CA IDMS™

DML Reference Guide for COBOL
Release 18.5.00, 3rd Edition

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for yourinformational purposes onlyandis subject to change or withdrawalby CAat anytime. This
Documentationis proprietaryinformation of CAand maynotbe copied, transferred, reproduced, disclosed, modified or
duplicated, inwhole orin part, without the prior written consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copiesof the Documentation forinternal use by you and your employeesin connection with
thatsoftware, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The rightto print or otherwise make available copiesof the Documentation is limited to the period during which the applicable
license for such software remains in fullforce and effect. Should the license terminate foranyreason, itis your responsibility to
certifyin writing to CAthatall copies and partial copies of the Documentation have beenreturnedto CA ordestroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CAPROVIDES THISDOCUMENTATION “AS IS” WITHOUTWARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FORA PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILLCABE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THISDOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IFCA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCHLOSS OR DAMAGE.

The use of anysoftware product referencedinthe Documentationis governed by the applicable license agreement and such
license agreementis not modified inanywaybythe terms ofthis notice.

The manufacturer of this Documentationis CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Governmentis subject to the restrictions
setforth in FARSections 12.212,52.227-14,and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
theirsuccessors.

Copyright © 2014 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belongto
theirrespective companies.

CA Technologies Product References

This document references the following CA products:
m CAIDMS™/DB

m CAIDMS™/DC

m CA|DMS™ UCF

m CAIDMS™ DC/UCF

= CAIDMS™ DDS

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one sitewhere you canaccess the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

m Onlineandtelephone contactinformation for technical assistanceand customer
services

m [nformationabout user communities and forums
m Product and documentation downloads
m CA Support policies and guidelines

m Other helpful resources appropriate for your product
Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
cansend a message to techpubs@ca.com.

To providefeedback about CA Technologies product documentation, complete our
shortcustomer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Documentation Chandes

The following documentation updates were made for the 18.5.00,2nd and 3rd Edition
releases of this documentation:

IDMS-STATUS Routine (see page 60), Sample Batch Programas Qutput from the
DML Compiler (see page 369), Sample Batch Programfrom the COBOL Precompiler
(see page 387)—Updated the code inthe context of IDMS-STATUS.

Executing Programs (see page 25)—Added information about the TRUNC option.

Features Supported by CA IDMS (see page 503)—Added a reference to the
information aboutthe TRUNC option.

18-Byte IDMS Block (see page 518), 18-Byte IDMS DC Block (see
page 519),Communications Blocks (see page 33)—Updated the tables and field
descriptions.

Copying and Pasting COBOL Code from this Guide (see page 13)—Added this section
containing the recommendation to copy COBOL code from the HTML version of this
guide to preserve indention.

The following documentation updates were made for the 18.5.00 release of this
documentation:

IDMS STATUS Routine (see page 60)—Routine updated to displaylastdbkey, page
group, and database-key format.

ACCEPT DB-KEY FROM CURRENCY (see page 106)—The description of this
statement was updated with information on the PAGE-INFO parameter.

READY (see page 272)—The description of the FORCE option was added.

ERROR-STATUS Condition Names (see page 59)—This new section was previously
availablein the Programming Quick Reference Guide.

Online Debugger Syntax (see page 527)—This new appendix was previously
availableinthe Programming Quick Reference Guide.

ACCEPT TRANSACTION STATISTICS (see page 113)—Added a sample of the
TRANSACTION-STATISTICS to the description of the INTO parameter.

WORKING-STORAGE and LINKAGE SECTIONS (see page 76)—Added the
TRANSACTION-STATISTICS parameter.

Contents

Chapter 1: Introduction 13
Copying and Pasting COBOL Code from this GUITE.......ccuceeieiiiiniieicecceeeseeee ettt et a et este st e s s be s s s 13
SYNtaX DIagram CONVENTIONSccuivuiiiiieiieierie sttt s ittt sae s e sae e st st e e et et e besae s st e st et et e sessessesseeseensensansensansassees 13
Chapter 2: Introduction to CA IDMS Data Manipulation Language 17
Programming in the CA IDMS ENVIFONMENT ...cccceueiririeteirieteereseesesesteseesessssesesestesessesesssessssssessssssasensssssessssssessnsssesssaessesanens 19
ACCESSING the DAtahasS ..ttt e e e et et e b e s e e st e b et e s e e ea s e e s e sseseeteneeseesesaneesensesensans 19
Programming in the ONliNg ENVITONMENTcocuioiiiieieeeeetete ettt ettt se et saesesbe e be st esesbe s ebessensesesbeneesansesesans 21
Compiling and EXECULING CA IDMS PrOZIramS.cceieieerreeereerieereesiestesessestssesessessesessessssessessesessessesessessesessesessessessssensesessessssenes 22
COMIPI NG PrOZIamMS.. ..o ciceiiceieeeietetee sttt et et e e st e e e e seebe st ese et asaeseseseebesbeneeb et ene et eseebe st ese et assensebensesestansetesenentanes 23
EXECULING PrOZIramS ...ttt sttt ettt ettt ettt et a e s b e s s e s st e s e e st e et e basaesaesaeeat e st et e b e st entestenseatansansensansanes 25
Callable Services and COMMON FACIHITISciviririirieieieeririe ettt sttt ettt stttk sttt sttt ee 26
CallabI @ SEIVICES ...ttt sttt sttt s a et et e bt e e b et e s e et et e b et et e he b e ne b et eRe st et ebe e enenae s 26
COMMON FACIHITIES ..ttt ettt ettt b ettt sttt b st e s b b et b e b e se e e ebe e seebe sttt ssenenessenentas 27
Chapter 3: Precompiler Options 29
DictioNary REAAY OVEITITE......c.ccereeieeiieirieiererie ettt ettt st e e e bt s e s e s et se b et s e b e et sesese e nsenentas 29
DictioNary REAAY OVEITIE.ciiieeieeieieicereeie sttt ettt sttt sttt sttt st e et s et s b bt st e ket sbebeae e e be et ebebeneteee 30
COMMEEBNT GENEIATION ...ttt ettt b ettt et et e b e s b e s b e s b e e st e st et e b e b e s b e e besbesae e Rt e at et e saeeae e st e st ent et et atenbanbenat 30
LiST GENEIATION ...ttt ettt ettt ettt b e s e et e b et st b e e b e s b et e b e s e e ae s b et e s e sbeme b e e e aees et esese et ese s enesee e esesresentnens 30
(oY= Y] o] o] =11 o o SO PO 31
Chapter 4. Communications Blocks and Error Detection 33
COMMUNICATIONS BIOCKScuviveiiiiiteieistcietes ettt sttt ettt et e e et et ese et e st ens et e e ese et eseebe st eseebessensesensesesbensetensenestanes 33

IDMS Communications Block
LRC BlOCK....cctrerreieiriecirieiecanee
IDMS-DC Communications Block
ERROR-STATUS FIeld @nd COUESceririuiiirieieintriettstsieietse ettt sttt b ettt ettt ettt ebe st ebese e st b e et st esene st eseaesesesenens 48
DB SEATUS COUEBS ...eviuiuiirieteiiirtetetree ettt et stste et stsse s e e tese e e besa et esese et esesen e et eseaesaebesent et et eae e et ebestetesasetesebene s ebesenensesesersnsesanens
Major DB Status Codes
Minor DB Status Codes
DUC STAtUS COUES ...cuviuiuiieirieieiertetst ettt ettt ettt et et s b e e s st et s b et e st et e st ebe s hemtebe e eaesbentesesbe st e b et e st ese st e st saentesesantsbensesessatenesans
Major DC Status Codes
Minor DC Status Codes
ERROR-STATUS CONItiON NGMESoveiiuiiririeieiririeiee ettt teseestsseeststs et sassesese e b et eseaeessesesessesestassseseneessensasnsssenensnseseneas 59

Contents 5

[g o gl D I=) (=Tok] o ISR 59

IDMS-STATUS Routine60
AUTOSTATUS PrOTOCOIS. c.vueuiiietiirieieietrtrie sttt ettt ettt ae et b st stk se stk ese e et s b ebe e st e ke se e st ebesentebene e st ebasensnsesen 63
USER -DEFINED PrOtOCOIS .uecuiiueeiiieieitesiesteseeitetestesteses e s e ssasasssaessessessessesseesesssessensensessssssssssssensessessessessessessssssensensessensenes 65
Chapter 5: Precompiler-Directive Statements 67
IDENTIFICATION DIVISION w..oetiieiteetesiteeteste st et e ste st e stesetesstesatasaeeeseesaeessee s st esaeesseaseensaesssesseesseaseenseanseensessseansesnsessesnsesseesnees 68
ENVIRONMENT DIVISION....69
DATA DIVISION ..ottt se e st st e st e st s sae et e s e e esaesebe s tesatesaeesaeesaeesseesatesaeesasasaeessa e be e seasseasseenseanseensesaseensesasasanessennseenees 72
FILE SECTION «.etetetetestestee ettt ettt e s e s e s sttt e b e s bt s st et e et et e s s e ss e e st e st e st e st essesbesbansassesaeensensensesseeneeseeseensensenseseesanns 73
SCHEMA SECTION .ttt steste e st e te st e st e sieesatesse e st esaaesasasseesse s seenbesaseeaseensasaseensesaseentesasesaaentesasesatesssessaenseenseensanas 73
Y Y = 1 1 SRS 74
WORKING-STORAGE and LINKAGE SECTIONSooirieirtetrinieeseteesteeets e sesse et asessestesessassesessasassassesessessassesessessssenes 76
PROCEDURE DIVISIONoteitieteste ettt st esee st e steestessseestestesaeeesteseesseesaaasseesssesaeesseasseesseessessssensesnseensesseessessseensesssesnsessenseessees 85
Chapter 6: Data Manipulation Landguadge Statements 89

AACCEP T ceeeeeteetesteste ettt st e st st e s te st e stesatesaee st e s b asasesatesaeesae e se e s e e seanaeesse e seeasesaseeasesasesaseeabesaseeasesaseentenasesae et basasesanensnensnensennne
ACCEP T BIND ADDRESS ...ttt sttt ste st s e e st e st e ste s e et e sae e saeesaeasae et e sase et e saseanaeestesasesatesasesseesseasasesatesssesanesseessaessennns
ACCEP T DATABASE STATISTICS .eeitetetetestestestests st etestesiesiesaesse st eseeseessassessassesssesssssassansessessasssensensensensessessessesssessessessessasseens
ACCEP T DB-KEY FROM CURRENCY ...otiiieitirtesiteste sttt st se e st e stessaesstessaesssa s beessestesaesatasasesssasssesnsesssesnsesssessesssaessesnsaessennns
ACCEPT DB-KEY RELATIVE TO CURRENCY
ACCEP T PABE-INTO-T0CATON...c.iciiicieicieestete ettt et ettt et et e e et et e e e be st e se et et e s e st eseebessaseetenbeneebenseressansesenes
ACCEPT PROCEDURE CONTROL LOCATION ..eotitieteeteetesteeteeste e st esaeesee s seesse s e ensesssessessasnsesseesnsesnsesssssneesnsessessssensesssenssennns
ACCEPT TRANSACTION STATISTICS .eeeeeeteetenteetestee st steseeste st e sseestesssessse s sesssesssessesasasasesasesssesnsesasesnsesssesseessaesseensaesseenne
L I 7 0 SRRSO
BIND MAP
BIND PROGCEDURE ...ttt st st ste st e sae e st st et e e s e e s e e sae e s aaesbe s se et e eae e beasseeasesaseentesasesaaesateaseensesaseentesasesanesssananesnsans
BIND RECORDcititetetetintististesteste e stessessessessessesseeseessessassessessssssessessensensesusessensensensensensessessessesssensensensensessesseessensensensessesassaens
BIND RUN-UNIT Lottt eieste sttt e steste st e ste st esaeesteesseesaaasseessaasseensessesnsesasessseensessesnsessesnsesssesnsessesaseensessseensesssessenseesnsesnsans
BIND TASK . eeteeie ettt et e e st e st e st e s te st e st e st e s ue e s eesaeesseesse e se e seasse e seaaseease e seaaseenseanseenseanseesseesseanseenseanseeneesnseentenssesnsesnsesnnesneans
BIND TRANSACTION STATISTICS
CHANGE PRIORITY ctitttieeiteste et ste st e s stestestesta e st e ste s aeessesaseesaeesseasseessesnseansesasasaseensesasesssesssesseessessseesseesssesseessesnseensesssesnsesnseenses
CHECK TERIMINAL ..ttt sttt estesteste st st st et e e s sa s e s st st et e s e sessessesaeenteneensensessassesbassessssssansessessssssensensensensensensesasenes
COMIMIT ettt ettt ettt s e st e st e st e s b e e sueesatesbeesaeesbeease et e e aee e b e e s e e se e et e ease s et e saeesae e et e eaeesas e aeessa e be e se e be e seenbaaseensesaseenss
CONNECT ettt ettt ettt s b st st e et e e e b e s b e s b e e b e e st s st e b e s besaesaesaeeateae et e b e s e bt e st e st e st e st et enbesbeseesaesnsensasansensansenaes
DCRETURN....
DELETE QUEUE ...ttt ettt st s e st e st e et e st e s e e s ae e s s e e ae e s e e se e aesa s e e se e se e se e s e aaseensesaseenseenseanseensesnaeentesaeesseenssesnsesnsans
DELETE SCRATCH ..ottt stestestese st st st st et et e st s besaa et et et et e sae s b e ssesseestess e st astasbassesbessesseestessessessesseeseessensansantansassassaens
DELETE TABLEteeteeteetteteete st e st e teste st e s e e sueesaeeste e saeesaeasaeesse e seenseasseeseessease e seanseenseanseanseeaseaaseenseanseeatesasesatesseesaeesnsesnsesnnans

6 DML Reference Guide for COBOL

3] =@ L6 U OO

DISCONNECT

DisconNNECting @ RECOIT FrOM @ SEL....cciiiiicieieiieesetes et ettt a e st e e e b s e be b ese st ensesesesesbesaebessanserenss 150
END LINE TERMINAL SESSION ...ttt sttt e steete st e st e s e s s st e saessseasse e s e e se e seanseensesnseantessseanseensesnsesnsesssesneesseesnsesnseseesnnans 152
END TRANSACTION STATISTICS ..etteteeteeeesteeeesie et ste st esaee st ssseessesssessseesbessse e sessessesasesnsesasasnseensesasssnsesssesnsesseessesensasssessens 152
ENDP AGE ...ttt sttt st s e st e st esae e st e s ae e s atesaeasae e s e e se e eeeaae e ae e s e aase et e enseeaeeenee e seeateeaeeenteeaeeeaaeeaaeeaee e teeeeeateennesanans 154

ERASE (LRF) .ottt ettt et e e sttt st s et nen et 163
FIND/OBTAIN ...euiutetreeeetetrtstsetetetsteaetetsestasbe et sebsaeacas bt et st s et e e ae s et st st eese bt e et s e b et e e e b et s et st bbb e et ae b et se st b ek e e b et ettt ae bt et ens 165
FIND/OBTAIN CALC/DUPLICATE ..cviueiteeteietnereietseesetseseeesseessesessese ettt sst e st st esssse st ssssesaessssessesssesesessessnnes 165
FIND/OBTAIN CURRENT
FIND/OBTAIN DB=KEY ..ectririuiueteirieuetetretutustetstsesessestseaetetsesesssesesetseassessssessse st easseses et sesssesssensassesssasasssssenestsnsesssneassessnsnssessnens

FIND/OBTAIN OWNER ...coviuiiieetiieireteieteesesetsesetsesessessesessesessesesesessssessesessesesstse st s saesssstsssstassssesnssesaessssesesnssessesessessnsessssesenees

FIND/OBTAIN WITHIN SET USING SORT KEY w.eutriiueietriritieietseeaeietseseasie e tseese st esese bbb esess bt ese st sess bbbt seae st seassessssens 176
FIND/OBTAIN WITHIN SET/AREA ..ottt e tetseess st essas e esessseseseassssssssssessssssssensansssessssssssssssnssessensassesssenssssesnens 179
FINISH
FREE STORAGE ...ttt st a e et e a et b e b e s e s e bt s b e e b et e e sa et b e ae s st ans 187

GET QUEUE ... bbb bbb b s b s bbb et e b e b e b et b e bbb e sb e s b e b e s sa s
GET SCRATCH
GET STORAGE
LT 1 N

INQUIRE MAP
KEEP CURRENT ottt bbb bbb bbb bbb bR bbb e b e bbb
KEEP LONGTERM

IMIAP DUTIN Lo bbb bbb bbb e R b e b bbb e b e b e R s b e b e b b e R s b e bbb e b bbb b
IMIODIRY et b bbb bbb e d R b e e R b bR a e e b e e bt b e a s
IMIODIFY (LRF) ceveeeeeetetrenteetetsereeieteeseseaesetseessie s s sesesess et et sttt h st o bbb st ae bbb b et b e atasseneeens
IMIODIFY IMIAP ...ttt b e e b bR bbb bbb e s b s e b s b e s b e bR sb bbb b b

PUT QUUEUE ...ttt sttt et s et e et e et e e e bt e e st s e e e e bt s e et s e e e et s ae s e st ene e saeaes
e I 1 I

Contents 7

STORE (LRF)
TRANSFER CONTRO L.covoeeeeeeeoeeseeeeeeeesesssesesseseesesssssssssssssssssssessssssassssssssesssssssssssasssesessssssssssssssssssssssesssssssssssssssssesssssssssesssesse

WRITE LINE TO TERMINAL
WRITE LOG ...ttt s a e bbb s a bbb s b e e b e b e b et e b e bbb sa e s b et e s sa s

Appendix A: DML Precompile, COBOL Compile, and Link-Edit JCL 337

Compiling a COBOL Program
Z/OS JCL eurteirieteteteiete e te ettt ettt ettt ettt ettt ae RS R e R R e e Re s e ARt A SRR A e e e e et e et e ettt ket et ete bt eteteteseaes
Z/VSEJCL oo
Local Mode
IDIVISLBLS PFOCEAUIE ..ttt sttt ettt b et sttt et e b et ae st et e b et e st e b e ae s e et e be st e ae s b et ebese et eb e be st ese s enessanteaenes
CIMIS COMIMANDS .rvviiiieeeieeeteiestet sttt sttt s st sebe et s et st s b e st st ke se et ebebe e s b ebe et e b ese et s b e b ese et ebeben s esese e et ebe st s st ebene e st eneneetebenin
Link-Edit Considerations

Passing Parameters to the Precompiler

Appendix B: Sample Batch Program

Sample Batch Program as Input to the DML Compiler
Sample Batch Program as Output from the DML Compiler

Sample Batch Program from the COBOL PreCOMPIlr ettt ettt sa et st neenan
Appendix C: Sample Online Program 405
APPIICAtiON COMPONENTS ..ocueviiciiieietctee ettt e e e st e et et e be s te e ebe st ese et e e ese et e e eba st e s ebesbessebensesesbensebesesessentensebensesestansesenes 405
Application RUNTIME REQUITEMENTS ...ccuiiiiiiiieirite ettt sttt et st ettt b e st e e b sae st e se b esesbe s enesae st eba s entenenes 406
Sample Online COBOL Program as Input to the DML PreCoOmMpPiler......coccivieieeeeiseseesecsereeesie e 407
Sample Online COBOL Program as Output from the DML PrecoOmMpPiler......cocceveeecenereseeenieeeseeeeesieeseseseesenens 412

8 DML Reference Guide for COBOL

Sample Online COBOL Program from the COBOL COMPIIENuiiiieieieieeeetceeeteee ettt nan 429

Appendix D: CA IDMS Call Formats 453
DB Call FOIMALS wueieueueirieieiitrteieerts ettt ettt ettt sttt b et skt b st b e s et et e ke se st st e ke ae e et e b et et ebeae e et ek e et et e bene st et ene et ene
CONTROL STATEMENTS
MODIFICATION STATEMENTS ..ottt es e s ste st st et e st este st e sse et e saessassassasbasbessaessessessesaessessssnsensensensansessensessns 461
RETRIEVAL STATEMENTS .ottt sttt st st st s e e st e s e st e e st e s b e e ae e st e e ae et e e e e e ate e seense e teanseeseesaseentesanesnsesssasnsesanens 462
ACCEP T STATEIMENTS ..ttt ste st st ettt e st e stestesbe st e st et esaesaesaessessesseensanbasbassesasestestesesensessesssensansensansensessanses 467
LRF DIMIL STATEMENTS ..ttt ettt et st s e st e st e st e st et e e s ta e s ae e s b e e aeesbe s beeatesaee e seenbeaseenteeasesatesasesatessesnnesasasasesanans 469
DC Call FOIMATS wueeeeeieireereiierieieee ettt ettt s e s e s e st e e R et s e e b e st e s e s e e s e s e st e e e b et e seebene e s ene e s ene 470
PROGRAM MANAGEMENT STATEMENTS ...oetietenteetentese st este st esiessaeestessresstessessseessesssestesnsesssesasesssesnsesnsesssesnsesnnens 470
STORAGE MANAGEMENT STATEMENTS ..ottt st s st st e s ee st e s e e ste s e e saeesaeesae e ae e seenseessaesseeseenseanseanees 471
TASK MANAGEMENT STATEMENTS ...ttt sttt et saesaesaesse s s ste s e st asbasbasaesat et et ensesaeeseensensensensensansassanses
TIME MANAGEMENT STATEMENTS ...ttt ettt st s e st e ste st st e e s aessae s beste st e saaesseesasesneesatesanessnesseensnensennes
SCRATCH MANAGEMENT STATEMENTS
QUEUE MANAGEMENT STATEMENTS ..ottt et sie st ste s te st st e st ste st e s e e st e satesaaesbeensaesaaassaensasseensesnsesnses
TERMINAL MANAGEMENT STATEMENTS ..ottt rtee st e st es e e see st esaesae e e e s sesse s e e sssesneesnsesseessaennaesneesnsessnensennns 473
UTILITY STATEMENTS
RECOVERY STATEMENTS ...ttt sttt st st e st s e e st e st e st e s s e e s e e s be e s ae e st e e ae et e e s e ent e e seaseenteanseessesasesntesaneensesssesnsesanans 476
DIC-BATCH oottt sttt sttt s e s e ste st sttt s b st esbe s b e s besae s st et et e besaeese e st e e e s e s e b e s beebeese et et e b esbesbesseeaeententensansansenaseans 477
Appendix E: CA IDMS Keywords 479
LiST OF KEYWOITS ..ottt sttt sttt sttt sttt et st a st et e e e be e e e b e s e st st ese e s e e ene e b e st es e esensesessentesessenesaenessessensesnnss 479
Appendix F: Notes to Teleprocessing Monitor Users 483
TP MONItOr COING GUITEIINESoeieieireereieeeteeeee ettt et b et e e bt e et ne et e s ene s ne 483
TP MONItOr COAING REQUITEMENTS ...ecuieieiiitiieiieteeeiste et et et e e st e st e se st e s aesessesaesesseseebesaesesteseaseesentesessassesensasessansesessanseseass 484
Appendix G: EMPLOYEE Database Definition 487
IDMSRPTS Ui ity REPOIT LiSTiNES...ietieeuirieirieiriiieisierieerie sttt est et sae s st st et e st e ssesesae st esessenessessesesaeneenessensesenes 487
EMPLOYEE Database StruCtUre DI@gram ..ottt te et este st be st e st sesbe st esesbe s e be s be st eseebensebenaesessansesanes 501
Appendix H: VS COBOL II Support 503
Features SUPPOItEA DY CATDMS ...ttt et st e b st e s st e e e se st e st et e st eseebensesestaneetessesesteseesessensesenss 503
Features NOt SUPPOItEA DY CAIDMS ...ttt ettt te et e et st e e st et e be st ess et et ebe st e besesbansesastensetassesessanseseass 506
Appendix I: Considerations for IBM Landuade Environment 507
Considerations ADOUL LE RUNTIME ...cccvuiuiiririeiieririeieeiete ettt ettt ettt sttt sttt st b st b et s bk e et st et et et enene et ebanan 508

Contents 9

Running LE-Compliant Compiler Programs Under CAIDMS/DCcccuiieiereeieiereteieeteeeieteesesese e ssese e s st s st s sesens 509
SUPPOTEEA LE FUNCEIONS .ttt ettt sttt s et et e st et sae st ese s e seese b aseesa st eneesessesenseneesessanessasesessanessensan

UNSUPPOITEA LE FUNCHIONS....cuiiiiieiiicieteteies ettt e e te sttt e sttt e s te e e st e et et ese st eseesesbansebesasessensesessansetesbeseesensesessansesenes
Performance Improvements with RHDCLEFE
MU PIE-PrOSram ENCIAVE....cueciiieeiieeeciees ettt ettt ettt et et e e e s et e seese s s ess e b e b ase st enseseseneete st enaesessesessanseranes
Restrictions on Using Multipl@-Program ENCIAVEScccveeiriririeeninieerinisecesesieesesesassesessssesessesesesssssesssessssasensesenes 515
Exempting Programs from Multiple-Program ENClaVve....... ettt sa e senes 516
Appendix J: 18-Byte Communications Blocks 517
LB-BYLE IDMS BIOCK.....ieiiiriiieiieiriiie sttt sttt st sttt ettt e s b s e e s b et sa et e se s s e st st e e ese s b ensesessentsaessenesaeneesesenessenss 518
L18-BYLE IDMS DC BIOCK c.ueviieeiieieeiieteeetetette ettt ettt e e ettt e e et st e et e e esesbesaesestessebesesesbensebesenseseeteneesensesessensesanes 519
Appendix K: Optional Online COBOL Functionality 521
COBOL Il and LE COBOL Task MaN@ZEMENTccecveuieiiiriiiriirieesisieesetesestesessessesessesse e sesessessesessessssesseneesessasessessessssassesesses 521
PSW Program Mask SEHINEScccieieiieiieieieeeeceiee ettt e e et a et st e e be st ese st e e e be s sa st ebesbansebensesesbansetensesaesesesessensesenes 524
Loading VS COBOL Programs iNtO XA STOIaEe....uuiiriiirieieirietee st esieseseste s te st e stesee e saesessesassessessesessesessessesssssnsesessensssenes 526
Appendix L: Online Debudgder Syntax 527
GENEral REZISTEIS SYMDOIS ...vviuiieieeierieteeerise sttt ettt st e et e s e e s e e et eaese s s s et ase s esesene s eneaeseesenenesesnsn
DC/UCF SYSTEM SYMDOISviviviieiiteteieietetetetete ettt et ettt ettt bbb bebebe s ssasas s asasasasasasasasasasassas s s s asasasasasasanans

Address Symbols and Markers
L L =T oYY 0 41 o TSROSO
PrOZram SYMDOLS c..o.euiieictcice ettt ettt ettt st st e e st e et e st e et e e e be st e e ebe st ens et eseese st ese et e e ebesenbeseebansesebensetensebessentesneee
Syntax: Data Field Names
Syntax: Line Numbers
Syntax: Qualifying Program Symbols
Expression Operators
DEITIMITEIS vttt ettt sttt e sttt et e s e et s s e s ene e e ke e e ke sea et e s e s ene et ek e sene et e seae ek e Re et e A e ae et et ene et e ne e et et ene et eae
Debugger Commands
S NEAX . AT ettt ettt ettt e st e et e st e st e st e et e e s a e e e h e e s a e e b e e bt A e e et e ee e be e teeate e ee et e e Rt e sae e he e et e na e e he et e e be e ae e beeteenra e reentes
SYNTAXI DEBUG ...ttt sttt ettt ettt sttt e st e b e s b e et et e s e s s e s s e e st e st e st e atentesbessesaesae e st et ensenbensessesatan
SYNTAX: EXIT ettt ettt et s e st ettt esatesae e s ae e bt e sbe s be et e s ab e e s e e s b e sasesaee s st esaeesseenseesatesaeensaensesseensasaseensasseenses
SYNTAX:I TOUSER ..ottt ettt sttt ettt e b e b e b e s be st et e b e s e e st e st e st e st et et e b e sbesseeateat et enbenbennessesntan
SYNEAX: LIST ottt ettt ettt e a e s e s b e s b e b e bt e st et et et e she e bt e Rt e Rt e e e e e s e e s R e e R e e Rt et e b e e b e s Reehe e Rt e Rt et e tenbenneeneeneen
SYNTAX: IMIENU oottt sttt et s e st e st e st e e ae e s ae e be e e e s tesae e e teeaseeaeesasesaeesaeasseenbeesaeessaese e se e seeseensesnseanses
SYNTAXI PROIMPT .ottt ettt ettt sttt et s ettt et e b et et e s besae et e s e s e ss e e st e st e st e atensenbesaesaeeatentensesensessessesseen
SYNTAX: QUUALIFY ettt ettt sttt s e st e ettt ste e s be e s be s be e b e st e s atesatesase e st e sasesatesasasaeense e beeestenseassaenseenseensesaseenss
SYNEAXE QUUIT ettt sttt et b e s bt et e a et e b et e b e b e e st e st et e b e b e s e e se e st e st e st e b e s b eshesae e st ea b et e b ebenaeeneenten
SYNTAX: RESUIME ...ttt ettt st ettt e sae e bt e s be s b s b e st e s asesatesasesasesasesaeesasasatesseesbeesntenseansaensasseensenasesnss
SYNEAXE SET ettt ettt ettt sttt a e s b s a e s bt e st e Rt e a e et et et e SRt e Rt e R e et et e be R e Rt e Rt e Rt e b e benheeheeheeRt et et et e nbenaeeneeneen

10 DML Reference Guide for COBOL

SYNTAXI SINAP ettt s et s e e st e s e e s b e e s be e st e e bt et e e e te e b e e st e e e e et e e ae e e At e e b e e nae et e e Reeea e e be e ae e beeaseete e beenres 532
SYNTAXI WHERE ...ttt ettt sttt ettt et et e b e st e st et e b e saesbe e st e st e st e at e b e basbesaesae e st et ensensensessenean 533

Index 535

Contents 11

Chapter 1: Introduction

This guide contains reference material for writingapplications programs in the COBOL
languageto use CA IDMS/DB, CA IDMS/DC, and CA IDMS UCF services.

This guide is intended to be used by COBOL programmers whose programs access CA
IDMS databases and who want to use the DC/UCF system facilities Programmers using
Assembler languageor PL/I should refer to CA IDMS DML Reference Guide for
Assembler or CA IDMS DML Reference Guide for PL/I.

Copying and Pasting COBOL Code from this Guide

COBOL compiler requires that the sourcecode is correctly indented.

To preserve the indention of code examples in this guide, copy the code examples from
the HTML version of the guide. Copying from the PDF format does not preserve the
indention; itis necessaryto restore the indention manually after pasting.

Syntax Diagram Conventions

The syntax diagrams presented in this guide use the following notation conventions:
UPPERCASE OR SPECIAL CHARACTERS

Represents arequired keyword, partial keyword, character, or symbol that must be
entered completely as shown.

lowercase

Represents an optional keyword or partial keyword that, if used, must be entered
completely as shown.

italicized lowercase
Represents avaluethat you supply.
lowercase bold

Represents a portion of the syntaxshownin greater detail at the end of the syntax
or elsewhere inthe document.

Points to the defaultina listof choices.

v

Indicates the beginning of a complete piece of syntax.

]
»<4

Chapter 1: Introduction 13

Syntax Diagram Conventions

Indicates the end of a complete piece of syntax.

>
>

Indicates thatthe syntax continues on the next line.

v

Indicates thatthe syntax continues on this line.

>

Indicates thatthe parameter continues on the next line.

A 4

Indicates thata parameter continues on this line.
»— parameter ———»

Indicates a required parameter.
T parameter T
parameter

Indicates a choiceof required parameters. You must select one.

>
»

v

L parameter -

Indicates an optional parameter.

v

>
I: parameter :|
parameter
Indicates a choice of optional parameters. Select one or none.

»—v- parameter —|——»

Indicates thatyou canrepeat the parameter or specify more than one parameter.

o iameter — 1L
»—V¥— parameter

Indicates thatyou must enter a comma between repetitions of the parameter.

14 DML Reference Guide for COBOL

Syntax Diagram Conventions

Sample Syntax Diagram

The following sample explains howthe notation conventions are used:

Required portion of parameter

Beginning of Required Optional portion of parameter

the syntax parameter Syntax continues

User-supplied value I on the next line
5

Syntax continues on this line Comma required between repetition

Required parameter Repetition allowed
Select one

I .
y— KEWDI\Q\D—{aHaﬂIe

varrable
wariabfle
varrable

Optional keyword
Select one or none
Portion of syntax End of the syntax
Default expanded elsewhere

» \ L]
t KEYWORD variable
KEYWORD

Chapter 1: Introduction 15

Chapter 2: Introduction to CA IDMS Data
Manipulation Landquade

The CA IDMS data manipulationlanguage (DML) consists of statements that direct CA
IDMS database (DB) and data communications (DC) processing. DML statements are
coded inthe programsourceas ifthey were a part of the host language. The
precompiler converts DML statements into standard COBOL statements and performs
source-level error checking.

Depending on the operating environment, your program will use different sets of DML
statements. For example, a batch program uses only database DML statements; an
onlineprogram can useboth databaseand data communications DML statements.

Batch processing typicallyinvolves large volumes of transactions, sequential processing,
and output inthe form of files and reports. Batch programs use database DML
statements only.

The followingfigureillustrates the flow of a typical batch application.Inputto DEPTRPT
consists of department IDs. Qutput consists of a listing of departments and their
employees. The error report lists thedepartment IDs of missingand empty
departments.

CA-IDMS/DB

DEPTDB
DATABASE

TRANSACTICN
REPORT

- DEPTRPT
PROGRAM

INFILE

ERRGCR
REPORT

Chapter 2: Introduction to CAIDMS Data Manipulation Language 17

Syntax Diagram Conventions

Online processing typicallyinvolves transaction requests entered from terminals
connected directly to the computer, transaction resultsdisplayed atthe terminal,
multiplerequests from multiplesources, and sharing one copy of a program among
multipleusers. Additionally, onlineprocessingisimmediate; fast responsetime is
essential in processinglargevolumes of transactions frommultipleonlineusers.Online
programs use data communications DML statements and canincludedatabase DML
statements.

The followingfigureillustrates the flow of a typical onlineapplication. EMPDISP
retrieves information for an operator-specified employee ID. Output to the terminal
consists of DEPARTMENT, EMPLOYEE, JOB, and OFFICE information.

TERMINAL 1

IDMS-DC/UCF
DEPTDB DBMS
DATABASE

‘ » TERMINAL 3
1
1
1

i [|| sTORAGE
| TERMINAL

EMPDISP || !
I
|
I
' | STORAGE
' | TERMINAL
| 2
1
1
|
1
| STORAGE
'| TERMINAL
! 3
1
1
1

The CA IDMS programming environment is outlined below, followed by a discussion of
compileand runtime considerations.

This section contains the followingtopics:

Programming inthe CA IDMS Environment (see page 19)
Compilingand Executing CA IDMS Programs (see page 22)
CallableServices and Common Facilities (see page 26)

18 DML Reference Guide for COBOL

Programming in the CA IDMS Environment

Programming in the CA IDMS Environment

CA IDMS DML statements are divided intotwo categories:

m Database statements perform retrieval and update functions in either the batch or
the onlineenvironment. There are three categories of database DML statements:

— Navigational statements access databaserecords andsets,onerecord ata
time

— LRF statements access groups of databaserecords usingthe Logical Record
Facility (LRF)

— SQL statements access groups of databaserecords usingthe Structured Query
Language (SQL)

m Data communications (alsocalled online) statements, request data
communications services such as for online programs

You canincludedatabase DML statements in batch programs or combine them with
data communications DML statements inonline programs that requiredatabaseaccess.
A discussion of accessing the database by using DML statements is presented below,
followed by a discussion of additional considerations for codingonline programs.

Accessing the Database

Databaseaccess under CA IDMS can be accomplished by using navigational, LRF DML, or
SQL DML statements. Navigational statements are used with a subschema usage mode
of either DML or MIXED.

LRF DML statements, which use the Logical Record Facility (LRF), areused with a
subschema usage mode of either LR or MIXED.

SQL DML statements, which use Structured Query Language, access records without
reference to subschemas.

Some statements, such as BIND RUN-UNIT, READY, and FINISH, are used inall three
environments. They are noted in the individual discussions of each DML statement in
Data Manipulation Language Statements (see page 89).

Navigational, LRF,and SQL DML statements are discussed separately below.

Chapter 2: Introduction to CAIDMS Data Manipulation Language 19

Programming in the CA IDMS Environment

Navidational DML Statements

LRF DML Statements

Navigational DMLstatements access databaserecords and sets one record at a time,
checkingand maintainingcurrencyinorderto assurecorrectresults. Navigational DML
statements give you control over error checking and flexibility in choosing database
access strategy. To use navigational DMLstatements, you must have a thorough
knowledge of the databasestructure. For an example of a data structure diagram, refer
to EMPLOYEE Database Definition (see page 487).

Navigational DMLstatements provide:

m Control over error checking—You can check the result of each navigational
statement, enabling more thorough error detection

m Flexibility in choosing database access strategy—You can enter the databaseeither
sequentially (area sweep), by usinga symbolic key value (CALC), or by usinga
databasekey value (DIRECT)

Navigational DMLstatements are grouped into four categories:

m Control statements initiateand terminate processing, effect recovery, prevent
concurrent updates, and evaluate set conditions

Retrieval statements locatedatain the databaseand make it availableto the
application program

® Modification statements update the database

m Accept statements pass databasekeys, storageaddress information,and statistics
to the program

LRF DML statements use the Logical Record Facility (LRF) to access databaserecords.
LRF allows you to access fields from multiple databaserecords as if they were data fields
inasinglerecord. LRF DML statements allowyouto specify selection criteria (by using
the WHERE clause) thatenable you to access only those logical records you need.

LRF DML statements provide:

m Easy access to database records—You need not be familiarwith database
structure; your programs need not includedatabasenavigation logic.

m Data flexibility—Modification and recompilation of LRF programs are not
necessarily required when the physical orlogical structure of the databaseis
changed.

® Run-time efficiency—LRF minimizes communication between the program andthe
DBMS.

20 DML Reference Guide for COBOL

Programming in the CA IDMS Environment

The LRF DML statements arelisted below:
m ERASE deletes alogical record as specified in the path definition
m MODIFY modifies alogicalrecordas specified in the path definition

m OBTAIN retrieves alogical record as specified in the path definition

m STORE stores a new logicalrecord as specified in the path definition
SQL DML Statements

You canuseSQL DML to access the same databases you access using navigational DML.

Additionally,youcan useSQL DML to access databases thathave been defined using
SQL DDL.

Using SQL DML, you do not have to be familiar with databasestructureand your
programs do not have to includedatabasenavigation logic.

You can perform the followingfunctions using SQLDML statements:

m Select rows
m Update rows
m Delete rows

® [nsertrows

Note: For more information aboutSQL DML statements, see the CA IDMS SQL Reference
Guide.

Programming in the Online Environment

The CA IDMS/DC system is fully integrated with the CA IDMS DBMS and the data
dictionary.ltenables you to request both data communications and databaseservices
through standard subroutinecalls generated by the precompiler from DML statements.
The followingfigureillustrates a typical stream of online DML statements ina COBOL
program. This example maps ina user-specified employee ID, retrieves and displays the
specifiedinformation, and performs a DC RETURN naming TSK02 as the next taskto be
performed.

PROCEDURE DIVISION.
BIND MAP EMPMAPLR.
BIND MAP EMPMAPLR RECORD EMPLOYEE.
ACCEPT TASK CODE INTO TASK-CODE-IN.
IF TASK-CODE-IN = 'TSKO1'
GO TO INITIAL-MAPOUT.
MAP IN USING EMPMAPLR.

Chapter 2: Introduction to CAIDMS Data Manipulation Language 21

Compiling and Executing CA IDMS Programs

navigational, LRF, or SQL database DML statements

MAP OUT USING EMPMAPLR

OUTPUT DATA IS YES
MESSAGE IS DISPLAY-MESSAGE LENGTH 80.

DC RETURN NEXT TASK CODE 'TSK@2'.

Online DML statements, which request CA IDMS to perform data communications
services, aregrouped into nine categories:

1.
2.

Program management statements govern flow of control and abend processing
Storage management statements allocateandreleasevariablestorage

Task management statements provideruntime services thatenhance control over
task processing

Time management statements obtain the time and date, and define time-related
events

Scratch management statements create, delete, or retrieve records from the
scratcharea

Queue management statements create, delete, or retrieve records ina queue area

Terminal management statements transfer data between the application program
anda terminal

Utility function statements retrieve task-related information or statistics, send
messages, and monitor access to databaserecords

Recovery statements perform functions relatingto database, scratch,and queue
arearecovery in the event of a system failure

Compiling and Executing CA IDMS Prodgrams

A CA IDMS COBOL source programcontains DML statements that are processed by the
precompiler. The precompiler converts DML statements into COBOL CALL statements
and copies information maintained in the data dictionaryinto the application program.
After successfulcompilationandlink editing, the application programcan be executed.
The compilation and runtime processes aredescribed separately below.

22 DML Reference Guide for COBOL

Compiling and Executing CA IDMS Programs

Compiling Programs

There are three components that prepare a COBOL DML program for execution: the
precompiler,the COBOL compiler,and the linkage editor.

1.

The precompiler converts DML statements inthe sourceprogramto COBOL CALL
statements and copies information maintainedin the data dictionary into the
application program. For example, databaserecord descriptions, file definitions,
map records, map definitions, and other predefined modules such as the IDMS
communications block can becopied into the program.

Output from the precompileris a sourcefilethat serves as inputto the COBOL
precompilerandas an optional sourcelisting. The output filediffers from the
sourceinput to the precompilerin the followingways:

m Source code (suchas the IDMS communications block and the IDMS-STATUS
routine) has been added to the program.

m DML statements have been replaced by COBOL CALL statements and changed
to comment entries (asteriskincolumn 7).

Additionally, the precompiler produces a listing of the followingerrors:

m IncorrectDML entries

m Statements inconsistentwith the program's declared subschema view
m Any other error conditions detected during DMLC processing

m Warningmessages indicating source code conditions thatcould adversely
affect run units usingthe program

The COBOL compiler compiles the source program after it has been successfully
processed by the precompiler. Output from the COBOL compiler consistsofan
object program and a source listingthatincludes any generated diagnostics.

The linkage editor link edits the object program into a specified load library. Output
from the linkage editor consists of a load module (or phase)and a link map.

Chapter 2: Introduction to CAIDMS Data Manipulation Languade 23

Compiling and Executing CA IDMS Programs

The job control languagerequired to execute each step is listedin DML Precompile,
COBOL Compile, and Link-Edit JCL (see page 337).

The component steps needed to prepare a COBOL DML program for execution are
illustrated inthe followingfigure:

COBOL SOURCE

WITH DML —
STATEMENTS
] STEP 1
DATA IDMSDMLC - DML
DICTIONARY COMPILER LISTING

COBGL
SCURCE

COBOL SOURCE
CCBOL LISTINGS AND
COMPILER " | DIAGNOSTICS

OBJECT

PROGRAM

LOAD LINKAGE
LIBRARY - EDITOR

LOAD
MODULE

24 DML Reference Guide for COBOL

Compiling and Executing CA IDMS Programs

Executing Programs

At run time, CA IDMS requests are treated as application programsubroutinecalls.
When the subroutinecall is executed, control passes to the DBMS or the DC system,
which processes the requested function.

A CA IDMS programmust be defined to the CA IDMS system inwhichit will operate. The
program can be defined either at system generation orat run time by usinga DCMT
VARY DYNAMIC PROGRAM command.

The following COBOL features are not used in programs runninginanonline
environment under CA IDMS:

m ENVIRONMENT and DATA DIVISION entries normally associated with file
management (for example, INPUT-OUTPUT SECTION, FILE SECTION)

m The Report Writer and Segmentation features, as well as features invoked by the
SORT, EXHIBIT, TRACE, DISPLAY, ACCEPT, STRING, UNSTRING, and INSPECT
commands. The EXAMINE and TRANSFORM verbs, though valid under VS/COBOL,
will notcompileunder VS/COBOL-II sincethe logic of these verbs has been
incorporatedinto the inspectverb and are not valid verbs in COBOL-II. Additionally,
the EXTERNAL clauseofthe record statement is invalid forallversions of COBOL.

Note: The restriction on INSPECT, STRING, and UNSTRING commands arisebecause
they issuesupervisor callsinsomeenvironments. This restriction applies mainly
when running VS COBOL on a VSE or z/0OS operating system. Itdoes not apply when
using LE-compiant COBOL with IBM's runtime Language environment. See section
H.2 for considerations when usingthese commands with VS/COBOL II.

m The I/O statements READ, WRITE, OPEN, and CLOSE

m The COBOL compiler DEBUG option; the COUNT, FLOW, STATE, ENDJOB, TEST,
RESIDENT, DYNAM, and SYMDMP commands (OS only); or the COUNT, FLOW,
STATE, STXIT, and SYMDMP commands (z/VSE only)

The TEST compileoption can be used for a program compiled usingan Language
Environment compliantcompiler, but the DEBUG runtime option must not be used in
the onlineenvironment. A load module compiled with the TEST option can be run with
the DEBUG runtime optionin batch. This allows thesame load module which is being
tested in a batch environment to run inanonline environment without being
recompiled.

m Any feature that canleadto the issuanceofa supervisor call (SVC)

Chapter 2: Introduction to CAIDMS Data Manipulation Languadge 25

Callable Services and Common Facilities

These features lead to a supervisor call (SVC), which will inhibitsystem performance and
canalsocrashtheDC system.

Usage of the DBCS COBOL compiletime option by a CA IDMS programcan lead to
IGYPS0156-E run time errors. Programs using LRF are especially susceptibleto this
problem. This option is the default for LE/COBOL compilers starting with z/0S. 3.2.0. You
should compile CAIDMS programs using the NODBCS option.

The COBOL compiler provides a TRUNC option. Use this option with careinany CA IDMS
program that accesses dbkey values. Exercise particular careifarithmetic operations are
performed on the dbkey, for example multiplyinga page number by the dbkey radix.
Unexpected results canoccurifaninappropriatevalueis specified for the TRUNC

option. Such unexpected results can occur because COBOL truncates numeric values to
fit the PICTURE clausein some cases.

Avoid this problem by usingthe compiler option TRUNC(BIN). Onsome older COBOL
compilers the equivalent option is NOTRUNC.

Note: For more information aboutthe TRUNC option, see the documentation of your
compiler vendor.

Callable Services and Common Facilities

Callable Services

CA IDMS provides callableservices and common facilities to use with your application
programs.

The callableservices include:

m The IDMSCALC utility thatlets you sortinput into target page sequence.

m The IDMSINO1 facility thatlets you perform miscellaneous CAIDMS functions.
m The TCP/IP socket program interfacethat lets you communicate with another

TCP/IP application.

Note: For more information aboutusingthese callableservices, seethe CA IDMS
Callable Services Guide.

26 DML Reference Guide for COBOL

Callable Services and Common Facilities

Common Facilities

The common facilities include:

m The Command Facility thatlets you submitcommand statements ina batch or
onlineenvironment.

m The Online Compiler Text Editor that lets you edit compiler output and resubmit it
as inputusingthe CA IDMS development tools.

m The Transfer Control Facility thatlets you transfer between CA IDMS development
tools.

m The SYSIDMS parameter filethat contains parameters that you canaddto a batch
jobrunninginlocal mode or under the central version. These parameters let you
specify environment requirements, runtime directives, and operating
system-dependent information.

Note: For more information aboutusingthese common facilities and the SYSIDMS
parameter file, see the CA IDMS Common Facilities Guide.

Chapter 2: Introduction to CAIDMS Data Manipulation Language 27

Chapter 3: Precompiler Options

This chapter contains the syntax for COBOL precompiler options. These options,
included as special formatentries in the COBOL sourcecode inputto the precompiler,
are used to:

m Override the DDLDML area default usage mode
m Enablethe printing of data dictionary and subschema comments
m Control the generation of precompiler sourcelistings

m Suppress the logging of program activity statistics

This section contains the following topics:

Dictionary Ready Override (see page 29)
Comment Generation (see page 30)

List Generation (see page 30)

Log Suppression (see page 31)

Dictionary Ready Override

Syntax

Parameters

When the DDLDML area of the data dictionary (thatis, the main area of the dictionary
accessed by the precompiler)is readied, a number of different options areavailable. The
default mode used is shared update. Shared update mode readies the DDLDML area for
both retrieval and update and allows other concurrently executing run units to ready
the DDLDML areain shared update or shared retrieval usage mode. An application
program canoverridethe defaultusage mode by specifyingeither retrieval or protected
update usage.

Begin in column 7.

>>—|: *RETRIEVAL]
*PROTECTED-UPDATE

M

*RETRIEVAL

Readies the DDLDML area for retrieval only and allows other concurrently executing
run units to open the areainsharedretrieval, shared update, protected retrieval, or
protected update usage modes.

Note: Ifthe DDLDML areais readied for retrieval only, no programactivity statistics
canbe logged.

Chapter 3: Precompiler Options 29

Comment Generation

*PROTECTED-UPDATE

Readies the DDLDML area for both retrieval and update and allows other
concurrently executing run units to ready the area inretrieval usage mode only.The
protected update usage mode prevents concurrentupdate of the area by run units
executing under the same central version.

If used, the dictionaryready override statement must precede all sourceinput
statements.

Dictionary Ready Override

Begin in column 7.

>>—|: *RETRIEVAL]
*PROTECTED-UPDATE

)

Comment Generation

The *SCHEMA-COMMENTS option causes schema-defined data-item comments and
IDD-defined record-element comments in the data dictionary to be printed on the
precompiler sourcelistingandinserted into the program.

Syntax

»p»—— *SCHEMA-COMMENTS

)

Code the *SCHEMA-COMMENTS statement after the dictionaryreadyoverride
statements (ifany) and before any DML or COBOL statements: If the
*SCHEMA-COMMENTS statement is notincluded with the input, comment lines are not
generated.

List Generation

The sourcestatement listing output by the precompiler can be turned on or off by
insertinga listgeneration optioninto the source program.

Syntax

»—E *DMLIST] >«
*NODMLIST «

30 DML Reference Guide for COBOL

Log Suppression

Parameters

*DMLIST
Specifies that the sourcelistingis to be generated for the statements that follow.
*NODMLIST

Specifies that no sourcelistingis to be generated for the statements that follow.

This is the default.

Generation of the listcan beturned on or off any number of times within one source
program by inserting appropriate *DMLIST and/or *NODMLIST entries inthe code.

Note: A listingof error messages is always produced. The *DMLIST option controls
output of the processor sourcelisting.

Log Suppression

Syntax

The *NO-ACTIVITY-LOG option suppresses thelogging of programactivity statistics. The
precompiler generates and logs the following programactivity statisticsunless the
*NO-ACTIVITY-LOG optionis specified:

® Programname

® language

m Date lastcompiled

m Number of lines

® Number of compilations
m Date created

m Subschema name (if any)
m Filestatistics

m Databaseaccess statistics (records and modules copied fromthe data dictionary;
subprograms called; and records, sets, and areas accessed by DML verbs)

)4

»»— *NO-ACTIVITY-LOG

The *NO-ACTIVITY-LOG statement follows the NODENAME/DBNAME and dictionary
ready overridestatements.

Note: Program activity statisticscannotbelogged if the DDLDML areais readied for
retrieval only.

Chapter 3: Precompiler Options 31

Chapter 4. Communications Blocks and
Error Detection

This chapter describes the 16-byte communications blockavailableunder CA IDMS.
These blocks return status information aboutrequested databaseand data
communications services to the application program. This chapter also describes the
ERROR-STATUS fieldinthe IDMS and IDMS-DC communications blocks, status codes,
anderror detection routines.

Note: For more information about 18-byte communications blocks, see 18-Byte
Communications Blocks (see page 517).

This section contains the following topics:

Communications Blocks (see page 33)
ERROR-STATUS Field and Codes (see page 48)
DB Status Codes (see page 48)

DC Status Codes (see page 54)

ERROR-STATUS Condition Names (see page 59)
Error Detection (see page 59)

Communications Blocks

Communications blocks return status information aboutrequested databaseanddata
communications services to the application program. Depending on the usage mode (LR,
DML, or MIXED) defined inthe subschema, your program will useone or two of the
following blocks:

m IDMS communications block—The IDMS communications blockis used when the
operating mode is either BATCH or BATCH-AUTOSTATUS.

m Logical-record request control (LRC) block—The LRC blockis used when the
subschema usage mode is either LR or MIXED.

The LRC blockis copiedin with either the IDMS communications block (operating mode
of BATCH or BATCH-AUTOSTATUS) or the IDMS-DC communications block (operating
mode of IDMS-DC or DC-BATCH).

m IDMS-DC communications block—The IDMS-DC communications blockis used
when the operating mode is either IDMS-DC or DC-BATCH.

Each of these blocks is discussed in detail below.

Note: For more information aboutoperating modes and protocols, see
Precompiler-Directive Statements (see page 67).

Chapter 4: Communications Blocks and Error Detection 33

Communications Blocks

IDMS Communications Block

The IDMS communications blockis used when the operating mode is either BATCH or
BATCH-AUTOSTATUS; itserves as aninterfacebetween the database management
system (DBMS) and the application program. Whenever a run unitissues a call to the
DBMS for a databaseoperation, the DBMS returns information aboutthe outcome of
the requested serviceto the application program's IDMS communications block.

The data description (identified as SUBSCHEMA-CTRL) of the IDMS communications
blockis copied from the data dictionaryintothe WORKING-STORAGE SECTION or
LINKAGE SECTION of the program. When you submit the programto the precompiler,
the IDMS communications blockis copied automatically unless an IDMS-RECORDS
MANUAL statement isincludedinthe ENVIRONMENT DIVISION. In that case, the
program canexplicitly callinthedata description by usinga COPY IDMS
SUBSCHEMA-CTRL statement.

Note: For more information aboutthe IDMS-RECORDS MANUAL and the COPY IDMS
statements, see Precompiler-Directive Statements (see page 67).

You should examinethe ERROR-STATUS field of the IDMS communications block after
every call tothe DBMS. Depending on the valuecontained in this field, you should
perform the IDMS-STATUS routine (see IDMS-STATUS Routine (see page 60) laterin this
chapter). For example, ifthe ERROR-STATUS field contains thevalue 0307
(DB-END-OF-SET) while walkinga set, you should perform end-of-set processing;
otherwise, IDMS-STATUS should be performed.

The followingfigureshow the layoutof the 16-byte IDMS communications block. Each
fieldis described separately following the figure.

34 DML Reference Guide for COBOL

Communications Blocks

**1 97 100

97 1%

197 200

201 207
208

209 212

213 216

' 16-CHARACTER IDMS COMMUNICATIONS BLOCK

Field
PROGRAM-NAME
ERROR-STATUS
DBKEY
RECORD-NAME
AREA-NAME
ERROR-SET
ERROR-RECORD
ERROR-AREA
PAGE-INFO

IDBMSCOM-AREA
DIRECT-DBKEY

DATABASE-STATUS

FILLER
RECORD-OCCUR
DML - SEQUENCE

* word aligned
** PAGE-INFO-GROUP overlays bytes 97 and 98 and PAGE-INFO-DBK-FORMAT
overlays bytes 99 and 100. Both of these fields are binary datatype,
each with a length of two bytes. Suggested initial values for
both are 00. Together these two fields represent PAGE-INFO.

Data Type
Alphanumeric
Alphanumeric
Binary
Alphanumeric
Alphanumeric
Alphanumeric
Alphanumeric
Alphanumeric

Binary

Alphanumeric

Binary

Alphanumeric

Binary

Binary

Length
(bytes)

8

4

4 (Fullword)
16

16

16

16

16

4 (Fullword)

100
4 (Fullword)

7
1
4 (Fullword)
4 (Fullword)

Initial Value

Program Name
1400

0000

Spaces
Spaces
Spaces
Spaces
Spaces

0000

Low Values

0000

Spaces

0000
0000

The IDMS DB communications block contains thefollowingfields thatdescribe program
status information:

Field name

Description

PROGRAM-NAME

The name of the program being executed, as defined inthe
program's IDENTIFICATION DIVISION.
This fieldis initialized automatically atthe beginning of program
execution ifthe programcontains a COPY IDMS
SUBSCHEMA-BINDS statement inits PROCEDURE DIVISION.
Otherwise, it must be initialized by the programmer.

Chapter 4: Communications Blocks and Error Detection 35

Communications Blocks

Field name

Description

ERROR-STATUS

An alphanumericvalueindicating the outcome of the last DML
statement executed.

The ERROR-STATUS field must be initialized to 1400 by the
program. The ERROR-STATUS fieldis updated by the DBMS after
(attempted) performance of a requested databaseserviceand
before control is returned to the program.

A programthat consists of more than one run unit must
reinitializethe ERROR-STATUS fieldto 1400 after finishingone
run unitand before bindingthe next.

DBKEY

The databasekey of the lastrecord accessed by the run unit. For
example, after successful execution of a FIND command, DBKEY is
updated with the databasekey of the located record.

DBKEY is not changed ifthe call tothe DBMS results ina nonzero
status condition.

RECORD-NAME

The name of the lastrecord accessed successfully by the run unit.

This fieldis left-justified and padded with spaces on the right.

AREA-NAME

The name of the lastarea accessed successfully by the run unit.
This fieldis left-justified and padded with spaces on the right.

ERROR-SET

The name of the setinvolvedinthe lastoperationto produce a
nonzero status code.

This fieldis left-justified and padded with spaces on the right.

ERROR-RECORD

The name of the record involvedinthe lastoperation to produce
anonzero status code.

This fieldis left-justified and padded with spaces on the right.

ERROR-AREA

The name of the area involved inthe lastoperationto produce a
nonzero status code.

This fieldis left-justified and padded with spaces on the right.

36 DML Reference Guide for COBOL

Communications Blocks

Field name

Description

PAGE-INFO

Two binary halfwords thatrepresent the page information
associated with the lastrecord accessed by the run unit.
PAGE-INFO is notchanged if the call tothe DBMS resultsina
non-zero status.The firsthalfword (PAGE-INFO-GROUP)
represents the page group number. The second halfword
(PAGE-INFO-DBK-FORMAT) represents the db-key radix.

The db-key radix portion of the page information canbe used in
interpreting a db-key for display purposes andinformattinga
db-key from page andlinenumbers. The db-key radix represents
the number of bits withina db-key value that are reserved for the
linenumber of a record. By default, this valueis 8, meaning that
up to 255 records can be stored on a single page of the area.
Given a db-key, you canseparateits associated page number by
dividingthe db-key by 2 raised to the power of the db-key radix.
For example, if the db-key radixis 4, you would dividethe db-key
valueby 2**4. The resultingvalueis the page number of the
db-key. To separatethe linenumber, you would multiply the
page number by 2 raised to the power of the db-key radixand
subtractthis valuefrom the db-key value. The resultwould be the
linenumber of the db-key. The followingtwo formulas canbe
used to calculatethe page and linenumbers from a db-key value:

Page-number = db-key value/
(2 ** db-key radix)
Line-number = db-key value-
(page-number *

(2 ** db-key radix))

IDBMSCOM-AREA

Used internally by the DBMS for specification of runtime function
information.

DIRECT-DBKEY

Either a user-specified db-key valueor a null db-key valueof -1.

This fieldis used for storinga record with a location mode of
DIRECT. It must be initialized by the user; itis not updated by the
DBMS.

DATABASE-STATUS

Reserved for use by the DBMS.

FILLER

Used to ensure fullword alignment.

RECORD-OCCUR

A record occurrence sequence identifier used internally by the
DBMS.

DML-SEQUENCE

The sourcelevel sequence number generated by the precompiler.
This fieldis updated before each call to the DBMS if DEBUG is
specifiedinthe program's ENVIRONMENT DIVISION; it is not used
by the runtime system.

Chapter 4: Communications Blocks and Error Detection 37

Communications Blocks

Native VSAM users: The DIRECT-DBKEY field can be used only when storingarecordina
native VSAM relativerecord data set (RRDS) or when storingrecords with DIRECT
location mode. You must initialize DIRECT-DBKEY to the relativerecord number of the
record being stored.

After a call has been made to the DBMS, one or more of the fields described above may
have been updated, depending on the DML statement issued andif the statement was
executed successfully. Thefollowingfigureillustrates the IDMS communications block
fields updated by successful and unsuccessful calls to the DBMS; only those fields
accessed by the runtime system are shown. Fields used internally by the DBMS are not
shown. Blankfields arenot updated by DML statements.

38 DML Reference Guide for COBOL

Communications Blocks

SUCCESSFUL UNSUCCESSFUL
P|E|D|R|A|E|E|E|P[D||P| E |D[R|A[E|E[E|P[D
RIR[B|E|R|R|R[R|A[I||R| R |B[E|R|[R|R|R|A|I
O|R|K|C|E|R[R|R[G|R[[0] R [K|C|E|R[R|R|G|R
G|O|E|O[A|O[O|OfE|Ef|G| O [E|O[A|O[O|O|E|E
R{R|Y|R|-|R[R[R[-[C]||R R [Y|R]-|R|R|R|-|C
Al-| |DIN|-|R[-|I[T]|Al - DIN|-|[-]|-|I|T
MIS| [-|A[S|-]AINf-][M|] S -|A|S|R[AIN|-
-|T{ [N|M|E|R|R|F[D]||- T N|MJE|E|R[F|D
N{A| [A|E[T|E|E|O|B||N|] A A|E[T|C|[E|O|B
AlT| M CIA|l |K[|A] T M O[A] [K
M{U| [E 0 E|IM[U E R E
E|S R Y|[E|] S D Y
D
Controlstatements
BINDRUN-UNIT 0 14nn
BINDRECORD 0 1l4nn Y|Y|Y
BINDPROCEDURE 0 14nn YIY|Y
READY 0 09nn cic|c
FINISH O[N|C| [C|C|C 01nn c|C|C
COMMIT (ALL) O[N|C| [C|C]|C 18nn cic|C
ROLLBAK(CONTINUE) O[N|C| [C|C|C 19nn cic|c
KEEP (EXCLUSIVE) oly|yjy|cicicly 06nn YIY[Y
IFSET *IY|Y|Y|C|C|C]Y 16nn YIY|Y
IFNOTSET *Y|fy|yfcjcic|y 16nn YI|Y[Y
Retrievalstatements
FIND/OBTAINRECORD oly|vjy[cicicly 03nn YI|Y|Y
GETRECORD o|y|ylfyfcicicjy 05nn YIY|Y
RETURNRECORD o|y|vjy|cicicly 17nn YIY]Y
Modificationstatements
STORERECORD olyjylyjcicicly 12nn YIY[Y
CONNECTRECORD o|y|vjy|cicicly 07nn YY|Y
MODIFYRECORD oly|yjy|cicicly 08nn YIY[Y
DISCONNECTRECORD oly|vly|cicicly 11lnn Y|Y|Y
ERASERECORD O[N|Y|Y[C|C]|C 02nn Y|Y|Y
Acceptstatements
ACCEPTDBKEYOFCURRENCY 0 c|C|C 15nn Y|Y|Y
ACCEPTDBKEYOFN/P/0 0 c|c|C 15nn YIY|Y
ACCEPTIDMSSTATISTICS 0 c|c|c 15nn Y(Y|Y
ACCEPTBINDRECORD 0 c|C|C 15nn Y(Y|Y
ACCEPTPROCEDURE 0 c|c|C 82nn Y|Y|Y

Chapter 4: Communications Blocks and Error Detection 39

Communications Blocks

LRC Block

ACCEPTpage-info-location | |o| | | |c|c|c| |]| |15nn |] | |Y|Y|Y| | |
Acceptstatements

ACCEPTFROMCURRENCY 0 c|c|c 15nn Y|Y|Y
ACCEPTFROMN/P/OCURRENCY 0 c|c|c 15nn Y|Y|Y
ACCEPTFROMIDMS-STATISTICS | |0 c|c|c 15nn Y|Y]Y
ACCEPTFROMBIND 0 c|c|c 15nn Y|Y|Y
ACCEPTFROMPROCEDURE 0 clclc 15nn Y|Y|Y

*Iftrue,fieldissettozonedecimalzeroes (0000)
Iffalse,fieldissettol601

OFieldissettozonedecimalzeroes
YFieldisupdated
CFieldisclearedtospaces
NFieldissettonulldb-keyvalue(-1)

nnSpecificminorerrorcode

The logical-record request control (LRC) blockis used when the subschema usage mode
is LR or MIXED. The LRC block, whichis usedin conjunction with the IDMS or IDMS-DC
communications block, provides aninterfacebetween LRF andthe application program.
It passes information abouta logical-record requestto LRF and returns path status
information aboutthe processingof the request to the program.

The data description (identified as SUBSCHEMA-LR-CTRL) of the LRC blockis copied from
the data dictionaryinto the WORKING-STORAGE SECTION or LINKAGE SECTION of the
program. When the programis submitted to the precompiler, the LRC blockand the
IDMS or IDMS-DC communications block are copied automatically, unless the
IDMS-RECORDS MANUAL statement is includedinthe ENVIRONMENT DIVISION. Inthat
case, both descriptions can becalledin explicitly by the program by usinga COPY IDMS
SUBSCHEMA-LR-CTRL statement

For more information aboutthe IDMS-RECORDS MANUAL and the COPY IDMS
statements, see Precompiler-Directive Statements (see page 67).

40 DML Reference Guide for COBOL

Communications Blocks

You should examinethe LR-STATUS field of the LRC blockfor all possible statuses after
every call to LRF. If the valuereturned is LR-ERROR, you should then examine the
ERROR-STATUS field of the IDMS or IDMS-DC communications block.

The following figure shows the layout of the LRC block. Eachfieldis described
separately, followingthe figure.

Logical-Record Request Control Block

LRC BLOCK

Length Suggested
Field Data Type (bytes) Initial Value

1 2 LRC-LRPXELNG Binary 2 (Halfword) 00

3 4 LRC-MAXVXP Binary 2 (Halfword) 00

5 8 LRIDENT Alphanumeric 4 "LRC"

9 16 LRVERB Alphanumeric 8 Spaces

17 32 LRNAME Alphanumeric 16 Spaces

33 48 LR-STATUS Alphanumeric 16 Spaces

49 64 FILLER ... 16

65:(var1:ab1e-1ength) PXE Mixed

* word aligned
The LRC block contains the followingfields:
Field name Position Description
LRC-LRPXELNG 1-2 Specifies the length of the LRC block.
LRC-MAXVXP 3-4 Specifies the length of the work area
required to evaluate the WHERE clause.
LRIDENT 5-8 The constant'LRC' followed by a space.
LRVERB 9-16 The verb passedto LRF.
LRNAME 17-32 The name of the logical record being
accessed.

Chapter 4: Communications Blocks and Error Detection 41

Communications Blocks

Field name Position Description

LR-STATUS 33-48 The path status of a logical-record request.

Path statuses are1-to 16-character
strings;they can be either standardor
defined in the subschema by the DBA. LRF
provides three standard path statuses:
LR-FOUND, LR-NOT-FOUND, and
LR-ERROR.

Note: For more information aboutpath

statuses, see the Logical-Record Clauses
(see page 327).

FILLER 49-64 Used internally by LRF.

PXE 65-end The variable-length expansion of the
WHERE clause. From 0 to 512 1-byte
elements.

The 512-byte limitcan be raised or
lowered by usingthe SIZE IS parameter of
the COPY IDMS SUBSCHEMA-LR-CTRL
statement.

Note: For more information aboutthe SIZE
IS parameter and the COPY IDMS
statement, see Precompiler-Directive
Statements (see page 67).

IDMS-DC Communications Block

The IDMS DC communications block replaces the | DMS communications block when the
operating mode is either IDMS-DC or DC-BATCH. At runtime, the IDMS-DC
communications blockis used to pass information about the outcome of requested data
communications and databaseservices toanapplication program.

The data description (identified as SUBSCHEMA-CTRL) of the IDMS-DC communications
blockis copied from the data dictionaryinto the WORKING-STORAGE SECTION or
LINKAGE SECTION of the program. When the program is submitted to the precompiler,
the IDMS-DC communications blockis copied automatically unless the IDMS-RECORDS
MANUAL statement isincludedinthe ENVIRONMENT DIVISION. In that case, the
program canexplicitly callinthedata description by usinga COPY IDMS
SUBSCHEMA-CTRL statement (for more information on the IDMS-RECORDS MANUAL
andthe COPY IDMS statements, see Precompiler-Directive Statements (see page 67)).

42 DML Reference Guide for COBOL

Communications Blocks

The followingfigure shows the layout of the IDMS-DC communications block. Eachfield

is described separately below.

**1 97 100

97
197 200
201I

301 304

305 308
309 312
313 316

317 320

* word aligned

| IDMS-DC COMMUNICATIONS BLOCK

Field
PROGRAM-NAME
ERROR-STATUS
DBKEY
RECORD-NAME
AREA-NAME
ERROR-SET
ERROR-RECORD
ERROR-AREA
PAGE-INFO

IDBMSCOM-AREA

DIRECT-DBKEY

DCBMSCOM-AREA
SSC-ERRSTAT - SAVE
SSC-DMLSEQ-SAVE

DML -SEQUENCE
RECORD-0CCUR

Data Type
Alphanumeric
Alphanumeric
Binary
Alphanumeric
Alphanumeric
Alphanumeric
Alphanumeric
Alphanumeric

Binary

Alphanumeric
Binary
Alphanumeric
Alphanumeric
Binary
Binary

Binary

SUBSCHEMA-CTRL-END Alphanumeric

(bytes)

8

4
4(Fullword)
16

16

16

16

16
4(Fullword)

100
4(Fullword)
100

4
4(Fullword)
4(Fullword)
4(Fullword)
4

Initial Value

Program Name

'1400'
0000
Spaces
Spaces
Spaces
Spaces
Spaces

0000

Low Values
0000

Low Values
Spaces
0000

0000

0000

Spaces

** PAGE-INFO-GROUP overlg%s bytes 97 and 98 and PAGE-INFO-DBK-FORMAT

overlays bytes 99 and 1

having a length of two bytes. Suggested initial values for
both are 00. Together these two fields represent PAGE-INFO.

. Both of these fields are binary datatype each

Chapter 4: Communications Blocks and Error Detection 43

Communications Blocks

Field Descriptions

The IDMS-DC communications block contains thefollowingfields thatdescribe program
status information:

Field name Position Description

PROGRAM-NAME 1-8 The name of the program being
executed, as defined inthe program's
IDENTIFICATION DIVISION.

This fieldis initialized automatically at
the beginning of programexecution if
the program contains a COPYIDMS
SUBSCHEMA-BINDS statement inits
PROCEDURE DIVISION. Otherwise, it
must be initialized by the programmer.

ERROR-STATUS 9-12 A valueindicatingthe outcome of the
last DML statement executed. The
ERROR-STATUS field must be initialized
to 1400 by the program.

This field is updated by CA IDMS after
(attempted) performance of a
requested databaseor data
communications serviceand before
control is returned to the program.
The ERROR-STATUS fieldandits use
aredescribedin greater detail under
ERROR-STATUS Field and Codes (see
page 48).

A programthat consists of more than
one rununit must reinitializethe
ERROR-STATUS field to 1400 after
finishingonerun unit and before
bindingthe next.

DBKEY 13-16 The databasekey of the lastrecord
accessed by the run unit. For example,
after successful execution ofa FIND
command, DBKEY is updated with the
databasekey of the located record.
DBKEY is not changed ifthe database
callresultsina nonzero status
condition.

44 DML Reference Guide for COBOL

Communications Blocks

Field name

Position

Description

RECORD-NAME

17-32

The name of the lastrecord accessed
successfully by the run unit.

This fieldis left-justified and padded
with spaces on the right.

AREA-NAME

33-48

The name of the lastarea accessed
successfully by the run unit.

This fieldis left-justified and padded
with spaces onthe right.

ERROR-SET

49-64

The name of the setinvolvedinthe
lastoperation to produce a nonzero
status code.

This fieldis left-justified and padded
with spaces onthe right.

ERROR-RECORD

65-80

The name of the record involvedin the
lastoperation to produce a nonzero
status code.

This field is left-justified and padded
with spaces onthe right.

ERROR-AREA

81-96

The name of the area involvedinthe
lastoperation to produce a nonzero

status code.

This fieldis left-justified and padded
with spaces on the right.

Chapter 4: Communications Blocks and Error Detection 45

Communications Blocks

Field name

Position

Description

PAGE-INFO

97-100

Two binary halfwords thatrepresent
the page information associated with
the lastrecord accessed by the run
unit. PAGE-INFO is not changed if the
call tothe DBMS results ina non-zero
status. The firsthalfword
(PAGE-INFO-GROUP) represents the
page group number. The second
halfword (PAGE-INFO-DBK-FORMAT)
represents the db-key radix.

The db-key radix portion of the page
informationcanbeusedin
interpreting a db-key for display
purposes andinformatting a db-key
from page andlinenumbers. The
db-key radix represents the number of
bits within a db-key valuethat are
reserved for the linenumber of a
record. By default, this valueis 8,
meaning that up to 255 records can be
stored on a single page of the area.
Given a db-key, you canseparateits
associated pagenumber by dividing
the db-key by 2 raised to the power of
the db-key radix. For example, if the
db-key radixis 4,youwould dividethe
db-key valueby 2**4. The resulting
valueis the page number of the
db-key. To separatethe linenumber,
you would multiply the page number
by 2 raised to the power of the db-key
radix and subtractthis valuefrom the
db-key value. The resultwould be the
linenumber of the db-key. The
following two formulas can be used to
calculatethe page andlinenumbers
from a db-key value:

Page-number = db-key value/
(2 ** db-key radix)
Line-number = db-key value-
(page-number *

(2 ** db-key radix))

46 DML Reference Guide for COBOL

Communications Blocks

Field name Position Description

IDBMSCOM-AREA 97-196 Used internally by CA IDMS for
specification of DBMS runtime
functioninformation.

DIRECT-DBKEY 197-200 Either a user-specified db-key valueor
a null db-key value of -1.
This fieldis used for storinga record
with a location mode of DIRECT. It
must be initialized by the user; itis not
updated by CAIDMS.
Native VSAM users: The
DIRECT-DBKEY field can be used when
storinga record in a native VSAM
relativerecord data set (RRDS). You
must initialize DIRECT-DBKEY to the
relativerecord number of the record
being stored.

DCBMSCOM-AREA 201-300 Used internally by CA IDMS for
specification of runtime function
information.

SSC-ERRSTAT-SAVE 301-304 Used by the IDMS-STATUS routine to

savea nonzero ERROR-STATUS inthe
event of anabend.

SSC-DMLSEQ-SAVE 305-308 Used by the IDMS-STATUS routine to
savethe value of DML-SEQUENCE in
the event of anabend.

DML-SEQUENCE 309-312 The sourcelevel sequence number
generated by the precompiler.
This field is updated before each call to
CA IDMS if DEBUG is specified in the
program's ENVIRONMENT DIVISION; it
is not used by the runtime system.

RECORD-OCCUR 313-316 A record occurrence sequence
identifier used internally by CA IDMS.

SUBSCHEMA-CTRL-END 317-320 Marks the end of the IDMS-DC
communications block.

Chapter 4: Communications Blocks and Error Detection 47

ERROR-STATUS Field and Codes

ERROR-STATUS Field and Codes

You canusethe ERROR-STATUS field of the IDMS or IDMS-DC communications block to
determine ifa DML request was processed successfully. The DBMS or the DC system
returns avalueto the ERROR-STATUS fieldindicatingthe resultof each DML request.
For more information on usingthe ERROR-STATUS field, see Error Detection (see

page 59).

LRF users: You should check the LR-STATUS field of the LRC block before checkingthe
ERROR-STATUS field.

Major and Minor Codes

The ERROR-STATUS fieldis a four-byte zoned decimal field. The firsttwo bytes represent
a major code; the second two bytes represent a minor code. Major codes identify the
function performed; minor codes describethe status of that function.

Value of Codes

A valueof 0000 indicates successful completion of the requested function. A value other
than 0000 indicates completion of the function ina manner that may or may not be in
error, depending on your expectations. For example, 0326 (DB-REC-NOT-FOUND) should
be anticipated after FIND CALC retrieval;this allows you to trap the conditionand
continue processing.

DB status codes have a major code inthe range 01to 20. They occur duringdatabase
access inbatch or onlineprocessing. DCstatus codes have a major code in the range 30
to 51.They occurinonlineor DC-BATCH processing. Status codes with a major code of

00 applyto all DMLfunctions. DB status codes and DC status codes are discussed
separately below.

DB Status Codes

The followingtables list DB major and minor codes and their meanings.

Major DB Status Codes

Major Database Function

Code
00 Any DML statement
01 FINISH

48 DML Reference Guide for COBOL

DB Status Codes

Major Database Function
Code

02 ERASE

03 FIND/OBTAIN
05 GET

06 KEEP

07 CONNECT

08 MODIFY

09 READY

11 DISCONNECT
12 STORE

14 BIND

15 ACCEPT

16 IF

17 RETURN

18 COMMIT

19 ROLLBACK
20 LRF requests

Minor DB Status Codes

Minor
Code

Database Function Status

00

Combined with a major code of 00, this code indicates successful completion
of the DML operation. Combined with a nonzero major code, this code
indicates thatthe DML operation was not completed successfully dueto
central version causes, such as time-outs and program checks.

01

An area has not been readied. When this code is combined with a major
code of 16, an IF operation has resultedina valid false condition.

02

Either the db-key used with a FIND/OBTAIN DB-KEY statement or the direct
db-key suggested for a STORE is not within the page range for the specified
record name.

Chapter 4: Communications Blocks and Error Detection 49

DB Status Codes

Minor
Code

Database Function Status

03

Invalid currency for the named record, set, or area. This can only occur when
arun unitis sharinga transaction with other databasesessions.The 03
minor status is returned if the run unittries to retrieve or update a record
usinga currency that has been invalidated because of changes made by
another databasesessionthatis sharingthe sametransaction.

04

The occurrence count of a variably occurring element has been specified as
either less than zero or greater than the maximum number of occurrences
defined in the control element.

05

The specified DML function would have violated a duplicates-not-allowed
option fora CALC, sorted, or index set.

06

No currency has been established for the named record, set, or area.

07

The end of a set, area, or index has been reached or the set is empty.

08

The specified record, set, procedure, or LR verb is not inthe subschema or
the specified recordis not a member of the set.

09

The area has been readied with anincorrectusage mode.

10

An existingaccess restriction or subschema usage prohibits execution of the
specified DML function. For LRF users, the subschema inuse allows access to
databaserecords only. Combined with a major code of 00, this code means
the program has attempted to access a databaserecord, but the subschema
inuse allows accessto logical records only.

11

The record cannotbe stored in the specified area due to insufficientspace.

12

There is no db-key for the recordto be stored. Thisis a systeminternal error
andshould be reported.

13

A current record of run unit either has not been established or has been
nullified by a previous ERASE statement.

14

The CONNECT statement cannot be executed because the requested record
has been defined as a mandatory automatic member of the set.

15

The DISCONNECT statement cannot be executed because the requested
record has been defined as a mandatory member of the set.

16

The record cannotbe connected to a set of which itis already a member.

17

The transaction manager encountered an error.

18

The record has not been bound.

19

The run unit's transaction was forced to back out.

20

The current record is not the same type as the specified record name.

21

Not all areas beingused have been readied inthe correct usage mode.

50 DML Reference Guide for COBOL

DB Status Codes

Minor Database Function Status

Code

22 The record name specifiedis notcurrently a member of the set name
specified.

23 The area name specifiedis either not inthe subschema or not an extent
area; or the record name specified has notbeen defined withinthe area
name specified.

25 No currency has been established for the named set.

26 No duplicates existfor the named record or the record occurrences cannot
be found.

28 The run unithas attempted to ready anarea that has been readied
previously.

29 The run unithas attempted to placealockon a recordthat is locked already
by another run unit. A deadlockresults. Unless the run unitissued either a
FIND/OBTAIN KEEP EXCLUSIVE or a KEEP EXCLUSIVE, the rununitis aborted.

30 An attempt has been made to erase the owner record of a nonempty set.

31 The retrieval statement format conflicts with the record's location mode.

32 An attempt to retrieve a CALC/DUPLICATE record was unsuccessful;the
value of the CALC fieldinvariablestorageis notequal to the value of the
CALC control element inthe current record of run unit.

33 At leastone setin which the record participates has notbeen includedinthe
subschema.

40 The WHERE clauseinan OBTAIN NEXT logical-record requestis inconsistent
with a previous OBTAIN FIRST or OBTAIN NEXT command for the same
record. Previously specified criteria,such asreference to a key field, have
been changed. A path status of LR-ERROR is returned to the LRC block.

41 The subschema contains no path that matches the WHERE clauseina
logical-record request. A path status of LR-ERROR is returned to the LRC
block.

42 An ON clauseincludedinthe path by the DBA specified return of the
LR-ERROR path status to the LRC block; anerror has occurred while
processingthe LRF request.

43 A programcheck has been recognized duringevaluation ofa WHERE clause;

the program check indicates thateither a WHERE clause has specified
comparison of a packed decimal field to an unpacked nonnumeric data field,
or datainvariablestorageor a databaserecord does not conformto its
description. A path status of LR-ERROR is returned to the LRC block unless
the DBA has includedan ON clauseto override this actionin the path.

Chapter 4: Communications Blocks and Error Detection 51

DB Status Codes

Minor
Code

Database Function Status

44

The WHERE clauseina logical-record requestdoes not supply a key element
(sortkey, CALC key, or db-key) expected by the path. A path status of
LR-ERROR is returned to the LRC block.

45

Duringevaluation of a WHERE clause, a program check has been recognized
because a subscriptvalueis neither greater than 0 nor less thanits
maximum allowed valueplus 1. A path status of LR-ERROR is returned to the
LRC block unless the DBA has included an ON clauseto overridethis action
inthe path.

46

A programcheck has revealed an arithmetic exception (for example:
overflow, underflow, significance, divide) during evaluation of a WHERE
clause. A path status of LR-ERROR is returned to the LRC block unless the
DBA hasincluded an ON clauseto overridethis actioninthe path.

53

The subschema definition of an indexed set does not match the indexed
set's physicalstructurein the database.

54

Either the prefix length of an SR51 recordis less than zero or the data length
is less than or equal to zero.

55

An invalid length has been defined for a variable-length record.

56

An insufficientamount of memory to accommodate the CA IDMS
compression/decompression routines is available.

57

A retrieval-only rununithas detected aninconsistencyinanindexthat
should causean 1143 abend, but optional APAR bit 216 has been turned on.

58

An attempt was made to rollback updates inalocal modeprogram. Updates
made to an area duringa local mode program's execution cannotbe
automaticallyrolled out. The area must be manually recovered.

60

A record occurrence type is inconsistentwith the set named inthe
ERROR-SET fieldinthe IDMS communications block. This code usually
indicates a broken chain.

61

No record can be found for aninternal db-key. This code usuallyindicates a
broken chain.

62

A system-generated db-key points to a record occurrence, but no record
with that db-key can be found. This code usuallyindicates a broken chain.

63

The DBMS cannotinterpret the DML functionto be performed. When
combined with a major code of 00, this code means invalid function
parameters have been passed on the call tothe DBMS. For LRF users,a
WHERE clauseincludes a keyword thatis longer than the 32 characters
allowed.

64

The record cannotbe found; the CALC control element has not been defined
properlyinthe subschema.

52 DML Reference Guide for COBOL

DB Status Codes

Minor Database Function Status

Code

65 The databasepage read was not the page requested.

66 The area specifiedis notavailablein the requested usage mode.

67 The subschema invoked does not match the subschema objecttables.

68 The CICS interface was not started.

69 A BIND RUN-UNIT may not have been issued;the CV may be inactiveor not
accepting new run units;or the connection with the CV may have been
broken due to time out or other factors. When combined with a major code
of 00, this code means the program has been disconnected from the DBMS.

70 The databasewill notready properly;a JCL erroris the probablecause.

71 The page range or page group for the area being readied or the page
requested cannot be found inthe DMCL.

72 There is insufficient memory to dynamically load a subschema or database
procedure.

73 A central version run unit will exceed the MAXERUS valuespecified at
system generation.

74 The dynamicload of a module has failed. If operating under the central
version, a subschema or database procedure module either was not found in
the data dictionary or the load (coreimage) library or, ifloaded, will exceed
the number of subschema and database procedures provided for at system
generation.

75 A readerror has occurred.

76 A write error has occurred.

77 The run unithas not been bound or has been bound twice. When combined
with a major code of 00, this code means either the program is nolonger
signed on to the subschema or the variablesubschema tables have been
overwritten.

78 An area waitdeadlock has occurred.

79 The run unithas requested more db-key locks thanare availableto the
system.

80 The target node is either not activeor has been disabled.

81 The converted subschema requires specified databasename to be inthe
DBNAME table.

82 The subschema must be named inthe DBNAME table.

83 An error has occurredinaccessingnative VSAM data sets.

Chapter 4: Communications Blocks and Error Detection 53

DC Status Codes

Minor
Code

Database Function Status

87

The owner and member records fora set to be updated are notinthe same
page group or do not have the same db-key radix.

91

The subschema requires a DBNAME to do the bind run unit.

92

No subschema areas map to DMCL.

93

A subschema area symbolic was notfound in DMCL.

94

The specified dbname is neither a dbname defined inthe DBNAME table,
nor a SEGMENT defined inthe DMCL.

95

The specified subschema failed DBTABLE mappingusingthe specified
dbname.

Note: For a complete description of DB runtime status codes, see the chapter "CA IDMS
Status Codes" inthe Messages and Codes Guide.

DC Status Codes

The followingtables listthe DC major and minor codes and their meanings.

Major DC Status Codes

Major
Code

Function

00

Any DML statement

30

TRANSFER CONTROL

31

WAIT/POST

32

GET STORAGE/FREE STORAGE

33

SET ABEND EXIT/ABEND CODE

34

LOAD/DELETE TABLE

35

GET TIME/SET TIMER

36

WRITE LOG

37

ATTACH/CHANGE PRIORITY

38

BIND/ACCEPT/END TRANSACTION STATISTICS

39

ENQUEUE/DEQUEUE

54 DML Reference Guide for COBOL

DC Status Codes

Major Function

Code

40 SNAP

43 PUT/GET/DELETE SCRATCH

44 PUT/GET/DELETE QUEUE

45 BASIC MODE TERMINAL MANAGEMENT

46 MAPPING MODE TERMINAL MANAGEMENT
47 LINE MODE TERMINAL MANAGEMENT

48 ACCEPT/WRITE PRINTER

49 SEND MESSAGE

50 COMMIT TASK/ROLLBACK TASK/FINISH TASK/WRITE JOURNAL
51 KEEP LONGTERM

58 SVC SEND/RECEIVE

Minor DC Status Codes

Minor
Code

Function Status

00

Combined with a major code of 00, this code indicates either successful
completion of the DML function or that all tested resources have been
enqueued.

01

The requested operation cannotbe performed immediately; waiting will
causea deadlock.

02

Either there is insufficientstorageinthe storage pool or the storage
required for control blocks is unavailable.

03

The scratch area ID cannotbe found.

04

Either the queue ID (header) cannotbe found or a pagingsessionwasin
progress when a second STARTPAGE command was received (that is,an
implied ENDPAGE was processed before this STARTPAGE was executed
successfully).

05

The specified scratchrecord ID or queue record cannot be found.

06

No resource control element (RCE) exists for the queue record; currency has
not been established.

07

Either an 1/O error has occurred or the queue upper limithas been reached.

Chapter 4: Communications Blocks and Error Detection 55

DC Status Codes

Minor
Code

Function Status

08

The requested resource is not available.

09

The requested resource is available.

10

New storage has been assigned.

11

A maximum task condition exists.

12

The named taskcodeis invalid.

13

The named resourcecannot be found.

14

The requested module is defined as nonconcurrentandis currentlyin use.

15

The named module has been overlaid and cannotbe reloaded immediately.

16

The specified interval control element (ICE) address cannotbe found.

17

The record has been replaced.

18

No printer terminals havebeen defined for the current DC system.

19

The return areais too small;data has been truncated.

20

An 1/0, program-not-found, or potential-deadlock status condition exists.

21

The message destinationis undefined, the longterm ID cannot be found, or
a KEEP LONGTERM request was issued by a nonterminal task.

22

A record already exists for the scratch area specified.

23

No storageor resource control element (RCE) could be allocated for the
replyarea.

24

The maximum number of outstandingreplies has been exceeded.

25

An attention interrupt has been received.

26

There is a logical errorinthe output data stream.

27

A permanent |/O error has occurred.

28

The terminal dial-uplineis disconnected.

29

An invalid parameter has been passedinthe listsetup by the DML
processor.

30

The named function has not yet been implemented.

31

An invalid parameter has been passed;the TRB, LRB, or MRB contains an
invalidfield; or the request is invalid because of a possiblelogic errorinthe
application program.Ina DC-BATCH environment, a possiblecauseis that
the record length specified by the command exceeds the maximum length
based on the packet size.

32

The derived length of the specified variablestorageis negativeor zero.

56 DML Reference Guide for COBOL

DC Status Codes

Minor Function Status

Code

33 Either the named table or the named map cannot be found inthe data
dictionaryload area.

34 The named variable-storagearea mustbe an01-level entry inthe LINKAGE
SECTION.

35 A GET STORAGE requestisinvalid becausethe LINKAGE SECTION variable
has already been allocated.

36 The program either was not defined duringsystem generation or is marked
out-of-service.

37 A GET STORAGE operandis invalid becausethe specified variablestorage
areaisinthe WORKING-STORAGE SECTION instead of the LINKAGE SECTION.

38 Either no GET STORAGE operand was specified or the specified LINKAGE
SECTION variablehas notbeen allocated.

39 The terminal device being used is out of service.

40 NOIO has been specified butthe datastreamcannotbe found.

41 An IF operation resultedina valid true condition.

42 The named map does not support the terminal device in use.

43 A linel/Osession has been cancelled by the terminal operator.

44 The referenced field does not participatein the specified map; a possible
causeis aninvalid subscript.

45 An invalid terminal type is associated with the issuingtask.

46 A terminal I/O error has occurred.

47 The named area has not been readied.

48 The run unithas not been bound.

49 NOWAIT has been specified but WAIT is required.

50 Statistics arenotbeing kept.

51 A lock manager error occurred duringthe processing of a KEEP LONGTERM
request

52 The specified tableis missingorinvalid.

53 An error occurred from a user-written edit routine.

54 Either there isinvalidinternal data or a data conversionerror has occurred.

55 The user-written edit routine cannotbe found.

56 No DFLDS have been defined for the map.

Chapter 4: Communications Blocks and Error Detection 57

DC Status Codes

Minor Function Status

Code

57 The ID cannotbe found, is not a long-term permanent ID, or is being used by
another run unit.

58 Either the LRID cannotbe found, the maximum number of concurrent task
threads was exceeded, or anattempt was made to rollback database
changes inlocal mode.

59 An error occurred intransferringthe KEEP LONGTERM request to IDMSKEEP

60 The requested KEEP LONGTERM lockid was alreadyin usewith a different
page group

63 Invalid function parameters havebeen passed on the call tothe DBMS.

64 No detail exists currently for update; no action has been taken.
Alternatively, the requested node for a header or detail is either not present
or not updated.

68 There are no more updated details to MAP IN or the amount of storage
defined for pageable maps at sysgenis insufficient. In the latter case,
subsequent MAP OUT DETAIL statements areignored.

72 No detail occurrence, footer, or header fields existto be mapped out by a
MAP OUT RESUME command, or the scratch record that contains the
requested detail could not be accessed. The latter caseis a mappinginternal
error and should be reported.

76 The firstscreen page has been transmitted to the terminal.

77 Either the programis no longer signed on to the subschema or the variable
subschema tables have been overwritten.

80 The target node is either not activeor has been disabled.

97 An error was encountered processinga syncpointrequest; check the log for
details.

98 An unsupported COBOL compiler option (for example, DEBUG) has been
specified foran onlineprogramor a program runningina batch region has
issued a DML verb thatis only valid when runningonlineunder CA
IDMS/DC/UCF.

99 An unexpected internal return code has been received; the terminal device

is out of service.

Note: For a complete description of DC runtime status codes, see the chapter "CA IDMS
Status Codes" inthe Messages and Codes Guide.

58 DML Reference Guide for COBOL

ERROR-STATUS Condition Names

ERROR-STATUS Condition Names

Code Condition name Explanation
0000 DB-STATUS-OK No error
0307 DB-END-OF-SET End of set, area, or SPF index
0326 DB-REC-NOT-FOUND No record found
0001 to ANY-ERROR-STATUS Any nonzero status
9999
0000to ANY-STATUS Any status
9999
31013201 DC-DEADLOCK Waitingwill causea deadlock
34013901
32023402 DC-NO-STORAGE Insufficientspaceavailable
4303 DC-AREA-ID-UNK ID cannotbe found
4404 DC-QUEUE-ID-UNK Queue header cannotbe found
43054405 DC-REC-NOT-FOUND Record cannot be found
3908 DC-RESOURCE-NOT-AVAI Resource not available

L
3909 DC-RESOURCE-AVAIL Resourceis available
3210 DC-NEW-STORAGE New spaceallocated
3711 DC-MAX-TASKS Maximum attached tasks
4317 DC-REC-REPLACED Record has been replaced
43194419 DC-TRUNCATED-DATA Return area too small;data has
4519 4719 been truncated
45254625 DC-ATTN-INT Attention interrupt received
4743 DC-OPER-CANCEL Session cancelled

Error Detection

The valuereturned to the ERROR-STATUS field must be checked after each DML

request. When usingthe Logical Record Facility, you should check the LR-STATUS field of

the LRC block before checkingthe ERROR-STATUS field.

Chapter 4: Communications Blocks and Error Detection 59

Error Detection

CA IDMS provides three aids for error detection: the IDMS-STATUS routine, the
AUTOSTATUS protocols,and the USER-DEFINED protocols.Each of these aids is
described below.

IDMS-STATUS Routine

IDMS-STATUS is anerror-checkingroutineincluded in the dictionary.Youcan copy
IDMS-STATUS into your program by codingthe following statement at the end of the
PROCEDURE DIVISION:

COPY IDMS IDMS-STATUS.

For more information on the use of the COPY IDMS IDMS-STATUS statement, refer to
Precompiler-Directive Statements (see page 67).

IDMS-STATUS Routine Used Under Batch

The following code is copied into batch programs by the COPY IDMS IDMS-STATUS
statement:

K5k ok 5K ok oK ok ok ok ok ok ok kok 5K 3k ok Sk K Sk K Skok 5k >k 5k 5k 5k 5k 5k >k Kok K 3k K 5k K 3k K Skok 3k >k 5k >k 3k >k 5k Kok ok 5k 3k K Sk >k sk kok Kk Kk k k-

IDMS-STATUS SECTION.
kKA H KA F A FA A H A FAK KA A A F A FA A KA AF A FAK KA A KA A AK A KA A KA A KA KK
IDMS-STATUS -PARAGRAPH.
IF DB-STATUS-OK GO TO ISABEX.
PERFORM IDMS-ABORT.
DISPLAY ! skokksiokskokskokokokkskstokskokoksksk ok ok okokok 1
' ABORTING - ' PROGRAM-NAME
! ERROR - STATUS
! ERROR -RECORD
' Rkrk RECOVER IDMS **k*!
UPON CONSOLE.

DISPLAY 'PRORAM NAME ------ ' PROGRAM-NAMVE.
DISPLAY 'ERROR STATUS ------ ' ERROR-STATUS.
DISPLAY 'ERROR RECORD ------ ' ERROR-RECORD.
DISPLAY 'ERROR SET --------- ' ERROR-SET.
DISPLAY 'ERROR AREA -------- ' ERROR-AREA.
DISPLAY 'LAST GOOD RECORD -- ' RECORD-NAME.
DISPLAY 'LAST GOOD AREA ---- ' AREA-NAME.

MOVE 39 TO SSC-INO1-REQ-CODE.
MOVE © TO SSC-INO1-REQ-RETURN.
MOVE ' ' TO SSC-STATUS-LABEL.
PERFORM IDMS-STATUS-LOOP
UNTIL SSC-INO1-REQ-RETURN > 0.
ROLLBACK.
CALL 'ABORT'.
GO TO ISABEX.
IDMS-STATUS-LOOP.

60 DML Reference Guide for COBOL

Error Detection

CALL 'IDMSIN1' USING IDBMSCOM(41)
SSC-INO1-REQ-WK
SUBSCHEMA -CTRL
IDBMSCOM(1)
DML - SEQUENCE
SSC-STATUS-LINE.
IF SSC-INO1-REQ-RETURN GREATER THAN 4

DISPLAY 'DML SEQUENCE ------ ' DML-SEQUENCE
ELSE
DISPLAY SSC-STATUS-LABEL '--- ' SSC-STATUS-VALUE.

ISABEX. EXIT.

IDMS-STATUS Routine Used Under a DC/UCF System

The following code is copied into DC/UCF programs by the COPY IDMS IDMS-STATUS
statement:

3Kk ok ok ok ok ok ok ok ok ok ok kok 5k 3k ok ok >k Sk >k Skok sk ok ok >k 5k >k ok >k kok K 3k ok ok K 3k K Skok 3k >k 5k >k 3k >k Sk ok ok k ok ok ok sk sk kok Kk k ok k k-

IDMS-STATUS SECTION.
rRkoRRRRR ROk TDMS -STATUS FOR IDMS/DC Hokkskkskkkomoksokkkx
IF DB-STATUS-OK GO TO ISABEX.
PERFORM IDMS-ABORT.
MOVE ERROR-STATUS TO SSC-ERRSTAT-SAVE
MOVE DML-SEQUENCE TO SSC-DM.SEQ-SAVE
SNAP FROM SUBSCHEMA-CTRL TO SUBSCHEMA-CTRL-END
ON ANY-STATUS
NEXT SENTENCE.
ABEND CODE SSC-ERRSTAT-SAVE
ON ANY-STATUS
NEXT SENTENCE.
ISABEX. EXIT.

IDMS-STATUS abends your programif the ERROR-STATUS field contains a nonzero value.
Because some values do not indicateprocessingerrors, your programshould check

ERROR-STATUS for nonzero values before calling IDMS-STATUS.

Pageable Map ERROR-STATUS Condition Names

The followingtablelists the condition names that areautomaticallyincluded when using
pageable maps.

Note: You cannot make checks for these codes within the IDMS-STATUSroutine.

Code Condition name Explanation

4604 DC-SECOND-STARTPAGE Second consecutive
STARTPAGE

4664 DC-DETAIL-NOT-FOUND No current detail

Chapter 4: Communications Blocks and Error Detection 61

Error Detection

Code Condition name Explanation

4668 DC-NO-MORE-UPD-DETAILS All details mappedin

4668 DC-MAX-SPACE-REACHED Pageable map spaceexceeded
4672 DC-NO-DETAILS Nothing to map out

4676 DC-FIRST-PAGE-SENT Firstpage transmitted

4680 DC-PAGE-READY A complete map page was built

When IDMS-STATUS executes, itexits immediately if the error-status check indicates
successful completion of the function (ERROR-STATUS of 0000).

Effects of Nonzero Status on IDMS-STATUS

This section describes the effects of nonzero status conditions on IDMS-STATUS
execution. The effects depend on the operating mode (BATCH or IDMS-DC) of the
application program.

Effect When the Operating Mode Is BATCH

When the operatingmode is BATCH, a nonzero error status causes IDMS-STATUS to:
m Printstatus information onthe unsuccessful function
m Issuearollback

m Abend the program

The status information retrieved from the IDMS-DB communications blockincludes
program name, error status, error record, error set, error area, record name (the last
record successfullyaccessed), area name (the lastarea successfully accessed), page
number andlineindex of the dbkey (the lastrecord accessed by the run unit), dbkey in
hexadecimal format, page group and database-key format (associated with the last
record accessed by the run unit), and the DML sequence number.

Effect When the Operating Mode Is IDMS-DC

When the operating mode is IDMS-DC, a nonzero error status causes IDMS-STATUS to:
m Snap the IDMS-DC communications block (SUBSCHEMA-CTRL)

m Abend the program

The status information retrieved from the IDMS-DC communications blockincludes
program name, error status, error record, error set, error area, record name (the last
record successfullyaccessed), area name (the lastarea successfully accessed),and the
DML sequence number.

62 DML Reference Guide for COBOL

Error Detection

IDMS-STATUS includes a callto perform a routinenamed IDMS-ABORT, which you can
use for additional error processing. CA IDMS supplies only the PERFORM statement; if

the IDMS-ABORT routineis to be used, you must supply the routine itself by codingthe
section name and exit as shown below:

IDMS-ABORT SECTION.
IDMS-ABORT-EXIT.
EXIT.

For example, you can use the IDMS-ABORT SECTION to displayinformationregarding
the LRC block as shown below:

IDMS-ABORT SECTION.
IF LR-STATUS = 'LR-ERROR'
DISPLAY 'LOGICAL RECORD ERROR'

‘LR NAME -- ' LR-NAME
'"LR VERB -- ' LR-VERB.
IDMS-ABORT-EXIT.

EXIT.

A routine can be coded directlyinto the program or copied inas a module, accordingto
the requirements of the program. However, ifno abortroutine is to be performed, the
reference to IDMS-ABORT must be deleted from IDMS-STATUS by the DBA.

AUTOSTATUS Protocols

Syntax

The precompiler automatically generates a PERFORM IDMS-STATUS statement after
each DML command (except IF)ifthe protocol inuse includes AUTOSTATUS. For each
standard protocol (for example BATCH or CICS) provided atinstallation time, an
AUTOSTATUS protocol (for example BATCH-AUTOSTATUS or CICS-AUTOSTATUS) is also
provided. (The IDMS DC and DC-BATCH protocols alreadyinclude AUTOSTATUS.) The
DBA determines which protocol should be used; you must specify this protocol in the
ENVIRONMENT DIVISION by means of the MODE IS statement (for more information on
protocols, see Precompiler-Directive Statements (see page 67)).

When AUTOSTATUS isinuse,the PERFORM IDMS-STATUS statement canstill be
preceded by a check for a nonzero return code by includingan ONclauseatthe end of
the DML command. If the DBMS returns the specified status code to the IDMS
communications block, the imperative statement includedinthe ON clauseis executed;
ifthe status code tested for is notreturned, IDMS-STATUS is performed.

Any DML command canincludean ON clause;only one ON clauseis allowed per
command.

M

»»—— ON condition-name imperative-statement .

Chapter 4: Communications Blocks and Error Detection 63

Error Detection

Parameters

ON parameter
Tests for a nonzero status returned as a resultof a DML command.

condition-name

A preassigned nonzero status condition name. Valid condition names include
DB-STATUS-OK, DB-END-OF-SET, DB-REC-NOT-FOUND, ANY-ERROR-STATUS, and
any condition names defined by the DBA.

imperative-statement

Specifies the programactionto be taken ifthe nonzero status identified by
condition-name results from the DML command.

The example below illustrates use of the ON clause. ADML source program might
contain the following statements:

0800-0BTAIN-REC.
OBTAIN CALC OFFICE ON DB-REC-NOT-FOUND GO TO 0900-NO-REC.

0900-NO-REC.
STORE OFFICE.

The precompiler converts the DML statements to comments, translates the ON clause
into an|Fstatement, and generates the following expanded COBOL source code:

0800-0BTAIN-REC.
* OBTAIN CALC OFFICE ON DB-REC-NOT-FOUND
MOVE 0001 TO DML -SEQUENCE
CALL 'IDMS' USING SUBSCHEMA-CTRL
IDBMSCOM (32)
SR450
IDBMSCOM (43)
IF NOT DB-REC-NOT-FOUND PERFORM IDMS-STATUS;
ELSE
GO TO ©900-NO-REC.

64 DML Reference Guide for COBOL

Error Detection

0900-NO-REC.
* STORE OFFICE.
MOVE 0002 TO DML -SEQUENCE
CALL 'IDMS' USING SUBSCHEMA-CTRL
IDBMSCOM (42)
SR450
PERFORM IDMS-STATUS.

For further details on the expansion of callsto CAIDMS, see CA IDMS Call Formats (see
page 453).

USER-DEFINED Protocols

To establish a user-defined protocol, followthese steps:
1. Establishauniquely named user-defined MODE.

2. ldentify anexisting CAsupplied protocol that meets the program's requirements,
and use this protocol, with modifications as needed, to create a new protocol with
the same name as the user-defined MODE.

3. Modify the appropriate SUBSCHEMA-CTRL record definition to includethe
user-defined MODE.

4. Specify the user-defined MODE inthe PROTOCOL parameter of the program.

For example, to create a version of the DC-BATCH protocol that does not include
AUTOSTATUS, followthese steps:

1. Define the user-defined MODE:
ADD ATTRIBUTE DC-BATCH-NOAUTO WITHIN CLASS MODE.

2. Define the user-defined protocol based on the CA supplied DC-BATCH protocol,
editing the DC-BATCH protocol to remove the @AUTOSTATUS references:

ADD MODULE NAME DC-BATCH-NOAUTO VERSION 1 LANGUAGE IS COBOL
MODE IS DC-BATCH-NOAUTO
MODULE SOURCE FOLLOWS

MSEND.

Chapter 4: Communications Blocks and Error Detection 65

Error Detection

3. Modify the SUBSCHEMA-CTRL record for MODE IS DC-BATCH to includethe
user-defined MODE:

MODIFY RECORD SUBSCHEMA-CTRL VERSION 1 LANGUAGE COBOL
MODE IS DC-BATCH-NOAUTO.

4. Specify the user-defined MODE inthe program:
PROTOCOL MODE IS DC-BATCH-NOAUTO

66 DML Reference Guide for COBOL

Chapter 5: Precompiler-Directive
Statements

Compiler-directive statements instructthe precompiler to copy sourcecode from the
data dictionaryinto the COBOL application program. These statements do not produce
any executable commands. Compiler-directive statements are coded beginningin
columns 8-11 of the IDENTIFICATION and ENVIRONMENT DIVISIONs, andin columns
8-72 of the DATA and PROCEDURE DIVISIONs, as follows:

= IDENTIFICATION DIVISION—The PROGRAM-ID statement specifies a programname
and version number.

m ENVIRONMENT DIVISION—The IDMS-CONTROL SECTION establishes the operating
mode, debug sequencing,and variablestorageallocation.

m DATA DIVISION—The followingsections areincludedinthe DATA DIVISION:

- FILE SECTION—COPY IDMS FILE statements copy descriptions of non-IDMSfiles
from the data dictionary.

— SCHEMA SECTION—The DB statement identifies the subschema view to be
used by the program.

— MAP SECTION—These statements notify the precompiler that mapping mode
terminal 1/Ois being used, define the program's maps, and specify the size of
map fieldlists.

- WORKING-STORAGE and LINKAGE SECTIONs—PROCEDURE DIVISION—COPY
IDMS statements copy sourcedata descriptions or non-IDMS data description
code for records from the data dictionary.

m COPYIDMS statements copysource data for BIND statements or program source
modules defined in the data dictionary.

All compiler-directive statements are optional except the SCHEMA SECTION and DB
statement. If a program accesses the database,itmustincludea SCHEMA SECTION that
contains a DB statement identifyingthe subschema. All other compiler-directive
statements can be omitted; the precompiler will generate the required source code
components automatically.

Ifthe programdoes not access the database(thatis, does not invokea subschema and
does notissueany DML statements), the SCHEMA SECTION and DB statement canbe
omitted as well.

Chapter 5: Precompiler-Directive Statements 67

IDENTIFICATION DIVISION

The COPY IDMS and other compiler-directive statements are explained separately for
each of the following divisions. References to the IDMS communications blockapply
equally to the IDMS-DC communications block.

This section contains the following topics:

IDENTIFICATION DIVISION (see page 68)
ENVIRONMENT DIVISION (see page 69)
DATA DIVISION (see page 72)
PROCEDURE DIVISION (see page 85)

IDENTIFICATIONDIVISION

The PROGRAM-ID statement inthe IDENTIFICATION DIVISIONidentifies your program to
the precompiler.

Syntax

»»—— IDENTIFICATION DIVISION.

v

»—— PROGRAM-ID.program-name

)

L VERSION version-number —

Parameters

PROGRAM ID
Specifies the program.
program-name

The name of the program. If the programhas been previously defined in the data
dictionary through IDD facilities, program-name must match the name assigned to
the program when it was defined in order for the precompiler to recognize it as the
same program.

VERSION

Qualifies program-name with a version number (for example, for purposes of
testing or development).

version-number

An integer inthe range 1 through 9999. By default, if you do not specify a number,
the defaultis either the highestnumber defined inthe data dictionary for the
named programor 1 ifthe program does not already existin the data dictionary.

68 DML Reference Guide for COBOL

ENVIRONMENT DIVISION

ENVIRONMENT DIVISION

An IDMS-CONTROL SECTION is requiredinthe ENVIRONMENT DIVISIONto establish the
following:

m Operating mode—The environment in which the program will execute, and the
form and content of calling sequences produced by the precompiler

m Debug sequencing—Whether each PROCEDURE DIVISION DML command will be
numbered foridentification duringerror reporting

m Variable storage allocation—How source data description codefor the IDMS
communications block and other DATA DIVISION components will be insertedin the

program
Syntax
»»—— ENVIRONMENT DIVISION. ><
L 1DMS-CONTROL SECTION.
— PROTOCOL. —— -
MODE is BATCH < r -
IDMS-DC —— L DEBUG
DC-BATCH
user-mode-name —
" L SUBSCHEMA-NAMES LENGTH IS T .
18
L 1DMS-RECORDS
— WITHIN WORKING-STORAGE section < =
WITHIN LINKAGE section ————— L levels INCREMENTED by count —|
MANUAL
Parameters
PROTOCOL

Specifies how CA IDMS CALL statements are generated and whether the debugging
sequence optionisincluded.

MODE IS

Identifies the operating mode used by the precompiler to generate call statements
for the program's PROCEDURE DIVISION DML statements.

BATCH
Specifies to execute the program in batch mode.
This is the default.

The IDMS communications blockis copiedinto variablestorage;standard CALL
statements (CALL 'IDMS') are generated inthe PROCEDURE DIVISION.

Chapter 5: Precompiler-Directive Statements 69

ENVIRONMENT DIVISION

IDMS DC
Specifies to execute the program in IDMS-DC mode.

The IDMS DC communications blockis copiedintovariablestorage; CA IDMS
CALL statements (CALL 'IDMSCOBI') are generated inthe PROCEDURE DIVISION
for DC requests.

DC-BATCH

Specifies to execute the program in DC-BATCH mode. The IDMS-DC
communications blockis copiedintovariablestorage; DC-BATCH CALL statements
(CALL 'IDMSDCCI') are generated inthe PROCEDURE DIVISION for DC requests.

Specify MODE ISDC-BATCH to access DC queues and printers from batch
applicationsrunning under the central version.

user-mode-name

Specifies to execute the program ina special environment (for example, under a
teleprocessing monitor orina user-defined operating mode) as determined by the
DBA. The appropriatecommunications blockis copiedintovariablestorage;
mode-specific CALL statements (for example, in CICS: CALL 'IDMSINC1' USING
DFHCADS) are generated inthe PROCEDURE DIVISION. The followinglist provides
the standard operating modes (protocols)availablefor COBOL programs.

If user-mode-name specifies an AUTOSTATUS protocol (for example,
CICS-AUTOSTATUS), the precompiler automatically generates an IDMS-STATUS
statement after every DML command except IF. When using an AUTOSTATUS
protocol, be sureto includethe COPY IDMS IDMS-STATUS statement inthe
PROCEDURE DIVISION. For details on programmingunder an AUTOSTATUS
protocol,see Communications Blocks and Error Detection (see page 33).

DEBUG

Specifies that a unique DML sequence number is placed inthe IDMS
communications block for each DML statement. These numbers appearincolumns
81-88 of the COBOL compiler output listingintheform DMLCnnnn. The precompiler
generates numbers to identify the sequence in which DML statements appearinthe
program. Depending on the error routine defined by the DBA, you can use the DML
sequence number to help debug your program.

If DEBUG is not specified, the precompiler does not associatesequence numbers
with sourcestatements.

70 DML Reference Guide for COBOL

ENVIRONMENT DIVISION

SUBSCHEMA-NAMES LENGTH IS
Specifies whether to use a 16-byte or 18-byte communications block.

For information about 16-byte communications blocks, see Communications Blocks
and Error Detection (see page 33).

For information about 18-byte communications blocks, see 18-Byte
Communications Blocks (see page 517).

IDMS-RECORDS

Specifies whether source CA IDMS data description codeis inserted into the DATA
DIVISION automatically.

WITHIN WORKING-STORAGE section

Instructs the processor to insertautomatically the copied DATA DIVISION
components as the lastentriesinthe WORKING-STORAGE SECTION of the source
program.

This is the default.
WITHIN LINKAGE section

Instructs the processor to automatically insertthe copied DATA DIVISION
components as the lastentries inthe LINKAGE SECTION of the source program. Any
VALUE clauses presentinsourcecode will be dropped automatically.

levels INCREMENTED by

Varies the level numbers for inserted descriptions fromthose stored inthe data
dictionary.If you specify a level number, the firstlevel of code will beinserted to
the level specified by count; all other levels will beadjusted accordingly. If you do
not specify a level, the descriptions inserted will beginat01 and have the same
level numbers as originally specified in the data dictionary.

count
An integer inthe range 1 through 48.

