with the CV may have been
broken due to time out or other factors. When combined with a major code

of 00, this code means the program has been disconnected from the DBMS.

70 The database will not ready properly; a JCL error is the probable cause.

71 The page range or page group for the area being readied or the page
requested cannot be found in the DMCL.

72 There is insufficient memory to dynamically load a subschema or database
procedure.

73 A central version run unit will exceed the MAXERUS value specified at
system generation.

74 The dynamic load of a module has failed. If operating under the central
version, a subschema or database procedure module either was not found in
the data dictionary or the load (core image) l ibrary or, if loaded, will exceed

the number of subschema and database procedures provided for at system
generation.

75 A read error has occurred.

76 A write error has occurred.

77 The run unit has not been bound or has been bound twice. When combined
with a major code of 00, this code means either the program is no longer
signed on to the subschema or the variable subschema tables have been

overwritten.

78 An area wait deadlock has occurred.

79 The run unit has requested more db-key locks than are available to the
system.

80 The target node is either not active or has been disabled.

81 The converted subschema requires specified database name to be in the
DBNAME table.

82 The subschema must be named in the DBNAME table.

83 An error has occurred in accessing native VSAM data sets.

87 The owner and member records for a set to be updated are not in the same
page group or do not have the same db-key radix.

91 The subschema requires a DBNAME to do the bind run unit.

92 No subschema areas map to DMCL.

93 A subschema area symbolic was not found in DMCL.

ERROR_STATUS Field and Codes

50 DML Reference Guide for PLI

Minor
Code

Database Function Status

94 The specified dbname is neither a dbname defined in the DBNAME table,
nor a SEGMENT defined in the DMCL.

95 The specified subschema failed DBTABLE mapping using the specified

dbname.

Note: For a complete description of DB runtime status codes, see the chapter "CA IDMS
Status Codes" in the Messages and Codes Guide.

DC Status Codes

The following tables l ist the DC major and minor codes and their meanings.

Major DC Status Codes

Major

Code

Function

00 Any DML statement

30 TRANSFER CONTROL

31 WAIT/POST

32 GET STORAGE/FREE STORAGE

33 SET ABEND EXIT/ABEND CODE

34 LOAD/DELETE TABLE

35 GET TIME/SET TIMER

36 WRITE LOG

37 ATTACH/CHANGE PRIORITY

38 BIND/ACCEPT/END TRANSACTION STATISTICS

39 ENQUEUE/DEQUEUE

40 SNAP

43 PUT/GET/DELETE SCRATCH

44 PUT/GET/DELETE QUEUE

45 BASIC MODE TERMINAL MANAGEMENT

46 MAPPING MODE TERMINAL MANAGEMENT

47 LINE MODE TERMINAL MANAGEMENT

ERROR_STATUS Field and Codes

Chapter 4: Communications Blocks and Error Detection 51

Major
Code

Function

48 ACCEPT/WRITE PRINTER

49 SEND MESSAGE

50 COMMIT TASK/ROLLBACK TASK/FINISH TASK/WRITE JOURNAL

51 KEEP LONGTERM

58 SVC SEND/RECEIVE

Minor DC Status Codes

Minor
Code

Function Status

00 Combined with a major code of 00, this code indicates either successful
completion of the DML function or that all tested resources have been
enqueued.

01 The requested operation cannot be performed immediately; waiting will

cause a deadlock.

02 Either there is insufficient storage in the storage pool or the storage
required for control blocks is unavailable.

03 The scratch area ID cannot be found.

04 Either the queue ID (header) cannot be found or a paging session was in
progress when a second STARTPAGE command was received (that is, an
implied ENDPAGE was processed before this STARTPAGE was executed

successfully).

05 The specified scratch record ID or queue record cannot be found.

06 No resource control element (RCE) exists for the queue record; currency has
not been established.

07 Either an I/O error has occurred or the queue upper l imit has been reached.

08 The requested resource is not available.

09 The requested resource is available.

10 New storage has been assigned.

11 A maximum task condition exists.

12 The named task code is invalid.

13 The named resource cannot be found.

14 The requested module is defined as nonconcurrent and is currently in use.

ERROR_STATUS Field and Codes

52 DML Reference Guide for PLI

Minor
Code

Function Status

15 The named module has been overlaid and cannot be reloaded immediately.

16 The specified interval control element (ICE) address cannot be found.

17 The record has been replaced.

18 No printer terminals have been defined for the current DC system.

19 The return area is too small; data has been truncated.

20 An I/O, program-not-found, or potential -deadlock status condition exists.

21 The message destination is undefined, the long term ID cannot be found, or

a KEEP LONGTERM request was issued by a nonterminal task.

22 A record already exists for the scratch area specified.

23 No storage or resource control element (RCE) could be allocated for the
reply area.

24 The maximum number of outstanding replies has been exceeded.

25 An attention interrupt has been received.

26 There is a logical error in the output data stream.

27 A permanent I/O error has occurred.

28 The terminal dial -up line is disconnected.

29 An invalid parameter has been passed in the list set up by the DML
processor.

30 The named function has not yet been implemented.

31 An invalid parameter has been passed; the TRB, LRB, or MRB contains an
invalid field; or the request is invalid because of a possible logic error in the

application program. In a DC-BATCH environment, a possible cause is that
the record length specified by the command exceeds the maximum length
based on the packet size.

32 The derived length of the specified variable storage is negative or zero.

33 Either the named table or the named map cannot be found in the data
dictionary load area.

34 The named variable-storage area must be an 01-level entry in the LINKAGE

SECTION.

35 A GET STORAGE request is invalid because the LINKAGE SECTION variable
has already been allocated.

36 The program either was not defined during system generation or i s marked

out-of-service.

ERROR_STATUS Field and Codes

Chapter 4: Communications Blocks and Error Detection 53

Minor
Code

Function Status

37 A GET STORAGE operand is invalid because the specified variable storage
area is in the WORKING-STORAGE SECTION instead of the LINKAGE SECTION.

38 Either no GET STORAGE operand was specified or the specified LINKAGE

SECTION variable has not been allocated.

39 The terminal device being used is out of service.

40 NOIO has been specified but the datastream cannot be found.

41 An IF operation resulted in a valid true condition.

42 The named map does not support the terminal device in use.

43 A line I/O session has been cancelled by the terminal operator.

44 The referenced field does not participate in the specified map; a possible
cause is an invalid subscript.

45 An invalid terminal type is associated with the issuing task.

46 A terminal I/O error has occurred.

47 The named area has not been readied.

48 The run unit has not been bound.

49 NOWAIT has been specified but WAIT is required.

50 Statistics are not being kept.

51 A lock manager error occurred during the processing of a KEEP LONGTERM

request

52 The specified table is missing or invalid.

53 An error occurred from a user-written edit routine.

54 Either there is invalid internal data or a data conversion error has occurred.

55 The user-written edit routine cannot be found.

56 No DFLDS have been defined for the map.

57 The ID cannot be found, is not a long-term permanent ID, or is being used by

another run unit.

58 Either the LRID cannot be found, the maximum number of concurrent task
threads was exceeded, or an attempt was made to rollback database

changes in local mode.

59 An error occurred in transferring the KEEP LONGTERM request to IDMSKEEP

60 The requested KEEP LONGTERM lock id was already in use with a different
page group

Error Detection

54 DML Reference Guide for PLI

Minor
Code

Function Status

63 Invalid function parameters have been passed on the call to the DBMS.

64 No detail exists currently for update; no action has been taken.
Alternatively, the requested node for a header or detail is either not present

or not updated.

68 There are no more updated details to MAP IN or the amount of storage
defined for pageable maps at sysgen is insufficient. In the latter case,
subsequent MAP OUT DETAIL statements are i gnored.

72 No detail occurrence, footer, or header fields exist to be mapped out by a
MAP OUT RESUME command, or the scratch record that contains the
requested detail could not be accessed. The latter case is a mapping internal
error and should be reported.

76 The first screen page has been transmitted to the terminal.

77 Either the program is no longer signed on to the subschema or the variable
subschema tables have been overwritten.

80 The target node is either not active or has been disabled.

97 An error was encountered processing a syncpoint request; check the log for
details.

98 An unsupported COBOL compiler option (for example, DEBUG) has been

specified for an online program or a program running in a batch region has
issued a DML verb that is only valid when running online under CA
IDMS/DC/UCF.

99 An unexpected internal return code has been received; the terminal device
is out of service.

Note: For a complete description of DC runtime status codes, see the chapter "CA IDMS
Status Codes" in the Messages and Codes Guide.

Error Detection

The value returned to the ERROR_STATUS field must be checked after each DML
request. When using the Logical Record Facil ity, you should check the LR_STATUS field
of the LRC block before checking the ERROR_STATUS field.

Error Detection

Chapter 4: Communications Blocks and Error Detection 55

IDMS_STATUS Routine

IDMS_STATUS is an error-checking routine included in the dictionary. You can copy
IDMS_STATUS into your program by coding the INCLUDE IDMS MODULE statement:

INCLUDE IDMS (IDMS_STATUS);

Note: For more information about this statement, see INCLUDE IDMS MODULE (see

page 74).

IDMS_STATUS Routine Used Under Batch

The following code is copied into batch programs by the INCLUDE IDMS (IDMS_STATUS)
statement:

IDMS_STATUS: PROC;

 DECLARE IDMSIN1 ENTRY OPTIONS(INTER,ASSEMBLER);

 IF ERROR_STATUS='0000' THEN GOTO END_STATUS;

 PUT SKIP EDIT ('PROGRAM NAME ------', PROGRAM,

 'ERROR STATUS ------', ERROR_STATUS,

 'ERROR RECORD ------', ERROR_RECORD,

 'ERROR SET ---------', ERROR_SET,

 'ERROR AREA --------', ERROR_AREA,

 'LAST GOOD RECORD --', RECORD_NAME,

 'LAST GOOD AREA ----', AREA_NAME)

 (A(19),X(5),A(8),SKIP,A(19),X(5),A(4),

 5(SKIP,A(19),X(5),A(16)));

 SSC_IN01_REQ_CODE = 39;

 SSC_IN01_REQ_RETURN = 0;

 SSC_STATUS_LABEL = ' ';

 DO UNTIL (SSC_IN01_REQ_RETURN > 0);

 CALL IDMSIN1 (IDBMSCOM(41),

 SSC_IN01_REQ_WK,

 SUBSCHEMA_CTRL,

 IDBMSCOM(1),

 DML_SEQUENCE,

 SSC_STATUS_LINE);

 IF SSC_IN01_REQ_RETURN > 4 THEN

 PUT SKIP EDIT ('DML SEQUENCE ------', DML_SEQUENCE)

 (A(19),X(5),F(10));

 ELSE

 PUT SKIP EDIT (SSC_STATUS_LABEL, '---',

 SSC_STATUS_VALUE)

 (A(16),A(3),X(5),A(12));

 END;

 ROLLBACK;

 CALL ABORT;

END_STATUS: END;

Error Detection

56 DML Reference Guide for PLI

IDMS_STATUS Routine Used Under a DC/UCF System

The following code is copied into DC/UCF programs by the INCLUDE IDMS
(IDMS_STATUS) statement:

 IDMS_STATUS: PROC;

 IF ERROR_STATUS='0000' THEN GOTO END_STATUS;

 SSC_ERRSTAT_SAVE=ERROR_STATUS;

 SSC_DMLSEQ_SAVE=DML_SEQUENCE;

 SNAP FROM (SUBSCHEMA_CTRL) TO (SUBSCHEMA_CTRL_END);

 ABEND CODE (SSC_ERRSTAT_SAVE);

 END_STATUS: END;

IDMS_STATUS abends your program if the ERROR_STATUS field contains a nonzero

value. Because some values do not indicate processing errors, your program should
check ERROR_STATUS for nonzero values before call ing IDMS_STATUS.

Common Status Codes

The following values are the common codes to check before cal l ing or executing

IDMS_STATUS:

0307

End of set, area, or index

0326

No record found

0001 to 9999

Any nonzero status

0000 to 9999

Any status

3101 3201 3401 3901

Waiting will cause a deadlock

3202 3204

Insufficient space available

4303

ID cannot be found

Error Detection

Chapter 4: Communications Blocks and Error Detection 57

4404

Queue header cannot be found

4305 4404

Record cannot be found

3908

Resource not available

3909

Resource is available

3210

New space allocated

3711

Maximum attached tasks

4317

Record has been replaced

4319 4419 4519 4719

Return area too small; data has been truncated

4525 4625

Attention interrupt received

4743

The DC/UCF session was canceled by the operator

Pageable Map Status Codes

The following values are the status codes returned when using pageable maps:

4604

Second consecutive STARTPAGE

4664

No current detail

4668

All updated details mapped in or pageable map space exceeded

4672

Nothing to map out

Error Detection

58 DML Reference Guide for PLI

4676

First page transmitted

4680

A complete map page was built

When IDMS_STATUS executes, it exits immediately if the error-status check indicates

successful completion of the function (ERROR_STATUS of 0000).

Effects of Nonzero Status on IDMS_STATUS

This section describes the effects of nonzero status conditions on IDMS_STATUS
execution. The effects depend on the operating mode (BATCH or IDMS_DC) of the

application program.

Effect When the Operating Mode Is BATCH

When the operating mode is BATCH, a nonzero error status causes IDMS_STATUS to:

■ Print status information on the unsuccessful function

■ Issue a rollback

■ Abend the program

The status information retrieved from the IDMS DB communications block includes
program name, error status, error record, error set, error area, record name (the last

record successfully accessed), area name (the last area successfully accessed), page
number and line index of the dbkey (the last record accessed by the run unit), dbkey in
hexadecimal format, page group, and database-key format (associated with the last

record accessed by the run unit), and DML sequence number.

Effect When the Operating Mode Is IDMS_DC

When the operating mode is IDMS_DC, a nonzero error status causes IDMS_STATUS to:

■ Snap the IDMS DC communications block (SUBSCHEMA_CTRL)

■ Abend the program

The status information retrieved from the IDMS DC communications block includes
program name, error status, error record, error set, error area, record name (the last
record successfully accessed), area name (the last area successfully accessed), and the

DML sequence number.

Chapter 5: Required PL/I Declaratives 59

Chapter 5: Required PL/I Declaratives

This chapter describes the following PL/I declarative statements:

■ DECLARE IDMS (for BATCH mode)

■ DECLARE IDMSPLI (for IDMS_DC mode)

■ DECLARE IDMSDCP (for DC_BATCH mode)

■ DECLARE SQLXQ1 (for embedded SQL DML statements)

■ DECLARE ADDR BUILTIN

■ DECLARE ABORT

■ DECLARE IDMSP

Note: For non-reentrant PL/I programs compiled under Release 2.3 of PL/I or earlier,
you must specify OPTIONS (MAIN) in the PL/I PROCEDURE statement for the entry
procedure. For reentrant PL/I Release 2.3 or earlier programs, you must specify

OPTIONS (MAIN,REENTRANT). For AD/CYCLE (LE-COMPLIANT) PL/I programs, you must
specify OPTIONS (REENTRANT,FETCHABLE).

This section contains the followi ng topics:

DECLARE IDMS (see page 59)
DECLARE IDMSPLI (see page 59)

DECLARE IDMSDCP (see page 60)
DECLARE SQLXQ1 (see page 60)
DECLARE ADDR BUILTIN (see page 60)

DECLARE ABORT (see page 60)
DECLARE IDMSP (see page 60)

DECLARE IDMS

Include the IDMS ENTRY statement for applications executing in BATCH mode.

►►─┬─ DECLARE ─┬─ IDMS ENTRY OPTIONS (INTER, ASSEMBLER); ─────────────────────►◄
 └─ DCL ─────┘

DECLARE IDMSPLI

Include the IDMSPLI ENTRY statement for online applications executing in IDMS_DC

mode.

►►─┬─ DECLARE ─┬─ IDMSPLI ENTRY OPTIONS (INTER, ASSEMBLER); ──────────────────►◄
 └─ DCL ─────┘

DECLARE IDMSDCP

60 DML Reference Guide for PLI

DECLARE IDMSDCP

Include the IDMSDCP ENTRY statement for applications executing in DC_BATCH mode.

►►─┬─ DECLARE ─┬─ IDMSDCP ENTRY OPTIONS (INTER, ASSEMBLER); ──────────────────►◄
 └─ DCL ─────┘

DECLARE SQLXQ1

Include the SQLXQ1 ENTRY statement for applications with embedded SQL DML
statements.

►►─┬─ DECLARE ─┬─ SQLXQ1 ENTRY OPTIONS (INTER, ASSEMBLER); ───────────────────►◄
 └─ DCL ─────┘

DECLARE ADDR BUILTIN

Include the ADDR BUILTIN statement so that all database and online application

programs can use the PL/I ADDR function.

►►─┬─ DECLARE ─┬─ ADDR BUILTIN;───►◄
 └─ DCL ─────┘

DECLARE ABORT

Include the ABORT ENTRY OPTIONS statement to specify entry options for ABORT.

►►─┬─ DECLARE ─┬─ ABORT ENTRY OPTIONS (INTER, ASSEMBLER); ────────────────────►◄
 └─ DCL ─────┘

DECLARE IDMSP

Include the IDMSP ENTRY statement if your online application passes parameters using

the TRANSFER statement.

►►─┬─ DECLARE ─┬─ IDMSP ENTRY; ───►◄
 └─ DCL ─────┘

Chapter 6: DML Precompiler-Directive Statements 61

Chapter 6: DML Precompiler-Directive
Statements

This chapter describes the DML precompiler-directive statements. With the

precompiler-directive statements, you instruct the DML precompiler to copy source
code from the dictionary into your PL/I application program.

If your program accesses the database, it invokes a subschema and issues DML
statements. Therefore, it must include at least a DECLARE SUBSCHEMA statement. This

statement identifies the subschema your program uses and the operating environment
in which it executes. If your program includes a DECLARE SUBSCHEMA statement, the
DML precompiler automatically generates required source-code components, so you

can omit all other precompiler-directive statements.

If your program does not access the database, it does not require DML
precompiler-directive statements.

Note: In this chapter, references to the IDMS communications block apply to both the

IDMS DB and IDMS DC communications blocks.

This section contains the following topics:

DECLARE SUBSCHEMA (see page 61)
DECLARE MAP (see page 65)
INCLUDE IDMS (see page 66)

INCLUDE IDMS (MAP_BINDS) (see page 74)
INCLUDE IDMS MODULE (see page 74)
INCLUDE IDMS (SUBSCHEMA_BINDS) (see page 75)

INCLUDE IDMS (SUBSCHEMA_RECORD_BINDS) (see page 76)

DECLARE SUBSCHEMA

Application programs that access the database require the DECLARE SUBSCHEMA
statement. This statement:

■ Identifies a subschema view to the DML precompiler. The subschema that you

name in this statement determines the CA IDMS/DB record descriptions that the
DML precompiler can copy into your program from the data dictionary.

■ Identifies your program to the DML precompiler.

DECLARE SUBSCHEMA

62 DML Reference Guide for PLI

■ Identifies the operating mode (protocol) and environment under which the
program executes. The operating mode determines the form and content of call ing

sequences produced by the DML precompiler.

■ Specifies whether to number each DML command for identification during error
reporting (debug sequencing).

Syntax

►►─── DECLARE ──►

 ►─┬──►
 └─ (subschema-name SUBSCHEMA, schema-name SCHEMA ──────────────────────────

 ►──►
 ─┬───────────────────────────┬──
 └─ VERSION version-number ──┘

─►───┬──────────►
 ─┬───┬──) ──┘
 └─ , program-name PROGRAM ─┬──────────────────────────┬─┘
 └─ VERSION version-number ─┘

 ►─┬─────────────────────────────┬──►
 └─ MODE (─┬─ BATCH ◄ ──┬─) ─┘
 ├─ IDMS_DC ──┤
 ├─ DC_BATCH ─┤
 └─ mode ─────┘

 ►─┬─────────┬──►
 └─ DEBUG ─┘

 ►─┬───┬─ ; ────────────────────────────►◄
 └─ SUBSCHEMA_NAMES LENGTH (─┬─ 16 ─┬─) ─┘
 └─ 18 ─┘

Parameters

subschema-name SUBSCHEMA,schema-name SCHEMA

Specifies the subschema and schema view of the database used by your program.
The subschema and schema definitions must already exist in the data dictionary. If
your DBA preregisters program names valid for the subschema in the data
dictionary, the program name that you specify in the program-name parameter

(described below) must be associated with this subschema in the dictionary.

VERSION version-number

Optionally qualifies schema-name with a version number. Version-number must be

an integer in the range 1 through 9999. The default is the highest version number
defined in the data dictionary for schema-name.

DECLARE SUBSCHEMA

Chapter 6: DML Precompiler-Directive Statements 63

program-name PROGRAM

Optionally specifies the name of your program. If you preregistered this program in

the data dictionary, make sure that program-name matches the name in the data
dictionary. Otherwise, the DML precompiler will not recognize the program.

VERSION version-number

Optionally qualifies program-name with a version number (for example, for
purposes of testing or development). version-number must be an integer in the
range 1 through 9999. Version-number defaults to the highest number defined in
the data dictionary for the program, or defaults to 1 if the program is not registered

in the dictionary.

MODE

Identifies the operating mode used by the DML precompiler to generate call
statements for the program's DML statements.

BATCH

Specifies that your program executes in batch mode. The DBMS copies the
IDMS DB communications block into program variable storage and generates
standard CALL sequences. BATCH is the default.

IDMS_DC

Specifies that your program executes in IDMS_DC mode. The DBMS copies the

IDMS DC communications block into program variabl e storage and generates
CA IDMS/DC CALL sequences for CA IDMS/DC requests.

DC_BATCH

Specifies that your program executes in DC-BATCH mode. The DBMS copies the
IDMS DC communications block into program variable storage and generates

DC_BATCH CALL sequences for CA IDMS/DC requests.

DC_BATCH allows you to use all of the database DML commands, and also the
following CA IDMS/DC DML commands:

■ BIND

■ COMMIT TASK

■ DELETE QUEUE

■ FINISH

■ GET QUEUE

■ PUT QUEUE

■ ROLLBACK

■ WRITE PRINTER

You specify MODE DC_BATCH to access CA IDMS/DC queues and printers from
batch applications running under the DC/UCF system.

DECLARE SUBSCHEMA

64 DML Reference Guide for PLI

mode

Indicates that your program executes in a special environment, determined by

the database administrator. Special environments include user-defined
operating modes and teleprocessing monitors. The DML precompiler copies the
appropriate communications block into program variable storage and

generates operating-mode-specific CALL sequences.

Acceptable values for mode are:

■ CICS

■ CICS_EXEC

■ INTERCOMM

■ PL1F

■ PL1OPT

■ SHADOW

■ TASKMASTER

DEBUG

Instructs the DML precompiler to place a unique DML sequence number in the
IDMS communications block for each DML statement. These numbers appear in

columns 82 through 89 of the PL/I compiler output l isting, in the form DMLPnnnn.
The DML precompiler generates numbers to identify the sequence in which DML
statements appear in the program. Depending on the error routine defined by the
DBA, you can use the DML sequence number to help debug your program.

If you do not specify DEBUG, the DML precompiler does not associate sequence
numbers with source statements.

16/18

Specifies either 16 bytes or 18 bytes for the following fields in the IDMS
communications block: RECORD_NAME, AREA_NAME, ERROR_SET,

ERROR_RECORD, and ERROR_AREA.

Example

The following example il lustrates how to use the DECLARE SUBSCHEMA statement. In
this Example, DECLARE SUBSCHEMA accesses the EMPSS09 subschema of the EMPSCH

schema for a program named PLITST. The program runs under the IDMS_DC operating
mode and includes DEBUG sequencing.

DECLARE (EMPSS09 SUBSCHEMA,EMPSCHM SCHEMA,PLITST PROGRAM)

 MODE (IDMS_DC)

 DEBUG;

DECLARE MAP

Chapter 6: DML Precompiler-Directive Statements 65

DECLARE MAP

The DECLARE MAP statement:

■ Indicates to the DML precompiler that your program uses mapping-mode terminal
I/O

■ Defines the program's maps

Repeat the DECLARE MAP statement as many times as required to define each map

used by your program. Code DECLARE MAP statements for all of your maps before the
first INCLUDE IDMS statement.

Syntax

►►─── DECLARE (map-name MAP ─┬──────────────────────────┬─) ─────────────────►
 └─ VERSION version-number ─┘

 ►─┬──┬─ ; ─────────────────────────►◄
 └─ TYPE (─┬─ STANDARD ◄ ─┬─) ─┬──────────┬─┘
 └─ EXTENDED ───┘ └─ PAGING ─┘

Parameters

map-name MAP

Specifies the name of a map used by the program. Map-name must be the 1- to
8-character name of a map defined in the dictionary.

VERSION version-number

Optionally qualifies the named map with a version number. Version-number must

be an integer in the range 1 through 9999 that is associated with the named map in
the data dictionary.

TYPE

Specifies whether the map request block (MRB) built for the map will be standard
or extended.

STANDARD

Specifies that the map has standard 3270 terminal attributes. STANDARD is the
default.

EXTENDED

Specifies that the map has extended 3279 terminal attributes. You can use such

mapping features as color, blinking fields, and reverse video for your
application programs running under 3279-type terminals.

PAGING

Specifies that the named map is a pageable map. For more information on pageable
maps, see MAP IN (DC/UCF) , and MAP OUT (DC/UCF), or refer to the CA IDMS

Mapping Facility Guide.

INCLUDE IDMS

66 DML Reference Guide for PLI

Example

The following example il lustrates how to use the DECLARE MAP statement to access the
EMPMAPLR map:

DECLARE (EMPMAPLR MAP);

INCLUDE IDMS

You can code INCLUDE IDMS statements in your application program to copy source

code into the program. The data dictionary contains one or more items of source code
that correspond to each INCLUDE IDMS statement parameter. Accordingly, your choice
of Parameters determines the items of code copied from the data dictionary into your
program. The Syntax rules for INCLUDE IDMS (shown below) describe the INCLUDE IDMS

statement Parameters with their associated items of source code.

The source code that you copy into your program depends on the usage mode defined
in the program's subschema. The subschema usage modes are DML, LR, and MIXED.
These usage modes determine your program's source code requirements; thus, they
determine whether the program can access database records only, logical records only,

or both database records and logical records. Do not code INCLUDE IDMS statements to
copy items that conflict with your program's subschema usage mode. For example, do
not code SUBSCHEMA_LR_CTRL if your program's subschema usage mode is DML.

Subschema Usage Modes

The following table describes subschema usage modes and the source code each
requires.

Subschema usage
mode

Description and required source code

DML Allows a program to access database records only. DML requires
the following source code items:

■ The IDMS communications block through which the
application program and the DBMS communicate. For more
details, see Communications Blocks and Error Detection.

■ The descriptions of the records to which the subschema
permits access.

INCLUDE IDMS

Chapter 6: DML Precompiler-Directive Statements 67

Subschema usage
mode

Description and required source code

LR Allows a program to access logical records only. LR requires the
following source code items:

■ The IDMS communications block through which LRF and the

DBMS communicate. For more details, see Communications
Blocks and Error Detection.

■ The logical-record request control (LRC) block through which
the application program and LRF communicate. For more

details, see Communications Blocks and Error Detection.

■ The descriptions of the logical records contained in the
subschema.

MIXED Allows a program to access both database records and logical

records. MIXED requires the following source code items:

■ The IDMS communications block, through which LRF and the
DBMS communicate. For more detai ls, see Communications

Blocks and Error Detection.

■ The description of all records to which the subschema
permits access.

■ The logical-record request control (LRC) block, through which

the application program and the Logical Record Facil ity
communicate. For more details, see Communications Blocks
and Error Detection.

■ The descriptions of all logical records contained in the
subschema.

Usage of MIXED mode is not recommended for the following
reasons:

■ Issuing both logical-record and database requests requires
that your program take into account the database currencies
maintained in the paths used to service logical -record

requests.

■ Accessing both logical records and database records in the
same program can diminish the program's independence
from the database structure. This could interfere with the

execution of paths invoked to provide requested
logical-record access.

■ Logical-record path processing can interfere with program
access to database records. You may need to insert a DML

statement after a logical-record request to reestablish the
appropriate currency.

INCLUDE IDMS

68 DML Reference Guide for PLI

Syntax

►►─┬────────────────┬─ INCLUDE IDMS ──►
 └─ level-number ─┘

 ┌───┐
 ►─┬─ (─▼─ SUBSCHEMA_DML_LR_DESCRIPTION ─┬──┬─────────────┬────────┬┴─) ─┬ ; ─►◄
 │ ├─ SUBSCHEMA_DESCRIPTION ───────┤ └─ attribute ─┘ │ │
 │ ├─ SUBSCHEMA_CTRL ──────────────┤ │ │
 │ ├─ SUBSCHEMA_RECORDS ───────────┘ │ │
 │ │ │ │
 │ ├─ record-name ──┬──────────────────┬─┬─────────────┬─────┤ │
 │ │ └─ version-number ─┘ └─ attribute ─┘ │ │
 │ │ │ │
 │ ├─ TRANSACTION_STATISTICS ────────────────────────────────┤ │
 │ │ │ │
 │ ├─ SUBSCHEMA_LR_DESCRIPTION ────┬─────┬─────────────┬─────┤ │
 │ ├─ SUBSCHEMA_LR_CONTROL ────────┤ └─ attribute ─┘ │ │
 │ ├─ SUBSCHEMA_LR_RECORDS ────────┘ │ │
 │ │ │ │
 │ ├─ LR (logical-record-name) ──┬─────────────┬─────────────┤ │
 │ │ └─ attribute ─┘ │ │
 │ │ │ │
 │ ├─ MAPS ────────────────────────┬─────┬─────────────┬─────┘ │
 │ ├─ MAP map-name ────────────────┤ └─ attribute ─┘ │
 │ ├─ MAP_CONTROLS ────────────────┤ │
 │ ├─ MAP_CONTROL map-name ────────┤ │
 │ └─ MAP_RECORDS ─────────────────┘ │
 │ │
 └── (SUBSCHEMA_LR_CTRL) ─┬───────────────────────┬──┬─────────────┬───┘
 └─ SIZE lrc-block-size ─┘ └─ attribute ─┘

Parameters

level-number INCLUDE IDMS

Instructs the DML precompiler to copy source code into your program at the

INCLUDE IDMS statement's location.

The optional level-number clause instructs the DML precompiler to copy
descriptions into your program at a different level than the level specified in the
data dictionary. Level-number must be an integer in the range 01 through 99. If your

program specifies level-number, the DML precompiler copies the first level of code
to the level specified by level-number and adjusts all other levels accordingly. If your
program does not specify level-number, the descriptions copied by the DML
precompiler have the same level numbers as originally specified in the dictionary.

Using the level-number clause can cause unpredictable results if record fields are
defined with a SYNCHRONIZED clause. Such fields may contain slack bytes, inserted
to ensure correct alignment. Because CA IDMS/DB and CA IDMS/DC do not regard

slack bytes as functional, fields that contain such bytes may be misrepresented.
Therefore, you should ensure that all fields and records are structured properly.

INCLUDE IDMS

Chapter 6: DML Precompiler-Directive Statements 69

SUBSCHEMA_DML _LR_DESCRIPTION

Copies all components required to access both database and logical records:

■ SUBSCHEMA_CTRL

■ SUBSCHEMA_RECORDS

■ SUBSCHEMA_LR_CTRL

■ SUBSCHEMA_LR_RECORDS

You specify SUBSCHEMA_DML_LR_DESCRIPTION only if the subschema usage mode
is MIXED. Do not specify SUBSCHEMA_DML_LR_DESCRIPTION if the usage mode is
DML or LR.

SUBSCHEMA_DESCRIPTION

Copies all components required to access database records:

■ SUBSCHEMA_CTRL

■ SUBSCHEMA_RECORDS

Do not specify SUBSCHEMA_DESCRIPTION if the subschema usage mode is LR.

SUBSCHEMA_CTRL

Copies the IDMS DB communications block data description. If the operating mode
is IDMS_DC or DC_BATCH, SUBSCHEMA_CTRL copies the IDMS DC communications
block.

SUBSCHEMA_RECORDS

Copies the descriptions of all records contained in the subschema. The DML

precompiler may copy into your program PL/I synonyms defined for the subschema
records in the data dictionary, according to the rules of synonym usage. Do not
specify SUBSCHEMA_RECORDS if the subschema usage mode is LR.

Note: When copying a schema-owned record, the DML precompiler adds up to 7

bytes, if necessary, to make the record length divisible by 8 for doubleword
alignment.

INCLUDE IDMS

70 DML Reference Guide for PLI

record-name VERSION version-number attribute

Copies the description of a record defined in the dictionary. Do not specify record if

the subschema's usage mode is LR.

record-name

Specifies the name of the record to be copied. It can be the primary name of a

record stored in the data dictionary, or a synonym.

Schema-owned records cannot be copied into non CA IDMS programs. These
are programs that neither use a subschema nor access the database. However,
a synonym defined for a schema-owned record can be copied into a non CA

IDMS program. You use the VERSION clause to identify the synonym.

If the DMLP processor cannot find a record named record-name in the
dictionary, it searches for a module by that name. The module, which may have
been stored using the DDDL compiler, presumably contains a definition of

records not included in the subschema. If an operating mode is associated with
the named record or module in the data dictionary, it must agree with the
mode in effect for your program. (See "DECLARE SUBSCHEMA", earlier in this

chapter.)

Note: For more information about associating operating modes with records,
see the CA IDMS IDD DDDL Reference Guide.

VERSION version-number

Optionally qualifies IDD records, but not schema -owned records, with a version

number. Version-number must be an integer in the range 1 through 9999.
Version-number defaults to the highest version number of the record defined in
the data dictionary for the language and operating mode under which the
program compiles.

attribute

Optionally allows you to instruct the DML precompiler to include PL/I attributes
in the PL/I DECLARE statement. The DML precompiler generates the PL/I
DECLARE statement for the record that you specify in record-name.

TRANSACTION_STATISTICS

Copies the definition of the transaction statistics block (TSB) with a length of 560

bytes. This block can be used in the ACCEPT TRANSACTION STATISTICS or END
TRANSACTION STATISTICS DML statements.

INCLUDE IDMS

Chapter 6: DML Precompiler-Directive Statements 71

SUBSCHEMA_LR_DESCRIPTION

Copies all components required to access logical records:

■ SUBSCHEMA_CTRL

■ SUBSCHEMA_LR_CTRL

■ SUBSCHEMA_LR_RECORDS

Do not specify SUBSCHEMA_LR_DESCRIPTION if the subschema's usage mode is
DML.

SUBSCHEMA_LR_CONTROL

Copies the SUBSCHEMA_CTRL and SUBSCHEMA_LR_CTRL components. Do not
specify SUBSCHEMA_LR_CONTROL if the subschema usage mode is DML.

SUBSCHEMA_LR_RECORDS

Copies the descriptions of all logical records defined in the subschema. All

participating database records become 02-level group fields. This allows your
program to reference the portion of a logical record corresponding to a database
record as a group field. Do not specify SUBSCHEMA_LR_RECORDS if the subschema

usage mode is DML.

Note: When copying a schema-owned record, the DML precompiler adds up to 7
bytes, if necessary, to make the record length divisible by 8 for doubleword
alignment.

LR (logical-record-name)

Copies the description of an individual logical record contained in the subschema:
do not include LR if the subschema usage mode is DML.

logical-record-name

Names the logical record.

attribute

Optionally allows you to instruct the DML precompiler to include PL/I attributes
in the PL/I DECLARE statement. The DML precompiler generates the PL/I

DECLARE statement for the logical record that you specify in
logical-record-name.

MAPS

Copies the map request block (MRB) and map records for the maps that you specify
with DECLARE MAP statements.

INCLUDE IDMS

72 DML Reference Guide for PLI

MAP

Copies the MRB and map records associated with the named map. The map's

version number defaults to the version number that you specify for this map in the
DECLARE MAP statement.

map-name

Names the map.

attribute

Attribute optionally allows you to instruct the DML precompiler to include PL/I
attributes in the PL/I DECLARE statement. The DML precompiler generates the

PL/I DECLARE statement for the map that you specify in map-name.

MAP_CONTROLS

Copies the MRBs for the maps that you specify in DECLARE MAP statements.

MAP_CONTROL

Copies the MRB for the named map. The map's version number defaults to the
version number that you specify for this map in the DECLARE MAP statement.

map-name

Names a map.

attribute

Optionally allows you to instruct the DML precompiler to include PL/I attributes

in the PL/I DECLARE statement. The DML precompiler generates the PL/I
DECLARE statement for the map that you specify in map-name.

MAP_RECORDS

Copies the map records for the maps that you specify in DECLARE MAP statements.

SUBSCHEMA_LR_CTRL

Copies the LRC block data description.

Do not specify SUBSCHEMA_LR_CTRL if the subschema usage mode is DML.

SIZE (lrc-block-size)

Optionally specifies the size of that portion of the LRC block that contains
information about the logical -record-request WHERE clause (PXE).

Lrc-block-size defaults to 512 bytes. If you include lrc-block-size, you should specify

a size large enough to accommodate the most complex WHERE clause in the
program. The default, 512, is large enough to include approximately 32 operators,
operands, and literals.

INCLUDE IDMS

Chapter 6: DML Precompiler-Directive Statements 73

Lrc-block-size must be a positive integer in the range 0 through 9999. You specify a
value of 0 if none of the logical -record requests issued by the program includes a

WHERE clause. You calculate lrc-block-size as follows:

1. Multiply the greatest number of operands and operators in a single WHERE
clause by 16 bytes.

2. Add the number of bytes, rounded up to the nearest multiple of 8, associated
with the data field for each operand that is a keyword, a program variable, or a
logical-record field named in the OF LR clause.

3. Add the length, rounded up to the nearest multiple of 8, of each operand that

is a character l iteral.

4. Add 12 bytes for each operand that is a numeric l iteral.

INCLUDE IDMS Code

The following figure shows the code that the DML precompiler copies into program

variable storage for each INCLUDE IDMS statement parameter.

INCLUDE IDMS (MAP_BINDS)

74 DML Reference Guide for PLI

INCLUDE IDMS (MAP_BINDS)

INCLUDE IDMS (MAP_BINDS) copies map- and map-record-specific BIND MAP
statements for all maps that you specify with DECLARE MAP statements.

Syntax

►►─┬─────────────────────────────┬──►◄
 └─ INCLUDE IDMS (MAP_BINDS); ─┘

Parameters

INCLUDE IDMS (MAP_BINDS)

Copies map- and map-record-specific BIND MAP statements for all maps that you
specify with DECLARE MAP statements.

If your program uses a map, it requires a BIND MAP statement for the map and for
each associated map record. The BIND MAP statement identifies the location of the

MRB and initializes fields within the MRB. If you code the INCLUDE IDMS
(MAP_BINDS) statement in your program, the DML processor automatically copies
appropriate BIND MAP statements into your program. For more information on the
BIND MAP statement, see BIND MAP (DC/UCF).

You must individually bind map records associated with logical records.

INCLUDE IDMS MODULE

INCLUDE IDMS (module-name) copies procedure source statements defined by the
database administrator as modules in the dictionary.

Syntax

 ┌───┐
►►─▼─┬───┬─┴──────►◄
 └─ INCLUDE IDMS (module-name ─┬──────────────────────────┬─); ─┘
 └─ VERSION version-number ─┘

Parameters

INCLUDE IDMS (module-name)

Copies procedure source statements defined by the DBA as modules in the
dictionary. Module-name specifies the name of a module previously defined by the
DBA using the DDDL compiler (refer to the CA IDMS IDD DDDL Reference Guide).
The available PL/I standard modules are:

■ IDMS_STATUS

■ IDMS_STATUS (mode is IDMS_DC)

INCLUDE IDMS (SUBSCHEMA_BINDS)

Chapter 6: DML Precompiler-Directive Statements 75

The DML precompiler inserts the module into your program at the location of the
INCLUDE IDMS MODULE statement, without modification. If the module contains

DML statements, the DML precompiler examines and expands them within the
context of your program's subschema view and compile mode, as if they were
coded directly.

Note: The INCLUDE IDMS MODULE statement can precede the DECLARE
SUBSCHEMA statement if the module it copies does not contai n DML statements.

You can nest INCLUDE IDMS MODULE statements. This means that code invoked by
an INCLUDE IDMS MODULE entry can itself contain INCLUDE IDMS MODULE
statements. However, make sure that a copied module does not copy itself.

VERSION version-number

Optionally qualifies module-name with a version number. Version-number must be

an integer in the range 1 through 9999.

There are two defaults for version-number, depending on whether:

■ There is a version of the module that you name with module-name which is

operating-mode-specific. In this case, the default is the version number of this
module. If there are two or more mode-specific versions of the module,
version-number defaults to the highest version number among these versions.

■ There is a version of the module that you name with module-name which is
non-operating-mode-specific, and there exists no operating-mode-specific

version. In this case, the default is the version number of this module. If there
are two or more non-mode-specific versions of the module, version-number
defaults to the highest version number among these versions.

If no version of the module exists in the dictionary, an error condition results. For

more information, see the CA IDMS Messages and Codes Guide.

INCLUDE IDMS (SUBSCHEMA_BINDS)

INCLUDE IDMS (SUBSCHEMA_BINDS):

■ Initializes the PROGRAM_NAME field in the IDMS DB communications block

■ Copies a standard BIND RUN_UNIT statement and appropriate standard BIND
RECORD commands for each CA IDMS/DB record in your program's variable
storage.

This statement does not generate BIND RECORD statements for logical records. Your
program does not need them. INCLUDE IDMS (SUBSCHEMA_BINDS) only generates

BINDS for subschema records explicitly copied into your program by INCLUDE IDMS
statements.

INCLUDE IDMS (SUBSCHEMA_RECORD_BINDS)

76 DML Reference Guide for PLI

Do not use the INCLUDE IDMS (SUBSCHEMA_BINDS) statement when binding several
records to the same location. Instead, code BIND RUN_UNIT and BIND RECORD

statements separately for each record. This allows you to include a CALL IDMS_STATUS
statement after each BIND RECORD statement to check the ERROR_STATUS field.

Note: The INCLUDE IDMS (SUBSCHEMA_BINDS) statement does not automatically
generate BIND RECORD statements when more than one copy of a given database
record description (including synonyms) is present in the program. For such records,

issue individual BIND RECORD statements to bind the records to the correct location.

Syntax

►►─┬───────────────────────────────────┬──────────────────────────────────────►◄
 └─ INCLUDE IDMS (SUBSCHEMA_BINDS); ─┘

INCLUDE IDMS (SUBSCHEMA_RECORD_BINDS)

INCLUDE IDMS SUBSCHEMA_RECORD_BINDS copies appropriate standard BIND

record-name statements for each CA IDMS/DB record in the program.

In cases where more than one copy of a given database record description (including

synonyms) is present in the program, INCLUDE IDMS SUBSCHEMA_RECORD_BINDS will
not automatically generate bind record statements. Individual bind record statements
must be issued to bind the record to the correct location.

Do not use the INCLUDE IDMS SUBSCHEMA_RECORD_BINDS statement when binding
several records to the same location. Instead, code DML BIND s tatements for each

record.

Syntax

►►─┬──┬───────────────────────────────►◄
 └─ INCLUDE IDMS (SUBSCHEMA_RECORD_BINDS); ─┘

Chapter 7: Data Manipulation Language Statements 77

Chapter 7: Data Manipulation Language
Statements

This chapter describes the Data Manipulation Language (DML) that applies to CA

IDMS/DB, CA IDMS/DC, and CA IDMS UCF.

Note: The DC/UCF references in this chapter include both the CA IDMS/DC and CA IDMS
UCF products.

DML consists of statements that enable you to access the database management system

(DBMS) and to request Logical Record Facil ity (LRF) and data communications services.

This chapter presents the following information:

■ Tables describing the database and data communications functions of DML

statements

■ Tables grouping the DML statements by function

Discussions of each DML statement (statements are in alphabetical order). Discussions
include an overall description of the statement, Syntax, parameter descriptions, and

examples

Important! When you review the Syntax for each DML statement, note that you must
code the Parameters in the order in which they are shown.

INCLUDE IDMS (SUBSCHEMA_RECORD_BINDS)

78 DML Reference Guide for PLI

This section contains the following topics:

Functions of DML Statements (see page 79)

DML Statements Grouped by Function (see page 81)
ABEND (DC/UCF) (see page 88)
ACCEPT (DC/UCF) (see page 89)

ACCEPT BIND RECORD (see page 91)
ACCEPT DBKEY FROM CURRENCY (see page 92)
ACCEPT DBKEY RELATIVE TO CURRENCY (see page 94)
ACCEPT IDMS STATISTICS (see page 97)

ACCEPT PAGE_INFO (see page 99)
ACCEPT PROCEDURE CONTROL LOCATION (see page 101)
ACCEPT TRANSACTION STATISTICS (DC/UCF) (see page 102)
ATTACH (DC/UCF) (see page 108)

BIND MAP (DC/UCF) (see page 110)
BIND PROCEDURE (see page 112)
BIND RECORD (see page 113)

BIND RUN_UNIT (see page 115)
BIND TASK (DC/UCF) (see page 118)
BIND TRANSACTION STATISTICS (DC/UCF) (see page 119)
CHANGE PRIORITY (DC/UCF) (see page 120)

CHECK TERMINAL (DC/UCF) (see page 121)
COMMIT (see page 122)
CONNECT (see page 124)

DC RETURN (DC/UCF) (see page 126)
DELETE QUEUE (DC/UCF) (see page 129)
DELETE SCRATCH (DC/UCF) (see page 131)
DELETE TABLE (DC/UCF) (see page 133)

DEQUEUE (DC/UCF) (see page 134)
DISCONNECT (see page 135)
END LINE TERMINAL SESSION (DC/UCF) (see page 137)

END TRANSACTION STATISTICS (DC/UCF) (see page 138)
ENDPAGE (DC/UCF) (see page 140)
ENQUEUE (DC/UCF) (see page 140)
ERASE (see page 143)

ERASE (LRF) (see page 149)
FIND/OBTAIN (see page 150)
FINISH (see page 170)
FREE STORAGE (DC/UCF) (see page 171)

GET (see page 173)
GET QUEUE (DC/UCF) (see page 174)
GET SCRATCH (DC/UCF) (see page 178)

GET STORAGE (DC/UCF) (see page 181)
GET TIME (DC/UCF) (see page 185)
IF (see page 187)
INQUIRE MAP (DC/UCF) (see page 189)

KEEP CURRENT (see page 198)
KEEP LONGTERM (DC/UCF) (see page 200)
LOAD TABLE (DC/UCF) (see page 205)

Functions of DML Statements

Chapter 7: Data Manipulation Language Statements 79

MAP IN (DC/UCF) (see page 207)
MAP OUT (DC/UCF) (see page 213)

MAP OUTIN (DC/UCF) (see page 219)
MODIFY MAP (DC/UCF) (see page 223)
MODIFY RECORD (see page 230)

MODIFY RECORD (LRF) (see page 234)
OBTAIN (LRF) (see page 236)
POST (DC/UCF) (see page 238)
PUT QUEUE (DC/UCF) (see page 239)

PUT SCRATCH (DC/UCF) (see page 241)
READ LINE FROM TERMINAL (DC/UCF) (see page 244)
READ TERMINAL (DC/UCF) (see page 246)
READY (see page 249)

RETURN (DC/UCF) (see page 252)
ROLLBACK (see page 255)
SEND MESSAGE (DC/UCF) (see page 257)

SET TIMER (DC/UCF) (see page 259)
SNAP (DC/UCF) (see page 263)
STARTPAGE (DC/UCF) (see page 265)
STORE RECORD (see page 268)

STORE RECORD (LRF) (see page 273)
TRANSFER (DC/UCF) (see page 275)
WAIT (DC/UCF) (see page 277)

WRITE JOURNAL (DC/UCF) (see page 279)
WRITE LINE TO TERMINAL (DC/UCF) (see page 281)
WRITE LOG (DC/UCF) (see page 284)
WRITE PRINTER (DC/UCF) (see page 290)

WRITE TERMINAL (DC/UCF) (see page 295)
WRITE THEN READ TERMINAL (DC/UCF) (see page 297)
Logical-Record Clauses (WHERE and ON) (see page 301)

Functions of DML Statements

This section describes the 14 categories of DML statements. There are 6 categories of
database (CA IDMS/DB) functions. There are 8 categories of data communications
(DC/UCF system) functions.

Functions of DML Statements

80 DML Reference Guide for PLI

Database Functions

The following is a l ist of the 6 database DML functions:

■ Control statements:

– Initiate and terminate processing

– Effect recovery

– Prevent concurrent retrieval and update of database records

– Evaluate set conditions

■ Retrieval statements locate records in the database and make them available to the

application program.

■ Modification statements add new records to the database and modify and delete
existing records.

■ Accept statements move special information such as database keys, storage
addresses, and statistics from the DBMS to program variable storage.

■ Logical-record statements retrieve, modify, store, and erase logical records.

■ Recovery statements perform functions relating to database, scratch, and queue
area recovery in the event of a system failure. These functions:

– Establish checkpoints in the journal fi le for database, scratch, and queue
records used by the issuing task

– Roll back user database, scratch, and queue areas to the last checkpoint

established

– Establish an end-of-task checkpoint and relinquish control of all database,

scratch, and queue areas associated with the issuing task

– Write user-defined records to the journal fi le

Data Communications Functions

The following is a l ist of the 8 data communications DML functions:

■ Program management statements:

– Pass and return control from one program to another

– Load and delete programs and tables

– Define exit routines to be performed before an abnormal program termination
(abend)

– Force an abend condition

■ Storage management statements allocate and release variable storage.

DML Statements Grouped by Function

Chapter 7: Data Manipulation Language Statements 81

■ Task management statements:

– Initiate a new task

– Change the dispatching priority of the issuing task

– Enqueue and dequeue system resources

– Signal that a task is to wait pending completion of an event

– Post an event control block (ECB), indicating completion of an event

■ Time management statements obtain the time and date and define time-related

events. These events include:

– Placing the issuing task in a wait state for a specified amount of time

– Posting a user-specified ECB after a specified interval

– Initiating a new task after a specified interval

■ Scratch management statements create, delete, or retrieve records from the

scratch area.

■ Queue management statements create, delete, or retrieve records from the queue
area.

■ Terminal management statements transfer data between the application program
and the terminal.

■ Utility function statements:

– Request retrieval of task-related information

– Request a memory dump of selected parts of storage

– Retrieve and send a predefined message stored in the data dictionary

– Send a specified message to one or more users or logical terminals

– Collect, retrieve, and write DC/UCF system statistics on a transaction basis

– Establish longterm database locks and monitor access to database records used
across tasks during a pseudo-conversational transaction

DML Statements Grouped by Function

The two tables in this section list and describe the DML statements by their database
and data communications functions, respectively.

DML Statements Grouped by Function

82 DML Reference Guide for PLI

DML Statements (Database)

The following table l ists CA IDMS/DB DML statements by function.

Note: You can use CA IDMS/DB statements in a DC/UCF system environment. However,
you cannot use DC/UCF system statements in the CA IDMS/DB environment.

Function DML Statement Description

Control BIND RUN-UNIT Signs on the application program to
the DBMS

 BIND RECORD Establishes addressability in variable

storage for one or more records
included in the program's subschema

 BIND PROCEDURE Establishes communication between
the application program and a

DBA-defined database procedure

 READY Prepares database areas for processing

 FINISH Commits changes made to the
database through an individual run

unit or through all database sessions
associated with a task

 IF Evaluates the presence of member

records in a set or a record's
membership status and specifies
action based on the outcome

 COMMIT Commits changes made to the

database through an individual run
unit or through all database sessions
associated with a task

 ROLLBACK Rolls back uncommitted changes made
to the database through an individual
run unit or through all database
sessions associated with a task

 KEEP CURRENT Places an explicit shared or exclusive
lock on a record that is current of run
unit, record, set, or area

Retrieval FIND/OBTAIN DBKEY Accesses a record using a db-key
previously saved by the program

 FIND/OBTAIN CURRENT Accesses a record using previously
established currencies

DML Statements Grouped by Function

Chapter 7: Data Manipulation Language Statements 83

Function DML Statement Description

 FIND/OBTAIN WITHIN SET/AREA Accesses a record based on its logical

location within a set or its physical
location within an area

 FIND/OBTAIN OWNER Accesses the owner record of a set

occurrence

 FIND/OBTAIN CALC/DUPLICATE Accesses a record using its CALC-key
value

 FIND/OBTAIN USING SORT KEY Accesses a record in a sorted set using

its sort-key value

 GET Moves all data associated with a
previously located record into program
variable storage

 RETURN Retrieves the database and symbolic
keys of an indexed record entry

Modificatio

n

STORE Adds a new record to the database

 MODIFY Changes the contents of an existing
record

 CONNECT Links a record to a set

 DISCONNECT Removes a member record from a set

 ERASE Deletes a record from the database

Accept ACCEPT DBKEY FROM

CURRENCY

Saves the db-key and optionally the

page information of the current record
of run unit, record type, set, or area

 ACCEPT DBKEY RELATIVE TO
CURRENCY

Saves the db-key and optionally the
page information of the next, prior, or

owner record relative to the current
record of a set

 ACCEPT IDMS STATISTICS Returns system runtime statistics to

the program

 ACCEPT BIND RECORD Returns a record's bind address to the
program

 ACCEPT PAGE_INFO Returns page information for a given

record to the program

DML Statements Grouped by Function

84 DML Reference Guide for PLI

Function DML Statement Description

 ACCEPT PROCEDURE Returns information from the

application program information block
associated with a database procedure
to the program

Logical
Record
Facil ity

ERASE Deletes a logical record

 MODIFY Modifies a logical record

 OBTAIN Accesses a logical record

 STORE Stores a logical record

Recovery COMMIT Commits changes made to the
database through an individual run

unit or through all database sessions
associated with a task

 FINISH Commits changes made to the

database through an individual run
unit or through all database sessions
associated with a task

 ROLLBACK Rolls back uncommitted changes made

to the database through an individual
run unit or through all database
sessions associated with a task

 WRITE JOURNAL Writes user-defined records to the
journal fi le

DML Statements (Data Communications)

The following table l ists DC/UCF DML statements by function.

Note: You cannot use DC/UCF system statements in the CA IDMS/DB environment.

Function DML Statement Description

Program

Management

TRANSFER (LINK) Passes control to

another program with
the expectation of
receiving it back

DML Statements Grouped by Function

Chapter 7: Data Manipulation Language Statements 85

Function DML Statement Description

 TRANSFER (XCTL) Passes control to

another program with
no expectation of
receiving it back

 DC RETURN Returns control to the
next higher level call ing
program

 LOAD TABLE Loads a program or

table into the DC/UCF
program pool

 DELETE TABLE Signals that a program
has finished using a

program or a table in
the program pool

 ABEND Abnormally terminates

the issuing task

Storage
Management

GET STORAGE Allocates variable
storage from a DC/UCF
storage pool

 FREE STORAGE Frees all or part of a
block of variable storage

Task

Management

ATTACH Attaches a new task

within DC/UCF

 CHANGE PRIORITY Changes the dispatching
priority of the issuing
task

 ENQUEUE Acquires a resource or a
l ist of resources

 DEQUEUE Releases a resource

 WAIT Relinquishes control to
DC/UCF while awaiting
completion of an event

 POST Posts an event control

block (ECB)

Time
Management

GET TIME Obtains the time and
date from the system

 SET TIMER Defines a time-delayed

event

DML Statements Grouped by Function

86 DML Reference Guide for PLI

Function DML Statement Description

Scratch

Management

PUT SCRATCH Stores a scratch record

 GET SCRATCH Retrieves a scratch
record

 DELETE SCRATCH Deletes a scratch record

Queue
Management

PUT QUEUE Stores a queue record

 GET QUEUE Retrieves a queue

record

 DELETE QUEUE Deletes a queue record

Terminal
Management

(Basic Mode)

READ TERMINAL Requests a synchronous
or asynchronous data

transfer from the
terminal to program
variable storage

 WRITE TERMINAL Requests a synchronous
or asynchronous data
transfer from program
variable storage to the

terminal buffer

 WRITE THEN READ TERMINAL Requests a synchronous
or asynchronous data

transfer from program
variable storage to the
terminal buffer; and on
a terminal operator

signal, back to variable
storage

 CHECK TERMINAL Ensures that a

previously issued
asynchronous I/O
operation is complete

Terminal

Management
(Line Mode)

READ LINE FROM TERMINAL Requests a synchronous

data transfer from the
terminal to the issuing
program

DML Statements Grouped by Function

Chapter 7: Data Manipulation Language Statements 87

Function DML Statement Description

 WRITE LINE TO TERMINAL Requests a synchronous

or asynchronous data
transfer from the
issuing program to the

terminal

 END LINE TERMINAL SESSION Terminates the current
l ine I/O session

 WRITE PRINTER Requests transmission

of data from a task to a
printer

Terminal
Management

(Mapping Mode)

MAP IN Requests a transfer of
data from the terminal

to program variable
storage

 MAP OUT Requests a transfer of

data from program
variable storage to the
terminal

 MAP OUTIN Requests a transfer of

data from program
variable storage to the
terminal; and, upon a

terminal operator
signal, back to variable
storage

 INQUIRE MAP Obtains information or

tests conditions
concerning the previous
mapping operation

 MODIFY MAP Requests modifications
of mapping options for
a map

 STARTPAGE Begins a map paging

session and specifies
options for that session

 ENDPAGE Terminates a map
paging session

Util ity BIND MAP Identifies the location of
a map request block
(MRB) and initializes the

MRB's fields

ABEND (DC/UCF)

88 DML Reference Guide for PLI

Function DML Statement Description

 ACCEPT Retrieves task-related

information

 SNAP Requests a memory
dump of selected parts

of storage

 SEND MESSAGE Sends a message to a
user, logical terminal, or
l ist of users or logical

terminals

 BIND TRANSACTION STATISTICS Defines the beginning of
a transaction for the
purpose of collecting

transaction statistics

 ACCEPT TRANSACTION STATISTICS Returns the contents of
the transaction statistics

block (TSB) to program
variable storage

 END TRANSACTION STATISTICS Defines the end of a
transaction

 KEEP LONGTERM Either modifies a prior
KEEP LONGTERM
request or enables

database longterm locks
or database monitoring
for records, sets, or
areas

 WRITE LOG Retrieves a message
from the data dictionary
and sends it to a

predefined destination

ABEND (DC/UCF)

The ABEND statement terminates the issuing task abnormally. Optionally, ABEND also
writes a task dump to the log fi le. Upon completion of the ABEND function, the DBMS

returns processing control to the DC/UCF system program-control module.

Syntax

►►─── ABEND CODE (abend-code) ─┬────────────┬─ ; ─────────────────────────────►◄
 ├─ NODUMP ◄ ─┤
 └─ DUMP ─────┘

ACCEPT (DC/UCF)

Chapter 7: Data Manipulation Language Statements 89

Parameters

ABEND CODE(abend-code)

Specifies a 4-character abend code that you select. Abend-code can be the symbolic
name of a variable storage field containing the abend code, or the code itself

enclosed in single quotation marks.

Note: Because the abend code that you specify appears in the system log and
displays at the task's terminal, you should not use sys tem abend codes.

NODUMP/DUMP

Specifies whether the system writes a formatted task dump to the log fi le. The

default is NODUMP.

Example

In this example, ABEND terminates the issuing task abnormally, issuing the code U876,
and writes a task dump to the log fi le:

ABEND CODE('U876')

 DUMP;

Status Codes

Because the DBMS passes control to the system program-control module, your program
does not have to check the ERROR_STATUS field.

ACCEPT (DC/UCF)

The ACCEPT statement retrieves the following task-related information:

■ Current task code

■ Task identifier

■ Logical terminal identifier

■ Physical terminal identifier

■ DC/UCF system version

■ User identifier (the ID of the user signed on to the task's logical terminal)

■ Physical terminal screen dimensions

■ System ID

ACCEPT (DC/UCF)

90 DML Reference Guide for PLI

Syntax

►►──── ACCEPT ──┬─ TASK CODE───┬─ INTO (return-location); ────────────────────►◄
 ├─ TASK ID ────┤
 ├─ LTERM ID ───┤
 ├─ PTERM ID ───┤
 ├─ SYSVERSION ─┤
 ├─ USER ID ────┤
 ├─ SCREENSIZE ─┤
 └─ SYSTEM ID ──┘

Parameters.

TASK CODE

Specifies the 1- to 8-character code that invokes the current task.

TASK ID

Specifies the task identifier assigned by the system. The task identifier is a unique
sequence number stored in a FIXED BINARY(31) field. At system startup, the
DC/UCF system sets the ID to 0. Each time a task executes, the system increments

the ID by 1.

LTERM ID

Specifies the 1- to 8-character identifier of the logical terminal associated with the
current task. If the current task has no associated logical terminal, the system
returns spaces (null value).

PTERM ID

Specifies the 1- to 8-character identifier of the physical terminal associated with the
current task. If the current task has no associated physical terminal, the system

returns spaces (null value).

SYSVERSION

Specifies the version number of the current DC/UCF system. The version number is
an integer in the range 0 through 9999 stored in a halfword binary numeric field.

USER ID

Specifies the 32-character identifier of the user signed on to the logical terminal
associated with the current task. If no user is signed on, the system returns spaces
(null value).

SCREENSIZE

Specifies the screen dimensions of the current task's associated physical terminal.

The system returns the screen size to a field divided into two FIXED BINARY(15)
fields. The first field contains the row; the second field contains the column. For
example, values of 24 in the first halfword and 80 in the second ha lfword represent
a 24-line by 80-character screen. If the current task has no associated terminal, the

system returns a null value of 0.

ACCEPT BIND RECORD

Chapter 7: Data Manipulation Language Statements 91

SYSTEM ID

Specifies the 8 character name (nodename) by which the DC/UCF system is known

to other nodes in the DC/UCF communications network.

INTO (return-location)

Specifies the location to which the DC/UCF system returns the requested

task-related information. Return-location specifies the symbolic name of a
user-defined field. The pictures and usages of this field and of the requested data
must be compatible.

Example

The following ACCEPT statements i l lustrate retrieving the ID of the current task and the
id of the user signed on to the task's associated logical terminal:

ACCEPT TASK ID INTO (TASK_ID);

ACCEPT USER ID INTO (USER_ID);

Status Codes

Upon completion of the ACCEPT function, the ERROR_STATUS field in the IDMS DC

communications block indicates the outcome of the operation:

Status code Meaning

0000 The request was serviced successfully.

4829 An invalid parameter was passed from the program.

ACCEPT BIND RECORD

The ACCEPT BIND RECORD statement moves the bind address of a record to a specified

location in program variable storage. Usually, a subprogram uses this statement to
acquire the address of a record.

Currency

The ACCEPT BIND RECORD statement updates no currencies. However, your program
must establish currency for the record type whose bind address it requires.

Syntax

►►─── ACCEPT BIND RECORD (record-name) INTO (bind-address); ──────────────────►◄

ACCEPT DBKEY FROM CURRENCY

92 DML Reference Guide for PLI

record-name

Specifies the record whose bind address will be copied into the specified location in

variable storage. Record-name must be a record previously bound by the run unit.

INTO (bind-address)

Specifies the variable-storage location to which CA IDMS/DB and the system return

the record's bind address. Bind-address is defined as a FIXED BINARY(31) field. After
the ACCEPT BIND RECORD statement executes, bind-address contains a storage
address, not a database key.

Example

This example uses ACCEPT BIND RECORD to move the bind address for the EMPLOYEE
record to location REG1 in the requesting subprogram:

ACCEPT BIND RECORD (EMPLOYEE) INTO (REG1);

Status Codes

Upon completion of the ACCEPT BIND RECORD function, the ERROR_STATUS field in the

IDMS DB communications block indicates the outcome of the operation:

Status code Meaning

0000 The request was serviced successfully.

1508 The subschema does not contain the named record.

ACCEPT DBKEY FROM CURRENCY

The ACCEPT DBKEY FROM CURRENCY statement moves the db-key and optionally the

page information of the current record of run unit, record type, set, or area to a
specified location in program variable storage. By using a FIND/OBTAIN DBKEY
statement, you can directly access records whose db-keys you save using the ACCEPT

DBKEY FROM CURRENCY statement.

Currency

ACCEPT DBKEY FROM CURRENCY does not update currencies.

Syntax

►►─── ACCEPT CURRENCY ─┬────────────────────────┬───────────────────►
 ├─ RECORD (record-name) ─┤
 ├─ SET (set name) ───────┤
 └─ AREA (area-name) ─────┘

 ►─ INTO (db-key-field)─┬─────────────────────────────────────┬─ ; ─►◄
 └ PAGE INFO INTO (page-info-location ─┘

ACCEPT DBKEY FROM CURRENCY

Chapter 7: Data Manipulation Language Statements 93

Parameters

RECORD (record-name)

Saves the db-key of the record current of the specified record type into the location
specified by db-key-field.

SET (set-name)

Saves the db-key of the record current of the specified set into the location
specified by db-key-field.

AREA (area-name)

Saves the db-key of the record current of the specified area into the location

specified by db-key-field.

INTO (db-key-field)

Identifies the location in variable storage that will contain the db-key of the
specified record. Db-key-field must be a FIXED BINARY(31) field.

Note: If you omit the RECORD, SET, or AREA qualifiers, the DBMS saves the db-key
of the record current of run unit.

INTO (page-info-location)

Specifies the name of the four-byte field that can be defined either as a group field
or as a fullword field (PIC S9(8) COMP). Identifies the location in variable storage
that contains page information for the specified record type. Upon successful
completion of this statement, the first two bytes of the field contain the page group

number and the last two bytes contain a db-key radix that can be used for
interpreting dbkeys.

Example

The following example:

1. Establishes a record, named EMPLOYEE, as current of run unit

2. Saves the record's db-key in a location named SAVED_DBKEY and saves the page

information of the record in a location named SAVED_PGINFO, using the ACCEPT
DBKEY FROM CURRENCY statement

3. Accesses the EMPLOYEE record occurrence using the saved db-key

EMP_ID_0415 = EMP_ID_IN;

FIND CALC RECORD (EMPLOYEE);

ACCEPT CURRENCY INTO (SAVED_DBKEY) PAGE_INFO INTO (SAVED_PGINFO);

 .

 .

 .

OBTAIN DBKEY (SAVED_DBKEY);

ACCEPT DBKEY RELATIVE TO CURRENCY

94 DML Reference Guide for PLI

Status Codes

Upon completion of the ACCEPT DBKEY FROM CURRENCY function, the ERROR_STATUS
field in the IDMS DB communications block indicates the outcome of the operation:

0000

The request was serviced successfully.

1506

Currency was not established for the named record or set.

1508

The subschema does not contain the named record or set. Your program probably

invoked the wrong subschema.

1523

The subschema does not contain the named area.

ACCEPT DBKEY RELATIVE TO CURRENCY

The ACCEPT DBKEY RELATIVE TO CURRENCY statement moves a selected db-key and

optionally its page information to a specified location in program variable storage. The
db-key moved to variable storage can be the db-key of the next, prior, or owner record
relative to the current record of set.

This version of the ACCEPT statement allows you to save the db-key of a record within a
set without actually having to access the record. By using a FI ND/OBTAIN DBKEY

statement, you can directly access records whose db-keys you save using the ACCEPT
DBKEY RELATIVE TO CURRENCY statement.

Note: You must establish set currency before using this statement. If no set currency is

established, the DBMS returns 0000 to the ERROR_STATUS field and -1 to the db-key
field.

Currency

ACCEPT DBKEY RELATIVE TO CURRENCY does not update any currencies.

Syntax

►►─── ACCEPT CURRENCY SET (set name) ─┬─ NEXT ──┬─ INTO (db-key-field) ──────►
 ├─ PRIOR ─┤
 └─ OWNER ─┘

 ►────────────────────────┬──────────────────────────────────────┬─ ; ───────►◄
 └ PAGE INFO INTO (page-info-location)──┘

ACCEPT DBKEY RELATIVE TO CURRENCY

Chapter 7: Data Manipulation Language Statements 95

Parameters

SET (set-name)

Identifies the record whose db-key will be moved into the location specified by
db-key, described below. Set-name must be a set included in the subschema.

When a record declared as an optional or manual member of a set is accessed, it
does not become current of set unless it is connected to an occurrence of the set. If
the record is not connected to an occurrence of the set, an attempt to access the
owner record will locate instead the owner of the current record of set. In such

cases, use the OWNER option to determine whether the retrieved record is actually
a set member before executing the ACCEPT DBKEY RELATIVE TO CURRENCY
statement. You can do this with the IF statement, described later in this chapter.

NEXT

Saves the db-key of the next record relative to the record current of the

specified set. You cannot request NEXT currency unless the specified set has
prior pointers. Prior pointers ensure that the next pointer in the prefix of the
current record does not point to a logically deleted record.

No indication of an end-of-set condition is possible for the NEXT or PRIOR
options. A retrieval command must be issued to determine whether the next or
prior record in the set occurrence is the owner record.

Native VSAM users: You cannot request NEXT currency for sets defined for

native VSAM records.

PRIOR

Saves the db-key of the prior record relative to the record current of the
specified set. You cannot request PRIOR currency unless the specified set has
prior pointers.

No indication of an end-of-set condition is possible for the NEXT or PRIOR
options. A retrieval command must be issued to determine whether the next or
prior record in the set occurrence is the owner record.

Native VSAM users: You cannot request PRIOR currency for sets defined for
native VSAM records.

ACCEPT DBKEY RELATIVE TO CURRENCY

96 DML Reference Guide for PLI

OWNER

Saves the db-key of the owner of the record current of the specified set. A

request for OWNER CURRENCY cannot be executed unless the specified set has
owner pointers. However, if the current record of the named set is the owner
record occurrence, a request for OWNER currency returns the db-key of the

record itself. This will happen even if the set does not have owner pointers.

Native VSAM users: You cannot request OWNER currency for sets defined for
native VSAM records.

INTO (db-key-field)

Identifies the location in variable storage that will contain the db-key of the
requested record. Db-key must be a FIXED BINARY(31) field.

INTO (page-info-location)

Specifies the name of the four-byte field that can be defined either as a group

field or as a fullword field (PIC S9(8) COMP). Identifies the location in variable
storage that contains page information for the specified record type. Upon
successful completion of this statement, the first two bytes of the field contain

the page group number and the last two bytes contain a db-key radix that can
be used for interpreting dbkeys.

Example

The following statements access the EMP_EXPERTISE set and save the db-key of the
owner record of the SKILL_EXPERTISE set:

EMP_ID_0415 = '0119';

FIND CALC RECORD (EMPLOYEE);

FIND FIRST SET (EMP_EXPERTISE);

ACCEPT CURRENCY SET (SKILL_EXPERTISE) OWNER

 INTO (SAVE_DBKEY);

Status Codes

Upon completion of the ACCEPT DBKEY RELATIVE TO CURRENCY function, the

ERROR_STATUS field in the IDMS DB communications block indicates the outcome of
the operation:

Status code Meaning

0000 The request was serviced successfully.

1508 The subschema does not contain the named set. Your program
probably invoked the wrong subschema.

ACCEPT IDMS STATISTICS

Chapter 7: Data Manipulation Language Statements 97

ACCEPT IDMS STATISTICS

The ACCEPT IDMS STATISTICS statement copies system runtime statistics located in the
program's statistics block to program variable storage. While a run unit executes, your
program can issue ACCEPT IDMS STATISTICS as many times as required. For example,
you might want to request database statistics after storing a variable-length record. This

allows you to determine whether the entire record was stored in one place, or
fragments were placed in an overflow area.

The ACCEPT IDMS STATISTICS statement does not reset any of the statistics fields to
zero. IDMS statistics block fields are reset only when you issue a FINISH command.

You can use the ACCEPT IDMS STATISTICS statement in both the navigational and Logical

Record Facil ity (LRF) environments.

Syntax

►►─── ACCEPT IDMS_STATISTICS INTO (db-statistics-field);──────────────────────►

 ►─┬───────────────────────────────────┬─ ; ──────────────────────────────────►◄
 └─EXTENDED (db-stat-extended)───────┘

Parameter

db-statistics-field

Identifies the field (in program variable storage) the system runtime statistics
contained in IDMS_STATISTICS are to be copied to. Db-statistics-field is defined as

an aligned, 100-byte field.

The DBMS copies IDMS_STATISTICS data to db-statistics-field according to the following

format:

 DECLARE

 01 DB_STATISTICS,

 03 DATE_TODAY CHAR(8),

 03 TIME_TODAY CHAR(8),

 03 PAGES_READ FIXED BINARY(31),

 03 PAGES_WRITTEN FIXED BINARY(31),

 03 PAGES_REQUESTED FIXED BINARY(31),

 03 CALC_TARGET FIXED BINARY(31),

 03 CALC_OVERFLOW FIXED BINARY(31),

 03 VIA_TARGET FIXED BINARY(31),

 03 VIA_OVERFLOW FIXED BINARY(31),

 03 LINES_REQUESTED FIXED BINARY(31),

 03 RECS_CURRENT FIXED BINARY(31),

 03 CALLS_TO_IDMS FIXED BINARY(31),

ACCEPT IDMS STATISTICS

98 DML Reference Guide for PLI

 03 FRAGMENTS_STORED FIXED BINARY(31),

 03 RECS_RELOCATED FIXED BINARY(31),

 *03 LOCKS_REQUESTED FIXED BINARY(31),

 *03 SEL_LOCKS_HELD FIXED BINARY(31),

 *03 UPD_LOCKS_HELD FIXED BINARY(31),

 *03 RUN_UNIT_ID FIXED BINARY(31),

 *03 TASK_ID FIXED BINARY(31),

 *03 LOCAL_ID CHAR(8),

 03 FILLER CHAR(8);

 *Applies to CA IDMS/DB central version only

The LOCAL_ID field consists of the 4-byte identifier of the interface in which the run unit

originated (for example, BATC, DBDC, or CICS) and a unique identifier (fullword binary
value) assigned to the run unit by that interface. For batch and z/VM run units, this
identifier specifies the internal machine time. For CICS run units, this identifier specifies

the CICS transaction number assigned to the run unit.

