CA IDMS™

DML Reference Guide for Assembler
Release 18.5.00, 2nd Edition

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for yourinformational purposes onlyandis subject to change or withdrawalby CAatanytime. This
Documentationis proprietaryinformation of CAand maynotbe copied, transferred, reproduced, disclosed, modified or
duplicated, inwhole orin part, without the prior written consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copiesof the Documentation forinternal use by you and your employeesin connection with
thatsoftware, provided that all CA copyright notices and legends are affixed to each re produced copy.

The rightto print or otherwise make available copiesof the Documentation is limited to the period during which the applicable
license for such software remains in fullforce and effect. Should the license terminate foranyreason, itis your responsibility to
certifyin writing to CAthatall copies and partial copies of the Documentation have beenreturnedto CA ordestroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CAPROVIDES THISDOCUMENTATION “AS 1S” WITHOUTWARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FORA PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILLCABE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THISDOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IFCA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCHLOSS OR DAMAGE.

The use of anysoftware productreferencedinthe Documentationis governed bythe applicable license agreementandsuch
license agreementis not modified inanywaybythe terms ofthis notice.

The manufacturer of this Documentationis CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
setforth in FARSections 12.212,52.227-14,and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
theirsuccessors.

Copyright © 2014 CA. All rights reserved. All trademarks, trade names, service marks, andlogos referenced herein belongto
theirrespective companies.

CA Technologies Product References

This document references the following CA products:
m CAIDMS™/DB

m CA ADS™

m CAIDMS™/DC

m DC/UCF

= CAIDMS™ UCF

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one sitewhere you canaccess the
information that you need for your Home Office, Small Business,and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

® Onlineandtelephone contactinformation for technical assistanceand customer
services

m [nformationabout user communities and forums
m Product and documentation downloads
m CA Support policies and guidelines

m Other helpful resources appropriate for your product
Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
cansend a message to techpubs@ca.com.

To providefeedback about CA Technologies product documentation, complete our
shortcustomer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Documentation Chandes

The following documentation updates were made for the 18.5.00, 2nd Edition release of
this documentation:

m @COPYIDMS (see page 411)—Added the conditions which causethe DML to define
record elements usingthe Assembler EQU instruction.

m Qutput from the Precompiler (see page 457)—The output from the DML
precompiler has been updated.

m OQOutput from the Assembler (see page 467)—The output from the Assembler has
been updated.

m |DMS Communications Block (see page 34), 18-Byte Communications Blocks (see
page 541)—Updated the tables and field descriptions.

The following documentation updates were made for the 18.5.00 release of this
documentation:

m @ACCEPT DBKEY FROM CURRENCY (see page 85)—Added the PGINFO parameter to
this statement.

m @ACCEPT DBKEY RELATIVE TO CURRENCY (see page 87)—Added the PGINFO
parameter to this statement.

m @Ready (see page 308)—The description of the FORCE option was added.

m OnlineDebugger Syntax (see page 543)—This new appendix was previously
availableinthe Programming Quick Reference Guide.

Contents

Chapter 1: Introduction 17
SYNtAX DIaGram CONVENTIONSicuiiuiiiiiiiieiieresese ettt e e e s e s s s e st s tesaesbesbeese e e e s s et ateshesseeseesae st e ae s essessessesssantansantansesseen 17
Chapter 2: Introduction to CA IDMS Data Manipulation Languade 21
O PEIATING ENVITONMENTS c.eitiiietieereee ettt sttt ettt st e st e st e s b e st et et et esaesaesaesbeeseesee st e besbesbesbeeseese et e s e s e e e ebeeseeasansantantansassenes 21
ACCESSING the DAtaDaS Buuueueuiiieeciieie ettt ettt s et et e se et e s e s e e st e s esene s e et esesseseneressesasensnsnsan 22
Programming in the DC/UCF ENVIFONMENTciiiiieeiieeeeeessesessssssssssssssssssssssesesesesesesesesesesesesesesesesesesasesesesasesesens 24
AsSemMbliNg and EXECULING PrOZIamS.ccuiiicieieierieteeee e tete st te e teste st e be st eseebestesessetebasaess et assesassestasessansesestansssensesessanseneesans 25
Callable Services and COMMON FACHITIScuvurieuiirieieieeririe ettt ettt s 27
Callabl @ SEIVICES ...ttt ettt ettt sttt ettt st st b et st s e b et b b etk e sttt e b e ke et ebese b e b ebe et ebese e et ebese e st ebanens 27
COMMON FACIHITIES ..ttt ettt sttt e et b st e s bR et s e b e s et e e b et seebene st sasaene e s enentas 27
Chapter 3: DML Precompiler Options 29
DIiCHONAIY USAZE IMOUE ...ttt sttt ettt ettt e e ebe s b e ae et et ebe et eneebe s eseebesessssansesessessesansesesaensesebansesesesessansesesans 29
COMMENT GENEIATION ...ttt s ettt et e e s e e et R e e e st e et s e e e st s e e ene s e e e e nese et s s e e eneneenes 30

List Generation

LOE SUPPIESSTON. ..ttt et s st st sttt e st e s b e s s e st et et e s e b e besbesae s st ea e e ssessesseese e st e st e atems e st e s e st eate st ensensesaesaeenteneentensansansases 31
Chapter 4: Communications Blocks and Error Detection 33
IDMS COMMUNICATIONS BIOCKcuviuiereeietiieiieteietie e see et te e e et et e te st e s ebe st esesbe e ebesaeseebessese s sssesessassesansesessansesarsasseseaseseesensesesans 34
FiEl 0 DES CIIPTIONS c.vivtviteteetiteee ettt ettt ettt et e e s te e e s e st e e e b e e e se st ese e b e e esseb e seseeseseasessesseseseesessensesesbensesessasessansasetans
ERRSTAT Field and Codes
DB SEATUS COUS ...euvuiuiririeueirieieietrte et ettt ettt ettt a et b st b e st b s et et e b e s et e b e b e st e s s e b et b e b e et e b e sttt e b ese st s esesensne

DIC STATUS COUBS ...oviieuiierietiteee ettt teste e e te et st e e e e e e et e aebe st esa et e st ese et eseebesbenseb e sansesensesessess et essessesenteseetansesetesessansesentans
Testing for DML Error-Status Codes
Logical-Record Request Control (LRC) Block

FIEIA DESCIIPTIONS c.vieeieteeeeieteeeeree et e ettt et e et ste s et saese e e e sesesessebes e st et e s ase st esase e et esase s sessane e et ene e et eseaesesesesesesaseneren 54
Testing for the Logical-RECOrd Path STAtUS......cccciieieiiceseeeeserie ettt e e e st e be s e s e e se st esessenesessans 55
DC/UCFE GENEIAl REGISTEIS ..v.vveeeecteteieteteteeteteee ettt ettt et et ese e s ess st esese e et eseseasesebeseas b essasesesetensesesessnsesetesssetesenseseseaeasesesennas 58
DC/UCE STAtUS COUES ..uviniirireniereietietetetestesteteste s testeresaestsseste st saestesessesessestesessestatensensssessesessensssessesessensessesessessssensssssensasens 59
Testing fOr DC/UCE RETUINN COUEScuvvierereueieieteeiietetetetete et teseasstesesess et ese st ebesassssebeseassesesassasesensseseseassseteseasesetasanssasen 68
Chapter 5: Data Manipulation Landuade Statements 73
FUNCLIONS Of DIVIL SEATEMENTS ...ttt stttk ettt ae bbbt st e b e st sb b e et st ebe e st ebenenensesenens 76
H#ABEND—terminates the issuing task abnormMally ...ttt re st sae e ae e bens 82

Contents 5

FABEIND SYNTAX 1itutiiiiiieniiiitteriereeesttesessteessessteestestesstesssessesatesasesatesasesseesseasseesasesseesssansesnsaensessesntesnseensessseensesssessesssenseesees 83

H#ABEND Parameters83
HABEND EXQMPI €.ttt ettt e ettt et e et et e ae et e e e ae et e st ebe b ene et e sese et ensebeebenteseetaseesetesessenserenaans 83
HABEND STAtUS COUBS ...cuiiiiriiiriiietriitete et te ettt sttt ettt et et e st et e e e s e st et eaessestsbe s e st ssaneesesseneebessentesensenessensenensans 84
@ACCEPT BIND—MOVES the DING @AArESS....ueieiiiiieeiieieecteeeee ettt sttt sttt s s s ae e s bt s b et e sabs et e esbeenseenbesnsesntesneesaeas 84
@ ACCEP T BIND SYNTAX tvtutrtrieueiririerenirtsiesetsseseessssesesessssesessssesesessesesensssesesessssessssssesesessesesesssssesensssesessasssesessesesesessesasensss 84
@ACCEPT BIND Parameters84
@ACCEP T BIND STatUS COUESoueieiieiitieeteeteeeet et ettt s teesteste st e st e savesssesasesstesstesseessessessstesssesstessessssensesasesnsesnsesnseaneas 85
@ACCEP T BIND EXQMPI €.ttt sttt s te s te st st e st e e sae e sse st e e et et sse st e s esesaessssessesesaensssersenessensenessensenensans 85
@ACCEPT DBKEY FROM CURRENCY—moves the db-key of the current recordccoevevveveenecieeneceseseeseceeeins 85
@ACCEPT DBKEY FROM CURRENCY SYNEAX ..utrtrreuiirrreeieniriereiesieiseseseseseeseseesessesesesesesesssseseesessessasssssesensssesenessesessasnes
@ACCEPT DBKEY FROM CURRENCY Parameters......
@ACCEPT DBKEY FROM CURRENCY Status Codes
@ACCEPT DBKEY FROM CURRENCY EX@MPIE ..vuiiieeieirieieiiriee sttt et ese st s e sse e s s
@ACCEPT DBKEY RELATIVE TO CURRENCY —moVes the dD-KeYcccovruriinirieiiccreeretseent et 87
@ACCEPT DBKEY RELATIVE TO CURRENCY SYNTAX.ecttuirtrireererirerrerresesteeressessessssssesessesesesssssssssssesssssessssssssesessssessensns 88
@ACCEPT DBKEY RELATIVE TO CURRENCY Parameters....88
@ACCEPT DBKEY RELATIVE TO CURRENCY EXQMPIE eueiieieiirieiccrieeee ettt saste et ss st e e s sssenees 89
@ACCEPT DBKEY RELATIVE TO CURRENCY Status COUES ...cccourueuireririeririnieieieniereienesieieestsseseesesteesesteseesessesesesssseseneses 90
@ACCEPT PGINFO—moVes the page iNformMatioN ...ttt s ae e s s s be b e e b beneebans 90
@ ACCEP T PGINFO SYNTAX utetiiuiriiiieiienieniesiestesstetestessesessesiesiessesssessessessesssssessessssssessessessessesssensensessessessessessessesssessessessessanse 90
@ACCEPT PGINFO Parameters.... .91
@ACCEPT PGINFO EXQMPI@...uiiiiiieirieiriiirinieeserteses et te s te sttt et et sse st esesae st s b e s esessesessesaessssessesessensesensenessensensessnseneasans 91
@ACCEPT PGINFO STAtUS COUBS ...ueiiieuiiririeieerieieics ettt st ettt sttt st et se st st ssese st st ebese e st ebe e st ebe et st ese et ebesenesesasensne 91
@ACCEPT PROC—moves the information DIOCK........oei ittt sa e sre b et beenas 92
@ ACCEP T PROGC SYNTAX cuututrieuiuiirieieninieieutesteseeststesetssssesestsseseststeseststssebesestesesesestssesesessesenensssesentssstentassesenteseseneessesenssnes 92
@ACCEPT PROC Parameters.... ...92
@ ACCEP T PROC EXAMPIE ..uiieiieiiiriisieietitetistesteeste st et ses e e e taste e sse st e e sta e esesaese st eseesessessesessessssansasessensesessesessensanessensesessans 92
@ACCEP T PROC STATUS COUES ..ottt ettt et s te et st e st e s st e sateeseesaassstesatesbessesabeesseessesstesesnseeneesasesntesasesnssaneas 93
@ACCEPT STATS—moVves System runtime STatiSTiCSociviririrenererert ettt sttt sae s s s e b eaes 93
@ ACCEP T STATS SYNTAX wutuiriiuiiinirieieinieietetsteueesteteseststete et stebe st tebese st stebesetebesase st ssesentebesese st sbese st st ebeneatsbesentstebesentsbesasensees 93
@ ACCEPT STATS PATAMELELS ...ueeiueeeeieeeiee ettt et et e ettt e e etteeetae e e bt e esseeeestaeeesaeessseeesaeeesseeessaeasseeanseesasaessssaesnseesasssenseesnes 93
@ACCEPT STATS SEATUS COUES vttt ittt sae et se et s ettt st sse s e stsbes et s b e st seebe et st eseae e ebenenesseneneasens 95
@ACCEP T STATS EXQMPIE .ttt sttt sttt st stttk t et st e st st ket st e be et sbese e stebanenses 96
HACCEPT —retrieves system task-related information. ... sa e snens 96
#ACCEPT Syntax
HACCEPT PATamMELErS ...coueeieieeieeierieei ettt ettt sttt et e st ettt a e s e b e e bt e bt e st et et e s s e seesae e st e nt e st e s e b e st entestentantensansassares 97
HACCEPT StAtUS COUES ..ttt sttt sttt sttt bbb s bt e b e se e stk ese st ebese et ebebe e st e b e st e st ebe st sasbene e st ebasentntesen 98
HACCEPT EXGMPIE wenvvieeieieieeirteteereste ettt e st st ettt e ettt e s et eae s e et e s esase s esane s et eseae s et esane s ebesensesesenssassenenessesasenessnsan 98
HATTACH—instructs the system to initiate @ NEW TaSK ..cuiivieirierieireceeerere et sa e rans 98
H#ATTACH Syntax
HATTACH PAT@mMELEIS ..ttt ettt et ettt e e et s et e et b e e e s e e e st se e e e s e s s et s se s eneenenenenns 99

6 DML Reference Guide for Assembler

HATTACH STAtUS COUES ..ttt ettt sttt ettt b et stk e st st e s et st e s et et ebese st st ek ese e st ebeae st ese et ebesanessesasan 101
H#ATTACH Example
@BIND PROC—e5tablishes COMMUNTCATION.....cciiiiiicticeeeee ettt et et b et e st e satesaassabesabeeneesasesneesanens 103
@ BIND PROGC SYNTAX 1tttirtierierieerirteitesiesit st et e stesteseessessessesses st essessessessesaesassstententensessessesseestestestensessessesseentensensensansansensesses 103
IDMSDB--@BIND PROC PQramELErScccoeeuerieuerieieieieneseenteseseetsieseesesseseeseseesessesesseseesesseseesessenessessensesessensssensesessensssenes 103
@ BIND PROC StAtUS COUES ...ovviueieirireiteiteitecteeteetee e eteeseeseessessessessessesssessessensessassassassessesssessessessessessssssessensensensessessessssnes 104
@BIND PROC Example
@BIND REC—establishes addressability fOr @ FECOI... ..ottt st ene 104
@ BIND REC SYNTAX tttirtirtierieieietetestessese st st et et estessessessessasstestessessessessessssssentensassessessessessssssensensessessesssensensensensensansessesses
@ BIND REC PATamMELELS ...ccvviicetiiitieitec ettt e cstte st sbe s e sbe e e sabe e e bae s sabessabessbtesssbeessabeesabeassseesabeesabeesasbesebesessessnsessns
@ BIND REC STatUS COUES ...cuvveuiuererrenieririeierisieieeree et s et st sttt e et e s b et s s s st e e e b et e e b e st e sesrenenenseneanasenenen
@BIND REC Example.....ccceeverrennee.
@BIND SUBSCH-—NEIPS the FUN UNIT..cuiitiieieieiieicieeieee ettt ettt et sttt ae et e e ebe et e besessenaeseeseneesessesessenseneene
@ BIND SUBSCH SYNTAX tveetieiieiiiiiierieniesiesiesstestesteseessessessesse st sssstessessesaessssseeseessensessessessesssessensessessessessesssensensensensansassesses
(O BIND SUBS CH ParameterS.....uueiiiiciiieiiiiiieeiiiiireeeceeiteeeeeestseessessseeeesesssseessessssssesssssssessessssssesssssssessessssesssssssssessessssssessans
@ BIND SUBSCH STAtUS COUESoouvieueieeiictiicteeeteccteeeeeeteeeteeeseeeaeeebeeeseebeseseesseeeseeseeseessssseessseseesssessesaseessesasesssessessnseensens
@BIND SUBSCH Example..........
#BIND TASK—initiates a DC/UCF task
HBIND TASK SYNTAX.ttiutriruereirtrieienirtetestrtstestesestesetstesesesessesesessesestassseseneseesesestsseseaessssesentesesesentssesentasssentatssesenssensesenesnsesen
HBIND TASK Parameters.....coeoeeeiieieieitestes ettt sb e s s et ettt et et e he e it et et e st e sbesbesaeeatentebebasbensesreenas
HBIND TASK STAtUS COUES ..uevvvinireereiierieieere sttt ee st e et sae ettt sa s s b e st b s e st s s s e b e st e sbese e e nbenesenbeneanasesenen
#BIND TASK Example..........
HCHAP —changes the dispatChing Priority .ottt sa e s e ne s 111
HOH AP SYNTAX tuttiuiiirieteierieteieest sttt ettt sttt et se st s s ettt e et bese e s e e b e st e et ese e et e b e A et et e b enet e b e b et et ebe st st ebe sttt e bene et ebeaentenenn 111
HCHAP PAramELEIS ...ttt ettt ettt ettt s ae et e b e s b e s ae s st e st e st et e b et e e b e e b e e Rt e at e st et et e sbesatent et et esasensesrennes 111
HCHAP STAtUS COUES ..ottt sttt sttt ettt b btk et s b bttt e b et e b ese e st e ke st e st e b et b ebe e e et enenesebenen 112
HOHAP EXGIMPIE .ttt ettt ettt et e e s te e et et ebe et eseebe st eseebesaeseesantesessass et esseseebesseseebenseseebeseesensesesansesenss 112
@COMMIT—commits changes made t0 the databas ... 112
@ COMMIT SYNTAX ctttutirteieirieieietreste sttt st b e st bese e s eebe st st e bese e st eseae e st e ke se e saese st st ebe st e et esaae e s b ebe st e s be et ebese et ebesanesesesan 112
@ COMMIT PAramMELEIS ..cueieiieieiiteieree ettt ettt a et et se et a et e b e s e et e s et et se et e st ne e neaes 112
@ COMMIT STATUS COUSvinviineiieeiceeeeteete et et e et st e et e st e s ae e ae e bt e s st esbeesasssbesbeesbessssenssebesssenbessssessesaseessesaseensesssesnsesnnens 112
HCOMMIT—commits changes made to the database......cccvicrrieirnncerec et 113
HCOIMMIT SYNTAX.cutrtrtiuereriereeririeietrte ettt st e st se et se et st e be st s s e b ettt ese st b e st Rt e e b ebe st s ebeseat st e b e st sebent e sbebeae e b eneneasnsesen
HCOMMIT Par@mELerso cucciecieeieieieete ettt b e sb e s a e s a e bttt e b e b e b e e b e s he e it et e b et e sbesbesbe e b et e besbeebesbeenis
HCOMMIT STATUS COUES ...ttt ettt ettt s ettt e et b bbb e st e s s e b e st e s b ese e e e b e e et eneneasenenen
@CONNECT—establishes a record occurrence
@ CONNECT SYNTAX teuttrrirrierieeeirtrtesteste st st et et et e stestessessesse st e tessessessesaesatsst et et essesseeseese e st ess et esessesses st ententensansansansensenses
@ CONNECT PAFamMELELS oocvveieeriiitieicieeeree et ete e cstee s te e s ste e e sba s e s beeessteseabessabessastesssbeessabeesabessasssesabeesassessseesabesensseesnseesas
@ CONNECT STATUS COURS ...vviviiriieieieteiteste st ctete et te et ebeebeess et esesbesbesaseseesseasessasesbasbesbsessessessestessesaserseasensensasbessessesseenes
@ CONNECT EXQMPIE uitiietiieisieerisietsteste s et e st eeste st e e ste e e se st e e st e eesestaseebessesessassasessessssesasessassasesseneesensassssensenessensssenes
HDELETE —notifies the DC/UCF system
HDELETE SYNTAX.1ttteteteiritritesiesienesttestestessessessessesseeseesessessessessesssessensensessessessssnsessensessensessessesssessensessessessesseensensensensensensanses

Contents 7

HDE LETE Parameters ... ittt b e b e bbbt et e et e b e b e e b e s he e it et et e b e s besbe e at et et et e b e e beereens
#DELETE Status Codes
HDELETE EXAMPIE curvitieietiieistetete ettt sttt ettt sae et se st e et et e s et eseese et e st ebe s ese et enaesesteneebesbenseseabeseesensesesansesenes
HDELQUE—deletes all OF Part Of @ QUEUE ...ttt ettt 121
HDELQUUE SYNTAX cututrtrueueririereientreeietnteteeststeseeseeteseststsse et ssesesessebestatsaebene st beseaeeteseae s ebesent s ebesent st ebeneseebentatebeseneeebeneneasnsesen
HDELQUUE PAr@mMELErs ..ottt ettt sb e s a e s a et s et e e e b e bt e bt e at et et et e sbesbesab et ebebansenresneens
#DELQUE Status Codes....
HDELQUE EXQMPI @ittt sttt e ettt ettt et e e e be st ese et e e ebe et et ebesaess et e s eseeba s et et enbeseebeseesenseseesansesenes
HDELSCR —deletes SCratCh rECOTASccoveueuerireeeeieriree ettt ettt st s ettt s et s et nene 125
HDELSCR SYNTAX c.vtiitiiiiiiiiiitieitesiteteeste st e stestestesaesseesae e sueesatesseesseesbesseensesaseessaensessesnsesasesnsesssesstenssessessessesssenseensasnsesne
HDELSCR PAramMETEIS ...eceiieiieeeeiitee ettt ettt et et e st a et et e et e b et e me s e st s e e sneaes
HDELSCR Status Codes
HDELSCR EXAMIPIE .euiteieiiteeeteete ettt ettt et ettt e ste et e st ebe st e e ebe e ese et e e eaeebensesesbeseese s esesbene et e banteseebeseesensesesansesenes
H#DEQ—releases resources acquired by the iSSUING task.......cccevrieueririreennieeerecr e e 129
HEDEQL SYNTAX ttrttiiitiriiiieeite sttt ettt st e st e s e e s b e st e st e st e s aeesae e b e et e et e e e bt e b e et e e be et e et e et e s ae e e te et e e aeesaaenaeenaaenaeenreenraanes
HDEQL PAFAMELEIS .ottt ettt sttt st ettt et she s ae et e et e e e saesae e st e st e b e b e b e e b e e besheeat e st et et e s st eateatene et e sansansensanns
#DEQ Status Codes....
HDEQ EXAMIPI Bttt ettt e st st e et et e et e et et et e et et e s e ae e e e s e et e s esene e e et eneee et ene e s et ene et eseneneesenen
@DISCON—cancels the current membership of a specified record.......eiiecc e 132
(@ DISCON SYNTAX ttttiiieritieiteiitieitestesstesste st sste st e saesteesseeseesseesseesseesseasseasseese e seesseaseeseesseaeeeasesssesssensseensesnsesnnesssasanesseens
@ DISCON PATAmMELEIScovieeiiieeetiteite et ettt ettt et e e e et e e e e r et e s e e e e s e e e st e e e e s e ne et s s e s e st ese s enesnenneneaes
@DISCON Status Codes
@ DISCON EXAMPI.cniiiiiieiiieisietrttets ettt ettt st ettt st e e e s e b e e e b e e e seshe s eseseenesbe e esesse st sbe s et esessanessensenesensssnnes
HENQ—acquires resources or tests for availability ...t st 135
HEINQL SYNTAX cutititietieeeeeet ettt ettt sttt h e s b s b s bt s bt e a e et et et e s b e s ae e st e st et e b et et e e b e e Rt e Rt e R b e sbesbeeRe e Rt e Rt et et e b e aenbeeaeenes
HENQL PAT@mMELEIS ..ottt ettt ettt st e s b et e e st b et e st s b et e b e s e et e b e e e st s e et e b e s et e st s enesre e esesseneseenes
HENQ Status Codes....
HENQL EXAMIPIE oottt ettt sttt ettt ettt bbb bbb et e b e s et s b ek et e e b e st e e e bene et esenentssenn
HENDPAG—terminates @ Map PABINE SESSION ...cccueiviirierieeeeriteseesteseeseesteseseessesssessaesssesssessesasessesssesseessassssesssesseessaessennne 139
HEINDP AG SYNTAX 1ttteuieieiiiirieniesiesteritesteste st st st ste st et et et esaesae e st et e sessesaessessteseessassansansassessesasessententesasestentensensensansensassanses 139
HENDP AG PAT@mMELEIS ..ottt s sttt b bbb et e b e b e s b e s b e s bt e b et e b e b e e b e sre s 140
HENDP AG STATUS COUBS ...vviuiirieieirieieiiisieteststeteeseeteaeeste s e e ststesestesesesesaebesesessssesasessesenesesesensssesesensssesensrsssensssnsesenesssesen 140
HENDP AG EXGMPI@ ..ttt ettt et et s et e e et a st e e e b e st e st e b e s ene et e s e ese st ese et e e e st esensasessansesessassssanes 140
@ERASE—diSCONNECES OF EraSES FECOITS ...veiueieeriitiieeieetieetteeteeete st esttesstesseesstessessessstesstessessseessesssesnsssasesessesesssesnsesssasnsessnens 141
@ ERASE SYNTAX.tiutititirtirtinieieeeteiestese st st sttt et et s e s se st st et et e besbesbessesse e s e sassesbesbeese e st e Rt et et e sheeaeeaeeae et et et e senbenrenaes
@ERASE Parameters
[S Y Y Y = R 6o e [OOSR 143
@ERASE EXGMPI@ ettt ettt s te et st ettt s et et e et e e e be e e se st ene e b et ese et e s e et e b et eseebeneeeenterenteneerenes 144
@ERASE (LRF)—deletes 10gical rECOIrd OCCUITENCEScccovurueiririeieeerieeestsieieesestese et sse e e sess e e ssssasenssseseseessenesesns 146
@ ERASE (LRF) SYNTAX.0.uiteteieteteeiirietesiistesestesssesessesasesssesasesessesesessesasessssasasessssesessssesessssesessssssnsesessssesesensesessnsssnsesssssesasen
@ERASE (LRF) Parameters
@ERASE (LRF) STAtUS COUES ...ooviriirirerierieeriereseetieretetestesesseseebesaestebe s essesasesessessesessesessessesessessessssesessensesensessssensensesensensane 147

8 DML Reference Guide for Assembler

@ERASE (LRF) EXGMPI@ ottt ettt te et e st et e e st se et et et et e se et e e ebesbe st ebe st aneesensebesbensebansensesenteneesansesenes
@FIND/@OBTAIN Statements —accesses database records
@FIND/@OBTAIN CALC/DUPLICATE ..voueuiuetereieierereieietetesessissesesssssssesssssssesssssesesssnssssssnes
@FIND/@OBTAIN CURRENT ...octetititetetetetetetetetesetetesesssstesesesssesesesesesesesssssssssssssssssssssssssssssssessnsssasssssssssssssssssssnsssssssssssnsns
@FIND/@ OBTAIN DBKEY ..ucuceeteiieeeetetiissiessssesessessesssssssesssssssssssssssssessssssssssessssssessssssssesesessssssssessssssesessssssssesesssssssessssss
@FIND/@OBTAIN OWNER ...ooviteieteieieteteietetetesessetetesesesesesesetesesesesesesasssssssasssssssasssssssasssssessssssssssssssssssnsssssssssnsnsssssssssssnns
@FIND/@OBTAIN USING SORT KEY
@FIND/@OBTAIN WITHIN SET/AREA......c.cciteieieteteietetetetessisesssssssssssssssssssssssesesessnssenssssssnsnes
@FINISH—commits changes to database and terminates run UNIt......c.cccoevecinennieneinenr e 170
@ FINISH SYNTAX c.utitiitiitiitistisieestet e se s ste st sttt e st e st e s te s besae st et et e st e sbesbesbesae e s e sasesbeebeabeessessa st assasseeseeneeneessansansansensensenses
@ FINISH SEATUS COUES ...eveuirreiiereeteeertree ettt sttt et b et E st e s e e b et e e b ese e s e st e e nbenennasenenen
H#FINISH—commits changes to the database
e T V] 2 BNV g - D OO ROUSR R SRSRRRPRO
HEINISH PAramMELEIS ...ttt ettt ettt a e et b e e et s et e et ae e e senae e naenes
HEINISH STAtUS COUES ...cuitiuiiirieieirteteitt ettt ettt ettt st et b et st b et stk ettt ebe s et ebe et e b ese s st e ke se e et ebea e et ebe et et ese et sbanan
HFREESTG—requests that the system release variable Storage ... e 172
IDMSDB--#FREESTG
HFREESTG PAr@mELEIS ...ttt et b e s s a e s st ettt e et b e e bt s ae e st et et e b e saessesae et ebabansenresrenns 173
HFREESTG STATUS COUEBS ...vuviuiirieieirieieittrie ettt sttt et st sttt b ekttt b ettt e b e se e s b e ke st e st ebe e e e se e e et enenessesenen 173
HFREESTG EXAMPI ..ttt ettt et a ettt e b et e e e be e ese et e e ebesbensebesbeseebe s eseebaneebessenteseebeseesansesesensesenes 173
@GET—transfers the contents of an accessed reCcord OCCUITENCEcccvvueueriririeirerinerereeeee e 174
@GET Syntax
@ GET Pr@mMELEIS ...ttt ettt et ettt e et e e et e e se et e b e e et s e et e b e e e s e st s et sme s enennennsaeaes 174
[T I = LR e Yc [Ty 174
@ GET EXAMIPI ittt ettt ettt ettt e be s ae st ebe s ebe s b ese et et ebe et eneeseesesaese s eseesenseb e s aseesenbeseesenseseesensesensesessensesense 175
HGETIME—gets time and date from the Operating SYSTEM ... 175
#GETIME Syntax
HGETIME ParamEELErS ...ttt et ettt et b e e et b e e e st s e et b e e e aeee e s et eme e e st nenenaenes
HGETIME STAtUS COUES ..vviuiiieieiieieietrte ettt ettt ettt stk ettt ae et e ket e b e seat st ek e st e et ebe et ebe et et esa et ebanan
HGETIME EXQMPIE ittt ettt sttt sttt ettt et e s st e e e b e e e s st e e e b e s s e st e s e s eneeb e s ese st eneebessentesesesessensesersensssnnes
HGETQUE—TEIrIEVES @ QUEUE FECOTT ..ocuitiieiieteeeetiteee et e et ste e e e e teste e e te e esesbestesesbessebesaess et ensesestessesessassesensasessensesesanseseass
HG ETQUUE SYNTAX ittt ettt ettt et ettt et he e a et e b e s b e s b e s s e e s e et e b e b e e b e e b e e bt e Rt e ae et e b e eateateat et et e basanresrennes
HGETQUE ParamMELerS . .cccueueieeeeeeeireeieitertete sttt ae sttt e st b et a bbbt st be st s b e b et bebese e s e e b e st e sbebe st st eseae e ebenenessesenen
HGETQUE STAtUS COUES ..vviuiiieiiiieieitiriete sttt ettt st ettt skttt et et e se e st e ke se e st ebe e e e be et et esa et stasan
HGETQUUE EXQMPI @ cieieieiieiiieiriitecs ettt ste sttt ettt ettt e e e s st e e e e s et e e e se s e e st e s e s esesseseesesseneesesee st esesasessensesersesessnnes
HGETSCR—retrieves a scratch record....
HGETSCR SYNTAX c.ttiiitiiriete ettt et et e ettt e et s h e e et s e et et b et st a et sae s e st ae e saeane
E G IO R =T = o 4= = PP
HGETSCR STATUS COUBS ...eveuiuiirieeeirieteittrte ittt ettt e st st e et ese s e e e ke e e st et ese e ssese et esesensssebese e st esesesseseasseetesanensssasen
HGETSCR EXAMPIE 1ottt ettt e st e et e e e s st e et e e ese st e e e s e s s e st e s e s ene et eseesesaeneebessenteseseseesentesersasessnnes
HGETSTG—acquires variable storage from a Storage POO| ...ttt e 190
HGETSTG SYNTAX.tiettiuiiieiiieriesiesesteestesteste st sse s st st et et et e sbesbessesa e e st e s e sesaessesse e st essess e benbasbessesstess et ensesaeeseeneensensensansansansansns 191

Contents 9

HGETSTG ParamMEEerS ...ttt b e bbbt a et e e e b e b e e b e s he e st et et e b e sbesbe st e b et e b e sbeebesbeenas

H#GETSTG Status Codes

HGETSTG EXQMPIE ittt ettt te sttt et et e e et e st e e et et ese et eseeb e st entebe st ene et e s e esesbene et et anseseateseesensesessansesenes
@IF—tests for the presence of MeMber reCoOrd OCCUITENCESccvveieieiririeeririee ettt et nees 197

@ I F SYNTAX . ttrtiitiiieteitertestesteste et et ste st e st e stesaesae s st et e s b e s b e s beebesbe s st e st e st et e te st e aee st et e s e s e ba e b e e b e e be e s b et e seeseeeaeeseeae et et et et e e beeaeenes

@ 1F PAramMELEIS ...ttt ettt e et e et e e ettt e e te e e s tae e e aeeeeseeeesbeesseeesaeaasseesnsseaeasaeensaeeesseeessaaesseeenseeaastaaasseessaeensseaanseanns

@IF Status Codes

@KEEP Status Codes.....

@ KEEP EXAMPI ..ttt sttt ettt ettt et et et et e st e e et et ebe et eseebeshaseese b aseebe st ebe s ese et e st ensesenseseebensesenseseesanserente
HKEEP —establishes |0Ng-term rECOId IOCKSccveivierieiieeetete ettt ettt sa e s e e sae s 202
FHKEEP SYNTAX 1eutiiutiriiiieesieseteeite st et este st e e st e st e st e sae e et e st e satesseesaeesbe e be e be e beease e beeasesateeaeesatasaeesabesatesueesasessaessaanseensassananns
HKEEP PAT@mMELEIS ...ttt sttt ettt et sttt e s e e s e s s s st e st e et et e e b e e b e e aesat e st et et e st e st e ntententansansansessanns

HKEEP Status Codes
HKEEP EXQIMPIE ettt sttt sttt et a s sttt et st e b et bese s et e seae e e e e se et e s eseneea et e e ne et ese e s esennsesesasensntenen
HLINEEND—requests termination of the current [ine 1/O SESSIONcccceueerereiereeereeeee s s s s s sesans 208
HLINEEND SYNTAX wuttetiuiririereenireeteesteteesestesesestesesesessesssesessesessssesesessssesensssesessasssessssssssesensssesesensssesesensesenssssesesssssessesesesen 208
HLINEEND PrameELErS ..ottt et e st e st ettt s e et b e e e e e s et ene e enesnenenneaes 208
HLINEEND STatUS COUEBS ...vviiirieieirieteiiirieie st te et st se et st te st st e st ssese s ke et st ese e st e e et ebese s st ebese e st eseae e eseasseebesanessesasan 208
HLINEIN—requests @ synchronous transfer of data.......cccceecereceinscesse s e s 208
HLINETN SYNTX tttttutrtrueuererieieentstetetstetestst st te st st ete et st sse st st e sesesestebeseatssebe st e et e s et et e s e st s ebebe st et ebesent et ek ene st e b e st e st ebene et esesentseann 209
HLINEIN PAramELErseoiiieieeieeerieete ettt ettt ettt sa e s b s e e st e st et e s e b e e b e s bt e heeat e e et e b e saesseentent et ensasansenrennas 209
HLINEIN STatUS COUES ...ceruiuiiireeieirieieetesie ettt se et e et e et b b et stk se et sbeben et ebe et ebese st s b e b e st e st eben e et ene et et enenessesenen 212
HLINEIN EXQIMPIE ottt ettt ettt et e s te et e st ebe st eneebe e ese et eseaseesansesessess et assesesbansebesbanteseebessesensesesansesenes 213
HLINEOUT—requests @ transfer Of data ...ttt sttt e a e b e s 214
HLINEOUT SYNTAX wuttitiuiirieieenisietesests et tste et stste et stese et se et stebe et ssebe e st e bese st b ese st st ebebe et ebesent et ek eseatebe st e s b ebe e e et esanessetasan 215
HLINEOUT PArameters ..ottt et e sttt ettt st s a et e et s e b et e se s et ne e sneaes 216
HLINEOUT SEATUS COUEBS ..vviuiirieieirieieittrie ettt st ettt st e st b bt s ket beae st e et et ebeset st e b ese e st ebe et e be et et ese et ebasan 219
HLINEOUT EXGMPIE vttt ettt et ettt st e et et e st bese s s s et ese e st ene et eseanentesanensnsasan 220
HLINK—establishes linkage With @ Programi ... ettt st a et a e e e s ennnsenes 220
FELEINK SYNTAX 1 eetteitteiteenteeste ettt ettt e et et e st e st e st e s et e et e s e e satesbeesae e b e e be e b e e bt e s e e b e e aeesataeasesatesae e e eeeatesueesasanaaessa e beenraenaaanee
E AN LG oY = 0 4= =T PP
#LINK Status Codes
HLINK EX@MIPI@ oottt et e et d R s e s e R et e R e st e e e b e ne et esese e neenin
HLOAD—loads a module into the Program POOI ...ttt be s bbb e s s s 224
HLO AD SYNTAX.tuttitietieuieietetesteste st sttt et st e st s bt e a et e s b e s b e s b s he e h e e st et e b e s be s b e e aeea e et et e b e b e b e e Rt e Rt e Rt e ebesResReeRe e Rt et et et e aenbeeaeenes
HLO AD PalamMeELOrS ..ottt ettt ettt e e et r et se s e et e R e e et R e e e R e s e et R e e e e st s et r e e e senne e e s
#LOAD Status Codes
HLO AD EXAMPIE ettt ettt ettt ettt ettt et et et e e e st e s e e st s e st e s e e ene et e s e e seseene s e esentese s esessentesesenesennse

10 DML Reference Guide for Assembler

FIMAPTINQL «.eevtettetesie ettt sttt et e st et e st st e s e e sat e st e s aesatesaeesae e be e b e e be e s aee s s e e ae e beaaseeneesateeaeesabeeaseeatesaseeaeesseesaeenbaensaesaeesanensnenseanne
Moving Map-Related Data

Testing for Global Map INPUL CONITIONSccciiiiieieieeieee ettt e sa e be e re s be e aesesbe b e seebe s esessesaesenes

TESHING CUMSOI POSITION ...ttt st st e et s r et et e me st ne e ene s
B R Y= (e gl Ko (=T oL a K ot- N7) - PSP RRSSTRSPRR
TESTING fOr INPUL CONITIONS....euiieieieiiirieieereeieert ettt ettt et sttt e et e et e s ese s esesese s eseseaeseesenasessenerensesanen
#MAPMOD—requests that the system modify options in the map request block
HIMIAPIMIOD SYNTAX . utiittiittiiiieiieiiieeite st ssteeste st s te st e st e saeesae e satesaaesaeesbe e st enbeaseesae e beaseestasasesntesasesstenssanseesntasanessnesseansaensannns
HMAPMOD PaFameELEIS ..ottt ettt ettt ettt s e e et e se et a e e et e et b e e e st s r et et ese e e st ne e saeaes
HIMAPIMOD STATUS COUES ...ouiireiiiirieteiiirietees ettt ettt sttt e et st e et be st s e ket st e b e se et e be st et ebese st st ebe et st ese et ebene st ebesenestesesen
HMAPMOD EXGMPIE ettt ettt sttt et et et s b et et e sesa e st s b e s esesae e e b e s esessessesesaensesersensssenes
@MODIFY—replaces element values of the database record
@ IMIODIFY SYNTAX 1tttttiiteiiuieiteritieitestesteestesrtesstestestesteesseessaesseesseesseesseasseassessesseasseaseenseasseasesntesssesssessseesesnsessessseseesseens
@MODIFY PAr@mMELEIS ...cveeeiieieeeiiteitetee sttt ettt s et s e e et e e e s et b e s et s b e e e st s e e e e s e se et e s et emeeme s enennennsneaes
@ MODIFY SEATUS COUES ..vviieeiieeieee ettt e te et e et e st e et e s aeeeaeesae e bt e s st esbe s st esbesssesbesassen st e besssentesssseabessseessesnseensesssesnsesssens
@ MODIFY EXAMIPIE ittt ettt sttt ettt s b e st e st et e b et e se s se s e st s s e st e s e e eaesbe st ebe st ensesessenessentenessansssanes
@MODIFY (LRF)—changes field values of an existinglogical-record occurrence
@ MODIFY (LRF) SYNTAX cttueirtereniirieteiresieseeestssssesessesesessssssesessssessstssesssessssesessssesesensssesensssesessssssssesensssesessnsssesssssesesssssessses
@MODIFY (LRF) PQEAamMELELS ..ocvevevirereerieetiereeeteetestetestesestessebesaestebessessesassesesaessesessesessessetassessessnsesessensesensessssensessesensessane
@MODIFY (LRF) STATUS COUES ..vuviuiieiieriietieteietetetete et ete e e teste e e te e esestessesesaeseebesesessensebessessesebessssensesensessssansesensenseneane
@ MODIFY (LRF) EX@MIPI@.uititeuiiiieieiistetseeisteetsteese s e sssesestess et eseses s et esasessesesasessstesessesesesssesasasessasesensssnsansrsnsesanensesasen
H#MREQ—determines how data is transferred....
HIMIREQL SYNTAX ittt sttt seesse st sttt e e s b e s he s e s st et et et e sae s s e es e e st e b essasbabesbesse e st e st e b essesaesaeeate st et ensansansensesans
HIMREQL ParamMeEerS. ..ttt bbb b b b s s s e b e b e b e s b e st et et e b e b e be s b e sbeenes
HMREQL SEAtUS COUEBS ..ttt ettt sttt ettt sttt et b et etk et e b et et e aese et e b e b eae s b et ebe b eae s b et entese b enessenteaenes
HIMREQUEXQMPIE ittt ettt ettt sttt bbb bbb et e b e b et s b e bene s e bene e b e b e et et enene s esenen
@OBTAIN (LRF)—retrieves the named logical record
@ OBTAIN (LRF) SYNTAX 1teteirreteriisieteiristesesestessseessesesesssesessssssessssssesssessssesessssasesessssnsenssesesssssssesesssesessnsssesesssesessssasesasen
@OBTAIN (LRF) PAramMELEIS ...ccueieuiieieeteieicteeetestete e ste e s te e e teste e et e e esesba s esestesssbe st esestensebasbassesansasesbansesensessstansensesanseseass
@OBTAIN (LRF) STAtUS COUES ...vouvivirereerieeriereeeteeretetesteseesetetesteseeseseeseesesesessessesassesessensetassassessesessssensesessessesensesessensensane
@OBTAIN (LRF) EXQMPI ..ttt ettt ettt et st st e s st et et e st ese et e e ebe st e s ebe st aseebensesesbensebenseseesenteseesansesenes
HPOST—modifies an event CONTIOl BIOCK ..ottt sttt
HPOST SYNTAX titirtieieieieitiitestese st sttt e st e stesteste s st et et e st e st esbesbesa e e st et e besaesae s st e st e st e st et et e b esbesheeseenbesbesaesae e st e st et et e santenanenes
HPOST PAr@mMELEIS ...ttt b e b s bt bt e s et e b e b e b e e b e s bt s he e b et et e s besae e st et et et e besbesbeenis
HPOST STATUS COUES ..ottt ettt ettt s bt s et b e b e a e b et e b e s e e s e e b e st e sbes et e esene et eneneasnsesen
#POST Example
HPRINT—requests that the system transmit data......coeereeerne e
HPRINT SYNTAX ctteuiirieieuerinieteentste st sttt sttt sttt st s e sttt st b et s e b ettt e et ek e s e Rt e e b e b e s et e b ebe e st ebe st st e b e sttt ebene et enesenesaenn
HPRINT PAFamMELEIS ...ttt ettt et sttt et b e s a e s b e st e st et e b e b e e b e e bt s heeab et et e b e sbesateat et et e babassesreenes
HPRINT STATUS COUBSeiiriuiirieieirieieite sttt sttt ettt e bt e skttt sebe s e b e b et e b e s et s s e b e st e ssebe st s ebe e e b eneneasnsesen
#PRINT Example
H#PUTIRNL—writes a task-defined record to the Journal fil ...