Specifies the value by which the DATA DIVISION level numbers (includingthe 01
level number) of all stored elements areto be incremented.

Note: Using the LEVELS INCREMENTED BY clausemaycauseunpredictableresults if
record fields havebeen defined with a SYNCHRONIZED clause. Such fields may
contain extra bytes (slack bytes)inserted to ensure correct alignment. Because CA
IDMS does not recognize slack bytes as functional,itmay misinterpret data fields
that containthem. Therefore, you should ensure that all fields and records are
properly structured.

Chapter 5: Precompiler-Directive Statements 71

DATA DIVISION

MANUAL

Indicates that CA IDMS-related sourcedata description code (for example,
SUBSCHEMA-CTRL or SUBSCHEMA-NAMES) will beinserted explicitlyinto the
source program by means of DATA DIVISION COPY IDMS statements. If MANUAL is
not specified, the required DATA DIVISION code is inserted automatically by the
precompiler.

Standard Modes Available for COBOL Programs

BATCH DC-BATCH TASKMASTER
BATCH-AUTOSTATUS IDMS-DC TASKMASTER-AUTO
CICS INTERCOMM UT™M
CICS-AUTOSTATUS INTERCOMM-AUTO UTM-AUTOSTATUS
CICS-EXEC INTERCOMM-REENT WESTI
CICS-EXEC-AUTO ICOMM-REENT-AUTO WESTI-AUTOSTATUS
CICS-STANDARD SHADOW WESTI-REENT
CICS-STD-AUTO SHAD-AUTOSTATUS WESTI-REENT-AUTO

The following example illustrates the statements used to code the IDMS-CONTROL
SECTION of a programrunning under DC with DEBUG sequencing and automatic
insertion of IDMS-RECORDS in WORKING-STORAGE SECTION:

ENVIRONMENT DIVISION.
IDMS-CONTROL SECTION.
PROTOCOL .
MODE IS IDMS-DC
DEBUG
IDMS-RECORDS WITHIN WORKING-STORAGE SECTION.

DATA DIVISION

Compiler-directive statements can be in the followingsections of the DATA DIVISION:

m FILE SECTION—COPY IDMS statements copy descriptions of non-IDMS files fromthe
data dictionary

m SCHEMA SECTION—A DB statement identifies the subschema view to be used by
the program

m MAP SECTION—These statements notify the precompiler that mapping mode
terminal I/Ois being used, define the program's maps, and specify the size of map
fieldlists

72 DML Reference Guide for COBOL

DATA DIVISION

FILE SECTION

Syntax

Parameters

SCHEMA SECTION

m WORKING-STORAGE SECTION—COPY IDMS statements copy sourcedata
description or non-IDMS data description codefor records from the data dictionary

m LINKAGE SECTION—COPY IDMS statements copy sourcedata description or
non-IDMS data description code for records from the data dictionary

The FILE SECTION canincludeone or more COPY IDMS statements to copy non-IDMS file
descriptions fromthe data dictionaryinto the program. Each COPY IDMS statement
generates the filedefinitionthat includes record size, block size,and recording mode
from the data dictionary. Additionally, any records defined within the filethrough the
IDD facilitiesarealso copied.

»»—— FILE SECTION.

v

»

' mll
I—v— COPY IDMS FILE file-name :

L VERSION version-number —I

)

COPY IDMS FILE

Copies the description of a non-IDMS fileinto the DATA DIVISION.
file-name

Either the primary name or a synonym for a filedefined inthe data dictionary.
VERSION

Qualifies file-name with a version number.

If you do not specify a version number, the defaultis the highest version number
defined in the data dictionary for file-name.

version-number

An integer inthe range 1 through 9999.

For any program that accesses the database,a SCHEMA SECTION is included in the DATA
DIVISIONto identify a subschema view to the precompiler. The subschema named inthe
DB statement of the SCHEMA SECTION determines which record descriptions can be
copiedinto the program from the data dictionary. Every DML command issued by the
programis checked againstthe record, set, and area access restrictions specified in this
subschema.

Chapter 5: Precompiler-Directive Statements 73

DATA DIVISION

Syntax
»»—— SCHEMA SECTION. >
»—— DB subschema-name WITHIN schema-name T T - —><«
VERSION version-number
Parameters
DB subschema-name
Specifies a subschema defined in the data dictionary. Ifthe DBA has chosen to
preregister valid programnames for this subschema inthe data dictionary, the
program named inthe IDENTIFICATION DIVISION must be associated with
subschema-name in the data dictionary.
WITHIN schema-name
Specifies the schema under which subschema-name is compiled.
VERSION
Qualifies schema-name with a version number.
If you do not specify a version number, the defaultis the highest version number
defined in the data dictionary for file-name.
version-number
An integer inthe range 1 through 9999.
MAP SECTION
The MAP SECTION notifies the precompiler that mapping mode terminal I/Ois being
used, defines the program's maps, and specifies the size of map field lists.
Syntax

»»—— MAP SECTION.

v

v

L MAX FIELD LIST is field-list-size i

I
»—v— MAP map-name

v

L VERSION version-number —|

M

e L TYPE 1 STANDARD |
<
" L EXTENDED —IL PAGING -

74 DML Reference Guide for COBOL

DATA DIVISION

Parameters

MAX FIELD LIST is

Specifies the size of field lists used in MODIFY MAP and INQUIRE MAP statements.
field-list-size

The field listsizeor the sizeis expressed as a numeric constant.

The specified size must be at leastone greater than the sizeof the largestfield list
used by the program. For example, if the largestmap field listcontains5 fields, the
value of field-list-size must be atleast6.

The MAX FIELD LIST statement must be specifiedifthe program uses a fieldlistina
MODIFY MAP or INQUIRE MAP request.

MAP

Defines the map used by the program. This parameter can be repeated as necessary
to define each map to be used.

map-name

The name of a map used by the program.
VERSION

Qualifies thenamed map with a version number.
version-number

An integer inthe range 1 through 9999.

There is no defaultfor version-number. Ifyour siteuses multipleversions, you must
specify a version number.

TYPE Is

Specifies whether the map request block (MRB) builtfor the map is to be standard
or extended.

STANDARD
Specifies that the map has standard 3270-typeterminal attributes.
This is the default.

EXTENDED

Specifies that the map has extended 3279-type terminal attributes (for example,
color, blinkingfields, reversevideo).

PAGING
Specifies that the named map is a pageablemap.

Note: For more information about pageable maps,see "MAP OUT" and MAP _IN (see
page 227), or see the CA IDMS Mapping Facility Guide.

Chapter 5: Precompiler-Directive Statements 75

DATA DIVISION

The following example shows the DATA DIVISION statements required to access the
EMPSS09 subschema and the EMPMAPLR map; the largestmap fieldlistallowed is 4.

DATA DIVISION.

SCHEMA SECTION.

DB EMPSS09 WITHIN EMPSCHM.

MAP SECTION.

MAX FIELD LIST IS 5.

MAP EMPMAPLR VERSION 1 TYPE IS STANDARD.

WORKING-STORAGE and LINKAGE SECTIONS

COPY IDMS statements can be coded inthe WORKING-STORAGE and LINKAGE
SECTIONSs, allowingyouto explicitly copy source code from the data dictionaryinto the
program. No COPY IDMS statements are required in the DATA DIVISION unless the
IDMS-RECORDS MANUAL clausehas been specifiedinthe IDMS-CONTROL SECTION of
the ENVIRONMENT DIVISION.

Ifthe sourcecode to be copied into the LINKAGE SECTION includes VALUE clauses, these
clauses arenotcopied.

WORKING-STORAGE SECTION and LINKAGE SECTION source code requirements differ
accordingto the usage mode defined inthe program's subschema:DML, LR, or MIXED.
These usage modes determine whether the program canaccess databaserecords only,
logical recordsonly, or both databaserecords and logicalrecords. The program should
not copy components that conflictwithits subschema's usage mode (for example, do
not copy SUBSCHEMA-LR-CTRL ifthe subschema's usage mode is DML).

An explanation of each usage mode and the required sourcecode components inthe
program is shown below:

m DML allows a programto access databaserecords onlyand requires the following
source code components:

- SUBSCHEMA-CTRL—The IDMS communications block, through which the
application programandthe DBMS communicate. For more information, see

Chapter 4 (see page 33).

— SUBSCHEMA-NAMES—The name of the program's subschema and the names
of all records, sets, and areas to which the program has access through this
subschema.SUBSCHEMA-NAMES is used by the precompiler to generate
appropriate CAIDMS CALL statements inthe PROCEDURE DIVISION.

76 DML Reference Guide for COBOL

DATA DIVISION

SUBSCHEMA-RECORDS—The description ofall records to which the subschema
permits access.

m LRallows a programto access logical records only and requires the following source
code components:

SUBSCHEMA-CTRL—The IDMS communications block, through which LRF and
the DBMS communicate. For more information, see Chapter 4 (see page 33).

SUBSCHEMA-LR-CTRL—The logical-record requestcontrol (LRC) block, through
whichthe application programand LRF communicate. For more information,
see Chapter 4 (see page 33).

SUBSCHEMA-LR-NAMES— The name of the program's subschema and the
names of all databaseareas thatcanbe accessed through the subschema.
Logical-record names are not copiedinto the program; rather, they are moved
as literalsinto the LRC block when needed to process a logical-record request.

SUBSCHEMA-LR-RECORDS—The descriptions ofall logical records containedin
the subschema.

m MIXED allows a programto access both databaserecords and logical records; this
usage mode requires the following source code components:

SUBSCHEMA-CTRL
SUBSCHEMA-NAMES
SUBSCHEMA-RECORDS
SUBSCHEMA-LR-CTRL

SUBSCHEMA-LR-RECORDS

The use of MIXED mode is not recommended for the followingreasons:

m |Issuingbothlogical-record and databaserequests requires that the program take
into accountthe databasecurrencies maintainedinthe paths used to service
logical-record requests.

m Accessingboth logical recordsand databaserecords inthesame program can
diminishthe program's independence from the databasestructureand possibly
interfere with the execution of paths invoked to providerequested logical-record
access.

m logical-record path processingcaninterfere with program access to database
records.You may need to inserta DML statement after alogical-record requestto
reestablishthe appropriatecurrency.

The precompilerinserts the required data descriptions into the program automatically
unless IDMS RECORDS MANUAL is specifiedinthe IDMS-CONTROL SECTION of the
ENVIRONMENT DIVISION. IfIDMS RECORDS MANUAL is specified, you must explicitly
copy the required components, as outlined above, by coding COPY IDMS statements in
the DATA DIVISION.

Chapter 5: Precompiler-Directive Statements 77

DATA DIVISION

UTM modes only: You must include SUBSCHEMA-CTRL and all subschema records in the
LINKAGE SECTION. You must include SUBSCHEMA-NAMES inthe WORKING-STORAGE
SECTION.

Syntax

v

WORKING STORAGE SECTION.
L INKAGE SECTION. —— 1

»
] l

v

4

COPY-IDMS
L level-number i

—— SUBSCHEMA-DML-LR-DESCRIPTION . —i—J
SUBSCHEMA-DESCRIPTION
SUBSCHEMA-CONTROL
SUBSCHEMA-CTRL
SUBSCHEMA-NAMES
SUBSCHEMA-SSNAME
SUBSCHEMA-RECNAMES
SUBSCHEMA-SETNAMES
— SUBSCHEMA-AREANAMES
SUBSCHEMA-RECORDS

[TTTTTTI

I

RECORD rec-name

L VERSION vers-num L REDEFINES rec-name]
TRANSACTION-STATISTICS
SUBSCHEMA-LR-DESCRIPTION
SUBSCHEMA-LR-CONTROL
SUBSCHEMA-LR-CTRL AI

[TTT

SIZE IS 1rc-block-size
512 «

SUBSCHEMA-LR-NAMES
SUBSCHEMA-LR-RECORDS

'R logical-record-nane L REDEFINES record-name -

MAPS
MAP map-name
MAP CONTROLS
MAP CONTROL map-name
MAP RECORDS

I

FTTTT

Parameters
level-number

An integer inthe range 01 through 48.

Instructs the precompiler to copy the descriptions intotheprogram at a level other than
that originally specified for the descriptioninthe data dictionary. Ifyou specify a level
number, the firstlevel of code will be copied to the specified level; all other levels will
be adjusted accordingly. If you do not specify a level, the descriptions copied will begin
at 01 and have the same level numbers as originally specified in the data dictionary.

78 DML Reference Guide for COBOL

DATA DIVISION

Note: Usingthe level-number clausecan causeunpredictableresults if record fields have
been defined with a SYNCHRONIZED clause.Such fields may containslackbytes,
inserted to ensure correct alignment. Because CA IDMS does not regard slack bytes as
functional,itmay misrepresent fields thatcontain such bytes. Therefore, you should
ensure that all fieldsand records are properly structured.

COPY IDMS

Requests that the specified sourcedata description code be copiedinto the DATA
DIVISION at the location of the COPY IDMS statement.

SUBSCHEMA-DML-LR-DESCRIPTION

Copies all components required to access both databaseand logical records
(SUBSCHEMA-CTRL, SUBSCHEMA-NAMES, SUBSCHEMA-RECORDS,
SUBSCHEMA-LR-CTRL, SUBSCHEMA-LR-RECORDS).
SUBSCHEMA-DML-LR-DESCRIPTION should be specified only when the subschema's
usage mode is MIXED; do not specify SUBSCHEMA-DML-LR-DESCRIPTION ifthe
usage mode is DML or LR.

SUBSCHEMA-DESCRIPTION

Copies all components required to access databaserecords (SUBSCHEMA-CTRL,
SUBSCHEMA-NAMES, and SUBSCHEMA-RECORDS). Do not specify
SUBSCHEMA-DESCRIPTION ifthe subschema's usage mode is LR.

SUBSCHEMA-CONTROL

Copies both the SUBSCHEMA-CTRL and SUBSCHEMA-NAMES components. Do not
specify SUBSCHEMA-CONTROL ifthe subschema's usagemode is LR.

SUBSCHEMA-CTRL

Copies the IDMS communications block data description;ifthe operating mode is
IDMS-DC or DC-BATCH, SUBSCHEMA-CTRL copies the IDMS-DC communications
block.

SUBSCHEMA-NAMES

Copies the eight-character literal name of the subschema and the literal names of
all databaserecords, sets,and areas contained in the subschema.
SUBSCHEMA-NAMES includes SUBSCHEMA-SSNAME, SUBSCHEMA-RECNAMES,
SUBSCHEMA-SETNAMES, and SUBSCHEMA-AREANAMES. Do not specify
SUBSCHEMA-NAMES if the subschema's usagemode is LR.

SUBSCHEMA-SSNAME

Copies the eight-character literal name of the program's subschema. Do not specify
SUBSCHEMA-SSNAME if the subschema's usagemode is LR.

SUBSCHEMA-RECNAMES

Copies the literal names of all databaserecords contained in the subschema. Do not
specify SUBSCHEMA-RECNAMES if the subschema's usagemode is LR.

Chapter 5: Precompiler-Directive Statements 79

DATA DIVISION

SUBSCHEMA-SETNA MES

Copies the literal names of all sets contained in the subschema. Do not specify
SUBSCHEMA-SETNAMES ifthe subschema's usage mode is LR.

SUBSCHEMA-AREANAMES

Copies the literal names of all databaseareas thatcan be accessed through the
subschema. Do not specify SUBSCHEMA-AREANAMES if the subschema's usage
mode is LR.

SUBSCHEMA-RECORDS

Copies the descriptions of all records containedin the subschema.COBOL
synonyms defined for the subschema records in the data dictionary may be copied
into the program, accordingto the rules of synonym usage. Do not specify
SUBSCHEMA-RECORDS if the subschema's usage mode is LR.

Note: The OCCURS DEPENDING ON clausewill becommented out forall
schema-owned records. Therefore, although the maximum length of variable
storage will bereserved, only the correct amount of data will betransferred to
variablestorageatrun time.

Since COBOL will doubleword alignan 01 level record, the precompiler adds up to
seven bytes, if necessary, to make the record length divisible by eight when copying
inaschema-owned record to an 01 level.

RECORD

Copies the description of a record defined inthe data dictionary. If the subschema's
usage mode is LR, only copyin IDD work records.

rec-name

The name of the record to be copied. Either the primary name or a synonym for a
record stored inthe data dictionary.

Schema-owned records cannotbe copiedinto non-IDMS programs (thatis,
programs that do not use a subschema and that do not access the database).
However, a synonym defined for a schema-owned record can be copiedinto a
non-IDMS program (use the VERSION clauseto identify the synonym).

IDD records: If an operating mode is associated with record-name inthe data
dictionary,itmust agree with the mode in effect for the program (see
"ENVIRONMENT DIVISION" earlier in this chapter).

80 DML Reference Guide for COBOL

DATA DIVISION

VERSION

Optionally qualifies IDD records (but not schema-owned records) with a version
number.

If you do not specify a version number, the defaultis the highest version number
defined in the data dictionary for the languageand operating mode under which
the program is being compiled.

When copyinga record thatis schema owned usinga synonym name, a version
clauseis needed, even ifthe synonym is not schema owned. The only time the
version clause may be left off when copyinga record usinga synonym name is
when the record is IDD owned. Once a record becomes schema owned, version
clauses areneeded.

vers-num
An integer inthe range 1 through 9999.

You cannotspecify a version number for a rec-name specifiedin the subschema
named inthe DB subschema-name statement. The precompiler will automatically
copy the correct versioninto the program.

REDEFINES

Copies arecord descriptiontoan area previously defined by another record
description. Two record descriptions can thus provide alternative definitions of the
same storage location.

rec-name
The name of the record to be redefined.
TRANSACTION-STATISTICS

Copies the definition of the transaction statistics block (TSB) with a length of 560
bytes. This block can be used inthe ACCEPT TRANSACTION STATISTICS or END
TRANSACTION STATISTICS DML statements.

SUBSCHEMA-LR-DESCRIPTION

Copies all components required to access logical records (SUBSCHEMA-CTRL,
SUBSCHEMA-LR-CTRL, SUBSCHEMA-LR-NAMES, and SUBSCHEMA-LR-RECORDS). Do
not include SUBSCHEMA-LR-DESCRIPTION if the subschema's usage mode is DML.

SUBSCHEMA-LR-CONTROL

Copies the SUBSCHEMA-CTRL, SUBSCHEMA-LR-CTRL, and SUBSCHEMA-LR-NAMES
components. Do not include SUBSCHEMA-LR-CONTROL ifthe subschema's usage
mode is DML.

SUBSCHEMA-LR-CTRL

Copies the LRC block data description.

Chapter 5: Precompiler-Directive Statements 81

DATA DIVISION

SIZE IS

Specifies the size of that portion of the LRC block that contains information about
the logical-requestrequest WHERE clause (PXE).

Ifincluded, this parameter should specify a sizelarge enough to accommodate the
most complex WHERE clauseinthe program. The default, 512, is large enough to
includeapproximately 32 operators, operands, and literals.

Do not include SUBSCHEMA-LR-CTRL ifthe subschema's usage mode is DML.

Irc-block-size

A positiveinteger inthe range 0 through 9999.
Calculatethe sizeas follows:

m Multiply the greatest number of operands and operators that will be
includedinasingle WHERE clauseby 16 bytes

m Add the number of bytes, rounded up to the nearest multipleof 8,
associated with the data field for each operand thatis a keyword ora
program variableor logical-record field named inthe OF LR clause

m Add the length, rounded up to the nearest multiple of eight, of each
operand thatis a character literal

m Add 12 bytes for each operand thatis a numeric literal

m Do not specifya blocksizeif none of the logical-record requests issued by
the program will include WHERE clauses.

SUBSCHEMA-LR-NAMES

Copies the literal name of the program's subschema and the literal names of all
databaseareas thatcanbe accessed through the subschema. Logical-record names
are not copied into the program. Do notinclude SUBSCHEMA-LR-NAMES ifthe
subschema's usage mode is DML.

SUBSCHEMA-LR-RECORDS

Copies the descriptions of all logical records defined in the subschema. All
participating databaserecords become 02-level group fields, permitting the
program to reference as a group field that portion of a logical record that
corresponds to a databaserecord. Do not include SUBSCHEMA-LR-RECORDS ifthe
subschema's usage mode is DML.

Note: The OCCURS DEPENDING ON clausewill becommented out for all
schema-owned records. Therefore, although the maximum length of variable
storage will bereserved, only the correct amount of data will betransferred to
variablestorageatruntime.

When copyinga schema-owned record to a level other than 01, the precompiler
adds up to seven bytes, if necessary, to make the record length divisible by eight for
doubleword alignment.

82 DML Reference Guide for COBOL

DATA DIVISION

LR

Copies the description of an individual logical record contained in the subschema.
logical-record-name

The name of the logical record to copy.
REDEFINES

Copies a redefinition of the data contained in another logical record, a database
record, or a non-IDMS record, while maintainingthesame locationinvariable
storage.

Do not includethis statement if the subschema's usage mode is DML.
record-name

The name of the record to be redefined.
MAPS

Copies the map request block (MRB) and map records associated with all maps
defined in the MAP SECTION.

MAP map-name

Copies the MRB and map records associated with the named map. The map version
number defaults to the version specified for the map in the MAP SECTION.

MAP-CONTROLS
Copies the MRBs associated with all maps specified inthe MAP SECTION.
MAP-CONTROL map-name

Copies the MRB for the named map. The map version number defaults to the
version specified for the map inthe MAP SECTION.

MAP-RECORDS

Copies the map records associated with all maps specified in the MAP SECTION.

Results of COPY IDMS Specifications

The following figure shows the code copied into the DATA DIVISION as a resultof COPY
IDMS specifications.

Chapter 5: Precompiler-Directive Statements 83

DATA DIVISION

Source code components brought in from

the data dictionary by the DML Cprocessor

S| S| S| S| S{ S| r|| S| S| S| 1| A] N| Al m
Ul U| U] Ul Uf uf ef| uj Ul Uf of| 1] al 1| a
B| B| B| B| Bf Bf c|[| B] B| Bl g|| 1| m| 1] p
S| S| S| S| S| S| o] S| S| S| 1 e
clclcclclc|rflc]clclcl| M d M|
H| H| H| H| H[H[d|| H] H| H| a[| a a
E| E| E| E| E| E E[E[E|] 1|/) p] M] p| n
M| M| M[M| M| M M| M| M a a
Al Al Al A| Al A Al Al Al ||| R| p| R| m
n e e| e
LEH I tpal] tpr]| af R c
m e ul el ol M
C| S| Rl S| Al R| e[| L L| L| c[| el q| r| a
T| S| E| E| R| E R| R| R| of] s] u] d] p
Rl Nf C| T| Ef C r t| e| s
L| Al N| N| Al O [1] |ld s R
M{ Al Al N| R B| t e
E[M| M[A| D c| NI R| ||| 1 c
E| E| M[S T| Al E ol B o
S| S| E R M| C| n cl 1 r
S L] El O] a]] k] o d
S| Rf m|| s| c s
COPYIDMSstatements Dl e| e k
codedinthe S
DATADIVISION
SUBSCHEMA-DML-LR- X| X| X| X| X| X
DESCRIPTION
SUBSCHEMA-DESCRIPTION X[X[X| X| X] X X X
SUBSCHEMA-CONTROL X[X| X| X| X
SUBSCHEMA-CTRL X
SUBSCHEMA-NAMES X[X[X| X
SUBSCHEMA-SSNAME X
SUBSCHEMA-RECNAMES X
SUBSCHEMA-SETNAMES X
SUBSCHEMA-AREANAMES X
SUBSCHEMA-RECORDS X
RECORDrecord-name X
SUBSCHEMA-LR-DESCRIPTION| X X[X[X
SUBSCHEMA-LR-CONTROL X X| X
SUBSCHEMA-LR-CTRL X
SUBSCHEMA-LR-NAMES X
SUBSCHEMA-LR-RECORDS X
LRlogical-record-name X
MAPS X X
MAP-CONTROLS X
MAPCONTROLmap-name X

84 DML Reference Guide for COBOL

PROCEDUREDIVISION

MAPmap-name X X

MAP -RECORDS X

PROCEDURE DIVISION

The COPY IDMS statements inthe PROCEDURE DIVISION allowinclusioninto the source
program of BIND statements for CA IDMS records and for procedure source statements
defined as modules inthe data dictionary by the DBA.

Syntax

»»—— PROCEDURE DIVISION.

v

»
»

»

v

L COPY IDMS SUBSCHEMA-BINDS. —

v

L CoPY IDMS SUBSCHEMA-RECORD-BINDS. —'

v

L copy 1DMS MAP-BINDS. —

Parameters

)4

' J_l
Lv— COPY IDMS module module-name .

L VERSION version-number —|

COPY IDMS SUBSCHEMA-BINDS

Initializes the PROGRAM-NAME fieldinthe IDMS communications blockand copies
a standard BIND RUN-UNIT statement and appropriatestandard BIND record-name
commands for each CA IDMS record in the program's DATA DIVISION. COPY IDMS
SUBSCHEMA-BINDS does not generate BIND RECORD statements for logical records,
nor areany needed.

In cases where more than one copy of a given databaserecord description
(including synonyms)is presentin the program, COPY IDMS SUBSCHEMA-BINDS will
not automatically generate bind record statements. Individual bind record
statements must be issued to bind the record to the correct location.

If IDMS-RECORDS MANUAL has been specified inthe ENVIRONMENT DIVISION, the
COPY IDMS SUBSCHEMA-BINDS statement generates BINDS onlyfor subschema
records explicitly copied into the DATA DIVISION by means of COPY IDMS
statements; itdoes not automatically generate BINDS for all subschema records.

Do not use the COPY IDMS SUBSCHEMA-BINDS statement when bindingseveral
records to the samelocation.Instead, code DML BIND statements inthe
PROCEDURE DIVISION for each record (for more informails,see BIND RECORD (see
page 124)).

Chapter 5: Precompiler-Directive Statements 85

PROCEDUREDIVISION

Note: If AUTOSTATUS isinuse,a PERFORM IDMS-STATUS occurs automatically after
each BIND generated by a COPY IDMS SUBSCHEMA-BINDS statement. If
AUTOSTATUS is notinuse, you should explicitly codethe BIND RUN-UNIT and BIND
RECORD statements so thata PERFORM IDMS-STATUS can be coded after each
BIND.

For more information about AUTOSTATUS, see Chapter 4: (see page 33).

COPY IDMS SUBSCHEMA-RECORD-BINDS

Copies appropriatestandard BIND record-name commands for each CA IDMS
record inthe program's DATA DIVISION.

In cases where more than one copy of a given databaserecord description
(including synonyms)is presentin the program, COPY IDMS
SUBSCHEMA-RECORD-BINDS will notautomatically generate bind record
statements. Individual bind record statements must be issued to bind the record to
the correct location.

I1f IDMS-RECORDS MANUAL has been specifiedinthe ENVIRONMENT DIVISION, the
COPY IDMS SUBSCHEMA-RECORD-BINDS statement generates BINDS only for
subschema records explicitly copied into the DATA DIVISION by means of COPY
IDMS statements; itdoes not automatically generate BINDS for all subschema
records.

Do not use the COPY IDMS SUBSCHEMA-RECORD-BINDS statement when binding
several records to the same location. Instead, code DML BIND statements inthe
PROCEDURE DIVISION for each record (for more information, see BIND RECORD
(see page 124)).

Note: If AUTOSTATUS isinuse,a PERFORM IDMS-STATUS occurs automatically after
each BIND generated by a COPY IDMS SUBSCHEMA-BINDS statement. If
AUTOSTATUS is notinuse, you should explicitly codethe BIND RUN-UNIT and BIND
RECORD statements so thata PERFORM IDMS-STATUS can be coded after each
BIND.

For more information about AUTOSTATUS, see Chapter 4: (see page 33).

COPY IDMS MAP-BINDS

Copies map- and map-record-specific BIND MAP statements forall mapsinthe
program's MAP SECTION. For more information, see BIND MAP (see page 121).

COPY IDMS module

Copies sourcestatements from a module stored inthe data dictionaryinto the
sourceprogram.

The unmodified module is placedinto the program by the precompiler at the
location of the request. The module can, but need not, contain DML statements.
Any DML statements will be examined and expanded within the context of the
program's subschema view and compile mode as if they were coded directly.

86 DML Reference Guide for COBOL

PROCEDUREDIVISION

COPY IDMS MODULE statements can be nested (thatis, code invoked by a COPY
IDMS MODULE entry canitselfcontaina COPY IDMS MODULE statement). However,
you must ensure that a copied module does not, inturn, copyitself.

module-name

The name of a module previously defined by the DBA by means of the IDD DDDL
compiler.

The following standard modules areavailablefor COBOL programs:

IDMS-STATUS

Note: The IDMS-STATUS module must be copied into the programifan
AUTOSTATUS protocol is in effect, as specified in the IDMS-CONTROL SECTION
of the ENVIRONMENT DIVISION.

VERSION

IDMS-STATUS (BATCH-AUTOSTATUS)
IDMS-STATUS (DC)

IDMS-WAIT (DC)

IDMS-WAIT (CICS)

IDMS-WAIT (CICS STANDARD)

IDMS-WAIT (CICS AUTOSTATUS)
IDMS-WAIT (CICS STANDARD AUTOSTATUS)

Optionally qualifies module-name with a version number.

Ifyou do not specify a version number, the defaultis the highest version number
defined in the data dictionary for the language mode under which the programiis
being compiled (for example, BATCH or IDMS-DC).

I1f no mode-specific version exists for module-name, the non-mode-specific version
(if present) is copied. If neither a mode-specific entry nor a non-mode-specific entry
for module-name has been established,anerrorresults. The same rules apply to
the module's language (thatis, version-number defaults to the highest value
defined in the data dictionary for the languagein which the programis written).

version-number

An integer inthe range 1 through 9999.

By default, if you do not specify a version number, the highest valuedefined in
the data dictionary will beused.

Chapter 5: Precompiler-Directive Statements 87

Chapter 6: Data Manipulation Lanquade
Statements

Chapter 6: Data Manipulation Language Statements 89

PROCEDUREDIVISION

This section contains the followingtopics:

About Data Manipulation Language (DML) (see page 92)
ABEND (see page 100)

ACCEPT (see page 101)

ACCEPT BIND ADDRESS (see page 103)

ACCEPT DATABASE STATISTICS (see page 104)
ACCEPT DB-KEY FROM CURRENCY (see page 106)
ACCEPT DB-KEY RELATIVE TO CURRENCY (see page 108)
ACCEPT page-info-location (see page 110)
ACCEPT PROCEDURE CONTROL LOCATION (see page 112)
ACCEPT TRANSACTION STATISTICS (see page 113)
ATTACH (see page 119)

BIND MAP (see page 121)

BIND PROCEDURE (see page 123)

BIND RECORD (see page 124)

BIND RUN-UNIT (see page 126)

BIND TASK (see page 129)

BIND TRANSACTION STATISTICS (see page 130)
CHANGE PRIORITY (see page 131)

CHECK TERMINAL (see page 132)

COMMIT (see page 135)

CONNECT (see page 136)

DC RETURN (see page 139)

DELETE QUEUE (see page 143)

DELETE SCRATCH (see page 144)

DELETE TABLE (see page 146)

DEQUEUE (see page 148)

DISCONNECT (see page 149)

Disconnectinga Record from a Set (see page 150)
END LINE TERMINAL SESSION (see page 152)

END TRANSACTION STATISTICS (see page 152)
ENDPAGE (see page 154)

ENQUEUE (see page 154)

ERASE (see page 157)

ERASE (LRF) (see page 163)

FIND/OBTAIN (see page 165)

FIND/OBTAIN CALC/DUPLICATE (see page 165)
FIND/OBTAIN CURRENT (see page 167)
FIND/OBTAIN DB-KEY (see page 170)
FIND/OBTAIN OWNER (see page 173)
FIND/OBTAIN WITHIN SET USING SORT KEY (see page 176)
FIND/OBTAIN WITHIN SET/AREA (see page 179)
FINISH (see page 185)

FREE STORAGE (see page 187)

GET (see page 188)

GET QUEUE (see page 189)

GET SCRATCH (see page 194)

GET STORAGE (see page 197)

90 DML Reference Guide for COBOL

PROCEDUREDIVISION

GET TIME (see page 201)

IF (see page 203)

INQUIRE MAP (see page 205)

KEEP CURRENT (see page 215)

KEEP LONGTERM (see page 216)
LOAD TABLE (see page 222)

MAP_IN (see page 227)

MAP _OUT (see page 232)

MAP_OUTIN (see page 239)

MODIFY (see page 243)

MODIFY (LRF) (see page 246)

MODIFY MAP (see page 248)

OBTAIN (LRF) (see page 258)

POST (see page 261)

PUT QUEUE (see page 262)

PUT SCRATCH (see page 265)

READ LINE FROM TERMINAL (see page 267)
READ TERMINAL (see page 269)
READY (see page 272)

RETURN (see page 275)

ROLLBACK (see page 278)

SEND MESSAGE (see page 280)

SET ABEND EXIT (see page 283)

SET TIMER (see page 284)

SNAP (see page 288)

STARTPAGE (see page 290)

STORE (see page 293)

STORE (LRF) (see page 297)

TRANSFER CONTROL (see page 299)
WAIT (see page 301)

WRITE JOURNAL (see page 303)
WRITE LINE TO TERMINAL (see page 305)
WRITE LOG (see page 308)

WRITE PRINTER (see page 315)
WRITE TERMINAL (see page 319)
WRITE THEN READ TERMINAL (see page 322)
Logical-Record Clauses (see page 327)

Chapter 6: Data Manipulation Language Statements 91

About Data Manipulation Language (DML)

About Data Manipulation Landuage (DML)

CA IDMS data manipulation language (DML) consists of statements that enable you to
access the database management system (DBMS) and to request Logical Record Facility
(LRF) and DC system services. The DML statements can be grouped into categories by
function:

m Control statements:

Initiateand terminate processing

Effect recovery

Prevent concurrent retrieval and update of databaserecords
— Evaluate set conditions

m Retrieval statements locaterecords inthe databaseand make them available to the
application program.

m Modification statements add new records to the databaseand modify and delete
existingrecords.

m Accept statements move special information such asdatabasekeys, storage
addresses,and statistics fromthe DBMS to program variablestorage.

m Logical-record statements retrieve, modify, store, and erase logical records.
®m Program management statements:

— Passandreturn control from one programto another

— Load anddelete programs andtables

— Define exit routines to be performed before an abnormal programtermination
(abend)

- Forcean abend condition
m Storage management statements allocateandreleasevariablestorage.
m Task management statements:

- Initiatea new task

— Change the dispatchingpriority of the issuingtask

- Enqueue and dequeue system resources

— Signal thata taskis to waitpending completion of an event

- Postanevent control block (ECB) indicating completion of an event

92 DML Reference Guide for COBOL

AboutData Manipulation Language (DML)

Time management statements obtain the time and date, and define time-related
events. These events include:

- Placingtheissuingtaskina waitstate for a specified duration of time
— Postinga user-specified ECB after a specified interval
- Initiatinga new task after a specified interval

Scratch management statements create, delete, or retrieve records from the
scratch area.

Queue management statements create, delete, or retrieve records from the queue
area.

Terminal management statements transfer data between the application program
andthe terminal.

Utility function statements:

— Request retrieval of task-related information

- Request a memory dump of selected parts of storage

— Retrieve and send a predefined message stored inthe data dictionary
- Send a specified message to one or more users or logical terminals

— Collect, retrieve, and write CA IDMS statistics ona transaction basis

— Establishlongterm databaselocks and monitor access to databaserecords used
across tasks duringa pseudo-conversational transaction

Recovery statements perform functions relatingto database, scratch,and queue
arearecovery in the event of a system failure. These functions:

— Establish checkpoints inthejournal filefor database, scratch, and queue
records used by the issuingtask

— Roll backuser database, scratch,and queue areas to the lastcheckpoint
established

— Establishanend-of-task checkpointandrelinquish control of all database,
scratch,and queue areas associated with the issuingtask

- Write user-defined records to the journal file

Chapter 6: Data Manipulation Language Statements 93

About Data Manipulation Language (DML)

This section describes each DML statement that requests an CA IDMS databaseaccess
or anonlineservice. The DML statements arepresented intwo ways to help you
understand their function inthe CA IDMS environment. The followingtablepresents the
DML statements by function (for example, retrieval statements and program
management statements). Statements thatapply to the onlineenvironment only are
marked with (o). Statements thatapplyto DC-BATCH only are marked with (dcb).
Statements thatapplyto DC-BATCH orthe onlineenvironment only are marked with
(o,dcb). Followingthe table, each DML statement is presented in alphabetical order;
function, syntax, syntaxrules, examples,and associated error-status codes are
describedin detail. Run-time currency affected by DML statements that navigate the
databaseis described where appropriate.

The WHERE and ON clauses, which areused with LRF DML statements, aredescribedin
detail at the end of this section.

Note: All DML operands are positional.

94 DML Reference Guide for COBOL

AboutData Manipulation Language (DML)

DML Statements Grouped by Function

Function DML Statement
Control BIND RUN-UNIT—Signs on the application programto the
Statements

DBMS

BIND TASK—Establishes a connection with the DC/UCF system
from abatch program and allows certain onlinefunctions, such
as writingto queues or printingto a printer controlled by the
DC/UCF system (dcb)

BIND RECORD—Establishes addressabilityin variablestorage
for one or more records included in the program's subschema

BIND PROCEDURE—Establishes communication between the
application programand a DBA-defined databaseprocedure

READY—Prepares databaseareas for processing

FINISH—Commits changes made to the databasethrough an
individualrun unitor through all databasesessionsassociated
with a task

IF—Evaluates the presence of recordsinaset ora record's
membership status and specifies action based on the outcome

COMMIT—Commits changes made to the databasethrough an
individualrununitor through all databasesessionsassociated
with a task

ROLLBACK—Rolls back uncommitted changes made to the
databasethrough anindividual run unitor through all database
sessions associated with a task

KEEP CURRENT—Places anexplicitshared or exclusivelockona
record thatis currentof run unit, record, set, or area

Chapter 6: Data Manipulation Language Statements 95

About Data Manipulation Language (DML)

Function DML Statement

Retrieval m FIND/OBTAIN DB-KEY—Accesses a record usinga db-key

Statements previously saved bythe program

m FIND/OBTAIN CURRENT—Accesses arecord usingpreviously
established currencies

m FIND/OBTAIN WITHIN SET/AREA—Accesses a record based on
its logicallocation withina setor its physical location withinan
area

m FIND/OBTAIN OWNER—Accesses the owner record of a set
occurrence

m FIND/OBTAIN CALC/DUPLICATE—Accesses arecord usingits
CALC-key value

m FIND/OBTAIN USING SORT KEY—Accesses a record ina sorted
setusingits sort-key value

m GET—Moves all data associated with a previouslylocated
record into program variablestorage

m RETURN—Retrieves the databasekey andsymbolic key of an
indexed record entry

Modification m STORE—Adds a new recordto the database
Statements
m MODIFY—Changes the contents of anexistingrecord
m CONNECT—Links a recordto aset
m DISCONNECT—Removes a member record from a set
m ERASE—Deletes arecord from the database
Recov.ery m COMMIT—Commits changes made to the databasethrough an
Functions individual run unitorthrough all databasesessions associated

with a task

m FINISH—Commits changes made to the databasethrough an
individualrununitor through all databasesessionsassociated
with a task

m ROLLBACK—Rolls back uncommitted changes made to the
databasethrough anindividualrun unitor through all database
sessions associated with a task

96 DML Reference Guide for COBOL

AboutData Manipulation Language (DML)

Function DML Statement
Accept m ACCEPT DB-KEY FROM CURRENCY—Saves the db-key of the
Statements current record of run unit, record type, set, or area

m ACCEPT DB-KEY RELATIVE TO CURRENCY—Saves the db-key of
the next, prior, or owner recordrelativeto the current record
of a set

m ACCEPT IDMS STATISTICS—Returns system run-time statistics
to the program

m ACCEPT BIND RECORD—Returns arecord's bind address to the
program

m ACCEPT PROCEDURE—Returns information from the
application programinformation block associated with a
databaseprocedure to the program

Logical Record m ERASE—Deletes alogical record

Facility
m MODIFY—Modifies a logical record
m OBTAIN—Accesses a logicalrecord
m STORE—Stores a logicalrecord
Program m TRANSFER CONTROL (LINK)—Passes control to another
Management program with the expectation of receivingit back (o)
m TRANSFER CONTROL (XCTL)—Passes control to another
program with no expectation of receivingit back (o)
m DC RETURN—Returns control to the next higher level calling
program (o)
m LOAD TABLE—Loads a programor table intothe CA IDMS
system program pool (o)
m DELETE TABLE—Signals that a program has finished usinga
program or a tableinthe programpool (o)
m SET ABEND EXIT (STAE)—Establishes linkageto a program or
routine that will receive control in the event of an abend (o)
m ABEND—Abnormally terminates the issuingtask (o)
Storage m GET STORAGE—Allocates variablestoragefrom an CA IDMS
Management system storage pool (o)

m FREE STORAGE—Frees all or partof a blockof variablestorage
(o)

Chapter 6: Data Manipulation Language Statements 97

About Data Manipulation Language (DML)

Function DML Statement
Task m ATTACH—Attaches anew taskwithinthe CAIDMS system (o)
Management

m CHANGE PRIORITY—Changes the dispatching priority of the
issuingtask (o)

m ENQUEUE—Acquires a resourceor alistofresources (o)
m DEQUEUE—Releases aresource (o)

m WAIT—Relinquishes control to the CA IDMS system while
awaitingcompletion of an event (o)

m POST—Posts an event control block (ECB) (o)

Time m GET TIME—Obtains the time and date from the system
Management

m SET TIMER—Defines atime-delayed event (o)
Scratch m PUT SCRATCH—Stores a scratchrecord (o)
Management

m GET SCRATCH—Retrieves a scratchrecord (o)

m DELETE SCRATCH—Deletes ascratchrecord (o)

Queue m PUT QUEUE—Stores a queue record (o,dcb)
Management
m GET QUEUE—Retrieves a queue record (o,dcb)

m DELETE QUEUE—Deletes a queue record (o,dcb)

Terminal m READ TERMINAL—Requests a synchronous or asynchronous

Management data transfer from the terminal to program variablestorage (o)
(Basic Mode)
m WRITE TERMINAL—Requests a synchronous or asynchronous

data transfer from programvariablestorageto the terminal
buffer (o)

m WRITE THEN READ TERMINAL—Requests a synchronous or
asynchronous data transfer fromprogram variablestorageto
the terminal buffer and, upon an operator signal, backto
variablestorage (o)

m CHECK TERMINAL—Ensures that a previouslyissued
asynchronous I/O operationis complete (o)

Terminal m READ LINE FROM TERMINAL—Requests a synchronous data
Management transfer from the terminal to the issuing program (o)
(Line Mode)

m WRITE LINE TO TERMINAL—Requests a synchronous or
asynchronous data transfer fromthe issuing programto the
terminal (o)

m END LINE TERMINAL SESSION—Terminates the currentlinel/O
session (o)

m WRITE PRINTER—Requests transmission of data from a taskto
a printer (o,dch)

98 DML Reference Guide for COBOL

AboutData Manipulation Language (DML)

Function DML Statement
Terminal m BIND MAP—Identifies the location of the map request block
Management (MRB) and initializes MRB fields (0)

(Mapping Mode)

m MAP IN—Requests a transfer of data from the terminal to
program variablestorage (o)

m MAP OUT—Requests a transfer of data from programvariable
storage to the terminal (o)

m MAP OUTIN—Requests a transfer of data from program
variablestoragetothe terminal and, upon an operator signal,
backto variablestorage (o)

m INQUIRE MAP—Obtains information or tests conditions
concerningthe previous map operation (o)

m MODIFY MAP—Requests modifications of mappingoptions for
amap (o)

m STARTPAGE—Begins a map pagingsessionand specifies
options for that session (o)

m ENDPAGE—Terminates a map pagingsession (o)

Utility Functions

m ACCEPT—Retrieves task-relatedinformation (o)

m SNAP—Requests a memory dump of selected parts of storage

(o)

m SEND MESSAGE—Sends a message to a user, logicalterminal,
or listofusers or logical terminals (o)

m BIND TRANSACTION STATISTICS—Defines the beginning of a
transaction for the purpose of collectingtransaction statistics
(o)

m ACCEPT TRANSACTION STATISTICS—Returns the contents of
the transaction statistics block (TSB) to program variable
storage (o)

m END TRANSACTION STATISTICS—Defines the end of a
transaction (o)

m KEEP LONGTERM—Either modifies a prior KEEP LONGTERM
request, or enables databaselongterm locks or database
monitoring for records, sets, or areas

m WRITEJOURNAL—Writes user-defined records to the journal
file

m WRITE LOG—Retrieves a message from the data dictionaryand
sends it to a predefined destination (o)

Chapter 6: Data Manipulation Language Statements 99

ABEND

ABEND

Syntax

Parameters

Example

Status Codes

The ABEND statement terminates the issuingtaskabnormally.ltalsoinvokes orignores
previously established abend exits and writes a task dump to the logfile. After
completion of the ABEND function, processingcontrol is returned to the CAIDMS
program-control module.

»»—— ABEND CODE abend-code T . —>d
|: DUMP ﬁ EXITS —[— INVOKED <_—l—|
NODUMP < IGNORED

CODE
Specifies a four-character user-defined abend code.
abend-code

Either the symbolic name of a variable-storagefield thatcontains the abend code or
the codeitselfenclosedin quotation marks.

Note: Because the specified abend code appearsinthe system log andis displayed
at the task's terminal, you should not use CA IDMS system abend codes.

DUMP/NODUMP

Specifies whether to write a formatted task dump to the logfile.The defaultis
NODUMP.

EXITS INVOKED/IGNORED

Specifies whether to invoke or ignoreabend routines established by SET ABEND
EXIT (STAE) requests. The defaultis INVOKED.

The following example specifies an abend request that terminates the issuingtask
abnormallyandrequests CAIDMS to write a taskdump to the log fileand to ignoreany
abend exits:

ABEND CODE 'U876'
DuUMP
EXITS IGNORED.

Because control is passed to the CA IDMS program-control module, there is noneed for
the program to check the ERROR-STATUS field.

100 DML Reference Guide for COBOL

ACCEPT

ACCEPT

Syntax

Parameters

The ACCEPT statement retrieves the followingtask-related information:

m Current taskcode

m Taskidentifier

m Llogical terminal identifier

m Physicalterminal identifier

m CAIDMS system version

m User identifier (the ID of the user signed on to the task's logical terminal)
m Physicalterminal screen dimensions

m System ID

»»— ACCEPT TASK CODE —5— INTO return-location .
TASK ID —
LTERM ID —
PTERM ID —
SYSVERSION —
USER ID —
SCREENSIZE —
SYSTEM ID —

)4

ACCEPT
Retrieves the specified information.
TASK CODE
Retrieves the 1 through 8 character code used to invoke the current task.

TASK ID

Retrieves the taskidentifier assigned by CAIDMS. The taskidentifieris a unique
sequence number stored ina PIC S9(8) COMP SYNC (fullword)field. At system
startup, the identifieris setto zero; eachtime a taskis executed, the ID is
incremented by one.

LTERM ID

Retrieves the 1 through 8 character identifier of the logical terminal associated with
the current task. Ifthe current task is notassociated with a terminal, a null value of
all spaces isreturned.

PTERM ID

Retrieves the 1 through 8 character identifier of the physical terminal associated
with the current task. Ifthe current task is notassociated with a terminal, a null
valueof all spaces isreturned.

Chapter 6: Data Manipulation Language Statements 101

ACCEPT

Example

Status Codes

SYSVERSION

Retrieves the version of the current CA IDMS system. The version number is an
integer inthe range 0 through 9999 stored ina PICS9(4) COMP (halfword)field.

USER ID

Retrieves the 32-character identifier of the user signed on to the logical terminal
associated with the current task. Ifno user is signed on, a null valueof all spaces is
returned.

SYSTEM ID

Specifies the 8 character name (nodename) by which the DC/UCF system is known
to other nodes inthe DC/UCF communications network.

SCREENSIZE

Retrieves the screen dimensions of the physical terminal associated with the
current task. The screen sizeis returned to a field that is divided into two PICS9(4)
COMP (halfword) fields. The first halfword contains therow, the second halfword
contains the column. For example, a 24-lineby 80-character screenis represented
by a value of 24 inthe firsthalfword and 80 in the second halfword. If the current
taskis not associated with a terminal, a null value of zero is returned.

INTO

Specifies the location to which CA IDMS returns the requested task-related
information.

return-location

The symbolic name of a user-defined field; the pictureand usage of this field must
be compatiblewith the pictureand usage of the requested data.

The following example illustrates ACCEPT statements that retrieve the ID of the current
taskand the ID of the user signed on to the logical terminal associated with that task:

ACCEPT TASK ID INTO TASK-ID.
ACCEPT USER ID INTO USER-ID.

After completion of the ACCEPT function, the ERROR-STATUS fieldinthe IDMS-DC
communications blockindicates the outcome of the operation:

Status code Meaning
0000 The request has been serviced successfully
4829 An invalid parameter has been passed from the program

102 DML Reference Guide for COBOL

ACCEPT BIND ADDRESS

ACCEPT BIND ADDRESS

Syntax

Parameters

Example

Status Codes

The ACCEPT BIND ADDRESS statement moves the bind address of a record to a specified
locationin programvariablestorage. This statement is typically requested by a
subprogramthat requires the address of a record in order to access it.

Currency

The ACCEPT BIND ADDRESS statement updates no currencies and requires no
currencies to be set relativeto the specified record.

»»—— ACCEPT bind-address FROM record-name BIND .

I

bind-address

A PICS9(8) COMP SYNC (fullword)field, containingthe location into which the bind
address of the specified record will be copied.

FROM ... BIND

Specifies the record whose bind address will becopiedinto the specified locationin
variablestorage.

record-name

The name of a record previously bound by the run unit.

The following statement moves the bind address foran EMPLOYEE record to a location
identified as REG1 inthe requesting subprogram:

ACCEPT REG1 FROM EMPLOYEE BIND.

After completion of the ACCEPT BIND ADDRESS function, the ERROR-STATUS fieldinthe
IDMS communications blockindicates the outcome of the operation:

Status code Meaning
0000 The request has been serviced successfully
1508 The named record is notinthe specified subschema

Chapter 6: Data Manipulation Language Statements 103

ACCEPT DATABASE STATISTICS

ACCEPT DATABASE STATISTICS

Syntax

Parameters

The ACCEPT DATABASE STATISTICS statement copies system runtime statistics located in
the program's IDMS statistics block to programvariablestorage. This statement can be
issued any number of times duringthe execution of a run unit. For example, you might
request databasestatistics after storinga variable-length record to determine whether
the entire record was stored in one placeor iffragments were placedinan overflow
area.

The ACCEPT DATABASE STATISTICS statement does not reset any of the statisticsfields
to zero; resetting of IDMS statistics block fields occurs only uponissuinga FINISH
command.

The ACCEPT DATABASE STATISTICS statement is usedin both the navigationalandthe
non-navigational environments.

»»—— ACCEPT db-statistics FROM IDMS-STATISTICS .

v

M

|—EXTENDED (db-stat-extended)4,

db-statistics

The name of a fullword-aligned 100-byte field in program variablestorage.

The data copied from IDMS-STATISTICS to db-statistics is formatted as follows:

01 DB-STATISTICS

03 DATE-TODAY PIC X(8).

03 TIME-TODAY PIC X(8).

03 PAGES-READ PIC S9(8) COvP.
03 PAGES-WRITTEN PIC S9(8) COvP.
03 PAGES-REQUESTED PIC S9(8) COvP.
03 CALC-TARGET PIC S9(8) COvP.
03 CALC-OVERFLOW PIC S9(8) COvP.
03 VIA-TARGET PIC S9(8) COMP.
03 VIA-OVERFLOW PIC S9(8) COvP.
03 LINES-REQUESTED PIC S9(8) COvP.
03 RECS-CURRENT PIC S9(8) COvP.
03 CALLS-TO-IDMS PIC S9(8) COvP.
03 FRAGMENTS-STORED PIC S9(8) COvP.
03 RECS-RELOCATED PIC S9(8) COvP.
*03 LOCKS-REQUESTED PIC S9(8) COvP.

104 DML Reference Guide for COBOL

ACCEPT DATABASE STATISTICS

*03 SEL-LOCKS-HELD PIC S9(8) COvP.
*03 UPD-LOCKS-HELD PIC S9(8) COvP.
*03 RUN-UNIT-ID PIC S9(8) COvP.
*03 TASK-ID PIC S9(8) COvP.
*03 LOCAL-ID PIC X(8).
03 FILLER PIC X(8).

*Applies to the central version only

The LOCAL-ID field consists of the four-byte identifier of the interfacein which the run
unit originated (for example, BATC, DBDC, or CICS) and a unique identifier (fullword)
assignedtothe run unit by that interface. For batch and CMS run units, this identifier
specifies the internal machinetime. For CICS run units, this identifier specifies the CICS
transaction number assigned to the run unit.

To displaytheoriginatinginterfaceidentifier and the run-unitidentifier for a program,
the LOCAL-ID field can be moved to a work field:

01 WORK-LOCAL-ID.
02 WORK-LOCAL-ORIGIN PIC X(4).
02 WORK-LOCAL-NUMBER PIC S9(8) COMP.

Alternatively, the DB-STATISTICS record from the data dictionary can be modified by
your DBA to define two subordinatefields for the LOCAL-ID field. The DB-STATISTICS
record describes the IDMS statistics block. To use this record, code the following
statement in program variablestorage:

01 COPY IDMS DB-STATISTICS.
db-stat-extended

The name of a fullword-aligned 100-byte field in program variablestorage The data
copied from IDMS-STATISTICS to db-stat-extended is formatted as as follows:

01 DB-STAT-EXTENDED

03 SR8-SPLITS PIC S9(8) COMP.
03 SR8-SPAWNS PIC S9(8) COMP.
03 SR8-STORES PIC S9(8) CoMP
03 SR8-ERASES PIC S9(8) COMP.
03 SR7-STORES PIC S9(8) CoMP
03 SR7-ERASES PIC S9(8) COMP.
03 BINARY-SEARCHES-TOTAL PIC S9(8) COMP.
03 LEVELS-SEARCHED-TOTAL PIC S9(8) COMP.
03 ORPHANS-ADOPTED PIC S9(8) COMP.
03 LEVELS-SEARCHED-BEST PIC S9(4) COMP.
03 LEVELS-SEARCHED-WORST PIC S9(4) COMP.
03 FILLER PIC X(60).

Chapter 6: Data Manipulation Language Statements 105

ACCEPT DB-KEY FROM CURRENCY

Example

Status Codes

This record layoutcan be copied from the data dictionary. Code the following
statement in program variablestorage:

01 INCLUDE IDMS (DB STAT EXTENDED).

Note: For more information aboutthe CA IDMS statistics blocks, seethe CA IDMS
Database Administration Guide.

The following statements establish currency for the sets in which a new EXPERTISE
record will participateas a member, store the EXPERTISE record, and move statistics
regarding the stored EXPERTISE recordto the DB-STATISTICS locationin mainstorage:

MOVE EMP-ID-IN TO EMP-ID-0415.

FIND CALC EMPLOYEE.

MOVE SKILL-ID-IN TO SKILL-ID-0455.

FIND CALC SKILL.

STORE EXPERTISE.

ACCEPT DB-STATISTICS FROM IDMS-STATISTICS.

After completion of the ACCEPT DATABASE STATISTICS function, the ERROR-STATUS
field inthe IDMS communications blockindicates the outcome of the operation:

Status code Meaning
0000 The request has been serviced successfully
1518 The databasestatisticslocation hasnotbeen bound properly

ACCEPT DB-KEY FROM CURRENCY

The ACCEPT DB-KEY FROM CURRENCY statement moves the db-key of the current
record of run unit, record type, set, or area to a specified locationin programvariable
storage. Records whose db-keys are savedin this manner are available for subsequent
directaccess by usinga FIND/OBTAIN DB-KEY statement.

Note: You must establish currency beforeusingthis statement. If no currency has been
established, the DBMS returns 0000 to the ERROR-STATUS fieldand -1 to the db-key
field.

Currency

ACCEPT DB-KEY FROM CURRENCY does not update any currencies.

106 DML Reference Guide for COBOL

ACCEPT DB-KEY FROM CURRENCY

Syntax
»»— ACCEPT db-key-location FROM CURRENCY —— @
E record-name —
set-name
area-name ——
" L pAGE-INFO page-info-location 1 o
Parameters
db-key-location
A PICS9(8) COMP SYNC (fullword)field. Identifies the locationinvariablestorage
that will containthe db-key of the specified record.
FROM CURRENCY
Specifies the record whose db-key will beplacedinthe specifiedlocation. By
default, ifyou omit a record, set, orarea qualifier, the db-key of the record thatis
current of the run unitis saved.
record-name Saves the db-key of the record thatis current of the specified record
type.
set-name Saves the db-key of the record thatis current of the specified set.
area-name Saves the db-key of the record thatis currentof the specified area.
PAGE-INFO
Indicates thatthe page-info of the specified recordis collected and recorded into
page-info-location.
page-info-location
Identifies the locationinvariablestoragethat contains the page-info of the
requested record. This fieldis a PICS9(8) COMP SYNC (fullword) field.
Example

The following statements establisha DEPARTMENT record as currentof rununitand
saveits db-key inlocation SAVE-DB-KEY:

MOVE '8683' TO DEPT-ID-0410.
FIND CALC DEPARTMENT.
ACCEPT SAVE-DB-KEY FROM CURRENCY.

Note: The same results can be accomplished usingthe following COBOL MOVE
statement:

MOVE DB-KEY TO SAVE-DB-KEY.

Chapter 6: Data Manipulation Language Statements 107

ACCEPT DB-KEY RELATIVE TO CURRENCY

Status Codes

After completion of the ACCEPT DB-KEY FROM CURRENCY function, the ERROR-STATUS
fieldinthe IDMS communications blockindicates the outcome of the operation:

Status code Meaning
0000 The request has been serviced successfully.
1503 The dbkey thatis the object of an ACCEPT has been invalidated. This

canonlyoccur when a rununitis sharinga transaction with other
databasesessions. The 03 minor status is returned if the run unit
tries to retrieve a dbkey and a currency has been invalidated because
of changes made by another databasesessionthatis sharingthe
same transaction.

1508 The named record or set is notinthe subschema.The program has
probablyinvoked the wrong subschema.

1523 The named areais notinthe subschema.

ACCEPT DB-KEY RELATIVE TO CURRENCY

The ACCEPT DB-KEY RELATIVE TO CURRENCY statement moves a selected db-key to a
specified locationin programvariablestorage. The db-key moved to variablestorage
canbe the db-key of the next, prior,or owner recordrelativeto the current record of
set.

This version of the ACCEPT statement allows you to save the db-key of a record withina
set without actually havingto access therecord. Records whose db-keys are savedin
this manner are availablefor subsequent directaccess by usinga FIND/OBTAIN DB-KEY
statement.

Note: You must establish currency beforeusingthis statement. Ifno set currency has
been established,the DBMS returns 0000 to the ERROR-STATUS field and -1 to the
db-key-location field.

Currency

ACCEPT DB-KEY RELATIVE TO CURRENCY does not update any currencies.
Syntax

PRIOR

»»—— ACCEPT db-key-location FROM set-name —E NEXT CURRENCY —— »
OWNER

M

" L PAGE-INFO page-info-location

108 DML Reference Guide for COBOL

ACCEPT DB-KEY RELATIVE TO CURRENCY

Parameters

db-key-location

A PICS9(8) COMP SYNC (fullword)field. Identifies the locationinvariablestorage
that will containthe db-key of the requested record.

FROM .. CURRENCY
Identifies the record whose db-key will be moved into the specified location.

set-name The name of a setincludedinthe subschema. Native VSAM users:.
NEXT/PRIOR/OWNER CURRENCY cannot be requested for sets defined for native
VSAM records.

NEXT

Saves the db-key of the next recordrelativeto the recordthat is currentof the
specified set. NEXT CURRENCY cannotbe requested unless the specified set has
prior pointers; prior pointers ensure that the next pointer in the prefix of the
current record does not point to a logically deleted record.

PRIOR

Saves the db-key of the prior recordrelativeto the record thatis current of the
specified set. PRIOR CURRENCY cannotbe requested unless the specified set
has prior pointers.

Note: No indication of an end-of-set conditionis possiblefor an ACCEPT NEXT
or PRIOR. Aretrieval command must be issued to determine whether the next
or priorrecordinthe set occurrenceis the owner record.

OWNER

Saves the db-key of the owner of the record that is currentof the specified set.
A request for OWNER CURRENCY cannot be executed unless the specified set
has owner pointers. However, ifthe current record of the named set is the
owner record occurrence, requests for OWNER CURRENCY return the db-key of
the record itself, even if this set does not have owner pointers.

Note: When arecord declared as an optional or manual member of a setis
accessed, itis not established as currentofset ifitis not currently connected to
anoccurrence of the specified set. A subsequent attempt to access the owner
record will locateinstead the owner of the current record of set. In such cases,
determine whether the retrieved recordis actually a setmember before
executing the ACCEPT DB-KEY FROM OWNER CURRENCY statement. The IF
statement, explained laterinthis chapter, can be used for this purpose.

PAGE-INFO

Indicates thatthe page-info of the specified recordis collected and recorded into
page-info-location.

page-info-location

Identifies the locationinvariablestoragethat contains the page-info of the
requested record. This fieldis a PICS9(8) COMP SYNC (fullword) field.

Chapter 6: Data Manipulation Language Statements 109

ACCEPT page-info-location

Example

The following statements access the EMP-EXPERTISE set and savethe db-key of the
owner record of the SKILL-EXPERTISE set:

MOVE '0119' TO EMP-ID-0415.

FIND CALC EMPLOYEE.

FIND FIRST WITHIN EMP-EXPERTISE.

ACCEPT SAVE-DB-KEY FROM SKILL-EXPERTISE OWNER CURRENCY.

Status Codes

After completion of the ACCEPT DB-KEY RELATIVE TO CURRENCY function, the
ERROR-STATUS fieldinthe IDMS communications blockindicates the outcome of the

operation:

Status code Meaning

0000 The request has been serviced successfully.

1503 The dbkey thatis the object of an ACCEPT has been invalidated. This
canonlyoccurwhen a rununitis sharinga transaction with other
databasesessions. The 03 minor status is returned if the run unit
tries to retrieve a dbkey and a currency has been invalidated because
of changes made by another databasesessionthatis sharingthe
same transaction.

1508 The named setis notinthe subschema.The programhas probably

invoked the wrong subschema.

ACCEPT pade-info-location

The ACCEPT page-info-location statement moves the page information for a given
record to a specified locationin programvariablestorage. Page information thatis
saved inthis manner is availablefor subsequent directaccess by usinga FIND/OBTAIN
DB-KEY statement.

110 DML Reference Guide for COBOL

ACCEPT page-info-location

The dbkey radix portion of the page information can be used ininterpreting a dbkey for
display purposes andinformatting a dbkey from page and linenumbers. The dbkey
radix represents the number of bits within a dbkey value that are reserved for the line
number of a record. By default, this valueis 8, meaning that up to 255 records can be
stored on a single page of the area. Given a dbkey, you canseparateits associated page
number by dividingthe dbkey by 2 raised to the power of the dbkey radix. For example,
if the dbkey radixis 4,youwould dividethe dbkey valueby 2**4. The resultingvalueis
the page number of the dbkey. To separate the linenumber, you would multiply the
page number by 2 raised to the power of the dbkey radixand subtractthis valuefrom
the dbkey value. The resultwould be the linenumber of the dbkey. The following two
formulas can be used to calculatethe page andlinenumbers from a dbkey value:

m Page-number = dbkey value/ (2 ** dbkey radix)

m Line-number = dbkey value- (page-number * (2 ** dbkey radix))

Syntax
»»—— ACCEPT page-info-location FOR record-name . >«
Parameters
ACCEPT
Retrieves the specified information.
page-info-location Specifies a four-byte field that may be defined either as a group
field or as a fullword field (PICS9(8) COMP). Identifies the locationinvariable
storage that contains pageinformation for the specified record. Upon successful
completion of this statement, the firsttwo bytes of the field contain the page group
number andthe lasttwo bytes containavaluethat may be used for interpreting
dbkeys.
FOR
Specifies the record whose page information will beplacedin the specified
location.
record-name
Specifies the record whose page information will be placedinthe specified
location.
Example

The following example retrieves the page information for the DEPARTMENT record and
uses the dbkey format information to transforma page number into a dbkey.

01 W-PG-INFO.
02 W-GRP-NWM PIC S9(4) COMP.
02 W-DBK-FORMAT PIC 9(4) COMP.

Chapter 6: Data Manipulation Language Statements 111

ACCEPT PROCEDURE CONTROL LOCATION

Status Codes

ACCEPT W PG INFO FOR DEPARTMENT.
MOVE W-PAGE TO W-DBKEY.
PERFORM ADJUST-PAGE W-DBK-FORMAT TIMES.

ADJUST-PAGE SECTION.
MULTIPLY W-DBKEY BY 2.}

After completion of the ACCEPT page-info-location function, the ERROR-STATUS fieldin
the IDMS-DC communications block indicates the outcome of the operation:

Status code Meaning
0000 The request has been serviced successfully.
1508 The named record is notinthe subschema.The program probably

invoked the wrong subschema.

ACCEPT PROCEDURE CONTROL LOCATION

Syntax

Parameters

The ACCEPT PROCEDURE CONTROL LOCATION statement copies the 256-byte
application programinformation block associated with a previously defined database
procedure to a specifiedlocationin programvariablestorage. ABIND PROCEDURE
statement (explained laterin this chapter) previously placed information into this block;
this information may have been subsequently updated by the procedure.

The ACCEPT PROCEDURE CONTROL LOCATION statement should be used only by
programs runningunder, but ina different partition from, the central version.

»»—— ACCEPT procedure-control-location FROM procedure-name PROCEDURE . —»«

procedure-control-location

The fullword-aligned 256-byte locationinvariablestorageto which the application
program information blockis to be copied.

FROM procedure-name PROCEDURE

The name of the databaseprocedure whose application programinformation block
isto be copied intovariablestorage. Procedure-name must refer to an
eight-characterfieldinvariablestorage.

112 DML Reference Guide for COBOL

ACCEPT TRANSACTION STATISTICS

Example

Status Codes

The following statement copies the application programinformation block used by the
CHECKALL procedure to the locationidentified as CHECK-ITin main storage:

ACCEPT CHECK-IT FROM (HECKALL PROCEDURE.

After completion of the ACCEPT PROCEDURE CONTROL LOCATION function, the
ERROR-STATUS fieldinthe IDMS communications blockindicates the outcome of the
operation:

Status code Meaning

0000 The request has been serviced successfully

1508 The named procedureis notinthe specified subschema
1518 The procedure control location has notbeen bound properly

ACCEPT TRANSACTION STATISTICS

Syntax

Parameters

The ACCEPT TRANSACTION STATISTICS statement copies the contents of the transaction
statisticsblock (TSB) to a locationin programvariablestorage. Optionally, the statement
canalsowritethe TSB to the DC system log fileand you can define the length of the TSB.

WRITE «

»»—— ACCEPT TRANSACTION STATISTICS :l >
NOWRITE

L INTO return-stat-data-location il

I ano

L LENGTH T 388 « N

len-return-T5B

WRITE/NOWRITE

Specifies whether the TSB is written to the DC system logfile.
Default: WRITE

Chapter 6: Data Manipulation Language Statements 113

ACCEPT TRANSACTION STATISTICS

INTO

Specifies the WORKING-STORAGE SECTION or LINKAGE SECTION data area into
which to return the TSB.

return-stat-data-location

A fullword-aligned 388-byte field (you can customize the length usingthe
LENGTH parameter).

The data copied from the TSB to return-stat-data-location is formatted as
follows:

01 STATISTICS-BLOCK.
03 SYS-INTERN1 PIC X(8) SYSTEM INTERNAL USE ONLY

03 PROG-CALL PIC S9(8) COMP # OF PROGRAMS CALLED

03 PROG-LOAD PIC S9(8) COMP # OF PROGRAMS LOADED

03 TERM-READ PIC S9(8) COMP # OF TERMINAL READS

03 TERM-WRITE PIC S9(8) COMP # OF TERMINAL WRITES

03 TERM-ERROR PIC S9(8) COMP # OF TERMINAL ERRORS

03 STORAGE-GET PIC S9(8) COMP # OF STORAGE GETS

03 SCRATCH-GET PIC S9(8) COMP # OF SCRATCH GETS

03 SCRATCH-PUT PIC S9(8) COMP # OF SCRATCH PUTS

03 SCRATCH-DEL PIC S9(8) COMP # OF SCRATCH DELETES

03 QUEUE-GET PIC S9(8) COMP # OF QUEUE GETS

03 QUEUE-PUT PIC S9(8) COMP # OF QUEUE PUTS

03 QUEUE-DEL PIC S9(8) COMP # OF QUEUE DELETES

03 GET-TIME PIC S9(8) COMP # OF GET TIMES

03 SET-TIME PIC S9(8) COMP # OF SET TIMES

03 DB-SRVREHQ PIC S9(8) COMP # OF DB SERVICE REQUESTS
03 MAX-STAK PIC S9(8) COMP MAX WORDS USED IN STACK

03 USER-TIME PIC S9(8) COMP USER MODE TIME (10**-4 SEC)
03 SYS-TIME PIC S9(8) COMP SYS MODE TIME (10**-4 SEC)
03 WAIT-TIME PIC S9(8) COMP WAIT TIME (10** -4 SEC)

03 MAX-RCE-USED PIC S9(8) COMP MAXIMWM NUMBER OF RCES USED
03 MAX-RLE-USED PIC S9(8) COMP MAXIMUM NUMBER OF RLES USED
03 MAX-DPE-USED PIC S9(8) COMP MAXIMUM NUMBER OF DPES USED

03 STG-HI-MARK PIC S9(8) COMP STORAGE HIGH WATER MARK

03 FREESTG-REQ PIC S9(8) COMP # OF FREE STORAGE REQUESTS
03 SYS-SERV PIC S9(8) COMP # OF SYSTEM SERVICE REQUEST
03 SYS-INTERN2 PIC X(8) SYSTEM INTERNAL USE ONLY

03 PAGES-READ PIC S9(8) COMP # OF PAGES READ

03 PAGES-WRIT PIC S9(8) COMP # OF PAGES WRITTEN

03 PAGES-REQ PIC S9(8) COMP # OF PAGES REQUESTED
03 CALC-NO PIC S9(8) COMP # OF CALC RECS NO OFLOW
03 CALC-OF PIC S9(8) COMP # OF CALC RECS OFLOW
03 VIA-NO PIC S9(8) COMP # OF VIA RECS NO OFLOW
03 VIA-OF PIC S9(8) COMP # OF VIA RECS OFLOW

03 RECS-REQ PIC S9(8) COMP # OF RECS REQUESTED

03 RECS-CURR PIC S9(8) COMP # OF RECS CURR OF RU

03 DB-CALLS PIC S9(8) COMP # OF DBMS CALLS

114 DML Reference Guide for COBOL

ACCEPT TRANSACTION STATISTICS

03 FRAG-STORED PIC S9(8) COMP # OF FRAGMENTS STORED
03 RECS-RELO PIC S9(8) COMP # OF RECS RELOCATED
03 TOT-LOCKS PIC S9(8) COMP TOTAL # OF LOCKS ACQUIRED
03 SHR-LOCKS PIC S9(8) COMP # OF SHARE LOCKS HELD
03 NSH-LOCKS PIC S9(8) COMP # OF NON-SHARE LOCKS HELD
03 LOCKS-FREED PIC S9(8) COMP # OF LOCKS FREED

)

03 SR8-SPLITS PIC S9(8) COMP # OF SR8 SPLITS

03 SR8-SPAWN PIC S9(8) COMP # OF SR8 SPAWNS
03 SR8-STORE PIC S9(8) COMP # OF SR8S STORED
03 SR8-ERASE PIC S9(8) COMP # OF SR8S ERASED
03 SR7-STORE PIC S9(8) COMP # OF SR7S STORED
03 SR7-ERASE PIC S9(8) COMP # OF SR7S ERASED

03 BTREE-SRCH PIC S9(8) COMP # OF BTREE SEARCHES

03 BTREE-LEVEL PIC S9(8) COMP # OF BTREE LEVELS SEARCHED
03 ORPHANS PIC S9(8) COMP # OF ORPHANS ADAPTED

03 BTREE-LEV-B PIC S9(4) COMP # OF LVLS SRCH'D (BEST CASE)
03 BTREE-LEV-W PIC S9(4) COMP # OF LVLS SRCH'D (WORST CASE)
03 RECS-UPD PIC S9(8) COMP # OF RECS UPDATED

03 PAGE-INCACHE PIC S9(8) COMP # OF PAGES FOUND IN CACHE

03 PAGE-INPREFET PIC S9(8) COMP # OF PAGES FOUND IN PREFETCH

03 RESERVED PIC X(8) RESERVED FOR FUTURE USE

03 SYS-INTERN3 PIC X(8) SYSTEM INTERNAL USE ONLY

03 USER-ID PIC X(32) DC USER ID

03 LTERM-ID PIC X(8) LOGICAL TERMINAL ID

03 USER-SUPP-ID PIC X(8) USER-SUPPLIED ID

03 BIND-DATE PIC S9(7) COMP-3 DATE BIND COMMAND ISSUED
03 BIND-TIME PIC S9(8) COMP TIME BIND COMMAND ISSUED

03 TRANSTAT-FLGS PIC S9(8) COMP FOUR 1-BYTE FLAGS

03 SYS-INTERN4 PIC X(8) SYSTEM INTERNAL USE ONLY

03 SQL-COMMANDS PIC S9(8) COMP # OF SQL COMMANDS EXECUTED
03 SQL-FETMH PIC S9(8) COMP # OF ROWS FETCHED

03 SQL-INSERT PIC S9(8) COMP # OF ROWS INSERTED

03 SQL-UPDATE PIC S9(8) COMP # OF ROWS UPDATED

03 SQL-DELETE PIC S9(8) COMP # OF ROWS DELETED

03 SQL-SORTS PIC S9(8) COMP # OF SORTS PERFORMED

03 SQL-ROWSORT PIC S9(8) COMP # OF ROWS SORTED

03 SQL-MINRSORT PIC S9(8) COMP MINIMWM ROWS SORTED

)
)
)
)

03 SQL-MAXRSORT PIC S9(8) COMP MAXIMWM ROWS SORTED
03 SQL-AMCMPL PIC S9(8) COMP # OF AM RECOMPILES
03 SQL-RESERVED PIC X(32) RESERVED FOR FUTURE USE

Chapter 6: Data Manipulation Language Statements 115

ACCEPT TRANSACTION STATISTICS

If you extend the length to 560 bytes, the full TRANSACTION-STATISTICS are also
included. The followingblock can be expanded usingthe COPY IDMS
TRANSACTION-STATISTICS statement:

01 TRANSACTION-STATISTIGCS.

03 TSB-STATS-R18 PIC X(560).

03 TSB-STATS-R17 REDEFINES TSB-STATS-R18.
04 TSB-DC-STATS PIC X(108).

04 TSB-DC-STATS1 REDEFINES TSB-DC-STATS.
05 SYS-INTERN1 PIC X(8).
05 PROG-CALL PIC S9(8) COMP.
05 PROG-LOAD PIC S9(8) COMP.
05 TERM-READ PIC S9(8) COMP.
05 TERM-WRITE PIC S9(8) COMP.
05 TERM-ERROR PIC S9(8) COMP.
05 STORAGE-GET PIC S9(8) COMP.
05 SCRATCH-GET PIC S9(8) COMP.
05 SCRATCH-PUT PIC S9(8) COMP.
05 SCRATCH-DEL PIC S9(8) COMP.
05 QUEUE-GET PIC S9(8) COMP.
05 QUEUE-PUT PIC S9(8) COMP.
05 QUEUE-DEL PIC S9(8) COMP.
05 GET-TIME PIC S9(8) COMP.
05 SET-TIME PIC S9(8) COMP.
05 DB-SRVREQ PIC S9(8) COMP.
05 MAX-STACK PIC S9(8) COMP.
05 USER-TIME PIC S9(8) COMP.
05 SYS-TIME PIC S9(8) COMP.
05 WAIT-TIME PIC S9(8) COMP.
05 MAX-RCE-USED PIC S9(8) COMP.
05 MAX-RLE-USED PIC S9(8) COMP.
05 MAX-DPE-USED PIC S9(8) COMP.
05 STG-HI-MARK PIC S9(8) COMP.
05 FREESTG-REQ PIC S9(8) COMP.
05 SYS-SERV PIC S9(8) COMP.
04 TSB-DB-STATS PIC X(72).

04 TSB-DB-STATS1 REDEFINES TSB-DB-STATS.
05 SYS-INTERN2 PIC X(8).
05 PAGES-READ PIC S9(8) COMP.
05 PAGES-WRIT PIC S9(8) COMP.
05 PAGES-REQ PIC S9(8) COMP.
05 CALC-NO PIC S9(8) COMP.
05 CALC-OF PIC S9(8) COMP.
05 VIA-NO PIC S9(8) COMP.
05 VIA-OF PIC S9(8) COMP.
05 RECS-REQ PIC S9(8) COMP.

116 DML Reference Guide for COBOL

ACCEPT TRANSACTION STATISTICS

05 RECS-CURR PIC S9(8) COMP.
05 DB-CALLS PIC S9(8) COMP.
05 FRAG-STORED PIC S9(8) COMP.
05 RECS-RELO PIC S9(8) COMP.
05 TOT-LOCKS PIC S9(8) COMP.
05 SHR-LOCKS PIC S9(8) COMP.
05 NSH-LOCKS PIC S9(8) COMP.
05 LOCKS-FREED PIC S9(8) COMP.
04 TSB-IX-STATS PIC X(40).

04 TSB-IX-STATS1 REDEFINES TSB-IX-STATS.
05 SR8-SPLITS PIC S9(8) COMP.
05 SR8-SPAWN PIC S9(8) COMP.
05 SR8-STORE PIC S9(8) COMP.
05 SR8-ERASE PIC S9(8) COMP.
05 SR7-STORE PIC S9(8) COMP.
05 SR7-ERASE PIC S9(8) COMP.
05 BTREE-SRCH PIC S9(8) COMP.
05 BTREE-LEVEL PIC S9(8) COMP.
05 ORPHANS PIC S9(8) COMP.
05 BTREE-LEV-B PIC S9(4) COMP.
05 BTREE-LEV-W PIC S9(4) COMP.

04 TSB-DB-STATS-EXTENDED PIC X(20).
04 TSB-DB-STATS-EXTENDED1
REDEFINES TSB-DB-STATS-EXTENDED.

05 RECS-UPD PIC S9(8) COMP.
05 PAGE-INCACHE PIC S9(8) COMP.
05 PAGE-INPREFET PIC S9(8) COMP.
05 RESERVED PIC X(8).

04 TSB-HDR PIC X(68).

04 TSB-HDR1 REDEFINES TSB-HDR.
05 SYS-INTERN3 PIC X(8).

05 USER-ID PIC X(32).

05 LTERM-ID PIC X(8).

05 USER-SUPP-ID PIC X(8).

05 BIND-DATE PIC S9(7) COMP-3.
05 BIND-TIME PIC S9(8) COMP.
05 TRANSTAT-FLGS PIC S9(8) COMP.
04 TSB-SQL-STATS PIC X(80).

04 TSB-SQL-STATS1 REDEFINES TSB-SQL-STATS.

Chapter 6: Data Manipulation Language Statements 117

ACCEPT TRANSACTION STATISTICS

05 SYS-INTERN4 PIC X(8).

05 SQL-COMMANDS PIC S9(8) COMP.
05 SQL-FETCH PIC S9(8) COMP.
05 SQL-INSERT PIC S9(8) COMP.
05 SQL-UPDATE PIC S9(8) COMP.
05 SQL-DELETE PIC S9(8) COMP.
05 SQL-SORTS PIC S9(8) COMP.
05 SQL-ROWSORT PIC S9(8) COMP.
05 SQL-MINRSORT PIC S9(8) COMP.
05 SQL-MAXRSORT PIC S9(8) COMP.
05 SQL-AMCMPL PIC S9(8) COMP.
05 SQL-RESERVED PIC X(32).

04 TSB-STATS-DCX PIC X(168).

04 TSB-STATS-DCX1 REDEFINES TSB-STATS-DCX.

05 TSB-STATS-DCX-FILLER PIC X(8).
05 TSB-SYS-MODE-CPU-TOD PIC 9(18) COMP.
05 TSB-SYS-ZIIP-ON-CP-TOD

PIC 9(18) COMP.
05 TSB-SYS-ZIIP-ON-ZIIP-TOD

PIC 9(18) COMP.
05 TSB-USER-MODE-CPU-TOD

PIC 9(18) COMP.
05 TSB-TCB-CPU-TIME-TOD PIC 9(18) COMP.
05 TSB-SRB-CPU-TIME-TOD PIC 9(18) COMP.
05 TSB-STATS-DCX-FILLO1 PIC X(112).

LENGTH

Specifies the length of the returned TSB. To retrieve all statisticsincludingthe DC
extended statisticssectionthatrecords CPU times inthe Time of Day (TOD) format,
specify LENGTH as 560.

len-return-TSB

Specifies either the symbolic name of a user-defined field that contains the
length of the TSB, or the length expressed as a numeric constant.

Limits: Integer of 388 or greater
Default: If you do not specify len-return-TSB, the first388 bytes of the TSB are
returned.

Example

The following statement returns the contents of the TSB to STATISTICS-BLOCK and
writes transaction statistics to the logfile:

ACCEPT TRANSACTION STATISTICS
WRITE
INTO STATISTICS-BLOCK.

118 DML Reference Guide for COBOL

ATTACH

Status Codes

ATTACH

Syntax

Parameters

After completion of the ACCEPT TRANSACTION STATISTICS function, the ERROR-STATUS
field inthe IDMS-DC communications blockindicates the outcome of the operation:

Status code Meaning
0000 The request has been serviced successfully
3801 Storage for the transaction statistics blockis notavailable; to wait

would causea deadlock

3813 No transaction statistics block exists; a BIND TRANSACTION
STATISTICS request has not been issued

3831 Either the parameter listis invalid or nological terminal element
(LTE) is associated with the issuingtask

3850 The collection of transaction statistics or task statistics has notbeen
enabled during system generation

The ATTACH statement initiates a new task by acquiringthenecessary control blocks
andstorage and by addingthe task to its dispatchinglist. CAIDMS initializes the
attached taskand queues it up for execution; the issuing programreceives control in
accordancewith normal dispatching priority.

»»—— ATTACH TASK CODE ' task-code’ —— - . —re
PRIORITY priority ‘: WAIT < j
NOWAIT

task-code

Either the symbolic name of a user-defined field that contains the task code or the
codeitselfenclosedin quotation marks.

The referenced task code must have been defined during system generation or
dynamically by usingthe DCMT VARY DYNAMIC TASK command.

Chapter 6: Data Manipulation Language Statements 119

ATTACH

PRIORITY
Specifies the dispatching priority of the attached task.

priority Either the symbolic nameof a user-defined field that contains the
dispatchingpriority or the priorityitself expressed as a numeric constantin the
range 000 through 240.By default, if you do not specify a priorityorits
location, the priority established during system generation for the specified
task code, terminal,and useris used.

WAIT

Specifies that the issuingtask waits until the maximum task condition nolonger
exists and the specified task can be attached.

This is the default.
NOWAIT

Specifies that the issuingtask does notwait for the taskto be attached. When
NOWAIT is specified, the program should check the ERROR-STATUS fieldinthe CA
IDMS communications block to determine ifthe ATTACH request has been
completed. Ifthe ERROR-STATUS valueis 3711, indicatingthata maximum task
condition exists, the request has not been serviced and the programshould
perform alternative processing beforereissuingthe ATTACH request.

Example
The followingexample illustrates howto initiatetask TASKATCH and assignita
dispatchingpriority of 199:
ATTACH TASK (ODE 'TASKATCH'
PRIORITY 199
NOWAIT.
Status Codes

After completion of the ATTACH function, the ERROR-STATUS field of the IDMS-DC
communications blockindicates the outcome of the operation:

Status code Meaning
0000 The request has been serviced successfully.
3711 The task cannot be attached becausethe maximum number of tasks

has already been attached.

3712 The specified task code is not known to the CA IDMS system.

3758 The task cannot be attached becausethe maximum number of
concurrent tasks threads was exceeded.

120 DML Reference Guide for COBOL

BIND MAP

BIND MAP

Syntax

Status code Meaning

3799 The requested task could not be attached becausethe current user is
not authorized to execute the task.

The BIND MAP statement identifies the location of a map request block (MRB) and
initializes MRBfields. For each MRB used by a program, code a BIND MAP statement; for
each record defined to a map, code a BIND MAP RECORD statement.

BIND MAP statements can be global or record-specific, as follows:

m Global—The BIND MAP statement applies tothe map as a whole. Itinitializes the
entire MRB and fillsin fieldsthatapply to the map in general.

m Record-specific—The BIND MAP statement applies onlytothe named map record.
Itinitializes thevariablestorageaddress of the named record inthe MRB.

Typically,a programissues a global BIND MAP statement for each map, followed by
BIND MAP statements for each map record used by the program.

You canrequest the precompiler to includeglobal and record-specific BIND MAP
statements automatically by usinga COPYIDMS MAP-BINDS statement (see Chapter 5:
(see page 67)). COPY IDMS MAP-BINDS includes the necessary BINDS for all maps and
map records defined for the program.

The program can alter the storage address for a map record at any time by issuing
another BIND MAP statement for that record. After the initial global bind (BIND MAP),
all maprecords areconsidered unbound; map operations that use those records will
have no effect on storage. After bindinga map record to a storage address (BIND MAP
RECORD), subsequent map operations will usethataddress to access the record. To
unbinda map record, issuea record-specificBIND MAP statement that specifies the TO
NULL option.

»»—v— BIND MAP map-name

e

L RECORD rec-name C
T0 T NULL —_IJ
rec-location

Chapter 6: Data Manipulation Language Statements 121

BIND MAP

Parameters

Example

Status Codes

map-name

The name of an existingmap. The map version defaults to the version specified for
the map inthe program's MAP SECTION.

RECORD
Initializes the variablestorageaddress of the named recordin the MRB.
record-name
The name of arecord used by the map.
TO
Specifies whether the recordis to be unbound or bound to a specified address.
NULL
Leaves the record unbound.
rec-location

The symbolic name of a user-defined field that contains the address to which
the record is to be bound. Record-location defaults to record-name.
Subsequent |/O operations will usethis area of storagefor any operation
associated with the record.

The following statements bindthe map EMPMAPLR andits five associated map records:

BIND MAP EMPMAPLR.

BIND MAP EMPMAPLR RECORD EMPLOYEE.

BIND MAP EMPMAPLR RECORD DEPARTMENT.

BIND MAP EMPMAPLR RECORD JOB.

BIND MAP EMPMAPLR RECORD OFFICE.

BIND MAP EMPMAPLR RECORD EMP-DATE-WORK-REC.

After completion of the BIND MAP function, the ERROR-STATUS field inthe IDMS-DC
communications blockindicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully

122 DML Reference Guide for COBOL

BIND PROCEDURE

BIND PROCEDURE

Syntax

Parameters

Example

The BIND PROCEDURE statement establishes communication between a programand a
DBA-written databaseprocedure (for example, a security routine). You should usethis
statement only when the application programis required to pass to the procedure more
information thanis provided by the DBMS itself.Such instances areunusual;in most

cases,you will notbe aware of which procedures gain control before or after various
DML functions.

The BIND PROCEDURE statement is usedin both the navigationalandthe
non-navigational environments.

»»—— BIND PROCEDURE FOR procedure-name TO procedure-control-location . ——»<

procedure-name

Specifies the databaseprocedurein programvariablestorageto be made available
to the program.

TO procedure-control-location

Specifies the 256-byte (fixed-length) location to which the named procedure will be
bound.

A programthat runs in a different partition fromthe central version may need to
pass certaininformation to the database procedure. When the DBMS invokes the
databaseprocedure, this informationis copied from the programstorage area
identified by procedure-control-location intothe IDMS application program
information block. The information passedis theinformationin
procedure-control-location when the BIND PROCEDURE was performed; itis not the
informationinthe program's storageat the time of the procedure call.

The following statement binds the procedure with the variable name PROGCHEK to the
256-byte area PROC-CTL:

BIND PROCEDURE FOR PROGCHEK TO PROC-CTL.

Chapter 6: Data Manipulation Language Statements 123

BIND RECORD

Status Codes

BIND RECORD

Syntax

After completion of the BIND PROCEDURE function, the ERROR-STATUS fieldinthe IDMS
communications blockindicates the outcome of the operation:

Status code Meaning
0000 The request has been serviced successfully.
1400 The BIND PROCEDURE statement cannotbe recognized. This code

usuallyindicates thatthe IDMS communications block
(SUBSCHEMA-CTRL) is not aligned on a fullword boundary.

1408 The named procedureis notinthe specified subschema.

1418 The procedure has been bound improperlyto location 0.

1472 The availablememory is insufficientto dynamicallyload thedatabase
procedure.

1474 An attempt to load a module from the load/core-imagelibrary or

DDLDCLOD has failed.

The BIND RECORD statement establishes addressability for a record in program variable
storage. In most cases, you need notissueindividual BIND RECORD statements sincethe
necessary statements aregenerated as a group by the COPY IDMS SUBSCHEMA-BINDS
statement (see Chapter 5: (see page 67)). However, you canissue BIND RECORD
commands separately as necessary (for example, to bind several records to the same
storage location).Inanycase,addressability mustbe established for each subschema
record to be used by the program.

The program should perform the IDMS-STATUS routine after each BIND RECORD
statement to ensure that the statement was executed successfully. When AUTOSTATUS
isinuse(see AUTOSTATUS Protocols (see page 63)), a PERFORM IDMS-STATUS
operation occurs automatically after each BIND RECORD statement, even if the BIND
RECORD statements are generated as a group by a COPY IDMS SUBSCHEMA-BINDS
statement. You should use COPY IDMS SUBSCHEMA-BINDS only when AUTOSTATUS isin
use.

M

BIND —|: record-name L TO record-location -

record-location WITH record-name

124 DML Reference Guide for COBOL

BIND RECORD

Parameters

Example

Status Codes

record-name
Specifies the record to be bound to alocationinvariablestorage.
The specified record must be includedinthe subschema.
TO record-location

Specifies the location to which the record is to be bound. The location
corresponds to the record description as copied into the program manually or
automatically through DATA DIVISION statements.

Note: record-location must be the same length as record-name.

Note: Exercise caution when usingthe TO record-location option because
source-object mismappingcanresultfrom improper use. In cases where more than
one copy of a given databaserecord descriptionis presentinthe program, you
must ensure that the proper record descriptionis bound atthe proper time.

record-location WITH record-name

Binds a record name literal, specified by record-name, with a variablestorage
record description, specified by record-location. Record-name must specify a record
included inthe subschema.

The following statement binds the EMPLOYEE record:

BIND EMPLOYEE.

After completion of the BIND RECORD function, the ERROR-STATUS fieldinthe IDMS
communications blockindicates theoutcome of the operation:

Status code Meaning
0000 The request has been serviced successfully.
1400 The BIND RECORD statement cannotbe recognized. This code usually

indicates thatthe IDMS communications block (SUBSCHEMA-CTRL) is
not aligned on a fullword boundary.

1408 The named record is notinthe subschema.The program has
probablyinvoked the wrong subschema.

1418 The record has been bound improperly to location 0.
1472 The availablememory is insufficientto dynamicallyload a database
procedure.

Chapter 6: Data Manipulation Language Statements 125

BIND RUN-UNIT

Status code Meaning

1474 An attempt to load a module from the load/core-imagelibraryor
DDLDCLOD has failed.

BIND RUN-UNIT

The BIND RUN-UNIT statement establishes a rununitfor accessingthe database,
identifies the location of the IDMS communications block beingused, and names the
subschema to be loaded for the run unit. BIND RUN-UNIT canalsonamethe node under
which the run unit will execute and identify the databaseto be accessed. BIND
RUN-UNIT must be the firstfunctional DMLcall passed to the DBMS atexecution time; it
must logically precedeall other DML statements (for example, BIND RECORD, READY,
FIND) inthe program's PROCEDURE DIVISION. UTM modes only: You must move LOW
VALUES to SUBSCHEMA-CTRL before issuingthe BIND RUN-UNIT statement.

When AUTOSTATUS isinuse, COPY IDMS SUBSCHEMA BINDS can be used to
automaticallyinvokethe BIND RUN-UNIT statement andthe appropriate BIND RECORD
statements (see Chapter 5: (see page 67)).

If program registrationis in effect (thatis, all programs mustbe registered inthe data
dictionary beforecompilation), the program must initializethe PROGRAM-NAME field of
the IDMS communications block either automatically or manually:

m Automatically—A COBOL MOVE statement automatically generated by COPY IDMS
SUBSCHEMA-BINDS moves the programname (stated inthe IDENTIFICATION
DIVISION) to the PROGRAM-NAME field.

® Manually—A COBOL MOVE statement is coded by the programmer before the BIND
RUN-UNIT statement is executed. For example:

MOVE 'EMPDISP' TO PROGRAM-NAME.
The BIND RUN-UNIT statement is usedin both the navigationaland the

non-navigational environments.

Syntax

v

»»—— BIND RUN-UNIT
L FOR subschema-name I

v

L DBNODE nodename 1L DBNAME database-name]

M

L DICTNODE nodename - L DICTNAME dictionary-name]

126 DML Reference Guide for COBOL

BIND RUN-UNIT

Parameters

FOR subschema-name

Identifies a subschema view other than that specifiedinthe DB clauseof the
SCHEMA SECTION. Itmust be the symbolic name of a user-defined eight-character
fieldinvariablestorage.

By default, if you do not specify a subschema, the run unit uses the subschema
named inthe DB clauseof the SCHEMA SECTION.

Note: Exercisecare when usingthe FOR subschema-name option; improper usecan
lead to mismappings between the named subschema andrecord descriptionsin
variablestorage.

DBNODE
Specifies the node where the databaseresides.
nodename

Either the symbolic name of a user-defined eight-character fieldinvariable
storage or the databasenameitselfenclosedin quotation marks.

DBNAME
Specifies the databaseto be accessed by the run unit.
database-name

Either the symbolic name of a user-defined eight-character fieldinvariable
storage or the databasenameitselfenclosedin quotation marks.

DICTNODE
Specifies the node that controls the dictionary where the subschema resides.
nodename

Either the symbolic name of a user-defined eight-character fieldinvariable
storage or the node name itselfenclosed in quotation marks.

DICTNAME
Specifies the dictionary where the subschema resides.

dictionary-name

Either the symbolic name of a user-defined eight-character fieldinvariable
storage or the dictionary nameitselfenclosedin quotation marks.

Note: The DBNODE, DBNAME, DICTNODE, and DICTNAME parameters can be
overridden at runtime by the DCUF SET DBNODE/DBNAME and DCUF SET
DICTNODE/DICTNAME commands.

Chapter 6: Data Manipulation Language Statements 127

BIND RUN-UNIT

Batch users: The DBNODE AND DBNAME parameters can be overridden at runtime
ifthe IDMSOPTI module or the SYSCTL clauseinthe system generation SYSTEM
statement specifies a nodename or a dbname with the ALWAYS option. For more
information aboutthe use of DBNODE, DBNAME, DICTNODE, and DICTNAME, see
the System Generation Guide.

Example

The following statement binds the run unit to the DBMS:

BIND RUN-UNIT.
Status Codes

After completion of the BIND RUN-UNIT function, the ERROR-STATUS fieldinthe IDMS
communications blockindicates theoutcome of the operation:

Status code Meaning
0000 The request has been serviced successfully.
1400 The BIND RUN-UNIT statement cannot be recognized. This code

usuallyindicates thatthe IDMS communications block
(SUBSCHEMA-CTRL) is notaligned on a fullword boundary.

1410 Security violation;an existingaccessrestriction or subschema usage
prohibits execution of the specified DML function. For LRF users, the
subschemainuse allows accessto databaserecords only. Combined
with a major code of 00, this code means the program has attempted
to access a databaserecord, but the subschema inuse allows access
to logicalrecords only.

1417 The transaction manager encountered an error. See the log for
additional information.

1467 Invalid subschema load module; the subschema invoked does not
match the subschema object tables. subschema object tables.

1469 The run unitis not bound to the DBMS. This code indicates thatthe
central versionis notactive, that the central versionis not accepting
new run units, or that the run unit's connection to the central version
is broken due to timeout or other factors, as noted on the CV log.

1470 A journal filewill notopen (local mode only);under OS, the most
probablecauseis thata DD statement for the journal fileis missingin
the JCL.

1472 There is insufficient memory to dynamicallyload a subschema or
databaseprocedure.

1473 The central versionis not accepting new run units.

128 DML Reference Guide for COBOL

BIND TASK

Status code Meaning

1474 The subschema was not found inthe dictionaryload area orinthe
loadlibrary.

1477 The run unithas been bound previously.

1480 The node specifiedis notactiveor has been disabled.

1481 The converted subschema requires specified databasename to be in

the DBNAME table.

1482 The subschema must be named inthe DBNAME table.

1483 The available memory is insufficientto allocate native VSAM work
areas.

1491 The subschema requires a DBNAME to do the bind run unit.

1492 No subschema areas map to DMCL.

1493 A subschema area symbolic was notfound in DMCL.

1494 The specified dbname is neither a dbname defined inthe DBNAME
table, nor a SEGMENT defined inthe DMCL.

1495 The specified subschema failed DBTABLE mappingusingthe specified
dbname.

BIND TASK

The BIND TASK statement initiates an CAIDMS task when the operating mode is
DC-BATCH. This statement establishes communication with the DC system and, if
accessing CAIDMS queues, allocates a packet-data movement buffer to contain the
queue data. Once ataskis started, the program canissueany number of consecutive
BIND-READY-FINISH sequences.

Note: Do not issuethis commandinlocal mode.

Syntax

»»—— BIND TASK

v

)

L NODENAME (rnodename)]

Chapter 6: Data Manipulation Language Statements 129

BIND TRANSACTION STATISTICS

Parameters

Example

Status Codes

NODENAME
Specifies the node to which the task will be bound.
nodename

Either the symbolic name of a user-defined field that contains the nodename or
the nodename itselfenclosed in quotation marks. The specified node name
must match the node named inthe DDS statement at system generation.

The following statement establishes communication with a DC system.
BIND TASK.

After completion of the BIND TASK function, the ERROR-STATUS fieldinthe IDMS-DC
communications blockindicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

BIND TRANSACTION STATISTICS

Syntax

The BIND TRANSACTION STATISTICS statement defines the beginning of a transaction
for the purposes of collecting transaction statistics. CA IDMS allocates a block of storage
inwhichto accumulatethese statistics. Becausethis blockis owned by the logical
terminal associated with the current task, the BIND TRANSACTION STATISTICS

statement cannot be used with nonterminal tasks.

Note: Ifa transaction statistics block (TSB) is already allocated for the logical terminal
associated with the current task, the BIND request clears the blockand writes any
previouslyaccumulated transaction statistics to the logfile.

When a BIND TRANSACTION STATISTICS request is issued, the transactionisassigned a
40-characteridentifier; the first32 characters arethe identifier of the signed-on user (if
any) and the lasteight characters arethe identifier of the logical terminal associated
with the current task.

»»—— BIND TRANSACTION STATISTICS .

X

130 DML Reference Guide for COBOL

CHANGE PRIORITY

Example

The following example illustrates the BIND TRANSACTION STATISTICS statement:

BIND TRANSACTION STATISTICS.
Status Codes

After completion of the BIND TRANSACTION STATISTICS function, the ERROR-STATUS
fieldinthe IDMS-DC communications blockindicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully;any existingtransaction
statistics block was written to the logfilebefore being cleared

3801 Storage for the transaction statistics blockis notavailable; to wait
would causea deadlock

3810 A new transaction statistics block has been allocated

3831 Either the parameter listis invalid or nological terminal element
(LTE) is associated with the issuingtask

3850 The collection of transaction statistics or task statistics has notbeen
enabled during system generation

CHANGE PRIORITY

The CHANGE PRIORITY statement changes the dispatching priority of the issuingtask.
The new dispatchingpriority applies only to the current execution of the task. CHANGE
PRIORITY does not relinquish control to another taskand cannot be used to alter the
priority of other tasks.

Syntax

»»—— CHANGE PRIORITY to priority .

M

Parameters
priority
The new dispatchingpriority for the issuingtask.

Either the symbolic name of a user-defined field that contains the priority valueor
the valueitselfexpressed as a numeric constantinthe range 0 through 240.

Chapter 6: Data Manipulation Language Statements 131

CHECK TERMINAL

Example

The following example changes the dispatching priority of the issuingtaskto the value
containedin the PRIORITY-210 field:

CHANGE PRIORITY TO PRIORITY-210.
Status Codes

After completion of the CHANGE PRIORITY function, the ERROR-STATUS fieldinthe
IDMS-DC communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully

CHECK TERMINAL

The CHECK TERMINAL statement delays task processinguntil a previouslyissued /0
request has completed.

Ifa READ TERMINAL, WRITE TERMINAL, or WRITE THEN READ TERMINAL request
specifies the NOWAIT option, the programmust issuea CHECK TERMINAL request
before specifyingany other I/O operation. If the I/O operation is notcomplete, the task
execution is suspended. When the 1/0 operationis complete, the task resumes
execution accordingto its established dispatching priority.

Syntax

»»—— CHECK TERMINAL
L GeT sTorAGE —

v

»—— INTO 7nput-data-location T TO end-input-data-location m >
MAX LENGTH 7nput-data-max-Ilength

M

L RETURN LENGTH into 7'/7put-data-actual—lengt/7—!

132 DML Reference Guide for COBOL

CHECK TERMINAL

Parameters

GET STORAGE

Asynchronous requests only. Acquires aninput buffer for the data being readinto
the program; CA IDMS allocates therequired storage when the read operationis
complete.

INTO

Specifies the 01-level WORKING-STORAGE SECTION or LINKAGE SECTION data area
reserved for the input data stream.

input-data-location
Specifies the symbolic nameof a user-defined field.

If GET STORAGE is specified, the data area reserved for the input data stream
must be anunallocated 01-level LINKAGE SECTION entry. If GET STORAGE is not
specified, the data area must be a previously allocated WORKING-STORAGE
SECTION or LINKAGE SECTION entry.
TO
Specifies the end of the data area reserved for the input.
end-input-data-location

Either the symbolic name of a user-defined dummy byte field or a field that
contains a data item not associated with the data area reserved for the input
data stream.

MAX LENGTH
Defines the length, in bytes, of the data area reserved for the inputdata stream.
input-data-max-length

Either the symbolic name of a user-defined field that contains the length of the
data area or the length itself expressed as a numeric constant.

Ifthe inputdata streamis larger thanthe data areareserved inthe
WORKING-STORAGE SECTION or LINKAGE SECTION, the data stream is
truncated as needed to fit the availablespace.

RETURN LENGTH INTO
Specifies the location to return the actual length of the input data stream.
input-data-actual-length

The symbolic name of a user-defined field. If the data stream has been
truncated, input-data-actual-length will contain the originallength before
truncation.

Chapter 6: Data Manipulation Language Statements 133

CHECK TERMINAL

Example

The following statement determines whether an 1/0O operationis complete, acquires an
input buffer, and reads 72 bytes of data into TERM-LINE:

CHECK TERMINAL
GET STORAGE
INTO TERM-LINE MAX LENGTH 72.

Status Codes

After completion of the CHECK TERMINAL function, the ERROR-STATUS fieldinthe
IDMS-DC communications block indicates the outcome of the operation:

Status code Meaning
0000 The request has been serviced successfully.
4519 The input area specified for the return of data is too small;the

returned data has been truncated to fit the availablespace.

4525 The output operation has been interrupted; the terminal operator
has pressed ATTENTION or BREAK.

4526 A logical error (for example, an invalid control character) has been
encountered inthe output data stream.

4527 A permanent 1/0O error has occurred during processing.
4528 The dial-up linefor the terminal being used has been disconnected.
4531 The terminal request block (TRB) contains aninvalidfield,indicatinga

possibleerrorinthe program's parameters.

4535 Storage for the inputbuffer cannotbe acquired because the specified
01-level LINKAGE SECTION entry has been allocated.

4537 Storage for the inputbuffer cannotbe acquired becausethe specified
data areais defined in the WORKING-STORAGE SECTION rather than
inthe LINKAGE SECTION.

4538 The specified 01-level LINKAGE SECTION entry has not been allocated
and the GET STORAGE option has not been specified.No 1/0 has
been performed.

4539 The terminal device associated with the issuingtaskis outofservice.

134 DML Reference Guide for COBOL

COMMIT

COMMIT

Syntax

Parameters

The COMMIT statement commits changes made to the databasethrough anindividual
run unitor through all databasesessions associated with a task. A task-level commit also
commits all changes madein conjunction with scratch, queue, and printactivity.

Ifthe commitapplies toanindividual rununitandthe run unitis sharingits transaction
with another databasesession, the run unit's changes may not be committed at the
time the COMMIT statement is executed.

Note: For more information aboutthe impact of transaction sharing, see the CA IDMS
Navigational DML Programming Guide.

Run units (and SQL sessions) impacted by the COMMIT statement remain active after
the operationis complete.

The COMMIT statement is usedin both the navigationalandlogical record facility
environments. The COMMIT TASK statement is alsousedinanSQL programming
environment.

Currency

Use of the ALL option, asin COMMIT ALL, sets all currenciesto null.

M

»»—— COMMIT
L TASK JL ALL a

TASK

Commits the changes made by all scratch, queue, and printactivityand all top-level
run units associated with the current task. Its impact on SQL sessions associated
with the task depends on whether those sessions aresuspended and whether their
transactions areeligibleto be shared.

More information:

For more information aboutthe impact of a COMMIT TASK statement on SQL
sessions,seethe CA IDMS SQL Programming Guide.

For more information aboutrun units and the impact of COMMIT TASK, see the CA
IDMS Navigational DML Programming Guide.

(ALL)

Releases all currencylocks held onrecords in database,scratch,and queue areas
associated with the issuingtask (COMMITTASK ALL) or run unit(COMMIT ALL) and
sets all currencies to null.

Chapter 6: Data Manipulation Language Statements 135

CONNECT

Example

The following statement commits changes made by the run unit through whichitis
issued:

COMMIT.
Status Codes

After completion of the COMMIT function, the ERROR-STATUS fieldinthe IDMS
communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully

5031 The specified requestis invalid; the program may containalogic
error

5097 An error was encountered processinga syncpointrequest; check the

logfor details

CONNECT

The CONNECT statement establishes a record occurrenceas a member of a set
occurrence. The specified record must be defined as an optional automatic, optional
manual, or mandatory manual member of the set. Native VSAM users:. The CONNECT
statement is not valid sinceallsets in native VSAM data sets must be defined as
mandatory automatic.

Before execution of the CONNECT statement, the followingconditions mustbe satisfied:

m All areas affected either explicitly or implicitly by the CONNECT statement must be
readied in one of the update usage modes (see READY (see page 272)laterinthis
chapter).

m The specified record must be established as current of its record type.

m The occurrence of the setinto which the specified record will be connected must be
established. The current record of set determines the set occurrence and,ifset
order is NEXT or PRIOR, the position atwhich the specified record will be connected
within the set.

Currency

Following successful execution of a CONNECT statement, the specified recordis
current of run unit, its record type, its area,andall sets inwhichitcurrently
participates.

136 DML Reference Guide for COBOL

CONNECT

Connecting a Record to a Set

The followingfigureillustrates the steps required to connect an EMPLOYEE record

to anoccurrenceof the OFFICE-EMPLOYEE set.

To connect EMPLOYEE 459 to OFFICE 1in the OFFICE-EMPLOYEE set, establish

EMPLOYEE 459 as current of record type, locatethe proper occurrence of the

OFFICE record, and issuethe CONNECT command.

EMPLOYEE
329

EMPLOYEE
600

DEPARTMENT OFFICE
410 |F |5s |CALC 450 |F |76 |CALC
DEPT-ID-0410 | DN OFFICE-CODE-0450 | DN
ORG-DEMO-REGION ORG-DEMQ-REGION
DEPT-EMPLOYEE OFFICE-EMPLOYEE
NPO OA 10 OA
ASC(EMP-LAST-NAME-0415 ASC(EMP-LAST-NAME-0415
EMP-FIRST-NAME-0415) DL EMP-FIRST-NAME-0415) DL
EMPLOYEE
415 |F |116 |CALC
EMP-ID-0415 | DN
EMP-DEMO-REGION

CURRENCIES
RUN UNIT, RECORD, SET, AREA

= =
.8 /8/8
& /3 & [&
S s /g /& /&
iy 57 O Q
3 @ o) w W W g o
= /&) &)k) F]S q
L L a
g/ & /g /& /&/86/)8& /)3
MQVE 5200 TO DEPT-ID. K200 | 5200 5200 5200
FIND CALC DEPARTMENT.
QBTAIN FIRST EMFLOYEE 459 | 5200 459 459 5200 459
WITHIN DEPT-EMPLOYEE.
MQOVE 1 TO OFFICE-CODE. 1| 5200 459 1 459 1 1 459
FIND CALC OFFICE.
CONNECT EMPLOYEE 459 | 5200 459 1 459 459 i 459
TO OFFICE-EMPLOYEE.

Syntax
»»>—— CONNECT

M

record-name T0 set-name .

Chapter 6: Data Manipulation Language Statements 137

CONNECT

Parameters
CONNECT
Specifies the record whose current occurrenceis to be connected to the current
occurrence of the specified set.
record-name
Must be a record included in the subschema and must be defined as an
optional automatic, optional manual, or mandatory manual member of the set
to whichitis being connected.
TO
Specifies the set to which the member record is to be connected.
set-name
Specifies the name of a setincluded inthe subschema.The record is connected
to the setinaccordancewith the ordering rules defined for that setin the
schema.
Example

The following statement connects the current EMPLOYEE record to the current
occurrence of the OFFICE-EMPLOYEE set:

CONNECT EMPLOYEE TO OFFICE-EMPLOYEE.
Status Codes

After completion of the CONNECT function,the ERROR-STATUS fieldinthe IDMS
communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

0705 The CONNECT would violatea duplicates-not-allowed option.
0706 Currency has not been established for the named record or set.
0708 The named record is notinthe subschema.The program has

probablyinvoked the wrong subschema.

0709 The named record's area has not been readied in one of the update
usage modes.

0710 The subschema specifies anaccess restriction thatprohibits
connecting the named record inthe named set.

138 DML Reference Guide for COBOL

DC RETURN

DC RETURN

Status code Meaning

0714 The CONNECT statement cannot be executed because the named
record has been defined as a mandatory automatic member of the
set.

0716 The record cannotbe connected to asetinwhich itisalreadya
member.

0721 An area other than the area of the named record has been readied

with anincorrectusage mode.

0725 Currency has not been established for the named set type.

The DC RETURN statement returns control to a programat the next higher level within a
task. Additionally, you can use the DC RETURN statement to specify:

m The next taskto beinitiated on the same terminal
m Recovery procedures for abend routines established by SET ABEND EXIT functions

m The actionto be taken ifthe user fails toinitiatethe next task

Followinga DC RETURN request, control returns to the program atthe next higher level
withinthe task. Ifthe issuingprogramis the highest level program, control returns to CA
IDMS. Any DC RETURN statement canincludea NEXT TASK CODE optionto specify the
next task to initiate. However, the position of the issuing program within the task
governs whether the specified taskwill,infact, receive control.

DC RETURN Processing

The followingfigureillustrates howa taskis executed when DC RETURN statements
withinthree programs specify the NEXT TASK CODE option.

Task A invokes program A. Program A links to program B, which inturn links to program
C.Program Cissues a DCRETURN NEXT TASK CODE 'Z' request; control returns to
program B. Program B contains a DC RETURN NEXT TASK CODE 'Y' request, which takes
precedence over program C's DC RETURN specification.Control returns to program A,
whichissues a DCRETURN NEXT TASK CODE 'X'request. Because program A is atthe
highest level in the task, task X will beinvoked.

Chapter 6: Data Manipulation Language Statements 139

DC RETURN

IDMS-DC
TASK X
TASK A .
PROGRAM X
PROGRAM A
: (RETURN)
DC RETURN
NEXT TASK CODE
X
|
(LINK B) .
» PROGRAM B
) (RETURN)
DC RETURN <
NEXT TASK CODE
Y
|
(LINK ©) .
> PROGRAM C
DC RETURN
NEXT TASK CODE
z
|

When CA IDMS receives control from the highestlevel programthat issueda DC
RETURN NEXT TASK CODE request, the specified taskis executed immediately if the
specified task code has been assigned the NOINPUT attribute duringsystem generation;
if the task code was assigned the INPUT attribute, the task executes only when the user

presses an attention identifier (AID) key. Typical AID keys includeall PAand PF keys,
ENTER, and CLEAR.