To display the originating interface identifier and the run-unit identifier for a program,

you can move the LOCAL-ID field to a work field:

01 WORK_LOCAL_ID,

 02 WORK_LOCAL_ORIGIN CHAR(4),

 02 WORK_LOCAL_NUMBER FIXED BINARY(31);

Alternatively, your DBA can modify the DB_STATISTICS record from the data dictionary
to define two subordinate fields for the LOCAL_ID field. The DB_STATISTICS record
describes the IDMS statistics block. To use this record, code the following statement in
program variable storage:

01 INCLUDE IDMS (DB_STATISTICS);

db-stat-extended

Identifies the field (in program variable storage) the extended system runtime
statistics contained in IDMS_STATISTICS are to be copied to Db-stat-extended is
defined as an aligned, 100-byte field.

The DBMS copies IDMS_STATISTICS data to db-stat-extended according to the following
format:

01 DB-STAT-EXTENDED

 03 SR8-SPLITS FIXED BINARY (31),

 03 SR8-SPAWNS FIXED BINARY (31),

 03 SR8-STORES FIXED BINARY (31),

 03 SR8-ERASES FIXED BINARY (31),

 03 SR7-STORES FIXED BINARY (31),

 03 SR7-ERASES FIXED BINARY (31),

 03 BINARY-SEARCHES-TOTAL FIXED BINARY (31),

 03 LEVELS-SEARCHED-TOTAL FIXED BINARY (31),

ACCEPT PAGE_INFO

Chapter 7: Data Manipulation Language Statements 99

 03 ORPHANS-ADOPTED FIXED BINARY (31),

 03 LEVELS-SEARCHED-BEST FIXED BINARY (31),

 03 LEVELS-SEARCHED-WORST FIXED BINARY (31),

 03 FILLER0001 FIXED BINARY (31);

This record layout can be copied from the data dictionary. Code the following statement
in program variable storage:

01 INCLUDE IDMS (DB_STAT_EXTENDED).

Note: For more information about the CA IDMS statistics blocks, see the CA IDMS

Database Administration Guide.

Example

The following statements:

1. Establish currency for the sets in which a new EXPERTISE record will participate as a

member

2. Store the EXPERTISE record

3. Move statistics about the stored EXPERTISE record to the DB_STATISTICS location in

main storage

EMP_ID_0415 = EMP_ID_IN;

FIND CALC RECORD (EMPLOYEE);

SKILL_ID_IN = SKILL_ID_0455;

FIND CALC RECORD (SKILL);

STORE RECORD (EXPERTISE);

ACCEPT IDMS_STATISTICS INTO (DB_STATISTICS);

Status Codes

Upon completion of the ACCEPT IDMS STATISTICS function, the ERROR_STATUS field in
the IDMS DB communications block indicates the outcome of the operation:

0000

The request was serviced successfully.

1518

The database statistics location was not a valid address.

ACCEPT PAGE_INFO

The ACCEPT PAGE_INFO statement moves the page information for a given record to a

specified location in program variable storage. Page information that is saved in this
manner is available for subsequent direct access by using a FIND/OBTAIN DBKEY
statement.

ACCEPT PAGE_INFO

100 DML Reference Guide for PLI

Syntax

►►─ ACCEPT PAGE_INFO RECORD (record-name) INTO (page-info-location) ─────────►◄

Parameters

RECORD (record-name)

Specifies the record whose page information will be placed in the specified location.

INTO (page-info-location)

Specifies the name of the four-byte field that may be defined either as a group field
or as a fullword field (PIC S9(8) COMP). Identifies the location in variable storage
that contains page information for the specified record type. Upon successful

completion of this statement, the first two bytes of the field contain the page group
number and the last two bytes contain a db-key radix that may be used for
interpreting dbkeys.

Example

The following example retrieves the page information for the DEPARTMENT record.

01 W_PG_INFO.

 03 W_GRP_NUM FIXED BINARY 15,

 03 W_DBK_FORMAT FIXED BINARY 15,

 ACCEPT PAGE_INFO RECORD (DEPARTMENT) INTO (W_PG_INFO)

Status Codes

After completion of the ACCEPT PAGE_INFO statement, the ERROR-STATUS field in the
IDMS communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

1508

The named record is not in the subschema. The progra m has probably invoked the
wrong subschema.

ACCEPT PROCEDURE CONTROL LOCATION

Chapter 7: Data Manipulation Language Statements 101

ACCEPT PROCEDURE CONTROL LOCATION

The ACCEPT PROCEDURE CONTROL LOCATION statement copies the application
program information block to a specified location in program variable storage. This
256-byte block is associated with a previously defined database procedure. The program
information block acquires its information through the BIND PROCEDURE statement,

described later in this chapter. The database procedure may have updated the
information.

Only programs running under the central version, but in a different region/partition,
should use the ACCEPT PROCEDURE CONTROL LOCATION statement.

Note: For more information about the application program information block, see the
CA IDMS Database Administration Guide.

Syntax

►►─── ACCEPT PROCEDURE (procedure-name) INTO (procedure-control-location); ───►◄

Parameters

procedure-name

Specifies the name of the database procedure whose application program

information block will be copied into variable storage. procedure-name must refer
to an 8-character field in variable storage.

INTO (procedure-control-location)

Specifies the fullword-aligned 256-byte location in variable storage to which the
DBMS copies the application program information block.

Example

The following statement copies the application program information block used by the

procedure identified in the CHECK_ALL field in main storage to the location identified as
CHECK_IT in main storage:

ACCEPT PROCEDURE (CHECK_ALL) INTO (CHECK_IT);

Status Codes

Upon completion of the ACCEPT PROCEDURE CONTROL LOCATION function, the

ERROR_STATUS field in the IDMS DB communications block indicates the outcome of
the operation:

0000

The request was serviced successfully.

ACCEPT TRANSACTION STATISTICS (DC/UCF)

102 DML Reference Guide for PLI

1508

The subschema does not contain the named procedure.

1518

The procedure control location was not a valid address.

ACCEPT TRANSACTION STATISTICS (DC/UCF)

The ACCEPT TRANSACTION STATISTICS statement copies the contents of the transaction

statistics block (TSB) to a specified location in program variable storage. Optionally, the
statement can also write the TSB to the DC/UCF log fi le and you can define the length of
the TSB.

Syntax

►►─── ACCEPT TRANSACTION STATISTICS ─┬───────────┬────────────────────────────►
 ├─ WRITE ◄ ─┤
 └─ NOWRITE ─┘

 ►─┬────────────────────────────────────┬─────────────────────────────────────►
 └─ INTO (return-stat-data-location) ─┘

 ►─┬────────────────────────────┬──────── ; ──────────────────────────────────►◄
 └─ LENGTH= ─┬─ 388 ◄───────┬─┘
 └─ tsb-length ─┘

Parameters

WRITE/NOWRITE

Specifies whether the TSB is written to the system log fi le.

Default: WRITE

INTO (return-stat-data-location)

Specifies the location to which the system copies the TSB. Return-stat-data-location

is the symbolic name of a user-defined field. Return-stat-data-location is a
fullword-aligned 388-byte field (you can customize the length using the LENGTH=
parameter).

The data copied from the TSB to return-stat-data-location is formatted as follows:

 01 RETURN_STAT_DATA_LOC_V

 03 SYS_RES00 FIXED BIN (31) RESERVED

 03 SYS_RES01 FIXED BIN (31) RESERVED

 03 PROG_CALL FIXED BIN (31) # OF PROGRAMS CALLED

 03 PROG_LOAD FIXED BIN (31) # OF PROGRAMS LOADED

 03 TERM_READ FIXED BIN (31) # OF TERMINAL READS

 03 TERM_WRITE FIXED BIN (31) # OF TERMINAL WRITES

ACCEPT TRANSACTION STATISTICS (DC/UCF)

Chapter 7: Data Manipulation Language Statements 103

 03 TERM_ERROR FIXED BIN (31) # OF TERMINAL ERRORS

 03 STORAGE_GET FIXED BIN (31) # OF STORAGE GETS

 03 SCRATCH_GET FIXED BIN (31) # OF SCRATCH GETS

 03 SCRATCH_PUT FIXED BIN (31) # OF SCRATCH PUTS

 03 SCRATCH_DEL FIXED BIN (31) # OF SCRATCH DELETES

 03 QUEUE_GET FIXED BIN (31) # OF QUEUE GETS

 03 QUEUE_PUT FIXED BIN (31) # OF QUEUE PUTS

 03 QUEUE_DEL FIXED BIN (31) # OF QUEUE DELETES

 03 GET_TIME FIXED BIN (31) # OF GET TIMES

 03 SET_TIME FIXED BIN (31) # OF SET TIMES

 03 DB_CALLS FIXED BIN (31) # OF DATABASE CALLS

 03 MAX_STACK FIXED BIN (31) MAX WORDS USED IN STACK

 03 USER_TIME FIXED BIN (31) USER MODE TIME (10**-4 SEC)

 03 SYS_TIME FIXED BIN (31) SYS MODE TIME (10**-4 SEC)

 03 WAIT_TIME FIXED BIN (31) WAIT TIME (10**-4 SEC)

 03 RCE_USED FIXED BIN (31) # OF RCE'S USED

 03 RLE_USED FIXED BIN (31) # OF RLE'S USED

 03 DPE_USED FIXED BIN (31) # OF DPE'S USED

 03 STG_HI_MARK FIXED BIN (31) STORAGE HIGH WATER MARK

 03 FREESTG_REQ FIXED BIN (31) # FREE STORAGE REQUESTS

 03 SYS_SERV FIXED BIN (31) # SYSTEM SERVICE CALLS

 03 SYS_RES10 FIXED BIN (31) RESERVED

 03 SYS_RES11 FIXED BIN (31) RESERVED

 03 PAGES_READ FIXED BIN (31) # OF PAGES READ

 03 PAGES_WRIT FIXED BIN (31) # OF PAGES WRITTEN

 03 PAGES_REQ FIXED BIN (31) # OF PAGES REQUESTED

 03 CALC_NO FIXED BIN (31) # OF CALC RECS NO OFLOW

 03 CALC_OF FIXED BIN (31) # OF CALC RECS OFLOW

 03 VIA_NO FIXED BIN (31) # OF VIA RECS NO OFLOW

 03 VIA_OF FIXED BIN (31) # OF VIA RECS OFLOW

 03 RECS_REQ FIXED BIN (31) # OF RECS REQUESTED

 03 RECS_CURR FIXED BIN (31) # OF RECS CURR OF RU

 03 DBMS_CALLS FIXED BIN (31) # OF DBMS CALLS

 03 FRAG_STORED FIXED BIN (31) # OF FRAGMENTS STORED

 03 RECS_RELO FIXED BIN (31) # OF RECS RELOCATED

 03 TOT_LOCKS FIXED BIN (31) TOTAL # OF LOCKS

 03 SHR_LOCKS FIXED BIN (31) # OF SHARE LOCKS

 03 NSH_LOCKS FIXED BIN (31) # OF NON-SHARE LOCKS

 03 FREE_LOCKS FIXED BIN (31) # OF LOCKS FREE'D

 03 SR8_SPLITS FIXED BIN (31) # OF SR8 SPLITS

 03 SR8_SPAWNS FIXED BIN (31) # OF SR8 SPAWNS

ACCEPT TRANSACTION STATISTICS (DC/UCF)

104 DML Reference Guide for PLI

 03 SR8_STORED FIXED BIN (31) # OF SR8S STORED

 03 SR8_ERASED FIXED BIN (31) # OF SR8S ERASED

 03 SR7_STORED FIXED BIN (31) # OF SR7S STORED

 03 SR7_ERASED FIXED BIN (31) # OF SR7S ERASED

 03 BTREE_SRCH FIXED BIN (31) # OF BTREE SEARCHES

 03 BTREE_LEVL FIXED BIN (31) # OF BTREE LEVELS SEARCHED

 03 ORPHAN_ADOPT FIXED BIN (31) # OF ORPHANS ADOPTED

 03 LVL_SRCH_BEST FIXED BIN (15) # LEVEL SEARCHES (BEST CASE)

 03 LVL_SRCH_WORST FIXED BIN (15) # LEVEL SEARCHES (WORST CASE)

 03 RECS_UPD FIXED BIN (31) # OF RECS UPDATED

 03 PAGE_INCACHE FIXED BIN (31) # OF PAGES FOUND IN CACHE

 03 PAGE_INPRFET FIXED BIN (31) # OF PAGES FOUND IN PREFETCH

 03 SYS_RES12 FIXED BIN (31) RESERVED

 03 SYS_RES13 FIXED BIN (31) RESERVED

 03 SYS_RES20 FIXED BIN (31) RESERVED

 03 SYS_RES21 FIXED BIN (31) RESERVED

 03 USER_ID CHAR (32) DC USER ID

 03 LTERM_ID CHAR (8) LOGICAL TERMINAL ID

 03 USER_SUPP_ID CHAR (8) USER-SUPPLIED ID

 03 BIND_DATE DEC FIXED (7) DATE BIND COMMAND ISSUED

 03 BIND_TIME FIXED BIN (31) TIME BIND COMMAND ISSUED

 03 TRANSTAT_FLGS FIXED BIN (31) FOUR 1-BYTE FLAGS

 03 SYS_RES30 FIXED BIN (31) RESERVED

 03 SYS_RES31 FIXED BIN (31) RESERVED

 03 SQL_COMMAND FIXED BIN (31) # OF SQL COMMANDS EXECUTED

 03 SQL_FETCH FIXED BIN (31) # OF SQL ROWS FETCHED

 03 SQL_INSERT FIXED BIN (31) # OF SQL ROWS INSERTED

 03 SQL_UPDATE FIXED BIN (31) # OF SQL ROWS UPDATED

 03 SQL_DELETE FIXED BIN (31) # OF SQL ROWS DELETED

 03 SQL_SORTS FIXED BIN (31) # OF SQL SORTS PERFORMED

 03 SQL_ROW_SORT FIXED BIN (31) # OF SQL ROWS SORTED

 03 SQL_MIN_RSORT FIXED BIN (31) MINIMUM ROWS SORTED

 03 SQL_MAX_RSORT FIXED BIN (31) MAXIMUM ROWS SORTED

 03 SQL_AM_RECOMP FIXED BIN (31) # OF AM RECOMPILES

 03 SYS_RES32 FIXED BIN (31) RESERVED

 03 SYS_RES33 FIXED BIN (31) RESERVED

 03 SYS_RES34 FIXED BIN (31) RESERVED

 03 SYS_RES35 FIXED BIN (31) RESERVED

 03 SYS_RES36 FIXED BIN (31) RESERVED

 03 SYS_RES37 FIXED BIN (31) RESERVED

 03 SYS_RES38 FIXED BIN (31) RESERVED

 03 SYS_RES39 FIXED BIN (31) RESERVED

ACCEPT TRANSACTION STATISTICS (DC/UCF)

Chapter 7: Data Manipulation Language Statements 105

If you extend the length to 560 bytes, the full TRANSACTION_STATISTICS are also
included. The following block can be expanded using the

INCLUDE IDMS(TRANSACTION_STATISTICS) statement:

DECLARE 1 TRANSACTION_STATISTICS,

 3 TSB_STATS_R18 CHARACTER (560);

DECLARE 1 TSB_STATS_R17 BASED(ADDR

 (TRANSACTION_STATISTICS.TSB_STATS_R18)),

 2 TSB_DC_STATS CHARACTER (108),

 2 TSB_DB_STATS CHARACTER (72),

 2 TSB_IX_STATS CHARACTER (40),

 2 TSB_DB_STATS_EXTENDED CHARACTER (20),

 2 TSB_HDR CHARACTER (68),

 2 TSB_SQL_STATS CHARACTER (80),

 2 TSB_STATS_DCX CHARACTER (168);

DECLARE 1 TSB_STATS_DCX1 BASED(ADDR(TSB_STATS_DCX)),

 2 TSB_STATS_DCX_FILLER CHARACTER (8),

 2 TSB_SYS_MODE_CPU_TOD FIXED BINARY (63),

 2 TSB_SYS_ZIIP_ON_CP_TOD FIXED BINARY (63),

 2 TSB_SYS_ZIIP_ON_ZIIP_TOD FIXED BINARY (63),

 2 TSB_USER_MODE_CPU_TOD FIXED BINARY (63),

 2 TSB_TCB_CPU_TIME_TOD FIXED BINARY (63),

 2 TSB_SRB_CPU_TIME_TOD FIXED BINARY (63),

 2 TSB_STATS_DCX_FILL01 CHARACTER (112);

DECLARE 1 TSB_SQL_STATS1 BASED(ADDR(TSB_SQL_STATS)),

 2 SYS_INTERN4 CHARACTER (8),

 2 SQL_COMMANDS FIXED BINARY (31),

 2 SQL_FETCH FIXED BINARY (31),

 2 SQL_INSERT FIXED BINARY (31),

 2 SQL_UPDATE FIXED BINARY (31),

 2 SQL_DELETE FIXED BINARY (31),

 2 SQL_SORTS FIXED BINARY (31),

 2 SQL_ROWSORT FIXED BINARY (31),

 2 SQL_MINRSORT FIXED BINARY (31),

 2 SQL_MAXRSORT FIXED BINARY (31),

 2 SQL_AMCMPL FIXED BINARY (31),

 2 SQL_RESERVED CHARACTER (32);

DECLARE 1 TSB_HDR1 BASED(ADDR(TSB_HDR)),

 2 SYS_INTERN3 CHARACTER (8),

 2 USER_ID CHARACTER (32),

 2 LTERM_ID CHARACTER (8),

 2 USER_SUPP_ID CHARACTER (8),

 2 BIND_DATE FIXED DECIMAL(7,0),

 2 BIND_TIME FIXED BINARY (31),

 2 TRANSTAT_FLGS FIXED BINARY (31);

ACCEPT TRANSACTION STATISTICS (DC/UCF)

106 DML Reference Guide for PLI

DECLARE 1 TSB_DB_STATS_EXTENDED1 BASED(ADDR(TSB_DB_STATS_EXTENDED)),

 2 RECS_UPD FIXED BINARY (31),

 2 PAGE_INCACHE FIXED BINARY (31),

 2 PAGE_INPREFET FIXED BINARY (31),

 2 RESERVED CHARACTER (8);

DECLARE 1 TSB_IX_STATS1 BASED(ADDR(TSB_IX_STATS)),

 2 SR8_SPLITS FIXED BINARY (31),

 2 SR8_SPAWN FIXED BINARY (31),

 2 SR8_STORE FIXED BINARY (31),

 2 SR8_ERASE FIXED BINARY (31),

 2 SR7_STORE FIXED BINARY (31),

 2 SR7_ERASE FIXED BINARY (31),

 2 BTREE_SRCH FIXED BINARY (31),

 2 BTREE_LEVEL FIXED BINARY (31),

 2 ORPHANS FIXED BINARY (31),

 2 BTREE_LEV_B FIXED BINARY (15),

 2 BTREE_LEV_W FIXED BINARY (15);

DECLARE 1 TSB_DB_STATS1 BASED(ADDR(TSB_DB_STATS)),

 2 SYS_INTERN2 CHARACTER (8),

 2 PAGES_READ FIXED BINARY (31),

 2 PAGES_WRIT FIXED BINARY (31),

 2 PAGES_REQ FIXED BINARY (31),

 2 CALC_NO FIXED BINARY (31),

 2 CALC_OF FIXED BINARY (31),

 2 VIA_NO FIXED BINARY (31),

 2 VIA_OF FIXED BINARY (31),

 2 RECS_REQ FIXED BINARY (31),

 2 RECS_CURR FIXED BINARY (31),

 2 DB_CALLS FIXED BINARY (31),

 2 FRAG_STORED FIXED BINARY (31),

 2 RECS_RELO FIXED BINARY (31),

 2 TOT_LOCKS FIXED BINARY (31),

 2 SHR_LOCKS FIXED BINARY (31),

 2 NSH_LOCKS FIXED BINARY (31),

 2 LOCKS_FREED FIXED BINARY (31);

DECLARE 1 TSB_DC_STATS1 BASED(ADDR(TSB_DC_STATS)),

 2 SYS_INTERN1 CHARACTER (8),

 2 PROG_CALL FIXED BINARY (31),

 2 PROG_LOAD FIXED BINARY (31),

 2 TERM_READ FIXED BINARY (31),

 2 TERM_WRITE FIXED BINARY (31),

 2 TERM_ERROR FIXED BINARY (31),

 2 STORAGE_GET FIXED BINARY (31),

 2 SCRATCH_GET FIXED BINARY (31),

 2 SCRATCH_PUT FIXED BINARY (31),

 2 SCRATCH_DEL FIXED BINARY (31),

ACCEPT TRANSACTION STATISTICS (DC/UCF)

Chapter 7: Data Manipulation Language Statements 107

 2 QUEUE_GET FIXED BINARY (31),

 2 QUEUE_PUT FIXED BINARY (31),

 2 QUEUE_DEL FIXED BINARY (31),

 2 GET_TIME FIXED BINARY (31),

 2 SET_TIME FIXED BINARY (31),

 2 DB_SRVREQ FIXED BINARY (31),

 2 MAX_STACK FIXED BINARY (31),

 2 USER_TIME FIXED BINARY (31),

 2 SYS_TIME FIXED BINARY (31),

 2 WAIT_TIME FIXED BINARY (31),

 2 MAX_RCE_USED FIXED BINARY (31),

 2 MAX_RLE_USED FIXED BINARY (31),

 2 MAX_DPE_USED FIXED BINARY (31),

 2 STG_HI_MARK FIXED BINARY (31),

 2 FREESTG_REQ FIXED BINARY (31),

 2 SYS_SERV FIXED BINARY (31);

LENGTH=

Specifies the length of the returned TSB. To retrieve all statistics including the DC

extended statistics section that records CPU times in the Time of Day (TOD) format,
specify LENGTH=560.

tsb-length

Specifies either the symbolic name of a user-defined field that contains the

length of the TSB, or the length expressed as a numeric constant.

Limits: Integer of 388 or greater

Default: If you do not specify a tsb-length, the first 388 bytes of the TSB are

returned.

Example

The following statement returns the contents of the TSB to STATISTICS_BLOCK and

writes transaction statistics to the log fi le:

ACCEPT TRANSACTION STATISTICS

 WRITE

 INTO (STATISTICS_BLOCK);

Status Codes

Upon completion of the ACCEPT TRANSACTION STATISTICS function, the ERROR_STATUS
field in the IDMS DC communications block indicates the outcome of the operation:

Status code Meaning

0000 The request was serviced successfully.

ATTACH (DC/UCF)

108 DML Reference Guide for PLI

Status code Meaning

3801 The transaction statistics block has no storage available. Waiting

would cause a deadlock.

3813 No transaction statistics block exists. No BIND TRANSACTION
STATISTICS request was issued.

3831 Either the parameter l ist is invalid or no logical termina l element
(LTE) is associated with the issuing task.

3850 The collection of transaction statistics or task statistics was not
enabled during system generation.

ATTACH (DC/UCF)

The ATTACH statement instructs the system to initiate a new task by acquiring the
necessary control blocks and storage and by adding the task to its dispatching list. The

system initializes the attached task and queues it for execution. The issuing program
receives control according to normal dispatching priority.

Syntax

►►─── ATTACH TASK CODE (task-code) ─┬───────────────────────┬─┬──────────┬ ; ─►◄
 └─ PRIORITY (priority) ─┘ ├─ WAIT ◄ ─┤
 └─ NOWAIT ─┘

Parameters

TASK CODE (task-code)

Specifies the 1- to 8-character code of the task to be initiated. Task-code is the
symbolic name of a user-defined field containing the task code or the task code
itself, enclosed in single quotation marks. The referenced task code must have been
defined during system generation or dynamically, by using the DCMT VARY

DYNAMIC TASK command.

Note: For more information about DCMT VARY DYNAMIC TASK, see the CA IDMS
System Tasks and Operator Commands Guide.

PRIORITY (priority)

Specifies the dispatching priority of the attached task. Priority can be the symbolic

name of a user-defined fixed binary field containing the dispatching priority, or a
numeric constant. Valid priorities are numeric values ranging from 000 through 240.
Priority defaults to the priority established during system generation for the

specified task code, terminal, and user.

ATTACH (DC/UCF)

Chapter 7: Data Manipulation Language Statements 109

WAIT/NOWAIT

Specifies whether the issuing task waits if a maximum task condition prevents the

system from attaching the task immediately:

WAIT

Specifies that the issuing task waits until the maximum task condition no longer

exists and the system can attach the specified task. WAIT is the default.

NOWAIT

Specifies that the issuing task does not wait for the system to attach the task. If
you specify NOWAIT, your program should check the ERROR_STATUS field in
the IDMS DC communications block to determine whether the ATTACH request

completed. If ERROR_STATUS contains the value 3711, indicating that a
maximum task condition exists, then the request was not serviced and your
program should perform alternative processing before reissuing the ATTACH
request.

Example

The following code initiates task TASKATCH and assigns the task a dispatching priority of
199:

ATTACH TASK CODE (TASKATCH)

 PRIORITY (199)

 NOWAIT;

Status Codes

Upon completion of the ATTACH function, the ERROR_STATUS field of the IDMS DC
communications block indicates the outcome of the operation:

0000

The request was serviced successfully.

3711

The task cannot be attached because the maximum number of tasks has already
been attached.

3712

The specified task code is not defined to the DC/UCF system.

3758

The task cannot be attached because the maximum number of concurrent task
threads was exceeded.

3799

The requested task could not be attached because the current user is not
authorized to execute the task.

BIND MAP (DC/UCF)

110 DML Reference Guide for PLI

BIND MAP (DC/UCF)

The BIND MAP statement identifies the location of a specified map request block (MRB)
and initializes MRB fields. For each MRB used by your program, code a global BIND MAP
statement. Global BIND MAP statements omit the RECORD (record-name) parameter.
For each record defined to a map, code a record-specific BIND MAP statement.

Record-specific BIND MAP statements include the RECORD (record-name) parameter.

Global and Record-Specific Versions of BIND MAP

The global and record-specific versions of the BIND MAP statement function as follows:

■ Global—The BIND MAP statement applies to the map as a whole. It initializes the
entire MRB and fi l ls in fields that apply to the map in general.

■ Record-specific—The BIND MAP statement applies only to the named map record.
It initializes the variable-storage address of the named record in the MRB.

Typically, your program issues a global BIND MAP statement for each map, followed by
a BIND MAP statement for each map record used by the program.

Including BIND MAP Statements Automatically

You can request the DML precompiler to include global and record-specific BIND MAP

statements automatically by using the INCLUDE IDMS MAP_BINDS statement (see DML
Precompiler-Directive Statements). This statement includes the necessary BINDS for all
maps and map records defined for the program.

Altering the Address for a Map Record

Your program can alter the storage address for a map record at any time by issuing

another BIND MAP statement for that record. After the initial global bind, all map
records are considered unbound. Map operations that use those records have no effect
on storage. After binding a map record to a storage address with a record-specific bind,
subsequent map operations use that address to access the record. To unbind a map

record, issue a record-specific BIND MAP statement that specifies the TO NULL option.

Syntax

►►─── BIND MAP (map-name) ─┬──►─
 └─ RECORD (record-name) ───────────────────────────

─►────────────────────────────────────┬─ ; ───────────────────────────────────►◄
 ─┬───────────────────────────────┬──┘
 └─ TO ─┬─ NULL───────────────┬──┘
 └─ (record-location) ─┘

BIND MAP (DC/UCF)

Chapter 7: Data Manipulation Language Statements 111

Parameters

map-name

Initializes the MRB associated with the named map. Map-name is the 1- to
8-character name of an existing map. The map version defaults to the version that

you specify for the map with the DECLARE MAP statement.

RECORD (record-name)

Initializes the variable-storage address of the named record in the MRB.
Record-name is the 1- to 32-character name of a record used by the map.

TO NULL/(record-location)

Optionally requests that the named record be unbound or specifies the address to
which the record will be bound:

NULL

Requests that the DBMS not bind the named record.

record-location

Specifies the address to which the named record will be bound. Record-location
is the symbolic name of a user-defined field that contains the address;

record-location defaults to record-name. Subsequent I/O operations will use
this area of storage for any operation associated with the record.

Example

The following statements bind the map EMPMAPLR and its five associated map records:

BIND MAP (EMPMAPLR);

BIND MAP (EMPMAPLR) RECORD (EMPLOYEE);

BIND MAP (EMPMAPLR) RECORD (DEPARTMENT);

BIND MAP (EMPMAPLR) RECORD (JOB);

BIND MAP (EMPMAPLR) RECORD (OFFICE);

BIND MAP (EMPMAPLR) RECORD (EMP-DATE-WORK-REC);

Status Codes

Upon completion of the BIND MAP function, the ERROR_STATUS field in the IDMS DC
communications block indicates the outcome of the operation:

0000

The request was serviced successfully.

1472

Insufficient memory is available for load or storage allocation.

1474

An attempt to load a module from the load library or DDLDCLOD failed.

BIND PROCEDURE

112 DML Reference Guide for PLI

BIND PROCEDURE

The BIND PROCEDURE statement establishes communication between your program
and a DBA-written database procedure (for example, a security routine). Use this
statement only in those instances in which the DBA-written procedure requires more
information from your program than the DBMS provides. Such instances are unusual.

Usually, you will not be aware of which procedures gain control before or after various
DML functions.

You can use the BIND PROCEDURE statement in both the navigational and Logical
Record Facil ity (LRF) environments.

Syntax

►►──── BIND PROCEDURE (procedure-name) TO (procedure-control-location); ──────►◄

Parameters

procedure-name

Specifies the name of the DBA-written database procedure for which you want to
establish addressability. Procedure-name must refer to an 8-character field in
variable storage.

TO (procedure-control-location)

Specifies the location to which the named procedure will be bound.
Procedure-control-location is a fullword-aligned 256-byte area in variable storage.

If your program runs in a different partition than the central version, it may need to
pass information to the database procedure. When the DBMS invokes the database
procedure, it copies this information from the program storage area identified by

procedure-control-location into the IDMS application program information block.
The information passed is the information in procedure-control-location when the
BIND PROCEDURE was performed; it is not the information in the program's storage
at the time of the procedure call.

Example

The following statement binds the procedure with the variable name PROGCHEK to the
256-byte area PROC_CTL:

BIND PROCEDURE (PROGCHEK) TO (PROC_CTL);

BIND RECORD

Chapter 7: Data Manipulation Language Statements 113

Status Codes

Upon completion of the BIND PROCEDURE function, the ERROR_STATUS field in the
IDMS DB communications block indicates the outcome of the operation:

0000

The request was serviced successfully.

1400

The DBMS cannot recognize the BIND PROCEDURE statement. This code usually
indicates that the IDMS DB communications block (SUBSCHEMA_CTRL) is not

aligned on a fullword boundary.

1408

The subschema does not contain the named procedure.

1418

The procedure was improperly bound to location 0.

1472

Not enough memory is available to load the database procedure dynamically.

1474

An attempt to load a module from the load library or DDLDCLOD failed.

BIND RECORD

The BIND RECORD statement establishes addressability for a record in program variable

storage. In most cases, you do not have to issue individual BIND RECORD statements,
since the INCLUDE IDMS SUBSCHEMA_BINDS statement generates the necessary
statements as a group. (see DML Precompiler-Directive Statements). Nevertheless, you

can issue BIND RECORD commands separately as necessary (for Example, to bind
several records to the same storage location). In any case, you must establish
addressability for each subschema record used by your program.

After each BIND RECORD statement, your program should perform the IDMS_STATUS

routine to ensure that the statement executed successfully.

Syntax

►►─── BIND RECORD (record-name) ─┬────────────────────────┬─ ; ───────────────►◄
 └─ TO (record-location) ─┘

BIND RECORD

114 DML Reference Guide for PLI

Parameters

(record-name)

Names the record bound to a location in variable storage. The location corresponds
to the record description copied into the program. Record-name must specify a

record included in the subschema.

TO (record-location)

Optionally allows you to bind the record to a specific location. The data defined in
record-location must be identical in length to the data defined in record-name.

Note: Be careful when using the TO (record-location) option. Source-object

mismapping can result from improper use. If your program contains more than one
copy of a given database record description, you must be sure to bind the proper
record description at the proper time.

Example

The following statement binds the EMPLOYEE record:

BIND RECORD (EMPLOYEE);

Status Codes

Upon completion of the BIND RECORD function, the ERROR_STATUS field in the IDMS
DB communications block indicates the outcome of the operation:

0000

The request was serviced successfully.

1400

The DBMS cannot recognize the BIND RECORD statement. This code usually
indicates that the IDMS DB communications block (SUBSCHEMA_CTRL) is not
aligned on a fullword boundary.

1408

The subschema does not contain the named record. Your program probably

invoked the wrong subschema.

1418

The record was improperly bound to location 0.

1472

Insufficient memory is available to load a database procedure dynamically.

1474

An attempt to load a module from the load library or DDLDCLOD failed.

BIND RUN_UNIT

Chapter 7: Data Manipulation Language Statements 115

BIND RUN_UNIT

The BIND RUN_UNIT statement:

■ Establishes a run unit for accessing the database

■ Identifies the location of the IDMS DB communications block being used

■ Names the subschema to be loaded for the run unit

■ Names the node under which the run unit will execute

■ Identifies the database to be accessed

■ Identifies the dictionary in which a subschema resides

■ Identifies the node that controls the dictionary

BIND RUN_UNIT must be the first functional DML call passed to the DBMS at execution
time. BIND RUN_UNIT must logically precede all other DML statements (for example,
BIND RECORD, READY, FIND) in your program.

When You Do Not Need BIND RUN_UNIT

If you use the INCLUDE IDMS SUBSCHEMA_BINDS statement (see DML
Precompiler-Directive Statements) in your program, you do not need the BIND

RUN_UNIT statement. INCLUDE IDMS SUBSCHEMA_BINDS automatically invokes the
necessary binds.

Program Registration

Some sites require program registration, that is, they require all programs to be
registered in the dictionary before compilation. If your site requires program
registration, your program must initialize the PROGRAM_NAME field of the IDMS

communications block either automatically or manually:

Automatically

A PL/I assignment statement automatically generated by INCLUDE IDMS
SUBSCHEMA_BINDS moves the program name to the PROGRAM_NAME field.

Manually

You code a PL/I assignment statement prior to the BIND RUN_UNIT statement. For
Example:

PROGRAM_NAME = 'EMPDISP';

You can use the BIND RUN_UNIT statement in both the navigational and Logical Record
Facil ity (LRF) environments.

BIND RUN_UNIT

116 DML Reference Guide for PLI

Syntax

►►─── BIND RUN_UNIT ─┬──────────────────────────────┬─────────────────────────►
 └─ SUBSCHEMA (subschema-name) ─┘

 ►─┬─────────────────────────────┬──►
 └─┬─ DBNODE ───┬─ (nodename) ─┘
 └─ NODENAME ─┘

 ►─┬──────────────────────────┬─┬───────────────────────┬─────────────────────►
 └─ DBNAME (database-name) ─┘ └─ DICTNODE (nodename) ─┘

 ►─┬──────────────────────────────┬─ ; ───────────────────────────────────────►◄
 └─ DICTNAME (dictionary-name) ─┘

Parameters

SUBSCHEMA (subschema-name)

Identifies a subschema view other than that specified in the DECLARE SUBSCHEMA
statement. Subschema-name must be the 1- to 8-character name of a subschema.

Note: You should use the SUBSCHEMA subschema-name option carefully. Improper

use can lead to mismapping between the named subschema and record
descriptions in variable storage.

DBNODE/NODENAME (nodename)

Specifies the node where the database resides. Nodename is either the symbolic
name of a user-defined 8-character field in variable storage or the node name itself,

enclosed in single quotation marks. The keywords DBNODE and NODENAME are
synonymous.

DBNAME (database-name)

Names the database to be accessed by the run unit. Database-name is either the
symbolic name of a user-defined 8-character field in variable storage, or the
database name itself enclosed in single quotation marks.

DICTNODE (nodename)

Names the node that controls the data dictionary where the subschema resides.

Nodename is either the symbolic name of a user-defined 8-character field in
variable storage, or the nodename itself enclosed in single quotation marks.

DICTNAME (dictionary-name)

Names the dictionary where the subschema resides. Dictionary-name is either the

symbolic name of a user-defined 8-character field in variable storage, or the
dictionary name itself enclosed in single quotation marks.

Note: Specifying DBNODE, DBNAME, DICTNODE, and DICTNAME as BIND RUN_UNIT
parameters overrides any corresponding parameters set using the system DCUF SET

statement (online) or the SYSIDMS job stream parameters (batch).

BIND RUN_UNIT

Chapter 7: Data Manipulation Language Statements 117

More information:

■ For more about DCUF SET, see the CA IDMS System Tasks and Operator Commands

Guide.

■ For information about SYSIDMS, see the CA IDMS Common Facilities Guide.

Example

The following example i l lustrates how a batch program accesses a subschema,

EMPSS01, stored in dictionary PRODICT1 at node DEVT. The run unit accesses database
PRODDB1 at the same node.

BIND RUN_UNIT SUBSCHEMA (EMPSS01) NODENAME (DEVT)

 DBNAME (PRODDB1) DICTNODE (DEVT) DICTNAME (PRODICT1);

Status Codes

Upon completion of the BIND RUN_UNIT function, the ERROR_STATUS field in the IDMS
DB communications block indicates the outcome of the operation:

0000

The request was serviced successfully.

1400

The DBMS cannot recognize the BIND RUN_UNIT statement. This code usually
indicates that the IDMS DB communications block (SUBSCHEMA_CTRL) is not

aligned on a fullword boundary.

1417

The transaction manager encountered an error. See the log for additiona l
information.

1467

The subschema invoked does not match the subschema object tables.

1469

The run unit is not bound to the DBMS. This code indicates that the central version
is not active, that the central version is not accepting new run units, or that the run
unit's connection to the central version is broken due to timeout or other factors, as

noted on the CV log.

1470

A journal fi le will not open (local mode only); the most probable cause is that the
JCL doesn't correctly specify the journal fi le.

BIND TASK (DC/UCF)

118 DML Reference Guide for PLI

1472

The available memory is insufficient to load a subschema or database procedure

dynamically.

1473

The central version is not accepting new run units.

1474

The subschema was not found in the dictionary load area or in the load library.

1477

The run unit was already bound.

1480

The node specified in the DBNODE clause is not active or was disabled from the
system generation configuration.

1481

IDMS does not know the database specified in the DBNAME clause.

1482

The named subschema is not valid under the database specified in the DBNAME
clause.

1483

The available memory is insufficient to allocate native VSAM work areas.

BIND TASK (DC/UCF)

The BIND TASK statement initiates a system task when the operating mode is

DC_BATCH. This statement establishes communication with the DC/UCF system and, if
accessing system queues, allocates a packet-data movement buffer to contain the
queue data. Once a task is started, the program can issue any number of consecutive
BIND-READY-FINISH sequences.

Syntax

►►─── BIND TASK ──►

 ►─┬───────────────────────┬─ ; ──►◄
 └─ NODENAME (nodename) ─┘

BIND TRANSACTION STATISTICS (DC/UCF)

Chapter 7: Data Manipulation Language Statements 119

Parameters

NODENAME (nodename)

Specifies the 1- to 8-character name of the node to which the task will be bound.
Nodename is either the symbolic name of a user-defined field that contains the

node name or the node name itself enclosed in single quotation marks. The
specified node name must match the node named in the DDS statement at system
generation.

Example

The following statement establishes communication with a DC/UCF system:

BIND TASK;

Status Codes

Upon completion of the BIND TASK function, the ERROR_STATUS field in the IDMS DC
communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

BIND TRANSACTION STATISTICS (DC/UCF)

The BIND TRANSACTION STATISTICS statement defines the beginning of a transaction
for the purposes of collecting transaction statistics. The system allocates a block of

storage in which to accumulate these statistics. Because this block is owned by the
logical terminal associated with the current task, the BIND TRANSACTION STATISTICS
statement cannot be used with nonterminal tasks.

Note: If a transaction statistics block (TSB) is already allocated for the logical terminal
associated with the current task, the BIND request clears the block and writes any

previously accumulated transaction statistics to the log fi le.

When a BIND TRANSACTION STATISTICS request is issued, the system assigns the

transaction a 40-character identifier; the first 32 characters are the identifier of the
signed-on user (if any) and the last eight characters are the identifier of the logical
terminal associated with the current task.

Syntax

►►─── BIND TRANSACTION STATISTICS; ───►◄

CHANGE PRIORITY (DC/UCF)

120 DML Reference Guide for PLI

Example

The following example il lustrates the BIND TRANSACTION STATISTICS statement:

BIND TRANSACTION STATISTICS;

Status Codes

Upon completion of the BIND TRANSACTION STATISTICS function, the ERROR_STATUS

field in the IDMS DC communications block indicates the outcome of the operation:

0000

The request has been serviced successfully; any existing transaction statistics block
was written to the log fi le before being cleared.

3801

Storage for the transaction statistics block is not available; to wait would cause a
deadlock.

3810

A new transaction statistics block has been allocated.

3831

Either the parameter l ist is invalid or no logical terminal element (LTE) is associated
with the issuing task.

3850

The collection of transaction statistics or task statistics has not been enabled during
system generation.

CHANGE PRIORITY (DC/UCF)

The CHANGE PRIORITY statement changes the dispatching priority of the issuing task.

The new dispatching priority applies only to the current execution of the task. CHANGE
PRIORITY does not relinquish control to another task and cannot be used to alter the
priority of other tasks.

Syntax

►►─── CHANGE PRIORITY TO (priority); ───►◄

Parameter

priority

Specifies a new dispatching priority for the issuing task. Priority is either the
symbolic name of a user-defined field that contains the priority value, or the value
itself expressed as a numeric constant in the range 0 through 240.

CHECK TERMINAL (DC/UCF)

Chapter 7: Data Manipulation Language Statements 121

Example

The following Example changes the dispatching priority of the issuing task to the value
contained in the PRIORITY_210 field:

CHANGE PRIORITY TO (PRIORITY_210);

Status Codes

Upon completion of the CHANGE PRIORITY function, the ERROR_STATUS field in the
IDMS DC communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

CHECK TERMINAL (DC/UCF)

The CHECK TERMINAL statement tests whether a previously issued asynchronous I/O
operation is complete. If a READ TERMINAL, WRITE TERMINAL, or WRITE THEN READ
TERMINAL request specifies the NOWAIT option, the program must issue a CHECK

TERMINAL request before specifying any other I/O operation. If the I/O operation is not
complete, the system suspends task execution. When the I/O operation is complete, the
task resumes execution according to its established dispatching priority.

Syntax

►►─── CHECK TERMINAL; ──►◄

Status Codes

Upon completion of the CHECK TERMINAL function, the ERROR_STATUS field in the
IDMS DC communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

4519

The input area specified for the return of data is too small; the returned data has
been truncated to fit the available space.

4525

The output operation has been interrupted; the terminal operator has pressed

ATTENTION or BREAK.

4526

A logical error (for example, an invalid control character) has been encountered in
the output data stream.

COMMIT

122 DML Reference Guide for PLI

4527

A permanent I/O error has occurred during processing.

4528

The dial-up line for the terminal being used has been disconnected.

4531

The terminal request block (TRB) contains an invalid field, indicating a possible error
in the program's parameters.

4539

The terminal device associated with the issuing task is out of service.

COMMIT

The COMMIT statement commits changes made to the database through an individual
run unit or through all database sessions associated with a task. A task-level commit also
commits all changes made in conjunction with scratch, queue, and print activity.

If the commit applies to an individual run unit and the run unit is sharing its transaction
with another database session, the run unit's changes may not be committed at the
time the COMMIT statement is executed.

Note: For more information about the impact of transaction sharing, see the CA IDMS

Navigational DML Programming Guide.

Run units (and SQL sessions) impacted by the COMMIT statement remain active after
the operation is complete.

The COMMIT statement is used in both the navigational and logical record facility
environments. The COMMIT TASK statement is also used in an SQL programming

environment.

Currency

Use of the ALL option, as in COMMIT ALL, sets all currencies to null.

Syntax

►►─── COMMIT ─┬────────┬─┬─────────┬─ ; ──────────────────────────────────────►◄
 └─ TASK ─┘ └─ (ALL) ─┘

COMMIT

Chapter 7: Data Manipulation Language Statements 123

Parameters

TASK

Commits the changes made by all scratch, queue, and print activity and all top-level
run units associated with the current task. Its impact on SQL sessions associated

with the task depends on whether those sessions are suspended and whether their
transactions are eligible to be shared.

More information:

For more information about the impact of a COMMIT TASK statement on SQL

sessions, see the CA IDMS SQL Programming Guide.

For more information about run units and the impact of COMMIT TASK, see the CA
IDMS Navigational DML Programming Guide.

(ALL)

Releases all currency locks held on records in database, scratch, and queue areas

associated with the issuing task (COMMIT TASK ALL) or run unit (COMMIT ALL) and
sets all currencies to null.

Example

The following statement commits changes made by the run unit through which it is
issued:

COMMIT;

Status Codes

Upon completion of the COMMIT function, the ERROR_STATUS field in the IDMS DB

communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

5031

The specified request is invalid; the program may contain a logic error.

5097

An error was encountered processing a syncpoint request; check the log for details.

CONNECT

124 DML Reference Guide for PLI

CONNECT

The CONNECT statement establishes a record occurrence as a member of a set
occurrence. The specified record must be defined as an optional automatic, optional
manual, or mandatory manual member of the set.

Native VSAM users: The CONNECT statement is not valid since all sets in native VSAM

data sets must be defined as mandatory automatic.

Before executing the CONNECT statement, satisfy these conditions:

■ Ready all areas affected either explicitly or implicitly by the CONNECT statement in
one of the update usage modes (see READY later in this chapter).

■ Establish the specified record as current of its record type.

■ Establish the occurrence of the set into which the specified record will be
connected. The current record of set determines the set occurrence and, if set
order is NEXT or PRIOR, the position at which the specified record will be connected

within the set.

Currency

Following successful execution of a CONNECT statement, the specified record is current
of run unit, its record type, its area, and all sets in which it currently participates.

Syntax

►►─── CONNECT RECORD (record-name) SET (set-name); ───────────────────────────►◄

Parameters

RECORD (record-name)

Specifies the record type to be connected. Record-name must be a record included

in the subschema and must be defined as an optional automatic, optional manual,
or mandatory manual member of the set to which it is being connected.

SET (set-name)

Specifies the set to which the member record is to be connected. Set-name must be
a set included in the subschema. The record is connected to the set in accordance

with the ordering rules defined for that set in the schema.

Example

The following statement connects the current EMPLOYEE record to the current
occurrence of the OFFICE_EMPLOYEE set:

CONNECT RECORD (EMPLOYEE) SET (OFFICE_EMPLOYEE);

CONNECT

Chapter 7: Data Manipulation Language Statements 125

The following figure il lustrates the steps required to connect an EMPLOYEE record to an
occurrence of the OFFICE_EMPLOYEE set. To connect EMPLOYEE 459 to OFFICE 1 in the

OFFICE_EMPLOYEE set, establish EMPLOYEE 459 as current of record type, locate the
proper occurrence of the OFFICE record, and issue the CONNECT command.

Status Codes

Upon completion of the CONNECT function, the ERROR_STATUS field in the IDMS DB

communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

0705

The CONNECT would violate a duplicates -not-allowed option.

DC RETURN (DC/UCF)

126 DML Reference Guide for PLI

0706

Currency has not been established for the named record or set.

0708

The named record is not in the subschema. The program has probably invoked the
wrong subschema.

0709

The named record's area has not been readied in one of the update usage modes.

0710

The subschema specifies an access restriction that prohibits connecting the named
record in the named set.

0714

The CONNECT statement cannot be executed because the named record has been

defined as a mandatory automatic member of the set.

0716

The record cannot be connected to a set in which it is already a member.

0721

An area other than the area of the named record has been readied with an
incorrect usage mode.

0725

Currency has not been established for the named set type.

DC RETURN (DC/UCF)

The DC RETURN statement returns control to a program at the next higher level within a

task. Additionally, you can use the DC RETURN statement to specify:

■ The next task to be initiated on the same terminal

■ Recovery procedures for abend routines established by SET ABEND EXIT (STAE)
functions

■ The action to be taken by the system if the terminal operator fails to initiate the
next task

Control Returns to the Program or System

Following a DC RETURN request, control returns to the program at the next higher level
within the task. If the issuing program is the highest level program, control returns to

the system. Any DC RETURN statement can include a NEXT TASK CODE option to spec ify
the next task to be initiated by the system. However, the position of the issuing program
within the task governs whether the specified task will, in fact, receive control.

DC RETURN (DC/UCF)

Chapter 7: Data Manipulation Language Statements 127

When the system receives control from the highest level program that issued a DC
RETURN NEXT TASK CODE request, the specified task is executed immediately if the

specified task code has been assigned the NOINPUT attribute during system generation;
if the task code was assigned the INPUT attribute, the task executes only when the
terminal operator presses an attention identifier (AID) key. Typical AID keys include all

PA and PF keys, ENTER, and CLEAR.

Syntax

►►─── DC RETURN ─┬───────────────────────────────────┬────────────────────────►
 └─ NEXT TASK CODE (next-task-code) ─┘

 ►─┬───┬─ ; ────────────────────►◄
 │ ┌───────────────────────────────────┐ │
 └─ TIMEOUT ─▼─┬─ INTERVAL (timeout-interval) ─┬─┴─┘
 └─ PROGRAM (timeout-program) ───┘

Parameters

NEXT TASK CODE (next-task-code)

Specifies the 1- to 8-character code associated with a task to be initiated on the
same terminal. Next-task-code is either the symbolic name of a user-defined field
that contains the task code or the tas k code itself enclosed in single quotation

marks. The specified task code must be defined to the system under which the task
is running, either during system generation or at runtime, by using a DCMT VARY
DYNAMIC TASK command.

Note: For more information about DCMT VARY DYNAMIC TASK, see the CA IDMS
System Tasks and Operator Commands Guide.

TIMEOUT

Specifies the action the system is to take if the terminal operator fails to enter data
required to initiate a task. This parameter overrides resource timeout interval and

program specifications established during system generation.

INTERVAL (timeout-interval)

Specifies the time, in seconds, that can elapse before the system releases the
resources held by the terminal on which the task is executing. Timeout-interval
is either the symbolic name for a user-defined FIXED BINARY(31) field that

contains the timeout interval or the interval itself expressed as a numeric
constant.

DC RETURN (DC/UCF)

128 DML Reference Guide for PLI

PROGRAM (timeout-program)

Specifies the 1- to 8-character name of the program to be invoked when the

specified timeout interval has been reached. This program handles and releases
resources held by the terminal on which the task was executing.
Timeout-program is either the symbolic name of a user-defined field that

contains the program name or the name itself enclosed in single quotation
marks. The specified program must be defined to the s ystem either during
system generation or at runtime by using a DCMT VARY DYNAMIC PROGRAM
command.

Note: For more information about DCMT VARY DYNAMIC PROGRAM, see the
CA IDMS System Tasks and Operator Commands Guide.

Example

The following statement i l lustrates the use of DC RETURN. The task code associated with

MENU_TASK_CODE, if defined with the INPUT parameter, will be invoked the next time
the terminal operator presses an attention identifier (AID) key; if MENU_TASK_CODE is
defined with the NOINPUT parameter, it will be invoked immediately.

DC RETURN

 NEXT TASK CODE (MENU_TASK_CODE);

The following figure il lustrates how the system executes a task when DC RETURN
statements within three programs specify the NEXT TASK CODE option.

In DC RETURN Processing Task A invokes program A. Program A links to program B,

which in turn links to program C. Program C issues a DC RETURN NEXT TASK CODE ('Z')
request; control returns to program B. Program B contains a DC RETURN NEXT TASK
CODE ('Y') request, which takes precedence over program C's DC RETURN specification.
Control returns to program A, which issues a DC RETURN NEXT TASK CODE ('X') request.

Because program A is at the highest level in the task, task X will be invoked.

DELETE QUEUE (DC/UCF)

Chapter 7: Data Manipulation Language Statements 129

 DC/UCF SYSTEM
───
 TASK X
 TASK A ┌ - - - - - - - - - - - - - ┐
───────────┬───────────▲───────────────────────────┼─────────────────────────
 │ │ │
 │ │ ┌──────▼──────┐
 │ │ │ │
 ┌────────▼────────┐ │ │ PROGRAM X │
 │ PROGRAM A │ │ │ │
 │ . │ │ └─────────────┘
 │ . │ │ (RETURN)
┌─┤ . ◄-─┼ - - - - - - - - - - - ──┐
│ │ DC RETURN │ │
│ │ NEXT TASK CODE │ │ │
│ │ X │ │
│ └────────┬────────┘ │ │
│ └───────────┘
│ │
│
│ │
│
│ │
│ (LINK B) ┌─────────────────┐
└───────────────────────────► PROGRAM B │ │
 │ . │
 │ . │ │
 ┌─┤ . │ (RETURN)
 │ │ DC RETURN ◄-─┼─ - - - - - - - - - - - - ─┐
 │ │ NEXT TASK CODE │
 │ │ Y │ │ │
 │ └────────┬────────┘
 │ └ - - - - ─┘ │
 │
 │ │
 │ (LINK C) ┌─────────────────┐
 └─────────────────────────────► PROGRAM C │ │
 │ . │
 │ . │ │
 │ . │
 │ DC RETURN │ │
 │ NEXT TASK CODE │
 │ Z │ │
 └────────┬────────┘
 └ - - - - - ┘

Status Codes

Because control is returned to the next-higher level, there is no need to check the

ERROR_STATUS field.

DELETE QUEUE (DC/UCF)

The DELETE QUEUE statement deletes all or part of a queue. If only one queue record is
deleted, the system maintains currency within the queue by saving the next and prior

currencies of the deleted record.

Syntax

►►─── DELETE QUEUE ─┬─────────────────┬─┬─────────────┬─ ; ──────────────────►◄
 └─ ID (queue-id) ─┘ ├─ CURRENT ◄ ─┤
 └─ ALL ───────┘

DELETE QUEUE (DC/UCF)

130 DML Reference Guide for PLI

Parameters

ID (queue-id)

Specifies the 1- to 16-character ID of the queue that contains the record to be
deleted. Queue-id is either the symbolic name of a user-defined field that contains

the ID or the ID itself enclosed in single quotation marks. If the queue ID is not
specified, a blank ID is assumed.

CURRENT

Deletes the current record of the queue associated with the requesting task.
CURRENT is the default.

ALL

Deletes all records in the queue and the queue header id.

Example

The following statement deletes the current record in the RES_Q queue:

DELETE QUEUE

 ID ('RES_Q')

 CURRENT;

Status Codes

Upon completion of the DELETE QUEUE function, the ERROR_STATUS field in the IDMS
DC communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

4404

The requested queue header record cannot be found.

4405

The requested queue record cannot be found.

DELETE SCRATCH (DC/UCF)

Chapter 7: Data Manipulation Language Statements 131

4406

No resource control element (RCE) exists for the queue record, indicating that

currency has not been established.

4407

A database error occurred during queue processing. A common cause is a DBKEY

deadlock. For a PUT QUEUE operation, this code can also mean that the queue
upper l imit has been reached.

If a database error has occurred, there are usually be other messages in the
CA-IDMS/DC/UCF log indicating a problem encountered in RHDCRUAL, the internal

Run Unit Manager. If a deadlock has occurred, messages DC001000 and DC001002
are also produced.

4431

The parameter l ist is invalid.

DELETE SCRATCH (DC/UCF)

The DELETE SCRATCH statement deletes one scratch record or all records in the scratch
area.

Syntax

►►─── DELETE SCRATCH-─┬──────────────────────────────┬────────────────────────►
 └─ AREA ID (scratch-area-id) ─┘

 ►─┬─────────────────────────────────┬──►
 ├─ CURRENT ───────────────────────┤
 ├─ FIRST ─────────────────────────┤
 ├─ LAST ──────────────────────────┤
 ├─ NEXT ──────────────────────────┤
 ├─ PRIOR ─────────────────────────┤
 ├─ ALL ───────────────────────────┤
 └─ RECORD ID (scratch-record-id) ─┘

 ►─┬──┬─ ; ─────────────────►◄
 └─ RETURN RECORD ID INTO (return-scratch-record-id) ─┘

Parameters

AREA ID (scratch-area-id)

Specifies the 1- to 8-character ID of the scratch area associated with the scratch
records being deleted. Scratch-area-id is either the symbolic name of a user-defined

field that contains the scratch area ID or the ID itself enclosed in single quotation
marks. If the AREA ID parameter is not specified, the system assumes an area ID of
8 blanks.

CURRENT

Deletes the current record in the specified scratch area (that is, that record most
recently referenced by another scratch function). CURRENT is the default.

DELETE SCRATCH (DC/UCF)

132 DML Reference Guide for PLI

FIRST

Deletes the first record in the specified scratch area.

LAST

Deletes the last record in the specified scratch area.

NEXT

Deletes the next record in the specified scratch area.

PRIOR

Deletes the prior record in the specified scratch area.

ALL

Deletes all records in the specified scratch area.

RECORD ID (scratch-record-id)

Deletes the record identified by scratch-record-id. Scratch-record-id is the symbolic
name of a user-defined field that contains the ID.

RETURN RECORD ID INTO (return-scratch-record-id)

Specifies the location in the program to which the system will return the ID of the
last record deleted by means of the DELETE SCRATCH function.
Return-scratch-record-id is the symbolic name of a user-defined 4-byte field.

Example

The following statement deletes the scratch record that is prior to the current scratch
record and returns the ID of the deleted record to the SCR_REC_ID field:

DELETE SCRATCH

 PRIOR

 RETURN RECORD ID INTO (SCR_REC_ID);

Status Codes

Upon completion of the DELETE SCRATCH function, the ERROR_STATUS field in the IDMS
DC communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

4303

The requested scratch area ID cannot be found.

4305

The requested scratch record ID cannot be found.

DELETE TABLE (DC/UCF)

Chapter 7: Data Manipulation Language Statements 133

4307

An I/O error has occurred during processing.

4331

The parameter l ist is invalid.

DELETE TABLE (DC/UCF)

The DELETE TABLE statement notifies the system that the issuing task has finished using

a table that has been loaded into the program pool by using the LOAD TABLE function.
DELETE TABLE does not physically delete reusable tables from the program pool; rather,
it decrements the in-use count maintained by the DC/UCF system. An in-use count of 0
signals to the system that the space occupied by the table ca n be reused.

Syntax

►►─── DELETE TABLE FROM (table-location-pointer); ────────────────────────────►◄

Parameter

table-location-pointer

Specifies a table location where the in-use count maintained by the system is to be
decremented. Table-location-pointer specifies the variable-storage pointer location
that was set when the table was loaded via a LOAD TABLE request.

Example

The following example releases a previously loaded table from the location in variable
storage identified by RATE_TABLE_PTR:

DELETE TABLE FROM (RATE_TABLE_PTR);

Status Codes

Upon completion of the DELETE TABLE function, the ERROR_STATUS field in the IDMS
DC communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

3433 The specified table was not loaded by the task.

DEQUEUE (DC/UCF)

134 DML Reference Guide for PLI

DEQUEUE (DC/UCF)

The DEQUEUE statement releases resources acquired by the issuing task with an
ENQUEUE request. Acquired resources not released explicitly with a DEQUEUE request
are released automatically at task termination.

Syntax

►►─── DEQUEUE ─┬─── ALL ──┬─ ; ───►◄
 │ ┌──┐ │
 └─▼─ NAME (resource-id) LENGTH (resource-id-length) ─┴─┘

Parameters

ALL

Releases all resources acquired by the issuing task by means of ENQUEUE requests.

NAME (resource-id)

Specifies the resources to be dequeued and supplies the length of each resource:

Resource-id is the symbolic name of a user-defined field that contains the 1- to
255-character resource ID. Multiple NAME parameters must be separated by at
least one blank.

LENGTH (resource-id-length)

Specifies either the symbolic name of a user-defined FIXED BINARY(31) field that
contains the length of the resource ID, or the length itself expressed as a numeric
constant.

Example

The following statement releases all the resources enqueued by the issuing task:

DEQUEUE NAME (PAYROLL_LOCK)

 LENGTH (16);

Status Codes

Upon completion of the DEQUEUE function, the ERROR_STATUS field in the IDMS DC

communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

3913

At least one resource ID cannot be found; all resources that were located have been

dequeued.

3931

The parameter l ist is invalid.

DISCONNECT

Chapter 7: Data Manipulation Language Statements 135

DISCONNECT

The DISCONNECT statement cancels the current membership of a record occurrence in a
set occurrence. The named record must be defined as an optional member of the
named set.

Native VSAM users: The DISCONNECT statement is not valid since all sets in native

VSAM data sets must be defined as mandatory automatic.

Before executing the DISCONNECT statement, satisfy the following conditions:

■ Ready all areas affected either explicitly or implicitly by the DISCONNECT statement
with one of the three update usage modes (see READY, later in this chapter).

■ Establish the named record as current of its record type.

■ Make sure that the named record currently participates as a member in an

occurrence of the named set.

Following successful execution of the DISCONNECT statement, the named record can no

longer be accessed through the set for which membership was canceled. The
disconnected record can stil l be accessed either by means of a complete scan of the
area in which it participates or directly through its db-key, if known. A disconnected

record can also be accessed either through any other sets in which it participates as a
member or if it has a location mode of CALC.

Currency

A successfully executed DISCONNECT statement nullifies currency in the specified set.
However, next, prior, and owner of set are maintained, enabling continued access

within the set. The disconnected record is current of run unit, its record type, its area,
and any other sets in which it participates. The following figure il lustrates the steps
required to disconnect an EMPLOYEE record from an occurrence of the
OFFICE_EMPLOYEE set.

To disconnect EMPLOYEE 4 from OFFICE 1 of the OFFICE_EMPLOYEE set, enter the

database on OFFICE 1, establish EMPLOYEE 4 as current of the EMPLOYEE record type,
and disconnect it from the OFFICE_EMPLOYEE set.

DISCONNECT

136 DML Reference Guide for PLI

Syntax

►►─── DISCONNECT RECORD (record-name) SET (set-name); ────────────────────────►◄

Parameters

RECORD (record-name)

Specifies the record type to be disconnected. Record-name must be a record

included in the subschema and must be defined as an optional member of the
specified set.

SET (set-name)

Specifies the set from which the named record will be disconnected. Set-name must

be a set included in the subschema.

Example

The following statement disconnects the current EMPLOYEE record from the
OFFICE_EMPLOYEE set:

DISCONNECT RECORD (EMPLOYEE) SET (OFFICE_EMPLOYEE);

END LINE TERMINAL SESSION (DC/UCF)

Chapter 7: Data Manipulation Language Statements 137

Status Codes

Upon completion of the DISCONNECT function, the ERROR_STATUS field in the IDMS DB
communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

1106

Currency has not been established for the named record.

1108

The named record is not in the subschema. The program has probably invoked the

wrong subschema.

1109

The named record's area has not been readied in one of the update usage modes.

1110

The subschema specifies an access restriction that prohibits use of the DISCONNECT

statement.

1115

The DISCONNECT statement cannot be executed because the named record has
been defined as a mandatory member of the set.

1121

An area other than the area that contains the named record has been readied with

an incorrect usage mode.

1122

The named record is not currently a member of the specified set.

END LINE TERMINAL SESSION (DC/UCF)

The END LINE TERMINAL SESSION statement terminates the current l ine-mode I/O

session. All output data l ines that remain in the current buffer and all pages queued for
asynchronous I/O operations are deleted.

Syntax

►►─── END LINE TERMINAL session ; ──►◄

END TRANSACTION STATISTICS (DC/UCF)

138 DML Reference Guide for PLI

Example

The following statement terminates a l ine mode I/O session:

END LINE TERMINAL SESSION;

Status Codes

There are no codes associated with the END LINE TERMINAL SESSION command.

END TRANSACTION STATISTICS (DC/UCF)

The END TRANSACTION STATISTICS statement defines the end of a transaction. The
transaction typically ends when the issuing task terminates. Optionally, END
TRANSACTION STATISTICS can be used to write the transaction statistics block (TSB) to
the system log fi le and to return the TSB to a preallocated location in variable storage.

You can define the length of the TSB.

Syntax

►►─── END TRANSACTION STATISTICS ─┬───────────┬───────────────────────────────►
 ├─ WRITE ◄ ─┤
 └─ NOWRITE ─┘

 ►─┬────────────────────────────────────┬─────────────────────────────────────►
 └─ INTO (return-stat-data-location) ─┘

 ►─┬────────────────────────────┬──────── ; ──────────────────────────────────►◄
 └─ LENGTH= ─┬─ 388 ◄───────┬─┘
 └─ tsb-length ─┘

Parameters

WRITE/NOWRITE

Specifies whether the TSB is written to the system log fi le when the task terminates.

Default: WRITE

INTO (return-stat-data-location)

Specifies the location to which the system copies the TSB. Return-stat-data-location
is the symbolic name of a user-defined field. Return-stat-data-location is a
fullword-aligned 388-byte field (you can customize the length using the LENGTH=

parameter).

END TRANSACTION STATISTICS (DC/UCF)

Chapter 7: Data Manipulation Language Statements 139

LENGTH=

Specifies the length of the returned TSB . To retrieve all statistics including the DC

extended statistics section that records CPU times in the Time of Day (TOD) format,
specify LENGTH=560.

tsb-length

Specifies either the symbolic name of a user-defined field that contains the
length to be returned, or the length expressed as a numeric constant.

Limits: Integer of 388 or greater

Default: If you do not specify a tsb-length, the first 388 bytes of the TSB are

returned.

Example

The following statement ends a transaction, writes statistics to the log fi le, and returns a
copy of the TSB to the STATISTICS_BLOCK field:

END TRANSACTION STATISTICS

 WRITE

 INTO (STATISTICS_BLOCK);

Status Codes

Upon completion of the END TRANSACTION STATISTICS function, the ERROR_STATUS
field in the IDMS DC communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

3801

Storage for the transaction statistics bl ock is not available; to wait would cause a

deadlock.

3813

No transaction statistics block exists; a BIND TRANSACTION STATISTICS request has
not been issued.

3831

Either the parameter l ist is invalid or no logical terminal element (LTE) is associated

with the issuing task.

3850

The collection of transaction statistics or task statistics has not been enabled during
system generation.

ENDPAGE (DC/UCF)

140 DML Reference Guide for PLI

ENDPAGE (DC/UCF)

The ENDPAGE statement terminates a map paging session, clears the scratch record for
the session, and clears the map paging options for the completed session. A
STARTPAGE/ENDPAGE pair encloses commands that handle a pageable map at runtime.
The STARTPAGE command is discussed later in this chapter.

Syntax

►►─── ENDPAGE session ; ──►◄

Example

The following statement ends a map paging session:

ENDPAGE SESSION;

Status Codes

Upon completion of the ENDPAGE function, the ERROR_STATUS field in the IDMS DC
communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

ENQUEUE (DC/UCF)

The ENQUEUE statement acquires or tests the availability of a resource or l ist of
resources. Resources are defined during installation and system generation and typically

include storage areas, common routines, queues, and processor time.

An enqueued resource can be exclusive or shared:

■ Exclusive—The resource is owned exclusively by the issuing task and is not available
to any other tasks. The system prohibits other tasks from obtaining resources that
have been ENQUEUED exclusively.

Note: An exclusive ENQUEUE request prohibits another task from enqueuing a
resource by name; however, it does not prohibit the use of the resource by another
task. Therefore, to effect true resource protection, you must enqueue and dequeue

resources consistently.

■ Shared—The resource is available to all tasks. The system allows other tasks to
issue nonexclusive ENQUEUE requests for the resources, permitting the resources
to be shared.

ENQUEUE (DC/UCF)

Chapter 7: Data Manipulation Language Statements 141

Syntax

►►─── ENQUEUE ─┬──────────┬───►
 ├─ WAIT ◄ ─┤
 ├─ NOWAIT ─┤
 └─ TEST ───┘

 ┌───┐
 ►─▼─ NAME (resource-id) LENGTH (resource-id-length) ──┬───────────────┬─┴ ; ─►◄
 ├─ EXCLUSIVE ◄ ─┤
 └─ SHARED ──────┘

Parameters

WAIT

Specifies that the system is to wait for all resources to be freed if it cannot service
the request immediately. WAIT is the default.

NOWAIT

Specifies that the system is not to wait to acquire resources that are not currently
available. If NOWAIT is specified, the program should check the ERROR_STATUS
field in the IDMS DC communications block to determine if the function has been

completed. If the ERROR_STATUS value is 3901, indicating that a resource could not
be obtained immediately, the request has not been serviced and the program
should perform alternative processing before reissuing the NOWAIT request.

TEST

Tests the availability of the specified resources. If TEST is specified, the program

should check the ERROR_STATUS field in the IDMS DC communications block to
determine the outcome of the test.

NAME (resource-id)

Specifies the character ID that names the resource. Resource-id must be a
user-defined field that contains the resource ID. The resource ID is a 1 to 255 byte

character string used to identify the resource upon which an enqueue is to be set or
tested. Any character string may be defined as long as all programs that access the
resource use the same name and the name is unique relative to all other names
used to identify other resources within the CV.

LENGTH (resource-id-length)

Specifies the symbolic name of either a user-defined FIXED BINARY(31) field that
contains the length of the resource ID or the length itself expressed as a numeric
constant.

EXCLUSIVE/SHARED

Assigns the exclusive or shared attribute to the named resource. The default
attribute is EXCLUSIVE.

ENQUEUE (DC/UCF)

142 DML Reference Guide for PLI

Example

The following statement enqueues the CODE_VALUE and PAYROLL_LOCK resources.
CODE_VALUE is reserved for exclusive use by the issuing task; PAYROLL_LOCK can be
shared.

ENQUEUE

 WAIT

 NAME (CODE_VALUE) LENGTH (10)

 NAME (PAYROLL_LOCK) LENGTH (16) SHARED;

The following statement tests the availability of the resource whose identifier is
contained in the RESOURCE_NAME field:

ENQUEUE

 TEST

 NAME (RESOURCE_NAME) LENGTH (RESOURCE_NAME_LENGTH);

Status Codes

Upon completion of an ENQUEUE function to acquire resources, the ERROR_STATUS
field in the IDMS DC communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

3901

At least one of the requested resources cannot be enqueued immediately; to wait
would cause a deadlock. No new resources have been acquired.

3908

At least one of the requested exclusive resources is currently owned by another

task. No new resources have been acquired.

3931

The parameter l ist is invalid.

Upon completion of an ENQUEUE function to test resources, the ERROR_STATUS

field in the IDMS DC communications block indicates the outcome of the operation:

0000

All requested resources are available.

3908

At least one of the tested resources is already owned by another task.

ERASE

Chapter 7: Data Manipulation Language Statements 143

3909

At least one of the tested resources is not yet owned by another task and is

available to the issuing task.

3931

The parameter l ist is invalid.

ERASE

The ERASE statement performs the following functions:

■ Disconnects the specified record from all set occurrences in which it participates as

a member and logically or physically deletes the record from the database

■ Optionally erases all records that are mandatory members of set occurrences
owned by the specified record

■ Optionally disconnects or erases all records that are optional members of set
occurrences owned by the specified record

ERASE is a two-step procedure that first cancels the existing membership of the named
record in specific set occurrences and then releases for reuse the space occupied by the
named record and its db-key. Erased records are unavailable for further processing by

any DML statement.

Before executing the ERASE statement, satisfy the following conditions:

■ Ready all areas that are affected either implicitl y or explicitly in one of the update
usage modes (see READY later in this chapter).

■ Include and ready in an update usage mode all sets in which the specified record

participates as a member.

Include in the subschema all sets in which the specified record participates as owner
either directly or indirectly (for example, as owner of a set with a member that is owner
of another set) and all member record types in those sets.

■ Include in the subschema all records that participate either implicitly or explicitly as

owners.

■ Establish the specified record as current of run unit.

ERASE

144 DML Reference Guide for PLI

Currency

Following successful execution of an ERASE statement, currency is nullified for all record

types involved in the erase both explicitly and implicitly. Run unit and area currency
remain unchanged. Next, prior, and owner currencies are preserved for sets from which
the last record occurrence was erased. These currencies enable you to retrieve the next

or prior records within the area or the next, prior, or owner records within the set in
which the erased record participated. An attempt to retrieve erased records results in
an error condition.

Syntax

►►─── ERASE RECORD (record-name) ─┬─────────────┬─ ; ─────────────────────────►◄
 ├─ PERMANENT ─┤
 ├─ SELECTIVE ─┤
 └─ ALL ───────┘

Parameters

RECORD (record-name)

Names the record type to be erased. Record-name must be a record included in the

subschema. The current of record-name must be current of run unit. Unless the
PERMANENT, SELECTIVE, or ALL qualifier follows, an error condition results if the
named record is the owner of any nonempty set occurrences.

Native VSAM users: ERASE RECORD (record-name) is the only form of the ERASE
statement valid for records in a native VSAM key-sequenced data sets (KSDS) or
relative-record data sets (RRDS); the ERASE statement is not valid for a native VSAM
entry-sequenced data sets (ESDS).

PERMANENT

Erases the specified record and all mandatory member record occurrences owned
by the specified record. Optional member records are disconnected. If any of the
erased mandatory members are themselves the owner of any set occurrences, the
ERASE statement is executed on such records as if they were directly the object

record of an ERASE PERMANENT statement (that is, all mandatory members of such
sets are also erased). This process continues until all direct and indirect members
have been processed.

SELECTIVE

Erases the specified record and all mandatory member record occurrences owned

by the specified record. Optional member records are erased if they do not
currently participate as members in other set occurrences. All erased member
records that are themselves the owners of any set occurrences are treated as if

they were the object of an ERASE SELECTIVE statement.

ERASE

Chapter 7: Data Manipulation Language Statements 145

ALL

Erases the specified record and all mandatory and optional member record

occurrences owned by the specified record. All erased member records that are
themselves the owners of any set occurrences are treated as if they were the object
record of an ERASE ALL statement.