Contents 11

HPUTIRINL SY NTAX 1tttttiitiiiitiiiieiieiitieiteste st estestesste st e saeesaeesaeesatesseesaeesseesseensesseesaessessesssesnsesntesssesstesssessesssessesssesseessaensennne
#PUTIRNL Parameters
HPUTIRNL STATUS COUBS ..ttt sttt ettt et e sttt etk et st b et e et ebese st st e ke se e st ebe et e be e st et enenetebenan 299
HPUTIRNL EXMPIE.ieiiiieieiirieieee ettt ettt ettt s s s e R et ss et s e s e e s ene e s neenen 299

HPUTQUE—stores a qUEUE reCord iN the QUEBUE ...ttt ettt sttt bttt 300
HPUTQUUE SYNTAX ittt ettt sttt ettt st ettt e s b e s b e s b e e s e e b et e b e e b e e b e e heeae e st et e b e eaeeat e st et et e babasresrennes
#PUTQUE Parameters
HPUTQUE STATUS COUES ..ttt sttt ettt ettt et skt st e et et e b ese st st et ese e st ebe e e eae e e besanessesanan 302
HPUTQUE EXQMPI@ ettt ettt et et sttt e b e st et s be s e et e s e e eae e b e e ese s s e e e b et et esesenesaentesersensssenes 303

HPUTSCR—stores or replaces @ SCratCh FECOIT.. ...ttt sttt sttt e e e e e b e aesesbanneseaes 303
HPUTSCR SYNTAX . ttttiuieiieieitiiesiese sttt ste st st st st et e st et e s b e s besae s st et et esaesaessess e e st esses s e banbessesseeae e st et essesae e st e st e st ensansansansessases
#PUTSCR Parameters.......

#PUTSCR Status Codes
HPUTSCR EXQMPIE ittt ettt te sttt e sttt e et et e st e s st e e be e ese st ese e s e s s e st e s e s ese et e s s ese st eneebessentesesanessensesersenessnnes
@READY—prepares a database area for access by DML fUNCLIONS......c.occveeviciriereeieeeeseee ettt 308
@ READY SYNTAX c.utiutitiitiriirtieieeetetesteste st st st et et et et esae s st e atsat et et e bessessesaesae e b e sasesseesees e e st e st e st et e st enteneent et ensansansansensennes

@READY Parameters...
(@ READY STatUS COUES....uiitiieieeiceieeeectteetteete et e eteste e et e steeebeesteeeseeeseesbseeseesteebe et esassessensesnssenseesssessesaseesssenseenssssseensesssens
@READY EXAMPIC.utiuiitieiiietiieesieestct ettt e sttt s b e e seste e et e st e se et et e s et ese et esaeseese st aseseeseeb e aeseseeseesessensesentasessensesessansesanes
@ RETURN .ttt ettt sttt sttt ea et st e s st be e se e et ese et e s e s ene e be e se ke saae s et e s ane s ebeseae s e seaese et ene et eaese e et et eseaesbenenessetenenesens
@ RETURN SYNTAX tutitiitirrinrieieietstsitese st st st st et estessessessesutsstessessessessessesssssssnsensensessessessessssssensensensensesssensensensensensansassesses
@RETURN Parameters
@RETURN STAtUS COUES ...cueueremiireeieieriricieteee ettt sttt e et e st s s e e b st e s s e b et e e b e st e se s et e b eneneesenenen
@RETURN EXAMIPIE uuiitiietiteeeieeetitee ettt te et te e s st et et st e e et e st ese st e e et e aesesbe st asesbensese st asessensasessenseseebaneesansesensanssanes
HRETURN—TELUINS CONTrOl 0 @ PrOSIraM ..ccccucucieieieeeirieieeierteeeesteeesesestsseseeseete et teseessssesesessesesessssssesssessanensssessnsssssesenensns 314
@ROLLBAK—rolls back uncommitted changes made to the database.......ccovvveveerecienccccre e 315
@ROLLBACK Syntax
@ROLLBACK PAramELErs ...c.cccieieieiiieieieeeiet ettt ettt ese et s e et e e et s e e st s s et e e e sesee e e b e e ene s et s enennennsneaes 316
@ ROLLBACK StAtUS COUBS ..evieeiieeiceee ittt teesee st e et e st e st e s ae s be s st esbe s st ssbessssssesassensesasesssentesnssesbessssensesasssssssnsesnsesnsess 317
@ROLLBACK EXQMPI @ .utiuirtiieieieiriiieesteteseste sttt et ste st ste st e sae e sbe st ese st e e st e s esestesessessessssesesessassesessenessessensssensenessensesenes 317
#ROLLBAK—rolls back uncommitted changes made to the databaseccccceieceeevcecescee e 317
HROLLBAK SYNTAX 1ettiuiiutiiiieiestenesi ettt sttt ettt et et st sttt et e sbesae s st e st e st e b e b e b e e b e e b e e heeae e st et e b e s ateneent et et e babassesrennes
HROLLBAK ParamELEIS... .ottt ettt ettt et ettt st et s et st s s et st se et s b e e e st s e et e b e e eme s b e s et sne s enesneneenenes
HROLLBAK STAtUS COUES ...viuiirieiiirieieiiirieieistete et te et st te e sttt sese s e be e e st s b e se et e b e et ebese st sbebane e sbeseae st et eneseebesanessssasan
HROLLBAK EXQMIPIE eeviuieeiieietiieiesteeste st te st et st et s et e st et e e et e s e ese st e e besaese st asessassansesessesessessesessesessessensssensesessensesessenessenes
#SENDMSG—sends a message to another terminal or user....
HSEND IMISG SYNTAX 1.ttt et et et e et s a e e et s e et b e e e n st a et sae s eaesaenesaeaes
HSENDMSG PAr@amELErsS ..ottt b e b e b e s bbbt et s b e b e b s b e sbesas
HSENDIVISG STAtUS COUES ...cuiiiveeenirieieiiirieteeieteesteeseests st et te e e sese e saebe e et st esesesseseseesesesensesesesesesessnssesenersssesanensssesen
HSEND IMISG EXAMPIE cureiiiieiieiitiiiieestet ettt st et e et e sttt e e e st e e e e e s st e e e b et et esesaesessassesestaseesessanessesaseesensesessasessnnes
HSETIME

12 DML Reference Guide for Assembler

@STORE ..o eeeeeeeeeeenee s eeeesesssssse s esesssese s eseesees et se e s s e e s e s s e eeseeeee s eeeeeeeees
@STORE (LRF) ovvvvveeeeeeeseeeeeeseeeeeessesssssseeeesessssssesesssess s eesessseses s seeseesessseeseesee e seseeeseeeesseseessssesssessessesseessssssesseessessereseees
#STRTPAG

Regular and Execute #TREQ Description
Regular and EXecUte HTREQ SYNTAX .evueueuiiiririeieririeieietriete sttt se ettt sttt b et s b s et esene s saenen
List #TREQ
HTRINS TAT ettt ettt sttt et et e s a s bt s st et et et et e s b e saesae s st s st e s e e s e e b e e R e e Rt e st e st e et e st e st e st e st ent et e s enseseeseeseestensatansessessasannt

Logical Record Clauses
WWHERE ClaUSueiieuieeteieierieteieie ettt ettt bbbt b et e bbb st se b e st e e e s et s e b e s et e b e st e e e b enene st eneneenserenens
ON ClAUSE ittt ettt ettt sttt be et etk e et b e s et st ek e st e e b e et s b e b ea e s e ek e b e st s e b e ben s et ebe st b et ebe et et esene st ebenenteseannens
LOZiI Cal-RECOI STAtUS COUEScuevreuieieicieirieie sttt sttt a et b e s st s e s enenis

Chapter 6: Assembler DML Coding Considerations 399

Coding User-Supplied Operands
Coding Parameters........ccceeevveenene.

S NONY M PrOCESSING .eiuviiieiiieiteriteste st st ste s e st e st e st e st e s te e st e st e e s bt e be e beestesasesaeesetesaseeaeesasasaeesbe e se e sa e ssesaaesseenseenbaanseensesaseenees
LOGiCal RECOId FACIlity KEYWOITS. ..ccucieiiieiiieiriitecse ettt ettt e s se st e ssesesse st esessenessessesesaeseesessansesenes 403

Chapter 7: DML Precompiler-Directive Statements 405

@MODE—initializes global SET symbols
@ IMOAE SYNTAX 1reurevereerieieieteteeste ettt e et e st e et e e e se st eseetessesestesaese st eseetesees et eneesessessese st aseseessesessasestensasesbensesetasessensesesanesents
@ IMIODE PAT@MELELS ..cceveeeiieeeeeeceieeete e ettt e et eeeteeestaeeebeeesseeeesee s beesesaeassseessesaassasasseessseesssseessseesseesnssesanseeesasensseennsaenns
@ TNVOKE ...ttt ettt ettt ettt stk s ettt e b et a e b e be e ek et ek e st a et e b e b ene s e b e st et s e e b e ae e ek eRe et e b e b ene b e b e st st ebeneae st sbenenesene

@SSCTRL .t
LY I O I SO

Chapter 8: Considerations for Assembler Programs ina DC/UCF Online
System 423

SVC INStructions iN@an ONliNE PrOZIamcccceeeeririeeineseestseeteesestsseseseseesesessesesessssesesessssesssesssesensesesensssesessnsssssessnnseseses 423

Making Your Assembler Program REENTIANT.......ccccivieirerieirieieerie ettt e st asse e sae e ste e sae e st e b e e ssessesessessssenes 424
Methods of Callingan Online Assembler SUDPIrogram ... e 425
TRANFER CONTROL, HLINK, OF ADS LINK ...utetitetetirienienenestestenteseessessessesseeseeeessessessessssssessessessessessessssnsessessassessassanses 425

Contents 13

COBOL OF PL/I CALL .ttt ettt sttt ettt bbbttt et b bbbttt et b et eas 425

ASSEMDIEN LINK MACTO cueiiiiiiiieieirteietesie sttt ettt et ettt s et e b s e e s e e b et s b e b et e e se e e b ene et erenen 425
StanNdard IBIM CalliNg CONVENTIONS......cuiciiiieieteteeseees ettt et a ettt s et e se et et e e e be st eneebenaese st eneebansesessessanesan 426
Appendix A: DML Precompile, Assembly, and Link-Edit JCL 427
IDMSDIMLA UNAEE Z/OSvveveieeeiereteietetetetete oottt bttt bbbttt se bbb bebebe s ssasasas s asasasasasasasasasas s s as s as s s asanasssasanaes 429
IDMISDIVILA UNAEE Z/VSE ..ottt ettt ettt ettt et et sttt s e s et e st et e st esessas et et ess st esessns et esensesetessasaseteaenssene 436
IDIMISDIMILA UNAEE CIMIS ..ttt estete e e ettt et ste st e st et e e s e e e st e e ese st ese st eseeneseassesessasessa s ese st aneesessentesesensesessesessenesanes 447
LiNK-Edit CONSTABIATIONS ..cueeveiiiiieieiririeiere ettt sttt sttt ettt b et st e st et e s et e ke se et st ebe et e b e et ebeseae st ebesanensens 450
Appendix B: Sample CA IDMS/DB Batch Program 453
Ry U (ol d oY=l e =TTe Y a Yo LI =T TSRS 454
OULPUL FrOM the PrECOMPIIEN ...ttt ettt ae sttt s e eae st e e e be st eseeteneebeteseebessansesensesesan 457
OULPUL FrOM the ASSEMBIEE ...ttt ettt e s e e e e be st e et e e e s et eseeb et esaesessanesseseaserean 467
Appendix C: Sample DC/UCF Online Program 483
INPUL L0 the DIVIL PrECOMPITEE .ttt sttt et s s sb e st s b et e be s eneeb et esesa et enessensssenes 484
OULPUL FrOmM the DML PreCOMPIIEN ..ottt ae s et s et et et ese e be st esesbenaesesteseebenseseesesaaneean 487
OULPUL FrOM The ASSEMDIEL ...eeiiieeceectcees ettt ettt et st e s et et e et et esese s s sesase s esesene s eseaese et enanesesenn 490
Appendix D: Assembler DML Macros and Error Messages 495
DIMIL IMI@CTOS .ttt sttt ettt st et b e s bbb s bt s he e a e et e b e b e s e e ae e R e e aE e ab e b e b et e e b e e b e eb b et et e b e b e ebeeateneentent e b e nbesbesneentans 495
BT OT IMIESSQEES .veiueiueeteiintestistestesttestestestesaessesse st et et e s e sbasbesbesae e st e st et e s e s eseesateatea s et et e b asbessesseeae e sensessessesaeentensansansantansessesseans 497
Appendix E: STAE Exits 507
OVEIVIBW ..ttt sttt r ettt s a et e e e et s e et et R e e R R e e e Rt e e st s et e st e R e e e R e e et R et e me s et s et e e enenee st sreeenereen 507
Appendix F: EMPLOYEE Data Structure Diagram 511
OVEIVIBW ..ttt ettt ettt ettt sttt et e s bt et et et e b e b e b e e b e e Rt e Rt e Rt e be s b e sh e s Rt e Rt e at et e b et e b e ehe e Rt e Rt e ab et et e sbesbesaeeatebesbanbasresresneens 511
Appendix G: Systems Network Architecture Considerations (SNA) 513
GENETA] CONSTABIATIONS...cuiiiuiiiirieieiiirte ettt ettt ettt et stk ettt eae e st e b et st e b et s b e b e et st e b e se e et e ke et et e et et ebe e st et esanesebanan 515

SNA TIMINOIOEY . vttt e et s b et s Rt s s e s et e e b e st e s e et e e eb et e s eneae e neeneneas 515

Program Communications in the SNA ENVIrONMENT.......ccciieiieeeeesee ettt 517

BT O HANIINEG ettt ettt a e et b e et e ke se e sa et e se et eaeae e st e se st st ebenenssseseneneesesasenssanaen 521
SNA FUNCEioNS iN @ CA IDMS/DC ENVIFONMENT c.viuvitieieeiereieeietetseeeteteesseteressesessestesessessssessesessessesessentasessesessessesessensesessesessen 522
Al OCATING @ SESSION..c.tiiiitiieiieietctee ettt e et e et e e et e b et et e aese et e e ebe st ese et aseese s e st assebensebe st ess et et ebesbessesesbassesensesssbansesatansesenes 525

14 DML Reference Guide for Assembler

Establishing CoONVErsation ATLIIDULEScccceciiieieieeiecee ettt ettt et be st et e e e bensese b enesaansesenes 526
Issuing the #TREQ ALLOC Statement

Starting a Task on @ RemMOte LOZICAl UNIT.....c.ccioiiiiiiiiiseese ettt ettt a b st b e s nennan 529
Starting @ Task from @ REMOTE SYSTEIM ...ttt sttt sttt st sttt na bt naas 530
SynNchronous and ASYNCHIrONOUS PrOCESSINEccuiieieiriiiieristeeitisieesessesesteessesesessesseesseseesessesessessesessessesessensesessessssessesessen 530
SENAINEG DATA cveuiiieieiirieteer ettt ettt ettt ettt e et st e b et et esese e et eae e seebase e e s et ase e et e seae s ese st s e e ese st et et esene st e b ene e et ene et esanen

LU6.2 Considerations for Sending Data

Non-LU6.2 Considerations for SENAING Data.......cccccevueieieiieericieesieieresee e ste st e st st seste e sestesesae s besaesssbesbeneesensesnans 532
REQUESTING @ CONTITMATION...cuiitiiiicercee et sttt ettt s a e s b e e e se s b e e e be st enesbesse e saessesessensssenes 532
Responding to @ CoNfirmMation REQUESTcccueieieieeice ettt et ettt e st st e b ese st e s e b e s bentesesbessebesaesessensesanes 533
Y= oo [T a8 T o Yol o (o ol 4= 1o o TR

Changing Direction: Send to Receive
RECEIVING DA ciiiiiiiiieiiieeete sttt st te st s e st e st e s e e s ae e s ae e s bt e s e e s be e eeea s e e ae e se e se e eeanseeneeeaseease e st eanseeatesasesatesasesanesssesnnesanans
Changing Direction: Receive to Send
TerminNAating @ CONVEISATION oottt sttt e s e e st e st e s bt e te st e s aaesatesabeeatesasesatesasesaeesbaensaesanesseensaensennns
NOFMAT TEIMINATION 1.ttt sttt ettt et et et et et e st e ae s e et e be st ese s b e st esesse st esessensssensenessansesnnes
Abnormal Termination....

TEIMINATING @ SESSION....ueiiiieieeeere ettt et e s b e s e s b e st e st et et e b e e b e e bt e aeeae e e et e b e saessesat et ebabansenresresns
Appendix H: 18-Byte Communications Blocks 541
OVEIVIBW ..ttt ettt ettt et b e s bt et e e e b e b e b e b e b e e b e e Rt s ae e b e s b e s be s e e e aE e ae e e e e et e b e e he e R e e aeeab et et e e b e sbesbeeae et e b e b e e b e sresnenas 541
Appendix I: Online Debugder Syntax 543
GENEral REGISTEIS SYMIOISoviiiiieice ettt ettt e b e e e s et ese e b et eaeebe e ese et eneebenseneesesseneesenaesesean 543
DC/UCFE SYSTEM SYMDOIS ..ttt sttt s et s s ses et s s et e e sssesse e ans e st eeennssseernansssenens 544
AdAress SYMDOIS @A IMTAIKEES.......ccviieieiiitceeeee ettt ettt e e e be st e e et e e e s e e betesesbenseseseseesensese st ansesessansesenes 544
US I SYMDOIS ...ttt ettt et ettt e ettt ese e e be e et e se st s s e s ese s e s esene e et esen s s ene et e s ese e et et enent st senees et ene e ntene
Program Symbols

SYNTAX: DATA FIEIA NGIMES ...oveieieieieetee ettt ettt e ettt e e e bt e e et e b ese et esseae et e e ebesensetaseesesteseebesaensebensasertan 545

SYNTAX: LINE NUMD EIS .ttt te ettt ettt s et et e st e st e s et esesseseene et e e ese st aseesassenestasessessensesessenessanseseren 545

Syntax: QUalifying Program SYMDOLS ...ttt ettt sttt sttt ettt a b benens 545

Expression Operators

Delimitersccoeeveerennee
Debugger Commands
Syntax:
Syntax:
Syntax:
Syntax:
Syntax:
Syntax:
Syntax:

Contents 15

SYNTAXI QUALIFY bbb bbb 548

Syntax: QUIT

SYNTAXI RESUIME ..ttt h ettt ettt b et et b et et b et e se et et e b et enesbe e ene s b et ebesbenenbeneereneen 548

SYNTAXEI SET ettt e R R R R Rt e et e Rt a et Re et n e e e e 548

SYNTAXISINAP .ttt sttt et b e st et s b e e e st s e s e e R s e e R e e e s e b e e e R et e ae s e e e n e R et e Rt R et R e e st b et enenen 548

SYNTAXI WHERE ...ttt sttt ettt b e b e b e s b e st e b e b e s b e e bt e st e st e st et et e b e s b e saesat e st et et enbesnesseentan 549
Index 551

16 DML Reference Guide for Assembler

Chapter 1: Introduction

This guide presents navigational and LRF DML statements for use in CA IDMS/DB and CA
IDMS/DC and CA IDMS UCF data communications environments.

Most data communications DML statements areapplicablein both CA IDMS/DC and CA
IDMS UCF environments. The acronym DC/UCF is used to represent this.

This guide is intended for Assembler language programmers who run programs against
CA IDMS/DB databases and who want to use the DC/UCF system facilities.

This section contains the followingtopics:

Syntax Diagram Conventions (see page 17)

Syntax Diagram Conventions

The syntax diagrams presented in this guide use the following notation conventions:
UPPERCASE OR SPECIAL CHARACTERS

Represents arequired keyword, partial keyword, character, or symbol that must be
entered completely as shown.

lowercase

Represents an optional keyword or partial keyword that, if used, must be entered
completely as shown.

italicized lowercase

Represents avaluethat you supply.

lowercase bold

Represents a portion of the syntaxshownin greater detail at the end of the syntax
or elsewhere inthe document.

Points to the defaultina listof choices.

Indicates the beginning of a complete piece of syntax.

> g
»<4

Indicates the end of a complete piece of syntax.

»
>

Indicates thatthe syntax continues on the next line.

v

Chapter 1: Introduction 17

Syntax Diagram Conventions

Indicates thatthe syntax continues on this line.

»
|

Indicates thatthe parameter continues on the next line.

v

Indicates thata parameter continues on this line.
»— parameter ———»

Indicates a required parameter.
> parameter ——»
parameter

Indicates a choiceof required parameters. You must select one.

>
»

v

L parameter -

Indicates an optional parameter.

v

parameter :'
parameter

Indicates a choice of optional parameters. Select one or none.

- parameter ——»

Indicates thatyou canrepeat the parameter or specify more than one parameter.

'ameter — L5
»>—¥— parameter

Indicates thatyou must enter a comma between repetitions of the parameter.

18 DML Reference Guide for Assembler

Syntax Diagram Conventions

Sample Syntax Diagram

The following sampleexplains how the notation conventions are used:

Required portion of parameter

Beginning of Required Optional portion of parameter

the syntax parameter Syntax continues

User-supplied value I on the next line
5

Syntax continues on this line Comma required between repetition

Required parameter Repetition allowed
Select one

I .
y— KEWDI\Q\D—{aHaﬂIe

varrable
wariabfle
varrable

Optional keyword
Select one or none
Portion of syntax End of the syntax
Default expanded elsewhere

» \ L]
t KEYWORD variable
KEYWORD

Chapter 1: Introduction 19

Chapter 2: Introduction to CA IDMS Data
Manipulation Landquade

This guide discusses howto use Assembler Data Manipulation Language (DML)
statements inyour Assembler program to perform the following:

m Accessa CAIDMS/DB database

m Perform data communications functions through CA IDMS/DC and CA IDMS UCF
(DC/UCF)

Assembler DML statements are embedded inthe programsource as ifthey were part of
the host language. During assembly, most DML precompiler statements are expanded
into executable Assembler sourcecode (whether or not the DML precompiler was
executed), and source-level error checkingis performed.

Depending on your operating environment, your Assembler program uses different sets
of DML statements. For example, a batch program uses database DML statements; an
onlineprogram can useboth databaseand data communications DML statements.

This chapter discusses thefollowing:
m When to use different sets of Assembler DML statements depending on your
operating environment

How to use the DML precompiler to prepare your program for assembly and execution

This section contains the following topics:

Operating Environments (see page 21)
Assemblingand Executing Programs (see page 25)
CallableServices and Common Facilities (see page 27)

Operating Environments

This manual presents the following categories of Assembler DML statements:

m Database statements perform CA IDMS/DB databaseaccess functions ineithera
batch oran onlineenvironment. Database DML statements have an atsign (@)
prefix; for example, @STORE.

m Data communications, also called online statements, perform data
communications functions for CA IDMS/DC and CA IDMS UCF (DC/UCF) programs.
Online DML statements have a pound sign (#) prefix; for example, #LINK.

Chapter 2: Introduction to CAIDMS Data Manipulation Languadge 21

Operating Environments

m DC-batch statements are a subset of online DML statements that allow batch
application programs to access DC/UCF facilities such as queues and printers. This
category consists of the following DML statements: #DELQUE, #GETQUE, #PUTQUE,
and #PRINT.

Note: For more information about DC-batch programming, see the Navigational
DML Programming Guide.

Accessing the Database

Your program canaccess a CAIDMS/DB databaseby usingeither navigational or LRF
(logical record) DML statements:

m Navigational statements access databaserecords and sets one record at a time.

m LRF statements access predefined groups of databaserecords usingthe Logical
Record Facility (LRF).

Navigational and LRF DML statements arediscussed separately below.
Navigating the Database

Navigational DMLstatements access databaserecords and sets one record ata time,
checkingand maintainingcurrencyinorder to assurecorrectresults. Navigational DML
statements provide:

m Control over error checking—You can check the resultof each navigational
statement

m Flexibility in choosing how you want to access the database —For example, your
program canaccess the databaseeither sequentially (performingan area sweep),
by usinga symbolic key value (CALC), or by usinga databasekey value (DIRECT)

To usenavigational DMLstatements, you must have a thorough knowledge of the
databasestructure. The databasestructureisillustratedina data structure diagram. For
anexample of a data structure diagram, see the EMPLOYEE Data Structure Diagram.

22 DML Reference Guide for Assembler

Operating Environments

The followingfigureillustrates a databasestructurethatcontains two owner records
(EMPLOYEE andJOB) that shareone member record (EMPOSITION). To obtain
EMPLOYEE andJOB information, the program must retrieve an EMPLOYEE record, the
first EMPOSITION record inthe EMP-EMPOSITION set, and the owner record inthe
JOB-EMPOSITION set.

;,-"'
) ¢ ISR ASEEMBLER
COMPILER
/.:.sslrup.l FR AND
OML SOURCE
STATEMENTS
)
AL T:Srmm o5 ASSEMBLER SOURCE
S
SOURCE LISTING -

Navigational DMLstatements are grouped into four categories:

m Control statements initiateand terminate processing, effect recovery, prevent
concurrent updates, and evaluate set conditions

m Retrieval statements locatedatain the databaseand make it availableto the
application program

m Modification statements update the database
m Accept statements pass databasekeys, storageaddress information,and statistics
to the program

Accessing the Database Through LRF

LRF DML statements use the Logical Record Facility (LRF) to access databaserecords.
LRF accesses fields frommultipledatabaserecords as if they were data fieldsinasingle
record. LRF DML statements allow your program to specify selection criteria (by using
the WHERE clause) thatenable your program to access only the logical records you
need.

Note: For more information, see the Logical Record Facility Guide.

LRF DML statements provide:

m Easy access to database records—You need not be familiarwith database
structure, and your programs need not includedatabasenavigation logic.

Chapter 2: Introduction to CAIDMS Data Manipulation Language 23

Operating Environments

m Data flexibility—You do not usually have to modify or recompileyour LRF program
when the databaseis changed.

m Runtime efficiency—LRF minimizes communication between the program and the
database management system (DBMS).

The followingfigureillustrates howto use LRF DML statements to access the EMPJOBLR
record. The EMPJOBLR record is a logical record thatcontains the EMPLOYEE record, the
EMPOSITION record, the OFFICE record, and the JOB record. The EMPJOBLR logical
record contains information fromthe EMPLOYEE, EMPOSITION, and JOB records.

WMWVC EMPID, INEMPID
@ OBETAIN FIRST, REC =EMPJOBLR
OM LRSTS = "LR-NOT-FOUND",
GOTO=END,
EMPJOBLA WHERE EMPID EQ "0023°

The LRF DML statements are:

m @ERASE deletes alogical record fromthe database.
m @MODIFY updates a logical record.
m @OBTAIN retrieves alogical record.
m @STORE adds a new logical record tothe database.

Programming in the DC/UCF Environment

DC/UCF application programs can useboth databaseand online DML statements.

Online DML statements perform the followingtypes of functions:
® Program management statements govern flow of control and abend processing
m Storage management statements allocateandreleasevariablestorage

m Task management statements provideruntime services thatcontrol task processing

m Time management statements obtainthe time and date and define time-related
events

m Scratch management statements create, delete, or retrieve records from the
scratcharea

u Queue management statements create, delete, or retrieve recordsina queue area

24 DML Reference Guide for Assembler

Assembling and Executing Programs

m Terminal management statements transfer data between the application program
anda terminal

m Utility function statements retrieve task-related information or statistics, send
messages, and monitor access to databaserecords

m Recovery statements perform functions relatingto database, scratch,and queue
arearecovery in the event of a system failure

Example

The following example illustrates how online DML statements access the databaseand
perform data communications functions. Specifically, this example maps in data entered
from the terminal, retrieves and displaysthe specified information,and performs a DC
return, naming TSK0O2 as the next task to be performed.

#MREQ IN,MRB=EMPMAP,INDATA=YES, COND=ALL,ERROR=ERRORTN
#MREQ OUT,MRB=EMPMAP, OUTDATA=YES, OPTNS=NEWPAGE
#RETURN NXTTASK=TSK02

Assembling and Executing Programs

An Assembler source programthat contains DML statements is processed by the DML
precompiler (IDMSDMLA) before it is submitted to the assembler. The DML precompiler
performs the following functions:

m Converts most DML statements intostandard Assembler sourcestatements.

m Ensuresthat all statements issued by the programare consistentwith the logical
structure of the database, the subschema view of the program, and the access
restrictions defined in the subschema.

m Copiesinformation maintainedinthe dictionaryinto programstorage. Dictionary
entities includedatabaserecord descriptions, file definitions, map records, map
definitions, logical records, and other predefined modules.

m Updates the dictionary with compile-time statistics used to monitor database
activities for a given application program.

m Performs sourcelevel error checking.

m Generates an optional sourcestatement listing of error conditions detected during
DML processing.

m Supports the use of native VSAM files in conjunction with databaseaccess methods.
m Recognizes record, element, and filesynonyms defined in the dictionary.

m Allows programs to be compiled for execution under various TP monitors without
changingthe source DML statements.

Chapter 2: Introduction to CAIDMS Data Manipulation Languadge 25

Assembling and Executing Programs

An Assembler program must be submitted to the DML precompiler if the program
contains any of the following statements:

m An @COPY IDMS statement
®m An @INVOKE statement

m logical-record DML statement containinga WHERE clause

If none of these statements is included, the Assembler program can bypass the DML
precompiler. The sourcecan be submitted directly to the assembler because most
Assembler DML statements are macroinstructions thatareexpanded duringassembly.
Itis recommended, however, thatall programs accessingthedatabaseor runningunder
a DC/UCF system use the DML precompiler. For a list of Assembler DML macros, see the
Assembler DML Macros and Error Messages.

Output from the DML precompileris a card-imagesourcefilethat serves as inputto the
assembler. Output from the assembler consists of an objectprogram anda sourcelisting
thatincludes any generated diagnostics. Duringassembly, most procedural DML verbs
are expanded into executable Assembler source code, whether or not the DML
precompiler was executed.

After the programis assembled,itis submitted to the linkage editor. The linkage editor
link edits the object programinto a specified load library. Outputfrom the linkage editor
consists ofaload moduleand a link map.

The followingfigureillustrates thesteps involvedinassemblingand executing an
Assembler program containing DML statements.

i
ICASIL A ASSEMELER
COMPILER
,-)/.ESSFMF!I ER aMD
DML SOURCE
STATEMENTS
!
CHALA ELI.J:SNDS] 5 ASSEMEBLER SOURCE
oPTIoNAL piAgosTICS
SOURCE LISTING —

26 DML Reference Guide for Assembler

Callable Services and Common Facilities

Callable Services and Common Facilities

Callable Services

Common Facilities

CA IDMS provides callableservices and common facilities to use with your application
programs.

The callableservices include:

The IDMSCALC utility thatlets you sortinputintotarget page sequence.

The IDMSINO1 facility thatlets you perform miscellaneous CAIDMS functions.

The TCP/IP socket program interfacethat lets you communicate with another
TCP/IP application.

Note: For more information aboutusingthese callableservices, seethe Callable Services
Guide.

The common facilities include:

The Command Facility thatlets you submitcommand statements ina batch or
onlineenvironment.

The Online Compiler Text Editor that lets you edit compiler output and resubmitit
as inputusingthe CA IDMS development tools.

The Transfer Control Facility thatlets you transfer between CA IDMS development
tools.

The SYSIDMS parameter filethat contains parameters that you canaddto a batch
jobrunninginlocal mode or under the central version.These parameters let you
specify environment requirements, runtime directives, and operating
system-dependent information.

Note: For more information aboutusingthese common facilities and the SYSIDMS
parameter file, see the Common Facilities Guide.

Chapter 2: Introduction to CAIDMS Data Manipulation Language 27

Chapter 3: DML Precompiler Options

This chapter contains syntax for the DML precompiler options. DML precompiler option
statements areincludedinthe inputsourcecode to the DML precompiler.These
statements are used to:

m Override the defaultshared update usage mode for the DDLDML area of the
dictionaryandreadythe areaineither retrieval or protected update mode

m Printcomment lines storedinthe dictionary for subschema data items on the DML
listing
m Generate asourcestatement listing of the output from the DML precompiler

m Suppress the logging of program activity statisticsin thedictionary
These options are discussed separately below.

This section contains the followingtopics:

Dictionary Usage Mode (see page 29)
Comment Generation (see page 30)
ListGeneration (see page 30)

Log Suppression (see page 31)

Dictionary Usage Mode

When the mainarea (DDLDML area) of the dictionary accessed by the DML precompiler
isreadied, several options areavailable. The defaultusage mode, shared update usage,
is defined at system generation. Shared update mode readies the DDLDML area for both
retrieval and update and allows other concurrently executing run units to ready the
DDLDML areainshared update or shared retrieval usage mode. You canoverride the
default usagemode by specifyingeither retrieval or protected update usage mode in
your application program.

Syntax
T *RETRIEVAL]
*PROTECTED-UPDATE

The asterisk (*) must be in column 1.

v

Parameters
*RETRIEVAL

Readies the DDLDML area for retrieval only and allows other concurrently executing
run units to open the DDLDML area inshared retrieval, shared update, protected
retrieval, or protected update mode.

Chapter 3: DML Precompiler Options 29

Comment Generation

Note: Ifthe DDLDML area is readied for retrieval only, no programactivity statistics
can be logged.

*PROTECTED-UPDATE

Readies the DDLDML area for both retrieval and update and allows other
concurrently executing run units to open the DDLDML area inretrieval usage mode
only. The protected update usage mode prevents concurrent update of the area by
run units executing under the same central version.

Ifincluded, the dictionary usage mode statement must precede all sourcestatements.

Comment Generation

The *SCHEMA-COMMENTS option causes schema-defined data item comments and
IDD-defined record-element comments in the dictionaryto be printed on the DML
sourcelisting. You can specify this option by including the following entry at the
beginning of the inputsourcecode, after the dictionary usage mode statements (if
present) and before any DML or Assembler statements.

Syntax
»—— *SCHEMA-COMMENTS

v

The asterisk (*) must be in column 1.

Ifthe inputdoes not includea *SCHEMA-COMMENTS entry, comment lines are not
generated.

List Generation

You canturn on or off the sourcestatement listing output by the DML precompiler by
insertinga listgeneration optionin the sourceprogram.

Syntax

I: *NODMLIST « :|
*DMLIST

The asterisk (*) must be in column 1.

v

Parameters
*NODMLIST

Specifies that no sourcecode listingis to be generated for the DML statements that
follow.

30 DML Reference Guide for Assembler

Log Suppression

*DMLIST

Generates the sourcecode listingfor all the DML statements that follow.
In general, you wouldinclude one of these entries at the beginningof the inputsource
code before any standard DML or Assembler statements. However, generation of the

listcanbe turned on or off any number of times within one sourceprogram by inserting
appropriate *DMLIST/*NODMLIST entries inthe code.

Note: The DML precompiler always produces a listing of error messages. The *DMLIST
option controls listing of the DML source code.

Log Suppression

You cansuppress the logging of program activity statisticsin thedictionary by usingthe
*NO-ACTIVITY-LOG option. This option,if included,is placed atthe beginning of the
DML source program. The DML precompiler generates and logs the following program
activity statisticsunless the *NO-ACTIVITY-LOG optionisincludedinthe program source
code:

® Programname

® language

m Date lastcompiled

m Number of lines

m Number of compilations
m Date created

m Subschema name (if any)
m Filestatistics

m Databaseaccess statistics (for example, records and modules copied from the
dictionary; subprograms called;and records, sets, and areas accessed by DML
verbs)

Syntax
»— *NO-ACTIVITY LOG

v

The asterisk (*) must be in column 1.

Note: Program activity statisticscannotbelogged if you ready the dictionary DDLDML
area for retrieval only.

Chapter 3: DML Precompiler Options 31

Chapter 4. Communications Blocks and
Error Detection

This chapter describes the communication blocks and registers available under CA
IDMS/DB and DC/UCF systems to return status informationto anapplication program
that requests databaseand data communicationservices.

CA IDMS/DB and DC/UCF systems use the following facilities to communicate with your
application program:

The IDMS communications block returns information from the database
management system (DBMS) to your application program.

The ERRSTAT field of the IDMS communications block receives a status codethat
indicates the successful or unsuccessful execution ofa DML command. You can test
for the content of the ERRSTAT field inyour databaseprogram.

The logical-record request control (LRC) block returns information from the Logical
Record Facility (LRF) to your application programwhen you areaccessinglogical
records that have been created by LRF.

The LRSTAT field of the LRC blockreturns the path status for a logical-record DML
request. You cantest for the contents of the LRSTAT fieldinyour program.

Register 15 is used by the DC/UCF system to return information regarding the
successful or unsuccessful execution of DML commands that request data
communication services.You cantest for the content of register 15 to determine
the outcome of a DC/UCF DML statement.

In addition to the above topics, this chapter lists thestatus codes returned by the DBMS
for databaserequests and the return codes issued by DC/UCF system for data
communications requests.

This section contains the followingtopics:

IDMS Communications Block (see page 34)

ERRSTAT Fieldand Codes (see page 41)

Testing for DML Error-Status Codes (see page 52)

Logical-Record Request Control (LRC) Block (see page 52)

DC/UCF General Registers (see page 58)

Chapter 4: Communications Blocks and Error Detection 33

IDMS Communications Block

IDMS Communications Block

The IDMS communications block passes information between the DBMS and the
application program. Whenever a run unitissues a calltothe DBMS for a database
operation, the DBMS returns information about the outcome of the requested service
to the ERRSTAT field inthe application program's IDMS communications block.

To receive status information from the DBMS, an application program must define the
IDMS communications blockinvariablestorage. You must either copy the IDMS
communications block fromthe dictionaryinto your program's variablestorage by using
the @COPY IDMS statement or generate the IDMS communications block by usingthe
@SSCTRL statement. The followingexampleillustrates the @ COPY IDMS statement
before and after ithas been expanded by the DML precompiler:

@COPY IDMS, SUBSCHEMA-CTRL (Before DML expansion)
@COPY IDMS, SUBSCHEMA-CTRL (After DML expansion)
DS 03}

SSCTRL DS 0CL216
PGMNAME ~ DC as:' !
ERRSTAT DC CL4'1400'
DBKEY DS FL4
RECNAME DC 16" !
AREANAME DC 16" !
ERRORSET DC (16" '
ERRORREC DC 16" !
ERRAREA DC 16" !
SSCIDBCM DS 6CL100
IDBMSCOM DS 100CL1
ORG SSCIDBCM

RDBMSCOM DS 6CL100
PGINFO DS oCL4
PGINFGRP DS HL2
PGINFDBK DS HL2

DS CL96
DIRDBKEY DC FL4'0"
DBSTATUS DS 6CcL8
DBSTMTCD DS L2
DBSTATCD DS CL5

DS a1
RECOCCUR DC FL4'0'
DMLSEQ DC FL4'0'

34 DML Reference Guide for Assembler

IDMS Communications Block

The same expansion would resultby usingthe @SSCTRL statement inyour application
program instead of the @COPY IDMS,SUBSCHEMA-CTRL statement. The @SSCTRL
statement is a macrothat generates the variablestorage definitions of the IDMS
communications block instead of copyingthe block from the dictionary.

Note: For more information aboutthe differences between these statements, see the
DML Precompiler Options (see page 29).

After every call tothe DBMS, the DBMS issues an error-status codethatindicates
successful or unsuccessful completion of the requested service. This status codeis
returned to the ERRSTAT field inthe IDMS communications block. You should examine
the ERRSTAT field after every call to the DBMS. Depending on the error-status code, it
may be useful to examine other fields and/or branch to a routine that responds to the
conditionindicated by the error-status code.

The followingfigureshows the layoutof the 16-byte IDMS communications block;each
fieldis described separately. Starting with offset 200, the layout of the block differs for
application programs thatrun under CICS.

Note: For more information aboutthe 18-byte IDMS communications block, see the
18-Byte Communications Blocks.

Chapter 4: Communications Blocks and Error Detection 35

IDMS Communications Block

' 16-CHARACTER IDMS COMMUNICATIONS BLOCK

Field Data Type (Isgrt\gg? Initial Value

*1 o 7 PROGRAM-NAME Alphanumeric 8 Program Name

8 11 ERROR-STATUS Alphanumeric 4 '1400'

12 15 DBKEY Binary 4(Fullword) 0000

16 31 | RECORD-NAME Alphanumeric 16 Spaces

32 47 | AREA-NAME Alphanumeric 16 Spaces

48 63 | ERROR-SET Alphanumeric 16 Spaces

64 79 | ERROR-RECORD Alphanumeric 16 Spaces

80 95 ERROR-AREA Alphanumeric 16 Spaces
**196 99 PAGE - INFO Binary 4(Fullword) 0000

96...195 IDBMSCOM-AREA Alphanumeric 100 Low Values

196 199 DIRECT-DBKEY Binary 4 (Fullword) 0000

200 206 DATABASE-STATUS Alphanumeric 7 Spaces

207 FILLER e 1

208 211 RECORD-OCCUR Binary 4 (Fullword) 0000

212 215 DML - SEQUENCE Binary 4 (Fullword) 0000

* word aligned

** PAGE-INFO-GROUP overlays bytes 97 and 98 and PAGE-INFO-DBK-FORMAT
overlays bytes 99 and 100. Both of these fields are binary datatype,
each with a length of two bytes. Suggested initial values for
both are 00. Together these two fields represent PAGE-INFO.

Field Descriptions
Program Status Fields

The IDMS communications block contains the followingfields thatdescribe program
status information:

m PGMNAME (offsets 0-7) is an 8-byte alphanumericfield thatcontains the name of
the program being executed. This fieldis initialized automatically atthe beginning
of program execution if the program contains an @COPY IDMS SUBSCHEMA-BINDS
statement. Otherwise, itmust be initialized by the programmer.

m ERRSTAT (offsets 8-11)is a 4-byte alphanumericfield thatcontains a value
indicatingtheoutcome of the DML statement that calls the DBMS. The ERRSTAT
field must be initialized to 1400 by the program. The DBMS updates this field
immediately before returning control to the user programafter performing
(attempting) arequested databaseservice.

36 DML Reference Guide for Assembler

IDMS Communications Block

The ERRSTAT fieldandits use are described under Testing for DML Error-Status
Codes (see page 52)later inthis chapter.

Note: A program that consists of two or more run units must reinitializethe
ERRSTAT field to 1400 after finishingonerun unitand before bindingthe next.

DBKEY (offsets 12-15) is a 4-byte (fullword) binary field thatcontains the database
key (db-key) of the lastrecord accessed by the run unit. For example, after
successful execution ofan @FIND command, DBKEY is updated with the db-key of
the located record. DBKEY is not changed ifthe call tothe DBMS resultsinanerror
condition.

RECNAME (offsets 16-31)is a 16-byte alphanumeric field thatcontains the name of
the lastrecord accessed successfully by the run unit. This fieldis leftjustified and
padded with spaces on the right.

AREANAME (offsets 32-47)is a 16-byte alphanumeric field thatcontains thename
of the lastarea accessed successfully by the run unit. This field is leftjustified and
padded with spaces onthe right.

ERRORSET (offsets 48-63)is a 16-byte alphanumeric field thatcontains the name of
the setinvolvedinthe lastoperationto produce anerror condition. This fieldis left
justified and padded with spaces onthe right.

ERRORREC (offsets 64-79)is a 16-byte alphanumeric field that contains the name of
the record involved inthe lastoperationto produce anerror condition. This fieldis
left justified and padded with spaces on the right.

ERRAREA (offsets 80-95) is a 16-byte alphanumeric field thatcontains the name of
the area involvedinthe lastoperationto produce an error condition. This fieldis
left justified and padded with spaces onthe right.

IDBMSCOM (offsets 96-195)is a 100-byte alphanumeric array thatis used internally
by CA IDMS/DB for specification of runtime function information.

PGINFO (offsets 96-99)is a 4-byte binary field thatrepresents the page information
associated with the lastrecord accessed by the rununit. For example, after
successful execution ofan @FIND command, PGINFO is updated with the page
information of the located record.

Page informationis notchanged if the call to the DBMS results ina nonzero status
condition.

Page informationis a 4-byte field consisting of the followingsub-fields:
— Bytes 1-2: Page group number (PGINFGRP)
- Bytes 3-4: Dbkey radix (PGINFDBK)

The PGINFO field overlays part of the IDBMSCOM area inthe subschema control.

Chapter 4: Communications Blocks and Error Detection 37

IDMS Communications Block

The dbkey radix portion of the page information can be used ininterpreting a dbkey
for display purposes andin formatting a dbkey from page and line numbers. The
dbkey radix represents the number of bits within a dbkey valuethat arereserved
for the linenumber of a record. By default, this valueis 8, meaning that up to 255
records can be stored on a single page of the area. Given a dbkey, you canseparate
its associated pagenumber by dividing the dbkey by 2 raised to the power of the
dbkey radix. For example, if the dbkey radixis 4, you would divide the dbkey value
by 2**4. The resultingvalueis the page number of the dbkey. To separatethe line
number, you would multiply the page number by 2 raised to the power of the
dbkey radix and subtractthis valuefromthe dbkey value. The resultwould be the
linenumber of the dbkey. The followingtwo formulas canbeused to calculatethe
page and linenumbers from a dbkey value:

Page-number = dbkey value / (2 ** dbkey radix)
Line-number = dbkey value - (page-number * (2 ** dbkey radix))

m DIRDBKEY (offsets 196-199)is a 4-byte (fullword binary) field thatcontains a
user-specified db-key valueor a null db-key value of -1. This field is used for storing
a record with a location mode of direct. DIRDBKEY must be initialized by the user; it
is not updated by the DBMS.