Syntax

»»— DC RETURN

v

v

L NEXT TASK CODE next-task-code —-|

»
»

v

NORMAL <« —
ABORT
CONTINUE —
IMMEDIATE —

140 DML Reference Guide for COBOL

DC RETURN

v

I— TIMEOUT _¢—|: INTERVAL t7‘meout-7‘nterva:,—|—]
PROGRAM timeout-program

L NEXT TASK INTERVAL start-interval EVENT TYPE T INTERNAL T
EXTERNAL

X

v

EVENT ecb 44|
EVENT NAME ecb-id

Parameters
NEXT TASK CODE

Specifies the next taskto be initiated on the same terminal.

next-task-code

Either the symbolic name of a user-defined field that contains the task code or
the task code itselfenclosed in quotation marks. The task code must be defined
to the DC system under whichitis running, either duringsystem generation or
at runtime.

NORMAL/ABORT/CONTINUE

Defines the recovery action to take withinthe program logic (CA IDMS recovery
occurs automatically) and specifies whether to execute abend routines for
higher-level programs.These options applyto DC RETURNs issued fromabend
routines established by SET ABEND EXIT (STAE) functions only.

NORMAL

Specifies to not attempt recovery and execute all abend routines established
for programs at higher task levels.

This is the default.

ABORT

Specifies to not attempt recovery and abort the taskimmediately without
executing anyabend routines established for programs athigher tasklevels.

CONTINUE

Specifies to return control to the program that failed atan address established
inthe abend control element (ACE) for the program.

IMMEDIATE
Is ignored when issued from ABEND routine; itis only applied when NOT issued
from an ABEND routine.

TIMEOUT

Specifies the actionto take ifthe user fails to enter data required to initiatea task.
This parameter overrides resource timeout interval and program specifications
established during system generation.

Chapter 6: Data Manipulation Language Statements 141

DC RETURN

INTERVAL

Specifies the time, inseconds,that can elapsebefore releasingthe resources held
by the terminal on which the taskis executing.

timeout-interval

Either the symbolic name of a user-defined PICS9(4) COMP SYNC (halfword)
field that contains the timeout interval or the interval itselfexpressed as a
numeric constant.

PROGRAM

Specifies the programto be invoked to handleandrelease resources held by the
terminal on which the task is executingwhen the specified timeout interval has
been reached.

timeout-program

Either the symbolic name of a user-defined field that contains the program
name or the name itselfenclosedin quotation marks.

The specified program must be defined to the DC system either during system
generation or at runtime.

NEXT TASK INTERVAL start-interval

Either the symbolic name of a user-defined PICS9(4) COMP SYNC (halfword)field
that contains the startinterval or the interval itself expressed as a numeric
constant.

Note: When specified alone, NEXT TASK INTERVAL will causetaskto beinitiated
after start-interval. When specified along with EVENT/EVENT NAME, task will be
initiated either after start-interval or postingof the EVENT(S)/EVENT NAME(S),
whichever occurs first.

EVENT TYPE INTERNAL/EXTERNAL
Specifies events that happen either internal or external to the system.
INTERNAL

An event that occurs within IDMS-DC, such as waitingfor spaceina storage
pool, or waiting for a completed task.

EXTERNAL

An event that occurs outsidethe system's control, such as waitingfor a fileto
be read, or waitingfor an1/0 to complete.

EVENT
Defines one or more ECBs upon which the task will wait.
ecb

The symbolic name of a user-defined area that contains three PICS9(8) COMP
SYNC (fullword) fields. Multiple EVENT parameters must be separated by at
leastone blank.

142 DML Reference Guide for COBOL

DELETE QUEUE

EVENT NAME
Specifies the ECB upon which the task will wait.

Note: When specified alone, NEXT TASK INTERVAL will causetaskto beinitiated
after start-interval. When specified along with EVENT/EVENT NAME, task will be
initiated either after start-interval or postingof the EVENT(S)/EVENT NAME(S),
whichever occurs first.

ecb-id

Either the symbolic name of a user-defined field that contains the ECB ID or the
ID itselfenclosed in quotation marks.

Example

The following statement illustrates the use of DC RETURN. The task code associated with
MENU-TASK-CODE, ifdefined with the INPUT parameter, will be invoked when the user
next presses an AID key; if MENU-TASK-CODE is defined with the NOINPUT parameter, it
will beinvoked immediately.

DC RETURN
NEXT TASK CODE MENU-TASK-CODE.

Status Codes

Because control is returned to the next-higher level, there is no need to check the
ERROR-STATUS field.

DELETE QUEUE

The DELETE QUEUE statement deletes all or partof a queue. Ifonly one queue record is
deleted, CA IDMS maintains currency within the queue by savingthe next and prior
currencies of the deleted record.

Syntax

»»—— DELETE QUEUE . ><
L ID queue—m’J \—E %EERENT < j—i

Parameters

Specifies the queue that contains the record to be deleted.
queue-id

Either the symbolic name of a user-defined field that contains the ID or the ID
itselfenclosed in quotation marks. If you do not specifyanID, ablankIDis
assumed.

Chapter 6: Data Manipulation Language Statements 143

DELETE SCRATCH

CURRENT
Deletes the current record of the queue associated with the requesting task.
This is the default.

ALL

Deletes all records inthe queue and the queue header ID.
Example

The followingexample illustrates a request to delete the current record inthe RES-Q
queue:

DELETE QUEUE
ID 'RES-Q'
CURRENT.

Status Codes

After completion of the DELETE QUEUE function, the ERROR-STATUS fieldin the
IDMS-DC communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

4404 The requested queue header record cannotbe found.

4405 The requested queue record cannot be found.

4406 No resource control element (RCE) exists for the queue record,

indicatingthatcurrency has not been established.

4407 A databaseerror occurred during queue processing. Acommon
causeis a DBKEY deadlock. For a PUT QUEUE operation, this code
canalsomeanthat the queue upper limithas been reached.

Ifa databaseerror has occurred, there areusually be other messages
inthe CA-IDMS/DC/UCF logindicatinga problemencountered in
RHDCRUAL, the internal Run Unit Manager. If a deadlock has
occurred, messages DC001000 and DC001002 are also produced.

4431 The parameter listis invalid.

DELETE SCRATCH

The DELETE SCRATCH statement deletes one scratchrecord or all records inthescratch
area.

144 DML Reference Guide for COBOL

DELETE SCRATCH

Syntax

Parameters

»»—— DELETE SCRATCH

\ 4

»

v

L AREA ID scratch-area-id —

v

CURRENT «
FIRST
LAST
NEXT
PRIOR

ALL
RECORD ID scratch-record-id —

)4

L RETURN RECORD ID 7nto return—scratch—record—’

AREA ID
Specifies the scratch area associated with the scratch records being deleted.
scratch-area-id

Either the symbolic name of a user-defined field that contains the scratch area
ID orthe ID itselfenclosed in quotation marks. If you do not specify an AREA ID,
anarea ID of eight blanks is assumed.

CURRENT

Deletes the currentrecord inthe scratch area (thatis, that record most recently
referenced by another scratch function).

This is the default.
FIRST

Deletes the firstrecordinthe specified scratch area.
LAST

Deletes the lastrecordinthe specified scratch area.
NEXT

Deletes the next record inthe specified scratch area.
PRIOR

Deletes the priorrecordinthe specifiedscratcharea.
ALL

Deletes all records inthe specified scratcharea.

Chapter 6: Data Manipulation Language Statements 145

DELETE TABLE

Example

Status Codes

DELETE TABLE

RECORD ID
Deletes the identified record.
scratch-record-id
The symbolic name of a user-defined field that contains the ID.
RETURN RECORD ID into

Specifies the locationin the programin which to return the ID of the lastrecord
deleted by means of the DELETE SCRATCH function.

return-scratch-record

The symbolic name of a user-defined four-byte field.

The following exampleillustrates a request to delete the scratchrecordthatis priorto
the current scratchrecord andreturn the ID of the deleted record to the SCR-REC-ID
field:

DELETE SCRATCH
PRIOR
RETURN RECORD ID INTO SCR-REC-ID.

After completion of the DELETE SCRATCH function, the ERROR-STATUS fieldinthe
IDMS-DC communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully
4303 The requested scratch area ID cannot be found
4305 The requested scratchrecord ID cannotbe found
4307 An 1/Oerror has occurred during processing
4331 The parameter listis invalid

The DELETE TABLE statement notifies CAIDMS that the issuingtaskhas finished usinga
table that has been loaded into the program pool by usingthe LOAD TABLE function.
DELETE TABLE does not physically delete reusabletables from the program pool;rather,
it decrements the in-usecount maintained by CA IDMS. An in-use count of Osignals to
reuse the spaceoccupied by the table.

146 DML Reference Guide for COBOL

DELETE TABLE

Syntax
»»— DELETE TABLE from @I-level-program-location . >
> T DICTNODE nodename — L DICINAME dictionary-name >
> Lon0LIB 176rary-name >
Parameters
01-level-program-location
The LINKAGE SECTION entry of the 01-level record area specifiedinthe associated
LOAD TABLE request.
DICTNODE
Specifies the node that controls the dictionary where the subschema containingthe
tableresides.
nodename
Specifies the symbolic name of a user-defined eight-character fieldinvariable
storage.
DICTNAME
Specifies the dictionary where the subschema containingthe tableresides.
dictionary-name
Specifies the symbolic nameof a user-defined eight-character fieldinvariable
storage.
LOADLIB
Specifies the load library containingthetable.
library-name
Specifies the symbolic name of a user-defined eight-character fieldinvariable
storage.
Example

The followingexample releases a previouslyloaded tablefromthe locationinvariable
storage identified by RATE-TABLE:

DELETE TABLE FROM RATE-TABLE.

Chapter 6: Data Manipulation Language Statements 147

DEQUEUE

Status Codes

DEQUEUE

Syntax

Parameters

After completion of the DELETE TABLE function, the ERROR-STATUS fieldinthe IDMS-DC
communications blockindicates the outcome of the operation:

Status code Meaning
0000 The request has been serviced successfully
3433 The specified tablewas not loaded by the task

The DEQUEUE statement releases resources acquired by the issuingtaskwithan
ENQUEUE request. Acquired resources not released explicitly witha DEQUEUE request
arereleased automaticallyattasktermination.

»»—— DEQUEUE T ALL . >«
[l

v— NAME resource-id LENGTH resource-id-length

ALL

Releases all resources acquired by the issuingtask by means of ENQUEUE requests.
NAME

Specifies a resourceto be dequeued.

Multipleresourcespecifications mustbe separated by atleastone blank.

resource-id

The symbolic name of a user-defined field that contains the resource ID.

LENGTH

Specifies the length of the resource.

resource-id-length

Either the symbolic name of a PIC $9(8) COMP SYNC (fullword) field that
contains the length of the resourcelD or the length itself expressed as a
numeric constant.

148 DML Reference Guide for COBOL

DISCONNECT

Example

Status Codes

DISCONNECT

The following statement illustrates a request torelease all the resources enqueued by
the issuing task:

DEQUEUE PAYROLL-LOCK
LENGTH 16.

After completion of the DEQUEUE function, the ERROR-STATUS fieldinthe IDMS-DC
communications block indicates the outcome of the operation:

Status code Meaning
0000 The request has been serviced successfully
3913 At leastone resourcelD cannotbe found; all resources thatwere

located have been dequeued

3931 The parameter listis invalid.

The DISCONNECT statement cancels the current membership of a record occurrenceina
set occurrence. The named record must be defined as an optional member of the
named set. Native VSAM users:. The DISCONNECT statement is notvalidsinceall setsin
native VSAM data sets must be defined as mandatory automatic.

Before execution of the DISCONNECT statement, the followingconditions mustbe
satisfied:

m All areas affected either explicitly or implicitly by the DISCONNECT statement must
be readied with one of the three update usage modes (see READY (see page 272)
later inthis chapter).

m The named record must be established as currentofits record type.

m The named record must currently participateas a member inan occurrence of the
named set.

Following successful execution of the DISCONNECT statement, the named record canno
longer be accessed through the set for which membership was cancelled.The
disconnected record canstill beaccessed either by means of a complete scan of the
area inwhichit participates or directly throughits db-key, if known. A disconnected
record canalsobeaccessed either through any other sets in which itparticipates as a
member or ifit has a location mode of CALC.

Chapter 6: Data Manipulation Language Statements 149

Disconnecting a Record from a Set

Currency

A successfully executed DISCONNECT statement nullifies currencyin thespecified

set. However, next, prior,and owner of set are maintained, enabling continued
access within the set. The disconnected record is current of run unit, its record type,

its area,and any other sets in whichitparticipates.

Disconnecting a Record from a Set

The followingfigureillustrates thesteps required to disconnectan EMPLOYEE record
from an occurrence of the OFFICE-EMPLOYEE set.

To disconnect EMPLOYEE 4 from the OFFICE 1 of the OFFICE-EMPLOYEE set, enter the
databaseon OFFICE, establish EMPLOYEE 4 as currentof the EMPLOYEE record type,

anddisconnectit from the OFFICE-EMPLOYEE set.

-

EMPLOYEE
a5

AY

EMPLOYEE
28

DEPARTMENT OFFICE
40 [s Jcac 450 | Jze Joac
DEPT-ID-0410 Jon OFFICE-CODE-0450 |EX
ORG-DEMO-REGION ORG-DEMO-REGION
DEPT-EMPLOYEE OFFICE-EMPLOYEE
NPO OA 10 OA
ASC(EMP-LAST-NAME-0415 ASC{EMP-LAST-NAME-0415
EMP-FIRST-NAME-0415) DL EMP-FIRST-NAME-0415) DL
EMPLOYEE
415 IF |11s ICALC
EMP-ID-0415 | EX
EMP-DEMO-REGION

CURRENCIES
RUN UNIT, RECORD, SET, AREA

FROM OFFICE-EMPLOYEE.

= >
s /9 /9
g/15 /878
= g /& /T /¢«
Ly Ly g Q Q
s /5)& &/ /5 /5
< - PN y &y Uy
5 Iy) LU W & Q fa)
s /& /&) 2K R) s] a
i) 4y [iy [a0
a Q 5 Q Q @) O 5
MQVE 1 TO OFFICE-CODE. 1 1 1
FIND CALC OFFICE.
FIND FIRST EMPFLOYEE 4 4 1 4 4 4
WITHIN OFFICE-EMPLOYEE.
DISCONNECT EMPLOYEE. 4 4 1 4 | NPQO 1 4

150 DML Reference Guide for COBOL

Disconnecting a Record from a Set

Syntax

Parameters

Example

Status Codes

»»—— DISCONNECT record-name FROM set-name .

DISCONNECT

M

Specifies the record to disconnectfrom the named set.

record-name

Must be arecord included inthe subschema and must be defined as an
optional member of the specified set.

FROM

Specifies the set from which the named record will be disconnected.

set-name

Specifies the name of a setincludedinthe subschema.

The following statement disconnects the current EMPLOYEE record from the
OFFICE-EMPLOYEE set:

DISCONNECT EMPLOYEE FROM OFFICE-EMPLOYEE.

After completion of the DISCONNECT function, the ERROR-STATUS fieldinthe IDMS
communications blockindicates the outcome of the operation:

Status code

Meaning

0000 The request has been serviced successfully

1106 Currency has not been established for the named record

1108 The named record is notinthe subschema.The program has
probablyinvoked the wrong subschema

1109 The named record's area has not been readied in one of the update
usage modes

1110 The subschema specifies anaccess restriction that prohibits use of
the DISCONNECT statement

1115 The DISCONNECT statement cannot be executed because the named
record has been defined as a mandatory member of the set

1121 An area other than the area that contains the named record has been

readied with anincorrectusage mode

Chapter 6: Data Manipulation Language Statements 151

END LINE TERMINAL SESSION

Status code Meaning

1122 The named record is notcurrently a member of the specified set

END LINE TERMINAL SESSION

Syntax

Example

Status Codes

The END LINE TERMINAL SESSION statement terminates the currentlinel/Osession.All
output data lines that remaininthe current buffer and all pages queued for
asynchronous I/O operations aredeleted.

»»—— END LINE TERMINAL SESSION .

M

The following statement terminates aline mode |I/O session:

END LINE TERMINAL SESSION.

There are no status codes associated with the END LINE TERMINAL SESSION command.

END TRANSACTION STATISTICS

Syntax

The END TRANSACTION STATISTICS statement defines the end of a transaction. The
transaction typically ends when the issuingtask terminates. Optionally, END
TRANSACTION STATISTICS canbe used to write the transaction statistics block (TSB) to
the DC system logfileand to return the TSB to a preallocated locationinvariable
storage. You can define the length of the TSB.

WRITE «

»»—— END TRANSACTION STATISTICS :I >
NOWRITE

L INTO return-stat-data-location]

[e

L <

len-return-T5B

152 DML Reference Guide for COBOL

END TRANSACTION STATISTICS

Parameters

Example

Status Codes

WRITE/NOWRITE

Specifies whether the TSB is written to the DC system logfilewhen the task
terminates.

Default: WRITE.
INTO

Specifies the WORKING-STORAGE SECTION or LINKAGE SECTION data area into
whichto return the TSB.

return-stat-data-location

A fullword-aligned 388-byte field (you can customize the length usingthe
LENGTH parameter).

LENGTH

Specifies the length of the returned TSB. To retrieve all statisticsincludingthe DC
extended statisticssectionthatrecords CPU times inthe Time of Day (TOD) format,
specify LENGTH as 560.

len-return-TSB

Specifies either the symbolic name of a user-defined field that contains the
length of the TSB, or the length expressed as a numeric constant.

Limits: Integer of 388 or greater

Default: If you do not specify len-return-TSB, the first388 bytes of the TSB are
returned.

The following statement illustrates a request to end a transaction, writestatistics to the
logfile, and return a copy of the TSB to the STATISTICS-BLOCK field:

END TRANSACTION STATISTICS
WRITE
INTO STATISTICS-BLOXK.

After completion of the END TRANSACTION STATISTICS function, the ERROR-STATUS
field inthe IDMS-DC communications blockindicates the outcome of the operation:

Status code Meaning
0000 The request has been serviced successfully.
3801 Storage for the transaction statistics blockis notavailable; to wait

would causea deadlock.

Chapter 6: Data Manipulation Language Statements 153

ENDPAGE

ENDPAGE

Syntax

Example

Status Codes

ENQUEUE

Status code Meaning

3813 No transaction statistics block exists;a BIND TRANSACTION
STATISTICS request has not been issued.

3831 Either the parameter listis invalid or nological terminal element
(LTE) is associated with the issuingtask.

3850 The collection of transaction statistics or task statistics has notbeen
enabled during system generation.

The ENDPAGE statement terminates a map pagingsession,clearsthescratchrecord for
the session,and clears themap pagingoptions for the completed session. A
STARTPAGE/ENDPAGE pairencloses commands thathandlea pageablemap at runtime.
The STARTPAGE command is discussed later in this chapter.

»»—— ENDPAGE session .)

The following statement ends a map pagingsession:

ENDPAGE session.

After completion of the ENDPAGE function, the ERROR-STATUS fieldinthe IDMS-DC
communications blockindicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully

The ENQUEUE statement acquires or tests the availability of a resource or listof
resources.Resources are defined duringinstallation and systemgeneration and typically
includestorageareas, common routines, queues, and processor time.

154 DML Reference Guide for COBOL

ENQUEUE

An enqueued resourcecan be exclusiveorshared:

m Exclusive—The resourceis owned exclusively by the issuingtaskandis notavailable
to anyother tasks.CA IDMS prohibits other tasks from obtainingresources that
have been ENQUEUED exclusively.

Note: An exclusive ENQUEUE request prohibits another task from enqueuing a
resource by name; however, itdoes not prohibitthe use of the resource by another
task. Therefore, to effect true resource protection, you must enqueue and dequeue
resources consistently.

m Shared—The resourceis availabletoall tasks. CAIDMS allows other tasks to issue
nonexclusive ENQUEUE requests for the resources, permitting the resources to be

shared.
Syntax
»»—— ENQUEUE >
WAIT «
NOWAIT
TEST
I
»—v— NAME resource-id LENGTH resource-length | .«
EXCLUSIVE « :I
SHARED
Parameters

WAIT

Specifies to waitfor all resources to be freed, ifit cannotservicethe request
immediately.

This is the default.

NOWAIT

Specifies to not waitto acquireresources thatare not currentlyavailable. If
NOWAIT is specified, the program should check the ERROR-STATUS fieldinthe
IDMS-DC communications block to determine if the function has been completed. If
the ERROR-STATUS valueis 3901, indicatingthata resource could not be obtained
immediately, the request has not been serviced and the programshould perform
alternative processingbefore reissuingthe NOWAIT request.

TEST

Specifies to test the availability of the specified resources. If TEST is specified, the
program should check the ERROR-STATUS field inthe IDMS-DC communications
block to determine the outcome of the test.

Chapter 6: Data Manipulation Language Statements 155

ENQUEUE

NAME
Specifies the ID associated with a resource.
Multipleresourcespecifications mustbe separated by at leastone blank.
resource-id

Specifies the symbolic name of a user-defined field that contains the name of
the resource. The resource nameis a 1-256 byte character stringused to
identify the resourcethat an enqueue is to be set or tested with. Any character
stringcan be defined as longas all programs thataccess theresource use the
same name, and as longas the name is uniquerelativeto all other names used
to identify other resources withinthe CV.

LENGTH
Specifies the length of the resource.
resource-id-length

Either the symbolic name of a user-defined field that contains the length of the
resource IDor the length itself expressed as a numeric constant.

EXCLUSIVE
Assigns the exclusiveattributeto the named resource.
This is the default.

SHARED

Assigns the shared attribute to the named resource.
Examples

The statements below illustratethe use of the ENQUEUE statement:
Example 1

The following statement enqueues the CODE-VALUE and PAYROLL-LOCK resources.
CODE-VALUE is reserved for the issuingtask's exclusive use; PAYROLL-LOCK canbe
shared.

ENQUEUE
WAIT
NAME CODE-VALUE LENGTH 10
NAME PAYROLL-LOCK LENGTH 16 SHARED.

Example 2

The following statement tests the availability of the resource whose identifieris
contained in the RESOURCE-NAME field:

ENQUEUE
TEST
NAME RESOURCE-NAME LENGTH RESOURCE-LENGTH.

156 DML Reference Guide for COBOL

ERASE

Status Codes

ERASE

After completion of an ENQUEUE functionto acquire resources,the ERROR-STATUS field
inthe IDMS DC communications blockindicates theoutcome of the operation:

Status code

Meaning

0000 The request has been serviced successfully.

3901 At leastone of the requested resources cannot be enqueued
immediately; to waitwould causea deadlock.No new resources have
been acquired.

3908 At leastone of the requested exclusiveresources is currently owned
by another task. No new resources havebeen acquired.

3931 Parameter listis invalid.

After completion of an ENQUEUE functionto test resources,the ERROR-STATUS fieldin
the IDMS DC communications blockindicates the outcome of the operation:

Status code

Meaning

0000 All requested resources are available.

3908 At leastone of the tested resources is already owned by another
task.

3909 At leastone of the tested resources is not yet owned by another task
andis availableto the issuingtask.

3931 Parameter listis invalid.

The ERASE statement performs the followingfunctions:

m Disconnects the specified record from all setoccurrences in whichitparticipates as
a member andlogically or physically deletes the record from the database

m Optionallyerases allrecords thatare mandatory members of set occurrences
owned by the specified record

m Optionallydisconnects or erases allrecords thatare optional members of set
occurrences owned by the specified record

Chapter 6: Data Manipulation Language Statements 157

ERASE

Syntax

Parameters

ERASE is a two-step procedure that firstcancels the existing membership of the named
record inspecific setoccurrences and then releases for reuse the spaceoccupied by the
named record and its db-key. Erased records are unavailable for further processing by
any DML statement.

Before execution of the ERASE statement, the following conditions mustbe satisfied:

m All areas affected either implicitly or explicitly mustbe readied in one of the update
usage modes (see READY (see page 272)laterinthis chapter)

m Allsetsin which the specified record participates as owner either directly or
indirectly (for example, as owner of a set with a member that is owner of another
set) and all member record types inthose sets must be includedinthe subschema
inuse

m The specified record must be established as currentof run unit

Currency

»»—— ERASE record-name E

Following successful execution of an ERASE statement, currency is nullified for all
record types involvedinthe erase both explicitly and implicitly. Run unitand area
currency remain unchanged. Next, prior,and owner currencies are preserved for
sets from which the lastrecord occurrence was erased. These currencies enableyou
to retrieve the next or prior records within the area or the next, prior, or owner
records within the setin which the erased record participated. An attempt to
retrieve erased records results ina non-zero status condition.

)

PERMANENT MEMBERS —
SELECTIVE MEMBERS —
ALL MEMBERS —

record-name

Specifies the name of the record to be erased. It must be a recordincludedinthe
subschema. The current of record-name must be current of run unit.

Unless PERMANENT, SELECTIVE, or ALL qualification follows,a non-zero status
conditionresults ifthe named recordis the owner of any nonempty set
occurrences.

Native VSAM users: ERASE record-name is the only form of the ERASE
statement valid for records in a native VSAM KSDS or RRDS; the ERASE
statement is not valid for a native VSAM ESDS.

158 DML Reference Guide for COBOL

ERASE

Example

PERMANENT MEMBERS

Erases the specified record and all mandatory member record occurrences owned
by the specified record. Optional member records aredisconnected. If any of the
erased mandatory members arethemselves the owner of any set occurrences, the
ERASE statement is executed on suchrecords as if they were directly the object
record of an ERASE PERMANENT statement (that is,all mandatory members of such
sets arealsoerased). This process continues until all directand indirect members
have been processed.

SELECTIVE MEMBERS

Erases the specified record and all mandatory member record occurrences owned
by the specified record. Optional member records areerased if they do not
currently participate as members in other set occurrences. All erased member
records that are themselves the owners of anyset occurrences aretreated as if
they were the object of an ERASE SELECTIVE statement.

ALL MEMBERS

Erases the specified record and all mandatory and optional member record
occurrences owned by the specified record. All erased member records that are
themselves the owners of anyset occurrences aretreated as if they were the object
record of an ERASE ALL statement.

Use of the ERASE Statement

The followingfigureillustrates use of the three parameters of the ERASE statement.

The outcome of the ERASE statement varies based on the qualifier specified
(PERMANENT, SELECTIVE, or ALL). Although all three qualifierscauseall mandatory
members owned by the specified record to be erased, they differ in their effect on
optional members.

Chapter 6: Data Manipulation Language Statements 159

ERASE

Because the sampleemployee databaseprovides noappropriate examples of these
parameters, this figure and the one after use a samplehigh school databaseinstead.

SFIRO
TUTUQ

DEPT TCGHR
QA
MA OA
FOREIGN SUBJ CLASS
MA

LANGUAGES

ERASE DEPT PERMANENT

SPIRQ

TuTuo (assuming that FOREIGN LANGUAGES is
current of run unit)

The Foreign Languages Department can no
longer be funded, so it is deleted from the
database along with its subjects and classes.
The teachers will be reassigned to other
departments.

Erases the foreign language record and
all mandatory members; disconnects
optional members.

160 DML Reference Guide for COBOL

ERASE

ERASE TCHR SELECTIVE

(assuming that WON HAN is current of
the run unit)

SFIRO
TUTUO

Won Han has quit in the middle of the
semester. His classes will be finished by
another teacher, so only Won Han is erased.
(Remember that an unqualified ERASE
command cannot be used to erase the owner
of a non-empty set.)

Erases the TCHR record occurrence, mandatory
members (none, TCHR-CLASS is OA), and
aptional orphans (none, GHI is in the
SUBJ-CLASS set).

FOREIGN
LANGUAGES

ERASE TCHR ALL

{assuming that Won Han is current of
run unit)

SPIRC
TUTUO

No one is available to teach Won Han's
classes, so both he and his classes are
deleted from the database.

Erases the TCHR record occurrence and
all mandatory and optional members.

FOREIGN
LANGUAGES

ERASE Currency

The following figure shows the effect each of the parameters has on currency.

Chapter 6: Data Manipulation Language Statements 161

ERASE

Status Codes

CURRENCIES: RUN UNIT, RECORD, SET, AREA

RUN DEPT TCHR | SUBJ CLASS | DEPT- DEPT- TCHR- | suBJ- | SCHOOL-

UNIT TCHR SUBJ CLASS | cLass | REGION
ESTABELISHED | FOREIGN | FOREIGN FRENCH | CHI I. | FOREIGN | FOREIGN | CHI I. | FRENCH | FOREIGN
CURRENCIES | LANG. LANG. LANG. LANG. LANG.
ERASE DEPT | FOREIGN | MULL NULL NULL NP NULL NP NULL FOREIGN
PERMANENT LANG. LANG.
ESTABLISHED | WOM HAN | FOREIGN | WON CHI I. | WOM FOREIGN | WON CHI I. | WOM
CURRENCIES LANG. HAN HAN LANG. HAN HAN
ERASE TCHR | WOM HAN | FOREIGN CHI I. | MWP FOREIGN | NP CHI I. | WON
SELECTIVE LANG. LANG. HAN
ESTABLISHED | WOM HAN WON | FRENCH WON FRENCH | WON FRENCH | WON
CURRENCIES HAN HAN HAN HAN
ERASE TCHR | WON HAN FRENCH | NULL NP FRENCH | NP NP WON
ALL HAN

After completion of the ERASE function,the ERROR-STATUS fieldinthe IDMS
communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

0203 Invalid currency for the named record to ERASE. This canonly occur
when a rununitis sharinga transaction with other databasesessions.
The 03 minor status is returned if the run unit tries to erase a record
usinga currency that has been invalidated because of changes made
by another databasesessionthatis sharingthe same transaction.

0208 The object record is not in the specified subschema.

0209 The named record's area has not been readied in one of the three
update usage modes.

0210 The subschema specifies anaccess restriction that prohibits use of
the ERASE statement. For SPF users, this code canalsoindicateuse of
aninvalid formof the ERASE statement.

0213 A current record of run unit has either not been established or has
been nullified by a previous ERASE statement.

0217 A db-key has been encountered that contains a long-term permanent

lock.

162 DML Reference Guide for COBOL

ERASE (LRF)

ERASE (LRF)

Status code Meaning

0220 The current record of run unitis not the same record type as the
named record.

0221 An area other than the area of the specified record has been readied
with anincorrectusage mode.

0225 Currency has not been established.

0226 A broken chain has been encountered inthe process of executing an
ERASE ALL, PERMANENT, or SELECTIVE.

0230 An attempt has been made to erase the owner record of a nonempty
set.
0233 Either erasure of the record occurrence is not allowed in this

subschema or all sets in which the record participates have not been
includedinthe subschema.

0260 A record occurrence has been encountered whose type is
inconsistentwith the set named inthe ERROR-SET field of the IDMS
communications block; probablecauses include:a broken chainand
improper databasedescription.

0261 The record cannotbe erased because of broken chainsinthe
database.

The ERASE statement deletes alogical-record occurrence. The ERASE statement does
not necessarily resultinthedeletion of all or any of the databaserecords used to create
the specified logical record; the path selected to servicean ERASE logical-record request
performs whatever databaseaccess operations the DBA has specified to servicethe
request. For example, if a DEPARTMENT loses an employee, the EMP-JOB-LR logical
record that contains information aboutthat employee would be erased. However, only
the information aboutthe former employee would be erased from the database, notall
the information aboutthe department; thatis, EMPLOYEE information would be erased,
but not DEPARTMENT, JOB, or OFFICE information.

LRF uses field values presentinthe variable-storagelocationreserved for the logical
record to update the database. You canspecifyanalternativestorage location from
which LRF is to take field values to make the appropriate updates to the database.

Chapter 6: Data Manipulation Language Statements 163

ERASE (LRF)

Syntax

»»—— ERASE logical-record-name >

L FROM alt-logical-record-location - -
L WHERE boolean-expression | g
L ON path-status imperative-statement - o
Parameters

logical-record-name
Specifies the name of the logicalrecord to erase. The logical record mustbe defined
inthe subschema. Unless you specify FROM, LRF uses field values present in the
variable-storagelocationreserved for the logical record to make any necessary
updates to the database.

FROM alt-logical-record-location
Names analternativevariable-storagelocation fromwhich LRF is to obtain field
values to perform the appropriatedatabaseupdates inresponseto this request.
When erasinga logicalrecordthathas previously beenretrieved into an alternative
storage location, usethe FROM clauseto name the same location specified in the
OBTAIN request. The alternate record location mustbe defined inthe
WORKING-STORAGE/LINKAGE SECTION.

WHERE boolean-expression
Specifies the selection criteria tobe applied to the specified logical record. For
details on codingthis clause, see Logical-Record Clauses (see page 327) at the end
of this chapter.

ON path-status imperative-statement
Specifies the action to be taken if path-status is returned to the LR-STATUS fieldin
the LRC block. For details on codingthis clause, see Logical-Record Clauses (see
page 327) at the end of this chapter.

Example

The followingexample illustrates a request to erase all occurrences of a former
employee's EMP-INSURANCE-LR logicalrecord;the DBA-designated path status
ALL-ERASED indicates thatall occurrences of the EMP-INSURANCE-LR logical record have
been erased.

ERASE EMP-INSURANCE-LR WHERE EMP-ID-0415 EQ '0316'
ON ALL-ERASED PERFORM EMP-INS-DELETION-RPT.

164 DML Reference Guide for COBOL

FIND/OBTAIN

FIND/OBTAIN

FIND/OBTAIN

ERASE EMP-INSURANCE-LR

As defined by the DBA, the ERASE EMP-INSURANCE-LR path group logically deletes all of
the specified EMP-INSURANCE-LR occurrences but physically deletes only the
COVERAGE records, as illustrated by the following figure.

The FIND statement locates a record occurrence inthe database;the OBTAIN statement
locates a record and moves the data associated with the record to the record buffers.
Because the FIND and OBTAIN command statements have identical formats,they are
discussed together. The six formats of the FIND/OBTAIN statement are as follows:

m FIND/OBTAIN CALC accesses a record occurrence by usingits CALC key value.

m FIND/OBTAIN CURRENT accesses arecord occurrenceby usingestablished
currencies.

m FIND/OBTAIN DB-KEY accesses a record occurrenceby usingits databasekey.

m FIND/OBTAIN OWNER accesses the owner record of a set occurrence.

m FIND/OBTAIN WITHIN SET USING SORT KEY accesses a record occurrenceina
sorted set by usingits sortkey value.

m FIND/OBTAIN WITHIN SET/AREA accesses arecordoccurrencebasedon its logical
location withina set or on its physical location withinan area.

You canplacelocks onlocated record occurrences by usingthe KEEP clauseofa
FIND/OBTAIN statement. The KEEP clausesets a shared or exclusivelock:

m KEEP places asharedlockon the located record occurrence. Other concurrently
executing run units canaccess butnot update the locked record.

m KEEP EXCLUSIVE places anexclusivelockonthe located record occurrence. Other
concurrently executing run units can neither access nor update the locked record.

Note: For more information aboutrecord locks,see KEEP CURRENT (see page 215).

Each format of the FIND/OBTAIN statement is discussed separately on the following
pages.

CALC/DUPLICATE

The FIND/OBTAIN CALC/DUPLICATE statement locates a record based on the valueof an
element defined as a CALC key in the record. The specified record must be stored in the
databasewith a location mode of CALC. Before issuingthe FIND/OBTAIN
CALC/DUPLICATE statement, you mustinitializea fieldin programvariablestoragewith
the CALC-key value.

Chapter 6: Data Manipulation Language Statements 165

FIND/OBTAIN CALC/DUPLICATE

Syntax

Parameters

Example

You canusethe DUPLICATE option to access duplicaterecords with the same CALC-key
valueas the record thatis currentof record type, provided thata FIND/OBTAIN CALC
statement has previously accessed an occurrence of the same record type.

Currency

Followingsuccessful execution of a FIND/OBTAIN CALC/DUPLICATE statement, the
accessed record becomes the current record of run unit, its record type, its area,
andall sets inwhichitcurrently participates as member or owner.

FIND
L ogTAIN -] L keep

I LL AOQ\L{C_, J record-name . —»<
L EXCLUSIVE | DUPLICATE

KEEP

Places a shared lock onthe accessed record.
EXCLUSIVE

Places anexclusivelock onthe accessed record.
CALC (ANY)

Locates the firstor only occurrence of the specified record type whose CALC key
matches the valueof the CALC data item in program variablestorage.

CALC and ANY are synonyms and can be used interchangeably.
DUPLICATE

Locates the next record with the same CALC key valueas the current of the
specified record type. Use of the DUPLICATE optionrequires prior selection of an
occurrence of the same record type with the CALC option. If the value of the CALC
key invariablestorageis not equal to the CALC-key field of the current of record
type, a status code of 0332 s returned.

record-name

The name of the record type to be located.

To retrieve an occurrence of the EMPLOYEE record by usingthe FIND/OBTAIN
CALC/DUPLICATE statement, you must firstinitializethe variable-storagefield that
contains the CALC control element. The followingstatements initialize the CALC field
EMP-ID-0415 and retrieve an occurrence of the EMPLOYEE record:

MOVE EMP-ID-IN TO EMP-ID-0415.
OBTAIN CALC EMPLOYEE.

166 DML Reference Guide for COBOL

FIND/OBTAIN CURRENT

Status Codes

FIND/OBTAIN

After completion of the FIND/OBTAIN CALC/DUPLICATE function, the ERROR-STATUS
fieldinthe IDMS communications blockindicates the outcome of the operation:

Status code

Meaning

0000 The request has been serviced successfully.

0301 The area inwhich the named record participates has notbeen
readied.

0306 A successful FIND/OBTAIN CALC has not yet been executed (applies
to the DUPLICATE option only).

0308 The named record is notin the subschema. The program probably
invoked the wrong subschema.

0310 The subschema specifies anaccess restriction thatprohibits retrieval
of the named record.

0318 The record has not been bound.

0326 Either the record or cannotbe found or no more duplicates existfor
the named record.

0331 The retrieval statement format conflicts with the record's location
mode.

0332 The valueof the CALC data item in program variablestorage does not
equal the value of the CALC data item inthe current record (applies
to the DUPLICATE option only).

0364 The CALC control element has not been described correctly either in
the program or inthe subschema.

0370 A databasefilewill notopen properly.

If the FIND/OBTAIN statement includes an explicitKEEP: 03 is the major code returned if
anerror occurs during FIND processing, 06 if the error occurs during KEEP processing.

CURRENT

The FIND/OBTAIN CURRENT statement locates the record thatis current of its record
type, set, or area.This form of the FIND/OBTAIN statement is an efficient means of
establishingthe appropriaterecord as currentof run unit before executing a DML
statement that uses run-unit currency (for example, ACCEPT, |F, GET, MODIFY, ERASE).

Chapter 6: Data Manipulation Language Statements 167

FIND/OBTAIN CURRENT

Syntax

Parameters

Example

Currency

Following successful execution of a FIND/OBTAIN CURRENT statement, the
accessedrecordis currentof run unit, its record type, its area,and all sets in which
it currently participates as member or owner.

WITHIN set-name —

FIND T T CURRENT . >«
OBTAIN KEEP T] Erecord-name
EXCLUSIVE
WITHIN area-name —

KEEP

Places a sharedlock onthe accessed record.
EXCLUSIVE

Places anexclusivelock on the accessed record.
CURRENT

Locates the current record occurrence of a specified record type, set, or area.
record-name

Accesses the current record of the specified record type.
WITHIN set-name

Accesses the current record of the specified set.
WITHIN area-name

Accesses the current record of the specified area.

Using the FIND/OBTAIN CURRENT Statement

The followingfigureillustrates use of the FIND/OBTAIN CURRENT statement to establish
the proper record as currentof run unit before the record is modified.

168 DML Reference Guide for COBOL

FIND/OBTAIN CURRENT

Enter the databaseon DEPARTMENT 5100 by using CALC retrieval. Then examine
EMPLOYEE 466 by usingwithin set retrieval and obtain further informationfromits
owner OFFICE record (OFFICE 8). OFFICE 8 becomes current of run unit. Before
modifying EMPLOYEE 466, you mustissuethe FIND CURRENT statement to reestablish

EMPLOYEE 466 as current of run unit.

For a complete description of the MODIFY statement andits use, see MODIFY (see

page 243).
DEPARTMENT OFFICE
410 IF |5€. ICALC 450 IF |76 ICALC
DEFT-ID-0410 | DN OFFICE-CODE-0450 | DN
ORG-DEMO-REGION ORG-DEMO-REGION
DEPT-EMPLOYEE OFFIGE-EMPLOYEE
NPO OA 10 OA
EMPLOYEE
EMPLOYEE ASC(EMP-LAST-NAME-0415 ASCEMP-LAST-NAME-0415
467 466 EMP-FIRST-NAME-0415) DL EMP-FIRST-NAME-0415) DL
EMPLGYEE
415 IF |11a ICALC
EMPLOYEE
EMP-ID-0415 DN
457
EMP-DEMO-REGION

CURRENCIES
RUN UNIT, RECORD, SET, AREA

w /5 /8
g /88 /8
£ s /g /&)¢¥
QG 7 o (o)
& 3 & 3 g /5 =
< L PN Ly I L Ly
S/ /9 /s)Y) S)) a
= a a @£ a @Z 9 a
5 oy Iy w | & @
@ Q 5 Q Q o] O 5
MOVE 5100 TO DEPT-ID. 5100 | 5100 5100 5100
FIND CALC DEPARTMENT.
OBTAIN FIRST WITHIN 466 | 5100 166 166 466 | 5100 166
DEPT-EMPLOYEE.
OBTAIN OWNER WITHIN 8 | 5100 466 8 4166 8 8 466
OFFICE-EMPLOYEE.
466 | 5100 466 8 466 466 8 466
FIND CURRENT EMPLOYEE.
MODIFY EMPLOYEE. 466 | 5100 466 8 466 466 8 466

Chapter 6: Data Manipulation Language Statements 169

FIND/OBTAIN DB-KEY

Status Codes

After completion of the FIND/OBTAIN CURRENT function, the ERROR-STATUS fieldin the
IDMS communications blockindicates the outcome of the operation:

Status code

Meaning

0000

The request has been serviced successfully.

0301

The area inwhich the named record participates has notbeen
readied.

0303

Invalid currency for a record to be retrieved on a FIND. This canonly
occur when a run unitis sharinga transaction with other database
sessions.The03 minor statusis returned ifthe rununit tries to find a
record usinga currency that has been invalidated because of changes
made by another databasesessionthatis sharingthesame
transaction.

0306

Currency has not been established for the named record, set, or area.

0308

The named record or set is notinthe subschema. The program has
probablyinvoked the wrong subschema.

0310

The subschema specifies anaccess restriction that prohibits retrieval
of the named record.

0313

A current record of run unit either has not been established or has
been nullified by a previous ERASE statement.

0323

The specified area name has not been includedinthe subschema
invoked.

Ifthe FIND/OBTAIN statement includes an explicitKEEP: 03 is the major code returned if
anerror occurs during FIND processing, 06 ifthe error occurs during KEEP processing.

FIND/OBTAIN DB-KEY

The FIND/OBTAIN DB-KEY statement locates a record occurrencedirectlyusinga
databasekey that has been stored previously by the program. The DML ACCEPT
statement, explained earlierin this chapter, or the COBOL MOVE statement can be used
to savea db-key. Any record inthe program's subschema can be accessed directlyin this
manner, regardless of its location mode.

170 DML Reference Guide for COBOL

FIND/OBTAIN DB-KEY

Syntax

Parameters

Native VSAM users: This statement is not valid for accessingdata records in a native
VSAM key-sequenced data set (KSDS).

Currency

After successful execution of a FIND/OBTAIN DB-KEY statement, the accessed
record becomes the current record of run unit, its record type, its area,and all sets
inwhichit currently participates as member or owner. Inaddition, the
RECORD-NAME field of the IDMS communications blockis updated with the name
of the accessed record.

Note that currencyis not used to determine the specified record of the FIND/OBTAIN
DB-KEY statement; the record is identified by its db-key and, optionally, byits record

type.

v

FIND
L 08TAIN < L keep I_ - |
EXCLUSTVE

DB-KEY 75 db-key =]
PAGE-INFO page-info
m DB-KEY 75 db-key

L rec-name

)

KEEP

Places a sharedlock onthe accessed record.
EXCLUSIVE

Places anexclusivelock onthe accessed record.
DB-KEY is

Locates a record directly by usinga db-key valuecontainedin program variable
storage.

db-key

A field that identifies the location within programvariablestoragethatcontains
a db-key previouslysaved by the program.

Ifa record name has been specified, db-key must contain the db-key of an
occurrence of the named record type. Ifa record name has not been specified,
db-key can containthe db-key of an occurrence of any record type inthe
subschema.

Chapter 6: Data Manipulation Language Statements 171

FIND/OBTAIN DB-KEY

PAGE-INFO

Specifies page information that is used to determine the area with which the dbkey
is associated. If not specified, the page information associated with the record that
is currentof rununitis used.

Note: Page informationis onlyusedifthe subschemaincludes areasthathave
mixed page groups; otherwise, itisignored.
page-info

A four-byte field that may be defined either as a group field or as a fullword field
(PICS9(8) COMP). Identifies the locationinvariablestoragethat contains the page
information previously saved by the program.

Page informationis returned inthe PAGE-INFO fieldinthe subschema control area
if the subschema includes areas in mixed page groups. Page information may also
be returned usingan ACCEPT PAGE-INFO statement.

rec-name

The record type of the requested record. Rec-name must name a record thatis
included inthe subschema.

Example
The following statement locates the occurrence of the HOSPITAL-CLAIM record whose
db-key matches the valueof a fieldin programvariablestorage called SAVED-KEY:
FIND HOSPITAL-CLAIM DB-KEY IS SAVED-KEY.
The located record becomes current of run unit, current of the HOSPITAL-CLAIM record
type, current of the INS-DEMO-REGION area, and current of the COVERAGE-CLAIMS set.
Status Codes

After completion of the FIND/OBTAIN DB-KEY function,the ERROR-STATUS fieldinthe
IDMS communications blockindicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

0301 The area in which the named record participates has notbeen
readied.

0302 The db-key is inconsistentwith the area in which the record is stored.

Either the db-key has not been initialized properly or the record
name is incorrect.

172 DML Reference Guide for COBOL

FIND/OBTAIN OWNER

FIND/OBTAIN

Status code

Meaning

0303 Invalid currency for a record to be retrieved on a FIND. This canonly
occur when a rununitis sharinga transaction with other database
sessions.The03 minor statusis returned ifthe rununit tries to find a
record usinga currency that has been invalidated because of changes
made by another databasesessionthatis sharingthesame
transaction.

0308 The named record is notinthe subschema.The program has
probablyinvoked the wrong subschema.

0310 The subschema specifies anaccess restriction that prohibits retrieval
of the named record.

0326 The record cannotbe found; record occurrence not correct type.

0370 A databasefilewill notopen properly.

0371 The requested page cannotbe found inthe DMCL.

Ifthe FIND/OBTAIN statement includes an explicit KEEP: 03 is the major code returned if
anerror occurs during FIND processing, 06 ifthe error occurs during KEEP processing.

OWNER

The FIND/OBTAIN OWNER statement locates the owner record of the current
occurrence of a set. This statement can be used to retrieve the owner record of any set
whether or not that set has been assigned owner pointers.

Native VSAM users: The FIND/OBTAIN OWNER statement is not valid since owner
records are not defined in native VSAM data sets.

Currency

Inorder to execute a FIND/OBTAIN OWNER statement, currency must be
established for the specified set.

Note: When arecord declared as an optional or manual member of a setis
retrieved, itis notestablished as currentof setifitis not currently connected to the
specified set. A subsequent attempt to retrieve the owner record will locateinstead
the owner of the current record of set. Insuch cases, you should determine
whether the retrieved record is actually a member inthe specified set before
executing the FIND/OBTAIN OWNER statement. The IF MEMBER statement,
explained laterin this chapter, can be used for this purpose.

Chapter 6: Data Manipulation Language Statements 173

FIND/OBTAIN OWNER

Syntax

Parameters

Example

Following successful execution of a FIND/OBTAIN OWNER statement, the accessed
record becomes the current record of run unit, its record type, its area,and all sets in
whichit currently participates as member or owner. Ifthe current record of set is the
owner record when the statement is executed, currency withinthe specified set
remains unchanged.

OWNER WITHIN set-name . ——»<

FIND
L ogTAIN) L Keep a - |
EXCLUSIVE

KEEP
Places a shared lock on the accessed record.
EXCLUSIVE
Places anexclusivelockonthe accessed record.
OWNER
Locates the owner record of the specified set.
WITHIN
Specifies the set whose owner record is to be retrieved.
set-name

The name of aset included in the subschema.

Using the FIND/OBTAIN OWNER Statement to Move Through the Database

The followingfigureillustrates use of the FIND/OBTAIN OWNER statement.

DEPARTMENT OFFICE

EMPLOYEE
158

EMPLOYEE
69

110 IF |5s ICALC

450 IF |76 ICALC

DEPT-ID-0410 Jon

OFFICE-CODE-0450 IDN

QRG-DEMO-REGION

‘ORG-DEMQ-REGION

DEPT-EMPLOYEE

NPQO CA

ASC(EMP-LAST-NAME-0415
EMP-FIRST-NAME-0415) DL

OFFICE-EMPLOYEE

10 QA

ASC(EMP-LAST-NAME-0415
EMP-FIRST-NAME-0415) DL

EMPLOYEE EMPLOYEE
49 a15 |F s Joac
EMPLOYEE EMP-1D-0415 DN
100 I

EMP-DEMO-REGION

174 DML Reference Guide for COBOL

FIND/OBTAIN OWNER

CURRENCIES
RUN UNIT, RECORD, SET, AREA

= =
g O Qo
& /85188
& S /& /% /[«
W Ly 3! &) Q
£ /5 /4 §/a /5 /5
= o Py Ly 5 U.,'/ Ly y
S/l /L)L) Le)E) 8
Q Q a Q @ g o
> oy [ry a
g/ 8/ /8 /8&§/8/)8 /3
MQVE 2000 TO DEPT-ID. 2000 | 2000 2000 2000
OBTAIN CALC DEPARTMENT.
OBTAIN FIRST WITHIN 11 | 2000 11 11 11 2000 11
DEPT-EMPLOYEE.
OBTAIN OWNER 2 | 2000 11 2 11 2 2 11
WITHIN OFFICE-EMPLOYEE.

Status Codes

After completion of the FIND/OBTAIN OWNER function, the ERROR-STATUS fieldinthe
IDMS communications blockindicates the outcome of the operation:

Status code

Meaning

0000

The request has been serviced successfully.

0301

The area inwhich the object record participates has notbeen
readied.

0303

Invalid currency for a record to be retrieved on a FIND. This canonly
occur when a rununitis sharinga transaction with other database
sessions.The03 minor status is returned ifthe run unittries to find a
record usinga currency that has been invalidated because of changes
made by another databasesessionthatis sharingthesame

transaction.

0306

Currency has not been established for the record, set, or area.

0308

The named setis notinthe subschema.The programhas probably
invoked the wrong subschema.

0310

The subschema specifies anaccess restriction that prohibits retrieval
of the object record.

0360

A record occurrence has been encountered whose record type is not
a member or owner of the setasitis defined inthe subschema.

Chapter 6: Data Manipulation Language Statements 175

FIND/OBTAIN WITHIN SET USING SORTKEY

Status code Meaning

0370 A databasefilewill notopen properly.

Ifthe FIND/OBTAIN statement includes an explicitKEEP: 03 is the major code returned if
anerror occurs during FIND processing, 06 if the error occurs during KEEP processing.

FIND/OBTAIN WITHIN SET USING SORT KEY

Syntax

The FIND/OBTAIN WITHIN SET USING SORT KEY statement locates a member recordina
sorted set. Sorted sets are ordered inascending or descending sequence based on the
value of a sort-control element in each member record. The search begins with either
the current of set or the owner of the current of set and always proceeds through the
setinthe nextdirection.

Before issuingthis statement, you must initializethe sortcontrol element in program
variablestorage. The record occurrence selected will havea key valueequal to the value
of the sort control element. If more than one record occurrencecontains a sortkey
equal to the key valueinvariablestorage, the firstsuch record will be selected.

Ina batch environment, sorted sets can be processed more efficiently by sorting the
input transactions.

Currency

Followingsuccessful execution of a FIND/OBTAIN WITHIN SET USING SORT KEY
statement, the accessed record becomes current of run unit, its record type, its
area,and all sets inwhichitcurrently participates as member or owner. Ifa
member record with the requested sort-key valueis not found, the current of set is
nullified butthe next of set and prior of set are maintained. The next of set is the
member record with the next higher sort-key value (or next lower for descending
sets) thanthe requested value; the prior of set is the member record with the next
lower value (or higher for descending sets) than requested. Because these
currencies aremaintained, the program can walkthe set to do a generic searchon
the sort-key value.

>>—|: FIND T l record-name WITHIN set-name —»
OBTAIN KEEP T]
EXCLUSIVE

P'—l_—_l— USING sort-key — .
CURRENT ;-

M

176 DML Reference Guide for COBOL

FIND/OBTAIN WITHIN SET USING SORTKEY

Parameters
KEEP
Places a sharedlock onthe accessed record.
EXCLUSIVE
Places anexclusivelock onthe accessed record.
record-name
Specifies the record type to locate.
WITHIN
Specifies the set to be searched.

Unless you specify CURRENT, the search begins with the owner of the specified
set.

set-name
The name of a sorted set included in the subschema.
CURRENT

Indicates thatthe search begins with the currencies already established for the
specified set.

Ifthe key valuefor the record thatis current of set is higher than the key value of
the requested record (assumingascendingsetorder), a non-zero status condition
results.Ina descending set order, ifthe key valuefor the recordthat is currentof
setis lower than the key value of the requested record, a non-zero status condition
results.

USING
Specifies the sortcontrol element to be used insearchingthe sorted set.
sort-key

The symbolic name of a field defined in working storage that contains the value
of the sort control element.

Note: Due to the architecture of the clientinterface for CA IDMS, 256 bytes will
be moved regardless of the actual length of the working storage sort key. This
additional storage should beaccounted for in order to avoid potential program
exceptions that canoccur. Whilethese exceptions are rare, they are more
probableifthe sort-key is defined in a FILE or LINKAGE SECTION definition.To
avoid this problem, itis recommended that the sort-key be defined in the
program's WORKING STORAGE SECTION, padded to a full 256 bytes; and

moved inand out of the FILE or LINKAGE SECTION fields.

Chapter 6: Data Manipulation Language Statements 177

FIND/OBTAIN WITHIN SET USING SORTKEY

Example

Status Codes

Note: The valuecoded for sort-key canonlyspecify a singlefield name. Ifthe
sortkey is comprised of multiple elementary fields,the valuecoded should be
a group-level name. The elementary fields that make up the group element
must be inthe same sequence as defined for the correspondingfields in the
databaseset's schema definition. The data formats for the individual
elementary fields must also match the formats of the correspondingfields
within the databaserecord.

Note: A period or semicolonis required to terminate the statement unless an
ON clausehas been coded.

Here is an example of OBTAIN RECA WITHIN RECA-SET USING RECA-KEY. The
record's sortkey would be defined as follows in the WORKING-STORAGE
SECTION:

01 RECA-KEY.
02 RECA-FIELD1 PICX(10).
02 RECA-FIELD2 PICX(10).

It should be changed to:

01 RECA-KEY.
02 RECA-FIELD1 PICX(10).
02 RECA-FIELD2 PICX(10).
02 FILLER PIC X(236).

The following example illustrates the use of a FIND/OBTAIN WITHIN SET USING SORT
KEY statement. Assume that the SKILL-NAME-NDX setis ordered inascendingsequence
based on the value stored in SKILL-NAME-0455 in each SKILL record occurrence.
Retrieval of a SKILL record with a skillnameequal to PL/I is accomplished by the
following statements:

MOVE 'PL/I' TO SKILL-NAME-0455.
FIND SKILL WITHIN SKILL-NAME-NDX
USING SKILL-NAME-0455.

After completion of the FIND/OBTAIN WITHIN SET USING SORT KEY function, the
ERROR-STATUS fieldinthe IDMS communications blockindicates the outcome of the
operation:

Status code Meaning

0000 The request has been serviced successfully.

178 DML Reference Guide for COBOL

FIND/OBTAIN WITHIN SET/AREA

Status code

Meaning

0301

The area in which the named record participates has notbeen
readied.

0303

Invalid currencyfor a record to be retrieved on a FIND. This canonly
occur when a rununitis sharinga transaction with other database
sessions.The03 minor status is returned if the run unit tries to find a
record usinga currency that has been invalidated because of changes
made by another databasesessionthatis sharingthesame
transaction.

0306

Currency has not been established for the named set.

0308

Either the named record or setis notinthe subschema or the named
record is nota member of the named set. The program has probably
invoked the wrong subschema.

0310

The subschema specifies anaccess restriction that prohibits retrieval
of the named record.

0326

The record cannotbe found.

0331

The retrieval statement format conflicts with the record's location
mode.

0360

A record occurrence has been encountered whose record type is not
a member or owner of the setasitis defined inthe subschema.

0370

A databasefilewill notopen properly.

Ifthe FIND/OBTAIN statement includes an explicit KEEP: 03 is the major code returned if
anerror occurs during FIND processing, 06 ifthe error occurs during KEEP processing.

FIND/OBTAIN WITHIN SET/AREA

The FIND/OBTAIN WITHIN SET/AREA statement locates records either logically, based
on setrelationships, or physically, based on databaselocation. Theformats of this
statement allowyou either to access seriallyeachrecordinasetor area or to select
specific occurrences of a given record type within the set or area.

The followingrules apply to the selection of member records withina set:

m The set occurrence used as the basis for the operationis determined by the current
record of the specified set. Set currency must be established beforeattempting to
access records within a set.

m The next or priorrecord withina set is the subsequent or previous record relative to
the current record of the named set inthe logical order of the set. The priorrecord
inaset canbe retrieved only ifthe set has been assigned prior pointers.

Chapter 6: Data Manipulation Language Statements 179

FIND/OBTAIN WITHIN SET/AREA

m The firstorlastrecord withina setis the firstor lastmember occurrence in terms of
the logical order of the set. The selected record is the same as would be selected if
the current of set were the owner record and the next or prior record had been
requested. The lastrecordinaset canbe retrieved onlyifthe set has prior pointers.

m The nth occurrenceof a record within a set can be retrieved by specifyinga
sequence number thatidentifies the position of the recordinthe set. The DBMS
begins its search with the owner of the current of set for the specified setand
continues until itlocates the nth record or encounters an end-of-set condition. If
the specified sequence number is negative, the search proceeds inthe prior
direction within the set. A negative sequence number canbe used onlyif the set
has prior pointers; a sequence number of 0 produces a status code of 0304.

®m When anend-of-set condition occurs, the owner record occurrence of the set
becomes the current record of run unit, current of its record type, current of its
area,and current record of only the setinvolvedinthis operation. Currency of other
sets inwhich the specified record participates as owner or member remains
unaffected.

Note: If OBTAIN has been specified, the contents of the owner record arenot
moved to program variablestorage (thatis, OBTAIN under these circumstancesis
treated as a FIND).

Native VSAM users:.When an end-of-set condition occurs, all currencies remain
unchanged.

The followingrules apply to the selection of records within an area:

m The firstrecord occurrence withinanarea is the one with the lowest databasekey;
the lastrecordis the one with the highest databasekey

m The next record withinanareais the one with the next higher databasekey relative
to the current record of the named area; the priorrecordis the one with the next
lower databasekey relativeto the current of area

m The firstorlastornth recordinan area must be retrieved to establishthecorrect
starting position before next or prior records arerequested

Currency

Following successful execution ofa FIND/OBTAIN WITHIN SET/AREA statement, the
accessed record becomes the current record of run unit, its record type, its area,
andall sets inwhichitcurrently participates as member or owner.

When an end-of-set condition occurs selecting records within a set, the owner record
occurrence of the set becomes the current record of run unit, its record type, its area,
andonly the set involved in this operation. Currency of other sets in which the specified
record participates as owner or member remains unaffected.

180 DML Reference Guide for COBOL

FIND/OBTAIN WITHIN SET/AREA

Syntax

Parameters

\ 4

OBTAIN KEEP T] PRIOR
EXCLUSIVE FIRST

LAST
number

)4

»
| 2

WITHIN set-name
L record-name J L area-name l

KEEP
Places a sharedlock onthe accessed record.
EXCLUSIVE
Places anexclusivelock on the accessed record.
NEXT
Accesses the next record inthe specified set or area relativeto the current record.
PRIOR

Accesses the priorrecordinthe specified set or area relativeto the current record.
The specified set must have prior pointers.

FIRST
Accesses the firstrecordinthe specified set or area.
LAST

Accesses the lastrecordinthe specified set or area.The specified set must have
prior pointers.

number

Accesses the indicated record number inthe specified set or area. Number must
either be a non-zero number or the symbolic name of a numeric field that contains
a non-zero value. If the number is negative, the specified setmust have prior
pointers.

record-name

Specifies that withina set orarea, only occurrences of the named record type will
be accessed. Record-name must be defined as a member of the specified setor
contained within the specified area.

Chapter 6: Data Manipulation Language Statements 181

FIND/OBTAIN WITHIN SET/AREA

WITHIN
Locates a record based on its location within a set or area.

set-name Specifies the set to be searched.The set must be included in the
subschema.

area-name Specifies the area to be searched. The area must be includedinthe
subschema.

Native VSAM users:.FIRST, LAST, and sequence options are not valid for a
native VSAM KSDS with spanned records.

Example

Retrieval of Records in an Occurrence of the DEPT-EMPLOYEE Set

The followingfigureillustrates theretrieval of records withinan occurrence of the
DEPT-EMPLOYEE set.

The FIND CALC statement establishes currencyinthe DEPT-EMPLOYEE set. Member
EMPLOYEE records arethen retrieved by a series of OBTAIN WITHIN SET statements.
EMPLOYEE 106is the lastrecordinthe set andthe next OBTAIN statement returns an
end-of-set condition, positioning run unitcurrency at the owner of the set,
DEPARTMENT 2000.

EMPLOYEE

DEPARTMENT
69

410 IF IES ICALC

DEPT-ID-0410 | on

ORG-DEMO-REGION

EMPLOYEE
100

DEPT-EMPLOYEE

NFO QA

ASC(EMP-LAST-NAME-0415
EMP-FIRST-NAME-0415) DL

EMPLOYEE
106

EMPLOYEE

115 IF |118 ICALC

EMPLOYEE EMP-ID-0415 EX

67 EMP-DEMO-REGION

182 DML Reference Guide for COBOL

FIND/OBTAIN WITHIN SET/AREA

RUN UNIT, RECORD, SET, AREA

CURRENCIES

= >
e8] 8
o
" $/9 /8] g
5 2/&8/8 /&
£ /¥ & s z [3 =
S = X P @ i I
3 @ O K) 9 {
S/8/8/s/5/8) &
a Q Ly Q0 O O Ly
MOVE 2000 TO DEFT-ID. 2000 | 2000 2000 2000
FIND CALC DEPARTMENT.
OBTAIN FIRST WITHIN 69 | 2000 | &9 | 69 69 | 2000 | &g
DEPT-EMPLOYEE.
OBTAIN NEXT WITHIN 100 | 2000 | 100 | 100 | 100 | 2000 | 100
DEPT-EMPLOYEE.
OBTAIN 5 WITHIN 106 | 2000 | 106 | 106 | 106 | 2000 | 106
DEPT-EMPLOYEE.
OBTAIN NEXT WITHIN 2000 | 2000 | 106 | 2000 | 106 | 2000 | 106 | ERROR-STATUS
DEPT-EMPLOYEE. GF *0307"

Retrieving Records in Area Containing Multiple Record Types

The followingfigureillustrates special considerationsrelating to the retrieval of records
withinan area that contains multiplerecord types.

In this example, a sweep of the EMP-DEMO-REGION is performed, retrieving
sequentially each EMPLOYEE record and all records in the associated
EMPLOYEE-EXPERTISE set. The firstcommand retrieves EMPLOYEE 119. Subsequent
OBTAIN WITHIN SET statements retrieve the associated EXPERTISE records and establish
currency on EXPERTISE 03. The FIND CURRENT statement is used to reestablish the
proper position before retrieving EMPLOYEE 48. If FIND CURRENT EMPLOYEE is not
specified,an attempt to retrieve the next EMPLOYEE record inthe area would return

EMPLOYEE 23.

EMPOSITION

20 [r |28 [wa

EMPLOYEE

415 [F [116 [carc

EXPERTISE

azs[F [8 [wia

EMP-EMPOSITION

NPQ MA FIRST

EMP-DEMO-REGION

EMP-ID-0415

DN

EMP-DEMO-REGION

EMP-EXPERTISE
NPO MA
DES SKILL-LEVEL-0425 DF

EMP-EXPERTISE
EMP-DEMO-REGION

Chapter 6: Data Manipulation Language Statements 183

FIND/OBTAIN WITHIN SET/AREA

EMP-DEMO-REGION
Area
EMPOSITION
002
EXPERTISE
EMPLOYEE EXPERTISE
48 04
PAGE 7000 PAGE 7001
e
(8]
N
& &
% % q‘,{’ og'
& 5 & £ &
) RY (8‘ & Q
s N 5 & ¢
<& & <& & &
OBTAIN FIRST EMPLOYEE WITHIN EMP-DEMQ-REGION. 119 119 112 119
OBTAIN FIRST EXPERTISE WITHIN EMP-EXPERTISE 04 119 04 04 04
OBTAIN NEXT EXPERTISE WITHIN EMP-EXPERTISE a3 119 3 03 3
FIND CURRENT EMPLOYEE 119 119 03 119 118
OBTAIN NEXT EMPLOYEE WITHIN EMP-DEMO-REGION 48 43 03 48 48

Status Codes

After completion of the FIND/OBTAIN WITHIN SET/AREA function, the ERROR-STATUS
field inthe IDMS communications blockindicates the outcome of the operation:

Status code

Meaning

0000

The request has been serviced successfully.

0301

The area in which the named record participates has notbeen
readied.

0303

Invalid currencyfor a recordto be retrieved on a FIND. This canonly
occur when a rununitis sharinga transaction with other database
sessions.The03 minor statusis returned ifthe rununit tries to find a
record usinga currency that has been invalidated because of changes
made by another databasesessionthatis sharingthesame
transaction.

0306

A successful FIND/OBTAIN CALC has not yet been executed (applies
to the DUPLICATE option only).

184 DML Reference Guide for COBOL

FINISH

FINISH

Status code Meaning
0307 The end of the set or area has been reached, or the set is empty.
0308 The named record is notinthe subschema.The program probably

invoked the wrong subschema.

0310 The subschema specifies anaccess restriction thatprohibits retrieval
of the named record.

0318 The record has not been bound.

0326 Either the record or SPF index entry cannot be found or no more
duplicates existfor the named record.

0331 The retrieval statement format conflicts with the record's location
mode.
0332 The valueof the CALC data item in program variablestorage does not

equal the value of the CALC dataitem incurrent record (applies to
the DUPLICATE optiononly).

0364 The CALC control element has not been described correctly either in
the program or inthe subschema.

0370 A databasefilewill notopen properly.

Ifthe FIND/OBTAIN statement includes an explicitKEEP: 03 is the major code returned if
anerror occurs during FIND processing, 06 ifthe error occurs during KEEP processing.

The FINISH statement commits changes made to the databasethrough an individual run
unit or through all databasesessionsassociated with a task. A task-level finish also
commits all changes madein conjunction with scratch, queue, and printactivity.

Ifthe finishappliestoanindividualrununitandthe run unitis sharingits transaction
with another databasesession, the run unit's changes may not be committed at the
time the FINISH statement is executed.

Note: For more information aboutthe impact of transaction sharing, see the CA IDMS
Navigational DML Programming Guide.

Run units (and SQL sessions)impacted by the FINISH statement end, and their access to
the databaseis terminated.

The FINISH statement is used in both the navigationaland logical record facility
environments. The FINISH TASK statement is alsousedinan SQL programming
environment.

Chapter 6: Data Manipulation Language Statements 185

FINISH

Currency

Followingthe successful execution of a FINISH request, all currencies aresetto null;
the issuing programor task cannot perform databaseaccess through animpacted
run unitwithout executing another BIND/READY sequence.

Syntax
»»—— FINISH »<
L sk
Parameters
TASK
Commits the changes made by all scratch, queue, and printactivityandall top-level
run units associated with the current taskand terminates those run units. Its impact
on SQL sessions associated with the task depends on whether those sessionsare
suspended and whether their transactions areeligibleto be shared.
More information:
For more information aboutthe impact of a FINISH TASK statement on SQL
sessions, seethe SQL Programming Guide.
For more information aboutrun units and the impactof FINISH TASK, see the
Navigational DML Programming Guide.
Example

The following statement commits changes made by the run unitthrough whichitis
issued and terminates that run unit:

FINISH.
Status Codes

After completion of the FINISH function, the ERROR-STATUS fieldinthe IDMS
communications blockindicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully

5031 The specified requestis invalid;the program may containa logic
error

5097 An error was encountered processinga syncpointrequest; check the

logfor details.

186 DML Reference Guide for COBOL

FREE STORAGE

FREE STORAGE

Syntax

Parameters

Example

The FREE STORAGE statement illustrates a requestto releaseall ora partof a variable
storage area.The storage to be released must have been acquired by means of a GET
STORAGE request inthe issuingtaskor by another taskrunningon the same terminal as
the issuingtask.Apartial releaseis valid only for user storage; shared storage must be
freed inits entirety.

»»—— FREE STORAGE

\ 4

>—|: STGID storage-id - —><
FOR @I-level-storage-data-loc . a
FROM start-free-storage-loc

STGID
Specifies variablestoragearea to be released.
storage-id

Either the symbolic name of a user-defined field that contains the ID or the ID
itselfenclosed in quotation marks.

FOR 01-level-storage-data-loc
Specifies the LINKAGE SECTION entry of the storage area to be released.
FROM
Releases storage from the specified location to the end of the storage area.
start-free-storage-loc

The symbolic name of a user-defined field that contains the starting point of
the storage area to be released.

The following example illustrates a request to release the storagearea identified by
09PA:

FREE STORAGE STGID 'O9PA'.

Chapter 6: Data Manipulation Language Statements 187

GET

Status Codes

GET

Syntax

Parameters

Example

After completion of the FREE STORAGE function, the ERROR-STATUS fieldin the
IDMS-DC communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully

3213 The requested storage ID cannotbe found

3232 The derived length of the variablestorageareais zero or negative
3234 The request cannotbe serviced becausethe variablestorageareais

not an 01-level entry inthe LINKAGE SECTION

The GET statement transfers the contents of a specified record occurrence from the
record buffer into programvariablestorage. Elements inthe specified record are moved
to their respective locations invariablestorageaccordingto the subschema view of the
record. The transferred elements will appearinstorageatthe locationtowhichthe
record has been bound (for further details,see BIND RECORD (see page 124)).

Currency

The GET statement operates onlyon the record thatis currentof run unit.
Following successful execution of a GET statement, the accessedrecordis current
of run unit, its record type, its area,andall sets in whichitparticipates as member
or owner.

»»— GET

I

L record-name Il

record-name

Specifies that the current of run unitmust be an occurrence of the named record
type.

The following statement moves the record thatis currentof rununit (in this case, the
OFFICE record) from the record buffer into program variablestorage:

GET OFFICE.

188 DML Reference Guide for COBOL

GET QUEUE

Status Codes

After completion of the GET function, the ERROR-STATUS fieldinthe IDMS
communications blockindicates the outcome of the operation:

Status code Meaning
0000 The request has been serviced successfully.
0503 Invalid currency for a record to be retrieved on a GET. This canonly

occur when a rununitis sharinga transaction with other database
sessions.The03 minor status is returned ifthe run unittries to get a
record usinga currency that has been invalidated because of changes
made by another databasesessionthatis sharingthesame
transaction.

0506 Currency has not been established.

0508 The named record is notinthe subschema.The program has
probablyinvoked the wrong subschema.

0510 The subschema specifies anaccess restriction that prohibits retrieval
of the named record.

0513 A current record of run unit either has not been established or has
been nullified by a previous ERASE statement.

0518 The record has not been bound.

0520 The current record is not the same type as the named record.
0526 The requested record has been erased.

0555 An invalid length has been returned for a variable-length record.

GET QUEUE

The GET QUEUE statement retrieves a queue record and placesitinastoragearea
associated with the issuingprogram.Ifthe queue record is larger than the designated
storage area, the record is truncated. The retrieved recordis automatically deleted from
the queue unless the GET QUEUE statement explicitly requests to keep the record inthe
queue.

Chapter 6: Data Manipulation Language Statements 189

GET QUEUE

Syntax
»—— GET QUEUE >
L 10 queve-ia - NEXT <« ‘
FIRST
LAST
PRIOR
SEQUENCE number ——————
RECORD ID queue-record-id —
g I: DELETE <:| i: LOCK 4:' WAIT —4| 4
KEEP NOLOCK NOWAIT «
»— INTO return-queue-data-location TO end-queue-data-location ﬁ—b
L MAX LENGTH queue-data-max-length
L RETURN LENGTH INTO queue-data-actual—length—]
Parameters
ID
Specifies the queue associated with the record to be retrieved.
queue-id
Either the symbolic name of a user-defined field that contains the ID or the ID
itselfenclosed in quotation marks. Ifthe queue IDis not specified, a null ID of
16 blanks is assumed.
NEXT

Retrieves the next recordinthe queue.

This is the default.

If currency has not been established, NEXT is equivalentto FIRST.
FIRST

Retrieves the firstrecordinthe queue.

LAST

Retrieves the lastrecordinthe queue.

190 DML Reference Guide for COBOL

GET QUEUE

PRIOR

Retrieves the priorrecordinthe queue. If currency has not been established, PRIOR
is equivalentto LAST.

SEQUENCE
Retrieves the specified queue record.
number

Either the symbolic name of a user-defined field that contains the sequence
number of the record or the sequence number itself expressed as a numeric
constant.

RECORD ID
Retrieves the specified record.
queue-record-id

The symbolic name of the PICS9(8) COMP (fullword) field that contains the
queue record ID returned by the PUT QUEUE function.

DELETE

Deletes the record from the queue.

This is the default.

If DELETE is specified and the record has been truncated, the truncated datais lost.
KEEP

Keeps the recordinthe queue.
LOCK/NOLOCK

These parameters have been non-functional since CAIDMS Release12.0. They are
included as parameters for release compatability. Queue record lockingis
performed as part of the standard databaselockingroutines since CAIDMS Release
12.0.

WAIT

Suspends task execution until the requested queue exists.

Chapter 6: Data Manipulation Language Statements 191

GET QUEUE

NOWAIT
Continues task execution inthe event of a nonexistent queue.
This is the default.

An ERROR-STATUS value of 4405 (DC-REC-NOT-FOUND) indicates thatthe
requested queue record cannot be found.

INTO

Indicates the WORKING-STORAGE SECTION or LINKAGE SECTION entry of the data
areareserved for the requested queue record.

return-queue-data-location
The symbolic name of a user-defined field.

TO

Indicates the end of the WORKING-STORAGE SECTION or LINKAGE SECTION entry
reserved for the requested queue record.

end-queue-data-location

The symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the requested queue record.

MAX LENGTH

Explicitly defines the length of the data area reserved for the requested queue
record.

queue-data-max-length

Either the symbolic name of the user-defined field that contains the length of
the queue records data or the length itself expressed as a numeric constant.

RETURN LENGTH INTO

Specifies the location to which CA IDMS is to return the actual length of the
retrieved queue record.

queue-data-actual-length

The symbolic name of a user-defined four-byte field. If the record has been
truncated, the valuereturned to this fieldis the actual length of the queue
record before truncation.

192 DML Reference Guide for COBOL

GET QUEUE

Example

Status Codes

The following example illustrates a request to retrieve the firstrecordin the RES-Q
queue, return it to the PEND-RES field, and keep the recordinthe queue:

GET QUEUE

ID 'RES-Q'

FIRST
KEEP

INTO PEND-RES MAX LENGTH 125.

After completion of the GET QUEUE function, the ERROR-STATUS field of the IDMS-DC
communications block indicates the outcome of the operation:

Status code

Meaning

0000

The request has been serviced successfully.

4404

The requested queue header record cannotbe found.

4405

The requested queue record cannot be found.

4407

A databaseerror occurred during queue processing. Acommon
causeis a DBKEY deadlock. For a PUT QUEUE operation, this code
canalso meanthat the queue upper limithas been reached.

Ifa databaseerror has occurred, there areusually be other messages
inthe CA-IDMS/DC/UCF logindicatinga problemencountered in
RHDCRUAL, the internal Run Unit Manager. If a deadlock has
occurred, messages DC001000 and DC001002 are also produced.

4419

The program storage area specified for return of the queue recordis
too small;the returned record has been truncated as appropriateto
fit the availablespace.Ina DC-BATCH environment, a possiblecause
is that the size of the queue record exceeds the valuespecifiedinthe
MAX LENGTH parameter of the BIND TASK statement. Ina DC-BATCH
environment, a possiblecauseis thatthe sizeof the record read by a
GET QUEUE statement exceeds the valuespecifiedinthe max length
parameter of the BIND TASK statement. This canalsohappenifthe
record sizespecified inthe GET QUEUE statement is large enough for
the queue record, but the maximum specified in the BIND TASK
statement is too small.The recordsize is always truncated to the
maximum length determined inthe BIND TASK statement.

4431

The parameter listis invalid.In DC-BATCH, this code signifies thatthe
specified record length has exceeded the maximum length based on
the packet size.

4432

The derived length of the queue record data area is negative.

Chapter 6: Data Manipulation Language Statements 193

GET SCRATCH

GET SCRATCH

The GET SCRATCH statement obtains a scratchrecordand placesitinastoragearea
associated with the issuing program. The storage area must already beallocated to the
requesting task; no implicit GET STORAGE functionis performed duringthe GET
SCRATCH operation. Ifthe scratchrecordis larger than the designated storage area,
datais truncated.

Syntax
»»—— GET SCRATCH T] >
AREA ID scratch-area-id
T NEXT < l: DELETE <« g
FIRST KEEP
LAST
PRIOR
CURRENT
RECORD ID scratch-record-id —
»—— INTO return-scratch-data-loc T TO end-scratch-data-loc —_|—>
MAX LENGTH scratch-data-max-length
L RETURN LENGTH 7nto scratch-data-actual-length —-|
Parameters

AREA ID

Identifies the scratch area associated with the record being retrieved. If you do not
specifyanareaID, an area ID of eight blanks is assumed.

scratch-area-id

Either the symbolic name of a user-defined field that contains the scratch area
ID orthe ID itselfenclosed in quotation marks.

NEXT
Retrieves the next recordinthe scratcharea.
This is the default.
FIRST
Retrieves the firstrecordinthe scratcharea.
LAST
Retrieves the lastrecordinthe scratcharea.
PRIOR

Retrieves the priorrecordinthe scratcharea.

CURRENT

Retrieves the currentrecordin the scratcharea;the current recordis the record
most recently referenced by another scratch function.

194 DML Reference Guide for COBOL

GET SCRATCH

RECORD ID
Retrieves the specified scratch record.

scratch-record-id

The symbolic name of a user-defined PIC S9(8) COMP SYNC (fullword) field that
contains the four-byte scratch record ID.

DELETE
Deletes the record from the scratch area.
This is the default.

If DELETE is specified and the record has been truncated, the truncated datais lost.
To maintain currency followinga DELETE request, CA IDMS saves the next and prior
currencies of the scratch area.

KEEP
Keeps the recordinthe scratcharea.
INTO

Specifies the WORKING-STORAGE SECTION or LINKAGE SECTION entry of the data
area to which CA IDMS is to return the scratch record.

return-scratch-data-loc
The symbolic name of a user-defined field.
TO
Indicates the end of the data area to which CA IDMS will return the scratch record.
end-scratch-data-loc

The symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the scratch record.

Chapter 6: Data Manipulation Language Statements 195

GET SCRATCH

Example

Status Codes

MAX LENGTH

Specifies the length in bytes of the data area associated with the requested scratch
record.

scratch-data-max-length

Either the symbolic name of a WORKING-STORAGE SECTION or LINKAGE
SECTION field that contains the length or the length itself expressed as a
numeric constant.

RETURN LENGTH into

Specifies the WORKING-STORAGE SECTION or LINKAGE SECTION entry to which CA
IDMS will return the actual length of the requested scratch record.

scratch-data-actual-length

The symbolic name of the entry. Ifthe record has been truncated,
scratch-data-actual-length will contain the length of the full, untruncated
scratchrecord.

The following statement illustrates a request to return the contents of the current
record inthe scratch area to the variable-storage area defined by WORK-PROC-AREA
and END-WORK-PROC-AREA:

GET SCRATCH

CURRENT
INTO WORK-PROC-AREA TO END-WORK-PROC-AREA.

After completion of the GET SCRATCH function, the ERROR-STATUS field of the IDMS-DC
communications blockindicates theoutcome of the operation:

Status code Meaning

0000 The request has been serviced successfully

4303 The requested scratch area ID cannot be found

4305 The requested scratch record ID cannotbe found

4307 An |/O error has occurred during processing

4319 The program storage area specified for return of the scratchrecordis
too small;the returned record has been truncated to fit the available
space

4331 The parameter listis invalid

4332 The derived length of the scratch recordis negative

196 DML Reference Guide for COBOL

GET STORAGE

GET STORAGE

The GET STORAGE statement is used either to acquirevariablestoragefrom a DC system
storage pool or to obtain the address of a previouslyacquired storagearea.Once
acquired, the storage is availablefor use:

m Bytheissuingtaskonly(userstorage)
m By subsequent tasks runningonthe same terminal (user kept storage)

m Byalltasksinthesystem (shared or shared kept storage)
Storage availability is governed by GET STORAGE parameter specifications.

Syntax

v

»»—— GET STORAGE FOR @I-level-storage-data-location

»

v

L TO end-storage-data-location -

v

L LENGTH storage-data-length ——I

v

L POINTER storage-data-location-pointer]

I: WAIT —_I L KEEP a I: LONG 4_—| USER 4:‘
NOWAIT SHORT

SHARED

v

v

v

L s161D storage-ia = L VALUE 15 —— LOW-VALUE

HIGH-VALUE
L LocaTIoN is
ANY <
BELOW

initial-value —

M

Chapter 6: Data Manipulation Language Statements 197

GET STORAGE

Parameters

FOR
Specifies the LINKAGE SECTION entry of the storage area to be acquired.
01-level-storage-data-location
The name of the 01-level entry used to acquirethe storage area.
TO

Specifies the end of the storagearea. This parameter is required when the
precompiler execution option COBOL=1 is specified.Itis accepted but not required
if COBOL=2 is specified. See

Note: For more information aboutthe COBOL= option, see Passing Parameters to
the Precompiler (see page 355).

end-storage-data-location

The symbolic name of a user-defined dummy byte field. It is specifiedas a
subordinateitem within the 01-level record area followingthe lastreal data
field.

Note: CA IDMS does not support the use of an OCCURS DEPENDING ON clause
within 01-level-storage-data-location.

LENGTH
Specifies the length of the storage location (COBOLS85 only).

storage-data-length

The symbolic name of a user-defined field that contains the length of the
storage location.

POINTER

Specifies a pointer thatis to receive the address of the storagelocation (COBOL 85
only).

storage-data-location-pointer

The symbolic name of a user-defined field that contains a pointer to the
address of the storage location.

WAIT

Specifies that the issuingtask will waituntil sufficientstorageis availableina
storage pool.

This is the default.

198 DML Reference Guide for COBOL

GET STORAGE

NOWAIT

Specifies that the issuingtask will notwaitfor storageto become availableifan
insufficient storage condition exists. If NOWAIT is specified, the programshould
check the ERROR-STATUS fieldinthe IDMS-DC communications block to determine
ifthe GET STORAGE request has been completed. If the ERROR-STATUS valueis
3202 (DC-NO-STORAGE), the program should perform alternative processingbefore
reissuingthe GET STORAGE request.

KEEP

Optionally specifies whether the storagearea will be used by subsequent tasks
executing on the same logical terminal. When KEEP is specified, the storage area
canbe accessed by subsequent tasks; otherwise the storagearea cannotbe
accessed by subsequent tasks. For a more detailed discussion of the KEEP
parameter, refer to CA IDMS Navigational DML Programming Guide.

LONG

Allocates storage from the bottom of the storage pool.
This is the default.

You should specify LONG when allocating kept storage to be held across
pseudo-converses.

An incorrect LONG/SHORT specification will notaffect normal program execution;
however, itmay affect the overall performance of the DC system.

SHORT

Allocates storagefrom the top of the storage pool.You should specify SHORT when
allocating small pieces of storagefor a shortduration.

An incorrect LONG/SHORT specification will notaffect normal program execution;
however, itmay affect the overall performance of the DC system.

USER

Specifies that only the issuingtask canaccess thestoragearea or, if KEEP is
specified, only subsequent tasks executing on the same terminal.

This is the default.

Note: During system execution, a programdefined at sysgen with the NOPROTECT
option canaccess any storagearea within the system, includingan area associated
exclusively with another task. Thus, the USER attribute may not protect the storage
area being acquired. However, storage areas can be protected on a system-wide or
program-by-program basis during system generation and by the modes specified
when storage is allocated.

Chapter 6: Data Manipulation Language Statements 199

GET STORAGE

SHARED

Specifies that anytaskin the system canaccess and modify the acquired storage.
Each task must establish addressability to the storage area by explicitlyissuinga
GET STORAGE request.

STGID

Specifies storagearea. The STGID parameter must be specified with GET STORAGE
requests for either previously allocated storageareas or areas to be reallocated.

storage-id

Either the symbolic name of a user-defined field that contains the storagelD or
the ID itselfenclosed in quotation marks.

The specified storage ID must be unique; although multiplevariablestorage
areas (thatis, one shared and the others user)canhave the same ID, onlyone
sucharea canbe owned by a given task ata time. To access the CAIDMS
common work area, specify STGID 'CWA'.

Note: Ifthe STGID parameter specifies theaddress of an existingstorage area, the
USER/SHARED parameter must specify the same option as that specified in the GET
STORAGE statement that originally allocated the storage area.

VALUE IS
Specifies how the storage area is to be initialized.
LOW-VALUE Initializes thestorage area to all zeros.

HIGH-VALUE Initializes thestorage area to the highestvalue inthe computer
collating sequence.

initial-value

Either the symbolic name of a user-defined field that contains the initial value
or the valueitselfenclosed in quotation marks. All bytes of the acquired
storage area areinitialized to the same value.

LOCATION is

Specifies whether the storageis to be restricted to below the 16-megabyte lineorif
spaceabove the 16-megabyte lineis alsoeligible.

ANY Specifies that spaceabove the 16-megabyte lineis eligiblefor allocation.
This is the default.

BELOW Specifies that storage must be allocated from below the 16-megabyte
line.

200 DML Reference Guide for COBOL

GET TIME

Example

Status Codes

GET TIME

The following statement illustrates a request to allocatethe shared kept storage area,
09PA, and initializeitto all zeros:

GET STORAGE FOR EMPLMENU-KEPT-STORAGE TO
EMPLMENU-KEPT - STORAGE - END

NOWAIT
KEEP
SHORT
SHARED

STGID 'G9PA’

VALUE IS LOW-VALUE.

After completion of the GET STORAGE function, the ERROR-STATUS field of the IDMS-DC
communications blockindicates the outcome of the operation:

Status code

Meaning

0000 The request has been serviced successfully

3201 The requested storage cannot be allocated immediately;to wait
would causea deadlock

3202 The requested storage cannot be allocated becauseinsufficientspace
exists in the storage pool

3210 The request specified a storageID that did not previously exist; the
required spacehas been allocated

3231 The request specifies aninvalid parameter list

3232 The requested length is zero or negative

3234 The request cannotbe serviced becausethe variablestorageareais
not an 01-level LINKAGE SECTION variable

3235 The request cannotbe serviced becausethe specified 01-level

LINKAGE SECTION entry has either been previouslyallocated or
contains an OCCURS DEPENDING ON clause

The GET TIME statement obtains the time of day and date from the operatingsystem.
The system time is returned to the issuingtaskin either fixed binary, packed decimal, or
edited format. The dateis returned to the program in packed decimal format.

Chapter 6: Data Manipulation Language Statements 201

GET TIME

Syntax
»»— GET TIME = >
INTO return-time coMp
—E COMP-3
EDIT
L paTE INTO return-date = o
Parameters
INTO
Specifies the field to which CA IDMS is to return the time.
return-time
The symbolic name of a user-defined field to which the current time will be
returned. The following formatoptions apply:
COMP Returns the time as a fixed binary valuerepresenting the elapsed time
sincemidnightin ten-thousandths of a second.
This is the default.
If COMP is specified, the field associated with return-time should be a PICS9(8)
COMP SYNC (fullword) field. The COMP optionreturns the most precisetime.
COMP-3 Returns the time as a six-byte packed decimal valuein the format
Ohhmmssttttc (padded zero, hours, minutes, seconds, ten-thousandths of a
second, sign).1f COMP-3 is specified, the field associated with return-time
should be defined as PICS9(11) COMP-3.
EDIT Returns the time as anedited character stringin the format hh:mm:ss:hh
(hours, minutes, seconds, hundredths of a second). If EDIT is specified,
return-time should be defined as PICX(11) DISPLAY.
DATE INTO
Specifies the field to which CA IDMS is to return the data obtained from the
operating system.
return-date
The symbolic name of a user-defined COMP-3 PIC S9(7)field. The dateis
returned inthe Julianformat Oyyydddc (padded zero, current year relativeto
1900, date, sign). For example, 0099365C would represent December 31, 1999.
0100001Cwouldrepresent January 1, 2000.
Example

The following statement illustrates a request to return the current time and date to the
CURRENT-TIME and CURRENT-DATE fields, respectively:

GET TIME
INTO CURRENT-TIME EDIT
DATE INTO QURRENT-DATE.

202 DML Reference Guide for COBOL

IF

Status Codes

IF

Syntax

After completion of the GET TIME function, the only possiblevalueinthe
ERROR-STATUS field of the IDMS-DC communications blockis 0000.

The IF statement allows the program to test for the presence of member record
occurrences ina set and to determine the membership status of a record occurrencein
a specified set; once the set has been evaluated, the IF statement specifies further
action based on the outcome of the evaluation. For example, an IF statement might be
used to determine whether a set occurrenceis empty and,if itis empty, to erase the
owner record.

Depending on its format, the |F statement uses set or run-unitcurrency. The object set
occurrence of an IF statement is determined by the owner of the current record of the
named set; the object record occurrence is determined by the current of run unit.

Each IF statement contains a conditional phraseand animperativestatement. When an
IFisissued, the precompiler firstgenerates a call tothe DBMS to execute the
conditional phrase. Then, the precompiler generates a COBOL IF statement that tests
the results of the call tothe DBMS to determine whether the imperative statement is
executed. Exercisecare when nesting DML IF within COBOL IF statements as logic can be
difficultto follow. You may need to code explicitscopeterminators.

Note: If AUTOSTATUS isinuse(see AUTOSTATUS Protocols (seepage 63)),
IDMS-STATUS is notperformed automatically whenan IF statement isissued.

Native VSAM users:.The |Fstatement is not valid for sets defined with member records
that are stored in native VSAM data sets.

>»|: IF set-name is —m— EMPTY imperative-statement . —»<
T j
IF T =T set-name MEMBER
NOT

Chapter 6: Data Manipulation Language Statements 203

IF

Parameters

Examples

set-name

Specifies the set whose owner should be examined for the presence of member
record occurrences.

The specified set must be included inthe subschema.
EMPTY

Specifies that the imperative statement be executed ifthe current occurrence of
the named set is empty.

NOT EMPTY

Specifies that the imperative statement be executed if the current occurrence of
the named set is not empty.

MEMBER

Specifies that the imperative statement be executed if the current record of the run
unitis a member of any occurrence of the specified set.

NOT set-name MEMBER

Specifies that the imperative statement be executed if the current record of the run
unitis nota member of anyoccurrence of the specified set.

imperative-statement

Identifies the action to execute ifthe specified conditionis true.

The examples below illustratethe use of the IF statement.
Example 1

The following statement tests the COVERAGE-CLAIMS set for existing CLAIMS
members and, if no occurrences of the CLAIMS record are found (ERROR-STATUS is
0000), moves a message to that effect to location CLAIMS-WS.

IF COVERAGE-CLAIMS IS EMPTY MOVE 'NONE' TO CLAIMS-WS.

If the current occurrence of the COVERAGE-CLAIMS set contains one or more
occurrences of the CLAIMS record (ERROR-STATUS is 1601), the MOVE statement is
ignored and the next statement inthe program is executed.

Example 2

The following statement verifies that the EMPLOYEE record thatis currentof run
unitis nota member of the current occurrence of the OFFICE-EMPLOYEE set before
code is executed to connect the EMPLOYEE record to that set.

204 DML Reference Guide for COBOL

INQUIRE MAP

Status Codes

INQUIRE MAP

IF NOT OFFICE-EMPLOYEE MEMBER PERFORM LINK-SET.

Ifthe EMPLOYEE record is not a member of the OFFICE-EMPLOYEE set
(ERROR-STATUS is 1601),the program performs the LINK-SET paragraph.Ifthe
EMPLOYEE recordis already a member of the OFFICE-EMPLOYEE set
(ERROR-STATUS is 0000),the PERFORM statement is ignored and the next
statement inthe program is executed.

After completion of the IF function, the ERROR-STATUS fieldinthe IDMS
communications blockindicates the outcome of the operation:

Status code Meaning

0000 Either the set is empty or the record that is currentof run unitisa

member of the set

1601 Either the set is not empty or the record thatis current of run unitis

not a member of the set

1606 Currency has not been established for the named set

1608 Either an invalid setname has been specified or the current record of

run unitis not a member of the named set

1613 A current record of run unit either has not been established or has

been nullified by a preceding ERASE statement

The INQUIRE MAP statement is used after a map inputrequest to accomplish one of the
followingactions related to the inputoperation:

Move map-related informationintovariablestorage
Test for conditions relating to global map input operations
Test specific map fields for the presence of the cursor

Test for conditions relating to specific map fields

Each of these actions is discussed on the following pages.

Chapter 6: Data Manipulation Language Statements 205

INQUIRE MAP

Syntax

Parameters

The followingrules apply to INQUIRE MAP statements:

m Ifany of the test conditions arerequested, INQUIRE MAP must specify a statement
to execute ifthe conditionis found to be true.

® An INQUIRE MAP statement canspecify only one field-oriented inquiry. This inquiry
canbe specified aloneor with a map-specificinquiry.

m A MAP IN request must be issued before INQUIRE MAP is used.

Moving Map-related Data

This version of the INQUIRE MAP statement moves one of the following map-related
dataitems into variablestorage:

m The attention ID (AID) key used

m The current cursor position (rowand column)

m The entered length of a specific mapinputfield

v

»»—— INQUIRE MAP map-name

»—— MOVE AID TO aid-indicator
CURSOR TO cursor-row cursor-column 4_|
IN LENGTH FOR f7eld-name TO field-length

M

map-name

Specifies the map for which the inquiryis to be made. The specified map must be
includedinthe program's MAP SECTION.

MOVE
Move screen-related information to program variablestorage.

AID TO
Return the attention ID to the specified locationinvariablestorage.
aid-indicator

The symbolic name of a one-byte user-defined field that will be set to the 3270
AID character received inthe lastmap inputrequest. The table below lists the
AID characters associated with each 3270-type control key.

Note: The data dictionaryincludes a record that defines the AID character
values as level-88 items to test for particular keyed input by includinga COPY
IDMS DC-AID-CONDITION-NAMES statement inthe WORKING-STORAGE
SECTION.

206 DML Reference Guide for COBOL

INQUIRE MAP

CURSOR TO

Returns the cursor address fromthe lastmap inputfunction to the specified
locationinprogramvariablestorage.

cursor-row cursor-column

The symbolic names of user-defined PICS9(4) COMP fields to which the row
and column cursor address will bereturned.

IN LENGTH FOR
Specifies to return the length in bytes of the data inthe specified map field.
field-name
The name of the map field for which the length is beingrequested.
TO
Specifies where to return the length of the field.
field-length
The symbolic name of a user-defined PIC S9(4) COMP field.

Attention ID (AID) Key Values

Key AID Character Key AID Character
ENTER """ (single quote) PF14 'B'
CLEAR ' " (underscore) PF15 'C'
PFO1 1 PF16 'D'
PFO2 2! PF17 'E'
PFO3 '3 PF18 'F'
PFO4 ‘4! PF19 'G'
PFO5 '5' PF20 'H'
PFO6 '6' PF21 I'
PFO7 '7' PF22 ¢
PFO8 '8’ PF23 N
PFO9 '9' PF24 <!
PF10 B PAO1 %'
PF11 '# PAO2 >!
PF12 '@ PAO3 Y
PF13 ‘A

Chapter 6: Data Manipulation Language Statements 207

INQUIRE MAP

The following figureshows the code copiedinto the programas a resultof the COPY
IDMS DC-AID-CONDITION-NAMES specification.

*01 COPY IDMS DC-AID-CONDITION-NAMES.
01 DC-AID-CONDITION-NAMES.
03 DC-AID-IND-V PIC X.

88 ENTER-HIT VALUE QUOTE.
88 CLEAR-HIT VALUE ' ‘.
88 PFO1-HIT VALUE '1°'.
88 PFO2-HIT VALUE '2'.
88 PFO3-HIT VALUE '3'.
88 PFO4-HIT VALUE '4'.
88 PFO5-HIT VALUE '5'.
88 PFO6-HIT VALUE '6'.
88 PFO7-HIT VALUE '7'.
88 PFO8-HIT VALUE '8'.
88 PFO9-HIT VALUE '9'.
88 PF10-HIT VALUE ':'.
88 PF11-HIT VALUE '#'.
88 PF12-HIT VALUE '@'.
88 PF13-HIT VALUE 'A'.
88 PF14-HIT VALUE 'B'.
88 PF15-HIT VALUE 'C'.
88 PF16-HIT VALUE 'D'.
88 PF17-HIT VALUE 'E'.
88 PF18-HIT VALUE 'F'.
88 PF19-HIT VALUE 'G'.
88 PF20-HIT VALUE 'H'.
88 PF21-HIT VALUE 'I'.
88 PF22-HIT VALUE '¢'.
88 PF23-HIT VALUE '.'.
88 PF24-HIT VALUE '<'.
88 PAO1-HIT VALUE '%'.
88 PAO2-HIT VALUE '>'.
88 PAO3-HIT VALUE ',"'.
88 PEN-ATTN-SPACE-NULL VALUE '='.
88 PEN-ATTN VALUE QUOTE.

Example

The following example illustrates the use of an INQUIRE MAP statement to move the
3270 AID character received inthe lastmap inputrequest to DC-AID-IND-V. If the AID
character indicates that PF1 was pressed, the program performs a DC RETURN.

INQUIRE MAP EMPMAPLR

MOVE AID TO DC-AID-IND-V.
IF CLEAR-HIT
DC RETURN.

208 DML Reference Guide for COBOL

INQUIRE MAP

Syntax

Parameters

Testing for Global Map Input Conditions

This version of the INQUIRE MAP statement tests for one of the following global map
input conditions:

m Ifthe screenwas not formatted before the inputoperation was performed

m Ifone or more inputfields were truncated when transferred to variablestorage
datafields

m Ifone or more inputfields were modified on the screen before being transferred

m Ifone or more fields thatwere modified on the screen are undefined in the map
being used

»»—— INQUIRE MAP map-name >

TRUNCATED
CHANGED

»— IF INPUT —E UNFORMATE— THEN —v— imperative-statement —— . — »«
EXTRANEOUS

map-name

The name of the map for which the inquiryis being made. The map must be
includedinthe program's MAP SECTION.

IF INPUT

Tests the outcome of the lastmapinput request for conditions relatingto the data
input to the program.

UNFORMATTED Tests whether the screen had been formatted before the input
operation was performed.

TRUNCATED Tests whether any of the map fields were truncated when
transferred to variable-storagedata fields.

CHANGED Tests whether any of the map fields actually had been mapped to
variable-storage data fields when the map inputoperation was performed.

EXTRANEOUS Tests whether the inputdata stream contained any data froma
field not defined to the map. Ifthis conditionis true, the undefined data fieldis
ignored by CA IDMS.

THEN
Specifies the action to be taken when the test conditionis true.

imperative-statement A COBOL statement, a DML statement, or a nested block
of COBOL and/or DML statements.

Chapter 6: Data Manipulation Language Statements 209

INQUIRE MAP

Example

Syntax

Parameters

Example

The following exampleillustrates an INQUIRE MAP statement that tests to determine if
anyfields inthe EMPMAPLR map have been truncated and, ifso, requests CA IDMS to
perform the DATA-TRUNC routine:

INQUIRE MAP EMPMAPLR
IF INPUT TRUNCATED
THEN PERFORM DATA-TRUNC.

Testing for Cursor Position

This version of the INQUIRE MAP statement tests a specified map field for the presence
of the cursor.

»»—— INQUIRE MAP map-name >

T
»— IF CURSOR at DFLD field-name THEN —¥ imperative-statement € . —><«

map-name

The name of the map for which the inquiryis beingmade. The map must be
includedinthe program's MAP SECTION.

IF CURSOR at DFLD

Determines whether the cursor was inthe named map field duringthe lastmap
input operation.

field-name ldentifies the field within the named map to be tested.
THEN
Specifies the actionto be taken if the test conditionis true.

imperative-statement A COBOL statement, a DML statement, or a nested block
of COBOL and/or DML statements.

The following example illustrates an INQUIRE MAP statement that tests for the presence
of the cursorinthe PASSED-DATA-01 data field and, ifso, performs the CHECK-2 routine:

INQUIRE MAP EMPMAPLR
IF CURSOR AT DFLD BEMP-LAST-NAME-0415
THEN PERFORM CHEXK-2.

210 DML Reference Guide for COBOL

INQUIRE MAP

Testing for Input Non-zero Status Conditions

This version of the INQUIRE MAP statement tests for the followinginputconditions
relatingto specific mapfields:

m Ifmap fields have been modified

m Ifmap fields havebeen erased by operator action

m Ifmap fields havebeen truncated

m Ifmap fields areidentical to map data currentlyin programvariablestorage

m Ifmap fields aredifferent from map data currentlyin program variablestorage

m |fthe specified mapfields areeither inerror (the error flaghas been set on for
those fields) or are correct (the error flaghas been set off); this option applies only
to those maps and map fields for which automatic editingis enabled

Syntax
»»—— INQUIRE MAP map-name >
»— IF CURRENT >
— ALL
— NONE
— ANY
— SOME ——————
— ALL BUT CURRENT —
— ALL « —— DFLD field-name —
— NONE
— ANY
— SOME —
— ALL BUT —
— DFLD field-name
DATA 1is YES >
NO —_—
ERASE
TRUNCATED —
IDENTICAL —
DIFFERENT —
EDIT 1is ERROR I —
L CORRECT
I
»—— THEN —v— imperative-statement € . >
Parameters

map-name

Specifies the map for which the inquiryis being made. The map must beincludedin
the program's MAP SECTION.

Chapter 6: Data Manipulation Language Statements 211

INQUIRE MAP

Specifies the map fields to which the test applies.

CURRENT Applies the test only to the current field; that is, the map field that
was referenced inthe last MODIFY MAP or INQUIRE MAP statement issued by
the program. If the last MODIFY MAP or INQUIRE MAP statement specifieda
fieldlist,no currency exists.

ALL Specifies that the test is trueifall map fields meet the specified condition.

NONE Specifies thatthe testis true if none of the map fields meet the specified
condition.

ANY Specifies that the test is true if one or more of the map fields meet the
specified condition.

SOME Specifies that the test is true if one or more but not all of the map fields
meet the specified condition.

ALL BUT CURRENT Specifies that the test is true ifall map fields except the
current field meet the specified condition.

Specifies the extent to which the condition applies tothe map field.

DFLD

ALL Specifies that the test is trueifall of the named map fields meet the
specified condition.

NONE Specifies thatthe testis true if none of the named map fields meet the
specified condition.

ANY Specifies that the test is true if one or more of the named map fields meet
the specified condition.

SOME Specifies that the test is true if one or more but not all of the named
map fields meet the specified condition.

ALL BUT Specifies that the test is true ifall map fields except for the named
field meet the specified condition.

Specifies the individual map fields to which the test conditions apply.

Multiple DFLD specifications mustbe separated by at leastone blank.

field-name The name of a field within the named map.

DFLD field-name

Specifies the individual map field(s) to which the test condition applies.The
specified field(s) mustexistwithin the named map.

Multiple DFLD specifications mustbe separated by at leastone blank.

212 DML Reference Guide for COBOL

INQUIRE MAP

DATA IS
Tests the input data in the specified map field(s).

YES Determines if the terminal operator entered datainthe specified map
field(s).

NO Determines ifthe terminal operator did not enter data inthe specified map
field(s).

ERASE Determines if data has been erased from the specified map field(s).

TRUNCATED Determines ifdata has been truncated inthe specified map
field(s).

IDENTICAL Tests whether input dataisidentical to map data currently in
program variablestorage.

IDENTICAL is true in either of the followingcases:

- The field's modified data tag (MDT) is off. On mapin, the MDT is usually off
ifthe user did not type anycharactersinthe field.

— The field's MDT is on, but each character that the user typed inis identical
(including capitalization) to the data in variablestorage.

DIFFERENT Tests whether input datais different from map data currentlyin
program variablestorage.

DIFFERENT is true ifthe field's MDT is both:
- on
and
- atleastoneinput character differs from the datainvariablestorage.
EDIT IS
Tests for errors inthe named map field(s).

Ifthe EDIT parameter is specified, automatic editing must be enabled for the map
and for each of the named map fields.

ERROR Determines ifthe named map field(s) were found to beinerror during
automatic editing.

CORRECT Determines ifthe named map field(s) were found to be correct during
automatic editing.

THEN
Specifies the action to be taken when the test condition is true.

imperative-statement A single COBOL statement, a DML statement, or a nested
block of COBOL and/or DML statements.

Chapter 6: Data Manipulation Language Statements 213

INQUIRE MAP

Examples

The examples below illustratethe use of the INQUIRE MAP statement.
Example 1—Testing for Erroneous Data

The following example determines if automatic editing has detected erroneous data
inany fieldinthe EMPMAPLR map; ifso, the program modifies the map temporarily
to displaytheerroneous fields with the brightand blinkingattributes:

INQUIRE MAP EMPMAPLR
IF ANY EDIT IS ERROR
THEN MODIFY MAP EMPMAPLR TEMPORARY
FOR ALL ERROR FIELDS
ATTRIBUTES BRIGHT BLINK.

Example 2—Testing for Identical Data

Use an INQUIRE MAP statement to test whether the user has entered an employee
ID number:

m Ifthe IDENTICAL conditionis true (the user doesn't specify a different ID number),
the program displaysthe menu screen.

m |fthe IDENTICAL conditionis false (the user specifies a different ID number), the
program obtains the corresponding employee record from the database.

The sample INQUIRE MAP statement is:

INQUIRE MAP MAPO1
IF DFLD EMP-ID-0415 DATA IS IDENTICAL THEN
PERFORM EMP-PROMPT-20
ELSE
PERFORM EMP-OBTAIN-20.

Example 3—Testing for Changed Data

Use an INQUIRE MAP statement to test whether the user has entered a new
department ID or department name. If the user has changed either value
(DIFFERENT is true), the program branches to DEPTUP-30:

INQUIRE MAP MAPO2
IF ANY DFLD DEPT-ID-0410
DFLD DEPT-NAME-0410 DATA IS DIFFERENT
THEN PERFORM DEPTUP-30.

214 DML Reference Guide for COBOL

KEEP CURRENT

Status Codes

After completion of the INQUIRE MAP function, the ERROR-STATUS field of the IDMS-DC
communications blockindicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

4629 An invalid parameter has been passed from the program.

4641 The test condition has been found to be true. (This conditionis

tested for automatically by COBOL DML expansion statements.)

4644 The referenced map fieldis notinthe specified map; a possiblecause
is areference to aninvalid map field subscript.

4656 The referenced map contains no data fields.

KEEP CURRENT

Syntax

Parameters

The KEEP CURRENT statement places an explicitshared or exclusivelock ona record
thatis current of run unit, record, set, or area.Locks placed on records through the KEEP
CURRENT function are maintained for the duration of the databasetransaction or until
explicitly released by means of the COMMIT or FINISH statements.

)

WITHIN set-name —j

»»—— KEEP T] CURRENT
EXCLUSIVE E record-name
WITHIN area-name —

EXCLUSIVE

Specifies to placean exclusivelockonthe current record of run unit, record, set, or
area.|f you do not specify EXCLUSIVE, the record receives a shared lock by default.

record-name

Specifies to placethe lock on the current record of the specified record type.
WITHIN set-name

Specifies to placethe lockon the current record of the specified set.
WITHIN area-name

Specifies to placethe lock on the current record of the specified area.

Chapter 6: Data Manipulation Language Statements 215

KEEP LONGTERM

Example

Status Codes

The followingexample places a shared lock on the current EMPLOYEE record
occurrence:

KEEP CURRENT EMPLOYEE.

After completion of the KEEP function, the ERROR-STATUS fieldinthe IDMS
communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully

0606 Currency has not been established for the named record, set, or area
0608 Either the named record or setis notin the subschema or the current

record of run unitis not a member of the named set

0610 The program's subschema specifies anaccess restriction that
prohibits execution of the KEEP function

0623 The named areais not inthe subschema
0626 The record to be kept has been erased
0629 A deadlock has occurred while attempting to set the |l ock.

KEEP LONGTERM

The KEEP LONGTERM statement establishes longtermrecord locks and/or monitors
access torecords between tasks.Longterm databaselocksareusedin
pseudo-conversational transactionsand can beshared or exclusive:

m Longtermshared locks allow other rununits to access thelocked record but
prevent run units from updating the record as longas the lockis maintained.

m Longterm exclusive locks prevent other run units from accessingthe locked record.
However, run units executing on the logical terminal associated with the issuing
taskare notrestricted from accessingthe locked record. Therefore, subsequent
tasksinatransactioncanaccessthelocked record and complete the database
processingrequired by the transaction.

Ifa record has been locked with a KEEP LONGTERM or KEEP request, restrictions exist
on the type of lockthat can be placed on that record by other run units. These
restrictions arebased on existinglocks and whether the requesting run unitis executing
on the same logical terminal astherun unit that originally placed the lock on the record.
The followingtableillustrates theserestrictions.

216 DML Reference Guide for COBOL

KEEP LONGTERM

Keep Longterm Record Lock Options

Locks in effect

Locks allowed for other run units

Locks disallowed for other
run units

Shared m shared m exclusive
m longterm shared m longterm exclusive
Exclusive None

m shared
m exclusive
m longterm shared

m longterm exclusive

Longterm shared

For all run units:
m shared

m longterm shared

For run units on the same terminal:

m exclusive

m longterm exclusive

For run units on other
terminals:

m exclusive

m longterm exclusive

Longterm exclusive

For run units on the same terminal:

m shared
m exclusive
m longterm shared

m longterm exclusive

For run units on other
terminals:

m shared

exclusive

m longterm shared

m longterm exclusive

Tasks can monitor databaseactivity associated with a specified record duringa
pseudo-converse and, ifdesired, can placea longterm lock on the record being
monitored. A subsequent task canthen make inquiries aboutthatdatabaseactivity for
the record and take the appropriateaction.

CA IDMS maintains information on databaseactivity by using five bitflags, each of which
is either turned on (binary 1) or turned off (binary0). This informationis returned to the
program as a numeric value. The bit assignments, the corresponding numeric value
returned to the program, and a description of the associated databaseactivity follow:

Numeric Bit Assignment Description

Value
16 X'00000010' The record was physically deleted
8 X'00000008' The record was logically deleted

Chapter 6: Data Manipulation Language Statements 217

KEEP LONGTERM

Syntax

Numeric Bit Assignment Description

Value

4 X'00000004' The record's prefix was modified; that is, a set operation
(for example, CONNECT or DISCONNECT) occurred
involvingthe record

2 X'00000002' The record's data was modified

1 X'00000001" The record was obtained

To determine the action or combination of actions thathas occurred, you can compare
the numeric valuereturned to the programwith an appropriate constant. For example:

— Ifthe returned valueis zero, no databaseactivity occurred for the specified
record.

— Ifthe returned valueis two, the record's data was modified.
- Ifthe returned valueis two or greater, the record was altered in some way.

— Ifthe returned valueis eight or greater, the record was deleted.

The maximum possiblevalueis 31,indicatingthatall theabove actions occurred for the
specified record.

You may prefer to monitor databaseactivity across a pseudo-converserather than to
set longterm locks. Monitoring does not restrictaccess to databaserecords, sets, or
areas by other run units; however, it does enablea programto test a record for
alterations made by other run units. The presence of longterm locks can prevent other
run units from accessinglocked records for an undesirableamount of time if, duringa
pseudo-converse, the terminal operator fails to enter a response. If longterm locks are
used, you may want to release them at specifiedintervals.

Note: For more information aboutthe use of timeout intervals, seethe CA IDMS System
Generation Guide ..