Example

The following four figures i l lustrate use of the three parameters of the ERASE statement.
Note that the outcome of the ERASE statement varies based on the qualifier specified
(PERMANENT, SELECTIVE, or ALL). Although all three qualifiers cause all mandatory

members owned by the specified record to be erased, they differ in their effect on
optional members.

ERASE

146 DML Reference Guide for PLI

ERASE

Chapter 7: Data Manipulation Language Statements 147

The following figure shows the effect each of the parameters has on currenc y.

ERASE

148 DML Reference Guide for PLI

Status Codes

Upon completion of the ERASE function, the ERROR_STATUS field in the IDMS DB
communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

0208

The object record is not in the specified subschema.

0209

The named record's area has not been readied in one of the three update usage

modes.

0210

The subschema specifies an access restriction that prohibits use of the ERASE
statement.

0213

A current record of run unit has either not been established or has been nullified by
a previous ERASE statement.

0217

A db-key has been encountered that contains a longterm permanent lock.

0220

The current record of run unit is not the same record type as the named record.

0221

An area other than the area of the specified record has been readied with an
incorrect usage mode.

0225

Currency has not been established. Only OBTAIN statements update index set
currencies.

0226

A broken chain has been encountered in the process of executing an ERASE ALL,
PERMANENT, or SELECTIVE.

0230

An attempt has been made to erase the owner record of a nonempty set.

0233

Either erasure of the record occurrence is not allowed in this subschema or all sets
in which the record participates have not been included in the subschema.

ERASE (LRF)

Chapter 7: Data Manipulation Language Statements 149

0260

A record occurrence has been encountered whose type is inconsistent with the set

named in the ERROR_SET field of the IDMS DB communications block; probable
causes are a broken chain or improper database description.

0261

No record can be found for a pointer db-key. The probable cause is a broken chain.

ERASE (LRF)

The ERASE statement deletes a logical -record occurrence. The ERASE statement does
not necessarily result in the deletion of all or any of the database records used to create
the specified logical record. The path selected to service an ERASE logical -record request

performs whatever database access operations the DBA has specified to service the
request. For example, if a DEPARTMENT loses an employee, the EMP_JOB_LR logical
record that contains information about that employee would be erased. However, only

the information about the former employee would be erased from the database, not all
the information about the department; that is, EMPLOYEE information would be erased,
but not DEPARTMENT, JOB, or OFFICE information.

LRF uses field values present in the variable-storage location reserved for the logical
record to update the database. You can specify an alternative storage location from

which LRF is to take field values to make the appropriate updates to the database.

Syntax

►►─── ERASE RECORD (logical-record-name) ─────────────────────────────────────►

 ►─┬─────────────────────────────┬─┬──────────────────────────────┬───────────►
 └─ FROM (alt-logical-record) ─┘ └─ WHERE (boolean-expression) ─┘

 ►─┬──┬─ ; ─────────────────►◄
 └─ ON LR_STATUS (path-status) imperative-statement ─┘

RECORD (logical-record-name)

Names the logical record to be deleted. Unless the FROM clause (see below) is
included, LRF uses field values present in the variable-storage location reserved for
the logical record to make any necessary updates to the database.

Logical-record-name must specify a logical record defined in the subschema.

FROM (alt-logical-record)

Names an alternative variable-storage location from which LRF is to obtain field
values to perform the appropriate database updates in response to this request.
When erasing a logical record that has been previously retrieved into an alternative

storage location, use the FROM clause to name the same location specified in the
OBTAIN request. If the FROM clause is included in the ERASE statement,
alt-logical-record must identify a record location defined in program variable
storage.

FIND/OBTAIN

150 DML Reference Guide for PLI

WHERE (boolean-expression)

Specifies the selection criteria to be applied to the specified logical record. For

details on coding this clause, see Logical -Record Clauses (WHERE and ON) at the
end of this chapter.

ON LR_STATUS (path-status) imperative-statement

Specifies the action to be taken if path-status is returned to the LR_STATUS field in
the LRC block. Path-status must be a 1- to 16-character alphanumeric value. For
details on coding this clause, see Logical -Record Clauses (WHERE and ON) at the
end of this chapter.

Example

The following example i l lustrates a request to erase all occurrences of a former

employee's EMP_INSURANCE_LR logical record. The DBA-designated path status
ALL_ERASED indicates that all occurrences of the EMP_INSURANCE_LR logical record
have been erased.

ERASE RECORD (EMP_INSURANCE_LR)

 WHERE (EMP_ID_0415 EQ '0316')

 ON LR_STATUS (ALL_ERASED) CALL EMP_INS_DELETION_RPT;

D, M, and F under Coverage in the following figure are physically erased from the
database as a result of the ERASE RECORD (EMP_INSURANCE_LR) statement. As defined
by the DBA, the ERASE EMP_INSURANCE_LR path group logically deletes all of the
specified EMP_INSURANCE_LR occurrences, but physically deletes only the D, M, and F

COVERAGE records.

FIND/OBTAIN

The FIND statement locates a record occurrence in the database; the OBTAIN statement
locates a record and moves the data associated with the record to the record buffers.

Because the FIND and OBTAIN command statements have identical formats, they are
discussed together.

FIND/OBTAIN

Chapter 7: Data Manipulation Language Statements 151

Six FIND/OBTAIN Formats

The six formats of the FIND/OBTAIN statement are as follows:

■ FIND/OBTAIN CALC/DUPLICATE accesses a record occurrence by using its CALC key
value.

■ FIND/OBTAIN CURRENT accesses a record occurrence by using established

currencies.

■ FIND/OBTAIN DBKEY accesses a record occurrence by using its database key.

■ FIND/OBTAIN OWNER accesses the owner record of a set occurrence.

■ FIND/OBTAIN WITHIN SET USING SORT KEY accesses a record occurrence in a
sorted set by using its sort-key value.

■ FIND/OBTAIN WITHIN SET/AREA accesses a record occurrence based on its logical
location within a set or on its physical location within an area.

Each format of the FIND/OBTAIN statement is discussed separately in the following

subsections.

SHARED and EXCLUSIVE Locks

You can place locks on located record occurrences by using the KEEP clause of a
FIND/OBTAIN statement. The KEEP clause sets a shared or exclusive lock:

■ KEEP places a shared lock on the located record occurrence. Other concurrently

executing run units can access but not update the locked record.

■ KEEP EXCLUSIVE places an exclusive lock on the located record occurrence. Other
concurrently executing run units can neither access nor update the locked record.

More information:

KEEP CURRENT (see page 198)

FIND/OBTAIN CALC/DUPLICATE

The FIND/OBTAIN CALC/DUPLICATE statement locates a record based on the value of an
element defined as a CALC key in the record. The specified record must be stored i n the
database with a location mode of CALC. Before issuing the FIND/OBTAIN

CALC/DUPLICATE statement, you must initialize a field in program variable storage with
the CALC-key value.

You can use the DUPLICATE option to access duplicate records with the same CALC-key
value as the record that is current of record type, provided that a FIND/OBTAIN CALC
statement has previously accessed an occurrence of the same record type.

FIND/OBTAIN

152 DML Reference Guide for PLI

Currency

Following successful execution of a FIND/OBTAIN CALC/DUPLICATE statement, the

accessed record becomes the current record of run unit, its record type, its area, and all
sets in which it currently participates as member or owner.

Syntax

►►──┬─ FIND ───┬──┬────────────────────────┬───┬─┬─ CALC ─┬──┬────────────────►
 └─ OBTAIN ─┘ └─ KEEP ─┬─────────────┬─┘ │ └─ ANY ──┘ │
 └─ EXCLUSIVE ─┘ └─ DUPLICATE ─┘

 ►──── RECORD (record-name); ───►◄

Parameters

FIND/OBTAIN CALC/DUPLICATE RECORD (record-name)

Locates the record specified by record-name based on its CALC-key value:

CALC/ANY

Locates the first or only occurrence of the designated record type whose CALC
key matches the value of the CALC data item in program variable storage. CALC
and ANY are synonyms.

DUPLICATE

Locates the next record with the same CALC key value as the current of record

type. Use of the DUPLICATE option requires prior selection of an occurrence of
the same record type with the CALC option. If the value of the CALC key in
variable storage is not equal to the CALC-key field of the current of record type,
an error status of 0332 is returned.

KEEP EXCLUSIVE

Places a shared (KEEP) or exclusive (KEEP EXCLUSIVE) lock on the accessed record.

Example

To retrieve an occurrence of the EMPLOYEE record by using the FIND/OBTAIN

CALC/DUPLICATE statement, you must first initialize the variable-storage field that
contains the CALC-control element. The following statements initialize the CALC field
EMP_ID_0415 and retrieve an occurrence of the EMPLOYEE record:

EMP_ID_0415 = EMP_ID_IN;

OBTAIN CALC RECORD (EMPLOYEE);

FIND/OBTAIN

Chapter 7: Data Manipulation Language Statements 153

Status Codes

Upon completion of the FIND/OBTAIN CALC/DUPLICATE function, the ERROR_STATUS
field in the IDMS DB communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

0301

The area in which the named record participates has not been readied.

0306

A successful FIND/OBTAIN CALC has not yet been executed (applies to the

DUPLICATE option only).

0308

The named record is not in the subschema. The program probably invoked the
wrong subschema.

0310

The subschema specifies an access restriction that prohibits retrieval of the named
record.

0318

The record has not been bound.

0326

The record cannot be found or no more duplicates exist for the named record.

0331

The retrieval statement format conflicts with the record's location mode.

0332

The value of the CALC data item in program variable storage does not equal the

value of the CALC data item in the current record (applies to the DUPLICATE option
only).

0364

The CALC-control element has not been described correctly either in the program
or in the subschema.

0370

A database fi le will not open properly.

FIND/OBTAIN

154 DML Reference Guide for PLI

If the KEEP parameter is specified in a FIND/OBTAIN statement, and an error occurs
during KEEP processing, the major code 06 is returned.

Note: For more information, see KEEP CURRENT (see page 198) later in this chapter. The
major code 03 is returned if an error occurs during FIND/OBTAIN processing.

FIND/OBTAIN CURRENT

The FIND/OBTAIN CURRENT statement locates the record that is current of its record

type, set, or area. This form of the FIND/OBTAIN statement is an efficient means of
establishing the appropriate record as current of run unit before executing a DML
statement that util izes run-unit currency (for example, ACCEPT, IF, GET, MODIFY,

ERASE).

Currency

Following successful execution of a FIND/OBTAIN CURRENT statement, the accessed
record is current of run unit, its record type, its area, and all sets in which it currently
participates as member or owner.

Syntax

►►─┬─ FIND ───┬─┬────────────────────────┬─ CURRENT ──────────────────────────►
 └─ OBTAIN ─┘ └─ KEEP ─┬─────────────┬─┘
 └─ EXCLUSIVE ─┘

 ►─┬────────────────────────┬─ ; ───►◄
 ├─ RECORD (record-name) ─┤
 ├─ SET (set-name) ───────┤
 └─ AREA (area-name) ─────┘

Parameters

FIND/OBTAIN CURRENT

Locates the current record occurrence of a specified record type, set, or area.

KEEP EXCLUSIVE

Places a shared (KEEP) or exclusive (KEEP EXCLUSIVE) lock on the accessed record.

RECORD (record-name)/SET (set-name)/AREA (area-name)

Specifies that the current record of the named record type, set, or area is to be

accessed.

Example

The following figure il lustrates use of the FIND/OBTAIN CURRENT statement to establish
the proper record as current of run unit before the record is modified.

FIND/OBTAIN

Chapter 7: Data Manipulation Language Statements 155

Assume that you enter the database on DEPARTMENT 5100 by using CALC retrieval. You
examine EMPLOYEE 466 by using within set retrieval and obtain further information

from its owner OFFICE record (OFFICE 8). OFFICE 8 becomes current of run unit. Before
modifying EMPLOYEE 466, you must issue the FIND CURRENT statement to reestablish
EMPLOYEE 466 as current of run unit.

Note: For more information about MODIFY statement and its use, see MODIFY RECORD
(see page 230).

FIND/OBTAIN

156 DML Reference Guide for PLI

Status Codes

Upon completion of the FIND/OBTAIN CURRENT function, the ERROR_STATUS field in
the IDMS DB communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

0301

The area in which the named record participates has not been readied.

0306

Currency has not been established for the named record, set, or area.

0308

The named record or set is not in the subschema. The program has probably
invoked the wrong subschema.

0310

The subschema specifies an access restriction that prohibits retrieval of the named

record.

0313

A current record of run unit either has not been established or has been nullified by
a previous ERASE statement.

0323

The specified area name has not been included in the subschema invoked.

If the KEEP parameter is specified in a FIND/OBTAIN statement, and an error occurs
during KEEP processing, the major code 06 is returned.

Note: For more information, see KEEP CURRENT (see page 198), later in this chapter.
The major code 03 is returned if an error occurs during FIND/OBTAIN processing.

FIND/OBTAIN DBKEY

The FIND/OBTAIN DBKEY statement locates a record occurrence directly by using a
database key that has been stored previously by the program. The DML ACCEPT
statement, discussed earlier in this chapter, or the PL/I assignment statement can be

used to save a db-key. Any record in the program's subschema can be accessed directly
in this manner, regardless of its location mode.

Native VSAM users: This statement is not valid for accessing data records in a native

VSAM key-sequenced data set (KSDS).

FIND/OBTAIN

Chapter 7: Data Manipulation Language Statements 157

Currency

After successful execution of a FIND/OBTAIN DBKEY statement, the accessed record

becomes the current record of run unit, its record type, its area, and all sets in which it
currently participates as member or owner. In addition, the RECORD_NAME field of the
IDMS DB communications block is updated with the name of the accessed record.

Note that currency is not used to determine the specified record of the FIND/OBTAIN
DBKEY statement; the record is identified by its db-key and, optionally, by its record
type.

Syntax

►►─┬─ FIND ───┬─┬────────────────────────┬───────────────────────────────────►
 └─ OBTAIN ─┘ └─ KEEP ─┬─────────────┬─┘
 └─ EXCLUSIVE ─┘

 ►─┬─ DBKEY (db-key-v) ─┬───────────────────────────┬─┬──────────────────────►◄
 │ └─ PAGE_INFO (page-info-v) ─┘ │
 └─┬────────────────────────┬─ DBKEY (db-key-v) ────┘
 └─ RECORD (record-name) ─┘

Parameters

FIND/OBTAIN DBKEY (db-key-v)

Locates a record directly by using a db-key value contained in program variable
storage. (db-key-v) is a FIXED BINARY(31) fullword field that identifies the location

in program variable storage that contains a db-key previously saved by the
program.

If a record name has been specified, (db-key-v) must contain the db-key of an

occurrence of the named record type.

If a record name has not been specified and the subschema includes areas with

different page information values, then:

■ If PAGE_INFO has been specified, (db-key-v) must contain the db-key of an
occurrence of a record type whose page information matches that specified.

■ If PAGE_INFO has not been specified, (db-key-v) must contain the db-key of an
occurrence of a record type whose page information matches that of the
record that is current of run unit.

If a record name has not been specified and all areas in the subschema have the

same page information value, (db-key-v) can contain the db-key of an occurrence of
any record type in the subschema.

KEEP EXCLUSIVE

Places a shared (KEEP) or exclusive (KEEP EXCLUSIVE) lock on the accessed record.

FIND/OBTAIN

158 DML Reference Guide for PLI

PAGE_INFO (page-info-v)

Specifies page information that is used to determine the area with which the db-key

is associated. If neither record name nor PAGE_INFO is specified and the subschema
includes areas with different page information values, the page information
associated with the record that is current of rununit is used.

Note: Page information is only used if the subschema includes areas with different
page information values; otherwise, it is ignored.

page-info-v is a field that identifies the location within program variable storage
containing the page information associated with the specified db-key. It may be
defined either as a fullword field or as a group field consisting of two halfwords.

RECORD (record-name)

Optionally identifies the record type of the requested record. If specified,

record-name must name a record that is included in the subschema.

Example

The following statement locates the occurrence of the HOSPITAL_CLAIM record whose

db-key matches the value of a field in program variable storage called SAVED_KEY:

FIND RECORD (HOSPITAL_CLAIM) DBKEY (SAVED_KEY);

The located record becomes current of run unit, current of the HOSPITAL_CLAIM record

type, current of the INS_DEMO_REGION area, and current of the COVERAGE_CLAIMS
set.

Status Codes

Upon completion of the FIND/OBTAIN DBKEY function, the ERROR_STATUS field in the
IDMS DB communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

0301

The area in which the named record participates has not been readied.

0302

The db-key is inconsistent with the area in which the record is stored. Either the
db-key has not been initialized properly or the record name is incorrect.

0308

The named record is not in the subschema. The program has probably invoked the
wrong subschema.

FIND/OBTAIN

Chapter 7: Data Manipulation Language Statements 159

0310

The subschema specifies an access restriction that prohibits retrieval of the named

record.

0326

The record cannot be found; record occurrence not correct type

0370

A database fi le will not open properly.

0371

The requested page cannot be found in the DMCL.

If the KEEP parameter is specified in a FIND/OBTAIN statement, and an error occurs
during KEEP processing, the major code 06 is returned. For more information, see KEEP
CURRENT, later in this chapter. The major code 03 is returned if an error occurs during

FIND/OBTAIN processing.

FIND/OBTAIN OWNER

The FIND/OBTAIN OWNER statement locates the owner record of the current
occurrence of a set. This statement can be used to retrieve the owner record of any set

whether or not that set has been assigned owner pointers.

Native VSAM users: The FIND/OBTAIN OWNER statement is not valid since owner
records are not defined in native VSAM data sets.

Currency

In order to execute a FIND/OBTAIN OWNER statement, currency must be established for

the specified set.

Note: When a record declared as an optional or manual member of a set is retrieved, it
is not established as current of set if it is not currently connected to the specified set. A

subsequent attempt to retrieve the owner record will locate instead the owner of the
current record of set. In such cases, you should determine whether the retrieved record
is actually a member in the specified set before executing the FIND/OBTAIN OWNER
statement. The IF MEMBER statement, explained later in this chapter, can be used for

this purpose.

Following successful execution of a FIND/OBTAIN OWNER statement, the accessed
record becomes the current record of run unit, its record type, its area, and all sets in
which it currently participates as member or owner. If the current record of set is the
owner record when the statement is executed, currency within the specified set

remains unchanged.

FIND/OBTAIN

160 DML Reference Guide for PLI

Syntax

►►─┬─ FIND ───┬─┬────────────────────────┬─ OWNER SET (set-name); ────────────►◄
 └─ OBTAIN ─┘ └─ KEEP ─┬─────────────┬─┘
 └─ EXCLUSIVE ─┘

Parameters

FIND/OBTAIN OWNER SET (set-name)

Specifies the set whose owner record is to be retrieved. Set-name must be a set
included in the subschema.

KEEP EXCLUSIVE

Places a shared (KEEP) or exclusive (KEEP EXCLUSIVE) lock on the accessed record.

Example

The following figure il lustrates use of the FIND/OBTAIN OWNER statement to move

through the database.

FIND/OBTAIN

Chapter 7: Data Manipulation Language Statements 161

Status Codes

Upon completion of the FIND/OBTAIN OWNER function, the ERROR_STATUS field in the
IDMS DB communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

0301

The area in which the object record participates has not been readied.

0306

Currency has not been established for the record, set, or area.

0308

The named set is not in the subschema. The program has probably invoked the
wrong subschema.

0310

The subschema specifies an access restriction that prohibits retrieval of the object

record.

0360

A record occurrence has been encountered whose record type is not a member or
owner of the set as it is defined in the subschema.

0370

A database fi le will not open properly.

If the KEEP parameter is specified in a FIND/OBTAIN statement, and an error occurs
during KEEP processing, the major code 06 is returned. For more information, see KEEP
CURRENT, later in this chapter. The major code 03 is returned if an error occurs during
FIND/OBTAIN processing.

FIND/OBTAIN WITHIN SET USING SORT KEY

The FIND/OBTAIN WITHIN SET USING SORT KEY statement locates a member record in a
sorted set. Sorted sets are ordered in ascending or descending sequence based on the
value of a sort-control element in each member record. The search begins with either

the current of set or the owner of the current of set and always proceeds through the
set in the next direction.

FIND/OBTAIN

162 DML Reference Guide for PLI

Before issuing this statement, you must initialize the sort-control element in program
variable storage. The record occurrence selected will have a key value equal to the value

of the sort-control element. If more than one record occurrence contains a sort key
equal to the key value in variable storage, the first such record will be selected.

You can use FIND/OBTAIN WITHIN SET USING SORT KEY to access both sorted chained

sets and sorted index sets.

Note: In a batch environment, sorted sets can be processed more efficiently by sorting

the input transactions.

Currency

Following successful execution of a FIND/OBTAIN WITHIN SET USING SORT KEY
statement, the accessed record becomes current of run unit, its record type, its area,
and all sets in which it currently participates as member or owner. If a member record

with the requested sort-key value is not found, the current of set is nullified but the next
of set and prior of set are maintained. The next of set is the member record with the
next higher sort-key value (or next lower for descending sets) than the requested value;

the prior of set is the member record with the next lower value (or higher for
descending sets) than requested. Because these currencies are maintained, the program
can walk the set to do a generic search on the sort-key value.

Syntax

►►─┬─ FIND ───┬─┬────────────────────────┬─ RECORD (record-name) ─────────────►
 └─ OBTAIN ─┘ └─ KEEP ─┬─────────────┬─┘
 └─ EXCLUSIVE ─┘

 ►── SET (set-name) ─┬───────────┬─ USING (sort-field-name); ─────────────────►◄
 └─ CURRENT ─┘

Parameters

FIND/OBTAIN RECORD (record-name) SET (set-name)

Specifies the record type and sorted set name. The search begins with the owner of
the current record of the specified set.

KEEP EXCLUSIVE

Places a shared (KEEP) or exclusive (KEEP EXCLUSIVE) lock on the accessed record.

CURRENT

Indicates that the search begins with the currencies already established for the
specified set.

If the key value for the record that is current of set is higher than the key value of

the requested record (assuming ascending set order), a NOT FOUND condition
results. In a descending set order, if the key value for the record that is current of
set is lower than the key value of the requested record, a NOT FOUND condition

results.

FIND/OBTAIN

Chapter 7: Data Manipulation Language Statements 163

USING (sort-field-name)

Specifies the sort-control element to be used in searching the sorted set.

Sort-field-name is either the name of the sort-control element in the record or the
symbolic name of a field in variable storage that contains the value of the
sort-control element.

Note: The value coded for sort-field-name can only specify a single field name. If the
sort key is comprised of multiple fields, the value coded should represent a
group-level field. The elementary elements must be in the same sequence as the
corresponding fields within the set's schema definition. The data formats for the

elementary fields must also match the formats of the corresponding fields in the
database record's definition.

Example

The following example i l lustrates the use of a FIND/OBTAIN WITHIN SET USING SORT

KEY statement. Assume that the SKILL_NAME_NDX set is ordered in ascending sequence
based on the value stored in SKILL_NAME_0455 in each SKILL record occurrence.
Retrieval of a SKILL record with a skil l name equal to PL/I is accomplished by coding the

following statements:

SKILL_NAME_0455 = 'PL/I';

FIND RECORD (SKILL) SET (SKILL_NAME_NDX)

 USING (SKILL_NAME_0455);

Status Codes

Upon completion of the FIND/OBTAIN WITHIN SET USING SORT KEY function, the
ERROR_STATUS field in the IDMS DB communications block indicates the outcome of

the operation:

0000

The request has been serviced successfully.

0057

A retrieval-only run unit has detected an inconsistency in an index that should cause
an 1143 abend, but optional APAR bit 216 has been turned on.

0301

The area in which the named record participates has not been readied.

0306

Currency has not been established for the named set.

0308

Either the named record or set is not in the subschema or the named record is not a
member of the named set. The program has probably invoked the wrong

subschema.

FIND/OBTAIN

164 DML Reference Guide for PLI

0310

The subschema specifies an access restriction that prohibits retrieval of the named

record.

0326

The record cannot be found.

0331

The retrieval statement format conflicts with the record's location mode.

0360

A record occurrence has been encountered whose record type is not a member or
owner of the set as it is defined in the subschema.

0370

A database fi le will not open properly.

If the KEEP parameter is specified in a FIND/OBTAIN statement, and an error occurs

during KEEP processing, the major code 06 is returned.

Note: For more information, see KEEP CURRENT (see page 198), later in this chapter.
The major code 03 is returned if an error occurs during FIND/OBTAIN processing.

FIND/OBTAIN WITHIN SET/AREA

The FIND/OBTAIN WITHIN SET/AREA statement locates records either logically, based
on set relationships, or physically, based on database location. The formats of this
statement allow you either to access serially each record in a set or area or to select
specific occurrences of a given record type within the set or area.

Selecting from a Set

The following rules apply to the selection of member records within a set:

■ The set occurrence used as the basis for the operation is determined by the current
record of the specified set. Set currency must be established before attempting to

access records within a set.

■ The next or prior record within a set is the subsequent or previous record relative to
the current record of the named set in the logical order of the set. The prior record
in a set can be retrieved only if the set has been assigned prior pointers.

■ The first or last record within a set is the first or last member occurrence in terms of

the logical order of the set. The selected record is the same as would be selected if
the current of set were the owner record and the next or prior record had been
requested. The last record in a set can be retrieved only if the set has prior pointers.

FIND/OBTAIN

Chapter 7: Data Manipulation Language Statements 165

■ The nth occurrence of a record within a set can be retrieved by specifying a
sequence number that identifies the position of the record in the set. The DBMS

begins its search with the owner of the current of set for the specified set and
continues until it locates the nth record or encounters an end-of-set condition. If
the specified sequence number is negative, the search proceeds in the prior

direction within the set. A negative sequence number can be used only if the set
has prior pointers; a sequence number of 0 produces an error status of 0304.

■ When an end-of-set condition occurs, the owner record occurrence of the set

becomes the current record of run unit, current of its record type, current of its
area, and current record of only the set involved in this operation. Currency of other
sets in which the specified record participates as owner or member remains
unaffected.

Note: If OBTAIN has been specified, the contents of the owner record are not
moved to program variable storage (that is, OBTAIN under these circumstances is
treated as a FIND).

Native VSAM users: When an end-of-set condition occurs, all currencies remain
unchanged.

Selecting from an Area

The following rules apply to the selection of records within an area:

■ The first record occurrence within an area is the one with the lowest database key;

the last record is the one with the highest database key.

■ The next record within an area is the one with the next higher database key relative
to the current record of the named area; the prior record is the one with the next
lower database key relative to the current of area.

■ The first or last or nth record in an area must be retrieved to establish the correct

starting position before next or prior records are requested.

Currency

Following successful execution of a FIND/OBTAIN WITHIN SET/AREA statement, the
accessed record becomes the current record of run unit, its record type, its area, and all
sets in which it currently participates as member or owner.

When an end-of-set condition occurs selecting records within a set, the owner record

occurrence of the set becomes the current record of run unit, its record type, its area,
and only the set involved in this operation. Currency of other sets in which the specified
record participates as owner or member remains unaffected.

FIND/OBTAIN

166 DML Reference Guide for PLI

Syntax

►►─┬─ FIND ───┬─┬────────────────────────┬─┬─ NEXT ──────────────────┬────────►
 └─ OBTAIN ─┘ └─ KEEP ─┬─────────────┬─┘ ├─ FIRST ─────────────────┤
 └─ EXCLUSIVE ─┘ ├─ LAST ──────────────────┤
 ├─ PRIOR ─────────────────┤
 └─ NTH (sequence-number) ─┘

 ►─┬────────────────────────┬─┬─ SET (set-name) ───┬─ ; ──────────────────────►◄
 └─ RECORD (record-name) ─┘ └─ AREA (area-name) ─┘

Parameters

FIND/OBTAIN SET (set-name)/AREA (area-name)

Locates a record based on its location within a set or area. Set-name/area-name

specifies the set or area that will be searched and must identify a set or area
included in the subschema.

KEEP EXCLUSIVE

Places a shared (KEEP) or exclusive (KEEP EXCLUSIVE) lock on the accessed record.

NEXT

Accesses the next record in the specified set or area relative to the current record.

FIRST

Accesses the first record in the specified set or area.

LAST

Accesses the last record in the specified set or area. The specified set must have

prior pointers.

PRIOR

Accesses the prior record in the specified set or area relative to the current record.
The specified set must have prior pointers.

NTH (sequence-number)

Accesses the nth record in the specified set or area. Sequence-number must either
be a positive or negative number or any numeric field that contains a nonzero value
used by the DBMS in searching for the nth record occurrence. If sequence is
negative, the specified set must have prior pointers.

Native VSAM users: FIRST, LAST, and NTH (sequence) options are not valid for a
native VSAM KSDS with spanned records.

RECORD (record-name)

Specifies that within a set or area, only occurrences of the named record type will
be accessed. Record-name must be defined as a member of the specified set or

contained within the specified area.

FIND/OBTAIN

Chapter 7: Data Manipulation Language Statements 167

Example

The following figure il lustrates the retrieval of records in an occurrence of the
DEPT_EMPLOYEE set.

The FIND CALC statement establishes currency in the DEPT_EMPLOYEE set. Member
EMPLOYEE records are then retrieved by a series of OBTAIN WITHIN SET statements.
EMPLOYEE 106 is the last record in the set and the next OBTAIN statement returns an

end-of-set condition, positioning run-unit currency at the owner of the set,
DEPARTMENT 2000.

FIND/OBTAIN

168 DML Reference Guide for PLI

The following figure il lustrates special considerations relating to the retrieval of records
in an area that contains multiple record types.

A sweep of the EMP_DEMO_REGION is performed, retrieving sequentially each
EMPLOYEE record and all records in the associated EMPLOYEE_EXPERTISE set. The first
command retrieves EMPLOYEE 119. Subsequent OBTAIN WITHIN SET statements

retrieve the associated EXPERTISE records and establish currency on EXPERTISE 03. The
FIND CURRENT statement is used to reestablish the proper position before retrieving
EMPLOYEE 48. If FIND CURRENT EMPLOYEE is not specified, an attempt to retrieve the
next EMPLOYEE record in the area would return EMPLOYEE 23.

FIND/OBTAIN

Chapter 7: Data Manipulation Language Statements 169

Status Codes

Upon completion of the FIND/OBTAIN WITHIN SET/AREA function, the ERROR_STATUS
field in the IDMS DB communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

0057

A retrieval-only run unit has detected an inconsistency in an index that should cause
an 1143 abend, but optional APAR bit 216 has been turned on.

0301

The area in which the named record participates has not been readied.

0304

Either a sequence number of 0 or a variable field that contains a value of 0 was
specified for the named record.

0306

Currency has not been established for the named record, set, or area.

0307

Either the end of the set or the area was reached or the set is empty.

0308

Either the named record or set is not in the subschema or the named record is not

defined as a member of the named set. The program has probably invoked the
wrong subschema.

0310

The subschema specifies an access restriction that prohibits retrieval of the named

record.

0323

Either the area name specified has not been included in the subschema invoked or
the record name specified has not been defined within the named area.

0326

The record cannot be found.

0360

A record occurrence has been encountered whose record type is not a member or
owner of the set as it is defined in the subschema.

FINISH

170 DML Reference Guide for PLI

0370

A database fi le will not open properly.

If the KEEP parameter is specified in a FIND/OBTAIN statement, and an error occurs
during KEEP processing, the major code 06 is returned. For more information, see KEEP
CURRENT, later in this chapter. The major code 03 is returned if an error occurs during

FIND/OBTAIN processing.

FINISH

The FINISH statement commits changes made to the database through an individual run
unit or through all database sessions associated with a task. A task-level finish also
commits all changes made in conjunction with scratch, queue, and print activity.

If the finish applies to an individual run unit and the run unit is sharing its transaction

with another database session, the run unit's changes may not be committed at the
time the FINISH statement is executed. For more information on the impact of
transaction sharing, refer to CA IDMS Navigational DML Programming Guide.

Run units (and SQL sessions) impacted by the FINISH statement end, and their access to
the database is terminated.

The FINISH statement is used in both the navigational and logical record facility
environments. The FINISH TASK statement is also used in an SQL programming
environment.

Currency

Following the successful execution of a FINISH request, all currencies are set to null; the

issuing program or task cannot perform database access through an impacted run unit
without executing another BIND/READY sequence.

Syntax

►►─── FINISH ─┬────────┬─ ; ──►◄
 └─ TASK ─┘

Parameters

TASK

Commits the changes made by all scratch, queue, and print activity and all top-level
run units associated with the current task and terminates those run units. Its impact
on SQL sessions associated with the task depends on whether those sessions are

suspended and whether their transactions are eligible to be shared.

FREE STORAGE (DC/UCF)

Chapter 7: Data Manipulation Language Statements 171

Note:

■ For more information about the impact of a FINISH TASK statement on SQL

sessions, see the CA IDMS SQL Programming Guide.

■ For more information about run units and the impact of FINISH TASK, see the CA
IDMS Navigational DML Programming Guide.

Example

The following statement commits changes made by the run unit through which it is
issued and terminates that run unit:

FINISH;

Status Codes

Upon completion of the FINISH function, the ERROR_STATUS field in the IDMS DB
communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

5031

The specified request is invalid; the program may contain a logic error.

5097

An error was encountered processing a syncpoint request; check the log for details.

FREE STORAGE (DC/UCF)

The FREE STORAGE statement instructs the system to release all or a part of a

variable-storage area. The storage to be released must have been acquired by means of
a GET STORAGE request in the issuing task or by another task running on the same
terminal as the issuing task. A partial release is valid only for user storage; shared

storage must be freed in its entirety.

Syntax

►►─── FREE STORAGE ───►

 ►─┬─ STGID (storage-id) ──┬─ ; ──►◄
 └─ FOR (storage-location) ─┬──────────────────────────────────────┬─┘
 └─ FROM (start-free-storage-location) ─┘

FREE STORAGE (DC/UCF)

172 DML Reference Guide for PLI

Parameters

STGID (storage-id)

Specifies the 4-character identifier of the variable storage area to be released.
Storage-id is either the symbolic name of a user-defined field that contains the ID or

the ID itself enclosed in single quotation marks.

FOR (storage-location)

Specifies the variable-storage entry of the storage area to be released.

FROM (start-free-storage-location)

Releases a portion of the variable-storage area defined as user storage.

Start-free-storage-location is the symbolic name of a user-defined field that
contains the starting point of the storage area to be released. The system releases
storage from the specified location to the end of the storage area.

Example

The following example releases the storage area identified as 09PA:

FREE STORAGE STGID ('09PA');

Status Codes

Upon completion of the FREE STORAGE function, the ERROR_STATUS field in the IDMS
DC communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

3213

The requested storage ID cannot be found.

3232

The derived length of the variable-storage area is zero or negative.

GET

Chapter 7: Data Manipulation Language Statements 173

GET

The GET statement transfers the contents of a specified record occurrence from the
record buffer into program variable storage. Elements in the specified record are moved
to their respective locations in variable storage according to the subschema view of the
record. The transferred elements will appear in storage at the location to which the

record has been bound (for further details, see BIND RECORD earlier in this chapter).

Currency

The GET statement operates only on the record that is current of run unit. Following
successful execution of a GET statement, the accessed record is current of run uni t, its

record type, its area, and all sets in which it participates as member or owner.

Syntax

►►─── GET ─┬────────────────────────┬─ ; ─────────────────────────────────────►◄
 └─ RECORD (record-name) ─┘

Parameter

RECORD (record-name)

Optionally specifies the record type of the current of run unit. If this optional clause
is used, the current of run unit must be an occurrence of the named record type.

Example

The following statement moves the record that is current of run unit (in this case, the
OFFICE record) from the record buffer into program variable storage:

GET RECORD (OFFICE);

Status Codes

Upon completion of the GET function, the ERROR_STATUS field in the IDMS DB

communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

0506

Currency has not been established.

GET QUEUE (DC/UCF)

174 DML Reference Guide for PLI

0508

The named record is not in the subschema. The program has probably invoked the

wrong subschema.

0510

The subschema specifies an access restriction that prohibits retrieval of the named

record.

0513

A current record of run unit either has not been established or has been nullified by
a previous ERASE statement.

0518

The record has not been bound.

0520

The current record is not the same type as the named record.

0526

The requested record has been erased.

0555

An invalid length has been returned for a variable-length record.

GET QUEUE (DC/UCF)

The GET QUEUE statement retrieves a queue record and places it in a storage area
associated with the issuing program. If the queue record is larger than the designated
storage area, the record is truncated. The system automatically deletes the retrieved

record from the queue unless the GET QUEUE statement explicitly keeps the record in
the queue.

Syntax

►►─── GET QUEUE ─┬─────────────────┬─┬───────────────────────────────┬────────►
 └─ ID (queue-id) ─┘ ├─ NEXT ◄ ──────────────────────┤
 ├─ FIRST ───────────────────────┤
 ├─ LAST ────────────────────────┤
 ├─ PRIOR ───────────────────────┤
 ├─ SEQUENCE (sequence-number) ──┤
 └─ RECORD ID (queue-record-id) ─┘

 ►─┬────────────┬─┬──────────┬─┬────────────┬─────────────────────────────────►
 ├─ DELETE ◄ ─┤ ├─ LOCK ◄ ─┤ ├─ WAIT ─────┤
 └─ KEEP ─────┘ └─ NOLOCK ─┘ └─ NOWAIT ◄ ─┘

 ►─── INTO (return-queue-data-location) ──────────────────────────────────────►

 ►─┬─ TO (end-queue-data-location) ───────┬───────────────────────────────────►
 └─ MAX LENGTH (queue-data-max-length) ─┘

 ►─┬───┬─ ; ────────────────────►◄
 └─ RETURN LENGTH INTO (queue-data-actual-length) ─┘

GET QUEUE (DC/UCF)

Chapter 7: Data Manipulation Language Statements 175

Parameters

ID (queue-id)

Specifies the 1- to 16-character ID of the queue associated with the record to be
retrieved. Queue-id is either the symbolic name of a user-defined field that contains

the ID, or the ID itself enclosed in single quotation marks. If the queue ID is not
specified, a null ID of 16 blanks is assumed.

NEXT/FIRST/LAST/PRIOR/SEQUENCE (sequence)/RECORD ID (queue-record-id)

Specifies the queue record to be retrieved:

NEXT

Retrieves the next record in the queue. If currency has not been established, NEXT
is equivalent to FIRST. NEXT is the default.

FIRST

Retrieves the first record in the queue.

LAST

Retrieves the last record in the queue.

PRIOR

Retrieves the prior record in the queue. If currency has not been established, PRIOR
is equivalent to LAST.

SEQUENCE (sequence)

Retrieves the queue record identified by sequence. Sequence is either the symbolic
name of a user-defined field that contains the sequence number of the record, or
the sequence number itself expressed as a numeric constant.

RECORD ID (queue-record-id)

Retrieves the record identified by queue-record-id. Queue-record-id is the symbolic

name of the FIXED BINARY(31) field that contains the queue record ID returned by
the PUT QUEUE function.

DELETE/KEEP

Specifies whether the queue record will be deleted from the queue after it is passed
to the requesting program:

DELETE

Deletes the record from the queue. Note that if DELETE is specified and the record
has been truncated, the truncated data is lost. DELETE is the default.

KEEP

Keeps the record in the queue.

GET QUEUE (DC/UCF)

176 DML Reference Guide for PLI

LOCK/NOLOCK

These parameters have been non-functional since CA IDMS Release 12.0. They are

included as parameters for release compatibil ity. Queue record locking is
performed as part of the standard database locking routines since CA IDMS Release
12.0.

WAIT/NOWAIT

Specifies whether the issuing task is to suspend execution if the requested record
cannot be found in the queue:

WAIT

Suspends task execution until the requested queue exists.

NOWAIT

Continues task execution in the event of a nonexistent queue. An ERROR_STATUS
value of 4405 indicates that the requested queue record cannot be found. NOWAIT
is the default.

INTO (return-queue-data-location)

Indicates the program variable-storage entry of the data area reserved for the
requested queue record. Return-queue-data-location is the symbolic name of a
user-defined field. The length of the data area is determined by one of the following
specifications:

TO (end-queue-data-location)

Indicates the end of the program variable-storage entry reserved for the requested
queue record and is specified following the last data -item entry in
return-queue-data-location. End-queue-data-location is the symbolic name of either
a user-defined dummy byte field or a field that contains a data item not associated

with the requested queue record.

MAX LENGTH (queue-data-max-length)

Explicitly defines the length of the data area reserved for the requested queue
record. Queue-data-max-length is either the symbolic name of the user-defined
field that contains the length of the queue record's data, or the length itself

expressed as a numeric constant.

RETURN LENGTH INTO (queue-data-actual-length)

Specifies the location to which the system will return the actual length of the

retrieved queue record. Queue-data-actual-length is the symbolic name of a
user-defined 4-byte field. If the record has been truncated, the value returned to
this field is the actual length of the queue record before truncation.

GET QUEUE (DC/UCF)

Chapter 7: Data Manipulation Language Statements 177

Example

The following example retrieves the first record in the RES_Q queue, return it to the
PEND_RES field, and keep the record in the queue:

GET QUEUE

 ID ('RES_Q')

 FIRST

 KEEP

 INTO (PEND_RES) MAX LENGTH (125);

Status Codes

Upon completion of the GET QUEUE function, the ERROR_STATUS field of the IDMS DC
communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

4404

The requested queue header record cannot be found.

4405

The requested queue record cannot be found.

4407

A database error occurred during queue processing. A common cause is a DBKEY
deadlock. For a PUT QUEUE operation, this code can also mean that the queue
upper l imit has been reached.

If a database error has occurred, there are usually be other messages in the
CA-IDMS/DC/UCF log indicating a problem encountered in RHDCRUAL, the internal
Run Unit Manager. If a deadlock has occurred, messages DC001000 and DC001002
are also produced.

4419

The program storage area specified for return of the queue record is too small; the
returned record has been truncated as appropriate to fit the available space.

4431

The parameter l ist is invalid. In DC_BATCH, this code signifies that the specified
record length has exceeded the maximum length based on the packet size.

4432

The derived length of the queue record data area is negative.

GET SCRATCH (DC/UCF)

178 DML Reference Guide for PLI

GET SCRATCH (DC/UCF)

The GET SCRATCH statement obtains a scratch record and places it in a storage area
associated with the issuing program. The storage area must already be allocated to the
requesting task; no implicit GET STORAGE function is performed during the GET
SCRATCH operation. If the scratch record is larger than the designated storage area,

data is truncated.

Syntax

►►─── GET SCRATCH ─┬─────────────────────────────┬────────────────────────────►
 └─ AREA ID (scratch-area-id) ─┘

 ►─┬─────────────────────────────────┬─┬────────────┬─────────────────────────►
 ├─ NEXT ◄ ────────────────────────┤ ├─ DELETE ◄ ─┤
 ├─ FIRST ─────────────────────────┤ └─ KEEP ─────┘
 ├─ LAST ──────────────────────────┤
 ├─ CURRENT ───────────────────────┤
 ├─ PRIOR ─────────────────────────┤
 └─ RECORD ID (scratch-record-id) ─┘

 ►─── INTO (return-scratch-data-location) ────────────────────────────────────►

 ►─┬─ TO (end-scratch-data-location) ───────┬─────────────────────────────────►
 └─ MAX LENGTH (scratch-data-max-length) ─┘

 ►─┬───┬─ ; ──────────────────►◄
 └─ RETURN LENGTH INTO (scratch-data-actual-length) ─┘

Parameters

AREA ID (scratch-area-id)

Identifies the scratch area associated with the record being retrieved.

Scratch-area-id is either the symbolic name of a user-defined field that contains the
1- to 8-character scratch area ID or the ID itself enclosed in single quotation marks.
If AREA ID is not specified, an area ID of eight blanks is assumed.

NEXT/FIRST/LAST/CURRENT/PRIOR/RECORD ID (scratch-record-id)

Specifies the scratch record to be retrieved:

NEXT

Retrieves the next record in the scratch area. NEXT is the default.

FIRST

Retrieves the first record in the scratch area.

LAST

Retrieves the last record in the scratch area.

CURRENT

Retrieves the current record in the scratch area; the current record is the

record most recently referenced by another scratch function.

GET SCRATCH (DC/UCF)

Chapter 7: Data Manipulation Language Statements 179

PRIOR

Retrieves the prior record in the scratch area.

RECORD ID (scratch-record-id)

Retrieves the specified scratch record. Scratch-record-id is the symbolic name
of a user-defined FIXED BINARY(31) field that contains the 4-byte scratch

record ID.

DELETE/KEEP

Specifies whether the scratch record will be deleted from the scratch area after it is
passed to the requesting program:

DELETE

Deletes the record from the scratch area. If DELETE is specified and the record
has been truncated, the truncated data is lost. To maintain currency following a
DELETE request, the system saves the next and prior currencies of the scratch
area. DELETE is the default.

KEEP

Keeps the record in the scratch area.

INTO (return-scratch-data-location)

Specifies the program variable-storage entry of the data area to which the system
will return the scratch record. Return-scratch-data-location is the symbolic name of

a user-defined field. The length of the data area is determined by one of the
following specifications:

TO (end-scratch-data-location)

Indicates the end of the data area to which the system will return the scratch
record and is specified following the last data-item entry in
return-scratch-data-location. End-scratch-data-location is the symbolic name of
either a user-defined dummy byte field or a field that contains a data item not

associated with the scratch record.

MAX LENGTH (scratch-data-max-length)

Specifies the length, in bytes, of the data area associated with the requested
scratch record. Scratch-data-max-length is either the symbolic name of a
program variable-storage field that contains the length, or the length itself

expressed as a numeric constant.

RETURN LENGTH INTO (scratch-data-actual-length)

Specifies the symbolic name of the program variable-storage entry to which the
system will return the actual length of the requested scratch record. If the record
has been truncated, scratch-data-actual-length will contain the length of the full,

untruncated scratch record.

GET SCRATCH (DC/UCF)

180 DML Reference Guide for PLI

Example

The following statement returns the contents of the current record in the scratch area
to the variable-storage area defined by WORK_PROC_AREA and
END_WORK_PROC_AREA:

GET SCRATCH

 CURRENT

 INTO (WORK_PROC_AREA) TO (END_WORK_PROC_AREA);

Status Codes

Upon completion of the GET SCRATCH function, the ERROR_STATUS field of the IDMS
DC communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

4303

The requested scratch area ID cannot be found.

4305

The requested scratch record ID cannot be found.

4307

An I/O error has occurred during processing.

4319

The program storage area specified for return of the scratch record is too small; the
returned record has been truncated to fit the available space.

4331

The parameter l ist is invalid.

4332

The derived length of the scratch record is negative.

GET STORAGE (DC/UCF)

Chapter 7: Data Manipulation Language Statements 181

GET STORAGE (DC/UCF)

The GET STORAGE statement is used either to acquire variable storage from a system
storage pool or to obtain the address of a previously acquired storage area. Once
acquired, the storage is available for use:

■ By the issuing task only (user storage)

■ By subsequent tasks running on the same terminal (user kept storage)

■ By all tasks in the system (shared or shared kept storage)

Storage availability is governed by GET STORAGE parameter specifications.

Syntax

►►─── GET STORAGE FOR (storage-data-location) ────────────────────────────────►

 ►─┬─ TO (end-storage-data-location) ─┬───────────────────────────────────────►
 └─ LENGTH (storage-data-length) ───┘

 ►─── POINTER (storage-data-location-pointer) ─┬──────────┬──┬────────┬───────►
 ├─ WAIT ◄ ─┤ └─ KEEP ─┘
 └─ NOWAIT ─┘

 ►─┬──────────┬─┬──────────┬─┬──────────────────────┬─────────────────────────►
 ├─ LONG ◄ ─┤ ├─ USER ◄ ─┤ └─ STGID (storage-id) ─┘
 └─ SHORT ──┘ └─ SHARED ─┘

 ►─┬─────────────────────────┬──►
 └─ VALUE (initial-value) ─┘

 ►─┬───────────────────────────┬─ ; ──►◄
 └─ LOCATION IS ─┬─ ANY ◄ ─┬─┘
 └─ BELOW ─┘

Parameters

FOR (storage-data-location)

Specifies the variable associated with the storage area being acquired.
Storage-data-location is a user-assigned symbolic name.

TO (end-storage-data-location)

Indicates the end of the data area for which the system will acquire storage. If this

option is specified, storage-data-location must be declared as a PL/I structure
variable. End-storage-data-location is the symbolic name of either a user-defined
dummy byte field or a variable field not associated with the storage area.

End-storage-data-location is specified after the last elementary data-item entry in
the structure.

GET STORAGE (DC/UCF)

182 DML Reference Guide for PLI

LENGTH (storage-data-length)

Explicitly defines the length of the data area associated with the requested storage

area. This option is specified in place of TO (end-storage-data-location). If the
LENGTH option is used, then no restrictions are placed on the data type; that is,
storage-data-location does not have to be defined as a PL/I structure variable.

Storage-data-length is a user-assigned fixed binary field containing the storage
length, or the length itself expressed as a numeric constant.

POINTER (storage-data-location-pointer)

Specifies the user-assigned pointer variable associated with storage-data-location.
Storage-data-location-pointer is defined in variable storage with the pointer

attribute. Upon successful completion of the GET STORAGE request, the system
returns the address of the storage area to storage-data-location-pointer.

WAIT/NOWAIT

Specifies whether the issuing task is to wait for sufficient storage in the event that
storage is not immediately available to meet the requirements of the GET STORAGE

request:

WAIT

Specifies that the issuing task will wait until sufficient storage is available in a
storage pool. WAIT is the default.

NOWAIT

Specifies that the issuing task will not wait for storage to become available if an
insufficient storage condition exists. If NOWAIT is specified, the program should

check the ERROR_STATUS field in the IDMS DC communications block to
determine if the GET STORAGE request has been completed. If the
ERROR_STATUS value is 3202, the program should perform alternative
processing before reissuing the GET STORAGE request.

KEEP

Optionally specifies whether the storage area will be used by subsequent tasks
executing on the same logical terminal. When KEEP is specified, the storage area
can be accessed by subsequent tasks; otherwise the storage area cannot be
accessed by subsequent tasks.

Note: For a more information about KEEP parameter, see the CA IDMS Navigational
DML Programming Guide.

GET STORAGE (DC/UCF)

Chapter 7: Data Manipulation Language Statements 183

LONG/SHORT

Specifies whether the system should allocate the storage from the bottom or the

top of a storage pool:

LONG

Allocates storage from the bottom of the storage pool. You should specify

LONG when allocating kept storage to be held across pseudo-converses. LONG
is the default.

SHORT

Allocates storage from the top of the storage pool. You should specify SHORT

when allocating small pieces of storage for a short duration.

An incorrect LONG/SHORT specification will not affect normal program
execution; however, it may affect the overall performance of the DC/UCF
system.

USER/SHARED

Specifies whether access to the storage area is to be restricted to the issuing task or
is to be available to all tasks in the system:

USER

Specifies that only the issuing task can access the storage area or, if KEEP is
specified, only subsequent tasks executing on the same terminal. USER is the
default.

Note: During system execution, a program defined at system generation with

the NOPROTECT option can access any storage area within the system,
including an area associated exclusively with another task. Thus, the USER
attribute may not protect the storage area being acquired. However, storage
areas can be protected on a system-wide or program-by-program basis during

system generation and by the modes specified when storage is allocated.

SHARED

Specifies that any task in the system can access and modify the acquired

storage. Each task must establish addressability to the storage area by explicitly
issuing a GET STORAGE request.

STGID (storage-id)

Specifies the 4-character ID associated with the storage area. The STGID parameter
must be specified with GET STORAGE requests for either previously allocated

storage areas or areas to be reallocated. Storage-id is either the symbolic name of a
user-defined field that contains the storage ID, or the ID itself enclosed in single
quotation marks.

GET STORAGE (DC/UCF)

184 DML Reference Guide for PLI

The specified storage ID must be unique; although multiple variable-storage areas
(that is, one shared and the others user) can have the same ID, only one such area

can be owned by a given task at a time. To access the IDMS DC common work area,
specify STGID 'CWA'.

Note: If the STGID parameter specifies the address of an existing storage area, the

USER/SHARED parameter must specify the same option as that specified in the GET
STORAGE statement that originally allocated the storage area.

VALUE (initial-value)

Specifies (for new storage only) the value to which the storage area will be
initialized before it is returned to the issuing program. Initial-value specifies either

the symbolic name of a user-defined field that contains the initial value or the value
itself enclosed in single quotation marks. All bytes of the acquired storage area are
initialized to the same value.

LOCATION IS ANY/BELOW

Specifies that storage must be allocated from below the 16-megabyte line (BELOW)
or is eligible for allocation above the 16-megabyte line (ANY). ANY is the default.

Example

The following statement allocates the shared kept storage area, 09PA, and initializes it

to all zeros:

GET STORAGE FOR (EMPLMENU_KEPT_STORAGE)

 TO (EMPLMENU_KEPT_STORAGE_END)

 NOWAIT

 KEEP

 SHORT

 SHARED

 STGID ('09PA')

 VALUE (LOW_VALUE);

Status Codes

Upon completion of the GET STORAGE function, the ERROR_STATUS field of the IDMS

DC communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

3201

The requested storage cannot be allocated immediately; to wait would cause a
deadlock.

3202

The requested storage cannot be allocated because insufficient space exists in the
storage pool.

GET TIME (DC/UCF)

Chapter 7: Data Manipulation Language Statements 185

3210

The request specified a storage ID that did not previously exist; the required space

has been allocated.

3231

The request specifies an invalid parameter l ist.

3232

The requested length is zero or negative. The request cannot be serviced because

the variable storage The request cannot be serviced because the specified 01-level

GET TIME (DC/UCF)

The GET TIME statement obtains the time of day and date from the operating system.
The system time is returned to the issuing task in either fixed binary, packed decimal, or

edited format. The date is returned to the program in packed decimal format.

Syntax

►►─── GET TIME ─┬─────────────────────────────────────┬───────────────────────►
 └─┬────────────┬─ INTO (return-time) ─┘
 ├─ BINARY ◄ ─┤
 ├─ DECIMAL ──┤
 └─ EDIT ─────┘

 ►─┬───────────────────────────┬─ ; ──►◄
 └─ DATE INTO (return-date) ─┘

Parameters

BINARY/DECIMAL/EDIT

Specifies the format in which the time is to be returned to the issuing program. The

requested formats can be fixed binary, decimal, or edited. In all cases, the returned
value indicates the time since midnight:

BINARY

Returns the time in pure (absolute) binary format representing the elapsed

time since midnight in ten-thousandths of a second. If BINARY is specified, the
field associated with return-time must be a fixed binary field capable of holding
a number at least as large as the number of ten-thousandths seconds in a day

(864,000,000). This option provides the finest resolution of time available.
BINARY is the default.

GET TIME (DC/UCF)

186 DML Reference Guide for PLI

DECIMAL

Returns the time in the format ohhmmssttttc (padded zero, hours, minutes,

seconds, ten-thousandths of a second, and sign). If DECIMAL is specified, the
field associated with return-time should be declared as FIXED DECIMAL(11).

EDIT

Returns the time as an edited character string in the format hh:mm:ss:hh
(hours, minutes, seconds, hundredths of a second). The field size and type
associated with return-time should be defined as CHAR(11).

INTO (return-time)

Specifies the field to which the system will return the time. Return-time is the

symbolic name of a user-defined field to which the current time will be returned.
The required field size and type depend on the requested format, as described
above.

DATE INTO (return-date)

Specifies the field to which the system will return the date obtained from the

operating system. Return-date is the symbolic name of the user-defined field to
which the Julian date is returned. The Julian date is returned in FIXED DECIMAL(7)
format: 0yyydddc (padded zero, current year relative to 1900, date, and sign). For
example, 0099365C would represent December 31, 1999. 0100001C would

represent January 1, 2000.

Example

The following statement returns the current time and date to the CURRENT_TIME and
CURRENT_DATE fields, respectively:

GET TIME

 EDIT INTO (CURRENT_TIME)

 DATE INTO (CURRENT_DATE);

Status Codes

Upon completion of the GET TIME function, the only possible value in the
ERROR_STATUS field of the IDMS DC communications block is 0000.

IF

Chapter 7: Data Manipulation Language Statements 187

IF

The IF statement allows the program to test for the presence of member record
occurrences in a set and to determine the membership status of a record occurrence in
a specified set; once the set has been evaluated, the IF statement specifies further
action based on the outcome of the evaluation. For example, an IF statement might be

used to determine whether a set occurrence is empty and, if it is empty, to erase the
owner record.

Note: DML IF statements cannot be nested within PL/I IF statements. An alternative
approach is to place DML IF statements within DO...END blocks, or their equivalents.

Native VSAM users: The IF statement is not valid for sets defined with member records

that are stored in native VSAM datasets.

Depending on its format, the IF statement uses set or run-unit currency. The object set
occurrence of an IF statement is determined by the owner of the current record of the
named set; the object record occurrence is determined by the current of run unit.

Each IF statement contains a conditional phrase and an imperative statement. When an
IF is issued, the DML precompiler first generates a call to the DBMS to execute the

conditional phrase; the results of the test determine whether or not the imperative
statement is executed.

Syntax

►►── IF ─┬───────┬─ SET (set-name) ─┬─ EMPTY ─┬─ THEN imperative-statement;──►◄
 ├─ NOT ─┤ └─ MEMBER ─┘
 └─ ¬ ───┘

Parameters

IF SET (set-name) EMPTY THEN imperative-statement

Evaluates the current owner occurrence of the named set for the presence of
member record occurrences and, depending on the outcome of the evaluation,
executes the imperative statement. Set-name must specify a set included in the
subschema.

If NOT is specified, the imperative statement is executed only if the named set has
one or more member records (that is, ERROR_STATUS is 1601). If NOT is omitted,
the imperative statement is executed only if the set is empty (that is,

ERROR_STATUS is 0000).

IF

188 DML Reference Guide for PLI

IF SET (set-name) MEMBER THEN imperative-statement

Determines whether the current record of run unit participates as a member in any

occurrence of the named set and, depending on the outcome of the evaluation,
executes the imperative statement. Set-name must specify a set included in the
subschema.

If NOT is specified, the imperative statement is executed only if the named recor d is
not a member of the named set (that is, ERROR_STATUS is 1601). If NOT is omitted,
the imperative statement is executed only if the record is a member of the set (that
is, ERROR_STATUS is 0000).

Example

The following statement tests the COVERAGE_CLAIMS set for existing CLAIMS members
and, if no occurrences of the CLAIMS record are found (ERROR_STATUS is 0000), moves
a message to that effect to the location CLAIMS_WS:

If the current occurrence of the COVERAGE_CLAIMS set contains one or more
occurrences of the CLAIMS record (ERROR_STATUS is 1601), the assignment statement
is ignored and the next statement in the program is executed.

IF SET (COVERAGE_CLAIMS) EMPTY

 THEN CLAIMS_WS = 'NONE';

The following statement verifies that the EMPLOYEE record that is current of run unit is
not a member of the current occurrence of the OFFICE_EMPLOYEE set before code is

executed to connect the EMPLOYEE record to that set:

If the EMPLOYEE record is not a member of the OFFICE_EMPLOYEE set (ERROR_STATUS
is 1601), the program performs the LINK_SET procedure. If the EMPLOYEE record is

already a member of the OFFICE_EMPLOYEE set (ERROR_STATUS is 0000), the CALL
statement is ignored and the next statement in the program is executed.

IF NOT SET (OFFICE_EMPLOYEE) MEMBER

 THEN CALL LINK_SET;

Status Codes

Upon completion of the IF function, the ERROR_STATUS field in the IDMS DB

communications block indicates the outcome of the operation:

0000

Either the set is empty or the record that is current of run unit is a member of the
set.

1601

Either the set is not empty or the record that is current of run unit is not a member
of the set.

INQUIRE MAP (DC/UCF)

Chapter 7: Data Manipulation Language Statements 189

1606

Currency has not been established for the named set.

1608

Either an invalid set name has been specified or the current record of run unit is not
a member of the named set.

1613

A current record of run unit either has not been established or has been nullified by
a preceding ERASE statement.

INQUIRE MAP (DC/UCF)

The INQUIRE MAP statement is used after a map input request to accomplish one of the

following actions related to the input operation:

■ Move map-related information into variable storage

■ Test for conditions relating to global map input operations

■ Test specific map fields for the presence of the cursor

■ Test for conditions relating to specific map fields

Each of these actions is discussed on the following pages.

The following rules apply to INQUIRE MAP statements:

■ If any of the test conditions are requested, INQUIRE MAP must specify a statement
that will be executed if the condition is found to be true.

■ An INQUIRE MAP statement can specify only one field-oriented inquiry. This inquiry
can be specified alone or in combination with a map-specific inquiry.

Moving Map-Related Data

This version of the INQUIRE MAP statement moves one of the following map-related
data items into variable storage:

■ The attention ID (AID) key used

■ The current cursor position (row and column)

■ The entered length of a specific map input field

Syntax

►►─── INQUIRE MAP (map-name) ───►

 ►─── MOVE ─┬─ AID TO (aid-indicator) ───────────────────────┬─ ; ────────────►◄
 ├─ CURSOR TO (cursor-row) (cursor-column) ──────┤
 └─ IN LENGTH FOR (field-name) TO (field-length) ─┘

INQUIRE MAP (DC/UCF)

190 DML Reference Guide for PLI

Parameters

INQUIRE MAP (map-name)

Specifies the map for which the inquiry is being made. Map-name is the 1- to
8-character name of a map that must correspond to a map name specified in the

DECLARE MAP statement, as described in DML Precompiler-Directive Statements.

MOVE

Moves screen-related information to program variable storage:

AID TO (aid-indicator)

Returns the attention ID to the specified location in variable storage.

Aid-indicator is the symbolic name of a 1-byte user-defined field that will be set
to the 3270 AID character received in the last map input request. The following
table l ists the AID characters associated with each 3270-type control key.

INQUIRE MAP (DC/UCF)

Chapter 7: Data Manipulation Language Statements 191

Key AID character

ENTER

CLEAR

PF1

PF2

PF3

PF4

PF5

PF6

PF7

PF8

PF9

PF10

PF11

PF12

PF13

PF14

PF15

PF16

PF17

PF18

PF19

PF20

PF21

PF22

PF23

PF24

PA01

PA02

PA03

"'" (single quote)

'_' (underscore)

'1'

'2'

'3'

'4'

'5'

'6'

'7'

'8'

'9'

':'

'#'

'@'

'A'

'B'

'C'

'D'

'E'

'F'

'G'

'H'

'I'

'¢'

'.'

'<'

'%'

'>'

','

CURSOR TO (cursor-row) (cursor-column)

Returns the cursor address from the last map input function to the specified

location in program variable storage. Cursor-row and cursor-column are the
symbolic names of user-defined FIXED BINARY(15) fields to which the row and
column cursor address will be returned.

INQUIRE MAP (DC/UCF)

192 DML Reference Guide for PLI

IN LENGTH FOR (field-name) TO (field-length)

Returns the length, in bytes, of the data in the named map field to the specified

location in program variable storage. Field-name is the name of the map field
for which the length is being requested; field-length is the symbolic name of a
user-defined fixed binary field.

Example

The following example i l lustrates the use of an INQUIRE MAP statement to move the
3270 AID character received in the last map input request to DC_AID_IND_V:

INQUIRE MAP (EMPMAPLR)

 MOVE AID TO (DC_AID_IND_V);

Testing for Global Map Input Conditions

This version of the INQUIRE MAP statement tests for one of the following global map

input conditions:

■ If the screen was not formatted before the input operation was performed

■ If one or more input fields were truncated when transferred to variable-storage

data fields

■ If one or more input fields were modified on the screen before being transferred

■ If one or more fields that were modified on the screen are undefined in the map
being used

Syntax

►►─── INQUIRE MAP (map-name) ───►

 ►─── IF INPUT ─┬─ UNFORMATTED ─┬─ THEN imperative-statement; ────────────────►◄
 ├─ TRUNCATED ───┤
 ├─ CHANGED ─────┤
 └─ EXTRANEOUS ──┘

Parameters

MAP (map-name)

Specifies the map for which the inquiry is being made. Map-name is the 1- to
8-character name of a map that must correspond to a map name specified in the
DECLARE MAP statement, as described in DML Precompiler-Directive Statements.

INQUIRE MAP (DC/UCF)

Chapter 7: Data Manipulation Language Statements 193

IF INPUT UNFORMATTED/TRUNCATED/CHANGED/EXTRANEOUS

Tests the outcome of the last map input request for conditions relating to the data

input to the program:

UNFORMATTED

Tests whether the screen had been formatted before the input operation was

performed.

TRUNCATED

Tests whether any of the map fields were truncated when transferred to
variable-storage data fields.

CHANGED

Tests whether any of the map fields actually had been mapped to
variable-storage data fields when the map input operation was performed.

EXTRANEOUS

Tests whether the input data stream contained any data from a field not

defined to the map. If this condition is true, the undefined data field is ignored
by the system.

THEN imperative-statement

Specifies the action to be taken when the test condition is true.
Imperative-statement can be a single PL/I statement, a DML statement, or a nested

block of PL/I and DML statements.

Example

The following example i l lustrates an INQUIRE MAP statement that tests to determine if
any fields in the EMPMAPLR map have been truncated and, if so, requests that the

system perform the DATA_TRUNC routine:

INQUIRE MAP (EMPMAPLR)

 IF INPUT TRUNCATED

 THEN CALL DATA_TRUNC;

Testing for Cursor Position

This version of the INQUIRE MAP statement tests a specified map field for the presence
of the cursor.

Syntax

►►─── INQUIRE MAP (map-name) ───►

 ►─── IF CURSOR AT DFLD (field-name) THEN imperative-statement;───────────────►◄

INQUIRE MAP (DC/UCF)

194 DML Reference Guide for PLI

Parameters

MAP (map-name)

Specifies the map for which the inquiry is being made. Map-name is the 1- to
8-character name of a map that must correspond to a map name specified in the

DECLARE MAP statement, as described in DML Precompiler-Directive Statements.

IF CURSOR AT DFLD (field-name)

Determines whether the cursor was in the named map field during the last map
input operation. Field-name identifies the field within the named map to be tested.

THEN imperative-statement

Specifies the action to be taken when the test conditi on is true.
Imperative-statement can be a single PL/I statement, a DML statement, or a nested
block of PL/I and DML statements.

Example

The following example i l lustrates an INQUIRE MAP statement that tests for the
presence of the cursor in the PASSED_DATA_01 data field; if the cursor is present in this
field, the CHECK_2 routine is performed:

INQUIRE MAP (EMPMAPLR)

 IF CURSOR AT DFLD (EMP_LAST_NAME_0415)

 THEN CALL CHECK_2;

Testing for Input Error Conditions

This version of the INQUIRE MAP statement tests:

■ Whether map fields have been modified.

■ Whether map fields have been erased by operator action.

■ Whether map fields have been truncated.

■ Whether the specified map fields are either in error (the error flag has been set on

for those fields) or are correct (the error flag has been set off); this option applies
only to those maps and map fields for which automatic editing is enabled.

INQUIRE MAP (DC/UCF)

Chapter 7: Data Manipulation Language Statements 195

Syntax

►►─── INQUIRE MAP (map-name) ───►

 ►─ IF ┬─ CURRENT ──┬►─
 ├─ ALL ──┤
 ├─ NONE ───┤
 ├─ ANY ──┤
 ├─ SOME ───┤
 ├─ ALL ─┬─ BUT ────┬─ CURRENT ───────────────────────────────────────┤
 │ └─ EXCEPT ─┘ │
 │ ┌─────────────────────┐ │
 ├┬─ ALL ──────────────┬─▼─ DFLD (field-name) ─┴──────────────────────┤
 │├─ NONE ─────────────┤ │
 │├─ ANY ──────────────┤ │
 │├─ SOME ─────────────┤ │
 │└─ ALL ─┬─ BUT ────┬─┘ │
 │ └─ EXCEPT ─┘ │
 │ ┌─────────────────────┐ │
 └─▼─ DFLD (field-name) ─┴──┘

─►──┬─ DATA ─┬─ YES ───────┬─┬──►
 │ ├─ NO ────────┤ │
 │ ├─ ERASE ─────┤ │
 │ ├─ TRUNCATED ─┤ │
 │ ├─ IDENTICAL ─┤ │
 │ └─ DIFFERENT ─┘ │
 └─ EDIT ─┬─ ERROR ───┬───┘
 └─ CORRECT ─┘

 ►── THEN imperative-statement; ──►◄

Parameters

MAP (map-name)

Specifies the map for which the inquiry is being made. Map-name is the 1- to

8-character name of a map that must correspond to a map name specified in the
DECLARE MAP statement, as described in DML Precompiler-Directive Statements.

IF CURRENT/ALL/NONE/ANY/SOME/ALL BUT (EXCEPT) CURRENT

Specifies the map fields to which the test applies:

CURRENT

Applies the test only to the current field; that is, the map field that was
referenced in the last MODIFY MAP or INQUIRE MAP statement issued by the
program. If the last MODIFY MAP or INQUIRE MAP statement specified a field
l ist, no currency exists.

ALL

Specifies that the test is true if all map fields meet the specified condition.

NONE

Specifies that the test is true if none of the map fields meet the specified
condition.

ANY

Specifies that the test is true if one or more of the map fields meet the
specified condition.

INQUIRE MAP (DC/UCF)

196 DML Reference Guide for PLI

SOME

Specifies that the test is true if one or more but not all of the map fields meet

the specified condition.

ALL BUT CURRENT

Specifies that the test is true if all of the map fields except for the current field

meet the specified condition. The keywords BUT and EXCEPT are synonymous.

IF ALL/NONE/ANY/SOME/ALL BUT DFLD (field-name)

Specifies the extent to which the condition applies to the map fields.

ALL

Specifies that the test is true if all of the named map fields meet the specified

condition. ALL is the default.

NONE

Specifies that the test is true if none of the named map fields meet the
specified condition.

ANY

Specifies that the test is true if one or more of the named map fields meet the
specified condition.

SOME

Specifies that the test is true if one or more but not all of the named map fields

meet the specified condition.

ALL BUT

(Release 10.2 only) specifies that the test is true if all of the data fields except
the named map fields meet the specified condition. The keywords BUT and
EXCEPT are synonymous.

IF DFLD (field-name)

Specifies the individual map fields to which the tes t conditions apply. Field-name
must be the name of a field within the named map. Multiple DFLD specifications
must be separated by at least one blank.

DATA IS

Specifies the input test condition.

YES

Determines if the terminal operator entered data in the named map fields.

NO

Determines if the terminal operator did not enter data in the named map
fields.

INQUIRE MAP (DC/UCF)

Chapter 7: Data Manipulation Language Statements 197

ERASE

Determines if data has been erased from the named map fields.

TRUNCATED

Determines if data has been truncated in the named map fields.

IDENTICAL

Determines whether input data is identical to the map data currently in the
program's variable storage. IDENTICAL is true in either of the following cases:

■ The field's modified data tag (MDT) is off. On mapin, the MDT typically is
off if the user did not type any characters in the field.

■ The MDT is on, but each character in the input data is exactly the same as

data in variable storage, including capitalization.

DIFFERENT

Determines whether input data is different from the map data currently in the
program's variable storage. DIFFERENT is true if the field's MDT is on and at
least one input character differs from the data in variable storage.

EDIT

Automatic editing/error handling tests for errors in the named map fields.

Note: If the EDIT parameter is specified, automatic editing must be enabled for the
map and for each of the named map fields.

ERROR

Determines if the named map fields were found to be in error during automatic
editing.

CORRECT

Determines if the named map fields were found to be correct during automatic
editing.

THEN imperative-statement

Specifies the action to be taken when the test condition is true.
Imperative-statement can be a single PL/I statement, a DML statement, or a nested
block of PL/I and DML statements.

KEEP CURRENT

198 DML Reference Guide for PLI

Example

The following example determines if automatic editing has detected erroneous data in
any field in the EMPMAPLR map; if so, the program modifies the map temporarily to
display the erroneous fields with the bright and blinking attributes:

INQUIRE MAP (EMPMAPLR)

 IF ANY EDIT ERROR

 THEN MODIFY MAP (EMPMAPLR) TEMPORARY

 FOR ALL ERROR FIELDS

 ATTRIBUTES BRIGHT BLINK;

Status Codes

Upon completion of the INQUIRE MAP function, the ERROR_STATUS field of the IDMS
DC communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

4629

An invalid parameter has been passed from the program.

4641

The test condition has been found to be true. (This condition is tested for

automatically by PL/I DML expansion statements.)

4644

The referenced map field is not in the specified map; a possible cause is a reference
to an invalid map field subscript.

4656

The referenced map contains no data fields.

KEEP CURRENT

The KEEP CURRENT statement places an explicit shared or exclusive lock on a record
that is current of run unit, record, set, or area. Locks placed on records through the KEEP

CURRENT function are maintained for the duration of the database transaction or until
explicitly released by means of the COMMIT or FINISH statements.

Syntax

►►─── KEEP ─┬─────────────┬─ CURRENT ─┬────────────────────────┬─ ; ──────────►◄
 └─ EXCLUSIVE ─┘ ├─ RECORD (record-name) ─┤
 ├─ SET (set-name) ───────┤
 └─ AREA (area-name) ─────┘

KEEP CURRENT

Chapter 7: Data Manipulation Language Statements 199

Parameters

EXCLUSIVE

Specifies to place an exclusive lock on the current record of run unit, record, set, or
area. If you do not specify EXCLUSIVE, the record receives a shared lock by default.

RECORD (record-name)/SET (set-name)/AREA (area-name)

Specifies to place the lock on the current record of the named record type, set, or
area.

Example

The following example places an exclusive lock on the current EMPLOYEE record
occurrence:

KEEP EXCLUSIVE CURRENT RECORD (EMPLOYEE);

Status Codes

Upon completion of the KEEP function, the ERROR_STATUS field in the IDMS DB

communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

0606

Currency has not been established for the named record, set, or area.