Note: (native VSAM users) The DIRDBKEY field can be used only when storinga
record ina native VSAM relativerecord data set (RRDS). This field must be
initialized by the user to the relativerecord number of the record being stored.

m Reserved for system (offsets 200-206) is a 7-byte alphanumeric field reserved for
CA IDMS/DB use.

m FILLER (offset 207)is a 1-byte field used to ensure fullword alignment.

m RECOCCUR (offsets 208-211)is a 4-byte (fullword) binaryfield thatcontains a
record-occurrencesequence identifier used internally by the DBMS.

m DMLSEQ (offsets 212-215)is a 4-byte (fullword) binary field that contains the
source-level sequence number generated by the DML macros, if DEBUG is specified.
Itis not used by the runtime system, with the exception of SYSIDMS DMLTRACE=ON
tracing.

Updating the Fields
After a call tothe DBMS, one or more of the fields described above may be updated,
depending on the DML statement issued and whether or not the statement was

executed successfully.

Example of Updating Fields
The followingfigureillustrates the updating process; only those fields accessed by the

runtime system areshown. Fields used internally by the DBMS are not shown. Blank
fields arenot updated by DML statements.

Key for this figure:

38 DML Reference Guide for Assembler

IDMS Communications Block

Iftrue, fieldis setto zone decimal zeroes (0000);iffalse,fieldis setto 1601

0 Fieldis set to zone decimal zeroes
Y Fieldis updated

C Fieldis clearedto spaces

N Fieldis set to null db-key value(-1)
nn Specific minor error code

Chapter 4: Communications Blocks and Error Detection 39

IDMS Communications Block

SUCCESSRAIL UNSUCCESSFUL
PIE|(D|R|A)JE|JE|[E|P]|D|P] E bD|R|A|E|JE|E|P|D
G|R|B|E|R|R|R|R]|G]|I G [EJE|R|[R|R|R|G]|I
M|R|IKE|C]JE|R|R|[R|I|R|[|H] R KlC|E|R|R|R|I|[R
N]lS|E[N]A|JO|O[A]N]D[N] 5 EIN[A|D]O|A&|N|[D
L|T|[Y|A|N|R|R|R|F|E & T Y| &|N[R|R|R|F|E
M| A M|A|S|RI|E|JO]JK[H] & M|A|S|RIE|O]K
ET EIM|[E[E]|A E El T EIM|[E[E|[A E

E|T|C ¥ E|T|C ¥
Control statements
BIND SUBSCH 0 14nn
BINDREL] ldnn Y LY [
BIND PROC] ldnn Y LY [y
READY] f9nn clc|c
FINISH O|JN|C cjlefc Alnn c|c|c
COMHIT (ALL) OJN]|C [I 1ann clc|c
ROLLBAEK {CONTINUE) OlN]|C clpcocfec 18nn clc|c
KEEP (EXCLUSIVE) oYY [y fecfocjpo]y fénn Y LY [
IF set-name EMFTY C A O I O S O I | 16nn Y1Y |y
IF set-name HEMBER L I U T I A O I v O | 1ann LYy
Retrieval statements
FIND ¢ OBTAIN oy [y yjocfcfc]y A3nn Y1y |y
GET oYY [y fecfocjpo]y fA5nn Y LY [
RETLURN Y1y [y [Ccfoc)o|Y 17nn Y LY [
Modification statements
STORE record-name oy (Yy[yjocfcfcy]y 12nn Y1Y |y
CONNECT record-name oYYy fcfcjpc|y 87nn YLy [y
HODIFY record-name oy |y [(y|cjcf{ci|y fann LYy
DISCON record-name oy [y [yj|jcfc|C]Y 1lnn Y1Y |y
ERASE record-name OJN[Y Y |]C|[C]|C A2nn Y1Y |y
Acecapt statements
ACCEPT DBEEY FROM CURRENCY] [I 15nn Y LY [
ACCEPT DBKEY REL TO CURREMCY 0 clefc 15nn Y1y |y
ACCEPT STATS] [I 15nn Y LY [

40 DML Reference Guide for Assembler

ERRSTAT Field and Codes

ACCEPT BIND 0 [I I 15nn YLy [y
ACCEPT PROC 0 [I I 15nn YLy [y
ACCEPT PGINFO 0 [I 15nn YLy [y

ERRSTAT Field and Codes

DB Status Codes

You canusethe ERRSTAT field of the IDMS communications block to determine ifa DML
request was processed successfully. The DBMS system returns a valueto the ERRSTAT
fieldindicatingtheresultof each DML request. For more information aboutthe
ERRSTAT field, see Testing for DML Error-Status Codes (see page 52).

LRF users: You should check the LR-STATUS field of the LRC block before checkingthe
ERRSTAT field.

Major and Minor Codes

The ERRSTAT fieldis a four-byte zoned decimal field. The firsttwo bytes represent a
major code; the second two bytes represent a minor code. Major codes identify the
function performed; minor codes describethe status of that function.

Value of Codes

A valueof 0000 indicates successful completion of the requested function. A value other
than 0000 indicates completion of the function ina manner that may or may not be in
error, depending on your expectations. For example, 0326 (DB-REC-NOT-FOUND) should
be anticipated after FIND CALC retrieval;this allows youto trap the conditionand
continue processing.

DB status codes have a major code inthe range 01 to 20. They occur duringdatabase
access inbatch or onlineprocessing. DCstatus codes have a major code in the range 30
to 51.They occurinonlineor DC-BATCH processing. Status codes with a major code of
00 applyto all DMLfunctions. DB status codes and DC status codes are discussed
separately below.

The followingtables list DB major and minor codes and their meanings.

Chapter 4: Communications Blocks and Error Detection 41

ERRSTAT Field and Codes

Major DB Status Codes

Major Database Function

Code

00 Any DML statement

01 FINISH

02 ERASE

03 FIND/OBTAIN

05 GET

06 KEEP

07 CONNECT

08 MODIFY

09 READY

11 DISCONNECT

12 STORE

14 BIND

15 ACCEPT

16 IF

17 RETURN

18 COMMIT

19 ROLLBACK

20 LRF requests

Minor DB Status Codes

Minor Database Function Status

Code

00 Combined with a major code of 00, this code indicates successful completion
of the DML operation. Combined with a nonzero major code, this code
indicates thatthe DML operation was not completed successfully dueto
central version causes, such as time-outs and program checks.

01 An area has not been readied. When this code is combined with a major

code of 16, an IFoperation has resultedina validfalse condition.

42 DML Reference Guide for Assembler

ERRSTAT Field and Codes

Minor Database Function Status

Code

02 Either the db-key used with a FIND/OBTAIN DB-KEY statement or the direct
db-key suggested fora STORE is not within the page range for the specified
record name.

03 Invalid currency for the named record, set, or area. This can only occur when
arun unitis sharinga transaction with other databasesessions.The 03
minor status is returned if the run unittries to retrieve or update a record
usinga currency that has been invalidated because of changes made by
another databasesessionthatis sharingthe sametransaction.

04 The occurrence count of a variably occurring element has been specified as
either less than zero or greater thanthe maximum number of occurrences
defined in the control element.

05 The specified DML function would have violated a duplicates-not-allowed
option for a CALC, sorted, or index set.

06 No currency has been established for the named record, set, or area.

07 The end of aset, area, or index has been reached or the set is empty.

08 The specified record, set, procedure, or LR verb is not inthe subschema or
the specified recordis nota member of the set.

09 The area has been readied with anincorrectusage mode.

10 An existingaccess restriction or subschema usage prohibits execution of the
specified DML function. For LRF users, the subschemainuse allows accessto
databaserecords only. Combined with a major code of 00, this code means
the program has attempted to access a databaserecord, but the subschema
inuse allows accessto logical records only.

11 The record cannotbe stored inthe specified area due to insufficientspace.

12 There is no db-key for the recordto be stored. Thisis a system internal error
andshould be reported.

13 A current record of run unit either has not been established or has been
nullified by a previous ERASE statement.

14 The CONNECT statement cannot be executed because the requested record
has been defined as a mandatory automatic member of the set.

15 The DISCONNECT statement cannot be executed because the requested
record has been defined as a mandatory member of the set.

16 The record cannotbe connected to a set of which itis already a member.

17 The transaction manager encountered an error.

18 The record has not been bound.

19 The run unit's transaction was forced to back out.

Chapter 4: Communications Blocks and Error Detection 43

ERRSTAT Field and Codes

Minor
Code

Database Function Status

20

The current record is not the same type as the specified record name.

21

Not all areas being used have been readied inthe correct usage mode.

22

The record name specifiedis notcurrentlya member of the set name
specified.

23

The area name specifiedis either not inthe subschema or not an extent
area; or the record name specified has notbeen defined withinthe area
name specified.

25

No currency has been established for the named set.

26

No duplicates existfor the named record or the record occurrences cannot
be found.

28

The run unithas attempted to ready anarea that has been readied
previously.

29

The run unithas attempted to placealockon a recordthat is locked already
by another run unit. A deadlock results. Unless the run unitissued either a
FIND/OBTAIN KEEP EXCLUSIVE or a KEEP EXCLUSIVE, the rununitis aborted.

30

An attempt has been made to erase the owner record of a nonempty set.

31

The retrieval statement format conflicts with the record's location mode.

32

An attempt to retrieve a CALC/DUPLICATE record was unsuccessful;the
value of the CALC fieldinvariablestorageis notequal to the value of the
CALC control element inthe current record of run unit.

33

At leastone setin which the record participates has notbeen includedinthe
subschema.

40

The WHERE clauseinan OBTAIN NEXT logical-record requestis inconsistent
with a previous OBTAIN FIRST or OBTAIN NEXT command for the same
record. Previously specified criteria, such as reference to a key field, have
been changed. A path status of LR-ERROR is returned to the LRC block.

41

The subschema contains no path that matches the WHERE clauseina
logical-record request. A path status of LR-ERROR is returned to the LRC
block.

42

An ON clauseincludedinthe path by the DBA specified return of the
LR-ERROR path status to the LRC block; anerror has occurred while
processingthe LRF request.

44 DML Reference Guide for Assembler

ERRSTAT Field and Codes

Minor Database Function Status
Code

43 A programcheck has been recognized duringevaluation ofa WHERE clause;
the program check indicates thateither a WHERE clause has specified
comparison of a packed decimal field to an unpacked nonnumeric data field,
or datainvariablestorageor a databaserecord does not conformto its
description. A path status of LR-ERROR is returned to the LRC block unless
the DBA has includedan ON clauseto override this actionin the path.

44 The WHERE clauseina logical-record requestdoes not supply a key element
(sortkey, CALC key, or db-key) expected by the path. A path status of
LR-ERROR is returned to the LRC block.

45 Duringevaluation ofa WHERE clause, a program check has been recognized
because a subscriptvalueis neither greater than 0 nor less thanits
maximum allowed valueplus 1. A path status of LR-ERROR is returned to the
LRC block unless the DBA has included an ON clauseto overridethis action
inthe path.

46 A programcheck has revealed an arithmetic exception (for example:
overflow, underflow, significance, divide) during evaluation of a WHERE
clause. A path status of LR-ERROR is returned to the LRC block unless the
DBA hasincluded an ON clauseto overridethis actioninthe path.

53 The subschema definition of an indexed set does not match the indexed
set's physicalstructurein the database.

54 Either the prefix length of an SR51 recordis less than zero or the data length
is less thanor equal to zero.

55 An invalid length has been defined for a variable-length record.

56 An insufficientamount of memory to accommodate the CA IDMS
compression/decompression routines is available.

57 A retrieval-only rununithas detected aninconsistencyinanindexthat
should causean 1143 abend, but optional APAR bit 216 has been turned on.

58 An attempt was made to rollback updates inalocal modeprogram. Updates
made to an area duringa local mode program's execution cannotbe
automaticallyrolled out. The area must be manually recovered.

60 A record occurrence type is inconsistentwith the set named in the
ERROR-SET fieldinthe IDMS communications block. This code usually
indicates a broken chain.

61 No record can be found for aninternal db-key. This code usuallyindicates a
broken chain.

62 A system-generated db-key points to a record occurrence, but no record
with that db-key can be found. This code usuallyindicates a broken chain.

Chapter 4: Communications Blocks and Error Detection 45

ERRSTAT Field and Codes

Minor
Code

Database Function Status

63

The DBMS cannot interpret the DML function to be performed. When
combined with a major code of 00, this code means invalid function
parameters have been passed on the call to the DBMS. For LRF users,a
WHERE clauseincludes a keyword thatis longer than the 32 characters
allowed.

64

The record cannotbe found; the CALC control element has not been defined
properlyinthe subschema.

65

The databasepage read was not the page requested.

66

The area specifiedis notavailablein the requested usage mode.

67

The subschema invoked does not match the subschema objecttables.

68

The CICS interfacewas not started.

69

A BIND RUN-UNIT may not have been issued;the CV may be inactiveor not
accepting new run units; or the connection with the CV may have been

broken due to time out or other factors. When combined with a major code
of 00, this code means the program has been disconnected from the DBMS.

70

The databasewill notready properly;a JCL erroris the probablecause.

71

The page range or page group for the area being readied or the page
requested cannot be found inthe DMCL.

72

There is insufficient memory to dynamically load a subschema or database
procedure.

73

A central versionrun unit will exceed the MAXERUS valuespecified at
system generation.

74

The dynamicload of a module has failed. If operating under the central
version, a subschema or database procedure module either was not found in
the data dictionaryor the load (coreimage) library or, ifloaded, will exceed
the number of subschema and database procedures provided for at system
generation.

75

A readerror has occurred.

76

A write error has occurred.

77

The run unithas not been bound or has been bound twice. When combined
with a major code of 00, this code means either the program is nolonger
signed on to the subschema or the variablesubschema tabl es have been
overwritten.

78

An area waitdeadlock has occurred.

79

The run unithas requested more db-key locks thanare availableto the
system.

46 DML Reference Guide for Assembler

ERRSTAT Field and Codes

Minor Database Function Status

Code

80 The target node is either not activeor has been disabled.

81 The converted subschema requires specified databasename to be inthe
DBNAME table.

82 The subschema must be named inthe DBNAME table.

83 An error has occurredinaccessing native VSAM data sets.

87 The owner and member records for a set to be updated are notinthe same
page group or do not have the same db-key radix.

91 The subschema requires a DBNAME to do the bind run unit.

92 No subschema areas map to DMCL.

93 A subschema area symbolic was notfound in DMCL.

94 The specified dbname is neither a dbname defined inthe DBNAME table,
nor a SEGMENT defined inthe DMCL.

95 The specified subschema failed DBTABLE mappingusingthe specified

dbname.

Note: For a complete description of DB runtime status codes, see the chapter "CA IDMS
Status Codes" inthe Messages and Codes Guide.

DC Status Codes

The followingtables listthe DC major and minor codes and their meanings.

Major DC Status Codes

Major Function

Code

00 Any DML statement

30 TRANSFER CONTROL

31 WAIT/POST

32 GET STORAGE/FREE STORAGE
33 SET ABEND EXIT/ABEND CODE
34 LOAD/DELETE TABLE

35 GET TIME/SET TIMER

Chapter 4: Communications Blocks and Error Detection 47

ERRSTAT Field and Codes

Major Function

Code

36 WRITE LOG

37 ATTACH/CHANGE PRIORITY

38 BIND/ACCEPT/END TRANSACTION STATISTICS
39 ENQUEUE/DEQUEUE

40 SNAP

43 PUT/GET/DELETE SCRATCH

44 PUT/GET/DELETE QUEUE

45 BASIC MODE TERMINAL MANAGEMENT

46 MAPPING MODE TERMINAL MANAGEMENT
47 LINE MODE TERMINAL MANAGEMENT

48 ACCEPT/WRITE PRINTER

49 SEND MESSAGE

50 COMMIT TASK/ROLLBACK TASK/FINISH TASK/WRITE JOURNAL
51 KEEP LONGTERM

58 SVC SEND/RECEIVE

Minor DC Status Codes

Minor
Code

Function Status

00

Combined with a major code of 00, this code indicates either successful
completion of the DML function or that all tested resources have been
enqueued.

01

The requested operation cannotbe performed immediately; waiting will
causea deadlock.

02

Either there is insufficientstorageinthe storage pool or the storage
required for control blocks is unavailable.

03

The scratch area ID cannotbe found.

04

Either the queue ID (header) cannotbe found or a pagingsessionwasin
progress when a second STARTPAGE command was received (that is,an
implied ENDPAGE was processed before this STARTPAGE was executed
successfully).

05

The specified scratchrecord ID or queue record cannot be found.

48 DML Reference Guide for Assembler

ERRSTAT Field and Codes

Minor Function Status

Code

06 No resource control element (RCE) exists for the queue record; currency has
not been established.

07 Either an 1/O error has occurred or the queue upper limithas been reached.

08 The requested resource is not available.

09 The requested resource is available.

10 New storage has been assigned.

11 A maximum task condition exists.

12 The named taskcodeisinvalid.

13 The named resourcecannot be found.

14 The requested module is defined as nonconcurrentandis currentlyin use.

15 The named module has been overlaid and cannotbe reloaded immediately.

16 The specified interval control element (ICE) address cannotbe found.

17 The record has been replaced.

18 No printer terminals have been defined for the current DC system.

19 The return areais too small;data has been truncated.

20 An 1/0, program-not-found, or potential-deadlock status condition exists.

21 The message destination is undefined, the longterm ID cannot be found, or
a KEEP LONGTERM request was issued by a nonterminal task.

22 A record already exists for the scratch area specified.

23 No storageor resource control element (RCE) could be allocated for the
replyarea.

24 The maximum number of outstandingreplies has been exceeded.

25 An attention interrupt has been received.

26 There is a logical errorinthe output data stream.

27 A permanent 1/O error has occurred.

28 The terminal dial-up lineis disconnected.

29 An invalid parameter has been passedinthe listsetup by the DML
processor.

30 The named function has not yet been implemented.

Chapter 4: Communications Blocks and Error Detection 49

ERRSTAT Field and Codes

Minor
Code

Function Status

31

An invalid parameter has been passed;the TRB, LRB, or MRB contains an
invalidfield; or the request is invalid because of a possiblelogicerrorinthe
application program.Ina DC-BATCH environment, a possiblecauseis that
the record length specified by the command exceeds the maximum length
based on the packet size.

32

The derived length of the specified variable storageis negative or zero.

33

Either the named table or the named map cannot be found inthe data
dictionaryloadarea.

34

The named variable-storagearea mustbe an 01-level entry inthe LINKAGE
SECTION.

35

A GET STORAGE requestisinvalid becausethe LINKAGE SECTION variable
has already been allocated.

36

The program either was not defined during system generation or is marked
out-of-service.

37

A GET STORAGE operandis invalid becausethe specified variablestorage
areaisinthe WORKING-STORAGE SECTION instead of the LINKAGE SECTION.

38

Either no GET STORAGE operand was specified or the specified LINKAGE
SECTION variable has notbeen allocated.

39

The terminal device being used is out of service.

40

NOIO has been specified butthe datastreamcannotbe found.

41

An IF operation resultedina valid true condition.

42

The named map does not support the terminal device inuse.

43

A linel/O session has been cancelled by the terminal operator.

44

The referenced field does not participateinthe specified map; a possible
causeis aninvalid subscript.

45

An invalid terminal type is associated with the issuingtask.

46

A terminal 1/O error has occurred.

47

The named area has not been readied.

48

The run unithas not been bound.

49

NOWAIT has been specified but WAIT is required.

50

Statistics arenotbeing kept.

51

A lock manager error occurred duringthe processing of a KEEP LONGTERM
request

52

The specified tableis missingorinvalid.

50 DML Reference Guide for Assembler

ERRSTAT Field and Codes

Minor Function Status

Code

53 An erroroccurred from a user-written edit routine.

54 Either there isinvalidinternal data or a data conversion error has occurred.

55 The user-written edit routine cannotbe found.

56 No DFLDS have been defined for the map.

57 The ID cannotbe found, is not a long-term permanent ID, or is beingused by
another run unit.

58 Either the LRID cannotbe found, the maximum number of concurrent task
threads was exceeded, or anattempt was made to rollback database
changes inlocal mode.

59 An erroroccurred intransferringthe KEEP LONGTERM request to IDMSKEEP

60 The requested KEEP LONGTERM lockid was alreadyin usewith a different
page group

63 Invalid function parameters have been passed on the call tothe DBMS.

64 No detail exists currently for update; no action has been taken.
Alternatively, the requested node for a header or detail is either not present
or not updated.

68 There are no more updated details to MAP IN or the amount of storage
defined for pageable maps at sysgenis insufficient. In the latter case,
subsequent MAP OUT DETAIL statements areignored.

72 No detail occurrence, footer, or header fields existto be mapped out by a
MAP OUT RESUME command, or the scratch recordthat contains the
requested detail could not be accessed. The latter caseis a mappinginternal
error and should be reported.

76 The firstscreen page has been transmitted to the terminal.

77 Either the programis no longer signed on to the subschema or the variable
subschema tables have been overwritten.

80 The target node is either not activeor has been disabled.

97 An error was encountered processinga syncpointrequest; check the log for
details.

98 An unsupported COBOL compiler option (for example, DEBUG) has been
specified for an onlineprogramor a program runningin a batch region has
issued a DML verb thatis only valid when runningonlineunder CA
IDMS/DC/UCF.

99 An unexpected internal return code has been received; the terminal device

is out of service.

Chapter 4: Communications Blocks and Error Detection 51

Testing for DML Error-Status Codes

Note: For a complete description of DC runtime status codes, see the chapter "CA IDMS
Status Codes" inthe Messages and Codes Guide.

Testing for DML Error-Status Codes

Testing for the value of the ERRSTAT fieldinan Assembler programis asimple
procedure. CA IDMS/DB places a valueinthe ERRSTAT field after each DML statement
requesting databaseservices is executed. This value can be compared to known
error-status codes to determine whether execution was successful.For example, you
can check for successful completion by comparingthe ERRSTAT field to a working
storage field defined as 0000. The program canthen perform a conditional branch.

The following example demonstrates a test for the successful execution of the
@OBTAIN statement. After completion of the @OBTAIN statement, the valuereturned
to the ERRSTAT field is compared to the defined constantSTATOK. Ifthe @OBTAIN is
successfully completed, processing continues. Otherwise, the program branches to
routine OBERR2, which evaluates the ERRSTAT field and determines the next statement
to be executed.

@OBTAIN OWNER,SET='DEPT-EMPLOYEE
CLC ERRSTAT, STATOK
BNE OBERR2

MvC DID,DEPTID

STATOK DC CL4'0000'

In topic Data Manipulation Language Statements, the status codes that can be returned
to the ERRSTAT field of the IDMS communications block arelisted after the description
of each databasecommand. To determine test conditions based on error-status codes

see Data Manipulation Language Statements (see page 73).

Lodical-Record Request Control (LRC) Block

The logical-record requestcontrol (LRC) block passes information between the
application programand LRF. Itis used in conjunction with the IDMS communications
block to pass informationto LRF about a logical-record requestand to return path status
information aboutthe processing of the request to the program.

52 DML Reference Guide for Assembler

Logical-Record Request Control (LRC) Block

To receive information abouta logical-record request, the application program must
define the LRC blockinvariablestorage. You must either copy the LRC block from the
dictionaryintothe program's variablestorageby usingthe @COPY IDMS statement or
generate the LRC block by usingthe @SSLRCTL statement. The following example
illustrates the @ COPY IDMS statement before and after expansion by the DML
precompiler:

@COPY IDMS, SUBSCHEMA-LR-CTRL (before DML expansion)

* @COPY IDMS, SUBSCHEMA-LR-CTRL (after DML expansion)
DS (0))
SSLRCTL DS 0CL576
LRPXLN DS HL2
LRMVXP DS HL2
LRIDENT DC CL4'LRC '
LRVERB DC as' !
LRNAME DC (16" '
LRSTAT DC (16" '
LRFILL DC CL1i6' '
LRPXE DS 512CL1

The same expansion would resultby usingthe @SSLRCTL statement inyour application
program instead of the @COPY IDMS,SUBSCHEMA-LR-CTRL statement. The @SSLRCTL
statement is a macrothat generates the variablestoragedefinitions of the LRC block
instead of copyingthe block from the dictionary. For more information aboutthe
differences between these statements, see DML Precompiler-Directive Statements (see
page 405) .

When a program issues a logical-record request, the LRC block stores the DML verb used
by the program, the name of the logical-record, and theselection criteria of the request.
LRF uses this information to select the appropriate path to handlethe request.

Chapter 4: Communications Blocks and Error Detection 53

Logical-Record Request Control (LRC) Block

After LRF has processed a request, itreturns path status informationinthe LRC block.
After issuingthe path status, LRF returns an error-status codein the ERRSTAT field of
the IDMS communications block. You can use this information to evaluatethe result of
the request and to determine further processingbased on that result. The following
figure shows the layout of the LRC block; each fieldis described separately following the

figure.
Length
Field Description Data Type (bytes)
4] LRPXLN Logical-record LRC length BINARY 2
2 LEMVXP Evaluation work-area=langth BINARY 2
4 7 LRIDENT Constant 'LRC ALPHANUMERIC 4
g 15 LEVERE Logical-record verb ALPHANUMERIC =2
14 | LRNAHE Logical-record name ALPHANUMERIC 16
32 47 LRSTAT Logical-record error-status indicator ALPHANUMERIC 16
42 ! LEFIL Filler 16
I (Tre=hlock LRPXE WHERE clause Mixad
64 ... -size
minus 63)

Field Descriptions

The LRC block contains the following fields:

m LRPXLN (offsets 0-1)is a halfword field that describes the length of the LRC block
for alogical record.

m LRMVXP (offsets 2-3) is a halfword field thatdescribes the evaluation work area
length used for processingthe logical record.

m LRIDENT (offsets 4-7)is a 4-byte alphanumericfield used internally by LRF. (It
contains the constant LRC followed by a space.)

m LRVERB (offsets 8-15) is an 8-byte alphanumeric field used to record the DML verb
issued by the LRF program.

m LRNAME (offsets 16-31)is a 16-byte alphanumericfield thatcontains thename of
the logical record beingaccessed.

m LRSTAT (offsets 32-47)is a 16-byte alphanumeric field thatcontains the path status
of a logical-record request. The standard path statuses are LR-FOUND,
LR-NOT-FOUND, andLR-ERROR. Path statuses canalsobedefined by the DBA.
Testing for the value of the LRSTAT fieldis described below in "Testing for the
logical-record path status."

54 DML Reference Guide for Assembler

Logical-Record Request Control (LRC) Block

m LXFIL (offsets 48-63)is a 16-byte filler.

m LRPXE (offset 64-end) is a variablelength data area that contains information
regardingthe logical-record request's WHERE clause. This fieldis usually 512 bytes
(default). You can code the SIZE option of the @BIND SUBSCH, @COPY
IDMS,SUBSCHEMA-LR-CTRL, and @SSLCTRL statements to lengthen this field to
accommodate a long, complex WHERE clause. (For more information about
increasingthesizeof this field,see @COPY IDMS (see page 411).)

Testing for the Logical-Record Path Status

Path statuses areissued during execution of the path selected to servicea logical-record
request. LRF returns a specific path status to the LRSTAT field of the program's LRC block
to indicatethe resultof each logical-record request. You can examine this information
to determine further processing.

Path Statuses

Path statuses are1-to 16-byte character strings; they can either be standard or defined
by the DBA inthe subschema.The standard path statuses are:

m LR-FOUND—Indicates the logical-record requesthas been successfully executed.
This status can be returned as the result of any LRF DML statement. When
LR-FOUND is returned, the ERRSTAT field of the IDMS communications block
contains 0000.

m LR-NOT-FOUND—Indicates the specified logical record cannotbe found because
either no suchrecordexists or all such occurrences havealready been retrieved.
This status can be returned as the resultof any LRF DML statement, provided that
the path to which LRF is directed includes retrieval logic. When LR-NOT-FOUND is
returned, the ERRSTAT field of the IDMS communications block contains 0000.

m LR-ERROR—Indicates that either a logical-record requestisissuedincorrectlyoran
error occurs inthe processing of the path selected to servicethe request.

Code Depends on Type of Error

When LR-ERROR is returned, the type of status code returned to the programin the
ERRSTAT field of the IDMS communications block differs according to the type of error.
Ifthe error occursinthe logical-record path, the ERRSTAT field contains a status code
issued by CA IDMS/DB with a major code from 00 to 19.

When the error occurs inthe request itself, LRF returns the path status LR-ERROR to the
LRSTAT field of the LRC block and places one of the fol lowing codes inthe ERRSTAT field
of the IDMS communications block:

Chapter 4: Communications Blocks and Error Detection 55

Logical-Record Request Control (LRC) Block

Note: Any of these error-status codes canresultfrom any of the logical-record DML
statements. The only exception is code 2040, which applies only to the @OBTAIN NEXT
DML statement.

2008

Either the named logical recordis notdefined inthe subschema or the specified
DML verb is not permitted with the named logical record.

2010

The program has attempted to access a logicalrecord, but the subschemainuse
allows accessto databaserecords only.

2018

A path command has attempted to access a databaserecordthat has not been
bound.

2040

The WHERE clauseincludedinan @OBTAIN NEXT statement has directed LRF to a
different path thandidthe WHERE clauseinthe preceding @OBTAIN statement for
the same logical record. Eitheran @OBTAIN FIRST should havebeen issuedinstead
of @OBTAIN NEXT or the WHERE clauseis incorrect.

2041

LRF was unableto match the request's WHERE clause to a path to servicethe
request.

2042

An ON clauseincludedinthe path by the DBA specified return of the LR-ERROR path
status to the program.

2043

Duringevaluation of a WHERE clause, a program check has been recognized for one
of the followingreasons:

m A WHERE clausehas specified thata packed decimal field be compared to a
field thatis not packed andthat cannotbe converted to a packed field due to
the presence of nonnumeric data.

m Datain either variablestorageor a databaserecord does not conform to its
description.

A path status of LR-ERROR is returned to the programunless the DBA has included
anON clauseinthe path to override this action.

56 DML Reference Guide for Assembler

Logical-Record Request Control (LRC) Block

2044

The WHERE clauseinalogical-record requestdoes notincludea field of information
required by the path.

2045

Duringevaluation of a WHERE clause, a program check has been recognized
because a subscriptvalueis either less than zero or greater than its maximum
allowed valueplus 1. A path status of LR-ERROR is returned to the program unless
the DBA hasincluded an ON clauseinthe path to override this action.

2046

A program check has been recognized duringevaluation of a WHERE clausefor one
of the followingreasons:

m An arithmetic overflow would occur (fixed point, decimal, or exponent).
m An arithmetic underflow would occur (exponent).

m Adivideexception would occur (fixed point, decimal, or floating point).
m Asignificanceexception has occurred.

A path status of LR-ERROR is returned to the programunless the DBA has included
anON clauseinthe path to override this action.

2063

A logical-record request's WHERE clauseincludes a keyword that is longer than the
32 characters allowed.

2064

A path command has attempted to access a CALC data item that has not been
described properlyinthe subschema.

2072

Storage is notavailablefor the work areas required to evaluate the logical -record
request's WHERE clause.

Optional ONLRSTS Clause

Inaddition to directly testing the value of the LRSTAT field, you canincludean ON clause
that tests for a specific standard or DBA-defined path status for each DML statement;
for example:

@OBTAIN NEXT,REC='EMPJOBLR',ONLRSTS='LR-NOT-FOUND', GOTO=RECERROR

The ONLRSTS clausetests for the standard path status of LR-NOT-FOUND. If
LR-NOT-FOUND s returned, the branch imperative GOTO=RECERROR will be executed
andthe programwill branch to the label RECERROR.

Chapter 4: Communications Blocks and Error Detection 57

DC/UCF General Registers

Syntax

v

L ,ONLRSTS=path-status,GOTO=branch-location]

Parameters
ONLRSTS=path-status

Tests the LRSTAT field for a path status returned as the resultof the logical-record
request issued by the program. Path-status must be a quoted literal (1-16 bytes
under z/OS and 0S/390 or 1-6 bytes under VSE) or programvariable.

GOTO=branch-location

Specifies the programaction to be taken if the specified path status is foundin
LRSTAT.

Note: For more information about LRF DML commands and clauses see Data
Manipulation Language Statements (see page 73).

DC/UCF General Registers

General registers 0, 1, and 15 pass information about data communication services from
the DC/UCF system to the application program. The registers areused in the following
manner:

m Register 0 is used by several DC/UCF commands to return informationregarding
specific parameters of the DML statement.

m Register 1is sometimes used to either store the address of the IDMS
communications block after an /O error occurs during execution of a DML
command, or to receive information from the DC/UCF system regardingcertain
status conditions thatareassociated with a return code.

m Register 15 is used to receive the return code from the system after execution of a
DML verb thatrequests a data communications service.

The valueof the return codeinregister 15 indicates whether a DML request for
data communication services was successful. Thereturn codes issued by the system
after execution of a DML statement are listed on the following pages.

Note: If your program uses DML commands to request data communication services
and to access the CA IDMS/DB database, you must check register 15 for return codes
issued by the DC/UCF system, and the ERRSTAT field of the IDMS communications block
for the status codes issued by CA IDMS/DB.

58 DML Reference Guide for Assembler

DC/UCF General Registers

DC/UCF Status Codes

Followingeach DML request for data communication services, the system places a
return code inregister 15 to indicateeither an error or a specific condition thatoccurred
duringprocessing.Table3-3 lists the runtime register 15 return codes for the DML
statements associated with DC/UCF services. Specific return codes are listed for each

command in Chapter 6.

For every DML verb, a register 15 valueof X'00'indicates thatthe request has been

serviced successfully.

The followingtableshows the DC/UCF Runtime Register 15 Return Codes.

R15 Value DML Verb Return Condition
X'00' All verbs No error
H#ENQ m ACQUIRE—AII requested resources have
been acquired.

m TEST—AIl tested resources have already
been enqueued by the issuingtaskwith
the EXCLUSIVE/SHARED option specified by
the test request.

H#SETIME The request to cancel a previouslyissued

#SETIME has been serviced successfully.

X'04' HATTACH The maximum number of tasks has already
been attached; no new tasks can be attached at
this time.

#COMMIT Internal run-unittablefull;check the CA

IDMS/DC logfor details.

#DELQUE The parameter listis invalid.
H#DELSCR The parameter listis invalid.
#DEQ At leastone resourceid (RSCID) cannot be

found; all that were located have been
dequeued.

Chapter 4: Communications Blocks and Error Detection 59

DC/UCF General Registers

R15 Value DML Verb

Return Condition

HENQ

m ACQUIRE—At leastone of the resources
indicatedis currently owned by another
taskand is notavailablefor the
EXCLUSIVE/SHARED optionspecified;no
new resources have been acquired.

m TEST—At leastone of the tested resources
is owned by another taskandis not
availableto this taskfor the
EXCLUSIVE/SHARED option specified.

#FINISH

There are too many run units for the internal
run-unittable. This is a system internal error
andshould be reported.

#GETQUE

The parameter listis invalid.

HGETSCR

The parameter listis invalid.

HGETSTG

The request specified a storageid that did not
previously exist; the indicated spacehas been
allocated.

HLINEIN

The input area specified for return of data to
the issuingprogramis toosmall to
accommodate the full data stream; the
returned data has been truncated accordingly.

#LINK

Either the request cannot be serviced because
of an /0, program-not-found, or potential
deadlockerror or no null program definition
elements (PDEs) have been allocated. If the
loadfails, the link will failand a minor code will
be returned inregister 1.

#LOAD

There is not enough spaceinthe program pool
to loadthe program.

#MREQ

The specified edit or code table cannot be
found or isinvalid for use with the named map.

#PRINT

An |/O error occurred during processing.

#PUTJRNL

The derived journal record length is zero or
negative.

#PUTQUE

Invalid #HPUTQUE request. Check for proper
queue-id specification and logical selection of
options.

60 DML Reference Guide for Assembler

DC/UCF General Registers

R15 Value

DML Verb

Return Condition

#PUTSCR

Invalid request. Check for proper scratch-id
specification andlogical selection of options as
specifiedinthe #PUTSCR statement.

#ROLLBAK

Internal run-unittablefull;check the CA
IDMS/DC logfor details.

H#SENDMSG

An /O error occurred during processing.

H#SETIME

For a #SETIME TYPE=CANCEL request, the
internal control element (ICE) address specified
cannot be found.

#STRTPAG

A pagingsessionwas alreadyin progress when
another #STRTPAG command was issued. An
implied #ENDPAG has been processed and the
#STRTPAG has been executed successfully.

HTREQ

For a #TREQ GET, #TREQ PUTGET, or #TREQ
CHECK request, the input area specified for the
return of data to the issuingprogramis too
small toaccommodate the full data stream; the
returned data has been truncated accordingly.

HTRNSTAT

A new transaction statistics block (TSB) has
been allocated.

x'os'

H#ATTACH

The requested task codeis invalid.

#COMMIT

An invalid requesthas been issued. HCOMMIT
isvalidonlyiftheprogram accesses CA
IDMS/DB databaseor dictionary entities (that
is, CAIDMS/DB records or DC/UCF
scratch/queuerecords). Typically, HCOMMIT
need be specified only when CA IDMS/DB
databaseordictionaryentities areaccessedin
anupdate usage mode.

#DELQUE

The requested queue header record (QUEID)
cannot be found.

#DELSCR

The requested scratch area id (SAID) cannot be
found.

HENQ

m ACQUIRE—Not applicable.

m TEST—At leastone of the tested resources
is not already owned by any taskandis
availablefor the EXCLUSIVE/SHARED
option specified. If both conditions
described for return codes X'04'and X'08'
exist, the register 15 valuewill be X'04".

Chapter 4: Communications Blocks and Error Detection 61

DC/UCF General Registers

R15 Value

DML Verb

Return Condition

#FINISH

An invalid requesthas been issued. #FINISH is
onlyvalidifthe program accesses CAIDMS/DB
databaseordictionaryentities (thatis, CA
IDMS/DB records or DC/UCF scratch/queue
records). #FINISH need be specified only when
the program performs databaseor dictionary
accessingactivities.

H#GETQUE

The requested queue header record (QUEID)
cannot be found.

H#GETSCR

The requested scratch area id (SAID) cannot be
found.

HGETSTG

There is insufficient storagein the storage pool
to process the request.

HLINEIN

The I/0 session has been canceled;the
terminal operator has pressed the CLEAR
(3270), ATTENTION (2741), or BREAK (teletype)
key.

H#LINEOUT

The I/0 session has been canceled;the
terminal operator has pressed the CLEAR
(3270), ATTENTION (2741), or BREAK (teletype)
key.

#LOAD

An 1/O error occurred duringaloadfrom a load
library.

#MREQ

I/O has been interrupted; the terminal
operator has pressed the ATTENTION (2741)or
CLEAR (3270) key.

#PRINT

The parameter listpassedto #PRINT contains
aninvalidfield.

#PUTJRNL

The required storage is notavailablefor the
necessary control blocks.

#ROLLBAK

An invalid requesthas been issued. There is a
possiblelogicerrorinthe program. Ensure that
checkpoints are made (by means of #COMMIT)
inthe program logic before the #ROLLBAK
request.

#SENDMSG

The parameter listis invalid.

H#TREQ

For a #TREQ GET, #TREQ PUTGET, or #TREQ
CHECK request, output has been interrupted;
the terminal operator has pressed the
ATTENTION (2741) or CLEAR (3270) key.

62 DML Reference Guide for Assembler

DC/UCF General Registers

R15 Value DML Verb Return Condition

HTRNSTAT Storage for the transaction statistics block (TSB)
is not available; waitingwould causea
deadlock.

HWAIT Waiting on the specified ECBs would causea
deadlock.

x'oc' H#ATTACH The request cannotbe serviced due to a
security violation.

H#COMMIT An invalid status has beenissued from
DBIO/DBMS; check the CA IDMS/DC logfor
details.

#DELQUE The requested queue record cannot be found

#DELSCR The requested scratchrecordid (SRID) cannot
be found withinthe named SAID.

HENQ m ACQUIRE—A requested resourcecannot be
enqueued immediately and waiting would
causea deadlock; no new resources have
been acquired.

m TEST—Not applicable.

#FINISH An invalid status has beenissued from
DBIO/DBMS; check the CA IDMS/DC log for
details.

HGETQUE The requested queue record cannot be found.

HGETSCR The requested scratch recordid (SRID) cannot
be found within the named SAID.

HGETSTG The parameter listis invalid.

HLINEIN A logical or permanent 1/O error has been
encountered inthe input data stream.

HLINEOUT A logical or permanent /O error has been
encountered inthe output data stream.

#LOAD The requested program is nonconcurrentand
inuse.

#MREQ A logicalerror (for example, invalid control
character) has been encountered inthe output
data stream.

H#PRINT No printer logical terminals havebeen defined

inthis DC/UCF system.

Chapter 4: Communications Blocks and Error Detection 63

DC/UCF General Registers

R15 Value

DML Verb

Return Condition

#PUTJRNL

An invalid error status has been issued from
DBIO/DBMS; check the IDMS/DC log for details.

#ROLLBAK

An invalid error status has been issued from
DBIO/DBMS; check the IDMS/DC log for details.

H#SENDMSG

The message destinationis undefined.

H#TREQ

For a #TREQ GET, #TREQ PUTGET, or #TREQ
CHECK request a logical error (for example,
invalid control character) has been
encountered inthe output data stream.

HTRNSTAT

No transaction statistics block (TSB) exists;
H#TRNSTAT TYPE=BIND has not been issued. This
return code is valid only for HsTRNSTAT
TYPE=ACCEPT and #TRNSTAT TYPE=END
statements.

X'10'

#DELQUE

No resourcecontrol element (RCE) exists for
the queue record; currency has not been
established.

HGETSTG

The requested storage cannot be allocated
immediately (insufficientstorage) and waiting
would causea deadlock.

HLINEIN

The linerequest block (LRB) contains aninvalid
field.

#LINEOUT

The linerequest block (LRB) contains aninvalid
field.

#LOAD

The requested program has been temporarily
overlayed inthe programpool, resultingina
storage conflict.

#MREQ

A permanent |/O error occurred during
processing.

H#PRINT

A printscreen request has been made from a
non-3270-type terminal or from a 3270-type
terminal without read buffer support.

#PUTSCR

The request to replacea scratchrecord has
been serviced successfully.

HTREQ

For a #TREQ GET, #TREQ PUTGET, or #TREQ
CHECK request, a permanent |/O error occurred
during processing.

HTRNSTAT

Either the task in questionis not associated
with a terminal or the request is invalid.

64 DML Reference Guide for Assembler

DC/UCF General Registers

R15 Value

DML Verb

Return Condition

X'14'

#LINEOUT

The name specified for DESTID, USERID, or
LTERMID is unknown to this DC/UCF system.

#LOAD

The requested program is not defined to the
program definition table (PDT), the requested
program is marked as out of service,or a null
program definition element (PDE) could not be
allocated for the program.

#MREQ

The dial-up linefor the terminal is
disconnected.

H#PRINT

Either the specified printer destinationis
invalid or,for OPTNS=DIRECT, LTEID or
LTEADDR isinvalid.

#PUTSCR

The request to add a new scratchrecord
cannot be processed because the record id
specified by the SRID operand already exists for
the named scratcharea.

H#TREQ

For a #TREQ GET, #TREQ PUTGET, or #TREQ
CHECK request, the dial-uplinefor the terminal
is disconnected.

HTRNSTAT

Transaction statistics or task statistics arenot
enabled in this DC/UCF system.

X'18'

H#GETQUE

The user area specified for the return of the
queue record is too small;the returned record
has been truncated to fitinthe available
storage space.

H#GETSCR

The user area specified for the return of the
scratchrecordis too small;the returned record
has been truncated to fitinthe available
storage space.

HGETSTG

Allocated XA storageabove the 16 megabyte
linecannotbe addressed by a 24-bittask.

#LOAD

The requested program cannot be loaded
immediately due to insufficientspace; waiting
would causea deadlock.

#MREQ

The terminal being used is out of service.

H#PRINT

A terminal I/O error occurred during a #PRINT
request.

Chapter 4: Communications Blocks and Error Detection 65

DC/UCF General Registers

R15 Value DML Verb Return Condition

HTREQ For a #TREQ GET, #TREQ PUTGET, or #TREQ
CHECK request, the terminal being used is out
of service.

X'1c' #DELQUE An 1/Oerror occurred during a delete queue
operation.

#DELSCR An 1/O error occurred duringa delete scratch
operation.

HGETQUE An /O error occurred during get queue
processing.

HGETSCR An /O error occurred during get scratch
processing.

#PRINT No printer can be found to satisfythe
print-directrequest and OPTNS=NOWAIT has
been specified.