»»—— KEEP LONGTERM ALL >
L longterm-1d -
»—— NOTIFY CURRENT record-name >«
_E set-name j
area-name

— lock-options

— TEST

L RETURN NOTIFICATION 7nto location —

RELEASE

218 DML Reference Guide for COBOL

KEEP LONGTERM

Expansion of lock-options

>——-[: SHARE —_l— CURRENT record-name
EXCLUSIVE E i’

v

set-name
area-naime

L UPGRADE SHARE
"L BxcLustve - L RETURN-NOTIFICATION into location —

v
v

— WAIT «
— NOWAIT
— NODEADLOCK —

Parameters
ALL

Used only with the RELEASE parameter, to release all longtermlocks kept for the
logical terminal associated with the current task.

longterm-id

Either the symbolic name of a user-defined field that contains the longterm ID or
the ID itselfenclosed in quotation marks. This ID will beused inany subsequent
references to the lock, when itis changed orreleased.

NOTIFY CURRENT

Specifies to monitor databaseactivity associated with the current record. When
NOTIFY CURRENT is specified, CAIDMS initializes a preallocated locationin the
program to containinformation on databaseactivity for the specified record.

record-name

Monitors databaseactivity associated with the current occurrence of
record-name.

set-name
Monitors databaseactivity associated with the record current of set-name.
area-name
Monitors databaseactivity associated with the record current of area-name.
TEST RETURN NOTIFICATION into

Specifies to return information on databaseactivity associated with the record
identified by longterm-id to a previously allocated locationintheprogram's storage.

The TEST request must specify a longterm lock ID that matches the longterm lock ID
specifiedina previous KEEP LONGTERM NOTIFY CURRENT request.

location

The symbolic name of a user-defined PIC S9(8) COMP (fullword) field that
contains the WORKING-STORAGE or LINKAGE SECTION entry of the data area to
which CA IDMS will return the information.

Chapter 6: Data Manipulation Language Statements 219

KEEP LONGTERM

RELEASE
Releases the longterm lock for the recordidentified by longterm-id or all record
locks (ALL) owned by the logical terminal associated with the current task. RELEASE
alsoreleases theinformation associated with a previous KEEP LONGTERM NOTIFY
request.

Lock Options

SHARE
Applies a longterm shared lock to the specified record.

EXCLUSIVE
Applies a longterm exclusivelockto the specified record.

CURRENT record-name Applies the lockto the current occurrence of
record-name.

CURRENT set-name Applies the lock to the record current of set-name.
CURRENT area-name Applies the lock to the record current of area-name.
UPGRADE
Upgrades a previous KEEP LONGTERM NOTIFY CURRENT request.
SHARE Places a shared longterm lock on the record.
EXCLUSIVE Places an exclusivelongtermlock on the record.
RETURN NOTIFICATION into
Returns information on databaseactivity for the specified record.

return-location The symbolic name of a user-defined PICS9(8) COMP (fullword)
field that contains the WORKING-STORAGE SECTION or LINKAGE SECTION entry
of the data area to which CA IDMS will return the information.

WAIT
Requests the issuingtasktowait for an existinglockto be released.
This is the default.
Ifthe waitwould causea deadlock, the task is terminated abnormally.
NOWAIT
Requests the issuingtask notto waitfor anexistinglockto be released.
NODEADLOCK

Requests the issuingtasktowait for an existinglockto be released, unless to do so
would causea deadlock. If the waitwould causea deadlock, control is returned to
the task.

220 DML Reference Guide for COBOL

KEEP LONGTERM

Example

Status Codes

The steps below illustratethe use of the KEEP LONGTERM statement.

1. Begin monitoring databaseactivities for the current occurrence of the EMPLOYEE
record by coding:

KEEP LONGTERM KEEP-ID NOTIFY CURRENT EMPLOYEE.

2. Return statistics of databaseactivities for the record identified by KEEP-ID into
STAT-VALUE by coding:

KEEP LONGTERM KEEP-ID TEST RETURN NOTIFICATION
INTO STAT-VALUE.

3. Depending on the valuereturned to STAT-VALUE, you may want to put a longterm
sharedlock on the EMPLOYEE record identified by KEEP-ID by coding:

KEEP LONGTERM KEEP-ID UPGRADE SHARE.
4. After processing,releasealllongtermlocks by coding:

KEEP LONGTERM ALL RELEASE.

After completion of the KEEP LONGTERM function, the ERROR-STATUS fieldinthe
IDMS-DC communications blockindicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

5101 The NODEADLOCK option has been specified; however, to waitwould
causea deadlock. Control has returned to the issuingtask.

5102 Unable to obtain storage for the required KEEP LONGTERM control
blocks.

5105 Either the requested recordtype cannotbe found or currency has

not been established.

5113 The required area control block was not found in the DMCL.

5121 Either the requested longterm ID cannot be found or the KEEP
LONGTERM request was issued by a nonterminal task.

5123 The specified area cannotbe found.

5131 The parameter listis invalid.

5147 The KEEP LONGTERM area has not been readied.

5148 The run unitassociated with the KEEP LONGTERM request has not
been bound.

Chapter 6: Data Manipulation Language Statements 221

LOAD TABLE

Status code

Meaning

5149

The NOWAIT option has been specified; however, a waitis required.

5151

A lock manager error occurred during the processing of the KEEP
LONGTERM request.

5159

An error occurred intransferringthe KEEP LONGTERM request to
IDMSKEEP.

5160

The requested KEEP LONGTERM lock ID was alreadyinusewith a
different page group.

5161

The requested KEEP LONGTERM lock ID was alreadyinusewith a
different dbkey format.

LOAD TABLE

The LOAD TABLE statement instructs CA IDMS/DC to load a table (module or program)
into the program pool and provideaccess to itthrough a COBOL LINKAGE SECTION

entry.

Syntax

»»—— LOAD TABLE program

v

»— INTO O1-level-program-location T T0 end-program-location —_|—>

»

POINTER table-location-pointer

»

L DICTNODE nodename 1L DICTNAME dictionary-name —I

\ 4

T WAIT «
NOWAIT

L LOADLIB 17brary-name J

v

:]_ .

M

222 DML Reference Guide for COBOL

LOAD TABLE

Parameters

program

Either the symbolic name of a user-defined field that contains the table or the name
itselfenclosed in quotation marks.

INTO

Specifies the LINKAGE SECTION entry of the 01-level record area that references the
loaded table.

01-level-program-location

The symbolic name of a user-defined field that contains the name of the
01-level LINKAGE SECTION entry used to loadthe table.

Note: CA IDMS/DC does not supportthe use of an OCCURS DEPENDING ON clause
within 01-level-program-location.

TO

Specifies the end of the LINKAGE SECTION entry of the 01-level record area that
references the loaded table.

This parameter is optional under COBOL 85.
end-program-location

The symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the module being loaded.
End-program-location is anentry subordinateto the 01-level record.

POINTER
Specifies a pointer to the address of the table (COBOL 85 only).
table-location-pointer

The symbolic name of a user-defined field that is to contain the pointer to the
address of the table.

DICTNODE
Specifies the node that controls the dictionary where the table resides.
nodename

Either the symbolic name of a user-defined eight-character fieldinvariable
storage or the node name itselfenclosed in quotation marks.

Chapter 6: Data Manipulation Language Statements 223

LOAD TABLE

DICTNAME
Specifies the dictionary where the tableresides.
dictionary-name

Either the symbolic name of a user-defined eight-character fieldinvariable
storage or the dictionary nameitselfenclosedin quotation marks.

LOADLIB
Specifies the load library containingthetable.
library-name

Either the symbolic name of a user-defined eight-character fieldinvariable
storage orthe library nameitselfenclosed in quotation marks.

WAIT

Requests the issuingtasktowait for sufficientstoragein the event that program
pool storage is notimmediately availableto meet the requirements of the LOAD
TABLE request.

This is the default.

If you specify WAIT and CA IDMS/DC encounters aninsufficientstorage condition,
the issuingtaskisplacedinaninactivestate; when the LOAD TABLE functionis
completed, control returns to the issuingtaskaccordingtoits previously
established dispatching priority.

NOWAIT

Requests the issuingtasknotto waitfor storage to become available. If you specify
NOWAIT, CA IDMS/DC returns a valueof 3402 (DC-NO-STORAGE) to the
ERROR-STATUS field when aninsufficientstorage condition exists.

Example

The example below defines the 01-level LINKAGE SECTION entry for use with the LOAD
TABLE request for a table builtfrom an Assembler program.

Note: IDD edit and code tables contain special characters andvariable-length fields. In
general, such fields arenot used ina COBOL program.

The followingsourcecode defines the 01-level LINKAGE SECTION entry for usewith the
LOAD TABLE request:

LINKAGE SECTION.

01 STATE-TABLE.
02 STATES OCCURS 50 TIMES.
03 STATE-ABB PIC X(2).
03 STATE-FULL PIC X(15).
02 END-STATE-TABLE PIC X.

224 DML Reference Guide for COBOL

LOAD TABLE

Examples

The examples below illustratethe use of the LOAD TABLE statement:

Example 1

The following statement loads the STATECON table intothe 01-level LINKAGE
SECTION entry STATE-TABLE:

LOAD TABLE 'STATECON'
INTO STATE-TABLE TO END-STATE-TABLE.

Example 2

The example below defines the 01-level LINKAGE SECTION entry for use with the
LOAD TABLE request foran IDD CODE TABLE, defined as follows:

ADD TABLE NAME IS DECODMTH

TABLE DESCRIPTION IS 'MONTH CODE CONVERT'

TYPE IS CODE

SEARCH IS LINEAR

ENCLODE DATA IS ALPHANUMERICPIC 9(4) COMP.

TABLE IS UNSORTED

DUPLICATES ARE NOT ALLOWED

VALUES ARE (01 JAN 02 FEB 03 MAR 04 ARR
05 MAY 06 JUN 07 JUL 08 AUG
09 SEP 10 OCT 11 NOV 12 DEC).

The following source code defines the 01-level LINKAGE SECTION entry for usewith
the LOAD TABLE request:

LINKAGE SECTION.

01 MONTH-TABLE.
02 TABLE-HEADER.
03 HDR-NUM-ENTRIES PIC 9(4) COMP.
02 TABLE-DATA. OCCURS 12 TIMES.
03 DTA-FILLER1 PIC X(2).
03 DTA-MONTH-NUM PIC 9(2).
03 DTA-FILLER2 PIC X.
03 DTA-MONTH-TXT PIC X(3).
02 END-MONTH-TABLE PIC X.

The following statement loads the DECODMTH tables into the 01-level LINKAGE
SECTION entry MONTH-TABLE:

Chapter 6: Data Manipulation Language Statements 225

LOAD TABLE

PROCEDURE DIVISION USING MONTH-TABLE.
LOAD TABLE 'DECODMTH'
INTO MONTH-TABLE TO END-MONTH-TABLE.

Note: For BS2000, starting from the COBOL85 compiler V2.2C and higher, each
01-level entry inthe LINKAGE SECTION has to be defined inthe USING-clause of the
PROCEDURE DIVISION.

Note: For BS2000, TABLE definition must be the very lastdefinitionin the LINKAGE
SECTION.

Status Codes

After completion of the LOAD TABLE function, the ERROR-STATUS fieldinthe CA
IDMS/DC communications block indicates the outcome of the operation:

Status code Meaning
0000 The request has been serviced successfully.
3401 The requested module cannotbe loaded immediately due to

insufficientstorage; to wait would causea deadlock.

3402 The requested module cannotbe loaded because insufficientstorage
exists inthe programpool.

3407 The requested module cannotbe loaded because an /O error has
occurred during processing.

3414 The requested module cannotbe loaded because ithas been defined
as nonconcurrentand is currentlyinuse.

3415 The requested module has been overlaid temporarilyinthe program
pool and cannotbe reloaded immediately.

3435 The request cannotbe serviced becausethe specified 01-level
LINKAGE SECTION entry has either been previouslyallocated or
contains an OCCURS DEPENDING ON clause.

3436 Either the requested programis not defined inthe program
definition table (PDT) oris marked out of service, or null PDEs arenot
specified or valid in this CAIDMS/DC system.

226 DML Reference Guide for COBOL

MAP IN

MAP IN

The MAP IN statement requests a synchronous transfer of data from map fields on the
screen to the correspondingvariable-storage data fields. The MAP IN statement canalso
be used to transfer data from anarea invariablestoragethat contains a 3270-like data
stream to map-related variable-storage data fields; this is referred to as a native mode
data transfer.

Syntax
»»—— MAP IN USING map-name >
|: I0 «
NOIO DATASTREAM FROM mapped-data-location TO end-data-location
—I: LENGTH data-length ——I—
C L INPUT DATA 7s T YES‘—J—I "
NO
> . —><
DETAIL detail-options «' L PAGE is page-numer = L MoDIFIED -
HEADER
Expansion of detail-options
NEXT < L RETWRNKEY is data-field-name —
FIRST
SEQUENCE NUMBER is seg-field-name —
KEY is key
Parameters
map-name

The name of the map to be used for the MAP IN request. It must be a map included
inthe program's MAP SECTION.

Specifies to transfer data from map fields tovariable-storagedata fields thatare
associated with the specified map.

This is the default type of data transfer.

Chapter 6: Data Manipulation Language Statements 227

MAP IN

NOIO DATASTREAM FROM

TO

Requests to transfer data from anareain program variablestorageto the
variable-storagedata fields thatcorrespond to the specified map. No terminal /O is
associated with the request.

mapped-data-location

The symbolic name of a user-defined field that contains the
WORKING-STORAGE SECTION or LINKAGE SECTION entry of the data stream to
be read by CA IDMS. The length of the data stream is determined by one of the
following specifications:

Indicates the end of the WORKING-STORAGE SECTION or LINKAGE SECTION entry
that contains the data stream.

end-data-location

The symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the input data stream.

LENGTH

Explicitly defines the length in bytes of the inputdata stream.

data-length

Either the symbolic name of a user-defined field that contains the length of the
data stream or the length itself expressed as a numeric constant.

INPUT DATA IS

1/O requests only. Specifies whether the contents of all fields of the specified map
will bemoved to variable-storage data fields, or left unchanged.

This specificationapplies toall variable-storage data fields unless overridden by an
INPUT DATA IS YES/NO clausein a previouslyissued MODIFY MAP request.

YES

Moves the contents of all fields of the specified map to variable-storagedata
fields.

NO

Leaves the contents of all variable-storage data fields unchanged.

228 DML Reference Guide for COBOL

MAP IN

DETAIL

Pageable maps only. Specifies that the MAP IN operationis to retrieve data from a
modified detail occurrence (MDT set on). The contents of all map fields in thedetail
occurrence areretrieved unless MODIFIED is specified for the MAP IN DETAIL
statement; MODIFIED causes only modified fields to be retrieved.

Note: For more information about pageable maps, see the CA IDMS Mapping
Facility Guide.

NEXT
Retrieves the next sequential modified detail occurrence.
This is the default.

An end-of-data condition (DC-NO-MORE-UPD-DETAILS) is returned in either of
the followingcases:

- No detail occurrences have been modified.
— All modified detail occurrences have been mapped inalready.
FIRST
Retrieves the firstavailable modified detail occurrence.
SEQUENCE-NUMBER is

Retrieves a detail occurrenceby sequence number. Detail occurrences are builtat
run time by the application programand stored inthe sequence in whichthey are
created.

seq-field-name
A PICS9(8) COMP (fullword)field.
A detail-not-found conditionis returned in either of the followingcases:
— The specified occurrenceis not a modified detail occurrence.

— No detail occurrencewith the specified valueis found.

RETURNKEY IS

Specifies the variablefield in which CA IDMS stores the four-byte value (ifany)
associated with the retrieved detail occurrence. If no valueis associated with the
detail occurrence, the data-field-name is set to zero.

data-field-name

The symbolic name of either a PICX(4) or PIC S9(8) COMP (fullword) field that
contains the key value. Data-field-name does not have to be fullword aligned.

Chapter 6: Data Manipulation Language Statements 229

MAP IN

KEY IS

Retrieves a modified detail occurrencebased on the valueassociated with the
detail occurrence.

key
The name of a PIC S9(8) COMP (fullword) field.

Note: A valueis associated with a detail occurrence by usingthe KEY IS
parameter inthe MAP OUT DETAIL command for that occurrence.

HEADER

Pageable maps only. Specifies that the MAP IN operationis to retrieve the contents
of data fields inthe header and footer areas. The contents of all data fields in the
header and footer areas areretrieved unless MODIFIED is specified for the MAP IN
HEADER statement; MODIFIED causes only modified fields to be retrieved.

PAGE IS

Pageable maps only. Specifies the name of a variablefield to store the currentvalue
of the SPAGE field on mapin.

page-number
A PICS9(8) COMP (fullword)field.
MODIFIED
Pageable maps only. Specifies that, within a modified detail occurrence, only

modified fields (MDT set on) are to be retrieved inthe MAP IN operation.

Examples

The examples below illustratethe use of the MAP IN statement.

Example 1

The following statement illustrates a request to read the EMPMAPLR map. Data
values aretransferred from map fields on the EMPMAPLR map to the
correspondingvariable-storage data fields. Subsequent commands can evaluatethe
input values and perform appropriate processing.

MAP IN USING EMPMAPLR
INPUT DATA IS YES.

Example 2

The following statement illustrates a request to map inthe next modified detail
occurrence of the EMPMAPPG MAP:

MAP IN USING EMPMAPPG
DETAIL
NEXT MODIFIED.

230 DML Reference Guide for COBOL

MAP IN

Status Codes

After completion of the MAP IN function, the ERROR-STATUS field of the IDMS-DC
communications blockindicates the outcome of the operation:

Status code

Meaning

0000 The request has been serviced successfully

4627 A permanent |/O error has occurred during processing

4628 The dial-up linefor the terminal has been disconnected

4631 The map request block (MRB) contains aninvalidfield,indicatinga
possibleerrorinthe program's parameters

4632 The derived length of the specified mapinput data areais zero or
negative

4633 The map load module named inthe MRB cannot be found

4634 The LINKAGE SECTION entry specifiedis notat COBOL 01-Level.

4638 The specified 01-level WORKING-STORAGE SECTION or LINKAGE
SECTION entry has not been allocated

4639 The terminal being used is out of service

4640 The NOIO option has been specified but the requested data stream
cannot be found

4642 The requested map does not supportthe terminal device being used

4652 The specified edit or code tableeither cannotbe found or isinvalid
for use with the named map

4654 A data conversion error has occurred;internal map data does not
match the map's data description

4655 The user-written edit routine specified for the named map cannotbe
found

4664 The requested node for a header or detail was either not present or
not updated

4668 No more modified detail occurrences require mapin

4672 The scratch record that contains the requested detail could not be

accessed (internal error)

Chapter 6: Data Manipulation Language Statements 231

MAP OUT

MAP OUT

The MAP OUT statement creates or modifies detail occurrences for a pageablemap or
requests a transfer of data from variable-storage data fields to map fields on the
terminal screen. MAP OUT canalsobe usedto transfer data to another areainprogram
variablestorage;this is referred to as a native mode data transfer.

Syntax

»»—— MAP OUT USING map-name

WAIT « :I
NOWAIT

v

v

A 4

': 10 <
NOIO DATASTREAM INTO data-location T TO end-data-location R —
max LENGTH data-length

v

v

L RETURN LENGTH 7nto data-actual-length]

v

L outp
T T oaa s

ERASE
ATTRIBUTE —

[
YES — ': NEWPAGE :' L LITERALS i
E NO ——— ERASE

v

L MESSAGE IS message-text T [gNg_flgg—/gessa§e-da/L;a—Zocatfon :l——J
ata-lengt

)

DETALL
|: NEW 4—_-] L Key 7s key -

CURRENT
RESUME
L PAGE is CURRENT =« —
NEXT ————
PRIOR —
FIRST
LAST

page-number —

232 DML Reference Guide for COBOL

MAP OUT

Parameters

map-name

The map to be used for the MAP OUT request. The map must be includedinthe
program's MAP SECTION.

WAIT

Specifies that the data transfer will be synchronous. The issuingtaskisplacedinan
inactivestate. When the MAP OUT operationis complete, the taskresumes
processingaccordingtoits established dispatching priority.

This is the default.

NOWAIT

Specifies that the data transfer will be asynchronous;the task will continue
executing. IFNOWAIT is specified, the program must issuea CHECK TERMINAL
before performing any other I/O operation.

Specifies to transfer data from variable-storage data fields associated with the
named map to the terminal device associated with the issuingtask.

This is the default.

NOIO DATASTREAM INTO

TO

Specifies to transfer data from variable-storage data fields associated with the
named map to another area of programvariablestorage; no terminal I/Ois
associated with the request.

data-location

The symbolic name of a user-defined field that contains the
WORKING-STORAGE SECTION or LINKAGE SECTION entry to which the data is to
be transferred.

Indicates the end of the WORKING-STORAGE SECTION or LINKAGE SECTION entry
for the output data stream and is specified followingthe lastdata-itementry in
data-location.

end-data-location

The symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the output data stream.

Chapter 6: Data Manipulation Language Statements 233

MAP QUT

max LENGTH
Defines the maximum length of the output data stream.
data-length

Either the symbolic name of the user-defined field that contains the length of
the data stream or the length itselfexpressed as a numeric constant.

RETURN LENGTH INTO

Specifies the WORKING-STORAGE SECTION or LINKAGE SECTION entry to which CA
IDMS will return the length in bytes of the output data stream.

data-actual-length
Ifthe data stream has been truncated, contains the length before truncation.
OUTPUT
10 requests only. Specifies screen display options for thedata being output.
DATA IS

Specifies whether the variable-storage data fields areto be transmitted to the
terminal.This specification applies to all variable-storage data fields unless
overridden by an OUTPUT DATA IS YES/NO clauseina previouslyissued MODIFY
MAP request.

YES
Transmits the contents of variable-storage data fields to the corresponding
map fields.

NO
Does not transmitthe contents of variable-storage data fields to the
corresponding map fields. However, ifthe automatic error handlingfacility
detects an errorinany field, CA IDMS will transmitthe applicableattribute
bytes.

ERASE
Does not transmitthe contents of variable-storage data fields and fills the
corresponding map fields with null values.

ATTRIBUTE

Transmits only the attribute bytes for variable-storagedata fields. Data inthe
record buffer is not sent to the terminal.

NEWPAGE (ERASE)

The keywords NEWPAGE and ERASE are synonymous.

Activates the erase-write function; the screen is cleared and both literal and
variablefieldsaretransmitted to the map. If NEWPAGE is not specified, any
existingscreendisplayisoverwritten without firsterasingit.

234 DML Reference Guide for COBOL

MAP OUT

To eraseindividual map fields, usethe OUTPUT DATA IS ERASE option of the
MODIFY MAP statement. To erase all screen fields and to activatethe
erase-write function, the MAP OUT statement must specify OUTPUT DATA IS
ERASE NEWPAGE.

LITERALS

Transmits literal fields as well as variable-storage data fields to the terminal. If
LITERALS is notspecified, literal fields arewritten to the map only when a MAP OUT
request specifies the ERASE option.

MESSAGE IS

TO

LENGTH

10 requests only. Specifies the message to be displayedinthe map's message area.

message-text

The symbolic name of a WORKING-STORAGE SECTION or LINKAGE SECTION
entry that contains the message text.

Specifies the end of the WORKING-STORAGE SECTION or LINKAGE SECTION entry
that contains the message text andis specified followingthelastdataitemin
message-text.

end-message-data-location

The symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the output data stream.

Defines the length in bytes of the message text.

data-length

Either the symbolic name of a user-defined field that contains the length or the
length itself expressed as a numeric constant.

Note: The MESSAGE parameter canonlybe used with MAP OUT DETAIL if the
SMESSAGE fieldis associated with the detail occurrenceat map generation.

Note: To reference a message stored inthe data dictionary, usethe ACCEPT
TEXT INTO parameter of the WRITE LOG statement to copy the message into
message-text.

Chapter 6: Data Manipulation Language Statements 235

MAP QUT

DETAIL

Pageable maps only. Specifies that the MAP OUT command is to create or modify a
detail occurrence, and optionally associates a numeric key valuewith the
occurrence. For more information about pageable maps, see the Mapping Facility
Guide.

NEW

Creates a detail occurrence of a pageable map.
This is the default.

Occurrences aredisplayedinthe order in which they are created by the application
program.

CURRENT

Modifies the detail occurrencethat was referenced by the most recent MAP IN
DETAIL or MAP OUT DETAIL statement.

KEY IS

Specifies a valueto be associated with the created or modified detail occurrence.
The four-byte numeric valueis not displayed on the terminal screen.

When the KEY IS parameter is used with the MAP OUT DETAIL CURRENT command,
the specified valuereplaces the value(if any) previously associated with the detail
occurrence.

key

The name of a PIC S9(8) COMP (fullword) field that contains thekey of a
databaserecord associated with the detail occurrence.

RESUME

Pageable maps only. Specifies the page of detail occurrences to be mapped out to
the terminal.

PAGE is CURRENT

Redisplays the current page.

This is the default.

If no page has been displayed, the first page of the pageablemap is displayed.
PAGE is NEXT

Displaysthe page that follows the current page. If no page follows the current
page, the current pageis redisplayed.

236 DML Reference Guide for COBOL

MAP OUT

PAGE is PRIOR

Displaysthe page that precedes the current page. If no page precedes the
current page, the current pageis redisplayed.

PAGE is FIRST

Displaysthefirstavailable pageof detail occurrences.

PAGE is LAST

Displaysthe page of detail occurrences with the highest available page number.

PAGE is page-number

A user field that contains the number of the page to be displayed. A page
number is storedinthe variablefield by a preceding MAP IN PAGE IS
page-number statement that names the same numeric variablefield.

Examples

The examples below illustratethe use of the MAP OUT statement:
Example 1

The following statement illustrates a request to write all literaland data fields
associated with the EMPMAPLR map to the terminal:

MAP OUT USING EMPMAPLR
OUTPUT DATA IS YES
NEWPAGE
MESSAGE IS INITIAL-MESSAGE LENGTH 80.

Example 2

The following statement maps out the current detail; no terminal |/Ois associated
with this request if the first page of the pageablemap is not yet filled.

MAP OUT USING EMPMAPPG
DETAIL
KEY IS DETAIL-KEY.

Status Codes

After completion of the MAP OUT function, the ERROR-STATUS fieldinthe IDMS-DC
communications blockindicates the outcome of the operation:

Status code Meaning
0000 The request has been serviced successfully.
4625 The output operation has been interrupted; the operator has pressed

ATTENTION or BREAK.

Chapter 6: Data Manipulation Language Statements 237

MAP QUT

Status code

Meaning

4626

A logical error (for example, an invalid control character) has been
encountered inthe output data stream.

4627

A permanent 1/0O error has occurred during processing.

4628

The dial-up linefor the terminal has been disconnected.

4631

The map request block (MRB) contains aninvalidfield, indicatinga
possibleerrorinthe program's parameters.

4632

The derived length of the specified map output data areais zero or
negative.

4633

The map load module named inthe MRB cannot be found.

4634

The LINKAGE SECTION entry specifiedis notat COBOL 01-Level.

4638

The WORKING-STORAGE SECTION or LINKAGE SECTION entry
specified for return of the output data stream has not been
allocated.

4639

The terminal being used is out of service.

4640

The NOIO option has been specified but the requested data stream
cannot be found.

4642

The requested map does not supportthe terminal device being used.

4652

The specified edit or code tableeither cannotbe found or isinvalid
for use with the named map.

4653

An error has occurredina user-written edit routine.

4654

A data conversion error has occurred;internal map data does not
match the map's data description.

4655

The user-written edit routine specified for the named map cannotbe
found.

4664

There is no current detail occurrenceto be updated (MAP OUT
DETAIL CURRENT only).No actionis taken.

4668

The amount of storage defined for pageablemaps at system
generation time is insufficient. No actionis taken. This and
subsequent MAP OUT DETAIL statements are ignored.

4672

No detail occurrence, footer, or header fields existto be mapped out
by a MAPOUT RESUME command.

4676

The firstscreen page has been transmitted to the terminal.

4680

A pageablemap page has been builtbut the page has not been
displayed. This can happen after you specify STARTPAGE
NOAUTODISPLAY. Test forit after each MAP OUT DETAIL statement.

238 DML Reference Guide for COBOL

MAP OUTIN

MAP OUTIN

The MAP OUTIN statement requests an output data transfer (MAP OUT) followed by an
input data transfer (MAP IN). MAP OUTIN combines the functions of the MAP OUT and
MAP IN requests; however, it cannotbe used to perform pageable map functions or
native mode data transfers. By definition, the MAP OUTIN request is synchronous;it
forces the program to be conversational.

Syntax
»»—— MAP OUTIN USING map-name >
|—OUTPUT T T |
DATA is YES =]
NO ——— l: NEWPAGE_«I—J LITERALS
ERASE ERASE
ATTRIBUTE —
T INPUT DATA is YES >
L o
> = . ———><
MESSAGE IS message-text TO end-message-data-location
L
LENGTH data-length
Parameters

map-name

Specifies the map to be used for the MAP OUTIN request. Must be the name of a
map included in the program's MAP SECTION.

OUTPUT

Specifies screen display options for the data being output.

Chapter 6: Data Manipulation Language Statements 239

MAP OUTIN

DATA is

Specifies whether variable-storagedata fields areto be transmitted to the terminal.
This specification applies toall variable-storage data fields unless overridden by an
OUTPUT DATA IS YES/NO clauseina previouslyissued MODIFY MAP request.

YES
Transmits the contents of variable-storage data fields to the corresponding
map fields.

NO
Does not transmitthe contents of variable-storage data fields to the
corresponding map fields. However, ifthe automatic error handlingfacility
detects an errorinany field, CA IDMS will transmitthe applicableattribute
bytes.

ERASE
Does not transmitthe contents of variable-storage data fields and fills the
corresponding map fields with null values.

ATTRIBUTE

Transmits only the attribute bytes for variable-storagedata fields. Data in the
record buffer is not sent to the terminal.

NEWPAGE (ERASE)
The keywords NEWPAGE and ERASE are synonymous.

Activates the erase-write function; the screen is cleared and both literal and
variablefieldsaretransmitted to the map. If NEWPAGE is not specified,any existing
screen displayisoverwritten without firsterasingit.

To eraseindividualmap fields, use the OUTPUT DATA IS ERASE option of the
MODIFY MAP statement (described later inthis chapter). To erase all screen fields
andto activatethe erase-write function, the MAP OUT statement must specify
OUTPUT DATA IS ERASE NEWPAGE.

240 DML Reference Guide for COBOL

MAP OUTIN

LITERALS

Specifies to transmitliteral fields as well as variable-storage data fields to the
terminal. If LITERALS is not specified, literal fields arewritten to the map only when
a MAP OUT request specifies the ERASE option.

INPUT DATA is

Specifies whether the contents of map fields will be moved to variable-storagedata
fields (YES), or left unchanged (NO).

This specification applies toall variable-storage data fields unless overridden by an
INPUT DATA IS YES/NO clauseina previouslyissued MODIFY MAP request.

YES
Moves the contents of map fields to variable-storage data fields.
NO

Leaves the contents of map fields unchanged.

MESSAGE IS

TO

Specifies the message to be displayedinthe map's message area.
message-text

The symbolic name of a WORKING-STORAGE SECTION or LINKAGE SECTION
entry that contains the message text.

Specifies the end of the WORKING-STORAGE SECTION or LINKAGE SECTION entry
that contains the message text andis specified followingthelastdataitemin
message-text.

end-message-data-location

The symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the output data stream.

LENGTH

Defines the length in bytes of the message text.
data-length

Either the symbolic name of a user-defined field that contains the length or the
length itself expressed as a numeric constant.

Note: To reference a message stored inthe data dictionary, usethe ACCEPT
TEXT INTO parameter of the WRITE LOG statement (described later in this
chapter) to copy the message into message-text.

Chapter 6: Data Manipulation Language Statements 241

MAP OUTIN

Example

The following statement erases the screen, transmits literal and variable map fields (null
values),and performs a MAP IN when the operator presses an AlD key:

MAP OUTIN USING EMPMAPLR
OUTPUT DATA IS ERASE NEWPAGE
INPUT DATA IS YES.

Status Codes

After completion of the MAP OUTIN function, the ERROR-STATUS fieldinthe IDMS-DC
communications block indicates the outcome of the operation:

Status code Meaning
0000 The request has been serviced successfully
4625 The 1/0 operation has been interrupted; the terminal operator has

pressed ATTENTION or BREAK

4626 A logicalerror (for example, an invalid control character) has been
encountered inthe output data stream

4627 A permanent |/O error has occurred during processing

4628 The dial-up linefor the terminal is disconnected

4631 The map request block (MRB) contains aninvalidfield, indicatinga
possibleerrorinthe program's parameters

4633 The map load module named inthe MRB cannot be found

4639 The terminal being used is out of service

4642 The requested map does not supportthe terminal device being used

4652 The specified edit or code tableeither cannotbe found or isinvalid

for use with the named map

4653 An error has occurredina user-written edit routine

4654 A data conversion error has occurred;internal map data does not
match the map's data description

4655 The user-written edit routine specified for the named map cannotbe
found

242 DML Reference Guide for COBOL

MODIFY

MODIFY

The MODIFY statement replaces element values of the specified record occurrencein
the databasewith new element values defined in program variablestorage.

Before execution of the MODIFY statement, the followingconditions mustbe satisfied:

All areas affected either implicitly or explicitly mustbe readied in one of the update
usage modes (see READY (see page 272)).

The specified record must be established as currentof run unit. If the record thatis
current of run unitis not an occurrence of the specified record, a non-zero status
condition results.

The values of all elements defined for the specified recordin the program's
subschema view must be invariablestorage. If the MODIFY statement is not
preceded by an OBTAIN statement, you must initializethe appropriatevalues.The
best practice, however, is to precede MODIFY with an OBTAIN statement to ensure
that all the elements inthe modified record arepresent invariablestorage.

The following special considerations apply to the modification of CALC- and sort-control
elements:

If modification of a CALC- or sort-control element will violatea
duplicates-not-allowed option, the record is not modified and a non-zero status
conditionresults.

If a CALC-control element is modified, successful execution of the MODIFY
statement enables the record to be accessed on the basis of its new CALC-key
value. The db-key of the specified recordis not changed.

Ifa sort-control element is to be modified, the sorted set in which the specified
record participates mustbe included in the subschema invoked by the program. A
record occurrencethat is a member of a set not defined inthe subschema canbe
modified if the undefined set is not sorted.

If any of the modified elements inthe specified record are defined as sort-control
elements for any set occurrencein whichthatrecord is currently a member, the set
occurrence is examined. If necessary, the specified recordis disconnected and
reconnected inthe set occurrence to maintainthe set order specifiedin the
schema.

The following special considerations apply to the modification of records in native VSAM
data sets:

The length of arecord inan entry-sequenced data set (ESDS) cannotbe changed
even ifthe records arevariablelength.

The prime key for a key-sequenced data set (KSDS) cannotbe modified.

Chapter 6: Data Manipulation Language Statements 243

MODIFY

Syntax

Parameters

Example

Status Codes

Currency
The specified record must be established as currentof run unit.
Following successful execution of the MODIFY statement, the modified record becomes

the current record of run unit, its record type, its area, and all sets in whichit
participates as member or owner.

M

»»—— MODIFY record-name .

record-name

The record type to update. The record must be a type includedin the subschema.
The occurrence of record-name residingin programvariablestoragewill be
updated.

The following example illustrates the steps involved in modifying an occurrence of the
EMPLOYEE record. Assume that the employee address is to be changed.

1. Retrieve the desired EMPLOYEE record, moving its contents to variablestorage:

MOVE EMP-ID-IN TO EMP-ID-0415.
OBTAIN CALC EMPLOYEE.

2. Update the valueof the EMP-ADDRESS-0415 field by moving the new address into
the proper locationinthe EMPLOYEE record:

MOVE NEW-ADDRESS TO EMP-ADDRESS-0415.

3. Issuea MODIFY statement to return all data items inthe EMPLOYEE record to the
database:

MODIFY EMPLOYEE.

After completion of the MODIFY function, the ERROR-STATUS field inthe IDMS
communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully

244 DML Reference Guide for COBOL

MODIFY

Status code Meaning

0803 Invalid currency for a record to be altered by a MODIFY. This canonly
occur when a rununitis sharinga transaction with other database
sessions.The03 minor status is returned ifthe run unit tries to
modify a record usinga currency that has been invalidated because
of changes made by another databasesessionthatis sharingthe
same transaction.

0804 The OCCURS DEPENDING ON item is less than zero or greater than
the maximum number of occurrences of the control element

0805 Modification of the record would violatea duplicates-not-allowed
option fora CALC record, a sorted set, or an index set

0806 Currency has not been established for the named record

0808 The specified record cannot be found; the record name has probably
been misspelled

0809 The named record's area has not been readied in one of the update
usage modes

0810 The subschema specifies anaccess restriction that prohibits
modification of the named record

0811 There is insufficientspaceto hold the modified variable-length
record occurrence

0813 A current record of run unit has not been established or has been
nullified by a previous ERASE statement

0818 The record has not been bound

0820 The current record of run unitis not the same type as the named
record

0821 An area other than the area of the named record has been readied
with anincorrectusage mode

0825 No current record of set type has been established

0833 At leastone sorted set in which the named record participates has
not been includedinthe subschema

0855 An invalid length has been defined for a variablelengthrecord

0860 A record occurrence has been encountered whose type is
inconsistentwith the set named inthe ERROR-SET field of the IDMS
communications block; probablecauses include:a broken chainand
improper databasedescription

0883 Either the length of a record ina native VSAM ESDS has been

changed or a prime key ina native VSAM KSDS has been modified

Chapter 6: Data Manipulation Language Statements 245

MODIFY (LRF)

MODIFY (LRF)

The MODIFY statement changes field values in an existinglogical-record occurrence. LRF
uses the field values presentinthe variablestoragelocationreserved for the logical
record to update the appropriatedatabaserecords inthe database.You canoptionally
specifyanalternativevariablestoragelocation fromwhich the changed field values are

to be taken.
Syntax
»»—— MODIFY [ogical-record-name >
” L FROM alt-logical-record-location —I g
g L WHERE boolean-expression J >
g L ON path-status 7'mperat7’ve—state/7/ent—| >
Parameters

logical-record-name

Updates data field values inthe named logical record. Unless the FROM clauseis
specified (see below), the field values used to update the databasearetaken from
the areain program variablestoragereserved for the named logical record.The
logical record mustbe defined inthe subschema.

FROM

Specifies analternativevariablestoragelocation fromwhich the field values used to
perform the requested modification areto be obtained. When modifyinga logical
record that was retrieved into analternativelocationinvariablestorage,the FROM
clauseshould namethe same location specified in the OBTAIN request.

alt-logical-record-location

A record location defined in the WORKING-STORAGE SECTION or LINKAGE
SECTION.

WHERE

Specifies the selection criteria to be applied to the named logical record. For details
on codingthis clause, see Logical-Record Clauses (see page 327).

boolean-expression

The selection criteria toapply.

246 DML Reference Guide for COBOL

MODIFY (LRF)

Example

ON parameter

Specifies the action to be taken depending on the valuereturned to the LR-STATUS
fieldinthe LRC block. For details on coding this clause, see Logical-Record Clauses
(see page 327).

path-status

The valueof the LR-STATUS fieldinthe LRC block which triggers the specified
action.

imperative-statement

The action to take.

The following example illustrates the steps taken to modify an occurrenceof the
EMP-SKILL-LR logical record. Assume that the skill level for employee 120 is to be
upgraded from 02 (COMPETENT-0425) to 03 (PROFICIENT-0425).

1. Retrieve the desiredlogical-record occurrence:

OBTAIN FIRST EMP-SKILL-LR WHERE EMP-ID-0415 EQ '0120'
AND SKILL-ID-0455 EQ '3610'
AND COMPETENT-0425.

2. Update the SKILL-LEVEL-0425 field:
MOVE '03' TO SKILL-LEVEL-0425.

3. Issuethe MODIFY statement for the updated EMP-SKILL-LR logicalrecord:
MODIFY EMP-SKILL-LR.

MODIFY EMP-SKILL-LR

The followingfigureillustrates theabove example by showingthree occurrences of the
EMP-SKILL-LR logical record.

LRF retrieves the EMP-SKILL-LR logicalrecord where

= EMP-ID-0415 ='0120'

m SKILL-ID-0455 ='0120'

m SKILL-LEVEL-0425 ='02' (COMPETENT-0425)

The bottom EXPERTISE occurrence represents the only data physically modified in the
database.

EMPLOYEE EXPERTISE SKILL
120 04 7620
120 03 3710
120 (02) 03 3610

Chapter 6: Data Manipulation Language Statements 247

MODIFY MAP

MODIFY MAP

Syntax

The MODIFY MAP statement modifies options inthe map request block (MRB) for a
map; modificationscan bedesignated as permanent or temporary. Requested revisions
can be field-specific, map-specific, or both; field-specificrevisions apply to the map's
variabledata fields.

Note: The MODIFY MAP statement parameters used to revise predefined map and/or
map data field attributes have no defaults.Ifa MODIFY MAP parameter is not specified,
the applicableoption remains setto the valuespecified at map generation or to the
valuespecifiedin a previouslyissued MODIFY MAP PERMANENT statement.

M

»»—— MODIFY MAP map-name
PERMANENT « :I
TEMPORARY

L CURSOR at T cursor-row cursor-column :,—I
DFLD f7eld-name

v

v

v

I
|— WCC —v—

I
T
T

=l

RESETMDT
NOMDT — T
RESETKBD
NOKBD — T

ALARM T
NOALARM

. STARTPRT
NOPRT — T
NLCR
40CR
64CR
80CR

. =l
L FOR field-specifications —V— modification-options

»

M

Expansion of field-specifications
T ALL BUT S CURRENT
L EXCEPT

— ALL CORRECT FIELDS
L ERROR — T

v

T
¥— DFLD field-name i

ALL «
all BUT
L EXCEPT

248 DML Reference Guide for COBOL

MODIFY MAP

Expansion of modification-options

—

e BACKSCAN
NOBACKSCAN J

ERASE

— OUTPUT DATA 1is YES
ATTRIBUTE —

— INPUT DATA is T YES_,
NO

T RIGHT JUSTIFY
LEFT I

LOW-VALUE
HIGH-VALUE

— PAD ~E pad-character

— EDIT is T ERROR

CORRECT -

. REQUIRED
OPTIONAL ,

— error message 1s T ACTIVE T
SUPPRESS

[
L ATTRIBUTES —¥—

T
T

T
T
T
T

— SKIP ‘

— DETECT

ALPHAMERIC
NUMERIC — T
PROTECTED T
UNPROTECTED

DISPLAY
DARK ﬂ
BRIGHT

MDT — T]
NOMDT

BLINK T
NOBLINK

REVERSE-VIDEO
NORMAL-VIDEO

UNDERSCORE T
NOUNDERSCORE

NOCOLOR
BLUE
RED
PINK
GREEN
TURQUOISE —
YELLOW —
WHITE

v

Chapter 6: Data Manipulation Language Statements 249

MODIFY MAP

Parameters

map-name

The name of the map to be modified. It must be a map includedinthe program's
MAP SECTION.

PERMANENT

Specifies that modifications will apply to all mapping mode I/O requests issued until
the program terminates or until a subsequent MODIFY MAP request overrides the
requested revisions.

This is the default.
TEMPORARY

Specifies that modifications willapply only to the next mapping mode /O request
(thatis, MAP IN, MAP OUT, or MAP OUTIN).

CURSOR AT

Identifies the screen location atwhich the cursor will be positioned during output
operations.

cursor-row

The row on the terminal screen to which the cursor will bemoved. Either the
symbolic name of the user-defined field that contains the row value or the
valueitselfexpressed as a numeric constant. Typically, fieldsthat contains
cursorrowand column coordinates arelevel-77 data items defined as PICS9(4)
USAGE COMP (halfword).

cursor-column

The column on the terminal screen to which the cursor will be moved. Either
the symbolic name of a user-defined field that contains the column valueor the
valueitself expressed as a numeric constant. Typically, fieldsthatcontains
cursorrowand column coordinates arelevel-77 data items defined as PICS9(4)
USAGE COMP (halfword).

DFLD Specifies that the cursor will be moved to the firstpositioninthe
specifiedfield.

field-name

The name of a map field.

250 DML Reference Guide for COBOL

MODIFY MAP

WCC

Specifies the write-control character (WCC) options requested for the output
operation.

Ifa MODIFY MAP request alters any WCC option, unspecified options arereset
to the followingvalues:

- NOMDT
- NOKBD
- NOALARM

RESETMDT

Specifies that the modified data tags (MDTs) for the map fields will bereset
(turned off) automatically when the map is displayed.

NOMDT

Specifies that the modified data tags (MDTs) for the map fields will be not reset
(turned off) automatically when the map is displayed. In this case, the
associated datais retransmitted to variable-storagedata fields during the next
MAP [N request.

RESETKBD

Specifies that the keyboard will be unlocked automatically when the map is
displayed.

NOKBD

Specifies that the keyboard will notbe unlocked automatically when the map is
displayed.

ALARM

Specifies that the terminal audiblealarm(ifinstalled) will sound automatically
when the map is displayed.

NOALARM

Specifies that the terminal audiblealarmwill notsound automatically when the
map is displayed.

STARTPRT

3280-type printers only. Specifies thatthe contents of the terminal buffer will
be printed automatically when the data has been transmitted to the terminal.

Chapter 6: Data Manipulation Language Statements 251

MODIFY MAP

NOPRT

3280-type printers only. Specifies thatthe contents of the terminal buffer will
not be printed automatically when the data has been transmitted to the
terminal.

NLCR

Specifies that no lineformatting will be performed on the printer output.
Printingwill beginona new lineonlyifthe printer encounters new line (NL)
and carriagecontrol (CR) characters.

40CR

Specifies that the contents of the 3280-type printer buffer will be printed at 40
characters perline.

64CR

Specifies that the contents of the 3280-type printer buffer will be printed at 64
characters per line.

80CR

Specifies that the contents of the 3280-type printer buffer will be printed at 80
characters per line.

Specifies the map fields to be modified or excluded from modification.

Expansion of field-specifications

ALL BUT (EXCEPT) CURRENT

Modifies all fields exceptthe current field. The current field is the map field that
was referenced inthe last MODIFY MAP or INQUIRE MAP request issued by the
program. However, ifthat request referenced a listoffields rather than a single
map field, no currency exists and all map fields are modified.

BUT and EXCEPT are synonyms and can be used interchangeably.

ALL CORRECT FIELDS

Modifies all fields found to be correct, duringautomatic editing or by a user-written
edit module.

To specify, ALL CORRECT FIELDS, automatic editing must be enabled for the map.

252 DML Reference Guide for COBOL

MODIFY MAP

ALL ERROR FIELDS

Modifies all fieldsfound to be in error, during automatic editing or by a user-written
edit module.

To specify, ALL ERROR FIELDS, automatic editing must be enabled for the map.
ALL
Specifies that all named map fields will receive the requested modifications.
This is the default.
all BUT (EXCEPT)

Specifies that all map fields except those named will receive the requested
modifications.

BUT and EXCEPT are synonyms and can be used interchangeably.
DFLD

Specifies the map field(s) to modify or exclude from modification. Multiple
DFLD specifications mustbe separated by at leastone blankand must come
from the samemap record.

field-name
The name of the field(s) to modify or exclude from modification.

Field names that are not unique within the program must be qualified with the
name of the associated record. Likewise, multiply-occurring fields mustbe
qualified with the appropriatesubscripts.

Use the followingsyntax:

map-data-field-name
L subscript - l—E IN :]— record-name -
OF

Modification Options

BACKSCAN

Specifies to backscan the specified fields to remove trailing blanks before
performing a mapout operation. Only characters up to the lastnonblank will be
sent to the terminal; fields remaining on the screen will contain whatever
characters were present before the MAP OUT or MAP OUTIN request was issued. If
the MAP OUT or MAP OUTIN request specifies the ERASE option, the contents of all
terminal data fields areerased.

NOBACKSCAN

Specifies not to backscan thespecified fields to remove trailing blanks before
performing a mapout operation.

Chapter 6: Data Manipulation Language Statements 253

MODIFY MAP

OUTPUT DATA IS
Specifies how to treat the output map fields.
YES
Sets the fields tothe valueof the correspondingvariable-storage data fields.
NO
Leaves the fields unchanged.
ERASE
Erases the fields.
ATTRIBUTE
Transmits only the attribute byte of the fields.
INPUT DATA is YES

Moves map fields automatically to the correspondingvariable-storage data fields
duringaninput operation.

INPUT DATA is NO

Does not move map fields to the correspondingvariable-storage data fields during
aninputoperation.

RIGHT JUSTIFY

Right justifies thevariable-storagefields oninput.
LEFT JUSTIFY

Left justifies thevariable-storagefields oninput.
PAD

Indicates whether variable-storage data fields will be padded on inputand, ifso,
defines the valueor character with which the fields areto be padded.

If RIGHT JUSTIFY is specified, fields will be padded on the left; if LEFT JUSTIFY is
specified, fields will be padded on the right.

pad-character

Either the symbolic name of a user-defined PICX DISPLAY field that contains
the pad character or the characteritselfenclosed in quotation marks.

The fields will be padded with the specified character.
LOW-VALUE

Pads the fields with zeros.
HIGH-VALUE

Pads the fields with the highest valuein the computer collating sequence.

254 DML Reference Guide for COBOL

MODIFY MAP

EDIT IS ERROR
Explicitly sets theerror flag on for the specified map fields.
Automatic editing must be enabled for the map.

The ability toset the error flagenables programs to perform their own editing
andvalidationinadditionto that provided by the automatic editing feature.

On a MAPOUT operation, ifanyfieldis flagged to be inerror, then for all fields
(both CORRECT and INCORRECT), only attribute bytes are transmitted; no data
is moved from program variablestorageto the screen.

EDIT IS CORRECT
Explicitly sets theerror flag off for the specified map fields.
Automatic editing must be enabled for the map.

The ability toset the error flagenables programs to perform their own editing and
validationinaddition tothat provided by the automatic editing feature.

On a MAPOUT operation, ifanyfieldis flagged to be inerror, then for all fields
(both CORRECT and INCORRECT), only attribute bytes are transmitted; no datais
moved from programvariablestorageto the screen.

REQUIRED

Requires the userto enter data inthe specified map fields.An error results on
mapinifyou specify REQUIRED andthe user fails to enter datainarequired field.

Automatic editing must be enabled for the map and for the specified map fields.
OPTIONAL
Does not requirethe user to enter datainthe specified map fields.
error message is
Suppresses or enables display of an error message associated with the field.
ACTIVE
Enables display of the error message associated with the field.
This is the default.

You typically enabledisplay of a message only after specifying ERROR MESSAGE
SUPPRESS for the map in a previous MODIFY MAP PERMANENT statement.

SUPPRESS

Disables display of the error message associated with the field. When the map
is redisplayed because of errors, the message defined for the map field will not
be displayed even if the field contains editerrors.

Chapter 6: Data Manipulation Language Statements 255

MODIFY MAP

ATTRIBUTES

Indicates the 3270-and 3279-type terminal display attributes for the specified map
fields.

Multipleattributes must be separated by blanks.
Onlythe named attributes will be modified inthe map's MRB.
SKIP

Repositions the cursor automatically pastthemap fields to the next
unprotected field. When you specify SKIP, the affected map fields areassigned
the NUMERIC and PROTECTED attributes (described below) automatically.

ALPHAMERIC

Allows the data input to the map fields by the user to be any character on the
3270 keyboard.

NUMERIC

Allows the data input to the map fields by the user to be numeric only. If the
terminal does not have the numeric lock option, a specification of NUMERIC is
ignored.

PROTECTED
Protects the specified map fields fromdata entry or modification by the user.
UNPROTECTED

Makes the specified map fields availablefor data entry or modification by the
user.

You cannotspecify both UNPROTECTED and SKIP.
DISPLAY

Displaysthespecified map fields in normal intensity.
DARK

Does not display the specified map fields.

You cannotspecify both DARK and DETECT.
BRIGHT

Displaysthespecified map fields in brightintensity.

Fields assigned the BRIGHT attribute are automatically detectable by a light
pen.

DETECT
Makes the specified map fields detectable by a light pen.

Fields assigned the BRIGHT attribute are automatically detectable by a light
pen.

256 DML Reference Guide for COBOL

MODIFY MAP

Examples

MDT

Sets the modified data tag automatically for the map fields when they are
displayed.

NOMDT

Does not set the modified data tag automatically for the map fields when they
aredisplayed.

BLINK

3279s only. Displaysthe specified map fields with blinking characters.

If you specify BLINK, you cannot specify REVERSE-VIDEO or UNDERSCORE.
NOBLINK

3279s only. Does not display thespecified map fields with blinking characters.
REVERSE-VIDEO

3279s only. Displaysthespecified map fields inreversevideo (background and
character colors reversed).

If you specify REVERSE-VIDEO, you cannotspecify BLINK or UNDERSCORE.
NORMAL-VIDEO

3279s only. Displaysthespecified map fields in normal video.
UNDERSCORE

3279s only. Displaysthespecified map fields with underlined characters. If you
specify UNDERSCORE, you cannot specify BLINK or REVERSE-VIDEO.

NOUNDERSCORE
3279s only. Displaysthespecified map fields without underlined characters.
NOCOLOR/BLUE/RED/PINK/GREEN/TURQUOISE/YELLOW/WHITE

3279s only. Specifies the color which the specified map fields will bedisplayed.

The following examples illustratethe use of the MODIFY MAP statement.

Example 1

The following statement positions the cursor atEMP-ID-0415 and prohibits theuser
from entering data in anyfield except EMP-ID-0415 and DEPT-ID-0410:

MODIFY MAP EMPMAPLR TEMPORARY
CURSOR AT DFLD EMP-ID-0415
FOR ALL BUT DFLD EMP-ID-0415

DFLD DEPT-ID-0410
ATTRIBUTES PROTECTED.

Chapter 6: Data Manipulation Language Statements 257

OBTAIN (LRF)

Status Codes

OBTAIN (LRF)

Example 2

The following statement sets the edit flag on for the TASK-CODE-01 field, thereby
overridingautomatic editingand error handling for the next MAP IN request:

MODIFY MAP EMPMAPLR TEMPORARY
FOR DFLD TASK-CODE-01
EDIT IS ERROR.

Example 3

Use MODIFY MAP to suppress display of defaulterror messages for fields EMP-ID
and DEPT-ID on the current map:

MODIFY MAP EMPMAPLR TEMPORARY
FOR DFLD EMP-ID DFLD DEPT-ID
ERROR MESSAGE IS SUPPRESS.

Because this MODIFY MAP statement specifies TEMPORARY, error messages for
these fields aresuppressed for the next mapout only. If PERMANENT (default) were
used, the error messages would be suppressed until the program terminated or
until the error message specifications were overridden by a subsequent MODIFY
MAP statement.

After completion of the MODIFY MAP function, the ERROR-STATUS fieldinthe IDMS-DC
communications blockindicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully

4629 An invalid parameter has been passed from the program
4644 The map fieldis notinthe specified map; a possiblecauseisa

reference to an invalid mapfield subscript

4656 The referenced map contains no data fields

The OBTAIN statement retrieves the named logical recordand placesitinthe
variable-storagelocation reserved for that logical record. The OBTAIN statement can be
issuedto retrieve a singlelogicalrecord,oritcanbe issuediniterativelogictoretrieve
all logical records that meet criteria specified inthe WHERE clause. Additionally, the
OBTAIN statement can specify that the retrieved logical recordis to be placedintoan
alternativevariablestoragelocation.

258 DML Reference Guide for COBOL

OBTAIN (LRF)

Syntax

»»—— OBTAIN logical -record-name
E FIRST %
NEXT «

»

v

v

L INTO alt-logical-record-location]

v

L WHERE boolean-expression -

Parameters

X

L ON path-status imperative-statement —|

FIRST

Retrieves the firstoccurrence of the logical record. OBTAIN FIRST is typically used to
retrieve the firstina series of logical-record occurrences following the iterative
retrieval of a different series of logical-record occurrences.

NEXT

Retrieves a (subsequent) occurrence of the named logicalrecord,inthe order
specified by the DBA inthe path.

This is the default.

OBTAIN NEXT is typicallyissuediniterativelogictoretrieve a series of logical-record
occurrences (possibly including the first).

When LRF receives repeated OBTAIN NEXT commands, itreplaces field valuesin
program variablestorage with new values obtained through repeated access to the
appropriatedatabaserecords, thereby supplyingthe program with new
occurrences of the desired logical record.

Ifan OBTAIN FIRST statement is followed by an OBTAIN NEXT statement to retrieve
a series of occurrences of the same logicalrecord, the OBTAIN statements must
directLRF to the same path. For this reason, you must ensure that the selection
criteria specified in the WHERE clausethataccompanies the OBTAIN FIRST and
OBTAIN NEXT statements describethe same attributes of the desired logicalrecord.

Ifthe programissues an OBTAIN NEXT statement without issuingan OBTAIN FIRST,
or ifthe lastpath status returned for the path was LR-NOT-FOUND, LRF interprets

the OBTAIN NEXT as OBTAIN FIRST. After LR-ERROR or a DBA-defined path status,

LRF does notinterpret OBTAIN NEXT as OBTAIN FIRST.

logical-record-name

The name of a logical record defined in the subschema.

Chapter 6: Data Manipulation Language Statements 259

OBTAIN (LRF)

INTO

Specifies an alternativelocationinvariablestorageinto which LRF is to placethe
retrieved logical record. Any subsequent MODIFY, STORE, or ERASE statements for a
logical record placed in alt-logical-record-location should name that area as the one
from which LRF is to obtain the data to be used to update the logical record.

alt-logical-record-location

A record location defined in the WORKING-STORAGE SECTION or LINKAGE
SECTION.

WHERE

Specifies the selection criteria to be applied to the named logical record. For details
on codingthis clause, see Logical-Record Clauses (see page 327).

boolean-expression
The selection criteria toapply.
ON parameter

Specifies the action to be taken depending on the valuereturned to the LR-STATUS
fieldinthe LRC block. For details on codingthis clause, see Logical-Record Clauses
(see page 327).

path-status

The valueof the LR-STATUS fieldinthe LRC block which triggers the specified
action.

imperative-statement

The action to take.

Example

The followingexample illustrates the use of the OBTAIN NEXT statement to retrieve a
series of logical-record occurrences. The program issues the OBTAIN NEXT statement
iteratively to retrieve the firstand all subsequentoccurrences of the EMP-JOB-LR logical
record for all employees inthe specified department.

GET-AN-ORDER.
MOVE DEPT-ID-IN TO DEPT-ID-0410.
OBTAIN NEXT EMP-JOB-LR WHERE DEPT-ID-410 EQ DEPT-ID-0410 OF LR.
IF LR-STATUS = LR-ERROR
PERFORM ERROR-PROCESSING.
IF LR-STATUS = LR-NOT-FOUND
PERFORM END-PROCESSING.

GO TO GET-AN-ORDER.

260 DML Reference Guide for COBOL

POST

POST

Syntax

Parameters

OBTAIN NEXT EMP-JOB-LR

The followingfigureillustrates theinformation retrieved by each OBTAIN NEXT

statement. The EMP-JOB-LR logicalrecord consists of DEPARTMENT, OFFICE, EMPLOYEE,
andJOB information.

DEPARTMENT EMPLOYEE OFFICE JOB

—
ONE OCCURRENCE —] 5100 466 8 SNOWBLOWER
OF EMP-JOB-LR $
5100 467 8 WINDKEEPER
5100 334 5 RAINDANCE
5100 457 8 STURM UND
DRANG

The POST statement alters an event control block (ECB), either by postingitto indicate

completion of an event upon which another task is waitingor by clearingittoan
unposted status.

»p»— POST T EVENT ecb

EVENT NAME er—fd—I_—_'—I
CLEAR

X

EVENT
Identifies the ECB to be posted.
ecb

The symbolic name of a user-defined area that contains three PICS9(8) COMP
SYNC (fullword)fields. Program-allocated ECBs are cleared by moving zeros to
echb.

EVENT NAME
Specifies the ECB to be posted or cleared.
ecb-id

Either the symbolic name of a user-defined field that contains the ECB ID or the
ID itselfenclosed in quotation marks.

CLEAR
Clears the specified ECB to an unposted status.

Programs postingand waitingon ECBs are responsiblefor clearing ECBs before
issuingsubsequent WAIT requests.

Chapter 6: Data Manipulation Language Statements 261

PUT QUEUE

Example

Status Codes

PUT QUEUE

Syntax

Parameters

The following exampleillustrates a request to post the event whose ECB identifierisin
the FOUND-ECB field and to clear the ECB to an unposted status:

POST
EVENT NAME FOUND-ECB
CLEAR.

After completion of the POST function, the only possiblevalueinthe ERROR-STATUS
field of the IDMS-DC communications blockis 0000.

The PUT QUEUE statement stores a queue record in either the DDLDCRUN or the
DDLDCQUE area of the data dictionary. CAIDMS assignsan IDto the queue record and
placesitatthe beginningor end of its associated queue.

»»— PUT QUEUE

\ 4

L ID gqueue- id—l ‘: FIRST
LAST «

v

»—— FROM queue-data-location T [(gNggﬁi’—ZngS:ZZ;g:52;;?/770/7

»

v

L RETURN RECORD ID INTO return-queue-record-id —

M

L RETENTION queue-retention-period -

Directs the queue record to a previously defined queue.
queue-id

Either the symbolic name of a user-defined field that contains the ID or the ID
itselfenclosed in quotation marks.

Default: 16 blanks
FIRST

Places the queue record at the beginning of the queue.

262 DML Reference Guide for COBOL

PUT QUEUE

LAST

Places the queue record at the end of the queue.

This is the default.

FROM

TO

Specifies the WORKING-STORAGE SECTION or LINKAGE SECTION entry associated
with the data to be stored inthe queue record.

queue-data-location

The symbolic name of a user-defined field.

Indicates the end of the WORKING-STORAGE SECTION or LINKAGE SECTION entry
that contains the data to be stored in the queue.

end-queue-data-location

The symbolic name of a user-defined dummy byte field or a field that contains
a data item not associated with the queue record.

LENGTH

Explicitly defines the length, in bytes, of the area that contains the data to be stored
inthe queue record.

queue-data-length

Either the symbolic name of a user-defined field that contains the length or the
length itself expressed as a numeric constant.

RETURN RECORD ID INTO

Specifies the locationinthe programto which CA IDMS will return the system
assigned ID of the queue record.

The returned ID is used to reference the queue recordinsubsequent GET QUEUE
and DELETE QUEUE statements.

return-queue-record-id

The symbolic name of a user-defined PIC S9(8) COMP (fullword) field.

RETENTION

Specifies the time in days to retain the queue in the data dictionary. At system
startup, queues havingexpired retention periods areautomatically deleted. The
retention period begins when the firstrecordis storedin the queue.

The specified retention periodtakes precedence over retention periods associated
with previously defined queues. The RETENTION parameter isignoredifthe record
being allocatedis notthe firstrecordinthe queue.

Chapter 6: Data Manipulation Language Statements 263

PUT QUEUE

queue-retention-period

Either the symbolic name of a user-defined fixed binary field that contains the
retention period or the retention period itself expressed as a numeric constant
inthe range 0 through 255.

A retention period of 255 indicates thatthe queue is never to be automatically
deleted.

Note: IfRETENTION is omitted, the default retention period for dynamic queues is
taken. For more information on the default retention period for dynamic queues,
refer to the System Generation Guide.

Example

The followingexample illustrates a request to allocatea queue recordin the beginning
of the RES-Q queue, return the ID of the record to the Q-REC-ID field, and retain the
queue for 45 days:

PUT QUEUE
ID 'RES-Q'
FIRST
FROM NEW-RES TO END-NEW-RES
RETURN RECORD ID INTO Q-REC-ID
RETENTION 45.

Status Codes

After completion of the PUT QUEUE function, the ERROR-STATUS fieldinthe IDMS-DC
communications blockindicates the outcome of the operation:

Status code Meaning
0000 The request has been serviced successfully
0019 Ina DC-BATCH environment, the record size exceeds the value

specifiedinthe MAX LENGTH parameter of the BIND TASK statement

4407 A databaseerror occurred during queue processing. Acommon
causeis a DBKEY deadlock. For a PUT QUEUE operation, this code
canalso meanthat the queue upper limithas been reached.

Ifa databaseerror has occurred, there areusually be other messages
inthe CA-IDMS/DC/UCF logindicatinga problemencountered in
RHDCRUAL, the internal Run Unit Manager. If a deadlock has
occurred, messages DC001000 and DC001002 are also produced.

4431 The parameter listis invalid;under DC-BATCH, this status indicates
that the specified record length exceeds the maximum length based
on the packetsize

264 DML Reference Guide for COBOL

PUT SCRATCH

Status code Meaning

4432 The derived length of the specified queue recordis either zero or

negative

PUT SCRATCH

The PUT SCRATCH statement stores or replaces a scratchrecordinthe DDLDCSCR area
of the data dictionary. For new records, PUT SCRATCH generates anindexentry ina

scratch area associated with the issuingtask. Ifthe scratch area does not already exist,
CA IDMS allocates itdynamicallyinthestorage pool.

Syntax

»»—— PUT SCRATCH

v

L AREA ID scratch-area-id —|

»—— FROM scratch-data-location T TO0 end-scratch-data-locati

T
LENGTH scratch-data-length

L RECORD ID scratch-record- 7'0’~L—_|—|
REPLACE

T , o J
RETURN RECORD ID 7nto return-scratch-record-id

v

)

Parameters
AREA ID

Specifies the scratch area associated with the record being allocated.

If you do not specifyan AREA ID, an area ID of eight blanks is assumed.

scratch-area-id
Either the symbolic name of a user-defined field that contains the ID or the ID
itselfenclosed in quotation marks.

FROM

Specifies the data to be stored inthe scratchrecord.
scratch-data-location
The symbolic name of a user-defined WORKING-STORAGE SECTION or LINKAGE
SECTION entry that contains the data.
TO

Indicates the end of the data area to be stored inthe scratchrecord.

end-scratch-data-location

The symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the scratch data beingstored.

Chapter 6: Data Manipulation Language Statements 265

PUT SCRATCH

LENGTH
Defines the length in bytes of the data area.
scratch-data-length

The symbolic name of a user-defined field that contains the length or the
length itself expressed as a numeric constant.

RECORD ID
Specifies the ID of the scratch record being stored.
scratch-record-id

Either the symbolic name of a user-defined PICS9(8) COMP (fullword) field that
contains the ID or the ID itself expressed as a numeric constant.

REPLACE

Specifies that the specified scratchrecord replaces an existing scratch record. If
you specify REPLACE, and the specified scratch record does not exist, the
record is stored and the status codeis setto 0000.

RETURN RECORD ID into
Returns the automatically assigned ID of a scratch record to the program.
return-scratch-record-id
The symbolic name of a user-defined field into which CA IDMS will placethe
four-byte scratch record ID.

Example

The following statement illustrates a request to replacethe scratchrecordidentified by
SCR-REC-ID with data in the WORK-PROC-AREA field:

PUT SCRATCH
FROM WORK-PROC-AREA LENGTH 125
RECORD ID SCR-REC-ID REPLACE.

Status Codes

After completion of the PUT SCRATCH function, the ERROR-STATUS fieldinthe IDMS-DC
communications blockindicates theoutcome of the operation:

Status code Meaning

0000 The request to add a scratch record has been serviced successfully
4305 The requested scratchrecord ID cannotbe found

4307 An 1/Oerror has occurred during processing

266 DML Reference Guide for COBOL

READ LINE FROM TERMINAL

Status code Meaning

4317 The request to replacea scratchrecord has been serviced
successfully

4322 The request to add a scratch record cannotbe serviced becausethe
specified scratchrecord already exists inthescratchareaand
REPLACE has not been specified

4331 The parameter listis invalid.
4332 The derived length of the specified scratchrecordis either zero or
negative

READ LINE FROM TERMINAL

The READ LINE FROM TERMINAL statement requests a synchronous, line-by-linetransfer
of data from the terminal to the issuingprogram.

Syntax
»»—— READ LINE FROM TERMINAL >
L ecvo 4 L nosackpace -
»—— INTO 7nput-data-location T TO end-input-data-location . >
MAX LENGTH 7nput-data-max-length
- L RETURN LENGTH 7nto input-data-actual- Zength—, o
Parameters

ECHO

3270-type devices only.Saves the lineof data being inputinthe current page (as
displayed on the screen). If you do not specify ECHO, data entered will notbe
retained and will not be availablefor review by the user.

NOBACKPAGE

3270-type devices only. Specifies not to savepreviouslyinputpagesina scratch
area.|f you specify NOBACKPAGE, the user canview onlythe current page of data.
NOBACKPAGE is valid only withthe firstinputrequest inalinemode session.

Chapter 6: Data Manipulation Language Statements 267

READ LINE FROM TERMINAL

INTO

Indicates the WORKING-STORAGE SECTION or LINKAGE SECTION entry reserved for
the input data.

input-data-location
The symbolic name of a user-defined field.
TO

Indicates the end of the WORKING-STORAGE SECTION or LINKAGE SECTION
reserved for the input data stream.

end-input-data-location

The symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the data area reserved for the input
data stream.

MAX LENGTH
Defines the length in bytes of the input data stream.

Ifthe inputdata streamis larger thanthe data area reserved inthe
WORKING-STORAGE SECTION or LINKAGE SECTION, the datais truncated to fitthe
availablespace.

input-data-max-length

Either the symbolic name of a user-defined field that contains the length of the
data area or the length itself expressed as a numeric constant.

RETURN LENGTH into

Indicates the location to which CA IDMS will return the actual length of the input
data stream.

input-data-actual-length

The symbolic name of a user-defined field. If the data stream has been
truncated, the field will contain the original length before truncation.

Examples

The followingexamples illustratethe use of the READ LINE FROM TERMINAL statement.
Example 1

The following statement illustrates a request to read the specified data from a
3270-type device into the specified locationintheprogram andto echo the input
data on the screen:

READ LINE FROM TERMINAL
ECHO
INTO EMPL-DATA TO END-EMPL-DATA.

268 DML Reference Guide for COBOL

READ TERMINAL

Example 2

The following statement illustrates a request to read the specified data into the
program but not to save pages associated with the linel/O session:

READ LINE FROM TERMINAL
NOBACKPAGE
INTO EMPL-DATA MAX LENGTH 8
RETURN LENGTH INTO REC-DATA-LENGTH.

Status Codes

After completion of the READ LINE FROM TERMINAL function,the ERROR-STATUS field
inthe IDMS-DC communications blockindicates the outcome of the operation:

Status code

Meaning

0000

The request has been serviced successfully

4707

A logical or permanent I/O error has been encountered inthe input
data stream

4719

The input area specified for the return of data is too small;the
returned data has been truncated to fit the availablespace

4731

The linerequest block (LRB) contains aninvalidfield, indicatinga
possibleerrorinthe program's parameters

4732

The derived length of the specified lineinputarea is zero or negative

4738

The specified 01-level LINKAGE SECTION entry has not been allocated
as required A prior GET STORAGE request must be issued

4743

The linel/O session has been canceled;the user has pressed CLEAR
(3270s), ATTENTION (2741s), or BREAK (teletypes)

READ TERMINAL

The READ TERMINAL statement requests a synchronous or asynchronous basicmode
data transfer from the terminal to program variablestorage.

Syntax

»»—— READ TERMINAL

v

WAIT «
NOWAIT

BUFFER
:I |: MODIFIED FROM POSITION screen-position —

v

Chapter 6: Data Manipulation Language Statements 269

READ TERMINAL

v

L GET STORAGE -

»—— INTO 7nput-data-location T TO end-input-data-location m >
MAX LENGTH 7nput-data-max-length

X

L RETURN LENGTH 7nto 7'nput-data-actual—lengt/7—!

Parameters
WAIT

Specifies that the read operation will besynchronous;the issuingtaskwill
automatically relinquish control to CA IDMS and must waitfor completion of the
read operation before processingcan continue.

This is the default.
NOWAIT

Specifies that the read operation will beasynchronous;the issuingtask will
continue executing.

If you specify NOWAIT, the programmust issuea CHECK TERMINAL request
(described earlier in this chapter) before performing any other I/O operations.

MODIFIED

3270-type devices only.Reads all modified fields in theterminal buffer into variable
storage without requiringthe user to signal completion of data entry.

BUFFER

3270-type devices only. Executes a READ BUFFER command that reads the entire

contents of the terminal buffer into variablestorage without requiringthe user to
signal completion of data entry.

FROM POSITION
Defines the buffer address (screen position) atwhich the read will start.

screen-position

Either the symbolic name of a user-defined PICS9(4) COMP SYNC (halfword)
field or the address itselfenclosed in quotation marks.

GET STORAGE

Synchronous requests only. Acquires an input buffer for the data being readinto
the program; CA IDMS allocates therequired storage when the read operationis
complete.

270 DML Reference Guide for COBOL

READ TERMINAL

INTO

Specifies the 01-level WORKING-STORAGE SECTION or LINKAGE SECTION entry of
the input data stream.

If you also specify GETSTORAGE, the data area reserved for the input data stream
must be anunallocated 01-level LINKAGE SECTION entry.

If you do not specify GET STORAGE, the data area must be a WORKING STORAGE or
previously allocated LINKAGE SECTION entry.

input-data-location
The symbolic name of a user-defined field.
TO
Indicates the end of the data area reserved for the inputdata stream.
end-input-data-location

The symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the data area reserved for the input
data stream.

MAX LENGTH
Defines the length, in bytes, of the data area reserved for the inputdata stream.

Ifthe inputdata stream is larger than the specified WORKING-STORAGE SECTION or
LINKAGE SECTION entry, the datais truncatedto fit the availablespace.

input-data-max-length

Either the symbolic name of a user-defined field that contains the length of the
data area or the length itself expressed as a numeric constant.

RETURN LENGTH into

Indicates the location to which CA IDMS will return the actual length of the input
data stream.

input-data-actual-length

The symbolic name of a user-defined field. If the data stream has been
truncated, input-data-actual-length contains the original length before
truncation.

Example

The following statement illustrates a basicmode request to read data from the terminal
to the specified locationinvariablestorage:

READ TERMINAL
WAIT
INTO TERM-LINE TO END-TERM-LINE.

Chapter 6: Data Manipulation Language Statements 271

READY

Status Codes

After completion of the READ TERMINAL function, the ERROR-STATUS fieldin the
IDMS-DC communications block indicates the outcome of the operation:

Status code

Meaning

0000

The request has been serviced successfully

4519

The input area specified for the return of data to the issuing program
is too small;the returned data has been truncated to fit the available
space

4527

A permanent 1/0O error has occurred during processing

4528

The dial-up linefor the terminal has been disconnected

4531

The terminal request block (TRB) contains aninvalidfield,indicatinga
possibleerrorinthe program's parameters

4532

The derived length of the specified inputdata areais zero or negative

4535

Storage for the inputbuffer cannotbe acquired becausethe specified
01-level LINKAGE SECTION entry has been previously allocated; no
1/0 has been performed

4537

Storage for the inputbuffer cannotbe acquired becausethe specified
entry is defined inthe WORKING-STORAGE SECTION rather thanin
the LINKAGE SECTION; no 1/O has been performed

4538

The specified 01-level LINKAGE SECTION entry has not been
previously allocated and the GET STORAGE option has not been
specified; no 1/0 has been performed

4539

The terminal device associated with the issuingtaskis outofservice

READY

The READY statement prepares a databasearea foraccess by DML functions and
specifies the usage mode of the area.

The DBA can specify default usage modes inthe subschema.Run-units that use sucha
subschema need not issueany READY statements; the areas areautomatically readied
inthe predefined usage modes. However, ifarun-unitissues a READY statement for one
area, it mustissue READY statements for all areasthatitwill access unlessthe FORCE
option was specified for the default usage mode. Areas usingthe default usage mode
combined with the FORCE option areautomatically readied even if the run-unitalready
issued READY for other areas.

272 DML Reference Guide for COBOL

READY

Syntax

Parameters

The specified usagemode can be qualified witha PROTECTED option to prevent
concurrent update or an EXCLUSIVE optionto prevent concurrent use of areas by other
run units executing under the central version.Each area can be readiedinits own usage
mode. Usage modes can be changed by executing a FINISH statement (see FINISH (see
page 185)) then startinga new run unitby issuinga BIND RUN-UNIT statement, the
appropriate BIND RECORD statements, and a READY statement specifyingthe new
usage mode.

When the rununitreadies databaseareas,allareas can bereadied with a single READY
statement or eacharea to be accessed canbe readied individually. All areas affected
explicitly orimplicitly by the DML statements issued by the run unit must be readied.
Other areasincludedinthe subschema need not be readied.

The READY statement canappear anywhere within anapplication program; however, to
avoid runtime deadlock, the best practiceis toready all areas before issuingany other
DML statements.

The READY statement is used in both the navigationaland the non-navigational
environments.

v

»»—— READY
L area-name a

"~ L ysaGE-MoDE is - RETRIEVAL_<—,—| ' o
|: PROTECTED :| UPDATE
EXCLUSTVE

area-name
The name of anareaincludedinthe subschema.

By default, if you do not specify anarea, READY will openall areasinthe
subschema.

USAGE-MODE IS
Specifies the usagemode inwhich the area will be opened.
PROTECTED

Prevents concurrentupdate of the area by run units executing under the same
central version.Once arun unit has readied an area with the PROTECTED
option, no other rununit canready thatarea inany UPDATE usage mode until
the firstrununitreleases it by means of the FINISH statement (see FINISH (see
page 185)). A rununit cannotreadyan area with the PROTECTED option if
another run unithas readied the area in UPDATE usage mode or with the
EXCLUSIVE option.

Chapter 6: Data Manipulation Language Statements 273

READY

Example

Status Codes

By default, if you do not specify PROTECTED or EXCLUSIVE, the areas will be
opened inshared mode.

EXCLUSIVE

Prevents concurrentuse of the area by any other run unitexecuting under the
central version.Once a run unit has readied an area with the EXCLUSIVE option,
no other run unitcanready thatareainany usagemode until the firstrununit
releases it.

By default, if you do not specify PROTECTED or EXCLUSIVE, the areas will be
opened inshared mode.

RETRIEVAL

Opens the area for retrieval only and allows other concurrently executing run
units to open the same area inany non-exclusive usage mode.

This is the default.

UPDATE

Opens the area for both retrieval and update and allows other concurrently
executing run units to open the same area inany usage mode other than
exclusive or protected.

Note: Ifa READY statement would resultina usage mode conflictforanarea,
whilerunningunder the central version, the run unitissuingthe READY is
placedina wait state on the firstfunctional databasecall.

Note: Modification statements involving areas opened in one of the update
usage modes are not validifthey affect sets thatincluderecordsinanarea
opened inone of the retrieval usage modes.

The following statement readies all subschema areas ina usage mode of PROTECTED

UPDATE:

READY USAGE-MODE IS PROTECTED UPDATE.

After completion of the READY function, the ERROR-STATUS fieldinthe IDMS
communications blockindicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully

0910 The subschema specifies anaccess restriction that prohibits readying
the areainthe specified usage mode

0923 The named areais notinthe subschema

274 DML Reference Guide for COBOL

RETURN

RETURN

Status code Meaning

0928 The run unithas attempted to ready anarea that has been readied
previously

0966 The area specifiedis notavailablefor update. If the 0966 status code

isignored, subsequent attempts to access the area will return a 01 or
09 minor code. Probablecauses for the return of the status code are
as follows:

m Ifrunninginlocal mode,the areaislockedagainstupdate

m Ifrunningunder the central version,the areais notavailableto
the programinthe desired access mode

0970 The databaseorjournal filewill notready properly;a JCL erroris the
probablecause

0971 The page range for the area being readied could not be found in the
DMCL
0978 A waitfor anarea would causea deadlock. Itis recommended that all

areas be readied either before the firstfunctional call isissued or
that all programs ready areas inthe same order.

The RETURN statement retrieves the databasekey for anindexed record without
retrieving the record itself, thus establishing currencyinthe indexed set. The record's
symbolic key is moved into the data fields within the recordin program variablestorage.
The contents of all non-key fields for the record are unpredictableafter the execution of
the RETURN verb. Optionally, the program canindicatethatthe symbolic key can be
moved into some other specified variablestoragelocation.

Current of indexis established by:

m Successful execution of the RETURN statement, which sets current of index at the
index entry from which the databasekey was retrieved.

m Astatus code of 1707 (end of index), which set currency on the index owner. The
DBMS returns the owner's db-key.

m An status code of 1726 (index entry not found), which sets current of index as
follows:

m Between the two entries thatare higher and lower than the specified value

Chapter 6: Data Manipulation Language Statements 275

RETURN

m After the highestentry, ifthe specified valueis higher thanall index entries

m Before the lowest entry, ifthe specified valueis lower than all index entries

The RETURN statement is usedin both the navigationalandthenon-navigational
environments.

Syntax

»»—— RETURN dbkey FROM 7ndex-set-name CURRENCY
FIRST currency
LAST currency
NEXT currency
PRIOR currency —
USING index-key-value —

v

I

L KEY 7nto symbolic-key |

Parameters
db-key
The symbolic name of a user-defined PIC S9(8) COMP SYNC (fullword)field.
FROM
Identifies the indexed set from which the specified databasekey is to be returned.
index-set-name
The name of the indexed set.
CURRENCY
Retrieves the databasekey for the currentindex entry.
FIRST currency
Retrieves the databasekey for the firstindex entry.
LAST currency
Retrieves the databasekey for the lastindex entry.
NEXT currency

Retrieves the databasekey for the index entry following current of index. If the
current of index is the lastentry, status code 1707 (end of index) is returned.

276 DML Reference Guide for COBOL

RETURN

Example

Status Codes

PRIOR currency

Retrieves the databasekey for the index entry preceding current of index. If the
current of index is the firstentry, status code 1707 (end of index)is returned.

USING
Retrieves the databasekey for the firstindex entry with the specified symbolic key.
index-key-value
The symbolic key to be used.

If no such entry exists, status code 1726 (index entry not found) is returned.
KEY into
Saves the symbolic key (CALC, sort, orindex) of the specified record.
symbolic-key

The name of a user-defined alphanumericfield into which the symbolic key of
the specified record will be returned. Symbolic-key must be large enough to
containthe largestcontiguous or noncontiguous symbolic key.

Ifthe 'KEY into' clauseis notspecified, the symbolic key will be moved into the
correspondingfields inthe user record's storage.

The precompiler views anincorrectly formatted RETURN statement as a COBOL
RETURN functionand does not flagthe error. The incorrect RETURN DML statement
is passed tothe COBOL compiler without expansionintoa CALL statement, causing
compile-time errors.

The following RETURN statement retrieves the databasekey for the firstindex entry in
the EMP-LNAME-NDX set and moves the record's symbolic key into the
NDX-LNAME-SYM-KEY field.

RETURN INT-INDEX-KEY FROM EMP-LNAME-NDX
FIRST CURRENCY
KEY INTO NDX-LNAME-SYM-KEY.

After completion of the RETURN function, the ERROR-STATUS fieldinthe IDMS
communications blockindicates the outcome of the operation:

Status code Meaning
0000 The request has been serviced successfully
1701 The area in which the object record or its index owner record

participates has notbeen readied

Chapter 6: Data Manipulation Language Statements 277

ROLLBACK

ROLLBACK

Status code Meaning

1707 Either the end of the indexed set has been reached or the indexed
setis empty

1725 Currency has not been established for the specified indexed set

1726 The record cannotbe found

The ROLLBACK statement rolls back uncommitted changes made to the database
through an individual run unitor through all databasesessions associated with a task. A
task-level rollbackalso backs outall uncommitted changes made in conjunction with
scratch, queue, and print activity.

Whether the changes areautomatically backed outdepends on the execution
environment:

Ifthe changes were made under the control of a central versionthatis journalingto
a diskfile, they are backed out automatically. Thecentral version continues to
process other applications during recovery.

The changes are not backed out automatically under the following circumstances:

m Ifthe changes were made under the control of a central version thatis
journalingto a tape file.

m Ifthe changes were made inlocal mode.

Inthese cases,the ROLLBACK statement causes the affected areas to remain locked
againstsubsequentaccess by other databasesessions. They must be manually
recovered. If changes cannot be backed out and CONTINUE was specified on the
rollback request,a non-zero error status is returned to the applicationandifthe
request was for anindividual run unit,that run unitis terminated.

Note: For more information aboutmanual recovery, see the CA IDMS Database
Administration Guide.

If CONTINUE is notspecified, run units (and SQL sessions) impacted by the ROLLBACK
statement end, andtheir access to the databaseis terminated. If CONTINUE is specified,
impacted databasesessionsremain active after the operationis complete.

278 DML Reference Guide for COBOL

ROLLBACK

Syntax

Parameters

Example

The ROLLBACK statement is used in both the navigational and logical record facility
environments. The ROLLBACK TASK statement is alsousedinanSQL programming
environment.

Currency

Followinga ROLLBACK statement, all currencies aresetto null.Unless the
CONTINUE option is specified, the issuing program or task cannot perform database
access through an impacted run unit without executing another BIND/READY
sequence.

M

»»—— ROLLBACK
L task =/ L continue -

TASK

Rolls back the uncommitted changes made by all scratch, queue, and print activity
and all top-level run units associated with the current taskand terminates those run
units. Its impacton SQL sessions associated with the task depends on whether
those sessions aresuspended and whether their transactionsareeligibleto be
shared.

For more information aboutthe impact of a ROLLBACK TASK statement on SQL
sessions,seethe SQL Programming Guide.

For more information aboutrun units and the impactof ROLLBACK TASK, see the
Navigational DML Programming Guide.

CONTINUE

Central version only. Causes the affected run units and SQL sessionstoremain
activeafter their changes arebacked out. Database access can beresumed without
reissuing BIND and READY statements.

Note: The CONTINUE option should not be used inlocal mode ifdatabase changes
have been made.

The following statement reverses the effects of the run unitthrough whichitisissued
and terminates the rununit:

ROLLBACK.

Chapter 6: Data Manipulation Language Statements 279

SEND MESSAGE

Status Codes

After completion of the ROLLBACK function,the ERROR-STATUS fieldinthe IDMS
communications blockindicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully

1958 CONTINUE was specified and databasechanges could not be backed
out. The run unithas been terminated.

5031 The specified request is invalid; the program may containalogic
error

5058 TASK CONTINUE was specified and database changes could notbe
backed out.

5097 An error was encountered processinga syncpointrequest; check the

logfor details.

SEND MESSAGE

The SEND MESSAGE statement sends a message to another terminal or user or to a
group of terminals or users defined as a destination duringsystem generation. The SEND
MESSAGE function does not employ the data dictionary messagearea; instead, CA IDMS
places each message ina queue, sendingthe message to the appropriateterminal only
when itis possibleto do sowithout disrupting executingtasks. Typically, CAIDMS sends
queued messages to a terminal the next time the ENTER NEXT TASK CODE messageis
displayed.

Syntax

v

ONLY «

»»—— SEND MESSAGE :]
ALWAYS

v

—— T0 DEST ID destination-id
USER ID user—id:l
LTERM ID Iterm-id

M

»—— FROM -1 i T - -1 A .
M message-locatION "L [BNETH messoge- length —

280 DML Reference Guide for COBOL

SEND MESSAGE

Parameters

ONLY

Sends the message immediately if the destination, user, or terminal is available,and
does not queue the message for subsequent transmissionifthedestination, user,
or terminal is notavailable.

This is the default.

Note: If ONLY is specified with the DEST ID option (described below) and if some,
but not all, of a group of users or terminals inthe destination areavailable, CAIDMS
will send the message to those available. The sender will not be aware of any
unsuccessful transmissions.

ALWAYS

Sends the message immediately if the destination, user, or terminal is available,and
qgueues the message for later transmissionifthedestination, user, or terminal is not
available.

TO DEST ID

Identifies the recipientof the message as a destination. The specified destination
must have been defined during system generation.

destination-id

Either the symbolic name of a user-defined field that contains the destination
ID orthe ID itselfenclosed in quotation marks.

TO USER ID

Identifies the user to receive a message. The specified user can be signed on to any
terminal.

user-id

Identifies the user to receive the message. The specified user can be signed on
to anyterminal. User-id is the symbolic name of a 32-byte user-defined field
that contains the user-id.

TO LTERM ID
Identifies the logical terminal to receive the message.
Iterm-id

Either the symbolic name of a user-defined field that contains the terminal ID
or the IDitselfenclosed in quotation marks.

Chapter 6: Data Manipulation Language Statements 281

SEND MESSAGE

FROM

Specifies the WORKING-STORAGE SECTION or LINKAGE SECTION entry that contains
the text of the message to be sent.

message-location
The symbolic name of a user-defined field.
TO

Indicates the end of the WORKING-STORAGE SECTION or LINKAGE SECTION entry
that contains the message text.

end-message-location

The symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the message text.

LENGTH
Defines the length in bytes of the message text.
message-length
Either the symbolic name of a user-defined field that contains the length or the
length itself expressed as a numeric constant.

Examples

The followingexamples illustratethe use of the SEND MESSAGE statement.
Example 1

The following statement illustrates a request to send the message in the
TERM-MESS field to the logical terminal KENNEDYA:

SEND MESSAGE ALWAYS
TO LTERM ID 'KENNEDYA'
FROM TERM-MESS TO END-TERM-MESS.

Example 2

The following statement illustrates a request to send the message in the
TERM-MESS field to the user field:

MOVE 'KYJOE2' to USER32.
SEND MESSAGE
TO USER ID USER32
FROM TERM-MESS TO END-TERM-MESS.

282 DML Reference Guide for COBOL

SET ABEND EXIT

Example 3

The following statement illustrates a request to send the message inthe
TERM-MESS field to the destination ALL:

SEND MESSAGE
TO DEST ID 'ALL'
FROM TERM-MESS TO END-TERM-MESS.

Status Codes

After completion of the SEND MESSAGE function,the ERROR-STATUS fieldin the
IDMS-DC communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

4907 An I/Oerror has occurred during processing.

4921 The specified message recipienthas not been defined.

4931 The parameter listis invalid.

4932 The derived length of the specified messagedata areais zero or
negative.

4934 The specified variablestoragearea that contains the message text is

inthe LINKAGE SECTION but is notan01-level entry.

4938 The specified WORKING-STORAGE SECTION or LINKAGE SECTION
entry has not been allocated, as required. A GET STORAGE request
must be issued.

SET ABEND EXIT

The SET ABEND EXIT (STAE) statement establishes or cancelslinkagetoan abend routine
to which CA IDMS passes control ifthe issuing task terminates abnormally. Any program
withina taskcanestablish anabend exit; however, only one abend exitis in effect at
any given time for each tasklevel. If more than one abend exit has been established, CA
IDMS recognizes the exit associated with the last STAE request issued.

When a task terminates abnormally (following either a processingerror or an ABEND
request), abend exits for the program that was executing at the time of the abend and
for all higher-level programs will be executed before the taskis terminated. The
program can prevent CA IDMS from executing abend exits automatically either by
codingthe EXITS IGNORED clauseinan ABEND request or by codinga DC RETURN
request inthe abend routine.

Chapter 6: Data Manipulation Language Statements 283

SET TIMER

Syntax

Parameters

Examples

Status Codes

SET TIMER

»»—— SET ABEND EXIT T 8|/:7FPROGRN"I program —— .

)4

on PROGRAM

Specifies the programto which control is to transfer if the issuingtask terminates
abnormally.

program

Either the symbolic name of a user-defined field that contains the program
name or the name itselfenclosedin quotation marks.

Note: CA IDMS does not check to determine if the specified programname is
valid when the STAE request is issued.Rather, ifthe programis not found or is
otherwise unloadablewhen CA IDMS attempts to execute it, the STAE request
will beignored.

OFF

Cancels any previouslyissued STAE request for the issuingtasklevel.

The followingexamples illustratethe use of the SET ABEND EXIT statement.
Example 1

The following statement establishes an abend exit that will execute the program
ABENDRTN ifthe issuingtaskterminates abnormally:

SET ABEND EXIT ON PROGRAM 'ABENDRTN'.

Example 2

The following statement cancels allabend exits previously established atthe task
level of the issuing program:

SET ABEND EXIT OFF.

After completion of the SET ABEND EXIT function, the only possiblevalueinthe
ERROR-STATUS field of the IDMS-DC communications blockis 0000.

The SET TIMER statement defines an event that is to occur after a specified time interval
or cancels the effect of a previouslyissued SET TIMER request. Usingthe SET TIMER
function, a program can:

284 DML Reference Guide for COBOL

SET TIMER

Syntax

Parameters

m Delaytask processingfor a specified period of time
m PostanECB atthe end of a specified period of time

m |nitiateataskat the end of a specified period of time

»»—— SET TIMER WAIT:
—E POST q
START
CANCEL

»

v

v

L INTERVAL time-interval seconds |

v

L EVENT post-ecb l

v

L TASK CODE task-code T]
PRIORITY priority

v

L TIMER ID 7ce-address -

|_ . "
DATA FROM task-data—location—E TO end—task-data-location__—l—i
LENGTH task-data-length

WAIT

Places theissuingtaskina waitstateand redispatches the issuingtask after the
specified time interval elapses. Because WAIT relinquishes control until thetime

interval has elapsed, a subsequent SET TIMER request cannotbe used to cancel this
WAIT request.

POST

Posts a user-specified ECB after the specified time interval elapses;the issuingtask
continues to run. If POST is specified, the EVENT parameter (described below) must
alsobespecified.

START

Initiates a user-specified task after the specified time interval elapses.|f START is
specified, the TASK CODE parameter (described below) must also bespecified.

CANCEL
Cancels the effect of a previouslyissued SETTIMER request.
INTERVAL ... seconds

WAIT, POST, START requests only. Specifies the time, in seconds, from the issuance
of a SET TIMER request at which the requested event will occur.

time-interval

Either the symbolic name of a user-defined field that contains the time interval
or the interval itself expressed as a numeric constant.

Chapter 6: Data Manipulation Language Statements 285

SET TIMER

EVENT
POST requests only. Specifies the ECB to be posted.
post-ecb

The symbolic name of a user-defined area that contains three PICS9(8) COMP
SYNC (fullword) fields.

Note: The POST instruction willonly POSTan ECB thatis within storageowned by
the TASK initiatingthe POST instruction. If the storage is not owned by the same
task, it will notbe executed.

TASK CODE
START requests only.Specifies the taskto be initiated.
task-code

Either the symbolic name of the user-defined field that contains the task code
or the task code itselfenclosed in quotation marks.

The specified task code must have been defined to CA IDMS duringsystem
generation or at runtime with a DCMT VARY DYNAMIC TASK command.

PRIORITY
Specifies a dispatching priority for the task.
priority

Either the symbolic name of a user-defined field that contains the priority or
the priorityitself expressed as a numeric constantin the range 0 through 240.
The new task's priority defaults to the priority defined for that task code.

TIMER ID

POST, START, CANCEL requests only. Specifies the address of the interval control
element (ICE) associated with the timed event.

ice-address

The symbolic name of a user-defined PIC S9(8) COMP SYNC (fullword)field. If
either POST or START has been specified, ice-address references a fieldto
which CA IDMS will return the ICE address. If CANCEL has been specified,
ice-address references the field that contains the ICE address returned by CA
IDMS followinga SET TIMER POST or SET TIMER START request.

Note: The TIMER ID parameter must be specified with SET TIMER POST and SET
TIMER START requests if the program is to issuesubsequent SET TIMER CANCEL
requests.

286 DML Reference Guide for COBOL

SET TIMER

DATA FROM
START requests only. Identifies the user data to be passedto the new task.
task-data-location

The symbolic name of a user-defined field that identifies the beginning of an
area containingthe data item(s) to be passed.

TO
Indicates the end of the data area being passed to the new task.
end-task-data-location

The symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the data area being passed.

LENGTH
Specifies the length in bytes of the data area.
task-data-length

Either the symbolic name of a user-defined WORKING-STORAGE SECTION or
LINKAGE SECTION field that contains the length of the data area or the length
itself expressed as a numeric constant.

Note: The data passedto the new task consists of two bytes containingthe
length of the original data followed by the original data itself. This may be
accessed by means of a LINKAGE SECTION entry correspondingto the data and
a USING clauseinthe PROCEDURE DIVISION header.

Examples

The following examples illustratethe use of the SET TIMER statement.
Example 1

The following statement illustrates a request to placethe issuingtaskina waitstate
andredispatchitafter nine seconds have elapsed:

SET TIMER WAIT
INTERVAL 9 SECONDS.

Example 2

The following statement illustrates a request to post the event PODB after five
seconds have elapsed:

SET TIMER POST
INTERVAL 5 SECONDS
EVENT PODB
TIMER ID TMR-ID.

Chapter 6: Data Manipulation Language Statements 287

SNAP

Status Codes

SNAP

Example 3

The following statement illustrates a request to startthe SPSG task after five
seconds have elapsed andto pass the specified data to that task:

SET TIMER START
INTERVAL 5 SECONDS
TASK CODE 'SPSG'
TIMER ID TMR-ID
DATA FROM PASSGR LENGTH REC-LENGTH.

Example 4

The following statement illustrates a request to cancel the timed event referenced
by TMR-ID:

SET TIMER CANCEL
TIMER ID TMR-ID.

After completion of the SET TIMER function, the ERROR-STATUS fieldinthe IDMS-DC
communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully

3512 The specified task code is not known to the DC/UCF system.

3516 The interval control element (ICE) specified fora SET TIMER CANCEL
request cannotbe found

3531 Parameter listis invalid.

3532 The derived length of the data areais negative

The SNAP statement requests a memory snap of one or all of the followingareas:

m Task areas—Includes all resources associated with the issuingtask, as well as the
task control element (TCE) and dispatch control element (DCE) for the task.
Information displayed by the snapis formatted with headers.

m System areas—Includes areas for all tasks and CAIDMS internal control blocks. Task

areas arenot itemized separately. Information displayed by the snapis formatted
with headers.

m Specified locations in memory—Includes oneor more areas of memory specifically

requested by locationand length. The information displayedis notformatted with
headers.

288 DML Reference Guide for COBOL

SNAP

The areas requested inthe SNAP request are written to the DC system logfile, which is
defined during system generation as a sequential data set or a data dictionaryarea.

Syntax
»»—— SNAP >
L T1ie s titze - | aLL —
SYSTEM —
TASK —
; L . —><
¢— FROM begin-snap-location T T0 end-snap-1locat ionj——‘—)
LENGTH snap-length
Parameters

TITLE is
Specifies the titleto be printed at the beginning of each page of the snap.
title
The symbolic name of a user-defined field that contains the title.

A titlemust contain 134 characters;the firstcharacteris reserved for use by CA
IDMS, and the second character mustbe a valid ASA carriage control character
(blank,0, 1, +, or -).

ALL

Writes a snap of both taskand system areas. Areas associated with the issuingtask
are formatted separately from the system areas.(Taskareas arealsoincluded with
the system areas but are not itemized by task.)

SYSTEM
Writes a snap of system areas.
TASK
Writes a snap of task areas.
FROM
Writes a snap of the specified memory location.
begin-snap-location

The symbolic name of a user-defined field indicating thestartinglocation of the
area to be snapped.

Chapter 6: Data Manipulation Language Statements 289

STARTPAGE

Example

Status Codes

STARTPAGE

TO
Indicates the end of the area to be snapped.
end-snap-location

The symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the area requested inthe snap.

LENGTH
Defines the length in bytes of the area to be includedinthe snap.
snap-length

Either the symbolic name of a user-defined field that contains the length of the
data area or the length itself expressed as a numeric constant.

Note: If snap-length is greater than 100, some COBOL compilers may produce
errors.In this case, either use a symbolic name that contains the length, or use
the FROM/TO form of the verb.

The followingexample illustrates a SNAP statement that requests CA IDMS to write a
memory snap of the specified memory location:

SNAP TITLE IS SNAP-TITLE
FROM WS-START TO WS-END.

After completion of the SNAP function,the ERROR-STATUS fieldinthe IDMS-DC
communications blockindicates theoutcome of the operation:

Status code Meaning

0000 The request has been serviced successfully

4032 The derived length of the specified snap storageareais zero or
negative

The STARTPAGE statement initiates a pagingsession.ltcan be followed by any number
of DML commands, including MAP IN and MAP OUT commands. The map pagingsession
is terminated by an ENDPAGE command (or by another STARTPAGE command, if oneis
encountered before an ENDPAGE command).

Note: Only one pageablemap canbe handled by the statements enclosed by a given
STARTPAGE/ENDPAGE pair.

290 DML Reference Guide for COBOL

STARTPAGE

Syntax
»»—— STARTPAGE session map-name >
WAIT
NOWAIT <« —
RETURN —
BACKPAGE < j |: UPDATE < :| AUTODISPLAY < :l ' o
NOBACKPAGE BROWSE NOAUTODISPLAY
Parameters
map-name

Specifies the pageablemap to be used for the session.
WAIT

Specifies that runtime mapping automatically handles pagingtransactions that
do not causedata to be updated. Control is passedtothe programwhen the
user presses a control key that requests an update or nonpagingoperation.

NOWAIT

Specifies that runtime mapping automatically handles all pagingand update
transactions.

This is the default.

Control is passed to the program only when neither an update nor paging
request is made when the operator presses a control key.

RETURN

Specifies that runtime mapping does not handleany terminal transactionsin
the pagingsession. Control is passed to the program whenever the operator
presses a control key.

Note: Runtime mapping does not update program variablestorageunless a
MAP IN command isissued.In cases where the operator can update data,itis
recommended that WAIT or RETURN be specified for the sessionsothatdata
canbe retrieved asitis updated.

BACKPAGE

Specifies that the operator candisplay previous pages of detail occurrences.

This is the default.

Chapter 6: Data Manipulation Language Statements 291

STARTPAGE

NOBACKPAGE

Specifies that the operator cannotdisplay any pageof detail occurrences with a
page number lower than the current page number. Modifications madeon a given
page of the map must be requested by MAP IN statements inthe application
program before a MAP OUT RESUME command is issued. The previous page of
detail occurrences is deleted from the session scratch record when a new map page
is displayed.

Note: NOBACKPAGE cannot be assigned if UPDATE and NOWAIT are specified for
the session.

UPDATE

Specifies that the user can modify variablemap fields, subjectto restrictions
specified for the map either at map definition time or by statements in the
program.

This is the default.
BROWSE

Specifies that the user can modify only the page andresponse fields (ifany) of the
map. The MDTs for variablefields onthe map canbe set on only accordingto
specifications madeeither inthe map definition or by statements in the program.

AUTODISPLAY
Enables automatic display of the pageable map's first page.
This is the default.

NOAUTODISPLAY
Disables automatic display of the pageable map's first page. You manuallydisplay
the page by usinga MAP OUT RESUME statement.

Examples
Initiating a Paging Session

The following statement initiates a pagingsessionin which theoperator can page
forward and backward within the pageable map but can make no modifications:

STARTPAGE SESSION EMPMAPPG NOWAIT BACKPAGE BROWSE.
Overriding Automatic Display

Use STARTPAGE to overrideautomatic displayfor the firstpage of pageable map
EMPMAPPG:

STARTPAGE SESSION EMPMAPPG NOAUTODISPLAY.

292 DML Reference Guide for COBOL

STORE

Status Codes

STORE

After completion of the STARTPAGE function, the ERROR-STATUS fieldinthe IDMS-DC
communications blockindicates the outcome of the operation:

Status code Meaning
0000 The request has been serviced successfully.
4604 A pagingsessionwas alreadyin progress when this STARTPAGE

command was received. An implied ENDPAGE was processed before
this STARTPAGE was successfully executed.

The STORE statement performs the followingfunctions:

Acquires spaceanda databasekey for a new record occurrence inthe database

Transfers the value of the appropriateelements from program variablestorageto
the specified record occurrence inthe database

Connects the new record occurrence to all sets for whichitis defined as an
automatic member

Before execution of the STORE statement, the following conditions mustbe satisfied:

All areas affected either implicitly or explicitly mustbe readied in one of the update
usage modes (see READY (see page 272)).

All control elements (that is, CALC and sorted set control fields) mustbe initialized
by the program.

Ifthe record being stored has a location mode of DIRECT, the contents of
DIRECT-DBKEY (positions 197-200 of the IDMS communications block, as described
in Chapter 4: (see page 33)) must beinitialized with a suggested db-key valueora
null db-key valueof -1.

Ifthe recordis to be stored ina native VSAM relative-record data set (RRDS), the
contents of DIRECT-DBKEY must be initialized with the relativerecord number that
represents the location within the data set where the recordis to be stored.

All sets in which the named recordis defined as an automatic member, andthe
owner record of each of those sets must be included in the subschema. Sets for
which the named record is defined as a manual member need not be defined in the
subschema sincethe STORE statement does not access thosesets. (An automatic
member is connected automatically to the selected set occurrence when the record
is stored; a manual member is not connected automaticallyto the selected set
occurrence.)

Chapter 6: Data Manipulation Language Statements 293

STORE

Ifthe record being stored has a location mode of VIA, currency must be established
for that VIA set, regardless of whether the record being stored is anautomatic or
manual member of that set. Current of the VIA set provides the suggested page for
the record being stored.

Currency must be established for all set occurrences in which the stored record will
participateas an automatic member. Depending on set order, the STORE statement
uses currency as follows:

— Ifthe named record is defined as a member of a set thatis ordered FIRST or
LAST, the record thatis current of set establishes theset occurrenceto which
the new record will be connected.

— Ifthe named record is defined as a member of a set thatis ordered NEXT or
PRIOR, the record thatis currentof set establishes theset occurrence into
which the new record will be connected and determines its position within the
set.

— Ifthe named record is defined as a member of a sorted set, the record thatis
current of set establishesthe set occurrence into which the new record will be
connected. The DBMS compares the sortkey of the new record with the sort
key of the current record of set to determine ifthe new record can be inserted
into the set by movement inthe next direction.If itcan, the current of set
remains positioned atthe record thatis current of set and the new recordis
inserted. If itcannot, the DBMS finds the owner of the current of set (not
necessarily the current occurrence of the owner record type) and moves as far
forwardinthe next directionasis necessaryto determine the logicalinsertion
point for the new record.

A recordis stored inthe databasebased on the location mode specifiedin the schema
definition of the record. The location modes are as follows:

CALC—The record being stored is placed on or near a page calculated by CA IDMS
from a control element (the CALC key) in the record.

VIA—The record being stored is placed either as closeas possibleto the current of
set (if current of set and member record occurrences sharea common page range)
or inthe same relative positioninthe member record's page range as the current of
setisinits associated page range (if current of set and member record occurrences
do not sharea common page range).

DIRECT—The record being stored is placed on or near a user-specified page as
determined by the valueinthe DIRECT-DBKEY field of the IDMS communications
block. If DIRECT-DBKEY contains a valid db-key for the record being stored, the
DBMS assignsa db-key on the same page ifspaceis availableto the new record
occurrence. Otherwise, it assignsthe next availabledb-key, subjectto the
page-range limits of the record being stored. If DIRECT-DBKEY contains a valueof -1,
the firstdb-key availablein the page range in which the recordis to be stored is
assignedtothe record. In anycase, the db-key of the stored record occurrenceis
returned to DBKEY (positions 13-16 inthe IDMS communications block). The
contents of DIRECT-DBKEY remain unchanged.

294 DML Reference Guide for COBOL

STORE

Syntax

Parameters

Example

DEPARTMENT
3100

EMPLOYEE
28

8 =

Currency

Following successful execution of a STORE statement, the stored record becomes
current of run unit, its record type, its area,and all sets inwhichitparticipates as
owner or automatic member.

»»—— STORE record-name .

M

record-name

The name of a record type includedinthe subschema. The current occurrence of
the record type will bemoved from variablestorageto the database, connected to
anoccurrence of each set for whichitis defined as an automatic member, and
established as theowner of a set occurrence for eachset inwhichitis definedas an
owner.

The ordering rules for each set govern the insertion point of the specified recordinthe
set.

The followingfigureillustrates the steps necessaryto add a new EMPLOYEE record to
the database.Since EMPLOYEE is defined as an automatic member of both the
DEPT-EMPLOYEE and OFFICE-EMPLOYEE sets, currency must be established in each of
those sets before issuingthe STORE. The firsttwo DML statements establish OFFICE 1
and DEPARTMENT 3100 as currentof the OFFICE-EMPLOYEE and DEPT-EMPLOYEE sets,
respectively. When EMPLOYEE 27 is stored, itis connected automaticallytoeachset.

DEPARTMENT OFFICE

410 IF |5s ICALC 450 IF |75 ICALC
DEPT-ID-0410 | DN OFFICE-CODE-0450 | DN
ORG-DEMO-REGION ORG-DEMO-REGION

DEPT-EMPLOYEE

NPQ OA

ASC(EMP-LAST-NAME-0415
EMP-FIRST-NAME-0415) DL

OFFICE-EMPLOYEE

10 QA

ASC(EMP-LAST-NAME-0415
EMP-FIRST-NAME-0415) DL

EMPLOYEE

215 |F s Joac
EMP-ID-0415
EMP-DEMO-REGION

Jon

Chapter 6: Data Manipulation Language Statements 295

STORE

CURRENCIES
RUN UNIT, RECORD, SET, AREA

s /s /38
&g /185 /98
1y
/5 /W $ /4 /5 /=
= s PN u @ & ry
5 @ I3) & & & & &
z L /&)T & & & q
) Ly [N 4y L @
& g : o) o o 3
MOVE OFFICE-CODE-IN TO
OFFICE-CODE. ; ; 1
FIND CALC OFFICE.
MOVE DEPT-ID-IN TO DEPT-ID.
FIND CALC DEPARTMENT. 3100 | 3100 1 (3100 13100
STORE EMPLOYEE. 27 | 3100 | 27 1 27 27 | 3100 | 27

Status Codes

After completion of the STORE function, the ERROR-STATUS fieldinthe IDMS
communications blockindicates the outcome of the operation:

Status code

Meaning

0000

The request has been serviced successfully

1201

The area in which the named record is to be stored has not been
readied

1202

The suggested DIRECT-DBKEY value is notwithinthe page range for
the named record

1203

Invalid currency for a recordto be inserted by a STORE. This canonly
occur when a rununitis sharinga transaction with other database
sessions.The03 minor status is returned ifthe run unit tries to store
arecord anda currencyinany setinwhichthe recordis a owner or
member of has been invalidated because of changes made by
another databasesessionthatis sharingthe sametransaction.

1204

The OCCURS DEPENDING ON item is either less than zero or greater
than the maximum number of occurrences of the control element

1205

Storage of the record would violatea duplicates-not-allowed option
for a CALC record, a sorted set, or anindex set

296 DML Reference Guide for COBOL

STORE (LRF)

STORE (LRF)

Status code

Meaning

1208 The named record is notinthe subschema; The program has
probablyinvoked the wrong subschema.

1209 The named record's area has not been readied inone of the update
usage modes

1210 The subschema specifies anaccess restriction that prohibits storage
of the named record

1211 The record cannotbe stored inthe area because of insufficientspace

1212 The record cannotbe stored because no db-key is available; thisis a
system internal error.

1218 The record has not been bound

1221 An area other than the area of the named record occurrence has
been readied with anincorrectusage mode

1225 A set occurrence has not been established for each set in which the
named recordis to be stored

1233 At leastone setin which the record participates as anautomatic
member has not been includedinthe subschema

1253 The subschema definition of an indexed set does not match the
indexed set's physicalstructureinthe database

1254 Either the prefix length of an SR51 recordis less than zero or the data
length is less than or equal to zero

1255 An invalid length has been defined for a variablelength record

1260 A record occurrence encountered inthe process of connecting
automatic sets is inconsistent with the set named inthe ERROR-SET
field of the IDMS communications block; probablecauses include:a
broken chainandimproper databasedescription.

1261 The record cannotbe stored because of broken chains inthe

database

The STORE statement updates the databasewith field values for a logical-record
occurrence. STORE does not necessarily resultin storing new occurrences of all or any of
the databaserecords that participateinthe logicalrecord;the path selected to servicea
STORE logical-record request performs whatever databaseaccess operations the DBA
has specified to servicethe request. For example, ifan existingdepartment gets a new
employee, onlythe new employee information will bestored inthe database; the
department information need not be stored inthe databasebecauseit already exists.

Chapter 6: Data Manipulation Language Statements 297

STORE (LRF)

LRF uses field values presentinthe variablestoragelocation reserved for the logical
record to make the appropriate updates to the database.You canoptionallynamean
alternative storage location fromwhich the new field values areto be obtained to
perform the requested store operation.

Syntax
»»—— STORE logical-record-name >
L FROM alt-logical-record-location —J
L WHERE boolean-expression —J
L ON path-status imperative-statement —I
Parameters

logical-record-name
The name of a logical record defined in the subschema.

FROM

Specifies an alternativevariablestoragelocation thatcontains the field values to be
used to make appropriateupdates to the database. When storinga logical record
that has previously been retrieved into an alternativevariablestoragelocation, use
the FROM clauseto name the same area specified in the OBTAIN request.

alt-logical-record-location

A record location defined in the WORKING-STORAGE SECTION or LINKAGE
SECTION.