0608

Either the named record or set is not in the subschema or the current record of run

unit is not a member of the named set.

0610

The program's subschema specifies an access restriction that prohibits execution of
the KEEP function.

0623

The named area is not in the subschema.

0626

The record to be kept has been erased.

0629

Deadlock occurred during locking of target record.

KEEP LONGTERM (DC/UCF)

200 DML Reference Guide for PLI

KEEP LONGTERM (DC/UCF)

The KEEP LONGTERM statement establishes longterm record locks and/or monitors
access to records between tasks. Longterm database locks are used in
pseudo-conversational transactions and can be shared or exclusive:

■ Longterm shared locks allow other run units to access the locked record but

prevent run units from updating the record as long as the lock is maintained.

■ Longterm exclusive locks prevent other run units from accessing the locked record.
However, run units executing on the logical terminal associated with the issuing
task are not restricted from accessing the locked record. Therefore, subsequent
tasks in a transaction can access the locked record and complete the database

processing required by the transaction.

If a record has been locked with a KEEP LONGTERM or KEEP request, restrictions exist
on the type of lock that can be placed on that record by other run units. These
restrictions are based on existing locks and whether the requesting run unit is executing
on the same logical terminal as the run unit that originally placed the lock on the record.

The following table i l lustrates these restrictions.

Locks in effect Locks allowed for other run units Locks disallowed for
other run units

Shared Shared and longterm shared Exclusive and longterm

exclusive

Exclusive None Shared, exclusive,
longterm shared, and

longterm exclusive

Longterm shared For all run units: shared and longterm
shared

For run units on the same terminal:

exclusive and longterm exclusive

For run units on other
terminals: exclusive and
longterm exclusive

Longterm exclusive For run units on the same terminal:
shared, exclusive, longterm shared,

and longterm exclusive

For run units on other
terminals: shared,

exclusive, longterm
shared, longterm
exclusive

Tasks can monitor database activity associated with a specified record during a

pseudo-converse and, if desired, can place a longterm lock on the record being
monitored. A subsequent task can then make inquiries about that database activity for
the record and take the appropriate action.

KEEP LONGTERM (DC/UCF)

Chapter 7: Data Manipulation Language Statements 201

The DC/UCF system maintains information on database activity by using five bit flags,
each of which is either turned on (binary 1) or turned off (binary 0). This information is

returned to the program as a numeric value. The bit assignments, the corresponding
numeric value returned to the program, and a description of the associated database
activity follow:

Numeric

value

Bit

assignment

Description

16 X'00000010' The record was physically deleted.

8 X'00000008' The record was logically deleted.

4 X'00000004' The record's prefix was modified; that is, a set
operation (for Example, CONNECT or DISCONNECT)
occurred involving the record.

2 X'00000002' The record's data was modified.

1 X'00000001' The record was obtained.

To determine the action or combination of actions that has occurred, you can compare
the numeric value returned to the program with an appropriate constant. For example:

■ If the returned value is 0, no database activity occurred for the specified record.

■ If the returned value is 2, the record's data was modified.

■ If the returned value is 2 or greater, the record was altered in some way.

■ If the returned value is 8 or greater, the record was deleted.

The maximum possible value is 31, indicating that all the above actions occur red for the

specified record.

You may prefer to monitor database activity across a pseudo-converse rather than to

set longterm locks. Monitoring does not restrict access to database records, sets, or
areas by other run units; however, it does enable a program to test a record for
alterations made by other run units. The presence of longterm locks can prevent other

run units from accessing locked records for an undesirable amount of time if, during a
pseudo-converse, the terminal operator fails to enter a response. If longterm locks are
used, you may want to release them at specified intervals.

Note: For more information about the use of timeout intervals, see the CA IDMS System

Generation Guide.

KEEP LONGTERM (DC/UCF)

202 DML Reference Guide for PLI

Syntax

►►─── KEEP LONGTERM (─┬─ ALL ─────────┬─) ──────────────────────────────────►
 └─ longterm-id ─┘

 ►─┬─ NOTIFY CURRENT ─┬─ RECORD (record-name) ─┬───────────────────────────┬;─►◄
 │ ├─ SET (set-name) ───────┤ │
 │ └─ AREA (area-name) ─────┘ │
 ├┬─ SHARE ─────┬─ CURRENT ─┬─ RECORD (record-name) ─┬─┬──────────────┬──┤
 │└─ EXCLUSIVE ─┘ ├─ SET (set-name) ───────┤ ├─ WAIT ◄ ─────┤ │
 │ └─ AREA (area-name) ─────┘ ├─ NOWAIT ─────┤ │
 │ └─ NODEADLOCK ─┘ │
 ├─ upgrade-specification ───┤
 ├─ TEST ─┬──┬───────────────┤
 │ └─ RETURN NOTIFICATION INTO (return-location) ─┘ │
 └─ RELEASE ───┘

Expansion of upgrade-specification

►►─┬───►─
 └ UPGRADE ─┬ SHARE ─────┬┬──┬──
 └ EXCLUSIVE ─┘└ RETURN NOTIFICATION INTO (return-location) ┘

─►──────────────────┬──►◄
 ─┬──────────────┬─┘
 ├─ WAIT ◄ ─────┤
 ├─ NOWAIT ─────┤
 └─ NODEADLOCK ─┘

Parameters

LONGTERM (ALL)/ (longterm-id)

Specifies the 1- to 16-character identifier that will be used in subsequent KEEP
LONGTERM requests to upgrade or release a longterm lock or to make inquiries
about database activity associated with the specified record. Longterm-id is either

the symbolic name of a user-defined field that contains the longterm ID, or the ID
itself enclosed in single quotation marks.

ALL is used only with the RELEASE parameter (described below) to request that the
system release all longterm locks kept for the logical terminal associated with the

current task.

NOTIFY CURRENT RECORD (record-name)/SET (set-name) /AREA (area-name)

Monitors database activity associated with the current occurrence of the named
record type or the current record of the named set or area. When NOTIFY CURRENT

is specified, the system initializes a preallocated location in the program to contain
information on database activity for the specified record.

SHARE/EXCLUSIVE CURRENT RECORD (record-name)/SET (set-name)/AREA
(area-name)

Specifies that the current occurrence of the named record type or the current

record of the named set or area will receive a longterm shared (SHARE) or longterm
exclusive (EXCLUSIVE) lock.

KEEP LONGTERM (DC/UCF)

Chapter 7: Data Manipulation Language Statements 203

upgrade-specification

Upgrades a previous KEEP LONGTERM NOTIFY CURRENT request by placing a shared

(SHARE) or exclusive (EXCLUSIVE) longterm lock on the record identified by
longterm-id.

WAIT

Requests the issuing task to wait for the existing lock to be released. If the wait
would cause a deadlock, the system terminates the task abnormally. WAIT is the
default.

NOWAIT

Requests the issuing task not to wait for the existing lock to be released.

NODEADLOCK

Requests the issuing task to wait for the existing lock to be released, unless to do so
would cause a deadlock. If the wait would cause a deadlock, the system returns
control to the task.

RETURN NOTIFICATION INTO (return-location)

Returns information on database activity for that record. Return-location is the
symbolic name of a user-defined FIXED BINARY(31) field that contains the program
variable-storage entry of the data area to which the system will return the
information.

TEST RETURN NOTIFICATION INTO (return-location)

Requests that the system return information on database activity associated with
the record identified by longterm-id to a previously allocated location in the
program's storage. Return-location is the symbolic name of a user-defined FIXED
BINARY(31) field that contains the program variable-storage entry of the data area

to which the system will return the information.

TEST must specify a longterm lock ID that matches the longterm lock ID specified in
a previous KEEP LONGTERM NOTIFY CURRENT request.

RELEASE

Releases the longterm lock for the record identified by longterm-id or all record

locks (ALL) owned by the logical terminal associated with the current task. RELEASE
also releases the information associated with a previous KEEP LONGTERM NOTIFY
request.

KEEP LONGTERM (DC/UCF)

204 DML Reference Guide for PLI

Example

The steps below il lustrate the use of the KEEP LONGTERM statement:

1. Begin monitoring database activities for the current occurrence of the EMPLOYEE
record by coding:

KEEP LONGTERM (KEEP_ID)

 NOTIFY CURRENT RECORD (EMPLOYEE);

2. Return statistics of database activities for the record identified by KEEP_ID into
STAT_VALUE by coding:

KEEP LONGTERM (KEEP_ID) TEST RETURN NOTIFICATION

 INTO (STAT_VALUE);

3. Depending on the value returned to STAT_VALUE, you may want to put a longterm
shared lock on the EMPLOYEE record identified by KEEP_ID by coding:

KEEP LONGTERM (KEEP_ID) UPGRADE SHARE;

4. Upon processing, release all longterm locks by coding:

KEEP LONGTERM (ALL) RELEASE;

Status Codes

Upon completion of the KEEP LONGTERM function, the ERROR-STATUS field in the IDMS
DC communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

5101

The NODEADLOCK option has been specified; however, to wait would cause a

deadlock. Control has returned to the issuing task.

5102

Unable to obtain storage for the required KEEP LONGTERM control blocks.

5105

Either the requested record type cannot be found or currency has not been
established.

5113

The required area control block was not found in the DMCL.

5121

Either the requested longterm ID cannot be found or the KEEP LONGTERM request
was issued by a nonterminal task.

LOAD TABLE (DC/UCF)

Chapter 7: Data Manipulation Language Statements 205

5123

The specified area cannot be found.

5131

The parameter l ist is invalid.

5147

The KEEP LONGTERM area has not been readied.

5148

The run unit associated with the KEEP LONGTERM request has not been bound.

5149

The NOWAIT option has been specified; however, a wait is required.

5151

A lock manager error occurred during the processing of the KEEP LONGTERM

request.

5159

An error occurred in transferring the KEEP LONGTERM request to IDMSKEEP.

5160

The requested KEEP LONGTERM lock ID was already in use with a different page
group.

5161

The requested KEEP LONGTERM lock ID was already in use with a different BDKey
format.

LOAD TABLE (DC/UCF)

The LOAD TABLE statement instructs the system to load a table (module or program)
into the program pool.

Syntax

►►── LOAD TABLE (table-name) POINTER (table-location-pointer) ─┬──────────┬;─►◄
 ├─ WAIT ◄ ─┤
 └─ NOWAIT ─┘

LOAD TABLE (DC/UCF)

206 DML Reference Guide for PLI

Parameters

table-name

Specifies the 1- to 8-character name of the table to be loaded. Table is either the
symbolic name of a user-defined field that contains the table, or the name itself

enclosed in single quotation marks.

POINTER (table-location-pointer)

Specifies the pointer variable for referencing the loaded table. After the table has
been loaded, the pointer contains the address of the beginning of the table.

WAIT

Requests the issuing task to wait until sufficient storage becomes available. If WAIT
is specified and the system encounters an insufficient storage condition, the issuing
task is placed in an inactive state; when the LOAD TABLE function is completed,
control returns to the issuing task according to its previously established

dispatching priority. WAIT is the default.

NOWAIT

Requests the issuing task not to wait for storage to become available. If NOWAIT is

specified, the system returns a value of 3402 to the ERROR_STATUS field when an
insufficient storage condition exists.

Example

The following source code defines the data required for use with the LOAD TABLE

request:

DCL STATECON_POINTER POINTER;

 DCL 1 STATECON(50) BASED (STATECON_POINTER),

 3 STATE_ABB CHAR(2),

 3 STATE_FULL CHAR(15);

The following statement loads the STATECON table into the program variable-storage
area identified by the pointer STATECON_POINTER:

LOAD TABLE (STATECON)

 POINTER (STATECON_POINTER);

MAP IN (DC/UCF)

Chapter 7: Data Manipulation Language Statements 207

Status Codes

Upon completion of the LOAD TABLE function, the ERROR_STATUS field in the IDMS DC
communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

3401

The requested module cannot be loaded immediately due to insufficient storage; to
wait would cause a deadlock.

3402

The requested module cannot be loaded because insufficient storage exists in the
program pool.

3407

The requested module cannot be loaded because an I/O error has occurred during

processing.

3414

The requested module cannot be loaded because it has been defined as noncurrent
and is currently in use.

3415

The requested module has been overlaid temporarily in the program pool and

cannot be reloaded immediately.

3436

Either the requested program is not defined in the program definition table (PDT)
and is marked out of service, or null PDEs are not specified or valid in this system.

MAP IN (DC/UCF)

The MAP IN statement requests a synchronous transfer of data from map fields on the
screen to the corresponding variable-storage data fields. The MAP IN statement can also
be used to transfer data from an area in variable storage that contains a 3270-like data

stream to map-related variable-storage data fields; this is referred to as a native-mode
data transfer.

MAP IN (DC/UCF)

208 DML Reference Guide for PLI

Syntax

►►─── MAP IN (map-name) ──►

 ►─┬──►─
 └─┬─ IO ─┬────────────────────────┬──
 │ └─ INPUT DATA ─┬─ YES ─┬─┘
 │ └─ NO ──┘
 └─ NOIO DATASTREAM FROM (mapped-data-location) ──────────────────────────

─►───────────────────────────────────────┬────────────────────────────────────►
 ─────────────────────────────────────┬─┘
 ─┬─ TO (end-mapped-data-location) ─┬─┘
 └─ MAX LENGTH (data-length) ──────┘

 ►─┬────────────────────────────────────┬─────────────────────────────────────►◄
 ├─ detail-specification ─────────────┤
 └─ HEADER ─┬──────────────────────┬──┘
 ├─ PAGE (page-number) ─┤
 └─ MODIFIED ───────────┘

Expansion of detail-specification

►►─┬──►─
 └─ DETAIL ┬ NEXT ◄ ───┬─
 ├─ FIRST ─┬──────────────────────────┬─────────────────────────┤
 │ └─ RETURNKEY (data-field) ─┘ │
 ├─ KEY (key-name) ───┤
 ├─ SEQUENCE_NUMBER (sequence-field) ─┬────────────────────────┬┤
 │ └ RETURNKEY (data-field)─┘│
 └─ RETURNKEY (data-field) ─────────────────────────────────────┘

─►───┬──────────────────────────────────►◄
 ─┬──────────────────────┬─┬────────────┬─┘
 └─ PAGE (page-number) ─┘ └─ MODIFIED ─┘

Parameters

map-name

Specifies the 1- to 8-character name of a map specified by the DECLARE MAP

statement, as described in DML Precompiler-Directive Statements.

IO/NOIO

Specifies the type of data transfer associated with the MAP IN request:

IO INPUT DATA YES/NO

Transfers data from map fields to variable-storage data fields that are
associated with the specified map.

INPUT DATA YES/NO

Specifies whether the contents of map fields will be moved to variable-storage

data fields (YES) or left unchanged (NO). This specification applies to all
variable-storage data fields unless overridden by an INPUT DATA IS YES/NO
clause in a previously issued MODIFY MAP request.

MAP IN (DC/UCF)

Chapter 7: Data Manipulation Language Statements 209

NOIO DATASTREAM FROM (mapped-data-location)

Transfers data from an area in program variable storage to the variable-storage

data fields that correspond to the specified map. No terminal I/O is associated
with the request.

Mapped-data-location is the symbolic name of a user-defined field that

contains the program variable-storage entry of the data stream to be read by
the system. The length of the data stream is determined through one of the
following specifications:

TO (end-mapped-data-location)

Indicates the end of the program variable-storage entry that contains the data

stream and is specified following the last data-item entry in
mapped-data-location. End-mapped-data-location is the symbolic name of
either a user-defined dummy byte field or a field that contains a data item not
associated with the input data stream.

MAX LENGTH (data-length)

Explicitly defines the length, in bytes, of the input data stream. Data-length is
either the symbolic name of a user-defined field that contains the length of the
data stream, or the length itself expressed as a numeric constant.

detail-specification

Specifies (for pageable maps only) that the MAP IN operation is to retrieve data

from a modified detail occurrence (MDT set on). The contents of all map fields in
the detail occurrence are retrieved unless MODIFIED is specified for the MAP IN
DETAIL statement; MODIFIED causes only modified fields to be retrieved.

Note: For more information about pageable maps, see the CA IDMS Mapping

Facility Guide.

NEXT

Retrieves the next sequential modified detail occurrence. An end-of-data
condition (ERROR_STATUS is 4668) is returned in either of the following cases:

■ No detail occurrences have been modified.

■ All modified detail occurrences have been mapped in already.

NEXT is the default.

MAP IN (DC/UCF)

210 DML Reference Guide for PLI

FIRST

Retrieves the first available modified detail occurrence. The optional

RETURNKEY (data-field) clause specifies the name of a variable field in which
the system stores the 4-byte key value (if any) associated with the retrieved
detail occurrence. If no value is associated with the detail occurrence, the

system sets data-field to zero. Data-field, which does not have to be fullword
aligned, is the symbolic name of either a CHAR(4) or a FIXED BINARY(31) field
that contains the key value.

Note: A value is associated with a detail occurrence by using the KEY parameter

in a MAP OUT DETAIL command for that occurrence.

An end-of-data condition results if all modified data occurrences already have
been mapped in.

KEY (key)

Retrieves a modified detail occurrence based on the value associated with the

detail occurrence. Key is the name of a FIXED BINARY(31) field.

Note: A value is associated with a detail occurrence by using the KEY parameter
in the MAP OUT DETAIL command for that occurrence.

A detail-not-found condition is returned in either of the following cases:

■ The specified occurrence is not a modified detail occurrence.

■ No detail occurrence with the specified value is found.

SEQUENCE_NUMBER (sequence-field-name)

Retrieves a detail occurrence by sequence number. Detail occurrences are built
at runtime by the application program and are stored in the sequence in which
they are created. Sequence-field-name is a FIXED BINARY(31) field.

A detail-not-found condition is returned in either of the following cases:

■ The specified occurrence is not a modified detail occurrence.

■ No detail occurrence with the specified value is found.

The optional RETURNKEY (data-field) clause specifies the name of a variable
field in which the system stores the 4-byte key value (if any) associated with

the retrieved detail occurrence. If no value is associated with the detail
occurrence, the system sets data-field to zero. Data-field, which does not have
to be fullword aligned, is the symbolic name of either a CHAR(4) or a FIXED

BINARY(31) field that contains the key value.

RETURNKEY (data-field)

Performs the same operation as the NEXT clause (described previously) and
specifies the name of a variable field in which the system stores the 4-byte
value (if any) associated with the retrieved detail occurrence. If no value is

associated with the detail occurrence, the system sets data-field to 0.
Data-field, which does not have to be full word aligned, is the symbolic name of
either a CHAR(4) or a FIXED BINARY(31) field that contains the key value.

MAP IN (DC/UCF)

Chapter 7: Data Manipulation Language Statements 211

PAGE (page-number)

Specifies (for pageable maps only) the name of a variable field in which to store

the current value of the $PAGE field on mapin. Page-number is defined as a
FIXED BINARY(31) field.

MODIFIED

Specifies (for pageable maps only) that, within a modified detail occurrence,
only modified fields (MDT set on) are to be retrieved in the MAP IN operation.

HEADER

Specifies (for pageable maps only) that the MAP IN operation is to retrieve the
contents of data fields in the header and footer areas. The contents of all data fields
in the header and footer areas are retrieved unless MODIFIED is specified for the
MAP IN HEADER statement; MODIFIED causes only modified fields to be retrieved.

PAGE (page-number)

Specifies (for pageable maps only) the name of a variable field in which to store
the current value of the $PAGE field on mapin. Page-number is defined as a
FIXED BINARY(31) field.

MODIFIED

Specifies (for pageable maps only) that, within a modified detail occurrence,
only modified header fields (MDT set on) are to be retrieved in the MAP IN
operation.

Example

The following statement reads the EMPMAPLR map. Data values are transferred from
map fields on the EMPMAPLR map to the corresponding variable-storage data fields.
Subsequent commands can evaluate the input values and perform appropriate

processing.

MAP IN (EMPMAPLR)

 INPUT DATA YES;

The following statement maps in the next modified detail occurrence of the EMPMAPPG
map:

MAP IN (EMPMAPPG)

 DETAIL

 NEXT;

MAP IN (DC/UCF)

212 DML Reference Guide for PLI

Status Codes

Upon completion of the MAP IN function, the ERROR_STATUS field of the IDMS DC
communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

4627

A permanent I/O error has occurred during processing.

4628

The dial-up line for the terminal has been disconnected.

4631

The map request block (MRB) contains an invalid field, indicating a possible error in
the program's parameters.

4632

The derived length of the specified map input data area is zero or negative.

4633

The map load module named in the MRB cannot be found.

4638

The specified program variable storage entry has not been allocated.

4639

The terminal being used is out of service.

4640

The NOIO option has been specified but the requested data stream cannot be
found.

4642

The requested map does not support the terminal device being used.

4652

The specified edit or code table either cannot be found or is invalid for use with the
named map.

4654

A data conversion error has occurred; internal map data does not match the map's

data description.

4655

The user-written edit routine specified for the named map cannot be found.

MAP OUT (DC/UCF)

Chapter 7: Data Manipulation Language Statements 213

4664

The requested node for a header or detail was either not present or not updated.

4668

No more modified detail occurrences require mapin.

4672

The scratch record that contains the requested detail could not be accessed
(internal error).

MAP OUT (DC/UCF)

The MAP OUT statement creates or modifies detail occurrences for a pageable map or
requests a transfer of data from variable-storage data fields to map fields on the
terminal screen. MAP OUT can also be used to transfer data to another area in program

variable storage; this is referred to as a native mode data transfer.

Syntax

►►─── MAP OUT (map-name) ─┬──────────┬──►
 ├─ WAIT ◄ ─┤
 └─ NOWAIT ─┘

 ►──┬───────────────────────┬───►
 ├─ io-specification ────┤
 └─ no-io-specification ─┘

 ►─┬──┬─ ; ───────────────────────►◄
 └─┬─ DETAIL ──┬───────────┬─┬──────────────┬─┬─┘
 │ ├─ NEW ◄ ───┤ └─ KEY (key) ──┘ │
 │ └─ CURRENT ─┘ │
 └─ RESUME ─┬────────────────────────────┬──┘
 └─ PAGE ─┬─ CURRENT ◄ ─────┬─┘
 ├─ NEXT ──────────┤
 ├─ PRIOR ─────────┤
 ├─ LAST ──────────┤
 ├─ FIRST ─────────┤
 └─ (page-number) ─┘

Expansion of io-specification

►►─┬──►─
 └ IO ◄ ─┬──┬─────
 └ OUTPUT ─┬──┬─┘
 └ DATA ─┬─ YES ───────┬─┬─────────┬─┬──────────┬─┘
 ├─ NO ────────┤ └ NEWPAGE ┘ └ LITERALS ┘
 ├─ ERASE ─────┤
 └─ ATTRibute ─┘

─►───┬────────►◄
 ─┬───┬─┘
 └─ MESSAGE (message-text) ─┬─ TO (end-message-data-location) ─┬─┘
 └─ LENGTH (message-data-length) ───┘

MAP OUT (DC/UCF)

214 DML Reference Guide for PLI

Expansion of no-io-specification

►►─┬──►─
 └─ NOIO DATASTREAM INTO (mapped-data-location) ────────────────────────────

─►──►─
 ─┬─ TO (end-mapped-data-location) ─┬──
 └─ MAX LENGTH (max-data-length) ──┘

─►───┬────────────────────────────►◄
 ─┬───┬─┘
 └─ RETURN LENGTH INTO (data-actual-length) ─┘

Parameters

map-name

Specifies the 1- to 8-character name of a map specified by the DECLARE MAP

statement, as described in DML Precompiler-Directive Statements.

WAIT

Specifies that the data transfer will be synchronous. The system places the issuing
task in an inactive state. When the MAP OUT operation is complete, the task

resumes processing according to its established dispatching priority. WAIT is the
default.

NOWAIT

Specifies that the data transfer will be asynchronous; the task will continue
executing. If NOWAIT is specified, the program must issue a CHECK TERMINAL

before performing any other I/O operation.

io-specification

Specifies the type of data transfer associated with the MAP OUT request. IO (the

default) specifies that the data transfer is to a terminal device.

OUTPUT

Specifies (for I/O requests only) screen-display options for the data being output:

DATA

Specifies whether the variable-storage data fields are to be transmitted to the
terminal. This specification applies to all variable-storage data fields unless
overridden by an OUTPUT DATA clause in a previously issued MODIFY MAP

request. The following options apply:

 YES Transmits the contents of variable-storage data fields to the
corresponding map fields.

 NO Does not transmit the contents of variable-storage data fields to the
corresponding map fields. However, if the automatic error-handling facility
detects an error in any field, the system will transmit the applicable

attribute bytes.

MAP OUT (DC/UCF)

Chapter 7: Data Manipulation Language Statements 215

 ERASE Does not transmit the contents of variable-storage data fields and

fi l ls the corresponding map fields with null values.

 ATTRIBUTE Transmits only the attribute bytes for variable-storage data
fields. Data in the record buffer is not sent to the terminal.

NEWPAGE

Activates the erase-write function; the system clears the screen and transmits

both literal and variable fields to the map. If NEWPAGE is not specified, the
system will write over any existing screen display without first erasing it. The
keywords NEWPAGE and ERASE are synonymous.

To erase individual map fields, use the OUTPUT DATA ERASE option of the
MODIFY MAP statement (described later in this chapter). To request the

system to erase all screen fields and to activate the erase-write function, the
MAP OUT statement must specify OUTPUT DATA ERASE NEWPAGE.

LITERALS

Transmits l iteral fields as well as variable-storage data fields to the terminal. If
LITERALS is not specified, the system will write l iteral fields to the map only

when a MAP OUT request specifies the NEWPAGE option.

MESSAGE (message-text)

Specifies (for IO requests only) the message to be displayed in the map's
message area. Message-text is the symbolic name of a program
variable-storage entry that contains the message text.

Note: The MESSAGE parameter can only be used with MAP OUT DETAIL if the

$MESSAGE field is associated with the detail occurrence at map generation. To
reference a message stored in the data dictionary, use the ACCEPT TEXT INTO
parameter of the WRITE LOG statement (explained later in this chapter) to copy
the message into message-text.

 TO (end-message-data-location) Specifies the end of the program

variable-storage entry that contains the message text and is specified
following the last data item in message-text. End-message-data-location is
the symbolic name of either a user-defined dummy byte field or a field

that contains a data item not associated with the output data stream.

 LENGTH (message-data-length) Defines the length, in bytes, of the
message text. Message-data-length is either the symbolic name of a

user-defined field that contains the length or the length itself expressed as
a numeric constant.

no-io-specification

Transfers data from variable-storage data fields associated with the named map to
another area of program variable storage; no terminal I/O is associated with the

request. Mapped-data-location is the symbolic name of a user-defined field that
contains the program variable-storage entry to which the data will be transferred.

MAP OUT (DC/UCF)

216 DML Reference Guide for PLI

TO (end-mapped-data-location)

Indicates the end of the program variable-storage entry for the output data

stream and is specified following the last data-item entry in
mapped-data-location. End-mapped-data-location is the symbolic name of
either a user-defined dummy byte field or a field that contains a data item not

associated with the output data stream.

MAX LENGTH (data-length)

Defines the maximum length of the output data stream. Data-length is either
the symbolic name of the user-defined fixed binary field that contains the
length of the data stream or the length itself expressed as a numeric constant.

The optional RETURN LENGTH INTO (data-actual-length) clause specifies the
program variable-storage entry to which the system will return the length, in

bytes, of the output data stream. If the data stream has been truncated,
data-actual-length contains the length before truncation.

DETAIL

Specifies (for pageable maps only) that the MAP OUT command is to create or
modify a detail occurrence, and optionally associates a numeric key value with the

occurrence.

Note: For more information about pageable maps, see the CA IDMS Mapping
Facility Guide.

NEW

Creates a detail occurrence of a pageable map. Occurrences are displayed in
the order in which they are created by the application program. NEW is the
default.

CURRENT

Modifies the detail occurrence that was referenced by the most recent MAP IN

DETAIL or MAP OUT DETAIL statement.

KEY (key)

Optionally specifies a value to be associated with the created or modified detail
occurrence. The 4-byte numeric value is not displayed on the terminal screen. Key is
the name of a FIXED BINARY(31) field that contains the db-key of the database

record associated with the detail occurrence.

When the KEY parameter is used with the MAP OUT DETAIL CURRENT command,
the specified value replaces the value (if any) previously associated with the detail
occurrence.

MAP OUT (DC/UCF)

Chapter 7: Data Manipulation Language Statements 217

RESUME PAGE

Specifies (for pageable maps only) the page of detail occurrences to be mapped out

to the terminal:

CURRENT

Specifies that the current page is to be redisplayed. If no page has been

displayed, the first page of the pageable map is displayed. CURRENT is the
default.

NEXT

Specifies that the page that follows the current page is to be displayed. If no
page follows the current page, the current page is redisplayed.

PRIOR

Specifies that the page that precedes the current page is to be displayed. If no
page precedes the current page, the current page is redisplayed.

FIRST

Specifies that the first available page of detail occurrences is to be displayed.

LAST

Specifies that the page of detail occurrences with the highest available page

number is to be displayed.

page-number

Specifies a variable field that contains the number of the page to be displayed.

Page-number is defined as a FIXED BINARY(31) field. A page number is stored in
the variable field by a preceding MAP IN PAGE (page-number) statement that
names the same numeric variable field.

Example

The following statement writes all l iteral and data fields associated with the EMPMAPLR
map to the terminal:

MAP OUT (EMPMAPLR)

 OUTPUT DATA YES

 NEWPAGE

 MESSAGE (INITIAL_MESSAGE) LENGTH (80);

The following statement maps out the current detail; no terminal I/O is associated with
this request if the first page of the pageable map is not yet fi l led:

MAP OUT (EMPMAPPG)

 DETAIL

 KEY (DBKEY);

MAP OUT (DC/UCF)

218 DML Reference Guide for PLI

Status Codes

Upon completion of the MAP OUT function, the ERROR_STATUS field in the IDMS DC
communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

4625

The output operation has been interrupted; the operator has pressed ATTENTION
or BREAK.

4626

A logical error (for Example, an invalid control character) has been encountered in
the output data stream.

4627

A permanent I/O error has occurred during processing.

4628

The dial-up line for the terminal has been disconnected.

4631

The map request block (MRB) contains an invalid field, indicating a possible error in
the program's parameters.

4632

The derived length of the specified map output data area is zero or negative.

4633

The map load module named in the MRB cannot be found.

4638

The program variable-storage entry specified for return of the output data stream

has not been allocated.

4639

The terminal being used is out of service.

4640

The NOIO option has been specified but the requested data stream cannot be

found.

4642

The requested map does not support the terminal device being used.

MAP OUTIN (DC/UCF)

Chapter 7: Data Manipulation Language Statements 219

4652

The specified edit or code table either cannot be found or is invalid for use with the

named map.

4653

An error has occurred in a user-written edit routine.

4654

A data conversion error has occurred; internal map data does not match the map's

data description.

4655

The user-written edit routine specified for the named map cannot be found.

4664

There is no current detail occurrence to be updated (MAP OUT DETAIL CURRENT

only). No action is taken.

4668

The amount of storage defined for pageable maps at system generation time is

insufficient. No action is taken. This and subsequent MAP OUT DETAIL statements
are ignored.

4672

No detail occurrence, footer, or header fields exist to be mapped out by a MAPOUT
RESUME command.

4676

The first screen page has been transmitted to the terminal.

4680

The last detail for a screen was written; a map page is complete and ready to be
transmitted to the terminal.

MAP OUTIN (DC/UCF)

The MAP OUTIN statement requests an output data transfer (MAP OUT) followed by an
input data transfer (MAP IN). MAP OUTIN combines the functions of the MAP OUT and
MAP IN requests; however, it cannot be used to perform pageable map functions or

native mode data transfers. By definition, the MAP OUTIN request is synchronous; it
forces the program to be conversational.

MAP OUTIN (DC/UCF)

220 DML Reference Guide for PLI

Syntax

►►─── MAP OUTIN (map-name) ───►

 ►─┬───┬────►
 └─ OUTPUT ─┬───────────────────────────┬─┬───────────┬─┬────────────┬─┘
 └─ DATA ─┬─ YES ───────┬────┘ ├─ NEWPAGE ─┤ └─ LITERALS ─┘
 ├─ NO ────────┤ └─ ERASE ───┘
 ├─ ERASE ─────┤
 └─ ATTRibute ─┘

 ►─┬────────────────────────┬───►
 └─ INPUT DATA ─┬─ YES ─┬─┘
 └─ NO ─┘

 ►─┬───┬─ ; ──────►◄
 └─ MESSAGE (message-text) ─┬─ TO (end-message-data-location) ─┬─┘
 └─ LENGTH (data-length) ───────────┘

Parameters

map-name

Specifies the 1- to 8-character name of a map specified by the DECLARE MAP
statement, as described in DML Precompiler-Directive Statements.

OUTPUT

Specifies screen display-options for the data being output:

DATA YES/NO/ERASE/ATTRIBUTE

Specifies whether variable-storage data fields are to be transmitted to the
terminal. This specification applies to all variable-storage data fields unless
overridden by an OUTPUT DATA YES/NO clause in a previously issued MODIFY
MAP request.

 YES Transmits the contents of variable-storage data fields to the
corresponding map fields.

 NO Does not transmit the contents of variable-storage data fields to the

corresponding map fields. However, if the automatic error handling facility
detects an error in any field, the system will transmit the applicable
attribute bytes.

 ERASE Does not transmit the contents of variable-storage data fields and

fi l ls the corresponding map fields with null values.

 ATTRIBUTE Transmits only the attribute bytes for variable-storage data
fields. Data in the record buffer is not sent to the terminal.

NEWPAGE

Activates the erase-write function; the system clears the screen and transmits

both literal and variable fields to the map. If NEWPAGE is not specified, the
system will write over any existing screen display without first erasing it. The
keywords NEWPAGE and ERASE are synonymous.

MAP OUTIN (DC/UCF)

Chapter 7: Data Manipulation Language Statements 221

To erase individual map fields, use the OUTPUT DATA ERASE option of the
MODIFY MAP statement (described later in this chapter). To request that the

system erase all screen fields and activate the erase-write function, the MAP
OUT statement must specify OUTPUT DATA ERASE NEWPAGE.

LITERALS

Transmits l iteral fields as well as variable-storage data fields to the terminal. If
LITERALS is not specified, the system will write l iteral fields to the map only

when a MAP OUT request specifies the ERASE option.

INPUT DATA YES/NO

Specifies whether the contents of map fields will be moved to variable-storage data
fields (YES) or left unchanged (NO).

This specification applies to all variable-storage data fields unless overridden by an

INPUT DATA YES/NO clause in a previously issued MODIFY MAP request.

MESSAGE (message-text)

Specifies the message to be displayed in the map's message area. Message-text is
the symbolic name of a program variable-storage entry that contains the message
text. The length of the message text is determined by one of the following

specifications:

TO (end-message-data-location)

Specifies the end of the program variable-storage entry that contains the

message text and is specified following the last data item in message-text.
End-message-data-location is the symbolic name of either a user-defined
dummy byte field or a field that contains a data item not associated with the
output data stream.

LENGTH (data-length)

Defines the length in bytes of the message text. Data-length is either the
symbolic name of a user-defined field that contains the length, or the length
itself expressed as a numeric constant.

Note: To reference a message stored in the data dictionary, us e the ACCEPT TEXT

INTO parameter of the WRITE LOG statement (described later in this chapter) to
copy the message into message-text.

Example

The following statement erases the screen, transmits l iteral and variable map fields (null
values), and performs a mapin operation when the operator presses an AID key:

MAP OUTIN (EMPMAPLR)

 OUTPUT DATA ERASE NEWPAGE

 INPUT DATA YES;

MAP OUTIN (DC/UCF)

222 DML Reference Guide for PLI

Status Codes

Upon completion of the MAP OUTIN function, the ERROR_STATUS field in the IDMS DC
communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

4625

The I/O operation has been interrupted; the terminal operator has pressed
ATTENTION or BREAK.

4626

A logical error (for Example, an invalid control character) has been encountered in
the output data stream.

4627

A permanent I/O error has occurred during processing.

4628

The dial-up line for the terminal is disconnected.

4631

The map request block (MRB) contains an invalid field, indicating a possible error in
the program's parameters.

4633

The map load module named in the MRB cannot be found.

4639

The terminal being used is out of service.

4642

The requested map does not support the terminal device being used.

4652

The specified edit or code table either cannot be found or is invalid for use with the
named map.

4653

An error has occurred in a user-written edit routine.

4654

A data conversion error has occurred; internal map data does not match the map's
data description.

4655

The user-written edit routine specified for the named map cannot be found.

MODIFY MAP (DC/UCF)

Chapter 7: Data Manipulation Language Statements 223

MODIFY MAP (DC/UCF)

The MODIFY MAP statement requests that the system modify options in the map
request block (MRB) for a map; modifications can be designated as permanent or
temporary. Requested revisions can be field-specific, map-specific, or both; field-specific
revisions apply to the map's variable data fields.

Note: The MODIFY MAP statement parameters used to revise predefined map and/or
map data field attributes have no defaults. If a MODIFY MAP parameter is not specified,
the applicable option remains set to the value specified at map generation or to the
value specified in a previously issued MODIFY MAP PERMANENT statement.

Syntax

►►─── MODIFY MAP (map-name) ──►

 ►─┬───────────────┬─┬───┬──────►
 ├─ PERMANENT ◄ ─┤ └─ CURSOR AT ─┬─ (cursor-row) (cursor-column) ─┬─┘
 └─ TEMPORARY ───┘ └─ DFLD (field-name) ─────────────┘

 ►─┬───────────────────────────────┬──►
 │ ┌────────────────────┐ │
 └─ WCC ─▼─┬─┬─ RESETMDT ─┬─┬─┴──┘
 │ └─ NOMDT ───┘ │
 ├─┬─ RESETKBD ─┬─┤
 │ └─ NOKBD ───┘ │
 ├─┬─ ALARM ───┬──┤
 │ └─ NOALARM ─┘ │
 ├─┬─ STARTPRT ─┬─┤
 │ └─ NOPRT ────┘ │
 └─┬─ NLCR ─┬─────┘
 ├─ 40CR ─┤
 ├─ 64CR ─┤
 └─ 80CR ─┘

 ►─┬───┬──────────────►─
 └─ FOR ─┬─ ALL ─┬─ BUT ─────┬─ CURRENT ───────────────────┬─┘
 │ └─ EXCEPT ──┘ │
 ├─── ALL ─┬───────────┬─ FIELDS ──────────────────┤
 │ ├─ CORRECT ─┤ │
 │ └─ ERROR ───┘ │
 │ ┌───┐ │
 ├─▼─┬───────────────────┬─ DFLD (field-name) * ─┴─┤
 │ ├─── ALL ◄ ─────────┤ │
 │ └─ ALL ─┬─ BUT ────┬┘ │
 │ └─ EXCEPT ─┘ │
 └─ DFLD (field-name) * ───────────────────────────┘

─►─┬──────────────┬───►─
 ├─ BACKSCAN ───┤
 └─ NOBACKSCAN ─┘

─►─┬───────────────────────────────┬─┬────────────────────────┬───────────────►─
 └─ OUTPUT DATA ─┬─ YES ───────┬─┘ └─ INPUT DATA ─┬─ YES ─┬─┘
 ├─ NO ────────┤ └─ NO ──┘
 ├─ ERASE ─────┤
 └─ ATTRIBUTE ─┘

─►─┬─────────────────────┬──►─
 ├─ RIGHT ─┬─ JUSTIFY ─┘
 └─ LEFT ──┘

─►─┬───────────────────────┬─┬──────────────────────┬─────────────────────────►─
 ├─ PAD (pad-character) ─┤ └─ EDIT ─┬─ ERROR ───┬─┘
 └─ NOPAD ───────────────┘ └─ CORRECT ─┘

MODIFY MAP (DC/UCF)

224 DML Reference Guide for PLI

─►─┬────────────┬─┬────────────────────────────────┬──────────────────────────►─
 ├─ REQUIRED ─┤ └─ ERROR MESSAGE ─┬─ ACTIVE ───┬─┘
 └─ OPTIONAL ─┘ └─ SUPPRESS ─┘

─►─┬───────────────────────────────────────┬─ ; ──────────────────────────────►◄
 │ ┌───────────────────────┐│
 └─ ATTRIBUTES ─▼─┬───────────────────┬─┴┘
 ├─ SKIP ────────────┤
 ├┬─ ALPHAMERIC ─┬───┤
 │└─ NUMERIC ────┘ │
 ├┬─ PROTECTED ───┬──┤
 │└─ UNPROTECTED ─┘ │
 ├┬─ DISPLAY ─┬──────┤
 │├─ DARK ────┤ │
 │└─ BRIGHT ──┘ │
 ├─ DETECT ──────────┤
 ├┬─ MDT ───┬────────┤
 │└─ NOMDT ─┘ │
 ├┬─ BLINK ───┬──────┤
 │└─ NOBLINK ─┘ │
 ├┬─ REVERSE_VIDEO ─┬┤
 │└─ NORMAL_VIDEO ──┘│
 ├┬─ UNDERSCORE ───┬─┤
 │└─ NOUNDERSCORE ─┘ │
 ├─ NOCOLOR ─────────┤
 └┬─ BLUE ──────┬────┘
 ├─ RED ───────┤
 ├─ PINK ──────┤
 ├─ GREEN ─────┤
 ├─ TURQUOISE ─┤
 ├─ YELLOW ────┤
 └─ WHITE ─────┘

Parameters

map-name

Specifies the 1- to 8-character name of a map specified by the DECLARE MAP
statement, as described in DML Precompiler-Directive Statements.

PERMANENT

Specifies that modifications will apply to all mapping mode I/O requests issued until
the program terminates or until a subsequent MODIFY MAP request overrides the
requested revisions. PERMANENT is the default.

TEMPORARY

Specifies that modifications will apply only to the next mapping mode I/O request
(that is, MAP IN, MAP OUT, or MAP OUTIN).

MODIFY MAP (DC/UCF)

Chapter 7: Data Manipulation Language Statements 225

CURSOR AT

Identifies the screen location at which the cursor will be positioned during output

operations.

cursor-row cursor-column

Specifies a row and column on the terminal screen to which the cursor will be

moved. Cursor-row is either the symbolic name of a FIXED BINARY(15) field that
contains the row value or the value itself expressed as a numeric constant.
Cursor-column is either the symbolic name of a FIXED BINARY(15) field that
contains the column value or the value itsel f expressed as a numeric constant.

DFLD (field-name)

Specifies that the cursor will be moved to the first position in the specified
field. Field-name must be the name of a map field.

WCC

Specifies the write-control-character (WCC) options requested for the output

operation.

Note: If a MODIFY MAP request alters any WCC option, the system resets
unspecified options to the following values:

■ NOMDT

■ NOKBD

■ NOALARM

RESETMDT/NOMDT

Specifies whether the modified data tags (MDTs) for the map fields will be

reset (turned off) automatically when the map is displayed. When NOMDT is in
effect, the associated data is retransmitted to variable-storage data fields
during the next MAP IN request.

RESETKBD/NOKBD

Specifies whether the keyboard will (RESETKBD) or will not (NOKBD) be
unlocked automatically when the map is displayed.

ALARM/NOALARM

Specifies whether the terminal audible alarm (if installed) will sound
automatically when the map is displayed.

STARTPRT/NOPRT

Specifies (for 3280-type printers only) whether the contents of the terminal
buffer will be printed automatically when the data has been transmitted to the

terminal.

MODIFY MAP (DC/UCF)

226 DML Reference Guide for PLI

NLCR/40CR/64CR/80CR

Specifies the characters-per-line formatting for 3280-type printer output and is

meaningful only if the STARTPRT option has been specified.

 NLCR Specifies that no line formatting will be performed on the printer
output. Printing will begin on a new line only if the printer encounters new

line (NL) and carriage control (CR) characters.

 40CR Specifies that the contents of the 3280-type printer buffer will be
printed at 40 characters per l ine.

 64CR Specifies that the contents of the 3280-type printer buffer will be

printed at 64 characters per l ine.

 80CR Specifies that the contents of the 3280-type printer buffer will be
printed at 80 characters per l ine.

FOR

Specifies the map fields to be modified or excluded from modification

ALL BUT CURRENT

Modifies all fields except the current field. The current field is the map field
that was referenced in the last MODIFY MAP or INQUIRE MAP request issued

by the program. However, if that request referenced a l ist of fields rather than
a single map field, no currency exists and all map fields are modified.

ALL CORRECT/ERROR FIELDS

Modifies either all fields found to be correct or all fields found to be in error
during automatic editing or by a user-written edit module.

If either ALL CORRECT FIELDS or ALL ERROR FIELDS is specified, automatic
editing must be enabled for the map.

ALL/ALL BUT DFLD (field-name)

Explicitly specifies the fields to be modified or excluded from modification.
DFLD (field-name) names the map fields to be modified or excluded from

modification. Field-name must be a map field. Multiple DFLD specifications
come from only one record and must be separated by at least one blank. Field
names that are not unique within the program must be qualified with the name
of the associated record. Likewise, multiply-occurring fields must be qualified

with the appropriate subscripts. Multiple DFLDs are separated by at least one
blank (for Example, HOSPITAL_CLAIM.DIAGNOSIS_0430(1)
HOSPITAL_CLAIM.DIAGNOSIS_0430(2) HOSPITAL_CLAIM.DIAGNOSIS_0430(3)).

 ALL Specifies that all named map fields will receive the requested
modifications. ALL is the default.

 ALL BUT Specifies that all map fields except those named will receive the

requested modifications.

MODIFY MAP (DC/UCF)

Chapter 7: Data Manipulation Language Statements 227

BACKSCAN/NOBACKSCAN

Indicates whether the system is to backscan the specified fields to remove

trail ing blanks before performing a mapout operation. If BACKSCAN is specified,
only characters up to the last nonblank will be sent to the terminal; fields
remaining on the screen will contain whatever characters were present before

the MAP OUT or MAP OUTIN request was i ssued. If the MAP OUT or MAP
OUTIN request specifies the ERASE option, the system erases the contents of all
terminal data fields.

OUTPUT DATA YES/NO/ERASE/ATTRIBUTE

Specifies whether map fields will be set to the value of the corresponding

variable-storage data fields (YES), left unchanged (NO), or erased (ERASE), or
whether only the attribute byte (ATTRIBUTE) is transmitted during an output
operation.

INPUT DATA YES/NO

Specifies whether map fields will be moved automatically to the corresponding

variable-storage data fields during an input operation.

RIGHT/LEFT JUSTIFY

Indicates whether the variable-storage fields should be right- or left-justified on
input.

PAD (pad-character)/NOPAD

Indicates whether variable-storage data fields will be padded on input.

 PAD (pad-character) Pads the field on the right (if right justified) or left (if
left justified) with the specified character. Pad-character can be the

symbolic name of the field (CHAR(1)) containing the pad character, or the
pad character itself enclosed in single quotation marks.

 NOPAD Does not pad the fields.

EDIT ERROR/CORRECT

Explicitly sets the error flag on (ERROR) or off (CORRECT) for the specified map

fields. If this parameter is specified, automatic editing must be enabled for the
map.

The ability to set the error flag enables programs to perform their own editing
and validation in addition to that provided by the automatic editing feature. On
a MAPOUT operation, if any field is flagged to be in error, then for all fields

(both correct and incorrect) only attribute bytes are transmitted; no data is
moved from program variable storage to the screen.

MODIFY MAP (DC/UCF)

228 DML Reference Guide for PLI

REQUIRED/OPTIONAL

Indicates whether the terminal operator will be required to enter data in the

specified map fields. An error results on mapin if REQUIRED is specified and the
terminal operator fails to enter data in a required field.

If this parameter is specified, automatic editing must be enabled for the map

and for the specified map fields.

ERROR MESSAGE ACTIVE

Enables display of the error message associated with the field. Typically, you
enable display of an error message only after specifying ERROR MESSAGE
SUPPRESS for the map in a previous MODIFY MAP PERMANENT statement.

ERROR MESSAGE SUPPRESS

Disables display of the error message associated with the field. When the map

is redisplayed because of errors, the error message defined for the map field
will not be displayed even if the field contains edit errors.

Use of this parameter allows you flexibility in handling error messages. For

instance, you can code a data validation module to suppress a map field's
default error message to enable a different error message to be displayed for
that field.

ATTRIBUTES

Indicates the 3270- and 3279-type terminal display attributes for the specified map

fields. If multiple attributes are specified, they must be separated by at least one
blank. Only the named attributes will be modified in the map's MRB.

SKIP

Indicates that the cursor will be repositioned automatically over the map fields
to the next unprotected field. If SKIP is specified, the specified map fields are

assigned the NUMERIC and PROTECTED attributes (described below)
automatically.

ALPHAMERIC/NUMERIC

Indicates whether the data input to the map fields by the terminal operator can
be alphanumeric (any character on the 3270 keyboard) or numeric. If the

terminal does not have the numeric lock option, a specification of NUMERIC is
ignored.

PROTECTED/UNPROTECTED

Indicates whether the specified map fields will be protected from data entry or
will be available for data entry or modification by the terminal operator.

UNPROTECTED cannot be specified if SKIP has been specified.

MODIFY MAP (DC/UCF)

Chapter 7: Data Manipulation Language Statements 229

DISPLAY/DARK/BRIGHT

Indicates whether the specified map fields will be displayed in normal

(DISPLAY) or bright (BRIGHT) intensity or will not be displayed (DARK). DARK
cannot be specified if DETECT has been specified.

DETECT

Indicates whether the specified map fields will be detectable by a l ight pen. All
fields assigned the BRIGHT attribute are automatically detectable by a l ight
pen.

MDT/NOMDT

Indicates whether the modified data tag will (MDT) or will not (NOMDT) be set

automatically for the map fields when displayed.

BLINK/NOBLINK

Indicates (3279s only) whether the specified map fields will be displayed with
blinking characters.

REVERSE_VIDEO/NORMAL_VIDEO

Indicates (3279s only) whether the specified map fields will be displayed in
reverse video (background and character colors reversed) or in normal video.

UNDERSCORE/NOUNDERSCORE

Indicates (3279s only) whether the specified map fields will be displayed with
underlined characters.

NOCOLOR

Specifies (for 3279s only) that the map fields will not be displayed with color
attributes.

BLUE/RED/PINK/GREEN/TURQUOISE/YELLOW/WHITE

Indicates (3279s only) that the specified map fields will be displayed with one
of the seven available color attributes.

Note: UNDERSCORE, REVERSE_VIDEO, and BLINK are mutually exclusive; that is, they
can be specified in conjunction with other attributes but cannot be specified with each
other. For Example, neither REVERSE_VIDEO nor UNDERSCORE can be assigned to a
field for which the BLINK attribute has been defined.

MODIFY RECORD

230 DML Reference Guide for PLI

Example

The following statement positions the cursor at EMP_ID_0415 and prohibits the
terminal operator from entering data in any field except EMP_ID_0415 and
DEPT_ID_0415:

MODIFY MAP (EMPMAPLR) TEMPORARY

 CURSOR AT DFLD (EMP_ID_0415)

 FOR ALL BUT DFLD (EMP_ID_0415) DFLD (DEPT_ID_0415)

 ATTRIBUTES PROTECTED;

The following statement sets the edit flag on for the TASK_CODE_01 field, thereby
overriding automatic editing and error handling for the next mapin request:

MODIFY MAP (EMPMAPLR) TEMPORARY

 FOR DFLD (TASK_CODE_01)

 EDIT ERROR;

Status Codes

Upon completion of the MODIFY MAP function, the ERROR_STATUS field in the IDMS DC
communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

4629

An invalid parameter has been passed from the program.

4644

The map field is not in the specified map; a possible cause is a reference to an
invalid map field subscript.

4656

The referenced map contains no data fields.

MODIFY RECORD

The MODIFY RECORD statement replaces element values of the specified record
occurrence in the database with new element values defined in program variable
storage.

MODIFY RECORD

Chapter 7: Data Manipulation Language Statements 231

Steps Before Using MODIFY RECORD

Before executing the MODIFY RECORD statement, satisfy the following conditions:

■ Ready all areas affected either implicitly or explicitly in one of the update usage
modes (see READY later in this chapter).

■ Establish the specified record as current of run unit. If the record that is current of

run unit is not an occurrence of the specified record, an error condition results.

■ The values of all elements defined for the specified record in the program's

subschema view must be in variable storage. If the MODIFY RECORD statement is
not preceded by an OBTAIN statement, you must initialize the appropriate values.
The best practice, however, is to precede MODIFY RECORD with an OBTAIN

statement to ensure that all the elements in the modified record are present in
variable storage.

Modifying CALC- and Sort-Control Elements

The following special considerations apply to modification of CALC- and sort-control
elements:

■ If modification of a CALC- or sort-control element will violate a
duplicates-not-allowed option, the record is not modified and an error condition
results.

■ If a CALC-control element is modified, successful execution of the MODIFY RECORD

statement enables the record to be accessed on the basis of its new CALC-key
value. The db-key of the specified record is not changed.

■ If a sort-control element is to be modified, the sorted set in which the specified
record participates must be included in the subschema invoked by the program. A
record occurrence that is a member of a set not defined in the subschema can be

modified if the undefined set is not sorted.

■ If any of the modified elements in the specified record are defined as s ort-control
elements for any set occurrence in which that record is currently a member, the set

occurrence is examined. If necessary, the specified record is disconnected and
reconnected in the set occurrence to maintain the set order specified in the
schema.

Considerations for Native VSAM Users

The following special considerations apply to the modification of records in native VSAM

datasets:

■ The length of a record in an entry-sequenced dataset (ESDS) cannot be changed
even if the records are variable length.

■ The prime key for a key-sequenced dataset (KSDS) cannot be modified.

MODIFY RECORD

232 DML Reference Guide for PLI

Currency

The specified record must be established as current of run unit.

Following successful execution of the MODIFY RECORD statement, the modified record
becomes the current record of run unit, its record type, its area, and all sets in which it
participates as member or owner.

Syntax

►►─── MODIFY RECORD (record-name); ───►◄

Parameter

record-name

Defines the named record occurrence, as specified in program variable storage.
Record-name must specify a record type included in the subschema.

Example

The following Example i l lustrates the steps involved in modifying an occurrence of the

EMPLOYEE record. Assume that the employee address is to be changed.

1. Retrieve the desired EMPLOYEE record, moving its contents to variable storage:

EMP_ID_0415 = EMP_ID_IN;

OBTAIN CALC RECORD (EMPLOYEE);

2. Update the value of the EMP_ADDRESS_0415 field by moving the new address into
the proper location in the EMPLOYEE record:

EMP_ADDRESS_0415 = NEW_ADDRESS;

3. Issue a MODIFY RECORD statement to return all data items in the EMPLOYEE record

to the database:

MODIFY RECORD (EMPLOYEE);

Status Codes

Upon completion of the MODIFY RECORD function, the ERROR_STATUS field in the IDMS

DB communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

0804

The OCCURS DEPENDING ON item is less than 0 or greater than the maximum
number of occurrences of the control element.

MODIFY RECORD

Chapter 7: Data Manipulation Language Statements 233

0805

Modification of the record would violate a duplicates -not-allowed option for a CALC

record, a sorted set, or an index set.

0806

Currency has not been established for the named record.

0808

The specified record cannot be found. The record name has probably been

misspelled.

0809

The named record's area has not been readied in one of the update usage modes.

0810

The subschema specifies an access restriction that prohibits modification of the

named record.

0811

There is insufficient space to hold the modified variable-length record occurrence.

0813

A current record of run unit has not been established or has been nullified by a

previous ERASE statement.

0818

The record has not been bound.

0820

The current record of run unit is not the same type as the named record.

0821

An area other than the area of the named record has been readied with an
incorrect usage mode.

0825

No current record of set type has been established.

0833

At least one sorted set in which the named record participates has not been
included in the subschema.

0855

An invalid length has been defined for a variable length record.

MODIFY RECORD (LRF)

234 DML Reference Guide for PLI

0860

A record occurrence has been encountered whose type is inconsistent with the set

named in the ERROR_SET field of the IDMS DB communications block; probable
causes include: a broken chain and improper database description.

0883

Either the length of a record in a native VSAM ESDS has been changed or a prime
key in a native VSAM KSDS has been modified.

MODIFY RECORD (LRF)

The MODIFY RECORD statement changes field values in an existing logical-record
occurrence. LRF uses the field values present in the variable-storage location reserved

for the logical record to update the appropriate database records. You can optionally
specify an alternative variable storage location from which the changed field values are
to be obtained.

Syntax

►►─── MODIFY RECORD (logical-record-name) ────────────────────────────────────►

 ►─┬──────────────────────────────────────┬─┬──────────────────────────────┬──►
 └─ FROM (alt-logical-record-location) ─┘ └─ WHERE (boolean-expression) ─┘

 ►─┬──┬─ ; ─────────────────►◄
 └─ ON LR_STATUS (path-status) imperative-statement ─┘

Parameters

logical-record-name

Defines the named logical-record occurrence, as specified in program variable
storage. Unless the FROM clause is specified (see below), the field values used to
update the database are taken from the area in program variable storage reserved
for the named logical record. Logical-record-name must specify a logical record

defined in the subschema.

FROM (alt-logical-record-location)

Names an alternative variable-storage location from which the field values used to

perform the requested modification are to be obtained. When modifying a logical
record that was retrieved into an alternative location in variable storage, the FROM
clause should name the same location specified in the OBTAIN request. If the FROM
clause is included in the MODIFY RECORD statement, alt-logical-record-location

must identify a record location defined in program variable storage.

MODIFY RECORD (LRF)

Chapter 7: Data Manipulation Language Statements 235

WHERE boolean-expression

Specifies the selection criteria to be applied to the named logical record. For details

on coding the WHERE clause, see Logical -Record Clauses (WHERE and ON) at the
end of this chapter.

ON LR_STATUS (path-status) imperative-statement

Specifies the action to be taken if path-status is returned to the LR_STATUS field in
the LRC block. Path-status must be a 1- to 16-character alphanumeric value. For
details on coding this clause, see Logical -Record Clauses (WHERE and ON) at the
end of this chapter.

Example

The following Example i l lustrates the steps taken to modify an occurrence of the
EMP_SKILL_LR logical record. Assume that the skil l level for employee 120 is to be
upgraded from 02 (COMPETENT_0425) to 03 (PROFICIENT_0425).

1. Retrieve the desired logical-record occurrence:

OBTAIN FIRST RECORD (EMP_SKILL_LR)

 WHERE (EMP_ID_0415 = '0120'

 AND SKILL_ID_0455 = '3610'

 AND SKILL_LEVEL_0425 = '02');

2. Update the SKILL_LEVEL_0425 field:

SKILL_LEVEL_0425 = '03';

3. Issue the MODIFY RECORD (LRF) statement for the updated EMP_SKILL_LR logical
record:

MODIFY RECORD (EMP_SKILL_LR);

LRF retrieves the EMP_SKILL_LR logical record where EMP_ID_0415 = '0120',
SKILL_ID_0455 = '3610', and SKILL_LEVEL_0425 = '02'. The EXPERTISE occurrence

represents the only data physically modified in the database.

EMP_SKILL_LR

EMPLOYEE EXPERTISE SKILL

120 04 7620

120 03 3710

120 02 (now 03) 3610

OBTAIN (LRF)

236 DML Reference Guide for PLI

OBTAIN (LRF)

The OBTAIN statement retrieves the named logical record and places it in the
variable-storage location reserved for that logical record. The OBTAIN statement can be
issued to retrieve a single logical record, or it can be issued in iterative logic to retrieve
all logical records that meet criteria specified in the WHERE clause. Additionally, the

OBTAIN statement can specify that the retrieved logical record is to be placed into an
alternative variable storage location.

Syntax

►►─── OBTAIN ─┬──────────┬─ RECORD (logical-record-name) ─────────────────────►
 ├─ FIRST ──┤
 └─ NEXT ◄ ─┘

 ►─┬──────────────────────────────────────┬─┬──────────────────────────────┬──►
 └─ INTO (alt-logical-record-location) ─┘ └─ WHERE (boolean-expression) ─┘

 ►─┬──┬─ ; ─────────────────►◄
 └─ ON LR_STATUS (path-status) imperative-statement ─┘

Parameters

FIRST

Retrieves the first occurrence of the logical record. OBTAIN FIRST is typically used to
retrieve the first in a series of logical-record occurrences following the iterative
retrieval of a different series of logical -record occurrences.

NEXT

Retrieves a (subsequent) occurrence of the named logical record, in the order

specified by the DBA in the path. OBTAIN NEXT is typically issued in iterative logic to
retrieve a series of logical-record occurrences (possibly including the first).

When LRF receives repeated OBTAIN NEXT commands, it replaces field values in
program variable storage with new values obtained through repeated access to the

appropriate database records, thereby supplying the program with new
occurrences of the desired logical record.

If an OBTAIN FIRST statement is followed by an OBTAIN NEXT statement to retrieve
a series of occurrences of the same logical record, the OBTAIN statements must

direct LRF to the same path. For this reason, you must ensure that the selection
criteria specified in the WHERE clause that accompanies the OBTAIN FIRST and
OBTAIN NEXT statements describe the same attributes of the desired logical record.

If the program issues an OBTAIN NEXT statement without issuing an OBTAIN FIRST,
or if the last path status returned for the path was LR_NOT_FOUND, LRF interprets

the OBTAIN NEXT as OBTAIN FIRST. After LR_ERROR or a DBA-defined path status,
LRF does not interpret OBTAIN NEXT as OBTAIN FIRST.

OBTAIN (LRF)

Chapter 7: Data Manipulation Language Statements 237

RECORD (Logical-record-name)

Defines the named logical record occurrence, as specified in program variable

storage. Logical-record-name must specify a logical record defined in the
subschema.

INTO (alt-logical-record-location)

Specifies an alternative location in variable storage into which LRF will place the
retrieved logical record. Any subsequent MODIFY, STORE, or ERASE statements for a

logical record placed in alt-logical-record-location should name that area as the one
from which LRF will obtain the data to be used to update the logical record.

WHERE (boolean-expression)

Specifies the selection criteria to be applied to the named logical record. For details
on coding this clause, see Logical -Record Clauses (WHERE and ON) at the end of this

chapter.

ON LR_STATUS (path-status) imperative-statement

Specifies the action to be taken if path-status is returned to the LR_STATUS field in

the LRC block. Path-status must be a 1- to 16-character alphanumeric value. For
details on coding this clause, see Logical -Record Clauses (WHERE and ON) at the
end of this chapter.

Example

The following Example i l lustrates the use of the OBTAIN NEXT statement to retrieve a
series of logical-record occurrences. The program issues the OBTAIN NEXT statement
iteratively to retrieve the first and all subsequent occurrences of the EMP_JOB_LR
logical record for all employees in the specified department.

GET_AN_ORDER: PROC OPTIONS(MAIN);

 DEPT_ID_0410 = DEPT_ID_IN;

 OBTAIN NEXT RECORD (EMP_JOB_LR)

 WHERE (DEPT_ID_0410 = DEPT_ID_0410 OF LR);

 IF LR_STATUS = 'LR_ERROR' THEN

 CALL ERROR_PROCESSING;

 IF LR_STATUS = 'LR_NOT_FOUND' THEN

 CALL END_PROCESSING;

 .

 .

 .

 GO TO GET_AN_ORDER;

END GET_AN_ORDER;

POST (DC/UCF)

238 DML Reference Guide for PLI

The following figure il lustrates the information retrieved by each OBTAIN NEXT
statement.

The EMP_JOB_LR logical record consists of DEPARTMENT, OFFICE, EMPLOYEE, and JOB

information.

POST (DC/UCF)

The POST statement alters an event control block (ECB) either by posting it to indicate
completion of an event upon which another task is waiting, or by clearing it to an
unposted status.

Note: Programs posting and waiting on ECBs are responsible for clearing ECBs before
issuing subsequent WAIT requests.

Syntax

►►─── POST ─┬─ EVENT (ecb-name) ────────────────┬─ ; ─────────────────────────►◄
 └─ EVENT NAME (ecb-id) ─┬─────────┬─┘
 └─ CLEAR ─┘

Parameters

EVENT (ecb)

Identifies the ECB to be posted. Ecb is the symbolic name of a user-defined area
composed of three binary fullword fields that contain the ECB. Program-allocated
ECBs are cleared by setting ecb to zero.

EVENT NAME (ecb-id)

Specifies the 4-character symbolic ID of the ECB to be posted or cleared. Ecb-id is

either the symbolic name of a user-defined field that contains the ECB ID, or the ID
itself enclosed in single quotation marks.

CLEAR

Specifies that the ECB identified by ecb-id is cleared to an unposted status.

PUT QUEUE (DC/UCF)

Chapter 7: Data Manipulation Language Statements 239

Example

The following Example posts the event whose ECB identifier is in the FOUND_ECB field
and to clear the ECB to an unposted status:

POST

 EVENT NAME (FOUND_ECB)

 CLEAR;

Status Codes

Upon completion of the POST function, the only possible value in the ERROR_STATUS
field of the IDMS DC communications block is 0000.

PUT QUEUE (DC/UCF)

The PUT QUEUE statement stores a queue record in either the DDLDCRUN or the
DDLDCQUE area of the data dictionary. The DC/UCF system assigns an ID to the queue

record and places it at the beginning or end of its associated queue.

Syntax

►►─── PUT QUEUE ─┬─────────────────┬─┬──────────┬─────────────────────────────►
 └─ ID (queue-id) ─┘ ├─ FIRST ─┤
 └─ LAST ◄ ─┘

 ►─── FROM (queue-data-location) ─┬─ TO (end-queue-data-location) ─┬──────────►
 └─ LENGTH (queue-data-length) ───┘

 ►─┬──┬───────────────────────►
 └─ RETURN RECORD ID INTO (return-queue-record-id) ─┘

 ►─┬──────────────────────────────────────┬─ ; ───────────────────────────────►◄
 └─ RETENTION (queue-retention-period) ─┘

Parameters

ID (queue-id)

Directs the queue record to a previously defined queue. Queue-id is either the

symbolic name of a user-defined alphanumeric field that contains the 1- to
16-character ID, or the ID itself enclosed in single quotation marks. If a queue ID is
not specified, a null ID of 16 blanks is assumed.

FIRST/LAST

Specifies whether the queue record is to be placed at the beginning or end of the
queue. The default is LAST.

PUT QUEUE (DC/UCF)

240 DML Reference Guide for PLI

FROM (queue-data-location)

Specifies the program variable-storage entry associated with the data to be stored

in the queue record. Queue-data-location is the symbolic name of a user-defined
field.

TO (end-queue-data-location)

Indicates the end of the program variable-storage entry that contains the data
to be stored in the queue and is specified following the last data -item entry in
queue-data-location. End-queue-data-location is the symbolic name of a
user-defined dummy byte field or a field that contains a data item not

associated with the queue record.

LENGTH (queue-data-length)

Explicitly defines the length, in bytes, of the area that contains the data to be
stored in the queue record. Queue-data-length is either the symbolic name of a
user-defined field that contains the length or the length itself expressed as a

numeric constant.

RETURN RECORD ID INTO (return-queue-record-id)

Specifies the location in the program to which the system will return the system
assigned ID of the queue record. Return-queue-record-id is the symbolic name of a
user-defined FIXED BINARY(31) field. The returned ID is used to reference the

queue record in subsequent GET QUEUE and DELETE QUEUE statements.

RETENTION (queue-retention-period)

Specifies the time, in days, that the system wi ll retain the queue in the data
dictionary. At system startup, queues having expired retention periods are deleted
automatically by the system. The retention period begins when the first record is

stored in the queue.

Queue-retention-period is either the symbolic name of a user-defined fixed binary
field that contains the retention period or the retention period itself expressed as a
numeric constant in the range 0 through 255. A retention period of 255 indicates
that the queue is never to be deleted automatically by the system. The specified

retention period takes precedence over retention periods associated with
previously defined queues. The RETENTION parameter is ignored if the record being
allocated is not the first record in the queue.

Note: If RETENTION is omitted, the default retention period for dynamic queues is
taken. For more information on the default retention period for dynamic queues, see
the CA IDMS System Generation guide.

PUT SCRATCH (DC/UCF)

Chapter 7: Data Manipulation Language Statements 241

Example

The following Example allocates a queue record in the beginning of the RES_Q queue,
return the ID of the record to the Q_REC_ID field, and retain the queue for 45 days:

PUT QUEUE

 ID ('RES-Q')

 FIRST

 FROM (NEW_RES) TO (END_NEW_RES)

 RETURN RECORD ID INTO (Q_REC_ID)

 RETENTION (45);

Status Codes

Upon completion of the PUT QUEUE function, the ERROR_STATUS field in the IDMS DC
communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

4407

A database error occurred during queue processing. A common cause is a DBKEY
deadlock. For a PUT QUEUE operation, this code can also mean that the queue
upper l imit has been reached.

If a database error has occurred, there are usually be other messages i n the
CA-IDMS/DC/UCF log indicating a problem encountered in RHDCRUAL, the internal
Run Unit Manager. If a deadlock has occurred, messages DC001000 and DC001002

are also produced.

4431

The parameter l ist is invalid; under DC-BATCH, this status indicates that the
specified record length exceeds the maximum length based on the packet size.

4432

The derived length of the specified queue record is either zero or negative.

PUT SCRATCH (DC/UCF)

The PUT SCRATCH statement stores or replaces a scratch record in the DDLDCSCR area
of the data dictionary. For new records, PUT SCRATCH generates an index entry in a
scratch area associated with the issuing task. If the scratch area does not already exist,

the system allocates it dynamically in the storage pool.

PUT SCRATCH (DC/UCF)

242 DML Reference Guide for PLI

Syntax

►►─── PUT SCRATCH ─┬─────────────────────────────┬────────────────────────────►
 └─ AREA ID (scratch-area-id) ─┘

 ►── FROM (scratch-data-location) ─┬─ TO (end-scratch-data-location) ───────┬─►
 └─ LENGTH (scratch-data-location-length)─┘

 ►─┬───┬──────────────────────────►
 └─ RECORD ID (scratch-record-id) ─┬───────────┬─┘
 └─ REPLACE ─┘

 ►─┬───┬─ ; ────────────────────────►◄
 └─ RETURN RECORD ID INTO (scratch-record-id) ─┘

Parameters

AREA ID (scratch-area-id)

Specifies the 1- to 8-character ID of the scratch area associated with the record
being allocated. Scratch-area-id is either the symbolic name of a user-defined field
that contains the ID or the ID itself enclosed in single quotation marks. If AREA ID is

not specified, an area ID of eight blanks is assumed.

FROM (scratch-data-location)

Specifies the data to be stored in the scratch record. Scratch-data-location is the
symbolic name of a user-defined program variable-storage entry that contains the
data.

TO (end-scratch-data-location)

Indicates the end of the data area to be stored in the scratch record and is
specified following the last data-item entry in scratch-data-location.

End-scratch-data-location is the symbolic name of either a user-defined
dummy byte field or a field that contains a data item not associated with the
scratch data being stored.

LENGTH (scratch-data-location-length)

Defines the length, in bytes, of the data area. Scratch-data-location-length is

the symbolic name of a user-defined field that contains the length or the length
itself expressed as a numeric constant.

RECORD ID (scratch-record-id)

Specifies the ID of the scratch record being stored. Scratch-record-id is either the
symbolic name of a user-defined FIXED BINARY(31) field that contains the ID or the

ID itself expressed as a numeric constant.

PUT SCRATCH (DC/UCF)

Chapter 7: Data Manipulation Language Statements 243

REPLACE

Specifies that the scratch record identified by scratch-record-id replaces an existing

scratch record. If REPLACE is specified and the scratch record identified by
scratch-record-id does not exist, the record is stored and a status value of 0000 is
returned.

RETURN RECORD ID INTO (scratch-record-id)

Requests that the system return the automatically assigned ID of a scratch record to
the program. Return-scratch-record-id is the symbolic name of a user-defined field
into which the system will place the 4-byte scratch record ID.

Example

The following statement replaces the scratch record identified by SCR_REC_ID with data
in the WORK_PROC_AREA field:

PUT SCRATCH

 FROM (WORK_PROC_AREA) LENGTH (125)

 RECORD ID (SCR_REC_ID) REPLACE;

Status Codes

Upon completion of the PUT SCRATCH function, the ERROR_STATUS field in the IDMS
DC communications block indicates the outcome of the operation:

0000

The request to add a scratch record has been serviced successfully.

4305

The requested scratch record ID cannot be found.

4307

An I/O error has occurred during processing.

4317

The request to replace a scratch record has been serviced successfully.

4322

The request to add a scratch record cannot be serviced because the specified
scratch record already exists in the scratch area and REPLACE has not been

specified.

4331

The parameter l ist is invalid.

4332

The derived length of the specified scratch record is either zero or negative.

READ LINE FROM TERMINAL (DC/UCF)

244 DML Reference Guide for PLI

READ LINE FROM TERMINAL (DC/UCF)

The READ LINE FROM TERMINAL statement requests a synchronous, l ine-by-line transfer
of data from the terminal to the issuing program.

Syntax

►►─── READ LINE FROM TERMINAL ─┬────────┬─┬──────────────┬────────────────────►
 └─ ECHO ─┘ └─ NOBACKPAGE ─┘

 ►─ INTO (input-data-location) ┬ TO (end-input-data-location) ──────────────┬─►
 └ MAX LENGTH (input-data-location-max-length)┘

 ►─┬───┬─ ; ────────────────────►◄
 └─ RETURN LENGTH INTO (input-data-actual-length) ─┘

Parameters

ECHO

Requests (for 3270-type devices only) that the system to save the line of data being
input in the current page (as displayed on the screen). If ECHO is not specified, data
entered will not be retained and, therefore, will not be available for review by the

terminal operator.

NOBACKPAGE

Requests (for 3270-type devices only) that the system not save previously input

pages in a scratch area. If NOBACKPAGE is specified, the terminal operator can view
only the current page of data. NOBACKPAGE is valid only with the first input request
in a l ine mode session.