H#PUTSCR An |/O error occurred during processing.

H#TREQ For a #TREQ GET, #TREQ PUTGET, or #TREQ
CHECK request, the terminal is closed or was
never opened.

X'20' HATTACH The maximum number of concurrent tasks has
been reached.

#LOAD An |/Oerror occurred duringa load from the
dictionary DDLDCLOD area.

#MREQ The map request block (MRB) contains an
invalidfield,indicatinga possibleerrorin
application program parameters.

H#PRINT The print-directrequest specified an LTEID or
LTEADDR thatis out of service.

HTREQ The terminal request block (TRB) contains an
invalid field.

X'24' #MREQ The map load module requested by the map
request block (MRB) cannot be found.

H#PRINT The print-directrequest specified a wait;
waiting would causea deadlock.

H#TREQ The name specified for DESTID, LTERMID, or
USERID isinvalid.

X'28' #MREQ The requested map does not supportthe

terminal device type being used.

66 DML Reference Guide for Assembler

DC/UCF General Registers

R15 Value

DML Verb

Return Condition

H#PRINT

A DCMT VARY PRINTER CANCEL command has
been issuedinthe DC/UCF system for this
directprinter.

x2c

#MREQ

An error was detected upon return froma
user-written edit module. An invalid pointer to
the data stream has been returned to register
1.

H#PRINT

A DCMT VARY PRINTER REQUEUE command
had been issuedinthe DC/UCF system for this
directprinter.

X'30'

#MREQ

Invalidinternal data has been encountered.
Either the data inthe record does not match
the internal data or the internal data cannotbe
converted to the external format, as specified
inthe external picture.

X'34'

#MREQ

The named user-written edit module cannot be
found.

X'38'

#MREQ

An invalidimmediatewrite request to DESTID,
LTERMID, or USERID has been issued.

X'3C'

#MREQ

The map load moduleis invalid.

X'40'

#MREQ

For an #MREQ IN request, the requested node
for a header or detail was either not present or
not updated. For an #MREQ OUT request, there
is nocurrent detail occurrence to be updated.
No actionis taken.

X'44'

#MREQ

No more modified detail occurrences requirea
mapin.For an #MREQ OUT request, the
maximum amount of storage defined for
pageable maps duringsystem generation is
insufficient.

X'48'

#MREQ

For an #MREQ IN request, the scratch record
that contains the requested detail could not be
accessed (internal error). For an #MREQ
OUT,RESUME request, no detail occurrence,
footer, or header fields exist.

x'ac'

#MREQ

For an #MREQ OUT request, the firstscreen
page has been transmitted to the terminal.

Chapter 4: Communications Blocks and Error Detection 67

DC/UCF General Registers

R15 Value DML Verb Return Condition

X'50' H#MREQ An #MREQ IN,COND=MPNS or #MREQ
OUT,COND=MPNS request has been received
when no map pagingsessionisinprogress.
Either a #STRTPAG command was not issued
prior to this #MREQ INcommand or a
H#ROLLBAK was issued that rendered the scratch
area for the pageablemap (area id MPGPSCRA)
unavailable. Ifthe COND specificationisnot
MPNS, this condition abends the map paging
task.

Testing for DC/UCF Return Codes

Testing for the return codeinregister 15is usually notnecessary because most DML
commands have options that take action based on the return code value.

Specifying Conditions

The COND (condition) parameter provides a conditional return to the issuing program
should a specified error or special condition occur during processing. This return of
control can be directed to one of the followinglocations:

m The next sequential instruction

m Aspecifiedexitroutine

The options of a COND parameter consistof statement-specific conditions thatcan
occur duringthe execution of a DML statement. Any number of conditions can be
specified. For example, the following COND parameter requests a return of control in
the event of an /O error or deadlock condition:

COND=(IOER,DEAD)

Ifa condition associated with a specified parameter arises, control will bereturned to
the issuing program.Ifa condition occurs for which no COND parameter is coded, a
default action will betaken. Typically, the default action either aborts the taskor waits
for the condition to change.

Specifying COND with an Exit Routine

When more than one conditional parameter is permitted, you cancode the valueALL to
indicatethat all of the permitted COND parameters apply.Ifa condition corresponding
to anavailableparameter occurs and ALL is specified, control will bereturned to the
issuing program.

68 DML Reference Guide for Assembler

DC/UCF General Registers

Most DC/UCF DML statements providethe facilitytoassociateanexitroutine with each
special condition. Toreturn control to a specific exitwhen a condition occurs, you
include both the appropriatecondition (COND parameter) and the name of its
associated exitroutine.

For example, a DML statement may includea COND parameter of IOER and the IOERXIT
parameter, which names the routine to which control will bereturned inthe event of an
1/0 error that occurs during execution of the DML command; for example:

COND=(IOER),IOERXIT=IOERROR
Specifying COND Without an Exit Routine

Specifying only the COND parameter without an exit routinecauses a return of control
to the next sequential instructioninthe program thatissues the DML statement. In this
case,you can examine the contents of register 15 to determine which condition code
was set as a resultof the operation.

Specifying a General Exit Routine

You canspecify a general exit routine by usingthe ERROR parameter. The system passes
control to this routine when a condition occurs for which no specific exitroutine was
coded.

Note: Ifa condition occurs for which an associated exitroutine and the ERROR
parameter arespecified, control will bereturned to the routine named by the specific
exit. If you have multipleexit routines containing the same logic, you should specify only
the ERROR parameter to avoid redundant coding.

Syntax

The followingsyntax liststhe COND parameter and exit routines found inthe #LOAD
statement. The NOSTXIT exit is associated with the NOST condition, the IOERXIT exitis
associated with the IOER condition, and so forth.

[

v

L conp= N« ———
AL
(=¥ NOST — L)
TOER
SNGL
LDCF
PGNF
DEAD

v

L NOSTXIT=7nsufficient-storage-1label i

v

L ,I0ERXIT=7/0-error-label -

v

L ,SNGLXIT=s7ngle-thread-in-use-1label -

Chapter 4: Communications Blocks and Error Detection 69

DC/UCF General Registers

v

L ,LDCFXIT=storage-location-conflict-label]

v

L ,PGNFXIT=program-not- found-label]

v

L ,DEADXIT=deadlock-label il

X

L ,ERROR=error-1abel il

Some DML statements have only a singlecondition, as the following excerpt from the
HLINK statement illustrates.

Syntax

L coNp= —— NO «
L pawa

»
| 2

v

v

L ,PGNAXIT=program-not-available-label -

v

L ERRR=error-label —

Inthis case,the general ERROR parameter functions identically to the specific PGNAXIT
parameter. It supplies thename of a routine to which the program will branchwhena
program-not-availableerror occurs.

Note: The COND parameter listis enclosedin parentheses. If multiple parameters are
specified, each parameter is separated from the previous one by a comma.

Example of COND in #LOAD

The following example of the #LOAD statement attempts to loadthe program JOBMAP1
into the programpool. The COND parameter is set to PGNF, which will return control to
the issuing programonlyifthe requested program cannot be dynamicallyloaded oris
marked as out of service.The return code for this conditionis X'14".

Inthis example, ifthe return code matches the PGNF condition, the system returns
control to the issuing programatlabel ERRMSG, indicated by the ERROR parameter. If
the system returns a code of X'00' the program JOBMAP1 will have been successfully
loaded into the program pool.Return codes other then X'00'or X'14' will resultinan
abend and control will be returned to either a higher-level programor the system.

70 DML Reference Guide for Assembler

DC/UCF General Registers

LOAD1 #LOAD PGM=JOBMAP1, COND=PGNF, ERROR=ERRMSG

ERRMSG EQU *

Testing for DML Statements that Request DC/UCF Services

Inaddition to the COND parameter, you cantest for the return code valuein register 15
for each DML statement that requests DC/UCF services.Your program can compare the
register 15 valueto aliteral or a defined constant, then execute a conditional branch.

Inthe following example,ifthe value inregister 15 equals the numeric value 0000, the
program branches to the label CONTINU. Any valueother than zero causes a branchto
the program label RCCOND.

C 15,=F'0'

BE CONTINU
B RCCOND

CONTINU EQU *

RCCOND EQU *

Chapter 4: Communications Blocks and Error Detection 71

Chapter 5: Data Manipulation Lanquade
Statements

This chapter describes each data manipulationlanguage (DML) statement that requests

CA IDMS/DB databaseaccess or onlineservice. The DML commands arepresented in
two ways:

m The firsttablepresents the commands by function.

m Each DML command is presented inalphabetical order. The discussion of each
command includes:

— A description of the DML statement

- Syntax andsyntaxrules

Chapter 5: Data Manipulation Language Statements 73

DC/UCF General Registers

- Currency considerations, where applicable
- An example of how to use the statement

— Error handlingafter a DML statement isissued

The WHERE and ON clauses thatare used with DML statements to access logical records
created by the Logical Record Facility (LRF) are described atthe end of this chapter.

This section contains the followingtopics:

Functions of DML Statements (see page 76)

HABEND—terminates the issuingtaskabnormally (seepage 82)

@ACCEPT BIND—moves the bind address (see page 84)

@ACCEPT DBKEY FROM CURRENCY—moves the db-key of the current record (see page
85)

@ACCEPT DBKEY RELATIVE TO CURRENCY—moves the db-key (see page 87)
@ACCEPT PGINFO—moves the page information (see page 90)

@ACCEPT PROC—moves the information block (see page 92)

@ACCEPT STATS—moves system runtime statistics (see page 93)
HACCEPT—retrieves system task-related information (see page 96)
HATTACH—instructs the system to initiatea new task (see page 98)

@BIND PROC—establishes communication (see page 103)

@BIND REC—establishes addressability for a record (see page 104)

@BIND SUBSCH—helps the run unit(see page 106)

#BIND TASK—initiates a DC/UCF task (see page 110)

#CHAP—changes the dispatchingpriority (seepage 111)

@COMMIT—commits changes made to the database (see page 112)
#COMMIT—commits changes made to the database (see page 113)
@CONNECT—establishes a record occurrence (see page 113)

#DELETE—notifies the DC/UCF system (see page 118)

#DELQUE—deletes all or partof a queue (see page 121)

H#DELSCR—deletes scratch records (see page 125)

#DEQ—releases resources acquired by the issuingtask (seepage 129)
@DISCON—cancels the current membership of a specified record (see page 132)
HENQ—acquires resources or tests for availability (see page 135)
HENDPAG—terminates a map pagingsession (seepage 139)
@ERASE—disconnects or erases records (see page 141)

@ERASE (LRF)—deletes logicalrecord occurrences (seepage 146)
@FIND/@OBTAIN Statements —accesses databaserecords (see page 148)
@FINISH—commits changes to databaseand terminates run unit (see page 170)
#FINISH—commits changes to the database (see page 171)
HFREESTG—requests that the system releasevariablestorage (see page 172)
@GET—transfers the contents of an accessed record occurrence (see page 174)
HGETIME—gets time and date from the operating system (see page 175)
HGETQUE—retrieves a queue record (see page 177)

HGETSCR—retrieves ascratchrecord (see page 184)

HGETSTG—acquires variablestoragefrom a storage pool (see page 190)
@|F—tests for the presence of member record occurrences (see page 197)
@KEEP—places anexplicitshared or exclusivelockona record (see page 200)

74 DML Reference Guide for Assembler

DC/UCF General Registers

#KEEP—establishes long-term record locks (see page 202)

#HLINEEND—requests termination of the currentlinel/O session (see page 208)
#LINEIN—requests a synchronous transfer of data (see page 208)
#LINEOUT—requests a transfer of data (see page 214)

#LINK—establishes linkage with a program (see page 220)

#LOAD—loads a module into the program pool (see page 224)

H#MAPINQ (see page 229)

#MAPMOD—requests that the system modify options inthe map request block (see
page 243)

@MODIFY—replaces element values of the databaserecord (see page 255)
@MODIFY (LRF)—changes field values of an existinglogical-record occurrence (see page
259)

#MREQ—determines how data is transferred (see page 260)

@OBTAIN (LRF)—retrieves the named logical record (see page 282)
#POST—modifies an event control block (see page 285)

#PRINT—requests that the system transmitdata (see page 286)

#PUTJRNL—writes a task-defined record to the journal file (see page 297)
#PUTQUE—stores a queue recordinthe queue (see page 300)

#PUTSCR—stores or replaces a scratch record (see page 303)

@READY—prepares a databasearea foraccess by DML functions (see page 308)
@RETURN (see page 311)

HRETURN—returns control to a program (see page 314)

@ROLLBAK—rolls back uncommitted changes made to the database (see page 315)
H#ROLLBAK—rolls backuncommitted changes made to the database (see page 317)
H#SENDMSG—sends a message to another terminal or user (see page 319)

HSETIME (see page 323)

H#SNAP (see page 328)

#STAE (see page 331)

@STORE (see page 332)

@STORE (LRF) (see page 338)

H#STRTPAG (see page 340)

HTREQ (see page 343)

HTRNSTAT (see page 369)

HWAIT (see page 374)

H#WTL (see page 378)

#XCTL (see page 386)

Logical Record Clauses (see page 388)

Chapter 5: Data Manipulation Language Statements 75

Functions of DML Statements

Functions of DML Statements

The data manipulationlanguageenables youto access the database management
system (DBMS) and to request LRF and DC/UCF services fromyour Assembler program.
The DML statements canbe grouped into 14 categories by function:

m Control statements perform the following:
— Initiateand terminate processing
- Effect recovery
- Prevent concurrent retrieval and update of databaserecords
- Evaluate set conditions

m Retrieval statements locaterecords inthe databaseand make them availableto the
application program.

m Modification statements add new records to the databaseand modify and delete
existingrecords.

m Accept statements allowyouto move special information such as databasekeys,
storage addresses, and statistics fromthe DBMS to the application program's
variablestorage.

m Logical-record statements allowyouto retrieve, modify, store, and erase logical
records created through Logical Record Facility.

m Program management statements perform the following:
— Passandreturn control from one programto another
— Load anddelete programs andtables

- Define exit routines to be performed before an abnormal programtermination
(abend)

- Forcean abend condition
m Storage management statements allocateandreleasevariablestorage.
m Task management statements perform the following:

- Initiatea new task

— Change the dispatchingpriority of the issuingtask

- Enqueue and dequeue system resources

— Signal thata taskis to waitpending completion of an event

- Postanevent control block (ECB) indicating completion of an event

m Time management statements obtainthe time and date and set up time-related
events. These events include:

— Placingtheissuingtaskinawaitstate for a specified time

76 DML Reference Guide for Assembler

Functions of DML Statements

Posting a user-specified ECB after a specified interval

Initiating a new task after a specified interval

m Scratch management statements create, delete, or retrieve records from the

SCra

tch area.

® Queue management statements create, delete, or retrieve records from the queue
area.

m Terminal management statements transfer data between the application program
and a terminal or printer.

m Utility function statements perform the following:

Request retrieval of task-related information

Request a memory dump of selected parts of storage

Retrieve and send a predefined message stored inthe dictionary

Send a specified message to one or more users or logical terminals
Collect, retrieve, and write DC/UCF system statisticson a transaction basis

Establish long-termdatabaselocks and monitor access to databaserecords
used across tasksina pseudo-conversational transaction

m Recovery statements perform functions relatingto database, scratch,and queue
arearecovery in the event of a system failure. These functions perform the
following:

Establish checkpoints on the journal filefor database, scratch,and queue
records used by the issuingtask

Roll back user database, scratch,and queue record areas to the lastcheckpoint
established

Establish an end-of-task checkpointand relinquish control of all database,
scratch,and queue record areas associated with the issuingtask

Write user defined records to the journal file

The followingtablegroups the DML statements by functionand gives a brief description
of each command.

DML Statements Grouped by Function

Function DML statement Description
Control @BIND SUBSCH Signs on the application program
Statements to the CAIDMS/DB database

management system

Chapter 5: Data Manipulation Language Statements 77

Functions of DML Statements

Function

DML statement

Description

@BIND REC

Establishes addressabilityin
variablestoragefor one or more
records includedinthe
program's subschema

@BIND PROC

Establishes communication
between the application
program and a DBA-defined
databaseprocedure

@READY

Prepares databaseareas for
processing

@FINISH

Commits changes made to the
databasethrough anindividual
run unitand terminates the run
unit

@IF

Evaluates the presence of
records inaset andspecifies
action based on the outcome

@COMMIT

Commits changes made to the
databaseby anindividualrun
unit

@ROLLBAK

Rolls back uncommitted changes
made to the databasethrough
anindividualrununit

@KEEP

Places locks onrecord
occurrences

Retrieval
Statements

@FIND/OBTAIN DBKEY

Accesses a record by usinga
db-key previously saved by the
program

@FIND/OBTAIN CURRENT

Accesses arecord by using
established currencies

@FIND/OBTAIN WITHIN
SET/AREA

Accesses a record based on its
logical location withina setor its
physicallocationwithinanarea

@FIND/OBTAIN OWNER

Accesses the owner record of a
set occurrence

@FIND/OBTAIN
CALC/DUPLICATE

Accesses a record by usingits
CALC-key value

@FIND/OBTAIN USING SORT KEY

Accesses arecord inasorted set
by usingits sort-key value

78 DML Reference Guide for Assembler

Functions of DML Statements

Function DML statement Description
@GET Moves all data associated with a
previouslylocated record into
program variablestorage
Modification @STORE Adds a new recordto the
Statements database
@MODIFY Changes the contents of an
existingrecord
@CONNECT Links a record to a set
@DISCON Removes a member record from
aset
@ERASE Deletes a record from the
database
Accept @ACCEPT DBKEY FROM Saves the db-key of the current
Statements CURRENCY record of run unit, record type,

set, orarea

@ACCEPT DBKEY RELATIVE TO
CURRENCY

Saves the db-key of the next,
prior,or owner record relativeto
the current record of a set

@ACCEPT PAGE INFORMATION
FOR A GIVEN RECORD

Saves the page information fora
record current record of a set

@ACCEPT STATS

Returns system runtime statistics
to the program

@ACCEPT BIND

Returns a record's bind address
to the program

@ACCEPT PGINFO

Returns page information for a
given record to the program

@ACCEPT PROC

Returns informationin the
application programinformation
block associated with a database
procedure to the program

@RETURN

Retrieves a databasekey of a
record entry that has been
indexed under integrated
indexing.

Logical Record
Facility (LRF)
Statements

@OBTAIN logical-record
@MODIFY logical-record
@STORE logical-record @ERASE
logical-record

Retrieves alogical record
Modifies a logical record Stores a
new logical record Deletes a
logical record

Chapter 5: Data Manipulation Language Statements 79

Functions of DML Statements

Function DML statement Description
Program HLINK Passes control to another
Management program with the expectation of
Statements receivingit back
H#RETURN Returns control to the next
higher level calling program
#LOAD Loads a programor table into
the program pool
HDELETE Signals thatthe programhas
finished usinga programortable
inthe program pool
HSTAE Establishes linkageto a program
or routine that will receive
control inthe event of anabend
H#ABEND Abnormally terminates the
issuingtask
#XCTL Passes control to another
program with no expectation of
havingitreturned
Storage HGETSTG Allocates variablestoragefroma
Management HFREESTG DC/UCF storage pool Frees all or
Statements part of a block of variable
storage
Task HATTACH Attaches a new task within the
Management DC/UCF system
Statements
HCHAP Changes the dispatching priority
of the issuingtask
HENQ Acquires aresource or a listof
resources
#DEQ Releases a resource
HWAIT Relinquishes control to the
system while awaitingthe
completion of an event
#POST Posts an event control block
Time HGETIME Obtains the time and date from
Management the system
Statements
H#SETIME Defines a timed event

80 DML Reference Guide for Assembler

Functions of DML Statements

Function DML statement Description

Scratch #PUTSCR #GETSCR #DELSCR Stores a scratch record Retrieves

Management ascratchrecord Deletes a

Statements scratch record

Queue #PUTQUE #GETQUE #DELQUE Stores a queue record Retrieves

Management a queue record Deletes a queue

Statements record

Terminal HTREQ Transfers data and device

Management dependent information to or

(Basic Mode) from the terminal, or establishes
a terminal request block (TRB)
for use by subsequent #TREQ
operations.The #TREQ
statement canbe used to
communicate inan SNA network
environment

Terminal HLINEIN Requests a synchronous data

Management transfer from the terminal to the

(Line Mode) issuingprogram

HLINEOUT Requests a synchronous or
asynchronous data transfer from
the issuing programto the
terminal

H#LINEEND Terminates the current linel/O
session

Terminal H#MREQ Requests a transfer of data from
Management the issuing programto the
(Mapping terminal and/or vice versa
Mode)

#MAPINQ Obtains information or tests
conditions concerningthe
previous map operation

#MAPMOD Requests modifications of
mapping options for a map

#STRTPAG Begins a map pagingsessionand
specifies options for that session

HENDPAG Terminates a map pagingsession

Terminal H#PRINT Transfers datafromatasktoa
Management terminal defined as a printer.

(PrintMode)

Chapter 5: Data Manipulation Language Statements 81

#ABEND—terminates the issuing taskabnormally

Function

DML statement

Description

Utility Functions

H#ACCEPT

Retrieves task-related
information

#SNAP

Requests a memory dump of
selected parts of storage

H#SENDMSG

Sends a message to a user,
logical terminal, listof users, or
listof logical terminals

HTRNSTAT

Requests or terminates statistics
collection; retrieves transaction
statisticsinto programstorage

HKEEP

Enables databaselocks or
databasemonitoringfor records,
sets, or areas or terminates a
prior #KEEP request

HWTL

Retrieves a message from the
dictionaryandsendsitto a
predefined destination

Recovery
Statements

#COMMIT

Commits changes made to the
databasethrough anindividual
run unitor through all database
sessions associated with a task

#FINISH

Commits changes made to the
databasethrough anindividual
run unitor through all database
sessions associated with a task

#ROLLBAK

Rolls back uncommitted changes
made to the databasethrough
anindividualrununitor through
all databasesessions associated
with a task

#PUTJRNL

Writes user-defined records to
the journal file

#ABEND—terminates the issuing task abnormally

The #ABEND statement terminates the issuingtaskabnormally and specifies whether
the system invokes previously established abend exits or writes a task dump to the log

file.

After completion of the #ABEND function, control is returned to the system.

82 DML Reference Guide for Assembler

#ABEND—terminates the issuing taskabnormally

#ABEND Syntax

v

»—I_—__I_ #ABEND ABCODE=abend-code-pointer
label

v

L , STAE= INVOKE <_~|-J
L IGNORE

= oute- o4

)

#ABEND Parameters
ABCODE=
Specifies a 4-character user-defined abend code.
abend-code

A register pointingto a field that contains the abend code, the symbol name of a
user-defined field containingthe code, or the abend-code literal enclosedinsingle
quotation marks.

Note: Because the specified abend code appearsinthe systemlogand is displayed
at the task's terminal, you should not use DC/UCF system abend codes.

STAE=INVOKE/IGNORE

Specifies whether the system invokes or ignores abend routines that were
previously established by #STAE requests; the defaultis INVOKE.

DUMP=NO/YES

Specifies whether the system writes a formatted task dump to the DC/UCF logfile.
The defaultis NO.

#ABEND Example

Example: Terminating the issuing task

The following example of the #ABEND statement terminates the issuingtaskabnormally
and specifies the register that points to a fieldin the application program containing the
abend code. This statement requests that the system ignore abend routines and to
write a task dump to the DC/UCF logfile. Control returns to the system after completion
of the #ABEND statement.

#ABEND ABCODE=(R12),STAE=IGNORE,DUMP=YES

Chapter 5: Data Manipulation Language Statements 83

@ACCEPT BIND—moves the bind address

#ABEND Status Codes

The #ABEND request is unconditional; control is passed to the DC/UCF program control
module.

@ACCEPT BIND—moves the bind address

The @ACCEPT BIND statement moves the bind address ofa recordto alocationin
program variablestorage. The requesting program is usually a subprogramthatrequires
the address of a recordin order to accessiit.

Currency

Currency must be established for the record whose bind address will bereturned to the
application program.

A successful execution of the @ACCEPT BIND command does not update the currency of
the record type or the run unit.

@ACCEPT BIND Syntax

»»—— @ACCEPT BIND=b7nd-address

v

»—— ,REC=record-name

)

@ACCEPT BIND Parameters
BIND=bind-address

Specifies the 4-byte (fullword) locationin storageto which the system returns the
record's bind address. Note that bind-address does not specify a databasekey.

REC=

Specifies the record whose bind address will bereturned to the specified locationin
program variablestorage.

record-name

Must be a record previously bound by the run unit.

84 DML Reference Guide for Assembler

@ACCEPT DBKEY FROM CURRENCY—moves the db-key of the current record

@ACCEPT BIND Status Codes

After completion of the @ACCEPT BIND statement, the ERRSTAT field in the IDMS
communications blockindicates the outcome of the operation. The followingis a list of
the acceptablestatus codes for this function and their corresponding meaning:

0000
The request has been serviced successfully.
1508

The specified recordis not inthe named subschema

@ACCEPT BIND Example

The following @ ACCEPT BIND statement moves the bind address foran EMPLOYEE
record to register 1.

@ACCEPT BIND=(R1),REC='EMPLOYEE'

@ACCEPT DBKEY FROM CURRENCY—moves the db-key of the
current record

The @ACCEPT DBKEY FROM CURRENCY statement moves the db-key of the current
record of run unit, record type, set, or area to a specified locationin programvariable
storage. Use the PGINFO option to specifyalocationin programvariablestorage where
the page information associated with the returned dbkey is moved. Records whose
db-key are savedinthis manner are available for subsequent directaccess by usingan
@FIND/@OBTAIN DBKEY statement.

Currency

The record must be current of run unit, record type, set, or area before execution of the
@ACCEPT DBKEY FROM CURRENCY statement. Currency is maintained but not updated
after the statement is executed.

Note: You must establish set currency before usingthis statement. If no set currency
has been established,the DBMS returns 0000 to the ERRSTAT field and -1 to the DB-KEY
field.

For more information on page informationfields, see @ACCEPT PGINFO (see page 90).

Chapter 5: Data Manipulation Language Statements 85

@ACCEPT DBKEY FROM CURRENCY—moves the db-key of the current record

@ACCEPT DBKEY FROM CURRENCY Syntax

»»—— @ACCEPT DBKEY=db-key

v

L, PGINFO=pg- info-v =

M

,REC=record-name
,SET=set-name
,AREA=area-name

@ACCEPT DBKEY FROM CURRENCY Parameters
DBKEY=db-key

Identifies the locationinvariablestoragethat will containthedb-key of the named
record. Must identify a full-word binaryfield.

PGINFO=pg-info-v

Specifies the name of a four-byte field thatis made up of two halfword fields.
Identifies the locationinvariablestoragethat contains pageinformation for the
specified record. Upon successful completion of this statement, the firsttwo bytes
of the field contain the page group number and the lasttwo bytes containavalue
that may be used for interpreting dbkeys.

REC=record-name/SET=set-name/AREA=area-name

Specifies the record whose db-key will beplacedinthe locationidentified by
db-key. Ifthe record, set, or area qualifiers are omitted, the db-key of the current
record of run unitis saved. Otherwise, db-keys are saved as follows:

m REC=record-name saves the db-key of the record thatis currentof the specified
record type.

m SET=set-name saves the db-key of the recordthat is currentof the specified
set.

m AREA=area-name saves the db-key of the record thatis currentof the specified
area.

86 DML Reference Guide for Assembler

@ACCEPT DBKEY RELATIVE TO CURRENCY—moves the db-key

@ACCEPT DBKEY FROM CURRENCY Status Codes

After completion of the @ ACCEPT DBKEY FROM CURRENCY function, the ERRSTAT field
inthe IDMS communications block indicates the outcome of the operation.

The followingis a listof the acceptablestatus codes for this function and their
corresponding meaning:
0000
The request has been serviced successfully.
1508

The specified recordis notinthe subschema.The programhas probablyinvoked
the wrong subschema.

@ACCEPT DBKEY FROM CURRENCY Example

The following statements illustratethe use of the @ ACCEPT DBKEY FROM CURRENCY
statement. The program performs the followingsteps:

1. Establishes an EMPLOYEE record as currentof run unit

2. Savesits db-key inlocation SAVEDKEY

3. Accesses the EMPLOYEE record occurrence by usingthe saved db-key, after further
processinghas changed currency

MvC EMPID,=CL4'7690'
@FIND CALC,REC='EMPLOYEE'

@ACCEPT DBKEY=SAVEDKEY

@OBTAIN DBKEY=SAVEDKEY

@ACCEPT DBKEY RELATIVE TO CURRENCY—moves the db-key

The @ACCEPT DBKEY RELATIVE TO CURRENCY statement moves the db-key of the next,
prior,or owner record relativeto the current record of set to a locationinvariable
storage. Use the PGINFO option to specifyalocationin programvariablestorage where
the page information associated with the returned dbkey is moved. The DBMS examines
the current record of the named set and extracts the requested pointer from its prefix.

This statement allows you to savethe db-key of a record withina set without actually
havingto access the record. Records whose db-keys are savedin this manner are
availablefor subsequent direct access by an @FIND/@OBTAIN DBKEY statement.

Chapter 5: Data Manipulation Language Statements 87

@ACCEPT DBKEY RELATIVE TO CURRENCY—moves the db-key

Note: Native VSAM users—The @ACCEPT DBKEY RELATIVE TO CURRENCY statement is
not valid for native VSAM data sets.

Note: You must establish set currency before usingthis statement. If no set currency
has been established,the DBMS returns 0000 to the ERRSTAT field and -1 to the DB-KEY
field.

Currency

Currency is not updated after execution of an @ACCEPT DBKEY RELATIVE TO CURRENCY
statement. The record thatis current of record type before the @ACCEPT statement will
remain current immediately after the statement is executed.

For more information on page information fields,see @ACCEPT PGINFO (see page 90).

@ACCEPT DBKEY RELATIVE TO CURRENCY Syntax

»»—— @ACCEPT DBKEY=db-key

v

L PGINFO=pg- info-v =

I

,SETN= set-name
L SETP= 37
,SETO=

@ACCEPT DBKEY RELATIVE TO CURRENCY Parameters

DBKEY=db-key

Identifies the locationinvariablestoragethat will contain thedb-key of the
requested record.

PGINFO=pg-info-v

Specifies the name of a four-byte field thatis made up of two halfwordfields.
Identifies the locationinvariablestoragethat contains pageinformation for the
specified record. Upon successful completion of this statement, the firsttwo bytes
of the field contain the page group number and the lasttwo bytes containavalue
that may be used for interpreting dbkeys.

SETN=/SETP=/SETO=set-name

Determines the record whose db-key will be placedinthe locationidentified by
db-key. Set-name must be a setincludedinthe subschema.The saved db-key can
belong to the next, prior,or owner record relativeto the current record of the
named set:

m SETN=set-name saves the db-key of the next record relativeto the record that
is currentof the specified set. Arequest for SETN currency cannotbe specified
unless the named set has prior pointers; prior pointers ensure that the next
pointer inthe prefix of the current record does not pointto alogically deleted
record.

88 DML Reference Guide for Assembler

@ACCEPT DBKEY RELATIVE TO CURRENCY—moves the db-key

m SETP=set-name saves the db-key of the priorrecordrelativeto the record that
is currentof the specified set. Arequest for SETP currency cannot be specified
unless the named set has prior pointers.

Note: No indication of an end-of-set conditionis possibleforan @ACCEPT SETN
or SETP. A retrieval statement must be issued to determine whether the next
or priorrecordinthe set occurrenceis the owner record.

m SETO=set-name saves the db-key of the owner of the current set. A request for
SETO currency cannot be executed unless the named set has owner pointers. If
the current record of the named set is the owner record occurrence, requests
for SETO currencyreturn the db-key of the recorditself, even ifthis set does
not have owner pointers.

Note: When arecord declared as an optional or manual member of asetis
accessed, itis not established as currentofset ifitis not currently connected to
the named set. A subsequent attempt to access the owner record will instead
locatethe owner of the current record of set. Insuch cases, determine whether
the retrieved record is actually a setmember before executing the @ACCEPT
DBKEY=db-key, SETO=set-name statement. The @IF statement (see "@IF" later
inthis chapter) can be used for this purpose.

@ACCEPT DBKEY RELATIVE TO CURRENCY Example

The following statements illustratethe use of the @ACCEPT DBKEY RELATIVE TO
CURRENCY statement. The program performs the following steps:

1.

2.

Traverses the DEPT-EMPLOYEE set
Saves the db-key of the owner record of the OFFICE-EMPLOYEE set

Accesses the owner record of the OFFICE-EMPLOYEE set by usingthe saved db-key,
after further processinghas changed currency

MvVC DEPTID,=CL4'1234'
@FIND CALC,REC='DEPARTMENT'

@FIND NEXT,SET='DEPT-BMPLOYEE"
@ACCEPT DBKEY=SAVDKEY,SETO="'0FFICE-EMPLOYEE'

@OBTAIN DBKEY=SAVEDKEY

Chapter 5: Data Manipulation Language Statements 89

@ACCEPT PGINFO—moves the page information

@ACCEPT DBKEY RELATIVE TO CURRENCY Status Codes

After completion of the @ ACCEPT DBKEY RELATIVE TO CURRENCY function, the
ERRSTAT fieldinthe IDMS communications blockindicates the outcome of the
operation.

The followingis a listof the acceptablestatus codes for this function and their
corresponding meaning:

0000
The request has been serviced successfully.

1508

The specified recordis notinthe subschema.The programhas probablyinvoked the
wrong subschema.

@ACCEPT PGINFO—moves the pade information

The @ACCEPT PGINFO statement moves the page information fora given record to a
specified locationin programvariablestorage. Page information thatis savedin this

manner is available for subsequent directaccess by usinga @FIND/@OBTAIN DBKEY
statement.

The dbkey radix portion of the page information can be used ininterpreting a dbkey for
display purposes andin formatting a dbkey from page and linenumbers. The dbkey
radix represents the number of bits within a dbkey value that are reserved for the line
number of a record. By default, this valueis 8, meaning that up to 255 records can be
stored on a single page of the area. Given a dbkey, you canseparateits associated page
number by dividing the dbkey by 2 raised to the power of the dbkey radix. For example,
if the dbkey radixis 4,youwould dividethe dbkey valueby 2**4. The resultingvalueis
the page number of the dbkey. To separate the linenumber, you would multiply the
page number by 2 raised to the power of the dbkey radix and subtractthis valuefrom
the dbkey value. The resultwould be the linenumber of the dbkey. The following two
formulas can be used to calculatethe page andlinenumbers from a dbkey value:

m Page-number = dbkey value/ (2 ** dbkey radix)

m Line-number = dbkey value- (page-number * (2 ** dbkey radix))

@ACCEPT PGINFO Syntax

»»— @ACCEPT PGINFO=pg-7info-v,REC=record-name

)4

90 DML Reference Guide for Assembler

@ACCEPT PGINFO—moves the page information

@ACCEPT PGINFO Parameters
PGINFO=pg-info-v

Specifies the name of a four-byte field thatis made up of two halfword fields.
Identifies the locationinvariablestoragethat contains pageinformation for the
specified record. Upon successful completion of this statement, the firsttwo bytes
of the field contain the page group number and the lasttwo bytes containa value
that may be used for interpreting dbkeys.

REC=record-name

Specifies the record whose page information will beplacedinthe specifiedlocation.

@ACCEPT PGINFO Example

The following example retrieves the page information for the DEPARTMENT record.

PAGEINFO DS OF
PGROUP DS H
RADIX DS H

@ACCEPT PGINFO=PAGEINFO,REC='DEPARTMENT'

@ACCEPT PGINFO Status Codes
Status Codes

After completion of the @ACCEPT PGINFO statement, the ERROR-STATUS fieldinthe
IDMS communications blockindicates the outcome of the operation.

The followingis a listof the acceptablestatus codes for this function and their
corresponding meaning:
0000
The request has been serviced successfully.
1508

The specified recordis notinthe subschema.The programhas probablyinvoked the
wrong subschema.

Chapter 5: Data Manipulation Language Statements 91

@ACCEPT PROC—moves the information block

@ACCEPT PROC—moves the information block

The @ACCEPT PROC statement moves the 256-byte application programinformation
blockassociated with a previously defined database procedureto a specified locationin
program variablestorage. Informationis placed in this block by a previouslyissued
@BIND PROC statement (discussed later in this chapter). This information may have
subsequently been updated by the procedure. The @ACCEPT PROC statement can be
used by programs runningunder, butina different partition from, the central version.

@ACCEPT PROC Syntax

»»—— @ACCEPT PROC=procedure-name

v

»— ,COMAREA=procedure-control-location

I

@ACCEPT PROC Parameters

PROC=procedure-name

Specifies the name of the databaseprocedurewhose application program
information blockis to be moved to programvariablestorage. Procedure-name
must identify a fullword-aligned 8-byte literal.

COMAREA=procedure-control-location

Specifies the fullword-aligned 256-bytefield in program variablestorageto which
the application programinformation blockis to be moved.

@ACCEPT PROC Example

The following statement moves the application programinformation block used by the
CHECKALL procedure to the locationidentified as CHECKITin the application program's
variablestorage:

@ACCEPT PROC='CHECKALL', COMAREA=CHECKIT

92 DML Reference Guide for Assembler

@ACCEPT STATS—moves system runtime statistics

@ACCEPT PROC Status Codes

After completion of the @ACCEPT PROC function, the ERRSTAT field inthe IDMS
communications block indicates the outcome of the operation.

The followingis a listof the acceptablestatus codes for this function and their
corresponding meaning:
0000
The request has been serviced successfully.
1508

The specified recordis notinthe subschema.The programhas probablyinvoked the
wrong subschema.

@ACCEPT STATS—moves system runtime statistics

The @ACCEPT STATS statement moves system runtime statisticslocatedin the
program's IDMS statistics block to programvariablestorage. You canissuethis
statement any number of times duringthe execution of a run unit. For example, you
might request databasestatistics after storinga variable-length record to determine
whether the entire record was stored in one placeor if fragments were placedinan
overflow area.

The @ACCEPT STATS statement does not reset any of the statistics fieldsto zero. The
IDMS statistics block fieldsarereset when you issuean @FINISH statement.

@ACCEPT STATS Syntax

»»—— @ACCEPT STATS=db-statistics

v

»

M

L STATX=extended-db-statistics -

@ACCEPT STATS Parameters
STATS=

Moves system runtime statisticstoa locationin programvariablestorageidentified
by db-statistics.

db-statistics

Identifies analigned, 100-byte field. The dictionary containsa record, DBSTATS, for
the system runtime statistics. You can copy this recordinto program variable
storage by codingthe following statement:

Chapter 5: Data Manipulation Language Statements 93

@ACCEPT STATS—moves system runtime statistics

@COPY IDMS,DBSTATS

DBSTATS DS 0D
DATE2DAY DS CL8 TODAY'S DATE
TIME2DAY DS CL8 CURRENT TIME OF DAY
PAGESRED DS F PHYSICAL PAGES READ
PAGESWRT DS F PHYSICAL PAGES WRITTEN
PAGESQST DS F LOGICAL PAGES READ
CALCTARG DS F NO. CALC STORES ON TARGET PAGE
CALCOVFL DS F NO. CALC OVERFLOWS
VIATARGT DS F NO. VIA STORES ON OWNER PAGE
VIAOVRFL DS F NO. VIA OVERFLOWS
LINERQST DS F RECORDS (LINES) REQUESTED
CURRECDS DS F RECORDS CURRENT
IDMSCALL DS F NO. CALLS TO IDMSDBMS
FRAGMTST DS F NO. VAR-LENGTH FRAGMENTS STORED
RELORECS DS F NO. RECORDS RELOCATED
LOCKREQS DS F TOTAL NO. RECORD LOCKS HELD
SELECLOK DS F TOTAL NO. SELECT LOCKS HELD
UPDATLOC DS F TOTAL NO. EXCLUSIVE LOCKS HELD
RUNUNIT# DS F RUN-UNIT ID NUMBER
TASK#ID DS F TASK ID NUMBER
LOCAL#ID DS CL8 LOCAL ID NUMBER

DS CL8 RESERVED

The LOCAL#ID field consists of the 4-byte identifier of the interface in which the run
unit originated (for example, BATC, DBDC, CICS)and a unique identifier (a fullword
binaryvalue)assigned to the run unitby that interface. For batch and CMS run
units, this identifier specifies theinternal machinetime. For CICS run units, this

identifier specifies the CICS transaction number assigned to the run unit. To display
the originatinginterfaceidentifier and the run-unitidentifier for a program, you can
move the LOCAL#ID fieldto a work field:

WRKLCID DS oD
WRKLCORG DC cL4' !

WRKLCNUM DC F'o'

Note: The DBSTATS record can be modified by your DBA to define two subordinate
fields for the LOCAL#ID field.

STATX=

Moves extended system runtime statistics toalocationinprogramvariablestorage
identified by extended-db-statistics.

94 DML Reference Guide for Assembler

@ACCEPT STATS—moves system runtime statistics

extended-db-statistics

Identifies analigned, 100-byte field. The dictionary containsa record, DBSTATX, for
the system runtime extended statistics. You can copy this recordinto program
variablestorage by codingthe following statement:

@COPY IDMS,DBSTATS

DS 0D
DBSTATX DS 0CL100
SR8SPLIT DS FL4 Number of SR8 splits
SR8SPAWN DS FL4 Number of SR8 spawns
SR8STORE DS FL4 Number of SR8 STOREs
SR8ERASE DS FL4 Number of SR8 ERASEs
SR7STORE DS FL4 Number of SR7 STOREs
SR7ERASE DS FL4 Number of SR7 ERASEs
BSRCHTOT DS FL4 Number of binary searches
LSRCHTOT DS FL4 Number of levels searched
ORPHADPT DS FL4 Number of orphans adopted
LSRCHBST DS HL2 Best number of levels searched
LSRCHWST DS HL2 Worst number of levels searched
DS CL60

Most of these counters are self-explanatory. The BSRCHTOT field indicates the total
number of binary searches performed duringthe course of the rununit. LSRCHTOT
indicates the total number of index levels searched.

The LSRCHBST and LSRCHWST fields describethe best and worst cases, respectively,
for all randomsearches (such as generic searches) of all indexes. In other words,
these statisticsindicatethe smallestand largest number of levels searched for a
singlerequest.

@ACCEPT STATS Status Codes

After completion of the @ACCEPT STATS function, the ERRSTAT fieldinthe IDMS
communications blockindicates the outcome of the operation. The followingis a list of
the acceptablestatus codes for this function and their corresponding meaning:

0000
The request has been serviced successfully
1518

The databasestatisticslocation hasnotbeen bound properly.

Chapter 5: Data Manipulation Language Statements 95

#ACCEPT—retrieves system task-related information

@ACCEPT STATS Example

The following statements establish currency for the sets in which a new EMPLOYEE
record will participateas a member, store the EMPLOYEE record, and move statistics
regardingthe stored EMPLOYEE record to the DBSTATS locationin mainstorage:

MvC

DEPTID, INDEPTID

@FIND CALC,REC='DEPARTMENT'

MvC

OFFCODE, IOFFCODE

@FIND CALC,REC='OFFICE'

@STORE REC='EMPLOYEE'
@ACCEPT STATS=DBSTATS

#ACCEPT—retrieves system task-related information

The #ACCEPT statement retrieves the followingsystemtask-related information:

#ACCEPT Syntax

Current task code

Taskidentifier

Logical terminal identifier

Physicalterminal identifier

DC/UCF system version

The ID of the user signed on to the task's logical terminal

Physical terminal screen dimensions

L label —,

»— #ACCEPT TYPE= TASKCODE

»—— ,FIELD=return-value-location-pointer

v

v

TASKID —
LTERMID —
SYSVERSN —
PTERMID —
USERID —
SCRNSIZE —

M

96 DML Reference Guide for Assembler

#ACCEPT—retrieves system task-related information

#ACCEPT Parameters

TYPE=

Retrieves the requested information:
TASKCODE

Retrieves the 1- to 8-character code that invokes the current task.
TASKID

Retrieves the taskidentifier assigned by the system. The task identifieris a unique
sequence number stored ina binary fullword numeric field. At system startup, the
system sets the identifier to zero; each time a taskis executed, the system
increments the identifier by one.

LTERMID

Retrieves the 1- to 8-character identifier of the logical terminal associated with the
current task.

SYSVERSN

Retrieves the version of the current DC/UCF system. The version number is an
integer inthe range 0 through 9999 stored in a binary halfword numeric field.

PTERMID

Retrieves the 1- to 8-character identifier of the physical terminal associated with
the current task.

USERID

Retrieves the 32-characteridentifier of each user signed on to the logicalterminal
associated with the current task. If no user is signed on, the system returns blank.

SCRNSIZE

Retrieves the screen dimensions of the physical terminal associated with the
current task. The screen sizeis returned in a field thatis divided into two halfword
fields:the firsthalfword contains therow, the second halfword contains the
column. For example, a 24-lineby 80-character screenis represented by a value of
24 inthe firsthalfword and 80 in the second halfword. If the current taskis not
associated with a terminal, the system returns a null value of 0.