WHERE

Specifies selection criteria to be applied to the object logical record. For details on
codingthis clause, see Logical-Record Clauses (see page 327).

boolean-expression
The selection criteria toapply.
ON parameter

Specifies the action to be taken depending on the valuereturned to the LR-STATUS
fieldinthe LRC block. For details on codingthis clause,see Logical-Record Clauses
(see page 327).

path-status

The valueof the LR-STATUS fieldinthe LRC block which triggers the specified
action.

imperative-statement The action to take.

298 DML Reference Guide for COBOL

TRANSFER CONTROL

Example

The followingexample illustrates the steps necessaryto store a new
EMP-INSURANCE-LR for a given employee:

MOVE EMP-ID-IN TO EMP-ID-0415.

MOVE INS-PLAN-IN TO INS-PLAN-CODE-0435.
MOVE S-DATE-IN TO SELECTION-DATE-0400
MOVE T-DATE-IN TO TERMINATION-DATE-0400
MOVE TYPE-IN TO TYPE-0400

MOVE PLAN-IN TO INS-PLAN-CODE-0400.
STORE EMP-INSURANCE-LR.

The followingfigureillustrates thenew occurrence of the EMP-INSURANCE-LR, which
consists of EMPLOYEE 149, INS-PLAN 001, and COVERAGE 'D'. The bottom COVERAGE
occurrence represents the only data physically added to the database.

EMPLOYEE INS-PLAN COVERAGE

NEW OCCURRENCE 149 002 M
OF EMP-INS-LR
149 002 F
149 001 (D)

TRANSFER CONTROL

Syntax

The TRANSFER CONTROL statement is used to:

m Establishlinkagewith a specified programandto pass control and an optional
parameter listtothat program. The program issuingthe TRANSFER CONTROL
RETURN request expects return of control at the instructionimmediately following
the TRANSFER CONTROL statement when the linked program terminates or issues a
DC RETURN request.

m Transfer control and an optional parameter listto a specified program. The program
issuingthe TRANSFER CONTROL NORETURN request does not expect return of
control.

»»—— TRANSFER CONTROL to program

v

RI:—I'URN__—Ii
LINK
NORETURN <
XCTL

M

g L —————— l L
USING —v— parameter

Chapter 6: Data Manipulation Language Statements 299

TRANSFER CONTROL

Parameters

program

Either the symbolic name of a user-defined field that contains the programname or
the name itselfenclosedin quotation marks.

RETURN (LINK)

Establishes linkage with the specified program, expecting return of control.

RETURN andLINK aresynonyms andcanbe used interchangeably.

NORETURN (XCTL)

USING

Transfers control to the specified program, not expecting return of control.
This is the default.

NORETURN and XCTL aresynonyms and can be used interchangeably.

Passes oneor more parameters (data items) to the programreceiving control.

parameter

Examples

The symbolic name of a user-defined field that contains the names of the data
items to be passed. Multiple parameter specifications mustbe separated with a
blank.

Ifthe USING clauseis specified with the RETURN option, the data items being
passed aredefined in either the WORKING-STORAGE SECTION or the LINKAGE
SECTION of the calling program,andinthe LINKAGE SECTION of the linked
program.

Ifthe USING clauseis specified with the NORETURN option, the data items
being passed aredefined inthe LINKAGE SECTION of both the calling program
andthe programreceiving control. In either case, the programreceiving
control must have a corresponding USING clauseand parameter listas partof
its PROCEDURE DIVISION header.

The following examples illustratethe use of the TRANSFER CONTROL statement.

Example

1

The following statement illustrates a request to transfer control to the programin
the PROGRAM-NAME field; the issuing program expects return of control:

TRANSFER CONTROL TO PROGRAM-NAME

LI

NK.

300 DML Reference Guide for COBOL

WAILT

Example 2

The following statement illustrates a request to transfer control to PROGRAMD and
passes three data items (FIELD-1, FIELD-2, and FIELD-3) to the program; the issuing
program does not expect return of control:

TRANSFER CONTROL TO 'PROGRAMD'
NORETURN
USING FIELD-1 FIELD-2 FIELD-3.

Status Codes

After completion of the TRANSFER CONTROL function, the ERROR-STATUS fieldinthe
IDMS-DC communications blockindicates the outcome of the operation:

Status code Meaning
0000 The request has been serviced successfully
3020 The request cannotbe serviced becausean I/O, program-not-found,

or potential deadlock error has occurred

WAIT

The WAIT statement relinquishes control either to CA IDMS, pending completion of one
or more events, or to a higher priority ready-to-run task. If control is relinquished to
waitfor the completion of one or more events, an event control block (ECB) must be
defined for each event. If an ECB is already posted when the WAIT is issued, the task is
redispatched immediately and control does not pass to another task.

Syntax

»»— WAIT

X

LONG « v— EVENT ecH
SHORT EVENT NAME ecb-id

REDISPATCH

Parameters
LONG
Specifies that the waitis expected to be long-term.
This is the default.

LONG should be specified for all waits expected to lasta second or more (for
example, terminal input).

Chapter 6: Data Manipulation Language Statements 301

WAILT

SHORT

Specifies that the waitis expected to be short-term. SHORT should be specified for
all waits expected to lastless thana second (for example, a disk1/0).

EVENT
Defines one or more ECBs upon which the task will wait.
ecb

The symbolic name of a user-defined area that contains three PICS9(8) COMP
SYNC (fullword) fields.

Multiple EVENT parameters must be separated by atleastone blank.
EVENT NAME
Specifies the ECB upon which the task will wait.
ecb-id

Either the symbolic name of a user-defined field that contains the ECB ID or the
ID itselfenclosed in quotation marks.

You cannotspecify multiple EVENT NAMEs.
REDISPATCH

Specifies that the issuingtask wishes to relinquish control to any higher priority
ready-to-run task before being redispatched.

Example

The following example requests a short-term waiton the event PODB:

WAIT
SHORT
EVENT NAME 'PODB'.

Status Codes

After completion of the WAIT function, the ERROR-STATUS fieldinthe IDMS-DC
communications blockindicates the outcome of the operation:

Status code Meaning
0000 The request has been serviced successfully
3101 To waiton the specified ECB would causea deadlock

302 DML Reference Guide for COBOL

WRITE JOURNAL

WRITE JOURNAL

Syntax

Parameters

The WRITE JOURNAL statement writes a task-defined record to the journal file. Records
written to the journal file with the WRITE JOURNAL function will beavailableto
user-defined exit routines duringa task-or system-initiated rollback.

\ 4

»»—— WRITE JOURNAL
|: WAIT SPAN < :'
NOWAIT < NOSPAN

M

»—— FROM record- Zocation—E TO end-record- Zocation__—]— .
LENGTH record-length

WAIT

Specifies that the issuingtask will waitfor completion of the physicall/O associated
with the WRITE JOURNAL function before resuming execution. This option will
causeCA IDMS to write a partiallyfilled buffer to the journal file.

NOWAIT

Specifies that the issuingtask will notwaitfor completion of the WRITE JOURNAL
function; the journal record will remainina storage buffer until a future request
necessitates writing the buffer to the journal file.

This is the default.
SPAN
Specifies to write the record across several journal file blocks, if necessary.

This is the default.
NOSPAN

Specifies to write the recordto a singlejournal fileblock;ifitis longer than the
journal block, the record will be split.

When arecord is shorter thana journal fileblock, based on spaceavailablein the
current journal block, CAIDMS will either placethe recordinthe block, splitit
across multipleblocks (SPAN), or write it to a new block after the current blockis
written (NOSPAN).

The following considerationsapply to usingan exit routine to retrieve journal file
records duringrecovery:

— Ifa WRITE JOURNAL statement issued before a failurespecified the SPAN
option, records may have been written across several journal blocks. To
retrieve these records, the exit routine will beinvoked once for each segment
of each record to be retrieved.

Chapter 6: Data Manipulation Language Statements 303

WRITE JOURNAL

- Ifa WRITE JOURNAL statement issued before a failurespecified the NOSPAN
option and records written to the journal fileareshorter than journal blocks,
the exit routine need only be concerned with the complete records.

Note: In general, the SPAN option provides better spaceutilizationinthe
journal filebecauseitincreases theaverage fullness of each block.

FROM

Defines the WORKING-STORAGE SECTION or LINKAGE SECTION entry of the record
to be written to the journal file.

record-location
The symbolic name of a user-defined field.
TO
Indicates the end of the record area to be written to the journal file.
end-record-location

The symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the record being written to the journal
file.

LENGTH
Defines the length in bytes of the record to be written to the journal file.
record-length

Either the symbolic name of the user-defined field that contains the length or
the length itself expressed as a numeric constant.

Example

The following statement illustrates a request to write the JOURNAL-DATA record to the
journal file, spanningitacrossseveral blocksif necessary:

WRITE JOURNAL SPAN
FROM JOURNAL-DATA TO END-JOURNAL-DATA.

Status Codes

After completion of the WRITE JOURNAL function,the ERROR-STATUS fieldin the
IDMS-DC communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully

5002 Storage is notavailablefor the required control blocks

5032 The derived length of the specified journal recordis zero or negative

304 DML Reference Guide for COBOL

WRITE LINE TO TERMINAL

Status code Meaning

5097 An invalid status has been received from DBIO/DBMS; check the DC
system log for details

WRITE LINE TO TERMINAL

The WRITE LINE TO TERMINAL statement illustrates a requestto transfer data from
program variablestorageto a terminal. WRITE LINE TO TERMINAL also establishes,
modifies, and deletes page header lines.

Data transfers requested by WRITE LINE TO TERMINAL statements can be synchronous
or asynchronous:

m Followinga synchronous request, control passes to CA IDMS, which places the
issuingtaskinaninactivestate. For non-3270 devices, control does not return to
the issuing programuntil the WRITE LINE TO TERMINAL request is complete. For
3270-type devices, all lines of output aresaved in a buffer; the buffer is not
transmitted to the terminal until itis full.

The transfer of a lineto the buffer will resultina processingdelay; however, control
returns to the program immediately followingthe request. If the line of data fills
the buffer, the entire page of data must be transmitted to the terminal.In this case,
control does not return to the issuing programuntil the user responds by pressing
ENTER. Thus, the program is made conversational.

m Followinganasynchronous request, control returns immediately to the issuing
program. Thereafter, each time the programissues a linemode I/0 request, CA
IDMS automatically checks to determine if the lastasynchronousrequesthas
completed and, therefore, whether a new data transfer can be initiated.

With asynchronous requests, programs can buffer all required pages of output
without suspendingtask execution duringthe actual transmission of data. However,
the task can optionally terminate itself, thereby freeing resources and allowingthe
user to review the buffered output.

I/Orequests are processed inthe sequence received from the task; thus, ifa program
issues a synchronous WRITE LINE TO TERMINAL request after issuing one or more
asynchronous requests, all I/0O requests arecompleted before returning control to the
issuing program.

The WRITE LINE TO TERMINAL request issued automatically by CAIDMS to empty
partially filled buffers upon completion of a taskis synchronous;therefore, the user can
view all screens and catch up with processingatthat time. Ifan application allows the
user to interrupt or terminate processingatsome point within a task, a synchronous
WRITE LINE TO TERMINAL request must be issued to suspend processingwhileawaiting
anoperator response.

Chapter 6: Data Manipulation Language Statements 305

WRITE LINE TO TERMINAL

Syntax
»»—— WRITE LINE TO TERMINAL >
T | warT < :I |: NEWPAGE L NosackpAGE "
NOWAIT ERASE
»—— FROM output-aata-location T TO end—output—data—location_—,—»
LENGTH output-data-length
L HEADER header-17ine-number —-|
Parameters

WAIT

Specifies that the write operation is synchronous;the issuingtask automatically

relinquishes control and mustwaitfor completion of the output operation before
processingcan continue.

This is the default.
NOWAIT

Specifies that the write operation is asynchronous; the issuing task continues
executing.

NEWPAGE (ERASE)

Write the output data linebeginningon a new page. For 3270-type devices, the
NEWPAGE optionforces CA IDMS to output the contents of the current buffer, even
ifthe buffer is not full.

NEWPAGE and ERASE are synonyms and can be used interchangeably.
NOBACKPAGE
3270-type devices only. Does not keep pages output inascratcharea. If

NOBACKPAGE is specified, the user can view only the current page of output.
NOBACKPAGE is valid only with the first1/O request inalinemode session.

306 DML Reference Guide for COBOL

WRITE LINE TO TERMINAL

FROM

Identifies the WORKING-STORAGE SECTION or LINKAGE SECTION entry of the data
to be transferred to the terminal device or the page header linebeing created,
modified, or deleted.

output-data-location
The symbolic name of a user-defined field.
TO

Indicates the end of the WORKING-STORAGE SECTION or LINKAGE SECTION entry
that contains the output data stream.

end-output-data-location

The symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the output data.

LENGTH
Defines the length in bytes of the output data area.
output-data-length

Either the symbolic name of a user-defined field that contains the length of the
data area or the length itself expressed as a numeric constant.

Note: Ifthe WRITE LINE TO TERMINAL statement is being used to delete a page
header line, output-data-length must be zero.

HEADER
Specifies the number of the page header linebeingcreated, modified, or deleted.
header-line-number
Either the symbolic name of a user-defined field that contains the header line
number or the header linenumber itself expressed as a numeric constant.

Examples

The followingexamples illustratethe use of the WRITE LINE TO TERMINAL statement.
Example 1

The following statement defines the valueof a data area as a header to be
displayed atthe top of each new page written to the terminal:

WRITE LINE TO TERMINAL
FROM EMPL-HEAD TO END-EMPL-HEAD
HEADER 1.

Chapter 6: Data Manipulation Language Statements 307

WRITE LOG

Example 2

The following statement illustrates a request to write the valueinthe specified data
area to a new page on the terminal:

WRITE LINE TO TERMINAL
NOWAIT
FROM EMPL-RPT LENGTH 60.

Status Codes

After completion of the WRITE LINE TO TERMINAL function, the ERROR-STATUS fieldin
the IDMS-DC communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

4707 A logical or permanent I/O error has occurred during processing.

4731 The linerequest block (LRB) contains aninvalidfield, indicatinga
possibleerrorinthe program's parameters.

4732 The derived length of the specified lineoutput areais zero or
negative.

4738 The specified 01-level LINKAGE SECTION entry has not been allocated

asrequired. A GET STORAGE request must be issued.

4743 The linel/O session has been canceled;the user has pressed CLEAR
(3270s), ATTENTION (2741s), or BREAK (teletypes).

WRITE LOG

The WRITE LOG statement retrieves a predefined message from the message area of the
data dictionaryand optionally writes the message to a specified locationin program
variablestorage. Retrieved messages are sent to the destination specifiedin the
message definition; typical destinations arethe operator's consoleand the DC system
logfile. Ifthe operator's consolehas been defined as the message destination, the
WRITE LOG statement canrequest areply. When areply is requested, control is not
returned to the issuingtaskuntil the replyis received.

308 DML Reference Guide for COBOL

WRITE LOG

Note: For more information aboutglobal messages, see the CA IDMS IDD DDDL
Reference Guide.

The message ID specified inthe WRITE LOG statement is a seven-digitnumber. The first
six (most significant) digits make up the actual message|D usedto retrieve the message
from the data dictionary;the seventh digitis a severity code. This severity code is
predefined inthe dictionaryandis retrieved along with the message text to indicatethe
actionto be taken after the message is written to the log:

Severity Level CA IDMS Action

0 Return control to the issuing programand continue processing

1 Snap all taskresources and return control to the issuing program

2 Snap all systemareas and return control to the issuingprogram

3 Snap all taskresources and abend the task with a taskabend code of
D002

4 Snap all systemareas and abend the task with a taskabend code of
D002

5 Terminate the task with a taskabend code of D002

6 Undefined

7 Undefined

8 Snap all systemareas and abend the system with a system abend
code of 3996

9 Terminate the system with a system abend code of 3996

Ifa WRITE LOG statement specifies a messagelD thatis notinthe data dictionary, CA
IDMS will usea prototype message but will perform the action associated with the
severity code specifiedinthe WRITE LOG request.

Messages stored in the data dictionary can contain symbolic parameters. Symbolic
parameters, identified by an ampersand (&). followed by a two-digit numeric identifier,
canappearinany order withinthe message. The WRITE LOG statement can specify
replacement values for one or more symbolic parameters; however, the position of
replacement values within the WRITE LOG request must correspond exactly with the
two-digit numeric identifier in the message text. For example, the firstvalue specified
corresponds to &01., the second to &02., and soforth.

Chapter 6: Data Manipulation Language Statements 309

WRITE LOG

Syntax

»»—— WRITE LOG MESSAGE ID message-id

\ 4

T
L PARMS —v— FROM parameter-location T TO end—para/ﬂeter—locatfon—"—\—\

v

LENGTH parameter-1length

L REPLY INTO reply-location T0 end—reply-location—_l——l
L MAX LENGTH reply-max-length

v

L MESSAGE PREFIX is 'DC' —

v

|—TE

XT INTO text-return-location —E T0 end-text-return-location
MAX LENGTH text-max-length

I
»

)

Parameters

NO

MESSAGE PREFIX is —E YES «
message-prefix

TEXT is ONLY

MESSAGE ID

Specifies the message ID. The firstsix digits specify the ID of the message; the
seventh digitspecifies the message's severity code.

message-id

Either the symbolic name of a user-defined PICS9(8) COMP (fullword) field that
contains the message ID or the ID itself expressed as a numeric constant.

Message IDs 000001 through 900000 arereserved for use by CA IDMS; the
WRITE LOG statement can specify any number inthe range 900001 through
999999.

Caution: The message length must be seven digits. The system will always
interpret the lastdigitas the severity level. If you request message 987659 and
do not code a severity level of zero (that is,9876590) you areactually
requesting that message 098765 be written to the log and that the system
should be terminated with a 3996 abend code.

When messages are added to the data dictionary for use with the WRITE LOG
statement, they are assigned an eight-character identification number; the first
two characters areDC. A request for message 987654 retrieves DC987654.

310 DML Reference Guide for COBOL

WRITE LOG

PARMS FROM

Supplies replacement values for one or more symbolic parameters stored with the
message text.

parameter-location

The symbolic name of a user-defined field that contains the

WORKING-STORAGE SECTION or LINKAGE SECTION entry of the replacement
parameter.

This field must begin with a one-byte field into which the system places the
length of the adjacentfield. The valueinthe length does notincludethe length
byte.

TO

Indicates the end of the WORKING-STORAGE SECTION or LINKAGE SECTION entry
that contains the replacement parameter.

end-parameter-location

The symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the replacement parameter.

LENGTH
Defines the length, in bytes, of the replacement parameter.

parameter-length

Either the symbolic name of a user-defined field that contains the length or the
length itself expressed as a numeric constant.

REPLY INTO

Specifies the WORKING-STORAGE SECTION or LINKAGE SECTION entry of the area
reserved for a reply to the message issued by the WRITE LOG request.

reply-location
The symbolic name of a user-defined field.

This field must begin with a one-byte field into which the system places the

length of the adjacentfield.The valueinthe length does not includethe length
byte.

TO

Indicates the end of the WORKING-STORAGE SECTION or LINKAGE SECTION entry
reserved for the reply.

end-reply-location

The symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the reply.

Chapter 6: Data Manipulation Language Statements 311

WRITE LOG

MAX LENGTH
Defines the maximum length, in bytes, of the area reserved for the reply.
reply-max-length

Either the symbolic name of a user-defined field that contains the length or the
length itself expressed as a numeric constant.

MESSAGE PREFIX IS 'DC'

Specifies the two characters thatprecede the numeric position of a message. The
defaultis 'DC'.

TEXT INTO

Specifies that the contents of the named message, along with any replacement
parameters, are to be written to the issuingprogram.

text-return-location

The symbolic name of a user-defined 1 through 132 character alphanumeric
field that contains the WORKING-STORAGE SECTION or LINKAGE SECTION entry
to which the message text is to be returned.

This field must begin with a 1-byte field into which the system places the length
of the adjacentfield.The value in the length does not includethe length byte.

TO

Indicates the end of the WORKING-STORAGE SECTION or LINKAGE SECTION entry
reserved for the text.

end-text-return-location

The symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the returned text.

MAX LENGTH

Defines the maximum length in bytes of the WORKING-STORAGE SECTION or
LINKAGE SECTION entry reserved for the returned message text.

text-max-length

Either the symbolic name of a user-defined field that contains the text length
or the length itself expressed as a numeric constant.

312 DML Reference Guide for COBOL

WRITE LOG

MESSAGE PREFIX is

Defines the format of the message prefix. To overridethe defaultDC prefix, specify
anyone or two characters for message-prefix. To suppress a prefix, specify blanks.

YES
Indicates thatthe message text is preceded by:
IDMS ppnnnnnnn Vssssss REPLYnn
m ppistheprefixspecifiedinthe MESSAGE PREFIX parameter
m nnnnnnnisthe message number
m Vssssss is the system number

m REPLYnn is the message's system-supplied reply number (present onlyif
the REPLY parameter is used)

This is the default.
NO
Indicates thatthe message text is preceded by:
ppnnnnnnn
m ppistheprefixspecifiedinthe MESSAGE PREFIX parameter
m nnnnnnnisthe message number
TEXT is ONLY

Indicates thatthe message text is output with no prefix.
Example

The followingfigureillustrates a WRITE LOG statement that supplies three replacement
parameters.

Chapter 6: Data Manipulation Language Statements 313

WRITE LOG

WRITE LOG Activities

Task A issues a WRITELOG request for message 900121, specifyingvalues to
replacesymbolic parameters &01., &02., and &03. stored with the message text.
The messageis sent to its destination, which has been defined as the logical
terminal associated with the issuingtask.

MESSAGE SOURCE AS INPUT TO IDD

ADLD MESSAGE NAME 1S DCS00121
MESSAGE SEVERITY IS O IDD UTILITY
DESTINATION 1S TERMINAL (BATCH RUN)
MESSAGE 1S 'FLGIHT &01 FROM
&02 TO &03 FULLY BOOKED'.

TERMINAL A
FLIGHT AAA201 FROM MESSAGE
LA TO NY FULLY AREA
BGOKED DATA
DICTIONARY

WRITE LOG REQUEST

WRITE LOG MESSAGE ID 9001210

PARMS FROM FLT-NO TO END-FLT-NO
FROM DPT-CITY TO END-DEPT-CITY
FROM ARV-CITY TO END-ARV-CITY.

WHERE: FLT-NO = AAA201

DPT-CITY = LA
ARV-CITY = NY

Status Codes

After completion of the WRITE LOG function,the ERROR-STATUS field of the IDMS DC
communications blockindicates the outcome of the operation:

Status code Meaning
0000 The request has been serviced successfully
3623 No storageor resource control element (RCE) canbe allocated for

the specified reply area

3624 The maximum number of outstandingreplies has been exceeded; a
maximum of 98 messages can be awaitingreplyata given time

314 DML Reference Guide for COBOL

WRITE PRINTER

Status code Meaning

3625 The maximum number of replacement parameters has been
exceeded; a maximum of 8 replacement parameters may be used if
the "Message Prefix" optionis not used. If the"Message Prefix"
option is used then the maximum number of replacement
parameters is limited to 7.

3631 The parameter listis invalid

WRITE PRINTER

The WRITE PRINTER statement transmits data from a task to a terminal defined to the
system as a printer device during system generation. Any type of terminal can be
designated as a printer; however, the terminal is usually a hard-copy device.

CA IDMS does not transmitdata directly from programvariablestorageto the terminal.
Rather, datais passedtoa queue maintained by CA IDMS, and from the queue to the
printer. The data stream passed to the queue by the WRITE PRINTER request contains
only data; CA IDMS adds the necessarylineand devicecontrol characters when it writes
the data to the printer.

Note: Native mode data streams (thatis, those that contain device-control information
as well as user data) canalsobe transmitted with a WRITE PRINTER request. This
capabilityisuseful informatting reports for 3280-type printers.

Each lineof data transmitted ina WRITE PRINTER request is considered a record. Each
record is associated with a reportinthe printqueue. A report consists of one or more
records.Any task can have up to 256 activeprint reports. A program canissuemultiple
WRITE PRINTER requests, each specifying a different report. Because the records
associated with each report are maintained individually, records associated with one
reportare not interspersed with records associated with other reports when printed.

The WRITE PRINTER request candirectreports to print classes and to destinations:

m Duringsystem generation, one or more print classes areassociated with each
terminal designated as a printer. For each report, the firstrecord transmitted to the
printqueue by means of a WRITE PRINTER request establishes the printclass for
that report. The report will be printed on the firstavailable printer thatis assigned
the same printclass.

m Destinations aregroups of terminals, printers, or users. If destinations havebeen
defined during system generation, the WRITE PRINTER request candirecta report
to a destination. Reports sent to printer destinations areprinted on the first
available printer for the destination, regardless of printclass.

A reportis printed only when that report is completed, either explicitlyas partofa
WRITE PRINTER request orimplicitly when the issuingtask terminates.

Chapter 6: Data Manipulation Language Statements 315

WRITE PRINTER

Syntax

Parameters

Note: Normal task termination, a FINISH TASK request, or a COMMIT TASK request will
end all of the task's reports. Queued reports aremade eligiblefor printing.

Abnormal tasktermination (abend) or a ROLLBACK TASK request will causeany queued
reports belongingto the taskto be deleted.

v

NEWPAGE L ENDRPT J

»»—— WRITE PRINTER |:
ERASE

> FROM message-location TO end-message-location —>
L L natTve < "L LENGTH message-length — |

SCREEN CONTENTS

'LCOPIES—[14—‘|—I ‘—REPORTID—[14—‘|—| g
ount report-id

copy-c

v

g I

CLASS printer-class
DESTINATION printer-destination _L—J_l
ALL

"T oo J LT keep J

M

NEWPAGE (ERASE)
Specifies that the data stream will be printed beginningon a new page.
NEWPAGE and ERASE are synonyms and can be used interchangeably.
ENDRPT

Indicates thatthe data stream constitutes the lastrecordinthe specified report.
When ENDRPT is specified, the report can be printed before the issuingtask has
terminated. However, the programmust issuea COMMIT TASK request to signal to
printthe ended report. A subsequent WRITE PRINTER request with the same report
ID will starta separatereport.

NATIVE

Specifies that the data stream contains device control characters. If NATIVE is not
specified, the necessary characters areautomaticallyinserted.

FROM

Specifies the WORKING-STORAGE SECTION or LINKAGE SECTION entry of the data
to be transmitted to the printqueue.

message-location

The symbolic name of a user-defined field.

316 DML Reference Guide for COBOL

WRITE PRINTER

TO

Indicates the end of the WORKING-STORAGE SECTION or LINKAGE SECTION entry
that contains the data to be transmitted to the print queue.

end-message-location

The symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the output data.

LENGTH
Defines the length, in bytes, of the data stream.

message-length

Either the symbolic name of a user-defined field that contains the length of the
data or the length itselfexpressed as a numeric constant.

SCREEN CONTENTS

3270-type devices only. Specifies that the contents of the currently displayed
screen are to be transmitted to the print queue.

COPIES
Specifies the number of copies of the report to be printed.
copy-count

Either the symbolic name of a user-defined field that contains the copy count
or the countitself expressed as a numeric constant.

The count must be an integer inthe range 1 through 255; the defaultis one.

REPORT ID
Specifies the identifier of the reportto be printed.
report-id

Either the symbolic name of a user-defined field that contains the report ID or
the ID itself expressed as a numeric constant. Report-id must be aninteger in
the range 1 through 255; the defaultis one.

CLASS
Specifies the printclasstowhich the report will beassigned.

The CLASS or DESTINATION should be specified only for the firstline of each report.
If no class or destinationis specified, the default printclass assigned to the issuing
task's physical terminal during system generation will be used.

printer-class

Either the symbolic name of a user-defined field that contains the printclassor
the class itselfexpressed as a numeric constant.

Valid printclasses are 1l through 64; the defaultis 1.

Chapter 6: Data Manipulation Language Statements 317

WRITE PRINTER

DESTINATION
Specifies the destination to which the report will be routed.

The CLASS or DESTINATION should be specified only for the firstlineof each report.
If no class or destinationisspecified, the default printclass assigned to the issuing
task's physical terminal during system generation will be used.

printer-destination

Either the symbolic name of a user-defined field that contains the destination
or the destinationitselfenclosedin quotation marks.

The specified destination musthave been defined duringsystem generation.

ALL Specifies that the reportis to be printed on all of the printers belongingto
the specified destination. The report will be printed, one printer at a time, and
saved until ithas been printed on each of the printers associated with the
destination.

HOLD

Specifies that a queued report will be held without being printed. The specified
report will be held until a DCMT VARY REPORT report-name RELEASE command is
issuedatrun time.

KEEP

Specifies to keep the reportinthe printqueue after it has been printed. The report
canbe released for printingwitha DCMT VARY REPORT report-name RELEASE
command. Inthis way, the report can be printed several times. A KEPT report can
be deleted from the printqueue manually (usinga DCMT VARY REPORT
report-name DELETE command atruntime) or automatically (when the queue
retention period has been exceeded).

Examples

The followingexamples illustrate the use of the WRITE PRINTER statement.
Example 1

The following statement illustrates a request to associatethe data inthe specified
location with report 32 inthe printqueue andto printitbeginning on a new page.
Report 32 will printonthe firstterminal assigned to printclass 3 when the program
notifies CAIDMS that the reportis complete or when the task terminates.

WRITE PRINTER
NEWPAGE
FROM PASSGR-RPT TO END-PASSGR-RPT
REPORT ID 32
CLASS 3.

318 DML Reference Guide for COBOL

WRITE TERMINAL

Example 2

The following statement illustrates a request to printthree copies of the current
screen contents on a printer associated with destination A and to keep the contents
of the report inthe printqueue after ithas printed:

WRITE PRINTER
SCREEN CONTENTS

COPIES 3

DESTINATION ‘A’

KEEP.

Status Codes

After completion of the WRITE PRINTER function, the ERROR-STATUS fieldinthe
IDMS-DC communications block indicates the outcome of the operation:

Status code

Meaning

0000

The request has been serviced successfully.

4807

An /O error has occurred whileplacingthe record in the print queue.

4818

The current DC system definition contains no logical terminal -printer
associations.

4821

The specified printer destinationis undefined or is not a printer.

4831

The parameter listis invalid.

4832

The derived length of the specified printer output data areais zero or
negative.

4838

The specified 01-level LINKAGE SECTION entry has not been
allocated, as required. A GET STORAGE request for the specified
variablemustbe issued before the WRITE PRINTER statement.

4845

A WRITE PRINTER SCREEN CONTENTS request cannot be serviced
because the terminal associated with the issuingtaskisnota
3270-type device or is a remote 3270 device running under TCAM.

4846

A terminal I/O error has occurred.

WRITE TERMINAL

The WRITE TERMINAL statement requests a synchronous or asynchronous data transfer
from program variablestorageto the terminal buffer.

Chapter 6: Data Manipulation Language Statements 319

WRITE TERMINAL

Syntax
»»—— WRITE TERMINAL >
WAIT « :I
NOWAIT
g NEWPAGE L FREE STORAGE —I "
ERASE —
EAU]
ERASE ALL UNPROTECTED
»—— FROM output-data-location T TO ena’—output—data—location_—l— .
LENGTH output-data-length
Parameters

WAIT

Specifies that the write operation will besynchronous;the issuingtask will
automatically relinquish control to CA IDMS and wait for completion of the write
operation before continuing processing.

This is the default.
NOWAIT

Specifies that the write operation will beasynchronous;theissuingtask will
continue executing.

Note: If NOWAIT is specified, the program must issuea CHECK TERMINAL request
(described earlier in this chapter) before performing any other 1/0 operation.

NEWPAGE (ERASE)

Activates the page-eject (SYSINOUT devices) or erase-write (3270-type devices)
mechanismto erasethe contents of a screen. If NEWPAGE is not specified, the
WRITE TERMINAL request will write over rather than erase data displayed on the
terminal.

NEWPAGE and ERASE are synonyms and can be used interchangeably.
EAU (ERASE ALL UNPROTECTED)

3270-type devices only. Activates the erase-all-unprotected mechanism. Followinga
WRITE TERMINAL EAU function, only protected fields remain onthe terminal. If EAU
is specified, the FROM clause (described below) need not be specified.

EAU and ERASE ALL UNPROTECTED aresynonyms and canbe used interchangeably.
FREE STORAGE

Releases the output buffer associated with the data being written to the terminal.
The storage area being freed must have been acquired by a GET STORAGE
statement (described earlierin this chapter) or the GET STORAGE option of a
previouslyissued READ TERMINAL or WRITE THEN READ TERMINAL request. If FREE
STORAGE is not specified, the storage associated with the output buffer is not freed
until the issuingtask terminates.

320 DML Reference Guide for COBOL

WRITE TERMINAL

FROM

Specifies the 01-level WORKING-STORAGE SECTION or LINKAGE SECTION entry of
the output data stream.

output-data-location

The symbolic name of a user-defined field. If FREE STORAGE is specified,
output-data-location must be an 01-level LINKAGE SECTION entry.

TO

Indicates the end of the output data stream and is specified followingthe last
data-item entry in output-data-location.

end-output-data-location

The symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the output data stream.

LENGTH
Defines the length in bytes of the output data stream.
output-data-length

Either the symbolic name of a user-defined field that contains the length of the
data area or the length itself expressed as a numeric constant.

Example
The following statement illustrates an asynchronous basic moderequest to write data
to the terminal from the specified locationin programvariablestorage:
WRITE TERMINAL
NOWALT
FROM TERM-LINE LENGTH 72.
Status Codes

After completion of the WRITE TERMINAL function, the ERROR-STATUS fieldin the
IDMS-DC communications block indicates the outcome of the operation:

Status code Meaning
0000 The request has been serviced successfully
4525 The output operation has been interrupted; the user has pressed

ATTENTION or BREAK

4526 A logical error (for example, an invalid control character) has been
encountered inthe output data stream

4527 A permanent 1/0O error has occurred during processing

Chapter 6: Data Manipulation Language Statements 321

WRITE THEN READ TERMINAL

Status code Meaning

4528 The dial-up linefor the terminal has been disconnected

4531 The terminal request block (TRB) contains aninvalidfield,indicatinga
possibleerrorinthe program's parameters

4532 The derived length of the specified output data areais zero or
negative

4537 Storage for the output buffer cannot be freed because the specified

data areais defined in the WORKING-STORAGE SECTION rather than
inthe LINKAGE SECTION.

4539 The terminal associated with the issuingtaskis outofservice

WRITE THEN READ TERMINAL

The WRITE THEN READ TERMINAL statement requests a transfer of data from program
variablestorageto the terminal buffer and, when the user has completed entering data,
a transfer of that data backto program variablestorage.

Syntax
»»—— WRITE THEN READ TERMINAL >
WAIT <« :]
NOWATT
g NEWPAGE L FREE STORAGE — g
ERASE ——
EA
v m

ERASE ALL UNPROTECTED

»— FROM output-aata-location T TO end-output-data- Zocatfon_—_l—b
LENGTH output-data-length

v

v |
MODIFIED
BUFFER — L FROM POSITION screen-position —

v

L GeT sTorace -

»—— INTO 7nput-data-location T TO end-input-data-location . >
MAX LENGTH 7nput-data-max-length

M

" L RETURN LENGTH 7nto input-data-actual-1ength —

322 DML Reference Guide for COBOL

WRITE THEN READ TERMINAL

Parameters

WAIT

Specifies that the 1/0 operation will besynchronous;the issuingtask will
automatically relinquish control to CA IDMS and must waitfor completion of the |/O
operation before processingcan continue.

This is the default.
NOWAIT

Specifies that the 1/0 operation will beasynchronous;theissuingtaskwill continue
executing.

Note: If NOWAIT is specified, the program must issuea CHECK TERMINAL request
(described earlier in this chapter) before performing any other I/O operation.

NEWPAGE (ERASE)

Activates the page-eject (SYSINOUT devices) or erase-write (3270-type devices)
mechanismto erasethe contents of a screen. If NEWPAGE is not specified, the
WRITE TERMINAL request will write over rather than erase data displayed onthe
terminal.

NEWPAGE and ERASE are synonyms and can be used interchangeably.
EAU (ERASE ALL UNPROTECTED)

3270-type devices only. Activates the erase-all-unprotected mechanism. Followinga
WRITE TERMINAL EAU function, only protected fields remain on the terminal. If EAU
is specified, the FROM clause (described below) need not be specified.

EAU and ERASE ALL UNPROTECTED aresynonyms andcanbe used interchangeably.
FREE STORAGE

Releases the output buffer associated with the data being written to the terminal.
The storage area being freed must have been acquired by a GET STORAGE
statement (described earlierin this chapter) orthe GET STORAGE option of a
previouslyissued READ TERMINAL or WRITE THEN READ TERMINAL request. If FREE
STORAGE is not specified, the storage associated with the output buffer is not freed
until the issuingtask terminates.

Chapter 6: Data Manipulation Language Statements 323

WRITE THEN READ TERMINAL

FROM

Specifies the 01-level WORKING-STORAGE SECTION or LINKAGE SECTION entry of
the output data stream.

output-data-location

The symbolic name of a user-defined field. If FREE STORAGE has been specified,
output-data-location must be an 01-level LINKAGE SECTION entry.

TO
Indicates the end of the output data stream.
end-output-data-location

The symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the output data stream.

LENGTH
Defines the length in bytes of the output data stream.
output-data-length

Either the symbolic name of a user-defined field that contains the length of the
data stream or the length itself expressed as a numeric constant.

MODIFIED

3270-type devices only.Reads all modified fields in theterminal buffer into
program variablestorage.

BUFFER

3270-type devices only. Executes a READ BUFFER command that reads the entire
contents of the terminal buffer into the program variablestorage.

FROM POSITION
Defines the buffer address (screen position) atwhich the read will start.
screen-position

Either the symbolic name of a user-defined PICS9(8) COMP SYNC (fullword)
field or the address itselfenclosed in quotation marks.

GET STORAGE

Synchronous requests only. Acquires an inputbuffer for the data being readinto
the program; CA IDMS allocates therequired storage when the read operationis
complete.

324 DML Reference Guide for COBOL

WRITE THEN READ TERMINAL

INTO

Specifies the 01-level WORKING-STORAGE SECTION or LINKAGE SECTION entry of
the data area reserved for the inputdata stream.

input-data-location
The symbolic name of a user-defined field.

If GET STORAGE is specified, the data area reserved for the input data stream
must be anunallocated 01-level LINKAGE SECTION entry. If GET STORAGE is not
specified, the data area must be a WORKING-STORAGE SECTION or previously
allocated LINKAGE SECTION entry.

TO
Indicates the end of the data area reserved for the inputdata stream.
end-input-data-location

The symbolic name of either a user-defined dummy byte field or a field that
contains a data item not associated with the data area reserved for the input
data stream.

MAX LENGTH
Defines the length, in bytes, of the data area reserved for the inputdata stream.
input-data-max-length

Either the symbolic name of a user-defined field that contains the length of the
data stream or the length itself expressed as a numeric constant.

Ifthe inputdata streamis largerthanthe data areareserved inthe
WORKING-STORAGE SECTION or LINKAGE SECTION, the data stream is
truncated to fitthe availablespace.

RETURN LENGTH into

Indicates the location to which CA IDMS will return the actual length of the input
data stream.

input-data-actual-length

The symbolic name of a user-defined field. If the data stream has been
truncated, input-data-actual-length contains the original length before
truncation.

Chapter 6: Data Manipulation Language Statements 325

WRITE THEN READ TERMINAL

Example

The following statement illustrates a basicmode request to write data from the
program (OUTPUT-LINE) to the terminal, read the data from the terminal to the
specifiedlocation (INPUT-LINE) inthe program, and return the actual length of the input
data stream (LINE-LENGTH) to variablestorage:

WRITE THEN READ TERMINAL
WAIT
FROM OUTPUT-LINE TO END-INPUT-LINE
INTO INPUT-LINE MAX LENGTH 80
RETURN LENGTH INTO LINE-LENGTH.

Status Codes

After completion of the WRITE THEN READ TERMINAL function, the ERROR-STATUS field
inthe IDMS-DC communications blockindicates the outcome of the operation:

Status code Meaning
0000 The request has been serviced successfully
4519 The input area specified for the return of data is too small;the

returned data has been truncated to fit the availablespace

4525 The output operation has been interrupted; the terminal operator
has pressed ATTENTION or BREAK

4526 A logical error (for example, an invalid control character) has been
encountered inthe output data stream

4527 A permanent 1/O error has occurred

4528 The dial-up linefor the terminal has been disconnected

4531 The terminal request block (TRB) contains aninvalidfield,indicatinga
possibleerrorinthe program's parameters .

4532 The derived length of the specified |/O data area is zero or negative.

4535 Storage for the inputbuffer cannotbe acquired becausethe specified

01-level LINKAGE SECTION entry has been allocated

4537 A storagearea cannotbe acquired or freed becausethe specified
data areais defined inthe WORKING-STORAGE SECTION rather than
inthe LINKAGE SECTION

4538 The specified 01-level LINKAGE SECTION entry has not been allocated
andthe GET STORAGE option has not been specified

4539 The terminal device associated with the issuingtaskis outofservice

326 DML Reference Guide for COBOL

Logical-Record Clauses

Logical-Record Clauses

WHERE

Syntax

Logical-record clauses areused with any of the four DML statements that access logical
records (thatis, OBTAIN, MODIFY, STORE, or ERASE). The logical-record clauses areas
follows:

WHERE specifies criteriaused to selectand/or criteria used to limitthe selection of
logical-record occurrences.

ON tests for a specific path status returned to indicatethe resultof a logical-record
DML statement.

The WHERE clausehas two major functions:

To direct the program to a path, predefined inthe subschema by the DBA and
transparentto the application program.This allows you to access the database
without issuing specificinstructions for navigating the database.

You need not be concerned about path selection; LRF automatically picks the most
appropriate path to efficiently servicethe request.

To specify selection criteria to be applied to a logical record. This allows the
program to specify attributes of the desired logicalrecord, thereby reducingthe
need for the program to inspect multiplelogical records toisolatethe logical record
of interest.

The WHERE clauseis issuedinthe form of a boolean expressionthat consists of
comparisons and keywords connected by boolean operators (AND, OR, and NOT). The
format of the WHERE clausefollows COBOLsyntax rules (thatis,operands or operators
are separated by a blank).

»»—— WHERE T T [dba-designated-keyword
NOT comparison

v

L¢—|: /-\ND_—I—m—E dba-designated-keyword :,_I—'
OR NOT comparison

Chapter 6: Data Manipulation Language Statements 327

Logical-Record Clauses

Expansion of comparison

v

'logical-record-field-name'

idd-defined-variable-field-name I_
v— OF group-id
logical-record-field-name
I_"—_|J L OF LR i
— OF group-id

arithmetic-expression

CONTAINS
MATCHES —
A
s
>

LT T
<

GE
LE

]

(MTAATAT

v

Parameters

dba-designated-keyword

Specifies a DBA-designated keyword to be appliedto the logicalrecord thatis the
object of the command. Dba-designated-keyword is a keyword specified by the DBA
thatis applicabletothe logicalrecord namedin the command; itcan be no longer
than 32 characters. The keyword represents an operation to be performed at the
path level and serves only to route the logical-record requestto the appropriate,
predetermined path.

A path must existto servicearequest thatissues dba-designated-keyword. If no
such path exists, the precompiler flags this condition by issuingan error message.

comparison

Specifies a comparison operation to be performed, usingthe indicated operands
andoperators. It alsoserves to direct the logical-record requestto a path.

Individual comparisonsand keywords are connected by the boolean operators AND,
OR, and NOT. Parentheses can be used to clarify a multiple-comparison boolean
expression or to override the precedence of operators.

328 DML Reference Guide for COBOL

Logical-Record Clauses

Parameters

logical-record-field-name

Specifies a data field that participates in the named logical record.

CONTAINS/MATCHES/EQ/NE/GT/LT/GE/LE

Specifies the comparison operator:

'literal'

CONTAINS— Is true if the value of the right operand occurs in the value of the
|eft operand. Both operands included with the CONTAINS operator must be
alphanumeric values.

MATCHES— s true ifeach characterinthe left operand matches a
corresponding characterin the rightoperand (the mask). When MATCHES is
specified, LRF compares the left operand with the mask, one character ata
time, moving from left to right. The result of the match is either true or false:
the resultis trueifthe end of the mask is reached before encountering a
characterinthe left operand that does not match a correspondingcharacterin
the mask; the resultis falseif LRF encounters a character inthe left operand
that does not match a mask character.

Three special characters canbeused inthe maskto perform pattern matching:
@, which matches anyalphabetic character; #, which matches any numeric
character;and *, which matches any alphabetic or numeric character. Both the
left operand and the mask must be alphanumeric values and elementary
elements.

- EQ— Istrueifthe value of the left operand is equal to the valueof the
rightoperand.

— NE— Istrue ifthe value of the left operandis not equal to the value of the
rightoperand.

- GT— Istrue ifthe valueof the left operand is greater than the value of the
rightoperand.

— LT— Istrue ifthe valueof the left operandis less thanthe value of the
rightoperand.

- GE— Istrueif the valueof the left operand is greater than or equal to the
value of the right operand.

— LE— Istrue ifthe valueof the left operandis less than or equal to the
value of the right operand.

Any alphanumeric or numeric literal. Alphanumeric literals mustbe enclosedin
quotation marks.

idd-defined-variable-field-na me

The name of a program variablestoragefield predefined in the data dictionary.

Chapter 6: Data Manipulation Language Statements 329

Logical-Record Clauses

OF

Uniquelyidentifies the named variablefield.

This qualifieris required if idd-defined-variable-field-name is not unique within
program variablestorage.

A maximum of 15 different OF group-id qualifierscan bespecified to identify as
many as 15 levels of group elements.

group-id The name of the group element that contains the field.

logical-record-field-name

OF

Specifies a data field that participates in the named logical record.

Uniquelyidentifies the named logical-record field.

This qualifieris required if logical-record-field-name is not unique withinall
subschema records, including those not part of the logicalrecord,and includingall
non-CA IDMS databaserecords copiedinto the program.

A maximum of 15 different OF group-id qualifierscan bespecified to identify as
many as 15 levels of group elements.

group-id The name of the group element or databaserecord that contains the
field.

OF LR

Specifies that the value of the named field at the time the request is issued will be
used throughout processingof the request.

Ifthe valueof the field changes duringrequest processing, LRF will continueto use
the original value. Ifyou do not specify OF LR, and the value of the field changes
duringrequest processing,the new field valueinvariablestoragewill beusedif the
fieldis required for further processing.

arithmetic-expression

Specifies an arithmetic expression designated as a unary minus (-), unary plus (+),
simplearithmetic operation, or compound arithmetic operation. Arithmetic
operators permitted inanarithmetic expressionareadd (+), subtract(-), multiply
(*), and divide (/). Operands can be literals, variable-storagefields, and
logical-record fields as described above.

Ifthe WHERE clause compares a CALC-key field to a literal, the literal'sformatmust
correspond exactly to the CALC-key definition.Enclosethe literal in quotation marks if
the CALC key has a usage of DISPLAY and use leading zeros if the literal consists of fewer
characters thanthe field's picture. For example, if the calc-key-field CALC key is defined
as PIC9(3) USAGE DISPLAY, code the WHERE clauseas follows:

WHERE calc-key-field EQ '054'

330 DML Reference Guide for COBOL

Logical-Record Clauses

Examples

The WHERE clausecan containas many comparisonsand keywords as required to
specify the criteria to be applied to the logical record. If necessary, the value of the SIZE
parameter on the COPY IDMS SUBSCHEMA-LR-CTRL statement canbeincreasedto
accommodate very largeand complex WHERE clausespecifications. Processing
efficiencyis not affected by the composition of the WHERE clause (other than the logical
order of the operators, as noted below), since LRF automatically uses the most efficient
path to process the logical-record request.

Operators ina WHERE clauseareevaluatedinthe followingorder:

1. Comparisons enclosedin parentheses

2. Arithmetic, comparison,and boolean operators by order of precedence, from
highest to lowest:

a. Unaryplusorminusinanarithmetic expression

b. Multiplication ordivisioninanarithmetic expression
c. Additionor subtractioninanarithmetic expression
d. MATCHES or CONTAINS comparison operators

e. EQ, NE, GT, LT, GE, LE comparison operators

f. NOT boolean operator

g. AND booleanoperator

h. ORbooleanoperator

3. From left to right within operators of equal precedence

The following examples illustrate the use of the WHERE clause.
Example 1

The followinglogical-record requestuses a DBA-designated keyword
(PROGRAMMER-ANALYSTS) to directLRF to a DBA-defined access path:

OBTAIN NEXT BMP-JOB-LR
WHERE PROGRAMMER-ANALYSTS.

Example 2

The followinglogical-record requestuses boolean selection criteria to specify the
desired occurrence of EMP-JOB-LR:

OBTAIN EMP-J0B-LR
WHERE OFFICE-CODE-0450 EQ '001'.

Chapter 6: Data Manipulation Language Statements 331

Logical-Record Clauses

ON Clause

The ON clausetests for a specific path status returned to indicatethe resultof the
statement. If LRF returns the specified path status, the imperative statement includedin
the ON clauseis executed; if the specified path status is notreturned, the imperative
statement includedinthe ON clauseisignored and IDMS-STATUS is performed.

Ifthe DML statement with the ON clauseis the object of a PERFORM, then the user
should avoid scope problems by usingthe THROUGH option of the PERFORM statement.

A logical-record DMLstatement canincludean ON clauseonlyifthe AUTOSTATUS
protocol is in effect for the program. AUTOSTATUS automaticallyinvokes an
error-checking routine after every DML statement except IF. For more details, see Error
Detection (see page 59).

The ON clausetests for a standard or DBA-defined path status, which isinthe form of a
1- through 16-character unquoted string. Path statuses are issued during execution of
the path selected to servicethe request. The standard path statuses are:

m LR-FOUND is returned when the logical-record requesthas been successfully
executed. This status can be returned as the result of any of the four LRF DML
statements. When LR-FOUND is returned, the ERROR-STATUS field of the IDMS
communications block contains 0000.

m LR-NOT-FOUND is returned when the logicalrecord specified cannotbe found,
either because no suchrecord exists or becauseall such occurrences havealready
been retrieved. This status can be returned as the resultof any of the four LRF DML
statements, provided that the path to which LRF is directed includes retrieval logic.
When LR-NOT-FOUND is returned, the ERROR-STATUS field of the IDMS
communications block contains 0000.

Note: A successful STORE canreturn LR-NOT-FOUND if its WHERE clausereferences
alogical-record field and the STORE path performs no OBTAINs.

m LR-ERROR isreturned when alogical-record requestisissuedincorrectly or when an
error occurs inthe processing of the path selected to servicethe request. When
LR-ERROR is returned, the type of status code returned to the programinthe
ERROR-STATUS field of the IDMS communications block differs accordingto the
type of error:

m When the error occurs in the logical-record request, the ERROR-STATUS field
contains a status codeissued by LRF (major code of 20).

m When anerror occurs in the logical-record path processing, the ERROR-STATUS
field contains a status codeissued by the DBMS (major code from 00 to 19). For
more information aboutstatus codes, see Chapter 4: (see page 33).

332 DML Reference Guide for COBOL

Logical-Record Clauses

Syntax

Parameters

Examples

When accessing ASF-defined data tables, you should always check for all of the
following path statuses:

m INVALID-DATA is returned when the data violates the definition-time selection
criteria (for example, WHERE STATE EQ 'MA' and the program tries to replacethe
state with 'NY'). When INVALID-DATA is returned, the ERROR-STATUS fieldinthe
IDMS communications blockis setto 0000.

m DEFN-MISSING is returned when the record definition cannotbe found. When
DEFN-MISSING is returned, the ERROR-STATUS fieldinthe IDMS communications
blockis setto 0000.

B OOAK-MISSING is returned when a one-of-a-kind record cannot be found. When
OOAK-MISSING is returned, the ERROR-STATUS fieldinthe IDMS communications
blockis setto 0000.

m SYNC-ERROR is returned when the time stamp in the catalogand the table
definition do not match. When SYNC-ERROR is returned, the ERROR-STATUS fieldin
the IDMS communications blockis setto 0000. This applies to ASF tables only.

The return of any of these statuses indicates a fatal error;for more information, consult
your DBA.

v

»—— ON path-status imperative-statement

ON parameter

Tests for a path status returned as the resultof the logical-record requestissued by
the program.

path-status A 1 through 16 character alphanumericvalue.

imperative-statement Specifies the program actionto be taken ifthe indicated
path status results fromthe logical-record request.

The following statements usethe path status LR-NOT-FOUND in two different ways. If
LR-NOT-FOUND occurs followingthe initial statement, a LR-MISSING message is output;
if LR-NOT-FOUND occurs insubsequent statements, an END-OF-LR message is output.

OBTAIN-FIRST-LR.
OBTAIN FIRST EMP-JOB-LR
WHERE OFFICE-CODE-450 EQ OFFICE-CODE-IN
ON LR-NOT-FOUND
GO TO LR-MISSING.

Chapter 6: Data Manipulation Language Statements 333

Logical-Record Clauses

OBTAIN-REST-LR.
OBTAIN NEXT EMP-JOB-LR
WHERE OFFICE-CODE-0450 EQ OFFICE-CODE-IN
ON LR-NOT-FOUND
GO TO END-OF-LR.

GO TO OBTAIN-REST-LR.
Status Codes
The following codes are returned to the ERROR-STATUS fieldinthe IDMS or IDMS-DC

communications block when an LR-ERROR path status is returned to the LR-STATUS field
inthe LRC block:

Status code Meaning

2001 The requested logical record was notfound in the subschema. (The
path DML statement, EVALUATE, returns 0000iftrue, and 2001 if
false.)

2008 The named record is notinthe subschema, or the specified request is

not permitted for the named record.

2010 The subschema prohibits accesstological records.

2018 A path command has attempted to access a databaserecordthat has
not been bound.

2040 The WHERE clauseinan OBTAIN NEXT command directed LRF to a
different processing path thandid the WHERE clauseinthe preceding
OBTAIN command for the same logicalrecord.

2041 The request's WHERE clausecannotbe matched to a path inthe
subschema.
2042 The logical-record path for the request specifies return of the

LR-ERROR status.

2043 Bad orinconsistentdata was encountered inthe logical-record buffer
duringevaluation of the request's WHERE clause.

2044 The request's WHERE clausedoes not include data required by the
logical-record path.

2045 A subscriptvalueina WHERE clauseis either less than zero or greater
than its maximum allowed value.

334 DML Reference Guide for COBOL

Logical-Record Clauses

Status code

Meaning

2046 A programcheck has revealed an arithmetic exception (for example,
overflow, underflow, significance, divide) duringevaluationofa
WHERE clause.

2063 The request's WHERE clausecontains a keyword that exceeds the
16-character maximum.

2064 The path command has attempted to access a CALC data item that
has not been defined properlyinthe subschema.

2072 The request's WHERE clauseis too long to be evaluatedin the

availableworkarea.

Chapter 6: Data Manipulation Language Statements 335

Appendix A: DML Precompile, COBOL
Compile, and Link-Edit JCL

This appendix contains the JCL used to prepare COBOL source code that contains DML
statements for execution. Link-edit considerationsarealso discussed. Samples of z/0S,
z/VSE, and z/VM JCL areincluded.

This section contains the followingtopics:

Compilinga COBOL Program (see page 337)

z/0S JCL (see page 339)

z/VSE JCL (see page 342)

CMS Commands (see page 352)

Link-Edit Considerations (see page 355)

Passing Parameters to the Precompiler (see page 355)

Compiling a COBOL Program

To compilea COBOL programunder the DML precompiler:
1. Execute the program IDMSDMLC

2. Execute the COBOL compiler

3. Llinkedit

Input to IDMSDMLC consists of source codewritten in COBOL/DML, protocol/control
information,and data dictionaryrecord descriptions. Outputfrom IDMSDMLC is as
follows:

®m AsourceCOBOL program

m A DML sourcelistinganddiagnostics

Input to the COBOL compiler consists of the source program produced by IDMSDMLC.
Output is as follows:

m An object program

m COBOL listings

Input to the linkage editor consists of the object program produced by the COBOL
compiler.Output is as follows:

m Aloadmodule (phase)

m Alink-editmap

Appendix A: DML Precompile, COBOL Compile, and Link-Edit JCL 337

Compiling aCOBOL Program

The followingfigureillustrates the steps involved in compilinga COBOL program.

COBOL SOURCE

WITH DML —
STATEMENTS
i STEP 1
DATA IDMSDMLGC - DML
DICTICNARY COMPILER LISTING

COBOGOL
SOURCE

COBOL SOURCE
CCOBOL LISTINGS AND
COMPILER DIAGNOSTICS

OBJECT

PROGRAM

LOAD LINKAGE
LIBRARY EDITOR

LOAD
MODULE

338 DML Reference Guide for COBOL

z/0S JCL

z/0S JCL

Sample JCL for z/OS operating systems is shown below, followed by a description of
statements that need tailoringfor site-specific conditions.

//***

//** PRECOMPILE COBOL PROGRAM ok

[[FFFHAFAAAAAAAFAAFFAAK KKK FFFFF KKK KKKIAAAAAAAAAIAAAAAAAAAAFAAAAK

//precomp EXEC PGM=IDMSDMLC,REGION=4096K,

// PARM="'precompiler-options'

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.custom.loadlib,DISP=SHR
// DD DSN=idms. cagjload,DISP=SHR

//sysctl DD DSN=idms.sysctl,DISP=SHR
//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR
//5YS001 DD UNIT=sysda,SPACE=(TRK, (10,10)),

// DCB=(RECFM=VB, LRECL=133, BLKSIZE=1334,DSORG=PS)
//5YS002 DD UNIT=sysda,SPACE=(TRK, (10,10)),

// DCB=(RECFM=VB, LRECL=133, BLKSIZE=1334,DSORG=PS)
//5YS003 DD UNIT=sysda,SPACE=(TRK, (10,10)),

// DCB=(RECFM=VB, LRECL=133, BLKSIZE=1334,DSORG=PS)
//SYSPCH DD DSN=&SSOURCE.,DISP=(NEW,PASS),

// UNIT=sysda, SPACE=(TRK, (10,5) ,RLSE),

// DCB=(RECFM=FB, LRECL=80,BLKSIZE=3120)

//SYSLST DD SYSOUT=A
//SYSIDMS DD *
DMCL=dmc1-name
sysidms-input-parms

/*

//SYSIPT DD *

COBOL DML source statements

/*
Rk ok kR kol ok Rkl kR ko sk kR ok R o
//** COMPILE COBOL PROGRAM *x

//***

//cblcmp EXEC PGM=igycrctl,REGION=4096K,
// PARM='compiler-options'

//STEPLIB DD DSN=cobol.loadlib,DISP=SHR
//SYSUT1 DD UNIT=sysda,SPACE=(TRK, (10,5))
//SYSUT2 DD UNIT=sysda,SPACE=(TRK, (10,5))
//SYSUT3 DD UNIT=sysda,SPACE=(TRK, (10,5))
//SYSUT4 DD UNIT=sysda,SPACE=(TRK, (10,5))
//SYSUT5 DD UNIT=sysda,SPACE=(TRK, (10,5))
//SYSUT6 DD UNIT=sysda,SPACE=(TRK, (10,5))
//SYSUT7 DD UNIT=sysda,SPACE=(TRK, (10,5))

Appendix A: DML Precompile, COBOL Compile, and Link-Edit JCL 339

z/0S JCL

//syslin DD DSN=&SOBJECT.,DISP=(NEW,PASS),
// UNIT=sysda, SPACE=(TRK, (10,5) ,RLSE),
// DCB=(RECFM=FB, LRECL=80,BLKSIZE=3120)
//SYSPRINT DD SYSOUT=A

//SYSIN DD DSN=&&SOWRCE.,DISP=(OLD,DELETE)

//***

//** LINK PROGRAM MODULE *ok
//***
//link EXEC PGM=HEWL,REGION=1024K, PARM='LET,LIST,MAP, XREF'
//SYSUTL DD UNIT=sysda,SPACE=(TRK, (20,5))

//SYSLIB DD DSN=cobol.linklib,DISP=SHR

//vanilla DD DSN=idms.cagjload,DISP=SHR

//custom DD DSN=idms.custom.loadlib,DISP=SHR

//SYSLMOD DD DSN=idms.custom.loadlib,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSLIN DD DSN=&SOBJECT.,DISP=(OLD,DELETE)

// DD *

INCLUDE vanilla(IDMS) required, except omit for CICS

INCLUDE vanilla(IDMSCANC) required for BATCH and DC-BATCH if using IDMS-STATUS module
INCLUDE custom(IDMSOPTI) optional; BATCH and DC-BATCH only
INCLUDE custom(idmscint) required for CICS, otherwise omit

ENTRY userentry

NAME userprog(R)

/*

//*

Note: If usingthe IDMSOPTI module, you must assembleand link edit itbefore usingthe
JCL above.

The link of CICS application programs thatuse IDMSCINT must incorporateJCL to resolve
external reference DFHEI1. The particularJCLdepends on the nature and language of
your application. See the appropriate|BM CICS application programming
documentation for details.

precompiler-options Options that control various aspects of the precompile
process.See Passing Parameters to the Precompiler (see
page 355) for a complete description of the options.

idms.dba.loadlib Data set name of the load library containingthe DMCL and
databasename table

idms.cagjload Data set name of the load library containing thevanilla CA
IDMS executable modules

idms.custom.loadlib Data set name of the load library containing the customized
CA IDMS executable modules

sysctl DDname of SYSCTL file

340 DML Reference Guide for COBOL

z/0S JCL

idms.sysctl

Data set name of SYSCTL file

dcmsg DDname of the system message (DDLDCMSG) area
idms.sysmsg.ddldcmsg Data set name of the system message (DDLDCMSG) area
sysda Symbolic device name for work files

sysidms-input-parms

Parameters that specify physical requirements of the
environment, runtime directives, or operating
system-dependent fileinformation.Fora complete
description of all SYSIDMS parameters and syntax, see CA
IDMS Common Facilities Guide. Also see Passing Parameters
to the Precompiler (see page 355) for a discussion of
parameters that can be passed usingthe PARM=SYSIDMS
input statement.

dmcl-name Specifies the name of the DMCL that the precompiler should
use to access the message dictionary
igycrct! Program name of the COBOL compiler

compiler-options

Parameters that specify options that are appropriate to your
version of the COBOL compiler.See Chapter 2: (see page 17),
VS COBOL Il Support (see page 503), and Considerations for
IBM Language Environment (see page 507)for restrictions
and recommendations specific to CAIDMS access. Also see
the IBM documentation for your compiler.

cobol.loadlib Load library thatcontains COBOLcompiler

syslin DDname of the object data set output by the COBOL compiler

cobol.linklib Load library thatcontains COBOLsupportmodules

user.loadlib User applicationload library

idmscint Load module created by compiling IDMSCINT or IDMSCINL.
For more information, see the CA IDMS System Operations
Guide.

userentry Name of program entry point

userprog Name of programinloadlibrary

Note: Depending on the central version operating environment, an IDMSOPTI module
link edited with IDMSDMLC can be used in placeof or inaddition tothe SYSCTL file.

Appendix A: DML Precompile, COBOL Compile, and Link-Edit JCL 341

z/VSE JCL

Local Mode JCL

To execute the compilerinlocal mode, remove the SYSCTL statement from the
precompilestep andreplaceit with the following:

//dictdb DD DSN=idms.appldict.ddldml,DISP=SHR
//sysjrnl DD DSN=idms.tapejrnl,DISP=(NEW,CATLG) ,UNIT=tape

dictdb DDname of the application dictionary DDLDML area

idms.appldict.ddldml Data set name of application dictionary

sysjrnl DDname of the tape journal file
idms.tapejrnl Data set name of the tapejournalfile
tape Symbolic device name of the tape journal file

z/VSE JCL

IDMSDMLC ('VSE')

/**

/** PRECOMPILE PROGRAM ok

/**

* stepl
// EXEC PROC=IDMSLBLS
// UPSI b if specified in IDMSOPTI module

// DLBL sysctl, 'idms.sysctl',0

// EXTENT SYS000,nnnnnn,,,ssss,ll11
// ASSGN SYS000,DISK,VOL=nnnnnn,SHR
// DLBL idmspch,'temp.dmlc',0

// EXTENT SYS020,nnnnnn,,,ssss,ll11
// ASSGN SYS020,DISK,VOL=nnnnnn,SHR
// DLBL SYS001, 'wkfilel',0

// EXTENT SYS001,nnnnnn,,,ssss,ll11
// ASSGN SYS001,DISK,VOL=nnnnnn,SHR
// DLBL SYS002, 'wkfile2',0

// EXTENT SYS002,nnnnnn,,,ssss,ll11
// ASSGN SYS002,DISK,VOL=nnnnnn,SHR
// DLBL SYS003, 'wkfile3',0

// EXTENT SYS003,nnnnnn,,,ssss,ll11
// ASSGN SYS003,DISK,VOL=nnnnnn,SHR
// EXEC IDMSDMLC,PARVM='COBOL=2'

342 DML Reference Guide for COBOL

z/VSE JCL

Input SYSIDMS parameters here, as required

/*

COBOL/DML source statements

JHHFHAAAAAAAAAAFAAFFAFAK KA FFFFF AR KAKIAAAAAAAAAIAAAAAAAAAAAAAFAK

/** COMPILE PROGRAM *x
/**
/*
* step2
// DLBL IJSYSIN, 'temp.dmlc',0
// EXTENT SYSIPT,nnnnnn
ASSGN SYSIPT,DISK,VOL=nnnnnn,SHR
// OPTION CATAL,NODECK,NOSYM
PHASE userprog,*
// EXEC IGYCRCTL

/**

/** LINK PROGRAM MODULE *ok
/RRRlkorlomkiolkorsokopskokopkoookorskokoRklookorsokoRskokopkrsokoskkookrcokkkkofktofok ko kok
* step3

CLOSE SYSIPT,SYSRDR
ENTRY (dmlc)
// EXEC LNKEDT

/*

IDMSLBLS Name of the procedure provided atinstallation thatcontains
the filedefinitions for CA IDMS dictionaries and databases.
Note: For complete listing of IDMSLBLS, see IDMSLBLS
Procedure (see page 345).

b appropriate UPSI switch, 1 through 8 characters, if specified
inthe IDMSOPTI module

sysctl filename of SYSCTL file

idms.sysctl file-1D of SYSCTL file

idmspch filename of data set output from the IDMSDMLC precompiler

temp.dmlc file 1D of data set output from the IDMSDMLC precompiler

SYS020 logical unitassignment of the DMLC output

nnnnnn volume serial identifier of appropriatedisk volume

$SSS startingtrack (CKD) or block (FBA) of disk extent

11 number of tracks (CKD) or blocks (FBA) of disk extent

userprog name of program inthe library

Appendix A: DML Precompile, COBOL Compile, and Link-Edit JCL 343

z/VSE JCL

precompiler-options options that control various aspects of the precompile
process.See Passing Parameters tothe Precompiler (see
page 355) for a complete description of the options.

dmlc name of COBOL/DML module

You canuseSYSIDMS parameters to specifyinformation aboutyour runtime
environment.

Note: For more information aboutSYSIDMS parameters, see the CA IDMS Common
Facilities Guide.

Local Mode

To execute the IDMSDMLC precompilerinlocal mode:

m Remove the UPSI specification, if present, or remove the JCL for the SYSCTL file
from the precompiler step.

m Add the followingstatements instep 1 (the IDMSDMLC step):

// TLBL sysjrnl, 'idms.tapejrnl',,nnnnnn,,f
// ASSGN SYS009, TAPE,VOL=nnnnnn

idms.tapejrn/ file D of tape journal file
f filenumber of tape journal file
sys009 logical unitassignmentfor journal file

INCLUDE statements should be provided inlocal modeor central version JCL as follows:

INCLUDE IDMS IDMS interface
INCLUDE IDMSOPTI IDMSOPTI module
INCLUDE IDMSCANC Local mode abort entry point

omit IDMSCANC if TP application)

INCLUDE IDMSCINT For CICS only, replaces INCLUDE IDMS
INCLUDE IDMSOPTI can be omitted for programs executed inlocal mode.

Note: COBOL overlay programs must resolvereferences to IDMS within their root
segment; caremust be taken to prevent the overlaying of the IDMS interface. Use
of IDMS and IDMSLDPT is recommended for these programs.

344 DML Reference Guide for COBOL

z/VSE JCL

IDMSLBLS Procedure

IDMSLBLS is a procedure provided duringan CA IDMS z/VSE installation. It contains file
definitions for the CA IDMS components listed below. These components are provided
duringinstallation:

m Dictionaries
m Sample databases
m Diskjournal files

m SYSIDMS file

Tailor the IDMSLBLS procedure to reflect the filenames and definitions in useatyour
siteand includethis procedurein z/VSE JCL job streams.

The samplez/VSE JCL provided in this document includes the IDMSLBLS procedure.
Therefore, individualfile definitions for CAIDMS dictionaries, sampledatabases, disk
journal files,and SYSIDMS files arenot included inthe samplelJCL.

IDMSLBLS procedure (z/VSE)

e LIBDEFS --------

// LIBDEF *,SEARCH=idmslib.sublib

// LIBDEF *,CATALOG=user.sublib

A e LR LABELS --------mmmmmmmi e
// DLBL 1idmslib,'idms. library',1999/365

// EXTENT ,nnnnnn,,,ssss,1500

// DLBL dccat, 'idms.system.dccat',61999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,3l

// ASSGN SYSnnn,DISK,VOL=nnnnnn, SHR

// DLBL dccatl, 'idms.system.dccatlod',1999/365,DA
// EXTENT SYSnnn,nnnnnn, ,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dccatx, 'idms.system.dccatx',h1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,11

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcdml,'idms.system.ddldnl',61999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,101

// ASSGN SYSnnn,DISK,VOL=nnnnnn, SHR

// DLBL dclod, 'idms.system.ddldclod',b1999/365,DA
// EXTENT SYSnnn,nnnnmn,,,ssss,21l

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dclog, 'idms.system.ddldclog',h1999/365,DA
// EXTENT SYSnnn,nnnnnn, ,,ssss,401

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcrun, 'idms.system.ddldcrun',1999/365,DA

Appendix A: DML Precompile, COBOL Compile, and Link-Edit JCL 345

z/VSE JCL

// EXTENT SYSnnn,nnnnnn, ,,ssss,68

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcscr, 'idms.system.ddldcscr',1999/365,DA

// EXTENT SYSnnn,nnnnnn, ,,ssss,135

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcmsg, 'idms.sysmsg.ddldcmsg',h1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,201

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dclscr,'idms.sysloc.ddlocscr',1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn, SHR

// DLBL dirldb,'idms.sysdirl.ddldml',61999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,201

// ASSGN SYSnnn,DISK,VOL=nnnnnn, SHR

// DLBL dirllod, 'idms.sysdirl.addldclod',1999/365,DA
// EXTENT SYSnnn,nnnnnn, ,,ssss,2

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL empdemo, ' idms.empdemol ', 1999/365,DA

// EXTENT SYSnnn,nnnnmn,,,ssss,11

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL insdemo,'idms.insdemol',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn, SHR

// DLBL orgdemo, 'idms.orgdemol',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL empldem, 'idms.sqldemo.empldemo',1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,11

// ASSGN SYSnnn,DISK,VOL=nnnnnn, SHR

// DLBL infodem,'idms.sqldemo.infodemo',1999/365,DA
// EXTENT SYSnnn,nnnnnn, ,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL projdem,'idms.projseg.projdemo',1999/365,DA
// EXTENT SYSnnn,nnnnnn, ,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL 1indxdem,'idms.sqldemo.indxdemo',1999/365,DA
// EXTENT SYSnnn,nnnnnn, ,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sysctl,'idms.sysctl',1999/365,SD

// EXTENT SYSnnn,nnnnmn,,,ssss,2

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL secdd,'idms.sysuser.ddlsec',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,26

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dictdb, 'idms.appldict.adldml',1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,51

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dloddb,'idms.appldict.adldclod',1999/365,DA

346 DML Reference Guide for COBOL

z/VSE JCL

// EXTENT SYSnnn,nnnnnn,,,ssss,51

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sqldd,'idms.syssql.ddlcat',61999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,101

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sqllod, 'idms.syssql.ddlcatl',61999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,51

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sqlxdd, 'idms.syssql.ddlcatx',1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,Ssss,26

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asfdnl,'idms.asfdict.ddldml',b1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,201

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asflod, 'idms.asfdict.asflod',61999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,401

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asfdata, 'idms.asfdict.asfdata',1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,201

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL ASFDEFN, 'idms.asfdict.asfdefn',1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,101

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL jljml,'idms.j1jrnl"',1999/365,DA

// EXTENT SYSnnn,nnnnnn, ,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j2jml, 'idms.j2jrnl"',1999/365,DA

// EXTENT SYSnnn,nnnnmn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j3jml, 'idms.j3jrnl"',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL SYSIDMS, '#SYSIPT',0,SD

/+

/*

idmslib.sublib name of the sublibrary withinthelibrary containing CAIDMS modules
user.sublib name of the sublibrary withinthelibrary containing user modules
idmslib filename of the file containing CAIDMS modules

idms.library file-ID associated with the file containing CAIDMS modules

SYSnnn logical unitofthe volume for which the extent is effective

nnnnnn volume serial identifier of appropriatedisk volume

SSSS startingtrack (CKD) or block (FBA) of disk extent

dccat filename of the system dictionary catalog (DDLCAT) area

Appendix A: DML Precompile, COBOL Compile, and Link-Edit JCL 347

z/VSE JCL

idms.system.dccat file-1D of the system dictionary catalog (DDLCAT) area

dccatl filename of the system dictionary catalogload (DDLCATLOD) area

idms.system.dccatlod file-1D of the system dictionary catalogload (DDLCATLOD) area

dccatx filename of the system dictionary catalogindex (DDLCATX) area

idms.system.dccatx

file-1D of the system dictionary catalogindex (DDLCATX) area

dcdml filename of the system dictionary definition (DDLDML) area
idms.system.ddldml| file-ID of the system dictionary definition (DDLDML) area

dclod filename of the system dictionary definition load (DDLDCLOD) area
idms.system.ddldclod file-1D of the system dictionary definition load (DDLDCLOD) area
dclog filename of the system logarea (DDLDCLOG) area
idms.system.ddldclog file-ID of the system log (DDLDCLOG) area

dcrun filename of the system queue (DDLDCRUN) area

idms.system.ddldcrun

file-1D of the system queue (DDLDCRUN) area

dcscr

filename of the system scratch (DDLDCSCR) area

idms.system.ddldcscr

file-ID of the system scratch (DDLDCSCR) area

dcmsg

filename of the system message (DDLDCMSG) area

idms.sysmsg.ddldcmsg

file-1D of the system message (DDLDCMSG) area

dclscr

filename of the local modesystem scratch (DDLOCSCR) area

idms.sysloc.ddlocscr

file-ID of the local modesystem scratch (DDLOCSCR) area

dirldb filename of the IDMSDIRL definition (DDLDML) area
idms.sysdirl.ddidml file-ID of the IDMSDIRL definition (DDLDML) area

dirllod filename of the IDMSDIRL definition load (DDLDCLOD) area
idms.sysdirl.dirllod file-ID of the IDMSDIRL definition load (DDLDCLOD) area
empdemo filename of the EMPDEMO area

idms.empdemo1

file-1D of the EMPDEMO area

insdemo

filename of the INSDEMO area

idms.insdemo1

file-1D of the INSDEMO area

orgdemo

filename of the ORGDEMO area

idms.orgdemo1

file-ID of the ORDDEMO area

empldem

filename of the EMPLDEMO area

idms.sqldemo.empldemo

file-1D of the EMPLDEMO area

348 DML Reference Guide for COBOL

infodem

filename of the INFODEMO area

idms.sqldemo.infodemo

file-1D of the INFODEMO area

projdem

filename of the PROJDEMO area

idms.projseg.projdemo

file-1D of the PROJDEMO area

indxdem

filename of the INDXDEMO area

idms.sqldemo.indxdemo

file-1D of the INDXDEMO area

sysctl filename of the SYSCTL file
idms.sysctl file-ID of the SYSCTL file
secdd filename of the system user catalog (DDLSEC) area

idms.sysuser.ddlsec

file-ID of the system user catalog (DDLSEC) area

dictdb filename of the application dictionary definition area
idms.appldict.ddldml file-1D of the application dictionary definition (DDLDML) area
dloddb filename of the application dictionary definitionload area
idms.appldict.ddidclod file-ID of the application dictionary definition load (DDLDCLOD) area
sqldd filename of the SQL catalog (DDLCAT) area
idms.syssql.ddlcat file-ID of the SQL catalog (DDLCAT) area

sqllod filename of the SQL catalogload (DDLCATL) area
idms.syssql.ddlcat! file-ID of SQL catalogload (DDLCATL) area

sqlxdd filename of the SQL catalogindex (DDLCATX) area
idms.syssql.ddlcatx file-ID of the SQL catalogindex (DDLCATX) area

asfdml filename of the asfdictionary definition (DDLDML) area
idms.asfdict.ddldml file-ID of the asfdictionary definition (DDLDML) area
asflod filename of the asfdictionary definition load (ASFLOD) area
idms.asfdict.asflod file-ID of the asfdictionary definition load (ASFLOD) area
asfdata filename of the asfdata (ASFDATA) area
idms.asfdict.asfdata file-1D of the asfdata area (ASFDATA) area

ASFDEFN filename of the asfdata definition (ASFDEFN) area
idms.asfdict.asfdefn file-1D of the asfdata definition area (ASFDEFN) area

j1jrnl filename of the firstdiskjournalfile

idms.j1jrnl file-ID of the firstdiskjournalfile

j2jrnl filename of the second diskjournal file

Appendix A: DML Precompile, COBOL Compile, and Link-Edit JCL 349

z/VSE JCL

idms.j2jrnl file-ID of the second diskjournal file
j3jrnl filename of the third diskjournal file
idms.j3jrnl file-ID of the third diskjournal file
SYSIDMS filename of the SYSIDMS parameter file

IDMSDMLC

/ADD-FILE-LINK
L-NAME=CDMSLIB, F-NAME=idms. dba. loadlib
/ADD-FILE-LINK L-NAME=CDMSLIB1,F-NAME=idms. loadlib
/ADD-FILE-LINK L-NAME=CDMSLODR, F-NAME=idms. loadlib
/ADD-FILE-LINK L-NAME=sysctl,F-NAME=idms.sysctl,SHARED-UPD=*YES
/ADD-FILE-LINK L-NAME=SYSIDMS, F-NAME=*DUMIY
/ASSIGN-SYSOPT TO=temp.punch
/ASSIGN-SYSDTA TO=*SYSCMD
/START -PROG
*MOD (ELEM=IDMSDMLC, LIB=idms. dba. loadlib,RUN-MODE=*ADV)
DICTNAME=dictionary-name DMCL=dmcl-name sysidms-input-parms
PARM="'precompiler-options' END-SYSIDMS

COBOL/DML source statements

/ASSIGN-SYSOPT TO=*PRIMARY

/ASSIGN-SYSDTA TO=temp. punch

/START-COBOL85-COMPILER -

/ MODULE-OUTPUT=LIB-ELEM(LIB=idns.objlib.user ,ELBM=userprog, -
/ COMPILER-ACTION=MODULE-GENERATION (MODULE - FORMAT=0M), -

/ LISTING=(SOURCE=YES,DIAGNOSTICS=YES, OUTPUT=SYSLIST)
/START-BINDER

//START-LLM-(REATION INTERNAL-NAVME=userprog

//INC-MOD LIB=idms.objlib.user,ELEM=userprog

//INC-MOD LIB=idms.loadlib,ELEM=IDMSPBS2 For DC, BATCH and DCBATCH
//INC-MOD LIB=idms. loadlib, ELEM=IDMSTCM UTM only
//RESOLVE-BY-AUTOLINK LIB=cobol.objlib

//SAVE-LLM LIB=idms. loadlib.user,ELEM=userprog (VER=@) ,OVER=YES
//END

/DELETE-FILE temp.punch

idms.loadlib filename of the load library containing the CA IDMS executable
modules

idms.dba.loadlib filename of the load library containingthe DMCL and database
name tableload modules

sysctl linkname of SYSCTL file

idms.sysctl filename of SYSCTL file

350 DML Reference Guide for COBOL

z/VSE JCL

temp.punch filename of temporary filethat contains DML compiler output

sysidms-input-parms parameters that specify physical requirements of the
environment, runtime directives, or operating
system-dependent fileinformation.Fora complete description
of all SYSIDMS parameters and syntax,see CA IDMS Common
Facilities Guide.

precompiler-options options that control various aspects of the precompile process.
See PassingParameters to the Precompiler (see page 355)for a
complete description of the options.

idms.objlib.user filename of user object library

userprog name of user application program
cobol.objlib filename of the COBOL runtime object library
idms.loadlib.user filename of the userloadlibrary

Note: Depending on the CV operating environment, an IDMSOPTI module link edited
with the DML compiler canbe used inplaceof orin addition to the SYSCTL file.

Local Mode

To execute the compilerinlocal mode:
m Remove the SYSCTL ADD-FILE-LINK command
m Add:

/ADD-FILE-LINK L-NAME=dictdb,F-NAME=idms.appldict.ddldml,SHARED-UPD=*YES
[/CREATE-FILE F-NAME=idms.tapejml,SUPPRESS-ERRORS=*FILE-EXIST, -

/ SUP=*TAPE (VOLUME=nnnnnn,DEVICE=tape)]

/ADD-FILE-LINK L-NAME=sysjrnl,F-NAME=idms. tapejrnl [,BUF-LEN=bbbb, -
/ SUP=*TAPE(F-SEQ=1)]

Statements and parameters between brackets must be specified only

when using the journal file on tape.

dictdb linkname of the data dictionaryfile

idms.appldict.ddidml| filename of the data dictionaryfile

sysjrnl linkname of the tape journal file
idms.tapejrnl filename of the tape journal file

bbbb page size of the file

nnnnnn volume serial number of the tape archivefile
tape device name for the tapejournal file

Appendix A: DML Precompile, COBOL Compile, and Link-Edit JCL 351

CMS Commands

CMS Commands

IDMSDMLC ('CMS')

FILEDEF SYSIPT DISK sysipt data a (RECFM F LRECL ppp BLKSIZE nnn
FILEDEF SYSPM DISK prgnme cobol a
FILEDEF SYSIDMS DISK sysidms parms a (RECFM F LRECL ppp. BLKSIZE nnn

EXEC IDMSFD

OSRUN IDMSDMLC PARM='CVMACH=vmid, precompiler-options'
FILEDEF TEXT DISK prgnme TEXT A
GLOBAL TXTLIB coblibvs IDMSLIB1

COBOL prgnme (OSDECK APOST LIB

COBOL compile step

TXTLIB DEL utextlib prgnme

TXTLIB ADD utextlib prgnme

FILEDEF SYSLMOD uloadlib LOADLIB a (RECFM V LRECL 1024 BLKSIZE 10 24
FILEDEF objlibl DISK IDMSLIB1 TXTLIB A

FILEDEF objlib DISK utextlib TXTLIB a

FILEDEF SYSLIB DISK coblibvs TXTLIB p

FILEDEF SYS001 DISK wfn wft wfm

LKED linkctl (LIST XREF LET MAP RENT NOTERM PRINT SIZE 512K 64K

Link edit step

sysipt data a

Filename, type, and mode of the filecontainingthe
COBOL/DML source statements

pbpp

Record length of the data file

nnn

Block size of the data file

prgnme cobol a

Filename of the COBOL program

sysidms parms a

Filename, filetype, and filemode of the filethat contains
SYSIDMS parameters (parameters that define your runtime
environment)

vmid

ID of the virtual machinerunningthe central version

precompiler-options

options that control various aspects of the precompile
process.See Passing Parameters tothe Precompiler (see
page 355) for a complete description of the options.

coblibvs

Filename of the librarythatcontains COBOLlogic modules

utextlib

Filename of the user text library

uloadlib LOADLIB a

Filename, filetype, and filemode of the user load library

objlib1

DDname of the first CA IDMS object library

objlib

DDname of the user object library

coblibvs TXTLIB p

Filename, filetype, and filemode of the library thatcontains
COBOL logic modules

352 DML Reference Guide for COBOL

CMS Commands

wfn wft wfm Filename, type, and mode of the files to be used as
intermediate work files by IDMSDMLC

linkctl Filename of the filethat contains the linkage editor control
statements

How to Edit the SYSIDMS File

To create the SYSIDMS file, enter these CMS commands:

XEDIT sysidms parms a (NOPROF
INPUT

SYSIDMS parameters

FILE

To run IDMSDMLC, you mustincludethe NODENAME and DICTNAME SYSIDMS
parameters.

Note: For more information aboutSYSIDMS parameters, see the CAIDMS Common
Facilities Guide.

How to Create the SYSIPT File

To create the SYSIPT file, enter these CMS commands:

XEDIT sysipt data a (NOPROF
INPUT

DML source statements

FILE

Appendix A: DML Precompile, COBOL Compile, and Link-Edit JCL 353

CMS Commands

How to Create the LINKCTL File

To create the LINKCTL file, enter these CMS commands:

XEDIT linkctl data a (NOPROF
INPUT

INCLUDE objlib(prgnme)

INCLUDE objlib1(IDMS) IDMS is required, omit for CICS
INCLUDE objlibl(IDMSCINT) for CICS only

INCLUDE objlibl(IDMSCANC) IDMSCANC for BATCH and DC BATCH
ENTRY prgnme

NAME prgnme (R)

FILE
Executing in Local Mode
To execute IDMSDMLC inlocal mode, remove the CVMACH parameter from OSRUN, and

do one of the following:

m Link IDMSDMLC with an IDMSOPTI program that specifies local execution mode

m Specify *LOCAL* as the firstinputparameter inthe filespecifiedinthe FILEDEF
SYSIPT statement

m Modify the OSRUN statement, as follows:
OSRUN IDMSDMLC PARM='*__QCAL*'

Note: This optionis valid onlyifthe OSRUN command is issued froma System
Product Interpreter or from an EXEC2 file.

354 DML Reference Guide for COBOL

Link-Edit Considerations

Link-Edit Considerations

The modules involvedinthe link editof an application programcontain three external
references. Some must be resolved, others can be left unresolved depending on the
mode of operation. The table below lists and explains the external references.

Reference Referenced by Resolved by Comments

ABORT Application program |IDMSCANC Should be resolved

ONLY inabatch
environment;
should NOT be
includedinatp
environment.

IDMS Application program [IDMS Must be resolved

IDMSOPTI* IDMS IDMSOPTI module Must be resolved if

usingthe central
version without a
SYSCTL file

* IDMSOPTI is a weak external reference (WXTRN).

Passing Parameters to the Precompiler

A number of parameters can be provided to control the action taken by the
precompiler.The parameters can be specifiedin one of three ways:

An IDMSPPRM module can be compiled with parameter values that are always
appropriateto a particular operatingsystemor clientsite. IDMSPPRM must be a
stand-aloneassembler modulethat will beloaded by the precompiler at run-time.
The module must consistofa string of characters terminated by a binary zero.

A PARM= clausecanbecoded on the EXEC statement that invokes IDMSDMLC ina
z/0S, or z/VSE environment or on the OSRUN statement that invokes IDMSDMLC in
a CMS environment. Any option thatis specified on the EXEC or OSRUN statement
will take precedence over the same parameter ifitis coded with a different valuein
the IDMSPPRM module.

A PARM= statement can be coded as a SYSIDMS inputparameter. See CA IDMS
Common Facilities Guidefor more information about using SYSIDMS. Any option
thatis specified in the PARM= statement will take precedence over the same
parameter ifitis coded with a different valueinthe IDMSPPRM module. Note that
if PARM= is specified both as a SYSIDMS input statement and on an EXEC or OSRUN
statement, the PARM= clauseonthe EXEC or OSRUN statement will beignored
completely.

Appendix A: DML Precompile, COBOL Compile, and Link-Edit JCL 355

Passing Parameters to the Precompiler

Precompiler Options

Parameter options availableto code inthe EXEC statement of the precompilestep are:

RCM=rcm-name

Specifies the name of the RCM created for the programby the precompilerifthe
program uses SQL access.

RCMVERSION=rcm-version-number

Specifies the version number of the RCM created for the programby the
precompiler.

AM=access-module-name

Specifies the name of the access moduleto be executed for the programat runtime
ifthe program uses SQL access.

SCHEMA=schema-name

Specifies the defaultschema-name qualifier for the precompiler to use when
processingan INCLUDE TABLE statement that does not supply a qualifier.

NOINSTALL

Specifies that the precompiler should only check syntax.
DICTNAME=dictionary-name

Specifies the name of the dictionarythe precompiler should access.
SQL=NO/89/FIPS/DISABLED

Specifies the SQL syntax standard that the precompiler should apply when checking
the validity of SQL statements inthe program.

Option NO, the default, means that compliancewith a named SQL standardis not
checked or enforced, and all CAIDMS extensions are permitted.

Option 89 directs the precompiler to use ANSI X3.135-1989 (Rev), Database
Language SQL with integrity enhancement as the standard for compliance.

Option FIPS directs the precompiler to use FIPS PUB 127-1, Database Language SQL
as the standard for compliance.

Option DISABLED directs the precompiler not to process any SQL commands
(denoted by EXEC SQL, END-EXEC delimiters)inthe program.

LIST/NOList

LIST directs the precompiler to create a listing of the program with precompiler
messages. NOListdirects the compiler not to create a listing of the program with
precompiler messages.

DATE=ISO/USA/EUR/JIS

Specifies the format of the DATE data type to be used for communication between
the program and the databasewhen the access moduleis executed.

356 DML Reference Guide for COBOL

Passing Parameters to the Precompiler

m TIME=ISO/USA/EUR/JIS

Specifies the format of the TIME data type to be used for communication between
the program and the databasewhen the access moduleis executed.

m COBOL=1/2/85

Specifies the version of COBOL with which COBOL statements generated by the
precompiler must comply.

Option 1 directs the precompiler to generate statements that comply with any of
the following:

Versions of VS COBOL that precede VS COBOL Il for z/0OS, or z/VSE operating
systems all CBOL compiler versions for BS2000 operating systems

Option 2, the default, directs the precompiler to generate statements that comply
with VS COBOL Il or LE-compliant COBOL compilers.

Option 85 directs the precompiler to comply with COBOL85, the version of COBOL
required for the Fujitsuand Hitachi compilers.

m SRISR7 = YES/NO

If YES is specified then SR1 and SR7 will be emitted in SUBSCHEMA-RECNAMES. NO
is the default.

Note: For more information aboutSQL-related parameter options, see the SQL
Programming Guide.

Site-specific Parameters

The followingsample IDMSPPRM sourcewill changethe default for the COBOL
parameter from COBOL=2 to COBOL=1 and will directthe precompiler not to produce a
listing of the source program.

EDBPPARM CSECT

DC C'COBOL=1,NOLIST'
DC X'00'

END

Appendix A: DML Precompile, COBOL Compile, and Link-Edit JCL 357

Appendix B: Sample Batch Program

This appendix contains a samplebatch COBOL program that accesses databaserecords
usingnavigational DMLstatements. The followingfigureshows the programas it
appears inthe various stages of the compilation process.You create a program using
COBOL and DML statements. This programis inputto the DML compiler, which
produces a listingthatcontains diagnosticsand, optionally, DML sourcestatements. The
expanded code is inputto the COBOL compiler, which generates a listing of the fully
expanded code and diagnostics.

Compilation Process

COBOL AND DML
SOURCE | IDMSDMLGC .| CcoBoOL
STATEMENTS COMPILER COMPILER
] !
DMLC DIAGNOSTICS COBGL SOURCE
AND OPTIONAL LISTINGS AND
SOURCE LISTING DIAGNQSTICS

This section contains the following topics:

Sample Batch Programas Input to the DML Compiler (see page 360)
Sample Batch Programas Output from the DML Compiler (see page 369)
Sample Batch Program from the COBOL Precompiler (see page 387)

Appendix B: Sample Batch Program 359

Sample Batch Program as Inputto the DML Compiler

Sample Batch Program as Input to the DML Compiler

The sampleprogram contains COBOLand DML source statements.

*RETRIEVAL
*DMLIST
*NO-ACTIVITY-LOG
*SCHEMA - COMMENTS

IDENTIFICATION DIVISION.

PROGRAM-ID. DEPTRPT.

AUTHOR. COMPUTER ASSOCIATES INTERNATIONAL.
DATE-WRITTEN. APRIL 1995.

REMARKS. THIS PROGRAM DEMONSTRATES

CA IDMS DATABASE ACCESS USING
COBOL DML STATEMENTS. IT READS
DEPARTMENT ID NUMBERS AND RETRIEVES
RELATED RECORD OCCURRENCES,
PRINTING A REPORT THAT INCLUDES
DEPARTMENT, EMPLOYEE, JOB, AND
OFFICE INFORMATION.

skokskok sk ok ok ok ok sk ok sk sk ok ok ok sk ok ok s skok sk sk stok sk sk sk ok sk sk skok sk sk sk sk sk stk sk sk ok sk sk stk sk sk kok ok

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT DEPT-FILE-IN ASSIGN TO INFILE.
SELECT DEPT-FILE-OUT ASSIGN TO OUTFILE.
SELECT ERR-FILE-OUT ASSIGN TO ERRFILE.

koK ok ok ok >k ok ok ok kok ok ok ok ok ok ok ok kok >k 3k ok ok >k sk >k Sk kok ok ok ok ok ok ok ok kok ok sk ok sk sk sk ok kok k ok ok ok >k ok sk skok sk sk sk k sk k

IDMS-CONTROL SECTION.

PROTOCOL. MODE IS BATCH DEBUG
IDMS-RECORDS MANUAL.
SKIP3

ok ok KKK KKK AoK oK K KA Kok ok oK KRR oK K KoK H oK koK Aok ok ok ok
DATA DIVISION.

SCHEMA SECTION.

DB EMPSSO1 WITHIN EMPSCHM.

koK ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok kok ok sk ok ok ok sk ok sk skok ok k ok ok ok ok ok kok sk sk ok sk sk sk sk kok sk ok sk sk ok ok sk kok sk sk ko sk ok

FILE SECTION.

360 DML Reference Guide for COBOL

Sample Batch Program as Inputto the DML Compiler

FD DEPT-FILE-IN
RECORD CONTAINS 80
BLOCK CONTAINS 80 CHARACTERS
RECORDING MODE IS F
LABEL RECORDS ARE OMITTED.

01 DEPT-REC-IN.
02 DEPT-ID-IN PIC 9(4).
02 DEPT-IN-FILLER PIC X(76).

FD DEPT-FILE-OUT
RECORD CONTAINS 133
BLOCK CONTAINS 133 CHARACTERS
RECORDING MODE IS F
LABEL RECORDS ARE OMITTED.

01 DEPT-REC-OUT.
02 CC PIC X.
02 PRINT-LINE PIC X(132).

FD ERR-FILE-OUT
RECORD CONTAINS 133
BLOCK CONTAINS 133 CHARACTERS
RECORDING MODE IS F
LABEL RECORDS ARE OMITTED.

01 ERR-REC-OUT.
02 ERR-CC PIC X.
02 ERR-LINE PIC X(132).

Appendix B: Sample Batch Program 361

Sample Batch Program as Inputto the DML Compiler

Sk ok >k 5k ok ok ok >k sk kok ok ok ok ok ok ok ok ok k >k ok ok sk >k ok ok kok ok ok ok sk ok ok ok skek ok ok ok k ok ok ok kok ok ok ok ok ok ok sk kok sk ok sk ok sk ok

WORKING-STORAGE SECTION.
01 EOF-SW PIC X VALUE 'N'.
88 END-OF-FILE VALUE 'Y'.
01 LINE-COUNT PIC 99 VALUE 0.
01 ERR-LINE-COUNT PIC 99 VALUE 0.
01 LINE-MAX PIC 99 VALUE 50.
soksksfokskkkokskok ok k sk kroRk sk ok sk kk sk ok sk ok skt sk sk ok sk kk ok sk ok sk ko sk sk ok ok ok
01 DEPT-HEADER.
05 FILLER PIC X(30) VALUE SPACES.
05 FILLER PIC X(13) VALUE 'DEPARTMENT ID'.
05 FILLER PIC X(10) VALUE SPACES.
05 FILLER PIC X(9) VALUE 'DEPT NAME'.
05 FILLER PIC X(70) VALUE SPACES.
01 DEPT-DETAIL-LINE.
05 FILLER PIC X(33) VALUE SPACES.
05 DEPT-ID-OUT PIC X(4).
05 FILLER PIC X(16) VALUE SPACES.
05 DEPT-NAME-OUT PIC X(45).
05 FILLER PIC X(34) VALUE SPACES.
01 EMP-HEADER.
05 FILLER PIC X(5) VALUE SPACES.
05 FILLER PIC X(6) VALUE 'EMP ID'.
05 FILLER PIC X(2) VALUE SPACES.
05 FILLER PIC X(9) VALUE 'LAST NAME'.
05 FILLER PIC X(8) VALUE SPACES.
05 FILLER PIC X(10) VALUE 'FIRST NAME'.
05 FILLER PIC X(3) VALUE SPACES.
05 FILLER PIC X(10) VALUE 'START DATE'.
05 FILLER PIC X(2) VALUE SPACES.
05 FILLER PIC X(9) VALUE 'JOB TITLE'.
05 FILLER PIC X(13) VALUE SPACES.
05 FILLER PIC X(14) VALUE 'OFFICE ADDRESS'.
05 FILLER PIC X(42) VALUE SPACES.

362 DML Reference Guide for COBOL

Sample Batch Program as Inputto the DML Compiler

01 EMP-DETAIL-LINE.
05 FILLER PIC X(5) VALUE SPACES.
05 ID-0UT PIC X(4).
05 FILLER PIC X(4) VALUE SPACES.
05 LAST-OUT PIC X(15).
05 FILLER PIC X(2) VALUE SPACES.
05 FIRST-OUT PIC X(10).
05 FILLER PIC X(3) VALUE SPACES.
05 SD-0UT.
10 SD-MM PIC XX.
10 FILLER PIC X VALUE '/"'.
10 SD-DD PIC XX.
10 FILLER PIC X VALUE '/'.
10 SD-YY PIC XX.
05 FILLER PIC X(4) VALUE SPACES.
05 TITLE-OUT PIC X(20).
05 FILLER PIC X(2) VALUE SPACES.
05 OFF-ADDRESS-QUT.
10 STREET-OUT PIC X(20).
10 FILLER PIC XX VALUE SPACES.
10 CITY-OUT PIC X(15).
10 FILLER PIC XX VALUE SPACES.
10 STATE-OUT PIC XX.
10 FILLER PIC XX VALUE SPACES.
10 ZIP-OUT PIC X(5).
05 FILLER PIC X(8) VALUE SPACES.
01 ERR-HEADER-1.
05 FILLER PIC X(40) VALUE SPACES.
05 FILLER PIC X(12) VALUE 'ERROR REPORT'.
05 FILLER PIC X(80) VALUE SPACES.
01 ERR-HEADER-2.
05 FILLER PIC X(10) VALUE SPACES.
05 FILLER PIC X(4) VALUE '*** ',
05 FILLER PIC X(51) VALUE
'THIS REPORT LISTS EMPTY AND NONEXISTENT DEPARTMENTS'.
05 FILLER PIC X(4) VALUE ' ***',
05 FILLER PIC X(63) VALUE SPACES.
01 ERR-HEADER-3.
05 FILLER PIC X(20) VALUE SPACES.
05 FILLER PIC X(7) VALUE 'DEPT ID'.
05 FILLER PIC X(9) VALUE SPACES.
05 FILLER PIC X(7) VALUE 'MESSAGE'.
05 FILLER PIC X(89) VALUE SPACES.

Appendix B: Sample Batch Program 363

Sample Batch Program as Inputto the DML Compiler

01 ERR-DETAIL-LINE.
05 FILLER PIC X(20) VALUE SPACES.
05 ERR-ID-OUT PIC X(4).
05 FILLER PIC X(12) VALUE SPACES.
05 ERR-MESS-0UT PIC X(15).
05 FILLER PIC X(79) VALUE SPACES.
skokskok sk Kok ok ok sk ok sk ok ok ok ok ok ok ok ok ok sk sk skok sk sk ok ok sk sk ok sk sk sk kok ok sk ok sk sk sk ok ok s skok ok ok ok ok ok
01 MESSAGES.
05 NO-JOB-MESSAGE.
10 FILLER PIC X(20) VALUE 'NO JOB ASSIGNED'.
05 NO-OFFICE-MESSAGE.
10 FILLER PIC X(20)
VALUE 'NO OFFICE ASSIGNED'.
05 NO-DEPT-MESSAGE.
10 FILLER PIC X(15) VALUE 'DOES NOT EXIST'.
05 NO-BEMP-MESSAGE.
10 FILLER PIC X(15) VALUE 'IS EMPTY'.
05 NO-INPUT-MESSAGE.
10 FILLER PIC XX VALUE SPACES.
10 FILLER PIC X(11) VALUE '=======>> "',
10 FILLER PIC X(8) VALUE 'NO INPUT'.
10 FILLER PIC X(11) VALUE ' <<========',
10 FILLER PIC X(100) VALUE SPACES.

01 COPY IDMS SUBSCHEMA-CTRL.

01 COPY IDMS SUBSCHEMA-SSNAME.

01 COPY IDMS SUBSCHEMA-RECNAVES.

01 COPY IDMS SUBSCHEMA-SETNAMES.

01 COPY IDMS RECORD EMPLOYEE.

01 COPY IDMS RECORD DEPARTMENT.

01 COPY IDMS RECORD JOB.

01 COPY IDMS RECORD EMPOSITION.

01 COPY IDMS RECORD OFFICE.

EJECT
PROCEDURE DIVISION.

364 DML Reference Guide for COBOL

Sample Batch Program as Inputto the DML Compiler

>kookokook ok ok skok >k ok ok ok ok ok ok hok sk ok ok sk ok ok ok sk skok sk ok ok ok sk ok ok kok ok ok ke ke ok sk sk skok sk sk ok sk k sk ok kok ok k ok

* PROCEDURE DIVISION GENERAL STRATEGY: *

* 1) READ DEPT-ID-IN, WHICH CONTAINS THE *

* DEPT-ID NUMBER *

* 2) ACCESS THE DATABASE USING THE DEPT-ID NUMBER *
* WITH AN OBTAIN CALC ON THE DEPARTMENT RECORD *

* 3) ACCESS ALL EMPLOYEES IN THE DEPT-EMPLOYEE SET *
* AND RETRIEVE RELATED JOB AND OFFICE DATA *

* 4) PRINT A REPORT FOR EACH DEPARTMENT *

* 5) PRINT AN ERROR REPORT FOR EMPTY DEPARTMENTS *
* AND NONEXISTENT DEPARTMENTS (NO MATCHING *

*

DEPT-ID) *
KKK AKF KK H K HAK KK KA KA K H KA K AH K AR H oK Kok Kok Kook ok Kok Kok Kok ok Kok K

*OX K X X X X X X X X X ¥

MAIN-LINE.
PERFORM INIT-FILES.
IF END-OF-FILE
PERFORM EMPTY - INPUT - PROCESSING
ELSE
PERFORM INIT-BIND-READY
PERFORM U220-ERR-HEADER
PERFORM DEPT -PROCESSING THRU DEPT-PROCESSING-EXIT
UNTIL END-OF-FILE.
PERFORM END-PROCESSING.
GOBACK.

INIT-BIND-READY.
Sk >k ok >k 5k >k K >k 5k koK ok ok ok K Sk ok Sk kok >k 3k >k ok >k 3k >k Sk ko ok ok ok K ok ok Sk kok >k sk >k sk >k sk >k kok >k ok >k sk >k sk >k skok sk k sk sk sk k
* THE BIND STATEMENTS ARE PERFORMED INDIVIDUALLY (RATHER *
* THAN BY USING A COPY IDMS SUBSCHEMA-BINDS) IN ORDER TO *
* CHECK EACH ERROR-STATUS BY PERFORMING THE IDMS-STATUS — *
* ROUTINE. *
Sk ok 3k ok ok ok 3k ok Sk koK Sk ok ok K Sk ok Sk kok K Sk ok ok >k Sk >k Sk Kok sk ok sk ok sk ok sk kok K Sk >k Sk >k Sk K Skok k sk k sk k sk sk skok Sk k sk k kK

MOVE 'DEPTRPT' TO PROGRAM-NAME.

BIND RUN-UNIT.

PERFORM IDMS-STATUS.

BIND EMPLOYEE.

PERFORM IDMS-STATUS.

BIND DEPARTMENT.

PERFORM IDMS-STATUS.

BIND JOB.

PERFORM IDMS-STATUS.

BIND EMPOSITION.

PERFORM IDMS-STATUS.

BIND OFFICE.

PERFORM IDMS-STATUS.

READY.

PERFORM IDMS-STATUS.

Appendix B: Sample Batch Program 365

Sample Batch Program as Inputto the DML Compiler

INIT-FILES.
OPEN INPUT DEPT-FILE-IN.
OPEN OUTPUT DEPT-FILE-OUT.
OPEN OUTPUT ERR-FILE-OUT.
MOVE SPACES TO PRINT-LINE.
MOVE SPACES TO ERR-LINE.

READ DEPT-FILE-IN AT END MOVE 'Y' TO EOF-SW.

EMPTY - INPUT - PROCESSING.

MOVE NO-INPUT-MESSAGE TO PRINT-LINE.

MOVE '1' TO CC.
PERFORM UOOO-WRITE-LINE.

Sk ok >k 3k ok ok ok >k sk kok ok ok ok ok ok ok ok ok k >k ok ok ok >k ok ok kok ok sk >k ok ok ok >k skok ok ok ok ok ok sk ok kok ok ok sk ok ok ok sk kok sk k sk ok sk k

* THIS PARAGRAPH ACCESSES THE DATABASE USING THE DEPT-ID-0415 *

* CALCKEY VALUE.

*

Sk ok >k 5k ok ok ok >k sk okok ok ok ok >k ok ok sk ok k >k ok ok sk >k ok Sk kok ok sk >k ok ok sk >k skok >k ok ok ok >k ok ok kok ok k sk ok ok ok sk kok sk ksk ok sk k

DEPT-PROCESSING.

MOVE DEPT-ID-IN TO DEPT-ID-0410.

OBTAIN CALC DEPARTMENT.
IF DB-REC-NOT-FOUND THEN
PERFORM NO-DEPT-PROCESSING
ELSE
PERFORM IDMS-STATUS

IF DEPT-EMPLOYEE IS NOT EMPTY THEN

PERFORM U020-VALID-HEADER

MOVE DEPT-ID-0410 TO DEPT-ID-OUT
MOVE DEPT-NAME-0410 TO DEPT-NAME-OUT

MOVE DEPT-DETAIL-LINE TO PRINT-LINE

PERFORM UOOO-WRITE-LINE
PERFORM UO30-EMP-HEADERS

PERFORM SET-WALK THRU SET-WALK-EXIT

UNTIL DB-END-OF-SET
ELSE
PERFORM EMPTY-SET.

READ DEPT-FILE-IN AT END MOVE 'Y' TO EOF-SW.

DEPT -PROCESSING-EXIT.
EXIT.

366 DML Reference Guide for COBOL

Sample Batch Program as Inputto the DML Compiler

Sk ok >k 5k ok ok ok >k sk kok ok ok ok ok ok ok ok ok k >k ok ok sk >k ok ok kok ok ok ok sk ok ok ok skek ok ok ok k ok ok ok kok ok ok ok ok ok ok sk kok sk ok sk ok sk ok

* THIS PARAGRAPH RETRIEVES EMPLOYEE, JOB, AND OFFICE DATA *
* FOR EACH EMPLOYEE IN THE DEPT-EMPLOYEE SET. *
koK ok oK 3K K K K K Kok 5k 5K 5K 3K K K K KoK 5K 5K 5K 5K 3K 5K 3K K Kok 5k 5k 5K 5K 5K 3K K Kok 5K 5K 5k 5K 5K 5K 3K Kok ok ok 5k 5k 5k 5K K Kok ok >k ok ok >k >k
SET-WALK.
OBTAIN NEXT EMPLOYEE WITHIN DEPT-EMPLOYEE.
IF DB-END-OF-SET
GO TO SET-WALK-EXIT
ELSE
PERFORM IDMS-STATUS.
MOVE EMP-ID-0415 TO ID-OUT.
MOVE EMP-LAST-NAVME-0415 TO LAST-OUT.
MOVE EMP-FIRST-NAME-0415 TO FIRST-OUT.
MOVE START-YEAR-0415 TO SD-YY.
MOVE START-MONTH-0415 TO SD-MM.
MOVE START-DAY-0415 TO SD-DD.
IF EMP-EMPOSITION IS EMPTY
MOVE NO-JOB-MESSAGE TO TITLE-OUT
ELSE
FIND FIRST WITHIN EMP-EMPOSITION
PERFORM IDMS-STATUS
IF NOT JOB-EMPOSITION MBEMBER
MOVE NO-JOB-MESSAGE TO TITLE-OUT
ELSE
OBTAIN OWNER WITHIN JOB-EMPOSITION
PERFORM IDMS-STATUS
MOVE TITLE-0440 TO TITLE-OUT.
IF OFFICE-EMPLOYEE IS EMPTY
MOVE NO-OFFICE-MESSAGE TO STREET-OUT
MOVE SPACES TO CITY-OUT
MOVE SPACES TO STATE-OUT
MOVE SPACES TO ZIP-OUT
ELSE
OBTAIN OWNER WITHIN OFFICE-EMPLOYEE
PERFORM IDMS-STATUS
MOVE OFFICE-STREET-0450 TO STREET-OUT
MOVE OFFICE-CITY-0450 TO CITY-OUT
MOVE OFFICE-STATE-0450 TO STATE-OUT
MOVE OFFICE-ZIP-FIRST-FIVE-0450 TO ZIP-OUT
MOVE EMP-DETAIL-LINE TO PRINT-LINE.
PERFORM UOOO-WRITE-LINE.
SET-WALK-EXIT.
EXIT.

Appendix B: Sample Batch Program 367

Sample Batch Program as Inputto the DML Compiler

END-PROCESSING.
FINISH.
PERFORM IDMS-STATUS.
CLOSE DEPT-FILE-OUT.
CLOSE ERR-FILE-OUT.
CLOSE DEPT-FILE-IN.

EMPTY-SET.
MOVE SPACES TO ERR-LINE.
MOVE DEPT-ID-0410 TO ERR-ID-OUT.
MOVE NO-EMP-MESSAGE TO ERR-MESS-OUT.
MOVE ERR-DETAIL-LINE TO ERR-LINE.
PERFORM U200-WRITE-ERR-LINE.

NO-DEPT-PROCESSING.
MOVE DEPT-ID-IN TO ERR-ID-OUT.
MOVE NO-DEPT-MESSAGE TO ERR-MESS-OUT.
MOVE ERR-DETAIL-LINE TO ERR-LINE.
PERFORM U200-WRITE-ERR-LINE.

UOOO-WRITE-LINE.

WRITE DEPT-REC-OUT AFTER POSITIONING CC.

IF CC = '1" THEN MOVE O TO LINE-COUNT

ELSE IF CC = ' ' THEN ADD 1 TO LINE-COUNT

ELSE IF CC = 'O' THEN ADD 2 TO LINE-COUNT.
IF LINE-COUNT > LINE-MAX
THEN PERFORM U010-NBW-PAGE-ROUTINE.

UO10-NEW-PAGE -ROUTINE.

PERFORM U020 -VALID-HEADER.

MOVE DEPT-DETAIL-LINE TO PRINT-LINE.

PERFORM UOOO-WRITE-LINE.

PERFORM U030 - EMP-HEADERS.
U020-VALID-HEADER.

MOVE DEPT-HEADER TO PRINT-LINE.

MOVE '1' TO CC.

PERFORM U0OO-WRITE-LINE

MOVE ' ' TO CC.
U030-EMP-HEADERS.

MOVE '@" TO CC.

MOVE EMP-HEADER TO PRINT-LINE.

PERFORM U0OO-WRITE-LINE.

MOVE SPACES TO PRINT-LINE.

MOVE ' ' TO CC.

PERFORM UOOO-WRITE-LINE.

368 DML Reference Guide for COBOL

Sample Batch Program as Output from the DML Compiler

U200-WRITE-ERR-LINE.
WRITE ERR-REC-OUT AFTER POSITIONING ERR-CC.
IF ERR-CC = '1' THEN MOVE ©@ TO ERR-LINE-COUNT
ELSE IF ERR-CC = ' ' THEN ADD 1 TO ERR-LINE-COUNT
ELSE IF ERR-CC = '0' THEN ADD 2 TO ERR-LINE-COUNT.
IF ERR-LINE-COUNT > LINE-MAX THEN
PERFORM U220 -ERR-HEADER.
U220-ERR-HEADER.
MOVE ERR-HEADER-1 TO ERR-LINE.
MOVE '1' TO ERR-CC.
PERFORM U200-WRITE-ERR-LINE
MOVE '@' TO ERR-CC.
MOVE ERR-HEADER-2 TO ERR-LINE.
PERFORM U200-WRITE-ERR-LINE.
MOVE ERR-HEADER-3 TO ERR-LINE.
PERFORM U200-WRITE-ERR-LINE.
MOVE SPACES TO ERR-LINE.
MOVE ' ' TO ERR-CC.
PERFORM U200-WRITE-ERR-LINE.
IDMS-ABORT .
EXIT.
IDMS-ABORT -EXIT.
COPY IDMS IDMS-STATUS.