INTO (input-data-location)

Indicates the program variable-storage entry reserved for the input data.

Input-data-location is the symbolic name of a user-defined field. The length of the
data area is determined by one of the following specifications:

TO (end-input-data-location)

Indicates the end of program variable storage reserved for the input data

stream and is specified following the last data-item entry in
input-data-location. End-input-data-location is the symbolic name of either a
user-defined dummy byte field or a field that contains a data item not
associated with the data area reserved for the input data stream.

MAX LENGTH (input-data-location-max-length)

Defines the length, in bytes, of the input data stream. Input-data-max-length is
either the symbolic name of a user-defined field that contains the length of the
data area, or the length itself expressed as a numeric constant.

If the input data stream is larger than the data area reserved in program
variable storage, the system truncates the data to fit the available space.

READ LINE FROM TERMINAL (DC/UCF)

Chapter 7: Data Manipulation Language Statements 245

RETURN LENGTH INTO (input-data-actual-length)

Indicates the location to which the system will return the actual length of the input

data stream. Input-data-actual-length is the symbolic name of a user-defined field.
If the data stream has been truncated, input-data-actual-length contains the
original length before truncation.

Example

The following statement reads the specified data from a 3270-type device into the
specified location in the program and echoes the input data on the screen:

READ LINE FROM TERMINAL

 ECHO

 INTO (EMPL_DATA) TO (END_EMPL_DATA);

The following statement reads the specified data into the program without saving pages
associated with the line I/O session:

READ LINE FROM TERMINAL

 NOBACKPAGE

 INTO (EMPL_DATA) MAX LENGTH (8)

 RETURN LENGTH INTO (REC_DATA_LENGTH);

Status Codes

Upon completion of the READ LINE FROM TERMINAL function, the ERROR_STATUS field
in the IDMS DC communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

4707

A logical or permanent I/O error has been encountered in the input data stream.

4719

The input area specified for the return of data is too small; the returned data has

been truncated to fit the available space.

4731

The line request block (LRB) contains an invalid field, indicating a possible error in
the program's parameters.

4732

The derived length of the specified line input area is zero or negative.

READ TERMINAL (DC/UCF)

246 DML Reference Guide for PLI

4738

The specified program variable-storage entry has not been allocated as required. A

prior GET STORAGE request must be issued.

4743

The line I/O session has been canceled; the terminal operator has pressed CLEAR

(3270s), ATTENTION (2741s), or BREAK (teletypes).

READ TERMINAL (DC/UCF)

The READ TERMINAL statement requests a synchronous or asynchronous basic mode
data transfer from the terminal to program variable storage.

Syntax

►►─── READ TERMINAL ─┬──────────┬───►
 ├─ WAIT ◄ ─┤
 └─ NOWAIT ─┘

 ►─┬──┬───────────────────────►
 └─┬─ MODIFIED ─┬─ FROM POSITION (screen-position) ─┘
 └─ BUFFER ───┘

 ►── INTO (input-data-location) ─┬─ TO (end-input-data-location) ───────┬─────►
 └─ MAX LENGTH (input-data-max-length) ─┘

 ►─┬───┬─ ; ────────────────────►◄
 └─ RETURN LENGTH INTO (input-data-actual-length) ─┘

Parameters

WAIT

Specifies that the read operation will be synchronous; the issuing task will

automatically relinquish control to the system and must wait for completion of the
read operation before processing can continue. WAIT is the default.

NOWAIT

Specifies that the read operation will be asynchronous; the issuing task will
continue executing.

Note: If NOWAIT is specified, the program must issue a CHECK TERMINAL request
(described later in this chapter) before performing any other I/O operations.

READ TERMINAL (DC/UCF)

Chapter 7: Data Manipulation Language Statements 247

MODIFIED/BUFFER

Requests (for 3270-type devices only) that the system transfer data to the

application program without requiring the terminal operator to signal completion
of data entry.

MODIFIED

Reads all modified fields in the terminal buffer into variable storage.

BUFFER

Executes a READ BUFFER command that reads the entire contents of the
terminal buffer into variable storage.

FROM POSITION (screen-position)

Defines the buffer address (screen position) at which the read will start.
Screen-position is either the symbolic name of a user-defined FIXED BINARY(31)
field or the address itself enclosed in single quotation marks.

INTO (input-data-location)

Specifies the data area reserved for the input data stream. This parameter is not

specified for asynchronous requests that use the CHECK TERMINAL statement to
allocate storage for the input buffer. Input-data-location is the symbolic name of a
user-defined field.

If the input data stream is larger than the specified data area, the system truncates

the data to fit the available space.

TO (end-input-data-location)

Indicates the end of the data area reserved for the input data stream and is
specified following the last data-item entry in input-data-location.
End-input-data-location is the symbolic name of either a user-defined dummy

byte field or a field that contains a data item not associated with the data area
reserved for the input data stream.

MAX LENGTH (input-data-max-length)

Defines the length, in bytes, of the data area reserved for the input data
stream. Input-data-max-length is either the symbolic name of a user-defined

field that contains the length of the data area, or the length itself expressed as
a numeric constant.

RETURN LENGTH INTO (input-data-actual-length)

Indicates the location to which the system will return the actual length of the input

data stream. Input-data-actual-length is the symbolic name of a user-defined field.
If the data stream has been truncated, input-data-actual-length contains the
original length before truncation.

READ TERMINAL (DC/UCF)

248 DML Reference Guide for PLI

Example

The following statement i l lustrates a basic mode request to read data from the terminal
to the specified location in variable storage:

READ TERMINAL

 WAIT

 INTO (TERM_LINE) TO (END_TERM_LINE);

Status Codes

Upon completion of the READ TERMINAL function, the ERROR_STATUS field in the IDMS
DC communications block indicates the outcome of the operation:

000

The request has been serviced successfully.

4519

The input area specified for the return of data to the issuing program is too small;
the returned data has been truncated to fit the available space.

4527

A permanent I/O error has occurred during processing.

4528

The dial-up line for the terminal has been disconnected.

4531

The terminal request block (TRB) contains an invalid field, indicating a possible error
in the program's parameters.

4532

The derived length of the specified input data area is zero or negative.

4535

Storage for the input buffer cannot be acquired because the specified program
variable-storage entry has been previously allocated; no I/O has been performed.

4539

The terminal device associated with the issuing task is out of service.

READY

Chapter 7: Data Manipulation Language Statements 249

READY

The READY statement prepares a database area for access by DML functions and
specifies the usage mode of the area.

The DBA can specify default usage modes in the subschema. Run-units that use such a
subschema need not issue any READY statements; the areas are automatically readied

in the predefined usage modes. However, if a run-unit issues a READY statement for one
area, it must issue READY statements for all areas that it will access unless the FORCE
option was specified for the default usage mode. Areas using the default usage mode
combined with the FORCE option are automatically readied even if the run-unit already

issued READY for other areas.

PROTECTED and EXCLUSIVE Options

The specified usage mode can be qualified with a PROTECTED option to prevent
concurrent update or an EXCLUSIVE option to prevent concurrent use of areas by other

run units executing under the CA IDMS/DB central version. Each area can be readied in
its own usage mode. Usage modes can be changed by executing a FINISH statement (see
FINISH), then starting a new run unit by issuing a BIND RUN_UNIT statement, the
appropriate BIND RECORD statements, and a READY statement specifying the new

usage mode.

Ready Areas Individually or Together

When the run unit readies database areas, all areas can be readied with a single READY
statement or each area to be accessed can be readied individually. All areas affected
explicitly or implicitly by the DML statements issued by the run unit must be readied.

Other areas included in the subschema need not be readied.

Position of READY Statements

The READY statement can appear anywhere within an application program; however, to
avoid runtime deadlock, the best practice is to ready all areas before issuing any other
DML statements. A BIND RUN_UNIT statement must be processed successfully before a

READY statement can be issued.

You can use the READY statement in both navigational and Logical Record Facil ity (LRF)
environments.

Syntax

►►─── READY ─┬────────────────────┬─┬──────────────────────────────────┬─ ; ──►◄
 └─ AREA (area-name) ─┘ └─┬─────────────┬─┬─ RETRIEVAL ◄ ─┬┘
 ├─ PROTECTED ─┤ └─ UPDATE ──────┘
 └─ EXCLUSIVE ─┘

READY

250 DML Reference Guide for PLI

Parameters

AREA (area-name)

Opens only the specified area. Area-name must be an area included in the
subschema. If area-name is not specified, the READY statement opens all areas

included in the subschema.

RETRIEVAL

Opens the area for retrieval only and allows other concurrently executing run
units to open the same area in any usage mode other than one that is
exclusive. RETRIEVAL is the default.

UPDATE

Opens the area for both retrieval and update and allows other concurrently
executing run units to open the same area in any usage mode other than one
that is exclusive or protected.

PROTECTED

Prevents concurrent update of the area by run units executing under the same

central version. Once a run unit has readied an area with the PROTECTED option, no
other run unit can ready that area in any UPDATE usage mode until the first run unit
releases it by means of the FINISH statement (see FINISH earlier in this chapter). A
run unit cannot ready an area with the PROTECTED option if another run unit has

readied the area in UPDATE usage mode or with the EXCLUSIVE option.

If neither PROTECTED nor EXCLUSIVE is specified, the default usage mode of shared
is invoked.

If a READY statement would result in a usage mode conflict for an area, while
running under the CA IDMS/DB central version, the run unit issuing the READY is

placed in a wait state on the first functional database call.

EXCLUSIVE

Prevents concurrent use of the area by any other run unit executing under the CA
IDMS/DB central version. Once a run unit has readied an area with the EXCLUSIVE
option, no other run unit can ready that area in any usage mode until the first run

unit releases it.

If neither PROTECTED nor EXCLUSIVE is specified, the default usage mode of shared
is invoked.

If a READY statement would result in a usage mode conflict for an area, while
running under the CA IDMS/DB central version, the run unit issuing the READY is

placed in a wait state on the first functional database call.

Note: Modification statements involving areas opened in one of the update usage
modes are not valid if they affect sets that include records in an area opened in one

of the retrieval usage modes.

READY

Chapter 7: Data Manipulation Language Statements 251

Example

The following statement readies all subschema areas in a usage mode of PROTECTED
UPDATE:

READY PROTECTED UPDATE;

Status Codes

Upon completion of the READY function, the ERROR_STATUS field in the IDMS DB
communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

0910

The subschema specifies an access restriction that prohibits readying the area in the
specified usage mode.

0923

The named area is not in the subschema.

0928

The run unit has attempted to ready an area that has been readied previously.

0966

The area is not available in the requested usage mode. If running in local mode, the
area is locked against update. If running under the central version, either the area is

offl ine to the central version, or an update usage mode was requested and the area
is in retrieval mode to the central version.

0970

The database will not ready properly; a JCL error is the probable cause.

0971

The page group/page range for the area being readied could not be found in the

DMCL.

0978

A READY has been issued after the first functional call; it is recommended that all
areas be readied before the first functional call is issued.

RETURN (DC/UCF)

252 DML Reference Guide for PLI

RETURN (DC/UCF)

The RETURN statement retrieves the database key for an indexed record without
retrieving the record itself, thus establishing currency in the indexed set. The record's
symbolic key is moved into the data fields within the record in program variable storage.
The contents of all non-key fields for the record are unpredictable after the execution of

the RETURN verb. Optionally, the program can indicate that the symbolic key can be
moved into some other specified variable storage location.

Current of index is established by:

■ Successful execution of the RETURN statement, which sets current of index at the

index entry from which the database key was retrieved.

■ A status code of 1707 (end of index), which sets currency on the index owner. The
DBMS returns the owner's database key.

■ A status code of 1726 (index entry not found), which sets current of index as
follows:

– Between the two entries that are higher and lower than the specified value

– After the highest entry, if the specified value is higher than all index entries

– Before the lowest entry, if the specified value is lower than all index entries

You can use the RETURN statement in navigational and Logical Record Facil ity (LRF)
environments.

Note: The DML precompiler views an incorrectly formatted RETURN statement as a PL/I
RETURN function and does not flag the error. The incorrect RETURN DML statement is
passed to the PL/I precompiler without expansion into a CALL statement, causing
compile-time errors.

Syntax

►►─── RETURN CURRENCY SET (index-set-name) ─┬─────────┬───────────────────────►
 ├─ FIRST ─┤
 ├─ LAST ──┤
 ├─ NEXT ──┤
 └─ PRIOR ─┘

 ►─── INTO (db-key-field)─┬─────────────────────────────────┬──────────── ; ──►◄
 └─ KEY INTO (symbolic-key-field) ─┘

Parameters

RETURN CURRENCY SET (index-set-name)

Identifies the indexed set from which the specified database key is to be returned.

FIRST

Retrieves the database key for the first index entry.

RETURN (DC/UCF)

Chapter 7: Data Manipulation Language Statements 253

LAST

Retrieves the database key for the last index entry.

NEXT

Retrieves the database key for the index entry following current of index. If the
current of index is the last entry, a status code of 1707 (end of index) is
returned.

PRIOR

Retrieves the database key for the index entry preceding current of index. If the
current of index is the first entry, a status code of 1707 (end of index) is
returned.

INTO (db-key)

Identifies the field to which the database key is returned. Db-key is the symbolic

name of a user-defined FIXED BINARY(31) field.

KEY INTO (symbolic-key)

Saves the symbolic key (CALC, sort, or index) of the specified record. Symbolic-key is
the name of a user-defined alphanumeric field into which the symbolic key of the
specified record will be returned. Symbolic-key must be large enough to contain the

largest contiguous or noncontiguous symbolic key.

If the KEY INTO clause is not specified, the key will be moved into the corresponding
fields in the user record's storage.

Syntax

►►─── RETURN USING (index-key-value) SET (index-set-name) ─────────────────────►

 ►─── INTO (db-key-field)─┬─────────────────────────────────┬───────────── ; ──►◄
 └─ KEY INTO (symbolic-key-field) ─┘

Parameters

RETURN USING (index-key-value)

Retrieves the database key for the first index entry whose symbolic key equals
index-key-value (If no such entry exists, a status of 1726 (index entry not found) is
returned.):

SET (index-set-name)

Identifies the indexed set from which the specified database key is to be
returned.

RETURN (DC/UCF)

254 DML Reference Guide for PLI

INTO (db-key)

Identifies the field to which the database key is returned. Db-key is the

symbolic name of a user-defined FIXED BINARY (31) field.

KEY INTO (symbolic-key)

Saves the symbolic key (CALC, sort, or index) of the specified record.

Symbolic-key is the name of a user-defined alphanumeric field into which the
symbolic key of the specified record will be returned. Symbolic-key must be
large enough to contain the largest contiguous or noncontiguous symbolic key.

If the KEY INTO clause is not specified, the key will be moved into the

corresponding fields in the user record's storage.

Example

The following RETURN statement retrieves the database key for the first index entry in
the EMP_LNAME_NDX set and moves the record's symbolic key into the INT_INDEX_KEY

field.

RETURN CURRENCY SET (EMP-LNAME-NDX)

 FIRST INTO (INT-INDEX-KEY);

Status Codes

Upon completion of the RETURN function, the ERROR_STATUS field in the IDMS DB

communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

0057

A retrieval-only run unit has detected an inconsistency in an index that should cause
an 1143 abend, but optional APAR bit 216 has been turned on.

1701

The area in which the object record or its index owner participates has not been
readied.

1707

Either the end of the indexed set has been reached or the indexed set is empty.

1725

Currency has not been established for the specified indexed set.

ROLLBACK

Chapter 7: Data Manipulation Language Statements 255

1726

Record not found.

1763

The indexed set has not been registered with IDMSIXUD for the subschema in use.

ROLLBACK

The ROLLBACK statement rolls back uncommitted changes made to the database

through an individual run unit or through all database sessions associated with a task. A
task-level rollback also backs out all uncommitted changes made in conjunction with
scratch, queue, and print activity.

Whether the changes are automatically backed out depends on the execution
environment:

■ If the changes were made under the control of a central version that is journaling to
a disk fi le, they are backed out automatically. The central version continues to
process other applications during recovery.

■ The changes are not backed out automatically under the following circumstances:

– If the changes were made under the control of a central version that is

journaling to a tape fi le.

– If the changes were made in local mode.

In these cases, the ROLLBACK statement causes the affected areas to remain locked
against subsequent access by other database sessions. They must be manually
recovered. If changes cannot be backed out and CONTINUE was specified on the

rollback request, a non-zero error status is returned to the application and if the
request was for an individual run unit, that run unit is terminated.

Note: For more information about manual recovery, see the CA IDMS Database
Administration Guide.

If CONTINUE is not specified, run units (and SQL sessions) impacted by the ROLLBACK

statement end, and their access to the database is terminated. If CONTINUE is specified,
impacted database sessions remain active after the operation is complete.

The ROLLBACK statement is used in both the navigational and logical record facility
environments. The ROLLBACK TASK statement is also used in an SQL programming
environment.

Currency

Following a ROLLBACK statement, all currencies are set to null. Unless the CONTINUE
option is specified, the issuing program or task cannot perform database access through
an impacted run unit without executing another BIND/READY sequence.

ROLLBACK

256 DML Reference Guide for PLI

Syntax

►►─── ROLLBACK ─┬────────┬─┬──────────────┬─ ; ───────────────────────────────►◄
 └─ TASK ─┘ └─ (CONTINUE) ─┘

Parameters

TASK

Rolls back the uncommitted changes made by all scratch, queue, and print activity

and all top-level run units associated with the current task and terminates those run
units. Its impact on SQL sessions associated with the task depends on whether
those sessions are suspended and whether their transactions are eligible to be
shared.

More information:

For more information about the impact of a ROLLBACK TASK statement on SQL
sessions, see the CA IDMS SQL Programming Guide.

For more information about run units and the impact of ROLLBACK TASK, see the CA
IDMS Navigational DML Programming Guide.

CONTINUE

Central version only. Causes the affected run units and SQL sessions to remain
active after their changes are backed out. Database access can be resumed without
reissuing BIND and READY statements.

Note: The CONTINUE option should not be used in local mode if database changes

have been made.

Example

The following statement reverses the effects of the run unit through which it is issued
and terminates the run unit:

ROLLBACK;

Status Codes

Upon completion of the ROLLBACK function, the ERROR_STATUS field in the IDMS DB
communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

1958

CONTINUE was specified and database changes could not be backed out. The run
unit has been terminated.

5031

The specified request is invalid; the program may contain a logic error.

SEND MESSAGE (DC/UCF)

Chapter 7: Data Manipulation Language S tatements 257

5058

TASK CONTINUE was specified and database changes could not be ba cked out.

5097

An error was encountered processing a syncpoint request; check the log for details.

SEND MESSAGE (DC/UCF)

The SEND MESSAGE statement sends a message to another terminal or user or to a

group of terminals or users defined as a destination during system generation. The SEND
MESSAGE function does not employ the data dictionary message area; instead, the
system places each message in a queue, sending the message to the appropriate
terminal only when it is possible to do so without disrupting executing tasks. Typically,

the system sends queued messages to a terminal the next time the ENTER NEXT TASK
CODE message is displayed.

Syntax

►►─── SEND MESSAGE ─┬──────────┬─ TO ─┬─ DEST ID (destination-id) ─┬──────────►
 ├─ ONLY ◄ ─┤ ├─ USER ID (user-id) ────────┤
 └─ ALWAYS ─┘ └─ LTERM ID (lterm-id) ──────┘

 ►─── FROM (message-location) ─┬─ TO (end-message-location) ─┬─ ; ────────────►◄
 └─ LENGTH (message-length) ───┘

Parameters

ONLY/ALWAYS

Specifies whether the system is to queue the message if the specified destination,
user, or terminal is not currently available:

ONLY

Sends the message immediately if the destination, user, or terminal is

available, and not to queue the message for subsequent transmission if the
destination, user, or terminal is not available.

Note: If ONLY is specified with the DEST ID option (described below) and if

some, but not all, of a group of users or terminals in the destination are
available, the system will send the message to those available. The sender will
not be aware of any unsuccessful transmissions.

ALWAYS

Sends the message immediately if the destination, user, or terminal is

available, and to queue the message for later transmission if the destination,
user, or terminal is not available.

SEND MESSAGE (DC/UCF)

258 DML Reference Guide for PLI

TO

Specifies the destination, user, or logical terminal to receive the message:

DEST ID (destination-id)

Identifies the recipient of the message as a destination. The specified
destination must have been defined during system generation. Destination-id is

either the symbolic name of a user-defined field that contains the destination
ID or the ID itself enclosed in quotation marks.

USER ID (user-id)

Identifies the user to receive a message. The specified user can be signed on to
any terminal. User-id is the symbolic name of a user-defined field that contains

the user ID.

LTERM ID (lterm-id)

Identifies the logical terminal to receive the message. Lterm-id is either the
symbolic name of a user-defined field that contains the terminal ID or the id
itself enclosed in quotation marks.

FROM (message-location)

Specifies the program variable-storage entry that contains the text of the message

to be sent. Message-location is the symbolic name of a user-defined field. The
length of the message text is determined by one of the following specifications:

TO (end-message-location)

Indicates the end of the program variable-storage entry that contains the

message text and is specified following the last field in message-location.
End-message-location is the symbolic name of either a user-defined dummy
byte field or a field that contains a data item not associated with the message
text.

LENGTH (message-length)

Defines the length, in bytes, of the message text. Message-length is either the
symbolic name of a user-defined field that contains the length or the length
itself expressed as a numeric constant.

Examples

The following statement sends the message in the TERM_MESS field to the logical
terminal KENNEDYA:

SEND MESSAGE ALWAYS

 TO LTERM ID ('KENNEDYA')

 FROM (TERM_MESS) TO (END_TERM_MESS);

SET TIMER (DC/UCF)

Chapter 7: Data Manipulation Language Statements 259

The following statement sends the message in the TERM_MESS field to the user KYJOE2:

SEND MESSAGE

 TO USER ID ('KYJOE2')

 FROM (TERM_MESS) TO (END_TERM_MESS);

The following statement sends the message in the TERM_MESS field to the destination
ALL:

SEND MESSAGE

 TO DEST ID ('ALL')

 FROM (TERM_MESS) TO (END_TERM_MESS);

Status Codes

Upon completion of the SEND MESSAGE function, the ERROR_STATUS field in the IDMS
DC communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

4907

An I/O error has occurred during processing.

4921

The specified message recipient has not been defined.

4931

The parameter l ist is invalid.

4932

The derived length of the specified message data area is zero or negative.

4938

The specified program variable storage has not been allocated, as required. A GET

STORAGE request must be issued.

SET TIMER (DC/UCF)

The SET TIMER statement defines an event that is to occur after a specified time interval
or cancels the effect of a previously issued SET TIMER request. Using the SET TIMER

function, a program can:

■ Delay task processing for a specified period of time

■ Post an ECB at the end of a specified period of time

■ Initiate a task at the end of a specified period of time

SET TIMER (DC/UCF)

260 DML Reference Guide for PLI

Syntax

►►─── SET TIMER ─┬─ WAIT ───┬───►
 ├─ POST ───┤
 ├─ START ──┤
 └─ CANCEL ─┘

 ►─┬───┬──────────────────────────►
 └─ INTERVAL (time-before-action-taken) SECONDS ─┘

─►─┬────────────────────┬─┬───►─
 └─ EVENT (post-ecb) ─┘ └─ TASK CODE (start-task-code) ─────────────────────

─►────────────────────────────┬───►
 ─┬───────────────────────┬──┘
 └─ PRIORITY (priority) ─┘

 ►─┬──────────────────────────┬───►
 └─ TIMER ID (ice-address) ─┘

 ►─┬──►─
 └─ DATA FROM (start-task-data-location) ───────────────────────────────────

─►───┬─ ; ──────────────────────────────►◄
 ─┬─ TO (end-start-task-data-location) ─┬─┘
 └─ LENGTH (start-task-data-location) ─┘

Parameters

WAIT/POST/START/CANCEL

Establishes a time-related event or cancels a previously requested time-dependent
action.

WAIT

Places the issuing task in a wait state and instructs the system to redispatch the
issuing task after the specified time interval elapses. Because WAIT relinquishes
control until the time interval has elapsed, a subsequent SET TIMER request

cannot be used to cancel this WAIT request.

POST

Posts a user-specified ECB after the specified time interval elapses; the issuing
task continues to run. If POST is specified, the EVENT parameter (described
below) must also be specified.

START

Initiates a user-specified task after the specified time interval elapses. If START
is specified, the TASK CODE parameter (described below) must also be
specified.

CANCEL

Cancels the effect of a previously issued SET TIMER request.

INTERVAL (time-before-action-taken) SECONDS

Specifies (for WAIT, POST, START requests only) the time in seconds from the
issuance of a SET TIMER request at which the requested event will occur.
Time-before-action-taken is either the symbolic name of a user-defined field that

contains the time interval or the interval itself expressed as a numeric constant.

SET TIMER (DC/UCF)

Chapter 7: Data Manipulation Language Statements 261

Note: For efficiency reasons, the time when the event is to occur is calculated by
adding the time-before-action-taken value to the time at which the last TICKER

interval expired. Therefore, the actual interval before the event occurs may vary
plus or minus from time-before-action-taken by an amount up to the TICKER
interval.

For more information about the TICKER interval, see the CA IDMS System
Generation Guide.

EVENT (post-ecb)

Specifies (for POST requests only) the ECB to be posted. Post-ecb is the symbolic
name of a user-defined area composed of three binary fullword fields that contain

the ECB.

TASK CODE (start-task-code)

Specifies (for START requests only) the 1- to 8-character code of the task to be
initiated. Start-task-code is either the symbolic name of the user-defined field that
contains the task code or the task code itself enclosed in quotation marks. The

specified task code must have been defined to the system during system generation
or at run time with a DCMT VARY DYNAMIC TASK command.

PRIORITY (priority)

Specifies a dispatching priority for the task. Priority is either the symbolic name of a
user-defined field that contains the priority or the priority itself expressed as a

numeric constant in the range 0 through 240. The new task's priority defaults to the
priority defined for that task code.

TIMER ID (ice-address)

Specifies (for POST, START, CANCEL requests only) the address of the interval
control element (ICE) associated with the timed event. Ice-address is the symbolic

name of a user-defined FIXED BINARY(31) field. If either POST or START has been
specified, ice-address references a field to which the system will return the ICE
address. If CANCEL has been specified, ice-address references the field that contains
the ICE address returned by the system following a SET TIMER POST or SET TIMER

START request.

Note: The TIMER ID parameter must be specified with SET TIMER POST and SET
TIMER START requests if the program is to issue subsequent SET TIMER CANCEL

requests.

DATA FROM (start-task-data-location)

Specifies (for START requests only) the user data to be passed to the new task.
Start-task-data-location is the symbolic name of a user-defined field that contains
the data to be passed. The length of the data area is determined by one of the

following specifications:

SET TIMER (DC/UCF)

262 DML Reference Guide for PLI

TO (end-start-task-data-location)

Indicates the end of the data area being passed to the new task and is specified

following the last data-item entry in start-task-data-location.
End-start-task-data-location is the symbolic name of either a user-defined
dummy byte field or a field that contains a data item not assoc iated with the

data area being passed.

LENGTH (start-task-data-location)

Specifies the length, in bytes, of the data area. Start-task-data-location is either
the symbolic name of a user-defined program variable storage field that
contains the length of the data area or the length itself expressed as a numeric

constant.

Note: When the new task is started, the first program which receives control in the
new task can access this data by observing the following conventions:

■ The receiving program must access the data as though it had been passed by an

Assembler program.

■ The data will be preceded by a half-word field containing the length of the
original data.

Examples

The following statement places the issuing task in a wait state and redispatches it after
nine seconds have elapsed:

SET TIMER WAIT

 INTERVAL (9) SECONDS;

The following statement posts the event PODB after five seconds have elapsed:

SET TIMER POST

 INTERVAL (5) SECONDS

 EVENT ('PODB')

 TIMER ID (TMR_ID);

The following code declares a data field, starts the SPSG task after five seconds have
elapsed, and passes the specified data to the task:

DECLARE 1 PASSED_DATA,

 2 PASSED_FIXED FIXED,

 2 PASSED_CHAR CHAR(20),

 2 PASSED_END CHAR(1);

SET TIMER START

 INTERVAL (5) SECONDS

 TASK CODE ('SPSG')

 DATA FROM (PASSED_DATA) TO (PASSED_END);

SNAP (DC/UCF)

Chapter 7: Data Manipulation Language Statements 263

The following code in the program invoked by task SPSG establishes access to the data
passed by the above SET TIMER START command:

 SPSGPRG: PROC (PARMIN_DUMMY)

 OPTIONS(MAIN,REENTRANT) REORDER;

 DECLARE 1 PARMIN_DUMMY FIXED;

 DECLARE 1 PARMIN BASED (ADDR(PARMIN_DUMMY)),

 2 PASSED_DATA_LENGTH FIXED BIN(15),

 2 PASSED_DATA,

 3 PASSED_FIXED FIXED,

 3 PASSED_CHAR CHAR(20);

The following statement cancels the timed event referenced by TMR-ID:

SET TIMER CANCEL

 TIMER ID (TMR_ID);

Status Codes

Upon completion of the SET TIMER function, the ERROR_STATUS field in the IDMS DC
communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

3516

The interval control element (ICE) specified for a SET TIMER CANCEL request cannot
be found.

3532

The derived length of the data area is negative.

SNAP (DC/UCF)

The SNAP statement requests a memory snap of one or all of the following areas:

■ Task areas—Includes all resources associated with the issuing task, as well as the

task control element (TCE) and dispatch control element (DCE) for the task.
Information displayed by the snap is formatted with headers.

■ System areas—Includes areas for all tasks and internal system control blocks. Task
areas are not itemized separately. Information displayed by the snap is formatted
with headers.

SNAP (DC/UCF)

264 DML Reference Guide for PLI

■ Specified locations in memory—Includes one or more areas of memory specifically
requested by location and length. The information displayed is not formatted with

headers.

The areas requested in the SNAP request are written to the system log fi le, which is
defined during system generation as a sequential dataset or a dictionary area.

Syntax

►►─── SNAP ─┬─────────────────┬───►
 └─ TITLE (title) ─┘

 ┌───┐
 ►─▼─┬─ ALL ───┬─┴─; ─►◄
 ├─ SYSTEM ──┤
 ├─ TASK ──┤
 │ ┌──┐ │
 └──▼── FROM (begin-snap-location) ─┬─ TO (end-snap-location) ─┬─┴─┘
 └─ LENGTH (snap-length) ───┘

Parameters

TITLE (title)

Specifies the title to be printed at the beginning of each page of the snap. If
requested, a title must contain 134 characters; the first character is reserved for use
by the system, and the second character must be a valid ASA carriage control
character (blank, 0, 1, +, or -). Title is the symbolic name of a user-defined field that

contains the title.

ALL/SYSTEM/TASK

Requests a formatted snap of specified areas.

ALL

Writes a snap of both task and system areas. Areas associated with the issuing

task are formatted separately from the system areas. (Task areas are also
included with the system areas but are not itemized by task.)

SYSTEM

Writes a snap of system areas.

TASK

Writes a snap of task areas.

FROM (begin-snap-location)

Writes a snap of the specified memory location. Begin-snap-location is the symbolic
name of a user-defined field that indicates the starting location of the area to be

snapped.

STARTPAGE (DC/UCF)

Chapter 7: Data Manipulation Language Statements 265

TO (end-snap-location)

Indicates the end of the area to be snapped and is specified following the last

data-item to be included in the snap. End-snap-location is the symbolic name of
either a user-defined dummy byte field or a field that contains a data item not
associated with the area requested in the snap.

LENGTH (snap-length)

Defines the length, in bytes, of the area to be included in the snap. Snap-length

is either the symbolic name of a user-defined field that contains the length of
the data area, or the length itself expressed as a numeric constant.

Example

The following Example i l lustrates a SNAP statement that writes a memory snap of the
specified memory location:

SNAP TITLE (SNAP_TITLE)

 FROM (START_LOC) TO (END_LOC);

Status Codes

Upon completion of the SNAP function, the ERROR_STATUS field in the system

communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

4032

The derived length of the specified snap storage area is zero or negative.

STARTPAGE (DC/UCF)

The STARTPAGE statement initiates a paging session. It can be followed by any number
of DML commands, including MAP IN and MAP OUT commands. The map paging session

is terminated by an ENDPAGE command (or by another STARTPAGE command, if one is
encountered before an ENDPAGE command).

Note: Only one pageable map can be handled by the statements enclosed by a given
STARTPAGE/ENDPAGE pair.

Syntax

►►─── STARTPAGE session (map-name) ───►

 ►─┬────────────┬─┬──────────────┬─┬────────────┬─┬─────────────────┬─ ; ─────►◄
 ├─ WAIT ─────┤ ├─ BACKPAGE ◄ ─┤ ├─ UPDATE ◄ ─┤ ├─ AUTODISPLAY ◄ ─┤
 ├─ NOWAIT ◄ ─┤ └─ NOBACKPAGE ─┘ └─ BROWSE ───┘ └─ NOAUTODISPLAY ─┘
 └─ RETURN ───┘

STARTPAGE (DC/UCF)

266 DML Reference Guide for PLI

Parameters

map-name

Specifies the 1- to 8-character name of a map specified by the DECLARE MAP
statement, as described in DML Precompiler-Directive Statements. The STARTPAGE

command must precede any commands (such as MAP IN) that specify operations to
be performed using the map.

WAIT/NOWAIT/RETURN

Specifies the runtime flow of control when the operator presses a control key.

WAIT

Specifies that runtime mapping automatically handles paging transactions that
do not cause data to be updated. Control is passed to the program when the
terminal operator presses a control key that requests an update or nonpaging
operation.

NOWAIT

Specifies that runtime mapping automatically handles all paging and update
transactions. Control is passed to the program only when neither an update nor
a paging request is made when the operator presses a control key. NOWAIT is
the default.

RETURN

Specifies that runtime mapping does not handle any terminal transactions in
the paging session. Control is passed to the program whenever the operator
presses a control key.

Runtime mapping does not update program variable storage unless a MAP IN

command is issued. In cases where the operator can update data, it is
recommended that WAIT or RETURN be specified for the session so that data
can be retrieved as it is updated.

BACKPAGE/NOBACKPAGE

Specifies whether the terminal operator can display a previous map page.

BACKPAGE

Specifies that the operator can display previous pages of detail occurrences.
BACKPAGE is the default.

STARTPAGE (DC/UCF)

Chapter 7: Data Manipulation Language Statements 267

NOBACKPAGE

Specifies that the operator cannot display any page of detail occurrences with a

page number lower than the current page number. Modifications made on a
given page of the map must be requested by MAP IN statements in the
application program before a MAP OUT RESUME command is issued. The

previous page of detail occurrences is deleted from the session scratch record
when a new map page is displayed.

Note: NOBACKPAGE cannot be assigned if UPDATE and NOWAIT are specified
for the session.

UPDATE/BROWSE

Specifies whether the terminal operator can modify map data fields.

UPDATE

Specifies that the terminal operator can modify variable map fields, subject to
restrictions specified for the map either at map definition time or by

statements in the program. UPDATE is the default.

BROWSE

Specifies that the terminal operator can modify only the page field (if any) of
the map. The MDTs for variable fields on the map can be set on only according
to specifications made either in the map definition or by statements in the

program.

AUTODISPLAY/NOAUTODISPLAY

Specifies whether to override the automatic mapout that occurs when the first
page of a map is built.

AUTODISPLAY

Enables automatic display of the pageable map's first page. AUTODISPLAY is

the default.

NOAUTODISPLAY

Disables automatic display of the pageable map's first page. You display the
first page manually by using a MAP OUT RESUME statement.

Example

The following statement initiates a paging session in which the operator can page
forward and backward within the pageable map but can make no modifications:

STARTPAGE SESSION (EMPMAPPG)

 NOWAIT BACKPAGE BROWSE;

STORE RECORD

268 DML Reference Guide for PLI

Status Codes

Upon completion of the STARTPAGE function, the ERROR_STATUS field in the IDMS DC
communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

4604

A paging session was already in progress when this STARTPAGE command was
received. An implied ENDPAGE was processed before this STARTPAGE was

successfully executed.

STORE RECORD

The STORE RECORD statement performs the following functions:

■ Acquires space and a database key for a new record occurrence in the database

■ Transfers the value of the appropriate elements from program variable storage to
the specified record occurrence in the database

■ Connects the new record occurrence to all sets for which it is defined as an
automatic member

Steps Before Executing STORE RECORD

Before executing the STORE RECORD statement, satisfy the following conditions:

■ Ready all areas affected either implicitly or explicitly in one of the update usage
modes (see READY, earlier in this chapter).

■ Make sure the program initializes all control elements (that is, CALC and sorted set

control fields).

■ If the record being stored has a location mode of DIRECT, initialize the contents of
DIRECT_DBKEY (positions 197-200 of the IDMS communications block, as described
in Communications Blocks and Error Detection) with a suggested db-key value or a
null db-key value of -1.

■ If the record is to be stored in a native VSAM relative-record data set (RRDS),

initialize the contents of DIRECT_DBKEY with the relative-record number that
represents the location within the data set where the record is to be stored.

■ Include in the subschema all sets in which the named record is defined as an
automatic member, and the owner record of each of those sets. Sets for which the
named record is defined as a manual member need not be defined in the

subschema since the STORE RECORD statement does not access those sets. (An
automatic member is connected automatically to the selected set occurrence when
the record is stored; a manual member is not connected automatically to the

selected set occurrence.)

STORE RECORD

Chapter 7: Data Manipulation Language Statements 269

■ If the record being stored has a location mode of VIA, establish currency for that
VIA set, regardless of whether the record being stored is an automatic or manual

member of that set. Current of the VIA set provides the suggested page for the
record being stored.

■ Establish currency for all set occurrences in which the stored record will participate
as an automatic member. Depending on set order, the STORE RECORD statement
uses currency as follows:

– If the named record is defined as a member of a set that is ordered FIRST or
LAST, the record that is current of set establishes the set occurrence to which
the new record will be connected.

– If the named record is defined as a member of a set that is ordered NEXT or
PRIOR, the record that is current of set establishes the set occurrence into
which the new record will be connected and determines its position within the
set.

– If the named record is defined as a member of a sorted set, the record that is

current of set establishes the set occurrence into which the new record will be
connected. The DBMS compares the sort key of the new record with the sort
key of the current record of set to determine if the new record can be inserted
into the set by movement in the next direction. If it can, the current of set

remains positioned at the record that is current of set and the new record is
inserted. If it cannot, the DBMS finds the owner of the current of set (not
necessarily the current occurrence of the owner record type) and moves as far

forward in the next direction as is necessary to determine the logical insertion
point for the new record.

Location Modes

A record is stored in the database based on the location mode specified in the schema
definition of the record. The location modes are as follows:

■ CALC—The record being stored is placed on or near a page calculated by IDMS DB
from a control element (the CALC key) in the record.

■ VIA—The record being stored is placed either as close as possible to the current of
set (if current of set and member record occurrences share a common page range)

or in the same relative position in the member record's page range as the current of
set is in its associated page range (if current of set and member record occurrences
do not share a common page range).

STORE RECORD

270 DML Reference Guide for PLI

■ DIRECT—The record being stored is placed on or near a user-specified page as
determined by the value in the DIRECT_DBKEY field of the IDMS DB

communications block. If DIRECT_DBKEY contains a valid db-key for the record
being stored, the DBMS assigns a db-key on the same page if space is available to
the new record occurrence. Otherwise, it assigns the next available db-key, subject

to the page-range limits of the record being stored. If DIRECT_DBKEY contains a
value of -1, the first db-key available in the page range in which the record is to be
stored is assigned to the record. In any case, the db-key of the stored record
occurrence is returned to DBKEY (positions 13-16 in the CA IDMS/DB

communications block). The contents of DIRECT_DBKEY remain unchanged.

Currency

Following successful execution of a STORE RECORD statement, the stored record
becomes current of run uni t, its record type, its area, and all sets in which it participates
as owner or automatic member.

Syntax

►►─── STORE RECORD (record-name);───►◄

Parameter

record-name

Defines the named record occurrence, as specified in program variable storage.
Record-name must specify a record type included in the subschema.

The ordering rules for each set govern the insertion point of the specified record in

the set.

Example

The following figure il lustrates the steps necessary to add a new EMPLOYEE record to
the database. Since EMPLOYEE is defined as an automatic member of both the

DEPT_EMPLOYEE and OFFICE_EMPLOYEE sets, currency must be established in each of
those sets before issuing the STORE RECORD.

STORE RECORD

Chapter 7: Data Manipulation Language Statements 271

The first two DML statements establish OFFICE 1 and DEPARTMENT as current of the
OFFICE_EMPLOYEE and DEPT_EMPLOYEE sets, respectively. When EMPLOYEE 27 is

stored, it is connected automatically to each set.

Status Codes

Upon completion of the STORE RECORD function, the ERROR_STATUS field in the IDMS
DB communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

1201

The area in which the named record is to be stored has not been readied.

STORE RECORD

272 DML Reference Guide for PLI

1202

The suggested DIRECT_DBKEY value is not within the page range for the named

record.

1205

Storage of the record would violate a duplicates -not-allowed option for a CALC

record, a sorted set, or an index set.

1208

The named record is not in the subschema. The program has probably invoked the
wrong subschema.

1209

The named record's area has not been readied in one of the update usage modes.

1210

The subschema specifies an access restriction that prohibits storage of the named
record.

1211

The record cannot be stored in the area because of insufficient space.

1212

The record cannot be stored because no db-key is available. This is a system
internal error.

1218

The record has not been bound.

1221

An area other than the area of the named record occurrence has been readied with
an incorrect usage mode.

1225

A set occurrence has not been established for each set in which the named record is

to be stored.

1233

At least one set in which the record participates as an automatic member has not
been included in the subschema.

1253

The subschema definition of an indexed set does not match the indexed set's
physical structure in the database.

1254

Either the prefix length of an SR51 record is less than zero or the data length is less

than or equal to zero.

STORE RECORD (LRF)

Chapter 7: Data Manipulation Language Statements 273

1255

An invalid length has been defined for a variable length record.

1260

A record occurrence that was encountered in the process of connecting automatic
sets is inconsistent with the set named in the ERROR_SET field of the CA IDMS/DB
communications block; probable causes include a broken chain or improper
database description.

1261

The record cannot be stored because of broken chains in the database.

STORE RECORD (LRF)

The STORE RECORD statement updates the database with field values for a

logical-record occurrence. STORE RECORD does not necessarily result in storing new
occurrences of all or any of the database records that participate in the logical record;
the path selected to service a STORE RECORD logical-record request performs whatever
database access operations the DBA has specified to service the request. For Example, if

an existing department gets a new employee, only the new employee information will
be stored in the database; the department information need not be stored in the
database because it already exists.

LRF uses field values present in the variable-storage location reserved for the logical
record to make the appropriate updates to the database. You ca n optionally name an
alternative storage location from which the new field values are to be obtained to
perform the requested store operation.

Syntax

►►─── STORE RECORD (logical-record-location) ─────────────────────────────────►

 ►─┬──────────────────────────────────────┬─┬──────────────────────────────┬──►
 └─ FROM (alt-logical-record-location) ─┘ └─ WHERE (boolean-expression) ─┘

 ►─┬──┬─ ; ─────────────────►◄
 └─ ON LR_STATUS (path-status) imperative-statement ─┘

Parameters

logical-record-name

Names the logical record to be stored. Unless the FROM clause (see below) is
included, LRF uses field values present in the variable-storage location reserved for
the specified logical record to make the appropriate updates to the database.

Logical-record-name must specify a logical record defined in the subschema.

STORE RECORD (LRF)

274 DML Reference Guide for PLI

FROM (alt-logical-record-location)

Names an alternative variable storage location that contains the field values to be

used to make appropriate updates to the database. When storing a logical record
that has previously been retrieved into an alternative variable storage location, use
the FROM clause to name the same area specified in the OBTAIN request. If the

FROM clause is included in the STORE RECORD statement,
alt-logical-record-location must identify a record location defined in program
variable storage.

WHERE (boolean expression)

Specifies selection criteria to be applied to the object logical record.

For details on coding the WHERE clause, see Logical -Record Clauses (WHERE and
ON) at the end of this chapter.

ON LR_STATUS (path-status) imperative-statement

Specifies the action to be taken if path-status is returned to the LR_STATUS field in
the LRC block. Path-status must be a 1- to 16-character alphanumeric value.

For details on coding this clause, see Logical -Record Clauses (WHERE and ON) at the
end of this chapter.

Example

The following Example i l lustrates the steps necessary to store a new logical record,

EMP-INSURANCE-LR, for a given employee:

EMP_ID_0415 = EMP_ID_IN;

INS_PLAN_CODE_0435 = INS_PLAN_IN;

SELECTION_DATE_0400 = S_DATE_IN;

TERMINATION_DATE_0400 = T_DATE_IN;

TYPE_0400 = TYPE_IN;

INS_PLAN_CODE_0400 = PLAN_IN;

STORE RECORD (EMP_INSURANCE_LR);

The following figure il lustrates the new occurrence of the record EMP_INSURANCE_LR.
The new occurrence of EMP_INSURANCE_LR consists of EMPLOYEE 149, INS_PLAN 001,
and COVERAGE 'D'. The COVERAGE occurrence represents the only data physically
added to the database.

TRANSFER (DC/UCF)

Chapter 7: Data Manipulation Language Statements 275

TRANSFER (DC/UCF)

The TRANSFER statement is used to:

■ Establish l inkage with a specified program and to pass control and an optional
parameter l ist to that program. The program issuing the TRANSFER RETURN request
expects return of control at the instruction immediately following the TRANSFER

statement when the linked program terminates or issues a DC RETURN request.

■ Transfer control and an optional parameter l ist to a specified program. The program
issuing the TRANSFER NORETURN request does not expect return of control.

Passing Parameters from a Non-PL/I Program

If parameters are passed to a PL/I program from a non-PL/I program (CA ADS, COBOL,
and Assembler), special code must be used in the PL/I program. A partial sample of this
code is shown below:

SAMPPROC: PROCEDURE (F1,F2,F3) OPTIONS (MAIN,REENTRANT);

DCL (F1,F2,F3) POINTER;

DCL (SAMPSUBS SUBSCHEMA, SAMPSCHM SCHEMA) MODE (IDMS_DC) DEBUG;

DCL IDMS ENTRY OPTIONS (INTER,ASM);

DCL IDMSP ENTRY;

DCL PASSED_FIELD_1 FIXED BIN (31) BASED(ADDR(F1));

INCLUDE IDMS (SUBSCHEMA_CTRL BASED(ADDR(F2)));

INCLUDE IDMS (RECORD_AA BASED(ADDR(F3)));

 .

 .

 .

rest of code

Here, a non-PL/I program has transferred control to this sample program, passing three
parameters. The first is binary fullword. The second is the address of the subschema

control block that the program will use. The third is an CA IDMS/DB record. Note tha t
dummy parameters are set up to provide addresses on which to base the structures that
are actually passed.

Refer to the PL/I programmer's reference for your site for more information on passing
parameters to a PL/I program from an Assembler program.

Note: The section (in the same reference) on invoking PL/I programs from COBOL
programs is not relevant. In a DC/UCF environment, you must code the PL/I program as
shown in the previous sample.

Syntax

►►── TRANSFER TO (program-name) ─┬──────────────┬─┬───────────────────────┬ ;─►◄
 ├─ RETURN ─────┤ │ ┌───── , ─────┐ │
 ├─ LINK ───────┤ └ (─▼─ parameter ─┴) ─┘
 ├─ NORETURN ◄ ─┤
 └─ XCTL ───────┘

TRANSFER (DC/UCF)

276 DML Reference Guide for PLI

Parameters

TO (program-name)

Specifies the 1- to 8-character name of the program to which control is transferred.
Program-name is either the symbolic name of a user-defined field that contains the

program name, or the name itself enclosed in quotation marks.

RETURN/NORETURN

Specifies whether control will be returned to the call ing program.

RETURN

Establishes l inkage with the specified program, expecting return of control. The

keywords RETURN and LINK are synonymous.

NORETURN

Transfers control to the specified program, not expecting return of control. The
keywords NORETURN and XCTL are synonymous. NORETURN is the default.

parameter

Passes one or more parameters (data items) to the program receiving control.

Parameter is the symbolic name of a user-defined field that contains the names of
the data items to be passed. Multiple parameter specifications must be separated
with a blank.

To use parameter, the DECLARE IDMSP ENTRY statement is required. For details on

this PL/I declarative, see Required PL/I Declaratives.

If parameter is specified, the data items being passed are defined in program
variable storage for both the call ing program and the linked program. The program
receiving control must include a corresponding parameter clause in its PROCEDURE
statement.

Examples

The following statement transfers control to the program in the PROGRAM_NAME field;
the issuing program expects return of control:

TRANSFER TO (PROGRAM_NAME)

 LINK;

The following statement transfers control to PROGRAMD and passes three data items
(FIELD_1, FIELD_2, and FIELD_3) to the program; the issuing program does not expect

return of control:

TRANSFER TO ('PROGRAMD')

 NORETURN

 (FIELD_1, FIELD_2, FIELD_3);

WAIT (DC/UCF)

Chapter 7: Data Manipulation Language Statements 277

Status Codes

Upon completion of the TRANSFER function, the ERROR_STATUS field in the IDMS DC
communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

3020

The request cannot be serviced because an I/O, program-not-found, or potential
deadlock error has occurred.

WAIT (DC/UCF)

The WAIT statement relinquishes control either to the system, pending completion of
one or more events, or to a higher priority ready-to-run task. If control is relinquished to
wait for the completion of one or more events, an event control block (ECB) must be

defined for each event. If an ECB is already posted when the WAIT is issued, the task is
redispatched immediately and control does not pass to another task.

Syntax

 ┌───────────────┐
►►─── WAIT ─┬──┬─ LONG ◄ ─┬─┬─▼─ EVENT (ecb) ─┴─────┬─┬───────────────────────►
 │ └─ SHORT ──┘ └─ EVENT NAME (ecb-id) ─┘ │
 └─ REDISPATCH ────────────────────────────┘

►──┬───────────────────────────────────┬─ ; ──────────────────────────────────►◄
 └─ STALL INTERVAL (stall-interval) ─┘

Parameters

LONG/SHORT

Specifies whether the wait is expected to be of long-term or short-term duration.

LONG

Specifies that the wait is expected to be long-term. LONG should be specified
for all waits expected to last a second or more (for Example, terminal input).
LONG is the default.

SHORT

Specifies that the wait is expected to be short-term. SHORT should be specified
for all waits expected to last less than a second (for Example, a disk I/O).

WAIT (DC/UCF)

278 DML Reference Guide for PLI

EVENT/EVENT NAME

Specifies an event upon which the issuing task is to wait.

EVENT (ecb)

Defines one or more ECBs upon which the task will wait. ecb is the symbolic
name of a user-defined area that contains three binary fullword fields that

contain the ECB. Multiple EVENT parameters must be separated by at least one
blank.

EVENT NAME (ecb-id)

Specifies the 4-character symbolic ID of the ECB upon which the task will wait.

Ecb-id is either the symbolic name of a user-defined field that contains the ECB
ID, or the ID itself enclosed in quotation marks. Multiple EVENT NAME
parameters cannot be specified.

REDISPATCH

Specifies that the issuing task wishes to relinquish control to a ny higher priority

ready-to-run task before being redispatched.

STALL INTERVAL (stall-interval)

Indicates the time, in wall -clock seconds, that the system is to suspend processing

of the issuing task. Stall-interval is the symbolic name of a user-defined fixed binary
field containing the stall interval, or the interval itself expressed as a numeric
constant.

Example

The following statement requests a short-term wait on the event PODB:

WAIT

 SHORT

 EVENT NAME ('PODB');

Status Codes

Upon completion of the WAIT function, the ERROR_STATUS field in the IDMS DC
communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

3101

To wait on the specified ECB would cause a deadlock.

WRITE JOURNAL (DC/UCF)

Chapter 7: Data Manipulation Language Statements 279

WRITE JOURNAL (DC/UCF)

The WRITE JOURNAL statement writes a task-defined record to the journal fi le. Records
written to the journal fi le with the WRITE JOURNAL function will be available to
user-defined exit routines during a task- or system-initiated rollback.

Syntax

►►─── WRITE JOURNAL ─┬────────────┬─┬──────────┬──────────────────────────────►
 ├─ WAIT ─────┤ ├─ SPAN ◄ ─┤
 └─ NOWAIT ◄ ─┘ └─ NOSPAN ─┘

 ►─── FROM (record-location) ─┬─ TO (end-record-location) ─┬─ ; ──────────────►◄
 └─ LENGTH (record-length) ───┘

Parameters

WAIT/NOWAIT

Specifies whether the issuing task is to wait for completion of the WRITE JOURNAL
function before resuming execution:

WAIT

Specifies that the issuing task will wait for completion of the physical I/O
associated with the WRITE JOURNAL function before resuming execution. This
option will cause the system to write a partially fi lled buffer to the journal fi le.

NOWAIT

Specifies that the issuing task will not wait for completion of the WRITE

JOURNAL function; the journal record will remain in a storage buffer until a
future request necessitates writing the buffer to the journal fi le. NOWAIT is the
default.

SPAN

Indicates that the system will write the record across several journal fi le blocks, if

necessary. SPAN is the default.

Note: In general, the SPAN option provides better space util ization in the journal
fi le than NOSPAN because it increases the average fullness of each block.

NOSPAN

Indicates that the system will write the record to a single journal fi le block; if it is

longer than the journal block, the record will be split.

When a record is shorter than a journal fi le block, based on space available in the
current journal block, the system will either place the record in the block, split it

across multiple blocks (SPAN), or write it to a new block after the current block is
written (NOSPAN).

WRITE JOURNAL (DC/UCF)

280 DML Reference Guide for PLI

The following considerations apply to using an exit routine to retrieve journal fi le
records during recovery:

■ If a WRITE JOURNAL statement issued before a failure specified the SPAN
option, records may have been written across several journal blocks. To
retrieve these records, the exit routine will be invoked once for each segment

of each record to be retrieved.

■ If a WRITE JOURNAL statement issued before a failure specified the NOSPAN

option and records written to the journal fi le are shorter than journal blocks,
the exit routine need only be concerned with the complete records.

FROM (record-location)

Defines the program variable-storage entry of the record to be written to the
journal fi le. Record-location is the symbolic name of a user-defined field. The length

of the record area is determined by one of the following specifications:

TO (end-record-location)

Indicates the end of the record area to be written to the journal fi le and is

specified following the last data-item entry in record-location.
End-record-location is the symbolic name of either a user-defined dummy byte
field or a field that contains a data item not associated with the record being
written to the journal fi le.

LENGTH (record-length)

Defines the length, in bytes, of the record to be written to the journal fi le.
Record-length is either the symbolic name of the user-defined field that
contains the length, or the length itself expressed as a numeric constant.

Example

The following statement writes the JOURNAL_DATA record to the journal fi le, spanning
it across several blocks if necessary:

WRITE JOURNAL SPAN

 FROM (JOURNAL_DATA) TO (END_JOURNAL_DATA);

Status Codes

Upon completion of the WRITE JOURNAL function, the ERROR_STATUS field in the IDMS

DC communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

5002

Storage is not available for the required control blocks.

WRITE LINE TO TERMINAL (DC/UCF)

Chapter 7: Data Manipulation Language Statements 281

5032

The derived length of the specified journal record is zero or negative.

5097

An invalid status has been received from DBIO/DBMS; check the system log for
details.

WRITE LINE TO TERMINAL (DC/UCF)

The WRITE LINE TO TERMINAL statement transfers data from program variable storage
to a terminal. WRITE LINE TO TERMINAL also establishes, modifies, and deletes page
header l ines.

Data transfers requested by WRITE LINE TO TERMINAL statements can be synchronous
or asynchronous:

■ Synchronous—After a synchronous request, control passes to the system. The
system places the issuing task in an inactive state. For non-3270 devices, control
does not return to the issuing program until the WRITE LINE TO TERMINAL request
is complete. For 3270-type devices, all l ines of output are saved in a buffer; the

buffer is not transmitted to the terminal until it is full.

The transfer of a l ine to the buffer will result in a processing delay; however, control
returns to the program immediately following the request. If the line of data fi l ls

the buffer, the entire page of data must be transmitted to the terminal. In this case,
control does not return to the issuing program until the terminal operator responds
by pressing ENTER. Thus, the program is made conversational.

■ Asynchronous—After an asynchronous request, control returns immediately to the
issuing program. Thereafter, each time the program issues a l ine mode I/O request,

the system automatically checks to determine if the last asynchronous request has
completed and, therefore, whether a new data transfer can be initiated.

With asynchronous requests, programs can buffer all required pages of output
without suspending task execution during the actual transmission of data. However,

the task can optionally terminate itself, thereby freeing resources and allowing the
terminal operator to review the buffered output.

The system processes I/O requests in the sequence received from the task; thus, if a
program issues a synchronous WRITE LINE TO TERMINAL request after issuing one or
more asynchronous requests, the system will complete all I/O requests before returning

control to the issuing program.

WRITE LINE TO TERMINAL (DC/UCF)

282 DML Reference Guide for PLI

The WRITE LINE TO TERMINAL request issued automatically by the system to empty
partially fi lled buffers upon completion of a task is synchronous; therefore, the terminal

operator can view all screens and catch up with processing at that time. If an application
allows the terminal operator to interrupt or terminate processing at some point within a
task, a synchronous WRITE LINE TO TERMINAL request must be issued to suspend

processing while awaiting an operator response.

Syntax

►►─── WRITE LINE TO TERMINAL ─┬──────────┬─┬───────────┬─┬──────────────┬─────►
 ├─ WAIT ◄ ─┤ ├─ NEWPAGE ─┤ └─ NOBACKPAGE ─┘
 └─ NOWAIT ─┘ └─ ERASE ───┘

 ►─── FROM (output-data-location) ─┬─ TO (end-output-data-location) ─┬────────►
 └─ LENGTH (output-data-length) ───┘

 ►─┬───────────────────────────────┬─ ; ──────────────────────────────────────►◄
 └─ HEADER (header-line-number) ─┘

Parameters

WAIT

Specifies that the write operation is synchronous; the issuing task automatically
relinquishes control and must wait for completion of the output operation before

processing can continue. WAIT is the default.

NOWAIT

Specifies that the write operation is asynchronous; the issuing task continues

executing.

NEWPAGE

Writes the output data l ine beginning on a new page. For 3270-type devices, the
NEWPAGE option forces the system to output the contents of the current buffer,
even if the buffer is not full. The keywords NEWPAGE and ERASE are synonymous.

NOBACKPAGE

Specifies (for 3270-type devices only) that pages output in a scratch area are not to
be kept. If NOBACKPAGE is specified, the terminal operator can view only the
current page of output. NOBACKPAGE is valid only with the first I/O request in a l ine

mode session.

FROM (output-data-location)

Identifies the program variable-storage entry of the data to be transferred to the
terminal device, or the page-header l ine being created, modified, or deleted.

Output-data-location is the symbolic name of a user-defined field. The length of the
output data stream is determined by one of the following specifications:

WRITE LINE TO TERMINAL (DC/UCF)

Chapter 7: Data Manipulation Language Statements 283

TO (end-output-data-location)

Indicates the end of the program variable-storage entry that contains the

output data stream and is specified following the last data -item entry in
output-data-location. End-output-data-location is the symbolic name of either
a user-defined dummy byte field or a field that contains a data item not

associated with the output data.

LENGTH (output-data-length)

Defines the length, in bytes, of the output data area. Output-data-length is
either the symbolic name of a user-defined field that contains the length of the
data area, or the length itself expressed as a numeric constant.

Note: If the WRITE LINE TO TERMINAL statement is being used to delete a
page-header l ine, output-data-length must be zero.

HEADER (header-line-number)

Specifies the number of the page header l ine being created, modified, or deleted.
Header-line-number is either the symbolic name of a user-defined field that

contains the header l ine number, or the header l ine number itself expressed as a
numeric constant.

Examples

The following statement defines the value of a data area as a header to be displayed at

the top of each new page written to the terminal:

WRITE LINE TO TERMINAL

 FROM (EMPL_HEAD) TO (END_EMPL_HEAD)

 HEADER (1);

The following statement writes the value in the specified data area to a new page on the
terminal:

WRITE LINE TO TERMINAL

 NOWAIT NEWPAGE

 FROM (EMPL_RPT) LENGTH (60);

Status Codes

Upon completion of the WRITE LINE TO TERMINAL function, the ERROR_STATUS field in

the IDMS DC communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

4707

A logical or permanent I/O error has occurred during processing.

WRITE LOG (DC/UCF)

284 DML Reference Guide for PLI

4731

The line request block (LRB) contains an invalid field, indicating a possible error in

the program's parameters.

4732

The derived length of the specified line output area is zero or negative.

4738

The specified program variable-storage entry has not been allocated as required. A

GET STORAGE request must be issued.

4743

The line I/O session has been canceled; the terminal operator has pressed CLEAR

(3270s), ATTENTION (2741s), or BREAK (teletypes).

WRITE LOG (DC/UCF)

The WRITE LOG statement retrieves a predefined message from the message area of the
data dictionary and optionally writes the message to a specified location in program
variable storage. Retrieved messages are sent to the destination specified in the

message definition; typical destinations are the operator's console and the system log
fi le. If the operator's console has been defined as the message destination, the WRITE
LOG statement can request a reply. When a reply is requested, control is not returned

to the issuing task until the reply is received.

Message ID and Severity Code

The message ID specified in the WRITE LOG statement is a 7-digit number. The first six
(most significant) digits make up the actual message ID used to retrieve the message
from the data dictionary; the seventh digit is a severity code. This severity code is

predefined in the dictionary and is retrieved along with the message text to indicate the
action to be taken after the message is written to the log. The following table shows
severity codes and corresponding system actions.

Severity code Corresponding action by the system

 0 Return control to the issuing program and continue processing.

 1 Snap all task resources and return control to the issuing

program.

 2 Snap all system areas and return control to the issuing
program.

 3 Snap all task resources and abend the task with a task abend

code of D002.

WRITE LOG (DC/UCF)

Chapter 7: Data Manipulation Language Statements 285

Severity code Corresponding action by the system

 4 Snap all system areas and abend the task with a task abend

code of D002.

 5 Terminate the task with a task abend code of D002.

 6 Undefined.

 7 Undefined.

 8 Snap all system areas and abend the system with a system
abend code of 3996.

 9 Terminate the system with a system abend code of 3996.

Message IDs That Are Not in the Dictionary

If a WRITE LOG statement specifies a message ID that is not in the dictionary, the system
will use a prototype message but will perform the action associated with the severity
code specified in the WRITE LOG request.

Messages Containing Symbolic Parameters

Messages stored in the data dictionary can contain symbolic Parameters. Symbolic
Parameters, identified by an ampersand (&). followed by a 2-digit numeric identifier,
can appear in any order within the message. The WRITE LOG statement can specify

replacement values for one or more symbolic Parameters; however, the position of
replacement values within the WRITE LOG request must correspond exactly with the
2-digit numeric identifier in the message text. For Example, the first value specified
corresponds to &01., the second to &02., and so forth.

Syntax

►►─── WRITE LOG MESSAGE ID (message-id) ──────────────────────────────────────►

 ►─┬───┬────────►
 │ ┌───┐ │
 └─ PARMS ─▼─ FROM (parm-location) ─┬─ TO (end-parm-location) ─┬─┴─┘
 └─ LENGTH (parm-length) ───┘

 ►─┬───┬──────►
 └─ REPLY INTO (reply-location) ─┬─ TO (end-reply-location) ───────┬─┘
 └─ MAX LENGTH (reply-max-length) ─┘

 ►─┬──►─
 └─ TEXT INTO (text-return-location) ─┬─ TO (end-text-return-location) ─┬───
 └─ MAX LENGTH (text-max-length) ──┘

─►──┬─ ; ─────────────────►◄
 ───┬──────────────────────────────┬──┬─────────────┬──┘
 └─ MESSAGE_PREFIX ─┬─ YES ◄ ─┬─┘ └─ TEXT ONLY ─┘
 └─ NO ────┘

WRITE LOG (DC/UCF)

286 DML Reference Guide for PLI

Parameters

MESSAGE ID (message-id)

Specifies the 7-digit message ID. The first six digits specify the ID of the message;
the seventh digit specifies the message's severity code. Message-id is either the

symbolic name of a user-defined FIXED BINARY(31) field that contains the message
ID, or the ID itself expressed as a numeric constant. Message IDs 000001 through
900000 are reserved for use by the system; the WRITE LOG statement can specify
any number in the range 900001 through 999999.

Note: The message length must be seven digits. The system will always interpret the last

digit as the severity level. If you request message 987659 and do not code a severity
level of zero (that is, 9876590) you are actually requesting that message 098765 be
written to the log and that the system should be terminated with a 3996 abend code.

Note: When messages are added to the data dictionary for use with the WRITE LOG

statement, they are assigned an 8-character identification number; the first two
characters are DC. A request for message 987654 retrieves DC987654.

PARMS FROM (parm-location)

Supplies replacement values for one or more symbolic parameters stored with the

message text. Parm-location is the symbolic name of a user-defined field that
contains the program variable-storage entry of the replacement parameter.

TO (end-parm-location)

Indicates the end of the program variable-storage entry that contains the
replacement parameter and is specified following the last data item in

parm-location. End-parm-location is the symbolic name of either a user-defined
dummy byte field or a field that contains a data item not associated with the
replacement parameter.

LENGTH (parm-length)

Defines the length, in bytes, of the replacement parameter. Parm-location is either
the symbolic name of a user-defined field that contains the length or the length
itself expressed as a numeric constant.

The following WRITE LOG statement replaces a symbolic parameter with the

contents of the FLT_NO field:

WRITE LOG MESSAGE ID (9000160)

 PARMS FROM (FLT_NO) TO (END_FLT_NO);

WRITE LOG (DC/UCF)

Chapter 7: Data Manipulation Language Statements 287

Each replacement parameter must begin with a 1-byte field from which the system
obtains the length (in hexadecimal) of the parameter. This 1-byte field cannot be

displayed.

Consider the following Example:

03 FLT_NO,

 05 FILLER CHAR (1),

 05 FLT_PARM CHAR (6) INIT ('AAA201'),

 05 END_FLT_NO CHAR (1);

REPLY INTO (reply-location)

Specifies the program variable-storage entry of the area reserved for a reply to the
message issued by the WRITE LOG request. Reply-location is the symbolic name of a

user-defined field. The length of the reply area is determined by one of the
following specifications:

TO (end-reply-location)

Indicates the end of the program variable-storage entry reserved for the reply
and is specified following the last field in reply-location. End-reply-location is
the symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the reply.

MAX LENGTH (reply-max-length)

Defines the maximum length, in bytes, of the area reserved for the reply.
Reply-max-length is either the symbolic name of a user-defined field that
contains the length, or the length itself expressed as a numeric constant.

TEXT INTO (text-return-location)

Specifies that the contents of the named message, along with any replacement

parameters, are to be written to the issuing program. Text-return-location is the
symbolic name of a user-defined 1- to 132-character alphanumeric field that
contains the program variable-storage entry to which the message text is to be
returned. The length of the returned text is determined by one of the following

specifications:

TO (end-text-return-location)

Indicates the end of the program variable-storage entry reserved for the text
and is specified following the last data item in text-return-location.
End-text-return-location is the symbolic name of either a user-defined dummy

byte field or a field that contains a data item not associated with the returned
text.

MAX LENGTH (text-max-length)

Defines the maximum length, in bytes, of the program variable-storage entry

reserved for the returned message text. Text-max-length is either the symbolic
name of a user-defined field that contains the text length, or the length itself
expressed as a numeric constant.

WRITE LOG (DC/UCF)

288 DML Reference Guide for PLI

MESSAGE_PREFIX YES/NO

Specifies the format of the message prefix.

YES

Indicates that the message text is preceded by:

IDMS DCnnnnnnn Vssssss REPLYnn

DCnnnnnnn is the message number, Vssssss is the system number, and

REPLYnn is the message's system-supplied reply number (present only if the
REPLY parameter is used). YES is the default.

NO

Indicates that the message text is preceded by:

DCnnnnnnn

DCnnnnnnn is the message number.

TEXT ONLY

Indicates that the message text is output with no prefix.

WRITE LOG (DC/UCF)

Chapter 7: Data Manipulation Language Statements 289

Example

The following figure il lustrates a WRITE LOG statement that supplies three replacement
parameters.

Task A issues a WRITE LOG request for message 900121, specifying values to replace

symbolic parameters &01., &02., and &03. stored with the message text. The system
sends the message to its destination, which has been defined as the logical terminal
associated with the issuing task.

Status Codes

Upon completion of the WRITE LOG function, the ERROR_STATUS field of the IDMS DC

communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

3623

No storage or resource control element (RCE) can be allocated for the specified
reply area.

WRITE PRINTER (DC/UCF)

290 DML Reference Guide for PLI

3624

The maximum number of outstanding replies has been exceeded; a maximum of 98

messages can be awaiting reply at a given time.

3631

The parameter l ist is invalid.

WRITE PRINTER (DC/UCF)

The WRITE PRINTER statement transmits data from a task to a terminal defined to the
system as a printer device during system generation. Any type of terminal can be
designated as a printer; however, the terminal is usually a hard-copy device.

The system does not transmit data directly from program variable storage to the
terminal. Rather, data is passed to a queue maintained by the system, and from the

queue to the printer. The data stream passed to the queue by the WRITE PRINTER
request contains only data; the system adds the necessary l ine and device control
characters when it writes the data to the printer.

Note: Native mode data streams (that is, those that contain device-control information

as well as user data) can also be transmitted with a WRITE PRINTER request. This
capability is useful in formatting reports for 3280-type printers.

Each line of data transmitted in a WRITE PRINTER request is considered a record. Each
record is associated with a report in the print queue. A report consis ts of one or more
records. Any task can have up to 256 active print reports. A program can issue multiple

WRITE PRINTER requests, each specifying a different report. Because the system
maintains the records associated with each report individually, records associated with
one report are not interspersed with records associated with other reports when

printed.

WRITE PRINTER Directs Reports to Print Classes and Destinations

The WRITE PRINTER request can direct reports to print classes and to destinations:

■ Print classes—During system generation, one or more print classes are associated
with each terminal designated as a printer. For each report, the first record

transmitted to the print queue by means of a WRITE PRINTER request establishes
the print class for that report. The report will be printed on the first available
printer that is assigned the same print class.

■ Destinations—Destinations are groups of terminals, printers, or users. If
destinations have been defined during system generation, the WRITE PRINTER

request can direct a report to a destination. Reports sent to printer destinations are
printed on the first available printer for the destination, regardless of print clas s.

WRITE PRINTER (DC/UCF)

Chapter 7: Data Manipulation Language S tatements 291

The system prints a report only when that report is completed, either explicitly as part
of a WRITE PRINTER request or implicitly when the issuing task terminates.

Affect of Termination

Normal task termination, a FINISH TASK request, or a COMMIT TASK request will end all
of the task's reports. Queued reports are made eligible for printing.

Abnormal task termination (abend) or a ROLLBACK TASK request will cause any queued
reports belonging to the task to be deleted.

Syntax

►►─── WRITE PRINTER ─┬───────────┬──┬──────────┬──────────────────────────────►
 ├─ NEWPAGE ─┤ └─ ENDRPT ─┘
 └─ ERASE ───┘

 ►─┬──┬──────────┬─ FROM (message-location) ─┬─ TO (end-message-location) ─┬┬─►
 │ └─ NATIVE ─┘ └─ LENGTH (message-length) ───┘│
 └─ SCREEN CONTENTS ──┘

 ►─┬─────────────────────────────────┬─┬───────────────────────────────────┬──►
 └─ COPIES (─┬─ 1 ◄ ────────┬─) ─┘ └─ REPORT ID (─┬─ 1 ◄ ───────┬─) ─┘
 └─ copy-count ─┘ └─ report-id ─┘

 ►─┬───┬──────────────────────►
 └─┬─ CLASS (printer-class) ───────────────────────┬─┘
 └─ DESTINATION (printer-destination) ─┬───────┬─┘
 └─ ALL ─┘

 ►─┬────────┬─┬────────┬─ ; ──►◄
 └─ HOLD ─┘ └─ KEEP ─┘

Parameters

NEWPAGE

Specifies that the data stream will be printed beginning on a new page. The
keywords NEWPAGE and ERASE are synonymous.

ENDRPT

Indicates that the data stream constitutes the last record in the specified report.
When ENDRPT is specified, the report can be printed before the issuing task has
terminated. However, the program must issue a COMMIT TASK request to signal
the system to print the ended report. A subsequent WRITE PRINTER request with

the same report id will start a separate report.

WRITE PRINTER (DC/UCF)

292 DML Reference Guide for PLI

FROM (message-location)

Specifies the program variable-storage entry of the data to be transmitted to the

print queue. Message-location is the symbolic name of a user-defined field. The
length of the data area is determined by one of the following specifications:

TO (end-message-location)

Indicates the end of the program variable-storage entry that contains the data
to be transmitted to the print queue and is specified following the last
data-item entry in message-location. End-message-location is the symbolic
name of either a user-defined dummy byte field or a field that contains a data

item not associated with the output data.

LENGTH (message-length)

Defines the length, in bytes, of the data stream. Message-length is either the
symbolic name of a user-defined field that contains the length of the data, or
the length itself expressed as a numeric constant.

NATIVE

Specifies that the data stream contains device-control characters. If NATIVE is not
specified, the system automatically inserts the necessary characters.

SCREEN CONTENTS

Specifies (for 3270-type devices only) that the contents of the currently displayed

screen are to be transmitted to the print queue. If SCREEN CONTENTS is specified
with a non-3270 terminal or a remote 3270 terminal running under TCAM, an error
condition results.

COPIES (1/copy-count)

Specifies the number of copies of the report to be printed. The specified copy count

must be an integer in the range 1 through 255; the default is 1. Copy-count is either
the symbolic name of a user-defined field that contains the copy count, or the
count itself expressed as a numeric constant.