FIELD=

Specifies the location to which the system returns the requested task-related
information.

return-value-location

A register that points to the field or the symbolic name of a user-defined field
whose length is compatible with the length of the field containingthe requested
data.

Chapter 5: Data Manipulation Language Statements 97

#ATTACH—instructs the system to initiate a new task

#ACCEPT Status Codes

After completion of the #ACCEPT statement, the value inregister 15 indicates the
outcome of the operation. The followingis a listof the Register 15 valueand the
corresponding meaning:

X'o0’

The request has been serviced successfully.
X'o4'

An invalid return-valuelocation address has been specified in the FIELD parameter.
X'o8’

H#ACCEPT TYPE=PTERM was specified but no PTERM exists.

#ACCEPT Example

The following example of the #ACCEPT statement retrieves the user ID of each user
signed on to the logical terminal associated with the current task. This informationis

placedintothe field USERSL2, whichis defined inthe application program's variable
storage.

#ACCEPT TYPE=USERID, FIELD=USERSL2

#ATTACH—instructs the system to initiate a new task

The #ATTACH statement instructs the system to initiatea new task by acquiringthe
necessary task control elements (TCEs) and storageand by addingthe taskto its
dispatchinglist. The issuing programretains processing control; the system simply
initializes theattached task and gives it processor time accordingtoits established
priority. (Note that task code priorities established during system generation can be
overridden by the #ATTACH or #CHAP statements.) The #ATTACH may optionally
designate an ECB upon which initial execution of a new task will depend.

98 DML Reference Guide for Assembler

#ATTACH—Iinstructs the system to initiate a new task

#ATTACH Syntax

v

»—I_—__I_ #ATTACH TSKCD=task-code-pointer
label

L ,PLIST= T SYSPLIST « —_l—J
parameter-1list-pointer

L ,PRI=priority]

v

v

v

L ECB=return-ecb-address —|

L , TCEADDR= T [@D) 4—4|—|
return-tce-adadress

L conp= f NO <
§

\ 4

ALL

-V MAXT)-
E INVT
SCTY
MAXC

MAXTXIT=max-task-1abel —

v
v

v
v

INVIXIT= inval id- task-1abel —

v

,SCTYXIT=security-violation-label -

v
v

,MAXCXXIT=max-concurrent-1abel |

v
M

v
|

,ERROR=error-label i

#ATTACH Parameters
TSKCD=
Specifies the 1-to 8-character code of the taskto beinitiated.
task-code

A register pointingto afield that contains the task code, symbolic name of a
user-defined field containingthe task code, or the task-codeliteral enclosedin
quotation marks. Task-code must have been defined either duringsystem
generation or dynamically by usingthe DCMT VARY DYNAMIC TASK command.

PLIST=

Specifies the location of the 5-fullword storagearea that contains one or more
parameters to be passed to the program receiving control.

SYSPLIST

(Default); the symbolic name of the storage area in which the system will build the
HATTACH parameter list.

Chapter 5: Data Manipulation Language Statements 99

#ATTACH—instructs the system to initiate a new task

parameter-list

A register that points to the area in which the system will build the #ATTACH
parameter listor the symbolic name of that area.

PRI=
Specifies the dispatching priority of the attached task.
priority

A register containingthe priorityinthe low-order byte or an absolute expression.
Valid codes are0 through 240;the defaultis the priority established during system
generation for the specified task code, and the applicableterminal and user.

ECB=

Specifies the location to which the system will return the address of the event
control block (ECB) for the initiated task. Use ECB to control execution of the
attached task through the ECB; if ECB is not defined, the attached task will be set
ready-to-run.

return-ecb-address
A register or the symbolic name of a fullword user-defined field.
TCEADDR=(1)/return-tce-address

Specifies the location to which the system will return the address of the TCE for the
initiated task. return-tce-address

A register or the symbolic name of a fullword user-defined field;the defaultis
register 1.

COND=

Specifies whether this #ATTACH is conditionaland under what conditions control
should be returned to the issuing program.

NO
(Default); specifies thatthe requestis not conditional.
ALL

Specifies that the request is conditional. Control is returned if the attach cannot be
serviced for one or more of the reasons listed below.

condition

Specifies under what conditions control is returned to the issuing program. Multiple
condition values must be enclosed in parentheses and separated by commas.

MAXT

A maximum-task condition exists; thatis, if the number of tasks specified as the
maximum during system generation arecurrently active. If MAXT is not specified
and a maximum-task condition exists, the attachingtask will waituntil the attach
canbe completed successfully.

100 DML Reference Guide for Assembler

#ATTACH—Iinstructs the system to initiate a new task

INVT

The specified task code is invalid. IfINVT is not specified and the specified taskis
not valid, the attachingtask will beabended.

SCTY

The user signed on to the issuingtaskis denied access to the requested task
because of a security violation.If SCTY is not specified and a security violationis
detected, the attachingtaskwill beabended.

MAXC

An attempt is being made to attach a task for whicha MAXIMUM CONCURRENT
valueis specified in the system generation. The maximum number of occurrences
of the taskare alreadyactive. If MAXC is notspecified and a maximum concurrent
conditionis detected, the attachingtaskwill beabended.

MAXTXIT=max-task-label

Specifies the symbolic name of a routineto which control is returned ifthe
HATTACH request cannot be serviced because of a maximum-task condition.

INVTXIT=invalid-task-label

Specifies the symbolic name of a routineto which control is returned if the
HATTACH request cannot be serviced because the taskcode is invalid.

SCTYXIT=security-violation-label

Specifies the symbolic name of a routineto which control is returned ifthe
HATTACH request cannot be serviced because of a security violation.

MAXCXIT=max-concurrent-label

Specifies the symbolic name of a routineto which control is returned if the
HATTACH request cannot be serviced because of a maximum concurrentcondition.

ERROR=error-label

Specifies the symbolic name of the routine to which control is returned ifa
condition specified inthe COND parameter occurs for which no other exit routine
was coded.

#ATTACH Status Codes

By default, the attach requestis unconditional. Error conditions thatcan occur are
described below:

® A maximum-taskconditionwill resultina delay until another task terminates. The
maximum number of active tasks is setduring system generation.

m Any abnormal conditionwillresultinanabend. Conditions in this categoryinclude:

- Invalidtask codespecified

Chapter 5: Data Manipulation Language Statements 101

#ATTACH—instructs the system to initiate a new task

— The user signed on to the issuingtaskis denied access to the requested new
task because of a security violation

The issuing programcan requestreturn of control to avoid a delay or an abend by using
the COND parameter.

After completion of the #ATTACH request, the valuereturned to register 15 indicates
the outcome of the operation. The followingis a listofthe Register 15 values and the
corresponding meaning:

X'00'
The request has been serviced successfully.
X'o4'

The request cannotbe serviced becausethe maximum number of tasks have
already been attached; no new tasks can currently be attached.

X'08'
The request cannotbe serviced due to an invalid task code.
X'oc'
The request cannotbe serviced due to a task security violation.
X'14'
The task cannot be attached becausethe maximum concurrent task limit (for that
task code) has been exceeded.
Additionally,thevalues intwo user-defined registers or fullwords containinformation:

m Register n contains the address of the ECB of the initiated taskis found in the
register or fullword assigned by the ECB= parameter. If the task has been set
ready-to-run, as described above for the ECB parameter, this registeris not set.

m Register m contains the address of the TCE of the initiated taskis placedinthe
register or fullword assigned by the TCEADDR parameter.

#ATTACH Example

Example

The example shown below of the #ATTACH statement performs the followingfunctions:

m TaskMENU3 isinitiated and added to the system dispatchinglistwith a priority
setting of 150.

m WPLISTis the work area where the system builds the parameter list.

m Register 3 is designated to receive the address of the ECB for the initiated task from
the system.

102 DML Reference Guide for Assembler

@BIND PROC—establishes communication

m Control will be returned to the exit routine MENERR ifthe attach cannotbe serviced
for any of the optional conditions associated with the COND parameter.

#ATTACH TSKCD='MENU3',PLIST=WPLIST,PRI=150,ECB=(3),COND=ALL, *
ERROR=MENERR

@BIND PROC—establishes communication

The @BIND PROC statement establishes communication between a programand a
DBA-written databaseprocedure (for example, a security routine). You should usethis
statement only when the application programis required to pass more information to
the procedure than is provided by CA IDMS/DB itself.Such instances areunusual;in
most cases, you will notbe aware of which procedures gain control before or after the
various DML functions.

@BIND PROC Syntax

»»—— @BIND PROC=procedure-name

v

»— ,COMAREA=procedure-control-location

M

IDMSDB--@BIND PROC Parameters
PROC=

Establishes addressability for the specified database procedurein program variable
storage.

procedure-name

Must refer to an 8-character literal aligned on a fullword boundary.

COMAREA=

Identifies the programstorage location to which the named procedure will be
bound.

procedure-control-location

Must identify a 256-byte (fixed-length) area.

A programrunningin a different partition than the central version may need to pass
certaininformation to the databaseprocedure. When the DBMS invokes the database
procedure, this informationis copied fromthe program storage area, identified by
procedure-control-location, into the CA IDMS/DB application programinformation block.
The information passedis the information in the program storage location atthe time
the BIND PROC was performed; itis not the informationinthe program's storage atthe
time of the procedure call.

Chapter 5: Data Manipulation Language Statements 103

@BIND REC—establishes addressability for a record

@BIND PROC Status Codes

After completion of the BIND PROC function, the ERRSTAT field inthe IDMS
communications blockindicates the outcome of the operation. The followingis a list of
the acceptablestatus codes for this function and their corresponding meaning:

0000
The request has been serviced successfully.
1400

The @BIND PROC statement cannotbe recognized. This code usuallyindicates that
the IDMS communications block (SUBSCHEMA-CTRL) is not aligned on a fullword
boundary.

1418
The procedure has been bound improperlyto location 0.
1472

The memory availableis insufficientto load dynamically thedatabase procedure.

@BIND PROC Example

The following example of the @BIND PROC statement specifies thatregister 8 contains
the name of the database procedure to receive information from the program's variable
storage area labeled DBPASS:

@BIND PROC=(R8), COMAREA=DBPASS

@BIND REC—establishes addressability for a record

The @BIND REC statement establishes addressability for a recordinvariablestorage.In
most cases, you do not need to issueindividual @BIND REC statements, sincethe
necessary statements typicallyaregenerated as a group by the @ COPY
IDMS,SUBSCHEMA-BINDS statement see Assembler DML Coding Considerations (see
page 399). However, you canissuethese statements separately as necessary.

For example, sincethe @COPY IDMS,SUBSCHEMA-BINDS statement does not verify that
each recordis bound successfully,youmay wishto issuean @BIND REC s tatement for
each record and to check the ERRSTAT fieldinthe IDMS communications block after
each @BIND REC statement. You canalsoissueseparate @BIND REC statements to bind
several records to the same storage location.Inany case,you must establish
addressability for each subschema record to be used by the program.

104 DML Reference Guide for Assembler

@BIND REC—establishes addressability for a record

Note: If programregistrationis in effect, you should codea @COPY
IDMS,SUBSCHEMA-BINDS statement to properly assigntheprograms to the subschema
control block. Otherwise your program must explicitly initialize the PGNAME fieldin the
IDMS communications block before the @BIND SUBSCHEMA and @BIND REC
statements are executed.

@BIND REC Syntax

»»—— @BIND REC=record-name

v

X

»—— ,IOAREA=record-location

@BIND REC Parameters

REC=record-name

Binds the named record to a locationinvariablestoragethat corresponds to the
record description copiedinto the program. Record-name must specify a record
includedinthe subschema.

IOAREA=record-location

Identifies the specificlocationintheprogram's variablestorageto which the record
is bound.

Note: Use carewith this option becausesource-object mismappingcanresultfrom
improper use. In cases where the description of a given CA IDMS/DB record is
present in more than one locationinvariablestorage, you must ensure that the
proper record descriptionis bound atthe proper time.

@BIND REC Status Codes

After completion of the @BIND REC function, the ERRSTAT field in the IDMS
communications blockindicates the outcome of the operation. The followingis a list of
the acceptablestatus codes for this function and their corresponding meaning:

0000
The request has been serviced successfully.
1408

The name record is notinthe subschema.The program has probablyinvoked the
wrong subschema.

1418

The record has been bound improperly to location 0.

Chapter 5: Data Manipulation Language Statements 105

@BIND SUBSCH—helps the run unit

@BIND REC Example

The following example of the @BIND REC statement establishes addressability for the
databaserecord EMPLOYEE to the program's variablestoragearea labeled EMPLOYE:

@BIND REC='EMPLOYEE',IOAREA=EMPLOYE

@BIND SUBSCH—helps the run unit

The @BIND SUBSCH statement performs the following:
m Signson the run unitto the DBMS

m |dentifies the location of optional user-specified IDMS and LRC communication
blocks to the DBMS

m Names the subschema to be loaded for the run unit

m Names the Distributed Database System (DDS) node under which the run unit will
execute

m |dentifies the databaseto be accessed

You must code the @BIND SUBSCH statement as the first DML statement inthe
program thatis passedto CA IDMS/DB at execution time. This statement must be first
both logically and physically; you cannotbranchto @BIND SUBSCH.

In most cases, specific designation of @BIND SUBSCH withinanapplication programis
not necessarysincethe @COPY IDMS,SUBSCHEMA-BINDS statement (see @COPY IDMS
(see page 411)) automaticallyinvokes the necessary @BIND statements.

Note: If programregistrationis in effect, the @ COPY IDMS,SUBSCHEMA-BINDS
statement is required to properly assign the programs to the subschema control block.
Individual @BIND SUBSCH and @BIND REC statements should not be used if program
registration was enabled during system generation.

106 DML Reference Guide for Assembler

@BIND SUBSCH—helps the run unit

@BIND SUBSCH Syntax

»»—— @BIND SUBSCH=subschema-name

v

v

, PGMNAME=program-name |

v

L ,LRC=1Ir-control-block-1location -

v

L ,LRSIZ=Z/’-conl'rol-block—size—-|

v

- L ,DBNAME=database-name-pointer |

v

- L ,DBNODE=nodename-pointer -

v
v

,DICINAM=d7ictionary-name-pointer i

v
i

X

,DICTNOD=d7ctionary-nodename-pointer .

@BIND SUBSCH Parameters
SUBSCH=
Signs on the application programto CA IDMS/DB.
subschema-name

Identifies the subschema in use. The run unituses the standard IDMS
communications block brought previously into the program by compiler-directive
statements.

PGMNAME=program-name
Identifies the user program.
LRC=lIrc-block-location

Identifies the address of a logical-record request control (LRC) block other than that
broughtinto the program by the DML precompiler. The definition of this
user-specified subschema control area mustbe consistentwith the standard
SSLRCTL blockas normallyinvoked and used.

LRSIZ=Irc-block-size

Specifies the size of that portion of the LRC block that contains information about
the request's WHERE clause. Lrc-block-size defaults to 576 bytes. For the algorithm
for calculating Irc-block-size, see @COPY IDMS (see page 411).

Chapter 5: Data Manipulation Language Statements 107

@BIND SUBSCH—helps the run unit

DBNAME=

Identifies the databaseto be accessed by the program. If this parameter is
specified, database-name may be overridden by IDMSOPTI module or SYSCTL file
specifications.

database-name

Must specify a register that points to the name of the database,a 1- to 8-character
field, or a quoted literal.

DBNODE=

Optionally names the node that will servicedatabaserequests issued by the
program. If this parameter is specified, nodename may or may not be overridden by
IDMSOPTI module or SYSCTL filespecifications (z/0Sand 0S/390 only).

nodename-pointer

Must be a register that points to the name of the node, a 1- to 8-characterfield, or
a quoted literal.

DICTNAM=
The dictionary thatcontains the subschema.
dictionary-name-pointer

Either a register that points to the field that contains the dictionarynameor a
quoted literal.

DICTNOD=
The dictionary nodethat contains the subschema.
dictionary-nodename-pointer

Either a register that points to the field that contains the name of the dictionary or
a quoted literal.

@BIND SUBSCH Status Codes

Status Codes

After completion of the @BIND SUBSCH function, the ERRSTAT field inthe IDMS
communications blockindicates the outcome of the operation. The followingis a list of
the acceptablestatus codes for this function and their corresponding meaning:

0000
The request has been serviced successfully.
1400

The @BIND SUBSCH statement cannot be recognized. This code usuallyindicates
that the IDMS communications block (SUBSCHEMA-CTRL) is not alignedona
fullword boundary.

108 DML Reference Guide for Assembler

@BIND SUBSCH—helps the run unit

1467
The subschema invoked does not match the subschema objecttables.
1469

The run unitis not bound to the DBMS. This code indicates thatthe central version
is not activeor is not accepting new run units, or that the run unit's connection to
the central versionis broken due to timeout or other factors, as noted on the CV
log.

1470

The journal filewill notopen (local mode only); under OS, the most probablecause
is that a DD statement for the journal fileis missinginthe JCL.

1472

The availablememory is insufficientto dynamicallyload a subschema or database
procedure.

1473
The central versionis not accepting new run units.
1474
The subschema was not found in the dictionaryload area orinthe loadlibrary.
1477
The run unithas been bound previously.
1480

The node specifiedinthe NODENAME clauseeitheris not activeor has been
disabled fromthe communications network.

1481
The databasespecifiedinthe CA IDMS network clauseis notknown to CA IDMS/DB.
1482

The named subschema is notallowed under the databasespecifiedinthe DBNAME
clause.

1483

The availablememory is insufficientto allocate native VSAM work areas.

Chapter 5: Data Manipulation Language Statements 109

#BIND TASK—initiates a DC/UCF task

@BIND SUBSCH Example

The following example of the @BIND SUBSCH statement signs onthe application
program EMPUPD to CA IDMS/DB, identifies the subschema EMPSS01, and identifies the
address in programvariablestorage of the user-specified communications block
EMPCTRL:

@BIND SUBSCH='EMPSSO1',SCB=EMPCTRL, PGMNAME="EMPUPD'

#BIND TASK—initiates a DC/UCF task

The #BIND TASK statement initiates a DC/UCF task when the operating mode is
DC-BATCH. This statement establishes communication with the system and, ifaccessing
DC/UCF queues and printers, allocates a packet-data movement buffer to contain the
queue or printer data.Once a taskis started, the program canissueany number of
consecutive BIND-READY-FINISH sequences.

#BIND TASK Syntax

#BIND TASK

v

label

M

L ,NODE=nodename]

#BIND TASK Parameters
,NODE=
Specifies the 1-to 8-character name of the node to which the taskwill be bound.
nodename

Either the symbolic name of a user-defined field that contains the nodename or the
nodename itself enclosed in quotation marks. The specified nodename must match
the node named inthe nodename statement at system generation.

#BIND TASK Status Codes

After completion of the BIND TASK function, the status field in the IDMS
communications blockindicates the outcome of the operation.

110 DML Reference Guide for Assembler

#CHAP—changes the dispatching priority

#BIND TASK Example

The following statement establishes communication with a DC/UCF system:

#BIND TASK.

#CHAP—chandes the dispatching priority

The #CHAP statement changes the dispatching priority of the issuing task. #CHAP does
not relinquish control to another taskand cannot be used to alter the priority of other

tasks.
#CHAP Syntax
H#CHAP PRI=priorit ><
L aver P Y T acTIon- SET <
ADD
SUBTRACT —

#CHAP Parameters
PRI=
Specifies a new dispatching priority for the issuingtask.
priority

A register that contains the priority in the low-order byte, the symbolic name of a
user-defined field that contains the priority, or an absoluteexpressioninthe range
0 through 240.

ACTION=

Specifies the meaning of the priority value usingone of the following options:
SET

The priorityis anabsolutevalue.SET is the default.
ADD

The priorityis arelativevalueandis added to the task's current priority.
SUBTRACT

The priorityis arelativevalueandis subtracted from the task's currentpriority.

Chapter 5: Data Manipulation Language Statements 111

@COMMIT—commits changes made to the database

#CHAP Status Codes

The change-priority requestis unconditional;any return code other than X'00' will result
inanabend of the task.

#CHAP Example

The following example of the #CHAP statement changes the dispatchingpriority to one
less than the current dispatching priority:

#CHAP PRI=1, ACTION=SUBTRACT

@COMMIT—commits changes made to the database

The @COMMIT statement commits changes made to the databaseby anindividualrun
unit. @COMMIT simulates an @FINISH-@BIND-@READY sequence without relinquishing
control of databaseresources.

Ifthe rununitis sharingits transaction with another database session, the run unit's
changes may not be committed at the time the @ COMMIT statement is executed.

Note: For more information aboutthe impact of transaction sharing, see the
Navigational DML Programming Guide.

Currency

Specifying @ COMMIT ALL sets all currencies to null.

@COMMIT Syntax

M

@COMMIT Parameters
ALL

Releases record locks and sets all currenciesto null.

@COMMIT Status Codes

The only acceptablestatus code returned for an @ COMMIT functionis 0000.

112 DML Reference Guide for Assembler

#COMMIT—commits changes made to the database

#COMMIT—commits changes made to the database

#COMMIT Syntax

The #COMMIT statement commits changes made to the databasethrough anindividual
run unitor through all databasesessions associated with a task. A task-level commit also
commits all changes madein conjunctionwith scratch, queue and printactivity.

All locks held on current records except for selectlocks arereleased. #COMMIT
simulates an #FINISH/@BIND/@READY sequence but does not relinquish control of
databaseresources.

Ifthe commit applies toanindividual rununitandthe run unitis sharingits transaction

with another databasesession, the run unit's changes may not be committed at the
time the #COMMIT statement is executed.

Note: For more information aboutthe impact of transaction sharing, see the
Navigational DML Programming Guide.

Run units (and SQL sessions)impacted by the COMMIT statement remain active after
the operationis complete.

The #COMMIT statement is used in both the navigational and logical record facility

environments. The #{(OMMIT TASK statement is alsousedinan SQL programming
environment.

Currency

Specifying #COMMIT ALL sets all currenciesto null.

v

L gaper J

M

»—— #COMMIT
L oask 4 LA J

#COMMIT Parameters

#COMMIT Status Codes

@CONNECT—establishes a record occurrence

The @CONNECT statement establishes a record occurrenceas a member of a set
occurrence. The specified record must be defined as an optional automatic, optional
manual, or mandatory manual member of the set.

Chapter 5: Data Manipulation Language Statements 113

@CONNECT—establishes a record occurrence

Note: Native VSAM users—The @CONNECT statement is notvalidsinceallsetsin
native VSAM data sets must be defined as mandatory automatic.

Currency

Before execution of the @ CONNECT statement, you must satisfy the following
conditions:

m All areas affected either explicitly orimplicitly by the @ CONNECT statement must
be readiedin one of the update usagemodes (see @READY (see page 308) laterin
this chapter).

m The named record must be established as currentofits record type.

m The appropriateoccurrenceof the set into which the named record will be
connected must be established. The current record of set determines the set
occurrence. Ifthe set order is NEXT or PRIOR, this record determines the position of
the new member within the set.

Following successful execution of the @ CONNECT statement, the named record is
current of run unit, its record type, its area,and all sets in whichitcurrently participates.
The followingfigureillustrates the steps required to connect an EMPLOYEE record to an
occurrence of the OFFICE-EMPLOYEE set.

114 DML Reference Guide for Assembler

@CONNECT—establishes a record occurrence

To connect EMPLOYEE 459 to the OFFICE 1 occurrence of the OFFICE- EMPLOYEE set,
you must establish EMPLOYEE 459 as current of record type, locatethe proper
occurrence of the OFFICE record, and connect EMPLOYEE 459 to the OFFICE-EMPLOYEE

set.
CURRENCIES:
RUN UNIT, RECORD, SET, AREA

MVC DEPTID,DEPTIN
@FIND CALG, REC='DEPARTMENT* | 2000 | 2000 2000 2000
@OBTAIN FIRST,
SET - 'DEPT-EMPLOYEE" 69 [2000 | 69 | 69 | 69 2000 | 69
@OBTAIN NEXT,
SET ="DEPT-EMPLOYEE" 100 | 2000 100 100 100 | 2000 100
@OBTAIN NTH, 106 | 2000 106 106 106 [2000 1086
SET ="DEPT-EMPLOYEE", QCCUR = FIVE

OBTAIN MEXT, E :
EET:'DEPT-EMPLOYEE' 2000 | 2000 | 106 | 2000 | 106 | 2000 | 106 EOF;IT;);HU';TATUQ

Chapter 5: Data Manipulation Language Statements 115

@CONNECT—establishes a record occurrence

CURRENCIES:
RUM UNIT, RECORD, SET, AREA

MVC DEFTID, DEFTIM

@FIND CALC, REC ="DEPARTMENT"

@OBTAIN FIRST,

SET = "OFFICE-EMPLOYEE

458 | 5200 | 459 459 5200 | 459
SET="DEPT-EMPLOYEE'
MVC QFFCODE,QFFCQADIM 1| 5200 459 1 459 1 1 459
@FIND CALC, REC = "OFFICE’
@CONMECT REC ="EMPLOYEE' 459 | 5200 459 1 459 459 1 453

@CONNECT Syntax

»»—— @CONNECT REC=record-name

»— ,SET=set-name

v

@CONNECT Parameters

REC=

)

Connects the current occurrence of the named record to the current occurrence of

the specified set.

record-name

SET=

Must be arecord included in the subschema and must be defined as an optional
automatic, optional manual, or mandatory manual member of the setto whichitis
being connected. Record-name may be specified as a register, a user-defined
variabledata field, or a user-supplied valuein quotation marks.

Specifies the set to which the member record is to be connected.

116 DML Reference Guide for Assembler

@CONNECT—establishes a record occurrence

set-name

Must specifya set included inthe subschema.The recordis connected to the set in
accordancewith the ordering rules defined for that setinthe schema. Set-name
may be specified as a register,a user-defined variabledata field, or a user-supplied
valuein quotation marks.

@CONNECT Status Codes

Status Codes

After completion of the @ CONNECT function, the ERRSTAT field inthe IDMS
communications blockindicates theoutcome of the operation. The followingis a list of
the acceptablestatus codes for this function and their corresponding meaning:

0000

The request has been serviced successfully.
0705

The @CONNECT would violatea duplicates-not-allowed option.
0706

Currency has not been established for the named record or set.
0708

The specified recordis notinthe subschema.The programhas probablyinvoked
the wrong subschema.

0709

The named record's area has not been readied in one of the three update usage
modes.

0710

The subschema specifies anaccess restriction that prohibits connecting the named
record inthe named set.

0714

The @CONNECT statement cannot be executed because the named record has
been defined as a mandatoryautomatic member of the set.

0716

The record cannotbe connected to a setinwhich itis alreadya member.

Chapter 5: Data Manipulation Language Statements 117

#DELETE—notifies the DC/UCF system

0721

An area other than the area of the named record has been readied with an
incorrectusage mode.

0725

Currency has not been established for the named set type.

@CONNECT Example

The following statements connect an EMPLOYEE record from the DEPT-EMPLOYEE set to
the OFFICE-EMPLOYEE set as a new member.

MvC DEPTID,=C'5200"

@FIND CALC, REC="DEPARTMENT"

@OBTAIN FIRST,SET='DEPT-EMPLOYEE'

MVI OFFCODE,C'1"

@FIND CALC,REC='OFFICE'

@CONNECT REC='EMPLOYEE',SET="'0FFICE-EMPLOYEE'

#DELETE—notifies the DC/UCF system

The #DELETE statement notifies the DC/UCF system that the issuingtaskhas finished
usinga module from the program pool.This moduleis identified by the program name
or entry-point address that was previously specified by the #LOAD request that placed
the module into the program pool.If your siteuses multipledictionaries you can specify
either the dictionaryinwhichtheprogram resides or the node that controls the
dictionary. Other options for a multipledictionary environment include specifyinga
parameter listand a programversion number for the program you are requesting to
delete.

HDELETE does not physically delete the module from the program pool unless the
program has been defined as NONREUSABLE. Rather, it decrements the in-usecount
maintained by the DC/UCF system. An in-usecount of O indicates to the system that the
spaceoccupied by the module canbe reused.

118 DML Reference Guide for Assembler

#DELETE—notifies the DC/UCF system

#DELETE Syntax

v

L zaper J

— #DELETE—E P@M=program-name-pointer]
EPADDR=entry-point-address

L ,PLIST= T SYSPLIST « —_|J
parameter-1list-pointer

L .DICTNOD=nodename-pointer -

v

v

v

)4

L ,DICINAM=d7ctionary-name-pointer —I

#DELETE Parameters

PGM=
Specifies the 1-to 8-character name of the module being released from use.
program-name-pointer

A register that points to a field containingthe program name, the symbolic name of

a user-defined field containing the program name, or the program-name literal
enclosedin quotation marks.

EPADDR=

Specifies the entry-point address of the module being released from use. This
address was returned to the issuing programwhen the module was originally
loaded.

entry-point-address

Either a register or the symbolic name of a fullword user-defined field containing
the entry-point address.

PLIST=

Specifies the location of the storagearea the system uses to build the parameter

list. The PLIST parameter is required only if the DICTNAM or DICTNOD parameters
are specified.

SYSPLIST

The symbolic name of the storage area in which the system will build the #DELETE
parameter list.

parameter-list-pointer

A register that points to the area in which the system will build the #HDELETE
parameter listor the symbolic name of that area.

DICTNOD=

Identifies the node that controls the dictionaryin which the program resides.

Chapter 5: Data Manipulation Language Statements 119

#DELETE—notifies the DC/UCF system

nodename-pointer

A register that points to a field that contains the name of the node, the symbolic
name of a user-defined field containing the name of the node, or the nodename
literal enclosedin quotation marks.

DICTNAM=
Identifies the dictionaryin which the named program resides.
dictionary-name-pointer

A register that points to a field containing the dictionary name, the symbolic name
of a user-defined field containing the dictionary name, or the dictionary name
literal enclosedin quotation marks.

Note: The DICTNOD or DICTNAM parameters must correspond to those specified on
a previouslyissued #LOAD statement. Ifeither DICTNOD or DICTNAM or both are
specified, the PLIST parameter must be included.

#DELETE Status Codes

The #DELETE requestis unconditional;any error detected duringexecution will resultin
anabend of the issuingtask.

#DELETE Example

The following example of the #DELETE statement notifies the system that the program
or module whose entry-point address is containedinregister 5is no longer needed by
the issuingtask. The system canreuse this area in the program pool if spaceis needed.

#DELETE EPADDR=(R5)
The example shown below illustrates the use of the #LOAD and the #DELETE statements
ina multipledictionary environment. After execution of the #DELETE statement the

areainthe program pool in which EMPMENU resides is released and can be reused by
issuinga new#LOAD request statement.

#LOAD PGM='EMPMENU'

#DELETE PGM='EMPMENU'

120 DML Reference Guide for Assembler

#DELQUE—deletes all orpart ofa queue

#DELQUE—deletes all or part of a queue

The #DELQUE statement deletes all or partof a queue. Ifonly one queue record is
deleted, the system maintains currency within the queue by usingthe next and prior
pointers of the queue record.

#DELQUE Syntax

v

PP'—'_—_J— #DELQUE
label

L ,PLIST= T SYSPLIST « —_l—J
parameter-1list-pointer

»
| 2

v

v

L ,QUEID=queue-id-pointer J

v

» I_ —
,LOC= CURRENT «
L ALL

L
v

L conp= NO <
AL
(—¥—— NQID y—
NRID
NRCE
TOER
INVP

v

L ,NQIDXIT=no-queue-id-1label —|

v

L ,NRIDXIT=no-queue-record-1abel —|

v

L ,NRCEXIT=no-current-of-run-unit-1label —-|

v

L ,IOERXIT=7/0-error-1label —J

v

L ,INVPXIT=7nval id-parameter-1ist-1label i

X

L ,ERROR=error-1abel il

#DELQUE Parameters

PLIST=

Specifies the location of the 2-fullword storagearea in which the system will build
the #DELQUE parameter list.

Chapter 5: Data Manipulation Language Statements 121

#DELQUE—deletes all orpart ofa queue

SYSPLIST

(Default); is the symbolic nameof the storagearea in which the system will build
the #DELQUE parameter list.

parameter-list-pointer
Either a register that points to the area or the symbolic name of the area.
QUEID=

Specifies the 1-to 16-character queue header ID associated with the queue or
queue record to be deleted.

queue-id-pointer

A register that points to a field containingthe id, the symbolic nameof a
user-defined field containingthe ID, or the IDliteral enclosed in quotation marks. If
the queue header IDis not specified,a blankIDis assumed.

LOC=
Indicates the portion of the queue to be deleted.
CURRENT

(Default); deletes onlythe current record of the queue associated with the
requesting task.

ALL
Deletes all records inthe queue and the queue header id.
COND=

Specifies whether this #DELQUE is conditionaland under what conditions control
should be returned to the issuing program:

NO
(Default); specifies thatthe requestis not conditional.
ALL

Specifies that the request is conditional. Control is returned if the delete cannotbe
serviced for one or more of the reasons listed below.

condition

Specifies under what conditions control should bereturned to the issuing program.
Multiplevalues mustbe enclosedin parentheses and separated by commas.
Condition options areas follows:

m NQID—The queue header record cannot be found.

122 DML Reference Guide for Assembler

#DELQUE—deletes all orpart ofa queue

m NRID—LOC=CURRENT has been specified and the record previously established
as current of queue cannot be found.

m NRCE—LOC=CURRENT has been specified and no resource control element
(RCE) exists for the current record; thatis, no record has been established as
current of queue.

m IOER—AnN 1/0 error occurs while processing the delete.
m INVP—The parameter listbuiltfor the #DELQUE is invalid.
NQIDXIT=no-queue-id-label

Specifies the symbolic name of the routine to which control should be returned if
the #DELQUE request cannotbe serviced becausethe queue header record cannot
be found.

NRIDXIT=no-queue-record-label

Specifies the symbolic name of the routine to which control should be returned if
the #DELQUE request cannotbe serviced becausethe record previously established
as current of queue cannot be found.

NRCEXIT=no-current-of-run-unit-label

Specifies the symbolic name of the routine to which control should be returned if
the #DELQUE request cannotbe serviced becauseno current of queue has been
established (noresource control element exists for the queue record).

IOERXIT=i/0-error-label

Specifies the symbolic name of the routine to which control should be returned if
the #DELQUE request cannotbe serviced becauseof an|/O error whileprocessing
the delete.

INVPXIT=invalid-parameter-list-label

Specifies the symbolic name of the routine to which control should be returned if
the #DELQUE request cannotbe serviced becauseof aninvalid parameter in the
parameter list.

ERROR=error-label

Specifies the symbolic name of the routine to which control should be returned ifa
condition specified inthe COND parameter occurs for which no other exit routine
was coded.

#DELQUE Status Codes

By default, the #DELQUE request is unconditional;any runtime error will resultinan
abend of the issuingtask.Toavoid anabend, you canrequest return of control to the
issuing programby usingthe COND parameter.

Chapter 5: Data Manipulation Language Statements 123

#DELQUE—deletes all orpart ofa queue

After completion of the #DELQUE function, the valueinregister 15 indicates the
outcome of the operation.The followingis a listof the Register 15 values and the
corresponding meaning:

X'o0’
The request has been serviced successfully.
X'o4'
The request cannotbe serviced due to an invalid parameter list.
X'o8’
The request cannotbe serviced becausethe requested queue header record
(identified by QUEID) cannotbe found.
x'ocC'
The request cannotbe serviced becausethe requested queue record cannot be
found.
X'10'
The request for a #DELQUE LOC=CURRENT cannot be serviced because no resource

control element (RCE) exists for the queue record, indicating thatcurrency has not
been established.

X'ic'

A databaseerror occurred during queue processing. Acommon causeis a DBKEY
deadlock. For a PUT QUEUE operation, this code canalso mean that the queue
upper limithas been reached.

Ifa databaseerror has occurred, there areusually be other messages inthe
CA-IDMS/DC/UCF logindicatinga problemencountered in RHDCRUAL, the internal
Run Unit Manager. Ifa deadlockhas occurred, messages DC0O01000 and DC001002
arealsoproduced.

Ifan 1/0 error occurs whileprocessing a #DELQUE request, the system will return the
address of the IDMS communications block to register 1. In this situation, you can check
the status code inthe ERRSTAT field (for more information, see ERRSTAT Fieldand
Codes (see page 41)).

#DELQUE Example

The following example of the #DELQUE statement deletes an entire queue area.The
address of the queue header ID is contained in register 4. Inthe event of an I/O error,
control will bereturned to the ERRORS5 routine of the issuing program; other error
conditions willresultinanabend of the issuingtask.

#DELQUE QUEID=(R4),LOG=ALL,COND=IOER, IOERXIT=ERRORS

124 DML Reference Guide for Assembler

#DELSCR—deletes scratch records

#DELSCR—deletes scratch records

The #DELSCR statement deletes one or all scratchrecordsina scratcharea.

#DELSCR Syntax

v

)P‘—Iﬁ— #DELSCR
label

~ LopList= [SYSPLIST « _I'
parameter-value-list-pointer

v

v

L ,SAID=scratch-area-id-pointer]

v

L ,LOC= Next <«
Current
First
Last
Prior
All
(SRID, scratch-record-id-pointer) —

v

L = [
[RTNSRID= —— (1) < =

return-scratch-record-id

L conp= N« ——
E AL —
Y
(=¥—— NAID ——)—

NIRD
IOER
INVP

L ,NAIDXIT=no-scratch-area-id-label]

v

v

v

L ,NRIDXIT=/70—scraz‘ch—record—7'0’—label-—I

\ 4

L ,I0ERXIT=17/0-error-label -

v

L ,INVPXIT=invalid-parameter-list-label—J

M

L ,ERROR=error-label —

Chapter 5: Data Manipulation Language Statements 125

#DELSCR—deletes scratch records

#DELSCR Parameters
PLIST=

Specifies the location of the 3-fullword storagearea in which the system will build
the #DELSCR parameter list.

SYSPLIST

(Default); the symbolic name of the storage area in which the system will build the
H#DELSCR parameter list.

parameter-list-pointer

A register that points to the area or the symbolic name of the area in which the
system will build the HDELSCR parameter list.

SAID=

Specifies the 1-to 8-character ID of the scratch area associated with the scratch
record being deleted.

scratch-area-id-pointer

A register that points to a field containingthe id, the symbolic nameof a
user-defined field containingthe ID, or the ID literal enclosed in quotation marks. If
the SAID parameter is not specified,a scratch area ID of 8 blanks is assumed.

LOC=

Specifies the scratch record to be deleted from the area associated with the
specified scratchrecordid.

NEXT

(Default); deletes the next record. If currency has not been established, NEXT is
equivalentto FIRST.

CURRENT

Deletes the current record, that record most recently referenced by another scratch
function.

FIRST

Deletes the firstrecord. (Records are always stored in ascending order by scratch
record ID.)

LAST

Deletes the lastrecord.
PRIOR

Deletes the priorrecord.If currency has not been established, PRIORis equivalent
to LAST.

ALL

Deletes all records.

126 DML Reference Guide for Assembler

#DELSCR—deletes scratch records

(SRID,scratch-record-id)

Deletes the record identified by scratch-record-id. Scratch-record-id is aregister
that points to the 4-byte scratchrecordid, the symbolic name of a user-defined
field containingtheid, or anabsoluteexpression of the id.

RTNSRID=(1)/

Specifies the location to which the system will return the scratch record ID of the
lastrecord deleted with a #DELSCR function.

return-scratch-record-id

A register or the symbolic name of a fullword user-defined field to which the system
will return the scratchrecord ID of the lastrecord deleted, the defaultis register 1.

COND=

Specifies whether this #DELSCR is conditionaland under what conditions control
should be returned to the issuing program, as follows.

NO
(Default); specifies thatthe requestis not conditional.
ALL

Specifies that the request is conditional. Control is returned if the delete cannotbe
serviced for any of the reasons listed below.

condition

Specifies conditions under which control is returned to the issuing program.
Multiple condition options must be enclosedin parentheses and separated by
commas. Condition options areas follows:

m NAID The scratcharea ID cannotbe found.

m NRID The scratchrecord ID cannotbe found.

m IOER An |/O error occurs while processingthe deletion.

m INVP The parameter listbuiltfor the #DELSCR is invalid.
NAIDXIT=no-scratch-area-id-label

Specifies the symbolic name of the routine to which control should be returned if
the #DELSCR request cannot be serviced because the scratcharea ID cannotbe
found.

NRIDXIT=no-scratch-record-id-label

Specifies the symbolic name of the routine to which control should be returned if
the #DELSCR request cannot be serviced because the scratchrecord ID cannot be
found.

Chapter 5: Data Manipulation Language Statements 127

#DELSCR—deletes scratch records

IOERXIT=i/0-error-label

Specifies the symbolic name of the routine to which control should be returned if
the #DELSCR request cannot be serviced because of an /O error while processing
the #DELSCR request.

INVPXIT=invalid-parameter-list-label

Specifies the symbolic name of the routine to which control should be returned if
the #DELSCR request cannot be serviced because of aninvalid parameter list.

ERROR=error-label

Specifies the symbolic name of the routine to which control should be returned ifa
condition specified inthe COND parameter occurs for which no other exit routine
was coded.

#DELSCR Status Codes

By default, the #DELSCR request is unconditional;any runtimeerror will resultinan
abend of the issuingtask. You canrequest return of control to the issuing program by
usingthe COND parameter to avoidanabend.

After completion of the #DELSCR, the valueinregister 15 indicates the outcome of the
operation. The followingis a list of the Register 15 values and the corresponding
meaning:

X'o0’

The request has been serviced successfully.
X'o4'

The request cannotbe serviced due to an invalid parameter list
X'o8’

The request cannotbe serviced becausethe requested scratch area ID (SAID)
cannot be found.

x'ocC'

The request cannotbe serviced becausethe requested scratchrecordID (SRID)
cannot be found within the named SAID.

X'ic'

The request cannotbe serviced due to an |/O error during processing.

Ifan /0 error occurs while processing a #DELSCR request, the system will return the
address of the IDMS communications block to register 1. In this situation, you can check
the status code inthe ERRSTAT field for more information (see ERRSTAT Field and Codes
(see page 41)). Ifno error occurs during processing, a user-defined register assigned by
the RTNSRID parameter will contain the SRID of the lastscratch record deleted.

128 DML Reference Guide for Assembler

#DEQ—releases resources acquired by the issuing task

#DELSCR Example

The following example of the #DELSCR statement deletes the current record within the
scratch area labeled SCRAREAL. The ID of the deleted record will beplacedinregister 1.
The request is not conditional;any error condition resulting fromthe execution of this
statement will resultinanabend of the issuingtask.

#DELSCR SAID='SCRAREAL',LOC=CURRENT,RTNSRID=(R1), COND=NO

#DEQ—releases resources acquired by the issuing task

The #DEQ statement releases resources acquired by the issuingtask with an #ENQ
request. All acquired resources will bereleased, either explicitly with a #DEQ request or
automaticallyattasktermination.

#DEQ Syntax

v

L zaper J

»—— #DEQ RSCID= T ALL T
resource-id-pointer-options —

v

»

v

L PLIST= T SYSPLIST « _}
parameter-value-list-pointer

T con- NO
s —[R |
TDNF

L ,IDNFXIT=resource-id-not- found-1label]

v

v

)4

L ,ERROR=error-label —|

Expansion of resource-id-pointer-options

I
»—— (—VY— resource—id—-pointer T] |)
,resource-id-length

v

#DEQ Parameters
RSCID=
Specifies the resources to be released.
ALL

Requests that the system releaseall resources acquired by the issuingtask by
means of the #ENQ requests.

Chapter 5: Data Manipulation Language Statements 129

#DEQ—releases resources acquired by the issuing task

resource-id-pointer-options

Specifies the ID associated with a specific resourceto be dequeued.
Resource-id-pointer is a register that points to a field containingthe id, the symbolic
name of a user-defined field containingtheid, or the ID literal enclosedin
qguotation marks. Resource-id-pointer must be enclosedin parentheses.

The optional resource-id-length specifies the length of the resourcelD named by
resource-id-pointer (up to 256 bytes). Resource-id-length is a register that contains
the length, the symbolic name of a fullword, halfword, or byte-length user-defined
field containingthe length, or an absolute expression.The length of the ID need not
be specified if resource-id-pointer is provided as a literal enclosed in quotation
marks.

Multiple RSCID parameters must be insuccessiveorder,separated by commas.
PLIST=

Specifies the location of the storagearea in which the system will build the #DEQ
parameter list,as follows.

SYSPLIST

(Default); is the symbolic nameof the storagearea in which the system will build
the #DEQ parameter list.

parameter-value-list-pointer

A register that points to the area or the symbolic name of the area in which the
system will build the #HDEQ parameter list.

The size, in fullwords, of the parameter-listarea is equal to:
1+ 2P+ ((R+ 3)/4),
where:

m Pisthe number of resource-id specifications named for the RSCID parameter
(described above).

m Risthenumber of resource-id-length specifications namedin register notation
for the RSCID parameter.