Sample Batch Program as Output from the DML Compiler

Sincethe *DMLIST option is specified in the program's IDENTIFICATION DIVISION,
printed output consists of expanded code as well as diagnostics. This outputisinthe
following format:

m Heading—The top of each page of the listing contains the name of the DML
compiler being used (IDMSDMLC), the release number of the processor (Release
10.0), the name of the listing (Listing of Messages), the date, the time, and the page
number.

m Input listing and DML compiler-generated code—The body of the printout contains
the program inputlistingalong with the DML compiler-generated code, formatted

as follows:
Column Explanation
1 Sequence numbers generated by the DML compiler
12 Line numbers generated by the DML compiler
19 Line numbers generated by the user program

Appendix B: Sample Batch Program 369

Sample Batch Program as Output from the DML Compiler

Column Explanation
26 Text of the COBOL sourcecode includingtextgenerated by the DML
compiler

m Warnings and Status Messages—Diagnostics are imbedded inthe inputlistingand
DML compiler-generated code followingthe errant lines of source code.

Note: For more information aboutthe DML compiler status messages, see the CA
IDMS Messages and Codes Guide.

This listing contains thesamplebatch program and partially expanded code generated
by the DML compiler.

00001 *RETRIEVAL

00002 *DMLIST

00003 *NO-ACTIVITY-LOG

00004 *SCHEMA - COMMENTS

00005

00006 IDENTIFICATION DIVISION.

00007

00008 PROGRAM-ID. DEPTRPT.

00009

00010 AUTHOR. COMPUTER ASSOCIATES INTERNATIONAL.

00011

00012 DATE-WRITTEN. APRIL 1995.

00013

00014 REMARKS. THIS PROGRAM DEMONSTRATES

00015 CA IDMS DATABASE ACCESS USING

00016 COBOL DML STATEMENTS. IT READS

00017 DEPARTMENT ID NUMBERS AND RETRIEVES

00018 RELATED RECORD OCCURRENCES,

00019 PRINTING A REPORT THAT INCLUDES

00020 DEPARTMENT, BMPLOYEE, JOB, AND

00021 OFFICE INFORMATION.

00022 KKK AR KK KKK AR KK KA K F KK H KA KA KA K F A KA KA A KA KA K AR KKK

00023 ENVIRONMENT DIVISION.

00024 INPUT-OUTPUT SECTION.

00025 FILE-CONTROL.

00026 SELECT DEPT-FILE-IN ASSIGN TO INFILE.

00027 SELECT DEPT-FILE-OUT ASSIGN TO OUTFILE.

00028 SELECT ERR-FILE-OUT ASSIGN TO ERRFILE.

00629 sokskotokkskokkoksk ko ok kok ok tofok sk sk ok sk sk sk skorofk sk ok sk ok ok sk ok sk ok sk ok ok ok
DMLC 00030 IDMS-CONTROL SECTION.

00031

00032 PROTOCOL . MODE IS BATCH DEBUG

00033 IDMS-RECORDS MANUAL.

00034 SKIP3

370 DML Reference Guide for COBOL

Sample Batch Program as Output from the DML Compiler

00035 ok Kok KRR KRR KA KRR KK KA KAk KKK KRR K KKK KAk KK KK KKK HoK KKK
00036 DATA DIVISION.
00037

DMLC 00038 SCHEMA SECTION.
00039
00040 DB EMPSSO1 WITHIN EMPSCHM.
00041
00042 KKK KKK A KK AHAAF KA KA KA A F KA KA KA AF KA K AA KK A A F AR KA A AKAAK KKK
00043 FILE SECTION.
00044
00045 FD DEPT-FILE-IN
00046 RECORD CONTAINS 80
00047 BLOCK CONTAINS 80 CHARACTERS
00048 RECORDING MODE IS F
00049 LABEL RECORDS ARE OMITTED.
00050
00051 01 DEPT-REC-IN.
00052 02 DEPT-ID-IN PIC 9(4).
00053 02 DEPT-IN-FILLER PIC X(76).
00054
00055 FD DEPT-FILE-OUT
00056 RECORD CONTAINS 133
00057 BLOCK CONTAINS 133 CHARACTERS
00058 RECORDING MODE IS F
00059 LABEL RECORDS ARE OMITTED.
00060
00061 01 DEPT-REC-OUT.
00062 02 CC PIC X.
00063 02 PRINT-LINE PIC X(132).
00064
00065 FD ERR-FILE-OUT
00066 RECORD CONTAINS 133
00067 BLOCK CONTAINS 133 CHARACTERS
00068 RECORDING MODE IS F
00069 LABEL RECORDS ARE OMITTED.
00070
00071 01 ERR-REC-OUT.
00072 02 ERR-CC PIC X.
00073 02 ERR-LINE PIC X(132).
00074
000675 kKR KK A K H AR KK KK Aok KK KK KoK Kok koK ok KKK Aok ook ok Kok Kok koK koK ok K
00076 WORKING-STORAGE SECTION.
00077 01 EOF-SW PIC X VALUE 'N'.
00078 88 END-OF-FILE VALUE 'Y"'.
00079 01 LINE-COWNT PIC 99 VALUE 0.
00080 01 ERR-LINE-COUNT PIC 99 VALUE 0.

Appendix B: Sample Batch Program 371

Sample Batch Program as Output from the DML Compiler

000681
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128

01 LINE-MAX

Skook ok skok >k ok ok ok >k sk ok kok ok ok ok sk ok ok sk skok sk sk ok ok ok sk ok kok ok ok sk sk ok ok sk ok skok ok ok sk sk ok ok sk skok kk ok sk kkok ko sk ok k

01 DEPT-HEADER.
05 FILLER
05 FILLER
05 FILLER
05 FILLER

05 FILLER

01 DEPT-DETAIL-

05 FILLER

PIC 99

PIC X(30)
PIC X(13)
PIC X(10)
PIC X(9)
PIC X(70)
LINE.

PIC X(33)

VALUE 50.

VALUE
VALUE
VALUE
VALUE

VALUE

SPACES.
'DEPARTMENT ID'.
SPACES.

'DEPT NAME"'.

SPACES.

VALUE SPACES.

05 DEPT-ID-OUT PIC X(4).

05 FILLER

PIC X(16)

VALUE SPACES.

05 DEPT-NAME-OUT PIC X(45).

05 FILLER
01 EMP-HEADER.
05 FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER

05
05
05
05
05
05
05
05
05
05
05
05

PIC X(34)

PIC X(5)

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

X(6)
X(2)
X(9)
X(8)
X(10)
X(3)
X(10)
X(2)
X(9)
X(13)
X(14)
X(42)

01 EMP-DETAIL-LINE.

05
05
05
05
05
05
05
05

FILLER
ID-0UT
FILLER
LAST-0UT
FILLER
FIRST-OUT
FILLER
SD-0UT.

10 SD-MV

10 FILLER

10 SD-DD

10 FILLER

10 SD-YY

05 FILLER

05 TITLE-OUT

05 FILLER

VALUE SPACES.

VALUE SPACES.
VALUE 'EMP ID'.
VALUE SPACES.

VALUE 'LAST NAME'.
VALUE SPACES.

VALUE 'FIRST NAME'.
VALUE SPACES.

VALUE 'START DATE'.
VALUE SPACES.

VALUE 'JOB TITLE'.
VALUE SPACES.

VALUE 'OFFICE ADDRESS'.
VALUE SPACES.

PIC X(5) VALUE SPACES.
PIC X(4).
PIC X(4) VALUE SPACES.
PIC X(15).
PIC X(2) VALUE SPACES.
PIC X(10).
PIC X(3) VALUE SPACES.
PIC XX.
PIC X VALLE '/"'.
PIC XX.
PIC X VALLE '/"'.
PIC XX.
PIC X(4) VALUE SPACES.
PIC X(20).
PIC X(2) VALUE SPACES.

05 OFF-ADDRESS-0UT.
10 STREET-OUT PIC X(20).

10 FILLER

PIC XX

VALUE SPACES.

372 DML Reference Guide for COBOL

Sample Batch Program as Output from the DML Compiler

00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
00169
00170

10 CITY-OUT PIC X(15).
10 FILLER PIC XX VALUE SPACES.
10 STATE-OUT PIC XX.
10 FILLER PIC XX VALUE SPACES.
10 ZIP-OUT PIC X(5).
05 FILLER PIC X(8) VALUE SPACES.
01 ERR-HEADER-1.
05 FILLER PIC X(40) VALUE SPACES.
05 FILLER PIC X(12) VALUE 'ERROR REPORT'.
05 FILLER PIC X(80) VALUE SPACES.
01 ERR-HEADER-2.
05 FILLER PIC X(10) VALUE SPACES.
05 FILLER PIC X(4) VALUE '"*** ',
05 FILLER PIC X(51) VALUE
'THIS REPORT LISTS EMPTY AND NONEXISTENT DEPARTMENTS'.
05 FILLER PIC X(4) VALUE ' ***',
05 FILLER PIC X(63) VALUE SPACES.
01 ERR-HEADER-3.
05 FILLER PIC X(20) VALUE SPACES.
05 FILLER PIC X(7) VALUE 'DEPT ID'.
05 FILLER PIC X(9) VALUE SPACES.
05 FILLER PIC X(7) VALUE 'MESSAGE'.
05 FILLER PIC X(89) VALUE SPACES.
01 ERR-DETAIL-LINE.
05 FILLER PIC X(20) VALUE SPACES.
05 ERR-ID-OUT PIC X(4).
05 FILLER PIC X(12) VALUE SPACES.
05 ERR-MESS-OUT PIC X(15).
05 FILLER PIC X(79) VALUE SPACES.
Sk ok ok sk sk Sk ok Sk ok Sk ok ke sk sk sk sk sk ok ok ke sk sk sk sk sk sk sk skok skosk sk sk skosk sk skoskok skoskoskoskoskoskoskoskok skoskoskoskoskoskoskoskek skk ok
01 MESSAGES.
05 NO-JOB-MESSAGE.
10 FILLER PIC X(20) VALUE 'NO JOB ASSIGNED'.
05 NO-OFFICE-MESSAGE.
10 FILLER PIC X(20)
VALUE 'NO OFFICE ASSIGNED'.
05 NO-DEPT-MESSAGE.
10 FILLER PIC X(15) VALUE 'DOES NOT EXIST'.
05 NO-EMP-MESSAGE.
10 FILLER PIC X(15) VALUE 'IS EMPTY'.
05 NO-INPUT-MESSAGE.
10 FILLER PIC XX VALUE SPACES.

Appendix B: Sample Batch Program 373

Sample Batch Program as Output from the DML Compiler

DMLC

00171
00172
00173
00174
00175
00176
00177
00178
00179
00180
00181
00182
00183
00184
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216

10 FILLER PIC
10 FILLER PIC
10 FILLER PIC
10 FILLER PIC

X(11) VALUE '===—====>>
X(8) VALUE 'NO INPUT'.
X(11) VALUE ' <<========'.
X(100) VALUE SPACES.

01 COPY IDMS SUBSCHEMA-CTRL.

01 SUBSCHEMA-CTRL.
03 PROGRAM-NAME
VALUE
03 ERROR-STATUS
VALUE
88 DB-S
VALUE
88 ANY-
VALUE
88 ANY-
VALUE
88 DB-E
VALUE
88 DB-R
VALUE
03 DBKEY P
03 RECORD-NAME
VALUE
03 RRECORD -NAME
05 SSC-NODN
05 SSC-DBN
03 AREA-NAME
VALUE
03 AREA-RNAME
05 SSC-DNO
05 SSC-DNA
03 ERROR-SET
VALUE
03 ERROR-RECORD
VALUE
03 ERROR-AREA
VALUE
03 IDBMSCOM-AREA
VALUE
03 IDBMSCOM
PIC X

PIC X(8)
SPACES .
PIC X(4)
'1400" .
TATUS-0K
'0000" .
STATUS
"' THRU '9999' .
ERROR-STATUS
'0001" THRU '9999'
ND-OF - SET
'0307" .
EC-NOT - FOUND
'0326" .
IC S9(8) COMP SYNC.
PIC X(16)
SPACES .
REDEFINES RECORD-NAME.
PIC X(8).
PIC X(8).
PIC X(16)
SPACES .
REDEFINES AREA-NAME.
PIC X(8).
PIC X(8).
PIC X(16)
SPACES .
PIC X(16)
SPACES .
PIC X(16)
SPACES .
PIC X(100)
LOW-VALUE .
REDEFINES IDBMSCOM-AREA

OCCURS 100.

03 RIDBMSCOM
05 DB-SUB-ADDR
05 FILLER

REDEFINES IDBMSCOM-AREA.
PIC X(4).
PIC X(96).

374 DML Reference Guide for COBOL

Sample Batch Program as Output from the DML Compiler

DMLC

DMLC

00217
00218
00219
00220
00221
00222
00223
00224
00225
00226
00227
00228
00229
00230

00231
00232
00233
00234
00235
00236
00237
00238
00239

00240
00241
00242
00243
00244
00245
00246
00247
00248
00249
00250
00251
00252

00253
00254
00255
00256
00257
00258
00259
00260
00261

03 R1DBMSCOM REDEFINES IDBMSCOM-AREA.
05 PAGE-INFO.
07 PAGE-INFO-GROUP PIC S9(4) COMP.
07 PAGE-INFO-DBK-FORMAT
PIC 9(4) COMP.
05 SSC-IDMS-STATUS-WRK.
07 SSC-INO1-REQ-WK.
09 SSC-INO1-REQ-CODE
PIC S9(8) COMP.
09 SSC-INO1-REQ-RETURN
PIC S9(8) COMP.
07 SSC-STATUS-LINE.
09 SSC-STATUS-LABEL PIC X(16).
09 SSC-STATUS-VALUE PIC X(12).

05 FILLER PIC X(60).
03 DIRECT-DBKEY PIC S9(8) COMP SYNC.
03 DIRECT-DBK REDEFINES DIRECT-DBKEY

PIC S9(8) COMP SYNC.
03 DATABASE-STATUS.
05 DBSTATMENT-CODE ~ PIC X(2).
05 DBSTATUS-CODE PIC X(5).

03 FILLER PIC X.
03 RECORD-0CCUR PIC S9(8) COMP SYNC.
03 DML -SEQUENCE PIC S9(8) COMP SYNC.

01 COPY IDMS SUBSCHEMA-SSNAME.
01 SUBSCHEMA - SSNAME PIC X(8)
VALUE 'EMPSSOL '

01 COPY IDMS SUBSCHEMA-RECNAMES.
01 SUBSCHEMA-RECNAMES.

03 SR460 PIC X(16)

VALUE 'STRUCTURE "
03 SR455 PIC X(16)

VALUE 'SKILL '
03 SR450 PIC X(16)

VALUE 'OFFICE '

03 SR445 PIC X(16)

VALUE 'NON-HOSP-CLAIM '
03 SR440 PIC X(16)

VALUE 'JOB '
03 SR435 PIC X(16)

VALUE 'INSURANCE-PLAN '
03 SR430 PIC X(16)

VALUE 'HOSPITAL-CLAIM '

Appendix B: Sample Batch Program 375

Sample Batch Program as Output from the DML Compiler

00262
00263
00264
00265
00266
00267
00268

00269
00270
00271
00272
00273
00274
00275
00276
00277
00278
00279
00280
00281
00282

DMLC

00283
00284
00285
00286
00287
00288
00289
00290
00291

00292
00293
00294
00295
00296
00297
00298
00299
00300
00301

01
01

03 SR425 PIC X(16)

VALUE 'EXPERTISE "
03 SR420 PIC X(16)

VALUE 'EMPOSITION ‘' .
03 SR415 PIC X(16)

VALUE 'EMPLOYEE '
03 SR410 PIC X(16)

VALUE 'DEPARTMENT ' .
03 SR405 PIC X(16)

VALUE 'DENTAL-CLAIM ' .
03 SR400 PIC X(16)

VALUE 'COVERAGE '

COPY IDMS SUBSCHEMA-SETNAMES.

SUBSCHEMA - SETNAMES..

03 COVERAGE-CLAIMS
VALUE

03 DEPT-EMPLOYEE
VALUE

03 EMP-COVERAGE
VALUE

03 EMP-EXPERTISE
VALUE
03 EMP-NAME-NDX
VALUE
03 EMP-BEMPOSITION
VALUE
03 J0B-BMPOSITION
VALUE
03 JOB-TITLE-NDX

VALUE
03 MANAGES

VALUE
03 OFFICE-EMPLOYEE

VALUE
03 REPORTS-TO

VALUE
03 SKILL-EXPERTISE

VALUE

03 SKILL-NAME-NDX

PIC X(16)
' COVERAGE - CLAIMS
PIC X(16)
'DEPT-BMPLOYEE '
PIC X(16)

'EMP-COVERAGE ' .

PIC X(16)
'EMP-EXPERTISE '
PIC X(16)

'"EMP-NAME-NDX " .

PIC X(16)
'EMP-EMPOSITION '
PIC X(16)
'JOB-EMPOSITION '
PIC X(16)

'JOB-TITLE-NDX '

PIC X(16)

'MANAGES '
PIC X(16)

'OFFICE-EMPLOYEE

PIC X(16)

'REPORTS-TO ' .
PIC X(16)

' SKILL-EXPERTISE
PIC X(16)

376 DML Reference Guide for COBOL

Sample Batch Program as Output from the DML Compiler

00302 VALUE 'SKILL-NAME-NDX ' .
00303 03 CALC PIC X(16)
00304 VALUE ‘CALC '
00305

DMLC 00306 01 COPY IDMS RECORD EMPLOYEE.
00307 01 EMPLOYEE.
00308 02 EMP-ID-0415 PIC 9(4).
00309 02 EMP-NAME-0415.
00310 03 EMP-FIRST-NAME-0415 PIC X(10).
00311 03 EMP-LAST-NAME-0415 PIC X(15).
00312 02 EMP-ADDRESS-0415.
00313 03 EMP-STREET-0415 PIC X(20).
00314 03 EMP-CITY-0415 PIC X(15).
00315 03 EMP-STATE-0415 PIC X(2).
00316 03 EMP-ZIP-0415.
00317 04 EMP-ZIP-FIRST-FIVE-0415
00318 PIC X(5).
00319 04 EMP-ZIP-LAST-FOUR-0415
00320 PIC X(4).
00321 02 EMP-PHONE-0415 PIC 9(10).
00322 02 STATUS-0415 PIC X(2).
00323 88 ACTIVE-0415
00324 VALUE '01' .
00325 88 ST-DISABIL-0415
00326 VALUE '02' .
00327 88 LT-DISABIL-0415
00328 VALUE '03' .
00329 88 LEAVE-OF-ABSENCE-0415
00330 VALUE '04'
00331 88 TERMINATED-0415
00332 VALUE '05' .
00333 02 SS-NUMBER-0415 PIC 9(9).
00334 02 START-DATE-0415.
00335 03 START-YEAR-0415 PIC 9(4).
00336 03 START-MONTH-0415 PIC 9(2).
00337 03 START-DAY-0415 PIC 9(2).
00338 02 TERMINATION-DATE-0415.
00339 03 TERMINATION-YEAR-0415 PIC 9(4).
00340 03 TERMINATION-MONTH-0415 PIC 9(2).
00341 03 TERMINATION-DAY-0415 PIC 9(2).
00342 02 BIRTH-DATE-0415.

Appendix B: Sample Batch Program 377

Sample Batch Program as Output from the DML Compiler

00343 03 BIRTH-YEAR-0415 PIC 9(4).
00344 03 BIRTH-MONTH-0415 PIC 9(2).
00345 03 BIRTH-DAY-0415 PIC 9(2).
00346
DMLC 00347 01 COPY IDMS RECORD DEPARTMENT.
00348 01 DEPARTMENT.
00349 02 DEPT-ID-0410 PIC 9(4).
00350 02 DEPT-NAME-0410 PIC X(45).
00351 02 DEPT-HEAD-ID-0410 PIC 9(4).
00352 02 FILLER PIC XXX.
00353
DMLC 00354 01 COPY IDMS RECORD JOB.
00355 01 JOB.
00356 02 JOB-ID-0440 PIC 9(4).
00357 02 TITLE-0440 PIC X(20).
00358 02 DESCRIPTION-0440.
00359 03 DESCRIPTION-LINE-0440 PIC X(60)
00360 OCCWRS 2.
00361 02 REQUIREMENTS-0440.
00362 03 REQUIREMENT-LINE-0440 PIC X(60)
00363 OCCWRS 2.
00364 02 MINIMUM-SALARY-0440 PIC S9(6)V99.
00365 02 MAXIMUM-SALARY-0440 PIC S9(6)V99.
00366 02 SALARY-GRADES-0440 PIC 9(2)
00367 OCCURS 4.
00368 02 NUMBER-OF -POSITIONS-0440
00369 PIC 9(3).
00370 02 NUMBER-OPEN-0440 PIC 9(3).
00371 02 FILLER PIC XX.
00372
DMLC 00373 01 COPY IDMS RECORD EMPOSITION.
00374 01 EMPOSITION.
00375 02 START-DATE-0420.
00376 03 START-YEAR-0420 PIC 9(4).
00377 03 START-MONTH-0420 PIC 9(2).
00378 03 START-DAY-0420 PIC 9(2).
00379 02 FINISH-DATE-0420.
00380 03 FINISH-YEAR-0420 PIC 9(4).
00381 03 FINISH-MONTH-0420 PIC 9(2).
00382 03 FINISH-DAY-0420 PIC 9(2).
00383 02 SALARY-GRADE-0420 PIC 9(2).
00384 02 SALARY-AMOUNT-G420 PIC S9(7)V99 COMP-3.
00385 02 BONUS-PERCENT-0420 PIC SV999 COMP-3.
00386 02 COMMISSION-PERCENT-0420 PIC SV999 COMP-3.

378 DML Reference Guide for COBOL

Sample Batch Program as Output from the DML Compiler

DMLC

00387
00388
00389
00390
00391
00392
00393
00394
00395
00396

00397
00398
00399
00400
00401
00402
00403
00404

00405
00406
00407
00408

00409
00410
00411
00412
00413
00414
00415
00416

00417
00418
00419
00420
00421
00422
00423
00424
00425
00426
00427
00428
00429

02 OVERTIME-RATE-0420 PIC S9V99 COMP-3.
02 FILLER PIC XXX.

01 COPY IDMS RECORD OFFICE.
01 OFFICE.

02 OFFICE-CODE-0450 PIC X(3).

02 OFFICE-ADDRESS-0450.

03 OFFICE-STREET-®450 PIC X(20).
03 OFFICE-CITY-0450 PIC X(15).
03 OFFICE-STATE-0450 PIC X(2).

03 OFFICE-ZIP-0450.
04 OFFICE-ZIP-FIRST-FIVE-0450

PIC X(5).

04 OFFICE-ZIP-LAST-FOUR-0450
PIC X(4).

02 OFFICE-PHONE-0450 PIC 9(7)
OCCWRS 3.

02 OFFICE-AREA-CODE-0450 PIC X(3).

02 SPEED-DIAL-0450 PIC X(3).
02 FILLER PIC X(4).
EJECT

PROCEDURE DIVISION.

K kokokokok ok stok ok sk Kok ok kK skok ok Kok ok sk K okok ok sk ok ok sk Ktk sk K sk ok sk sk ko sk Kok ok ok ok skok koK
* * PROCEDURE DIVISION GENERAL STRATEGY: *

* * 1) READ DEPT-ID-IN, WHICH CONTAINS THE *

* o* DEPT-ID NUMBER *

* * 2) ACCESS THE DATABASE USING THE DEPT-ID NUMBER *

* ok WITH AN OBTAIN CALC ON THE DEPARTMENT RECORD *

* * 3) ACCESS ALL EMPLOYEES IN THE DEPT-EMPLOYEE SET *

* ok AND RETRIEVE RELATED JOB AND OFFICE DATA *

* % 4) PRINT A REPORT FOR EACH DEPARTMENT *

* * 5) PRINT AN ERROR REPORT FOR EMPTY DEPARTMENTS *

* X AND NONEXISTENT DEPARTMENTS (NO MATCHING *

* X DEPT-ID) *

K skokskokokokokotokskkkokok sk ktok sk sk kokok sk ok ok sk sk ksksk sk ok sk sk sk kok sk sk tok sk sk sk ok sk kok ok ko
MAIN-LINE.

PERFORM INIT-FILES.
IF END-OF-FILE
PERFORM EMPTY - INPUT - PROCESSING
ELSE
PERFORM INIT-BIND-READY
PERFORM U220 -ERR-HEADER

Appendix B: Sample Batch Program 379

Sample Batch Program as Output from the DML Compiler

k5K ok ok ok ok ok ok ok ok ok ok okok 5k 3k >k ok >k 3k >k Skok ok ok ok ok ok ok ok Sk kok >k 3k >k ok >k Sk >k Skok 5k ok k ok ok ok sk Kok ok K sk >k sk k sk kok sk ok k

DMLCO001

DMLC00062

DMLCO003

DMLCO004

00430
00431
00432
00433
00434
00435
00436
00437
00438

00439
00440
00441

00442
00443
00444
00445
00446
00447
00448
00449
00450
00451
00452
00453

00454
00455
00456
00457
00458
00459
00460
00461
00462
00463
00464
00465
00466

PERFORM DEPT -PROCESSING THRU DEPT -PROCESSING-EXIT

UNTIL END-OF-FILE.
PERFORM END -PROCESSING.
GOBACK.

INIT-BIND-READY.

* CHECK EAMH ERROR-STATUS BY PERFORMING THE IDMS-STATUS

* ROUTINE. *

MOVE 'DEPTRPT' TO PROGRAM-NAME.
BIND RUN-UNIT.
MOVE 1 TO DML -SEQUENCE
CALL 'IDMS' USING SUBSCHEMA-CTRL
IDBMSCOM (59)
SUBSCHEMA -CTRL
SUBSCHEMA - SSNAME .
PERFORM IDMS-STATUS.
BIND EMPLOYEE.
MOVE 2 TO DML -SEQUENCE
CALL 'IDMS' USING SUBSCHEMA-CTRL
IDBMSCOM (48)

SRA15
EMPLOYEE.
PERFORM IDMS-STATLS.
BIND DEPARTMENT.
MOVE 3 TO DML -SEQUENCE
CALL 'IDMS' USING SUBSCHEMA-CTRL
IDBMSCOM (48)
SRA10
DEPARTMENT .
PERFORM IDMS-STATUS.
BIND JOB.
MOVE 4 TO DML -SEQUENCE
CALL 'IDMS' USING SUBSCHEMA-CTRL

ok ok KoK oK oK oK oK ok 3 K KKK K KoK oK oK oK 3 3 o KoK KoK oK oK oK ok ok ok ok KoK sk ok oK oK ook 3k 3k kK KoK oKk oK oK oK

* THE BIND STATEMENTS ARE PERFORMED INDIVIDUALLY (RATHER
* THAN BY USING A COPY IDMS SUBSCHEMA-BINDS) IN ORDER TO

*

*

*

380 DML Reference Guide for COBOL

Sample Batch Program as Outputfrom the DML Compiler

00467 IDBMSCOM (48)
00468 SR440
00469 JoB.
00470 PERFORM IDMS-STATUS.
DMLCO005 00471 BIND EMPOSITION.
00472 MOVE 5 TO DML -SEQUENCE
00473 CALL 'IDMS' USING SUBSCHEMA-CTRL
00474 IDBMSCOM (48)
00475 SR420
00476 EMPOSITION.
00477 PERFORM IDMS-STATLS.
DMLCO006 00478 BIND OFFICE.
00479 MOVE 6 TO DML-SEQUENCE
00480 CALL 'IDMS' USING SUBSCHEMA-CTRL
00481 IDBMSCOM (48)
00482 SR450
00483 OFFICE.
00484 PERFORM IDMS-STATUS.
DMLCO007 00485 READY.
00486 MOVE 7 TO DML -SEQUENCE
00487 CALL 'IDMS' USING SUBSCHEMA-CTRL
00488 IDBMSCOM (37).
00489 PERFORM IDMS-STATUS.
00490
00491 INIT-FILES.
00492 OPEN INPUT DEPT-FILE-IN.
00493 OPEN OUTPUT DEPT-FILE-OUT.
00494 OPEN OUTPUT ERR-FILE-OUT.
00495 MOVE SPACES TO PRINT-LINE.
00496 MOVE SPACES TO ERR-LINE.
00497 READ DEPT-FILE-IN AT END MOVE 'Y' TO EOF-SW.
00498
00499 BMPTY - INPUT-PROCESSING.
00500 MOVE NO-INPUT-MESSAGE TO PRINT-LINE.
00501 MOVE '1' TO CC.
00502 PERFORM UOOO-WRITE-LINE.
00503

Appendix B: Sample Batch Program 381

Sample Batch Program as Output from the DML Compiler

Skook>kok ok ok ok sk ok ok ok sk okok sk ok ok >k ok ok ok kok sk >k sk ok ok >k sk ok kok ok ok ok sk ok ok >k skok ok ok ok ok sk sk ok skok ok sk ok sk ok sk koskek kok ok

DMLCO008

DMLCO009

00504

00505
00506
00507
00508
00509
00510
00511
00512
00513
00514

00515
00516
00517
00518
00519
00520
00521
00522
00523
00524
00525
00526
00527

00528
00529
00530
00531
00532
00533
00534
00535
00536

00537
00538
00539
00540
00541
00542
00543

* THIS PARAGRAPH ACCESSES THE DATABASE USING THE DEPT-ID-0415

* CALCKEY VALUE. *
Skook >k kok >k ok ok ok >k sk ok kok ok ok ok sk ok ok sk skok sk ok ok >k sk sk ok kok sk >k ok ok ok >k sk ok skok ok sk >k sk ok sk >k skek >k sk ok sk >k sk ok kok ok sk k
DEPT -PROCESSING.
MOVE DEPT-ID-IN TO DEPT-ID-8410.
OBTAIN CALC DEPARTMENT.
MOVE 8 TO DML -SEQUENCE
CALL 'IDMS' USING SUBSCHEMA-CTRL
IDBMSCOM (32)
SRA10
IDBMSCOM (43).

IF DB-REC-NOT-FOUND THEN
PERFORM NO-DEPT-PROCESSING
ELSE
PERFORM IDMS-STATUS
IF DEPT-EMPLOYEE IS NOT BMPTY
MOVE 9 TO DML -SEQUENCE
CALL 'IDMS' USING SUBSCHEMA-CTRL
IDBMSCOM (65)
DEPT -EMPLOYEE;
IF ERROR-STATUS EQUAL TO '1601'
THEN
PERFORM U020 -VALID-HEADER
MOVE DEPT-ID-0410 TO DEPT-ID-OUT

MOVE DEPT-NAME-0410 TO DEPT-NAME-OUT
MOVE DEPT-DETAIL-LINE TO PRINT-LINE
PERFORM UOOO-WRITE-LINE

PERFORM U030 - BMP-HEADERS

PERFORM SET-WALK THRU SET-WALK-EXIT

UNTIL DB-END-OF-SET
ELSE
PERFORM EMPTY-SET.
READ DEPT-FILE-IN AT END MOVE 'Y' TO EOF-SW.

DEPT-PROCESSING-EXIT.
EXIT.
kKoK KK A KRR H KA KKK KoK A KAk KKK KA A oK K H KKK AR KoK KKK Hok K koK
* THIS PARAGRAPH RETRIEVES EMPLOYEE, JOB, AND OFFICE DATA *
* FOR EACH EMPLOYEE IN THE DEPT-EMPLOYEE SET. *

3Kk ok koK ok >k 3k >k ok >k 3k Kok sk ok >k ok ok ok ok kok 5K Sk >k 5k >k Sk >k Skok ok ok ok ok ok ok ok 5k koK >k 3k >k ok >k 3k >k kok K ok sk 3k K sk sk skok sk >k k-

SET-WALK.

382 DML Reference Guide for COBOL

Sample Batch Program as Output from the DML Compiler

DMLCO010 00544 OBTAIN NEXT EMPLOYEE WITHIN DEPT-EMPLOYEE.
00545 MOVE 10 TO DML-SEQUENCE
00546 CALL 'IDMS' USING SUBSCHEMA-CTRL
00547 IDBMSCOM (10)
00548 SR415
00549 DEPT -EMPLOYEE
00550 IDBMSCOM (43).
00551 IF DB-END-OF-SET
00552 GO TO SET-WALK-EXIT
00553 ELSE
00554 PERFORM IDMS-STATUS.
00555 MOVE EMP-ID-0415 TO ID-OUT.
00556 MOVE EMP-LAST-NAME-0415 TO LAST-OUT.
00557 MOVE EMP-FIRST-NAME-0415 TO FIRST-OUT.
00558 MOVE START-YEAR-0415 TO SD-YY.
00559 MOVE START-MONTH-0415 TO SD-MM.
00560 MOVE START-DAY-0415 TO SD-DD.
DMLCO011 00561 IF EMP-EMPOSITION IS EMPTY
00562 MOVE 11 TO DML-SEQUENCE
00563 CALL 'IDMS' USING SUBSCHEMA-CTRL
00564 IDBMSCOM (64)
00565 EMP - EMPOSITION;
00566 IF ERROR-STATUS EQUAL TO '0000'
00567 MOVE NO-JOB-MESSAGE TO TITLE-OUT
00568 ELSE
DMLCO012 00569 FIND FIRST WITHIN EMP-EMPOSITION
00570 MOVE 12 TO DML-SEQUENCE
00571 CALL 'IDMS' USING SUBSCHEMA-CTRL
00572 IDBMSCOM (20)
00573 EMP-EMPOSITION;
00574 PERFORM IDMS-STATUS
DMLCO013 00575 IF NOT JOB-EMPOSITION MEMBER
00576 MOVE 13 TO DML-SEQUENCE
00577 CALL 'IDMS' USING SUBSCHEMA-CTRL
00578 IDBMSCOM (62)
00579 JOB-EMPOSITION;

Appendix B: Sample Batch Program 383

Sample Batch Program as Output from the DML Compiler

DMLCOO14

DMLCO015

DMLCO016

00580
00581
00582
00583
00584
00585
00586
00587
00588
00589
00590
00591
00592
00593
00594
00595

00596
00597
00598
00599
00600
00601
00602
00603
00604
00605
00606
00607
00608
00609
00610
00611

IF ERROR-STATUS EQUAL TO '1601'
MOVE NO-JOB-MESSAGE TO TITLE-OUT
ELSE
OBTAIN OWNER WITHIN JOB-EMPOSITION
MOVE 14 TO DML-SEQUENCE
CALL 'IDMS' USING SUBSCHEMA-CTRL
IDBMSCOM (31)
JOB-EMPOSITION
IDBMSCOM (43);
PERFORM IDMS-STATUS
MOVE TITLE-0440 TO TITLE-OUT.
IF OFFICE-EMPLOYEE IS EMPTY
MOVE 15 TO DML-SEQUENCE
CALL 'IDMS' USING SUBSCHEMA-CTRL
IDBMSCOM (64)
OFFICE-EMPLOYEE;

IF ERROR-STATUS EQUAL TO '0000'
MOVE NO-OFFICE-MESSAGE TO STREET-OUT
MOVE SPACES TO CITY-OUT
MOVE SPACES TO STATE-OUT
MOVE SPACES TO ZIP-OUT

ELSE
OBTAIN OWNER WITHIN OFFICE-EMPLOYEE
MOVE 16 TO DML-SEQUENCE
CALL 'IDMS' USING SUBSCHEMA-CTRL
IDBMSCOM (31)
OFFICE-EMPLOYEE
IDBMSCOM (43);
PERFORM IDMS-STATUS
MOVE OFFICE-STREET-0450 TO STREET-OUT
MOVE OFFICE-CITY-0450 TO CITY-OUT
MOVE OFFICE-STATE-0450 TO STATE-OUT

384 DML Reference Guide for COBOL

Sample Batch Program as Output from the DML Compiler

00612 MOVE OFFICE-ZIP-FIRST-FIVE-0450 TO ZIP-OUT
00613 MOVE EMP-DETAIL-LINE TO PRINT-LINE.
00614 PERFORM UOOO-WRITE-LINE.
00615 SET-WALK-EXIT.
00616 EXIT.
00617
00618 END - PROCESSING.
DMLCO017 00619 FINISH.
00620 MOVE 17 TO DML-SEQUENCE
00621 CALL 'IDMS' USING SUBSCHEMA-CTRL
00622 IDBMSCOM (2).
00623 PERFORM IDMS-STATLS.
00624 CLOSE DEPT-FILE-OUT.
00625 CLOSE ERR-FILE-OUT.
00626 CLOSE DEPT-FILE-IN.
00627
00628 EMPTY-SET.
00629 MOVE SPACES TO ERR-LINE.
00630 MOVE DEPT-ID-0410 TO ERR-ID-OUT.
00631 MOVE NO-BEMP-MESSAGE TO ERR-MESS-OUT.
00632 MOVE ERR-DETAIL-LINE TO ERR-LINE.
00633 PERFORM U200-WRITE-ERR-LINE.
00634
00635 NO-DEPT -PROCESSING.
00636 MOVE DEPT-ID-IN TO ERR-ID-OUT.
00637 MOVE NO-DEPT-MESSAGE TO ERR-MESS-OUT.
00638 MOVE ERR-DETAIL-LINE TO ERR-LINE.
00639 PERFORM U200-WRITE-ERR-LINE.
00640
00641 U000 -WRITE-LINE.
00642 WRITE DEPT-REC-OUT AFTER POSITIONING CC.
00643 IF CC = '1" THEN MOVE O TO LINE-COUNT
00644 ELSE IF CC = ' ' THEN ADD 1 TO LINE-COUNT
00645 ELSE IF CC = '0" THEN ADD 2 TO LINE-COUNT.
00646 IF LINE-COUNT > LINE-MAX
00647 THEN PERFORM U010 -NEW-PAGE-ROUTINE.
00648 U010-NEW-PAGE-ROUTINE.
00649 PERFORM U020 -VALID-HEADER.
00650 MOVE DEPT-DETAIL-LINE TO PRINT-LINE.
00651 PERFORM U900 -WRITE-LINE.
00652 PERFORM UO30-EMP-HEADERS.
00653 U020 -VALID-HEADER.
00654 MOVE DEPT-HEADER TO PRINT-LINE.
00655 MOVE '1' TO CC.

Appendix B: Sample Batch Program 385

Sample Batch Program as Output from the DML Compiler

DMLC

Skookook ok ok ok >k sk ok ok ok sk ko sk ok ok >k ok ok ok kok ok >k sk ok ok >k sk ok kok ok ok >k sk sk ok sk skok sk ok ok ok sk ok sk kok ok ok sk ok ok ok kokok sk k sk ok k ok

o KKK KKK oK oK oK ok ok 3 KKK KoK oK oK ok ok ok o KoK KoK oK oK oK oK ok ok S KoKk oK koK ok ok ok ok o ok KoK oK oK ok oK

00656
00657
00658
00659
00660
00661
00662
00663
00664
00665
00666
00667
00668
00669
00670
00671

00672
00673
00674
00675
00676
00677
00678
00679
00680
00681
00682
00683
00684
00685
00686
00687
00688
00689

00690
00691

00692
00693
00694
00695
00696
00697
00698
00699
00700

PERFORM UOOO-WRITE-LINE

MOVE ' ' TO CC.
U030-EMP-HEADERS.
MOVE '0' TO CC.

MOVE EMP-HEADER TO PRINT-LINE.
PERFORM UOOO-WRITE-LINE.

MOVE SPACES TO PRINT-LINE.
MOVE ' ' TO CC.

PERFORM U300 -WRITE-LINE.

U200 -WRITE-ERR-LINE.

WRITE ERR-REC-OUT AFTER POSITIONING ERR-CC.

IF ERR-CC = '1' THEN MOVE O TO ERR-LINE-COUNT

ELSE IF ERR-CC = ' ' THEN ADD 1 TO ERR-LINE-COUNT
ELSE IF ERR-CC = 'O' THEN ADD 2 TO ERR-LINE-COUNT.

IF ERR-LINE-COUNT > LINE-MAX THEN

PERFORM U220 -ERR-HEADER.
U220-ERR-HEADER.
MOVE ERR-HEADER-1 TO ERR-LINE.
MOVE '1' TO ERR-CC.
PERFORM U200-WRITE-ERR-LINE
MOVE '0@' TO ERR-CC.
MOVE ERR-HEADER-2 TO ERR-LINE.
PERFORM U200-WRITE-ERR-LINE.
MOVE ERR-HEADER-3 TO ERR-LINE.
PERFORM U200-WRITE-ERR-LINE.
MOVE SPACES TO ERR-LINE.
MOVE ' ' TO ERR-CC.
PERFORM U200-WRITE-ERR-LINE.
IDMS-ABORT.
EXIT.
IDMS-ABORT -EXIT.
COPY IDMS IDMS-STATUS.

IDMS-STATUS SECTION.

IDMS - STATUS- PARAGRAPH.

IF DB-STATUS-OK GO TO ISABEX.

PERFORM IDMS-ABORT.

DISPLAY ! okkskskskstoksokkokskskokdokokokskskok ok ook 1
' ABORTING - ' PROGRAM-NAME
Yl ERROR - STATUS
! ERROR -RECORD
! Rk RECOVER IDMS #Hokx!
UPON CONSOLE.

386 DML Reference Guide for COBOL

Sample Batch Program from the COBOL Precompiler

00701 DISPLAY 'PROGRAM NAME ------ ' PROGRAM-NAME.

00702 DISPLAY 'ERROR STATUS ------ ' ERROR-STATUS.

00703 DISPLAY ‘ERROR RECORD ------ ' ERROR-RECORD.

00704 DISPLAY 'ERROR SET --------- ' ERROR-SET.

00705 DISPLAY 'ERROR AREA -------- ' ERROR-AREA.

00706 DISPLAY 'LAST GOOD RECORD -- ' RECORD-NAME.

00707 DISPLAY 'LAST GOOD AREA ---- ' AREA-NAME.

00708 MOVE 39 TO SSC-INO1-REQ-CODE.

00709 MOVE @ TO SSC-INO1-REQ-RETURN.

00710 MOVE ' ' TO SSC-STATUS-LABEL.

00711 PERFORM IDMS-STATUS-LOOP

00712 UNTIL SSC-INO1-REQ-RETURN > 0.
DMLCO018 00713 ROLLBACK.

00714 MOVE 18 TO DML -SEQUENCE

00715 CALL 'IDMS' USING SUBSCHEMA-CTRL

00716 IDBMSCOM (67).

00717 CALL 'ABORT'.

00718 GO TO ISABEX.

00719 IDMS5-STATUS-LOOP.

00720 CALL 'IDMSIN1' USING IDBMSCOM(41)

00721 SSC-INO1-REQ-WK

00722 SUBSCHEMA - CTRL

00723 IDBMSCOM(1)

00724 DML - SEQUENCE

00725 SSC-STATUS-LINE.

00726 IF SSC-INO1-REQ-RETURN GREATER THAN 4

00727 DISPLAY 'DML SEQUENCE ------ ' DML-SEQUENCE

00728 ELSE

00729 DISPLAY SSC-STATUS-LABEL '--- ' SSC-STATUS-VALUE.

00730 ISABEX. EXIT.

NO MESSAGES FOR PROGRAM DEPTRPT

Sample Batch Program from the COBOL Precompiler

The followinglistingillustrates the samplebatch program after precompilation by the
COBOL precompiler.The original codeis further expanded and includes the following:

m Line numbers generated by the COBOL compiler
m CA IDMS call statements for the requested DML functions
m Diagnostic messages

Note: For more information aboutexpanded code generated by the DML compiler,
see CA IDMS Call Formats (see page 453).

This listing contains thesample program output from the COBOL compiler with the fully
expanded code (includingthecalls to CA IDMS) generated by the DML compiler.

Appendix B: Sample Batch Program 387

Sample Batch Program from the COBOL Precompiler

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048

*DMLIST
*NO-ACTIVITY-LOG
*SCHEMA - COMMENTS

IDENTIFICATION DIVISION.

PROGRAM-ID. DEPTRPT.

AUTHOR. COMPUTER ASSOCIATES INTERNATIONAL.
DATE-WRITTEN. APRIL 1995.

REMARKS. THIS PROGRAM DEMONSTRATES

CA IDMS DATABASE ACCESS USING
COBOL DML STATEMENTS. IT READS
DEPARTMENT ID NUMBERS AND RETRIEVES
RELATED RECORD OCCURRENCES,
PRINTING A REPORT THAT INCLUDES
DEPARTMENT, EMPLOYEE, JOB, AND
OFFICE INFORMATION.

sk stok sk Rk Kk Kok Rk Kk Kk ok sk ok ok Kok ok sk ks skoR sk sk ok sk ok ok sk ok sk ok ok ok ko

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT DEPT-FILE-IN ASSIGN TO INFILE.
SELECT DEPT-FILE-OUT ASSIGN TO OUTFILE.
SELECT ERR-FILE-OUT ASSIGN TO ERRFILE.

K3k Kok 5k K 5K ok >k ok ok kok K ok K Sk K Sk >k sk kok >k ok ok Sk >k sk ok kok K ok K sk K sk K Skok ok >k Sk >k ok >k Sk kok sk ok sk k sk k sk kok k kR k-

*IDMS-CONTROL SECTION.

*

*PROTOCOL. MODE IS BATCH DEBUG
* IDMS-RECORDS MANUAL.

Sk >k ook sk ok ok ok ok ok ok skok ok ok ok >k ok ok ok >k Skok sk sk ok ok ok sk sk skok ok ok ok sk ok ok ok kok sk ok sk ok sk ok sk kok sk ok ok ok sk k ok skok sk k sk ok

DATA DIVISION.

*SCHEMA SECTION.

*

*DB EMPSSO1 WITHIN EMPSCHM.

Sk >k ok ok 5k ok ok ok ok ok Kok Sk ok ok >k 3k >k ok >k Skok ok sk ok ok ok sk ok skok Sk K ok >k Sk >k Sk kok ok ok >k ok ok ok sk kok 5k sk K ok sk sk >k skok sk k sk k

FILE SECTION.

FD DEPT-FILE-IN
RECORD CONTAINS 80
BLOCK CONTAINS 80 CHARACTERS
RECORDING MODE IS F
LABEL RECORDS ARE OMITTED.

388 DML Reference Guide for COBOL

Sample Batch Program from the COBOL Precompiler

00049

00050 01 DEPT-REC-IN.

00051 02 DEPT-ID-IN PIC 9(4).
00052 02 DEPT-IN-FILLER PIC X(76).
00053

00054 FD DEPT-FILE-OUT

00055 RECORD CONTAINS 133

00056 BLOCK CONTAINS 133 (HARACTERS
00057 RECORDING MODE IS F

00058 LABEL RECORDS ARE OMITTED.
00059

00060 01 DEPT-REC-OUT.

00061 02 CC PIC X.

00062 02 PRINT-LINE PIC X(132).
00063

00064 FD ERR-FILE-OUT

00065 RECORD CONTAINS 133

00066 BLOCK CONTAINS 133 (HARACTERS
00067 RECORDING MODE IS F

00068 LABEL RECORDS ARE OMITTED.
00069

00070 01 ERR-REC-QUT.

00071 02 ERR-CC PIC X.

00072 02 ERR-LINE PIC X(132).
00073

00074 KK A KA A KA KA A KKK AR A AR KA KK AK A KA KK KA KA A KA AKKAAKKAAAKKAKK
00075 WORKING-STORAGE SECTION.

00076 01 EOF-SW PIC X VALUE 'N'.
00077 88 END-OF-FILE VALUE 'Y'.

00078 01 LINE-COUNT PIC 9 VALUE 0.
00079 01 ERR-LINE-COUNT PIC 99 VALUE 0.
00080 01 LINE-MAX PIC 99 VALUE 50.

00081 A A F A KA A FAAFAA A F A F A A A FAA A A A AFAAFAA A A A KA KA KK
00082 01 DEPT-HEADER.

00083 05 FILLER PIC X(30) VALUE SPACES.

00084 05 FILLER PIC X(13) VALUE 'DEPARTMENT ID'.

00085 05 FILLER PIC X(10) VALUE SPACES.

00086 05 FILLER PIC X(9) VALUE 'DEPT NAVE'.

00087 05 FILLER PIC X(70) VALUE SPACES.

00088 01 DEPT-DETAIL-LINE.

00089 05 FILLER PIC X(33) VALUE SPACES.

Appendix B: Sample Batch Program 389

Sample Batch Program from the COBOL Precompiler

00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137

05 DEPT-ID-OUT PIC X(4).

05 FILLER PIC X(16) VALUE SPACES.
05 DEPT-NAME-OUT PIC X(45).
05 FILLER PIC X(34) VALUE SPACES.

01 EMP-HEADRR.
05 FILLER PIC X(5) VALUE SPACES.
05 FILLER PIC X(6) VALUE 'EMP ID'.
05 FILLER PIC X(2) VALUE SPACES.
05 FILLER PIC X(9) VALUE 'LAST NAME'.
05 FILLER PIC X(8) VALUE SPACES.
05 FILLER PIC X(10) VALUE 'FIRST NAME'.
05 FILLER PIC X(3) VALUE SPACES.
05 FILLER PIC X(10) VALUE 'START DATE'.
05 FILLER PIC X(2) VALUE SPACES.
05 FILLER PIC X(9) VALUE 'JOB TITLE'.
05 FILLER PIC X(13) VALUE SPACES.
05 FILLER PIC X(14) VALUE 'OFFICE ADDRESS'.
05 FILLER PIC X(42) VALUE SPACES.

01 EMP-DETAIL-LINE.

05 FILLER PIC X(5) VALUE SPACES.
65 ID-O0UT PIC X(4).
05 FILLER PIC X(4) VALUE SPACES.
05 LAST-OUT PIC X(15).
65 FILLER PIC X(2) VALUE SPACES.
05 FIRST-OUT PIC X(10).
05 FILLER PIC X(3) VALUE SPACES.
05 SD-OUT.

10 SD-MM PIC XX.

10 FILLRR PIC X VALUE '/"'.

10 SD-DD PIC XX.

10 FILLRR PIC X VALUE '/".

10 SD-YY PIC XX.
05 FILLER PIC X(4) VALUE SPACES.
65 TITLE-OUT PIC X(20).
05 FILLER PIC X(2) VALUE SPACES.

05 OFF-ADDRESS-OUT.

05 FILLER

10
10
10
10
10
10
10

STREET-OUT PIC X(20).

FILLER PIC XX VALUE SPACES.
CITY-OUT PIC X(15).

FILLER PIC XX VALUE SPACES.
STATE-OUT PIC XX.
FILLER PIC XX
ZIP-OUT PIC X(5).
PIC X(8)

VALUE SPACES.

VALUE SPACES.

01 ERR-HEADER-1.

05 FILLER
05 FILLER
05 FILLER

PIC X(40)
PIC X(12)
PIC X(80)

VALUE SPACES.

VALUE SPACES.

390 DML Reference Guide for COBOL

VALUE 'ERROR REPORT'.

Sample Batch Program from the COBOL Precompiler

00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173

01 ERR-HEADER-2.

05 FILLER
05 FILLER
05 FILLER

PIC X(10) VALUE SPACES.
PIC X(4) VALUE '*** ',
PIC X(51) VALUE

'THIS REPORT LISTS EMPTY AND NONEXISTENT DEPARTMENTS'.

05 FILLER
05 FILLER

PIC X(4) VALUE ' ***',
PIC X(63) VALUE SPACES.

01 ERR-HEADER-3.

05 FILLER
05 FILLER
05 FILLER
05 FILLER
05 FILLER

PIC X(20) VALUE SPACES.
PIC X(7) VALUE 'DEPT ID'.
PIC X(9) VALUE SPACES.
PIC X(7) VALUE 'MESSAGE'.
PIC X(89) VALUE SPACES.

01 ERR-DETAIL-LINE.

05 FILLER

PIC X(20) VALUE SPACES.

05 ERR-ID-OUT PIC X(4).

05 FILLER

PIC X(12) VALUE SPACES.

05 ERR-MESS-OUT PIC X(15).

05 FILLER

PIC X(79) VALUE SPACES.

Skookokok >k ok ok ok >k ok ok skok ok ok >k sk ok ok ok sk skok sk sk ok ok sk sk ok skok ok ok ok skook sk sk skek >k sk ok sk >k sk ok skok sk sk k sk ok sk sk skok kok sk k

01 MESSAGES.

05 NO-JOB-MESSAGE.

10 FILLRR

PIC X(20) VALUE 'NO JOB ASSIGNED'.

05 NO-OFFICE-MESSAGE.

10 FILLRR

PIC X(20)

VALUE 'NO OFFICE ASSIGNED'.
05 NO-DEPT-MESSAGE.

10 FILLERR

PIC X(15) VALUE 'DOES NOT EXIST'.

05 NO-EMP-MESSAGE.

10 FILLERR

PIC X(15) VALUE 'IS EMPTY'.

05 NO-INPUT-MESSAGE.

10 FILLERR
10 FILLERR
10 FILLERR
10 FILLER
10 FILLER

PIC XX VALUE SPACES.

PIC X(11) VALUE '=======>> "',
PIC X(8) VALUE 'NO INPUT'.
PIC X(11) VAWE ' <<=======',
PIC X(100) VALUE SPACES.

Appendix B: Sample Batch Program 391

Sample Batch Program from the COBOL Precompiler

00174
00175
00176
00177
00178
00179
00180
00181
00182
00183
00184
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
00218

*01 COPY IDMS SUBSCHEMA-CTRL.
01 SUBSCHEMA-CTRL.
03 PROGRAM-NAME PIC X(8)
VALUE SPACES .
03 ERROR-STATUS PIC X(4)
VALUE '1400'
88 DB-STATUS-OK
VALUE '0000'
88 ANY-STATUS
VALUE ' ' THRU '9999' .
88 ANY-ERROR-STATUS
VALUE '0001' THRU '9999' .
88 DB-END-OF-SET
VALUE '0307'
88 DB-REC-NOT-FOUND
VALUE '0326'
03 DBKEY PIC S9(8) COMP SYNC.
03 RECORD-NAME PIC X(16)
VALUE SPACES .
03 RRECORD-NAME

05 SSC-NODN PIC X(8).
05 SSC-DBN PIC X(8).
03 AREA-NAME PIC X(16)

VALUE SPACES .

03 AREA-RNAME REDEFINES AREA-NAVE.
05 SSC-DNO PIC X(8).
05 SSC-DNA PIC X(8).
03 ERROR-SET PIC X(16)
VALUE SPACES .
03 ERROR-RECORD PIC X(16)
VALUE SPACES .
03 ERROR-AREA PIC X(16)
VALUE SPACES .
03 IDBMSCOM-AREA PIC X(100)

VALUE LOW-VALUE
03 IDBMSCOM
PIC X
OCCURS 100.
03 RIDBMSCOM
05 DB-SUB-ADDR
05 FILLRR
03 R1DBMSCOM
05 PAGE-INFO.
07 PAGE-INFO-GROUP PIC S9(4) COMP.

PIC X(4).
PIC X(96).

392 DML Reference Guide for COBOL

REDEFINES RECORD-NAME.

REDEFINES IDBMSCOM-AREA

REDEFINES IDBMSCOM-AREA.

REDEFINES IDBMSCOM-AREA.

Sample Batch Program from the COBOL Precompiler

00219 07 PAGE-INFO-DBK-FORMAT

00220 PIC 9(4) COMP.

00221 05 SSC-IDMS-STATUS-WRK.

00222 07 SSC-INO1-REQ-WK.

00223 09 SSC-INO1-REQ-CODE

00224 PIC S9(8) COMP.
00225 09 SSC-INO1-REQ-RETURN

00226 PIC S9(8) COMP.
00227 07 SSC-STATUS-LINE.

00228 09 SSC-STATUS-LABEL PIC X(16).
00229 09 SSC-STATUS-VALUE PIC X(12).
00300 05 FILLRR PIC X(60).

00301 03 DIRECT-DBKEY PIC S9(8) COMP SYNC.
00302 03 DIRECT-DBK REDEFINES DIRECT-DBKEY
00303 PIC S9(8) COMP SYNC.

00234 03 DATABASE-STATUS.

00235 05 DBSTATMENT-CODE PIC X(2).

00236 05 DBSTATUS-CODE PIC X(5).

00237 03 FILLER PIC X.

00238 03 RECORD-0CCUR PIC S9(8) COMP SYNC.
00239 03 DML-SEQUENCE PIC S9(8) COMP SYNC.
00240

00241 *01 COPY IDMS SUBSCHEMA-SSNAME.

00242 01 SUBSCHEMA-SSNAME PIC X(8)

00243 VALUE 'EMPSSO1 '

00244

00245 *01 COPY IDMS SUBSCHEMA-RECNAMES.
00246 01 SUBSCHEMA-RECNAMES.

00247 03 SR460 PIC X(16)

00248 VALUE 'STRUCTURE '
00249 03 SR455 PIC X(16)

00250 VALUE 'SKILL '
00251 03 SR450 PIC X(16)

00252 VALUE 'OFFICE '
00253 03 SR445 PIC X(16)

00254 VALUE 'NON-HOSP-CLAIM ' .
00255 03 SR440 PIC X(16)

00256 VALUE 'JOB "
00257 03 SR435 PIC X(16)

00258 VALUE 'INSURANCE-PLAN ' .
00259 03 SR430 PIC X(16)

00260 VALUE 'HOSPITAL-CLAIM ' .
00261 03 SR425 PIC X(16)

00262 VALUE 'EXPERTISE '
00263 03 SR420 PIC X(16)

00264 VALUE 'EMPOSITION '
00265 03 SR415 PIC X(16)

00266 VALUE 'EMPLOYEE '

Appendix B: Sample Batch Program 393

Sample Batch Program from the COBOL Precompiler

00267 03 SR410 PIC X(16)

00268 VALUE 'DEPARTMENT '
00269 03 SR405 PIC X(16)

00270 VALUE 'DENTAL-CLAIM '
00271 03 SR400 PIC X(16)

00272 VALUE 'COVERAGE "L
00273

00274 *01 COPY IDMS SUBSCHEMA-SETNAMES.
00275 01 SUBSCHEMA-SETNAMES.

00276 03 COVERAGE-CLAIMS PIC X(16)

00277 VALUE 'COVERAGE-CLAIMS ' .
00278 03 DEPT-EMPLOYEE PIC X(16)

00279 VALUE 'DEPT-EMPLOYEE ' .
00280 03 EMP-COVERAGE PIC X(16)

00281 VALUE 'EMP-COVERAGE
00282 03 EMP-EXPERTISE PIC X(16)

00283 VALUE 'EMP-EXPERTISE ' .
00284 03 EMP-NAME-NDX PIC X(16)

00285 VALUE 'EMP-NAME-NDX ' .
00286 03 EMP-EMPOSITION PIC X(16)

00287 VALUE 'EMP-EMPOSITION ' .
00288 03 JOB-EMPOSITION PIC X(16)

00289 VALUE 'JOB-EMPOSITION ' .
00290 03 JOB-TITLE-NDX PIC X(16)

00291 VALUE 'JOB-TITLE-NDX ' .
00292 03 MANAGES PIC X(16)

00293 VALUE 'MANAGES '
00294 03 OFFICE-EMPLOYEE PIC X(16)

00295 VALUE 'OFFICE-EMPLOYEE ' .
00296 03 REPORTS-TO PIC X(16)

00297 VALUE 'REPORTS-TO '
00298 03 SKILL-EXPERTISE PIC X(16)

00299 VALUE 'SKILL-EXPERTISE ' .
00300 03 SKILL-NAME-NDX PIC X(16)

00301 VALUE 'SKILL-NAME-NDX ' .
00302 03 CALC PIC X(16)

00303 VALUE 'CALC "
00304

00305 *01 COPY IDMS RECORD EMPLOYEE.
00306 01 EMPLOYEE.

00307 02 EMP-ID-0415 PIC 9(4).
00308 02 EMP-NAME-0415.

394 DML Reference Guide for COBOL

Sample Batch Program from the COBOL Precompiler

00309 03 EMP-FIRST-NAME-0415 PIC X(10).
00310 03 EMP-LAST-NAME-0415 PIC X(15).
00311 02 EMP-ADDRESS-0415.

00312 03 EMP-STREET-0415 PIC X(20).
00313 03 EMP-CITY-0415 PIC X(15).
00314 03 EMP-STATE-0415 PIC X(2).
00315 03 EMP-ZIP-0415.

00316 04 EMP-ZIP-FIRST-FIVE-0415

00317 PIC X(5).

00318 04 EMP-ZIP-LAST-FOUR-0415

00319 PIC X(4).

00320 02 EMP-PHONE-0415 PIC 9(10).
00321 02 STATUS-0415 PIC X(2).
00322 88 ACTIVE-0415

00323 VALUE '01'

00324 88 ST-DISABIL-0415
00325 VALUE '02'

00326 88 LT-DISABIL-0415
00327 VALUE '03'

00328 88 LEAVE-OF-ABSENCE-0415
00329 VALUE '04'

00330 88 TERMINATED-0415
00331 VALUE '05'

00332 02 SS-NUMBER-0415 PIC 9(9).
00333 02 START-DATE-0415.

00334 03 START-YEAR-0415 PIC 9(4).
00335 03 START-MONTH-0415 PIC 9(2).
00336 03 START-DAY-0415 PIC 9(2).
00337 02 TERMINATION-DATE-0415.

00338 03 TERMINATION-YEAR-0415 PIC 9(4).
00339 03 TERMINATION-MONTH-0415 PIC 9(2).
00340 03 TERMINATION-DAY-0415 PIC 9(2).
00341 02 BIRTH-DATE-0415.

00342 03 BIRTH-YEAR-0415 PIC 9(4).
00343 03 BIRTH-MONTH-0415 PIC 9(2).
00344 03 BIRTH-DAY-0415 PIC 9(2).

Appendix B: Sample Batch Program 395

Sample Batch Program from the COBOL Precompiler

00345
00346 *01 COPY IDMS RECORD DEPARTMENT.
00347 01 DEPARTMENT.

00348 02 DEPT-ID-0410 PIC 9(4).
00349 02 DEPT-NAME-0410 PIC X(45).
00350 02 DEPT-HEAD-ID-0410 PIC 9(4).
00351 02 FILLER PIC XXX.

00352

00353 *01 COPY IDMS RECORD JOB.
00354 01 JOB.

00355 02 JOB-ID-0440 PIC 9(4).

00356 02 TITLE-0440 PIC X(20).

00357 02 DESCRIPTION-0440.

00358 03 DESCRIPTION-LINE-0440 PIC X(60)
00359 OCCURS 2.

00360 02 REQUIRBMENTS-0440.

00361 03 REQUIREMENT-LINE-0440 PIC X(60)
00362 OCCURS 2.

00363 02 MINIMUM-SALARY-0440 PIC S9(6)V99.
00364 02 MAXIMUM-SALARY-0440 PIC S9(6)V99.
00365 02 SALARY-GRADES-0440 PIC 9(2)
00366 OCCURS 4.

00367 02 NUMBER-OF -POSITIONS-0440

00368 PIC 9(3).

00369 02 NUMBER-OPEN-0440 PIC 9(3).
00370 02 FILLER PIC XX.

00371

00372 *01 COPY IDMS RECORD EMPOSITION.
00373 01 EMPOSITION.

00374 02 START-DATE-0420.

00375 03 START-YEAR-0420 PIC 9(4).

00376 03 START-MONTH-0420 PIC 9(2).

00377 03 START-DAY-0420 PIC 9(2).

00378 02 FINISH-DATE-0420.

00379 03 FINISH-YEAR-0420 PIC 9(4).

00380 03 FINISH-MONTH-0420 PIC 9(2).

00381 03 FINISH-DAY-0420 PIC 9(2).

00382 02 SALARY-GRADE-0420 PIC 9(2).

00383 02 SALARY-AMOUNT-0420 PIC S9(7)V99 COMP-3.
00384 02 BONUS-PERCENT-0420 PIC Sv999 COMP-3.

396 DML Reference Guide for COBOL

Sample Batch Program from the COBOL Precompiler

00385
00386
00387
00388
00389
00390
00391
00392
00393
00394
00395
00396
00397
00398
00399
00400
00401
00402
00403
00404
00405
00406
00407
00408
00409
00410
00411
00412
00413
00414
00415
00416
00417
00418
00419

02 COMMISSION-PERCENT-0420 PIC SV999 COMP-3.
02 OVERTIME-RATE-0420 PIC SO9vV99 COMP-3.
02 FILLER PIC XXX.

*01 COPY IDMS RECORD OFFICE.

01 OFFICE.
02 OFFICE-CODE-0450 PIC X(3).
02 OFFICE-ADDRESS-0450.
03 OFFICE-STREET-0450 PIC X(20).
03 OFFICE-CITY-0450 PIC X(15).
03 OFFICE-STATE-0450 PIC X(2).
03 OFFICE-ZIP-0450.
04 OFFICE-ZIP-FIRST-FIVE-0450

PIC X(5).

04 OFFICE-ZIP-LAST-FOUR-0450
PIC X(4).

02 OFFICE-PHONE-0450 PIC 9(7)
OCCURS 3.

02 OFFICE-AREA-CODE-0450 PIC X(3).

02 SPEED-DIAL-0450 PIC X(3).

02 FILLER PIC X(4).
PROCEDURE DIVISION.

ko okokokokokokokkookok ok k ok sk ok ok ok ok skok sk ok ok ok ok sk sk skok ok ok ok ok ok ok ok kok ok sk sk sk ok sk sk kok sk ok ok ok sk sk sk skok sk

* PROCEDURE DIVISION GENERAL STRATEGY: *

* 1) READ DEPT-ID-IN, WHICH CONTAINS THE *

* DEPT-ID NUMBRR *

* 2) ACCESS THE DATABASE USING THE DEPT-ID NUMBER *
* WITH AN OBTAIN CALC ON THE DEPARTMENT RECORD *

* 3) ACCESS ALL BMPLOYEES IN THE DEPT-EMPLOYEE SET *
* AND RETRIEVE RELATED JOB AND OFFICE DATA *
*
*
*
*

*

*

4) PRINT A REPORT FOR EACH DEPARTMENT *

5) PRINT AN ERROR REPORT FOR EMPTY DEPARTMENTS *
AND NONEXISTENT DEPARTMENTS (NO MATCHING *
DEPT-ID) *

* X X X X X X ¥ %

Appendix B: Sample Batch Program 397

Sample Batch Program from the COBOL Precompiler

00420
00421
00422
00423
00424
00425
00426
00427
00428
00429
00430
00431
00432
00433
00434
00435
00436
00437
00438
00439
00440
00441
00442
00443
00444
00445
00446
00447
00448
00449
00450
00451
00452
00453
00454
00455
00456
00457
00458
00459
00460
00461
00462
00463
00464
00465
00466

K skokskokskok koK okok 5k ok ok sk ok ok >k sk kok sk k sk ok sk k sk kok k ok >k sk ok ok >k Skok k sk k sk sk sk sk skok sk k sk k sk k sk kek k

MAIN-LINE.
PERFORM INIT-FILES.
IF END-OF-FILE
PERFORM EMPTY - INPUT - PROCESSING
ELSE
PERFORM INIT-BIND-READY
PERFORM U220 -ERR-HEADER
PERFORM DEPT-PROCESSING THRJ DEPT-PROCESSING-EXIT
UNTIL END-OF-FILE.
PERFORM END-PROCESSING.
GOBACK.

INIT-BIND-READY.
Sk >k ok ok ok ok ok ok ok ok kok Sk >k ok >k 3k >k ok >k Skok k sk ok ok ok sk sk kok ok >k ok >k Sk >k Sk kok ok sk >k sk ok ok sk kok 5k ok K ok sk sk >k skok sk k sk k
* THE BIND STATEMENTS ARE PERFORMED INDIVIDUALLY (RATHER —*
* THAN BY USING A COPY IDMS SUBSCHEMA-BINDS) IN ORDER TO *
* CHECK EACH ERROR-STATUS BY PERFORMING THE IDMS-STATUS — *
* ROUTINE. *
Skookkok >k ok ok ok >k ok ok skok ok ok >k sk ok ok ok sk skok sk sk ok ok sk sk ok kok sk ok >k sk sk ok sk skok sk ok sk ok ok sk sk skok sk ok sk ok sk ok sk kok sk k sk ok
MOVE 'DEPTRPT' TO PROGRAM-NAME.
* BIND RUN-UNIT.
MOVE 1 TO DML-SEQUENCE
CALL 'IDMS' USING SUBSCHEMA-CTRL
IDBMSCOM (59)
SUBSCHEMA-CTRL
SUBSCHEMA - SSNAME .
PERFORM IDMS-STATUS.
* BIND EMPLOYEE.
MOVE 2 TO DML-SEQUENCE
CALL 'IDMS' USING SUBSCHEMA-CTRL
IDBMSCOM (48)
SR415
EMPLOYEE.
PERFORM IDMS-STATUS.
* BIND DEPARTMENT.
MOVE 3 TO DML-SEQUENCE
CALL 'IDMS' USING SUBSCHEMA-CTRL
IDBMSCOM (48)
SR410
DEPARTMENT..
PERFORM IDMS-STATUS.
* BIND JOB.
MOVE 4 TO DML-SEQUENCE
CALL 'IDMS' USING SUBSCHEMA-CTRL
IDBMSCOM (48)

DMLCO001

DMLC0002

DMLCO063

DM_CO004

398 DML Reference Guide for COBOL

Sample Batch Program from the COBOL Precompiler

00467 SR440

00468 JOB.

00469 PERFORM IDMS-STATUS.

00470 * BIND EMPOSITION. DMLC0OO65
00471 MOVE 5 TO DML-SEQUENCE

00472 CALL 'IDMS' USING SUBSCHEMA-CTRL

00473 IDBMSCOM (48)

00474 SR420

00475 EMPOSITION.

00476 PERFORM IDMS-STATUS.

00477 * BIND OFFICE. DMLCO006
00478 MOVE 6 TO DML-SEQUENCE

00479 CALL 'IDMS' USING SUBSCHEMA-CTRL

00480 IDBMSCOM (48)

00481 SR450

00482 OFFICE.

00483 PERFORM IDMS-STATUS.

00484 * READY. DMLCO007
00485 MOVE 7 TO DML-SEQUENCE

00486 CALL 'IDMS' USING SUBSCHEMA-CTRL

00487 IDBMSCOM (37).

00488 PERFORM IDMS-STATUS.

00489

00490 INIT-FILES.

00491 OPEN INPUT DEPT-FILE-IN.

00492 OPEN OUTPUT DEPT-FILE-OUT.

00493 OPEN OUTPUT ERR-FILE-OUT.

00494 MOVE SPACES TO PRINT-LINE.

00495 MOVE SPACES TO ERR-LINE.

00496 READ DEPT-FILE-IN AT END MOVE 'Y' TO EOF-SW.
00497

00498 EMPTY - INPUT -PROCESSING.

00499 MOVE NO-INPUT-MESSAGE TO PRINT-LINE.

00500 MOVE '1' TO CC.

00501 PERFORM UGOO-WRITE-LINE.

00502

00504 * THIS PARAGRAPH ACCESSES THE DATABASE USING THE DEPT-ID-0415 *
00505 * CALCKEY VALUE. *

00506 stk sk ok kR ok sk ok sk ok koo sk sk ok sk ok sk ok sk sk ok sk ok koo sk sk ok sk ok sk ok ok
00507 DEPT - PROCESSING.

00508 MOVE DEPT-ID-IN TO DEPT-ID-0410.

00509 * OBTAIN CALC DEPARTMENT. DMLCO008
00510 MOVE 8 TO DML-SEQUENCE

00511 CALL 'IDMS' USING SUBSCHEMA-CTRL

00512 IDBMSCOM (32)

00513 SR410

00514 IDBMSCOM (43).

Appendix B: Sample Batch Program 399

Sample Batch Program from the COBOL Precompiler

00515
00516
00517
00518
00519
00520
00521
00522
00523
00524
00525
00526
00527
00528
00529
00530
00531
00532
00533
00534
00535
00536
00537
00538
00539
00540
00541
00542
00543
00544
00545
00546
00547
00548
00549
00550
00551
00552
00553
00554
00555
00556
00557
00558
00559
00560
00561
00562

IF DB-REC-NOT-FOUND THEN
PERFORM NO-DEPT -PROCESSING
ELSE
PERFORM IDMS-STATUS
* IF DEPT-EMPLOYEE IS NOT EMPTY DMLC0009
MOVE 9 TO DML-SEQUENCE
CALL 'IDMS' USING SUBSCHEMA-CTRL
IDBMSCOM (65)
DEPT -EMPLOYEE;
IF ERROR-STATUS EQUAL TO '1601'
THEN
PERFORM U020-VALID-HEADER
MOVE DEPT-ID-0410 TO DEPT-ID-OUT
MOVE DEPT-NAME-0410 TO DEPT-NAME-OUT
MOVE DEPT-DETAIL-LINE TO PRINT-LINE
PERFORM UOOO-WRITE-LINE
PERFORM U030 - EMP-HEADERS
PERFORM SET-WALK THRU SET-WALK-EXIT
UNTIL DB-END-OF-SET
ELSE
PERFORM EMPTY-SET.
READ DEPT-FILE-IN AT END MOVE 'Y' TO EOF-SW.
DEPT - PROCESSING-EXIT.
EXIT.

Sk >k ok sk ok ok ok sk ok sk dkok ok ok ok >k Sk ok ok >k Skok sk sk sk ok ok sk sk skok ok k ok ok ok ok ok kok sk ok sk sk sk ok sk kok sk ok k ok sk ok ok skok sk k sk ok

* THIS PARAGRAPH RETRIEVES EMPLOYEE, JOB, AND OFFICE DATA *
* FOR EACH BMPLOYEE IN THE DEPT-EMPLOYEE SET. *
sokstok sk ok sk ok Kok ok sk ok kR ok sk ok sk ok sk skok ok ok sk ok sk sk sk sk sk ok sk sk ok sk ko sk ok ok
SET-WALK.
* OBTAIN NEXT EMPLOYEE WITHIN DEPT-EMPLOYEE. DMLC0010
MOVE 10 TO DML-SEQUENCE
CALL 'IDMS' USING SUBSCHEMA-CTRL
IDBMSCOM (10)
SR415
DEPT -EMPLOYEE
IDBMSCOM (43).
IF DB-END-OF-SET
GO TO SET-WALK-EXIT
ELSE
PERFORM IDMS-STATUS.
MOVE EMP-ID-0415 TO ID-OUT.
MOVE EMP-LAST-NAME-0415 TO LAST-OUT.
MOVE EMP-FIRST-NAME-0415 TO FIRST-OUT.
MOVE START-YEAR-0415 TO SD-YY.
MOVE START-MONTH-0415 TO SD-MM.
MOVE START-DAY-0415 TO SD-DD.
* IF EMP-EMPOSITION IS EMPTY DM_C0011

400 DML Reference Guide for COBOL

Sample Batch Program from the COBOL Precompiler

00563 MOVE 11 TO DML-SEQUENCE

00564 CALL 'IDMS' USING SUBSCHEMA-CTRL

00565 IDBMSCOM (64)

00566 EMP-EMPOSITION;

00567 IF ERROR-STATUS EQUAL TO '0000'

00568 MOVE NO-JOB-MESSAGE TO TITLE-OUT

00569 ELSE

00570 * FIND FIRST WITHIN EMP-EMPOSITION DMLC0OO12
00571 MOVE 12 TO DML-SEQUENCE

00572 CALL 'IDMS' USING SUBSCHEMA-CTRL

00573 IDBMSCOM (20)

00574 EMP-EMPOSITION;

00575 PERFORM IDMS-STATUS

00576 * IF NOT JOB-EMPOSITION MEMBER DMLCO013
00577 MOVE 13 TO DML-SEQUENCE

00578 CALL 'IDMS' USING SUBSCHEMA-CTRL

00579 IDBMSCOM (62)

00580 JOB-EMPOSITION;

00581 IF ERROR-STATUS EQUAL TO '1601'

00582 MOVE NO-JOB-MESSAGE TO TITLE-OUT

00583 ELSE

00584 * OBTAIN OWNER WITHIN JOB-EMPOSITION DMLCOO14
00585 MOVE 14 TO DML-SEQUENCE

00586 CALL 'IDMS' USING SUBSCHEMA-CTRL

00587 IDBMSCOM (31)

00588 JOB-EMPOSITION

00589 IDBMSCOM (43);

00590 PERFORM IDMS-STATUS

00591 MOVE TITLE-0440 TO TITLE-OUT.

00592 * IF OFFICE-EMPLOYEE IS EMPTY DM_C0015
00593 MOVE 15 TO DML-SEQUENCE

00594 CALL 'IDMS' USING SUBSCHEMA-CTRL

00595 IDBMSCOM (64)

00596 OFFICE-EMPLOYEE;

00597 IF ERROR-STATUS EQUAL TO '6000"

00598 MOVE NO-OFFICE-MESSAGE TO STREET-OUT

00599 MOVE SPACES TO CITY-OUT

00600 MOVE SPACES TO STATE-OUT

00601 MOVE SPACES TO ZIP-OUT

00602 ELSE

00603 * OBTAIN OWNER WITHIN OFFICE-EMPLOYEE DMLC0O16
00604 MOVE 16 TO DML-SEQUENCE

00605 CALL 'IDMS' USING SUBSCHEMA-CTRL

00609 IDBMSCOM (31)

00607 OFFICE-EMPLOYEE

00608 IDBMSCOM (43);

00609 PERFORM IDMS-STATUS

00610 MOVE OFFICE-STREET-0450 TO STREET-OUT

Appendix B: Sample Batch Program 401

Sample Batch Program from the COBOL Precompiler

00611 MOVE OFFICE-CITY-0450 TO CITY-OUT

00612 MOVE OFFICE-STATE-0450 TO STATE-OUT
00613 MOVE OFFICE-ZIP-FIRST-FIVE-0450 TO ZIP-OUT
00614 MOVE EMP-DETAIL-LINE TO PRINT-LINE.
00615 PERFORM UGOO-WRITE-LINE.

00616 SET-WALK-EXIT.

00617 EXIT.

00618

00619 END-PROCESSING.

00620 * FINISH. DMLCO017
00621 MOVE 17 TO DML -SEQUENCE

00622 CALL 'IDMS' USING SUBSCHEMA-CTRL

00623 IDBMSCOM (2).

00624 PERFORM IDMS-STATUS.

00625 CLOSE DEPT-FILE-OUT.

00626 CLOSE ERR-FILE-OUT.

00627 CLOSE DEPT-FILE-IN.

00628

00629 EMPTY-SET.

00630 MOVE SPACES TO ERR-LINE.

00631 MOVE DEPT-ID-0410 TO ERR-ID-OUT.

00632 MOVE NO-EMP-MESSAGE TO ERR-MESS-OUT.

00633 MOVE ERR-DETAIL-LINE TO ERR-LINE.

00634 PERFORM U200-WRITE-ERR-LINE.

00635

00636 NO-DEPT-PROCESSING.

00637 MOVE DEPT-ID-IN TO ERR-ID-OUT.

00638 MOVE NO-DEPT-MESSAGE TO ERR-MESS-OUT.
00639 MOVE ERR-DETAIL-LINE TO ERR-LINE.

00640 PERFORM U200-WRITE-ERR-LINE.

00641

00642 U000 -WRITE-LINE.

00643 WRITE DEPT-REC-OUT AFTER POSITIONING CC.
00644 IF CC = '1' THEN MOVE O TO LINE-COUNT
00645 ELSE IF CC = ' ' THEN ADD 1 TO LINE-COUNT
00646 ELSE IF CC = 'O' THEN ADD 2 TO LINE-COUNT.
00647 IF LINE-COUNT > LINE-MAX

00648 THEN PERFORM U010 -NEW-PAGE-ROUTINE.
00649 UO10-NEW-PAGE-ROUTINE.

00650 PERFORM UG20-VALID-HEADER.

402 DML Reference Guide for COBOL

Sample Batch Program from the COBOL Precompiler

00651
00652
00653
00654
00655
00656
00657
00658
00659
00660
00661
00662
00663
00664
00665
00666
00667
00668
00669
00670
00671
00672
00673
00674
00675
00676
00677
00678
00679
00680
00681
00682
00683
00684
00685
00686
00687
00688
00689
00690

MOVE DEPT-DETAIL-LINE TO PRINT-LINE.
PERFORM UGOO-WRITE-LINE.
PERFORM UG30-EMP-HEADERS.
U020-VALID-HEADER.
MOVE DEPT-HEADER TO PRINT-LINE.
MOVE '1' TO CC.
PERFORM UGOO-WRITE-LINE
MOVE ' ' TO CC.
U030 - EMP-HEADERS.
MOVE '0' TO CC.
MOVE EMP-HEADER TO PRINT-LINE.
PERFORM UGOO-WRITE-LINE.
MOVE SPACES TO PRINT-LINE.
MOVE ' ' TO CC.
PERFORM UGOO-WRITE-LINE.

U200-WRITE-ERR-LINE.
WRITE ERR-REC-OUT AFTER POSITIONING ERR-CC.
IF ERR-CC = '1' THEN MOVE © TO ERR-LINE-COUNT
ELSE IF ERR-CC = ' ' THEN ADD 1 TO ERR-LINE-COUNT
ELSE IF ERR-CC = '0' THEN ADD 2 TO ERR-LINE-COUNT.
IF ERR-LINE-COUNT > LINE-MAX THEN
PERFORM U220 -ERR-HEADER.
U220-ERR-HEADER.
MOVE ERR-HEADER-1 TO ERR-LINE.
MOVE '1' TO ERR-CC.
PERFORM U200-WRITE-ERR-LINE
MOVE '0' TO ERR-CC.
MOVE ERR-HEADER-2 TO ERR-LINE.
PERFORM U200-WRITE-ERR-LINE.
MOVE ERR-HEADER-3 TO ERR-LINE.
PERFORM U200-WRITE-ERR-LINE.
MOVE SPACES TO ERR-LINE.
MOVE ' ' TO ERR-CC.
PERFORM U200-WRITE-ERR-LINE.
IDMS-ABORT.
EXIT.
IDMS-ABORT-EXIT.
* COPY IDMS IDMS-STATUS.

Kk ok KoK oK oK oK oK oK ok S K KKK oK oK oK Kok ok ok 3 3 o K KoK oK oK oK oK ok ok ok ok K Kok sk ok oK ook ok ok 3k ok ok KKk oK oK oK oK ok ok oK

Appendix B: Sample Batch Program 403

Sample Batch Program from the COBOL Precompiler

00691 IDMS-STATUS SECTION.

00693 IDMS-STATUS -PARAGRAPH.

00694 IF DB-STATUS-OK GO TO ISABEX.

00695 PERFORM IDMS-ABORT.

00697 ' ABORTING - ' PROGRAM-NAME

00698 Yt ERROR-STATUS

00699 Yt ERROR-RECORD

00700 ' owekk RECOVER IDMS *#x!

00701 UPON CONSOLE.

00702 DISPLAY 'PROGRAM NAME ------ ' PROGRAM-NAME.
00703 DISPLAY 'ERROR STATUS ------ ' ERROR-STATUS.
00704 DISPLAY 'ERROR RECORD ------ ' ERROR-RECORD.
00705 DISPLAY 'ERROR SET --------- ' ERROR-SET.
00706 DISPLAY 'ERROR AREA -------- ' ERROR-AREA.
00707 DISPLAY 'LAST GOOD RECORD -- ' RECORD-NAME.
00708 DISPLAY 'LAST GOOD AREA ---- ' AREA-NAME.
00709 MOVE 39 TO SSC-INO1-REQ-CODE.

00710 MOVE @ TO SSC-INO1-REQ-RETURN.

00711 MOVE ' ' TO SSC-STATUS-LABEL.

00712 PERFORM IDMS-STATUS-LOOP

00713 UNTIL SSC-INO1-REQ-RETURN > 0.
00714 * ROLLBAK. DM_C0018
00715 MOVE 18 TO DML -SEQUENCE

00716 CALL 'IDMS' USING SUBSCHEMA-CTRL

00717 IDBMSCOM (67).

00718 CALL 'ABORT'.

00719 GO TO ISABEX.

00720 IDMS-STATUS-LOOP.

00721 CALL 'IDMSIN1' USING IDBMSCOM(41)

00722 SSC-INO1-REQ-WK

00723 SUBSCHEMA -CTRL

00724 IDBMSCOM(1)

00725 DML - SEQUENCE

00726 SSC-STATUS-LINE.

00727 IF SSC-INO1-REQ-RETURN GREATER THAN 4

00728 DISPLAY 'DML SEQUENCE ------ ' DML-SEQUENCE
00729 ELSE

00730 DISPLAY SSC-STATUS-LABEL '--- ' SSC-STATUS-VALUE.

00731 ISABEX. EXIT.

404 DML Reference Guide for COBOL

Appendix C: Sample Online Program

This appendix contains a sample CAIDMS onlineapplication thatillustrates the
structure of CA IDMS programs that accept data from a terminal operator andretrieve
information from the database.The application program highlights the following CA

IDMS features:

m Mapping mode inputand output

m Automatic editing and error handling
m Pseudo-conversational transactions
m LRF DML statements

The application's components, runtime requirements, and DML code are described
below.

This section contains the followingtopics:

Application Components (see page 405)

Application Runtime Requirements (see page 406)

Application Components

The application comprisesa program, two tasks,a map, and a subschema:

Program—The EMPDISP program either performs a MAP OUT to starta sessionor
performs a MAP IN, error checking, databaseaccess,anda MAP OUT.

Tasks—The task codes TSKO1 and TSKO02 affect the program flow of control:

TSKO1 causes the program to perform the INITIAL-MAPOUT portion of the program,
mappingout the empty screen with aninitialinput message.

TSKO02 causes the program to perform the GET-EMP portion of the program,
mappingin the data, checking the AID byte, performing the error checking and
databaseaccess portion of the program, and mapping out either an error message
or employee data.

Map—The application uses a map named EMPMAPLR to communicate with the
terminal operator. The EMPMAPLR map is illustrated below. Its map definition
specifies:

Eight literal fields including thetitle *** EMPLOYEE INFORMATION SCREEN ***,

Ten variabledata fields, to contain:employee ID, lastname, firstname, job title,
startdate, department name, and office address (street, city, state, and zip code).
All datais contained inthe EMP-JOB-LR logical record.

Appendix C: Sample Online Program 405

Application Runtime Requirements

Automatic editing for the employee IDfield specifies thatthe fieldisinerrorifthe
ID entered by the terminal operator does not comply with the field's external
picture (PI1C 9(4)).

Messages are output inthe SMESSAGE field.

Subschema—The application uses the EMPSS09 subschema, which specifies a usage
mode of LR. The program uses LRF DML statements to retrieve the EMP-JOB-LR
logical record.

x EMPLOYEE INFORMATION SCREEN *
EMPLOYEE ID:
LAST NAME :
FIRST NAVE:
JOB TITLE: START DATE:

DEPARTMENT NAME:
OFFICE:

ENTER AN BMP ID AND PRESS ENTER ** CLEAR TO EXIT

Application Runtime Requirements

The following requirements must be met to execute the sampleonlineapplication
under CA IDMS:

Define and generate the EMPMAPLR map.

Compile andlink editthe EMPDISP programintoa load librarythatis identified to
CA IDMS.

Define the EMPDISP program to the CAIDMS system either by submitting
PROGRAM statements to the system generation compiler or by usingthe DCMT
VARY DYNAMIC PROGRAM command at runtime.

Define the EMPMAPLR map andthe EMPSS09 subschema to the CA IDMS system by
submitting PROGRAM statements to the system generation compiler. Maps and
subschemas aredefined automaticallyatsystemstartupif null programdefinition
elements (PDEs) have been allocated for them at system generation.

406 DML Reference Guide for COBOL

Application Runtime Requirements

Sample Online COBOL Program as Input to the DML Precompiler

*NO-ACTIVITY-LOG
*DMLIST
IDENTIFICATION DIVISION.

PROGRAM-ID. EMPDISP.

AUTHOR. COMPUTER ASSOCIATES INTERNATIONAL.
DATE-WRITTEN. APRIL 1995.

REMARKS. THIS PROGRAM DEMONSTRATES

CA IDMS PROGRAMMING USING
THE LOGICAL RECORD FACILITY.

Sk ok >k ok ok ok >k ok sk kok ok ok ok >k ok ok ok ok ok >k ok ok sk >k ok Sk kok ok sk >k ok ok sk >k skok >k ok ok ok >k sk ok kok ok k sk ok ok ok sk kok sk k sk ok sk >k

ENVIRONMENT DIVISION.

sk ok ok o kKKK KoK oK oK oK oK ok ok K oK KoK oK oK oK oK oK ok 3k 3 KKK koK oK oK ok ok ok S ok KoK sk oK oK oK ok ok ok ko oK

IDMS-CONTROL SECTION.

PROTOCOL. MODE IS IDMS-DC DEBUG
IDMS-RECORDS MANUAL.
SKIP3
DATA DIVISION.

SCHEMA SECTION.

DB EMPSS09 WITHIN EMPSCHM.

MAP SECTION.
MAX FIELD LIST IS 5.
MAP EMPMAPLR VERSION 1 TYPE IS STANDARD.

WORKING-STORAGE SECTION.
01 TASK-CODE PIC X(8).

01 TSKo1 PIC X(8) VALUE 'TSKo1'.
01 TSKO2 PIC X(8) VALUE 'TSK@2'.
01 MESSAGES.

05 INITIAL-MESSAGE PIC X(80) VALUE
'"ENTER AN EMP ID AND PRESS ENTER ** CLEAR TO EXIT'.
05 EDIT-ERROR-MESSAGE PIC X(80) VALUE
"EMP-ID EITHER NOT ENTERED OR NOT NUMERIC'.
05 EMP-NOT - FOUND-MESSAGE PIC X(80) VALUE
'SPECIFIED EMPLOYEE COULD NOT BE FOUND'.
05 DISPLAY-MESSAGE PIC X(80) VALUE
"CLEAR TO EXIT ** NEW EMP-ID AND ENTER TO CONTINUE'.

Appendix C: Sample Online Program 407

Application Runtime Requirements

01 COPY IDMS DC-AID-CONDITION-NAMES.

01 COPY IDMS EMP-DATE-WORK-REC.

01 COPY IDMS SUBSCHEMA-LR-CONTROL.

01 COPY IDMS SUBSCHEMA-LR-RECORDS.
03 SUBSCHEMA-LR-CTRL-END PIC X.

01 COPY IDMS MAP-CONTROLS.

EJECT
PROCEDURE DIVISION.

K3k 3K ok >k Sk koK >k K >k ok >k Sk >k kok K ok K sk ok ok K sk kok >k ok >k K >k sk >k ok K sk >k sk K sk ok skok Sk 5k sk k sk k sk kok sk k k-

* PROCEDURE DIVISION GENERAL STRATEGY: *
* RETRIEVE INFORMATION FOR A SPECIFIED EMPLOYEE. *

*

*

*

* * DISPLAYED DATA INCLUDES EMPLOYEE, DEPARTMENT, *

* Ok JOB, AND OFFICE INFORMATION. *

* % ==> THIS PROGRAM USES THE EMP-JOB-LR LOGICAL RECORD<= *
* * PROGRAM STRATEGY: *

* Ok ** CHECK FOR TASK CODE: TSKOl= INITIAL MAPOUT *

* Ok ANYTHING ELSE = RETRIEVE LR *

* Ok ** CLEAR TO EXIT APPLICATION *

*oox *k ENTER AND NEW EMP-ID TO CONTINUE *

ko KRokoRokokokkok ok sk ok sk ok ok ok kok >k 3k >k ok >k sk >k Sk ok ok sk ok ok ok k ok kok >k sk >k ok >k sk >k kok k ok ok ok ok ok sk kok sk k sk
MAIN-LINE.

Sk ok >k 3k ok ok ok >k sk kok ok ok ok ok ok ok ok ok k >k ok ok ok >k ok ok kok ok ok >k ok ok ok ok skok ok ok ok ok ok sk ok kok ok ok ok ok ok ok sk kok sk ok sk ok sk k

* THE BIND MAP STATEMENTS ADVISE IDMS-DC OF THE LOCATION OF *
* THE MRB AND THE MAP RECORDS. *
sokskoRokskkk ook ok sk ok skt sk sk ok sk k ok ok sk sk koroksk sk k sk ok ok sk sk sk ok sk ok ok sk ok ok
BIND MAP EMPMAPLR.
BIND MAP EMPMAPLR RECORD EMPLOYEE.
BIND MAP EMPMAPLR RECORD DEPARTMENT.
BIND MAP EMPMAPLR RECORD JOB.
BIND MAP EMPMAPLR RECORD OFFICE.
BIND MAP EMPMAPLR RECORD EMP-DATE-WORK-REC.
* ACCEPT TASK CODE INTO TASK-CODE.
IF TASK-CODE = TSKO1
GO TO INITIAL-MAPOUT
ELSE
GO TO GET-EMP.

koK 3k ok ok 5K 3k ok ok koK Sk ok ok K ok K ok kok >k K ok ok >k K sk Sk koK Sk K ok K Sk ok sk kok >k k ok sk >k 3k sk kok K sk sk sk K sk sk skok sk ok sk ok k ok

Sk ok >k ok ok ok >k >k ok kok ok ok ok ok ok ok ok ok k ok ok ok ok >k ok ok kok ok ok >k ok ok ok ok skok ok ok ok ok ok ok ok kok ok k ok ok ok ok sk kok sk ok sk ok sk k

* THE INITIAL-MAPOUT PARAGRAPH IS PERFORMED IF THE CALLING *
* TASK CODE IS TSKo1. *

408 DML Reference Guide for COBOL

Application Runtime Requirements

koK ok ok ok ok ok ok Sk koK ok ok ok ok sk ok ok kok >k K ok Sk ok ok sk sk ko sk K ok >k sk ok sk kok >k k sk sk sk sk sk kok K sk sk sk >k sk sk skok kok kokkok

* THE MODIFY MAP STATEMENT ASSIGNS THE PROTECTED *

* ATTRIBUTE TO ALL MAP FIELDS EXCEPT BMP-ID-0415. *

sk skok ok ok ok ok ok Kok ok ok ok ok ok ok ok ok sk ok ok sk ok ok sk sk ok ok ok ok sk sk ok sk Kok ok s ok ok ok e skok ok Kok ok 3k
* THE MAP OUT STATEMENT TRANSMITS THE EMPMAPLR MAP *

* TO THE TERMINAL. *

skokskok sk Kok ok ok sk ok sk ok ok ok ok ok ok ok ok ok sk sk skok sk sk ok ok sk sk ok sk sk sk kok ok sk ok sk sk sk ok ok s skok ok ok ok ok ok
* THE DC RETURN STATEMENT SPECIFIES THAT THE NEXT *

* TASK THAT WILL BE INITIATED ON THE SAME TERMINAL WHEN THE *
* OPERATOR PRESSES A CONTROL KEY WILL BE TSK02. *

koK ok ok ok >k ok ok Sk kok ok ok ok ok ok ok ok kok ok 3k >k ok >k sk >k Sk kok ok 5k ok ok ok ok >k Skok sk ok k ok ok ok sk dkok sk ok ok sk sk sk sk kok ok k ok kk >k

INITIAL-MAPOUT.

MODIFY MAP EMPMAPLR TEMPORARY
FOR ALL EXCEPT EMP-ID-0415
ATTRIBUTES PROTECTED.

MOVE ZERO TO EMP-ID-0415.

MAP OUT USING EMPMAPLR

OUTPUT DATA IS YES NEWPAGE

MESSAGE IS INITIAL-MESSAGE LENGTH 80.

DC RETWRN
NEXT TASK CODE TSKO2.
INITIAL-MAPOUT-EXIT.

EXIT.
koK ok ok ok ok ok ok Sk koK Sk ok ok K ok ok ok kok >k K ok Sk ok ok sk sk kok sk ok ok K sk ok sk kok >k k sk sk ok k sk kok K sk sk sk >k sk sk skok kok kokkok

Sk ok >k ok ok ok >k ok ok okok ok ok ok ok ok ok ok ok ok ok ok ok sk >k ok ok kok ok ok >k ok ok k >k skok >k ok ok ok ok ok ok kok ok sk ok sk ok ok sk skok ok kok ok sk ok

* THE GET-EMP PARAGRAPH IS PERFORMED IF THE CALLING TASK *
* CODE IS NOT TSKel. *

Sk ok >k ok ok ok >k ok sk okok ok ok ok >k ok ok ok ok sk >k ok ok sk >k ok Sk kok ok sk >k ok ok ok >k skok >k ok ok ok >k ok ok kok ok k ok ok ok ok sk kok sk k sk ok sk >k
* THE MAP IN STATEMENT TRANSMITS DATA FROM THE TERMINAL TO *

* VARIABLE STORAGE DATA FIELDS. *

koK ok ok ok ok sk >k ok ok ok ok ok ok ok ok ok kok ok sk ok ok ok sk ok sk skok ok sk ok ok ok ok ok kok sk sk ok sk sk sk sk kok k ok ok ok ok ok sk kok sk sk sk sk sk ok
* THIS FIRST INQUIRE MAP STATEMENT IS USED TO DETERMINE *

* THE AID KEY PRESSED. *

Sk >k 3k >k ok >k 3k >k ok Kok ok ok ok K ok ok ok koK >k 3k >k 5k >k ok >k Sk Kok ok sk ok ok ok ok ok kok >k 3k >k ok >k 3k >k kok 5k ok sk ok K ok sk skok sk k sk k sk k
* THIS SECOND INQUIRE MAP STATEMENT USES AUTOMATIC EDITING *

* TO DETERMINE IF THE DATA ENTERED IS CONSISTENT WITH — *

* THE EXTERNAL PICTURE OF THE NAMED DATA ELEMENT. *

Sk >k 3k >k ok >k 3k ok ok koK Sk ok ok ok Sk ok Sk kok >k 3k ok ok >k Sk ok Sk kok ok ok sk ok sk ok sk kok K Sk >k ok >k Sk >k kok K sk sk sk K sk >k skok sk k sk k sk k
* THE MAP OUT STATEMENT TRANSMITS DATA FROM THE *

* EMP-JOB-LR LOGICAL RECORD IN VARIABLE STORAGE TO MAP *

* FIELDS. *

Sk >k 3k >k 5k oKk 3k ok ok koK ok oK ok K Sk ok ok kok K 3k >k Sk >k Sk >k Sk kok sk K ok >k ok k ok kok 5k ok >k Sk >k Sk K Skok 5k >k sk K sk sk sk kok Kk k sk k k-

GET-EMP.

MAP IN USING EMPMAPLR.

Appendix C: Sample Online Program 409

Application Runtime Requirements

INQUIRE MAP EMPMAPLR

MOVE AID TO DC-AID-IND-V.
IF CLEAR-HIT

DC RETURN.

INQUIRE MAP EMPMAPLR
IF DFLD EMP-ID-0415 EDIT IS ERROR
THEN GO TO EDIT-ERROR.

COPY IDMS SUBSCHEMA-BINDS.

READY USAGE-MODE IS RETRIEVAL.
KK AH KA F A A AH KA H A KA KA H A F A FA A KA A A KA KA A KA FAAK KA KA A KA A A KA KK
* SINCE THE MAP FIELD IS ASSOCIATED WITH THE EMP-ID-0415 *
* FIELD, THE PROGRAM USES THE "OF LR" RETRIEVAL. NOTE THAT *

* AUTOSTATUS IMPLICITLY CHECKS FOR THE LR-ERROR PATH STATUS. *
KKK KKK KKK KoK KK K KKK K KK 5K 5K K 3K K K K K KK 5K 5K 5K 5K K 3K K KK 5K 5K 5K 3K 3K 3K 3K Kok 5K 5K 5K 5K 5k 3K K ok 5k >k ok >k >k >k
OBTAIN EMP-JOB-LR
WHERE EMP-ID-0415 = EMP-ID-0415 OF LR
ON LR-NOT-FOUND
GO TO NOT-FOUND.
FINISH.
Kok KK oK KoK KK KoK KoK K KSR KoK KoK oK KoK 0K K oK S oK oK KR Kok oK ok KoK oK ok Kok o oK K ok Kok Kok oK
* REFORMAT DATE TO MMDDYY; OUTPUT AS MM/DD/YY USING THE OLM *
* EXTERNAL PICTURE SPECIFICATION (XX/XX/XX). *
KoK KoK KoK KKK KoK KoK K KRR K oK oK ok KoK KoK K ok S oK oK KoK K ok oK oK KoK oK ok oK ok oK K Kok K ok Kok oK
MOVE START-YEAR-0415 TO WORK-YY.
MOVE START-MONTH-0415 TO WORK-MM.
MOVE START-DAY-0415 TO WORK-DD.

MAP OUT USING EMPMAPLR
OUTPUT DATA IS YES
MESSAGE IS DISPLAY-MESSAGE LENGTH 80.

DC RETURN NEXT TASK CODE TSKO2.

GET-EMP-EXIT.

EXIT.
Skokok ok sk ok ok ok skokok >k ok sk ok ok ok sk dkok ok sk ok ok ok sk ok ok kok skok sk ok skok sk kok sk ok ok sk ok sk ok skok sk sk ok skok kokskok ok k sk kok >k
skokok ok sk ok ok ok skokok ok ok sk ok >k ok skokok ok sk sk ok ok sk sk sk kok skok sk ok skok sk kok sk ok ok sk k ok ok skok sk kokskok skokskok sk ok kkok ok
* THE MODIFY MAP STATEMENT SPECIFIES THAT ALL MAP *
* FIELDS EXCEPT THE INCORRECT EMP-ID-@415 FIELD WILL BE *
* ERASED ON THE NEXT MAP OUT. *
skokok ok sk sk ok ok sk kok >k ok sk ok >k ok skokok ok sk sk sk ok sk sk ok kok skk sk ok skok sk kok skok ok sk sk ok ok skok sk skokskok sk ok skok sk ok kskok >k
EDIT-ERRQR.

MODIFY MAP EMPMAPLR TEMPORARY
FOR ALL EXCEPT DFLD EMP-ID-0415
OUTPUT DATA IS ERASE.

410 DML Reference Guide for COBOL

Application Runtime Requirements

MAP OUT USING EMPMAPLR
MESSAGE IS EDIT-ERROR-MESSAGE LENGTH 80.

DC RETURN

NEXT TASK CODE TSKO2.
EDIT-ERROR-EXIT.

EXIT.

koK ok ok ok ok ok ok ok ok ok sk ok ok ok sk ok kok ok sk ok ok sk sk ok sk skok ok sk ok ok ok ok ok kok sk sk ok sk sk sk ok kok sk ok sk ok ok ok sk kok sk sk ko sk ok
koK ok ok ok ok ok ok ok ok ok sk ok ok ok sk ok kok ok sk ok ok sk sk ok sk skok ok sk ok ok ok ok ok kok sk sk ok sk sk sk ok kok sk ok sk ok ok ok sk kok sk sk ko sk ok

* THE FOLLOWING MODIFY MAP STATEMENT SPECIFIES THAT ALL *
* MAP FIELDS EXCEPT THE EMP-ID-0415 FIELD WILL BE ERASED *

* ON THE NEXT MAP OUT. *
KK AH KA F A A AH KA H A KA KA H A F A FA A KA A A KA KA A KA FAAK KA KA A KA A A KA KK
NOT - FOUND.

MODIFY MAP EMPMAPLR TEMPORARY
FOR ALL EXCEPT DFLD EMP-ID-0415
OUTPUT DATA IS ERASE.

MAP OUT USING EMPMAPLR
MESSAGE IS EMP-NOT-FOUND-MESSAGE LENGTH 80.

DC RETURN

NEXT TASK CODE TSKO2.
NOT - FOUND-EXIT.

EXIT.

Sk ok >k ok ok ok ok >k sk kok ok ok ok ok ok ok ok ok ok >k ok ok sk >k ok ok kok ok ok >k ok ok sk >k skok >k ok ok ok ok ok ok kok ok k ok ok ok ok ok kok ok sk ks k ok

IDMS-ABORT .
MOVE ERROR-STATUS TO SSC-ERRSTAT-SAVE.
MOVE DML-SEQUENCE TO SSC-DMLSEQ-SAVE.
SNAP FROM SUBSCHEMA-LR-CTRL TO SUBSCHEMA-LR-CTRL-END
ON ANY-STATUS NEXT SENTENCE.
MOVE SSC-ERRSTAT-SAVE TO ERROR-STATUS.
MOVE SSC-DMLSEQ-SAVE TO DML-SEQUENCE.
IDMS-ABORT -EXIT.
EXIT.
COPY IDMS IDMS-STATUS.

Appendix C: Sample Online Program 411

Application Runtime Requirements

Sample Online COBOL Program as Output from the DML Precompiler

DMLC

DMLC
DMLC

DMLC

DMLC

DMLC

DMLC
DMLC

00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035

00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046

*DMLIST

IDENTIFICATION DIVISION.

PROGRAM-ID. EMPDISP.

AUTHOR. COMPUTER ASSOCIATES INTERNATIONAL.
DATE-WRITTEN. APRIL 1995.

REMARKS.. THIS PROGRAM DEMONSTRATES

CA IDMS PROGRAMMING USING
THE LOGICAL RECORD FACILITY.

Skook >k sk ok ok kok ok >k ok ok ok >k sk ok kok ok ok >k sk ok ok sk skok >k sk ok ok >k sk ok kok sk ok ok sk ok ok sk skek >k sk ok ok sk k sk skok ok ok kksk ok kokek

ENVIRONMENT DIVISION.

Skook >k ko ok ok kok ok >k sk ok ok >k sk ok skok sk ok >k sk ok ok >k skok >k sk ok ok >k sk sk skok sk ok >k sk sk sk >k skek >k sk sk ok k sk sk skok sk ok ksksk sk kskek

IDMS-CONTROL SECTION.

PROTOCOL. MODE IS IDMS-DC DEBUG
IDMS-RECORDS MANUAL.
SKIP3
DATA DIVISION.

SCHEMA SECTION.

DB BMPSS09 WITHIN EMPSCHM.

MAP SECTION.

MAX FIELD LIST IS 5.
MAP EMPMAPLR VERSION 1 TYPE IS STANDARD.

WORKING-STORAGE SECTION.
01 TASK-CODE PIC X(8).

01 TSKO1 PIC X(8) VALUE 'TSKol'.
01 TSKe2 PIC X(8) VALUE 'TSKo2'.
01 MESSAGES.

05 INITIAL-MESSAGE PIC X(80) VALUE

'"ENTER AN EMP ID AND PRESS ENTER ** CLEAR TO EXIT'.
05 EDIT-ERROR-MESSAGE PIC X(80) VALUE

'"EMP-ID EITHER NOT ENTERED OR NOT NUMERIC'.
05 BMP-NOT-FOUND-MESSAGE PIC X(80) VALUE

412 DML Reference Guide for COBOL

Application Runtime Requirements

DMLC

DMLC

00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067

00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092

'SPECIFIED EMPLOYEE COULD NOT BE FOUND'.

05 DISPLAY-MESSAGE

PIC

X(80) VALUE

'CLEAR TO EXIT ** NEW EMP-ID AND ENTER TO CONTINUE'.

03 DC-AID-IND-V

PIC X.

01 COPY IDMS DC-AID-CONDITION-NAMES.
01 DC-AID-CONDITION-NAMES.

88 ENTER-HIT VALUE QUOTE.
88 CLEAR-HIT VALUE '_'.

88 PFO1-HIT VALUE
88 PFO2-HIT VALUE
88 PFO3-HIT VALUE
88 PFO4-HIT VALUE
88 PFO5-HIT VALUE
88 PFO6-HIT VALUE
88 PFO7-HIT VALUE
88 PFO8-HIT VALUE
88 PFO9-HIT VALUE
88 PF10-HIT VALUE
88 PF11-HIT VALUE
88 PF12-HIT VALUE

88 PF13-HIT VALUE
88 PF14-HIT VALUE
88 PF15-HIT VALUE
88 PF16-HIT VALUE
88 PF17-HIT VALUE
88 PF18-HIT VALUE
88 PF19-HIT VALUE
88 PF20-HIT VALUE
88 PF21-HIT VALUE
88 PF22-HIT VALUE
88 PF23-HIT VALUE
88 PF24-HIT VALUE
88 PAOL1-HIT VALUE
88 PAO2-HIT VALUE
88 PAO3-HIT VALUE

‘1.
2",
'3'.
‘4",
'5'.
'6'.
'7'.
'8'.
‘9",
.
Q.

[
’

88 PEN-ATTN-SPACE-NULL VALUE '='.
88 PEN-ATTN VALUE QUOTE.

01 COPY IDMS EMP-DATE-WORK-REC.
01 EMP-DATE-WORK-REC.
02 WORK-DATE.

PIC 9(2).
PIC 9(2).
PIC 9(2).

Appendix C: Sample Online Program 413

Application Runtime Requirements

DMLC 00093
00094
00095
00096
00097
00098
00099
00100
00101

00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129

00130
00131

01 COPY IDMS SUBSCHEMA-LR-CONTROL.
01 SUBSCHEMA-CTRL.

03 PROGRAM-NAME
03 ERROR-STATUS

03 DBKEY

PIC X(8) VALUE SPACES.
PIC X(4) VALUE '1400'.
88 DB-STATUS-0K VALUE '0000'.
88 ANY-STATUS

VALUE '0000' THRU '9999'.
88 ANY-ERROR-STATUS

VALUE '0001' THRU '9999'.

88 DB-END-OF-SET VALUE '0307'.
88 DB-REC-NOT-FOUND VALUE '0326'.
88 DC-DEADLOCK VALUE '3101'
'3201' '3401"' '3901'.
88 DC-NO-STORAGE VALUE '3202'
'3402" .
88 DC-AREA-ID-UNK VALUE '4303'.
88 DC-QUEUE-ID-UNK VALUE '44064'.
88 DC-REC-NOT-FOUND VALUE '4305'
'4405" .
88 DC-RESOURCE-NOT-AVAIL
VALUE '3908°'.
88 DC-RESOURCE-AVAIL
VALUE '3909'.
88 DC-NEW-STORAGE VALUE '3210'.
88 DC-MAX-TASKS VALUE '3711'.
88 DC-REC-REPLACED VALUE '4317'.
88 DC-TRUNCATED-DATA
VALUE '4319' '4419'

'4519' '4719'.
88 DC-ATTN-INT VALUE '4525'
'4625' .

88 DC-OPER-CANCEL VALUE '4743'.
88 DC-FIRST-PAGE-SENT
VALUE '4676'.
88 DC-SECOND-STARTPAGE
VALUE '4604'.
88 DC-DETAIL-NOT-FOUND

VALUE '4664'.
PIC S9(8)

414 DML Reference Guide for COBOL

Application Runtime Requirements

00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156

00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178

USAGE COMP.
03 RECORD-NAME PIC X(16) VALUE SPACES.
03 RRECORD-NAME REDEFINES RECORD-NAME.
05 SSC-NODN PIC X(8).
05 SSC-DBN PIC X(8).
03 AREA-NAME PIC X(16) VALUE SPACES.
03 ERROR-SET PIC X(16) VALUE SPACES.

03 ERROR-RECORD
03 ERROR-AREA

03 IDBMSCOM-AREA

03 IDBMSCOM

PIC X(16) VALUE SPACES.

PIC X(16) VALUE SPACES.

PIC X(100) VALUE LOW-VALUE.
REDEFINES IDBMSCOM-AREA

PIC X
OCCURS 1060.

03 RIDBMSCOM

REDEFINES IDBVMSCOM-AREA.

05 DB-SUB-ADDR PIC X(4).

05 FILLER PIC X(0096).

03 DIRECT-DBKEY PIC S9(8)
USAGE COMP.

03 DIRECT-DBK REDEFINES DIRECT -DBKEY
PIC S9(8)
USAGE COMP.

03 DCBMSCOM-AREA

03 DCBMSCOM

PIC X(100) VALUE LOW-VALUE.
REDEFINES DCBMSCOM-AREA

PIC X
OCCURS 160.

03 R1DCBMSCOM

REDEFINES DCBMSCOM-AREA.

05 R2DCBMSCOM PIC S9(8)
OCCURS 11
USAGE COMP.
05 DCSTR1 PIC X(16).
05 R3DCBMSCOM REDEFINES DCSTRL.
07 DCSTR2 PIC X(8).
07 R4ADCBMSCOM REDEFINES DCSTR2.
09 DCSTR4 PIC X(4).
09 DCSTR5 PIC X(4).
07 DCSTR3 PIC X(8).
05 R5DCBMSCOM REDEFINES DCSTRL.
07 DCPNUM1 PIC S9(15)
USAGE COMP-3.
05 DCNUM1 PIC S9(8)
USAGE COMP.
05 R6DCBMSCOM REDEFINES DONUML.
07 DCPNUM2 PIC S9(7)
USAGE COMP-3.
05 DCNUM2 PIC S9(8)
USAGE COMP.
05 DCNUM3 PIC S9(8)

Appendix C: Sample Online Program 415

Application Runtime Requirements

00179
00180
00181
00182
00183

00184
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211

00212
00213
00214
00215
00216

05 DCFLG1

05 DCFLG2

05 DCFLG3

05 DCFLG4

USAGE COMP.
PIC S9(4)

USAGE COMP.
PIC S9(4)

USAGE COMP.