REPORT ID (1/report-id)

Specifies the identifier of the report to be printed. The specified identifier must be
an integer in the range 1 through 255; the default is 1. Report-id is either the
symbolic name of a user-defined field that contains the report ID, or the ID itself

expressed as a numeric constant.

WRITE PRINTER (DC/UCF)

Chapter 7: Data Manipulation Language Statements 293

CLASS (printer-class)

Specifies the print class to which the report will be assigned. Valid print classes are

1 through 64; the default is 1. Printer-class is either the symbolic name of a
user-defined field that contains the print class, or the cla ss itself expressed as a
numeric constant.

DESTINATION (printer-destination)

Specifies the 1- to 8-character destination to which the report will be routed.
Printer-destination is either the symbolic name of a user-defined field that contains
the destination, or the destination itself enclosed in quotation marks. The specified

destination must have been defined during system generation.

ALL

Specifies that the report is to be printed on all of the printers belonging to the
specified destination. The report will be printed, one printer at a time, and saved
until it has been printed on each of the printers associated with the destination.

CLASS/DESTINATION

Specifies a print class or destination (terminal, printer, or user). Specify this
parameter only for the first l ine of each report. If you specify no class or

destination, the default print class assigned to the issuing task's physical terminal
during system generation is used.

HOLD

Specifies that a queued report will be held without being printed. The specified
report will be held until a DCMT VARY REPORT report-name RELEASE command is

issued at runtime.

KEEP

Specifies that the system will keep the report in the print queue after it has been
printed. The report can be released for printing with a DCMT VARY REPORT

report-name RELEASE command. In this way, the report can be printed several
times. A KEPT report can be deleted from the print queue manually (using a DCMT
VARY REPORT report-name DELETE command at runtime) or automatically (when

the queue retention period has been exceeded).

Example

The following statement associates the data in the specified location with report 32 in
the print queue and prints it beginning on a new page. Report 32 will print on the first

terminal assigned to print class 3 when the program notifies the system that the report
is complete or when the task terminates.

WRITE PRINTER

 NEWPAGE

 FROM (PASSGR_RPT) TO (END_PASSGR_RPT)

 REPORT ID (32)

 CLASS (3);

WRITE PRINTER (DC/UCF)

294 DML Reference Guide for PLI

The following statement prints three copies of the current screen contents on a printer
associated with destination A, and keeps the contents of the report in the print queue

after it has printed:

WRITE PRINTER

 SCREEN CONTENTS

 COPIES (3)

 DESTINATION ('A')

 KEEP;

Status Codes

Upon completion of the WRITE PRINTER function, the ERROR_STATUS field in the IDMS
DC communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

4807

An I/O error has occurred while placing the record in the print queue.

4818

The current system definition contains no logical terminal -printer associations.

4821

The specified printer destination is undefined or is not a printer.

4831

The parameter l ist is invalid.

4832

The derived length of the specified printer output data area is zero or negative.

4838

The specified program variable-storage entry has not been allocated as required. A

GET STORAGE request for the specified variable must be issued before the WRITE
PRINTER statement.

4845

A WRITE PRINTER SCREEN CONTENTS request cannot be serviced because the
terminal associated with the issuing task is not a 3270-type device or is a remote

3270 device running under TCAM.

4846

A terminal I/O error has occurred.

WRITE TERMINAL (DC/UCF)

Chapter 7: Data Manipulation Language Statements 295

WRITE TERMINAL (DC/UCF)

The WRITE TERMINAL statement requests a synchronous or asynchronous data transfer
from program variable storage to the terminal buffer.

Syntax

►►─── WRITE TERMINAL ─┬──────────┬─┬─────────────────────────────┬────────────►
 ├─ WAIT ◄ ─┤ ├─┬─ NEWPAGE ─┬───────────────┤
 └─ NOWAIT ─┘ │ └─ ERASE ───┘ │
 └─┬─ EAU ───────────────────┬─┘
 └─ ERASE ALL UNPROTECTED ─┘

 ►─── FROM (output-data-location) ─┬─ TO (end-output-data-location) ─┬─ ; ────►◄
 └─ LENGTH (output-data-length) ───┘

Parameters

WAIT/NOWAIT

Indicates whether the write operation is to be synchronous or asynchronous.

WAIT

Specifies that the write operation will be synchronous; the issuing task will

automatically relinquish control to the system and wait for completion of the
write operation before continuing processing. WAIT is the default.

NOWAIT

Specifies that the write operation will be asynchronous; the issuing task will
continue executing.

Note: If NOWAIT is specified, the program must issue a CHECK TERMINAL
request (described earlier in this section) before performing any other I/O
operation.

NEWPAGE/EAU

Specifies the mechanism to be used with the write operation.

NEWPAGE

Activates the page-eject (SYSINOUT devices) or erase-write (3270-type devices)
mechanism to erase the contents of a screen. If NEWPAGE is not specified, the

WRITE TERMINAL request will write over rather than erase data displayed on
the terminal. The keywords NEWPAGE and ERASE are synonymous.

EAU

Activates (for 3270-type devices only) the erase-all-unprotected mechanism.
Following a WRITE TERMINAL EAU function, only protected fields remain on the

terminal. If EAU is specified, the FROM clause (described below) need not be
specified.

WRITE TERMINAL (DC/UCF)

296 DML Reference Guide for PLI

FROM (output-data-location)

Specifies the program variable-storage entry of the output data stream.

Output-data-location is the symbolic name of a user-defined field. The length of the
output data stream is determined by one of the following specifications:

TO (end-output-data-location)

Indicates the end of the output data stream and is specified following the last
data-item entry in output-data-location. End-output-data-location is the
symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the output data stream.

LENGTH (output-data-length)

Defines the length, in bytes, of the output data stream. Output-data-length is
either the symbolic name of a user-defined field that contains the length of the
data area, or the length itself expressed as a numeric constant.

Example

The following statement i l lustrates an asynchronous basic mode request to write data
to the terminal from the specified location in program variable storage:

WRITE TERMINAL

 NOWAIT

 FROM (TERM_LINE) LENGTH (72);

Status Codes

Upon completion of the WRITE TERMINAL function, the ERROR_STATUS field in the

IDMS DC communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

4525

The output operation has been interrupted; the terminal operator has pressed
ATTENTION or BREAK.

4526

A logical error (for Example, an invalid control character) has been encountered in

the output data stream.

4527

A permanent I/O error has occurred during processing.

4528

The dial-up line for the terminal has been disconnected.

WRITE THEN READ TERMINAL (DC/UCF)

Chapter 7: Data Manipulation Language Statements 297

4531

The terminal request block (TRB) contains an invalid field, indicating a possible error

in the program's parameters.

4532

The derived length of the specified output data area is zero or negative.

4539

The terminal associated with the issuing task is out of service.

WRITE THEN READ TERMINAL (DC/UCF)

The WRITE THEN READ TERMINAL statement requests a transfer of data from program
variable storage to the terminal buffer and, when the terminal operator has completed
entering data, a transfer of that data back to program variable storage.

Syntax

►►─── WRITE ─┬────────┬─ READ TERMIMAL ─┬──────────┬──────────────────────────►
 └─ THEN ─┘ ├─ WAIT ◄ ─┤
 └─ NOWAIT ─┘

 ►─┬─────────────────────────────┬──►
 ├─┬─ NEWPAGE ─┬───────────────┤
 │ └─ ERASE ───┘ │
 └─┬─ EAU ───────────────────┬─┘
 └─ ERASE ALL UNPROTECTED ─┘

 ►─┬──┬─────────────────────────►
 ├─ MODIFIED ─┬─ FROM POSITION (screen-position) ─┘
 └─ BUFFER ───┘

 ►─── FROM (output-data-location) ─┬─ TO (end-output-data-location) ─┬────────►
 └─ LENGTH (output-data-length) ───┘

 ►─── INTO (input-data-location) ─┬─ TO (end-input-data-location) ───────┬────►
 └─ MAX LENGTH (input-data-max-length) ─┘

 ►─┬───┬─ ; ────────────────────►◄
 └─ RETURN LENGTH INTO (input-data-actual-length) ─┘

Parameters

WAIT/NOWAIT

Indicates whether the I/O operation is to be synchronous or asynchronous.

WAIT

Specifies that the I/O operation will be synchronous; the issuing task will
automatically relinquish control to the system and must wait for completion of

the I/O operation before processing can continue. WAIT is the default.

WRITE THEN READ TERMINAL (DC/UCF)

298 DML Reference Guide for PLI

NOWAIT

Specifies that the I/O operation will be asynchronous; the issuing task will

continue executing.

Note: If NOWAIT is specified, the program must issue a CHECK TERMINAL
request (described earlier in this chapter) before performing any other I/O

operation.

NEWPAGE/EAU

Specifies the mechanism to be used with the write operation:

NEWPAGE

Activates the page-eject (SYSINOUT devices) or erase-write (3270-type devices)

mechanism to erase the contents of a screen. If NEWPAGE is not specified, the
WRITE TERMINAL request will write over rather than erase data displayed on
the terminal. The keywords NEWPAGE and ERASE are synonymous.

EAU

Activates (for 3270-type devices only) the erase-all-unprotected mechanism.

Following a WRITE TERMINAL EAU function, only protected fields remain on the
terminal. If EAU is specified, the FROM clause (described below) need not be
specified.

MODIFIED/BUFFER

Transfers (for 3270-type devices only) data to the application program without

requiring the terminal operator to signal completion of data entry.

MODIFIED

Reads all modified fields in the terminal buffer into program variable storage.

BUFFER

Executes a READ BUFFER command that reads the entire contents of the

terminal buffer into the program variable storage.

FROM POSITION (screen-position)

Defines the buffer address (screen position) at which the read will start.
Screen-position is either the symbolic name of a user-defined FIXED BINARY(31)

field or the address itself enclosed in quotation marks.

WRITE THEN READ TERMINAL (DC/UCF)

Chapter 7: Data Manipulation Language Statements 299

FROM (output-data-location)

Specifies the program variable-storage entry of the output data stream.

Output-data-location is the symbolic name of a user-defined field. The length of the
output data stream is determined by one of the following specifications:

TO (end-output-data-location)

Indicates the end of the output data stream and is specified following the last
data-item entry in output-data-location. End-output-data-location is the
symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the output data stream.

LENGTH (output-data-length)

Defines the length, in bytes, of the output data stream. Output-data-length is
either the symbolic name of a user-defined field that contains the length of the
data stream, or the length itself expressed as a numeric constant.

INTO (input-data-location)

Specifies the program variable-storage entry of the data area reserved for the input
data stream. Input-data-location is the symbolic name of a user-defined field. The
length of the input data stream is determined by one of the following specifications:

TO (end-input-data-location)

Indicates the end of the data area reserved for the input data stream and is

specified following the last data-item entry in input-data-location.
End-input-data-location is the symbolic name of either a user-defined dummy
byte field or a field that contains a data item not associated with the data area

reserved for the input data stream.

MAX LENGTH (input-data-max-length)

Defines the length, in bytes, of the data area reserved for the input data
stream. Input-data-max-length is either the symbolic name of a user-defined
field that contains the length of the data stream, or the length itself expressed

as a numeric constant.

If the input data stream is larger than the data area reserved in program
variable storage, the system truncates the data stream to fit the available
space.

RETURN LENGTH INTO (input-data-actual-length)

Indicates the location to which the system will return the actual length of the input
data stream. Input-data-actual-length is the symbolic name of a user-defined field.
If the data stream has been truncated, input-data-actual-length contains the
original length before truncation.

WRITE THEN READ TERMINAL (DC/UCF)

300 DML Reference Guide for PLI

Example

The following statement i l lustrates a bas ic mode request to write data from the
program (OUTPUT_LINE) to the terminal, read the data from the terminal to the
specified location (INPUT_LINE) in the program, and return the actual length of the

input data stream (LINE_LENGTH) to variable storage:

WRITE THEN READ TERMINAL

 WAIT

 FROM (OUTPUT_LINE) TO (END_INPUT_LINE)

 INTO (INPUT_LINE) MAX LENGTH (80)

 RETURN LENGTH INTO (LINE_LENGTH);

Status Codes

Upon completion of the WRITE THEN READ TERMINAL function, the ERROR_STATUS
field in the IDMS DC communications block indicates the outcome of the operation:

0000

The request has been serviced successfully.

4519

The input area specified for the return of data is too small; the returned data has

been truncated to fit the available space.

4525

The output operation has been interrupted; the terminal operator has pressed
ATTENTION or BREAK.

4526

A logical error (for Example, an invalid control character) has been encountered in
the output data stream.

4527

A permanent I/O error has occurred.

4528

The dial-up line for the terminal has been disconnected.

4531

The terminal request block (TRB) contains an invalid field, indicating a possible error

in the program's parameters.

4532

The derived length of the specified I/O data area is zero or negative.

4535

Storage for the input buffer cannot be acquired becaus e the specified program

variable-storage entry has been allocated.

Logical-Record Clauses (WHERE and ON)

Chapter 7: Data Manipulation Language Statements 301

4538

The specified program variable-storage entry has not been allocated and the GET

STORAGE option has not been specified.

4539

The terminal device associated with the issuing task is out of service.

Logical-Record Clauses (WHERE and ON)

Logical-record clauses are used with any of the four DML statements that access logical
records (that is, OBTAIN, MODIFY, STORE, or ERASE). The logical -record clauses are as
follows:

■ WHERE—Specifies criteria used to select and/or criteria used to l imit the selection
of logical-record occurrences.

■ ON—Tests for a specific path status returned to indicate the result of a
logical-record DML statement.

The following subsections describe the WHERE and ON clauses.

WHERE Clause

The WHERE clause has two major functions:

To direct the program to a path, predefined in the subschema by the DBA and
transparent to the application program. This allows you to access the database without
issuing words connected by boolean operators (AND, OR, and NOT). The format of the

WHERE clause follows PL/I Syntax rules (that is, operands or operators are separated by
a blank).

■ Note: If you use the WHERE clause, you must specify the 48-character set in your
source program; IDng specific instructions for navigating the database.

■ To specify selection criteria to be applied to a logical record. This allows the

program to specify attributes of the desired logical record, thereby reducing the
need for the program to inspect multiple logical records to isolate the logical record
of interest.

Logical-Record Clauses (WHERE and ON)

302 DML Reference Guide for PLI

The WHERE clause is issued in the form of a boolean expression that consists of
comparisons and kMSDMLP assumes the use of the 48-character set when it generates

LRF code. For more information, see DML Precompiler Options.

►►─── WHERE (─┬───────────┬─┬─ dba-designated-keyword ─┬─────────────────────►
 └─┬─ NOT ─┬─┘ └─ comparison ─────────────┘
 └─ ¬ ───┘
 ┌───┐
 ►─▼─┬───┬─┴─) ────────────►◄
 ├─┬─ AND ┌─┬─┬──────────┬─┬─ dba-designated-keyword ─┬┘
 │ └─ & ──┘ │ └┬─ NOT ─┬─┘ └─ comparison ─────────────┘
 └─┬─ OR ─┬─┘ └─ ¬ ───┘
 └─ │ ──┘

Expansion of comparison

►►─┬─ literal ──┬─┬─ CONTAINS ─┬──►
 │ ┌────────────┐ │ ├─ MATCHES ──┤
 ├─▼─ group-id.─┴─ idd-defined-variable-field-name ───────┤ ├─┬─ EQ ─┬───┤
 └─ arithmetic-expression ────────────────────────────────┘ │ └─ = ──┘ │
 ├─┬─ NE ─┬───┤
 │ └─ ¬= ─┘ │
 ├─┬─ GT ─┬───┤
 │ └─ > ──┘ │
 ├─┬─ LT ─┬───┤
 │ └─ < ──┘ │
 ├─┬─ GE ─┬───┤
 │ └─ >= ─┘ │
 └─┬─ LE ─┬───┘
 └─ <= ─┘

 ►─┬─ literal ──┬─────────────────►◄
 │ ┌────────────┐ │
 ├─▼─ group-id.─┴─ variable-field-name ───────────────────┤
 │ ┌────────────┐ │
 ├─▼─ group-id.─┴─ logical-record-field-name ─┬─────────┬─┤
 │ └─ OF LR ─┘ │
 └─ arithmetic-expression ────────────────────────────────┘

Parameters

dba-designated-keyword

Specifies a DBA-designated keyword to be applied to the logical record that is the

object of the command. Dba-designated-keyword is a keyword specified by the DBA
that is applicable to the logical record named in the command; it can be no longer
than 32 characters. The keyword represents an operation to be performed at the

path level and serves only to route the logical-record request to the appropriate,
predetermined path.

A path must exist to service a request that issues dba-designated-keyword. If no
such path exists, the DML precompiler flags this condition by issuing an error

message.

comparison

Specifies a comparison operation to be performed, using the indicated operands
and operators. It also serves to direct the logical-record request to a path.

Individual comparisons and keywords are connected by the boolean operators AND,

OR, and NOT. Parentheses can be used to clarify a multiple-comparison boolean
expression or to override the precedence of operators.

Logical-Record Clauses (WHERE and ON)

Chapter 7: Data Manipulation Language Statements 303

literalidd-defined-variable-field-namearithmetic-expression

Identifies a left or right comparison operand.

literal

Specifies a l iteral value. Literal can be any alphanumeric or numeric l iteral.
Alphanumeric l iterals must be enclosed in quotation marks.

idd-defined-variable-field-name

Specifies a program variable storage field predefined in the dictionary.

Idd-defined-variable-field-name must be an elementary element. It cannot be a
group element. Group elements can only be used for qualification.

The optional qualifier group-id uniquely identifies the named variable field. This

qualifier is required if idd-defined-variable-field-name is not unique within
program variable storage. Group-id names the group element that contains the
field. A maximum of 15 different group-id qualifiers can be specified to identify
as many as 15 levels of group elements.

arithmetic-expression

Specifies an arithmetic expression designated as a unary minus (-), unary plus
(+), simple arithmetic operation, or compound arithmetic operation. Arithmetic
operators permitted in an arithmetic expression are add (+), subtract (-),
multiply (*), and divide (/). Operands can be literals, variable-storage fields, and

logical-record fields as described above. On the left side of the comparison you
cannot use a key value.

CONTAINS/MATCHES/EQ/NE/GT/LT/GE/LE

Specifies the comparison operator. Operators are evaluated in the following order:

1. Comparisons enclosed in parentheses

2. Arithmetic, comparison, and boolean operators by order of precedence, from
highest to lowest:

– Unary plus or minus in an arithmetic expression

– Multiplication or division in an arithmetic expression

– Addition or subtraction in an arithmetic expression

– MATCHES or CONTAINS comparison operators

– EQ, NE, GT, LT, GE, LE comparison operators

– NOT boolean operator

– AND boolean operator

– OR boolean operator

Logical-Record Clauses (WHERE and ON)

304 DML Reference Guide for PLI

3. From left to right within operators of equal precedence

CONTAINS

Is true if the value of the right operand occurs in the value of the left operand.
Both operands included with the CONTAINS operator must be alphanumeric
values and elementary elements.

MATCHES

Is true if each character in the left operand matches a corresponding character

in the right operand (the mask). When MATCHES is specified, LRF compares the
left operand with the mask, one character at a time, moving from left to right.
The result of the match is either true or false: the result is true if the end of the

mask is reached before encountering a character in the left operand that does
not match a corresponding character in the mask. The result is false if LRF
encounters a character in the left operand that does not match a mask
character.

Three special characters can be used i n the mask to perform pattern matching:

@, which matches any alphabetic character; #, which matches any numeric
character; and *, which matches any alphabetic or numeric character. Both the
left operand and the mask must be alphanumeric values and elementa ry
elements.

EQ

Is true if the value of the left operand is equal to the value of the right operand.

NE

Is true if the value of the left operand is not equal to the value of the right
operand.

GT

Is true if the value of the left operand is greater than the value of the right
operand.

LT

Is true if the value of the left operand is less than the value of the right

operand.

GE

Is true if the value of the left operand is greater than or equal to the value of
the right operand.

LE

Is true if the value of the left operand is less than or equal to the value of the
right operand.

Logical-Record Clauses (WHERE and ON)

Chapter 7: Data Manipulation Language Statements 305

logical-record-field-name

Specifies a data field that participates in the named logical record.

Logical-record-field-name must be an elementary element. It cannot be a group
element. Group elements can only be used for qualification.

The optional qualifier group-id uniquely identi fies the named logical -record field.

This qualifier is required if logical-record-field-name is not unique within all
subschema records, including those that are not part of the logical record, and all
non CA IDMS/DB records copied into the program. Group-id names the group
element or database record that contains the field. A maximum of 15 different

group-id qualifiers can be specified to identify as many as 15 levels of group
elements.

The optional OF LR parameter specifies that the value of the named field at the
time that the request is issued will be used throughout processing of the request. If
the value of the field changes during request processing, LRF will continue to use

the original value. If the OF LR entry is not included and the value of the field
changes during request processing, the new field value in variable storage will be
used if the field is required for further request processing.

Usage of the WHERE Clause

If the WHERE clause compares a CALC-key field to a literal, the literal's format must

correspond exactly to the CALC-key definition. Enclose the literal in quotation marks
if the CALC key has a usage of DISPLAY, and use leading zeros if the literal consists
of fewer characters than the field's picture. For example, if the calc-key-field CALC

key is defined as CHAR (3), code the WHERE clause as follows:

WHERE (calc-key-field) EQ '054';

The WHERE clause can contain as many comparisons and keywords as required to

specify the criteria to be applied to the logical record. If necessary, the value of the
SIZE parameter in the INCLUDE IDMS SUBSCHEMA_LR_CTRL statement can be
increased to accommodate very large and complex WHERE clause specifications.

Processing efficiency is not affected by the composition of the WHERE clause (other
than the logical order of the operators, as noted below), since LRF automatically
uses the most efficient path to process the logical-record request.

Examples

The following logical-record request uses a DBA-designated keyword
(PROGRAMMER_ANALYSTS) to direct LRF to a DBA-defined access path:

OBTAIN NEXT RECORD (EMP_JOB_LR)

 WHERE (PROGRAMMER_ANALYSTS);

The following logical-record request uses boolean selection criteria to specify the
desired occurrence of EMP_JOB_LR:

OBTAIN RECORD (EMP_JOB_LR)

 WHERE (OFFICE_CODE_0450 EQ '001');

Logical-Record Clauses (WHERE and ON)

306 DML Reference Guide for PLI

ON Clause

The ON clause tests for a specific path status returned to indicate the result of the
statement. If LRF returns the specified path status, the imperative statement included in
the ON clause is executed; if the specified path status is not returned, the imperative

statement included in the ON clause is ignored and IDMS_STATUS is performed.

The ON clause tests for a standard or DBA-defined path status, which is in the form of a

1- to 16-character unquoted string. Path statuses are issued during execution of the
path selected to service the request.

Standard Path Statuses

Standard path statuses are as follows:

■ LR_FOUND—Returned when the logical-record request has been successfully

executed. This status can be returned as the result of any of the four LRF DML
statements. When LR_FOUND is returned, the ERROR_STATUS field in the IDMS
communications block contains 0000.

■ LR_NOT_FOUND—Returned when the logical record specified cannot be found,
either because no such record exists or because all such occurrences have already

been retrieved. This status can be returned as the result of any of the four LRF DML
statements, provided that the path to which LRF is directed includes retrieval logic.
When LR_NOT_FOUND is returned, the ERROR_STATUS field in the IDMS

communications block contains 0000.

Note: A successful STORE can return LR_NOT_FOUND if its WHERE clause
references a logical-record field and the STORE path performs no OBTAINs.

■ LR_ERROR—returned when a logical-record request is issued incorrectly or when
an error occurs in the processing of the path selected to service the request. When

LR_ERROR is returned, the type of error-status code returned to the program in the
ERROR_STATUS field in the IDMS DB communications block differs according to the
type of error:

– When the error occurs in the logical-record request, the ERROR_STATUS field

contains an error-status code issued by LRF (major code of 20).

– When an error occurs in logical-record path processing, the ERROR_STATUS
field contains an error-status code issued by the DBMS (major code from 00 to
19).

Note: For more information about error-status codes, see Communications

Blocks and Error Detection.

Syntax

►►─── ON LR_STATUS (path-status) imperative-statement;───────────────────────►◄

Logical-Record Clauses (WHERE and ON)

Chapter 7: Data Manipulation Language Statements 307

Parameters

path-status

Names the path status that will be tested. Path-status must be a 1- to 16-character
alphanumeric value.

imperative-statement

Specifies the program action to be taken if the indicated path status results from
the logical-record request.

Example

The following statements use the path status LR_NOT_FOUND in two different ways. If
LR_NOT_FOUND occurs following the initial statement, an LR_MISSING message is
output; if LR_NOT_FOUND occurs in subsequent statements, an END_OF_LR message is
output.

OBTAIN FIRST RECORD (EMP_JOB_LR)

 WHERE (OFFICE_CODE_0450 EQ OFFICE_CODE_IN);

 ON LR_STATUS (LR_NOT_FOUND)

 CALL LR_MISSING;

 .

 .

 .

OBTAIN NEXT RECORD (EMP_JOB_LR)

 WHERE (OFFICE_CODE_0450 EQ OFFICE_CODE_IN);

 ON LR_STATUS (LR_NOT_FOUND)

 CALL END_OF_LR;

 .

 .

 .

CALL OBTAIN_REST_LR;

Status Codes

The following codes are returned to the ERROR_STATUS field in the IDMS DB or IDMS
DC communications block when an LR_ERROR path status is returned to the LR_STATUS
field in the LRC block:

2001

The requested logical record was not found in the subschema. (The path DML
statement, EVALUATE, returns 0000 if true, and 2001 if false.)

2008

The named record is not in the subschema, or the specified request is not permitted
for the named record.

Logical-Record Clauses (WHERE and ON)

308 DML Reference Guide for PLI

2010

The subschema prohibits access to logical records.

2018

A path command has attempted to access a database record that has not been
bound.

2040

The WHERE clause in an OBTAIN NEXT command directed LRF to a different

processing path than did the WHERE clause in the preceding OBTAIN command for
the same logical record.

2041

The request's WHERE clause cannot be matched to a path in the subschema.

2042

The logical-record path for the request specifies return of the LR_ERROR status.

2043

Bad or inconsistent data was encountered in the logical-record buffer during

evaluation of the request's WHERE clause.

2044

The request's WHERE clause does not include data required by the logical -record
path.

2045

A subscript value in a WHERE clause i s either less than zero or greater than its
maximum allowed value.

2046

A program check has revealed an arithmetic exception (for Example, overflow,
underflow, significance, divide) during evaluation of a WHERE clause.

2063

The request's WHERE clause contains a keyword that exceeds the 16-character
maximum.

2064

The path command has attempted to access a CALC data item that has not been
defined properly in the subschema.

2072

The request's WHERE clause is too long to be evaluated in the available work area.

Appendix A: DML Precompile, PL/I Compile, and Link-Edit JCL 309

Appendix A: DML Precompile, PL/I Compile,
and Link-Edit JCL

This appendix presents the JCL used to prepare PL/I source code that contains DML

statements. Link-edit considerations are also discussed. JCL samples are included.

This section contains the following topics:

Compiling a PL/I Program (see page 309)
Link-Edit Considerations (see page 329)
Passing Parameters to the Precompiler (see page 330)

Compiling a PL/I Program

To compile a PL/I program under the DML precompiler:

1. Execute the program IDMSDMLP

2. Execute the PL/I compiler

3. Link edit

Input to IDMSDMLP consists of source code written in PL/I and DML, protocol/control

information, and dictionary record descriptions. Output from IDMSDMLP includes:

■ A source PL/I program

■ A DML source listing and diagnostics

Input to the PL/I compiler consists of the source program produced by IDMSDMLP.
Output includes:

■ An object program

■ PL/I l istings

Input to the linkage editor consists of the object program produced by the PL/I compiler.
Output includes:

■ A load module

■ A link-edit map

Compiling a PL/I Program

310 DML Reference Guide for PLI

The following figure il lustrates the steps involved in compiling a PL/I program.

The JCL used to compile and link edit the DMLP source statements under the CA
IDMS/DB central version are shown in this appendix. Local mode considerations are
noted where appropriate.

Note: IBM PL/I compilers running under z/VSE do not generate reentrant code.

Accordingly, if your applications are large, multiple user deadlocks may result because
of space limitations.

Compiling a PL/I Program

Appendix A: DML Precompile, PL/I Compile, and Link-Edit JCL 311

Under z/OS

Executing Under the Central Version

IDMSDMLP (Central Version) (z/OS)

//***

//** PRECOMPILE PL/I PROGRAM **

//***

//precomp EXEC PGM=IDMSDMLP,REGION=1024K,

// PARM='optional parameters'

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.custom.loadlib,DISP=SHR

// DD DSN=idms.cagjload,DISP=SHR

//sysctl DD DSN=idms.sysctl,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//SYS001 DD UNIT=disk,SPACE=(TRK,(10,10))

//SYS002 DD UNIT=disk,SPACE=(TRK,(10,10))

//SYS003 DD UNIT=disk,SPACE=(TRK,(10,10))

//SYSPCH DD DSN=&&source,DISP=(NEW,PASS),

// UNIT=disk,SPACE=(TRK,(10,5),RLSE),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)

//SYSLST DD SYSOUT=A

//SYSIDMS DD *

DMCL=dmcl-name

DICTNAME=dictionary-name

Other SYSIDMS parameters, as appropriate

/*

//SYSIPT DD *

PL/I DML source statements

/*

//***

//** COMPILE PL/I PROGRAM **

//***

//plicmp EXEC PGM=IEL0AA,REGION=300K,

// PARM='DECK,LIST,OFFSET,STORAGE,NOP'

//STEPLIB DD DSN=sys1.pliopt,DISP=SHR

//SYSUT1 DD UNIT=disk,SPACE=(1024,(200,50),,CONTIG,ROUND),

// DCB=BLKSIZE=6144

//SYSPUNCH DD DSN=&&object,DISP=(NEW,PASS),

// UNIT=disk,SPACE=(TRK,(10,5),RLSE),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)

//SYSPRINT DD SYSOUT=A

//SYSIN DD DSN=&&source,DISP=(OLD,DELETE)

//***

//** LINK PROGRAM MODULE **

//***

//link EXEC PGM=HEWL,REGION=300K,PARM='LET,LIST,XREF'

//SYSUT1 DD UNIT=disk,SPACE=(TRK,(20,5))

Compiling a PL/I Program

312 DML Reference Guide for PLI

//SYSLIB DD DSN=sys1.plibase,DISP=SHR

//vanilla DD DSN=idms.cagjload,DISP=SHR

//custom DD DSN=idms.custom.loadlib,DISP=SHR

//SYSLMOD DD DSN=idms.custom.loadlib,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSLIN DD DSN=&&object,DISP=(OLD,DELETE)

// DD *

 INCLUDE vanilla(IDMS) Required, except omit for CICS

 INCLUDE vanilla(IDMSCANC) Required for BATCH and DC_BATCH

 if using IDMS_STATUS module

 INCLUDE custom(IDMSOPTI) Optional; BATCH and DC_BATCH only

 INCLUDE custom(IDMSCINT) Required for CICS, otherwise omit

 ENTRY userentry

 NAME userprog(R)

/*

//*

Note: The link of CICS application programs that use IDMSCINT must incorporate JCL to

resolve external reference DFHEI1. The particular JCL depends on the nature and
language of your application. See the appropriate IBM CICS application programming
documentation for details.

optional parameters

options that control various aspects of the precompile process. See “Passing
Parameters to the Precompiler (see page 330)” for a complete description of the
options.

precomp

Name of the precompile step

Runtime Parameters

To specify a dictionary or DMCL to access at runtime, you can include DICTNAME and

DMCL parameters in a SYSIDMS DD statement in the JCL (see previous sample JCL).

Note: For more information about SYSIDMS runtime parameters, see the CA IDMS
Common Facilities Guide.

Compiling a PL/I Program

Appendix A: DML Precompile, PL/I Compile, and Link-Edit JCL 313

Executing in Local Mode

IDMSDMLP (Local Mode) (z/OS)

//***

//** PRECOMPILE PL/I PROGRAM **

//***

//precomp EXEC PGM=IDMSDMLP,REGION=1024K,

// PARM='optional parameters'

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.custom.loadlib,DISP=SHR

// DD DSN=idms.cagjload,DISP=SHR

//dictb DD DSN=idms.appldict.ddldml,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//sysjrnl DD DSN=idms.tapejrnl,DISP=(NEW,CATLG),UNIT=tape

//SYS001 DD UNIT=disk,SPACE=(TRK,(10,10))

//SYS002 DD UNIT=disk,SPACE=(TRK,(10,10))

//SYS003 DD UNIT=disk,SPACE=(TRK,(10,10))

//SYSPCH DD DSN=&&source,DISP=(NEW,PASS),

// UNIT=disk,SPACE=(TRK,(10,5),RLSE),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)

//SYSLST DD SYSOUT=A

//SYSIDMS DD *

DMCL=dmcl-name

DICTNAME=dictionary-name

Other SYSIDMS parameters, as appropriate

/*

//SYSIPT DD *

PL/I DML source statements

/*

//***

//** COMPILE PL/I PROGRAM **

//***

//plicmp EXEC PGM=IEL0AA,REGION=300K,

// PARM='DECK,LIST,OFFSET,STORAGE,NOP'

//STEPLIB DD DSN=sys1.pliopt,DISP=SHR

//SYSUT1 DD UNIT=disk,SPACE=(1024,(200,50),,CONTIG,ROUND),

// DCB=BLKSIZE=6144

//SYSPUNCH DD DSN=&&object,DISP=(NEW,PASS),

// UNIT=disk,SPACE=(TRK,(10,5),RLSE),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)

//SYSPRINT DD SYSOUT=A

//SYSIN DD DSN=&&source,DISP=(OLD,DELETE)

//***

//** LINK PROGRAM MODULE **

//***

//link EXEC PGM=HEWL,REGION=300K,PARM='LET,LIST,XREF'

Compiling a PL/I Program

314 DML Reference Guide for PLI

//SYSUT1 DD UNIT=disk,SPACE=(TRK,(20,5))

//SYSLIB DD DSN=sys1.plibase,DISP=SHR

//vanilla DD DSN=idms.cagjload,DISP=SHR

//custom DD DSN=idms.custom.loadlib,DISP=SHR

//SYSLMOD DD DSN=idms.custom.loadlib,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSLIN DD DSN=&&object,DISP=(OLD,DELETE)

// DD *

 INCLUDE vanilla(IDMS) Required, except omit for CICS

 INCLUDE vanilla(IDMSCANC) Required for BATCH and DC_BATCH

 if using IDMS_STATUS module

 INCLUDE custom(IDMSOPTI) optional; BATCH and DC_BATCH only

 INCLUDE custom(IDMSCINT) Required for CICS, otherwise omit

 ENTRY userentry

 NAME userprog(R)

/*

//*

dictdb

DDname of the application dictionary definition area

idms.appldict.ddldml

Dataset name of the application dictionary definition area

sysjrnl

DDname of the tape journal fi le

idms.tapejrnl

Dataset name of the tape journal fi le

tape

Symbolic device name

Note: For information about other variables, see the table following the JCL for central

version.

Compiling a PL/I Program

Appendix A: DML Precompile, PL/I Compile, and Link-Edit JCL 315

Under z/VSE

Executing Under the Central Version

IDMSDMLP (z/VSE)

* step1

// EXEC PROC=IDMSLBLS

// UPSI b

// DLBL idmspch,'temp.dmlp',0

// EXTENT sys020,nnnnnn,,,ssss,llll

// ASSGN sys020,DISK,VOL=nnnnnn,SHR

// EXEC IDMSDMLP

DMCL=dmcl-name

DICTNAME=dictionary-name

Other optional SYSIDMS parameters

/*

PL/I DML source statements

/*

* step2

// DLBL IJSYSIN,'temp.dmlp',0

// EXTENT SYSIPT,nnnnnn

 ASSGN SYSIPT,DISK,VOL=nnnnnn,SHR

// OPTION CATAL,NODECK,NOSYM

 PHASE userprog,*

// EXEC PL/I

* step3

 CLOSE SYSIPT,SYSRDR

ENTRY (dmlp)

// EXEC LNKEDT

/*

Note: You can define a SYSCTL fi le in the JCL to override the IDMSOPTI statement for the
back-end system:

// DLBL sysctl,'idms.sysctl',,DA

// EXTENT sys008,nnnnnn

// ASSGN sys008,DISK,VOL=nnnnnn,SHR

IDMSLBLS

Procedure containing all of the fi le definitions required by the system

Note: For a complete l isting of IDMSLBLS, see "IDMSLBLS procedure", later in this
section.

b

Appropriate UPSI switch, 1-8 characters, if specified in the IDMSOPTI module

Compiling a PL/I Program

316 DML Reference Guide for PLI

idmspch

Filename of dataset output from the DML precompiler

temp.dmlp

File ID of the dataset output from the DML precompiler

sys020

Logical unit assignment of DMLP output

nnnnnn

Volume serial identifier of appropriate disk volume

dmcl-name

Name of the DMCL to access at runtime

dictionary-name

Name of the dictionary to access at runtime

ssss

Starting track (CKD) or block (FBA) of disk extent

llll

Number of tracks (CKD) or blocks (FBA) of disk extent

userprog

Name of program in the library

dmlp

Name of PL/I DML module

sysctl

Filename of the SYSCTL fi le

idms.sysctl

File ID of the SYSCTL fi le

sys008

Logical unit assignment of the SYSCTL fi le

SYSIDMS Parameters

You can use SYSIDMS parameters to specify information about your runtime
environment. The SYSIDMS parameters DICTNAME and DMCL are used in this JCL
stream.

Note: For information about other optional SYSIDMS parameters, see the CA IDMS
Common Facilities Guide.

Compiling a PL/I Program

Appendix A: DML Precompile, PL/I Compile, and Link-Edit JCL 317

Output to Disk or Tape File

To route punched output to a sequential disk fi le or to a tape fi le, use a SYSPCH

statement in the JCL.

Executing in Local Mode

To execute IDMSDMLP in local mode:

■ Remove the UPSI statement

■ Add the following statements in the IDMSDMLP step:

// TLBL sysjrnl,'idms.tapejrnl',,nnnnnn,,f

// ASSGN sys009,TAPE,VOL=nnnnnn

sysjrnl

Filename of the tape journal fi le

idms.tapejrnl

File ID of the tape journal fi le

f

File number of the tape journal fi le

sys009

Logical unit assignment for journal fi le

INCLUDE Statements

Provide INCLUDE statements in local mode or central version JCL as follows. Place the
following statements in the second step, before EXEC PL/I:

ACTION NOAUTO Prevents multiple inclusions of IDMS

INCLUDE IDMS IDMS interface for use with COMRG

INCLUDE IDMSOPTI You can omit IDMSOPTI for local mode

INCLUDE IDMSCANC Local mode abort entry point

 (omit IDMSCANC if TP application)

INCLUDE IDMSCINT For CICS only, replaces INCLUDE IDMS

IDMSLBLS Procedure

IDMSLBLS is a procedure that contains fi le definitions for the dictionaries, sample

databases, disk journal fi les, and SYSIDMS fi le provided during installation.

Compiling a PL/I Program

318 DML Reference Guide for PLI

You can tailor the following IDMSLBLS procedure (provided at installation) to reflect the
fi lenames and definitions in use at your site. Reference IDMSLBLS as shown in the

previous z/VSE JCL job stream.

 ──────── LIBDEFS ────────

// LIBDEF *,SEARCH=idmslib.sublib

// LIBDEF *,CATALOG=user.sublib

/* ───────────────────────── LABELS ─────────────────────────

// DLBL idmslib,'idms.library',1999/365

// EXTENT ,nnnnnn,,,ssss,1500

// DLBL dccat,'idms.system.dccat',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,31

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dccatl,'idms.system.dccatlod',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dccatx,'idms.system.dccatx',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,11

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcdml,'idms.system.ddldml',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,101

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dclod,'idms.system.ddldclod',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,21

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dclog,'idms.system.ddldclog',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,401

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcrun,'idms.system.ddldcrun',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,68

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcscr,'idms.system.ddldcscr',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,135

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcmsg,'idms.sysmsg.ddldcmsg',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,201

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dclscr,'idms.sysloc.ddlocscr',1999/365,DA

Compiling a PL/I Program

Appendix A: DML Precompile, PL/I Compile, and Link-Edit JCL 319

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dirldb,'idms.sysdirl.ddldml',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,201

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dirllod,'idms.sysdirl.ddldclod',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,2

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL empdemo,'idms.empdemo1',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,11

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL insdemo,'idms.insdemo1',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL orgdemo,'idms.orgdemo1',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL empldem,'idms.sqldemo.empldemo',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,11

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL infodem,'idms.sqldemo.infodemo',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL projdem,'idms.projseg.projdemo',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL indxdem,'idms.sqldemo.indxdemo',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sysctl,'idms.sysctl',1999/365,SD

// EXTENT SYSnnn,nnnnnn,,,ssss,2

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL secdd,'idms.sysuser.ddlsec',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,26

Compiling a PL/I Program

320 DML Reference Guide for PLI

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dictdb,'idms.appldict.ddldml',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,51

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dloddb,'idms.appldict.ddldclod',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,51

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sqldd,'idms.syssql.ddlcat',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,101

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sqllod,'idms.syssql.ddlcatl',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,51

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sqlxdd,'idms.syssql.ddlcatx',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,26

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asfdml,'idms.asfdict.ddldml',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,201

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asflod,'idms.asfdict.asflod',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,401

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asfdata,'idms.asfdict.asfdata',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,201

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL ASFDEFN,'idms.asfdict.asfdefn',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,101

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j1jrnl,'idms.j1jrnl',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j2jrnl,'idms.j2jrnl',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j3jrnl,'idms.j3jrnl',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL SYSIDMS,'#SYSIPT',0,SD

/+

/*

idmslib.sublib

Name of the sublibrary within the library containing CA IDMS modules

user.sublib

Name of the sublibrary within the library containing user modules

Compiling a PL/I Program

Appendix A: DML Precompile, PL/I Compile, and Link-Edit JCL 321

idmslib

Name of the fi le containing CA IDMS modules

idms.library

ID associated with the fi le containing CA IDMS modules

SYSnnn

Logical unit of the volume for which the extent is effective

nnnnnn

Volume serial identifier of appropriate disk volume

ssss

Starting track (CKD) or block (FBA) of disk extent

dccat

Filename of the system dictionary catalog (DDLCAT) area

idms.system.dccat

ID of the system dictionary catalog (DDLCAT) area

dccatl

Filename of the system dictionary catalog load (DDLCATLOD) area

idms.system.dccatlod

ID of the system dictionary catalog load (DDLCATLOD) area

dccatx

Name of the system dictionary catalog index (DDLCATX) area

idms.system.dccatx

ID of the system dictionary catalog index (DDLCATX) area

dcdml

Name of the system dictionary definition (DDLDML) area

idms.system.ddldml

ID of the system dictionary definiti on (DDLDML) area

dclod

Name of the system dictionary definition load (DDLDCLOD) area

idms.system.ddldclod

ID of the system dictionary definition load (DDLDCLOD) area

dclog

Name of the system log area (DDLDCLOG) area

Compiling a PL/I Program

322 DML Reference Guide for PLI

idms.system.ddldclog

ID of the system log (DDLDCLOG) area

dcrun

Name of the system queue (DDLDCRUN) area

idms.system.ddldcrun

ID of the system queue (DDLDCRUN) area

dcscr

Name of the system scratch (DDLDCSCR) area

idms.system.ddldcscr

ID of the system scratch (DDLDCSCR) area

dcmsg

Name of the system message (DDLDCMSG) area

idms.sysmsg.ddldcmsg

ID of the system message (DDLDCMSG) area

dclscr

Name of the local mode system scratch (DDLOCSCR) area

idms.sysloc.ddlocscr

ID of the local mode system scratch (DDLOCSCR) area

dirldb

Name of the IDMSDIRL definition (DDLDML) area

idms.sysdirl.ddldml

ID of the IDMSDIRL definition (DDLDML) area

dirllod

Name of the IDMSDIRL definition load (DDLDCLOD) area

idms.sysdirl.dirllod

ID of the IDMSDIRL definition load (DDLDCLOD) area

empdemo

Name of the EMPDEMO area

idms.empdemo1

ID of the EMPDEMO area

Compiling a PL/I Program

Appendix A: DML Precompile, PL/I Compile, and Link-Edit JCL 323

insdemo

Name of the INSDEMO area

idms.insdemo1

ID of the INSDEMO area

orgdemo

Name of the ORGDEMO area

idms.orgdemo1

ID of the ORDDEMO area

empldem

Name of the EMPLDEMO area

idms.sqldemo.empldemo

ID of the EMPLDEMO area

infodem

Name of the INFODEMO area

idms.sqldemo.infodemo

ID of the INFODEMO area

projdem

Name of the PROJDEMO area

idms.projseg.projdemo

ID of the PROJDEMO area

indxdem

Name of the INDXDEMO area

idms.sqldemo.indxdemo

ID of the INDXDEMO area

sysctl

Name of the SYSCTL fi le

idms.sysctl

ID of the SYSCTL fi le

secdd

Name of the system user catalog (DDLSEC) area

Compiling a PL/I Program

324 DML Reference Guide for PLI

idms.sysuser.ddlsec

ID of the system user catalog (DDLSEC) area

dictdb

Name of the application dictionary definition area

idms.appldict.ddldml

ID of the application dictionary definition (DDLDML) area

dloddb

Name of the application dictionary definition load area

idms.appldict.ddldclod

ID of the application dictionary definition load (DDLDCLOD) area

sqldd

Name of the SQL catalog (DDLCAT) area

idms.syssql.ddlcat

ID of the SQL catalog (DDLCAT) area

sqllod

Name of the SQL catalog load (DDLCATL) area

idms.syssql.ddlcatl

ID of SQL catalog load (DDLCATL) area

sqlxdd

Name of the SQL catalog index (DDLCATX) area

idms.syssql.ddlcatx

ID of the SQL catalog index (DDLCATX) area

asfdml

Name of the asf dictionary definition (DDLDML) area

idms.asfdict.ddldml

ID of the asf dictionary definition (DDLDML) area

asflod

Name of the asf dictionary definition load (ASFLOD) area

idms.asfdict.asflod

ID of the asf dictionary definition load (ASFLOD) area

Compiling a PL/I Program

Appendix A: DML Precompile, PL/I Compile, and Link-Edit JCL 325

asfdata

Name of the asf data (ASFDATA) area

idms.asfdict.asfdata

ID of the asf data area (ASFDATA) area

ASFDEFN

Name of the asf data definition (ASFDEFN) area

idms.asfdict.asfdefn

ID of the asf data definition area (ASFDEFN) area

j1jrnl

Name of the first disk journal fi le

idms.j1jrnl

ID of the first disk journal fi le

j2jrnl

Name of the second disk journal fi le

idms.j2jrnl

ID of the second disk journal fi le

j3jrnl

Name of the third disk journal fi le

idms.j3jrnl

ID of the third disk journal fi le

SYSIDMS

Name of the SYSIDMS parameter fi le

Compiling a PL/I Program

326 DML Reference Guide for PLI

Under z/VM

Executing Under the Central Version

IDMSDMLP (z/VM)

FILEDEF SYSIPT DISK sysipt data a (RECFM F LRECL ppp BLKSIZE nnn

FILEDEF SYSPCH DISK prgnme PL/I A

FILEDEF SYSIDMS DISK sysidms parms a (RECFM F LRECL ppp BLKSZE nnn

EXEC IDMSFD

OSRUN IDMSDMLP PARM='CVMACH=vmid' DML precompile step

FILEDEF TEXT DISK prgnme TEXT A

GLOBAL TXTLIB plilibvs IDMSLIB1

PL/I prgnme (OSDECK APOST LIB PL/I compile step

TXTLIB DEL utextlib prgnme

TXTLIB ADD utextlib prgnme

FILEDEF SYSLMOD uloadlib LOADLIB a (RECFM V LRECL 1024 BLKSIZE 1 024

FILEDEF objlib1 DISK IDMSLIB1 TXTLIB A

FILEDEF objlib DISK utextlib TXTLIB a

FILEDEF SYSLIB DISK plilibvs TXTLIB p

LKED linkctl (LIST XREF LET MAP RENT NOTERM PRINT SIZE 512K 64K

 Link edit step

sysipt data a

Filename, fi letype, and fi lemode of the fi le that contains PL/I DML source
statements

ppp

Record length of the data fi le

nnn

Blocksize of the data fi le

prgnme

Filename of the PL/I program

sysidms parms a

Filename, fi letype, and fi lemode of the fi le that contains SYSIDMS parameters

(parameters that define your runtime environment)

vmid

ID of the virtual machine running the CA IDMS/DB central version

plilibvs

Filename of the library that contains PL/I logic modules

Compiling a PL/I Program

Appendix A: DML Precompile, PL/I Compile, and Link-Edit JCL 327

utextlib

Filename of the user text l ibrary

uloadlib

Filename of the user load library

objlib1

DDname of the first CA IDMS/DB object l ibrary

objlib

DDname of the user object l ibrary

plilibvs

Filename of the library that contains PL/I logic modules

linkctl

Filename of the fi le that contains the linkage editor control statements

How to Edit the SYSIDMS File

To edit the SYSIDMS fi le, enter these z/VM commands:

XEDIT sysidms parms a (NOPROF

INPUT

 .

 .

 .

SYSIDMS parameters

 .

 .

 .

FILE

To run IDMSDMLP, include the DMCL and DICTNAME SYSIDMS parameters.

Note: For more information about SYSIDMS, see the CA IDMS Common Facilities Guide.

Compiling a PL/I Program

328 DML Reference Guide for PLI

How to Create the SYSIPT File

To create the SYSIPT fi le, enter these z/VM commands:

XEDIT sysipt data a (NOPROF

INPUT

 .

 .

 .

DML source statements

 .

 .

 .

FILE

How to Create the LINKCTL File

To create the LINKCTL fi le, enter these z/VM commands:

XEDIT linkctl data a (NOPROF

INPUT

INCLUDE objlib(prgnme)

INCLUDE objlib1(IDMS) IDMS is required, omit for CICS

INCLUDE objlib1(IDMSCINT) IDMS is required for CICS only

INCLUDE objlib1(IDMSCANC) IDMSCANC for BATCH and DC_BATCH

ENTRY prgnme

NAME prgnme(R)

FILE

Executing in Local Mode

To execute IDMSDMLP in local mode, remove the CVMACH parameter from OSRUN, and
do one of the following:

■ Link IDMSDMLP with an IDMSOPTI program that specifies local execution mode

■ Specify *LOCAL* as the first input parameter in the fi le specified in the FILEDEF

SYSIPT statement

■ Modify the OSRUN statement, as follows:

OSRUN IDMSDMLP PARM='*LOCAL*'

Note: This option is valid only if the OSRUN command is issued from a System
Product Interpreter or from an EXEC2 fi le.

Link-Edit Considerations

Appendix A: DML Precompile, PL/I Compile, and Link-Edit JCL 329

Link-Edit Considerations

The modules involved in the link edit of an application program contain six external
references. Some must be resolved depending on the mode of operation. Check
unresolved references against the following table to ensure proper l inkage to the
program.

Reference Referenced by Resolved by Comments

ABORT Application IDMSCANC Should be resolved

IDMS Application IDMS Must be resolved

IDMSOPTI1 IDMS IDMSOPTI

module

Must be resolved under

z/OS if using the central
version without a SYSCTL
fi le, and under z/VSE if

using the central version

IDMSWAIT1 IDMS IDMSWAIT Must be resolved if
user-written wait program
is desired; otherwise,

system routine is used

1. Under z/OS, IDMSOPTI is a weak external reference (WXTRN).

Passing Parameters to the Precompiler

330 DML Reference Guide for PLI

Passing Parameters to the Precompiler

A number of parameters can be provided to control the action taken by the
precompiler. The parameters can be specified in one of three ways:

An IDMSPPRM module can be compiled with parameter values that are always
appropriate to a particular operating system or client site. IDMSPPRM must be a

stand-alone assembler module that will be loaded by the precompiler at run-time. The
module must consist of a string of characters terminated by a binary zero.

A PARM= clause can be coded on the EXEC statement that i nvokes IDMSDMLC in a z/OS,
or z/VSE environment or on the OSRUN statement that invokes IDMSDMLC in a CMS

environment. Any option that is specified on the EXEC or OSRUN statement will take
precedence over the same parameter if it is coded with a different value in the
IDMSPPRM module.

A PARM= statement can be coded as a SYSIDMS input parameter. See CA IDMS
Common Facil ities Guide for more information about using SYSIDMS. Any option that is
specified in the PARM= statement will take precedence over the same parameter if it is
coded with a different value in the IDMSPPRM module. Note that if PARM= is specified

both as a SYSIDMS input statement and on an EXEC or OSRUN statement, the PARM=
clause on the EXEC or OSRUN statement will be ignored completely.

Precompiler Options: Parameter options available to code in the EXEC statement of the

precompile step are:

Optional Parameters

LIST/NOLIST

Determines whether or not a DML source listing is generated. DMLIST/NODMLIST in
the source code overrides this parameter.

DICTNAME

Specifies the dictionary you want to access. DICTNAME can also be specified as a

SYSIDMS parameter.

DEBUG=CARD

Causes each input record from source to be written to SYSLST as it is processed.
This allows you to identify any records that may cause a processing loop.

SCHEMA = schema-name

Specifies the default schema-name qualifier for the precompiler to use when
processing an INCLUDE TABLE statement that does not supply a qualifier.

Passing Parameters to the Precompiler

Appendix A: DML Precompile, PL/I Compile, and Link-Edit JCL 331

NOINSTALL

Specifies that the precompiler should only check Syntax.

SQL=NO/89/FIPS/DISABLED

Specifies the SQL Syntax standard that the precompiler should apply when checking
the validity of SQL statements in the program.

Option NO is the default; means that compliance with a named SQL standard is not
checked or enforced, and all CA IDMS/DB extensions are permitted.

Option 89 directs the precompiler to use ANSI X3.135-1989 (Rev), Database
Language SQL with integrity enhancement as the standard for compliance.

Option FIPS directs the precompiler to use FIPS PUB 127-1, Database Language SQL
as the standard for compliance.

Option DISABLED directs the precompiler not to process any SQL commands
(denoted by EXEC SQL Syntax) in the program.

DATE=ISO/USA/EUR/JIS

Specifies the format of the DATE data type to be used for communication between
the program and the database when the access module is executed.

TIME=ISO USA EUR/JIS

Specifies the format of the TIME data type to be used for communication between
the program and the database when the access module is executed.

Note: For more information about EXEC PGM parameters that are applicable to SQL
access, see the CA IDMS SQL Programming Guide.

EXPAND88=YES/NO

Specifies whether to expand level -88 condition names into named constants from
records that are copied into the program with the INCLUDE IDMS statement. The

precompiler ignores level -88 condition names that specify more than one value.

To avoid compile errors, ensure your PL/I compiler supports named constants
before using this option.

Note: For more information about SQL-related parameter options, see the CA IDMS SQL
Programming Guide.

Site-specific Parameters: The following sample wi ll direct the precompiler not to
produce a l isting of the source program. When assembled, the resultant load module

must be named IDMSPPRM.
 EDBPPARM CSECT

 DC C’NOLIST’

 DC X’00’

 END

Appendix B: Call Formats 333

Appendix B: Call Formats

This appendix contains the call formats used by CA IDMS/DB and CA IDMS/DC to

execute DML commands. Each DML function can be coded using standard CALL
statements.

The tables in this appendix present the function codes and arguments that are passed to
CA IDMS/DB and CA IDMS/DC for execution of a DML command.

About Arguments 0 and 1

Note the following information about arguments 0 and 1 when you review the tables in
this appendix:

■ Argument 0—This argument is passed for all functions. It contains
SUBSCHEMA-CTRL, the IDMS DB or IDMS DC communications block.

■ Argument 1—CA IDMS/DB passes the IDBMSCOM array as argument 1. CA
IDMS/DC passes the DCBMSCOM array as argument 1.

Example of a Call Format

The following Example shows the expanded call format for a BIND RECORD statement

(BIND EMPLOYEE):

 CALL 'IDMS' (SUBSCHEMA_CTRL

 ,IDBMSCOM (48)

 ,'EMPLOYEE '

 ,EMPLOYEE;

);

Order of Expansions

CA IDMS/DB call expansions are presented first, CA IDMS/DC expansions second.
Formats are grouped in different tables according to statement function.

This section contains the following topics:

CA IDMS/DB Call Formats (see page 333)

CA IDMS/DC Call Formats (see page 352)

CA IDMS/DB Call Formats

CA IDMS/DB passes the IDBMSCOM array as argument 1.

Arguments marked with asterisks have default values.

CA IDMS/DB Call Formats

334 DML Reference Guide for PLI

Control Statements

Major
Functi

on
Code

Database
Statement

(in COBOL
DML)

(1)

Calling

Argum
ents

(nn)

(2) (3) (4) (5)

14 BIND RUN-

UNIT

59 IDMS DB

Communic
ations
Block*

subschema-name*

 BIND

RUN-UNIT FOR

 subschema-
name

59 IDMS DB

Communic
ations
Block*

subschema-name

 BIND
RUN-UNIT
NODENAME

 nodename

59 IDMS DB
Communic
ations
Block*

subschema-name* subschema-control*

 OR

subschema-lr-control
*

nodename

 BIND
RUN-UNIT FOR

subschema-na
me

NODENAME

 nodename

59 IDMS DB

Communic
ations

Block*

subschema-name subschema-control*

 OR

subschema-lr-control

*

nodename

 BIND
RUN-UNIT FOR

subschema-na
me

 DBNAME

database-nam
e

59 IDMS DB

Communic

ations

Block*

subschema-name subschema-control*

 OR

subschema-lr-control
*

nodename

CA IDMS/DB Call Formats

Appendix B: Call Formats 335

Major
Functi

on
Code

Database
Statement

(in COBOL
DML)

(1)

Calling

Argum
ents

(nn)

(2) (3) (4) (5)

 BIND
RUN-UNIT

 NODENAME

 nodename

 DBNAME

database-nam
e

59 IDMS DB

Communic
ations

Block*

subschema-name* subschema-control*

 OR

subschema-lr-control
*

nodename

 BIND
RUN-UNIT FOR

subschema-na
me

 NODENAME

 nodename

 DBNAME

database-nam

e

59 IDMS DB

Communic
ations

Block*

subschema-name subschema-control*

 OR

subschema-lr-control

*

nodename

 BIND
record-name

48 record-id record-location*

 BIND

record-name

 TO

record-locatio
n

48 record-id record-location

 BIND

record-locatio
n

 WITH

record-name

48 record-id record-location

CA IDMS/DB Call Formats

336 DML Reference Guide for PLI

Major
Functi

on
Code

Database
Statement

(in COBOL
DML)

(1)

Calling

Argum
ents

(nn)

(2) (3) (4) (5)

 BIND
PROCEDURE

 FOR

procedure-na
me

 TO

 procedure-

control-locatio
n

73 procedure-
name

procedure-control-

location

09 READY 37

 READY
area-name

37 area-name

 READY

area-name

USAGE-MODE

IS

 RETRIEVAL

37 area-name

 READY
area-name

USAGE-MODE
IS

PROTECTED

 RETRIEVAL

39 area-name

 READY

area-name

USAGE-MODE
IS

 EXCLUSIVE

 RETRIEVAL

40 area-name

CA IDMS/DB Call Formats

Appendix B: Call Formats 337

Major
Functi

on
Code

Database
Statement

(in COBOL
DML)

(1)

Calling

Argum
ents

(nn)

(2) (3) (4) (5)

 READY
area-name

USAGE-MODE

IS

 UPDATE

36 area-name

 READY
area-name

USAGE-MODE
IS

PROTECTED

 UPDATE

38 area-name

 READY

area-name

USAGE-MODE

IS

 EXCLUSIVE

 UPDATE

41 area-name

 READY

USAGE-MODE

 IS ...

 **Choose

function

 code from
36-41,

 as shown

above

**

01 FINISH 02

18 COMMIT 66

 COMMIT ALL 95

19 ROLLBACK 67

CA IDMS/DB Call Formats

338 DML Reference Guide for PLI

Major
Functi

on
Code

Database
Statement

(in COBOL
DML)

(1)

Calling

Argum
ents

(nn)

(2) (3) (4) (5)

 ROLLBACK
CONTINUE

96

06 KEEP CURRENT 87

 KEEP

EXCLUSIVE

 CURRENT

88

 KEEP CURRENT

record-name

89 record-na
me

 KEEP
EXCLUSIVE

 CURRENT

record-name

90 record-na
me

 KEEP CURRENT

 WITHIN

 set-name

91 set-name

 KEEP

EXCLUSIVE

 CURRENT

 WITHIN

 set-name

93 set-name

 KEEP CURRENT

 WITHIN

 area-name

93 area-name

 KEEP
EXCLUSIVE

 CURRENT

 WITHIN

 area-name

94 area-name

16 IF set-name

 IS EMPTY
...

64 set-name

CA IDMS/DB Call Formats

Appendix B: Call Formats 339

Major
Functi

on
Code

Database
Statement

(in COBOL
DML)

(1)

Calling

Argum
ents

(nn)

(2) (3) (4) (5)

 IF set-name

 IS NOT
EMPTY...

65 set-name

 (Upon return to user run-unit, the Error Status indicator=' 0000'

 if set is empty;' 1601' if not empty.)

 IF set-name

 MEMBER ...

60 set-name

 IF NOT

set-name

 MEMBER ...

62 set-name

 (Upon return to user run-unit, the Error Status indicator = ' 0000'

 if the record(current of run unit) is l inked into the specified set;

 ' 1601' if it is not a member.)

Modification Statements

Major
Functio
n Code

Database Statement

(in COBOL DML)

(1) Calling
Arguments

(nn)

(2) (3) (4) (5)

12 STORE record-name 42 record-name

07 CONNECT

 record-name TO

 set-name

44 record-name set-name

08 MODIFY

 record-name

35 record-name

11 DISCONNECT

 record-name

 FROM set-name

46 record-name set-name

CA IDMS/DB Call Formats

340 DML Reference Guide for PLI

Major
Functio

n Code

Database Statement

(in COBOL DML)

(1) Calling
Arguments

(nn)

(2) (3) (4) (5)

02 ERASE record-name

ERASE record-name

 PERMANENT

 MEMBERS

ERASE record-name

 SELECTIVE

 MEMBERS

ERASE record-name

 ALL MEMBERS

52

03

53

4

record-name

record-name

record-name

record-name

Retrieval Statements

Major

Functi
on
Code

Database

Statement

(in COBOL DML)

(1)

Calling
Argum
ents

(nn)

(2) (3) (4) (5)

03 FIND DB-KEY

 db-key

75 db-key

 FIND

record-name

 DB-KEY IS

 db-key

06 record-name db-key

 FIND DB-KEY
db-key

PAGE_INFO
page-info

29 dbkey page-info

 FIND CURRENT 30

 FIND CURRENT

 record-name

07 record-name

CA IDMS/DB Call Formats

Appendix B: Call Formats 341

Major
Functi

on
Code

Database
Statement

(in COBOL DML)

(1)
Calling

Argum
ents

(nn)

(2) (3) (4) (5)

 FIND CURRENT

 WITHIN
set-name

08 set-name

 FIND CURRENT

 WITHIN

 area-name

09 area-name

 FIND NEXT
WITHIN

 set-name

14 set-name

 FIND NEXT

 record-name

 WITHIN
set-name

10 record-name set-name

 FIND PRIOR

 WITHIN

set-name

16 set-name

 FIND PRIOR

 record-name

 WITHIN
set-name

12 record-name set-name

 FIND FIRST

 WITHIN

set-name

20 set-name

 FIND FIRST

 record-name

 WITHIN
set-name

18 record-name set-name

 FIND LAST

 WITHIN

set-name

24 set-name

CA IDMS/DB Call Formats

342 DML Reference Guide for PLI

Major
Functi

on
Code

Database
Statement

(in COBOL DML)

(1)
Calling

Argum
ents

(nn)

(2) (3) (4) (5)

 FIND LAST

 record-name

 WITHIN
set-name

22 record-name set-name

 FIND
sequence-numb
er

 WITHIN

set-name

78 set-name sequence-nu
mber

 FIND
sequence-numb

er

 record-name

 WITHIN
set-name

76 record-name set-name sequence-number

 FIND NEXT
WITHIN

 area-name

15 area-name

 FIND NEXT

 record-name

 WITHIN

 area-name

11 record-name area-name

 FIND PRIOR
WITHIN

 area-name

17 area-name

 FIND PRIOR

 record-name

 WITHIN

 Area-name

13 record-name area-name

 FIND FIRST
WITHIN

 area-name

21 area-name

CA IDMS/DB Call Formats

Appendix B: Call Formats 343

Major
Functi

on
Code

Database
Statement

(in COBOL DML)

(1)
Calling

Argum
ents

(nn)

(2) (3) (4) (5)

 FIND FIRST

record-name

 WITHIN

 area-name

19 record-name area-name

 FIND LAST
WITHIN

 area-name

25 area-name

 FIND LAST

 record-name

 WITHIN

 area-name

23 record-name area-name

 FIND
sequence-numb
er

 WITHIN

 area-name

79 area-name sequence-nu
mber

 FIND

sequence-numb
er

record-name

 WITHIN

 area-name

77 record-name area-name sequence-number

 FIND OWNER

 WITHIN
set-name

31 set-name

 FIND CALC (ANY)

record-name

32 record-name

 FIND DUPLICATE

record-name

50 record-name

CA IDMS/DB Call Formats

344 DML Reference Guide for PLI

Major
Functi

on
Code

Database
Statement

(in COBOL DML)

(1)
Calling

Argum
ents

(nn)

(2) (3) (4) (5)

 FIND
record-name

 WITHIN

 set-name

USING

sort-field-name

33 record-name set-name sort-field-name

 FIND

record-name

 WITHIN

 set-name

 CURRENT
USING

sort-field-name

51 record-name set-name sort-field-name

 OBTAIN (any of the above FIND record selection expressions.)

 Call generated consists of arguments described above for the

 FIND in question plus an additional argument of IDBMSCOM

 (43) function. For example:

 OBTAIN CALC
record

32 record-name IDBMSCOM

 (43)

 OBTAIN PRIOR

 record-name

 WITHIN

set-name

12 record-name

 KEEP/KEEP EXCLUSIVE (any of the above FIND/OBTAIN

 record selection expressions.)

 Call generated consists of arguments described above for the

 FIND/OBTAIN in question plus one of the following additional

 IDBMSCOM function:

 KEEP..............................IDBMSCOM(87)

 KEEP EXCLUSIVE...........IDBMSCOM(88)

 For example:

CA IDMS/DB Call Formats

Appendix B: Call Formats 345

Major
Functi

on
Code

Database
Statement

(in COBOL DML)

(1)
Calling

Argum
ents

(nn)

(2) (3) (4) (5)

 OBTAIN KEEP
CALC

record-name

32 record-name IDBMSCOM

 (43)

IDBMSCOM

 (87)

 FIND KEEP

 EXCLUSIVE

 CURRENT

30 IDBMSCOM

 (88)

05 GET 43

 GET
record-name

34 record-name

17 RETURN db-key

 FROM

index-set-name

 CURRENCY

 KEY INTO

symbolic-key

81 index-set-name db-key symbolic-key

 RETURN db-key

 FROM

index-set-name

 FIRST

 KEY INTO

symbolic-key

82 index-set-name db-key symbolic-key

 RETURN db-key

 FROM

index-set-name

 LAST

 KEY INTO

symbolic-key

83 index-set-name db-key symbolic-key

CA IDMS/DB Call Formats

346 DML Reference Guide for PLI

Major
Functi

on
Code

Database
Statement

(in COBOL DML)

(1)
Calling

Argum
ents

(nn)

(2) (3) (4) (5)

 RETURN db-key

 FROM

index-set-name

 NEXT

 KEY INTO

 symbolic-key

84 index-set-name db-key symbolic-key

 RETURN db-key

 FROM

index-set-name

 PRIOR

 KEY INTO

 symbolic-key

85 index-set-name db-key symbolic-key

 RETURN db-key

 FROM

index-set-name

 USING

index-key-value

 KEY INTO

 symbolic-key

86 index-set-name db-key index-key-key symbolic-key

CA IDMS/DB Call Formats

Appendix B: Call Formats 347

ACCEPT Statements

Major
Functio

n Code

Database
Statement

(in COBOL DML)

(1)
Calling

Argumen
ts

(nn)

(2) (3) (4) (5)

15 ACCEPT db-key

 FROM
CURRENCY

54 db-key

 ACCEPT db-key

 FROM

CURRENCY

page-info

54 db-key 28 page-info

 ACCEPT db-key

 FROM

 record-name

 CURRENCY

55 record-name db-key

 ACCEPT db-key

 FROM

 record-name

 CURRENCY

 page-info

55 record-name db-key 28 page-in

fo

 ACCEPT db-key

 FROM

 set-name

 CURRENCY

57 set-name db-key

 ACCEPT db-key

 FROM

 set-name

 CURRENCY

 page-info

57 set-name db-key 28 page-in
fo

 ACCEPT db-key

 FROM

 area-name

 CURRENCY

56 area-name db-key

CA IDMS/DB Call Formats

348 DML Reference Guide for PLI

Major
Functio

n Code

Database
Statement

(in COBOL DML)

(1)
Calling

Argumen
ts

(nn)

(2) (3) (4) (5)

 ACCEPT db-key

 FROM

 area-name

 CURRENCY

 page-info

56 area-name db-key 28 page-in
fo

 ACCEPT db-key

 FROM

 set-name

 NEXT
CURRENCY

68 set-name db-key

 ACCEPT db-key

 FROM

 set-name

 NEXT
CURRENCY

page -info

68 set-name db-key 28 page-in

fo

 ACCEPT db-key

 FROM

 set-name

 PRIOR
CURRENCY

69 set-name db-key

 ACCEPT db-key

 FROM

 set-name

 PRIOR

CURRENCY

page -info

69 set-name db-key 28 page-in

fo

 ACCEPT db-key

 FROM

 set-name

 OWNER
CURRENCY

70 set-name db-key

CA IDMS/DB Call Formats

Appendix B: Call Formats 349

Major
Functio

n Code

Database
Statement

(in COBOL DML)

(1)
Calling

Argumen
ts

(nn)

(2) (3) (4) (5)

 ACCEPT db-key

 FROM

 set-name

 OWNER

CURRENCY

page -info

70 set-name db-key 28 page-in
fo

 ACCEPT
db-statistics

 FROM

 IDMS
STATISTICS

71 db-statistics

 ACCEPT

 bind-address

 FROM

 record-name

 BIND

72 record-name bind-address

 ACCEPT
procedure-contr

ol-location

 FROM

procedure-nam

e

 PROCEDURE

74 procedure-name procedure-control-locati
on

 ACCEPT

page-info-locati
on FOR
record-name

28 record-name location page-info

CA IDMS/DB Call Formats

350 DML Reference Guide for PLI

LRF DML Statements

Major
Functi

on
Code

Database
Statement

(in COBOL DML)

(1)
Calling

Argume
nts

(nn)

(2) (3) (4) (5)

20 OBTAIN FIRST

logical-record-na
me

99 subschema-lr-ctrl* logical-record-location*

 OBTAIN FIRST

logical-record-na
me

 INTO

alt-logical-record

 location

99 subschema-lr-ctrl* logical-record-location*

 OBTAIN NEXT

logical-record-na

me

99 subschema-lr-ctrl* logical-record-location*

 OBTAIN NEXT

logical-record-na

me

 INTO

alt-logical-record

 location

99 subschema-lr-ctrl* logical-record-location*

 MODIFY
logical-record-na

me

99 subschema-lr-ctrl* logical-record-location*

CA IDMS/DB Call Formats

Appendix B: Call Formats 351

Major
Functi

on
Code

Database
Statement

(in COBOL DML)

(1)
Calling

Argume
nts

(nn)

(2) (3) (4) (5)

 MODIFY
logical-record-

 name

 FROM

alt-logical-record
-

 location

99 subschema-lr-ctrl* alt-logical-record-location*

 STORE

logical-record-na
me

99 subschema-lr-ctrl* logical-record-location*

 STORE
logical-record-

 name

 FROM

alt-logical-record
-

 location

99 subschema-lr-ctrl* alt-logical-record-location*

 ERASE

logical-record-na
me

99 subschema-lr-ctrl* logical-record-location*

 ERASE

logical-record-

 name

 FROM

alt-logical-record
-

 location

99 subschema-lr-ctrl* alt-logical-record-location*

 To differentiate between the LRF DML statements, the DML

 precompiler places the name of the verb issued into the LRC

 Block (subschema-lr-ctrl).

CA IDMS/DC Call Formats

352 DML Reference Guide for PLI

CA IDMS/DC Call Formats

CA IDMS/DC passes the DCBMSCOM array as argument 1.

Note: CA IDMS/DC also passes information in the DCSTR, DCFLG, and DCNUM fields of
the SUBSCHEMA-CTRL block.

Program Management Statements

Major
Functi
on

Code

Communic
ations
statement

(in COBOL
DML)

Callin
g (1)
argum

ents

(nn)

(2) (3) (4) (5)

30 TRANSFER

CONTROL

23 DCFLG1 DCSTR2 parameter

30 DC RETURN 19

34 LOAD

TABLE

15 01-level-program-location end-01-level-program-location

34 DELETE
TABLE

5 01-level-program-location

33 SET ABEND

EXIT
(STATE)

20

33 ABEND 1

Storage Management Statements

Majo
r

Funct
ion
Code

Communicat
ions

statement
(in COBOL
DML)

Calling
(1)

argume
nts

(nn)

(2) (3) (4) (5)

32 GET
STORAGE

13 01-level-storage-data-location end-storage-data-location

CA IDMS/DC Call Formats

Appendix B: Call Formats 353

Majo
r

Funct
ion
Code

Communicat
ions

statement
(in COBOL
DML)

Calling
(1)

argume
nts

(nn)

(2) (3) (4) (5)

32 FREE
STORAGE

10 01-level-storage-data-location start-free-storage-location

Task Management Statements

Major
Functi
on

Code

Communic
ations
statement

Calling (1)
arguments

 (nn)

(2) (3) (4) (5)

37 ATTACH 3

37 CHANGE
PRIORITY

4

39 ENQUEUE 9 DCFLG1 DCBMSCOM
(mode)

DCBMSCOM(length) resource-id..