If RSCID=ALL is specified, the length of this storageareais one fullword;if five
resource ids arespecified and four have a length indicated in register notation, itis
13 fullwords. (Note that in this casethe calculated valueof 12.75 was rounded up
to a whole number.)

COND=

Specifies whether this #DEQ is conditional and under what conditions control
should be returned to the issuing program:

NO

(Default); specifies thatthe requestis not conditional.

130 DML Reference Guide for Assembler

#DEQ—releases resources acquired by the issuing task

IDNF

Specifies that the request is conditional. Control is returned if one or more resource
ids identified by the RSCID parameter cannot be found.
IDNFXIT=resource-id-not-found-label

Specifies the symbolic name of the routine to which control should be returned if
the #DEQ request cannot be completely serviced becauseone or more resource ids
cannot be found.

ERROR=error-label

Specifies the symbolic name of the routine to which control should be returned ifa
condition specifiedinthe COND parameter occurs for which no other exit routine
was coded. Inthis case, the ERROR parameter functions the same as IDNFXIT.

#DEQ Status Codes

By default, the #DEQ is unconditional. Error conditionsthatcan occur aredescribed
below. If one or more resources cannot be found, the issuingtaskwillabend. You can
avoid anabend by specifyingthe COND parameter, requesting the DC/UCF system to
return control to the issuingprogram.

After completion of the #DEQ request, the valueinregister 15 indicates the outcome of
the operation. The followingis a listof the Register 15 values and the corresponding
meaning:

X'00'
The request has been serviced successfully.

X'o4’'

#DEQ Example

The following example of the #DEQ statement releases the resourcethat is identifiedin
the program variablestoragefield labeled RESOURC3. Register 4 contains the length of
the resource. Ifthe resourcecannot be found, control will bereturned to the routine
NOTFOUND.

#DEQ RSCID=(RESOURC3, (4)),COND=IDNF, IDNFXIT=NOTFOUND

At leastone resourcelD (RSCID) could not be found; all thatwere located have
been dequeued.

Chapter 5: Data Manipulation Language Statements 131

@DISCON—cancels the current membership of a specified record

@DISCON—cancels the current membership of a specified

record

@DISCON Syntax

The @DISCON statement cancels the current membership of a specified recordina set
occurrence. The specified record must be defined as an optional member of the named
set.

Note: Native VSAM users—The @DISCON statement is not valid becauseallsetsin
native VSAM data sets must be defined as mandatory automatic.

The followingconsideration apply:

m All areas affected, either explicitly or implicitly, by the @DISCON statement must be
readied with one of the update usage modes (see @READY (see page 308)laterin
this chapter).

m After successful execution of the @DISCON statement, you can no longer access the
specified record through the set for which membership was canceled. However,
you canaccess the disconnected record through all theother sets inwhichit
participates as a member, orif ithas alocation mode of CALC. Itis always accessible
by means of a complete scan ofthe area inwhich itparticipates or directly through
its db-key, if known.

Currency

Before execution of the @DISCON statement, the followingcurrency-related conditions
must be satisfied:

m The specified record must be established as currentof its record type.

m The specified record must currently participateas a member inan occurrence of

the named set.

A successfully executed @DISCON statement nullifies currencyinthenamed set.
However, the next of set and prior of set are maintained, thereby enabling continued
access within the set. The disconnected record is currentof run unit, its record type, and
its area.

»»—— @DISCON REC=record-name

v

»— ,SET=set-name

M

132 DML Reference Guide for Assembler

@DISCON—cancels the current membership of a specified record

@DISCON Parameters
REC=
Disconnects the specified record from the named set.
record-name

Must be a record included in the subschema and must be defined as an optional
member of the specified set.

SET=
Specifies the set from which the named record will be disconnected.
set-name

Must be a set includedinthe subschema.

@DISCON Status Codes

After completion of the @DISCON function, the ERRSTAT field inthe IDMS
communications blockindicates the outcome of the operation. The followingis a list of
the acceptablestatus codes for this function and their corresponding meaning:

1106
Currency has not been established for the named record.

1108

The named record is notinthe subschema.The program has probablyinvoked the
wrong subschema.

1109

The specified record's area has not been readied in one of the three update usage
modes.

1110

The subschema specifies anaccess restriction thatprohibits use of the @DISCON
statement.

1115

The @DISCON statement cannot be executed because the specified record has
been defined as a mandatory member of the set.

1121

An area other than the area of the specified record has been readied with an
incorrectusage mode.

1122

The specified recordis not currently a member of the specified set.

Chapter 5: Data Manipulation Language Statements 133

@DISCON—cancels the current membership of a specified record

@DISCON Example

DEPARTMEN
200

The following example demonstrates the use of the @DISCON statement to remove an
EMPLOYEE record from the OFFICE-EMPLOYEE set occurrence. The EMPLOYEE record
remains a member inthe other set occurrences inwhich itparticipates:

MvVC OFFCODE,=CL4'3200'

@FIND CALC,REC='OFFICE'

@FIND FIRST,REC='EMPLOYEE',SET='0FFICE-EMPLOYEE'
@DISCON REC='EMPLOYEE',SET='0FFICE-EMPLOYEE'

The followingfigureillustrates theabove example. To disconnect EMPLOYEE 4 from the
OFFICE 1 occurrence of the OFFICE-EMPLOYEE set, enter the databaseon OFFICE 1,
establish EMPLOYEE 4 as current of the EMPLOYEE record type, and disconnectitfrom
the OFFICE-EMPLOYEE set.

DEPARTMEMT OFFICE
J— 0 |F Iss Joac I B
1 DEFTAD-0416 fon OFFICE-GODE (460 |on
ORG-DEMO-REGION OHG-DEMO-REGION

EMPLOYEE
329

DEFT-EMPLOVEE

WP O

ASCEMP-LAST-HAME-D48 15
EBP-FIRST-MAME-041%) QL

CFFICE-EMPLOYEE
100 iy
ASCIEMP-LAST-HAME-(04 15

EMP-FIRST-MARE-0416) DL

r
EMPLOVEE
as [F Jne Joac
EMP-ID-0415 Jon
EMP-DEMO-REGHIN

CURREMCIES:
RUMN UMIT, RECORD, SET, AREA

MVC OFFCODE,OFFCODIN
@FIND CALC, REC ="OFFICE’

@FIND ="OFFICE-EMPLOYEE", FIRST,

REC ="EMPLOYEE" 4 4 1 4 4 4
@DISCON REG — EMPLOYEE",
SET = "OFFIGE-EMPLOYEE’ 4 4 1 4 | NPO 1 4

134 DML Reference Guide for Assembler

#ENQ—acquires resources or tests for availability

#ENQ—acquires resources or tests for availability

The #ENQ statement acquires resources or tests for availability of a resource or list of
resources. Defined duringinstallation, resources can bestorageareas, common
routines, queues, and processor time.

An enqueued resourcecan be exclusiveorshared:

m Exclusive specifies thatthe resourceis owned exclusively bythe issuingtaskandis
not availableto any other tasks.The system prohibits other tasks from issuing #ENQ
requests for exclusiveresources.

m Shared specifies thatthe resourceis availablefor useby all tasks. The system allows
other tasks to issuenonexclusive HENQ requests for the resources, permitting the
resources to be shared.

An exclusive #ENQ request prohibits another task from enqueuing a resource by name;
however, itdoes not prohibitthe use of the resource by another task. Therefore, to
effect queue resource protection, you must apply the enqueue/dequeue mechanism
consistently,accordingto yoursite standards.

#ENQ Syntax

v

>>—lﬁ— #ENQ RSCID=
label

»—— (resource-id-pointer T N)
, resource-id-length l: E 4_"

v

v

~ L pList= [SYSPLIST « J'
parameter-value-1ist-pointer

,TYPE= T :_?(E:(S)_lIJ_IRE <]—|

,COND= NO €« —————
—
(= RSNA)—

,RSNAXIT=resource-not-available-1abel]

v

v
I_

v

B

L
v

v
v

v

,DEADXIT=deadlock-1abel -

v
v

,ERROR=error-label i

v

v
] r]

M

 FREEXIT=test- is-free-label —

Chapter 5: Data Manipulation Language Statements 135

#ENQ—acquires resources or tests for availability

#ENQ Parameters
RSCID=

Names one or more resources to be acquired or tested, specifies thelength of each
resource, and designates the resource as exclusiveor shared.

resource-id-pointer

Specifies the character ID associated with a resource. The resource-id-pointer can
be a register that points to a field that contains the ID, he symbolic nameof a
user-defined field that contains the ID, or the ID literal enclosed in quotation marks.
The source-idis a1to 256 byte character string used to identify the resource upon
which an enqueue is tobe set or tested. Any character stringmay be defined as
longas all programs thataccess the resource use the same name and the name is
unique relativeto all other names used to identify other resources within the CV.

resource-id-length

Specifies the length of the resource id. Resource-id-length is a register that contains
either the length, the symbolic nameof a fullword, halfword, or byte-length
user-defined field that contains the length, or an absolute expression. You need not
specify the length of the IDif resource-id-pointer is provided as a literal enclosedin
qguotation marks.

E/S
Assigns the exclusive (E) (default) or shared (S) attribute to the named resource.

Note: Multiple RSCID parameters must be insuccessiveorder, separated by
commas.

PLIST=

Specifies the location of the storagearea in which the system will build the #ENQ
parameter list.

SYSPLIST

(Default); is the symbolic nameof the storagearea in which the system will build
the #ENQ parameter list.

parameter-value-list-pointer

Either a register that points to the area or the symbolic name of the area in which
the system will build the #ENQ parameter list.

The size of the parameter-listarea,in fullwords,is equal to:
1+ 3P+ ((R+ 3)/4)
where:

m Pisthe number of resource-id specifications intheRSCID parameter (described
above).

m Risthenumber of resource-id-length specifications namedin register notation
for the RSCID parameter.

136 DML Reference Guide for Assembler

#ENQ—acquires resources or tests for availability

Thus, if four resource|Ds are specified and three are identified usingregister
notation, the length of this storageareais 15 fullwords. In this casethe calculated
valueof 14.5 was rounded up to a whole number. Calculated values arealways
rounded up to the nearest whole number, regardless of the remainder value.

TYPE=

Specifies whether the issuingtaskis totest a resourcefor availability or request
acquisition of a resource:

ACQUIRE

(Default); requests that the system acquirethe specified resources.
TEST

Requests that the system test the availability of the specified resource.
COND=

Specifies whether this #£ENQ request is conditionaland under what conditions
control should be returned to the issuing program.Onlyacquirerequests can be
conditional;this parameter should notbe specified when testing the enqueue
status of a resource.

NO
(Default); specifies thatthe requestis not conditional.
ALL

Specifies that the request is conditional. Control is returned if the #£ENQ cannotbe
serviced for any of the reasons listed below.

condition

Specifies specific conditions you can test for. Multiple conditions mustbe enclosed
in parentheses and separated by commas.

RSNA

Specifies that control is returned if any of the requested resources is not availablein
the usage mode requested.

DEAD

Specifies that control is returned if a requested resourcecannot be enqueued

immediately becauseof an unavailablecondition,and or to wait would causea
deadlock.

RSNAXIT=resource-not-available-label

Specifies the symbolic name of a routineto which control should be returned ifthe
HENQ request cannot be serviced becauseat leastone of the requested resources is
not available.

Chapter 5: Data Manipulation Language Statements 137

#ENQ—acquires resources or tests for availability

DEADXIT=deadlock-label

Specifies the symbolic name of a routineto which control should be returned ifthe
#ENQ request cannot be serviced because one of the requested resources cannot
be enqueued immediately, andifto waiton its availability would causea deadlock.

ERROR=error-label

Specifies the symbolic name of the routine to which control should be returned ifa
condition specifiedinthe COND parameter occurs for which no other exit routine
was coded.

FREEXIT=test-is-free-label

(Test requests only); specifies the symbolic name of a routine to which control
should be returned ifat leastone of the resources is free.

#ENQ Status Codes

By default, an acquire #ENQ is unconditional. Error conditionsthatcan occurare
described below:

m Aresource-not-availablecondition, caused when at leastone of the resources
cannot be acquired by the issuingtask, will resultina delay until theresource
becomes available (unless such a waitwould causea deadlock).

m A potential deadlock condition, caused when a waiton a resourcewould causea
deadlock, will resultinanabend of the issuingtask.

You canrequest return of control with the COND parameter while processinganacquire
H#ENQ to avoid a delayor anabend.

By default, a test #£NQ is unconditional. The return code, containedinregister 15,
indicates the outcome of the test. Control is returned to the next instructioninthe
issuing programfollowing the #ENQ. Through the FREEXIT parameter, however, you can
request a return of control to a specificlabel or routinein the event thatatleastone of
the resources tested is free.

After completion of the #ENQ request, the valuein register 15 indicates the outcome of
the operation.
X'00'

ACQUIRE - All requested resources have been acquired.

TEST - All test resources have already been enqueued by the issuingtask with the
exclusive/shared option indicated by the test request.

138 DML Reference Guide for Assembler

#ENDPAG—terminates a map paging session

X'o4’

ACQUIRE-At leastone of the resources indicated is currently owned by another task

andis notavailablefor the exclusive/shared option specified; no new resources
have been acquired.

TEST- At leastone of the tested resources is owned by another taskandis not
availableto this task for the exclusive/shared option specified.

X'08'
ACQUIRE -Not applicable.

TEST - At leastone of the tested resources is not already owned by any taskandis
availablefor the exclusive/shared option specified.

X'oc'
ACQUIRE - Arequested resourcecould not be enqueued immediately and to wait
would causea deadlock;no new resources havebeen acquired.

TEST - Not applicable.

#ENQ Example

The following example of the #ENQ statement tests for the availability of a resource.
Register 5 contains the address of the field that contains the resourceid, the
user-defined field LENGTH contains the length of the resourceid,and if the test
indicates the resourceis free, control is returned to the routine labeled GETRTN:

#ENQ RSCID=(R5),LENGTH, TYPE=TEST, FREEXIT=GETRTN

#ENDPAG—terminates a map paging session

The #ENDPAG statement terminates a map pagingsession,clearsthescratchrecord for
the session,and clears the map pagingoptions for the completed session. A
HSTRTPAG/H#ENDPAG pairencloses commands that handlea pageable map at runtime.

Note: For more information about the #STRTPAG statement, see #STRTPAG (see
page 340) later in this chapter.

#ENDPAG Syntax

»»—— #ENDPAG

v

v

- L pList= [SYSPLIST « Jl
parameter-value-list-pointer

M

L MRePGDS= — MRBPGDS < _||
paging-request-block-pointer

Chapter 5: Data Manipulation Language Statements 139

#ENDPAG—terminates a map paging session

#ENDPAG Parameters
PLIST=

Specifies the location of the storagearea in which the system will build the
HENDPAG parameter list.

SYSPLIST

(Default); is the symbolic name of the storageareain which the system will build
the #ENDPAG parameter list.

parameter-value-list-pointer

A register that points to the area or the symbolic name of the area.
MRBPGDS=

Specifies the location of the 16-byte map paging request block.
MRBPGDS

(Default); is the symbolic name of the area in program variablestoragein which the
map pagingrequest block was copied by an #MRB DML statement.

paging-request-block-pointer

A register that points to the area or the symbolic name of the area that contains the
map pagingrequest block.

#ENDPAG Status Codes

The #ENDPAG statement is unconditional;any runtime error will resultinanabend of
the issuingtask.

#ENDPAG Example

The following example of the #ENDPAG statement terminates a map paging session that
began with the #STRTPAG statement, clears the BACKPAG=YES and FLAG=UPDATE map
pagingoptions, and specifies theaddress of the ##ENDPAG parameter listinregister 3:

#STRTPAG MRB=(R4) ,BACKPAG=YES, FLAG=UPDATE
(*** MAP PAGING SESSION ***)

#ENDPAG PLIST=(R3)

140 DML Reference Guide for Assembler

@ERASE—disconnects or erases records

@ERASE—disconnects or erases records

The @ERASE statement performs the followingfunctions:

m Disconnects the specified record from all setoccurrences in whichitparticipates as
a member and physically deletes the record from the database

m Optionallyerases allrecords thatare mandatory members of set occurrences
owned by the specified record

m Optionallydisconnects or erases allrecords thatare optional members of set
occurrences owned by the specified record

Erasureis a two-step process that firstcancels theexisting membership of the specified
record inspecific setoccurrences and then releases for reuse the spaceoccupied by the
named record and its db-key. Erased records are unavailablefor further processing by
any DML statement.

Before usingthe @ERASE statement, you must ready all theareas affected, either
implicitly or explicitly, in one of the three update usage modes (see Dictionary Usage
Mode (see page 29)).

Currency

Before execution of the @ERASE statement, the followingcurrency-related conditions
must be satisfied:

m All setsin which the specified record participates as owner either directly or
indirectly (for example, as owner of a set with a member that is owner of another
set) and all member record types inthose sets must be included in the subschema
inuse.

m The named record must be established as currentof run unit.

Following successful execution of an @ERASE statement, currencyis nullified for all
record types both explicitlyandimplicitlyinvolved inthe erase and for all sets in which
erased records participate. Run unitand area currency remain unchanged.

Note: Native VSAM users—When the @ERASE statement is used againsta native VSAM
area, the area currency changes and reflects the next record in the native VSAM area.

An attempt to retrieve erased records results inanerror condition. However, ifthe
erased record was reached by walkingthe set occurrence of the erased record, the prior
of setis maintained for the erased record, whether or not prior pointers were defined
for that set. (The next of setis alsomaintained, as usual). Also, CAIDMS/DB maintains
the next, prior,and owner pointers for the lasterased record occurrencethat
participates as a member inany other set occurrence not the object of the @ERASE. In
this case, you canretrieve the next or prior records inthe area, or the next, prior, or
owner records inthe setinwhich the erased record participated.

Chapter 5: Data Manipulation Language Statements 141

@ERASE—disconnects or erases records

@ERASE Syntax

v

»»>—— @ERASE= REC
—E PERMANENT —

SELECTIVE —
AL —

M

»—— ,REC=record-name

@ERASE Parameters
REC/PERMANENT/SELECTIVE/ALL,REC=record-name
Erases a record from the database.
REC

Erases the specifiedrecordifitis not an owner of any member records. An error
condition results if the named recordis the owner of any nonempty set
occurrences.

Note: Native VSAM users—@ERASE REC,REC=record-name is the onlyform of the
@ERASE statement valid for records in a native VSAM KSDS or RRDS; no form of the
@ERASE statement is allowed for a native VSAM entry-sequenced data set (ESDS).

PERMANENT

Erases the specified record and all mandatory member record occurrences owned
by that record. Optional member records aredisconnected. If any of the erased
mandatory members are themselves the owners of any set occurrences, the
@ERASE statement is executed on suchrecords as if they were directly the named
record of an @ERASE PERMANENT statement (that is,all mandatory members of
suchsets are also erased). This process continues until all (directand indirect)
members have been processed.

Note: The statement ERASE/PERMANENT/SELECTIVE/ALL cannotbe used where
there exists a cyclical relationship between two or more of the records that areto
be erased. The following describes a cyclical setrelationship:

REC-A owns REC-B in the A-B set
REC-B owns REC-C in the B-C set
REC-C owns REC-B in the C-B set

(cyclical relationship between REC-B and REC-C)
Junctionrecords should be used to define the needed relationships.

SELECTIVE

Erases that record and all mandatory member record occurrences owned by the
specified record. Optional member records areerased if they do not currently
participate as members in other set occurrences. All erased records thatare
themselves the owners of anyset occurrences aretreated asifthey were the object
of an @ERASE SELECTIVE statement.

142 DML Reference Guide for Assembler

@ERASE—disconnects or erases records

ALL

Erases the specified record and all mandatory member record occurrences owned
by the specified record. All erased records that are themselves the owners of any
set occurrences are treated as if they were the specified record of an @ERASE ALL
statement.

REC=record-name

A recordincludedinthe subschema.The current of record-name must be current of
run unit.

@ERASE Status Codes

After completion of the @ERASE function, the ERRSTAT field inthe IDMS
communications blockindicates the outcome of the operation. The followingis a list of
the acceptablestatus codes for this function and their corresponding meaning:

0000
The request has been serviced successfully.
0208

The named record is notinthe specified subschema, or the record name has been
misspelled.

0209

The specified record's area has not been readied in one of the three update usage
modes.

0210

The subschema specifies anaccess restriction that prohibits use of the @ERASE
statement. For integrated indexingusers,this code canalsoindicateuseof an
invalid form of the @ERASE statement.

0213

A current record of run unit has not been established or has been nullified by a
previous @ERASE statement.

0217

A db-key has been encountered that contains a long-term permanent lock.
0220

The current record of run unitis not the same type as the specified record.
0221

An area other than the area of the named record has been readied with an
incorrectusage mode.

Chapter 5: Data Manipulation Language Statements 143

@ERASE—disconnects or erases records

0225

Currency has not been established. Forintegrated indexingusers,this usually
indicates thatan @FIND statement has been issued for an indexed record and
followed by an @ERASE statement for the same record. Onlyan @OBTAIN
statement updates indexset currencies.

0226

A broken chain has been encountered inthe process of executing an @ERASE ALL,
PERMANENT, or SELECTIVE statement.

0230
An attempt has been made to erase the owner record of a nonempty set.
0233

Erasureof the record occurrence is notallowed in this subschema, or all setsin
which the record participates havenot been includedinthe subschema.

0237

There are cyclical setrelationships presentunder the target record of the erase
verb

0260

A record occurrence has been encountered whose type is inconsistent with the set
named inthe ERRORSET field of the IDMS communications block; probablecauses
could be a broken chain orimproper databasedescriptions.

0261

No record can be found for aninternal db-key. This code usuallyindicates a broken
chain.

@ERASE Example
@ERASE PERMANENT ,REC='DEPT"
@ERASE SELECTIVE,REC='TCHR'

@ERASE ALL,REC='TCHR'

144 DML Reference Guide for Assembler

@ERASE—disconnects or erases records

The sampleemployee databaseaffords noappropriateexamples of these parameters; a
samplehigh school databaseis usedinstead. The outcome of the @ERASE statement
varies, based on the qualifier specified (PERMANENT, SELECTIVE, or ALL). Although all
three qualifiers causeall mandatory members owned by the specified record to be
erased, they differ in their effect on optional members.

SFIRO
TUTUQ

DEPT TCHR
OA

MA OA

FOREIGN
LANGUAGES

\ SUBJ CLASS

MA

Chapter 5: Data Manipulation Language Statements 145

@ERASE (LRF)—deletes logical record occurrences

SPIRO
TUTUO

FRANK
Q.
FILL

FOREIGN
LANGUAGES

@ERASE PERMANENT,REC="DEPT'

{assuming that FOREIGN LANGUAGES is
current of run unit)

The Fareign Languages Department can no
longer be funded, so it is deleted from the
database along with its subjects and classes.
The teachers will be reassigned to other
departments.

Erases the foreign language record and
all mandatory members; disconnecis
optional members.

@ERASE (LRF)—deletes logical record occurrences

The @ERASE statement canalsobe usedto delete logical record occurrences.The
@ERASE statement does not necessarilyresultinthedeletion of all or any of the
databaserecords used to create the specified logical record; the path selected to service
an @ERASE logical-record request performs whatever databaseaccess operations the

DBA has specified to servicethe request.

LRF uses field values present in the variable-storagelocationreserved for the logical
record to update the database. You canspecifyanalternativestorage location from
which LRF is to take field values to make the appropriateupdates to the database.

@ERASE (LRF) Syntax

»»—— @ERASE REC=Iogical-record-name

»

v

L ,IOREA=alt-logical-record-location —|

v

L ,ONLRSTS=path-status,GOTO=branch-location il

v

L ,WHERE boolean-expression -

M

146 DML Reference Guide for Assembler

@ERASE (LRF)—deletes logical record occurrences

@ERASE (LRF) Parameters

REC=logical-record-name

Deletes the named logicalrecord. Unless the IOAREA clause (below)is included, LRF
uses field values present inthe variable-storagelocation reserved for the logical
record to make any necessary updates to the database. Logical-record-name must
specify a logical record defined in the subschema.

IOAREA=alt-logical-record-location

Identifies an alternativevariable-storagelocation from which LRF is to obtain field
values to perform the appropriatedatabaseupdates inresponseto this statement.
When erasinga logicalrecordthathas previously beenretrieved into an alternative
storage location, youshould usethe IOAREA parameter to name the same location
specifiedinthe @OBTAIN request. Ifthe IOAREA parameter is includedinthe
@ERASE statement, alt-logical-record-location mustidentifya recordlocation
defined in the program.

ONLRSTS=path-status,GOTO=branch-location

Tests for the indicated path status. If path-status results from this @ERASE
statement, the action specified by GOTO=branch-location is performed. Path-status
must be a literal (1-16 bytes) enclosed in quotation marks or a programvariable.

WHERE boolean-expression
Specifies the selection criteria to be applied to the specified logical record.

Note: For more information aboutthe WHERE clause,see WHERE Clause (see
page 388) laterin this chapter.

@ERASE (LRF) Status Codes

When using LRF, the type of status code returned to the programinthe ERRSTAT field of
the IDMS communications block differs according to the type of error. If the error occurs
inthe logical-record path, the ERRSTAT field contains a status codeissued by CA
IDMS/DB with a major code from 00to 19. For a listof these codes, see ERRSTAT Field

and Codes (see page 41).
When the error occurs inthe request itself, LRF returns the path status LR-ERROR to the

LRSTAT field of the LRC blockand places a status code with a major code of 20 inthe
ERRSTAT field of the IDMS communications block.

@ERASE (LRF) Example

The example below illustrates a requestto erase the OFFEMPLR logical record for office
012's employee ID 1234.

Chapter 5: Data Manipulation Language Statements 147

@FIND/@OBTAIN Statements—accesses database records

In this example, the DBA has designated the keyword DELETE-EMPLOYEE to directthe
request to the path designed to retrieve the appropriate OFFEMPLR logicalrecord and
to delete the indicated employee information from the database.

@ERASE REC=OFFEMPLR,
ONLRSTS="'NO-OFFICE',GOTO=END,
WHERE OFFCODE EQ '012'
AND EMPID EQ '1234'
AND DELETE-EMPLOYEE

EE R 3

@FIND/@OBTAIN Statements—accesses database records

The @FIND and @OBTAIN statements are used to access databaserecords:

m @FIND locates a record occurrence inthe database, but does not move itinto
program variablestorage.

m @OBTAIN locates the record occurrenceinthe databaseand moves itinto program
variablestorage.

Six formats

@FIND and @OBTAIN have six different formats:

m @FIND/@OBTAIN CALC/DUPLICATE accesses a record occurrence usingits
CALC-key value.

m @FIND/@OBTAIN CURRENT accesses a record occurrence using previously
established currencies.

m @FIND/@OBTAIN DBKEY accesses arecordoccurrenceusinga db-key that was
previously saved by the program.

m @FIND/@OBTAIN OWNER accesses the owner of a set occurrence.

m @FIND/@OBTAIN USING SORT KEY accesses a record occurrencein a sorted set,
usingits sort-key value.

m @FIND/@OBTAIN WITHIN SET/AREA accesses a record occurrencebased either on
the record's logical locationina setor on its physicallocationinan area.

Each of these @FIND/@OBTAIN statements is discussed on the following pages.

148 DML Reference Guide for Assembler

@FIND/@OBTAIN Statements—accesses database records

@FIND/@OBTAIN CALC/DUPLICATE

The @FIND/@OBTAIN CALC/DUPLICATE statement accesses a record based on the value
of an element inthe record defined as a CALC-key. The requested record must be stored
inthe databasewith a location mode of CALC. Before issuingthe @FIND/@OBTAIN
CALC/DUPLICATE statement, you mustinitializea fieldin programvariablestorage with
the CALC-key value.

You canusethe DUPLICATE option to access records with the same CALC-key value as
the record thatis current of record type, provided that an @FIND/@OBTAIN CALC
statement has previouslyaccessed an occurrence of the same record type.

Currency

You do not need to establish currency before executing a @FIND/@OBTAIN CALC
statement. However, record currency must be established by a prior @FIND/@OBTAIN
CALC statement before executing a @FIND/@OBTAIN DUPLICATE statement.

Followingsuccessful execution of an @FIND/@OBTAIN CALC/DUPLICATE statement, the
accessed record becomes the current record of run unit, its area, its record type, andall
sets inwhichitcurrently participates as member or owner.

Syntax

@FIND CALC
L @oBTAIN l_'— ANY —]
DUPL ICATE

v

v

»—— REC=record-name
T keer SHARED —_,—'
L ExcLusve

Parameters

)

CALC/DUPLICATE,REC=record-name

Accesses the record specified by record-name usingthe value of its CALC-key.

CALC

Accesses the firstor only occurrence of the designated record type whose CALC-key
matches the valueof the CALC dataitem inprogram variablestorage. ANY is a
synonym of CALC.

DUPLICATE

Accesses the next record with the same CALC-key valueas the current record type.

Use of the DUPLICATE option requires prior selection of an occurrence of the same
record type with the CALC option. Ifthe value of the CALC-key invariablestorageis
not equal to the CALC-key field of the current of record type, a status code of 0332

is returned.

Chapter 5: Data Manipulation Language Statements 149

@FIND/@OBTAIN Statements—accesses database records

REC=record-name

Names the record being accessed. Record-name can be a register containingthe
name of the record or a user-supplied valueenclosed in quotation marks.

KEEP=

Optionally places a shared or exclusive lock on the accessed record.
SHARED

Places a shared lock on the specified record.
EXCLUSIVE

Places anexclusivelockon the specified record.

Example

To retrieve an occurrence of the EMPLOYEE record with the @FIND/@OBTAIN
CALC/DUPLICATE statement, you must firstinitializea fieldin programvariablestorage
with the CALC-control element. The followingstatements initialize the CALC field EMPID
andretrieve an occurrence of the EMPLOYEE record:

MvVC EMPID,INEMPID
@OBTAIN CALC,REC='EMPLOYEE'

Status codes

After completion of the @FIND/@OBTAIN CALC/DUPLICATE function, the ERRSTAT field
inthe IDMS communications block indicates the outcome of the operation. The
followingis a listof the acceptablestatus codes for this function and their
corresponding meaning:

0000

The request has been serviced successfully.
0301

The area in which the named record participates has notbeen readied.
0306

A successful @FIND/@OBTAIN CALC has not yet been executed (applies tothe
DUPLICATE option only).

0308

The specified recordis notinthe subschema.The programhas probablyinvoked
the wrong subschema, or the record name has been misspelled.

0310

The subschema specifies anaccess restriction that prohibits retrieval of the named
record.

150 DML Reference Guide for Assembler

@FIND/@OBTAIN Statements—accesses database records

0318
The record has not been bound.
0326

The record or integrated indexing entry cannotbe found, or no more duplicates
existfor the named record.

0331
The retrieval statements format conflicts with the record's location mode.
0332

The valueof the CALC dataitem in program variablestoragedoes not equal the
valueof the CALC dataitem inthe current record (applies tothe DUPLICATE option
only).

0364

The CALC control element has not been described correctly either in the programor
inthe subschema.

0370

A databasefilewill notopen properly.

When the KEEP parameter is specified a major code of 06 will bereturned ifanerror
occurs duringthe KEEP processing.The major code of 03 states thatan error has
occurredinthe @FIND/@OBTAIN processing.

@FIND/@OBTAIN CURRENT

The @FIND/@OBTAIN CURRENT statement accesses therecord thatis current of its
record type, set, or area. This form of the @FIND/@OBTAIN verb is an efficient means of
establishingthe proper record as current of run unitbefore executing a DML verb that
utilizes run-unitcurrency (for example, @ACCEPT, @IF, @ GET, @ MODIFY, or @ERASE).

Currency - Followingsuccessful execution of an @FIND/@OBTAIN CURRENT statement,
the accessedrecordis current of run unit, its area, its record type, and all sets in which it
currently participates as member or owner.

Syntax
>>—|: @FIND __l— CURRENT
@OBTAIN

»

,REC=record-name —
,SET=set-name
,AREA=area—name —

L ,KEEP= —[SHARED t,—l
EXCLUSIVE

v

v

M

Chapter 5: Data Manipulation Language Statements 151

@FIND/@OBTAIN Statements—accesses database records

Parameters
@FIND/@OBTAIN CURRENT

Accesses the record occurrencethat is currentof run unit.
REC=record-name/SET=set-name/AREA=area-name

Specifies that the current record of the named record type, set, or areais to be
accessed.

REC=
Accesses the record thatis currentof run unit.
record-name

A register containingthe record name, a user-defined variablefield, ora
user-supplied valueenclosedin quotation marks.

SET=
Accesses the set that is currentof run unit.
set-name

A register containingthe set name, a user-defined variablefield, or a user-supplied
valueenclosedin quotation marks.

AREA=
Accesses the area that is current of run unit.
area-name

A register containingthe area name, a user-defined variablefield, ora
user-supplied valueenclosed in quotation marks.

KEEP=

Places a shared or exclusivelock on the accessed record.
SHARED

Places a shared lock on the specified record.
EXCLUSIVE

Places an exclusivelock onthe specified record.

152 DML Reference Guide for Assembler

@FIND/@OBTAIN Statements—accesses database records

Example

The followingfigureillustrates theuse of the @FIND/@OBTAIN CURRENT statement to
establisharecordas currentof run unitbefore that recordis modified. (See @MODIFY
(see page 255) laterin this chapter for a complete description of the @MODIFY verb and
its use.) Enter the databaseon DEPARTMENT 5100 by using CALC retrieval.Then
examine EMPLOYEE 466 and obtain further information from its owner OFFICE record.
OFFICE 8 becomes current of run unit. Before modifying EMPLOYEE 466, you mustissue
the @FIND CURRENT statement to reestablish EMPLOYEE 466 as current of run unit.

DEPARTMENT OFFICE
410 IF |5s ICALC 450 IF |76 ICALC
DEPT-ID-0410 | DN OFFICE-CODE-0450 | DN
ORG-DEMO-REGION ORG-DEMO-REGION
DEPT-EMPLOYEE OFFICE-EMPLOYEE
NPQ OA 10 OA
EMPLOYEE EMPLOYEE ASC(EMP-LAST-NAME-0415 ASC{EMP-LAST-NAME-0415
467 466 EMP-FIRST-NAME-0415) DL EMP-FIRST-NAME-0415) DL
EMPLOYEE
215 |r Jrie Jeac
EMP-ID-0415 | EX
EMP-DEMO-REGION

CURRENCIES:
RUN UNIT, RECORD, SET, AREA

w = =
S S
w [8 s [&
N O o7 o
s g /& /% /)«
I = o o
s /5 & /g /5)/ 5
< A RN w o &y uy
) @ Q g Q o
s/ &/ /286 /<
S & & & & &
& IS z /8 IS o o &
MVC DEPTID,DEPTIN 5100 | 5100 5100 5100
@OBTAIN CALC, REC — 'DEPARTMENT’
@ORTAIN FIRST, 466 | 5100 | 466 466 | 466 | 5100 | 466
SET = 'DEPT-EMPLOYEE’
@OBTAIN OWNER, 8| 5100 | 466 8| 466 8 8| 466
SET = "OFFICE-EMPLOYEE'
@FIND CURRENT, REC="EMPLOYEE', 466 | 5100 | 466 8| 466 | 466 8| 466
SET — 'DEPT-EMPLOYEE"
@MODIFY REC = "EMPLOYEE 466 | 5100 | 466 8| 466 | 466 8 | 466

Chapter 5: Data Manipulation Language Statements 153

@FIND/@OBTAIN Statements—accesses database records

Status Codes

After completion of the @FIND/@OBTAIN CURRENT function, the ERRSTAT fieldin the
IDMS communications blockindicates the outcome of the operation. The followingis a
listof the acceptablestatus codes for this function and their corresponding meaning:

0000

The request has been serviced successfully.
0301

The area in which the named record participates has notbeen readied.
0306

Currency has not been established for the named record, set, or area.
0308

The specified recordis notinthe subschema.The programhas probablyinvoked
the wrong subschema.

0310

The subschema specifies anaccess restriction that prohibits retrieval of the named
record.

0313

A current record of run unit has not been established or has been nullified by a
previous @ERASE statement.

0323
The area name specified has notbeen includedinthe subschema invoked.

When the KEEP parameter is specified,a major code of 06 will be returned ifanerror

occurs duringthe KEEP processing. The major code of 03 states that an error has
occurredinthe @FIND/@OBTAIN processing.

154 DML Reference Guide for Assembler

@FIND/@OBTAIN Statements—accesses database records

@FIND/@OBTAIN DBKEY

The @FIND/@OBTAIN DBKEY statement accesses a record occurrencedirectly by usinga
databasekey that has been stored previously by the program. You can use the DML
@ACCEPT verb (see @ACCEPT DBKEY FROM CURRENCY (see page 85) and @ACCEPT
DBKEY RELATIVE TO CURRENCY (see page 87))or an Assembler assignmentstatement to
savea db-key. Inthis manner, you candirectlyaccess anyrecordinthe program's
subschema regardless of its location mode.

Additionally,the DML @ACCEPT PGINFO verb (see @ACCEPT PGINFO (see page 90),
@ACCEPT DBKEY FROM CURRENCY (see page 85), and @ACCEPT DBKEY RELATIVE TO
CURRENCY (see page 87))canbe used to save page informationthat canbe used to
directly access the record from a specific pagegroup when the Mixed Page Binds
Allowed feature is used.

For more information aboutthe Mixed Page Group Binds Allowed feature, see the
Database Administration Guide.

Note: Native VSAM users—This statement is not valid for accessingdata recordsina
native VSAM key-sequenced data set (KSDS).

Currency

Currency is not used to determine the location of the record specified in the
@FIND/@OBTAIN DBKEY statement; the recordis identified by its db-key and,
optionally, by its record name.

Followingsuccessful execution ofan @FIND/@OBTAIN DBKEY statement, the accessed
record becomes the current record of run unit, its area, its record type, and all sets in
whichit currently participates as member or owner. The RECNAME field of the IDMS
communications blockis updated with the name of the accessed record.

Syntax

>~ @FIND
@QOBTAIN —)

T KEEP= SHARED —_|—|
' L ExcLustve

>—|7 DBKEY=db-key [,PGINFO=pg-info i
] DBKEY=db-key

v

v

)

L REC=record-name

Parameters
@FIND/@OBTAIN DBKEY=db-key

Accesses a record directly by usinga db-key valuecontainedin program variable
storage.

Chapter 5: Data Manipulation Language Statements 155

@FIND/@OBTAIN Statements—accesses database records

db-key

Identifies the locationin programvariablestoragethatcontains a db-key previously
saved by the program. Ifa record name is specified, db-key must contain the db-key
of an occurrence of the named record type. If a record name is not specified, db-key
can containthe db-key of anoccurrence of anyrecord type inthe subschema.
Db-key must identify a binary fullword synchronizedfield;itcan be aregister ora
user-defined variable.

KEEP=

Places a shared or exclusivelock on the accessed record:
SHARED

Places a shared lock on the specified record.
EXCLUSIVE

Places an exclusivelock onthe specified record.
PGINFO=pg-info

Specifies page information thatis used to determine the area with which the db-key
is associated. If not specified, the page information associated with the record that
is currentof rununitis used.

Note: Page informationis only usedif the subschema includes areas thathave
mixed page groups; otherwise, itis ignored.

Pg-info, a four-byte field that is made up of two halfword fields, identifies the
locationinvariablestoragethat contains the page information previously saved by
the program.

Page informationis returned inthe PGINFO fieldin the subschema control area if
the subschema includes areas in mixed page groups. Page informationcanalso be
returned usingthe @ACCEPT PGINFO, @ ACCEPT DBKEY FROM CURRENCY, and
@ACCEPT DBKEY RELATIVE TO CURRENCY statements.

REC=record-name

Optionallyidentifies therecord type of the requested record. Record-name must
identify a record that isincludedinthe subschema;it canbe a register, a
user-defined variable, ora user-supplied variableenclosed in quotes.

Example

The following @FIND statement locates an occurrence of the EMPLOYEE record whose
db-key matches the valueof a fieldin programvariablestorage called SAVEDKEY.

The located record becomes current of run unit, current of the EMPLOYEE record type,
current of the DEPT-EMPLOYEE, OFFICE-EMPLOYEE, and all other sets inwhich it
currently participates as member or owner, and current of the ORDER-REGION area.

@FIND DBKEY=SAVEDKEY,REC='EMPLOYEE'

156 DML Reference Guide for Assembler

@FIND/@OBTAIN Statements—accesses database records

Status codes

After completion of the @FIND/@OBTAIN DBKEY function, the ERRSTAT fieldin the
IDMS communication blockindicates the outcome of the operation. The followingis a
listof the acceptablestatus codes for this function and their corresponding meaning:

0000

This request has been serviced successfully.
0301

The area in which the named record participates has notbeen readied.
0302

The db-key is inconsistent with the area in which the record is stored. The db-key
has not been initialized properly, or the record name is incorrect.

0308

The requested record is not inthe subschema.The program has probablyinvoked
the wrong subschema.

0310

The subschema specifies anaccess restriction that prohibits retrieval of the named
record.

0326
The specified record cannot be found.
0370
A databasefilewill notopen properly.
When the KEEP parameter is specified as partofan @FIND/@OBTAIN statement, a
major code of 06 will bereturned if anerror occurs duringthe KEEP processing(see

@KEEP (see page 200) later inthis chapter). The major code of 03 states thatan error
has occurred inthe @FIND/@OBTAIN processing.

Chapter 5: Data Manipulation Language Statements 157

@FIND/@OBTAIN Statements—accesses database records

@FIND/@OBTAIN OWNER

The @FIND/@OBTAIN OWNER statement accesses the owner record of the current set
occurrence. You can usethis statement to retrieve the owner record of any set whether
or not that set has been assigned owner pointers.

Note: Native VSAM users—The @FIND/@OBTAIN OWNER statement is notvalid since
the owner records are not defined in native VSAM data sets.

Currency

To execute an @FIND/@OBTAIN OWNER statement, currency must be established for
the specified set.

Note: When arecord declared as an optional or manual member of a setis retrieved, it
is notestablished as currentof setifitis not currently connected to the named set. A
subsequent attempt to retrieve the owner record will instead locatethe owner of the
current record of set. Insuch cases, you should determine whether the retrieved record
is actuallya member of the named set before issuingthe @FIND/@OBTAIN OWNER
statement. The @IF statement (see @IF (see page 197)inthis chapter) can be used for
this purpose.

Followingsuccessful execution of an @FIND/@OBTAIN OW NER statement, the accessed
record becomes the currentrecord of run unit, its area, its record type, and all setsin
whichit currently participates as member or owner. Ifthe current record of set is the
owner record when the statement is executed, currency in the specified set remains
unchanged.

Syntax
>>—|: @FIND T OWNER
@OBTAIN

»— ,SET=set-name
I— ,KEEP= —[SHARED jJ
EXCLUSIVE

Parameters

v

v

X

@FIND/@OBTAIN OWNER
Accesses the owner record of the specified set occurrence.
SET=set-name

Names the set whose owner record is to be retrieved. Set-name must be a set
includedinthe subschema;it canbe a register, a user-defined variable,ora
user-supplied variableenclosed in quotes.

158 DML Reference Guide for Assembler

@FIND/@OBTAIN Statements—accesses database records

KEEP=

Places a shared or exclusivelock onthe accessed record:

SHARED

Places ashared lockonthe accessedrecord.

EXCLUSIVE

Places an exclusivelock onthe accessed record.

Example

The followingfigure provides an example of how you would use the @ OBTAIN OWNER
statement, in conjunction with other @ OBTAIN statements, to navigatethe database
andaccess the owner record of the OFFICE-EMPLOYEE set from the owner record

occurrence of the DEPT-EMPLOYEE

EMPLOYEE
158

EMPLOYEE
69

set.

DEPARTMENT OFFICE

410 IF |5s ICALC 450 IF |76 ICALC
DEPT-ID-0410 Jon OFFICE-CODE-0450 Jon
ORG-DEMO-REGION ORG-DEMO-REGION

DEPT-EMPLOYEE

NPQO OA

ASC(EMP-LAST-NAME-0415
EMP-FIRST-NAME-0415) DL

QFFICE-EMPLOYEE

10 QA

ASC(EMP-LAST-NAME-0415
EMP-FIRST-NAME-0415) DL

EMPLOYEE EMPLOYEE
49 415 IF |11e ICALC
EMPLOYEE EMP-ID-0415 DN
100 I
EMP-DEMO-REGION

CURRENCIES:
RUN UNIT, RECORD, SET, AREA

>/ =
&/ 9/ o
g/5/8&/¢
£ o /&) &/ &
o 2y 5t o Q
£/ 5/ & &/g/ 5/ 5
= . Ly Ly
s/&/f g/ E)/E/ g/ 4
) 1y i iy &L a-
g/ &/ /s /&/5/8/) 3
MVC DEPTID.DEPTIN
@OBTAIN CALC, REC = 'DEPARTMENT] 2000 | 2000 2000 2000
@OBTAIN FIRST, DEPT ="EMPLOYEE"'
M 2000 11 11 11 2000 11
@OBTAIN OWNER, 2|2 11 2| 11 2 2| 11
SET — 'OFFICE-EMPLOYEE'® 000

Chapter 5: Data Manipulation Language Statements 159

@FIND/@OBTAIN Statements—accesses database records

Status codes

After completion of the @FIND/@OBTAIN OWNER function, the ERRSTAT field in the
IDMS communications blockindicates the outcome of the operation. The followingis a
listof the acceptablestatus codes for this function and their corresponding meaning:

0000

The request has been serviced successfully.
0301

The area in which the named record participates has notbeen readied.
0306

Currency has not been established for the named record, set, or area.
0308

The named record or the named setis notinthe subschema, or the named record is
not defined as a member of the named set. The program has probablyinvoked the
wrong subschema. or the record name has been misspelled.