PIC S9(4)
USAGE COMP.

PIC S9(4)
USAGE COMP.

03 SSC-ERRSTAT-SAVE PIC X(4) VALUE SPACES.

03 SSC-DMLSEQ-

SAVE PIC S9(8)
USAGE COMP.

03 DML-SEQUENCE PIC S9(8)

USAGE COMP.

03 RECORD-0CCWR PIC S9(8)

USAGE COMP.

03 SUBSCHEMA-CTRL-END PIC X(4) VALUE SPACES.

01 SUBSCHEMA-LR-CTRL.

03 LRC-LRPXELNG PIC S9(4)
USAGE COMP.
03 LRC-MAXVXP PIC S9(4)
USAGE COMP.
03 LRIDENT PIC X(4) VALUE 'LRC '.
03 LRVERB PIC X(8).
03 LRNAME PIC X(16).
03 LR-STATUS PIC X(16).
03 FILLER PIC X(16).
03 LRPXE PIC X

03 PXE.
05 PXENEXT

05 PXETABO

05 PXEDSPL

05 PXEDYN

OCCURS 0 TO 512
DEPENDING ON LRC-LRPXELNG.

PIC S9(8)
USAGE COMP.

PIC S9(4)
USAGE COMP.

PIC S9(4)
USAGE COMP.

PIC S9(4)

416 DML Reference Guide for COBOL

Application Runtime Requirements

00217 USAGE COMP.

00218 05 PXEDLEN PIC S9(4)
00219 USAGE COMP.

00220 05 PXENDEC PIC X.

00221 05 PXEDTYP PIC X.

00222 05 PXEOTYP PIC X.

00223 05 PXEFLAG PIC X.

00224 05 FILLER PIC X(240).
00225 03 PXEDSP256 REDEFINES PXE
00226 PIC X(256).

00227 03 PXEDSP248 REDEFINES PXE
00228 PIC X(248).

00229 03 PXEDSP240 REDEFINES PXE
00230 PIC X(240).

00231 03 PXEDSP232 REDEFINES PXE
00232 PIC X(232).

00233 03 PXEDSP224 REDEFINES PXE
00234 PIC X(224).

00235 03 PXEDSP216 REDEFINES PXE
00236 PIC X(216).

00237 03 PXEDSP208 REDEFINES PXE
00238 PIC X(208).

00239 03 PXEDSP200 REDEFINES PXE
00240 PIC X(200).

00241 03 PXEDSP192 REDEFINES PXE
00242 PIC X(192).

00243 03 PXEDSP184 REDEFINES PXE
00244 PIC X(184).

00245 03 PXEDSP176 REDEFINES PXE
00246 PIC X(176).

00247 03 PXEDSP168 REDEFINES PXE
00248 PIC X(168).

00249 03 PXEDSP160 REDEFINES PXE
00250 PIC X(160).

00251 03 PXEDSP152 REDEFINES PXE
00252 PIC X(152).

00253 03 PXEDSP144 REDEFINES PXE
00254 PIC X(144).

00255 03 PXEDSP136 REDEFINES PXE
00256 PIC X(136).

00257 03 PXEDSP128 REDEFINES PXE
00258 PIC X(128).

00259 03 PXEDSP120 REDEFINES PXE
00260 PIC X(120).

00261 03 PXEDSP112 REDEFINES PXE
00262 PIC X(112).

00263 03 PXEDSP104 REDEFINES PXE

Appendix C: Sample Online Program 417

Application Runtime Requirements

00264
00265
00266
00267
00268
00269
00270
00271
00272
00273
00274
00275
00276
00277
00278
00279
00280
00281
00282
00283
00284
00285
00286
00287
00288
00289

00290
00291
00292
00293
00294
00295
00296
00297
00298
00299
00300
00301
00302
00303
00304
00305
00306
00307
00308
00309
00310

03

03

03

03

03

03

03

03

03

03

03

03

03

03

03

03

03

03

03

03

PIC X(104).
PXEDSP96 REDEFINES PXE
PIC X(96).
PXEDSP88 REDEFINES PXE
PIC X(88).
PXEDSP80 REDEFINES PXE
PIC X(80).
PXEDSP72 REDEFINES PXE
PIC X(72).
PXEDSP64 REDEFINES PXE
PIC X(64).
PXEDSP56 REDEFINES PXE
PIC X(56).
PXEDSP48 REDEFINES PXE
PIC X(48).
PXEDSP40 REDEFINES PXE
PIC X(40).
PXEDSP32 REDEFINES PXE
PIC X(32).
PXEDSP24 REDEFINES PXE
PIC X(24).
PXEDSP16 REDEFINES PXE
PIC X(16).
PXEDSP8 REDEFINES PXE
PIC X(8).
PXECOMP-1 REDEFINES PXE

USAGE COMP-1.
PXECOMP-2 REDEFINES PXE
USAGE COMP-2.
PXECOMP-30 REDEFINES PXE
PIC S9(18)
USAGE COMP-3.
PXECOMP-31 REDEFINES PXE
PIC S9(17)V9(1)
USAGE COMP-3.
PXECOMP-32 REDEFINES PXE
PIC S9(16)V9(2)
USAGE COMP-3.
PXECOMP-33 REDEFINES PXE
PIC S9(15)V9(3)
USAGE COMP-3.
PXECOMP-34 REDEFINES PXE
PIC S9(14)V9(4)
USAGE COMP-3.
PXECOMP-35 REDEFINES PXE
PIC S9(13)V9(5)
USAGE COMP-3.

418 DML Reference Guide for COBOL

Application Runtime Requirements

00311 03 PXECOMP-36 REDEFINES PXE
00312 PIC S9(12)V9(6)
00313 USAGE COMP-3.

00314 03 PXECOMP-37 REDEFINES PXE
00315 PIC S9(11)V9(7)
00316 USAGE COMP-3.

00317 03 PXECOMP-38 REDEFINES PXE
00318 PIC S9(10)V9(8)
00319 USAGE COMP-3.

00320 03 PXECOMP-39 REDEFINES PXE
00321 PIC S9(9)v9(9)
00322 USAGE COMP-3.

00323 03 PXECOMP-310 REDEFINES PXE
00324 PIC S9(8)v9(10)
00325 USAGE COMP-3.

00326 03 PXECOMP-311 REDEFINES PXE
00327 PIC S9(7)v9(11)
00328 USAGE COMP-3.

00329 03 PXECOMP-312 REDEFINES PXE
00330 PIC S9(6)V9(12)
00331 USAGE COMP-3.

00332 03 PXECOMP-313 REDEFINES PXE
00333 PIC S9(5)V9(13)
00334 USAGE COMP-3.

00335 03 PXECOMP-314 REDEFINES PXE
00336 PIC S9(4)v9(14)
00337 USAGE COMP-3.

00338 03 PXECOMP-315 REDEFINES PXE
00339 PIC S9(3)V9(15)
00340 USAGE COMP-3.

00341 03 PXECOMP-316 REDEFINES PXE
00342 PIC S9(2)V9(16)
00343 USAGE COMP-3.

00344 03 PXECOMP-317 REDEFINES PXE
00345 PIC S9(1)V9(17)
00346 USAGE COMP-3.

00347 03 PXECOMP-318 REDEFINES PXE
00348 PIC SV9(18)

00349 USAGE COMP-3.

00350 03 PXECOMP20 REDEFINES PXE
00351 PIC S9(4)

00352 USAGE COMP.

00353 03 PXECOMP21 REDEFINES PXE
00354 PIC S9(3)va(1)
00355 USAGE COMP.

00356 03 PXECOMP22 REDEFINES PXE

Appendix C: Sample Online Program 419

Application Runtime Requirements

00357
00358
00359
00360
00361
00362
00363
00364
00365
00366
00367
00368
00369
00370
00371
00372
00373
00374

00375
00376
00377
00378
00379
00380
00381
00382
00383
00384
00385
00386
00387
00388
00389
00390
00391
00392
00393
00394
00395
00396
00397
00398
00399
00400
00401
00402

03

03

03

03

03

03

03

03

03

03

03

03

03

03

03

PXECOMP23

PXECOMP24

PXECOMP40

PXECOMP41

PXECOMP42

PXECOMP43

PXECOMP44

PXECOMP45

PXECOMP46

PXECOMP47

PXECOMP48

PXECOMP49

PXECOMP80O

PXECOMP81

PXECOMP82

PIC S9(2)v9(2)
USAGE COMP.
REDEFINES PXE
PIC S9(1)va(3)
USAGE COMP.
REDEFINES PXE
PIC SV9(4)
USAGE COMP.
REDEFINES PXE
PIC S9(9)
USAGE COMP.
REDEFINES PXE
PIC S9(8)V9(1)
USAGE COMP.
REDEFINES PXE
PIC S9(7)v9(2)
USAGE COMP.
REDEFINES PXE

PIC S9(6)V9(3)
USAGE COMP.
REDEFINES PXE
PIC S9(5)V9(4)
USAGE COMP.
REDEFINES PXE
PIC S9(4)V9(5)
USAGE COMP.
REDEFINES PXE
PIC S9(3)v9(6)
USAGE COMP.
REDEFINES PXE
PIC S9(2)V9(7)
USAGE COMP.
REDEFINES PXE
PIC S9(1)v9(8)
USAGE COMP.
REDEFINES PXE
PIC SV9(9)
USAGE COMP.
REDEFINES PXE
PIC S9(18)
USAGE COMP.
REDEFINES PXE
PIC S9(17)V9(1)
USAGE COMP.
REDEFINES PXE
PIC S9(16)V9(2)

420 DML Reference Guide for COBOL

Application Runtime Requirements

00403 USAGE COMP.

00404 03 PXECOMP83 REDEFINES PXE
00405 PIC S9(15)V9(3)
00406 USAGE COMP.

00407 03 PXECOMP84 REDEFINES PXE
00408 PIC S9(14)V9(4)
00409 USAGE COMP.

00410 03 PXECOMP85 REDEFINES PXE
00411 PIC S9(13)V9(5)
00412 USAGE COMP.

00413 03 PXECOMP86 REDEFINES PXE
00414 PIC S9(12)V9(6)
00415 USAGE COMP.

00416 03 PXECOMP87 REDEFINES PXE
00417 PIC S9(11)V9(7)
00418 USAGE COMP.

00419 03 PXECOMP88 REDEFINES PXE
00420 PIC S9(10)V9(8)
00421 USAGE COMP.

00422 03 PXECOMP89 REDEFINES PXE
00423 PIC S9(9)v9(9)
00424 USAGE COMP.

00425 03 PXECOMP810 REDEFINES PXE
00426 PIC S9(8)v9(10)
00427 USAGE COMP.

00428 03 PXECOMP811 REDEFINES PXE
00429 PIC S9(7)v9(11)
00430 USAGE COMP.

00431 03 PXECOMP812 REDEFINES PXE
00432 PIC S9(6)V9(12)
00433 USAGE COMP.

00434 03 PXECOMP813 REDEFINES PXE
00435 PIC S9(5)V9(13)
00436 USAGE COMP.

00437 03 PXECOMP814 REDEFINES PXE
00438 PIC S9(4)v9(14)
00439 USAGE COMP.

00440 03 PXECOMP815 REDEFINES PXE

Appendix C: Sample Online Program 421

Application Runtime Requirements

00441
00442
00443
00444
00445
00446
00447
00448
00449
00450
00451
00452
00453
00454
00455
00456
00457
00458
00459

00460
DMLC 00461
00462
00463
00464
00465
00466
00467
00468
00469
00470
00471
00472
00473
00474
00475
00476
00477
00478
00479
00480
00481
00482
00483
00484
00485
00486

PIC S9(3)V9(15)
USAGE COMP.
03 PXECOMP816 REDEFINES PXE
PIC S9(2)V9(16)
USAGE COMP.
03 PXECOMP817 REDEFINES PXE
PIC S9(1)V9(17)
USAGE COMP.
03 PXECOMP818 REDEFINES PXE
PIC SV9(18)
USAGE COMP.
01 SUBSCHEMA - SSNAME PIC X(8) VALUE 'EMPSSG9 '.
01 SUBSCHEMA -AREANAMES.
03 BVP-DEMO-REGION PIC X(16)
VALUE 'EMP-DEMO-REGION ‘.
03 INS-DEMO-REGION PIC X(16)
VALUE 'INS-DEMO-REGION ‘.
03 ORG-DEMO-REGION PIC X(16)
VALUE 'ORG-DEMO-REGION ‘.

01 COPY IDMS SUBSCHEMA-LR-RECORDS.
01 EMP-JOB-LR.
02 BEMPLOYEE.
03 BYP-ID-0415 PIC 9(4).
03 BYP-NAME-0415.
04 EMP-FIRST-NAME-0415 PIC X(10).
04 EMP-LAST-NAME-0415 PIC X(15).
03 STATUS-0415 PIC X(2).
88 ACTIVE-0415 VALUE '01'.
88 ST-DISABIL-0415 VALUE '02°'.
88 LT-DISABIL-0415 VALUE '03'.
88 LEAVE-OF-ABSENCE-0415
VALUE '04'.
88 TERMINATED-0415 VALUE '05'.
03 SS-NUMBER-0415 PIC 9(9).
03 START-DATE-0415.
04 START-YEAR-0415 PIC 9(2).
04 START-MONTH-0415 PIC 9(2).
04 START-DAY-0415 PIC 9(2).

03 FILLER PIC X(2).
02 DEPARTMENT.
03 DEPT-ID-0410 PIC 9(4).

03 DEPT-NAME-0410 PIC X(45).
03 DEPT-HEAD-ID-0410 PIC 9(4).
03 FILLER PIC XXX.

02 JOB.

422 DML Reference Guide for COBOL

Application Runtime Requirements

DMLC

00487
00488
00489

00490
00491
00492
00493
00494
00495
00496
00497
00498
00499
00500
00501
00502
00503
00504
00505
00506
00507
00508
00509
00510
00511
00512
00513
00514
00515
00516
00517
00518
00519
00520
00521
00522
00523

00524
00525
00526
00527
00528
00529
00530
00531
00532
00533

03 JOB-ID-0440 PIC 9(4).
03 TITLE-0440 PIC X(20).
02 OFFICE.

03 OFFICE-CODE-0450 PIC X(3).
03 OFFICE-ADDRESS-0450.
04 OFFICE-STREET-0450 PIC X(20).
04 OFFICE-CITY-0450 PIC X(15).
04 OFFICE-STATE-0450 PIC X(2).
04 OFFICE-ZIP-0450.
05 OFFICE-ZIP-FIRST-FIVE-0450
PIC X(5).
05 OFFICE-ZIP-LAST-FOUR-0450
PIC X(4).
03 OFFICE-PHONE-0450 PIC 9(7)
OCCURS 3.
03 OFFICE-AREA-CODE-0450 PIC X(3).
03 SPEED-DIAL-0450 PIC X(3).
03 FILLER PIC X(4).
03 SUBSCHEMA-LR-CTRL-END PIC X.

01 COPY IDMS MAP-CONTROLS.
01 MRB-EMPMAPLR.

03 MRB-EMPMAPLR-ID PIC X(8).
03 MRB-EMPMAPLR-MCOMP-VER.
05 MRB-EMPMAPLR-MCOMP-DATE
PIC X(8).
05 MRB-EMPMAPLR-MCOMP-TIME
PIC X(6).
05 MRB-EMPMAPLR-MCOMP-VERID
PIC X(2).
03 MRB-EMPMAPLR-SUBSCHEMA PIC X(8).
03 MRB-EMPMAPLR-FLGS PIC X

OCCURS 4.

03 FILLER PIC X(6).

03 MRB-EMPMAPLR-NFLDS PIC S9(4)
USAGE COMP.

03 MRB-EMPMAPLR-NRECS PIC S9(4)

USAGE COMP.
03 MRB-EMPMAPLR-RECOF PIC S9(4)
USAGE COMP.
03 MRB-EMPMAPLR-PERM-CURSOR
PIC XX.
03 MRB-EMPMAPLR-TEMP - CLIRSOR
PIC XX.
03 MRB-EMPMAPLR-PERM-WCC PIC X.
03 MRB-EMPMAPLR-TEMP-WCC PIC X.
03 MRB-EMPMAPLR-CURSOR PIC XX.

Appendix C: Sample Online Program 423

Application Runtime Requirements

00534
00535
00536
00537
00538
00539
00540
00541
00542
00543
00544
00545
00546
00547
00548
00549
00550

00551
00552
00553
00554
00555
00556
00557
00558
00559
00560
00561
00562
00563
00564
00565
00566
00567
00568
00569
00570
00571
00572
00573
00574
00575
00576
00577
00578

00579
00580

03 MRB-EMPMAPLR-AID PIC X.
03 MRB-EMPMAPLR-INPUT-FLGS

PIC X.

03 MRB-EMPMAPLR-SEGVIEW PIC X.

03 FILLER PIC X.

03 MRB-EMPMAPLR-MREO PIC S9(4)
USAGE COMP.

03 MRB-EMPMAPLR-ERR-CNT PIC S9(4)
USAGE COMP.

03 MRB-EMPMAPLR-ATTR-FLGS PIC X
OCCURS 4.

03 MRB-EMPMAPLR-CURR-MFLD PIC S9(4)
USAGE COMP.

03 MRB-EMPMAPLR-XTYP PIC X.

03 MRB-EMPMAPLR-FILLER PIC X.

03 MRB-EMPMAPLR-MRE-XLEN PIC S9(4)
USAGE COMP.

03 MRB-EMPMAPLR-MRB-XLEN PIC S9(4)
USAGE COMP.
03 MRB-EMPMAPLR-MRE OCCURS 11.
05 MRB-EMPMAPLR-MRE-FLGS
PIC X
OCCURS 8.
05 MRB-EMPMAPLR-MRE-INLEN
PIC S9(4)
USAGE COMP.
05 MRB-EMPMAPLR-MRE - PAD - CHAR
PIC X
OCCURS 2.
05 MRB-EMPMAPLR-MRE - FLG2
PIC X
OCCURS 2.
03 MRB-EMPMAPLR-RECS
OCCURS 5
USAGE COMP
SYNC.
03 MRB-EMPMAPLR-END PIC X.
03 MRB-EMPMAPLR-MRE-SUB PIC S9(4)

PIC S9(8)

USAGE COMP.
EJECT
01 MRB-FLDLST.
02 FLDLST PIC S9(8)
OCCURS 6
USAGE COMP.

PROCEDURE DIVISION.

424 DML Reference Guide for COBOL

Application Runtime Requirements

00581

00582

00583

00584

00585

00586

00587

00588

00589

00590

00591

00592

00593

00594

00595

00596

00597

00598
DMLCO001 00599
DMLCO002 00628
DMLCO003 00635
DMLCO004 00642
DMLCO005 00649
DMLCO006 00656
00663
DMLCO007 00664

00671

00672

00673

00674

00675
00676
00677
00678
00679
00680
00681
00682
00683
00684
00685
00686
00687
00688
00689
00690
DMLCO008 00691

* Sksk ok koK sk ok 5k sk >k 5k sk >k Skok sk >k ok sk sk ok sk skok ok sk sk ok ok sk sk skok sk >k ok sk sk ok sk skek ok sk sk ok ok sk ok skk sk ok ok sk sk ok
* * PROCEDURE DIVISION GENERAL STRATEGY: *

* % RETRIEVE INFORMATION FOR A SPECIFIED EMPLOYEE. *

* % DISPLAYED DATA INCLUDES EMPLOYEE, DEPARTMENT, *

* % JOB, AND OFFICE INFORVATION. *

* % == THIS PROGRAM USES THE EMP-JOB-LR LOGICAL RECORD<= *
* * PROGRAM STRATEGY: *

* % ** CHECK FOR TASK CODE: TSKO1= INITIAL MAPOUT *

* % ANYTHING ELSE = RETRIEVE LR *

* % ** CLEAR TO EXIT APPLICATION *

* % ** ENTER AND NEW EMP-ID TO CONTINUE *

* Sk 3k 3k KoK 3k 3k ok 3k 3k ok >k K koK >k sk ok >k K ok >k skek ok 5k sk Sk ok >k K Skok >k 3k ok >k K ok >k kek ok >k 3k 5k ok >k ok Kok >k sk ok >k k ok
MAIN-LINE.

koK ok ok ok ok skok K ok ok sk ok ok ok Sk kok sk ok sk ok sk ok sk kok 5k Sk ok ok >k Sk >k Skok K sk ok sk k sk sk skok Sk >k Sk ok ok >k sk kok sk >k sk sk sk sk sk kok

* THE BIND MAP STATEMENTS ADVISE IDMS-DC OF THE LOCATION OF *
* THE MRB AND THE MAP RECORDS. *
kKRR KA AK KA AR A KA KA F A KA A F A KA F A KA KK
BIND MAP EMPMAPLR.
BIND MAP BMPMAPLR RECORD EMPLOYEE.
BIND MAP BMPMAPLR RECORD DEPARTMENT.
BIND MAP EMPMAPLR RECORD JOB.
BIND MAP BEMPMAPLR RECORD OFFICE.
BIND MAP BEMPMAPLR RECORD EMP-DATE-WORK-REC.

ACCEPT TASK CODE INTO TASK-CODE.
IF TASK-CODE = TSKO1
GO TO INITIAL-MAPOUT
ELSE
GO TO GET-EMP.

ko o kKoK oK oK oK oK oK ok ok S oK KoK oK oK oK oK oK ko 3 3 KK K Kok oK ok ok ok 3 Kok sk ok ok oK ok ok ok ok kK K KoK oK oK koK
ok o KKK oK oK oK oK oK ok oK oK KK oK oK oK oK oK ok 3 3 3 KKK oK Kok oK ok ok ok o K Kok sk ok oK oK ok ok ok ok K K KoK oK oK koK

* THE INITIAL-MAPOUT PARAGRAPH IS PERFORMED IF THE CALLING *
* TASK CODE IS TSKO1. *
koK ok ok ok ok okok ok ok ok ok ok ok ok Sk kok sk ok ok ok sk ok ok skok k ok >k ok >k ok >k Skok sk sk sk ok ok sk ok dkok Sk >k ok >k ok >k sk ok ok ok ok ok sk ok ok ok
* THE MODIFY MAP STATEMENT ASSIGNS THE PROTECTED *
* ATTRIBUTE TO ALL MAP FIELDS EXCEPT EMP-ID-0415. *
koK sk ok ok ok skok K ok >k ok ok ok >k Sk kok sk ok sk ok sk ok sk kok 5k Sk ok sk >k Sk >k Skok K sk ok sk k sk sk skok Sk k Sk ok ok >k sk kok sk >k sk sk sk sk sk kok
* THE MAP OUT STATEMENT TRANSMITS THE EMPMAPLR MAP *
* TO THE TERMINAL. *
Skook ok sk ok ok kok ok >k sk ok ok >k sk ok kok ok ok >k sk ok ok sk skek >k sk ok ok >k sk ok kok ok ok ok sk ok ok sk skek >k skook sk sk skoskoskok ok ok sk sksk sk kskek
* THE DC RETURN STATEMENT SPECIFIES THAT THE NEXT *
* TASK THAT WILL BE INITIATED ON THE SAME TERMINAL WHEN THE *
* OPERATOR PRESSES A CONTROL KEY WILL BE TSKG2. *
skeok sk ok sk ok ok sk sk s ok sk sk s skok sk sk ok sk sk s ok skok s ok ok sk sk sk ok skok sk ok sk sk s ok sk stk ok sk sk ok sk sk ok sk sk sk ok ok sk sk ok
INITIAL-MAPOUT.

MODIFY MAP EMPMAPLR TEMPORARY

Appendix C: Sample Online Program 425

Application Runtime Requirements

DMLCO008
DMLCO008

DMLCO009
DMLCO009
DMLCO009

DMLCO010
DMLCO010

00692
00693
00707
00708
00709
00710
00711
00722
00723
00724
00731
00732

00733
00734
00735
00736
00737
00738
00739
00740
00741
00742
00743
00744
00745
00746
00747
00748
00749
00750
00751
00752

DMLCOO11

DMLC0OO12
DMLC0OO12

DMLCO013

DMLCO014
DMLCO014

DMLC

00753
00763
00764
00765
00773
00774
00780
00781
00782
00783
00795
00796

00797

00798

FOR ALL EXCEPT EMP-ID-0415
ATTRIBUTES PROTECTED.

MOVE ZERO TO EMP-ID-0415.

MAP OUT USING EMPMAPLR

OUTPUT DATA IS YES NEWPAGE

MESSAGE IS INITIAL-MESSAGE LENGTH 80.

DC RETURN

NEXT TASK CODE TSKO2.
INITIAL-MAPOUT-EXIT.

EXIT.

Skook >k sk ok ok kok ok >k ok ok ok >k sk ok skok ok ok ok ok ok ok ok kok k ok ok ok ok sk sk skok sk sk ok sk sk sk ok skok sk sk kskesk sk skskek skkosk ok koksk ok

Skook >k sk ok ok kok ok >k sk ok ok >k sk ok kok ok ok >k sk ok ok sk skok >k sk ok ok >k sk ok skok ok ok sk sk ok ok sk skek >k skook sk sk skoskoskok ok ok ksksk sk kskek

* THE GET-EMP PARAGRAPH IS PERFORMED IF THE CALLING TASK *

* CODE IS NOT TSKOL. *

koK ok ok ok ok kok ok ok ok ok ok ok ok Sk kok sk ok sk ok sk ok ok skok k ok >k ok >k ok >k Skok ok sk sk ok ok sk sk dkok Sk >k ok >k ok >k sk kok ok ok ok ok sk ok sk skok
* THE MAP IN STATEMENT TRANSMITS DATA FROM THE TERMINAL TO *
* VARIABLE STORAGE DATA FIELDS. *

koK ok ok ok ok kok K ok ok 3k ok ok >k Sk kok sk ok ok ok sk ok sk kok 5k Sk >k Sk >k Sk >k Skok ok sk ok ok ok ok ok skok ok >k 5k >k ok >k sk kok ok ok ok ok sk ok sk kk
* THIS FIRST INQUIRE MAP STATEMENT IS USED TO DETERMINE *

* THE AID KEY PRESSED. *

3k 5k 3k >k ok >k ok ok ok ok ok ok ok ok Sk kok K ok >k Sk >k Sk >k kok K sk >k sk ok sk K Skok ok >k 5k >k ok >k sk ok sk ok sk ok sk >k sk kok ok sk ok sk k sk k kok
* THIS SECOND INQUIRE MAP STATEMENT USES AUTOMATIC EDITING *

* TO DETERMINE IF THE DATA ENTERED IS CONSISTENT WITH — *

* THE EXTERNAL PICTURE OF THE NAMED DATA ELEMENT. *

koK ok ok ok 5k skok ok Sk Sk ok ok ok 5k 5k Skok Sk Sk Sk Sk Sk Sk Sk Sk Sk Sk Sk Sk Sk Sk sk ke sk sk sk sk sk sk ok kek sk sk sk sk sk sk skoskok skoskoskoskoskoskoskoskk
* THE MAP OUT STATEMENT TRANSMITS DATA FROM THE *

* EMP-JOB-LR LOGICAL RECORD IN VARIABLE STORAGE TO MAP *

* FIELDS. *

Skook >k sk ok ok kok ok >k sk ok ok >k sk ok skok sk ok >k sk ok ok >k skok >k sk ok ok >k sk sk skok sk ok >k sk sk sk sk skek >k sk sk sk >k sk sk skok sk ok ksksk sk kskek

GET-EMP.

MAP IN USING EMPMAPLR.

INQUIRE MAP EMPMAPLR

MOVE AID TO DC-AID-IND-V.
IF CLEAR-HIT

DC RETURN.

INQUIRE MAP EMPMAPLR
IF DFLD BVMP-ID-0415 EDIT IS ERROR
THEN GO TO EDIT-ERROR.
*
COPY IDMS SUBSCHEMA-BINDS.
MOVE ‘EMPDISP ' TO PROGRAM-NAME

426 DML Reference Guide for COBOL

Application Runtime Requirements

DMLCO015 00799 BIND RUN-UWNIT.
DMLCOO16 00810 READY USAGE-MODE IS RETRIEVAL.
QOBLE *xxskkkskkkskskokkk Rk sk sk sk sk ko sk sk sk sk sk sk sk ok sk ok ok

00816 * GINCE THE MAP FIELD IS ASSOCIATED WITH THE EMP-ID-0415 *
00817 * FIELD, THE PROGRAM USES THE "OF LR" RETRIEVAL. NOTE THAT *
00818 * AUTOSTATUS IMPLICITLY CHECKS FOR THE LR-ERROR PATH STATUS. *

00819 ok K kKKK KoK oK oK oK ok S KKK oK oK KoK ok ok ok 3 KK KoK oK oK oK oK oK ok ok 3 ok KoKk oK oK oK ook 3k o K KoK Kok oK oK oK

DMLC 00820 OBTAIN EMP-JOB-LR
DMLC 00821 WHERE EMP-ID-0415 = EMP-ID-0415 OF LR
DMLCO017 00822 ON LR-NOT-FOUND
00845 GO TO NOT-FOUND.
DMLCO018 00846 FINISH.
00851

koK ok ok ok ok ok ok ok ok ok ok kok >k ok >k ok >k ok >k Kok ok ok ok sk ok ok sk sk kok >k Sk >k ok >k Sk >k Skok sk ok ok ok ok ok ok ko sk >k sk >k k >k k kok sk sk ok

00853 * REFORMAT DATE TO MMDDYY; OUTPUT AS MM/DD/YY USING THE OLM *

00854 * EXTERNAL PICTURE SPECIFICATION (XX/XX/XX). *
00855 rEEkskskskskskskskstokkskskskskokok kR skskkk tok sk sk sk skt sk sk sk sk ko sk sk sk sk ko ok ok ok
00856 MOVE START-YEAR-0415 TO WORK-YY.
00857 MOVE START-MONTH-0415 TO WORK-MM.
00858 MOVE START-DAY-0415 TO WORK-DD.
00859
DMLCOO19 00860 MAP OUT USING EMPMAPLR
DMLCOO19 00861 OUTPUT DATA IS YES
DMLCOO19 00862 MESSAGE IS DISPLAY-MESSAGE LENGTH 80.
00873 *
DMLC0020 00874 DC RETURN NEXT TASK CODE TSKO2.
00881 GET-EMP-EXIT.
00882 EXIT.

00883 ok kKKK oK oK oK oK oK ok S K KKK KoK KoK oK ok o 3 3 KK KoK oK oK oK oK oK ok ok 3 ok Kok sk ok oK ok ook 3k o K KoK koK oK ok oK
00834 ok kKKK oK oK oK oK oK ok S K KKK KoK KoK oK ok o 3 3 KK KoK oK oK oK oK oK ok ok 3 ok Kok sk ok oK ok ook 3k o K KoK koK oK ok oK

00885 * THE MODIFY MAP STATEMENT SPECIFIES THAT ALL MAP *
00886 * FIELDS EXCEPT THE INCORRECT EMP-ID-0415 FIELD WILL BE *
00887 * ERASED ON THE NEXT MAP OUT. *

00888 koK ok ok ok ok ok ok ok ok ok ok kok >k 3k >k ok >k sk >k Skok ok ok ok ok >k Sk ok Skok sk ok sk ok ok ok sk sk kok sk sk >k ok >k sk >k kok ok ok ok ok ok ok sk ko sk ok sk

00889 EDIT-ERROR.

DMLCO021 00890 MODIFY MAP EMPMAPLR TEMPORARY
DMLCO021 00891 FOR ALL EXCEPT DFLD EMP-ID-0415
DMLCO021 00892 OUTPUT DATA IS ERASE.
00906 *
DMLC0022 00997 MAP OUT USING EMPMAPLR
DMLC0022 00908 MESSAGE IS EDIT-ERROR-MESSAGE LENGTH 80.

Appendix C: Sample Online Program 427

Application Runtime Requirements

DMLC0023
DMLC0023

DMLC0024
DMLC0024
DMLC0024

DMLC0025
DMLC0025

DMLC0026
DMLC0026

DMLC
DMLCOO27

DMLC

:edisplay.

00919
00920
00921
00928
00929

00930
00931
00932
00933
00934
00935
00936
00937
00938
00939
00953
00954
00955
009%66
00%7
009%68
00975
00976
00977
00978
00979
00980
00981
00982
00993
00994
00995
00996
00997
00998

00999

DC RETURN
NEXT TASK CODE TSK02.
EDIT-ERROR-EXIT.
EXIT.

>k 3k ok ok ok ok ok ok ok ok ok Sk koK >k 3K >k 5k >k K >k Kok K 3k K Sk K Sk K Skok k >k ok >k ok ok ok ok kok 5k 3k K ok >k Sk >k kok k sk ok sk ok sk ok skok sk k k-
>k 3k ok ok ok 5k ok ok ok 5k ok Sk koK >k 3k >k 5k >k 3k >k Kok K 3k K Sk K Sk K Skok k >k 5k >k ok ok ok sk kok 5k 3k >k ok >k Sk >k kok K sk ok sk ok sk sk skok sk k k-

* THE FOLLOWING MODIFY MAP STATEMENT SPECIFIES THAT ALL *
* MAP FIELDS EXCEPT THE EMP-ID-0415 FIELD WILL BE ERASED *
* ON THE NEXT MAP OUT. *
3Kk ok ok ok ok ok ok ok ok ok ok kok kK ok Sk ok ok sk kok K sk ok ok K sk ok Skok sk sk sk sk sk sk sk sk kok sk sk ok ok k sk sk skok sk sk sk sk sk sk sk skok sk kk
NOT - FOUND..
MODIFY MAP EMPMAPLR TEMPORARY
FOR ALL EXCEPT DFLD EMP-ID-0415
OUTPUT DATA IS ERASE.

MAP OUT USING EMPMAPLR
MESSAGE IS EMP-NOT-FOUND-MESSAGE LENGTH 80.

DC RETURN

NEXT TASK CODE TSKO2.
NOT - FOUND - EXIT.

EXIT.

KKK AR KA KA KK AR KKK KA AR KK KKK AR KKK K KKK H oK K KA KKK KA K H K F ok K

IDMS-ABORT.

MOVE ERROR-STATUS TO SSC-ERRSTAT-SAVE.

MOVE DML-SEQUENCE TO SSC-DMLSEQ-SAVE.

SNAP FROM SUBSCHEMA-LR-CTRL TO SUBSCHEMA-LR-CTRL-END

ON ANY-STATUS
NEXT SENTENCE.

MOVE SSC-ERRSTAT-SAVE TO ERROR-STATUS.

MOVE SSC-DMLSEQ-SAVE TO DML-SEQUENCE.
IDMS-ABORT - EXIT.

EXIT.

COPY IDMS IDMS-STATUS.

okskokok ook okoRokkoRok kRl ok ook ook ook ook ook koo ok ook kool kol ook ok okok KRk % () 161 7000

01000
01001

IDMS-STATUS SECTION. 01618000
soksokkokokkokokkokokokkkkkkk TDMS -STATUS FOR IDMS-DC

HokkokkkoRkkokkRk Rk Rk % () 1619000

01002
01003

IF DB-STATUS-OK GO TO ISABEX. 01620000
PERFORM IDMS-ABORT. 01621000

428 DML Reference Guide for COBOL

Application Runtime Requirements

01004 MOVE ERROR-STATUS TO SSC-ERRSTAT-SAVE 01622000
01005 MOVE DML-SEQUENCE TO SSC-DMLSEQ-SAVE 01623000
DMLC 01006 SNAP FROM SUBSCHEMA-CTRL TO SUBSCHEMA-CTRL-END 01624000
DMLC0028 01007 ON ANY-STATUS 01625000
01018 NEXT SENTENCE.
DMLC 01019 ABEND CODE SSC-ERRSTAT-SAVE 01626000
DMLCO029 01620 ON ANY-STATUS 01627000
01028 NEXT SENTENCE.
01029 ISABEX. EXIT. 01628000
***2000 * W BIND RECORD NOT ISSUED
**%2400 * W WAS MOST SEVERE ERROR FOUND

0002 MESSAGES FOR PROGRAM EMPDISP

Sample Online COBOL Program from the COBOL Compiler

00001 *NO-ACTIVITY-LOG
00002 *DMLIST

00003

00004 IDENTIFICATION DIVISION.

00005

00006 PROGRAM-ID. EMPDISP.

00007

00008 AUTHOR. COMPUTER ASSOCIATES.
00009

00010 DATE-WRITTEN. APRIL 1995.

00011

00012 REMARKS. THIS PROGRAM DEMONSTRATES
00013 CA IDMS PROGRAMMING USING
00014 THE LOGICAL RECORD FACILITY.
00015

00016 A A A F A A A F A KA KA F A F A AH A FAAFA A A FAAFAA KA AF A KA AK KA KK
00017 ENVIRONMENT DIVISION.

00018 A A A F A KA FAA KA A F A F AR AH A FAA A A A AFAAFAA KA A A FAAK KA KK
00019 *IDMS-CONTROL SECTION.

00020

00021 *PROTOCOL. MODE IS IDMS-DC DEBUG
00022 * IDMS-RECORDS MANUAL.
00024 DATA DIVISION.

00025

00026 *SCHEMA SECTION.

00027

00028 * DB EMPSSG9 WITHIN EMPSCHM.

00029

00030 *MAP SECTION.

Appendix C: Sample Online Program 429

Application Runtime Requirements

00031
00032

00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065

00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076

*MAX FIELD LIST IS 5.
*MAP EMPMAPLR VERSION 1 TYPE IS STANDARD.

WORKING-STORAGE SECTION.

01 TASK-CODE PIC X(8).

01 TSKO1 PIC X(8) VALUE 'TSKo1'.
01 TSKO2 PIC X(8) VALUE 'TSK02'.

01 MESSAGES.
05 INITIAL-MESSAGE PIC X(80) VALUE
'"ENTER AN EMP ID AND PRESS ENTER ** CLEAR TO EXIT'.
05 EDIT-ERROR-MESSAGE PIC X(80) VALUE
'"EMP-ID EITHER NOT ENTERED OR NOT NUMERIC'.
05 EMP-NOT-FOUND-MESSAGE PIC X(80) VALUE
'SPECIFIED EMPLOYEE COULD NOT BE FOUND'.
05 DISPLAY-MESSAGE PIC X(80) VALUE

'CLEAR TO EXIT ** NEW EMP-ID AND ENTER TO CONTINUE'.

*01 COPY IDMS DC-AID-CONDITION-NAMES.
01 DC-AID-CONDITION-NAMES.
03 DC-AID-IND-V PIC X.

88 ENTER-HIT VALUE QUOTE.
88 CLEAR-HIT VALUE '_'.
88 PFO1-HIT VALUE '1'.
88 PFO2-HIT VALUE '2'.
88 PFO3-HIT VALUE '3'.
88 PFO4-HIT VALUE '4'.
88 PFO5-HIT VALUE '5°'.
88 PFO6-HIT VALUE '6'.
88 PFO7-HIT VALUE '7'.
88 PFO8-HIT VALUE '8'.
88 PFO9-HIT VALUE '9°.
88 PF10-HIT VALUE ':'

88 PF11-HIT VALUE '#'.
88 PF12-HIT VALUE '@'.
88 PF13-HIT VALUE 'A'.
88 PF14-HIT VALUE 'B'.
88 PF15-HIT VALUE 'C'.
88 PF16-HIT VALUE 'D'.
88 PF17-HIT VALUE 'E'.
88 PF18-HIT VALUE 'F'.
88 PF19-HIT VALUE 'G'.
88 PF20-HIT VALUE 'H'.
88 PF21-HIT VALUE 'I'.

430 DML Reference Guide for COBOL

Application Runtime Requirements

00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091

00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122

00123

88 PF22-HIT VALUE ' '.

88 PF23-HIT VALUE '.

88 PF24-HIT VALUE '<'.
88 PAO1-HIT VALUE 'S'.

88 PAO2-HIT VALUE '>'.

88 PAO3-HIT VALUE ',

88 PEN-ATTN-SPACE-NULL VALUE '='.
88 PEN-ATTN VALUE QUOTE.

*01 COPY IDMS EMP-DATE-WORK-REC.
01 EMP-DATE-WORK-REC.

02 WORK-DATE.

03 WORK-M1 PIC 9(2).
03 WORK-DD PIC 9(2).
03 WORK-YY PIC 9(2).

*01 COPY IDMS SUBSCHEMA-LR-CONTROL.
01 SUBSCHEMA-CTRL.

03 PROGRAM-NAME PIC X(8) VALUE SPACES.
03 ERROR-STATUS PIC X(4) VALUE '1400'.
88 DB-STATUS-O0K VALUE '0000°.

88 ANY-STATUS
VALUE '0000' THRU '
88 ANY-ERROR-STATUS
VALUE '0001' THRU '

9999°,

9999°,

88 DB-END-OF-SET VALUE '0307'.
88 DB-REC-NOT-FOUND VALUE '0326'.

88 DC-DEADLOCK VALUE

‘3101

'3201' '3401' '3901°.
88 DC-NO-STORAGE VALUE '3202'

'3402°'.

88 DC-AREA-ID-UNK VALUE '4303'.
88 DC-QUEUE-ID-UNK VALUE '4404'.
88 DC-REC-NOT-FOUND VALUE '4305'

'4405"'.

88 DC-RESOURCE-NOT-AVAIL

VALUE '3908".
88 DC-RESOURCE-AVAIL
VALUE '3909°.

88 DC-NBW-STORAGE VALUE '3210°'.
88 DC-MAX-TASKS VALUE '3711°.
88 DC-REC-REPLACED VALUE '4317'.

88 DC-TRUNCATED-DATA
VALUE '4319' '4419'
'4519' '4719'.

88 DC-ATTN-INT VALUE

'4625".

'4525'

Appendix C: Sample Online Program 431

Application Runtime Requirements

00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149

00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
00169

88 DC-OPER-CANCEL VALUE '4743'.
88 DC-FIRST-PAGE-SENT

VALUE '4676"'.
88 DC-SECOND-STARTPAGE

VALUE '4604"'.
88 DC-DETAIL-NOT-FOUND

VALUE '4664'.

PIC S9(8)

USAGE COMP.
03 RECORD-NAME PIC X(16) VALUE SPACES.
03 RRECORD-NAME REDEFINES RECORD-NAME.

03 DBKEY

05 SSC-NODN PIC X(8).
05 SSC-DBN PIC X(8).
03 AREA-NAME PIC X(16) VALUE SPACES.

03 ERROR-SET

03 ERROR-RECORD
03 ERROR-AREA

03 IDBMSCOM-AREA

PIC X(16) VALUE SPACES.
PIC X(16) VALUE SPACES.
PIC X(16) VALUE SPACES.
PIC X(100) VALUE LOW-VALUE.

03 IDBMSCOM REDEFINES IDBMSCOM-AREA
PIC X
OCCURS 100.
03 RIDBMSCOM REDEFINES IDBMSCOM-AREA.
05 DB-SUB-ADDR PIC X(4).
05 FILLER PIC X(0096).
03 DIRECT-DBKEY PIC S9(8)
USAGE COMP.

03 DIRECT-DBK REDEFINES DIRECT-DBKEY

PIC S9(8)
USAGE COMP.
03 DCBMSCOM-AREA PIC X(100) VALUE LOW-VALUE.
03 DCBMSCOM REDEFINES DCBMSCOM-AREA
PIC X
OCCURS 100.
03 R1DCBMSCOM REDEFINES DCBMSCOM-AREA.
05 R2DCBMSCOM PIC S9(8)
OCCURS 11
USAGE COMP.
05 DCSTR1 PIC X(16).
05 R3DCBMSCOM REDEFINES DCSTRI.
07 DCSTR2 PIC X(8).
07 RADBMSCOM REDEFINES DCSTR2.
09 DCSTR4 PIC X(4).
09 DCSTR5 PIC X(4).
07 DCSTR3 PIC X(8).
05 R5DCBMSCOM REDEFINES DCSTRI.
07 DCPNUM1 PIC S9(15)

432 DML Reference Guide for COBOL

Application Runtime Requirements

00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00180

00181
00182
00183
00184
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212
00213

00214
00215
00216

USAGE COMP-3.

05 DCNUML PIC S9(8)
USAGE COMP.

05 R6DCBMSCOM REDEFINES DCNUML.

07 DCPNUM2 PIC S9(7)
USAGE COMP-3.

05 DCNUM2 PIC S9(8)
USAGE COMP.

05 DCNUM3 PIC S9(8)
USAGE COMP.

05 DCFLGL PIC S9(4)
USAGE COMP.

05 DCFLG2 PIC S9(4)
USAGE COMP.

05 DCFLG3 PIC S9(4)
USAGE COMP.

05 DCFL&4 PIC S9(4)
USAGE COMP.

03 SSC-ERRSTAT-SAVE PIC X(4) VALUE SPACES.
03 SSC-DMLSEQ-SAVE PIC S9(8)
USAGE COMP.
03 DML-SEQUENCE PIC S9(8)
USAGE COMP.
03 RECORD-OCCUR PIC S9(8)
USAGE COMP.
03 SUBSCHEMA-CTRL-END PIC X(4) VALUE SPACES.

01 SUBSCHEMA-LR-CTRL.

03 LRC-LRPXELNG PIC S9(4)
USAGE COMP.
03 LRC-MAXVXP PIC S9(4)
USAGE COMP.
03 LRIDENT PIC X(4) VALUE 'LRC
03 LRVERB PIC X(8).
03 LRNAME PIC X(16).
03 LR-STATUS PIC X(16).
03 FILLER PIC X(16).
03 LRPXE PIC X

OCCURS 0 TO 512
DEPENDING ON LRC-LRPXELNG.

03 PXE.

05 PXENEXT PIC S9(8)
USAGE COMP.

05 PXETABO PIC S9(4)
USAGE COMP.

05 PXEDSPL PIC S9(4)
USAGE COMP.

05 PXEDWN PIC S9(4)

Appendix C: Sample Online Program 433

Application Runtime Requirements

00217
00218
00219
00220
00221
00222
00223
00224
00225
00226
00227
00228
00229
00230
00231
00232
00233
00234
00235
00236
00237
00238
00239
00240
00241
00242
00243
00244
00245
00246
00247
00248

00249
00250
00251
00252
00253
00254
00255
00256
00257
00258
00259
00260
00261
00262

05
05
05
05
05
05
03
03
03

03

03

03

03

03

03

03

03

03

03

03

03

03

03

03

03

PXEDLEN

PXENDEC

PXEDTYP

PXEOTYP

PXEFLAG

FILLER

PXEDSP256

PXEDSP248

PXEDSP240

PXEDSP232

PXEDSP224

PXEDSP216

PXEDSP208

PXEDSP200

PXEDSP192

PXEDSP184

PXEDSP176

PXEDSP168

PXEDSP160

PXEDSP152

PXEDSP144

PXEDSP136

PXEDSP128

PXEDSP120

PXEDSP112

USAGE COMP.

PIC S9(4)

USAGE COMP.

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC X.
PIC X.
PIC X.
PIC X.
PIC X(240).
REDEFINES PXE
X(256) .
REDEFINES PXE
X(248).
REDEFINES PXE
X(240).
REDEFINES PXE
X(232).
REDEFINES PXE
X(224).
REDEFINES PXE
X(216) .
REDEFINES PXE
X(208).
REDEFINES PXE
X(200).
REDEFINES PXE
X(192).
REDEFINES PXE
X(184).
REDEFINES PXE
X(176) .
REDEFINES PXE
X(168) .

REDEFINES PXE
X(160) .
REDEFINES PXE
X(152).
REDEFINES PXE
X(144).
REDEFINES PXE
X(136) .
REDEFINES PXE
X(128).
REDEFINES PXE
X(120).
REDEFINES PXE
X(112).

434 DML Reference Guide for COBOL

Application Runtime Requirements

00263 03 PXEDSP104 REDEFINES PXE
00264 PIC X(104).

00265 03 PXEDSP96 REDEFINES PXE
00266 PIC X(96).

00267 03 PXEDSP88 REDEFINES PXE
00268 PIC X(88).

00269 03 PXEDSP80 REDEFINES PXE
00270 PIC X(80).

00271 03 PXEDSP72 REDEFINES PXE
00272 PIC X(72).

00273 03 PXEDSP64 REDEFINES PXE
00274 PIC X(64).

00275 03 PXEDSP56 REDEFINES PXE
00276 PIC X(56).

00277 03 PXEDSP48 REDEFINES PXE
00278 PIC X(48).

00279 03 PXEDSP40 REDEFINES PXE
00280 PIC X(40).

00281 03 PXEDSP32 REDEFINES PXE
00282 PIC X(32).

00283 03 PXEDSP24 REDEFINES PXE
00284 PIC X(24).

00285 03 PXEDSP16 REDEFINES PXE
00286 PIC X(16).

00287 03 PXEDSP8 REDEFINES PXE
00288 PIC X(8).

00289 03 PXECOMP-1 REDEFINES PXE
00290 USAGE COMP-1.

00291 03 PXECOMP-2 REDEFINES PXE
00292 USAGE COMP-2.

00293 03 PXECOMP-30 REDEFINES PXE
00294 PIC S9(18)

00295 USAGE COMP-3.

00296 03 PXECOMP-31 REDEFINES PXE
00297 PIC S9(17)V9(1)
00298 USAGE COMP-3.

00299 03 PXECOMP-32 REDEFINES PXE
00300 PIC S9(16)V9(2)
00301 USAGE COMP-3.

00302 03 PXECOMP-33 REDEFINES PXE

Appendix C: Sample Online Program 435

Application Runtime Requirements

00303
00304
00305
00306
00307
00308
00309
00310
00311
00312
00313
00314
00315
00316
00317
00318
00319
00320
00321
00322
00323
00324
00325
00326
00327
00328
00329
00330
00331

00332
00333
00334
00335
00336
00337
00338
00339
00340
00341
00342
00343
00344
00345
00346
00347
00348
00349

03

03

03

03

03

03

03

03

03

03

03

03

03

03

03

PIC S9(15)V9(3)
USAGE COMP-3.
PXECOMP-34 REDEFINES
PIC S9(14)V9(4)
USAGE COMP-3.
PXECOMP-35 REDEFINES
PIC S9(13)V9(5)
USAGE COMP-3.
PXECOMP-36 REDEFINES
PIC S9(12)V9(6)
USAGE COMP-3.
PXECOMP-37 REDEFINES
PIC S9(11)V9(7)
USAGE COMP-3.
PXECOMP-38 REDEFINES
PIC S9(10)V9(8)
USAGE COMP-3.
PXECOMP-39 REDEFINES
PIC S9(9)Vva(9)
USAGE COMP-3.
PXECOMP-310 REDEFINES
PIC S9(8)V9(10)
USAGE COMP-3.
PXECOMP-311 REDEFINES
PIC S9(7)V9(11)
USAGE COMP-3.
PXECOMP-312 REDEFINES
PIC S9(6)V9(12)
USAGE COMP-3.

PXECOMP-313 REDEFINES
PIC S9(5)V9(13)
USAGE COMP-3.
PXECOMP-314 REDEFINES
PIC S9(4)V9(14)
USAGE COMP-3.
PXECOMP-315 REDEFINES
PIC S9(3)V9(15)
USAGE COMP-3.
PXECOMP-316 REDEFINES
PIC S9(2)V9(16)
USAGE COMP-3.
PXECOMP-317 REDEFINES
PIC S9(1)V9(17)
USAGE COMP-3.
PXECOMP-318 REDEFINES
PIC SV9(18)
USAGE COMP-3.

PXE

PXE

PXE

PXE

PXE

PXE

PXE

PXE

PXE

PXE

PXE

PXE

PXE

PXE

PXE

436 DML Reference Guide for COBOL

Application Runtime Requirements

00350 03 PXECOMP20 REDEFINES PXE
00351 PIC S9(4)

00352 USAGE COMP.

00353 03 PXECOMP21 REDEFINES PXE
00354 PIC S9(3)V9(1)
00355 USAGE COMP.

00356 03 PXECOMP22 REDEFINES PXE
00357 PIC S9(2)V9(2)
00358 USAGE COMP.

00359 03 PXECOMP23 REDEFINES PXE
00360 PIC S9(1)V9(3)
00361 USAGE COMP.

00362 03 PXECOMP24 REDEFINES PXE
00363 PIC SV9(4)

00364 USAGE COMP.

00365 03 PXECOMP4Q REDEFINES PXE
00366 PIC S9(9)

00367 USAGE COMP.

00368 03 PXECOMP41 REDEFINES PXE
00369 PIC S9(8)V9(1)
00370 USAGE COMP.

00371 03 PXECOMP42 REDEFINES PXE
00372 PIC S9(7)V9(2)
00373 USAGE COMP.

00374 03 PXECOMP43 REDEFINES PXE
00375 PIC S9(6)V9(3)
00376 USAGE COMP.

00377 03 PXECOMP44 REDEFINES PXE
00378 PIC S9(5)V9(4)
00379 USAGE COMP.

00380 03 PXECOMP45 REDEFINES PXE
00381 PIC S9(4)V9(5)
00382 USAGE COMP.

00383 03 PXECOMP46 REDEFINES PXE
00384 PIC S9(3)V9(6)
00385 USAGE COMP.

00386 03 PXECOMP47 REDEFINES PXE
00387 PIC S9(2)V9(7)
00388 USAGE COMP.

00389 03 PXECOMP48 REDEFINES PXE
00390 PIC S9(1)V9(8)
00391 USAGE COMP.

00392 03 PXECOMP49 REDEFINES PXE
00393 PIC SV9(9)

00394 USAGE COMP.

00395 03 PXECOMP8O REDEFINES PXE
00396 PIC S9(18)

Appendix C: Sample Online Program 437

Application Runtime Requirements

00397
00398
00399
00400
00401
00402
00403
00404
00405
00406
00407
00408
00409
00410
00411
00412
00413
00414
00415
00416
00417
00418
00419
00420
00421
00422

00423
00424
00425
00426
00427
00428
00429
00430
00431
00432
00433
00434
00435
00436
00437
00438
00439
00440
00441
00442

03

03

03

03

03

03

03

03

03

03

03

03

03

03

03

USAGE COMP.
REDEFINES PXE
PIC S9(17)V9(1)
USAGE COMP.
REDEFINES PXE
PIC S9(16)V9(2)
USAGE COMP.
REDEFINES PXE
PIC S9(15)V9(3)
USAGE COMP.
REDEFINES PXE
PIC S9(14)V9(4)
USAGE COMP.
REDEFINES PXE
PIC S9(13)V9(5)
USAGE COMP.
REDEFINES PXE
PIC S9(12)V9(6)
USAGE COMP.
REDEFINES PXE
PIC S9(11)V9(7)
USAGE COMP.
REDEFINES PXE
PIC S9(10)V9(8)
USAGE COMP.
REDEFINES PXE

PXECOMP81

PXECOMP82

PXECOMP83

PXECOMP84

PXECOMP85

PXECOMP86

PXECOMP87

PXECOMP88

PXECOMP89

PIC S9(9)Vva(9)
USAGE COMP.
REDEFINES PXE
PIC S9(8)V9(10)
USAGE COMP.
REDEFINES PXE
PIC S9(7)V9(11)
USAGE COMP.
REDEFINES PXE
PIC S9(6)V9(12)
USAGE COMP.
REDEFINES PXE
PIC S9(5)V9(13)
USAGE COMP.
REDEFINES PXE
PIC S9(4)V9(14)
USAGE COMP.
REDEFINES PXE
PIC S9(3)V9(15)
USAGE COMP.

PXECOMP810

PXECOMP811

PXECOMP812

PXECOMP813

PXECOMP814

PXECOMP815

438 DML Reference Guide for COBOL

Application Runtime Requirements

00443
00444
00445
00446
00447
00448
00449
00450
00451
00452

00453
00454
00455
00456
00457
00458
00459
00460
00461
00462
00463
00464
00465
00466
00467
00468
00469
00470
00471
00472
00473
00474
00475
00476
00477
00478
00479
00480
00481
00482
00483
00484

00485
00486
00487
00488
00489

03 PXECOMP816
PIC S
USAGE
03 PXECOMP817
PIC S
USAGE
03 PXECOMP818

USAGE
01 SUBSCHEMA-SSNAME

01 SUBSCHEMA-AREANAME
03 EMP-DEMO-REGION

REDEFINES PXE

9(2)V9(16)
COMP.

REDEFINES PXE

9(1)V9(17)
COMP.

REDEFINES PXE
PIC SV9(18)

COMP.

PIC X(8) VALUE 'EMPSS09 '.

S.
PIC X(16)

VALUE 'EMP-DEMO-REGION ‘.

03 INS-DEMO-REGION

PIC X(16)

VALUE 'INS-DEMO-REGION ‘.

03 ORG-DEMO-REGION

PIC X(16)

VALUE 'ORG-DEMO-REGION '.

*01 COPY IDMS SUBSCHEMA-LR-RECORDS.

01 EMP-JOB-LR.
02 EMPLOYEE.
03 EMP-ID-0415
03 EMP-NAVME-0415.

PIC 9(4).

04 EMP-FIRST-NAME-0415 PIC X(10).
04 EMP-LAST-NAME-0415 PIC X(15).

03 STATUS-0415

PIC X(2).

88 ACTIVE-0415 VALUE 'O1'.

88 ST-DISABIL-0415 VALUE '02'.
88 LT-DISABIL-0415 VALUE '03'.
88 LEAVE-OF-ABSENCE-0415

VALUE

'04'.

88 TERMINATED-0415 VALUE '05'.

03 SS-NUMBER-0415

03 START-DATE-0415
04 START-YEAR-0415
04 START-MONTH-041
04 START-DAY-0415

03 FILLER

02 DEPARTMENT.

03 DEPT-ID-0410

03 DEPT-NAME-0410

03 DEPT-HEAD-ID-04

03 FILLER

02 JOB.

03 JOB-ID-0440
03 TITLE-0440
02 OFFICE.

PIC 9(9).

PIC 9(2).
5 PIC 9(2).

PIC 9(2).
PIC X(2).

PIC 9(4).
PIC X(45).
10 PIC 9(4).

PIC XXX.

PIC 9(4).
PIC X(20).

Appendix C: Sample Online Program 439

Application Runtime Requirements

00490
00491
00492
00493
00494
00495
00496
00497
00498
00499
00500
00501
00502
00503
00504
00505
00506
00507
00508
00509
00510
00511
00512
00513
00514
00515
00516

00517
00518
00519
00520
00521
00522
00523
00524
00525
00526
00527
00528
00529
00530
00531
00532
00533
00534
00535

03 OFFICE-CODE-0450
03 OFFICE-ADDRESS-0450.
04 OFFICE-STREET-0450 PIC X(20).
04 OFFICE-CITY-0450 PIC X(15).
04 OFFICE-STATE-0450 PIC X(2).
04 OFFICE-ZIP-0450.
05 OFFICE-ZIP-FIRST-FIVE-0450
PIC X(5).
05 OFFICE-ZIP-LAST-FOUR-0450
PIC X(4).
03 OFFICE-PHONE-0450
OCCURS 3.
03 OFFICE-AREA-CODE-0450 PIC X(3).
03 SPEED-DIAL-0450 PIC X(3).
03 FILLER PIC X(4).

03 SUBSCHEMA-LR-CTRL-END

PIC X(3).

PIC 9(7)

PIC X.

*01 COPY IDMS MAP-CONTROLS.
01 MRB-EMPMAPLR.

03 MRB-EMPMAPLR-ID PIC X(8).

03 MRB-EMPMAPLR-MCOMP-VER.

05 MRB-BYPMAPLR-MCOMP-DATE
PIC X(8).

05 MRB-BYPMAPLR-MCOMP-TIME
PIC X(6).

05 MRB-BEMPMAPLR-MCOMP-VERID
PIC X(2).

03 MRB-EMPMAPLR-SUBSCHEMA PIC X(8).
03 MRB-EMPMAPLR-FLGS PIC X
OCCURS 4.

PIC X(6).
PIC S9(4)

03 FILLER
03 MRB-EMPMAPLR-NFLDS
USAGE COMP.
03 MRB-EMPMAPLR-NRECS
USAGE COMP.
03 MRB-EMPMAPLR-RECOF
USAGE COMP.
03 MRB-EMPMAPLR-PERM-CURSOR
PIC XX.
03 MRB-EMPMAPLR-TEMP-CURSOR
PIC XX.
03 MRB-EMPMAPLR-PERM-WCC PIC X.
03 MRB-EMPMAPLR-TEMP-WCC PIC X.
03 MRB-EMPMAPLR-CURSOR PIC XX.
03 MRB-EMPMAPLR-AID PIC X.
03 MRB-EMPMAPLR-INPUT-FLGS

PIC S9(4)

PIC S9(4)

440 DML Reference Guide for COBOL

Application Runtime Requirements

00536
00537
00538
00539
00540
00541
00542
00543
00544
00545
00546
00547
00548

00549
00550
00551
00552
00553
00554
00555
00556
00557
00558
00559
00560
00561
00562
00563
00564
00565
00566
00567
00568
00569
00570
00571
00572
00573
00574
00575
00576

00577
00578
00579
00580
00581
00582

PIC X.

03 MRB-EMPMAPLR-SEGVIEW PIC X.

03 FILLER PIC X.

03 MRB-EMPMAPLR-MREO PIC S9(4)
USAGE COMP.

03 MRB-EMPMAPLR-ERR-CNT PIC S9(4)
USAGE COMP.

03 MRB-EMPMAPLR-ATTR-FLGS PIC X
OCCURS 4.

03 MRB-EMPMAPLR-CURR-MFLD PIC S9(4)
USAGE COMP.

03 MRB-EMPMAPLR-XTYP PIC X.
03 MRB-EMPMAPLR-FILLER PIC X.

03 MRB-EMPMAPLR-MRE-XLEN PIC S9(4)
USAGE COMP.
03 MRB-EMPMAPLR-MRB-XLEN PIC S9(4)
USAGE COMP.
03 MRB-EMPMAPLR-MRE OCCURS 11.
05 MRB-BMPMAPLR-MRE-FLGS
PIC X
OCCURS 8.
05 MRB-BMPMAPLR-MRE-INLEN
PIC S9(4)
USAGE COMP.
05 MRB-BMPMAPLR-MRE-PAD-CHAR
PIC X
OCCURS 2.
05 MRB-BYPMAPLR-MRE-FLG2
PIC X
OCCURS 2.
03 MRB-EMPMAPLR-RECS PIC S9(8)
OCCURS 5
USAGE COMP
SYNC.
03 MRB-EMPMAPLR-END PIC X.
03 MRB-EMPMAPLR-MRE-SUB PIC S9(4)

USAGE COMP.
01 MRB-FLDLST.
02 FLDLST PIC S9(8)
OCCURS 6
USAGE COMP.

PROCEDURE DIVISION.

Kk ok ok K 5k ok ok koK >k 3k >k 5k >k Sk >k 5k ok ok ok ok 5k ok ok ok kok >k 3k >k 5k >k 3k >k Skok 5k ok ok ok 5k ok sk skok ok k sk >k sk >k sk kok ok

* PROCEDURE DIVISION GENERAL STRATEGY: *

Appendix C: Sample Online Program 441

Application Runtime Requirements

00583
00584
00585
00586
00587
00588
00589
00590
00591
00592
00593
00594
00595
00596
00597
00598
00599
00600
00601
00602
00603
00604
00605
00606
00607
00608
00609
00610
00611

00612
00613
00614
00615
00616
00617
00618
00619
00620
00621
00622
00623
00624
00625
00626
00627
00628
00629

* * RETRIEVE INFORMATION FOR A SPECIFIED EMPLOYEE. *

* * DISPLAYED DATA INCLUDES EMPLOYEE, DEPARTMENT, *

*ox JOB, AND OFFICE INFORMATION. *

* * ==> THIS PROGRAM USES THE EMP-JOB-LR LOGICAL RECORD<= *
* * PROGRAM STRATEGY: *

* X ** CHECK FOR TASK CODE: TSKO1= INITIAL MAPOUT *

* X ANYTHING ELSE = RETRIEVE LR *

*ox ** CLEAR TO EXIT APPLICATION *

* oK ** ENTER AND NEW EMP-ID TO CONTINUE *

K skskokkskokskokok ok kkkkskk ook sk ok sk kok ok ok sk ok sk skorof sk sk ok sk kok ok sk ok sk ok sk ok ok
MAIN-LINE.

Sk >k ok ok ok ok ok ok ok ok kok Sk >k ok >k Sk >k ok >k Skok k sk sk ok ok sk sk skok Sk k ok >k Sk >k ok kok sk ok sk ok sk ok sk kok sk ok ok ok sk sk >k skok sk k sk k

* THE BIND MAP STATEMENTS ADVISE IDMS-DC OF THE LOCATION OF *
* THE MRB AND THE MAP RECORDS.

K3k Kok >k K 5k 3k >k ok ok ok K ok K Sk K Sk ok sk kok >k ok ok Sk >k sk ok kok K sk K sk K sk K skok ok K 5k >k ok >k Sk kok sk K sk >k sk sk sk kok k kR k-

*

*

BIND

BIND

MAP EMPMAPLR.
MOVE 0001 TO DML-SEQUENCE

*

DMLCO001

CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL

DCBMSCOM (90)
MRB-EMPMAPLR
MRB-EMPMAPLR-END
MOVE '08/12/85112414R2'
TO MRB-EMPMAPLR-MCOMP-VER
MOVE 'EMPSS09 '
TO MRB-EMPMAPLR-SUBSCHEMA
MOVE 'EMPMAPLR'
TO MRB-EMPMAPLR-ID
MOVE 11

TO MRB-EMPMAPLR-NFLDS
MOVE 5

TO MRB-EMPMAPLR-NRECS
MOVE 156

TO MRB-EMPMAPLR-RECOF
MOVE 76

TO MRB-EMPMAPLR-MREO
MOVE 'O

TO MRB-EMPMAPLR-XTYP
MOVE 0

TO MRB-EMPMAPLR-MRE-XLEN
MOVE 0

TO MRB-EMPMAPLR-MRB-XLEN
MOVE 'Y'

TO MRB-EMPMAPLR-SEGVIEW

PERFORM IDMS-STATUS.

MAP EMPMAPLR RECORD EMPLOYEE.

MOVE 0002 TO DML-SEQUENCE

DMLC0002

442 DML Reference Guide for COBOL

Application Runtime Requirements

00630 CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL
00631 DCBMSCOM (91)

00632 MRB-EMPMAPLR-RECS (1)

00633 EMPLOYEE

00634 PERFORM IDMS-STATUS.

00635 * BIND MAP EMPMAPLR RECORD DEPARTMENT.
00636 MOVE 0003 TO DML -SEQUENCE DMLCO003
00637 CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL
00638 DCBMSCOM (91)

00639 MRB-EMPMAPLR-RECS (2)

00640 DEPARTMENT

00641 PERFORM IDMS-STATUS.

00642 * BIND MAP EMPMAPLR RECORD JOB.

00643 MOVE 0004 TO DML -SEQUENCE DMLCO004
00644 CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL

00645 DCBMSCOM (91)

00646 MRB-EMPMAPLR-RECS (3)

00647 JoB

00648 PERFORM IDMS-STATUS.

00649 * BIND MAP EMPMAPLR RECORD OFFICE.

00650 MOVE 0005 TO DML -SEQUENCE DMLC0005
00651 CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL

00652 DCBMSCOM (91)

00653 MRB-EMPMAPLR-RECS (4)

00654 OFFICE

00655 PERFORM IDMS-STATUS.

00656 * BIND MAP EMPMAPLR RECORD EMP-DATE-WORK-REC.

00657 MOVE 0006 TO DML-SEQUENCE DMLCO006
00658 CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL

00659 DCBMSCOM (91)

00660 MRB-EMPMAPLR-RECS (5)

00661 EMP-DATE-WORK-REC

00662 PERFORM IDMS-STATUS.

00663

00664 * ACCEPT TASK CODE INTO TASK-CODE.

00665 MOVE 0007 TO DML -SEQUENCE DMLCO007
00666 MOVE 1 TO DCNUM1

00667 CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL

00668 DCBMSCOM (2)

00669 TASK-CODE

00670 PERFORM IDMS-STATUS.

00671 IF TASK-CODE = TSKO1

00672 GO TO INITIAL-MAPOUT

00673 ELSE

00674 GO TO GET-EMP.

00675 sk stok sk Rk Kk Kok Rk Kk Kk ok sk ok ok Kok ok ok ko sk sk ok sk ok ok sk ok sk ok sk ok ko
00676 sk stok sk Rk Kk Kok Rk Kk Kk ok sk ok ok Kok ok ok ko sk sk ok sk ok ok sk ok sk ok sk ok ko

Appendix C: Sample Online Program 443

Application Runtime Requirements

00677
00678
00679
00680
00681
00682
00683
00684
00685
00686
00687
00688
00689
00690
00691
00692
00693
00694
00695
00696
00697
00698
00699
00700
00701
00702
00703
00704
00705

00706
00707
00708
00709
00710
00711
00712
00713
00714
00715
00716
00717
00718
00719
00720
00721
00722
00723

* THE INITIAL-MAPOUT PARAGRAPH IS PERFORMED IF THE CALLING *
* TASK CODE IS TSKOL. *
skookkok >k ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk kok sk ok ok ok sk ok ok skok sk ok sk sk ok sk sk skek sk sk ok ok >k skook skok ok sk sk skook ok kokok ko k ok
* THE MODIFY MAP STATEMENT ASSIGNS THE PROTECTED *
* ATTRIBUTE TO ALL MAP FIELDS EXCEPT EMP-ID-0415. *
>kookkok >k ok ok ok >k ok ok skok sk ok >k sk ok ok ok sk skok sk sk ok sk sk sk ok skok ok ok ok sk ok sk sk skek >k sk ok sk >k sk ok skok sk sk k sk ok sk sk skok kk sk k
* THE MAP OUT STATEMENT TRANSMITS THE EMPMAPLR MAP *
* TO THE TERMINAL. *
skeok ok sk ok ook sk ok ook sk sk ok sk sk sk ok sk skok sk ok sk sk ok ok sk ok ok sk sk sk ok sk sk ok sk sk ok sk sk sk ok ok sk sk ok skok ok ok ok
* THE DC RETURN STATEMENT SPECIFIES THAT THE NEXT *
* TASK THAT WILL BE INITIATED ON THE SAME TERMINAL WHEN THE *
* OPERATOR PRESSES A CONTROL KEY WILL BE TSKO2. *
Sk >k ok ok ok ok ok ok ok ok kok Sk >k ok >k Sk >k ok >k Skok k sk sk ok ok sk sk skok Sk k ok >k Sk >k ok kok sk ok sk ok sk ok sk kok sk ok ok ok sk sk >k skok sk k sk k
INITIAL-MAPOUT.
* MODIFY MAP EMPMAPLR TEMPORARY
* FOR ALL EXCEPT EMP-ID-0415
* ATTRIBUTES PROTECTED.
MOVE 0008 TO DML-SEQUENCE DMLC008
MOVE 8 TO DCNUML
MOVE 2561 TO DCFLGL
MOVE @ TO DCFLG2
MOVE @ TO DCFLG3
MOVE 6 TO DCFLG4
MOVE 1 TO FLDLST (2)
MOVE 1 TO FLDLST (1)
CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL
DCBMSCOM (93)
MRB-EMPMAPLR
MRB-FLDLST

PERFORM IDMS-STATUS.

MOVE ZERO TO EMP-ID-0415.
MAP OUT USING EMPMAPLR
OUTPUT DATA IS YES NEWPAGE
MESSAGE IS INITIAL-MESSAGE LENGTH 80.
MOVE 0009 TO DML -SEQUENCE DMLC0009
MOVE 5 TO DCFLG1
MOVE 16 TO DCFLG2
MOVE 1 TO DCFLG3
MOVE 4 TO DCFLG4
CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL
DCBMSCOM (34)
MRB-EMPMAPLR
INITIAL-MESSAGE DCBMSCOM (80)
PERFORM IDMS-STATUS.

*

* DC RETURN

444 DML Reference Guide for COBOL

Application Runtime Requirements

00724 * NEXT TASK CODE TSKO2.

00725 MOVE 0010 TO DML-SEQUENCE DMLC0010
00726 MOVE TSKO2 TO DCSTR2

00727 MOVE 128 TO DCFLG1

00728 CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL

00729 DCBMSCOM (19)

00730 PERFORM IDMS-STATUS.

00731 INITIAL-MAPOUT-EXIT.

00732 EXIT.

00733 KA KA KK F KA KA KA A F A KA K F KA KA AKF KA AR A KA A FAA KK A A F KA KA KK
00734 KA KA KK F KA KA KA A F A KA K F KA KA AKF KA AR A KA A FAA KK A A F KA KA KK
00735 * THE GET-EMP PARAGRAPH IS PERFORMED IF THE CALLING TASK *
00736 * CODE IS NOT TSKO1. *

00737 KA KA KKK AR H KA H KA K H KA H KA AK A H KKK A A H KA H A KA K F KA A H K
00738 * THE MAP IN STATEMENT TRANSMITS DATA FROM THE TERMINAL TO *
00739 * VARIABLE STORAGE DATA FIELDS. *

00740 Sk Aok KKK KKK KKK KK AR KK K KoK oK KK KKK oK KoK KKK Aok KKK Kok Kok H ok K
00741 * THIS FIRST INQUIRE MAP STATEMENT IS USED TO DETERMINE *
00742 * THE AID KEY PRESSED. *

00743 Sk ok KKK KK KKK KKK KR AR KKK KKK K KKK KKK KK KK Aok KK Kok KoK ok KK

00744 * THIS SECOND INQUIRE MAP STATEMENT USES AUTOMATIC EDITING *
00745 * TO DETERMINE IF THE DATA ENTERED IS CONSISTENT WITH *

00746 * THE EXTERNAL PICTURE OF THE NAMED DATA ELEMENT. *
00747 KA KA KK F KA KA KA A F A A A KA F KA KA A F KA FAK A KA A FAA KK A A F KA KA KK
00748 * THE MAP OUT STATEMENT TRANSMITS DATA FROM THE *

00749 * BMP-JOB-LR LOGICAL RECORD IN VARIABLE STORAGE TO MAP *
00750 * FIELDS. *

00751 KA KA K H KKK H A H KA H KA KA H KA AAKH A H KKK A K H KA F A KA A F KA A A K

00752 GET-EMP.
00753 * MAP IN USING EMPMAPLR.

:edisplay.

00754 MOVE 0011 TO DML-SEQUENCE DMLCOO11
00755 MOVE 6 TO DCFLG1

00756 MOVE 0 TO DCFLG2

00757 MOVE 0 TO DCFLG3

00758 MOVE 0 TO DCFLG4

00759 CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL

00760 DCBMSCOM (34)

00761 MRB-EMPMAPLR

Appendix C: Sample Online Program 445

Application Runtime Requirements

00762 PERFORM IDMS-STATUS.
00763 *

00764 * INQUIRE MAP EMPMAPLR

00765 * MOVE AID TO DC-AID-IND-V.

00766 MOVE 0012 TO DML-SEQUENCE DMLC0012
00767 MOVE 7 TO DCNUML

00768 CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL

00769 DCBMSCOM (92)

00770 MRB- EMPMAPLR

00771 MOVE DCSTR2 TO DC-AID-IND-V

00772 PERFORM IDMS-STATUS.

00773 IF CLEAR-HIT

00774 * DC RETLRN.

00775 MOVE 0013 TO DML-SEQUENCE DMLC0013
00776 MOVE @ TO DCFLG1

00777 CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL

00778 DCBMSCOM (19)

00779 PERFORM IDMS-STATUS.

00780

00781 *

00782 * INQUIRE MAP EMPMAPLR
00783 * IF DFLD EMP-ID-0415 EDIT IS ERROR

00784 MOVE 0014 TO DML-SEQUENCE DMLC0014
00785 MOVE 17 TO DCNUM1

00786 MOVE 5 TO DCNUM2

00787 MOVE 2048 TO DCFLG1

00788 MOVE 1 TO FLDLST (2)

00789 MOVE 1 TO FLDLST (1)

00790 CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL
00791 DCBMSCOM (92)

00792 MRB - EMPMAPLR

00793 MRB-FLDLST;

00794 IF ERROR-STATUS EQUAL TO '4641'
00795 THEN GO TO EDIT-ERROR.

00796 *

00797 * COPY IDMS SUBSCHEMA-BINDS.

00798 MOVE 'EMPDISP ' TO PROGRAM-NAME

00799 * BIND RUN-UNIT.

00800 MOVE 0015 TO DML -SEQUENCE DMLCO015
00801 MOVE 576 TO LRC-LRPXELNG

00802 MOVE 6 TO LRC-MAXVXP

00803 MOVE 'LRF-BIND' TO LR-STATUS

00804 CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL
00805 IDBMSCOM (59)

00806 SUBSCHEMA-CTRL

00807 SUBSCHEMA -SSNAME

446 DML Reference Guide for COBOL

Application Runtime Requirements

00808
00809
00810
00811
00812
00813
00814

00815
00816
00817
00818
00819
00820
00821
00822
00823
00824
00825
00826
00827
00828
00856
00857
00858
00859
00860
00861
00862
00863
00864
00865

SUBSCHEMA -LR-CTRL
PERFORM IDMS-STATUS.
* READY USAGE-MODE IS RETRIEVAL.
MOVE 0016 TO DML-SEQUENCE DMLC0016
CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL
IDBMSCOM (37)
PERFORM IDMS-STATUS.

K3k Kok 5k K 5k 3k >k ok 5k kok K ok K sk K Sk >k sk ko >k ok >k Sk >k Sk >k kok K ok K ok K sk K Skok ok K 5k >k ok >k Sk Kok sk K sk ok sk k sk kok Rk k k-

* SINCE THE MAP FIELD IS ASSOCIATED WITH THE EMP-ID-0415 *
* FIELD, THE PROGRAM USES THE "OF LR" RETRIEVAL. NOTE THAT *
* AUTOSTATUS IMPLICITLY CHECKS FOR THE LR-ERROR PATH STATUS. *
Skoskoskok sk sk sk sk sk skoskoskok sk sk sk sk skoskoskoskoskok skoskoskoskoskoskoskoskok skoskoskoskoskoskoskoskok skoskoskoskoskoskoskoskok skoskoskoskoskoskoskosksk kkkk
* OBTAIN EMP-JOB-LR
* WHERE EMP-ID-0415 = EMP-ID-0415 OF LR
* ON LR-NOT-FOUND
MOVE 0017 TO DML-SEQUENCE DMLCO017
MOVE @ TO LRC-LRPXELNG
MOVE 0036 TO LRC-MAXVXP
MOVE 'LR-ERROR' TO LR-STATUS
MOVE 'OBTAIN N' TO LRVERB
MOVE 'EMP-JOB-LR' TO LRNAME
MOVE START-YEAR-0415 TO WORK-YY.
MOVE START-MONTH-0415 TO WORK-MM.
MOVE START-DAY-0415 TO WORK-DD.

* MAP OUT USING EMPMAPLR

* OUTPUT DATA IS YES

* MESSAGE IS DISPLAY-MESSAGE LENGTH 80.
MOVE 0019 TO DML-SEQUENCE DMLC0019
MOVE 5 TO DCFLG1
MOVE 16 TO DCFLG2

Appendix C: Sample Online Program 447

Application Runtime Requirements

00866 MOVE 0 TO DCFLG3

00867 MOVE 4 TO DCFLG4

00868 CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL

00869 DCBMSCOM (34)

00870 MRB-EMPMAPLR

00871 DISPLAY-MESSAGE DGBMSCOM (80)

00872 PERFORM IDMS-STATUS.

00873 *

00874 * DC RETURN NEXT TASK CODE TSK02.

00875 MOVE 0020 TO DML -SEQUENCE DMLC0020

00876 MOVE TSK02 TO DCSTR2

00877 MOVE 128 TO DCFLG1

00878 CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL

00879 DCBMSCOM (19)

00880 PERFORM IDMS-STATUS.

00881 GET-EMP-EXIT.

00882 EXIT.

00883 SRR A A A A AR A A KA A AR A A KA HF AR KA A KA AR A A KA A AR A A KK
00884 SRR A AK KA A A FARA A FAAAF KA A KA KA A A A A KA A KA A AR A A KK
00885 * THE MODIFY MAP STATEMENT SPECIFIES THAT ALL MAP *

00886 * FIELDS EXCEPT THE INCORRECT EMP-ID-0415 FIELD WILL BE *
00887 * ERASED ON THE NEXT MAP OUT. *

00888 ook KKK AR KA KKK KA KA KK KA KA KA KR KA KA oK KA KoK

00889 EDIT-ERROR.

00890 * MODIFY MAP EMPMAPLR TEMPORARY
00891 * FOR ALL EXCEPT DFLD EMP-ID-0415
00892 * OUTPUT DATA IS ERASE.

00893 MOVE 0021 TO DML -SEQUENCE DMLC0021
00894 MOVE 0 TO DCNUM1

00895 MOVE 2561 TO DCFLG1

00896 MOVE 16 TO DCFLG2

00897 MOVE 0 TO DCFLG3

00898 MOVE 0 TO DCFLG4

00899 MOVE 1 TO FLDLST (2)

00900 MOVE 1 TO FLDLST (1)

00901 CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL
00902 DCBMSCOM (93)

00903 MRB-EMPMAPLR

00904 MRB-FLDLST

00905 PERFORM IDMS-STATUS.

00906 *

00907 * MAP OUT USING EMPMAPLR
00908 * MESSAGE IS EDIT-ERROR-MESSAGE LENGTH 80.

00909 MOVE 0022 TO DML -SEQUENCE DMLC0022
00910 MOVE 5 TO DCFLG1
00911 MOVE 0 TO DCFLG2
00912 MOVE 0 TO DCFLG3

448 DML Reference Guide for COBOL

Application Runtime Requirements

00913 MOVE 4 TO DCFLG4

00914 CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL
00915 DCBMSCOM (34)

00916 MRB-EMPMAPLR

00917 EDIT-ERROR-MESSAGE DCBMSCOM (80)

00918 PERFORM IDMS-STATUS.

00919 *

00920 * DC RETURN
00921 * NEXT TASK CODE TSKO2.

00922 MOVE 0023 TO DML-SEQUENCE DMLC0023
00923 MOVE TSK62 TO DCSTR2

00924 MOVE 128 TO DCFLGL

00925 CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL

00926 DCBMSCOM (19)

00927 PERFORM IDMS-STATUS.

00928 EDIT-ERROR-EXIT.

00929 EXIT.

00932 * THE FOLLOWING MODIFY MAP STATEMENT SPECIFIES THAT ALL *
00933 * MAP FIELDS EXCEPT THE EMP-ID-0415 FIELD WILL BE ERASED *
00934 * ON THE NEXT MAP OUT. *

00935 KoK KKK oK oK oK oK ok S K KKK KKK KoK oK ok 3 3 o K KoK oK oK oK oK oK ok ok ok S KKK ok sk oK ook ok ok ok o K Kok K oK oK oK

00936 NOT-FOUND.

00937 * MODIFY MAP EMPMAPLR TEMPORARY
00938 * FOR ALL EXCEPT DFLD EMP-ID-0415
00939 * OUTPUT DATA IS ERASE.

00940 MOVE 0024 TO DML -SEQUENCE DMLC0024
00941 MOVE 0 TO DCNUM1

00942 MOVE 2561 TO DCFLG1

00943 MOVE 16 TO DCFLG2

00944 MOVE 0 TO DCFLG3

00945 MOVE 0 TO DCFLG4

00946 MOVE 1 TO FLDLST (2)

00947 MOVE 1 TO FLDLST (1)

00948 CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL
00949 DCBMSCOM (93)

00950 MRB-EMPMAPLR

00951 MRB-FLDLST

00952 PERFORM IDMS-STATUS.

00953 *

00954 * MAP OUT USING EMPMAPLR
00955 * MESSAGE IS EMP-NOT-FOUND-MESSAGE LENGTH 80.

00956 MOVE 0025 TO DML-SEQUENCE DMLC0025
00957 MOVE 5 TO DCFLG1
00958 MOVE 0 TO DCFLG2

Appendix C: Sample Online Program 449

Application Runtime Requirements

00959 MOVE 0 TO DCFLG3
00960 MOVE 4 TO DCFLG4
00961 CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL
00962 DCBMSCOM (34)
00963 MRB-EMPMAPLR
00964 EMP-NOT-FOUND-MESSAGE DCBMSCOM (80)
00965 PERFORM IDMS-STATUS.
00966 *
00967 * DC RETURN
00968 * NEXT TASK CODE TSKO2.
00969 MOVE 0026 TO DML -SEQUENCE DMLC0026
00970 MOVE TSKO2 TO DCSTR2
00971 MOVE 128 TO DCFLG1
00972 CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL
00973 DCBMSCOM (19)
00974 PERFORM IDMS-STATUS.
00975 NOT-FOUND-EXIT.
00976 EXIT.
00977 KKK A A KA KA KA A AR A AR A KK AA A KA KK KA KA A A A KA A KK AAAK KA KK
00978 IDMS-ABORT.
00979 MOVE ERROR-STATUS TO SSC-ERRSTAT-SAVE.
00980 MOVE DML-SEQUENCE TO SSC-DMLSEQ-SAVE.
00981 * SNAP FROM SUBSCHEMA-LR-CTRL TO SUBSCHEMA-LR-CTRL-END
00982 * ON ANY-STATUS
00983 MOVE 0027 TO DML -SEQUENCE DMLC0027
00984 MOVE 0 TO DCFLG1
00985 CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL
00986 DCBMSCOM (22)
00987 DCSTR1
00988 DCSTR1
00989 DCSTR1
00990 SUBSCHEMA-LR-CTRL SUBSCHEMA-LR-CTRL-END DCBMSCOM (1)
00991 IF NOT ANY-STATUS PERFORM IDMS-STATUS;
00992 ELSE
00993 NEXT SENTENCE.
00994 MOVE SSC-ERRSTAT-SAVE TO ERROR-STATUS.
00995 MOVE SSC-DMLSEQ-SAVE TO DML -SEQUENCE.
00996 IDMS-ABORT-EXIT.
00997 EXIT.
00998 * COPY IDMS IDMS-STATUS.
00999
01617000
01000 IDMS-STATUS SECTION.01618000
01001 IDMS-STATUS FOR IDMS-DC 01619000
01002 IF DB-STATUS-OK GO TO ISABEX. 01620000
01003 PERFORM IDMS-ABORT. 01621000

450 DML Reference Guide for COBOL

Application Runtime Requirements

01004
01005
01006
01007
01008
01009
01010
01011
01012
01013
01014
01015
01016
01017
01018
01019
01020
01021
01022
01023
01024
01025
01026
01027
01028
01029

MOVE ERROR-STATUS TO SSC-ERRSTAT-SAVE 01622000
MOVE DML-SEQUENCE TO SSC-DMLSEQ-SAVE 01623000
SNAP FROM SUBSCHEMA-CTRL TO SUBSCHEMA-CTRL-END 01624000
ON ANY-STATUS 01625000
MOVE 0028 TO DML -SEQUENCE DMLC0028
MOVE 0 TO DCFLG1
CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL
DCBMSCOM (22)
DCSTR1
DCSTR1
DCSTR1
SUBSCHEMA-CTRL SUBSCHEMA-CTRL-END DCGBMSCOM (1)
IF NOT ANY-STATUS PERFORM IDMS-STATUS;

*

ELSE
NEXT SENTENCE.
ABEND CODE SSC-ERRSTAT-SAVE 01626000
* ON ANY-STATUS 01627000
MOVE 0029 TO DML-SEQUENCE DMLC0029

MOVE SSC-ERRSTAT-SAVE TO DCSTR4
MOVE 2 TO DCFLG1
CALL 'IDMSCOBI' USING SUBSCHEMA-CTRL
DCBMSCOM (1)
IF NOT ANY-STATUS PERFORM IDMS-STATUS;
ELSE
NEXT SENTENCE.
ISABEX. EXIT. 01628000

Appendix C: Sample Online Program 451

Appendix D: CA IDMS Call Formats

This appendix contains the call formats used by CA IDMS to execute DML commands.
Each DML function can be coded usingstandard CALL statements.

The two tables in this appendix present the function codes and arguments thatare
passedto CA IDMS for execution of a DML command. Argument 0, which contains
SUBSCHEMA-CTRL (the IDMS communications block),is passed forall functions.

The following example shows the expanded CA IDMS call formatfor a BIND RECORD
statement (BIND EMPLOYEE):

CALL 'IDMS' USING SUBSCHEMA-CTRL
IDBMSCOM (48)
SR415
EMPLOYEE.

The call expansions arepresented intwo tables;the firsttablelists the DB expansions
andthe secondtable lists the DC expansions.

This section contains the followingtopics:

DB Call Formats (see page 453)
DC Call Formats (see page 470)

DB Call Formats

CONTROL STATEMENTS

CALLING ARGUMENTS
argument _ contains SUBSCHEMA-CTRL)

Majo Database (1) (2) (3) (4) (5)
r Service(in IDBMS
Funct COBOL DML) COM
ion (nn)
Code
14 BIND RUN- 59 IDMS subschema-name*

UNIT Communications

Block*

Appendix D: CAIDMS Call Formats 453

DB Call Formats

Majo Database (1) (2) (3) (4) (5)
r Service(in IDBMS
Funct COBOL DML) COM
ion (nn)
Code
14 BIND RUN- 59 IDMS subschema-name*
UNIT Communications
Block*
BIND 59 IDMS subschema-name
RUN-UNIT Communications
FOR Block*
subschema-
name
BIND 59 IDMS subschema-name* subschema-ctrl* node-name
RUN-UNIT Communications OR
NODENAME Block*
subschema-lr-ctrl
node-name *
BIND 59 IDMS subschema-name subschema-ctrl* node-name
RUN-UNIT Communications OR
FOR Block* subschema-lr-ctrl
*
subschema-n
ame
NODENAME
node-name
BIND 59 IDMS subschema-name subschema-ctrl* node-name
RUN-UNIT Communications OR
FOR

subschema-n
ame

DBNAME

database-na
me

Block*

subschema-Ir-ctrl
*

454 DML Reference Guide for COBOL

DB Call Formats

Majo Database (1) (2) (3) (4) (5)
r Service(in IDBMS
Funct COBOL DML) COM
ion (nn)
Code
14 BIND RUN- 59 IDMS subschema-name*
UNIT Communications
Block*
BIND 59 IDMS subschema-name* subschema-ctrl* node-name
RUN-UNIT Communications OR
Block* subschema-Ir-ctrl
NODENAME *
node-name
DBNAME
database-na
me
BIND 59 IDMS subschema-name subschema-ctrl* node-name
RUN-UNIT Communications OR
FOR
Block* subschema-Ir-ctrl
*
subschema-n
ame
NODENAME
node-name
DBNAME
database-na
me
BIND 48 record-id record-location*
record-name
BIND 48 record-id record-location
record-name
TO

record-name

Appendix D: CAIDMS Call Formats 455

DB Call Formats

Majo Database (1) (2) (3) (4) (5)
r Service(in IDBMS
Funct COBOL DML) COM
ion (nn)
Code
14 BIND RUN- 59 IDMS subschema-name*

UNIT Communications

Block*
BIND 48 record-id record-location

record-locati
on

WITH

record-name

BIND 73
PROCEDURE

FOR

procedure-name

procedure-n
ame

TO

procedure-

control-locati
on

procedure-control-

location

09 READY 37

READY 37
area-name

area-name

READY 37
area-name

area-name

USAGE-MOD
EIS

RETRIEVAL

456 DML Reference Guide for COBOL

DB Call Formats

Majo

Funct
ion
Code

Database (1) (2) (3) (4)
Service(in IDBMS
COBOL DML) COM

(nn)

(5)

14

BIND RUN- 59 IDMS
UNIT Communications
Block*

subschema-name*

READY 39
area-name

area-name

USAGE-MOD
EIS

PROTECTED

RETRIEVAL

READY 40
area-name

area-name

USAGE-MOD
EIS

EXCLUSIVE

RETRIEVAL

READY 36
area-name

area-name

USAGE-MOD
EIS

UPDATE

READY 38
area-name

area-name

USAGE-MOD
EIS

PROTECTED
UPDATE

Appendix D: CAIDMS Call Formats 457

DB Call Formats

Majo Database (1)
r Service(in IDBMS
Funct COBOL DML) COM

ion (nn)
Code

(2) 3) (4)

(5)

14 BIND RUN- 59
UNIT

IDMS subschema-name*
Communications
Block*

READY 41
area-name

USAGE-MOD
EIS

EXCLUSIVE
UPDATE

area-name

READY ok
USAGE-MOD
E

IS ...

**Choose
function
code

from 36-41

as shown
above.

01 FINISH 02

FINISH TASK 113

18 COMMIT 66

COMMIT ALL 95

COMMIT 114
TASK

COMMIT 115
TASK ALL

19 ROLLBACK 67

ROLLBACK 96
ALL

ROLLBACK 116
TASK

458 DML Reference Guide for COBOL

DB Call Formats

Majo

Funct
ion
Code

Database
Service(in
COBOL DML)

(1)
IDBMS
com

(nn)

(2) (3) (4)

(5)

14

BIND RUN-
UNIT

59

IDMS subschema-name*
Communications
Block*

ROLLBACK
TASK

CONTINUE

117

06

KEEP
CURRENT

87

KEEP
EXCLUSIVE

CURRENT

90

KEEP
CURRENT

record-name

89

record-name

KEEP
EXCLUSIVE

CURRENT

record-name

90

record-name

KEEP
CURRENT

WITHIN

set-name

91

set-name

KEEP
EXCLUSIVE

CURRENT
WITHIN

set-name

92

set-name

KEEP
CURRENT

WITHIN

area-name

93

area-name

Appendix D: CAIDMS Call Formats 459

DB Call Formats

Majo Database (1) (2) (3) (4) (5)
r Service(in IDBMS
Funct COBOL DML) COM
ion (nn)
Code
14 BIND RUN- 59 IDMS subschema-name*
UNIT Communications
Block*
KEEP 92 area-name
EXCLUSIVE
CURRENT
WITHIN
area-name
16 IF set-name 64 set-name
IS EMPTY
IF set-name 65 set-name

ISNOT
EMPTY...

(Upon return to user run-unit, the status indicator='0000'

if setis empty;' 1601'if not empty.)

IF set-name 60 set-name
MEMBER
IF NOT 62 set-name
set-name
MEMBER

(Upon return to user run-unit, the status indicator ="' 0000’

ifthe record(currentof run unit) is linked into the specified set;

'1601'ifitis nota member.)

460 DML Reference Guide for COBOL

DB Call Formats

MODIFICATION STATEMENTS

Major Database Service(in (1) IDBMSCOM (2) (3) (4) (5)
Function COBOL DML) (nn)
Code
12 STORE record-name 42 record-name
07 CONNECT 44 record-name set-name
record-name TO
set-name
08 MODIFY 35 record-name
record-name
11 DISCONNECT 46 record-name set-name

record-name
FROM set-name

02 ERASE record-name 52
ERASE record-name 03
PERMANENT
MEMBERS
ERASE record-name 53
SELECTIVE
MEMBERS
ERASE record-name 4

ALL MEMBERS

record-name

record-name

record-name

record-name

Appendix D: CAIDMS Call Formats 461

DB Call Formats

RETRIEVAL STATEMENTS

Major
Functio
n Code

Database

Service(in COBOL

DML)

(1)
IDBMS
com

(nn)

()

3)

(4)

(5)

03

FIND DB-KEY
db-key

FIND record-name

DB-KEY IS
db-key

FIND CURRENT
FIND CURRENT

record-name

75

06

30
07

db-key

record-name

record-name

db-key

FIND CURRENT

WITHIN
set-name

08

set-name

FIND CURRENT

WITHIN

area-name

09

area-name

FIND NEXT
WITHIN

set-name

set-name

FIND NEXT

record-name

WITHIN
set-name

record-name

set-name

FIND PRIOR

WITHIN
set-name

16

set-name

FIND PRIOR

record-name

WITHIN
set-name

12

record-name

set-name

FIND FIRST

WITHIN
set-name

20

set-name

462 DML Reference Guide for COBOL

DB Call Formats

Major
Functio
n Code

Database
Service(in COBOL
DML)

(1)
IDBMS
com

(nn)

(2)

(3) (4) (5)

FIND FIRST

record-name

WITHIN
set-name

18

record-name

set-name

FIND LAST

WITHIN
set-name

set-name

FIND LAST

record-name

WITHIN
set-name

22

record-name

set-name

FIND number

WITHIN
set-name

78

set-name

number

FIND number
record-name

WITHIN
set-name

76

record-name

set-name number

FIND NEXT
WITHIN

area-name

area-name

FIND NEXT
record-name
WITHIN

area-name

record-name

area-name

FIND PRIOR
WITHIN

area-name

17

area-name

FIND PRIOR
record-name
WITHIN

area-name

13

record-name

area-name

Appendix D: CAIDMS Call Formats 463

DB Call Formats

Major Database (1) (2) (3) (4) (5)
Functio Service(in COBOL IDBMS
n Code DML) com
(nn)
FIND FIRST 21 area-name
WITHIN
area-name
FIND FIRST 19 record-name area-name
record-name
WITHIN
area-name
FIND LAST WITHIN 25 area-name
area-name
FIND LAST 23 record-name area-name
record-name
WITHIN
area-name
FIND number 79 area-name number
WITHIN
area-name
FIND number 77 record-name area-name number
record-name
WITHIN
area-name
FIND OWNER 31 set-name
WITHIN
set-name
FIND CALC (ANY) 32 record-name
record-name
FIND DUPLICATE 50 record-name
record-name
FIND record-name 33 record-name set-name sort-key

WITHIN

set-name
USING

sort-key

464 DML Reference Guide for COBOL

DB Call Formats

Major Database (1) (2) (3) (4) (5)
Functio Service(in COBOL IDBMS
n Code DML) com
(nn)
FIND record-name 51 record-name set-name sort-key
WITHIN
set-name
CURRENT
USING
sort-key
OBTAIN
Any of the above FIND record selection expressions. Call
generated consists of arguments described above for the
FIND in question plus an additional argument of IDBMSCOM
(43) function. For example:
OBTAIN CALC 32 record-name IDBMSCOM(4
record-name 3)
OBTAIN PRIOR 12 record-name
record-name
WITHIN
set-name
KEEP
KEEP EXCLUSIVE
Any of the above FIND/OBTAIN record selection expressions
Call generated consists of arguments described above for the
FIND/OBTAIN in question plus one of the followingadditional
IDBMSCOM function:
KEEP ettt IDBMSCOM(87)
KEEP EXCLUSIVE........... IDBMSCOM(**)
For example:
OBTAIN KEEP 32 record-name IDBMSCOM(4 IDBMSCOM(87)
CALC 3)
record-name
FIND KEEP 30 IDBMSCOM(88)
EXCLUSIVE
CURRENT
05 GET 43 index-set-name db-key symbolic-key

Appendix D: CAIDMS Call Formats 465

DB Call Formats

Major Database (1) (2) (3) (4) (5)
Functio Service(in COBOL IDBMS
n Code DML) comMm
(nn)
GET 34 index-set-name db-key symbolic-key
record-name
17 RETURN db-key 81 index-set-name db-key symbolic-key
FROM
index-set-name
CURRENCY
KEY INTO
symbolic-key
RETURN db-key 82 index-set-name db-key symbolic-key
FROM
index-set-name
FIRST
KEY INTO
symbolic-key
RETURN db-key 83 index-set-name db-key symbolic-key
FROM
index-set-name
LAST
KEY INTO
symbolic-key
RETURN db-key 84 index-set-name db-key symbolic-key

FROM

index-set-name
NEXT
KEY INTO

symbolic-key

466 DML Reference Guide for COBOL

DB Call Formats

Major Database (1) (2) (3) (4) (5)
Functio Service(in COBOL IDBMS
n Code DML) com
(nn)
RETURN db-key 85 index-set-name db-key symbolic-key
FROM

index-set-name
PRIOR
KEY INTO
symbolic-key

RETURN db-key 86 index-set-name db-key index-key-value symbolic-key
FROM

index-set-name
USING

index-key-value
KEY INTO

symbolic-key

ACCEPT STATEMENTS

Major Database Service(in (1) (2) (3) (4) (5)
Function COBOL DML) IDBMS
Code CcCoOM

(nn)

15 ACCEPT db-key 54 db-key
FROM CURRENCY

ACCEPT db-key 55 record-name db-key
FROM
record-name
CURRENCY

ACCEPT db-key 57 set-name db-key
FROM
set-name
CURRENCY

Appendix D: CAIDMS Call Formats 467

DB Call Formats

Major
Function
Code

Database Service(in
COBOL DML)

(1)
IDBMS
com

(nn)

(2)

3) (4)

(5)

ACCEPT db-key
FROM
area-name
CURRENCY

56

area-name

db-key

ACCEPT db-key
FROM
set-name
NEXT CURRENCY

68

set-name

db-key

ACCEPT db-key
FROM
set-name
PRIOR CURRENCY

69

set-name

db-key

ACCEPT db-key
FROM

set-name

OWNER CURRENCY

70

set-name

db-key

ACCEPT db-statistics

FROM
IDMS STATISTICS

71

db-statistics

ACCEPT
bind-address
FROM
record-name
BIND

72

record-name

bind-address

ACCEPT

procedure-control-locati

on
FROM

procedure-name
PROCEDURE

74

procedure-name

procedure-control-locat

ion

468 DML Reference Guide for COBOL

DB Call Formats

LRF DML STATEMENTS

Major Database Service(in (1) (2) (3) (4) (5)
Function COBOL DML) IDBMSCO
Code M
(nn)
20 OBTAIN FIRST 99 subschema-lr-ctrl* logical-record-

logical-record-name

location*

OBTAIN FIRST 99
logical-record-name
INTO

alt-logical-record
location

subschema-lr-ctrl*

logical-record-

location*

OBTAIN NEXT 99

logical-record-name

subschema-lr-ctrl*

logical-record-

location*

OBTAIN NEXT 99 subschema-Ir-ctrl* logical-record-
logical-record-name location*
INTO
alt-logical-record
location

MODIFY 99 subschema-lr-ctrl* logical-record-

logical-record-name location*

MODIFY 99 subschema-lr-ctrl* logical-record-

logical-record- location*
name
FROM
alt-logical-record-
location

STORE 99 subschema-lr-ctrl* logical-record-

logical-record-name

location*

Appendix D: CAIDMS Call Formats 469

DC CallF

ormats

Major Database Service(in (1) (2) (3) (4) (5)
Function COBOL DML) IDBMSCO
Code M
(nn)
STORE logical-record- 99 subschema-lr-ctrl* logical-record
name location
FROM
alt-logical-record-
location
ERASE 99 subschema-lr-ctrl* logical-record-
logical-record-name location*
ERASE logical-record- 99 subschema-lr-ctrl* logical-record-
name location
FROM
alt-logical-record-
location
To differentiate between the LRF DML statements,the DML
compiler places the name of the verb issuedinto the LRC Block
(subschema-Ir-ctrl).
DC Call Formats
PROGRAM MANAGEMENT STATEMENTS
Major DC System (1) (2) (4) (5)
Functi Service(in DCBMSCO
on coBoOL M
Code DML) (nn).
30 TRANSFER 23 DCFLG1 DCSTR2 parameter
CONTROL
30 DCRETURN 19
34 LOAD TABLE 15 01-level-program-location end-program-location
34 DELETE 5 01-level-program-location
TABLE

470 DML Reference Guide for COBOL

DC Call Formats

Major DCSystem (1) (2) (3) (4) (5)
Functi Service(in pcpmsco
on coBoL M
Code DML) (nn)
33 SET ABEND 20
EXIT
(STATE)
33 ABEND 1

STORAGE MANAGEMENT STATEMENTS

Majo DC (1) (2) (3) (4) (5)
r System pcmsco
Funct Service(in g
ion COBOL
Code DML) (nn)
32 GET 13 01-level-storage-data-location end-storage-data-location
STORAGE
32 FREE 10 01-level-storage-data-location start-free-storage-location
STORAGE

TASK MANAGEMENT STATEMENTS

Major DC System (1) (2) (3) (4) (5)
Functi Service(in pcpmsco

on coBOL M

Code DML) (nn)

37 ATTACH 3 DCFLG1 DCSTR2 parameter

37 CHANGE 4
PRIORITY

Appendix D: CAIDMS Call Formats 471

DC Call Formats

Major DC System (1) (2) (3) (4) (5)

Functi Service(in pcmsco

on COBOL M

Code DML) (nn).

39 ENQUEUE 9 DCFLG1 DCBMSCOM DCBMSCOM(length) resource-id..
(mode)

39 DEQUEUE 8 DCFLG1 DCBMSCOM resource-id..
(length)

31 WAIT 24 ecb

31 POST 16 ecb

TIME MANAGEMENT STATEMENTS

Major DC System (1) (2) (3) (4) (5)
Functi Service(in DCBMSCO
on COBOL M
Code DML) (nn).
35 GET TIME 14 return-time return-date
35 SET TIMER 21 task-data-location end-task-data-location-location
35 SET TIMER 21 post- ecb
(post)

SCRATCH MANAGEMENT STATEMENTS
Maj DCSystem (1) (2) (3) (4) (5)
or Service(in
Func COBOL DCBMSC
tion DML) oM
Cod (nn)
e
43 PUT 18 scratch-data-location end-scratch-data-location

SCRATCH
43 GET 12 return-scratch-data-location end-scratch-data-location

SCRATCH

472 DML Reference Guide for COBOL

DC Call Formats

Maj DCSystem (1) (2) (3) (4) (5)
or Service(in
Func COBOL DCBMSC
tion DML) oM
Cod (an)
e
43 DELETE 6 post- ecb
SCRATCH
QUEUE MANAGEMENT STATEMENTS
Majo DC System (1) (2) (3) (4) (5)
r Service(in
Funct COBOL DML) DCBMSC
ion oM
Code (nn)
44 PUT QUEUE 17 gqueue-data-location end-queue-data-location
44 GET QUEUE 11 return-qgueue-data-location end-queue-data-location
44 DELETE 6
QUEUE
TERMINAL MANAGEMENT STATEMENTS
Major DC System (1) (2) (3) (4) (5)
Functio Service(in DCBMSC
nCode COBOLDML) opm
(nn)

45 READ 30 input-data-loc end-input-data-lo

TERMINAL ation cation
45 WRITE 30 output-data-lo end-output-data-I

TERMINAL cation ocation
45 WRITE THEN 30 output-data-lo end-output-data-l input-data-location end-input-data-lo

READ cation ocation cation

TERMINAL
45 CHECK 31 input-data-loc end-input-data-lo

TERMINAL ation cation

Appendix D: CAIDMS Call Formats 473

DC Call Formats

Major DC System (1) (2) (3) (4) (5)
Functio Service(in DCBMSC
nCode COBOLDML) qm
(nn)
47 READ LINE 32 input-data-loc end-input-data-lo
FROM ation cation
TERMINAL
47 WRITELINE 32 output-data-lo end-output-data-I
TO cation ocation
TERMINAL
47 END LINE 32
TERMINAL
SESSION
48 WRITE 37 message-locat end-message-loc
PRINTER ion ation
46 MAP IN (I0) 34 MRB-mapnam
e
46 MAP IN 34 MRB-mapnam mapped-data-loc end-mapped-data-loc
(NOI10) e ation ation
46 MAP IN 34 MRB-mapnam data-field-name sequence-field-name page-number
(paging) (a) e
46 MAP IN 34 MRB-mapnam key page-number
(paging) (b) e
46 MAP OUT 34 MRB-mapnam message-text end-message-data-lo
(1o) e cation
OR
DCBMSCOM (length)
46 MAP OUT 34 MRB-mapnam mapped-data-loc end-mapped-data-
(NOI10) e ation location
46 MAP OUT 34 MRB-mapnam message-text end-message-locatio key
(paging) e n
OR
DCBMSCOM (length)
46 MAP OUTIN 34 MRB-mapnam message-text end-message-data-lo
e cation
OR
DCBMSCOM (length)
46 MODIFY MAP 93 MRB-mapnam MRE MRB-FLDLST
e

474 DML Reference Guide for COBOL

DC Call Formats

Major DCSystem (1) (2) (3) (4) (5)
Functio Service(in DCBMSC
nCode COBOLDML) o
(nn)
46 INQUIRE 92 MRB-mapnam MRE
MAP (a) e
46 INQUIRE 92 MRB-mapnam
MAP (b) e
46 INQUIRE 92 MRB-mapnam MRE
MAP (c) €
46 INQUIRE 92 MRB-mapnam MRB-FLDLST
MAP (d) e
46 STARTPAGE 40 MRB-mapnam
[S]
46 ENDPAGE 41 MRB-mapnam
e
UTILITY STATEMENTS
Majo DC (1) (2) (3) (4) (5)
r System DCBMSC
Funct Service(in o
ion COBOL
Code DML) (nn)
48 ACCEPT 2 return-locatio
n
40 SNAP 22 DCSTR1 DCSTR1 (6) DCSTR1 (7) title (8)
begin-dump-locatio end-dump-location
n
49 SEND 38 user-id message-location end-message-location DCBMSCOM(1)
MESSAGE
38 BIND 28
TRANSACT
ION
STATISTIC
S

Appendix D: CAIDMS Call Formats 475

DC Call Formats

Majo DC (1) (2) (3) (4) (5)
r System DCBMSC
Funct Service(in o
ion COBOL
Code DML) (nn)
38 ACCEPT 28 return-stat-da
TRANSACT ta-location
ION
STATISTIC
S
38 END 28 return-stat-da
TRANSACT ta-location
ION
STATISTIC
S
51 KEEP 29 record-name
LONGTER set-name
M
area-name
36 WRITE 25 text-return-lo end-text-return-loc reply-location end-reply-location
LOG cation ation 7).

(6)

parameter-location

end-parameter-locat
ion

RECOVERY STATEMENTS

Major DC System (1) (2) (3) (4) (5)
Functio Service(in DCBMSCOM
n Code COBOL DML) (nn)
50 COMMIT 66
50 COMMIT 27
TASK
50 FINISH 2
50 FINISH TASK 27
50 ROLLBACK 67
50 ROLLBACK 27
TASK

476 DML Reference Guide for COBOL

DC Call Formats

Major DC System (1) (2) (3) (4) (5)
Functio Service(in DCBMSCOM
n Code COBOL DML) (nn)
50 WRITE 26 record-location end-record-location
JOURNAL
DC-BATCH
Major DC System (1) (2) (3) (4) (5)
Function Service(in COBOL pcpmscom
Code DML) (nn)
14 BIND-TASK 28 DCSTR2

Appendix D: CAIDMS Call Formats 477

Appendix E: CA IDMS Keywords

This appendix contains a list of keywords recognized by the DML precompiler,including
words applicablein the onlineenvironment only. All keywords marked with an asterisk
are also reserved words. Reserved words cannot be used for user-defined element,
record, set, paragraph, or area variablenames.

Note: The method of parsingused by the IDMSDMLC preprocessor is significantly
different in CA IDMS Release 12.0 and later releases from that used in prior releases.
The current parsing method looks atindividual words inthesource code. If it
encounters a keyword, it assumes thatthe keyword should be expanded andtries to do
so. Invalid useof reserved words canthus resultin either codingerrors or syntax errors.
For example, if you useFIND as a variable, the parser will try to handleitas the DML
verb FIND.