39 DEQUEUE 8 DCFLG1 DCBMSCOM
(length)

resource-id..

31 WAIT 24 ecb

31 POST 16 ecb

Time Management Statements

Major
Functi
on

Code

Communic
ations
statement

(in COBOL
DML)

Calling (1)
arguments

 (nn)

(2) (3) (4) (5)

35 GET TIME 14 return-time return-date

35 SET TIMER 21 start-task-data-location end-start-task-data-location

CA IDMS/DC Call Formats

354 DML Reference Guide for PLI

Major
Functi

on
Code

Communic
ations

statement
(in COBOL
DML)

Calling (1)
arguments

 (nn)

(2) (3) (4) (5)

35 SET TIMER
(post)

21 post- ecb

Scratch Management Statistics

Maj
or
Func
tion

Cod
e

Communic
ations
statement
(in COBOL

DML)

Calling
(1)
argume
nts

(nn)

(2) (3) (4) (5)

43 PUT
SCRATCH

18 scratch-data-location end-scratch-data-location

43 GET
SCRATCH

12 return-scratch-data-location end-scratch-data-location

43 DELETE

SCRATCH

7

Queue Management Statements

Maj

or
Func
tion
Code

Communica

tions
statement

 (in COBOL
DML)

Calling

(1)
argumen
ts

 (nn)

(2) (3) (4) (5)

44 PUT QUEUE 17 queue-data-location end-queue-data-location

44 GET QUEUE 11 return-queue-data-location end-queue-data-location

44 DELETE
QUEUE

6

CA IDMS/DC Call Formats

Appendix B: Call Formats 355

Terminal Management Statements

Majo
r

Funct
ion
Code

Communicat
ions

statement
(in COBOL
DML)

Calling
(1)

argume
nts

 (nn)

(2) (3) (4) (5)

45 READ

TERMINAL

30 input-data-locat

ion

end-input-data

-location

45 WRITE
TERMINAL

30 output-data-loc
ation

end-output-da
ta-location

45 WRITE THEN

READ
TERMINAL

30 output-data-loc

ation

end-output-da

ta-location

input-data-location end-input-data-locatio

n

45 CHECK

TERMINAL

31 input-data-locat

ion

end-input-data

-location

47 READ LINE
FROM
TERMINAL

32 input-data-locat
ion

end-input-data
-location

47 WRITE LINE
TO
TERMINAL

32 output-data-loc
ation

end-output-da
ta-location

47 END LINE
TERMINAL
SESSION

32

48 WRITE

PRINTER

37 message-locatio

n

end-message-l

ocation

46 MAP IN (IO) 34 MRB-mapname

46 MAP IN

(NOIO)

34 MRB-mapname mapped-data-l

ocation

end-mapped-data-lo

cation

46 MAP IN
(paging) (a)

34 MRB-mapname data-field-nam
e

sequence-field-name page-number

46 MAP IN

(paging) (b)

34 MRB-mapname key page-number

46 MAP OUT
(IO)

34 MRB-mapname message-text end-message-data-lo
cation

 OR

DCBMSCOM (length)

CA IDMS/DC Call Formats

356 DML Reference Guide for PLI

Majo
r

Funct
ion
Code

Communicat
ions

statement
(in COBOL
DML)

Calling
(1)

argume
nts

 (nn)

(2) (3) (4) (5)

46 MAP IN
(NOIO)

34 MRB-mapname mapped-data-l
ocation

end-mapped-data-
location

46 MAP OUT
(paging)

34 MRB-mapname message-text end-message-data-lo
cation

OR

DCBMSCOM (length)

key

46 MAP OUTIN 34 MRB-mapname message-text end-message-data-lo
cation

 OR

DCBMSCOM (length)

46 MODIFY

MAP

93 MRB-mapname MRE MRB-FLDLST

46 INQUIRE
MAP (a)

92 MRB-mapname MRE

46 INQUIRE

MAP (b)

92 MRB-mapname

46 INQUIRE
MAP (c)

92 MRB-mapname MRE

46 INQUIRE
MAP (d)

92 MRB-mapname MRB-FLDLST

46 STARTPAGE 40 MRB-mapname

46 ENDPAGE 41

Utility Statements

Majo
r
Funct
ion

Code

Communica
tions
statement
(in COBOL

DML)

Calling
(1)
argum
ents

(nn)

(2) (3) (4) (5)

48 ACCEPT 2 return-location

CA IDMS/DC Call Formats

Appendix B: Call Formats 357

Majo
r

Funct
ion
Code

Communica
tions

statement
(in COBOL
DML)

Calling
(1)

argum
ents

(nn)

(2) (3) (4) (5)

40 SNAP 22 DCSTR1 DCSTR1 (6)
begin-dump-loc
ation

DCSTR1 (7)
end-dump-location

title (8)

DCBMSCOM(1)

49 SEND
MESSAGE

38 user-id message-locatio
n

end-message-location

38 BIND
TRANSACTI

ON
STATISTICS

28

38 ACCEPT

TRANSACTI
ON
STATISTICS

28 return-statistics-d

ata-location

38 END

TRANSACTI
ON
STATISTICS

28 return-statistics-d

ata-location

51 KEEP
LONGTERM

29 record-name

set-name

area-name

36 WRITE LOG 25 text-return-locatio

n

end-text-return

-location

reply-location

(6)

parameter-location

end-reply-location

(7)

end-parameter-loca
tion

Recovery Statements

Major
Functio

n Code

Communic
ations

statement
(in COBOL
DML)

Calling
(1)

argument
s

 (nn)

(2) (3) (4) (5)

50 COMMIT 66

CA IDMS/DC Call Formats

358 DML Reference Guide for PLI

Major
Functio

n Code

Communic
ations

statement
(in COBOL
DML)

Calling
(1)

argument
s

 (nn)

(2) (3) (4) (5)

50 COMMIT
TASK

27

50 FINISH 02

50 FINISH

TASK

27

50 ROLLBACK 67

50 ROLLBACK
TASK

27

50 WRITE
JOURNAL

26 record-location end-record-location

DC_BATCH Statement

Major
Function
Code

Communications
statement (in
COBOL DML)

Calling (1)
arguments

 (nn)

(2) (3) (4) (5)

14 BIND-TASK 28 DCSTR2

Appendix C: Keywords 359

Appendix C: Keywords

This appendix contains a l ist of keywords recognized by the DML precompiler, including

words applicable in the CA IDMS/DC environment only. All keywords marked with an
asterisk are also reserved words. Reserved words cannot be used for user-defined
element, record, set, procedure, or area names.

Note: The method of parsing used by the IDMSDMLP preprocessor is significantly
different in CA IDMS release 12.0 and later releases from that used in prior releases. The

current parsing method looks at individual words in the source code. If it encounters a
keyword, it assumes that the keyword should be expanded and tries to do so. Invalid
use of reserved words can thus result in either coding errors or Syntax errors. For
example, if you use FIND as a variable, the parser will try to handle it as the DML verb

FIND.

*ABEND INTERNAL *REMARKS

 ABORT INTERVAL REPLACE

*ACCEPT INTO REPLY

 AID INVOKED REPORT

 ALARM IO REQUIRED

 ALL IS REREAD

 ALPHAMERIC JOURNAL RESETKBD

 ALWAYS JUSTIFY RESETMDT

 ANY *KEEP RESUME

 AREA KEY RETENTION

 ASSIGN LAST RETURNKEY

 AT LEAVE RETRIEVAL

*ATTACH LEFT RETRY

 ATTRIBUTES LENGTH *RETURN

 BACKPAGE LEVELS REVERSE_VIDEO

 BACKSCAN LINE REVERSED

*BIND LINK REWIND

 BLINK *LINKAGE RIGHT

 BLUE LIST *ROLLBACK

 BRIGHT LITERALS RUN

 BROWSE *LOAD RUN_UNIT

 BUFFER LOCK *SCHEMA

 BUT LOG SCRATCH

 BY LONG SCREEN

 CALC LONGTERM SCREENSIZE

*CALL LR SECONDS

CA IDMS/DC Call Formats

360 DML Reference Guide for PLI

 CANCEL LSSC_NODN *SECTION

*CHANGE LTERM *SELECT

 CHANGED MANUAL SELECTIVE

*CHECK *MAP *SEND

 CLASS MAP_BINDS SEQUENCE

 CLEAR MAP_CONTROL SEQUENCE-NUMBER

 CODE MAP_CONTROLS SESSION

*COMMIT MAP_RECORDS *SET

 COMP MAPS SHARE

 COMP_3 MAX SHARED

*CONNECT MDT SHORT

 CONTENTS MEMBER SKIP

 CONTINUE MEMBERS SKIP1

 CONTROL MESSAGE SKIP2

 COPIES MODE SKIP3

*COPY MODIFIED SNAP

 CORRECT *MODIFY SOME

 CURRENCY MODULE SPAN

 CURRENT MOVE STANDARD

 CURSOR MRB_FLDLST START

 DARK NAME STARTPAGE

*DATA NATIVE STARTPRT

 SQL

 DATABASE_KEY NEWPAGE STATISTICS

 DATASTREAM NEXT STGID

 DATE NLCR *STOP

 DB NO STORAGE

 DB_KEY NOALARM *STORE

 DBNAME NOBACKPAGE SUBSCHEMA_AREANAMES

*DC NOBACKSCAN SUBSCHEMA_BINDS

 DEBUG NOBLINK SUBSCHEMA_CONTROL

*DECLARATIVES NOCOLOR SUBSCHEMA_CTRL

*DELETE NODEADLOCK SUBSCHEMA_DESCRIPTION

*DEQUEUE NODENAME SUBSCHEMA_DML-LR-

 DEST NODUMP DESCRIPTION

 DESTINATION NOIO SUBSCHEMA_LR-CONTROL

 DETAIL NOKBD SUBSCHEMA_LR-CTRL

 DETECT NOLOCK SUBSCHEMA_LR-

 DFLD NOMDT DESCRIPTION

*DISCONNECT NONE SUBSCHEMA_LR-NAMES

 DISP NOPAD SUBSCHEMA_LR-RECORDS

 DISPLAY NOPRT SUBSCHEMA_NAMES

 DIVISION NORETURN SUBSCHEMA_RECNAMES

 SUBSCHEMA_RECORD_BINDS

 DUMP NORMAL SUBSCHEMA_RECORDS

 DUPLICATE NORMAL_VIDEO SUBSCHEMA-SETNAMES

CA IDMS/DC Call Formats

Appendix C: Keywords 361

 EAU NOSPAN SUBSCHEMA_SSNAME

 ECHO NOT SYSTEM

 EDIT *NOTE SYSVERSION

 EJECT NOTIFICATION TABLE

 EMPTY NOTIFY TASK

*END NOUNDERSCORE TEMPORARY

 ENDPAGE NOWAIT TERMINAL

 ENDRPT NOWRITE TEST

*ENQUEUE NULL TEXT

*ENTRY NUMERIC THEN

*ENVIRONMENT *OBTAIN TIME

*ERASE OF TIMEOUT

 ERROR OFF TIMER

 EVENT ON TITLE

 EXCEPT ONLY TO

 EXCLUSIVE *OPEN TRACE

 EXIT OPTIONAL TRANSACTION

 EXITS OUT *TRANSFER

 EXTENDED OUTIN TRUNCATED

 EXTERNAL OUTPUT TURQUOISE

 EXTRANEOUS OWNER TYPE

 FIELD PAD UNDERSCORE

 FIELDS PAGE UNFORMATTED

 FILE PAGE_INFO UNPROTECTED

*FIND PAGING UPDATE

*FINISH PARMS UPGRADE

 FIRST PERMANENT USAGE_MODE

 FOR PINK USER

*FREE POSITION USING

 FROM *POST VALUE

*GET PREFIX VERSION

 GREEN PRINTER *WAIT

 HEADER PRIOR WCC

 HOLD PRIORITY WHERE

 I_O PRIVACY WHITE

*ID *PROCEDURE WITH

*IDENTIFICATION PROGRAM WITHIN

 IDMS *PROGRAM_ID *WORKING_STORAGE

*IDMS_CONTROL PROTECTED *WRITE

 IDMS_RECORDS PROTOCOL XCTL

 IDMS_STATISTICS PTERM YELLOW

CA IDMS/DC Call Formats

362 DML Reference Guide for PLI

*IF *PUT YES

 IGNORED QUEUE 40CR

 IN *READ 64CR

 INCREMENTED *READY 80CR

 INPUT RECORD

*INQUIRE RED

 INTENT REDISPATCH

 RELEASE

Appendix D: Notes to Teleprocessing Monitor Users 363

Appendix D: Notes to Teleprocessing
Monitor Users

This appendix describes special considerations relating to application programs running

under teleprocessing (TP) monitors supported by DC/UCF systems (that is, CICS,
INTERCOMM, SHADOW, and TASK/MASTER).

This section contains the following topics:

Notes (see page 363)

Notes

While there are no special coding requirements for TP-monitor transactions, the
following guidelines should be adhered to:

DML statements should be coded so that all database requests (for Example, BIND,

READY, OBTAIN, FINISH) are executed together whenever possible to achieve maximum
efficiency and ease of recovery.

■ For each TP monitor, you should check with the DBA to determine the operating
mode (protocol) installed. The proper mode must then be specified in the MODE

clause of the DECLARE SUBSCHEMA statement.

■ The DML precompiler should be executed before the TP-monitor precompiler.

■ For CICS, INTERCOMM, and SHADOW applications, the mode, as installed, may
require the inclusion of additional statements in each program. These requirements
and the applicable modes are outlined in the following table.

Note: The same rules apply to the INCLUDE IDMS statements used to insert

logical-record source code components into the program: SUBSCHEMA_CTRL,
SUBSCHEMA_LR_CTRL, and SUBSCHEMA_LR_RECORDS should be copied into the
program (except under CICS_EXEC, components should be copied into the

program).

Notes

364 DML Reference Guide for PLI

TP monitor If mode is... Code these statements

CICS CICS_STANDARD *DECLARE

 1 TWA BASED (TPTR), 3 FILLER, 3 INCLUDE
IDMS(SUBSCHEMA_CTRL), 3 INCLUDE

 IDMS(SUBSCHEMA_RECORDS), ADDRESS
TWA(TPTR);

 or

 **INCLUDE IDMS(SUBSCHEMA_CTRL);

 INCLUDE IDMS(SUBSCHEMA_RECORDS);

(A CICS GETMAIN must be issued for the
SUBSCHEMA_CTRL and for each RECORD being
copied.)

 INCLUDE IDMS(IDMS_WAIT);

CICS CICS_EXEC INCLUDE IDMS(SUBSCHEMA_CTRL);

INCLUDE IDMS(SUBSCHEMA_RECORDS);

INTERCOMM INTERCOMM INCLUDE IDMS(SUBSCHEMA_CTRL);

INCLUDE IDMS(SUBSCHEMA_RECORDS);

SHADOW SHADOW INCLUDE IDMS(SUBSCHEMA_CTRL);

INCLUDE IDMS(SUBSCHEMA_RECORDS);

* If SUBSCHEMA_CTRL, SUBSCHEMA_RECORDS, and additional data does not exceed
4,096 bytes.

** If SUBSCHEMA_CTRL, SUBSCHEMA_RECORDS, and additional data exceeds 4,096

bytes.

Appendix E: Sample Programs and Database Definition 365

Appendix E: Sample Programs and
Database Definition

This appendix contains:

■ CA IDMS/DC programming considerations

■ A sample PL/I batch program

■ A sample PL/I online program

■ A sample database definition - The EMPLOYEE database

The sample programs access the EMPLOYEE database. The database is shown in a
diagram at the end of this appendix.

This section contains the following topics:

CA IDMS/DC Programming Considerations (see page 365)
Sample Batch Program (see page 367)
Sample Online Program (see page 388)
EMPLOYEE Database Definition (see page 408)

CA IDMS/DC Programming Considerations

These programming considerations consist of PL/I -specific details relevant to designing
CA IDMS/DC programs:

■ Reentrant code is program code that does not modify itself during program

execution. CA IDMS/DC multithreads al l task requests through a single copy of a
reentrant program. The CA IDMS/DC default for PL/I programs is reentrant. To
ensure that your program is reentrant, it must be compiled with the REENTRANT
option of the PROCEDURE statement. Some PL/I compilers do not support

reentrancy. If your compiler does not support reentrancy, your programs must be
declared to CA IDMS/DC as NONREENTRANT.

■ Use the COUNT and REPORT execution options to capture statistics in the CA
IDMS/DC log. You can use these statistics to optimize storage requirements and to
analyze program performance.

CA IDMS/DC Programming Considerations

366 DML Reference Guide for PLI

■ Avoid using GET STORAGE repeatedly for relatively small areas when most tasks in
the system are accessing larger areas. It may be more advantageous to decl are PL/I

variables explicitly and allow CA IDMS/DC and PL/I to manage the storage. Internal
management of storage for PL/I declared variables is handled in the same way
under IDMS/DC as it is in the batch environment, with one exception. When PL/I

code would normally issue an operating system request for storage, CA IDMS/DC
satisfies the request from the storage pool. Once a block of storage is allocated, it is
managed as described in the PL/I programmer's guide for your installation.

■ Use the REPORT execution option to determine the amount of storage actually used
during program execution. Use the report statistics to set the ISA SIZE for the

program in the CA IDMS/DC system generation.

■ The PL/I COUNT and FLOW options can be used to gather the following statistics:

– The number of times each procedure is called

– The amount of storage used during PL/I program execution.

To use these options, refer to the PL/I programmer's guide for your installation. The
following considerations apply to the use of these options under CA IDMS/DC:

– The statistics are written to the CA IDMS/DC system log rather than to an

external fi le. The statistics record type is MESSAGES.

– The statistics are not written to the log if the program terminates execution
with an IDMS_DC RETURN statement. The program must use the PL/I RETURN
statement. After statistics are written to the log, CA IDMS/DC passes control to

the next higher program in the transaction thread, as if an CA IDMS/DC
RETURN had been coded.

– The REPORT and COUNT options should not be used together, since the COUNT
option adds storage overhead. Accordingly, report statistics would not be
accurate.

– The REPORT and COUNT options are not intended to be used in a production
environment. Their use adds considerable storage and CPU overhead under CA
IDMS/DC, just as it would in a batch environment. Once the statistics have
been gathered, these options should be removed from the program.

Sample Batch Program

Appendix E: Sample Programs and Database Definition 367

Sample Batch Program

The following PL/I batch program accesses database records using navigational DML
statements. The following figure shows the program as it appears in the various stages
of the compilation process. You create a program using PL/I and DML statements. This
program is input to the DML precompiler, which produces a l isting that contains

diagnostics and, optionally, DML source statements. The expanded code is input to the
PL/I compiler, which generates a l isting of the fully expanded code and diagnostics.

Batch Input to the DML Precompiler

The following is sample batch input to the DML precompiler for PL/I.

 //SYSIPT DD *

 /*RETRIEVAL*/

 /*DMLIST*/

 /*NO_ACTIVITY_LOG*/

 /*SCHEMA_COMMENTS*/

 DEPTRPT: PROC OPTIONS (MAIN) REORDER;

 /* DECLARE SUBSCHEMA AND MODE */

 DCL (EMPSS01 SUBSCHEMA, EMPSCHM SCHEMA VERSION 100)

 MODE (BATCH) DEBUG;

 /* REQUIRED DECLARATIVES */

 DCL IDMS ENTRY OPTIONS(INTER,ASM);

 DCL ABORT ENTRY OPTIONS(INTER,ASM);

 DCL ADDR BUILTIN;

Sample Batch Program

368 DML Reference Guide for PLI

 /* CONSTANTS */

 DCL DEPT_HEADER CHAR (11) INIT ('DEPT REPORT');

 DCL 1 HEAD_LINE,

 5 HEAD_DEPT_ID CHAR (9) INIT ('DEPT ID '),

 5 HEAD_EMP_ID CHAR (8) INIT ('EMP ID '),

 5 HEAD_LNAME CHAR (17) INIT ('LAST NAME '),

 5 HEAD_FNAME CHAR (10) INIT ('FIRST NAME');

 DCL PRTHEAD CHAR (44) DEFINED HEAD_LINE;

 /* LOGICAL CONSTANTS */

 DCL YES BIT(1) INIT ('1'B);

 DCL NO BIT(1) INIT ('0'B);

 DCL EOF BIT(1) INIT ('0'B);

 DCL 1 PROGRAM_FLAGS,

 5 DB_END_OF_SET BIT(1) INIT ('0'B);

 /* FILE DECLARATIONS */

 DCL INFILE FILE RECORD INPUT ENV (F BLKSIZE(80));

 DCL OUTFILE FILE RECORD OUTPUT ENV (F RECSIZE(133) CTLASA);

 DCL SYSPRINT FILE PRINT;

 /* THE FOLLOWING RECORDS ARE DEFINED THROUGH IDD. */

 /* THE DML PRECOMPILER AUTOMATICALLY CONVERTS HYPHENS */

 /* TO UNDERSCORES. */

 INCLUDE IDMS (DEPT-IN-REC);

 INCLUDE IDMS (PRT-OUT-REC);

 /* REDEFINE PRT_OUT_REC */

 DCL PRTREC CHAR (44) DEFINED PRT_OUT_REC;

 DCL 1 PRINT_AREA,

 5 CC CHAR (1),

 5 PRINT_LINE CHAR (132);

 DCL 1 SPACES CHAR (132) INIT ((132) ' ');

 /* POSSIBLE VALUES FOR CC */

 DCL 1 CONTROL_CHARACTERS,

 5 NEW_PAGE CHAR (1) INIT ('1'),

 5 SINGLE_SPACE CHAR (1) INIT (' '),

 5 DOUBLE_SPACE CHAR (1) INIT ('0'),

 5 TRIPLE_SPACE CHAR (1) INIT ('-'),

 5 OVERPRINT CHAR (1) INIT ('+');

Sample Batch Program

Appendix E: Sample Programs and Database Definition 369

 INCLUDE IDMS (SUBSCHEMA_CTRL);

 INCLUDE IDMS (DEPARTMENT);

 INCLUDE IDMS (EMPLOYEE);

 /***/

 /* PROCESSING FOLLOWS */

 /* OPEN THE FILES */

 /* INFILE ── INPUT */

 /* OUTFILE ── OUTPUT */

 /* SYSPRINT ── USED BY IDMS_STATUS */

 OPEN FILE (INFILE);

 OPEN FILE (OUTFILE);

 OPEN FILE (SYSPRINT);

 ON ENDFILE (INFILE) EOF = YES;

 /* BIND RUN UNIT AND RECORDS EXPLICITLY */

 BIND RUN_UNIT

 NODENAME ('')

 DBNAME ('');

 CALL IDMS_STATUS;

 BIND RECORD (EMPLOYEE);

 CALL IDMS_STATUS;

 BIND RECORD (DEPARTMENT);

 CALL IDMS_STATUS;

 READY;

 CALL IDMS_STATUS;

 READ FILE (INFILE) INTO (DEPT_IN_REC);

 DO WHILE (EOF);

 DB_END_OF_SET = NO;

 DEPT_ID_0410 = DEPT_ID_IN;

 OBTAIN CALC RECORD (DEPARTMENT);

 /* 0326 MEANS */

 /* DEPT NOT FOUND */

 IF ERROR_STATUS = '0326' THEN CALL NO_DEPT;

 ELSE

 DO;

 IF SET (DEPT_EMPLOYEE) EMPTY THEN CALL NO_EMP;

 ELSE

 CALL NEW_DEPT;

 DO UNTIL (DB_END_OF_SET);

 OBTAIN NEXT RECORD (EMPLOYEE)

 SET (DEPT_EMPLOYEE);

 IF ERROR_STATUS = '0307' THEN

 DB_END_OF_SET = YES;

Sample Batch Program

370 DML Reference Guide for PLI

 ELSE

 CALL IDMS_STATUS;

 IF DB_END_OF_SET THEN

 DO;

 /* MOVE FIELDS TO */

 /* OUTPUT RECORD */

 DEPT_ID_OUT = DEPT_ID_0410;

 EMP_ID_OUT = EMP_ID_0415;

 EMP_LNAME_OUT = EMP_LAST_NAME_0415;

 EMP_FNAME_OUT = EMP_FIRST_NAME_0415;

 CC = DOUBLE_SPACE;

 PRINT_LINE = SPACES;

 PRINT_LINE = PRTREC;

 CALL PRINT_A_LINE;

 END; /* END PRINTING DO */

 END; /* END DO UNTIL */

 END; /* END 0326 ELSE DO */

 READ FILE (INFILE) INTO (DEPT_IN_REC);

 END; /* END DO WHILE EOF */

 CALL END_PROCESSING;

 NEW_DEPT: PROC;

 PRINT_LINE = SPACES; /* NEW PAGE FOR EACH */

 CC = NEW_PAGE; /* DEPARTMENT */

 PRINT_LINE = DEPT_HEADER;

 CALL PRINT_A_LINE;

 PRINT_LINE = SPACES;

 CC = DOUBLE_SPACE;

 PRINT_LINE = DEPT_ID_0410;

 CALL PRINT_A_LINE;

 PRINT_LINE = SPACES;

 CC = DOUBLE_SPACE;

 PRINT_LINE = PRTHEAD;

 CALL PRINT_A_LINE;

 END NEW_DEPT;

 NO_DEPT: PROC;

 PRINT_LINE = SPACES;

 CC = NEW_PAGE;

 PRINT_LINE = DEPT_ID_IN;

 CALL PRINT_A_LINE;

 PRINT_LINE = SPACES;

 CC = DOUBLE_SPACE;

 PRINT_LINE = '** DEPARTMENT SPECIFIED ABOVE NOT FOUND **';

Sample Batch Program

Appendix E: Sample Programs and Database Definition 371

 CALL PRINT_A_LINE;

 END NO_DEPT;

 NO_EMP: PROC;

 PRINT_LINE = SPACES;

 CC = NEW_PAGE;

 PRINT_LINE = DEPT_ID_IN;

 CALL PRINT_A_LINE;

 PRINT_LINE = SPACES;

 CC = DOUBLE_SPACE;

 PRINT_LINE = DEPT_ID_0410;

 CALL PRINT_A_LINE;

 PRINT_LINE = SPACES;

 CC = DOUBLE_SPACE;

 PRINT_LINE = '** DEPARTMENT SPECIFIED IS EMPTY ***';

 CALL PRINT_A_LINE;

 END NO_EMP;

 END_PROCESSING: PROC;

 FINISH;

 CLOSE FILE (INFILE);

 CLOSE FILE (OUTFILE);

 CLOSE FILE (SYSPRINT);

 END END_PROCESSING;

 PRINT_A_LINE: PROC;

 WRITE FILE (OUTFILE) FROM (PRINT_AREA);

 END PRINT_A_LINE;

 INCLUDE IDMS (IDMS_STATUS);

 END DEPTRPT;

Sample Batch Program

372 DML Reference Guide for PLI

Output from the DML Precompiler

The following shows the sample program as output from the DML precompiler.

Since the /*DMLIST*/ option is specified, printed output consists of expanded code as
well as diagnostics. This output is in the following format:

■ Heading—The top of each page of the listing contains the name of the DML
precompiler being used (IDMSDMLP), the release number of the processor, the
name of the listing (Listing of Messages), the date, the time, and the page number.

■ Input listing and DML precompiler-generated code—The body of the printout

contains the program input l isting along with the DML precompiler -generated code,
formatted as follows:

Column Explanation

1 Sequence numbers generated by the DML precompiler

12 Line numbers generated by the DML precompiler

19 Line numbers generated by the user program

26 Text of the PL/I source code including text generated by the DML
precompiler

■ Warning and Error Messages—Diagnostics are imbedded in the input l isting and
DML precompiler-generated code following the errant l ines of source code. For a
complete description of DML precompiler error messages, refer to CA IDMS

Messages and Codes Guide.

IDMSDMLP nn.n CA, INC. DML PROCESSOR FOR PL/I DATE TIME PAGE

 - - LISTING OF MESSAGES - - mm/dd/yy hhmmsshh 0001

 00001 /*RETRIEVAL*/

 00002 /*DMLIST*/

 00003 /*NO_ACTIVITY_LOG*/

 00004 /*SCHEMA_COMMENTS*/

 00005 DEPTRPT: PROC OPTIONS (MAIN) REORDER;

 00006 /* DECLARE SUBSCHEMA AND MODE */

DMLP 00008 DCL (EMPSS01 SUBSCHEMA, EMPSCHM SCHEMA VERSION 100)

 00009 MODE (BATCH) DEBUG;

Sample Batch Program

Appendix E: Sample Programs and Database Definition 373

 00010

 00011 /* REQUIRED DECLARATIVES */

 00012 DCL IDMS ENTRY OPTIONS(INTER,ASM);

 00013 DCL ABORT ENTRY OPTIONS(INTER,ASM);

 00014 DCL ADDR BUILTIN;

 00015

 00016 /* CONSTANTS */

 00017 DCL DEPT_HEADER CHAR (11) INIT ('DEPT REPORT');

 00018 DCL 1 HEAD_LINE,

 00019 5 HEAD_DEPT_ID CHAR (9) INIT ('DEPT ID '),

 00020 5 HEAD_EMP_ID CHAR (8) INIT ('EMP ID '),

 00021 5 HEAD_LNAME CHAR (17) INIT ('LAST NAME '),

 00022 5 HEAD_FNAME CHAR (10) INIT ('FIRST NAME');

 00023

 00024 DCL PRTHEAD CHAR (44) DEFINED HEAD_LINE;

 00025

 00026 /* LOGICAL CONSTANTS */

 00027 DCL YES BIT(1) INIT ('1'B);

 00028 DCL NO BIT(1) INIT ('0'B);

 00029 DCL EOF BIT(1) INIT ('0'B);

 00030

 00031 DCL 1 PROGRAM_FLAGS,

 00032 5 DB_END_OF_SET BIT(1) INIT ('0'B);

 00033

 00034 /* FILE DECLARATIONS */

 00035 DCL INFILE FILE RECORD INPUT ENV (F BLKSIZE(80));

 00036 DCL OUTFILE FILE RECORD OUTPUT ENV (F RECSIZE(133) CTLASA);

 00037 DCL SYSPRINT FILE PRINT;

 00038

 00039 /* THE FOLLOWING RECORDS ARE DEFINED THROUGH IDD. */

 00040 /* THE DML PRECOMPILER AUTOMATICALLY CONVERTS HYPHENS */

 00041 /* TO UNDERSCORES. */

 00042

DMLP 00044 INCLUDE IDMS (DEPT-IN-REC);

DMLP 00049 INCLUDE IDMS (PRT-OUT-REC);

 00058

 00059 /* REDEFINE PRT_OUT_REC */

 00060 DCL PRTREC CHAR (44) DEFINED PRT_OUT_REC;

 00061

 00062 DCL 1 PRINT_AREA,

 00063 5 CC CHAR (1),

 00064 5 PRINT_LINE CHAR (132);

 00065

 00066 DCL 1 SPACES CHAR (132) INIT ((132) ' ');

 00067

 00068 /* POSSIBLE VALUES FOR CC */

 00069 DCL 1 CONTROL_CHARACTERS,

Sample Batch Program

374 DML Reference Guide for PLI

 00070 5 NEW_PAGE CHAR (1) INIT ('1'),

 00071 5 SINGLE_SPACE CHAR (1) INIT (' '),

 00072 5 DOUBLE_SPACE CHAR (1) INIT ('0'),

 00073 5 TRIPLE_SPACE CHAR (1) INIT ('-'),

 00074 5 OVERPRINT CHAR (1) INIT ('+');

 00075

DMLP 00077 INCLUDE IDMS (SUBSCHEMA_CTRL);

DMLP 00103 INCLUDE IDMS (DEPARTMENT);

DMLP 00110 INCLUDE IDMS (EMPLOYEE);

 00140

 00141 /***/

 00142 /* PROCESSING FOLLOWS */

 00143 /* OPEN THE FILES */

 00144 /* INFILE ── INPUT */

 00145 /* OUTFILE ── OUTPUT */

 00146 /* SYSPRINT ── USED BY IDMS_STATUS */

 00147 OPEN FILE (INFILE);

 00148 OPEN FILE (OUTFILE);

 00149 OPEN FILE (SYSPRINT);

 00150 ON ENDFILE (INFILE) EOF = YES;

 00151

 00152 /* BIND RUN UNIT AND RECORDS EXPLICITLY */

DMLP0001 00154 BIND RUN_UNIT

 00155 NODENAME ('')

 00156 DBNAME ('');

 00167

 00168 CALL IDMS_STATUS;

DMLP0002 00170 BIND RECORD (EMPLOYEE);

 00179 CALL IDMS_STATUS;

DMLP0003 00181 BIND RECORD (DEPARTMENT);

 00190 CALL IDMS_STATUS;

DMLP0004 00192 READY;

 00199 CALL IDMS_STATUS;

 00200 READ FILE (INFILE) INTO (DEPT_IN_REC);

 00201

 00202 DO WHILE (EOF);

 00203

 00204 DB_END_OF_SET = NO;

Sample Batch Program

Appendix E: Sample Programs and Database Definition 375

 00205 DEPT_ID_0410 = DEPT_ID_IN;

DMLP0005 00207 OBTAIN CALC RECORD (DEPARTMENT);

 00216 /* 0326 MEANS */

 00217 /* DEPT NOT FOUND */

 00218 IF ERROR_STATUS = '0326' THEN CALL NO_DEPT;

 00219 ELSE

 00220 DO;

DMLP0006 00222 IF SET (DEPT_EMPLOYEE) EMPTY

 00231 THEN CALL NO_EMP;

 00232 ELSE

 00233 CALL NEW_DEPT;

 00234 DO UNTIL (DB_END_OF_SET);

DMLP0007 00236 OBTAIN NEXT RECORD (EMPLOYEE)

 00237 SET (DEPT_EMPLOYEE);

 00247 IF ERROR_STATUS = '0307' THEN

 00248 DB_END_OF_SET = YES;

 00249 ELSE

 00250 CALL IDMS_STATUS;

 00251 IF DB_END_OF_SET THEN

 00252 DO;

 00253 /* MOVE FIELDS TO */

 00254 /* OUTPUT RECORD */

 00255 DEPT_ID_OUT = DEPT_ID_0410;

 00256 EMP_ID_OUT = EMP_ID_0415;

 00257 EMP_LNAME_OUT = EMP_LAST_NAME_0415;

 00258 EMP_FNAME_OUT = EMP_FIRST_NAME_0415;

 00259 CC = DOUBLE_SPACE;

 00260 PRINT_LINE = SPACES;

 00261 PRINT_LINE = PRTREC;

 00262 CALL PRINT_A_LINE;

 00263 END; /* END PRINTING DO */

 00264 END; /* END DO UNTIL */

 00265 END; /* END 0326 ELSE DO */

 00266

 00267 READ FILE (INFILE) INTO (DEPT_IN_REC);

 00268 END; /* END DO WHILE EOF */

 00269 CALL END_PROCESSING;

 00270

 00271 NEW_DEPT: PROC;

 00272 PRINT_LINE = SPACES; /* NEW PAGE FOR EACH */

 00273 CC = NEW_PAGE; /* DEPARTMENT */

Sample Batch Program

376 DML Reference Guide for PLI

 00274 PRINT_LINE = DEPT_HEADER;

 00275 CALL PRINT_A_LINE;

 00276

 00277 PRINT_LINE = SPACES;

 00278 CC = DOUBLE_SPACE;

 00279 PRINT_LINE = DEPT_ID_0410;

 00280 CALL PRINT_A_LINE;

 00281

 00282 PRINT_LINE = SPACES;

 00283 CC = DOUBLE_SPACE;

 00284 PRINT_LINE = PRTHEAD;

 00285 CALL PRINT_A_LINE;

 00286

 00287 END NEW_DEPT;

 00288

 00289 NO_DEPT: PROC;

 00290 PRINT_LINE = SPACES;

 00291 CC = NEW_PAGE;

 00292 PRINT_LINE = DEPT_ID_IN;

 00293 CALL PRINT_A_LINE;

 00294 PRINT_LINE = SPACES;

 00295 CC = DOUBLE_SPACE;

 00296 PRINT_LINE = '** DEPARTMENT SPECIFIED ABOVE NOT FOUND **';

 00297 CALL PRINT_A_LINE;

 00298 END NO_DEPT;

 00299

 00300 NO_EMP: PROC;

 00301 PRINT_LINE = SPACES;

 00302 CC = NEW_PAGE;

 00303 PRINT_LINE = DEPT_ID_IN;

 00304 CALL PRINT_A_LINE;

 00305

 00306 PRINT_LINE = SPACES;

 00307 CC = DOUBLE_SPACE;

 00308 PRINT_LINE = DEPT_ID_0410;

 00309 CALL PRINT_A_LINE;

 00310

 00311 PRINT_LINE = SPACES;

 00312 CC = DOUBLE_SPACE;

Sample Batch Program

Appendix E: Sample Programs and Database Definition 377

 00313 PRINT_LINE = '** DEPARTMENT SPECIFIED IS EMPTY ***';

 00314 CALL PRINT_A_LINE;

 00315 END NO_EMP;

 00316

 00317 END_PROCESSING: PROC;

DMLP0008 00319 FINISH;

 00326 CLOSE FILE (INFILE);

 00327 CLOSE FILE (OUTFILE);

 00328 CLOSE FILE (SYSPRINT);

 00329 END END_PROCESSING;

 00330

 00331 PRINT_A_LINE: PROC;

 00332 WRITE FILE (OUTFILE) FROM (PRINT_AREA);

 00333 END PRINT_A_LINE;

 00334

 00335

DMLP 00336 INCLUDE IDMS (IDMS_STATUS);

 00337 IDMS_STATUS: PROC;

 00338 /* THE IDMS_STATUS PROCEDURE IS CALLED BY THE USER AFTER */

 00339 /* EACH IDMS COMMAND HAS BEEN ISSUED AND CHECKS HAVE BEEN */

 00340 /* MADE FOR ANY EXPECTED NON-ZERO ERROR_STATUS CONDITIONS. */

 00341 /* IT DETECTS A NON-ZERO ERROR_STATUS AND ABNORMALLY */

 00342 /* TERMINATES THE PROGRAM ACCORDINGLY. */

 00343 DECLARE IDMSIN1 ENTRY OPTIONS(INTER,ASSEMBLER);

 00344 IF ERROR_STATUS='0000' THEN GOTO END_STATUS;

 00345 PUT SKIP EDIT ('PROGRAM NAME ------', PROGRAM,

 00346 'ERROR STATUS ------', ERROR_STATUS,

 00347 'ERROR RECORD ------', ERROR_RECORD,

 00348 'ERROR SET ---------', ERROR_SET,

 00349 'ERROR AREA --------', ERROR_AREA,

 00350 'LAST GOOD RECORD --', RECORD_NAME,

 00351 'LAST GOOD AREA ----', AREA_NAME)

 00352 (A(19),X(5),A(8),SKIP,A(19),X(5),A(4),

 00353 5(SKIP,A(19),X(5),A(16)));

 00354 SSC_IN01_REQ_CODE = 39;

 00355 SSC_IN01_REQ_RETURN = 0;

 00356 SSC_STATUS_LABEL = ' ';

 00357 DO UNTIL (SSC_IN01_REQ_RETURN > 0);

 00358 CALL IDMSIN1 (IDBMSCOM(41),

 00359 SSC_IN01_REQ_WK,

 00360 SUBSCHEMA_CTRL,

 00361 IDBMSCOM(1),

 00362 DML_SEQUENCE,

 00363 SSC_STATUS_LINE);

Sample Batch Program

378 DML Reference Guide for PLI

 00364 IF SSC_IN01_REQ_RETURN > 4 THEN

 00365 PUT SKIP EDIT ('DML SEQUENCE ------', DML_SEQUENCE)

 00366 (A(19),X(5),F(10));

 00367 ELSE

 00368 PUT SKIP EDIT (SSC_STATUS_LABEL, '---',

 00369 SSC_STATUS_VALUE)

 00370 (A(16),A(3),X(5),A(12));

 00371 END;

DMLP0009 00372 ROLLBACK;

 00373 CALL ABORT;

 00374 END_STATUS: END;

 00375

 00376 END DEPTRPT

Output from the PL/I Compiler

The following shows the sample batch program after processing by the PL/I compiler.

The original code is further expanded and includes the following:

■ Line numbers generated by the PL/I compiler

■ CA IDMS call statements for the requested DML functions

■ Diagnostic messages

For details on the expanded code generated by the DML precompiler, see Call Formats.

PL/I OPTIMIZING COMPILER /*RETRIEVAL*/ PAGE 2

 SOURCE LISTING

 STMT LEV NT

 /*RETRIEVAL*/

 /*DMLIST*/

 /*NO_ACTIVITY_LOG*/

 /*SCHEMA_COMMENTS*/

 1 0 DEPTRPT: PROC OPTIONS (MAIN) REORDER;

 /* DECLARE SUBSCHEMA AND MODE */

 /*

 DCL (EMPSS01 SUBSCHEMA, EMPSCHM SCHEMA VERSION 100)

 MODE (BATCH) DEBUG;

 */

Sample Batch Program

Appendix E: Sample Programs and Database Definition 379

 /* REQUIRED DECLARATIVES */

 2 1 0 DCL IDMS ENTRY OPTIONS(INTER,ASM);

 3 1 0 DCL ABORT ENTRY OPTIONS(INTER,ASM);

 4 1 0 DCL ADDR BUILTIN;

 /* CONSTANTS */

 5 1 0 DCL DEPT_HEADER CHAR (11) INIT ('DEPT REPORT');

 6 1 0 DCL 1 HEAD_LINE,

 5 HEAD_DEPT_ID CHAR (9) INIT ('DEPT ID '),

 5 HEAD_EMP_ID CHAR (8) INIT ('EMP ID '),

 5 HEAD_LNAME CHAR (17) INIT ('LAST NAME '),

 5 HEAD_FNAME CHAR (10) INIT ('FIRST NAME');

 7 1 0 DCL PRTHEAD CHAR (44) DEFINED HEAD_LINE;

 /* LOGICAL CONSTANTS */

 8 1 0 DCL YES BIT(1) INIT ('1'B);

 9 1 0 DCL NO BIT(1) INIT ('0'B);

 10 1 0 DCL EOF BIT(1) INIT ('0'B);

 11 1 0 DCL 1 PROGRAM_FLAGS,

 5 DB_END_OF_SET BIT(1) INIT ('0'B);

 /* FILE DECLARATIONS */

 12 1 0 DCL INFILE FILE RECORD INPUT ENV (F BLKSIZE(80));

 13 1 0 DCL OUTFILE FILE RECORD OUTPUT ENV (F RECSIZE(133) CTLASA);

 14 1 0 DCL SYSPRINT FILE PRINT;

 /* THE FOLLOWING RECORDS ARE DEFINED THROUGH IDD. */

 /* THE DML PRECOMPILER AUTOMATICALLY CONVERTS HYPHENS */

 /* TO UNDERSCORES. */

 /*

 INCLUDE IDMS (DEPT-IN-REC);

 15 1 0 DECLARE 1 DEPT_IN_REC,

 2 DEPT_ID_IN PICTURE '(4)9',

 2 DEPT_FILLER CHARACTER (76);

 /*

 INCLUDE IDMS (PRT-OUT-REC);

 */

 16 1 0 DECLARE 1 PRT_OUT_REC,

 2 DEPT_ID_OUT CHARACTER (4),

 2 PRT_FILL_5 CHARACTER (5) INITIAL (' '),

 2 EMP_ID_OUT CHARACTER (4),

 2 PRT_FILL_4 CHARACTER (4) INITIAL (' '),

 2 EMP_LNAME_OUT CHARACTER (15),

 2 PRT_FILL_2 CHARACTER (2) INITIAL (' '),

 2 EMP_FNAME_OUT CHARACTER (10);

Sample Batch Program

380 DML Reference Guide for PLI

 /* REDEFINE PRT_OUT_REC */

 17 1 0 DCL PRTREC CHAR (44) DEFINED PRT_OUT_REC;

 18 1 0 DCL 1 PRINT_AREA,

 5 CC CHAR (1),

 5 PRINT_LINE CHAR (132);

 19 1 0 DCL 1 SPACES CHAR (132) INIT ((132) ' ');

 /* POSSIBLE VALUES FOR CC */

 20 1 0 DCL 1 CONTROL_CHARACTERS,

 5 NEW_PAGE CHAR (1) INIT ('1'),

 5 SINGLE_SPACE CHAR (1) INIT (' '),

 5 DOUBLE_SPACE CHAR (1) INIT ('0'),

 5 TRIPLE_SPACE CHAR (1) INIT ('-'),

 5 OVERPRINT CHAR (1) INIT ('+');

 /*

 INCLUDE IDMS (SUBSCHEMA_CTRL);

 *

 21 DECLARE 1 SUBSCHEMA_CTRL,

 3 PROGRAM CHARACTER (8) INITIAL (' ') ,

 3 ERROR_STATUS CHARACTER (4) INITIAL ('1400') ,

 3 DBKEY FIXED BINARY (31),

 3 RECORD_NAME CHARACTER (16) INITIAL (' ') ,

 3 AREA_NAME CHARACTER (16) INITIAL (' ') ,

 3 ERROR_SET CHARACTER (16) INITIAL (' ') ,

 3 ERROR_RECORD CHARACTER (16) INITIAL (' ') ,

 3 ERROR_AREA CHARACTER (16) INITIAL (' ') ,

 3 IDBMSCOM_AREA CHARACTER (100) INITIAL (LOW(100)) ,

 3 DIRECT_DBKEY FIXED BINARY (31),

 3 DATABASE_STATUS,

 5 DBSTATMENT_CODE CHARACTER (2),

 5 DBSTATUS_CODE CHARACTER (5),

 3 FILLER0001 CHARACTER (1),

 3 RECORD_OCCUR FIXED BINARY (31),

Sample Batch Program

Appendix E: Sample Programs and Database Definition 381

 3 DML_SEQUENCE FIXED BINARY (31);

 22 DECLARE 1 RIDBMSCOM BASED(ADDR(SUBSCHEMA_CTRL.IDBMSCOM_AREA)),

 3 PAGE_INFO,

 5 PAGE_INFO_GROUP FIXED BINARY (15),

 5 PAGE_INFO_DBK_FORMAT FIXED BINARY (15),

 3 SSC_IDMS_STATUS_WRK,

 5 SSC_IN01_REQ_WK,

 7 SSC_IN01_REQ_CODE FIXED BINARY (31),

 7 SSC_IN01_REQ_RETURN FIXED BINARY (31),

 5 SSC_STATUS_LINE,

 7 SSC_STATUS_LABEL CHARACTER (16),

 7 SSC_STATUS_VALUE CHARACTER (12),

 3 FILLER0002 CHARACTER (60);

 23 DECLARE 1 IDBMSCOM (100) BASED(ADDR(SUBSCHEMA_CTRL.IDBMSCOM_AREA))

 CHARACTER (1);

 24 DECLARE 1 AREA_RNAME BASED(ADDR(SUBSCHEMA_CTRL.AREA_NAME)),

 3 SSC_DNO CHARACTER (8),

 3 SSC_DNA CHARACTER (8);

 25 DECLARE 1 RRECORD_NAME BASED(ADDR(SUBSCHEMA_CTRL.RECORD_NAME)),

 3 SSC_NODN CHARACTER (8),

 3 SSC_DBN CHARACTER (8);

 26 1 0 DECLARE 1 SUBSCHEMA_CTRL,

 3 PROGRAM CHARACTER (8) INITIAL (' '),

 3 ERROR_STATUS CHARACTER (4) INITIAL ('1400'),

 3 DBKEY FIXED BINARY (31),

 3 RECORD_NAME CHARACTER (16) INITIAL (' '),

 3 AREA_NAME CHARACTER (16) INITIAL (' '),

 3 ERROR_SET CHARACTER (16) INITIAL (' '),

 3 ERROR_RECORD CHARACTER (16) INITIAL (' '),

 3 ERROR_AREA CHARACTER (16) INITIAL (' '),

 3 IDBMSCOM_AREA,

 5 IDBMSCOM (100) CHARACTER (1),

 3 DIRECT_DBKEY FIXED BINARY (31),

 3 DATABASE_STATUS,

 5 DBSTATMENT_CODE CHARACTER (2),

 5 DBSTATUS_CODE CHARACTER (5),

 3 FILLER0001 CHARACTER (1),

 3 RECORD_OCCUR FIXED BINARY (31),

 3 DML_SEQUENCE FIXED BINARY (31);

 27 1 0 DECLARE 1 AREA_RNAME BASED(ADDR(SUBSCHEMA_CTRL.AREA_NAME)),

 3 SSC_DNO CHARACTER (8),

 3 SSC_DNA CHARACTER (8);

Sample Batch Program

382 DML Reference Guide for PLI

 28 1 0 DECLARE 1 RRECORD_NAME BASED(ADDR(SUBSCHEMA_CTRL.RECORD_NAME)),

 3 SSC_NODN CHARACTER (8),

 3 SSC_DBN CHARACTER (8);

 /*

 INCLUDE IDMS (DEPARTMENT);

 */

 28 1 0 DECLARE 1 DEPARTMENT,

 2 DEPT_ID_0410 PICTURE '(4)9',

 2 DEPT_NAME_0410 CHARACTER (45),

 2 DEPT_HEAD_ID_0410 PICTURE '(4)9',

 2 FILLER0002 CHARACTER (3);

 /*

 INCLUDE IDMS (EMPLOYEE);

 */

 30 1 0 DECLARE 1 EMPLOYEE,

 2 EMP_ID_0415 PICTURE '(4)9',

 2 EMP_NAME_0415,

 3 EMP_FIRST_NAME_0415 CHARACTER (10),

 3 EMP_LAST_NAME_0415 CHARACTER (15),

 2 EMP_ADDRESS_0415,

 3 EMP_STREET_0415 CHARACTER (20),

 3 EMP_CITY_0415 CHARACTER (15),

 3 EMP_STATE_0415 CHARACTER (2),

 3 EMP_ZIP_0415,

 4 EMP_ZIP_FIRST_FIVE_0415 CHARACTER (5),

 4 EMP_ZIP_LAST_FOUR_0415 CHARACTER (4),

 2 EMP_PHONE_0415 PICTURE '(10)9',

 2 STATUS_0415 CHARACTER (2),

 2 SS_NUMBER_0415 PICTURE '(9)9',

 2 START_DATE_0415,

 3 START_YEAR_0415 PICTURE '(2)9',

 3 START_MONTH_0415 PICTURE '(2)9',

 3 START_DAY_0415 PICTURE '(2)9',

 2 TERMINATION_DATE_0415,

 3 TERMINATION_YEAR_0415 PICTURE '(2)9',

 3 TERMINATION_MONTH_0415 PICTURE '(2)9',

 3 TERMINATION_DAY_0415 PICTURE '(2)9',

 2 BIRTH_DATE_0415,

 3 BIRTH_YEAR_0415 PICTURE '(2)9',

 3 BIRTH_MONTH_0415 PICTURE '(2)9',

 3 BIRTH_DAY_0415 PICTURE '(2)9',

 2 FILLER0003 CHARACTER (2),

 2 FILLER0004 CHARACTER (4);

 /***/

 /* PROCESSING FOLLOWS */

 /* OPEN THE FILES */

 /* INFILE ── INPUT */

Sample Batch Program

Appendix E: Sample Programs and Database Definition 383

 /* OUTFILE ── OUTPUT */

 /* SYSPRINT ── USED BY IDMS_STATUS */

 31 1 0 OPEN FILE (INFILE);

 32 1 0 OPEN FILE (OUTFILE);

 33 1 0 OPEN FILE (SYSPRINT);

 34 1 0 ON ENDFILE (INFILE) EOF = YES;

 /* BIND RUN UNIT AND RECORDS EXPLICITLY */

 /*

 BIND RUN_UNIT DMLP0001

 NODENAME ('')

 DBNAME ('');

 */

 35 1 0 /* IDMS PL/I DML EXPANSION */ DO;

 36 1 1 DML_SEQUENCE=1;

 37 1 1 SSC_NODN='';

 38 1 1 SSC_DBN='';

 39 1 1 CALL IDMS (SUBSCHEMA_CTRL

 ,IDBMSCOM (59)

 ,SUBSCHEMA_CTRL

 ,'EMPSS01 '

 40 1 1); END;

 41 1 0 CALL IDMS_STATUS;

 /*

 BIND RECORD (EMPLOYEE); DMLP0002

 */

 42 1 0 /* IDMS PL/I DML EXPANSION */ DO;

 43 1 1 DML_SEQUENCE=2;

 44 1 1 CALL IDMS (SUBSCHEMA_CTRL

 ,IDBMSCOM (48)

 ,'EMPLOYEE '

 ,EMPLOYEE

 45 1 1); END;

 46 1 0 CALL IDMS_STATUS;

 /*

 BIND RECORD (DEPARTMENT); DMLP0003

 */

 47 1 0 /* IDMS PL/I DML EXPANSION */ DO;

 48 1 1 DML_SEQUENCE=3;

Sample Batch Program

384 DML Reference Guide for PLI

 49 1 1 CALL IDMS (SUBSCHEMA_CTRL

 ,IDBMSCOM (48)

 ,'DEPARTMENT '

 ,DEPARTMENT

 50 1 1); END;

 51 1 0 CALL IDMS_STATUS;

 /*

 READY; DMLP0004

 */

 52 1 0 /* IDMS PL/I DML EXPANSION */ DO;

 53 1 1 DML_SEQUENCE=4;

 54 1 1 CALL IDMS (SUBSCHEMA_CTRL

 ,IDBMSCOM (37)

 55 1 1); END;

 56 1 0 CALL IDMS_STATUS;

 57 1 0 READ FILE (INFILE) INTO (DEPT_IN_REC);

 58 1 0 DO WHILE (EOF);

 59 1 1 DB_END_OF_SET = NO;

 60 1 1 DEPT_ID_0410 = DEPT_ID_IN;

 /*

 OBTAIN CALC RECORD (DEPARTMENT); DMLP0005

 */

 61 1 1 /* IDMS PL/I DML EXPANSION */ DO;

 62 1 2 DML_SEQUENCE=5;

 63 1 2 CALL IDMS (SUBSCHEMA_CTRL

 ,IDBMSCOM (32)

 ,'DEPARTMENT '

 ,IDBMSCOM (43)

 64 1 2); END;

 /* 0326 MEANS */

 /* DEPT NOT FOUND */

 65 1 1 IF ERROR_STATUS = '0326' THEN CALL NO_DEPT;

 66 1 1 ELSE

 DO;

 /*

 IF SET (DEPT_EMPLOYEE) EMPTY DMLP0006

 */

 67 1 2 /* IDMS PL/I DML EXPANSION */ DO;

 68 1 3 DML_SEQUENCE=6;

 69 1 3 CALL IDMS (SUBSCHEMA_CTRL

 ,IDBMSCOM (64)

 ,'DEPT-EMPLOYEE '

Sample Batch Program

Appendix E: Sample Programs and Database Definition 385

 70 1 3); END;

 71 1 2 IF ERROR_STATUS='0000'

 THEN CALL NO_EMP;

 72 1 2 ELSE

 CALL NEW_DEPT;

 73 1 2 DO UNTIL (DB_END_OF_SET);

 /*

 OBTAIN NEXT RECORD (EMPLOYEE) DMLP0007

 SET (DEPT_EMPLOYEE);

 */

 74 1 3 /* IDMS PL/I DML EXPANSION */ DO;

 75 1 4 DML_SEQUENCE=7;

 76 1 4 CALL IDMS (SUBSCHEMA_CTRL

 ,IDBMSCOM (10)

 ,'EMPLOYEE '

 ,'DEPT-EMPLOYEE '

 ,IDBMSCOM (43)

 77 1 4); END;

 78 1 3 IF ERROR_STATUS = '0307' THEN

 DB_END_OF_SET = YES;

 79 1 3 ELSE

 CALL IDMS_STATUS;

 80 1 3 IF DB_END_OF_SET THEN

 DO;

 /* MOVE FIELDS TO */

 /* OUTPUT RECORD */

 81 1 4 DEPT_ID_OUT = DEPT_ID_0410;

 82 1 4 EMP_ID_OUT = EMP_ID_0415;

 83 1 4 EMP_LNAME_OUT = EMP_LAST_NAME_0415;

 84 1 4 EMP_FNAME_OUT = EMP_FIRST_NAME_0415;

 85 1 4 CC = DOUBLE_SPACE;

 86 1 4 PRINT_LINE = SPACES;

 87 1 4 PRINT_LINE = PRTREC;

 88 1 4 CALL PRINT_A_LINE;

 89 1 4 END; /* END PRINTING DO */

 90 1 3 END; /* END DO UNTIL */

 91 1 2 END; /* END 0326 ELSE DO */

 92 1 1 READ FILE (INFILE) INTO (DEPT_IN_REC);

 93 1 1 END; /* END DO WHILE EOF */

 94 1 0 CALL END_PROCESSING;

 95 1 0 NEW_DEPT: PROC;

 96 2 0 PRINT_LINE = SPACES; /* NEW PAGE FOR EACH */

 97 2 0 CC = NEW_PAGE; /* DEPARTMENT */

 98 2 0 PRINT_LINE = DEPT_HEADER;

 99 2 0 CALL PRINT_A_LINE;

Sample Batch Program

386 DML Reference Guide for PLI

 100 2 0 PRINT_LINE = SPACES;

 101 2 0 CC = DOUBLE_SPACE;

 102 2 0 PRINT_LINE = DEPT_ID_0410;

 103 2 0 CALL PRINT_A_LINE;

 104 2 0 PRINT_LINE = SPACES;

 105 2 0 CC = DOUBLE_SPACE;

 106 2 0 PRINT_LINE = PRTHEAD;

 107 2 0 CALL PRINT_A_LINE;

 108 2 0 END NEW_DEPT;

 109 1 0 NO_DEPT: PROC;

 110 2 0 PRINT_LINE = SPACES;

 111 2 0 CC = NEW_PAGE;

 112 2 0 PRINT_LINE = DEPT_ID_IN;

 113 2 0 CALL PRINT_A_LINE;

 114 2 0 PRINT_LINE = SPACES;

 115 2 0 CC = DOUBLE_SPACE;

 116 2 0 PRINT_LINE = '** DEPARTMENT SPECIFIED ABOVE NOT FOUND **';

 117 2 0 CALL PRINT_A_LINE;

 118 2 0 END NO_DEPT;

 119 1 0 NO_EMP: PROC;

 120 2 0 PRINT_LINE = SPACES;

 121 2 0 CC = NEW_PAGE;

 122 2 0 PRINT_LINE = DEPT_ID_IN;

 123 2 0 CALL PRINT_A_LINE;

 124 2 0 PRINT_LINE = SPACES;

 125 2 0 CC = DOUBLE_SPACE;

 126 2 0 PRINT_LINE = DEPT_ID_0410;

 127 2 0 CALL PRINT_A_LINE;

 128 2 0 PRINT_LINE = SPACES;

 129 2 0 CC = DOUBLE_SPACE;

 130 2 0 PRINT_LINE = '** DEPARTMENT SPECIFIED IS EMPTY ***';

 131 2 0 CALL PRINT_A_LINE;

Sample Batch Program

Appendix E: Sample Programs and Database Definition 387

 132 2 0 END NO_EMP;

 133 1 0 END_PROCESSING: PROC;

 /*

 FINISH; DMLP0008

 */

 134 2 0 /* IDMS PL/I DML EXPANSION */ DO;

 135 2 1 DML_SEQUENCE=8;

 136 2 1 CALL IDMS (SUBSCHEMA_CTRL

 ,IDBMSCOM (2)

 137 2 1); END;

 138 2 0 CLOSE FILE (INFILE);

 139 2 0 CLOSE FILE (OUTFILE);

 140 2 0 CLOSE FILE (SYSPRINT);

 141 2 0 END END_PROCESSING;

 142 1 0 PRINT_A_LINE: PROC;

 143 2 0 WRITE FILE (OUTFILE) FROM (PRINT_AREA);

 144 2 0 END PRINT_A_LINE;

 INCLUDE IDMS (IDMS_STATUS);

 */

 145 1 0 IDMS_STATUS: PROC;

 /* THE IDMS_STATUS PROCEDURE IS CALLED BY THE USER AFTER */

 /* EACH IDMS COMMAND HAS BEEN ISSUED AND CHECKS HAVE BEEN */

 /* MADE FOR ANY EXPECTED NON-ZERO ERROR_STATUS CONDITIONS. */

 /* IT DETECTS A NON-ZERO ERROR_STATUS AND ABNORMALLY */

 /* TERMINATES THE PROGRAM ACCORDINGLY. */

 146 2 0 DECLARE IDMSIN1 ENTRY OPTIONS(INTER,ASSEMBLER);

 147 2 0 IF ERROR_STATUS='0000' THEN GOTO END_STATUS;

 148 2 0 PUT SKIP EDIT ('PROGRAM NAME ──────', PROGRAM,

 'ERROR STATUS ──────', ERROR_STATUS,

 'ERROR RECORD ──────', ERROR_RECORD,

 'ERROR SET ─────────', ERROR_SET,

 'ERROR AREA ────────', ERROR_AREA,

 'LAST GOOD RECORD ──', RECORD_NAME,

 'LAST GOOD AREA ────', AREA_NAME)

 (A(19),X(5),A(8),SKIP,A(19),X(5),A(4),

 5(SKIP,A(19),X(5),A(16)));

 149 2 0 SSC_IN01_REQ_CODE = 39;

 150 2 0 SSC_IN01_REQ_RETURN = 0;

 151 2 0 SSC_STATUS_LABEL = ' ';

 152 2 0 DO UNTIL (SSC_IN01_REQ_RETURN > 0);

 153 2 1 CALL IDMSIN1 (IDBMSCOM(41),

Sample Online Program

388 DML Reference Guide for PLI

 SSC_IN01_REQ_WK,

 SUBSCHEMA_CTRL,

 IDBMSCOM(1),

 DML_SEQUENCE,

 SSC_STATUS_LINE);

 154 2 1 IF SSC_IN01_REQ_RETURN > 4 THEN

 PUT SKIP EDIT ('DML SEQUENCE ------', DML_SEQUENCE)

 (A(19),X(5),F(10));

 156 2 1 ELSE

 PUT SKIP EDIT (SSC_STATUS_LABEL, '---',

 SSC_STATUS_VALUE)

 (A(16),A(3),X(5),A(12));

 158 2 1 END;

 /*

 ROLLBACK;

 */

 159 2 0 /* IDMS PL/I DML EXPANSION */ DO;

 160 2 1 DML_SEQUENCE=9;

 161 2 1 CALL IDMS (SUBSCHEMA_CTRL

 ,IDBMSCOM (67)

 162 2 1); END;

 163 2 0 CALL ABORT;

 164 2 0 END_STATUS: END;

 165 1 0 END DEPTRPT;

Sample Online Program

The following CA IDMS/DC application illustrates the structure of CA IDMS/DC programs
that accept data from a terminal operator and retrieve information from the database.
The application program highlights the following database and data communications

features:

■ Mapping mode input and output

■ Automatic editing and error handling

■ Pseudo-conversational transactions

The application's components, runtime requirements, and DML code are described in

the following subsections.

Sample Online Program

Appendix E: Sample Programs and Database Definition 389

Application Components

The application comprises a program, two tasks, a map, and a subschema:

■ Program—The EMPDISP program either performs a MAP OUT to start a session or
performs a MAP IN, database access, and a MAP OUT.

■ Tasks—The task codes EMPDISP and EMPDISP2 affect the program flow of control:

– EMPDISP causes the program to perform the FIRST_TIME portion of the
program, mapping out the empty screen.

– EMPDISP2 causes the program to perform the SECOND_TIME portion of the
program, mapping in the data, checking the AID byte, performing the database

access portion of the program, and mapping out either an error message or
employee data.

■ Map—The application uses a map named EMPLMAP to communicate with the
terminal operator. The following il lustrates the EMPLMAP map.

 *** EMPLOYEE INFORMATION SCREEN ***

 EMPLOYEE ID:

 FIRST NAME:
 LAST NAME :

 ADDRESS:
 :
 : :

 TYPE AN EMPLOYEE ID AND PRESS ENTER ** PRESS PA1 TO EXIT

The EMPLMAP definition specifies:

– Six l iteral fields (including the title EMPLOYEE INFORMATION SCREEN).

– Seven variable data fields, to contain: EMPLOYEE ID, LAST NAME, FIRST NAME,
and ADDRESS.

– Automatic editing for the EMPLOYEE ID field specifies that the field is in error if
the ID you entered does not comply with the field's external picture (PIC 9(4)).

– Messages are output in the $MESSAGE field.

■ Subschema—The application uses the EMPSS01 subschema.

Sample Online Program

390 DML Reference Guide for PLI

Application Runtime Requirements

The following requirements must be met to execute the sample application under CA
IDMS/DC:

■ Define and generate the EMPLMAP map.

■ Compile and link edit the EMPDISP program into a load library that is identified to
CA IDMS/DC.

■ Define the EMPDISP program to the CA IDMS/DC system either by submitting
PROGRAM statements to the system generation compiler or by using the DCMT
VARY DYNAMIC PROGRAM command at runtime.

■ Define the EMPLMAP map and the EMPSS01 subschema to the CA IDMS/DC system
by submitting PROGRAM statements to the system generation compiler. Maps and
subschemas are defined automatically at system startup if null program definition
elements (PDEs) have been allocated for them at system generation.

Online Input to the DML Precompiler

The following is the PL/I online program input to the DML precompiler.

 /*RETRIEVAL*/

 /*DMLIST*/

 /*NO_ACTIVITY_LOG*/

 /*SCHEMA_COMMENTS*/

 EMPDISP: PROC OPTIONS (MAIN) REORDER;

 DCL (EMPSS01 SUBSCHEMA, EMPSCHM SCHEMA VERSION 100)

 MODE (IDMS_DC) DEBUG;

 DCL IDMSPLI ENTRY OPTIONS(INTER,ASM);

 DCL ADDR BUILTIN;

 DCL STRING BUILTIN;

 DCL (EMPLMAP MAP) TYPE (STANDARD);

 DCL TASK_CODE CHAR (8);

 DCL EMPDISP CHAR (8) INIT ('EMPDISP');

 DCL EMPDISP2 CHAR (8) INIT ('EMPDISP2');

 DCL DC_AID_IND_V CHAR (1);

 /* LOGICAL CONSTANTS */

 DCL YES BIT(1) INIT ('1'B);

 DCL NO BIT(1) INIT ('0'B);

 DCL 1 PROGRAM_MESSAGES,

 3 DISPLAY_MSG CHAR (36)

 INIT (' EMPLOYEE INFORMATION DISPLAYED '),

 3 NOT_FOUND_MSG CHAR (37)

 INIT (' SPECIFIED EMPLOYEE NUMBER NOT FOUND ');

Sample Online Program

Appendix E: Sample Programs and Database Definition 391

 INCLUDE IDMS (SUBSCHEMA_CTRL);

 INCLUDE IDMS (EMPLOYEE);

 INCLUDE IDMS (MAP_CONTROLS);

 /* PROCESSING FOLLOWS */

 MAIN_LINE: BEGIN;

 /* ESTABLISH ADDRESSABILITY FOR */

 BIND MAP (EMPLMAP);

 CALL IDMS_STATUS;

 BIND MAP (EMPLMAP) RECORD (EMPLOYEE);

 CALL IDMS_STATUS;

 /* DETERMINE THE TASK CODE */

 ACCEPT TASK CODE INTO (TASK_CODE);

 CALL IDMS_STATUS;

 IF TASK_CODE = EMPDISP

 THEN CALL FIRST_TIME;

 IF TASK_CODE = EMPDISP2

 THEN CALL SECOND_TIME;

 /* OTHERWISE RETURN TO IDMS DC */

 DC RETURN;

 FIRST_TIME: PROC;

 MODIFY MAP (EMPLMAP)

 FOR ALL BUT DFLD (EMP_ID_0415)

 ATTRIBUTES PROTECTED;

 MAP OUT(EMPLMAP)

 IO OUTPUT DATA YES NEWPAGE;

 CALL IDMS_STATUS;

 DC RETURN NEXT TASK CODE(EMPDISP2);

 END FIRST_TIME;

 SECOND_TIME: PROC;

 MAP IN (EMPLMAP)

 IO INPUT DATA YES;

 CALL IDMS_STATUS;

 /* CHECK WHICH PF KEY WAS PRESSED */

 INQUIRE MAP(EMPLMAP)

 MOVE AID TO (DC_AID_IND_V);

 /* STOP IF PA1 (%) WAS PRESSED */

 IF DC_AID_IND_V = '%'

Sample Online Program

392 DML Reference Guide for PLI

 THEN DC RETURN;

 BIND RUN_UNIT;

 CALL IDMS_STATUS;

 BIND RECORD (EMPLOYEE);

 CALL IDMS_STATUS;

 READY AREA (EMP_DEMO_REGION);

 CALL IDMS_STATUS;

 /* OBTAIN THE RECORD */

 OBTAIN CALC RECORD (EMPLOYEE);

 IF ERROR_STATUS = '0326' THEN CALL NO_EMP;

 CALL IDMS_STATUS;

 FINISH;

 CALL IDMS_STATUS;

 /* TRANSMIT THE DATA BACK TO THE SCREEN */

 MAP OUT(EMPLMAP)

 IO OUTPUT DATA YES NEWPAGE

 MESSAGE(DISPLAY_MSG) LENGTH(36);

 CALL IDMS_STATUS;

 DC RETURN NEXT TASK CODE(EMPDISP2);

 END SECOND_TIME;

 NO_EMP: PROC;

 /* DO THIS IF EMPLOYEE NOT FOUND */

 MAP OUT(EMPLMAP)

 IO OUTPUT DATA YES NEWPAGE

 MESSAGE(NOT_FOUND_MSG) LENGTH(37);

 CALL IDMS_STATUS;

 DC RETURN NEXT TASK CODE(EMPDISP2);

 END NO_EMP;

 INCLUDE IDMS (IDMS_STATUS);

 END MAIN_LINE; /* END MAIN_LINE */

 END EMPDISP;

Output from the DML Precompiler

The following is the online program as it has been output from the DML precompiler.