0310

The subschema specifies anaccess restriction that prohibits retrieval of the named
record.

0360

A record occurrence has been encountered whose record type is not a member or
owner of the setasitis definedinthe subschema.

0370

A databasefilewill notopen properly

When the KEEP parameter is specified as partofan @FIND/@OBTAIN statement, a
major code of 06 will bereturned if anerror occurs duringthe KEEP processing (see
@KEEP (see page 200)inthis chapter). The major code of 03 states thatanerror has
occurredinthe @FIND/@OBTAIN processing.

160 DML Reference Guide for Assembler

@FIND/@OBTAIN Statements—accesses database records

@FIND/@OBTAIN USING SORT KEY

The @FIND/@OBTAIN USING SORT KEY statement accesses a member recordin a sorted
set. Sorted sets are ordered inascendingor descendingsequence based on the value of
a sort-control element in each member record. The search begins with the current of set
orthe owner of the current of set, and always proceeds through the set in the NEXT
direction.

Before issuingthis statement, you must initializethe sort-control element in program
variablestorage. The selected record occurrence will havea key valueequal to the value
of the sort-control element. If more than one record occurrencecontains a sortkey
equal to the key valueinvariablestorage, the firstsuch record will be selected.

Currency

Before execution of an @FIND/@OBTAIN USING SORT KEY statement you have to
establish currency for the specified set.

Followingsuccessful execution of an @FIND/@OBTAIN USING SORT KEY statement, the
accessed record becomes current of run unit, its area, its record type, and all setsin
whichit currently participates as owner or member. Ifa member record with the
requested sort-key valueis notfound, the current of set is nullified butthe next of set
and prior of set are maintained. The next of set is the member record with the next
higher sort-key value (or next lower for descending sets) than the requested value; the
prior of setis the member record with the next lower value (or higher for descending
sets) thanrequested. Because these currencies are maintained, the program can walk
the set to do a generic search on the sort-key value.

Syntax

@FIND ,REC=record-name
L @oBTAIN -] L CURRENT -

»— ,SET=set-name

v

v

v

»—— USING=sort-field-name
g L KEEP= SHARED —_,—I
' L ExcLustve

Parameters

X

@FIND/@OBTAIN,REC=record-name,SET=set=name

Accesses the named recordin a sorted set. The search begins with the owner of the
current record of the specified set. Record-name must be a recordthat is definedin
the subschema andthat participates in the specified set.

Chapter 5: Data Manipulation Language Statements 161

@FIND/@OBTAIN Statements—accesses database records

CURRENT

Current indicates thatthe search begins with the currencies already established for
the specified set. If the key valuefor the recordthat is currentof setis higher than
the key value of the specified record (assumingascendingsetorder), an error
condition results.

USING=

Specifies the sort-control element to be used insearchingthe sorted set.

sort-field-name

The name of the sort-control element inthe record or the name of a fieldin
program variablestoragethat contains the value of the sort-control element.

Note: The value coded for sort-field-name canonly specify a singlefield name. If the
sortkey is composed of multiplefields, the valuecoded must point to an area of
contiguous storagethat contains the values of the various key components. These
field values must be in the same sequence as the correspondingfields within the
set's schema definition and their data formats must match the formats of the fields
within the databaserecord's definition.

KEEP=

Places a shared or exclusivelock onthe accessed record.
SHARED

Places a shared lock on the specified record.

EXCLUSIVE

Places an exclusivelockon the specified record.

Example

The following example illustrates the use of an @FIND/@OBTAIN USING SORT KEY
statement. Assume thatthe DEPT-EMPLOYEE set is ordered inascendingsequence,
based on the value stored in EMPNAME in each EMPLOYEE record occurrence. The
@FIND statement assumes that the user has previously selected an occurrenceof a
DEPARTMENT record to establish theset currency. Retrieval of an EMPLOYEE record
with a name (lastname, firstname) equal to IANDOLI, LUIGI is accomplished by the
following statements:

MVC EMPNAME,=CL25'IANDOLI, LUIGI'
@FIND REC='EMPLOYEE',SET='DEPT-BMPLOYEE' ,USING=EMPNAME

162 DML Reference Guide for Assembler

@FIND/@OBTAIN Statements—accesses database records

Status codes

After completion of the @FIND/@OBTAIN USING SORT KEY function, the ERRSTAT field
inthe IDMS communications block indicates the outcome of the operation. The
followingis a listof the acceptablestatus codes for this function and their
corresponding meaning:

0000
The request has been serviced successfully.
0301
The area in which the named record participates has notbeen readied.
0306
Currency has not been established for the named set.
0308

The named record or the named set is notinthe subschema, or the named record is
not a member of the named set. The program has probablyinvoked the wrong
subschema.

0310

The subschema specifies anaccess restriction that prohibits retrieval of the named
record.

0326

The record cannotbe found.
0331

The retrieval statement format conflicts with the record's location mode.
0360

A record occurrence has been encountered whose record type is not a member or
owner of the setasitis definedinthe subschema.

0361
A record cannot be found becauseof a broken chaininthe database.
0370
A databasefilewill notopen properly.
When the KEEP parameter is specified as partofan @FIND/@OBTAIN statement, a
major code of 06 will bereturned if anerror occurs duringthe KEEP processing (see

@KEEP (see page 200)inthis chapter). The major code of 03 states that anerror has
occurredinthe @FIND/@OBTAIN processing.

Chapter 5: Data Manipulation Language Statements 163

@FIND/@OBTAIN Statements—accesses database records

@FIND/@OBTAIN WITHIN SET/AREA

The @FIND/@OBTAIN WITHIN SET/AREA statement accesses records logically based on
setrelationshipsor physically based on databaselocation. The formats of this statement
allowyouserial accesstoeachrecord inaset orarea, or selection of specific
occurrences of a given record type ina set or area.

Set currency

The followingrules apply to currency and the selection of member recordsina set:

m The set occurrence used as the basis for the operationis determined by the current
record of the specified set. Set currency must be established before attempting to
access recordsinaset.

m The next or priorrecordinaset is the subsequent or previous record, respectively,
relativeto the current record of the named set inthe logical order of the set. The
priorrecordina set canbe retrieved only if the set has been assigned prior
pointers.

m The firstorlastrecordina setis the firstor lastmember occurrence interms of the
logical order of the set. The record selected is the same as would be selected if the
current of set were the owner record and the next or prior record had been
requested. The lastrecordinaset canbe retrieved onlyifthe set has prior pointers.

m The nth occurrenceof a recordina set canbe retrieved by specifyinga sequence
number thatidentifies the position of the record in the set. CA IDMS/DB begins its
search with the owner of the current of set for the specified setand continues until
it locates the nth record or encounters an end-of-set condition. If the specified
sequence number is negative, the search proceeds inthe priordirectioninthe set.
Note, however, that prior pointers are required to exercisethis option.

m When anend-of-set condition occurs, the owner record occurrence of the set
becomes the current record of run unit, current of its record type, current of its
area,and current of only the set involved in this operation. Currency of other setsin
which the specified record participates as owner or member remains unaffected.

Note: Note 11f @OBTAIN has been specified, the contents of the owner record arenot
moved to program variablestorage (@OBTAIN under these circumstances is treated as
an @FIND).

Note: Note 2(Native VSAM users): When an end-of-set condition occurs, all currencies
remainthe same.

Area currency

The followingrules applyto currency and the selection of recordsinan area:

m The firstrecord occurrenceinanareais the one with the lowest db-key; the last
record is the one with the highest db-key.

164 DML Reference Guide for Assembler

@FIND/@OBTAIN Statements—accesses database records

m The next record inanareais the one with the next higher db-key relativeto the
current record of the named area; the prior recordis the one with the next lower
db-key relativeto the current of area.

m The first, last, or nth occurrenceof a recordinan area must be retrieved to
establish correctstarting position before next or prior records arerequested.

Following successful execution ofan @FIND/@OBTAIN WITHIN SET/AREA statement,
the accessed record becomes the current record of run unit, its area, its record type,
andall sets inwhichitcurrently participates as member or owner.

Syntax
>>—|: @FIND] NEXT >
@OBTAIN PRIOR
FIRST
LAST
NTH

v

»—E ,SET=set-name =
,AREA=area-name

v

L ,REC=record-name |

v

- L ,0CCUR=sequence -
T Kkeee- SHARED jJ
L BxcLusTve

Parameters

M

NEXT/PRIOR/FIRST/LAST/NTH
Accesses arecord basedon its locationinasetorarea.
NEXT

Accesses the next record inthe specified set or area relativeto the currentrecord
of the set orarea.

PRIOR

Accesses the priorrecordinthe specified set or area relativeto the current record
of the set orarea. The specified set must have prior pointers.

FIRST
Accesses the firstrecordinthe specified set or area.
LAST

Accesses the lastrecordinthe specified set or area.The specified set must have
prior pointers.

Chapter 5: Data Manipulation Language Statements 165

@FIND/@OBTAIN Statements—accesses database records

NTH

Accesses the nth record inthe specified set or area.NTH requires the use of the
OCCUR parameter (see below) to specify whichrecordis to be accessed.

Note: Native VSAM users—FIRST, LAST, and NTH options are not allowed for a
native VSAM KSDS with spanned records.

SET=set-name/AREA=area-name
Specifies the set or area to be searched.
SET=set-name

Specifies the name of the set that contains the record to be accessed. Set-name
must identify ansetincludedinthe subschema.

AREA=area-name

Specifies the name of the area that contains the record to be accessed. Area-name
must identify anareaincludedinthe subschema.

REC=

Specifies thatina set orarea, onlyoccurrences of the named record type will be
accessed.

record-name

Must be defined as a member of the specified setor containedin the specified
area.

OCCUR=

Identifies the position of the recordin the set (thatis, the numeric occurrencethat
is associated with the keyword NTH).

sequence

Must specify a positive or negative number thatis stored ina numerical field used
by CA IDMS/DB insearchingfor the nth record occurrence. If sequence specifies a
negative number, the specified set must have prior pointers.

KEEP=

Places a shared or exclusivelock on the accessed record.
SHARED

Places a shared lock on the specified record.
EXCLUSIVE

Places an exclusivelock onthe specified record.

166 DML Reference Guide for Assembler

@FIND/@OBTAIN Statements—accesses database records

Example

The following example illustrates the retrieval of records inan occurrence of the
DEPT-EMPLOYEE set. The @FIND CALC statement establishes currencyinthe
DEPT-EMPLOYEE set. Member EMPLOYEE records are then retrieved by a series of
OBTAIN WITHIN SET statements. Note that when EMPLOYEE 106 is retrieved, the end of
the setis reached and the next OBTAIN statement positions the programon the owner
of the set, DEPARTMENT 2000.

DEPARTMENT DERARTMENT
2000 410 [F [s6 JcAc
DEFTAD-04 110 |nN
EMPLOYEE ORG-DEMO-REGION

DEPT-EMPLONEE

HFD D8

ASCEMP-LAST-MAME-0415
EMP-FIRST-MAME-G4 18] DL

FMPLOWEE

416 ||= |na |c.\u::
EMP-ID-0415 Jon
EMP-DEMO-REGION

CLURRENCIES:
RUMN UNIT, RECORD, SET, AREA

MVC DEPTID,DEPTIN

@FIND CALC, REC="DEPARTMENT" | 2000 | 2000 2000 2000
@OBTAIN FIRST,
SET — 'DEPT-EMPLOYEE' 69 |2000 | 69 | 69 | 69 | 2000 | 69
EOBTAIN NEXT,
SET — 'DEPT-EMPLOYEE" 100 | 2000 | 100 | 100 | 100 | 2000 | 100
@OBTAIN NTH, 106 | 20040 106 106 106 | 2000 108
SET ="DEPT-EMFPLOYEE", QCGCUR =FIVE
OBTAIN NEXT, K <
?ET='DEPT-EMPLOYEE' 2000 [2000 | 106 | 2000 | 106 | 2000 | 106 EO‘:HOR STATUS
0307’

Chapter 5: Data Manipulation Language Statements 167

@FIND/@OBTAIN Statements—accesses database records

The followingfigureillustrates special considerationsrelating to the retrieval of records
inanarea that contains multiplerecord types. In this example, the user wishes to sweep
the EMP-DEMO-REGION area, retrieving sequentially each EMPLOYEE record and all
records inthe associated EMP-EXPERTISE set. The firstcommand retrieves EMPLOYEE
119. Subsequent @OBTAIN WITHIN SET statements retrieve the associated EXPERTISE
records and establish currency on EXPERTISE 03. The @FIND DBKEY statement is used to
reestablish the proper position beforeretrieving EMPLOYEE 48. Note that if @ FIND
DBKEY for the employee record is not specified, an attempt to retrieve the next
EMPLOYEE recordin the area would return EMPLOYEE 23.

EMP-DEMQO-REGION

EMP-EMPQSITION
NPO MA FIRST

EMP-DEMQ-REGION-AREA

EMP-DEMQO-REGION

EMPOSITION EMPLOYEE EXPERTISE
420|F |28 |VIA 415|F |116|CALC 425|F |8 |VIA
EMP-EMPOSITION EMP-ID-0415 | DN EMP-EXPERTISE

EMP-EXPERTISE
NPG MA

DES SKILL-LEVEL-0425 DF

EMP-DEMO-REGION

EMPOSITION

EMPLOYEE

EMPLOYEE
19

002

EXPERTISE
04

48

EXPERTISE
04

(DD

EMPLOYEE
148

EXPERTISE
04
EXPERTISE

04

PAGE 7000 PAGE 7001 PAGE 7002
Lo 35.
e &
& & & & @9
3 5 & &
o‘i‘ g < q‘q
@ & & & &

@OETAIN FIRST, AREA = EMP-DEMO-REGION' 119 118 119 118
#@OOTAIN FIAST, SET="EMP-EXPEATISE" a4 (RE:] o4 o4 4
@O8TAIN NEXT, SET = "EMP-EXPERIISE" a3 1189 a3 a3 a3
@FIND CURRENT, AEC ="EMPLOVEE" 119 1140 s} 1149 114
@OETAIN NEXT, AREA = "EMP-DEMO-AEGION' a8 1 o3 48 a0

168 DML Reference Guide for Assembler

@FIND/@OBTAIN Statements—accesses database records

Status codes

After completion of the @FIND/@OBTAIN WITHIN SET/AREA function,the ERRSTAT field
inthe IDMS communications block indicates the outcome of the operation. The
followingis a list of the acceptablestatus codes for this function and their
corresponding meaning:

0000

This request has been serviced successfully.
0301

The area in which the named record participates has notbeen readied.
0304

A sequence number of zero or a variablefield thatcontains a value of zero was
specified for the named record.

0306

Currency has not been established for the named record, set, or area.
0307

The end of the set or area has been reached, or the set is empty.

0308

Either the named record or the named set is notinthe subschema, or the named
record is notdefined as a member of the named set. The program has probably
invoked the wrong subschema, or has misspelled the record or set name.

0310

The subschema specifies anaccess restriction that prohibits retrieval of the named
record.

0323

The area name specified has notbeen includedinthe subschema invoked, the
record name specified has not been defined inthe named area, or the area name
has been misspelled.

0326
The record cannotbe found.
0360

A record occurrence has been encountered whose record type is not a member or
owner of the setasitis definedinthe subschema.

Chapter 5: Data Manipulation Language Statements 169

@FINISH—commits changes to database and terminates run unit

0361
The record cannotbe stored because of broken chains inthe database.
0370
A databasefilewill notopen properly.
When the KEEP parameter is specified as partofthe @FIND/@OBTAIN statement a
major code of 06 will bereturned if anerror occurs duringthe KEEP processing (see

@KEEP (see page 200)inthis chapter). The major code of 03 states thatanerror has
occurredinthe @FIND/@OBTAIN processing.

@FINISH—commits chandes to database and terminates run

unit

@FINISH Syntax

The @FINISH statement commits changes made to the databasethrough an individual
run unitand terminates the run unit. No further DML retrieval or modification
statements can be executed until the appropriate BINDs have been issued and the
necessaryareas havebeen readied again.

Ifthe rununitis sharingits transaction with another databasesession, the run unit's
changes may not be committed at the time the @FINISH statement is executed.

Note: For more information about the impactof transaction sharing, seethe
Navigational DML Programming Guide.

Currency

Followingthe successful execution of an @FINISH, all currencies aresetto null.You
cannot perform databaseaccess activities until youissuean @BIND/@READY sequence.

M

»»—— @FINISH

@FINISH Status Codes

The only acceptablestatus code returned for an @FINISH function is 0000.

170 DML Reference Guide for Assembler

#FINISH—commits changes to the database

#FINISH—commits changes to the database

#FINISH Syntax

\The #FINISH statement commits changes made to the databasethrough an individual
run unitor through all databasesessions associated with a task. A task-level finish also
commits all changes madein conjunction with scratch, queue, and printactivity.

Ifthe finishappliestoanindividualrununitandthe run unitis sharingits transaction
with another databasesession, the run unit's changes may not be committed at the
time the #FINISH statement is executed.

Note: For more information about the impactof transaction sharing, seethe
Navigational DML Programming Guide.

Run units (and SQL sessions) impacted by the #FINISH statement end, and their access
to the databaseis terminated.

The #FINISH statement is usedin both the navigationalandlogical record facility
environments. The #FINISH TASK statement is alsousedinanSQL programming
environment.

Currency

Followingthe successful execution of a #FINISH request, all currencies aresetto null
andthe issuingtask cannotperform databaseaccess through animpacted run unit
without executing an @BIND/@READY sequence.

M

>>—|ﬁ— #FINISH
label L TASK -

#FINISH Parameters

TASK

Commits the changes made by all scratch, queue, and printactivityand all top-level
run units associated with the current task. Its impact on SQL sessions associated
with the task depends on whether those sessions aresuspended and whether their
transactions areeligibleto be shared.

More information:

For more information aboutthe impact of a #FINISH TASK statement on SQL sessions,
see the SQL Programming Guide.

For more information aboutrun units and the impactof #FINISH TASK, see the
Navigational DML Programming Guide.

Chapter 5: Data Manipulation Language Statements 171

#FREESTG—requests that the system release variable storage

#FINISH Status Codes

After completion of the #FINISH statement, the value inregister 15 indicates the
outcome of the operation.The followingis a listof the Register 15 values and the
corresponding meaning:

X'o0’
The request has been serviced successfully.
X'o8’
The request cannotbe serviced due to an invalid request.
X'14'
The request cannotbe serviced becausethe transaction was backed out.
x'oc'

The request cannotbe serviced becausean internal error was detected. Check the
DC/UCF log filefor details.

#FREESTG—requests that the system release variable storade

The #FREESTG statement requests that the system releaseall or a partof a block of
variablestorage. The storage to be released may have been acquired with a #GETSTG
request inthe issuingtask or by another taskrunning on the same terminal as the

issuingtask.Apartial releaseis valid only for user storage; shared storage must be freed
inits entirety.

The #FREESTG request is unconditional;any runtime error will resultinan abend of the
issuingtask.

IDMSDB--#FREESTG

v

L zaper J

v

»—— #FREESTG T ADDR=storage-address
STGID=storage-id

)4

L ,NEWLEN=newlength Bl

172 DML Reference Guide for Assembler

#FREESTG—requests that the system release variable storage

#FREESTG Parameters

ADDR=storage-address/STGID=storage-id
Specifies the storagearea to be released. One of these options must be specified.

storage-address

Specifies the address of the storage area to be released. Storage-address is a
register or the symbolic name of a fullword user-defined field that contains the
storage area address.

storage-id

Specifies the 4-byte identifier of the variablestoragearea to be released. Storage-id
is aregister that contains the ID, the symbolic name of a user-defined field aligned
on a fullword boundary that contains the ID, or the ID literal enclosed in quotation
marks.

NEWLEN=

Specifies the number of bytes to be retained inthe storage pool, indicatinga partial
storage release (release of only partof the area originally allocated).

new-length

A register that contains the number of bytes, the symbolic nameof a user-defined
halfword or fullword field that contains the number of bytes, or anabsolute
expression.

When areleaseis partial,thelow-address portion of storage will beretained and
the high-address portionreleased.

#FREESTG Status Codes

The #FREESTG request is unconditional;any runtime error will resultinan abend of the
issuingtask.

#FREESTG Example

The following example illustrates the use of the #FREESTG statement to releasepartof
the user storagearea that is identified by the valuein register 7. The number of bytes to
remainin the storageareais specifiedinthe variablefield SPACEL.

#FREESTG STGID=(R7),NEWLEN=SPACE1L

Chapter 5: Data Manipulation Language Statements 173

@GET—transfers the contents of an accessed record occurrence

@GET—transfers the contents of an accessed record occurrence

The @GET statement transfers the contents of anaccessed record occurrence into
program variablestorage. Elements inthe accessed record aremoved to their
respective locations invariablestorageaccordingto the subschema view of the record.
The transferred elements will appearinstorageatthe locationtowhich the record has
been bound. (For further details, see @BIND REC (see page 104)inthis chapter.)

Currency
The @GET statement operates only on the record thatis currentof run unit.

Following successful execution of an @GET statement, the accessed recordis currentof
run unit, its area, its record type, andall sets in which itparticipates as owner or

member.
@GET Syntax
»>— @GET ><
L REC=record-name -
@GET Parameters
REC=record-name
Retrieves the recordthat is currentof run unit. If the optional REC=record-name
clauseis used, the current of run unit must be an occurrence of the named record
type.
@GET Status Codes

After completion of the @GET function, the ERRSTAT field inthe IDMS communications
blockindicates the outcome of the operation. The followingis a listof the acceptable
status codes for this function and their corresponding meaning:

0000
The request has been serviced successfully.
0508

The requested record is not inthe subschema. The program has probablyinvoked
the wrong subschema or the record name is misspelled.

174 DML Reference Guide for Assembler

#GETIME—gets time and date from the operating system

0510

The subschema specifies anaccess restriction that prohibits retrieval of the named
record.

0513

A current record of run unit has not been established or has been nullified by a
previous @ERASE statement.

0518
The record has not been bound.
0520
The current record is not the same type as the named record.
0526
The requested record has been erased.
0555

An invalid length has been returned for a variable-length field.

@GET Example

The following statement moves the EMPLOYEE record that is currentof run unitinto
program variablestorage:

@GET REC='EMPLOYEE'

#GETIME—gets time and date from the operating system

The #GETIME statement obtains the time and date from the operating system. The
system time is returned to the issuingtaskin binary absolute, binary formatted, packed
decimal, or edited format, as specified by the task. The dateis returned to the program
in packed decimal format.

After completion of the #GETIME request, a user-defined register and register 1 contain
the followingtime and date information:

m Register n specifies systemtime (ifrequested in binary formatted or binary
absoluteformat) or the address of a field that contain the system time (if requested
in packed or edited format). The register number (n) is assigned by the FORMAT
parameter; if not specified, the defaultis register 0.

Note: The return-time location can bedefined by the FORMAT parameter as a
variablefield namerather than a register number; in this instance, register 0 will
still containthetime valueorreturn-time address, as described above.

Chapter 5: Data Manipulation Language Statements 175

#GETIME—gets time and date from the operating system

m Register 1 contains the Julian datein packed format: Oyyydddc (padded zero,
current year relativeto 1900, days inyear, sign). For example, 0099365C would
represent December 31, 1999.0100001C would represent January 1, 2000.

#GETIME Syntax

L 1aper J

»— #GETIME FORMAT=

— (BINABS , T(O) <)
AE BINFMT % return-time-pointer il

v

\ 4

X

PACK
EDIT

#GETIME Parameters
FORMAT=
Specifies how and where the time is returned by the operatingsystem.
BINABS/BINFMT/PACK/EDIT

Specifies the format of the time whichis returned. The returned valueindicates the
elapsed time sincemidnight.

BINABS

(Binary absolute) (default); returns time as a fullword binary integer representing
elapsed time sincemidnightinintervals of ten-thousandths of a second.

Note: BINABS returns the most precisetime.
BINFMT

(Binary formatted); returns time as a fullword binary value which, when translated
to decimal form, is formatted as: hhmmsstttt (hours, minutes, seconds, and
ten-thousandths seconds).

PACK

(Packed); returns time as a 6-byte packed decimal value, formatted as:
Ohhmmessttttc (hours, minutes, seconds, ten-thousandths seconds,and sign).

EDIT

(Edited); returns time as an 11-byte edited value, formatted as: hh:mm:ss:hh
(hours, minutes, seconds,and hundredths seconds).

(0)/return-time

Specifies the location to which the time is returned.

176 DML Reference Guide for Assembler

#GETQUE—retrieves a queue record

(0)

(Default); is the register that contains the time or points to a field that contains the
time.

return-time

A register that contains the time (FORMAT is BINABS or BINFMT), a register that
points to the time (FORMAT is PACK or EDIT), or the symbolicnameof a

user-defined field (FORMAT is BINABS, BINFMT, PACK, or EDIT). The required size of
the fieldis dependent on the format requested.

#GETIME Status Codes

The #GETIME request is unconditional;any runtime error will resultinan abend of the
issuingtask.

#GETIME Example

The following example of the #GETIME statement obtains the time from the operating
system into the variablefield TIMECK and the Juliandateis returned inregister 1. The
time isinan 11-byte edited format; the Julian dateis in packed decimal format.

#GETIME FORMAT=(EDIT, TIMECK)

#GETQUE—retrieves a queue record

The #GETQUE statement retrieves a queue record, placesitina storage area associated
with the issuing programand optionally deletes it from the queue. Ifthe queue recordis
larger than the designated storage area, the recordis truncated as necessary.

#GETQUE Syntax

L zaper J

v

»—— #GETQUE RECORD=return-queue-data-location-pointer

v

»— ,RECLEN= queue-aata-max-length
L queue-aata-length bk

v

Chapter 5: Data Manipulation Language Statements 177

#GETQUE—retrieves a queue record

v

L ,PLIST= T SYSPLIST « Jl
parameter-value-list-pointer

v

L ,QUEID=queue-id-pointer -

v

L Loc= —— Next «
First
Last
Prior
(NTH, sequence-pointer)
(QRID, queue-record-id-pointer) —

T s, DELETE
’ - _E <
KEEP

L = I
RTNQRID= —— (1) < s

return-queue-record-id
L

L OPTION= — (—¥—— LOCK <)—J
E NOLOCK
NOWAIT <
WATT

L conp= N« ———————
(—¥—— NQID y—

E NRID

TNVP

TOER

" L NQiDXtT=no-queve- id-1abe1 =

v

v

v

L
v

v

v

L ,NRIDXIT=no-queue-record-id-label -

v

L ,I0ERXIT=7/0-error-label -

v

L ,INVPXIT=fnvalid-parameter—list-label—J

M

L ,ERROR=error-label —

#GETQUE Parameters
RECORD=
Specifies the location to which the system will return the requested queue record.
return-queue-data-location-pointer

A register that points to the area or the symbolic name of the area.

178 DML Reference Guide for Assembler

#GETQUE—retrieves a queue record

RECLEN=

Specifies the length of the area defined by the RECORD parameter and, if provided
inthe form of a user-defined variablefield name, assigns an area into which the
system will placethe actual length of the retrieved queue record.

queue-data-max-length

Specifies the length of the data area associated with the requested queue record. It
is aregister that contains the length or an absolute expression.

queue-data-length

A symbolic user-defined field, specifies a two-fullword area that is subdivided into
two fullwords. The first fullword contains thelength of the data area associated
with the requested queue record. The system returns the actual length of the
retrieved queue record to the second fullword. If the record length is provided in
register notation or as an absolute expression, a two-fullword area as defined by
queue- data-length will be builtdynamicallyatruntimein the sixth and seventh
fullwords of the parameter list.

PLIST=

Specifies the location of the seven-fullword storagearea in which the system will
build the #GETQUE parameter list.

SYSPLIST

(Default); is the symbolic name of the storageareain which the system F builds the
#GETQUE parameter list.

parameter-value-list-pointer
A register that points to the area or the symbolic name of the area.
QUEID=

Specifies the 1-to 16-character ID of the queue associated with the recordto be
retrieved.

queue-id-pointer

A register that points to a field that contains the ID, the symbolicnameof a
user-defined field that contains the ID, or the ID literal enclosed in quotation marks.
Ifthe queue IDis not specified,a null queue ID (16 blanks)is assumed.

LOC=
Specifies the queue record to be retrieved:

NEXT

(Default); retrieves the next recordinthe queue. If currencyinthe queue has not
been established, NEXT is equivalentto FIRST.

FIRST

Retrieves the firstrecordinthe queue.

Chapter 5: Data Manipulation Language Statements 179

#GETQUE—retrieves a queue record

LAST
Retrieves the lastrecordinthe queue.
PRIOR

Retrieves the priorrecordinthe queue. If currencyin the queue has not been
established, PRIORis equivalentto LAST.

(NTH,sequence)

Retrieves the nth record inthe queue as defined by sequence. Sequence is a
register that points to a field that contains the record sequence number (n), the
symbolic name of a user-defined field that contains the number, oran absolute
expression. (Within each queue, records areassigned numbers beginningwith 1,
not 0.)

(QRID,queue-record-id)

Retrieves the recordidentified by queue-record-id. Queue-record-id is a register
that points to a field that contains the queue recordid, the symbolicnameof a
user-defined field that contains the id, or an absolute expression.

DISP=

Specifies the disposition of the queue record after itis passedtothe requesting
program.

DELETE

(Default); deletes the record from the queue. If DELETE is specified and the record s
truncated, some data may be lost.

KEEP
Keeps the recordinthe queue.
RTNQRID=

Specifies the locationinthe programto which the system will return the
system-assigned ID of the retrieved queue record. The returned ID can be saved
andused to retrieve or delete the queue record.

(1)
(Default); the register to which the system will return the queue record ID.
return-queue-record-id

A register or the symbolic name of a fullword user-defined field to which the system
will return the queue record ID.

180 DML Reference Guide for Assembler

#GETQUE—retrieves a queue record

OPTION=

Specifies whether to retaina lockonthe current queue record and whether the
issuingtask suspends executionifthe requested record cannotbe accessed inthe
queue:

LOCK/NOLOCK

These parameters have been non-functional since CAIDMS Release12.0. They are
included as parameters for release compatibility. Queue record lockingis
performed as part of the standard databaselockingroutines since CAIDMS Release
12.0.

NOWAIT

Continues task execution inthe event of a nonexistent queue. The system returns a
valueof X'0C' to register 15 in the event that the requested queue does not
currently exist.

WAIT
Suspends task execution until the requested queue exists.
COND=

Specifies whether the #GETQUE is conditionaland under what conditions control
should be returned to the issuing program:

NO
(Default); specifies thatthe requestis not conditional.
ALL

Specifies that the request is conditional. Control is returned if the request cannotbe
serviced for any of the reasons listed below.

condition

Specifies conditions under which the system returns control to the program.
Multiple conditions mustbe enclosed in parentheses and separated by commas.

NQID
The queue ID cannot be found.
NRID
The queue record cannot be found.
IOER
An 1/O error occurs while processing therequest.
INVP

The parameter listbuiltfor the #GETQUE is invalid. Alistof conditions mustbe
enclosedin parentheses. If multipleconditions arespecified, eachis separated from
the previous one by a comma.

Chapter 5: Data Manipulation Language Statements 181

#GETQUE—retrieves a queue record

NQIDXIT=no-queue-id-label

Specifies the symbolic name of the routine to which control should be returned if
the #GETQUE request cannotbe serviced because the header record identified by
the QUEID parameter cannot be found.

NRIDXIT=no-queue-record-id-label

Specifies the symbolic name of the routine to which control should be returned if
the #GETQUE request cannotbe serviced because the queue record ID cannot be
found.

IOERXIT=i/0-error-label

Specifies the symbolic name of the routine to which control should be returned if
the #GETQUE parameter cannotbe serviced becauseof anl/Oerror.

INVPXIT=invalid-parameter-list-label

Specifies the symbolic name of the routine to which control should be returned if
the #GETQUE cannot be serviced because of aninvalid parameter in the parameter
list.

ERROR=error-label

Specifies the symbolic name of the routine to which control should be returned ifa
condition specifiedinthe COND parameter occurs for which no other exit routine
was coded.

#GETQUE Status Codes

By default, the #GETQUE request is unconditional;any runtime error will resultinan
abend of the issuingtask. The issuing programcan request return of control with the
COND parameter to avoid anabend.

After completion of the #GETQUE function, the valuein register 15 indicates the
outcome of the operation.The followingis a listof the Register 15 values and the
corresponding meaning:

X'o0’

The request has been serviced successfully.
X'o4'

The request cannotbe serviced due to an invalid parameter list.
X'o8'

The request cannotbe serviced becausethe requested queue header record
(identified by QUEID) cannotbe found.

182 DML Reference Guide for Assembler

#GETQUE—retrieves a queue record

X'oc'
The request cannotbe serviced becausethe requested queue record cannotbe
found.

X'18'

The program storage area specified for return of the queue recordis too small;the
returned record has been truncated to fit the availablestorage.

X'ic'

A databaseerror occurred during queue processing. Acommon causeis a DBKEY
deadlock. For a PUT QUEUE operation, this code canalso mean that the queue
upper limithas been reached.

Ifa databaseerror has occurred, there areusually be other messages in the
CA-IDMS/DC/UCF log indicatinga problemencountered in RHDCRUAL, the internal
Run Unit Manager. Ifa deadlockhas occurred, messages DC0O01000 and DC001002
arealsoproduced.

Ifan 1/0 error occurs whileprocessing a #GETQUE request, the system will return the
address of the IDMS communications block to register 1. If no error occurs during
processing, a user-defined register, as assigned by the RTNQRID parameter, will contain
the queue record ID (QRID) of the retrieved queue record.

Chapter 5: Data Manipulation Language Statements 183

#GETSCR—retrieves a scratch record

#GETQUE Example

The example of the #GETQUE statement shown below performs

the followingfunctions:

Specifies location QREC5 as the areain programvariablestorageto receive the
requested queue record

Specifies the length of area QRECS inregister 6
Uses the defaultlocation to build the parameter list, SYSPLIST

Specifies that register 7 will hold the address of the field that contains the ID of the
gueue associated with the record to be retrieved

Specifies the next record (inregard to queue currency)inthe queue as the record
to be retrieved

Specifies that the record will notbe deleted from the queue after it has been
passedto the requesting program

Uses the register 1 default to receive the system-assigned ID of the retrieved
scratchrecord

Specifies the WAIT option to suspend task execution until the requested queue
record is available

Specifies that this request is not conditional;any runtimeerror will resultinan
abend of the issuingtask

#GETQUE RECORD=QREC5,RECLEN=(6),QUEID=(7),LOC=NEXT,DISP=KEEP, _
OPTION=WAIT, COND=NO

#GETSCR—retrieves a scratch record

The #GETSCR statement retrieves a scratchrecordandplacesitinastorage area
associated with the issuingprogram.The storage area must already beall ocated to the
requesting task; no implicitHGETSTG functionis performed duringthe #GETSCR
operation. Ifthe scratchrecordis larger than the designated storagearea, the record is
truncated as necessary.

By default, the #GETSCR request is unconditional;any runtimeerror will resultinan
abend of the issuingtask. The issuing programcan request return of control with the
COND parameter to avoid an abend.

184 DML Reference Guide for Assembler

#GETSCR—retrieves a scratch record

#GETSCR Syntax
oL japer g
»—— #GETSCR RECORD=return-scratch-data-location-pointer >
»— ,RECLEN= T scratch-data-max-length >
scratch-data-length = 1
- L pList= [SYSPLIST « Jl g
parameter-value-1ist-pointer
L ,SAID=scratch-area-id-pointer -
L ,LOC= Next <«
First
Last
Current
Prior
(SRID, scratch-record-id) —
,DISP= DELETE 4]—|
L KEEP
" T RinerID- (1) < ‘ >
L return-scratch-record-id —l
L ,COND= NO « I
—
(= NAID)—
NRID
IOER
INVP
L ,NAIDXIT=no-scratch-area-id-label i
L ,NRIDXIT=no-scratch-record-id-1label]
L ,I0ERXIT=7/0-error-label il
L ,INVPXIT=7nval id-parameter-1ist-1abel i
L ,ERROR=error-label il
#GETSCR Parameters

RECORD=
Specifies the location to which the system will return the scratch record.
record-scratch-data-location-pointer

A register that points to the variablestoragearea or the user-defined symbolic
name of the area.

Chapter 5: Data Manipulation Language Statements 185

#GETSCR—retrieves a scratch record

RECLEN=

Specifies the length of the area defined by the RECORD parameter and, if provided
inthe form of a user-defined variablefield,assignsanarea into which the system
will placethe actual length of the returned data.

scratch-data-max-length

Specifies the length of the data area associated with the requested scratch record.
Itis aregisterthat contains the length or anabsoluteexpression.

scratch-data-length

A symbolic user-defined field, specifies anarea whichis subdivided into two
fullwords. The firstfullword contains the length of the data area associated with the
requested scratch record. The system returns the actual length of the requested
scratchrecord to the second. If the record has been scratch-data-length will contain
the length of the scratchrecord. Ifthe record length is provided in register notation
or as anabsoluteexpression,anarea composed of two fullwords, as defined by
scratch-data-length, will be builtdynamically atruntimein the sixth and seventh
fullwords of the parameter list.

PLIST=

Specifies the location of the seven-fullword storagearea in which the system will
build the #GETSCR parameter list.

SYSPLIST

(Default); is the symbolic name of the storageareain which the system will build
the #GETSCR parameter list.

parameter-list-pointer

A register that points to the area in which the system will build the HGETSCR
parameter listor the symbolic name of that area.

SAID=

Specifies the 1-to 8-character ID of the scratch area associated with the record
being retrieved.

scratch-area-id-pointer

A register that points to a field that contains the id, the symbolic name of a
user-defined field that contains the ID, or the ID literal enclosed in quotation marks.
Ifthe SAID parameter is notspecified,a null scratch area ID of 8 blanks is assumed.

LOC=

Specifies the scratch record to be retrieved.

186 DML Reference Guide for Assembler

#GETSCR—retrieves a scratch record

NEXT
(Default); retrieves the next recordinthe scratch area.
FIRST

Retrieves the firstrecordinthe scratcharea.(Records are always storedin
ascendingorder by scratchrecordid.)

LAST
Retrieves the lastrecordinthe scratcharea.
CURRENT

Retrieves the current record; thatis, that record most recently referenced by
another scratch function.

PRIOR

Retrieves the priorrecordinthe scratcharea.Ifcurrencyinthe scratcharea has not
been established, PRIORis equivalentto LAST.

(SRID,scratch-record-id)

Retrieves the scratchrecordidentified by scratch-record-id. Scratch-record-idisa
register that points to the 4-byte scratchrecordid, the symbolicnameof a
user-defined field that contains the id, or an absolute expression of the id.

DISP=

Specifies whether the scratchrecordis tobe kept after itis passedtothe
requesting program.

DELETE

(Default); deletes the record from the scratcharea.|f DELETE is specified and the
record has been truncated, some data may be lost. To maintain currency following
a DELETE request, the system saves the next and prior pointers of the deleted
record.

KEEP
Keeps the recordinthe scratcharea.
RTNSRID=

Specifies the location to which the system will return the scratch record ID of the
retrieved record.

(1)

(Default); is the register into which the system will placethe|D of the scratch
record.

return-scratch-record-id

A register or the symbolic name of a fullword user-defined field to which the system
will return the ID of the retrieved scratch record.

Chapter 5: Data Manipulation Language Statements 187

#GETSCR—retrieves a scratch record

COND=

Specifies whether this #GETSCR is conditionaland under what conditions control
should be returned to the issuing program:

NO
(Default); specifies thatthe requestis not conditional.
ALL

Specifies that the request is conditional. Control is returned if the request cannotbe
serviced for any of the reasons listed below.

condition

Specifies conditions under which the system returns control to the issuingtask.
Multiple conditions mustbe included in parentheses and separated by commas.

NAID

The scratcharea ID cannotbe found.
NRID

The scratchrecord ID cannot be found.
IOER

An |/O error occurs whileprocessing theretrieval.
INVP

The parameter listbuiltfor the #GETSCR isinvalid.
NAIDXIT=no-scratch-area-id-label

Specifies the symbolic name of the routine to which control should be returned if
the #GETSCR cannotbe serviced becausethe scratcharea ID cannotbe found.

NRIDXIT=no-scratch-record-id-label

Specifies the symbolic name of the routine to which control should be returned if
the #GETSCR cannotbe serviced becausethe scratcharearecord D cannotbe
found.

IOERXIT=i/0-error-label

Specifies the symbolic name of the routine to which control should be returned if
the #GETSCR cannotbe serviced becauseof an |/O error.

188 DML Reference Guide for Assembler

#GETSCR—retrieves a scratch record

INVPXIT=invalid-parameter-list-label

Specifies the symbolic name of the routine to which control should be returned if
the #GETSCR request cannot be serviced because of an invalid parameter in the
parameter list.

ERROR=error-label

Specifies the symbolic name of the routine to which control should be returned ifa
condition specified inthe COND parameter occurs for which no other exit routine
was coded.

#GETSCR Status Codes

After completion of the #GETSCR function, the valueinregister 15 indicates the
outcome of the operation.

X'o0’

The request has been serviced successfully
X'o4'

The request cannotbe serviced due to an invalid parameter list.
X'o8’

The request cannotbe serviced becausethe requested scratcharea ID (SAID)
cannot be found

x'ocC'

The request cannotbe serviced becausethe requested scratchrecord ID (SRID)
cannot be found inthe named SAID.

X'18'

The request cannotbe serviced becausethe programstorage area specified for
return of the scratchrecordis toosmall;the returned record has been truncated to
fitthe availablespace.

X'ic'

The request cannotbe serviced due to an I/O error during processing.

Ifan 1/O error occurs while processing a #GETSCR request, the system will return the
address of the IDMS communications block to register 1. If no error occurs during
processing, a user-defined register, assigned by the RTNSRID parameter, will containthe
scratchrecord ID of the obtained record.

Chapter 5: Data Manipulation Language Statements 189

#GETSTG—acquires variable storage from a storage pool

#GETSCR Example

The example of the #GETSCR statement shown below performs the followingfunctions:

m Specifies location SREC5 as the area in program variablestorageto receive the
requested scratch record.

m Specifies the length of area SREC5 in user-defined field SCRLENG.
m Uses the defaultlocation to build the parameter list, SYSPLIST.

m Specifies the literal SCR3 as the ID of the scratch area associated with the record to
be retrieved.

m Specifies the firstrecordinthe scratch area as the record to be retrieved.

m Specifies that the record will bedeleted from the scratch area afterit has been
passedto the requesting program.

m Specifies that register 4 will receivethe system-assigned ID of the retrieved scratch
record.

m Specifies that this requestis conditional. Ifthe scratchrecordid cannot be found
control will bereturned to the routine labeled NORECRTN.

#GETSCR RECORD=SREC5, RECLEN=SCRLENG, SAID='SCR3',LOC=FIRST, _
DISP=DELETE, COND=NRID,NRIDXIT=NORECRTN

#GETSTG—acquires variable storade from a storage pool

The #GETSTG statement acquires variablestoragefrom a storage pool or obtains the
address of a previouslyacquired storagearea.Once acquired, the storage is availablefor
use:

m Bytheissuingtaskonly(userstorage)

m By subsequent tasks runningonthe same logical terminal (user-keptstorage)

m Byalltasksinthesystem (shared or shared-kept storage)

Storage availability is governed by #GETSTG parameter specifications. Thevaluestored

ina user-defined register assigned by the ADDR parameter contains the address of
acquired storage.

190 DML Reference Guide for Assembler

#GETSTG—acquires variable storage from a storage pool

#GETSTG Syntax

v

L zaper J

»— #GETSTG TYPE= USER T LONG >
(L SHARED L SHORT 4 L ,KEEP -)

»

v

L ,PLIST= T SYSPLIST « Jl
parameter-value-list-pointer

v

L ,LEN=storage-length il

v

L INtT=7nitial-vaive =

- L Appre T— o <ﬁJ
storage-address

L ,STGID=storage-71d]

v

v

v

L Loc= —— ANY <
—E BELOW
XA

L ,COND= N0 4« ——
— .
(= NOST)—
E INVP
DEAD
XAST

L NOSTXIT=7nsufficient-storage-1label —-]

L
v

v

v

L ,INVPXIT=7nval id-parameter-1ist-1abel]

v

L ,DEADXIT=deadlock-label il

v

L XASTXIT=extended-aadressing-storage-label]

v

L NWSTXIT=new-storage-1label]

)

L ,ERROR=error-label —|

#GETSTG Parameters
TYPE=

Required for all requests for storage, specifies three subparameters. Specified
subparameters must be enclosed in parentheses.