This section contains the followingtopics:

Listof Keywords (see page 479)

List of Keywords

*ABEND INTERNAL *REMARKS
ABORT INTERVAL REPLACE
*ACCEPT INTO REPLY
AID INVOKED REPORT
ALARM I0 REQUIRED
ALL IS REREAD
ALPHAMERIC JOURNAL RESETKBD
ALWAYS JUSTIFY RESETMDT
ANY *KEEP RESUME
AREA KEY RETENTION
ASSIGN LAST RETURNKEY
AT LEAVE RETRIEVAL
*ATTACH LEFT RETRY
ATTRIBUTES LENGTH *RETURN
BACKPAGE LEVELS REVERSE-VIDEO
BACKSCAN LINE REVERSED
*BIND LINK REWIND
BLINK *LINKAGE RIGHT
BLUE LIST *ROLLBACK
BRIGHT LITERALS RUN

Appendix E: CA IDMS Keywords 479

List of Keywords

BROWSE *LOAD RUN-UNIT

BUFFER LOCK *SCHEMA

BUT LOG SCRATCH

BY LONG SCREEN

CALC LONGTERM SCREENSIZE

*CALL LR SECONDS

CANCEL LSSC-NODN *SECTION

*CHANGE LTERM *SELECT

CHANGED MANUAL SELECTIVE

*CHECK *MAP *SEND

CLASS MAP-BINDS SEQUENCE

CLEAR MAP-CONTROL SEQUENCE-NUMBER
CODE MAP-CONTROLS SESSION

*COMMIT MAP-RECORDS *SET

coMP MAPS SHARE

CoMP-3 MAX SHARED

*CONNECT MDT SHORT

CONTENTS MEMBER SKIP

CONTINUE MEMBERS SKIP1

CONTROL MESSAGE SKIP2

COPIES MODE SKIP3

*COPY MODIFIED SNAP

CORRECT *MODIFY SOME

CURRENCY MODULE SPAN

CURRENT MOVE STANDARD

CURSOR MRB-FLDLST START

DARK NAME STARTPAGE

*DATA NATIVE STARTPRT

DATABASE-KEY NEWPAGE STATISTICS
DATASTREAM NEXT STGID

DATE NLCR *STOP

DB NO STORAGE

DB-KEY NOALARM *STORE

DBNAME NOBACKPAGE SUBSCHEMA - AREANAMES
*DC NOBACKSCAN SUBSCHEMA -BINDS
DEBUG NOBLINK SUBSCHEMA - CONTROL
*DECLARATIVES NOCOLOR SUBSCHEMA-CTRL
*DELETE NODEADLOCK SUBSCHEMA -DESCRIPTION
*DEQUEUE NODENAME SUBSCHEMA -DML- LR-

DEST NODUMP DESCRIPTION

DESTINATION NOIO SUBSCHEMA - LR-CONTROL
DETAIL NOKBD SUBSCHEMA-LR-CTRL
DETECT NOLOCK SUBSCHEMA-LR-

DFLD NOMDT DESCRIPTION

*DISCONNECT NONE SUBSCHEMA - LR-NAMES
DISP NOPAD SUBSCHEMA -LR-RECORDS
DISPLAY NOPRT SUBSCHEMA -NAMES

480 DML Reference Guide for COBOL

List of Keywords

DIVISION
DuUMP
DUPLICATE
EAU
ECHO
EDIT
EJECT
EMPTY
*END
ENDPAGE
ENDRPT
*ENQUEUE
*ENTRY
*ENVIRONMENT
*ERASE
ERROR
EVENT
EXCEPT
EXCLUSIVE
EXIT
EXITS
EXTENDED
EXTERNAL
EXTRANEOUS
FIELD
FIELDS
FILE
*FIND
*FINISH
FIRST
FOR
*FREE
FROM
*GET
GREEN
HEADER
HOLD
I-0
*ID

*IDENTIFICATION

IDMS
*IDMS-CONTROL
IDMS-RECORDS

IDMS-STATISTICS

*IF

NORETURN SUBSCHEMA -REQNAMES
NORMAL SUBSCHEMA -RECORDS
NORMAL -VIDEO SUBSCHEMA - SETNAMES
NOSPAN SUBSCHEMA - SSNAME
NOT SYSTEM
*NOTE SYSVERSION
NOTIFICATION TABLE
NOTIFY TASK
NOUNDERSCORE TEMPORARY
NOWAIT TERMINAL
NOWRITE TEST
NULL TEXT
NUMERIC THEN
*0BTAIN TIME
OF TIMEOUT
OFF TIMER
ON TITLE
ONLY TO
*OPEN TRACE
OPTIONAL TRANSACTION
ouT *TRANSFER
OUTIN TRUNCATED
OUTPUT TURQUOISE
OWNER TYPE
PAD UNDERSCORE
PAGE UNFORMATTED
PAGING UNPROTECTED
PARMS UPDATE
PERMANENT UPGRADE
PINK USAGE-MODE
POSITION USER
*POST USING
PREFIX VALUE
PRINTER VERSION
PRIOR *WAIT
PRIORITY WCC
PRIVACY WHERE
*PROCEDURE WHITE
PROGRAM WITH
*PROGRAM- ID WITHIN
PROTECTED *WORKING-STORAGE
PROTOCOL *WRITE
PTERM XCTL
*PUT YELLOW

QUEUE

YES

Appendix E: CA IDMS Keywords 481

List of Keywords

IGNORED

IN

INCREMENTED

INPUT
*INQUIRE

INTENT

*READ 40CR
*READY 64CR
RECORD 80CR
RED
REDISPATCH
RELEASE

482 DML Reference Guide for COBOL

Appendix F: Notes to Teleprocessing
Monitor Users

This appendix describes special considerationsrelatingto application programsrunning
under teleprocessing (TP) monitors supported by CA IDMS (thatis, CICS, INTERCOMM,
SHADOW, TASK/MASTER, UTM, and WESTI).

This section contains the followingtopics:

TP Monitor Coding Guidelines (seepage 483)

TP monitor Coding Requirements (see page 484)

TP Monitor Coding Guidelines

Whilethere are no special coding requirements for TP monitor transactions, the
following guidelines should beadhered to:

DML statements should be coded suchthat all databaserequests (for example,
BIND, READY, OBTAIN, FINISH) are executed together whenever possibleto achieve
maximum efficiency and ease of recovery.

For each TP monitor, you should check with the DBA to determine the operating
mode (protocol)installed. The proper mode must then be specifiedinthe
IDMS-CONTROL SECTION of the ENVIRONMENT DIVISION.

For CICS, INTERCOMM, SHADOW, UTM, and WESTI applications, themode as
installed mayrequire the inclusion of additional statements in the IDMS-CONTROL
SECTION, WORKING-STORAGE SECTION, and LINKAGE SECTION of each program.
These requirements andthe applicablemodes are outlined in the followingtable.

Note: The same rules apply to the COPY IDMS statements used to insert
logical-record source code components intothe program: IDMS-RECORDS MANUAL
should be coded inthe ENVIRONMENT DIVISION; SUBSCHEMA-LR-NAMES should be
copiedinto the WORKING-STORAGE SECTION; and SUBSCHEMA-CTRL,
SUBSCHEMA-LR-CTRL, and SUBSCHEMA-LR-RECORDS should be copiedinto the
LINKAGE-SECTION (except under CICS-EXEC or CICS-EXEC-AUTO, when all required
components should be copiedinto the WORKING-STORAGE SECTION).

The DML compiler should be executed before the teleprocessing monitor
preprocessor.

Appendix F: Notes to Teleprocessing Monitor Users 483

TP monitor Coding Requirements

TP monitor Coding Requirements

TP MONITOR IF MODE IS

IDMS-CONTROL

SECTION

WORKING-STORA
GE SECTION

LINKAGE SECTION

PROCEDURE
DIVISION

CICS CICS

IDMS-RECORDS

MANUAL.

COPY IDMS
SUBSCHEMA-NAM
ES

*01 TWA

03 FILLER PIC
S9(8)
COMP SYNC.
03 COPY IDMS

SUBSCHEMA-CTRL.
03 COPY IDMS

SUBSCHEMA-RECO
RDS.

OR
**COPY IDMS

SUBSCHEMA-CTRL
COPY IDMS

SUBSCHEMA-RECO
RDS.

(A CICS
GETMAIN must

be issued for the
SUBSCHEMA-CTRL

and for each record
being copied.)

COPY IDMS
IDMS-WAIT.

CICS-EXEC

IDMS-RECORDS
MANUAL.

COPY IDMS

SUBSCHEMA-CTRL.

CICS-EXEC-AUTO

COPY IDMS

SUBSCHEMA-NAM
ES.

484 DML Reference Guide for COBOL

TP monitor Coding Requirements

TP MONITOR IF MODE IS IDMS-CONTROL WORKING-STORA LINKAGE SECTION PROCEDURE
SECTION GE SECTION DIVISION
COPY IDMS
SUBSCHEMA-RECO
RDS.
INTERCOMM INTERCOMM IDMS-RECORDS ~ COPY IDMS COPY IDMS
INTERCOMM-AU MANUAL. SUBSCHEMA-NAM SUBSCHEMA-CTRL.
TO ES. COPY IDMS
SUBSCHEMA-RECO
RDS.
SHADOW SHADOW IDMS-RECORDS ~ COPY IDMS COPY IDMS
SHAD-AUTOSTAT ~ MANUAL. SUBSCHEMA-NAM SUBSCHEMA-CTRL.
us ES. COPY IDMS
SUBSCHEMA-RECO
RDS
UTM UT™M IDMS-RECORDS ~ COPY IDMS COPY KCKBC. MOVE
UTM-AUTOSTAT ~ MANUAL. SUBSCHEMA-NAM 05 X PIC S9 (8) LOW-VALUES
us ES. COMP SYNC. to
SUBSCHEMA_C
05 COPY IDMS TRL before
each BIND
SUBSCHEMA-CTRL. RUN-UNIT.
05 COPY IDMS
SUBSCHEMA-RECO
RDS.
COPY KCPAC.
WESTI WESTI-REENT IDMS-RECORDS ~ COPY IDMS COPY IDMS
WESTI-REENT-AU MANUAL. SUBSCHEMA-NAM SUBSCHEMA-CTRL.
TO ES. COPY IDMS

SUBSCHEMA-RECO
RDS.

*|f SUBSCHEMA-CTRL, SUBSCHEMA RECORDS, and additional data does not exceed 4,096 bytes.

**|f SUBSCHEMA-CTRL, SUBSCHEMA_RECORDS, and additional data exceeds 4,096 bytes.

Appendix F: Notes to Teleprocessing Monitor Users 485

Appendix G: EMPLOYEE Database Definition

This appendix contains the IDMSRPTS utility and the data structurediagramfor the
EMPLOYEE databasefrom which most of the examples in this manual aretaken. Both of
the sampleprograms listed earlier in this manual access this database.

Note: For more information aboutthe IDMSRPTS utility, see the CA IDMS Utilities Guide.

This section contains the followingtopics:

IDMSRPTS Utility Report Listings (see page 487)
EMPLOYEE DatabaseStructure Diagram (see page 501)

IDMSRPTS Utility Report Listings

IDMSRPTS nn.n

— SCHEMA RECORD DESCRIPTION LISTING — DATE TIME PAGE
RECDES DICTIONARY APPLDICT OF NODE DEFAULT mm/dd/yy
hhmmss 1

SCHEMA EMPSCHM VERSION 100

RECORD NAME........ COVERAGE RLGTH= 36
RECORD VERSION..... 0100 DLGTH= 20
RECORD ID.......... 0400 KLGTH= 16
RECORD LENGTH...... FIXED DSTRT= 16
LOCATION MODE...... VIA SET EMP-COVERAGE DISPLACEMENT 0000 PAGES
WITHIN............. INS-DEMO-REGION OFFSET 5 PGS FOR 20 PGS
DBKEY POSITIONS.... SET............. TYPE........ NEXT PRIOR OWNER
EMP-COVERAGE =~ MEMBER 1 2 3
COVERAGE - CLAIMS OWNER 4
DATA ITEM.......... REDEFINES... USAGE....... VALUE..... PICTURE. STRT LGTH
02 SELECTION-DATE-0400 DISPLAY 1 8
03 SELECTION-YEAR-0400 DISPLAY 9(4) 1 4
03 SELECTION-MONTH-0400 DISPLAY 9(2) 5 2
03 SELECTION-DAY-0400 DISPLAY 9(2) 7 2
02 TERMINATION-DATE-0400 DISPLAY 9 8

Appendix G: EMPLOYEE Database Definition 487

IDMSRPTS Utility Report Listings

03 TERMINATION-YEAR-0400 DISPLAY 9(4) 9 4
03 TERMINATION-MONTH-0400 DISPLAY 9(2) 13 2
03 TERMINATION-DAY-0400 DISPLAY 9(2) 15 2
02 TYPE-0400 DISPLAY X 17 1

88 MASTER-0400 COND M 17

88 FAMILY-0400 COND 'F! 17

88 DEPENDENT-0400 COND ‘D 17

02 INS-PLAN-CODE-0400 DISPLAY X(3) 18 3
88 GROUP-LIFE-0400 COND ‘001" 18

88 HMO0-0400 COND '002' 18

88 GROUP-HEALTH-0400 COND '003' 18

88 GROUP-DENTAL-0400 COND '004' 18

IDMSRPTS nn.n

— SCHEMA RECORD DESCRIPTION LISTING — DATE TIME PAGE
RECDES DICTIONARY APPLDICT OF NODE DEFAULT mm/dd/yy
hhmmss 3

SCHEMA EMPSCHM VERSION 160

RECORD NAME........ DENTAL -CLAIM RLGTH= 944

RECORD VERSION..... 0100 DLGTH= 936

RECORD ID.......... 0405 KLGTH= 8

RECORD LENGTH...... VARIABLE DSTRT= 12

MINIMUM ROQT....... 132 CHARACTERS

MINIMUM FRAGMENT... 932 CHARACTERS

LOCATION MODE...... VIA SET COVERAGE-CLAIMS DISPLACEMENT 0000 PAGES
WITHIN............. INS-DEMO-REGION OFFSE 5 PGS FOR 20 PGS
DBKEY POSITIONS.... SET............. TYPE........ NEXT PRIOR OWNER

COVERAGE - CLAIMS MEMBER 1
(FRAGMENT CHAIN) INTRNL 2

DATA ITEM.......... REDEFINES. .. USAGE....... VALUE..... PICTURE. STRT LGTH
02 CLAIM-DATE-0405 DISPLAY 1 8

03 CLAIM-YEAR-0405 DISPLAY 9(4) 1 4

03 CLAIM-MONTH-0405 DISPLAY 9(2) 5 2

03 CLAIM-DAY-0405 DISPLAY 9(2) 7 2

02 PATIENT-NAME-0405 DISPLAY 9 25

03 PATIENT-FIRST-NAME-0405 DISPLAY X(10) 9 10
03 PATIENT-LAST-NAME-0405 DISPLAY X(15) 19 15
02 PATIENT-BIRTH-DATE-0405 DISPLAY 34 8
03 PATIENT-BIRTH-YEAR-0405 DISPLAY 9(4) 34 4
03 PATIENT-BIRTH-MONTH-0405 DISPLAY 9(2) 38 2

488 DML Reference Guide for COBOL

IDMSRPTS Utility Report Listings

03
02
02
02
03
03
02
03
03
03
03
04
04
02
02
02
02

03
03
04
04
04
03
03
03
03

PATIENT-BIRTH-DAY-0405 DISPLAY 9(2) 40 2
PATIENT -SEX-0405 DISPLAY X 42 1
RELATION-TO-EMPLOYEE-0405 DISPLAY X(10) 43 10
DENTIST-NAME-0405 DISPLAY 53 25
DENTIST-FIRST-NAME-0405 DISPLAY X(10) 53 10
DENTIST-LAST-NAME - 0405 DISPLAY X(15) 63 15
DENTIST-ADDRESS-0405 DISPLAY 78 46
DENTIST-STREET-0405 DISPLAY X(20) 78 20
DENTIST-CITY-0405 DISPLAY X(15) 98 15
DENTIST-STATE-0405 DISPLAY X(2) 113 2
DENTIST-ZIP-0405 DISPLAY 115 9
DENTIST-ZIP-FIRST-FIVE-0405 DISPLAY X(5) 115 5
DENTIST-ZIP-LAST-FOUR-0405 DISPLAY X(4) 120 4
DENTIST-LICENSE-NUMBER-0405 DISPLAY 9(6) 124 6
NUMBER - OF -PROCEDURES-0405 COMP 9(2) 130 2
FILLER DISPLAY X 132 1
DENTIST-CHARGES-0405 DISPLAY OCCURS O TO 10 133 800
DEPENDING ON --- NUMBER-OF-PROCEDURES-0405

TOOTH-NUMBER - 0405 DISPLAY 9(2) 1 2
SERVICE-DATE-0405 DISPLAY 3 8
SERVICE-YEAR-0405 DISPLAY 9(4) 3 4
SERVICE-MONTH-0405 DISPLAY 9(2) 7 2
SERVICE-DAY-0405 DISPLAY 9(2) 9 2
PROCEDURE -CODE - 0405 DISPLAY 9(4) 11 4
DESCRIPTION-OF-SERVICE-0405 DISPLAY X(60) 15 60
FEE-0405 COMP-3 S9(7)v99 75 5

FILLER DISPLAY X 80 1

Appendix G: EMPLOYEE Database Definition 489

IDMSRPTS Utility Report Listings

IDMSRPTS nn.n — SCHEMA RECORD DESQRIPTION LISTING —
DATE TIME PAGE

RECDES DICTIONARY APPLDICT OF NODE DEFAULT

hhmmss 6

SCHEMA EMPSCHM VERSION 100

RECORD NAME........ DEPARTMENT RLGTH= 72
RECORD VERSION..... 0100 DLGTH= 56
RECORD ID.......... 0410 KLGTH= 16
RECORD LENGTH...... FIXED DSTRT= 16
LOCATION MODE...... CALC USING DEPT-ID-0410 DUPLICATES NOT ALLOWED
WITHIN............. ORG-DEMO-REGION OFFSET 5 PGS FOR
DBKEY POSITIONS.... SET............. TYPE........ NEXT PRIOR OWNER
CALC MEMBER 1 2
DEPT-EMPLOYEE INDEX OWNER 3 4
DATA ITEM.......... REDEFINES. .. USAGE....... VALUE..... PICTURE. STRT LGTH
02 DEPT-ID-0410 DISPLAY 9(4) 1 4
02 DEPT-NAME-0410 DISPLAY X(45) 5 45
02 DEPT-HEAD-ID-0410 DISPLAY 9(4) 50 4
02 FILLER DISPLAY XXX 54 3

IDMSRPTS nn.n

— SCHEMA RECORD DESCRIPTION LISTING — DATE
RECDES DICTIONARY APPLDICT OF NODE DEFAULT
hhmmss 7

SCHEMA EMPSCHM VERSION 100

RECORD NAME........ EMPLOYEE RLGTH= 192

RECORD VERSION..... 0100 DLGTH= 120

RECORD ID.......... 0415 KLGTH= 72

RECORD LENGTH...... FIXED DSTRT= 72

LOCATION MODE...... CALC USING EMP-ID-0415 DUPLICATES NOT ALLOWED

WITHIN............. EMP-DEMO-REGION OFFSET 5 PGS FOR

DBKEY POSITIONS.... SET............. TYPE........ NEXT PRIOR OWNER
CALC MEMBER 1 2
DEPT-EMPLOYEE INDEX MEMBER 3 4

EMP-NAME-NDX INDEX MEMBER 5
EMP-SSN-NDX INDEX MBMBER 6
OFFICE-EMPLOYEE INDEX MEMBER 7 8
EMP-COVERAGE = OWNER 9 10
EMP-EMPOSITION OWNER 11 12
EMP-EXPERTISE OWNER 13 14
MANAGES OWNER 15 16
REPORTS-TO OWNER 17 18

490 DML Reference Guide for COBOL

IDMSRPTS Utility Report Listings

REDEFINES. .. USAGE

EMP-NAME -0415
EMP-FIRST-NAME-0415
EMP-LAST-NAME -0415
EMP-ADDRESS-0415
EMP-STREET-0415
EMP-CITY-0415
EMP-STATE-0415
EMP-ZIP-0415
EMP-ZIP-FIRST-FIVE-0415
EMP-ZIP-LAST-FOUR-0415
EMP-PHONE-0415
STATUS-0415
ACTIVE-0415
ST-DISABIL-0415

....... VALUE..... PICTURE. STRT LGTH
9(4) 1 4
5 25
X(10) 5 10
X(15) 15 15
30 46
X(20) 30 20
X(15) 50 15
X(2) 65 2
67 9
X(5) 67 5
X(4) 72 4
9(10) 76 10
X(2) 86 2
86

'02' 86
‘03’ 86

LT-DISABIL-0415
LEAVE-OF - ABSENCE - 0415
TERMINATED-0415

'04' 86

'05' 86

SS-NUMBER-0415
START-DATE-0415
START-YEAR-0415
START-MONTH-0415
START-DAY -0415
TERMINATION-DATE-0415
TERMINATION-YEAR-0415
TERMINATION-MONTH-0415
TERMINATION-DAY-0415
BIRTH-DATE-0415
BIRTH-YEAR-0415
BIRTH-MONTH-0415
BIRTH-DAY-0415

9(9) 8 9
97 8
9(4) 97 4
9(2) 101 2
9(2) 183 2
105 8
9(4) 105 4
9(2) 109 2
9(2) 111 2
113 8
9(4) 113 4
9(2) 117 2
9(2) 119 2

Appendix G: EMPLOYEE Database Definition 491

IDMSRPTS Utility Report Listings

IDMSRPTS nn.n

— SCHEMA RECORD DESCRIPTION LISTING —

DATE TIME PAGE

RECDES DICTIONARY APPLDICT OF NODE DEFAULT mm/dd/yy
hhmmss 8
SCHEMA EMPSCHM VERSION 100
RECORD NAME........ EMPOSITION RLGTH= 56
RECORD VERSION..... 0100 DLGTH= 32
RECORD ID.......... 0420 KLGTH= 24
RECORD LENGTH...... FIXED DSTRT= 24
LOCATION MODE...... VIA SET EMP-EMPOSITION DISPLACEMENT 0000 PAGES
WITHIN............. EMP-DEMO-REGION OFFSET 5 PGS FOR 45 PGS
DBKEY POSITIONS.... SET............. TYPE........ NEXT PRIOR OWNER
EMP-EMPOSITION MEMBER 2 3
JOB-EMPOSITION MEMBER 5 6
DATA ITEM.......... REDEFINES... USAGE....... VALUE..... PICTURE. STRT LGTH
02 START-DATE-0420 DISPLAY 1 8
03 START-YEAR-0420 DISPLAY 9(4) 1 4
03 START-MONTH-0420 DISPLAY 9(2) 5 2
03 START-DAY-0420 DISPLAY 9(2) 7 2
02 FINISH-DATE-0420 DISPLAY 9 8
03 FINISH-YEAR-0420 DISPLAY 9(4) 9 4
03 FINISH-MONTH-0420 DISPLAY 9(2) 13 2
03 FINISH-DAY-0420 DISPLAY 9(2) 15 2
02 SALARY-GRADE-0420 DISPLAY 9(2) 17 2
02 SALARY-AMOUNT-0420 COMP-3 S9(7)v99 19 5
02 BONUS-PERCENT-0420 COMP-3 SVo99 24 2
02 COMMISSION-PERCENT-0420 COvMP-3 SV999 26 2
02 OVERTIME-RATE-0420 COMP-3 S9v99 28 2
02 FILLER DISPLAY 30 3

492 DML Reference Guide for COBOL

IDMSRPTS Utility Report Listings

IDMSRPTS nn.n

— SCHEMA RECORD DESCRIPTION LISTING — DATE TIME PAGE
RECDES DICTIONARY APPLDICT OF NODE DEFAULT mm/dd/yy
hhmmss 10

SCHEMA EMPSCHM VERSION 100

RECORD NAME........ EXPERTISE RLGTH= 32

RECORD VERSION..... 0100 DLGTH= 12

RECORD ID.......... 0425 KLGTH= 20

RECORD LENGTH...... FIXED DSTRT= 20

LOCATION MODE...... VIA SET EMP-EXPERTIS DISPLACEMENT 0000 PAGES

WITHIN............. EMP-DEMO-REGION ~ OFFSET 5 PGS FOR 45 PGS

DBKEY POSITIONS.... SET............. TYPE........ NEXT PRIOR OWNER
EMP-EXPERTISE MEMBER 1 2 3
SKILL-EXPERTISE INDEX MEMBER 4 5

DATA ITEM.......... REDEFINES. .. USAGE....... VALUE..... PICTURE. STRT LGTH

02 SKILL-LEVEL-0425 DISPLAY XX 1 2

88 EXPERT-0425 COND ‘04" 1

88 PROFICIENT-0425 COND '03" 1

88 COMPETENT-0425 COND ‘02" 1

88 ELEMENTARY-0425 COND ‘01’ 1

02 EXPERTISE-DATE-0425 DISPLAY 3 8

03 EXPERTISE-YEAR-0425 DISPLAY 9(4) 3 4

03 EXPERTISE-MONTH-0425 DISPLAY 9(2) 7 2

03 EXPERTISE-DAY-0425 DISPLAY 9(2) 9 2

02 FILLER DISPLAY XX 11 2

IDMSRPTS nn.n

— SCHEMA RECORD DESCRIPTION LISTING — DATE TIME PAGE
RECDES DICTIONARY APPLDICT OF NODE DEFAULT mm/dd/yy
hhmmss 10

SCHEMA EMPSCHM VERSION 100

Appendix G: EMPLOYEE Database Definition 493

IDMSRPTS Utility Report Listings

RECORD NAME........ HOSPITAL-CLAIM RLGTH= 304

RECORD VERSION..... 0100 DLGTH= 300

RECORD ID.......... 0430 KLGTH= 4

RECORD LENGTH...... FIXED DSTRT= 4

LOCATION MODE...... VIA SET COVERAGE-CLAIMS DISPLACEMENT 0000 PAGES

WITHIN............. INS-DEMO-REGION OFFSET 5 PGS FOR 20 PGS

DBKEY POSITIONS.... SET............. TYPE........ NEXT PRIOR OWNER
COVERAGE - CLAIMS MEMBER 1

DATA ITEM.......... REDEFINES. .. USAGE....... VALLE..... PICTURE. STRT LGTH

02 CLAIM-DATE-0430 DISPLAY 1 8

03 CLAIM-YEAR-0430 DISPLAY 9(4) 1 4

03 CLAIM-MONTH-0430 DISPLAY 9(2) 5 2

03 CLAIM-DAY-0430 DISPLAY 9(2) 7 2

02 PATIENT-NAVE-0430 DISPLAY 9 25

03 PATIENT-FIRST-NAME-0430 DISPLAY X(10) 9 10

03 PATIENT-LAST-NAME-0430 DISPLAY X(15) 19 15

02 PATIENT-BIRTH-DATE-0430 DISPLAY 34 8

03 PATIENT-BIRTH-YEAR-0430 DISPLAY 9(4) 34 4

03 PATIENT-BIRTH-MONTH-0430 DISPLAY 9(2) 38 2

03 PATIENT-BIRTH-DAY-0430 DISPLAY 9(2) 40 2

02 PATIENT-SEX-0430 DISPLAY X 42 1

02 RELATION-TO-EMPLOYEE-0430 DISPLAY X(10) 43 10

02 HOSPITAL-NAME-0430 DISPLAY X(25) 53 25

02 HOSP-ADDRESS -0430 DISPLAY 78 46

03 HOSP-STREET-0430 DISPLAY X(20) 78 20

03 HOSP-CITY-0430 DISPLAY X(15) 98 15

03 HOSP-STATE-0430 DISPLAY X(2) 13 2

03 HOSP-ZIP-6430 DISPLAY 115 9

04 HOSP-ZIP-FIRST-FIVE-0430 DISPLAY X(5) 115 5

04 HOSP-ZIP-LAST-FOUR-0430 DISPLAY X(4) 120 4

02 ADMIT-DATE-0430 DISPLAY 124 8

03 ADMIT-YEAR-0430 DISPLAY 9(4) 124 4

03 ADMIT-MONTH-0430 DISPLAY 9(2) 128 2

03 ADMIT-DAY-0430 DISPLAY 9(2) 130 2

02 DISCHARGE-DATE-0430 DISPLAY 132 8

03 DISCHARGE-YEAR-0430 DISPLAY 9(4) 132 4

03 DISCHARGE-MONTH-0430 DISPLAY 9(2) 136 2

03 DISCHARGE-DAY-0430 DISPLAY 9(2) 138 2

02 DIAGNOSIS-0430 DISPLAY OCCURS 2 X(60) 140 120

02 HOSPITAL-(HARGES-0430 DISPLAY 260 41

03 ROOM-AND-BOARD-0430 DISPLAY 260 26

04 WARD-0430 DISPLAY 260 13

05 WARD-DAYS-0430 COMP-3 S9(5) 260 3

05 WARD-RATE-0430 COMP-3 S9(7)v99 263 5

05 WARD-TOTAL-0430 COMP-3 S9(7)v99 268 5

04 SEMI-PRIVATE-0430 DISPLAY 273 13

05 SEMI-DAYS-0430 COMP-3 S9(5) 273 3

494 DML Reference Guide for COBOL

IDMSRPTS Utility Report Listings

05 SEMI-RATE-0430 CoMP-3 S9(7)v99 276 5
05 SEMI-TOTAL-0430 COMP-3 S9(7)v99 281 5
03 OTHER-CHARGES-0430 DISPLAY 286 15

04 DELIVERY-COST-0430 COMP-3 S9(7)v99 286 5
04 ANESTHESIA-COST-0430 COMP-3 S9(7)Vv99 291 5
04 LAB-COST-0430 COMP-3 S9(7)v99 296 5

IDMSRPTS nn.n

— SCHEMA RECORD DESCRIPTION LISTING — DATE TIME PAGE
RECDES DICTIONARY APPLDICT OF NODE DEFAULT mm/dd/yy
hhmmss 12

SCHEMA EMPSCHM VERSION 100

RECORD NAME........ INSURANCE-PLAN RLGTH= 140

RECORD VERSION..... 0100 DLGTH= 132

RECORD ID.......... 0435 KLGTH= 8

RECORD LENGTH...... FIXED DSTRT= 8

LOCATION MODE...... CALC USING INS-PLAN-CODE-0435 DUPLICATES NOT ALLOWED

WITHIN............. INS-DEMO-REGION OFFSET 1 PGS FOR 4 PGS

DBKEY POSITIONS.... SET............. TYPE........ NEXT PRIOR OWNER
CALC MEMBER 1 2

DATA ITEM.......... REDEFINES... USAGE....... VALUE..... PICTURE. STRT LGTH

02 INS-PLAN-CODE-0435 DISPLAY X(3) 1 3

88 GROUP-LIFE-0435 COND ‘001" 1

88 HMO0-0435 COND ‘002" 1

88 GROUP-HEALTH-0435 COND '003' 1

88 GROUP-DENTAL-0435 COND '004' 1

02 INS-CO-NAME-0435 DISPLAY X(45) 4 45

02 INS-CO-ADDRESS-0435 DISPLAY 49 46

03 INS-CO-STREET-0435 DISPLAY X(20) 49 20

03 INS-CO-CITY-0435 DISPLAY X(15) 69 15

03 INS-CO-STATE-0435 DISPLAY X(2) 84 2

03 INS-CO-ZIP-0435 DISPLAY 86 9

04 INS-CO-ZIP-FIRST-FIVE-0435 DISPLAY X(5) 86 5

04 INS-CO-ZIP-LAST-FOWR-0435 DISPLAY X(4) 91 4

02 INS-CO-PHONE-0435 DISPLAY 9(10) 95 10

Appendix G: EMPLOYEE Database Definition 495

IDMSRPTS Utility Report Listings

02 GROUP-NUMBER-0435 DISPLAY 9(6) 105 6
02 PLAN-DESCRIPTION-0435 DISPLAY 111 20
03 DEDUCT-0435 COMP-3 S9(7)v99 111 5

03 MAXIMUM-LIFE-COST-0435 CoMP-3 S9(7)\W9 116 5
03 FAMILY-COST-0435 COMP-3 S9(7)v99 121 5
03 DEP-COST-0435 COMP-3 S9(7)v99 126 5

02 FILLER DISPLAY XX 131 2

IDMSRPTS nn.n

— SCHEMA RECORD DESCRIPTION LISTING — DATE TIME PAGE
RECDES DICTIONARY APPLDICT OF NODE DEFAULT mm/dd/yy
hhmmss 14

SCHEMA EMPSCHM VERSION 100

RECORD NAME........ JoB RLGTH= 324

RECORD VERSION..... 0100 DLGTH= 300

RECORD ID.......... 0440 KLGTH= 24

RECORD LENGTH...... FIXED (INTERNALLY VARIABLE) DSTRT= 28
MINIMUM ROOT....... 24 CHARACTERS

MINIMUM FRAGMENT... 296 CHARACTERS

LOCATION MODE...... CALC USING JOB-ID-0440 DUPLICATES NOT ALLOWED
WITHIN............. ORG-DEMO-REGION OFFSET 5 PGS FOR 20 PGS

CALL PROCEDURES.... NAME.... WHEN.. FUNCTION
IDMSCOMP BEFORE STORE
IDMSCOMP BEFORE MODIFY
IDMSDCOM AFTER GET

DBKEY POSITIONS.... SET............. TYPE........ NEXT PRIOR OWNER
CALC MEMBER 1 2
JOB-TITLE-NDX INDEX MEMBER 3
JOB-EMPOSITION OWNER 4 5

(FRAGMENT CHAIN) INTRNL 6

496 DML Reference Guide for COBOL

IDMSRPTS Utility Report Listings

DATA ITEM.......... REDEFINES. .. USAGE....... VALUE..... PICTURE. STRT LGTH
02 JOB-ID-0440 DISPLAY 9(4) 1 4

02 TITLE-0440 DISPLAY X(20) 5 20

02 DESCRIPTION-0440 DISPLAY 25 120

03 DESCRIPTION-LINE-0440 DISPLAY OCCLRS 2 X(60) 25 120
02 REQUIREMENTS-0440 DISPLAY 145 120

03 REQUIREMENT-LINE-0440 DISPLAY OCCLRS 2 X(60) 145 120
02 MINIMUM-SALARY-0440 DISPLAY S9(6)V99 265 8

02 MAXIMUM-SALARY -0440 DISPLAY S9(6)\99 273 8

02 SALARY -GRADES-0440 DISPLAY OCCURS 4 9(2) 281 8

02 NUMBER-OF-POSITIONS-0440 DISPLAY 9(3) 289 3

02 NUMBER-OPEN-0440 DISPLAY 9(3) 292 3

02 FILLER DISPLAY XX 295 2

IDMSRPTS nn.n

— SCHEMA RECORD DESCRIPTION LISTING — DATE TIME PAGE
RECDES DICTIONARY APPLDICT OF NODE DEFAULT mm/dd/yy
hhmmss 15

SCHEMA EMPSCHM VERSION 100

RECORD NAME........ NON-HOSP - CLAIM RLGTH= 1064

RECORD VERSION..... 0100 DLGTH= 1056

RECORD ID.......... 0445 KLGTH= 8

RECORD LENGTH...... VARTABLE DSTRT= 12

MINIMUM ROOT....... 248 CHARACTERS

MINIMUM FRAGMENT... 1052 CHARACTERS

LOCATION MODE...... VIA SET COVERAGE-CLAIMS DISPLACEMENT 0000 PAGES
WITHIN............. INS-DEMO-REGION OFFSET 5 PGS FOR 20 PGS
DBKEY POSITIONS.... SET............. TYPE........ NEXT PRIOR OWNER

COVERAGE - CLAIMS MEMBER 1
(FRAGMENT CHAIN) INTRNL 2

DATA ITEM.......... REDEFINES. .. USAGE....... VALUE..... PICTURE. STRT LGTH
02 CLAIM-DATE-0445 DISPLAY 1 8

03 CLAIM-YEAR-0445 DISPLAY 9(4) 1 4

03 CLAIM-MONTH-0445 DISPLAY 9(2) 5 2

03 CLAIM-DAY-0445 DISPLAY 9(2) 7 2

02 PATIENT-NAME-0445 DISPLAY 9 25

03 PATIENT-FIRST-NAME-0445 DISPLAY X(10) 9 10
03 PATIENT-LAST-NAME-0445 DISPLAY X(15) 19 15
02 PATIENT-BIRTH-DATE-0445 DISPLAY 34 8

03 PATIENT-BIRTH-YEAR-0445 DISPLAY 9(4) 34 4
03 PATIENT-BIRTH-MONTH-0445 DISPLAY 9(2) 38 2
03 PATIENT-BIRTH-DAY-0445 DISPLAY 9(2) 40 2
02 PATIENT-SEX-0445 DISPLAY X 42 1

02 RELATION-TO-EMPLOYEE-0445 DISPLAY X(10) 43 10
02 PHYSICIAN-NAME-0445 DISPLAY 53 25

03 PHYSICIAN-FIRST-NAME-0445 DISPLAY X(10) 53 10

Appendix G: EMPLOYEE Database Definition 497

IDMSRPTS Utility Report Listings

03 PHYSICIAN-LAST-NAME-0445 DISPLAY X(15) 63 15

02 PHYSICIAN-ADDRESS-0445 DISPLAY 78 46

03 PHYSICIAN-STREET-0445 DISPLAY X(20) 78 20

03 PHYSICIAN-CITY-0445 DISPLAY X(15) 98 15

03 PHYSICIAN-STATE-0445 DISPLAY X(2) 113 2

03 PHYSICIAN-ZIP-0445 DISPLAY 115 9

04 PHYSICIAN-ZIP-FIRST-FIVE-0445 DISPLAY X(5) 115 5

04 PHYSICIAN-ZIP-LAST-FOUR-0445 DISPLAY X(4) 120 4

02 PHYSICIAN-ID-0445 DISPLAY 9(6) 124 6

02 DIAGNOSIS-0445 DISPLAY OCCURS 2 X(60) 130 120

02 NUMBER-OF-PROCEDURES-0445 COMP 9(2) 250 2

02 FILLER DISPLAY X 252 1

02 PHYSICIAN-CHARGES-0445 DISPLAY OCCURS 0 TO 10 253 800
DEPENDING ON -- NUMBER-OF-PROCEDURES-0445

03 SERVICE-DATE-0445 DISPLAY 1 8

04 SERVICE-YEAR-0445 DISPLAY 9(4) 1 4

04 SERVICE-MONTH-0445 DISPLAY 9(2) 5 2

04 SERVICE-DAY-0445 DISPLAY 9(2) 7 2

03 PROCEDURE-CODE-0445 DISPLAY 9(4) 9 4

03 DESCRIPTION-OF-SERVICE-0445 DISPLAY X(60) 13 60

03 FEE-0445 COMP-3 S9(7)v99 73 5

03 FILLER DISPLAY XXX 78 3

IDMSRPTS nn.n

— SCHEMA RECORD DESCRIPTION LISTING — DATE TIME PAGE
RECDES DICTIONARY APPLDICT OF NODE DEFAULT mm/dd/yy
hhmmss 18

SCHEMA EMPSCHM VERSION 100

RECORD NAME........ OFFICE RLGTH= 92

RECORD VERSION..... 0100 DLGTH= 76

RECORD ID.......... 0450 KLGTH= 16

RECORD LENGTH...... FIXED DSTRT= 16

LOCATION MODE...... CALC USING OFFICE-CODE-0450 DUPLICATES NOT ALLOWED
WITHIN............. ORG-DEMO-REGION OFFSET 5 PGS FOR 20 PGS
DBKEY POSITIONS.... SET............. TYPE........ NEXT PRIOR OWNER

CALC MEMBER 1 2

498 DML Reference Guide for COBOL

IDMSRPTS Utility Report Listings

OFFICE-EMPLOYEE INDEX OWNER 3 4

DATA ITEM.......... REDEFINES... USAGE....... VALUE..... PICTURE. STRT LGTH
02 OFFICE-CODE-0450 DISPLAY X(3) 1 3

02 OFFICE-ADDRESS-0450 DISPLAY 4 406

03 OFFICE-STREET-0450 DISPLAY X(20) 4 20

03 OFFICE-CITY-0450 DISPLAY X(15) 24 15

03 OFFICE-STATE-0450 DISPLAY X(2) 39 2

03 OFFICE-ZIP-0450 DISPLAY 41 9

04 OFFICE-ZIP-FIRST-FIVE-0450 DISPLAY X(5) 41 5
04 OFFICE-ZIP-LAST-FOUR-0450 DISPLAY X(4) 46 4
02 OFFICE-PHONE-0450 DISPLAY OCCURS 3 9(7) 50 21
02 OFFICE-AREA-CODE-0450 DISPLAY X(3) 71 3
02 SPEED-DIAL-0450 DISPLAY X(3) 74 3

IDMSRPTS nn.n

— SCHEMA RECORD DESCRIPTION LISTING — DATE TIME PAGE
RECDES DICTIONARY APPLDICT OF NODE DEFAULT mm/dd/yy
hhmmss 20

SCHEMA EMPSCHM VERSION 100

RECORD NAME........ SKILL RLGTH= 96

RECORD VERSION..... 0100 DLGTH= 76

RECORD ID.......... 0455 KLGTH= 20

RECORD LENGTH...... FIXED DSTRT= 20

LOCATION MODE...... CALC USING SKILL-ID-0455 DUPLICATES NOT ALLOWED
WITHIN............. ORG-DEMO-REGION OFFSET 5 PGS FOR 20 PGS
DBKEY POSITIONS.... SET............. TYPE........ NEXT PRIOR OWNER

CALC MEMBER 1 2

SKILL-NAME-NDX INDEX MEMBER 3
SKILL-EXPERTISE INDEX OWNER 4 5

DATA ITEM.......... REDEFINES. .. USAGE....... VALUE..... PICTURE. STRT LGTH
02 SKILL-ID-0455 DISPLAY 9(4) 1 4

02 SKILL-NAME-0455 DISPLAY X(12) 5 12

02 SKILL-DESCRIPTION-0455 DISPLAY X(60) 17 60

IDMSRPTS nn.n

— SCHEMA RECORD DESCRIPTION LISTING — DATE TIME PAGE
RECDES DICTIONARY APPLDICT OF NODE DEFAULT mm/dd/yy
hhmmss 22

SCHEMA EMPSCHM VERSION 100

Appendix G: EMPLOYEE Database Definition 499

IDMSRPTS Utility Report Listings

RECORD NAME........ STRUCTURE

RECORD VERSION..... 0100

RECORD ID.......... 0460

RECORD LENGTH...... FIXED

LOCATION MODE...... VIA SET MANAGES
WITHIN............. EMP-DEMO-REGION

DBKEY POSITIONS.... SET.............

MANAGES MEMBER 1
REPORTS-TO MEMBER

02 STRUCTURE-CODE-0460 DISPLAY
88 ADMIN-0460 COND ‘A’

88 PROJECT-0460
02 STRUCTURE-DATE-0460 DISPLAY
03 STRUCTURE-YEAR-0460 DISPLAY
03 STRUCTURE-MONTH-0460 DISPLAY
03 STRUCTURE-DAY -0460 DISPLAY
02 FILLER DISPLAY

4
DATA ITEM.......... REDEFINES. .. USAGE

COND 'P1' THRU 'P9'

RLGTH= 36
DLGTH= 12
KLGTH= 24
DSTRT= 24
DISPLACEMENT 0000 PAGES

OFFSET 5 PGS FOR 45 PGS
........ NEXT PRIOR OWNER

6
....... VALUE..... PICTURE. STRT LGTH
X(2) 1 2
1
1
3 8

9(4) 3 4

9(2) 7 2

9(2) 9 2

11 2

500 DML Reference Guide for COBOL

EMPLOYEE Database Structure Diagram

EMPLOVYEE Database Structure Diagram

The data structure diagramillustrates record relationshipsin the EMPLOYEE database.

DEPARTMENT QFFICE
410 IF |ss ICALC 450|F |7s ICALC
DEPT-ID-0410 I DN QFFICE-CQDE IDN

f%‘i’ THLENDX ORG-DEMOQ-REGION ORG-DEMO-REGION Isg'kL'NAME'NDX

ASC TITLE-0440 DN

DEPT-EMPLOYEE

OFFICE-EMPLOYEE

ASC SKILL-NAME-0455 DN

NPG OA 10 OR

JOB ASC (EMP-LAST-NAME-0415 ASC (EMP-LAST-NAME 0415 SKILL
EMP-FIRST-NAME-0415) DL] EMP-+IHSI -NAME-0415) DL

440 [rc Jes6 [caic) ! 455 [F s Jeac

JOB-ID-0440 Jon SKILL-1D-0455 Jon

QRG-DEMO-REGION

JOB-EMPQSITION

EMP-NAME-NDX
1 QA
ASC {EMP-LAST-NAME

ORG-DEMG-REGION

10 MA

SKILL-EXPERTISE

NPO GM NEXI
EMP-HIRS|-NAME-0425) DL DES SKILL-LEVEL DF
EMPOSIION EMPLOYEE EXPERIISE
120 [F J2s Jua 415 |F 116 Jcac a25|F |z Jva
EMP-EMPOSITION | EMP-ID-0415 DN EMP-EXPERTISE |
EMP-EMPOSITION EMP-EXPERTISE
EMP-DEMO-REGION NPO MA FIRST EMP-DEMO-REGION NG MA EMP-DEMO-REGION
DES SKILL-LEVEL-Q425 DF
REPORTS-TQ MANAGES
EMP-COVERAGE
NPO OM NEXI NPO MA NEXI | oo ey
STRUGTURE COVERAGE
wo|r & Jva a0 |F Jis Jua
MANAGES EMP-COVERAGE
EMP-DEMQ-REGION INS-DEMO-REGION

COVERAGE-CLAIMS
NP MA LAST

\J/

INSURANGE-PLAN

HOSPITAL-CLAIM

NON-HOSP-GLAIM

DENTAL-CLAIM

435 |rc [132 |cac

430 [F]ze2 [via

445 |v J100d via

05 [v [o30 Jwin

INS-PLAN-CODE-(0435 DN

COVERAGE-CLAIMS

COVERAGE-CLAIMS

COVERAGE-CLAIMS I

INS-DEMO-REGION

INS-DEMO-REGION

INS-DEMO-REGION

INS-DEMQ-BREGION

Appendix G: EMPLOYEE Database Definition 501

Appendix H: VS COBOL II Support

This appendix discusses CAIDMS supportfor programs compiled under the VS COBOL Il
compiler.ltis dividedinto two parts:

Features of VS COBOL Il that aresupported by CAIDMS
Features of VS COBOL Il that arenot supported by CA IDMS

Note: This appendix applies only to programs runinthe online DC/UCF system.
Except where specifically noted, it does not apply to programs run inanother region
(suchas batchor CICSTransaction Server) even ifthe programs contain CA IDMS
DML commands.

Note: All the provisions of this appendix also apply to programs compiled under an
LE-compliant compiler, unless otherwise noted. For more information about IBM
Language Environment and LE-compliant ompilers, see Considerations for [BM
Language Environment (see page 507).

Programs compiled under VS COBOL Il can be run under the IBM runtime Language
Environment subjectto the requirements documented by IBM and the CA IDMS
restrictions documented below inthis appendixandin Considerations for IBM Language
Environment (see page 507). IBM no longer supports programs running under the VS
COBOL Il runtime environment.

This section contains the followingtopics:

Features Supported by CA IDMS (see page 503)

Features Not Supported by CA IDMS (see page 506)

Features Supported by CAIDMS

The following COBOL Il features are supported by CA IDMS:

Reentrancy—Fully reentrant and non-reentrant programs are supported. The RENT
compiler option must be specified if the programis reentrant. NORENT must be
specifiedifthe programis non-reentrant.

Note: Quasi-reentrancyis notsupported for VS COBOL Il programs.ltis strongly
recommended thatall COBOLII programs be compiled with the RENT option. A
separatecopy of each NORENT COBOL Il programwill be loaded for each
concurrent task. CPU and storage utilization will be extremely high.

Residency—Resident and nonresident programs are supported. The NORES
compiler option causes all necessary VS COBOL Il runtime support modules to be
linked with the program. The program can then be executed without havingto load
any support modules. The RES option causes the runtime support modules to be
broughtin as needed duringexecution.

Appendix H: VS COBOL IT Support 503

Features Supported by CAIDMS

The following combinations of RENT and RES options are supported:
m RENT RES

m NORENT NORES

m NORENT RES

Note: 31-bitprograms require the RENT and RES options. This combination is
recommended for most efficientprocessing. The RES optionis not relevant to
LE-compliant compilers, which always usethis option.

The RENT/NORES combinationis notallowed by the VS COBOL Il compiler.

Do not confusethe RES compiler option with the CA IDMS RESIDENT parameter
(assigned atSYSGEN or by usinga DCMT command). The CA IDMS RESIDENT
parameter causes the user program to be loaded into the resident pool during
startup, and remains there for the duration of system execution.

m XA support—Full 31-bitsupportis provided. COBOL Il programs canresideabove or
below the 16-meg line,and can execute in 24-bitor 31-bitmode. User data areas
canresidebelow the 16-meg line (compiler option DATA(24)) or anywhere inthe
region (DATA(31)). The followingtableshows the default attributes assigned by the
COBOL Il compiler based onthe combination of RES and RENT compiler options.

RMODE and AMODE Attributes

Compiler options Default RMODE/AMODE
RES/RENT RMODE(ANY) AMODE(ANY)
RES/NORENT RMODE(24) AMODE(ANY)
NORES/NORENT RMODE(24) AMODE(24)

To runa taskin31-bitmode, itmust be defined with a LOCATION of ANY (at SYSGEN or
atruntime usinga DCMT VARY DYNAMIC PROGRAM command).

m Static and dynamic calls—CA IDMS supports the followingtypes of calls provided
by VS COBOLII:

m CALL literal with NODYNAM, static (more storage, less CPU)
m CALL identifier,dynamic (less storage, more CPU)

To call a programdynamically you must use the call identifier format.

A VS COBOL Il program can usethe COBOL CALL verb to invoke anassembler or
COBOL Il subprogram. The CA IDMS TRANSFER CONTROL (LINK or XCTL) must
be used forinvokingVS COBOL subprograms. The subprogram must be defined
to the system either at SYSGEN or by usinga DCMT VARY DYNAMIC PROGRAM
command. The correct language must be specified,and the NONOVERLAYABLE
attribute must also bespecified.

504 DML Reference Guide for COBOL

Features Supported by CAIDMS

A COBOL Il program and all the COBOL Il subprograms thatitcalls dynamically
must be compiled with the same RES/NORES compiler option.

A dynamiccall is often a more efficientway for one onlineVS COBOL Il program
to call another than the use of a TRANSFER CONTROL DML command. Note,
however, that when a dynamiccall ismade, the DC/UCF systemis not aware
that the applicationisrunningina new program. Therefore, error messages
and program statistics will notreflect the call.

There are alsorestrictionson usingstatic or dynamic callswhen invokingan
assembler subprogram.Ifthe assembler program is notfully reentrant orifthe
assembler programissues any operating system SVC instructions, the program
must be invoked with a DC TRANSFER control statement. Note that use of SVC
instructions inanonline programpresents security and performance concerns.
Such instructions should beavoided unless they are absolutely necessary.In
most cases, DC/UCF system functions can be used instead.

Note: Alsosee "Performance Improvements with RHDCLEFE" in Appendix I:
(see page 507).

Optimizer—The COBOL Il optimizeris fully supported. Service reloads do not have
to be explicitly coded inthe program, asis required for VS COBOL.

STRING/UNSTRING/INSPECT —COBOL |l verbs that require GETMAIN services are
supported; this includes STRING, UNSTRING, and INSPECT.

Note: Exercise caution with STRING, UNSTRING, and INSPECT.Use of these may
increase SRB time. Commands ina VS/COBOL Il environment may causeadditional
screening of supervisor callsresultingin some performance degradation. This
concern does not apply when using VS/COBOL Ilinan|BM runtime Language
Environment provided that RHDCLEFE is definedin the IDMS/DC Sysgen.

For more information about RHDCLEFE, see Appendix I.

Compiler options—The following compiler options that affect object code
execution are supported:

m DATA

m OPTIMIZE
m PFDSGN

m RENT

m RESIDENT
m SSRANGE
m TRUNC

Note: See the discussion of the TRUNC option inthe section Executing
Programs (see page 25).

s ZWB

Appendix H: VS COBOL IT Support 505

Features NotSupported by CAIDMS

m Execution time options—COBOL Il has an options module (IGZEOPT) that can be
assembled and link-edited to control options at execution time. The module needs
to be linked with each onlineVS COBOL Il application program.Valid macrovalues
for parameters that affect CA IDMS performance areshown below:

IGZOPT SYSTYPE=0S,
DEBUG=NO,
STAE=NO,
AIXBLD=NO,
SSRANGE=YES/NO,
SPOUT=YES/NO

Features Not Supported by CA IDMS

The following COBOL Il features are not supported by CA IDMS:

m ENVIRONMENT and DATA DIVISION entries normally associated with file
management (for example, INPUT-OUTPUT SECTION, FILE SECTION)

m |/Ostatements, including ACCEPT, CLOSE, DELETE, DISPLAY, OPEN, READ, REWRITE,
and WRITE

Note: DATE/TIME related ACCEPT statements are supported inrelease14.1and
later for COBOL Il and LE-compliantcompilers.

The debugging features FDUMP and TEST
m The sorting features SORT and MERGE
m The compiler options ADV, DYNAM, FASTSRT, GRAPHIC, and OUTDD

506 DML Reference Guide for COBOL

Appendix I: Considerations for IBM
Languade Environment

This section applies only to runtime support for COBOL programs that runinan online
DC/UCF region. It does not apply to batch or CICS programs that access CAIDMS. Italso
does not applyto online COBOL programs compiled with the "old" VS COBOL compiler,
priorto VS COBOLII.OnlineVS COBOL programs must comply with the compileand
linkagerestrictions described in Compilingand Executing CA IDMS Programs (see

page 22). If these restrictions areobserved, the LE runtime environment will notbe
accessed by VS COBOL programs. This section does apply to programs compiled under
VS COBOL Il when run inonlinelE runtime environment.

What is IBM Language Environment (LE)?

LE is a runtime environment that replaces the language-specific runtime environments
that existed previously. For example, VS COBOL hadits own runtime environment; VS
COBOL Il had another. CA IDMS can execute programs that are designed to usethe LE
runtime environment. It can also execute programs compiled with pre-LE compilers that
use the LE runtime environment subjectto IBM's documented restrictions.

Language Environment has had several names for different operatingsystems and
releaselevels.The term "LE" will beused inthis document to refer to the IBM runtime
Language Environment for any of the following operating systems:

- z/VSE
- z/0S
- z/VM
Note: This section applies only to runtime supportin CA IDMS/DC. It does not apply
to batch or CICS programs that access CAIDMS.
How Can You Use LE with CA IDMS/DC?
To execute online programs usingthe LE runtime libraries, follow these steps to bringup
your CA IDMS environment:

1. Ensurethatthe CAIDMS system has been generated with a 24-bitreentrant pool
(or programpool, if no reentrant pool is generated) that is largeenough to contain
the IBM-supplied LE application programinterface module CEEPIPI. The size of this
module is approximately 100K.

AppendixI:Considerations forIBM Language Environment 507

Considerations About LE Runtime

2. Ensurethatthe CAIDMS system has been generated with an XA reentrant pool that
is large enough to maintainresidencefor several IBM-supplied LE support modules.
Allow 5 megabytes forthese programs.

Includethe LE runtime load libraries in the CDMSLIB loadlib concatenation before any
other IBM languageloadlibsyouareusing. For example, before COBOL II.

This section contains the followingtopics:

Considerations About LE Runtime (see page 508)

Running LE-Compliant Compiler Programs Under CA IDMS/DC (see page 509)
Supported LE Functions (see page 513)

Unsupported LE Functions (see page 513)

Performance Improvements with RHDCLEFE (see page 513)
Multiple-Program Enclave (see page 514)

Considerations About LE Runtime

Running Pre-LE Programs
There are restrictions thatapply when you run pre-LE programs inan LE runtime
environment within CA IDMS/DC. Pre-LE programs are programs that were compiled

with a non-LE compliantcompiler,suchas COBOLII.

Some of these restrictions arealready documented in Compilingand Executing CA IDMS

Programs (see page 22)and Appendix H: (see page 503). Additional restrictionsfor LE
are:

m VS COBOLII programs have to run without storage protection unless RHDCLEFE (see
"Performance Improvements with RHDCLEFE" below) isinuse.

m VS COBOLII programs must be linked with an IGZEOPT module that specifies
STAE=NO (see "Execution Time Options"in Appendix H: (see page 503), for more
information on the use of IGZEOPT). If this restrictionis notobserved, a program
check ina COBOL program will resultinimmediate termination of the program with
no indication of anerror.Certain other abnormal abend conditions mayalso go
unreported. This restriction does not applyifone of the following conditions istrue:

m RHDCLEFE isinuse.See "Performance Improvements with RHDCLEFE" laterin
this appendix for more information.

m Aspecial CEEDOPTor CEEROPT isinuseas described laterin this appendix
under Runtime Options, and either or both of the following options is specified:

ABTERMENC=((ABEND, ...
TRAP=((OFF,...

508 DML Reference Guide for COBOL

Running LE-Compliant Compiler Programs Under CAIDMS/DC

m The IBM LE support module CEEPIPI must be loaded once before any VS COBOLII
programis run.This is most easily done by defining CEEPIPI as RESIDENT in the CA
IDMS/DC sysgen usingthe followingsyntax.

ADD PROGRAM CEEPIPI CONCURRENT ENABLED LANGUAGE ASSEMBLER
NONOVERLAYABLE PROGRAM PROTECT REENTRANT RESIDENT REUSABLE .

m Restrictions mentioned inthe IBM documentation (for example, the IBM
COBOL/370 Migration Guide) apply.

Note: Running pre-LE programs with LE runtime can degradeperformance insome
circumstances. If you notice poor performance, you should consider recompiling
the programs with the newer compiler or running with RHDCLEFE (see
"Performance Improvements with RHDCLEFE" below). The use of RHDCLEFE also
removes the necessity of forcingthe load of CEEPIPI before runningany VS COBOL I
programs.

Running LE Programs

LE programs are programs that were compiled with an LE-compliantcompiler.CA
IDMS/DC supports all LE-compliantcompilerssupported by IBM including:

= |BM COBOL for VM

m |BM Enterprise COBOL for z/OS

m COBOL for z/VSE

For convenience, programs compiled with an LE-compliant compiler arereferred to as
"LE COBOL" programs below.

Running LE-Compliant Compiler Programs Under CA IDMS/DC

This section discusses Language Environment runtime options relevant to the online CA
IDMS/DC environment.

Note: Alsosee Compilingand Executing CA IDMS Programs (see page 22) and Appendix
H: (see page 503).The restrictions on VS COBOL and VS COBOL Il compileand runtime
options alsoapplyto programs compiled with an LE-compliant COBOL compiler unless
specifically noted below.

See Appendix A: (see page 337)for samplecompileand link JCL for both batch and
onlineprograms which use CA IDMS DML statements.

AppendixI:Considerations forIBM Language Environment 509

Running LE-Compliant Compiler Programs Under CAIDMS/DC

Runtime Options

The IBM Language Environment provides numerous options that control how programs
operate at runtime. The defaultvalues aredesigned to be suitableina batch
environment. Therefore, itis necessaryto modify some values for applications thatare
to runina DC/UCF onlinesystem.

Note: As stated inthe introduction to this appendix, this appendix does not apply to
programs that run ina CICS or other region, even ifthey access CAIDMS using DML or
SQL commands. It does apply to programs that runa DC/UCF onlinesystem, which are
invoked from another front-end using CA IDMS UCF (such as an ADS/O application that
is accessed using UCFCICS from a CICS front-end).

The IBM Language Environment provides a number of ways to specify runtime options.
Four methods are supported for CA IDMS/DC online programs:

1. Modify, assemble,and linkthe IBM-supplied CEEUOPT module. Link the resulting
module with each application program.Product Documentation Change LI18624
contains a sampleversion of the CEEUOPT with values that are appropriatefor most
online CA IDMS applications. Also consultthesection "Creating an
Application-Specific Runtime Options Module" in IBM's LE Installationand
Customization Manual.

2. Assemble and linka CEEUOPT module as described above. Link the resulting
module with RHDCLEFE. Make sure that RHDCLEFE is defined inthe DC/UCF Sysgen
(as described under "Performance Improvements Using RHDCLEFE" below). This
option affects only COBOL programs. This is the recommended option forall online
COBOL applications.

510 DML Reference Guide for COBOL

Running LE-Compliant Compiler Programs Under CAIDMS/DC

Assemble and link a specialized CEEDOPT module.

Note: This method is notavailableforz/OS Version 1.10 and higher. Use method 1
or method 4 for non-COBOL applications on z/OS Versin 1.10 and higher.

If this method is chosen, special copies of the IBM modules CEEBINIT and CEEPIPI
must be maintained for usewith online DC/UCF systems only. Due to maintenance
considerations, this method is not recommended for COBOL applications.Itis
needed for PL/I programs compiled with a non-LE-compliant compiler. For more
information on usingthis method, see Product Documentation Change LI23664.

Assemble and link a specialized CEEROPT module.

Note: This method is notavailablefor z/OS Version 1.9 and lower or for VSE. Use
method 1 or 3 for those operating systems.

If this method is chosen,a CEEROPT load module can be created to override desired
options. Like CEEUOPT, and unlike CEEDOPT, you only need to specify those options
which are to be different from the installation defaultLE run-time operations. The
resultantload module must be includedinaloadlibraryinthe CDMSLIB
concatenation ahead of the default SCEERUN load library.

Note: The CEEROPT will beloadedina CA IDMS region only if your CEEPRMxx
member specified CEEROPT(ALL). For more information on usingthis module, refer
to IBM documentation.

Except as discussed below, the IBM-supplied defaultruntime options can be used with
anysite-specific desired modifications. Note that the MSGFILE parameter isignoredand
messages are sent to the CA IDMS logfile.

Recommended settings for certain parameters are as shown below. For more details on
these parameters see the IBM Language Environment Customization manual.

ABTERMENC=(RETCODE) or ABTERMENC=(ABEND): This parameter affects the
action taken when an LE enclave ends with an unhandled condition of severity 2 or
higher. If RETCODE code is specified, the DC task will abend with message
DC128004.I1f ABEND is specified, the DC task will abend with a Uxxx where xxx
corresponds to the hexadecimal value of the user abend code set by LE. For
example, an LE user abend 4093 would resultin a DC taskabend with code UFFD.

ALL31=(ON): This parameter will minimizethe amount of below-the-line storage
that will be allocated by LE. This parameter requires that all COBOLprograms are
linked with AMODE(31). Itis strongly recommended that any non-conforming
programs be relinked so that ALL31=(ON) can be specified.

DEBUG=(OFF): The DEBUG runtime option cannotbe used ina DC environment.

INTERRUPT=(OFF): Attention interrupts are handled by the CA IDMS/DC system and
not by LE runtime support. Application COBOL programs cantest for attention
interrupts usingthe DC-ATTN-INT condition name under LE justas with earlier
COBOL runtime environments.

POSIX=(OFF): POSIXis notsupported under DC/UCF.

AppendixI: Considerations for IBM Language Environment 511

Running LE-Compliant Compiler Programs Under CAIDMS/DC

m RPTSTG=(OFF) or RPTSTG=(ON): Normally OFF should be specified. OFF must be
specified for systems priorto release 14.1.

The purpose of RPTSTG is to determine the storage utilization for a particular
application.The reportis produced at the end of a COBOL taskthread andis written
to the CAIDMS logfile. For efficiency reasons, the termination phase of COBOL
processingis normally notexecuted inan onlineDC environment. Ifitis necessary
to obtainstorageinformationfora particularapplication, optional bit196 can be
set (See "COBOL Il and LE COBOL Task Management" in Optional Online COBOL
Functionality (see page 521)). Note that this option adversely affects performance.
Storage reports are therefore normally produced onlyin a test or development
system.

m TERMTHDACT=(QUIET) or TERMTHDACT=(TRACE): This option controls the extent of
LE runtime information thatwill be supplied when an application terminates. All
messages will be written to the DC logfile.

m TRAP=(ON) or TRAP=(OFF): IfON is specified, programchecks inan LE application
will resultin IBM LE error-handling being put into effect. COBOL-specificand LE
messages will be written to the log. After these messages are written and the
COBOL thread ends abnormally, the DC task will abend with message DC128004
anda tasksnap will betaken.

If OFF is specified, programchecks inan LE application will resultinanimmediate
tasksnap.Thisis similartothe resultina VS COBOL or VS COBOL Il runtime
environment. No LE messages related to the program check will be written.
Furthermore, ifany PL/I applicationsareincludedinthe onlinesystem, any ON
ERROR clauses will notbe handled properly.

Inaddition to the parameters above, we strongly recommend that you usesmaller
values than the default ones for the various heap (ANYHEAP, BELOWHEAP, and HEAP)
parameters and stack (LIBSTACK and STACK) parameters because these areallocated on
atask thread basis.Storageallocationis mostefficientifrelatively largevalues are
specified as sixteen bytes less thana multiple of 4096.Smaller values than 4096 should
be set for some parameters to avoid wasting storage. The values shown below have
been found to be suitablefor most DC/UCF systems.

Even when the smallestpossiblestoragevalues arechosen, the IBM Language
Environment requests a substantial amountof below-the-line storagefor each program
invoked inanonlinetask--particularly with older releases of LE. This storageis used for
functions which arenot supported inan online DC/UCF system. For this reason, DC/UCF
provides optional functionality which forces all LEstorage to be allocated abovethe
16M linefor tasks which aredefined as LOCATION ANY. You can enable this
functionality by specifying #DEFOPT OPT00227 when compiling module RHDCOPTF.

512 DML Reference Guide for COBOL

Supported LE Functions

ANYHEAP=(2032, 4080, ANYWHERE, FREE)
BELOWHEAP=(496, 496, FREE)

HEAP=(2032, 4080, ANYWHERE, KEEP, 2032, 2032)
LIBSTACK=(496,496, FREE)
STACK=(2032,8176,ANY, KEEP)
STORAGE=(NONE, NONE , NONE, 0)
THREADHEAP=(0100, 0100 ,ANYWHERE , KEEP)

Supported LE Functions

CA IDMS/DC supports these LE functions:

m Math services

m National languagesupportservices

m Date andtime services

m XML parsing

CA IDMS/DC also supports storage management services, but for performance reasons,
they are not recommended. The storage management services are:
m CEECRHP: Create heap segment

m CEECZST: Re-allocate(changesize of) heap storage

m CEEDSHP: Discard heap segment

m CEEFRST: Free heap storage

m CEEGTST: Get heap storage

Unsupported LE Functions

CA IDMS/DC does not supportthe followingLE functions:
m CEE3PRM: Get exec parms
m CEETDU: Call IMS

m CEETEST: Invoke debugging environment

Performance Improvements with RHDCLEFE

Beginning with Release 14.1, CAIDMS supports a more efficientmethod of running
onlineVS COBOL Il and LE COBOL programs under LE runtime. In order to realizethis
performance improvement, link RHDCLEFE and defineitinthe CA IDMS sysgen with the
followingvalues:

AppendixI:Considerations forIBM Language Environment 513

Multiple-Program Enclave

ADD PROGRAM RHDCLEFE
CONCURRENT
DYNAMIC

ENABLED
LANGUAGE IS ASSEMBLER

NEW COPY IS ENABLED
NONOVERLAYABLE

PROGRAM

NOPROTECT
REENTRANT
RESIDENT

REUSABLE.

The advantages of using defining RHDCLEFE in an LE runtime environment are as
follows.

COBOL Il programs canrun with Storage Protect.

If RHDCLEFE isinuse, itis not necessaryto link CEEUOPT with each application
program.

Ifa VS COBOL Il or anLE COBOL program is invoked multipletimes inthe same task
usingan CA IDMS DML call (#LINK from Assembler, DC TRANSFER from COBOL or
PL/1, or LINK from ADS/O), then only one LE enclaveand one LE environment will be
established.

The use of RHDCLEFE canreduce the CPU usage for TRANSFER CONTROL to another
COBOL program, particularlya VS COBOL Il program. Without RHDCLEFE, eachsuch
invocation of a VS COBOL Il programwill resultin the establishmentand
termination of both the environment and the enclave. Each suchinvocation ofa LE
COBOL programwill resultin the establishmentand termination of the enclave.

Note: RHDCLEFE is linked with a CEEUOPT with ALL31=(ON). As a consequence, all
LE COBOL and VS COBOL Il programs must be linked with AMODE(31) or
AMODE(any).

Multiple-Program Enclave

This feature became availableonrelease 15.0 servicepack 3.

514 DML Reference Guide for COBOL

Multiple-Program Enclave

You canimprove the performance of certainonlineapplicationsthatuse COBOL
programs under the IBM Language Environment (LE) by enablinga new optional feature
which allows the use of a single LE enclavefor multiple programs. The followingexplains
the conditions under which performance can be improved and some restrictions on the
programs that can utilizethis new feature:

Because of restrictions on the applications thatcan usethe new functionality, this
feature is notin effect unless MULTIPLE ENCLAVE ISON is specified onthe SYSTEM
statement inthe DC System Generation. In addition, module RHDCLEFE must bein
use as described in "Performance Improvements with RHDCLEFE." Inrelease 15.0,
this feature is availableonly for z/OS operating systems.

When MULTIPLE ENCLAVE IS OFF, each new LE programinvoked withina DC online
task causes the initialization of a new LE process and enclave, provided the program
was invoked as a result of one of the following:

m The DC task definition specified INVOKES PROGRAM...
m The program was invoked usinga TRANSFER CONTROL.

m After anLE programisinvokedina given task, the same process and enclave
canbe reused if one of the followingoccurs:

m The same program is invoked subsequentlyinthe same task.

m Adifferent programisinvoked from anLE COBOL program usinga static CALL
(CALL 'literal') or a dynamic CALL (CALL IDENTIFIER).

When MULTIPLE ENCLAVE ISON, a new LE process andenclaveare created the first
time an LE COBOL program isinvokedin a task. Subsequent invocations of any
COBOL programinthe sametask utilizes the same process and enclaveeven ifit
was invoked using TRANSFER CONTROL LINK or TRANSFER CONTROL RETURN.

Startingan LE process and/or enclaveinvolves considerable overhead of both
storage and CPU utilization. Therefore, MULTIPLE ENCLAVE IS ON can provide
significantimprovement for tasks that invoke many programs using TRANSFER
CONTROL RETURN or TRANSFER CONTROL LINK.

Restrictions on Using Multiple-Program Enclaves

The followingrestrictions apply to COBOL programs that participateina
multiple-programenclave:

Enabled programs cannotperform a DC RETURN DML call and then be reentered
usinga subsequent TRANSFER. This restriction does not apply to programs that
containa DC RETURN with no subparameters because the DML compiler generates
a GOBACK for this type of statement. This restriction does applyifthe DC RETURN
statement does have subparameters. For example, you cannot execute a "DC
RETURN NEXT TASKCODE ..." statement andthen reenter the same program inthe
same task.

AppendixI: Considerations for IBM Language Environment 515

Multiple-Program Enclave

m Enabled programs cannotissuea TRANSFER CONTROL NORETURN or a TRANSFER
CONTROL XCTL.

m Optional bit196isignored for programs that participateina multiple-program
enclave. Therefore, if MULTIPLE ENCLAVE IS ON at the system level, any program
that depends on bit196 must be exempted as describedin "Exempting Programs
from Multiple-Program Enclave."

Exempting Programs from Multiple-Program Enclave

You canenablemultiple-programenclaves at the system level even if some programs
arenoteligible. An ineligible programcan be exempted inone of two ways:

m Usethe MULTIPLE ENCLAVE IS OFF clauseof the PROGRAM statement inthe DC
System Generation.

m Usethe MULTIPLE ENCLAVE OFF clauseonthe DCMT VARY PROGRAM statement or
the DCMT VARY DYNAMIC PROGRAM statement.

Exempted programs can participateinthe same taskwith eligibleprograms.All eligible
programs shareone process/enclave. Each exempted program uses its own
process/enclave.

516 DML Reference Guide for COBOL

Appendix J: 18-Byte Communications
Blocks

As analternativeto usingthe 16-byte IDMS and IDMS DC communications blocks, you
canspecify 18-byte blocks. This appendix describes whereto specify an 18-byte
communications blockand contains figures showing these blocks. The difference
between 16-byte blocks and 18-byte blocks is thatan 18-byte block contains an
additional 18-bytefiller field, and the followingfields are 18 bytes instead of 16 bytes:

m RECORD-NAME
® AREA-NAME

m ERROR-SET

m ERROR-RECORD
m ERROR-AREA

Note: For more information aboutthe the fields in IDMS and IDMS DC, see
Communication Blocks and Error Detection (see page 33).

Where to Specify the 18-Byte Block

For COBOL, you specify an 18-byte communications blockin the SUBSCHEMA-NAMES
LENGTH ISclausefound inthe PROTOCOL statement of ENVIRONMENT DIVISION.

Note: For more information, see ENVIRONMENT DIVISION (see page 69).

This section contains the followingtopics:

18-Byte IDMS Block (see page 518)
18-Byte IDMS DC Block (see page 519)

Appendix J: 18-Byte Communications Blocks 517

18-Byte IDMS Block

18-Byte IDMS Block

The following figure shows the 18-byte IDMS communications block:

*
[Ey
oo

9 12
13 16

17 34

35 52

53 70

71 88

89 106

107

**1 125 128

:

125
225 228

229 235
236
237 240

241 244

.. 224

245 300

* word aligned

Field
PROGRAM-NAME
ERROR-STATUS
DBKEY
RECORD-NAME
AREA-NAME
FILLER
ERROR-SET
ERROR-RECORD
ERROR-AREA
PAGE-INFO

IDBMSCOM-AREA
DIRECT-DBKEY

DATABASE -STATUS

FILLER
RECORD-0CCUR
DML - SEQUENCE
FILLER

Data Type
Alphanumeric
Alphanumeric
Binary
Alphanumeric
Alphanumeric
Alphanumeric
Alphanumeric
Alphanumeric
Alphanumeric

Binary

Alphanumeric

Binary

Alphanumeric

Binary

Binary

Alphanumeric

Length
(bytes)

8

4

4 (Fullword)
18

18

18

18

18

18

4 (Fullword)

100
4 (Fullword)

7

1

4 (Fullword)
4 (Fullword)
56

Initial Value

Program Name

'1400'

0000

Spaces
Spaces
Spaces
Spaces
Spaces
Spaces

0000

Low Values

0000

Spaces

0000

0000

Spaces

** PAGE-INFO-GROUP overlays bytes 125 and 126 and PAGE-INFO-DBK-FORMAT
overlays bytes 127 and 128. Both of these fields are binary datatype,
each with a length of two bytes. Suggested initial values for
both are 00. Together these two fields represent PAGE-INFO.

518 DML Reference Guide for COBOL

18-Byte IDMS DC Block

18-Byte IDMS DC Block

The following figure shows the 18-byte IDMS DC communications block:

* %

*

)

9 12

13 16

17 34

35 52

53 70

71 88

89 106

107 124

125 128

125 | .|224

225 228

229 235

236 |

237

241

245

301

401

405 408

409 412

word aligned

Field
PROGRAM-NAME
ERROR-STATUS
DBKEY
RECORD-NAME
AREA-NAME
FILLER
ERROR-SET
ERROR-RECORD
ERROR-AREA
PAGE-INFO

IDBMSCOM-AREA
DIRECT-DBKEY
DATABASE -STATUS
FILLER
RECORD-0CCUR
DML -SEQUENCE
FILLER
DBMSCOM-AREA
SSC-ERRSTAT -SAVE
SSC-DMLSEQ-SAVE

Data Type
Alphanumeric
Alphanumeric
Binary
Alphanumeric
Alphanumeric
Alphanumeric
Alphanumeric
Alphanumeric
Alphanumeric

Binary

Alphanumeric
Binary

Alphanumeric

Binary
Binary
Alphanumeric
Alphanumeric
Alphanumeric

Binary

SUBSCHEMA-CTRL-END Alphanumeric

Length

(bytes) Initial Value
8 Program Name
4 '1400'

4 (Fullword) 0000

18 Spaces

18 Spaces

18 Spaces

18 Spaces

18 Spaces

18 Spaces

4 (Fullword) 0000

100 Low Values
4 (Fullword) 0000

7 Spaces

1

4 (Fullword) 0000

4 (Fullword) 0000

56 Spaces

100 Low Values
4 0000
4(Fullword) 0000

4 0000

** PAGE-INFO-GROUP overlays bytes 125 and 126 and PAGE-INFO-DBK-FORMAT
overlays bytes 127 and 128. Both of these fields are binary datatype,
each with a length of two bytes. Suggested initial values for

both are 00. Together these two fields represent PAGE-INFO.

Appendix J: 18-Byte Communications Blocks 519

Appendix K: Optional Online COBOL
Functionality

Several APARs have been written that affect the performance and/or functionality of
COBOL programs inthe online CA IDMS/DC system. This appendix discusses the effects
of the various APARs.

Note: This discussion applies onlyto online programs runningin a DC/UCF region. It
does not applyto batch programs or to programs runningina CICSregion or under
control of another TP monitor, even if such programs access anIDMS databasevia
LOCAL or CV mode.

This section contains the followingtopics:

COBOL Iland LE COBOL Task Management (see page 521)
PSW Program Mask Settings (see page 524)
Loading VS COBOL Programs into XA Storage (see page 526)

COBOL IT and LE COBOL Task Management

Several optional APARs have to do with the management of a COBOL Il taskthread ora
LE COBOL process(environment) and enclave. To better understand the concept of a
COBOL taskthread, firstconsider a batch COBOL job in which IDMS is not involved.
When a COBOL Il programis firstinvoked, the COBOL supportcode causes the load of a
small programcalled IGZCTCO. As the COBOL Il runtime system is built, control
informationis placedinthe copy of IGZCTCO that has been loaded into the address
space. If the top level program (call itprogramA) issues a CALL IDENTIFIER to a second
COBOL program (call itprogramB), the COBOL Il support code finds the existing copy of
IGZCTCO. Program B is entered usingthe same COBOL Il environment. The firsttime
program B is entered, its WORKING STORAGE is initialized accordingto any VALUE
clauses coded.

If program B does a GOBACK to programA and then program A issues a second CALL
IDENTIFIER to program B, programB is normally entered with the same WORKING
STORAGE values left from the previous invocation. The VALUE clauses are not
reinitialized.

In Language Environment for z/0S, the concepts of the LE process and enclaveare
roughly analogous tothe COBOL Il task thread. See IBM documentation for a more
complete discussion of these concepts.

Appendix K: Optional Online COBOL Functionality 521

COBOLII and LE COBOL Task Management

Now let us return to the discussion of COBOL Il inan online DC/UCF system. When
COBOL Il supportwas firstintroduced for DC/UCF, every invocation of a COBOL program
via a TRANSFER RETURN from another COBOL program caused a new |GZCTCO to be
loaded. The COBOL Il task thread was recreated. Thus if Task Ainvokes COBOL I
program X, which does a TRANSFER CONTROL ten times to programY, the COBOL Il task
thread was builteleven times -- once for program X and ten times for program Y.
Moreover, if programY terminated with a DC RETURN instead of a GOBACK, all the
storage associated with each invocation was preserved until task termination. This
causes serious overhead of CPU and potentially of storage utilization.

To reduce the overhead of constantly creatingnew COBOL Il environments, the DC/UCF
COBOL Il supportwas modified to load only one copy of IGZCTCO per task. Usingthis
method, if main program X issues a TRANSFER CONTROL ten times to program, the
COBOL Il environment is builtonly once. The drawbackis thatcertain functionalityis
changed. In particular, WORKING STORAGE is not reinitialized each time programY is
entered. Also, recursive TRANSFER CONTROL (Program X issues TRANSFER CONTROL TO
X) is not allowed. Since some existingapplications depended on those features, optional
APARs were developed to allow use of one method or the other. Unfortunately, the
DC/UCF default methodology changed from releaseto release and sometimes within
one release.

Note: IGZCTCO is handled differentlyin DC/UCF systems that are operatingwith an IBM
Language Environment runtime system (such as LE for z/OS). COBOL Il programs can be
used inthese systems, but prior to release 14.1, a new IGZCTCO was used for every
TRANSFER to a COBOL Il program.

Beginning with release 14.1, online COBOL Il programs in an LE runtime environment
will run most efficiently if RHDCLEFE is defined inthe DC/UCF Sysgen as documented in
the release 14.1 Features Guide. This gives functionality similarto that documented for
the "single IGZCTCO" method shown below. Inthat case,the COBOL Il programis
handled as though itwere compiled under LE COBOL.

The followingtabledescribes how to utilize each of the two methods for the latest
maintenance of all currently supported DC/UCF releases. This tablesupercedes the
documentation in any previous APARs or PDCs. Note that the tableis divided into
several sections depending on the COBOL compiler level and the runtime level.

Part 1

This partof the tablecontains programs compiled under COBOL Il and using COBOLII
runtime libraries.

Release Method 1 (Most CPU efficient) Method 2 (Special functionality)
Use single IGZCTCO per task Use new IGZCTCO each TRANSFER

10.21PS Default Apply optional APAR 88-06-1105

12.01 Default (see note below) Apply optional APAR LS12053.

522 DML Reference Guide for COBOL

COBOLII and LE COBOL Task Management

Release Method 1 (Most CPU efficient) Method 2 (Special functionality)
Use single IGZCTCO per task Use new IGZCTCO each TRANSFER
14.0 andlater Turn on optional bit49in Default.
RHDCOPTF.

Note: Inrelease 12.01, prior to maintenance level 9607, itis necessarytoapply APAR
G097250to obtain the defaultcondition shown above. With application of GO97250,
optional APAR GS19348is obsolete.

Note: Optional bit49is notvalidina LE/370 runtime environment.

Part 2

This partof the tablecontains programs compiled under COBOL Il and using LE runtime
libraries. RHDCLEFE is notin use.

Release Method 1 (Most CPU efficient) Method 2 (Special functionality)
Use single IGZCTCO per task Use new IGZCTCO each TRANSFER

10.21PSand Not available Default

later

Part 3

This partof the tablecontains programs compiled under COBOL Il and using LE runtime
libraries. RHDCLEFE is in use.

Release Method 1 (Most CPU efficient) Method 2 (Special functionality)
Reuse same process/enclave Use new process/enclave

10.21PS Not available Default

12.01 Not available Default

14.0 Not available Default.

14.1 andlater Default Optional bit196.

Appendix K: OptionalOnline COBOL Functionality 523

PSW Program MaskSettings

Part 4

This partof the tablecontains programs compiled under LE COBOL and usingLE runtime

libraries.

Release Method 1 (Most CPU efficient) Method 2 (Special functionality)
Reuse same process/enclave (see Use new process/enclave (see
first note below) first note below)

10.21PS Not available Default

12.01 Not available Default

14.0 Default Optional bit196. (see second note

below)

14.1 andlater Default Optional bit196.

Note: When using RHDCLEFE with release14.1 and later, the defaultis to preserve both
the LE environment (process) andthe LE enclavewhen invokingthe same program
multipletimes inthe same DC task. When not using RHDCLEFE, the environment is
preserved for LE COBOL programs, but not the enclave.

Inrelease 14.0, prior to maintenance level 9810, itis necessarytoapply APAR LS40957
inorder for optional bit196 to have any effect. That APAR is automaticallyapplied at
level 9810 and above.

PSW Program Mask Settings

The program maskinthe PSW controls whether or not certain arithmetic exceptions will
causea program check or be ignored. If the exception is ignored, significantdigits of
data may be lost. If the bitis on, the exception causes a program check. Ifthe bitis off,
the exception is ignored. The exceptions controlled by the program maskare as follows:

PSW bit Exception

20 Fixed-point Overflow
21 Decimal overflow

22 Exponent underflow
23 Significance

When the CA IDMS/DC/UCF system is insystem mode (i.e., code in the system nucleus is
executing), the program maskis always setto B'1110'. This enables a program check for
all exceptions except significance exceptions.

524 DML Reference Guide for COBOL

PSW Program MaskSettings

A programmask of B'1110'is the defaultfor initial entryinto a user mode program.
Some high level languages may change the program mask. For example, some versions
of COBOL change the maskto B'0000'. The DC defaultis to honor such a change. The DC
system does that by savingthe programmask when a user-mode program makes a
system request (for example, an OBTAIN or a GET STORAGE). Whilethe request is being
processed, the programmaskis always settoB'1110'. When the system processingis
completed, the programmask is restored before return to the user-mode program
which made the request.

The default program mask settings can be modified through the use of options module
RHDCOPTF. One option is to force the programmask to be setto B'1110' (the system
default) upon return to a user-mode program after a system request as well as upon
initial entry to the program. To effect this option,set OPT00253 in RHDCOPTF. This
option will causethedefault maskto be in effect at all times with one exception. The
exception would be duringthe period after the user-mode program changes the mask
until the next time itmakes a system request. Note that this exception does not apply to
COBOL Il or LE COBOL programs.The COBOL run time code will always makeseveral
requests to the DC system for storage or other resources before the actual application
codeis entered. This assures thatthe defaultmask will bein effect when the application
code is executed.

If OPT00253 is set, option bits 148 and 184 through 188 (described below) ignored.

The value of the programmask upon initial entry to a user-mode program canalsobe
modified as described below:

m |fOPTO0184issetand OPT00253is notset in RHDCOPTF, then the value of the
program maskon initial entry to a user mode program will beset based on
#DEFOPTF bits 185-188 as follows:

m IfOPT00185 s set, fixed-point overflow exceptions will resultinaninterrupt
(program check). When itis not set, fixed-pointoverflows will not resultinan
interrupt.

m IfOPT00186is set, decimal overflow exceptions will resultinaninterrupt
(program check). When itis not set, decimal overflows will notresultinan
interrupt.

m IfOPT00187 s set, exponent underflow exceptions will resultinaninterrupt
(program check). When itis not set, exponent underflows will notresultinan
interrupt.

m IfOPT00188 s set, significanceexceptions will resultinaninterrupt(program
check). When itis notset, significance exceptions will notresultinaninterrupt.

Appendix K: Optional Online COBOL Functionality 525

Loading VS COBOL Programs into XA Storage

m |fneither OPT00184 nor OPT00253 areset and OPT00148 is set, then the initial
program maskwill beset to binary 1010, i.e., fixed-pointoverflow and exponent
underflow will causean interrupt, but decimal overflow and significance exceptions
will not. OPT00148 has no effect inrelease16.0. The same functionality can be
obtained by setting OPT00184, OPT00185, and OPT00187.

Note: the bit settings described above affect all user mode programs, not just
COBOL programs.They are presented here because the optional settings are most
commonly used for specialized COBOLapplications.

Loading VS COBOL Programs into XA Storade

VS COBOL Il and LE COBOL programs canand normally should be linked with AMODE 31
and RMODE ANY. Old-styleVS COBOL programs, which run inbatch, must run with
AMODE 24 and RMODE 24. However, when runningonlineVS COBOL programsina
DC/UCF region, itis permissibleto run with AMODE 31 and RMODE 24.This is the
normal recommended AMODE/RMODE setting for onlineVS COBOL program. This
allows the WORKING STORAGE for VS COBOL programs to be allocated in XA storage.
Since multiple copies of WORKING STORAGE may be allocated simultaneously (when
multipletasks arerunningthat use the same program), this feature considerably
reduces the amount of below-the-line storage required.

Some sites have a large number of COBOL programs and may want to link VS COBOL
programs with AMODE 31 and RMODE ANY. This allows the programs to be loaded into
the 31-bit(above-the-line) PROGRAM POOL. Cautionshould be used before utilizing this
feature. If a program thatis loaded above the lineissues a COBOLverb that causes an
illegal SVCto be issued orifthe programis compiled with illegal compile options, the
entire DC/UCF region may be abended. In some cases, the entire operating system may
be abended. Illegal COBOLverbs and compileoptions are listed in Chapter 2: (see

page 17).

If onlineVS COBOL programs areto be linked RMODE(ANY) and rununder Release 12.01
or earlier,an optional APAR must be applied. No optional APAR is required for release
14.0 and above, but the cautions listed above must be observed. The optional APARs are

as follows:

Release APAR
10.21PS (MVS) 90-09-1003
10.21PS (VSE) Not available
12.01 (MVS) CS82390
12.01 (VSE) GS53516

526 DML Reference Guide for COBOL

Appendix L: Online Debuggder Syntax

This section contains the following topics:

General Registers Symbols (see page 527)
DC/UCF System Symbols (see page 528)
Address Symbols and Markers (see page 528)
User Symbols (see page 529)

Program Symbols (see page 529)

Expression Operators (see page 529)
Delimiters (see page 530)

Debugger Commands (see page 530)

General Registers Symbols

General registersincludethe registers used by the program at the time of execution
andthe registers used by the DC/UCF system. The programstatus word (PSW) and

register definitions arealways preceded by a colon (:) and are specified by these
symbols:

m :PSW for the current program status word

m :Rnfor the user programregister at the time of interrupt, where n represents the
number of the register and can have a valueof 0 through 15

:REGS for all user programregisters at the time of interrupt

m :SRn for a DC/UCF system register at the time of interrupt, where n represents the
number of the register and can have a value of 0 through 15

:SREGS for all DC/UCF system registers atthe time of interrupt

Important! A singledebug expression canreference only one general register.

Appendix L: Online Debugger Syntax 527

DC/UCF System Symbols

DC/UCF System Symbols

Certain DC/UCF system symbols also function as debugger entities, and you can refer to
them duringa debugging session.Acolon (:) must precede each symbol.These are the
valid symbols:

:BAT

Specifies the baseaddress tablefor session.
:CSA

Specifies the DC/UCF common storage area.
:DLB

Specifies the debug local block, control block required for debugging session.
:LTE

Specifies the current logical terminal element.
:PTE

Specifies the current physical terminal element.
:TCE

Specifies the current task control element.
:VECT

Specifies the vector table for debugger.

Important! A singledebug expression canreference only one system entity.

Address Symbols and Markers

Symbol Symbol Name Designated Location

@ At sign Absolute address

S Dollarsign Load address

¢ Cent sign Address of current dialogprocess

528 DML Reference Guide for COBOL

UserSymbols

User Symbols

m :DRn for a debugger general register, where n represents the number of the
register and can have a valueof 0 through 15

m :DREGS for all debugger registers
m :H1 and:H2 for halfword 1 and halfword 2
m :F1and:F2 forfullword 1 and fullword 2
m :UCHR for a 48-byte character area
You canalsorefer to specified sections of this area:
- :UCO, the first16 bytes
— :UC16, the next 16 bytes
- :UC32, the last16 bytes

Program Symbols

Syntax: Data Field Names

»»—— data-field-name n >«
IN :[-— record-name
OF
Syntax: Line Numbers
»»—— # [ine-number >
. >
IN current-process-name
OF JL included-module-name C _Jl
OCCurrence occurrence-number
Syntax: Qualifying Program Symbols
»>—— process-name - . - program-symbol >«

Expression Operators

Operator Meaning

+ Addition

- Subtraction

Appendix L: Online Debugger Syntax 529

Delimiters

Delimiters

Operator Meaning
* Multiplication
/ Division
Delimiter Meaning
* Asterisk
Blank
) Comma
= Equal sign
! Exclamation point
- Hyphen
% Percent sign
Period
+ Plus sign
/ Slash

Debudger Commands

Syntax: AT

ADD Format

»»— AT debug-expression

\ 4

>
L BEFore —[MAXimum <ﬁ—| L AFTer _[0« ﬁ—l
execution-count execution-count

v

g L EVE a
ry 1 « ON «
L execution-count IGNore
INQUIRE Format
p—— AT ALL INQuire >
L debug-expression - ON
IGNore —
OFF

530 DML Reference Guide for COBOL

Debugger Commands

Syntax: DEBUG

Syntax: EXIT

Syntax: IOUSER

Syntax: LIST

Syntax: MENU

Syntax: PROMPT

ADD format

»»—— DEBug PROgram < —
DIAlog
MAP ———

SS
TABle

INQUIRE format

— entity-name
L VERsion version-number |

»—— DEBug entity-name C] T INQuire_—I——N
T VERsion version-number l OFF

ALL

»p»— EXIt

M

»»— I0User

MEMORY Format

M

List begin-debug-expression
JL Memory J

Display

v

TO end-debug-expression 4_| C
byte-count-number X
LENgth XC

ATTRIBUTES Format

»—E List — T SESsion ATTributes
Display

)

)

»»— MENu

L screen-name |

M

»»—— PROmpt

M

Appendix L: Online Debugger Syntax 531

Debugger Commands

Syntax: QUALIFY

RESET Format

v

»— QUALlify PROCess process-name
L DIAlog dialog-name -

X

L VERsion version-number -

INQUIRE Format

)

»»—— QUALify INQuire

Syntax: QUIT

M

»»— QUIt

Syntax: RESUME

)4

»»—— RESume
LL—J_E debug-expression :,—'
AT ABEnd

Syntax: SET

MEMORY Format

>>—|: Set debug-expression >
Vary JL Memory il I: EQUals

data-field-name >«
H halfword —— | |: RESEt
F fullword — X NOReset «

XC

X hex-value
C character-string —
P packed-value

ATTRIBUTES Format

HEX

»p»— Set E CHAr >«
BOTh

Syntax: SNAP

v

»— SNAp T TASK T

begin-debug-expression
L—[TO end-debug-expression 4_‘
byte-count-number
LENgth

L TITle title —J

M

532 DML Reference Guide for COBOL

Debugger Commands

Syntax: WHERE

»»—— WHEre

M

Appendix L: Online Debugger Syntax 533

Index

A

attention ID keys ¢ 205
DC-AID-CONDITION-NAMES e 205

B

basic mode ¢ 269, 272,319,322, 327
READ TERMINAL e 269, 272
WRITE TERMINAL e 319, 322
WRITE THEN READ TERMINAL e 322,327

C

CALL statements e 69
databasee® 69
DCe 69
DC-BATCH 69
Non-DC TP monitors ¢ 69
compiler options ¢ 29, 30, 31, 33
comment generation ¢ 30
dictionaryreadyoverridee 29,30
listgeneration e 30, 31
logsuppressione31,33
compiler-directive statements ¢ 68, 69, 72,73,74,
76, 85,89, 100
DATA DIVISION » 72, 85
ENVIRONMENT DIVISION ® 69, 72
FILE SECTION ¢ 73
IDENTIFICATION DIVISION ¢ 68, 69
MAP SECTION « 74,76
PROCEDURE DIVISION e 85, 89
SCHEMA SECTION e 73,74

WORKING-STORAGE/LINKAGE SECTIONSs e 76, 85

control statements e 185,187, 203, 205, 215, 272,
275,278,280
FINISH » 185,187
IFe 203, 205
KEEP CURRENT ¢ 215
READY e 272,275
ROLLBACK e 278, 280
COPY IDMS statement ¢ 73,74,76,85,121,123,
124,126,129
COPY IDMS MAP-BINDS « 121
COPY IDMS SUBSCHEMA-BINDS e 85,126
in FILE SECTION of DATA DIVISION e 73
in MAP SECTION of DATA DIVISION « 74

in PROCEDURE DIVISION ¢ 85
in WORKING-STORAGE/LINKAGE SECTIONSs of
DATA DIVISION ¢ 76

COPY IDMS statement o 124
COPY IDMS statement

i2.COPY IDMS SUBSCHEMA-BINDS e 124

cursor position ¢ 248

D

MODIFY MAP e 248

DATA DIVISION » 73, 74,76, 85

FILE SECTION 73

MAP SECTION e 74,76

SCHEMA SECTION e 73,74
WORKING-STORAGE/LINKAGE SECTIONSs e 76, 85

destination ¢ 280, 315

SEND MESSAGE e 280
WRITE PRINTER ¢ 315

DML compiler e 337,339, 342,483

execution of e 337
with non-DC TP monitor ¢ 483

dump ¢ 100, 101, 288,290

I

ABEND » 100, 101
SNAP e 288,290

IDMS communications block ¢ 34

figure » 34
update (figure) e 34

IDMS DC communications block ¢ 42

figure « 42

IDMS-DC communications block #42, 48, 59

IFe

field descriptions 42
203
AUTOSTATUS considerations 203

INQUIRE MAP e 205

J

general discussion ¢ 205

moving map-related data ¢ 205

testing for cursor position ¢ 205

testing for global map inputconditions ¢ 205
testing for inputnon-zero status conditions ¢ 205

journal filee303, 305

Index 535

WRITE JOURNAL e 303, 305
K

kept storage » 187,188, 197,201
FREE STORAGE « 187,188
GET STORAGE < 197,201

L

LE-compliant language compilers 508, 509, 513,
514,521
executing programs under CA IDMS/DC ¢ 509
multiple-programenclavee 514
singleLE enclave » 514
supported compilers ¢ 508
supported functions ¢ 513
unsupported functions ¢ 513
usinge 513
linemode ¢ 267,269, 305, 308
READ LINE FROM TERMINAL e 267, 269
WRITE LINE TO TERMINAL e 305,308
Logical Record Facility » 246, 248,258, 261,297,
299,327,337
logical-record clauses #327,337
MODIFY e 246, 248
OBTAIN ¢ 258, 261
status codes ¢ 337
STORE * 297, 299
logical-record clauses 327
general discussion 327
logical-record requestcontrol (LRC) block 40
field descriptions ¢ 40
figure « 40

M

map ¢ 205,232,248
attributes ¢ 248
fieldlist e 205
message area ® 232
modifying e 248
mapping mode ¢ 205, 215,227,232, 239, 243,248,
258,290,293
INQUIRE MAP ¢ 205, 215
MAP IN e 227,232
MAP OUT e 232,239
MAP OUTIN e 239,243
MODIFY MAP ¢ 248, 258
STARTPAGE ¢ 290, 293
modification statements ¢ 243, 246, 293,297

MODIFY ¢ 243, 246
STORE ¢ 293, 297

N

native mode ¢ 227,232,315
MAP [N e 227
MAP OUT e 232
WRITE PRINTER ¢ 315
NODENAME parameter e 352
ih1.DBNAME parameter ¢ 352

P

page=end.KEEP LONGTERM e 222
page=end KEEP LONGTERM ¢ 222
page=end.RETURN e 278
page=end RETURN e 278
page=start.RETURN e 275
page=start RETURN e 275
Precompiler e 22, 23,29, 33,34,67,68, 89
compiler options ¢ 29, 33
compiler-directive statements * 67, 89
execution of » 23
general discussion ¢ 22
printe 315
classes®315
destinations ¢ 315
queues ¢ 315
program management e 146,148,222,227,283,
284,299,301
DELETE TABLE « 146, 148
LOAD TABLE e 222,227
SET ABEND EXIT ¢ 283
SET ABEND EXIT (STAE) » 284
TRANSFER CONTROL ¢ 299, 301
protocols ¢ 63,65, 67,69, 124, 126, 203
AUTOSTATUS e 63, 65,69,124, 126, 203
PROTOCOL clause 69
standard protocols (table) 69
USER-DEFINED e 65, 67

Q

queue management ¢ 189,194,262, 265
GET QUEUE 189,194
PUT QUEUE » 262,265
queues ® 129,130,148, 149,152,154, 157,163,165
BIND TASK ¢ 129,130
DEQUEUE e 148,149
ENQUEUE e 154,157

536 DML Reference Guide for COBOL

R

record locks ¢216
KEEP CURRENT ¢ 216
recovery ¢ 278,280,303, 305
ROLLBACK e 278, 280
WRITE JOURNAL e 303, 305
retrieval statements ¢ 165,167,170,173,176, 179,
185,188,189, 258, 261
FIND/OBTAIN ¢ 165
FIND/OBTAIN CALC/DUPLICATE e 165,167
FIND/OBTAIN CURRENT ¢ 167,170
FIND/OBTAIN DB-KEY ¢ 170, 173
FIND/OBTAIN OWNER » 173,176
FIND/OBTAIN WITHIN SET USING SORT KEY e
176,179
FIND/OBTAIN WITHIN SET/AREA e 179, 185
GET » 188, 189
OBTAIN (LRF) » 258,261

S

scratchmanagement ¢ 194,197, 265, 267
GET SCRATCH e 194,197
PUT SCRATCH e 265,267
see=AUTOSTATUSprotocols error detection ¢ 60, 62,
63
see=callformats call expansions 479
see=compileroptions precompiler options ¢ 29
see=LogicalRecordFacility non-navigational DML
statements ¢ 21,22
see=logsuppression programactivity statistics 31
see=operatingmode PROTOCOL clause* 69
see=precompiler DMLC processor e23, 25, 26, 27
see=programexpansionelement(PXE) PXE ¢ 40,42
see=READY dictionaryreadyoverridee 29
see=statuscodes IDMS communications block ¢ 40
see=statuscodes IDMS-DC communications block e
42
see=writecontrolcharacter(WCC) WCC » 248
Sequential Processing Facility « 275,278
RETURN e 275,278
storage management ¢ 187,188, 197,201
FREE STORAGE e« 187, 188
GET STORAGE < 197, 201
subschema usagemodes ¢ 19,20, 76
DML e 19,76
LR ¢ 19,76
MIXED 19, 76

T

tables » 146, 148,222,227
DELETE TABLE e 146,148
LOAD TABLE e 222,227
taskmanagement ¢ 261, 262,301, 303,521,524,
526
COBOL Il #521
LE COBOL ¢ 521
POST ¢ 261, 262
WAIT » 301,303
teleprocessing monitors ¢ 69, 72, 487
notes to users of ¢ 487
protocols for use with (table) 69
terminal management ¢ 205,215, 227,232,239,
243,248,258, 267,269,272, 290,293, 315, 319,
322,327
INQUIRE MAP ¢ 205, 215
MAP IN e 227,232
MAP OUT e 232,239
MAP OUTIN e 239,243
MODIFY MAP e 248, 258
READ LINE FROM TERMINAL e 267, 269
READ TERMINAL e 269, 272
STARTPAGE ¢ 290, 293
WRITE PRINTER ¢ 315,319
WRITE TERMINAL e 319, 322
WRITE THEN READ TERMINAL e 322,327
time management ¢ 201,203, 284, 288
GET TIME 201, 203
SET TIMER ¢ 284,288
transaction statistics block (TSB) e 113,119,121,
130,131,132,135,136,139, 143,144, 146, 152,
154
ACCEPT TRANSACTION STATISTICS » 113,119
BIND TRANSACTION STATISTICS « 130,131
END TRANSACTION STATISTICS » 152,154
TRANSFER CONTROL 299
NORETURN (XCTL) parameter e 299
RETURN (LINK) parameter 299

u

user storagee 187, 188,197, 201
FREE STORAGE 187,188
GET STORAGE ¢ 197,201
utilities « 503
utility functions #101, 103, 104,106, 108, 110,112,
113,216,222,280, 283,288, 290,308, 315
ACCEPT » 101,103,112

Index 537

ACCEPT page-info-location 110
KEEP LONGTERM e 216,222
SEND MESSAGE e 280, 283
SNAP « 288,290

WRITE LOG ¢ 308, 315

538 DML Reference Guide for COBOL

	CA IDMS DML Reference Guide for COBOL
	CA Technologies Product References
	Contact CA Technologies
	Documentation Changes
	Contents
	1: Introduction
	Copying and Pasting COBOL Code from this Guide
	Syntax Diagram Conventions

	2: Introduction to CA IDMS Data Manipulation Language
	Programming in the CA IDMS Environment
	Accessing the Database
	Navigational DML Statements
	LRF DML Statements
	SQL DML Statements

	Programming in the Online Environment

	Compiling and Executing CA IDMS Programs
	Compiling Programs
	Executing Programs

	Callable Services and Common Facilities
	Callable Services
	Common Facilities

	3: Precompiler Options
	Dictionary Ready Override
	Syntax
	Parameters
	Dictionary Ready Override

	Comment Generation
	Syntax

	List Generation
	Syntax
	Parameters

	Log Suppression
	Syntax

	4: Communications Blocks and Error Detection
	Communications Blocks
	IDMS Communications Block
	LRC Block
	IDMS-DC Communications Block
	Field Descriptions

	ERROR-STATUS Field and Codes
	DB Status Codes
	Major DB Status Codes
	Minor DB Status Codes

	DC Status Codes
	Major DC Status Codes
	Minor DC Status Codes

	ERROR-STATUS Condition Names
	Error Detection
	IDMS-STATUS Routine
	Effects of Nonzero Status on IDMS-STATUS

	AUTOSTATUS Protocols
	Syntax
	Parameters

	USER-DEFINED Protocols

	5: Precompiler-Directive Statements
	IDENTIFICATION DIVISION
	Syntax
	Parameters

	ENVIRONMENT DIVISION
	Syntax
	Parameters

	DATA DIVISION
	FILE SECTION
	Syntax
	Parameters

	SCHEMA SECTION
	Syntax
	Parameters

	MAP SECTION
	Syntax
	Parameters

	WORKING-STORAGE and LINKAGE SECTIONS
	Syntax
	Parameters

	PROCEDURE DIVISION
	Syntax
	Parameters

	6: Data Manipulation Language Statements
	About Data Manipulation Language (DML)
	ABEND
	Syntax
	Parameters
	Example
	Status Codes

	ACCEPT
	Syntax
	Parameters
	Example
	Status Codes

	ACCEPT BIND ADDRESS
	Syntax
	Parameters
	Example
	Status Codes

	ACCEPT DATABASE STATISTICS
	Syntax
	Parameters
	Example
	Status Codes

	ACCEPT DB-KEY FROM CURRENCY
	Syntax
	Parameters
	Example
	Status Codes

	ACCEPT DB-KEY RELATIVE TO CURRENCY
	Syntax
	Parameters
	Example
	Status Codes

	ACCEPT page-info-location
	Syntax
	Parameters
	Example
	Status Codes

	ACCEPT PROCEDURE CONTROL LOCATION
	Syntax
	Parameters
	Example
	Status Codes

	ACCEPT TRANSACTION STATISTICS
	Syntax
	Parameters
	Example
	Status Codes

	ATTACH
	Syntax
	Parameters
	Example
	Status Codes

	BIND MAP
	Syntax
	Parameters
	Example
	Status Codes

	BIND PROCEDURE
	Syntax
	Parameters
	Example
	Status Codes

	BIND RECORD
	Syntax
	Parameters
	Example
	Status Codes

	BIND RUN-UNIT
	Syntax
	Parameters
	Example
	Status Codes

	BIND TASK
	Syntax
	Parameters
	Example
	Status Codes

	BIND TRANSACTION STATISTICS
	Syntax
	Example
	Status Codes

	CHANGE PRIORITY
	Syntax
	Parameters
	Example
	Status Codes

	CHECK TERMINAL
	Syntax
	Parameters
	Example
	Status Codes

	COMMIT
	Syntax
	Parameters
	Example
	Status Codes

	CONNECT
	Syntax
	Parameters
	Example
	Status Codes

	DC RETURN
	Syntax
	Parameters
	Example
	Status Codes

	DELETE QUEUE
	Syntax
	Parameters
	Example
	Status Codes

	DELETE SCRATCH
	Syntax
	Parameters
	Example
	Status Codes

	DELETE TABLE
	Syntax
	Parameters
	Example
	Status Codes

	DEQUEUE
	Syntax
	Parameters
	Example
	Status Codes

	DISCONNECT
	Disconnecting a Record from a Set
	Syntax
	Parameters
	Example
	Status Codes

	END LINE TERMINAL SESSION
	Syntax
	Example
	Status Codes

	END TRANSACTION STATISTICS
	Syntax
	Parameters
	Example
	Status Codes

	ENDPAGE
	Syntax
	Example
	Status Codes

	ENQUEUE
	Syntax
	Parameters
	Examples
	Status Codes

	ERASE
	Syntax
	Parameters
	Example
	Status Codes

	ERASE (LRF)
	Syntax
	Parameters
	Example

	FIND/OBTAIN
	FIND/OBTAIN CALC/DUPLICATE
	Syntax
	Parameters
	Example
	Status Codes

	FIND/OBTAIN CURRENT
	Syntax
	Parameters
	Example
	Status Codes

	FIND/OBTAIN DB-KEY
	Syntax
	Parameters
	Example
	Status Codes

	FIND/OBTAIN OWNER
	Syntax
	Parameters
	Example
	Status Codes

	FIND/OBTAIN WITHIN SET USING SORT KEY
	Syntax
	Parameters
	Example
	Status Codes

	FIND/OBTAIN WITHIN SET/AREA
	Syntax
	Parameters
	Example
	Status Codes

	FINISH
	Syntax
	Parameters
	Example
	Status Codes

	FREE STORAGE
	Syntax
	Parameters
	Example
	Status Codes

	GET
	Syntax
	Parameters
	Example
	Status Codes

	GET QUEUE
	Syntax
	Parameters
	Example
	Status Codes

	GET SCRATCH
	Syntax
	Parameters
	Example
	Status Codes

	GET STORAGE
	Syntax
	Parameters
	Example
	Status Codes

	GET TIME
	Syntax
	Parameters
	Example
	Status Codes

	IF
	Syntax
	Parameters
	Examples
	Status Codes

	INQUIRE MAP
	Syntax
	Parameters
	Example
	Syntax
	Parameters
	Example
	Syntax
	Parameters
	Example
	Syntax
	Parameters
	Examples
	Status Codes

	KEEP CURRENT
	Syntax
	Parameters
	Example
	Status Codes

	KEEP LONGTERM
	Syntax
	Parameters
	Lock Options
	Example
	Status Codes

	LOAD TABLE
	Syntax
	Parameters
	Examples
	Status Codes

	MAP IN
	Syntax
	Parameters
	Examples
	Status Codes

	MAP OUT
	Syntax
	Parameters
	Examples
	Status Codes

	MAP OUTIN
	Syntax
	Parameters
	Example
	Status Codes

	MODIFY
	Syntax
	Parameters
	Example
	Status Codes

	MODIFY (LRF)
	Syntax
	Parameters
	Example

	MODIFY MAP
	Syntax
	Parameters
	Expansion of field-specifications
	Modification Options
	Examples
	Status Codes

	OBTAIN (LRF)
	Syntax
	Parameters
	Example

	POST
	Syntax
	Parameters
	Example
	Status Codes

	PUT QUEUE
	Syntax
	Parameters
	Example
	Status Codes

	PUT SCRATCH
	Syntax
	Parameters
	Example
	Status Codes

	READ LINE FROM TERMINAL
	Syntax
	Parameters
	Examples
	Status Codes

	READ TERMINAL
	Syntax
	Parameters
	Example
	Status Codes

	READY
	Syntax
	Parameters
	Example
	Status Codes

	RETURN
	Syntax
	Parameters
	Example
	Status Codes

	ROLLBACK
	Syntax
	Parameters
	Example
	Status Codes

	SEND MESSAGE
	Syntax
	Parameters
	Examples
	Status Codes

	SET ABEND EXIT
	Syntax
	Parameters
	Examples
	Status Codes

	SET TIMER
	Syntax
	Parameters
	Examples
	Status Codes

	SNAP
	Syntax
	Parameters
	Example
	Status Codes

	STARTPAGE
	Syntax
	Parameters
	Examples
	Status Codes

	STORE
	Syntax
	Parameters
	Example
	Status Codes

	STORE (LRF)
	Syntax
	Parameters
	Example

	TRANSFER CONTROL
	Syntax
	Parameters
	Examples
	Status Codes

	WAIT
	Syntax
	Parameters
	Example
	Status Codes

	WRITE JOURNAL
	Syntax
	Parameters
	Example
	Status Codes

	WRITE LINE TO TERMINAL
	Syntax
	Parameters
	Examples
	Status Codes

	WRITE LOG
	Syntax
	Parameters
	Example
	Status Codes

	WRITE PRINTER
	Syntax
	Parameters
	Examples
	Status Codes

	WRITE TERMINAL
	Syntax
	Parameters
	Example
	Status Codes

	WRITE THEN READ TERMINAL
	Syntax
	Parameters
	Example
	Status Codes

	Logical-Record Clauses
	WHERE
	Syntax
	Parameters
	Parameters
	Examples

	ON Clause
	Syntax
	Parameters
	Examples
	Status Codes

	A: DML Precompile, COBOL Compile, and Link-Edit JCL
	Compiling a COBOL Program
	z/OS JCL
	z/VSE JCL
	Local Mode
	IDMSLBLS Procedure

	CMS Commands
	Link-Edit Considerations
	Passing Parameters to the Precompiler

	B: Sample Batch Program
	Sample Batch Program as Input to the DML Compiler
	Sample Batch Program as Output from the DML Compiler
	Sample Batch Program from the COBOL Precompiler

	C: Sample Online Program
	Application Components
	Application Runtime Requirements
	Sample Online COBOL Program as Input to the DML Precompiler
	Sample Online COBOL Program as Output from the DML Precompiler
	Sample Online COBOL Program from the COBOL Compiler

	D: CA IDMS Call Formats
	DB Call Formats
	CONTROL STATEMENTS
	MODIFICATION STATEMENTS
	RETRIEVAL STATEMENTS
	ACCEPT STATEMENTS
	LRF DML STATEMENTS

	DC Call Formats
	PROGRAM MANAGEMENT STATEMENTS
	STORAGE MANAGEMENT STATEMENTS
	TASK MANAGEMENT STATEMENTS
	TIME MANAGEMENT STATEMENTS
	SCRATCH MANAGEMENT STATEMENTS
	QUEUE MANAGEMENT STATEMENTS
	TERMINAL MANAGEMENT STATEMENTS
	UTILITY STATEMENTS
	RECOVERY STATEMENTS
	DC-BATCH

	E: CA IDMS Keywords
	List of Keywords

	F: Notes to Teleprocessing Monitor Users
	TP Monitor Coding Guidelines
	TP monitor Coding Requirements

	G: EMPLOYEE Database Definition
	IDMSRPTS Utility Report Listings
	EMPLOYEE Database Structure Diagram

	H: VS COBOL II Support
	Features Supported by CA IDMS
	Features Not Supported by CA IDMS

	I: Considerations for IBM Language Environment
	Considerations About LE Runtime
	Running LE-Compliant Compiler Programs Under CA IDMS/DC
	Supported LE Functions
	Unsupported LE Functions
	Performance Improvements with RHDCLEFE
	Multiple-Program Enclave
	Restrictions on Using Multiple-Program Enclaves
	Exempting Programs from Multiple-Program Enclave

	J: 18-Byte Communications Blocks
	18-Byte IDMS Block
	18-Byte IDMS DC Block

	K: Optional Online COBOL Functionality
	COBOL II and LE COBOL Task Management
	PSW Program Mask Settings
	Loading VS COBOL Programs into XA Storage

	L: Online Debugger Syntax
	General Registers Symbols
	DC/UCF System Symbols
	Address Symbols and Markers
	User Symbols
	Program Symbols
	Syntax: Data Field Names
	Syntax: Line Numbers
	Syntax: Qualifying Program Symbols

	Expression Operators
	Delimiters
	Debugger Commands
	Syntax: AT
	Syntax: DEBUG
	Syntax: EXIT
	Syntax: IOUSER
	Syntax: LIST
	Syntax: MENU
	Syntax: PROMPT
	Syntax: QUALIFY
	Syntax: QUIT
	Syntax: RESUME
	Syntax: SET
	Syntax: SNAP
	Syntax: WHERE

	Index