IDMSDMLP nn.n CA, INC. DML PROCESSOR FOR PL/I DATE TIME PAGE

 - - LISTING OF MESSAGES - - mm/dd/yy hhmmsshh 0001

 00001 /*RETRIEVAL*/

 00002 /*DMLIST*/

 00003 /*NO_ACTIVITY_LOG*/

 00004 /*SCHEMA_COMMENTS*/

 00005 EMPDISP: PROC OPTIONS (MAIN) REORDER;

Sample Online Program

Appendix E: Sample Programs and Database Definition 393

DMLP 00007 DCL (EMPSS01 SUBSCHEMA, EMPSCHM SCHEMA VERSION 100)

 00008 MODE (IDMS_DC) DEBUG;

 00009 DCL IDMSPLI ENTRY OPTIONS(INTER,ASM);

 00010 DCL ADDR BUILTIN;

 00011 DCL STRING BUILTIN;

DMLP 00013 DCL (EMPLMAP MAP) TYPE (STANDARD);

 00014

 00015 DCL TASK_CODE CHAR (8);

 00016 DCL EMPDISP CHAR (8) INIT ('EMPDISP');

 00017 DCL EMPDISP2 CHAR (8) INIT ('EMPDISP2');

 00018 DCL DC_AID_IND_V CHAR (1);

 00019 /* LOGICAL CONSTANTS */

 00020 DCL YES BIT(1) INIT ('1'B);

 00021 DCL NO BIT(1) INIT ('0'B);

 00022 DCL 1 PROGRAM_MESSAGES,

 00023 3 DISPLAY_MSG CHAR (36)

 00024 INIT (' EMPLOYEE INFORMATION DISPLAYED '),

 00025 3 NOT_FOUND_MSG CHAR (37)

 00026 INIT (' SPECIFIED EMPLOYEE NUMBER NOT FOUND ');

 00027

DMLP 00029 INCLUDE IDMS (SUBSCHEMA_CTRL);

 00100

DMLP 00102 INCLUDE IDMS (EMPLOYEE);

DMLP 00133 INCLUDE IDMS (MAP_CONTROLS);

 00171

 00172 /* PROCESSING FOLLOWS */

 00173

 00174 MAIN_LINE: BEGIN;

 00175 /* ESTABLISH ADDRESSABILITY FOR */

DMLP0001 00177 BIND MAP (EMPLMAP);

 00208 CALL IDMS_STATUS;

DMLP0002 00210 BIND MAP (EMPLMAP) RECORD (EMPLOYEE);

 00219 CALL IDMS_STATUS;

 00220 /* DETERMINE THE TASK CODE */

DMLP0003 00222 ACCEPT TASK CODE INTO (TASK_CODE);

 00231 CALL IDMS_STATUS;

 00232

 00233 IF TASK_CODE = EMPDISP

 00234 THEN CALL FIRST_TIME;

 00235 IF TASK_CODE = EMPDISP2

Sample Online Program

394 DML Reference Guide for PLI

 00236 THEN CALL SECOND_TIME;

 00237

 00238

 00239

 00240 /* OTHERWISE RETURN TO IDMS-DC */

DMLP0004 00242 DC RETURN;

 00249

 00250 FIRST_TIME: PROC;

DMLP0005 00252 MODIFY MAP (EMPLMAP)

 00253 FOR ALL BUT DFLD (EMP_ID_0415)

 00254 ATTRIBUTES PROTECTED;

 00267

DMLP0006 00269 MAP OUT(EMPLMAP)

 00270 IO OUTPUT DATA YES NEWPAGE;

 00284 CALL IDMS_STATUS;

DMLP0007 00286 DC RETURN NEXT TASK CODE(EMPDISP2);

 00295 END FIRST_TIME;

 00296

 00297 SECOND_TIME: PROC;

DMLP0008 00299 MAP IN (EMPLMAP)

 00300 IO INPUT DATA YES;

 00314 CALL IDMS_STATUS;

 00315 /* CHECK WHICH PF KEY WAS PRESSED */

DMLP0009 00317 INQUIRE MAP(EMPLMAP)

 00318 MOVE AID TO (DC_AID_IND_V);

 00328

 00329 /* STOP IF PA1 (%) WAS PRESSED */

 00330 IF DC_AID_IND_V = '%'

DMLP0010 00331 THEN

 00333 DC RETURN;

 00340

DMLP0011 00342 BIND RUN_UNIT;

 00351 CALL IDMS_STATUS;

DMLP0012 00353 BIND RECORD (EMPLOYEE);

 00362 CALL IDMS_STATUS;

DMLP0013 00364 READY AREA (EMP_DEMO_REGION);

 00372 CALL IDMS_STATUS;

 00373 /* OBTAIN THE RECORD */

DMLP0014 00375 OBTAIN CALC RECORD (EMPLOYEE);

 00384 IF ERROR_STATUS = '0326' THEN CALL NO_EMP;

Sample Online Program

Appendix E: Sample Programs and Database Definition 395

 00385 CALL IDMS_STATUS;

DMLP0015 00387 FINISH;

 00394 CALL IDMS_STATUS;

 00395 /* TRANSMIT THE DATA BACK TO THE SCREEN */

DMLP0016 00397 MAP OUT(EMPLMAP)

 00398 IO OUTPUT DATA YES NEWPAGE

 00399 MESSAGE(DISPLAY_MSG) LENGTH(36);

 00415 CALL IDMS_STATUS;

DMLP0017 00417 DC RETURN NEXT TASK CODE(EMPDISP2);

 00426

 00427 END SECOND_TIME;

 00428

 00429 NO_EMP: PROC;

 00430 /* DO THIS IF EMPLOYEE NOT FOUND */

DMLP0018 00432 MAP OUT(EMPLMAP)

 00433 IO OUTPUT DATA YES NEWPAGE

 00434 MESSAGE(NOT_FOUND_MSG) LENGTH(37);

 00450 CALL IDMS_STATUS;

DMLP0019 00452 DC RETURN NEXT TASK CODE(EMPDISP2);

 00461 END NO_EMP;

 00462

DMLP 00464 INCLUDE IDMS (IDMS_STATUS);

 00465 IDMS_STATUS: PROC;

 00466 /* THE IDMS_STATUS PROCEDURE MAY BE CALLED BY THE USER AFTER */

 00467 /* EACH IDMS COMMAND HAS BEEN ISSUED AND CHECKS HAVE BEEN */

 00468 /* MADE FOR ANY EXPECTED NON_ZERO ERROR STATUS CONDITIONS. */

 00469 /* IT DETECTS A NON_ZERO ERROR_STATUS AND TERMINATES THE */

 00470 /* PROGRAM WITH A SNAP OF THE SUBSCHEMA_CTRL AREA AND AN */

 00471 /* ABEND WITH THE ERROR_STATUS AS THE ABEND CODE. */

 00472 IF ERROR_STATUS='0000' THEN GOTO END_STATUS;

 00473 SSC_ERRSTAT_SAVE=ERROR_STATUS; /* SAVE THE ERROR_STATUS */

 00474 SSC_DMLSEQ_SAVE=DML_SEQUENCE; /* SAVE DML_SEQUENCE */

 00475 /* SNAP THE SUBSCHEMA_CTRL AREA */

DMLP0020 00477 SNAP FROM (SUBSCHEMA_CTRL) TO (SUBSCHEMA_CTRL_END);

 00490 /* ABEND */

DMLP0021 00492 ABEND CODE (SSC_ERRSTAT_SAVE);

 00501 END_STATUS: END;

 00502 END MAIN_LINE; /* END MAIN_LINE */

 00503 END EMPDISP;

Sample Online Program

396 DML Reference Guide for PLI

Output from the PL/I Compiler

The following is the PL/I program as output by the PL/I compiler.

PL/I OPTIMIZING COMPILER /*RETRIEVAL*/ PAGE 2

 SOURCE LISTING

 STMT LEV NT

 /*RETRIEVAL*/

 /*DMLIST*/

 /*NO_ACTIVITY_LOG*/

 /*SCHEMA_COMMENTS*/

 1 0 EMPDISP: PROC OPTIONS (MAIN) REORDER;

 /*

 DCL (EMPSS01 SUBSCHEMA, EMPSCHM SCHEMA VERSION 100)

 MODE (IDMS_DC) DEBUG;

 */

 2 1 0 DCL IDMSPLI ENTRY OPTIONS(INTER,ASM);

 3 1 0 DCL ADDR BUILTIN;

 4 1 0 DCL STRING BUILTIN;

 /*

 DCL (EMPLMAP MAP) TYPE (STANDARD);

 */

 5 1 0 DCL TASK_CODE CHAR (8);

 6 1 0 DCL EMPDISP CHAR (8) INIT ('EMPDISP');

 7 1 0 DCL EMPDISP2 CHAR (8) INIT ('EMPDISP2');

 8 1 0 DCL DC_AID_IND_V CHAR (1);

 /* LOGICAL CONSTANTS */

 9 1 0 DCL YES BIT(1) INIT ('1'B);

 10 1 0 DCL NO BIT(1) INIT ('0'B);

 11 1 0 DCL 1 PROGRAM_MESSAGES,

 3 DISPLAY_MSG CHAR (36)

 INIT (' EMPLOYEE INFORMATION DISPLAYED '),

 3 NOT_FOUND_MSG CHAR (37)

 INIT (' SPECIFIED EMPLOYEE NUMBER NOT FOUND ');

 /*

 INCLUDE IDMS (SUBSCHEMA_CTRL);

 */

 12 1 0 DECLARE 1 SUBSCHEMA_CTRL,

 3 PROGRAM CHARACTER (8) INITIAL (' '),

 3 ERROR_STATUS CHARACTER (4) INITIAL ('1400'),

 3 DBKEY FIXED BINARY (31),

 3 RECORD_NAME CHARACTER (16) INITIAL (' '),

 3 AREA_NAME CHARACTER (16) INITIAL (' '),

 3 ERROR_SET CHARACTER (16) INITIAL (' '),

Sample Online Program

Appendix E: Sample Programs and Database Definition 397

 3 ERROR_RECORD CHARACTER (16) INITIAL (' '),

 3 ERROR_AREA CHARACTER (16) INITIAL (' '),

 3 IDBMSCOM_AREA,

 5 IDBMSCOM (100) CHARACTER (1),

 3 DIRECT_DBKEY FIXED BINARY (31),

 3 DCBMSCOM_AREA,

 5 DCBMSCOM (100) CHARACTER (1),

 3 DCCALIGN_AREA,

 5 FILLER0001 CHARACTER (4),

 5 DCCALIGN FLOAT BINARY (53),

 5 FILLER0002 CHARACTER (8);

 13 1 0 DECLARE 1 SSC_ERRSAVE_AREA BASED(ADDR(SUBSCHEMA_CTRL.DCCALIGN_AREA)),

 3 SSC_ERRSTAT_SAVE CHARACTER (4),

 3 SSC_DMLSEQ_SAVE FIXED BINARY (31),

 3 DML_SEQUENCE FIXED BINARY (31),

 3 RECORD_OCCUR FIXED BINARY (31),

 3 SUBSCHEMA_CTRL_END CHARACTER (4);

 14 1 0 DECLARE 1 DCCFN_AREA BASED(ADDR(SUBSCHEMA_CTRL.DCBMSCOM_AREA)),

 3 FILLER0003 CHARACTER (44),

 3 DCCSTR1 CHARACTER (16),

 3 DCCNUM1 FIXED BINARY (31),

 3 DCCNUM2 FIXED BINARY (31),

 3 DCCNUM3 FIXED BINARY (31),

 3 DCCFLG1 FIXED BINARY (15),

 3 DCCFLG2 FIXED BINARY (15),

 3 DCCFLG3 FIXED BINARY (15),

 3 DCCFLG4 FIXED BINARY (15),

 3 DCCFLG5 FIXED BINARY (15),

 3 DCCFLG6 FIXED BINARY (15),

 3 FILLER0004 CHARACTER (4),

 3 DCCDBLWK CHARACTER (8);

 15 1 0 DECLARE 1 DCCPT_AREA BASED(ADDR(SUBSCHEMA_CTRL.DCBMSCOM_AREA)),

 3 FILLER0005 CHARACTER (60),

 3 DCCPT1 POINTER,

 3 DCCPT2 POINTER;

 16 1 0 DECLARE 1 DCCPN_AREA BASED(ADDR(SUBSCHEMA_CTRL.DCBMSCOM_AREA)),

 3 FILLER0006 CHARACTER (44),

 3 DCCPNUM1 FIXED DECIMAL(11,0),

 3 FILLER0007 CHARACTER (10),

 3 DCCPNUM2 FIXED DECIMAL(7,0);

Sample Online Program

398 DML Reference Guide for PLI

 17 1 0 DECLARE 1 DCCSTR_AREA3 BASED(ADDR(SUBSCHEMA_CTRL.DCBMSCOM_AREA)),

 3 FILLER0008 CHARACTER (44),

 3 DCCSTR4 CHARACTER (4),

 3 DCCSTR5 CHARACTER (4),

 3 DCCSTR3 CHARACTER (8);

 18 1 0 DECLARE 1 DCCSTR_AREA2 BASED(ADDR(SUBSCHEMA_CTRL.DCBMSCOM_AREA)),

 3 FILLER0009 CHARACTER (44),

 3 DCCSTR2 CHARACTER (8);

 19 1 0 DECLARE 1 DCCSTR_AREA1 BASED(ADDR(SUBSCHEMA_CTRL.DCBMSCOM_AREA)),

 3 FILLER0010 CHARACTER (44),

 3 DCCSTR6 CHARACTER (32),

 3 DCCNUH1 FIXED BINARY (15),

 3 FILLER0011 CHARACTER (2),

 3 DC_ABEND_CODE CHARACTER (4);

 20 1 0 DECLARE 1 DCCPLI_DEFS BASED(ADDR(SUBSCHEMA_CTRL.DCBMSCOM_AREA)),

 3 DCCR14SV FIXED BINARY (31),

 3 DCCPARMS (10) FIXED BINARY (31);

 21 1 0 DECLARE 1 AREA_RNAME BASED(ADDR(SUBSCHEMA_CTRL.AREA_NAME)),

 3 SSC_DNO CHARACTER (8),

 3 SSC_DNA CHARACTER (8);

 22 1 0 DECLARE 1 RRECORD_NAME BASED(ADDR(SUBSCHEMA_CTRL.RECORD_NAME)),

 3 SSC_NODN CHARACTER (8),

 3 SSC_DBN CHARACTER (8);

 /*

 INCLUDE IDMS (EMPLOYEE);

 */

 23 1 0 DECLARE 1 EMPLOYEE,

 2 EMP_ID_0415 PICTURE '(4)9',

 2 EMP_NAME_0415,

 3 EMP_FIRST_NAME_0415 CHARACTER (10),

 3 EMP_LAST_NAME_0415 CHARACTER (15),

 2 EMP_ADDRESS_0415,

 3 EMP_STREET_0415 CHARACTER (20),

 3 EMP_CITY_0415 CHARACTER (15),

 3 EMP_STATE_0415 CHARACTER (2),

 3 EMP_ZIP_0415,

 4 EMP_ZIP_FIRST_FIVE_0415 CHARACTER (5),

 4 EMP_ZIP_LAST_FOUR_0415 CHARACTER (4),

 2 EMP_PHONE_0415 PICTURE '(10)9',

 2 STATUS_0415 CHARACTER (2),

 2 SS_NUMBER_0415 PICTURE '(9)9',

 2 START_DATE_0415,

 3 START_YEAR_0415 PICTURE '(2)9',

 3 START_MONTH_0415 PICTURE '(2)9',

 3 START_DAY_0415 PICTURE '(2)9',

 2 TERMINATION_DATE_0415,

 3 TERMINATION_YEAR_0415 PICTURE '(2)9',

Sample Online Program

Appendix E: Sample Programs and Database Definition 399

 3 TERMINATION_MONTH_0415 PICTURE '(2)9',

 3 TERMINATION_DAY_0415 PICTURE '(2)9',

 2 BIRTH_DATE_0415,

 3 BIRTH_YEAR_0415 PICTURE '(2)9',

 3 BIRTH_MONTH_0415 PICTURE '(2)9',

 3 BIRTH_DAY_0415 PICTURE '(2)9',

 2 FILLER0012 CHARACTER (2),

 2 FILLER0013 CHARACTER (4);

 /*

 INCLUDE IDMS (MAP_CONTROLS);

 */

 24 1 0 DECLARE 1 MRB_EMPLMAP,

 5 MRB_EMPLMAP_ID CHARACTER (8),

 5 MRB_EMPLMAP_MCOMP_VER,

 8 MRB_EMPLMAP_MCOMP_DATE CHARACTER (8),

 8 MRB_EMPLMAP_MCOMP_TIME CHARACTER (6),

 8 MRB_EMPLMAP_MCOMP_VERID CHARACTER (2),

 5 MRB_EMPLMAP_SUBSCHEMA CHARACTER (8),

 5 MRB_EMPLMAP_FLGS (4) CHARACTER (1),

 5 FILLER0014 CHARACTER (6),

 5 MRB_EMPLMAP_NFLDS FIXED BINARY (15),

 5 MRB_EMPLMAP_NRECS FIXED BINARY (15),

 5 MRB_EMPLMAP_RECOF FIXED BINARY (15),

 5 MRB_EMPLMAP_PERM_CURSOR CHARACTER (2),

 5 MRB_EMPLMAP_TEMP_CURSOR CHARACTER (2),

 5 MRB_EMPLMAP_PERM_WCC CHARACTER (1),

 5 MRB_EMPLMAP_TEMP_WCC CHARACTER (1),

 5 MRB_EMPLMAP_CURSOR CHARACTER (2),

 5 MRB_EMPLMAP_AID CHARACTER (1),

 5 MRB_EMPLMAP_INPUT_FLGS CHARACTER (1),

 5 MRB_EMPLMAP_SEGVIEW CHARACTER (1),

 5 FILLER0015 CHARACTER (1),

 5 MRB_EMPLMAP_MREO FIXED BINARY (15),

 5 MRB_EMPLMAP_ERR_CNT FIXED BINARY (15),

 5 MRB_EMPLMAP_ATTR_FLGS (4) CHARACTER (1),

 5 MRB_EMPLMAP_CURR_MFLD FIXED BINARY (15),

 5 MRB_EMPLMAP_XTYP CHARACTER (1),

 5 FILLER0016 CHARACTER (1),

 5 MRB_EMPLMAP_MRE_XLEN FIXED BINARY (15),

 5 MRB_EMPLMAP_MRB_XLEN FIXED BINARY (15),

 5 MRB_EMPLMAP_MRE (8),

 8 MRB_EMPLMAP_MRE_FLGS (8) CHARACTER (1),

 8 MRB_EMPLMAP_MRE_INLEN FIXED BINARY (15),

 8 MRB_EMPLMAP_MRE_PAD_CHAR (2) CHARACTER (1),

 8 MRB_EMPLMAP_MRE_FLG2 (2) CHARACTER (1),

 5 MRB_EMPLMAP_RECS (1) FIXED BINARY (31),

 5 MRB_EMPLMAP_END CHARACTER (1),

 5 MRB_EMPLMAP_MRE_SUB FIXED BINARY (15);

Sample Online Program

400 DML Reference Guide for PLI

 /* PROCESSING FOLLOWS */

 25 1 0 MAIN_LINE: BEGIN;

 /* ESTABLISH ADDRESSABILITY FOR */

 /*

 BIND MAP (EMPLMAP); DMLP0001

 */

 26 2 0 /* IDMS PL/I DML EXPANSION */ DO;

 27 2 1 DML_SEQUENCE=1;

 28 2 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=0;

 29 2 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (90)

 ,MRB_EMPLMAP

 ,MRB_EMPLMAP_END

 30 2 1); END;

 31 2 0 STRING(MRB_EMPLMAP_MCOMP_VER)=

 '11/04/87172444R2';

 32 2 0 MRB_EMPLMAP_SUBSCHEMA=

 'EMPSS01';

 33 2 0 MRB_EMPLMAP_ID=

 'EMPLMAP';

 34 2 0 MRB_EMPLMAP_NFLDS=

 8;

 35 2 0 MRB_EMPLMAP_NRECS=

 1;

 36 2 0 MRB_EMPLMAP_RECOF=

 112;

 37 2 0 MRB_EMPLMAP_MREO=

 76;

 38 2 0 MRB_EMPLMAP_XTYP=

 '0';

 39 2 0 MRB_EMPLMAP_MRE_XLEN=

 0;

 40 2 0 MRB_EMPLMAP_MRB_XLEN=

 0;

 41 2 0 MRB_EMPLMAP_SEGVIEW=

 'N';

 42 2 0 CALL IDMS_STATUS;

 /*

 BIND MAP (EMPLMAP) RECORD (EMPLOYEE); DMLP0002

 */

 43 2 0 /* IDMS PL/I DML EXPANSION */ DO;

 44 2 1 DML_SEQUENCE=2;

 45 2 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=0;

 46 2 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (91)

 ,MRB_EMPLMAP_RECS (1)

Sample Online Program

Appendix E: Sample Programs and Database Definition 401

 ,EMPLOYEE

 47 2 1); END;

 48 2 0 CALL IDMS_STATUS;

 /* DETERMINE THE TASK CODE */

 /*

 ACCEPT TASK CODE INTO (TASK_CODE); DMLP0003

 */

 49 2 0 /* IDMS PL/I DML EXPANSION */ DO;

 50 2 1 DML_SEQUENCE=3;

 51 2 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=0;

 52 2 1 DCCNUM1=1;

 53 2 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (2)

 54 2 1); END;

 55 2 0 TASK_CODE=DCCSTR6;

 56 2 0 CALL IDMS_STATUS;

 57 2 0 IF TASK_CODE = EMPDISP

 THEN CALL FIRST_TIME;

 58 2 0 IF TASK_CODE = EMPDISP2

 THEN CALL SECOND_TIME;

 /* OTHERWISE RETURN TO IDMS DC */

 /*

 DC RETURN; DMLP0004

 */

 59 2 0 /* IDMS PL/I DML EXPANSION */ DO;

 60 2 1 DML_SEQUENCE=4;

 61 2 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=0;

 62 2 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (19)

 63 2 1); END;

 64 2 0 FIRST_TIME: PROC;

 /*

 MODIFY MAP (EMPLMAP) DMLP0005

 FOR ALL BUT DFLD (EMP_ID_0415)

 ATTRIBUTES PROTECTED;

 */

 65 3 0 /* IDMS PL/I DML EXPANSION */ DO;

 66 3 1 DML_SEQUENCE=5;

 67 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=0;

 68 3 1 DCCNUM1=8;

 69 3 1 DCCFLG1=768;

 70 3 1 DCCFLG3=0;

 71 3 1 DCCFLG4=0;

Sample Online Program

402 DML Reference Guide for PLI

 72 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (93)

 ,MRB_EMPLMAP

 ,MRB_EMPLMAP_MRE (1)

 73 3 1); END;

 /*

 MAP OUT(EMPLMAP) DMLP0006

 IO OUTPUT DATA YES NEWPAGE;

 */

 74 3 0 /* IDMS PL/I DML EXPANSION */ DO;

 75 3 1 DML_SEQUENCE=6;

 76 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=0;

 77 3 1 DCCFLG1=5;

 78 3 1 DCCFLG2=16;

 79 3 1 DCCFLG3=1;

 80 3 1 DCCFLG4=0;

 81 3 1 DCCFLG5=0;

 82 3 1 DCCFLG6=1;

 83 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (34)

 ,MRB_EMPLMAP

 84 3 1); END;

 85 3 0 CALL IDMS_STATUS;

 /*

 DC RETURN NEXT TASK CODE(EMPDISP2); DMLP0007

 */

 86 3 0 /* IDMS PL/I DML EXPANSION */ DO;

 87 3 1 DML_SEQUENCE=7;

 88 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=0;

 89 3 1 DCCSTR2=EMPDISP2;

 90 3 1 DCCFLG1=128;

 91 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (19)

 92 3 1); END;

 93 3 0 END FIRST_TIME;

 94 2 0 SECOND_TIME: PROC;

 /*

 MAP IN (EMPLMAP) DMLP0008

 IO INPUT DATA YES;

 */

 95 3 0 /* IDMS PL/I DML EXPANSION */ DO;

 96 3 1 DML_SEQUENCE=8;

 97 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=0;

 98 3 1 DCCFLG1=6;

 99 3 1 DCCFLG2=4;

 100 3 1 DCCFLG3=0;

Sample Online Program

Appendix E: Sample Programs and Database Definition 403

 101 3 1 DCCFLG4=0;

 102 3 1 DCCFLG5=0;

 103 3 1 DCCFLG6=0;

 104 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (34)

 ,MRB_EMPLMAP

 105 3 1); END;

 106 3 0 CALL IDMS_STATUS;

 /* CHECK WHICH PF KEY WAS PRESSED */

 /*

 INQUIRE MAP(EMPLMAP) DMLP0009

 MOVE AID TO (DC_AID_IND_V);

 */

 107 3 0 /* IDMS PL/I DML EXPANSION */ DO;

 108 3 1 DML_SEQUENCE=9;

 109 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=0;

 110 3 1 DCCNUM1=7;

 111 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (92)

 ,MRB_EMPLMAP

 112 3 1); END;

 113 3 0 DC_AID_IND_V=DCCSTR2;

 /* STOP IF PA1 (%) WAS PRESSED */

 114 3 0 IF DC_AID_IND_V = '%'

 THEN DMLP0010

 /*

 DC RETURN;

 */

 /* IDMS PL/I DML EXPANSION */ DO;

 115 3 1 DML_SEQUENCE=10;

 116 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=0;

 117 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (19)

 118 3 1); END;

 /*

 BIND RUN_UNIT; DMLP0011

 */

 119 3 0 /* IDMS PL/I DML EXPANSION */ DO;

 120 3 1 DML_SEQUENCE=11;

 121 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=0;

 122 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,IDBMSCOM (59)

 ,SUBSCHEMA_CTRL

 ,'EMPSS01 '

 123 3 1); END;

 124 3 0 CALL IDMS_STATUS;

Sample Online Program

404 DML Reference Guide for PLI

 /*

 BIND RECORD (EMPLOYEE); DMLP0012

 */

 125 3 0 /* IDMS PL/I DML EXPANSION */ DO;

 126 3 1 DML_SEQUENCE=12;

 127 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=0;

 128 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,IDBMSCOM (48)

 ,'EMPLOYEE '

 ,EMPLOYEE

 129 3 1); END;

 130 3 0 CALL IDMS_STATUS;

 /*

 READY AREA (EMP_DEMO_REGION); DMLP0013

 */

 131 3 0 /* IDMS PL/I DML EXPANSION */ DO;

 132 3 1 DML_SEQUENCE=13;

 133 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=0;

 134 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,IDBMSCOM (37)

 ,'EMP-DEMO-REGION '

 135 3 1); END;

 136 3 0 CALL IDMS_STATUS;

 /* OBTAIN THE RECORD */

 /*

 OBTAIN CALC RECORD (EMPLOYEE); DMLP0014

 */

 137 3 0 /* IDMS PL/I DML EXPANSION */ DO;

 138 3 1 DML_SEQUENCE=14;

 139 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=0;

 140 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,IDBMSCOM (32)

 ,'EMPLOYEE '

 ,IDBMSCOM (43)

 141 3 1); END;

 142 3 0 IF ERROR_STATUS = '0326' THEN CALL NO_EMP;

 143 3 0 CALL IDMS_STATUS;

 /*

 FINISH; DMLP0015

 */

 144 3 0 /* IDMS PL/I DML EXPANSION */ DO;

 145 3 1 DML_SEQUENCE=15;

 146 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=0;

 147 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,IDBMSCOM (2)

 148 3 1); END;

 149 3 0 CALL IDMS_STATUS;

 /* TRANSMIT THE DATA BACK TO THE SCREEN */

Sample Online Program

Appendix E: Sample Programs and Database Definition 405

 /*

 MAP OUT(EMPLMAP) DMLP0016

 IO OUTPUT DATA YES NEWPAGE

 MESSAGE(DISPLAY_MSG) LENGTH(36);

 */

 150 3 0 /* IDMS PL/I DML EXPANSION */ DO;

 151 3 1 DML_SEQUENCE=16;

 152 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=0;

 153 3 1 DCCFLG1=5;

 154 3 1 DCCFLG2=16;

 155 3 1 DCCFLG3=1;

 156 3 1 DCCFLG4=4;

 157 3 1 DCCFLG5=0;

 158 3 1 DCCFLG6=1;

 159 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (34)

 ,MRB_EMPLMAP

 ,DISPLAY_MSG

 ,DCBMSCOM (36)

 160 3 1); END;

 161 3 0 CALL IDMS_STATUS;

 /*

 DC RETURN NEXT TASK CODE(EMPDISP2); DMLP0017

 */

 162 3 0 /* IDMS PL/I DML EXPANSION */ DO;

 163 3 1 DML_SEQUENCE=17;

 164 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=0;

 165 3 1 DCCSTR2=EMPDISP2;

 166 3 1 DCCFLG1=128;

 167 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (19)

 168 3 1); END;

 169 3 0 END SECOND_TIME;

 170 2 0 NO_EMP: PROC;

 /* DO THIS IF EMPLOYEE NOT FOUND */

 /*

 MAP OUT(EMPLMAP) DMLP0018

 IO OUTPUT DATA YES NEWPAGE

 MESSAGE(NOT_FOUND_MSG) LENGTH(37);

 */

 171 3 0 /* IDMS PL/I DML EXPANSION */ DO;

 172 3 1 DML_SEQUENCE=18;

 173 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=0;

 174 3 1 DCCFLG1=5;

 175 3 1 DCCFLG2=16;

 176 3 1 DCCFLG3=1;

Sample Online Program

406 DML Reference Guide for PLI

 177 3 1 DCCFLG4=4;

 178 3 1 DCCFLG5=0;

 179 3 1 DCCFLG6=1;

 180 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (34)

 ,MRB_EMPLMAP

 ,NOT_FOUND_MSG

 ,DCBMSCOM (37)

 181 3 1); END;

 182 3 0 CALL IDMS_STATUS;

 /*

 DC RETURN NEXT TASK CODE(EMPDISP2); DMLP0019

 */

 183 3 0 /* IDMS PL/I DML EXPANSION */ DO;

 184 3 1 DML_SEQUENCE=19;

 185 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=0;

 186 3 1 DCCSTR2=EMPDISP2;

 187 3 1 DCCFLG1=128;

 188 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (19)

 189 3 1); END;

 190 3 0 END NO_EMP;

 /*

 INCLUDE IDMS (IDMS_STATUS);

 */

 191 2 0 IDMS_STATUS: PROC;

 /* THE IDMS_STATUS PROCEDURE MAY BE CALLED BY THE USER AFTER */

 /* EACH IDMS COMMAND HAS BEEN ISSUED AND CHECKS HAVE BEEN */

 /* MADE FOR ANY EXPECTED NON_ZERO ERROR STATUS CONDITIONS. */

 /* IT DETECTS A NON_ZERO ERROR_STATUS AND TERMINATES THE */

 /* PROGRAM WITH A SNAP OF THE SUBSCHEMA_CTRL AREA AND AN */

 /* ABEND WITH THE ERROR_STATUS AS THE ABEND CODE. */

 192 3 0 IF ERROR_STATUS='0000' THEN GOTO END_STATUS;

 193 3 0 SSC_ERRSTAT_SAVE=ERROR_STATUS; /* SAVE THE ERROR_STATUS */

 194 3 0 SSC_DMLSEQ_SAVE=DML_SEQUENCE; /* SAVE DML_SEQUENCE */

 /* SNAP THE SUBSCHEMA_CTRL AREA */

 /*

 SNAP FROM (SUBSCHEMA_CTRL) TO (SUBSCHEMA_CTRL_END);

 */

Sample Online Program

Appendix E: Sample Programs and Database Definition 407

 195 3 0 /* IDMS PL/I DML EXPANSION */ DO;

 196 3 1 DML_SEQUENCE=20;

 197 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=0;

 198 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (22)

 ,DCCSTR1

 ,DCCSTR1

 ,DCCSTR1

 ,SUBSCHEMA_CTRL

 ,SUBSCHEMA_CTRL_END

 ,DCBMSCOM (1)

 199 3 1); END;

 /* ABEND */

 /*

 ABEND CODE (SSC_ERRSTAT_SAVE);

 */

 200 3 0 /* IDMS PL/I DML EXPANSION */ DO;

 201 3 1 DML_SEQUENCE=21;

 202 3 1 DCCFLG1,DCCFLG2,DCCNUM1,DCCNUM2=0;

 203 3 1 DCCSTR4=SSC_ERRSTAT_SAVE;

 204 3 1 DCCFLG1=2;

 205 3 1 CALL IDMSPLI (SUBSCHEMA_CTRL

 ,DCBMSCOM (1)

 206 3 1); END;

 207 3 0 END_STATUS: END;

 208 2 0 END MAIN_LINE; /* END MAIN_LINE */

 209 1 0 END EMPDISP;

EMPLOYEE Database Definition

408 DML Reference Guide for PLI

EMPLOYEE Database Definition

The following is a data structure diagram for the EMPLOYEE database. Most of the
Examples used in this manual (including the sample programs in this appendix) use the
EMPLOYEE database.

Appendix F: Considerations for IBM Language Environment 409

Appendix F: Considerations for IBM
Language Environment

What Is IBM Language Environment (LE)?

LE is a runtime environment that replaces the language-specific runtime environments
that existed previously. For Example, PL/I had its own runtime environment; COBOL II

had another. CA IDMS can execute programs that are designed to use the LE runtime
environment. It can also execute programs compiled with pre-LE compilers that use the
LE runtime environment.

Note: This appendix only applies to runtime support in CA IDMS/DC. It does not apply to

batch or CICS programs that access CA IDMS.

Language Environment has had several names for different operating systems and

release levels. The term "LE" will be used in this document to refer to the any of the
following unless otherwise noted:

■ LE/370

■ LE for z/OS and z/VM

■ LE for z/VSE

How Can You Use LE with CA IDMS/DC?

To execute online programs using the LE runtime libraries, follow these steps to bring up
your CA IDMS environment:

1. Ensure that the CA IDMS system has been generated with a 24-bit reentrant pool

that is large enough to contain the IBM-supplied LE application program interface
module CEEPIPI. The size of this module is approximately 100K.

2. Ensure that the CA IDMS system has been generated with an XA reentrant pool that
is large enough to maintain residence for several IBM-supplied LE support modules.
Allow 1 megabyte for these programs.

3. Include the LE runtime load libraries in the CDMSLIB loadlib concatenation before
any other IBM language loadlibs that you are using.

This section contains the following topics:

Considerations About LE Runtime (see page 410)
Running LE-Compliant Compiler Programs Under CA IDMS/DC (see page 410)

Supported LE Functions (see page 414)
Unsupported LE Functions (see page 414)

Considerations About LE Runtime

410 DML Reference Guide for PLI

Considerations About LE Runtime

Running Pre-LE Programs

There are restrictions that apply when you run pre-LE programs under LE runtime within
CA IDMS/DC. Pre-LE programs are programs that were compiled with a non-LE
compliant compiler, such as PL/I Release 2.3.

Some of these restrictions are already documented elsewhere in the DML Reference
manuals. Additional restrictions for LE are:

■ Programs compiled under PL/I Release 2.3 and earlier must run without storage
protection.

The IBM LE support module CEEPIPI must be loaded once before any PL/I program is

run. This is most easily done by defining CEEPIPI as RESIDENT in the CA IDMS/DC sysgen
using the following Syntax:

ADD PROGRAM CEEPIPI CONCURRENT ENABLED LANGUAGE ASSEMBLER

NONOVERLABYABLE PROGRAM PROTECT REENTRANT RESIDENT REUSABLE .

■ Restrictions mentioned in the IBM documentation apply.

Note: Running pre-LE programs with LE runtime can degrade performance in some
circumstances. If you notice poor performance you should consider recompiling the

programs with the newer compiler.

Running LE Programs

LE programs are programs that were compiled with a LE-compliant compiler. CA
IDMS/DC supports these LE-compliant compilers:

■ PL/I for z/VM

■ PL/I for z/OS

For convenience, PL/I programs compiled with an LE-compliant compiler are referred to
as "LE PL/I" programs below.

Running LE-Compliant Compiler Programs Under CA IDMS/DC

This section describes what you need to do to compile, l ink, and run a program
compiled with an LE-compliant compiler.

General Preparation

The next paragraph describes how to prepare LE-compiled programs for use with CA

IDMS/DC:

Running LE-Compliant Compiler Programs Under CA IDMS/DC

Appendix F: Considerations for IBM Language Environment 411

For non-reentrant PL/I programs compiled under Release 2.3 or earlier, you must
specify OPTIONS (MAIN) in the PL/I PROCEDURE statement for the entry procedure. For

reentrant PL/I Release 2.3 or earlier programs, you must specify OPTIONS
(MAIN,REENTRANT). For AD/CYCLE (LE-COMPLIANT), PL/I programs, you must specify
OPTIONS (REENTRANT,FETCHABLE).

Note: RHDCLENT/RHDCLINT, required in earlier releases, is not needed for DC/UCF at
release levels 14.1 and above.

Runtime Options

The IBM Language Environment provides numerous options which control how
programs operate at runtime. The default values are designed to be suitable in a batch
environment. Therefore, it is necessary to modify some values for applications which
are to run in a DC/UCF online system.

Note: As stated in the introduction, the information in this appendix does not apply to

programs which run in a CICS or other region even if they access CA IDMS using DML or
SQL commands. It does apply to programs which run a DC/UCF online system which are
invoked from another front-end using CA IDMS UCF, such as an CA ADS application
which is accessed using UCFCICS from a CICS front-end.

The IBM Language Environment provides a number of ways to specify runtime options.
Four methods are supported for CA IDMS/DC online programs:

1. Modify, assemble, and link the IBM-supplied CEEUOPT module. Link the resulting

module with each application program. Product Documentation Change LI8624
contains a sample version of CEEUOPT with values that are appropri ate for most
online CA IDMS applications. Also consult the section "Creating an
Application-Specific Runtime Options Module" in IBM's LE Installation and

Customization Manual.

2. Assemble and link a CEEUOPT module as previously described.Link the resulting
module with RHDCLEFE. Make sure that RHDCLEFE is defined in the CF/UCF Sysgen

as described under "Performance Improvements Using RHDCLEFE" later in this
guide. This option affects only COBOL programs. This is the recommended option
for all online COBOL applications.

3. Assemble and link a specialized CEEDOPT module.

Note: This method is not available for z/OS Version 1.10 and higher. Use method 1
or method 4 for non-COBOL applications on z/OS Version 1.10 and higher.

If this method is chosen, special copies of the IBM modules CEEBINIT and CEEPIPI

must be maintained for use with online DC/UCF systems only. Due to maintenance
considerations, this method is not recommended for COBOL a pplications. It is
needed for PL/I programs compiled with a non-LE-compliant compiler. For further
information on using this method, see Product Documentation Change LI23664.

Running LE-Compliant Compiler Programs Under CA IDMS/DC

412 DML Reference Guide for PLI

4. Assemble and link a specialized CEEROPT module.

Note: This method is not available for z/OS Version 1.9 and lower or for VSE. Use

method 1 or method 3 for PL/I programs with those operating systems.

If this method is chosen, a CEEROPT load module can be created to override desired
options. Like CEEUOPT, and unlike CEEDOPT, you only need to specify those options

which are to be different from the installation default LE run-time options. The
resultant load module must be included in a load library in the CDMSLIB
concatenation ahead of the default SCEERUN load library.

Note: CEEROPT will be loaded in a CA IDMS region only if your CEEPRMxx member

specifies CEEROPT(ALL).

For more information on using this method, see IBM documentation

Except as discussed below, the IBM-supplied default runtime options can be used with
any site-specific desired modifications. Note that the MSGFILE parameter is ignored and

messages are sent to the CA IDMS log fi le.

Recommended settings for certain parameters are as shown below. For more details
about these parameters, see the IBM Language Environment for OS/390 Customization
manual.

■ ABTERMENC=(RETCODE) or ABTERMENC=(ABEND)

This parameter affects the action taken when an LE enclave ends with an unhandled
condition of severity 2 or higher. If RETCODE code is specified, the DC task will
abend with message DC128004. If ABEND is specified, the DC task will abend with a

Uxxx where xxx corresponds to the hexadecimal value of the user abend code set
by LE. For Example, an LE user abend 4093 would result in a DC task abend with
code UFFD.

■ ALL31=(ON)

This parameter will minimize the amount of below-the-line storage, which will be

allocated by LE. This parameter requires that no COBOL programs are compiled
with compiler option DATA(24) and that no programs which will util ize the runtime
LE are l inked AMODE(24).

■ INTERRUPT=(OFF)

Attention interrupts are handled by the CA IDMS/DC system and not by LE runtime
support. Application PL/I programs can test for attention interrupts using the
DC-ATTN-INT condition name under LE just as with earlier PL/I runtime

environments.

■ POSIX=(OFF)

POSIX is not supported under DC/UCF.

Running LE-Compliant Compiler Programs Under CA IDMS/DC

Appendix F: Considerations for IBM Language Environment 413

■ RPTSTG=(OFF) or RPTSTG=(ON)

Normally OFF should be specified. OFF must be specified for systems prior to

Release 14.1.

The purpose of RPTSTG is to determine the storage util ization for a particular
application. The report is produced at the end of a LE process and is written to the

CA IDMS log fi le. For efficiency reasons, the termination phase of LE processing is
normally not executed in an online DC environment. If it is necessary to obtain
storage information for a particular application, optional bit 196 can be set (see
Appendix K, "Optional Online COBOL Functionality" in CA IDMS DML Reference

Guide for COBOL). Note that this option adversely affects performance. Storage
reports are therefore normally produced only in a test or development system.

■ TERMTHDACT=(QUIET) or TERMTHDACT=(TRACE)

This option controls the extent of LE runtime information which will be supplied
when an application terminates. All messages will be written to the DC log fi le.

■ TRAP=(ON) or TRAP=(OFF)

If ON is specified, program checks in an LE application will result in IBM LE
error-handling being put into effect. PL/I-specific and LE messages will be written to
the log. After these messages are written and the LE process ends abnormally, the
DC task will abend with message DC128004 and a task snap will be taken.

If OFF is specified, program checks in an LE application will result in an immediate

task snap. This is similar to the result in a PL/I Release 2.3 runtime environment. No
LE messages related to the program check will be written. Furthermore, if any PL/I
applications are included in the online system, any ON ERROR clauses will not be
handled properly.

In addition to the parameters above, we strongly recommend that you use smaller

values than the default ones for the various heap (e.g., ANYHEAP, BELOWHEAP, HEAP)
and stack (e.g., LIBSTACK, STACK) parameters since these are allocated on a task thread
basis. Storage allocation is most efficient if relatively large values are specified as sixteen
bytes less than a multiple of 4096. Smaller values than 4096 should be set for some

parameters to avoid wasting storage. The following values have been found to be
suitable for most DC/UCF systems:

■ ANYHEAP=(2032,8176,ANYWHERE,FREE)

■ BELOWHEAP=(496,496,FREE)

■ HEAP=(2032,4080,ANYWHERE,KEEP,4080,4080)

■ LIBSTACK=(100,2032,FREE)

■ NONONIPTSTACK=(4080,4080,BELOW,KEEP)

■ STACK=(4080,8176,ANY,KEEP)

■ STORAGE=(NONE,NONE,NONE,4080)

■ THREADHEAP=(2032,4080,,ANYWHERE,KEEP)

Supported LE Functions

414 DML Reference Guide for PLI

Supported LE Functions

CA IDMS/DC supports these LE functions:

■ Math services

■ National language support services

CA IDMS/DC also supports storage management services, but for performance reasons,
they are not recommended. The storage management services are:

■ CEECRHP: Create heap segment

■ CEECZST: Re-allocate (change size of) heap storage

■ CEEDSHP: Discard heap segment

■ CEEFRST: Free heap storage

■ CEEGTST: Get heap storage

Unsupported LE Functions

CA IDMS/DC does not support the following LE functions:

■ CEE3PRM: Get exec parms

■ CEETDLI: Call IMS

■ CEETEST: Invoke debugging environment

■ Date and time services— Use the DML GET TIME command instead

Appendix G: 18-Byte Communications Blocks 415

Appendix G: 18-Byte Communications
Blocks

This appendix describes where to specify an 18-byte communications block and contains

figures showing these blocks.

This section contains the following topics:

Overview (see page 415)

Overview

As an alternative to using the 16-byte IDMS DB and IDMS DC communications blocks,
you can specify 18-byte blocks. The difference between 16-byte blocks and 18-byte
blocks is that an 18-byte block contains an additional 18-byte fi l ler field, and the
following fields are 18 bytes instead of 16 bytes:

■ RECORD_NAME

■ AREA_NAME

■ ERROR_SET

■ ERROR_RECORD

■ ERROR_AREA

Note: For more information about the fields in IDMS DB and IDMS DC communications
blocks, see IDMS DB Communications Block (see page 32) and IDMS DC Communications
Block (see page 39).

Where to Specify the 18-Byte Block

For PL/I, you specify an 18-byte communications block in the SUBSCHEMA_NAMES

LENGTH clause of the DECLARE SUBSCHEMA precompiler-directive statement.

Note: For more information, see DECLARE SUBSCHEMA (see page 61).

Overview

416 DML Reference Guide for PLI

18-Byte IDMS DB Block

The following figure shows the 18-byte IDMS DB communications block:

 Length
 Field Data Type (bytes) Initial Value
 ┌──────────┐
 *│ 1 8 │ PROGRAM-NAME Alphanumeric 8 Program Name
 ├────────┬─┘
 │ 9 12 │ ERROR-STATUS Alphanumeric 4 '1400'
 ├────────┤
 │ 13 16 │ DBKEY Binary 4(Fullword) 0000
 ├────────┴───┐
 │ 17 34 │ RECORD-NAME Alphanumeric 18 Spaces
 ├────────────┤
 │ 35 52 │ AREA-NAME Alphanumeric 18 Spaces
 ├────────────┤
 │ 53 70 │ FILLER Alphanumeric 18 Spaces
 ├────────────┤
 │ 71 88 │ ERROR-SET Alphanumeric 18 Spaces
 ├────────────┤
 │ 89 106 │ ERROR-RECORD Alphanumeric 18 Spaces
 ├────────────┤
 │ 107 124 │ ERROR-AREA Alphanumeric 18 Spaces
 ├─────────┬──┘
**│ 125 128 │ PAGE-INFO Binary 4(Fullword) 0000
 └─────────┘
 ┌─────┬───┬────┐
 │ 125 ... 224 │ IDBMSCOM-AREA Alphanumeric 100 Low Values
 ├─────┴───┴┬───┘
 │ 225 228 │ DIRECT-DBKEY Binary 4(Fullword) 0000
 └──────────┘
 ┌─────────┐
 │ 229 235 │ DATABASE-STATUS Alphanumeric 7 Spaces
 ├─────┬───┘
 │ 236 │ FILLER ... 1 ...
 ├─────┴───┐
 │ 237 240 │ RECORD-OCCUR Binary 4(Fullword) 0000
 ├─────────┤
 │ 241 244 │ DML-SEQUENCE Binary 4(Fullword) 0000
 ├─────────┴──┐
 │ 245 300 │ FILLER Alphanumeric 56 Spaces
 └────────────┘

* word aligned

** PAGE-INFO-GROUP overlays bytes 125 and 126 and PAGE-INFO-DBK-FORMAT
 overlays bytes 127 and 128. Both of these fields are binary datatype,
 each with a length of two bytes. Suggested initial values for
 both are 00. Together these two fields represent PAGE-INFO.

Overview

Appendix G: 18-Byte Communications Blocks 417

18-Byte IDMS DC Block

The following figure shows the 18-byte IDMS DC communications block:

 Length
 Field Data Type (bytes) Initial Value
 ┌──────────┐
 *│ 1 8 │ PROGRAM-NAME Alphanumeric 8 Program Name
 ├────────┬─┘
 │ 9 12 │ ERROR-STATUS Alphanumeric 4 '1400'
 ├────────┤
 │ 13 16 │ DBKEY Binary 4(Fullword) 0000
 ├────────┴───┐
 │ 17 34 │ RECORD-NAME Alphanumeric 18 Spaces
 ├────────────┤
 │ 35 52 │ AREA-NAME Alphanumeric 18 Spaces
 ├────────────┤
 │ 53 70 │ FILLER Alphanumeric 18 Spaces
 ├────────────┤
 │ 71 88 │ ERROR-SET Alphanumeric 18 Spaces
 ├────────────┤
 │ 89 106 │ ERROR-RECORD Alphanumeric 18 Spaces
 ├────────────┤
 │ 107 124 │ ERROR-AREA Alphanumeric 18 Spaces
 ├─────────┬──┘
**│ 125 128 │ PAGE-INFO Binary 4(Fullword) 0000
 └─────────┘

 ┌─────┬───┬────┐
 │ 125 ... 224 │ IDBMSCOM-AREA Alphanumeric 100 Low Values
 ├─────┴───┴┬───┘
 │ 225 228 │ DIRECT-DBKEY Binary 4(Fullword) 0000
 ├──────────┤
 │ 229 235 │ DATABASE-STATUS Alphanumeric 7 Spaces
 ├─────┬────┘
 │ 236 │ FILLER ... 1 ...
 ├─────┴────┐
 │ 237 240 │ RECORD-OCCUR Binary 4(Fullword) 0000
 ├──────────┤
 │ 241 244 │ DML-SEQUENCE Binary 4(Fullword) 0000
 ├──────────┤
 │ 245 300 │ FILLER Alphanumeric 56 Spaces
 ├─────┬───┬┴───┐
 │ 301 ... 400 │ DBMSCOM-AREA Alphanumeric 100 Low Values
 ├─────┴───┴┬───┘
 │ 401 404 │ SSC-ERRSTAT-SAVE Alphanumeric 4 0000
 ├──────────┤
 │ 405 408 │ SSC-DMLSEQ-SAVE Binary 4(Fullword) 0000
 ├──────────┤
 │ 409 412 │ SUBSCHEMA-CTRL-END Alphanumeric 4 0000
 └──────────┘

* word aligned

** PAGE-INFO-GROUP overlays bytes 125 and 126 and PAGE-INFO-DBK-FORMAT
 overlays bytes 127 and 128. Both of these fields are binary datatype,
 each with a length of two bytes. Suggested initial values for
 both are 00. Together these two fields represent PAGE-INFO.

Appendix H: Online Debugger Syntax 419

Appendix H: Online Debugger Syntax

This section contains the following topics:

General Registers Symbols (see page 419)
DC/UCF System Symbols (see page 420)
Address Symbols and Markers (see page 420)

User Symbols (see page 421)
Program Symbols (see page 421)
Expression Operators (see page 421)

Delimiters (see page 422)
Debugger Commands (see page 422)

General Registers Symbols

General registers include the registers used by the program at the time of execution
and the registers used by the DC/UCF system. The program status word (PSW) and

register definitions are always preceded by a colon (:) and are specified by these
symbols:

■ :PSW for the current program status word

■ :Rn for the user program register at the time of interrupt, where n represents the
number of the register and can have a value of 0 through 15

■ :REGS for all user program registers at the time of interrupt

■ :SRn for a DC/UCF system register at the time of interrupt, where n represents the

number of the register and can have a value of 0 through 15

■ :SREGS for all DC/UCF system registers at the time of interrupt

Important! A single debug expression can reference only one general register.

DC/UCF System Symbols

420 DML Reference Guide for PLI

DC/UCF System Symbols

Certain DC/UCF system symbols also function as debugger entities, and you can refer to
them during a debugging session. A colon (:) must precede each symbol. These are the
valid symbols:

:BAT

Specifies the base address table for session.

:CSA

Specifies the DC/UCF common storage area.

:DLB

Specifies the debug local block, control block required for debugging session.

:LTE

Specifies the current logical terminal element.

:PTE

Specifies the current physical terminal element.

:TCE

Specifies the current task control element.

:VECT

Specifies the vector table for debugger.

Important! A single debug expression can reference only one system entity.

Address Symbols and Markers

Symbol Symbol Name Designated Location

@ At sign Absolute address

$ Dollar sign Load address

¢ Cent sign Address of current dialog process

User Symbols

Appendix H: Online Debugger Syntax 421

User Symbols
■ :DRn for a debugger general register, where n represents the number of the

register and can have a value of 0 through 15

■ :DREGS for all debugger registers

■ :H1 and :H2 for halfword 1 and halfword 2

■ :F1 and :F2 for fullword 1 and fullword 2

■ :UCHR for a 48-byte character area

You can also refer to specified sections of this area:

– :UC0, the first 16 bytes

– :UC16, the next 16 bytes

– :UC32, the last 16 bytes

Program Symbols

Syntax: Data Field Names

►►──── data-field-name ─┬──────────────────────┬──────────────────────────────►◄
 ├─ IN ─┬─ record-name ─┘
 └─ OF ─┘

Syntax: Line Numbers

►►──── # line-number ───►

 ►─┬──┬───►◄
 └─┬─ IN ─┬─┬─ current-process-name ───────────────────────────────────┬┘
 └─ OF ─┘ └─ included-module-name ─┬────────────────────────────────┬┘
 └─ OCCurrence occurrence-number ─┘

Syntax: Qualifying Program Symbols

►►─── process-name - . - program-symbol ──────────────────────────────────────►◄

Expression Operators

Operator Meaning

+ Addition

- Subtraction

Delimiters

422 DML Reference Guide for PLI

Operator Meaning

* Multiplication

/ Division

Delimiters

Delimiter Meaning

* Asterisk

 Blank

, Comma

= Equal sign

! Exclamation point

- Hyphen

% Percent sign

. Period

+ Plus sign

/ Slash

Debugger Commands

Syntax: AT

ADD Format

►►─── AT debug-expression ──►

 ►─┬───────────────────────────────┬─┬──────────────────────────────┬─────────►
 └─ BEFore ─┬─ MAXimum ◄ ───────┬┘ └─ AFTer ─┬─ 0 ◄ ─────────────┬┘
 └─ execution-count ─┘ └─ execution-count ─┘

 ►─┬──────────────────────────────┬─┬──────────┬──────────────────────────────►◄
 └─ EVEry ─┬─ 1 ◄ ─────────────┬┘ ├─ ON ◄ ───┤
 └─ execution-count ─┘ └─ IGNore ─┘

INQUIRE Format

►►─── AT ─┬─ ALL ──────────────┬─┬─ INQuire ─┬────────────────────────────────►◄
 └─ debug-expression ─┘ ├─ ON ──────┤
 ├─ IGNore ──┤
 └─ OFF ─────┘

Debugger Commands

Appendix H: Online Debugger Syntax 423

Syntax: DEBUG

ADD format

►►─── DEBug ─┬─ PROgram ◄ ──┬─ entity-name ─┬──────────────────────────┬───────►◄
 ├─ DIAlog ─────┤ └─ VERsion version-number ─┘
 ├─ MAP ────────┤
 ├─ SS ─────────┤
 └─ TABle ──────┘

INQUIRE format

►►─── DEBug ─┬─ entity-name ─┬──────────────────────────┬─┬─┬─ INQuire ─┬─────►◄
 │ └─ VERsion version-number ─┘ │ └─ OFF ─────┘
 └─ ALL ──────────────────────────────────────┘

Syntax: EXIT
►►─── EXIt ───►◄

Syntax: IOUSER

►►─── IOUser ───►◄

Syntax: LIST

MEMORY Format

►►─┬─ List ────┬─┬──────────┬─ begin-debug-expression ────────────────────────►
 └─ Display ─┘ └─ Memory ─┘

 ►─┬──────────────────────────────────┬──┬──────┬─────────────────────────────►◄
 ├─ TO end-debug-expression ────────┤ ├─ C ──┤
 └─┬──────────┬─ byte-count-number ─┘ ├─ X ──┤
 └─ LENgth ─┘ └─ XC ─┘

ATTRIBUTES Format

►►─┬─ List ────┬─ SESsion ATTributes ───►◄
 └─ Display ─┘

Syntax: MENU
►►─── MENu ─┬───────────────┬───►◄
 └─ screen-name ─┘

Syntax: PROMPT
►►─── PROmpt ───►◄

Debugger Commands

424 DML Reference Guide for PLI

Syntax: QUALIFY

RESET Format

►►─── QUAlify ─┬──────────────────────┬─ PROCess process-name ────────────────►
 └─ DIAlog dialog-name ─┘

 ►─┬──────────────────────────┬───►◄
 └─ VERsion version-number ─┘

INQUIRE Format

►►─── QUAlify INQuire ──►◄

Syntax: QUIT

►►─── QUIt ───►◄

Syntax: RESUME
►►─── RESume ─┬───────────────────────────────┬───────────────────────────────►◄
 └┬──────┬─┬─ debug-expression ─┬┘
 └─ AT ─┘ └─ ABEnd ────────────┘

Syntax: SET

MEMORY Format

►►─┬─ Set ──┬─┬──────────┬─ debug-expression ─┬──────────┬───────────────────►
 └─ Vary ─┘ └─ Memory ─┘ ├─ EQUals ─┤
 └─ = ──────┘

 ►─┬─ data-field-name ────┬─┬──────┬─┬─────────────┬──────────────────────────►◄
 ├─ H halfword ─────────┤ ├─ C ──┤ ├─ RESEt ─────┤
 ├─ F fullword ─────────┤ ├─ X ──┤ └─ NOReset ◄ ─┘
 ├─ X hex-value ────────┤ └─ XC ─┘
 ├─ C character-string ─┤
 └─ P packed-value ─────┘

ATTRIBUTES Format

►►─── Set ─┬─ CHAr ─┬───►◄
 ├─ HEX ──┤
 └─ BOTh ─┘

Syntax: SNAP

►►─── SNAp ─┬─ TASk ──┬───►
 └─ begin-debug-expression ─┬─────────────────────────────────┬┘
 ├─ TO end-debug-expression ───────┤
 └┬──────────┬─ byte-count-number ─┘
 └─ LENgth ─┘

 ►─┬───────────────┬──►◄
 └─ TITle title ─┘

Debugger Commands

Appendix H: Online Debugger Syntax 425

Syntax: WHERE

►►─── WHEre ──►◄

Index 427

Index

B

basic mode • 246, 249, 295, 297, 301
READ TERMINAL • 246, 249

WRITE TERMINAL • 295, 297
WRITE THEN READ TERMINAL • 297, 301

C

CALL sequences • 61
CA IDMS/DB • 61
Non CA IDMS/DC TP monitors • 61

compiler options • 27, 28, 29
comment generation • 28, 29
dictionary ready override • 27, 28
list generation • 29

log suppression • 29
PL/I compiler option usage • 28

control statements • 170, 187, 189, 198, 249, 252,

255, 257
FINISH • 170
IF • 187, 189
KEEP CURRENT • 198

READY • 249, 252
ROLLBACK • 255, 257

cursor position • 223

MODIFY MAP • 223

D

DC_BATCH • 61

allowable DML commands • 61
destination • 257, 290

SEND MESSAGE • 257
WRITE PRINTER • 290

DML precompiler • 22, 27, 31, 32, 61, 77, 309, 311,
315, 326, 333, 359, 363

execution of • 22, 309

general discussion • 22
keywords • 359
precompiler options • 27, 31
precompiler-directive statements • 61, 77

with non-IDMS DC TP monitor • 363
DML statements • 79, 81, 84, 88

functions • 79, 81

grouped by DB functions • 84
grouped by DC functions • 84, 88

dump • 88, 89
ABEND • 88, 89

E

execution options • 365
COUNT • 365
FLOW • 365

REPORT • 365

I

IDMS CALL sequences • 61

CA IDMS/DC • 61
DC_BATCH • 61

IDMS DB communications block • 38
IDMS DC communications block • 39, 43

field descriptions • 39
INCLUDE IDMS MAP_BINDS statement • 112, 113,

115

INCLUDE IDMS SUBSCHEMA_BINDS statement • 115,
118

INQUIRE MAP • 189, 192, 193, 194
general discussion • 189

moving map-related data • 189
testing for cursor position • 193, 194
testing for global map input conditions • 192,

193
testing for input error conditions • 194

integrated indexing • 161
FIND/OBTAIN WITHIN SET USING SORT KEY • 161

J

journal fi le • 279, 281
WRITE JOURNAL • 279, 281

K

kept storage • 171, 173, 181, 185

FREE STORAGE • 171, 173
GET STORAGE • 181, 185

L

l ine mode • 244, 246, 281, 284
READ LINE FROM TERMINAL • 244, 246
WRITE LINE TO TERMINAL • 281, 284

428 DML Reference Guide for PLI

Logical Record Facil ity • 234, 236, 238, 273, 275,
301, 306, 309

error codes • 306, 309
logical-record clauses • 301, 309
MODIFY RECORD • 234, 236

OBTAIN RECORD • 236, 238
ON clause • 306
STORE RECORD • 273, 275
WHERE clause • 301, 306

logical-record clauses • 301, 306
general discussion • 301
ON clause • 306
WHERE • 301, 306

logical-record request control (LRC) block • 38
field descriptions • 38

M

map • 194, 213, 223
attributes • 223
field l ist • 194

message area • 213
modifying • 223

mapping mode • 189, 198, 207, 213, 219, 223, 230,

265, 268
INQUIRE MAP • 189, 198
MAP IN • 207, 213
MAP OUT • 213, 219

MAP OUTIN • 219, 223
MODIFY MAP • 223, 230
STARTPAGE • 265, 268

modification statements • 230, 234, 268, 273
MODIFY RECORD • 230, 234
STORE RECORD • 268, 273

N

native mode • 207, 290
MAP IN • 207
WRITE PRINTER • 290

O

ON clause (LRF) • 306

expanded Syntax • 306

P

page information • 99, 101, 102

ACCEPT PAGE_INFO • 99
page=end.KEEP LONGTERM • 205

page=end KEEP LONGTERM • 205

page=end.RETURN • 255
page=end RETURN • 255

page=start.RETURN • 252
page=start RETURN • 252

PL/I operating modes • 61

standard PL/I operating modes • 61
PL/I program, samples • 367, 388, 408, 409, 415

batch • 367
considerations for IBM Language Environment •

409
online • 388

precompiler options • 31
log suppression • 31

precompiler-directive statements • 61, 65, 66, 74,
75, 76

DECLARE MAP • 65, 66

DECLARE SUBSCHEMA • 61, 65
INCLUDE IDMS • 66, 74
INCLUDE IDMS (MAP_BINDS) • 74
INCLUDE IDMS (SUBSCHEMA_BINDS) • 75, 76

INCLUDE IDMS MODULE • 74, 75
print • 290

classes • 290

destinations • 290
queues • 290

program management • 133, 134, 205, 207, 275, 277
DELETE TABLE • 133, 134

LOAD TABLE • 205, 207
TRANSFER • 275, 277

Q

queue management • 174, 178, 239, 241
GET QUEUE • 174, 178
PUT QUEUE • 239, 241

queues • 118, 119, 129, 131, 133, 134, 135, 137,
138, 140, 143, 149, 150

BIND TASK • 118, 119
DELETE QUEUE • 129, 131

DEQUEUE • 134, 135
ENQUEUE • 140, 143

R

record locks • 200
KEEP CURRENT • 200

recovery • 255, 257, 279, 281

ROLLBACK • 255, 257
WRITE JOURNAL • 279, 281

Index 429

retrieval statements • 150, 151, 154, 156, 159, 161,
164, 170, 173, 174, 236, 238

FIND/OBTAIN • 150, 151
FIND/OBTAIN CALC/DUPLICATE • 151, 154
FIND/OBTAIN CURRENT • 154, 156

FIND/OBTAIN DBKEY • 156, 159
FIND/OBTAIN OWNER • 159, 161
FIND/OBTAIN WITHIN SET USING SORT KEY •

161, 164

FIND/OBTAIN WITHIN SET/AREA • 164, 170
GET • 173, 174
OBTAIN RECORD • 236, 238

S

scratch management • 178, 181, 241, 244
GET SCRATCH • 178, 181

PUT SCRATCH • 241, 244
see=callformats call expansions • 359
see=DMLprecompiler DMLP precompiler • 23, 24,

25, 26

see=error-statuscodes IDMS DC communications
block • 39

see=precompileroptions DML precompiler options •

27
see=programexpansionelement(PXE) PXE • 38, 39
see=READY dictionary ready override • 27
see=SETTIMER time interval • 259

see=writecontrolcharacter(WCC) WCC • 223
Sequential Processing Facility • 255

RETURN • 255

status codes • 54, 55, 59
storage management • 171, 173, 181, 185

FREE STORAGE • 171, 173
GET STORAGE • 181, 185

subschema usage modes • 66
DML • 66
LR • 66
MIXED • 66

T

tables • 133, 134, 205, 207

DELETE TABLE • 133, 134
LOAD TABLE • 205, 207

task management • 238, 239, 277, 279
POST • 238, 239

WAIT • 277, 279
teleprocessing monitors • 61, 363, 365

notes to users of • 363, 365

operating modes for use with • 61
terminal management • 189, 198, 207, 213, 219,

223, 230, 244, 246, 249, 265, 268, 290, 295, 297,
301

INQUIRE MAP • 189, 198

MAP IN • 207, 213
MAP OUT • 213, 219
MAP OUTIN • 219, 223
MODIFY MAP • 223, 230

READ LINE FROM TERMINAL • 244, 246
READ TERMINAL • 246, 249
STARTPAGE • 265, 268
WRITE PRINTER • 290, 295

WRITE TERMINAL • 295, 297
WRITE THEN READ TERMINAL • 297, 301

time management • 185, 187, 259, 263

GET TIME • 185, 187
SET TIMER • 259, 263

transaction statistics block (TSB) • 102, 108, 110,
119, 120, 121, 122, 124, 126, 129, 138, 140

ACCEPT TRANSACTION STATISTICS • 102, 108
BIND TRANSACTION STATISTICS • 119, 120
END TRANSACTION STATISTICS • 138, 140

TRANSFER • 275
NORETURN (XCTL) parameter • 275
RETURN (LINK) parameter • 275

U

user storage • 171, 173, 181, 185
FREE STORAGE • 171, 173

GET STORAGE • 181, 185
util ity functions • 89, 91, 92, 94, 97, 99, 200, 205,

257, 259, 263, 265, 284, 290
ACCEPT • 89, 91

KEEP LONGTERM • 200, 205
SEND MESSAGE • 257, 259
WRITE LOG • 284, 290

W

WHERE clause (LRF) • 301
expanded Syntax • 301

	CA IDMS DML Reference Guide for PLI
	CA Technologies Product References
	Contact CA Technologies
	Documentation Changes
	Contents
	1: Introduction
	Syntax Diagram Conventions

	2: Introduction to CA IDMS Data Manipulation Language
	Batch Processing
	Typical Batch Program Flow
	Online Processing
	Typical Online Program Flow

	Programming in the CA IDMS Environment
	Database Statements
	Data Communications Statements
	Navigational DML
	Example of Navigational DML Statements

	SQL DML
	LRF DML
	Example of LRF DML Statements

	CA IDMS/DC Statements
	Example of a PL/I Data Stream with CA IDMS/DC Statements
	Types of Online CA IDMS/DC Statements

	Compiling and Executing Programs
	Compiling Programs
	Step 1--DML Precompiler
	Step 2--PL/I Compiler
	Step 3--Linkage Editor
	PL/I Program Compile

	Executing Programs
	PL/I Features You Cannot Use

	Callable Services and Common Facilities
	Callable Services
	Common Facilities

	3: DML Precompiler Options
	Dictionary Ready Override
	Syntax
	Parameters

	PL/I Compiler Option Usage
	Syntax

	Comment Generation
	Syntax

	List Generation
	Syntax
	Parameters

	Log Suppression
	Syntax

	4: Communications Blocks and Error Detection
	Communications Blocks
	IDMS DB Communications Block
	Layout of the IDMS DB Communications Block
	Fields Containing Program Status Information
	Updating Fields in the IDMS DB Communications Block
	Example of Updated Fields

	LRC Block
	Layout of the LRC Block
	Description of Fields

	IDMS DC Communications Block
	Layout of the IDMS DC Communications Block
	Description of Fields

	ERROR_STATUS Field and Codes
	Major and Minor Codes
	DB Status Codes
	Major DB Status Codes
	Minor DB Status Codes

	DC Status Codes
	Major DC Status Codes
	Minor DC Status Codes

	Error Detection
	IDMS_STATUS Routine
	IDMS_STATUS Routine Used Under Batch
	IDMS_STATUS Routine Used Under a DC/UCF System
	Common Status Codes
	Pageable Map Status Codes

	Effects of Nonzero Status on IDMS_STATUS
	Effect When the Operating Mode Is BATCH
	Effect When the Operating Mode Is IDMS_DC

	5: Required PL/I Declaratives
	DECLARE IDMS
	DECLARE IDMSPLI
	DECLARE IDMSDCP
	DECLARE SQLXQ1
	DECLARE ADDR BUILTIN
	DECLARE ABORT
	DECLARE IDMSP

	6: DML Precompiler-Directive Statements
	DECLARE SUBSCHEMA
	Syntax
	Parameters
	Example

	DECLARE MAP
	Syntax
	Parameters
	Example

	INCLUDE IDMS
	Subschema Usage Modes
	Syntax
	Parameters
	INCLUDE IDMS Code

	INCLUDE IDMS (MAP_BINDS)
	Syntax
	Parameters

	INCLUDE IDMS MODULE
	Syntax
	Parameters

	INCLUDE IDMS (SUBSCHEMA_BINDS)
	Syntax

	INCLUDE IDMS (SUBSCHEMA_RECORD_BINDS)
	Syntax

	7: Data Manipulation Language Statements
	Functions of DML Statements
	Database Functions
	Data Communications Functions

	DML Statements Grouped by Function
	DML Statements (Database)
	DML Statements (Data Communications)

	ABEND (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	ACCEPT (DC/UCF)
	Syntax
	Parameters.
	Example
	Status Codes

	ACCEPT BIND RECORD
	Currency
	Syntax
	Example
	Status Codes

	ACCEPT DBKEY FROM CURRENCY
	Currency
	Syntax
	Parameters
	Example
	Status Codes

	ACCEPT DBKEY RELATIVE TO CURRENCY
	Currency
	Syntax
	Parameters
	Example
	Status Codes

	ACCEPT IDMS STATISTICS
	Syntax
	Parameter
	Example
	Status Codes

	ACCEPT PAGE_INFO
	Syntax
	Parameters
	Example
	Status Codes

	ACCEPT PROCEDURE CONTROL LOCATION
	Syntax
	Parameters
	Example
	Status Codes

	ACCEPT TRANSACTION STATISTICS (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	ATTACH (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	BIND MAP (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	BIND PROCEDURE
	Syntax
	Parameters
	Example
	Status Codes

	BIND RECORD
	Syntax
	Parameters
	Example
	Status Codes

	BIND RUN_UNIT
	When You Do Not Need BIND RUN_UNIT
	Syntax
	Parameters
	Example
	Status Codes

	BIND TASK (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	BIND TRANSACTION STATISTICS (DC/UCF)
	Syntax
	Example
	Status Codes

	CHANGE PRIORITY (DC/UCF)
	Syntax
	Example
	Status Codes

	CHECK TERMINAL (DC/UCF)
	Syntax
	Status Codes

	COMMIT
	Syntax
	Parameters
	Example
	Status Codes

	CONNECT
	Syntax
	Parameters
	Example
	Status Codes

	DC RETURN (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	DELETE QUEUE (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	DELETE SCRATCH (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	DELETE TABLE (DC/UCF)
	Syntax
	Example
	Status Codes

	DEQUEUE (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	DISCONNECT
	Syntax
	Parameters
	Example
	Status Codes

	END LINE TERMINAL SESSION (DC/UCF)
	Syntax
	Example
	Status Codes

	END TRANSACTION STATISTICS (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	ENDPAGE (DC/UCF)
	Syntax
	Example
	Status Codes

	ENQUEUE (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	ERASE
	Syntax
	Parameters
	Example
	Status Codes

	ERASE (LRF)
	Syntax
	Example

	FIND/OBTAIN
	FIND/OBTAIN CALC/DUPLICATE
	Syntax
	Parameters
	Example
	Status Codes

	FIND/OBTAIN CURRENT
	Syntax
	Parameters
	Example
	Status Codes

	FIND/OBTAIN DBKEY
	Syntax
	Parameters
	Example
	Status Codes

	FIND/OBTAIN OWNER
	Syntax
	Parameters
	Example
	Status Codes

	FIND/OBTAIN WITHIN SET USING SORT KEY
	Syntax
	Parameters
	Example
	Status Codes

	FIND/OBTAIN WITHIN SET/AREA
	Syntax
	Parameters
	Example
	Status Codes

	FINISH
	Syntax
	Parameters
	Example
	Status Codes

	FREE STORAGE (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	GET
	Syntax
	Example
	Status Codes

	GET QUEUE (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	GET SCRATCH (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	GET STORAGE (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	GET TIME (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	IF
	Syntax
	Parameters
	Example
	Status Codes

	INQUIRE MAP (DC/UCF)
	Moving Map-Related Data
	Syntax
	Parameters
	Example

	Testing for Global Map Input Conditions
	Syntax
	Parameters
	Example

	Testing for Cursor Position
	Syntax
	Parameters
	Example

	Testing for Input Error Conditions
	Syntax
	Parameters
	Example
	Status Codes

	KEEP CURRENT
	Syntax
	Parameters
	Example
	Status Codes

	KEEP LONGTERM (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	LOAD TABLE (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	MAP IN (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	MAP OUT (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	MAP OUTIN (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	MODIFY MAP (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	MODIFY RECORD
	Syntax
	Example
	Status Codes

	MODIFY RECORD (LRF)
	Syntax
	Parameters
	Example

	OBTAIN (LRF)
	Syntax
	Parameters
	Example

	POST (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	PUT QUEUE (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	PUT SCRATCH (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	READ LINE FROM TERMINAL (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	READ TERMINAL (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	READY
	Syntax
	Parameters
	Example
	Status Codes

	RETURN (DC/UCF)
	Syntax
	Parameters
	Syntax
	Parameters
	Example
	Status Codes

	ROLLBACK
	Syntax
	Parameters
	Example
	Status Codes

	SEND MESSAGE (DC/UCF)
	Syntax
	Parameters
	Examples
	Status Codes

	SET TIMER (DC/UCF)
	Syntax
	Parameters
	Examples
	Status Codes

	SNAP (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	STARTPAGE (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	STORE RECORD
	Syntax
	Example
	Status Codes

	STORE RECORD (LRF)
	Syntax
	Parameters
	Example

	TRANSFER (DC/UCF)
	Passing Parameters from a Non-PL/I Program
	Syntax
	Parameters
	Examples
	Status Codes

	WAIT (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	WRITE JOURNAL (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	WRITE LINE TO TERMINAL (DC/UCF)
	Syntax
	Parameters
	Examples
	Status Codes

	WRITE LOG (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	WRITE PRINTER (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	WRITE TERMINAL (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	WRITE THEN READ TERMINAL (DC/UCF)
	Syntax
	Parameters
	Example
	Status Codes

	Logical-Record Clauses (WHERE and ON)
	WHERE Clause
	Parameters
	Examples

	ON Clause
	Syntax
	Parameters
	Example
	Status Codes

	A: DML Precompile, PL/I Compile, and Link-Edit JCL
	Compiling a PL/I Program
	Under z/OS
	Runtime Parameters

	Under z/VSE
	SYSIDMS Parameters

	Under z/VM

	Link-Edit Considerations
	Passing Parameters to the Precompiler
	Optional Parameters

	B: Call Formats
	Example of a Call Format
	CA IDMS/DB Call Formats
	Control Statements
	Modification Statements
	Retrieval Statements
	ACCEPT Statements
	LRF DML Statements

	CA IDMS/DC Call Formats
	Program Management Statements
	Storage Management Statements
	Task Management Statements
	Time Management Statements
	Scratch Management Statistics
	Queue Management Statements
	Terminal Management Statements
	Utility Statements
	Recovery Statements
	DC_BATCH Statement

	C: Keywords
	D: Notes to Teleprocessing Monitor Users
	Notes

	E: Sample Programs and Database Definition
	CA IDMS/DC Programming Considerations
	Sample Batch Program
	Batch Input to the DML Precompiler
	Output from the DML Precompiler
	Output from the PL/I Compiler

	Sample Online Program
	Application Components
	Application Runtime Requirements
	Online Input to the DML Precompiler
	Output from the DML Precompiler
	Output from the PL/I Compiler

	EMPLOYEE Database Definition

	F: Considerations for IBM Language Environment
	Considerations About LE Runtime
	Running LE-Compliant Compiler Programs Under CA IDMS/DC
	Supported LE Functions
	Unsupported LE Functions

	G: 18-Byte Communications Blocks
	Overview

	H: Online Debugger Syntax
	General Registers Symbols
	DC/UCF System Symbols
	Address Symbols and Markers
	User Symbols
	Program Symbols
	Syntax: Data Field Names
	Syntax: Line Numbers
	Syntax: Qualifying Program Symbols

	Expression Operators
	Delimiters
	Debugger Commands
	Syntax: AT
	Syntax: DEBUG
	Syntax: EXIT
	Syntax: IOUSER
	Syntax: LIST
	Syntax: MENU
	Syntax: PROMPT
	Syntax: QUALIFY
	Syntax: QUIT
	Syntax: RESUME
	Syntax: SET
	Syntax: SNAP
	Syntax: WHERE

	Index