USER/SHARED

Specifies whether access to the storage is to be restricted to the issuingtaskoris to
be availableto all tasks in thesystem.

Chapter 5: Data Manipulation Language Statements 191

#GETSTG—acquires variable storage from a storage pool

USER

Specifies that access to the storage areais to be restricted to the issuingtaskor,if
KEEP is specified, to subsequent tasks executing on the same terminal.

Note: During system generation, a program defined with the NOPROTECT option
canaccess anystorageareainthe system, includingan area associated exclusively
with another task. Thus, the USER attribute may not protect the storage area being
acquired. However, storage areas can be protected on a system-wide or
program-by-program basis during systemgeneration and by the modes specified
when storage is allocated.

SHARED

Specifies that any taskin the DC/UCF system can access and modify the acquired
storage. Each task must establish addressability to the storage area by explicitly
issuing a #GETSTG request.

LONG/SHORT

Specifies whether the system should allocatethe storage from the bottom or the
top of the storage pool.

LONG

Specifies that storage, used long-term, is allocated fromthe bottom of the storage
pool.

SHORT

Specifies that storage, used short-term, is allocated fromthe top of the storage
pool. An incorrect LONG/SHORT specification will notaffect normal program
execution; however, itmay affect the overall performance of the DC/UCF system.

Note: For more information aboutthe use of the LONG/SHORT option, see the CA
IDMS Navigational DML Programming Guide.

KEEP

Optionally specifies whether the storagearea will be used by subsequent tasks
executing on the same logical terminal. When KEEP is specified, the storage area
canbe accessed by subsequent tasks; otherwise the storagearea cannotbe
accessed by subsequent tasks.

Note: For more information aboutthe KEEP parameter, see the CA IDMS
Navigational DML Programming Guide.

PLIST=

Specifies whether the six-fullword #GETSTG parameter listwill bebuiltinlineorina
variablestorageareaand,ifbuiltinavariablestoragearea,identifies the location
of that area.

192 DML Reference Guide for Assembler

#GETSTG—acquires variable storage from a storage pool

SYSPLIST

(Default); builds thelistinavariablestoragearea identified by the symbolic name
SYSPLIST.

Builds the listinline. The generated parameter listwill bereentrant; thatis, no
generated code will modifyit. If PLIST=* is specified, other parameters of the
HGETSTG statement cannot be identified with register notation.

parameter-list

Builds the listina variablestoragearea associated with the task. Parameter-listis a
register which points to the area or the symbolic name of that area.

LEN=
Specifies the size,in bytes, of a new storagearea.
storage-length

A register or the symbolic name of a user-defined halfword or fullword field that
contains the number of bytes, or an absolute expression.

Note: If the parameter listis beinggenerated inline (PLIST=*), the LEN parameter
must specify the symbolic name of a fullword field or an absoluteexpression;
register notationand a halfword variablefield name areinvalid.

INIT=
Specifies aninitial valuefor a new storagearea.
initial-value

An absoluteexpression of the initial value. Each byte of the acquired storageareais
initialized to the specified value.

ADDR=
Specifies the address of the acquired or previously acquired storage:
(1)

(Default); is a register or the symbolic name of a fullword user-defined field to
which the system will return the address of the acquired storage.

storage-address

A register or the symbolic name of a fullword user-defined field to which the system
returns the address of the acquired storage.

STGID=

Specifies the 4-character ID associated with the storage area. The STGID parameter
must be specified with #GETSTG requests for previously allocated storageareas or
areas to bereallocated.

Chapter 5: Data Manipulation Language Statements 193

#GETSTG—acquires variable storage from a storage pool

storage-id

A register that contains the id, the symbolic name of a 4-byte user-defined field
whichis aligned on a fullword boundary and contains the ID, or the ID literal
enclosedinsinglequotation marks.

Note: Ifthe parameter listis beinggenerated inline, the STGID parameter must
specify the symbolic nameof a variablefield or a literal enclosed in quotation
marks; register notation is invalid. When using the STGID option to request the
address of an existingstoragearea, the #GETSTG statement must specify the same
USER/SHARED option as the original #GETSTG request issued by the taskto acquire
the area.

Note: All storage ids owned by a task must be unique. While more than one
variablestoragearea with the same storage ID can exist(for example, one shared
andthe other user) onlyone such area canbe owned by ataskata time.

LOC=

Indicates where the system allocates storage.
ANY

(Default); indicates thatstoragecan be allocated anywhere in the region.
BELOW

Requests that the system allocatestorage below the 16-megabyte line.

Requests that the system allocatestorageabove the 16-megabyte line. This option
isignoredifthe system has no XA storage pools defined or ifitis not XA-enabled.

COND=

Specifies whether this #GETSTG statement is conditionaland under what condition
control should be returned to the issuing program:

NO
(Default); specifies thatthe request is not conditional.
ALL

Specifies that the request is conditional. Control is returned if the request cannot be
serviced for any of the reasons listed below.

condition

Specifies conditions under which the system returns control to the issuingtask.
Multiple conditions mustbe enclosed in parentheses and separated by commas.

NOST

Availablespaceinthe storagepoolisinsufficientto satisfy therequest. Do not wait
for additional storageto become available.

194 DML Reference Guide for Assembler

#GETSTG—acquires variable storage from a storage pool

INVP
The parameter listbuiltfor the #GETSTG is invalid.
DEAD

The availablespaceinthe storage pool is insufficientto satisfy the request andifto
waitwould causea deadlock

XAST

Allocated storage above the 16-megabyte linecannotbe addressed by the 24-bit
task.

NOSTXIT=insufficient-storage-label

Specifies the symbolic name of the routine to which control should be returned if
the #GETSTG cannot be serviced because the available storageis insufficientto
satisfy the request.

INVPXIT=invalid-parameter-list-label

Specifies the symbolic name of the routine to which control should be returned if
the #GETSTG cannot be serviced because of aninvalid parameter in the parameter
list.

DEADXIT=deadlock-label

Specifies the symbolic name of the routine to which control should be returned if
the #GETSTG cannot be serviced because the availablestorageis insufficientto
satisfy the request, andifto waitwould causea deadlock.

NWSTXIT=new-storage-label

Specifies the symbolic name of the routine to which control should be returned if
the #GETSTG request names a STGID that does not existin the system
(TYPE=SHARED) or inthe task (TYPE=USER).

XASTXIT=extended-addressing-storage-label

Specifies the symbolic name of the routine to which control is returned if the
allocated storageabove the 16-megabyte linecannot be addressed by the 24-bit
task.

ERROR=error-label

Specifies the symbolic name of the routine to which control should be returned ifa
condition specified inthe COND parameter occurs for which no other exit routine
was coded.

Chapter 5: Data Manipulation Language Statements 195

#GETSTG—acquires variable storage from a storage pool

#GETSTG Status Codes

By default, the #GETSTG requestis unconditional. Error conditions thatcanoccur are:

m Ashort-on-storagecondition, caused when the amount of storageinthe storage
pool isinadequateto accommodate the request, will resultina delay until sufficient
storage becomes available (unless such a waitwould causea deadlock)

m Any abnormal condition willresultinan abend. Conditions in this categoryinclude
the following:

- 1/Oerror
- A waiton storage (default action resulting fromthe short-on-storage condition)

would resultina deadlock

The issuing programcan requestreturn of control with the COND to avoid a delayor an
abend.

After completion of the #GETSTG request, the valueinregister 15 indicates the outcome
of the operation:

Register 15 Meaning

Value

X'00' The request has been serviced successfully.

X'04' The request has specified a storage ID which did not previously exist;
the indicated spacehas been allocated.

X'08' The request cannotbe serviced due to insufficientstoragein the
storage pool.

x'oc' The request cannotbe serviced due to an invalid parameter list.

X'10' The requested storage cannot be allocated immediately (insufficient
storage), and to waitwould causea deadlock.

X'18' Allocated XA storagecannot be accessed by a 24-bittask. This
situation occurs ifstorageis requested by STGID and the storagewas
initially allocated by an XA task.

#GETSTG Example

The example of the #GETSTG statement shown below performs the followingfunctions:

m Specifies that the requested storage areais to be shared by anytaskinthe DC/UCF
system, thatitwill containshort-term storageallocated from the top of the storage
pool,and thatit will notbe availablefor useby subsequent tasks

m Builds the parameter list, SYSPLIST (default), inthe variablestoragearea

196 DML Reference Guide for Assembler

@IF—tests forthe presence of member record occurrences

m Specifies the length of the new storageareainregister 2
m Specifies that every byte inthe storage area be initialized to blanks

m Uses register 1 (default) to receive the address of the acquired storage from the
system

m Specifies the ID of the storage areainregister 9

m Specifies that control will bereturned to the routine labeled NOSTGRTN if the
amount of availablestorageis insufficientto satisfy therequest, otherwise, any
runtime error will resultinanabend of the issuingtask

#GETSTG TYPE=(SHARED,SHORT) ,LEN=(2) ,INIT=' ',STGID=(9), _
COND=NOST, NOSTXIT=NOSTGRTN

@IF—tests for the presence of member record occurrences

The @IF statement allows you to test for the presence of member record occurrences in
aset or to determine the membership status of a record occurrence in a specified set;
once the set has been evaluated, the @IF statement specifies further action based on
the outcome of the evaluation. For example, you might use an @IF statement to
determine whether aset occurrenceis empty and, ifitis empty, to erasethe owner
record.

Note: Native VSAM users—This statement is not allowed for sets defined with member
records that are stored in native VSAM data sets.

Each @IF statement contains a conditional phraseand a branch statement. When an
@IFisissued,the DML precompiler firstgenerates a call to CAIDMS/DB to execute the
conditional phrase. CAIDMS/DB tests for a status code of 0000 or 1601, as requested in
the conditional phrase;the results of the test determine whether or not the branch
statement is executed.

Currency
Depending on its format, the @IF statement uses set or run-unitcurrency. The set
occurrence of an @IF statement is determined by the current record of the named set;

the named record occurrence is the record thatis current of run unit.

Currency is not updated after execution of the @IF statement.

Chapter 5: Data Manipulation Language Statements 197

@IF—tests for the presence of memberrecord occurrences

@IF Syntax

@IF Parameters

»»—— @IF SET=set-name

v

v

> MEMBER= YES
ewpTY= — L no —]

v

»— ,GOTO=branch-location

)

>
L ,ERRSTAT=error-status-1location]

SET=set-name

Identifies the set thatis to be tested for existing member record occurrences.
Set-name must specify a set included in the subschema.

MEMBER=

Determines whether the currentrecord of run unitparticipates as a member inany
occurrence of the named set and, depending on the outcome of the evaluation,
executes the branch statement.

YES

Specifies that the branch statement is executed onlyifthe record is a member of
the set (that is, ERRSTAT is 0000).

NO

Specifies that the branch statement is executed onlyifthe named record is nota
member of the named set (thatis, ERRSTAT is 1601).

EMPTY=

Evaluates the current occurrence of the named set for the presence of member
record occurrences and, depending on the outcome of the evaluation, executes the
branch statement.

YES

Specifies that the branch statement is executed onlyifthe set is empty (thatis,
ERRSTAT is 0000).

198 DML Reference Guide for Assembler

@IF—tests for the presence of memberrecord occurrences

@IF Status Codes

@IF Example

NO

Specifies that the branch statement is executed onlyifthe specified set has one or
more member records (that is, ERRSTAT is 1601).

GOTO=branch-location

Identifies the next statement inthe programbe executed. Branch-location mustbe
a statement label; register notationis not supported for this parameter.

ERRSTAT=status-location

Specifies the name of the status field inthe IDMS communications block. If the
status fieldis other than ERRSTAT, this clauseis required. Status-location mustbe a
statement label;register notation is not supported for this parameter

After completion of the @IF function, the ERRSTAT fieldinthe IDMS communications
blockindicates theoutcome of the operation:

Status Code Meaning

0000 The set is empty, or the current record of run unitis a member of the
set.
1601 The set is not empty, or the currentrecord of run unitis nota

member of the set.

1606 Currency has not been established for the specified set.

1608 An invalid setname has been specified, or the current record of run
unitis nota member of the named set. Amisspelled setname can
accountfor this message.

1613 A current record of run unit has not been established or has been
nullified by a preceding @ERASE statement.

The followingexamples illustratetwo uses of the @IF statement.

Inthe firstexample, the @IF statement tests the DEPT-EMPLOYEE set for existing
EMPLOYEE members and, if no occurrences of the EMPLOYEE record arefound (that is,
ERRSTAT is 0000), moves a message to that effect to location EMPLSWS.

Chapter 5: Data Manipulation Language Statements 199

@KEEP—places an explicit shared or exclusive lock on a record

Ifthe current occurrence of the DEPT-EMPLOYEE set contains oneor more occurrences
of the EMPLOYEE record (thatis, ERRSTAT is 1601),the GOTO clauseisignored and the
next statement inthe programis executed.

@IF SET='DEPT-EMPLOYEE',EMPTY=YES, _
GOTO=NOEMPL

NOEMPL EQU
MvC EMPLSWS,=CL2 'NO EMPLOYEES IN SET'

In this next example, the @IF statement is used to verify that the EMPLOYEE record that
is currentof run unitis not a member of the current occurrence of the
OFFICE-EMPLOYEE set before code is executed to connect the EMPLOYEE record to that
set.

Ifthe EMPLOYEE record is not a member of OFFICE-EMPLOYEE (thatis, ERRSTAT is
1601),the programbranches to the LINKSET paragraph.|fthe EMPLOYEE recordis
already a member of the OFFICE-EMPLOYEE set (that is, ERRSTAT is 0000), the GOTO
clauseisignored andthe next statement inthe programis executed.

@IF SET='OFFICE-EMPLOYEE',MEMBER=NO,GOTO=LINKSET

@KEEP—places an explicit shared or exclusive lock on a record

The @KEEP statement places anexplicitshared or exclusivelockona record thatis
current of run unit, record, set, or area. Explicitrecordlocks areused to maintainrecord
locks thatwould otherwise be released followinga changeincurrency:

m Explicit shared—Other run units canretrieve the locked record but cannot update it
as longas the lockis in effect. Any number of concurrently executing run units can
placeasharedlockon arecord; however, no rununitcanplaceasharedlockon a
record on which another run unithas placed an exclusivelock.

m Explicit exclusive—No other run unitcanaccess the record as longas the lockisin
effect. Onlyone rununitatatime canplaceanexclusivelockona record; that run
unit has exclusive control of the record. In order for a run unitto placean exclusive
lock or arecord, that record cannothold either an exclusiveor a shared lock
assigned by any other run unit.

Locks placed onrecords by the @KEEP function aremaintained for the duration of the
recovery unit or until explicitly released by means of the @ COMMIT verb.

200 DML Reference Guide for Assembler

@KEEP—places an explicit shared or exclusive lock on a record

@KEEP Syntax

Currency

Currency on run unit, record, set, or area must be established before execution of the
@KEEP statement.

Currency is not updated after execution of the @KEEP statement.

M

»p»—— @KEEP EXCLUSIVE T CURRENT
L SHARED —E §E%=record—na'ﬂe —
=set-name
AREA=area-name —

@KEEP Parameters

EXCLUSIVE/SHARED

Places anexclusiveorsharedlockona current record.
CURRENT/REC=

Specifies which record to lock.
CURRENT

Specifies the current record of run unit.
REC=record-name

Specifies the current occurrence of the named record type.
SET=set-name

Specifies the current occurrence of the named set type.
AREA=area-name

Specifies the current occurrence of the named area

@KEEP Status Codes

After completion of the @KEEP function, the ERRSTAT field inthe IDMS communications
blockindicates the outcome of the operation:

Status Code | Meaning

0000 This request has been serviced successfully.
0606 Currency has not been established for the named record, set, or area.
0608 The named record, set, or areais notinthe subschema, or the current

record of run unitis not a member of the named set oris misspelled.

Chapter 5: Data Manipulation Language Statements 201

#KEEP—establishes long-term record locks

@KEEP Example

0610 The program's subschema specifies anaccess restriction that prohibits
execution of the @KEEP function.

0623 The named areais notinthe subschema or has been misspelled.
0626 The record to be kept has been erased.
0629 Deadlock occurred duringlocking of target record.

The following example of the @KEEP statement places an exclusivelock on the current
record occurrence of the set OFFICE-EMPLOYEE:

@KEEP EXCLUSIVE,SET="'OFFICE-EMPLOYEE'

The currency of the set for this example would have to be established beforethis
statement canbe executed.

#KEEP—establishes long-term record locks

The #KEEP statement is usedin DC/UCF pseudo-conversational transactionsto establish
long-term record locks and to monitor access to records between tasks.lLong-term
databaselocks canbeshared or exclusive:

m Long-term shared locks allowother run units to access the locked record but
prevent run units from updating the record as longas the lockis maintained.

m Long-term exclusive locks prevent other run units from accessingthelocked
record. However, run units executing on the logical terminal associated with a task
that establishes a long-term exclusivelockarenot restricted from accessingthe
locked record. Therefore, subsequent tasksinatransactioncanaccessthelocked
record and complete the databaseprocessingrequired by the transaction.

Ifa record has been locked with a #KEEP request, restrictions may existon the type of
lockthat can be placed on that record by other run units, based on existinglocks and
whether the requesting run unitis executing on the same logical terminal asthe run unit
that originally placed the lock on the record. The followingtableillustrates these
restrictions.

Type of lock in effect Type of lock allowed for Type of lock disallowed for
other run units other run units
Shared Shared and longterm shared Exclusiveand longterm
exclusive

202 DML Reference Guide for Assembler

#KEEP—establishes long-term record locks

Type of lock in effect Type of lock allowed for

other run units

Type of lock disallowed for
other run units

Exclusive

None

Shared, exclusive, longterm,
shared, and longterm exclusive

Longterm shared

For all rununits:shared and
longterm shared For run
units on the same terminal:
exclusiveand longterm
exclusive

For run units on other
terminals:exclusiveand
longterm exclusive

Longterm exclusive

For run units on the same
terminal: shared exclusive,
longterm shared, and
longterm exclusive

For run units on other
terminals:shared exclusive,
longterm shared, longterm
exclusive

Tasks can monitor databaseactivity associated with a specified record duringa
pseudo-converse and, ifdesired,can placea long-term lock on the record being

monitored. A subsequent task canthen make inquiries aboutthatdatabaseactivity for
the record and take the appropriateaction.

The system maintains information on databaseactivity using five-bitflags, each of which
is either turned on (binary 1) or turned off (binary 0). This informationis returned from
the system to the low-order byte of register 0 as a numeric value. The bitassignments,
the corresponding numeric valuereturned to the program, and a description of the
associated databaseactivity follows:

X'10'

The record has been physically deleted.
X'o8’

The record has been logically deleted.
X'o4'

The record's prefix has been modified, thatis, a set operation (for example,
@CONNECT or @DISCON) occurred involving the record.

X'02'
The record's data has been modified.
X'o1'
The record has been obtained.
Any combination of these bits may be set. To determine the action or combination of

actions thathas occurred, you can compare the numericvalue returned to the program
inregister 0 with anappropriateconstant;for example:

Chapter 5: Data Manipulation Language Statements 203

#KEEP—establishes long-term record locks

m Ifthe returned valueis 0, no databaseactivity occurred for the monitored record.

m |fthe returned valueis 2,the data inthe record was modified.
m Ifthe returned valueis 3, the record has been obtained and modified.

m Ifthe returned valueis 8 or greater, the record was deleted.

The maximum possiblevalueis 31 (X'1F'), indicatingthatall the above actions occurred
for the monitored record. The example of the #KEEP statement, shown laterin this
topic, illustrates a test for the value of the five bit flags returned by the system to the
low-order byte of register 0.

You may prefer to monitor databaseactivityacross a pseudo-converserather than to
set long-term locks. Long-term locks can prevent access to a record by other run units
for anundesirablylongtime if, duringa pseudo-converse, the terminal operator failsto
enter a response. Monitoring does not restrictaccess to databaserecords, sets, or areas
by other run units; however, itdoes enable a program to test a record for alterations
made by other rununits. When long-term locks areused, itmay be desirabletorelease
those locks atspecified timeout intervals.

Note: For more information aboutthe use of timeout intervals, seethe System
Generation Guide.

#KEEP Syntax

v

7L gaper J

»— #KEEP NOTIFY
SHARE
EXCLUSIVE
UPGRADE SHARE
UPGRADEEXCLUSIVE —
TEST ———
RELEASE

v

»— ,LONGID= "ALL'
L long- 7‘0’—p07’/7t(—:’/”J

L ,CURRENT= record—na%-‘
—E set-name
area-name
L JWAIT= WAIT «
_E NOWAIT
NODEADLOCK

L NWTXIT=nowait-on-lock-release-label il

v

\ 4

\ 4

v

v

L ,DEADXIT=deadlock-1abel J

)4

L ,ERROR=error-label —|

204 DML Reference Guide for Assembler

#KEEP—establishes long-term record locks

#KEEP Parameters
NOTIFY/SHARE/EXCLUSIVE/UP GRADESHARE/ UPGRADEEXCLUSIVE/ TEST/RELEASE
Specifies the type of record lock or monitoring.
NOTIFY

Requests that the system monitor databaseactivity associated with the current
record type, set, or area specified inthe CURRENT parameter, described following.
When NOTIFY is specified, the system initializes register 0 to containinformation on
databaseactivity for the specified record. Only the low-order byte of register 0 will
actually containthevalueof the five bit flags used to monitor databaseactivity of
the specified record.

SHARE

Specifies that the current occurrence of the record type, set, or area specifiedin the
CURRENT parameter, described below, will receivea long-term shared lock.

EXCLUSIVE

Specifies that the current occurrence of the record type, set, orarea specifiedin the
CURRENT parameter, described below, will receivea long-term exclusivelock.

UPGRADESHARE

Upgrades a previous #KEEP NOTIFY request by placinga shared long-term lock on
the record identified by the LONGID parameter, described below.

UPGRADEEXCLUSIVE

Upgrades a previous #KEEP NOTIFY request by placingan exclusivelong-term lock
on the record identified by the LONGID parameter, described below.

TEST

Requests that the system return information on databaseactivity associated with
the record identified by the LONGID parameter of a previouslyissued #KEEP NOTIFY
statement. The system returns the information to the low-order byte of register 0
as a numeric value.

The TEST request must specify a long-term lock ID that matches the long-term lock
ID specifiedina previous #KEEP NOTIFY request.

RELEASE

Releases the long-term lock for the recordidentified by the LONGID parameter,
described below. RELEASE alsoreleases thestatistics blockallocated by a previous
H#KEEP NOTIFY request.

LONGID=

Specifies either the record locks to be upgraded or the records for which
information aboutdatabaseactivityis desired.

Chapter 5: Data Manipulation Language Statements 205

#KEEP—establishes long-term record locks

'ALL'

(HKEEP RELEASE requests only);requests that the system releaseall long-term locks
kept for the logical terminal associated with the current task.

long-id-pointer

Specifies the 1-to 16-characteridentifier thatwill be used by subsequent #KEEP
requests to upgrade a long-term lock or to make inquiries aboutdatabaseactivity
associated with the specified record. Long-id is a register that contains the address
of the long-term id, the symbolic name of a user-defined field that contains the
long-term id, or anabsolute expression.

CURRENT=record-name/set-name/area-name

Specifies the record type, set, or area for which the system will monitor database
activityor assignalong-termshared or exclusivelock. One of the keywords NOTIFY,
SHARE, or EXCLUSIVE must also bespecified withthe CURRENT parameter. The
value of the CURRENT parameter can be a register or the symbolic name of a
user-defined field that contains the record name, set name, or area name or the
name itselfenclosedin quotation marks.

WAIT=

(#KEEP SHARE/EXCLUSIVE/UPGRADESHARE/ UPGRADEEXCLUSIVE requests only);
specifies whether the issuingtaskis towaitifthe requested lock cannotbe set
immediately because of an existinglock on the named

record.

WAIT

(Default); Requests that the system waitfor the existinglockto be releasedin order
to set the requested lock. If the wait would causea deadlock, the system
terminates the issuingtaskabnormally.

NOWAIT
Requests that the system not waitfor the existinglockto be released.
NODEADLOCK

Requests that the system wait for the existinglockto be released, unless todo so
would causea deadlock. If the waitwould causea deadlock, the system returns
control to the issuingtask.

NWTXIT=nowait-on-lock-release-label

Specifies the symbolic name of a routineto which control should be returned ifthe
#HKEEP request that specified the NOWAIT option cannotbe serviced becausethe
requested lock cannot be set immediately.

206 DML Reference Guide for Assembler

#KEEP—establishes long-term record locks

DEADXIT=deadlock-label
(#KEEP requests specifying WAIT only);

Specifies the symbolic name of a routineto which control is returned if the
requested lock cannot be set immediately, andifto waitwould causea deadlock.

ERROR=error-label

Specifies the symbolic name of a routineto which control should be returned ifa
condition occurs for which no other exit routine was coded.

#KEEP Status Codes

After completion of the #KEEP request, the valueinregister 15 indicates the outcome of
the operation:

Register 15 Value | Meaning

X'00' This request has been serviced successfully.

X'04' Either the requested longterm ID cannot be found or the #KEEP
request has been issued by a nonterminal task.

X'14' The request cannotbe serviced becausea lockon the specified
record already exists; NOWAIT has been specified.

X'18' The request cannotbe serviced becauseto waitfor an existinglock
to be released would causea deadlock.

#KEEP Example

The followingis an example of the #KEEP statement that requests that the system
monitor the databaseactivity ofa record. The #KEEP NOTIFY statement selects an
EMPLOYEE recordthat is currentof the EMPLOYEE record type andassignsita
long-term lock ID of REC1. Use of the NOTIFY parameter causes the system to initialize
register 0, which will receivethe information regarding databaseactivities.

The #KEEP TEST statement calls onthe system to return the databaseactivity
information for the record identified by a lock ID of REC1 to the low-order byte of
register 0. The informationis returned as a numeric valueandis tested by comparing
the valueinregister 0 to the numeric literal thatcontains the value 2. If the valuein
register Ois greater than or equal to 2, the program will branch to location MODREC. If
the valueis less than the valueof register 0 the programwill proceed to the next
statement.

Chapter 5: Data Manipulation Language Statements 207

#LINEEND—requests termination of the current line I/0 session

#KEEP NOTIFY,LONGID='REC1',CURRENT="'EMPLOYEE'

#KEEP TEST,LONGID='RECL'
C (R),=F'2"
BNL MODREC

#LINEEND—requests termination of the current line I/0
session

The #LINEEND statement requests termination of the currentlinel/O session and
deletes any outstanding buffered output lines and pages queued for asynchronous I/0.
Unless NOBKPG is specified, all pages processed by the terminal operator duringthe I/O
sessionremain available until the operator signals completion of the review by pressing
ENTER with no request to see another page. At that time, all pages for the sessionare
deleted, page header lines arecleared, and the current page number is setto 1.

#LINEEND Syntax

#LINEEND

M

label

#LINEEND Parameters
#LINEEND

Requests that the system terminate the current linel/O session andto delete any
remaining buffered output lines and pages queued for asynchronous |/0.

#LINEEND Status Codes

The #LINEEND request is unconditional;any error detected duringexecution will result
inanabend of the issuingtask.

#LINEIN—requests a synchronous transfer of data

The #LINEIN statement requests a synchronous transfer of data from the terminal to the
issuing program.

208 DML Reference Guide for Assembler

#LINEIN—requests asynchronoustransfer of data

#LINEIN Syntax

PP'—'_—_J— #LINEIN
label

v

L ,LRB= SYSPLIST «

v

T

line-request-block-pointer

I

L , INAREA=Tnput-data-location-pointer -

v

L ,MAXIN=7nput-data-max-length -

v

©) «

\ 4

L , INLEN= T

input-data-actual -length

]

|— ,OPTNS= ——(—¥

—]
LOCATE —1—)
ECHO —
UNPROT —
NOBKPG —
UPPER —
UPLOW —
INVIS —

v

NO «
ALL

L ,COND= ‘E
{
(- TRUN
CANC
IOER

INVP

L
v

L ,TRUNXIT=£runcate-input-data-1label ——I

v

L ,CANKXIT=cancel-1ine-i/0-1abel |

v

L ,IOERXIT=7/0-error-label J

v

L ,INVPXIT=7nval id-parameter-1ist-1abel]

v

>
L ,ERROR=error-1abel]

#LINEIN Parameters

LRB=

)

Specifies the three-fullword storagearea in which the system will build the #LINEIN

parameter list.

SYSPLIST

(Default); is the symbolic nameof the storagearea in which the system will build

the linerequest block (LRB).

Chapter 5: Data Manipulation Language Statements 209

#LINEIN—requests a synchronous transfer of data

line-request-block-pointer

A register that points to the area or the symbolic name of the area in which the
system will build the LRB.

INAREA=
Specifies the storagearea into which the data will beread.
input-data-location-pointer

A register that points to the area or the symbolic name of the area. When INAREA is
specified, the LOCATE option should not be requested.

MAXIN=

Specifies the length, in bytes, of the data area, defined by INAREA, that is reserved
for the inputdata stream.

input-data-max-length

A register that contains the length of the data area or an absoluteexpression. When
MAXIN is specified, the LOCATE option should not be requested.

INLEN=

Specifies the location to which the system will return the actual length of the input
data stream. IfINAREA is too small to hold the entire inputline, resultingin
truncation, the returned length will indicatethe original length of the data stream
before truncation.

(0)

(Default); is the register to which the system will return the actual length of the
input data stream.

input-data-actual-length

A register or the symbolic name of a halfword or fullword user-defined field to
which the system will return the actual length of the inputdata stream.

OPTNS=

Specifies several options applicableto terminal inputoperations. This parameter is
never required and should be specified only when appropriate. The
OPTNS-parameter values mustbe enclosedin parentheses. If multiplevalues are
specified, eachis separated from the previous one by a comma.

LOCATE

Allocates a buffer area for the data being read into the program, rather than a
user-defined area. The system allocates the buffer when the read operation is
completed. Register 1 contains the address of this buffer on completion of the input
operation. The issuing programis responsiblefor releasingthe buffer area, usinga
H#FREESTG command. When this option is requested, INAREA and MAXIN should not
be specified.

210 DML Reference Guide for Assembler

#LINEIN—requests asynchronoustransferof data

ECHO

(3270 devices only); requests that the system savethe lineof input data as
displayed on the screenin the current page. If OPTNS=ECHO is not specified, data
entered will notbe retained and will not be available for review by the terminal
operator.

UNPROT

(3270 devices only); causes the firstline of output that follows the #LINEIN to be
unprotected. At runtime, the terminal operator canreuse the unprotected firstline
of an output display for inputto a subsequent #LINEIN. The UNPROT option canbe
used with or without the ECHO parameter. For example, if the terminal operator
has made an errorin previous input data, the data thatis retained by the ECHO
option can be rekeyed and corrected. If UNPROT is notincluded, all lines of the
following output display remain protected.

NOBKPG

(3270 devices only); requests the system not to keep pages that have been inputin
ascratcharea.|f NOBKPG is specified, the terminal operator canview only the
current page of data. NOBKPG is valid only with the firstrequest in a line mode
session.

UPPER

Directs the system to translateall letters in a #LINEIN request into uppercase
characters.

UPLOW

Specifies that no uppercasetranslation of characters ina #LINEIN request be
performed.

INVIS

Specifies that the operator's responseto the #LINEIN command will notappear on
the screen asitis typed in. This optionis useful when expecting a secret password
to be entered.

COND=

Specifies whether this #LINEIN is conditionaland under what conditions control
should be returned to the issuing program.

NO
(Default); specifies thatthe requestis not conditional.
ALL

Specifies that the request is conditional. Control is returned if the request cannotbe
serviced for any of the reasons listed below.

condition

Specifies conditions under which the system returns control to the issuingtask.
Multiple conditions mustbe enclosed in parentheses and separated by commas.

Chapter 5: Data Manipulation Language Statements 211

#LINEIN—requests asynchronous transfer of data

TRUN
The input datais truncated due to insufficientstoragein the specified INAREA.
CANC

The linel/O sessionis terminated by the terminal operator pressing CLEAR (3270),
ATTENTION (2741), or BREAK (tel etype).

IOER

A logical or permanent I/O erroris encountered inthe inputdata stream.
INVP

There is aninvalid parameter inthe LRB.
TRUNXIT=truncate-input-data-label

Specifies the symbolic name of the routine to which control should be returned if
input datais truncated due to insufficientstorageinthe INAREA buffer.

CANCXIT=cancel-line-i/o-label

Specifies the symbolic name of the routine to which control should be returned if
the linel/O sessionis terminated by the terminal operator.

IOERXIT=i/0-error-label

Specifies the symbolic name of the routine to which control should be returned ifa
permanent or logical erroris detected in the input data stream.

INVPXIT=invalid-parameter-list-label

Specifies the symbolic name of the routine to which control should be returned in
the event of aninvalid parameterinthe LRB.

ERROR=error-label

Specifies the symbolic name of the routine to which control should be returned ifa
condition specifiedinthe COND parameter occurs for which no other exit routine
was coded.

#LINEIN Status Codes

By default, the #LINEIN request is unconditional;any runtimeerror will resultinan
abend of the issuingtask.The issuing programcanrequest return of control with the
COND parameter to avoid anabend.

After completion of the #LINEIN, the valueinregister 15indicates the outcome of the
operation.

Register 15 Value | Meaning

X'00' The request has been serviced successfully.

212 DML Reference Guide for Assembler

#LINEIN—requests asynchronoustransferof data

#LINEIN Example

x'o4' The input area specified for the return of data to the issuing

program is too small;the returned data has been truncated to fit
availablespace.

X'08' The linel/O session has been canceled; the terminal operator has

pressed CLEAR (3270), ATTENTION (2741), or BREAK (teletype).

x'oc' A logical or permanent /O error has been encountered inthe

input data stream.

X'10' The linerequest block (LRB) contains aninvalidfield, indicatinga

possibleerrorinthe program parameters.

Upon successful completion of a #LINEIN request, register 1 and a user-defined register
will contain the followinginformation:

Register 1 (LOCATE option only) contains the address of the buffer into which the
input data has been placed.

Register n contains the actual length of returned data from the inputoperation; it
canbe aregister or a user-defined field. The register number, n, is assigned by the
INLEN parameter.

The example of the #LINEIN statement shown below performs the following functions:

Uses the defaultstorage area, SYSPLIST, to build the linerequest block

Specifies that the datais to be readinto aninput storage area located at the
address containedinregister 5

Specifies that register 6 contains the length of the data area, defined by the INAREA
parameter, thatis reserved for the inputdata stream

Uses the defaultregister O to receive the actual length of the inputdata stream
from the system

Specifies the conditional return of control if either the inputdata stream is
truncated due to insufficientstoragein the specified INAREA or the I/Osessionis
terminated by the terminal operator

Specifies the two routines to receive control inthe event of a TRUN or CANC
condition

#LINEIN INAREA=(R5),MAXIN=(R6), COND=(TRUN,CANC), TRUNXIT=TRUINRTN, _
CANCXIT=0PERTER

Chapter 5: Data Manipulation Language Statements 213

#LINEOUT—requests atransfer of data

#LINEOUT—requests a transfer of data

The #LINEOUT statement requests a transfer of data from the issuingprogramto the
terminal, after appendinglineand device control characters appropriateto the physical
terminal inuse. #LINEOUT also establishes, modifies, and deletes page header lines.

A data transfer requested by the #LINEOUT statement can be synchronous or
asynchronous;requests areasynchronous only when the NOWAIT option is specified:

m Synchronous—Following a synchronous request, control passes tothe DC/UCF
system. The system places the issuingtaskinaninactivestate; when the #LINEOU
request is completed, the taskis redispatched accordingtoits established priority.
With 3270 terminals, a synchronous #LINEOUT request causes a processing delay
immediately followingthe request whilethe system transfers the lineto the page
buffer. If the line of data fills the buffer, the system transfers the entire page of data
to the terminal. Control does not return to the issuing programuntil the terminal
operator has pressed the ENTER key. Thus, the programis made conversational.

m Asynchronous—Following anasynchronous request, control returns immediately to
the issuing program. Thereafter, each time the programissues a line-model/O
request, the system automatically checks to determine ifthe lastasynchronous
request has completed, and whether a new data transfer can be initiated.

Asynchronous requests enable programs to buffer all required pages of output
without suspendingtask execution duringthe actual data transmission. Withan
asynchronous request, the task can optionally terminateitself, freeing all its
resources. The terminal operator canthen review the buffered output, if desired.

The system processes /O requests in the sequence received from the task; thus, ifa
program issues a synchronous #LINEOUT request after issuing oneor more
asynchronous requests, the system will complete all 1/0 requests before returning
control to the issuingprogram.

The #LINEOUT requestissued automatically by the system to empty partially-filled
buffers on completion of a taskis synchronous ;therefore the terminal operator can
view all screens and catch up with processingatthat time.

Ifan application necessitates allowing theterminal operator to interrupt or terminate
processingatsome pointinatask, a synchronous request must be issued to suspend
processing whilewaiting for an operator response.

To transfer data immediately to a terminal, a write-direct-to-terminal #LINEOUT request
(blast) can be issued. The system does not page multipleblastrequests. The following
HLINEOUT parameters are ignored duringblastrequests:

m HDR=
m OPTNS=(NOWAIT/NOBKPG/NEWPAGE)

(The NEWPAGE optionis automatically forced duringblastrequests.)

214 DML Reference Guide for Assembler

#LINEOUT—requests atransfer of data

Header lines can bedefined for each new page of output to be transferred to a terminal.
A maximum of three header lines can be established for each new page of output. The
#LINEOUT statement specifies a header lineand corresponding header-linenumber that
canbe used insubsequent new pages. The established header lines aresent to the
terminal and written with each new page of output. The existingheader lines may be
overridden or deleted at anytime duringprocessingbyissuinga #LINEOUT request
specifyingthe appropriatelinenumber and, for an override, the corresponding new
header line.

#LINEOUT Syntax

[

L 7aper -

»—— #LINEOUT OUTLEN=output-data-length

v

v

v

"L ire= [SYSPLIST « 7 '
line-request-block-pointer

v
v

L ,OUTAREA=output-data-location-pointer il

v

v
'_

e N

,OPTNS= ——(—W NEWPAGE —)
NOWAIT —

NOBKPG —

SAVE ——

v
v

L ,HDR=header -number ——I

v
v

,DESTID=destination-id-pointer
,USERID=user-id-pointer ————————
,LTERMID=1Iogical-terminal-id-pointer —

,COND= NO « —
F AL —
>
(- CANC)—
E IOER
INVP
UNDF

L ,CANCXIT=cancel-1ine-i/o-1abel]

v

v
,_

1

v

v

L ,IOERXIT=7/0-error-1label -

v

L ,INVPXIT=7nval id-parameter-1ist-1abel i

v

L ,UNDFXIT=7nval id-destid-1termid-label —-|

M

L ,ERROR=error-label —l

Chapter 5: Data Manipulation Language Statements 215

#LINEOUT—requests atransfer of data

#LINEOUT Parameters

OUTLEN=
Specifies the length, in bytes, of the data stream to be written to the terminal.
output-data-length

A register that contains the length or an absoluteexpression of the length. Output
data lengths of 0 and 1 can be used in the followingsituations:

m OUTLEN=0 Specifies that no datais to be written to the terminal or thata
header lineis to be deleted:

When the HDR parameter is not specified, OUTLEN=0 specifies a dummy write.
No I/QOis initiated by this request unless the NEWPAGE option, described below
for the OPTNS parameter, is specified;if OPTNS=(NEWPAGE), this request
writes a partially-filled buffer to the

terminal.

When the HDR parameter is specified, OUTLEN=0 specifies a deletion of a
header line. The HDR parameter indicates the number of the header lineto be
deleted.

m OUTLEN=1 Specifies thata 1-byte data streamis to be written to the terminal.
Typically, OUTLEN=1 is used to write a blanklineto the screen. In this case, the
OUTAREA parameter, described below, should designate a singleblank
character.

LRB=

Specifies the three-fullword storagearea in which the system will build the
#LINEOUT parameter list

SYSPLIST

(Default); is the symbolic name of the storageareain which the system will build
the linerequest block.

line-request-block

A register that points to the area or the symbolic name of that area in which the
system will build the LRB.

OUTAREA=

Specifies the storagearea that contains data to be output. OUTAREA need not be
defined if OUTLEN=0 has been specified.

output-data-location

A register that points to the area or the symbolic name of the area.

216 DML Reference Guide for Assembler

#LINEOUT—requests atransfer of data

OPTNS=terminal-option

Specifies several options applicableto terminal output operations. This parameter
is never required and should be specified only when appropriate. The OPTNS
parameter values mustbe enclosedin parentheses. If multiplevalues arespecified,
each is separated from the previous one by a comma.

NEWPAGE

Requests that the system write the output data linebeginningon a new page. For
3270 devices, the NEWPAGE option forces the system to output all lines storedin
the current buffer, even ifthe buffer is not full.

NOWAIT

Requests an asynchronous transfer of data;the issuingtask executes concurrently
with the output operation.

NOBKPG

(3270 devices only); requests the system not to keep pages that have been output
inascratcharea.|f NOBKPG is specified, the terminal operator canview onlythe
current page of data. NOBKPG is valid only with the firstrequest ina line mode
session.

SAVE

Directs the system to preserve the output from the #LINEOUT in the event thatan
unsolicited write-direct-to-terminal data stream is received at the issuing terminal
whilethe #LINEOUT data stream is being displayed. This option overrides the task
SAVE/NOSAVE option specified during system generation.

HDR=
Specifies the number of the page header linebeingdefined, modified, or deleted.
header-line-number

An absoluteexpression of the linenumber. If OUTLEN is other than O the value
stored in OUTAREA will be moved to the designated (first, second, or third) header
line.If a header line with the same number has been previously defined for this |/O
session, the system will replaceitwith the valuestored in OUTAREA. If OUTLEN=0,
the designated header linewill be deleted.

DESTID/USERID/LTERMID

Specifies a write-direct-to-terminal request. The HDR= and
OPTNS=(NOWAIT/NOBKPG/NEWPAGE) parameters areignored duringa blast
request.

DESTID=

Specifies a write-direct-to-terminal request (blast) to the following destinations
defined during system generation:

m Listof logical terminalsindicates thatthe system will send the #LINEOUT data
stream specified inthe OUTAREA parameter to all available terminalsinthelist

Chapter 5: Data Manipulation Language Statements 217

#LINEOUT—requests atransfer of data

m Listof usersindicates thatthe system will send the #LINEOUT data stream
specifiedinthe OUTAREA parameter to all usersinthelistwho arecurrently
signed on to the system.

destination-id

A register that points to the destinationid, the symbolic name of a user-defined
field that contains the destination ID, or the ID itselfenclosed in quotation marks.
The destinationlistcanincludeboth 3270 and TTY devices.

USERID=

Specifies a blastrequest to a specific signed-on user.The system will send the
#LINEOUT data stream specifiedinthe OUTAREA parameter to a specific signed-on
user.

user-id

A register that points to the user id, the symbolic name of a user-defined field that
contains the user ID, or the ID itselfenclosed in quotation marks.

LTERMID=

(#HLINEOUT only);specifies a blastrequestto a specificin-serviceterminal.The
system will send the #LINEOUT data stream specified inthe OUTAREA parameter to
a specificin-serviceterminal.

logical-terminal-id

A register that points to the logical terminal id, the symbolic name of a user-defined
field that contains the logical terminal ID, or the ID itselfenclosed in quotation
marks.

COND=

Specifies whether this #LINEOUT is conditionaland under what conditions control
should be returned to the issuing program.

NO

(Default); specifies thatthe requestis not conditional.

ALL

Specifies that the request is conditional. Control is returned if the request cannotbe
serviced for any of the reasons listed below.

condition

Specifies conditions under which the system returns control to the issuingtask.
Multiple conditions mustbe enclosed in parentheses and separated by commas.

218 DML Reference Guide for Assembler

#LINEOUT—requests atransfer of data

CANC

The linel/O sessionis terminated by the terminal operator pressing CLEAR (3270),
ATTENTION (2741), or BREAK (teletype).

IOER

A logical or permanent 1/O erroris encountered inthe output data stream.
INVP

There is aninvalid parameter in the LRB.
UNDF

An undefined DESTID or LTERMID is specifiedina #LINEOUT blastrequest.
CANCXIT=cancel-line-i/o-label

Specifies the symbolic name of the routine to which control should be returned if
the linel/O sessionis terminated by the terminal operator.

IOERXIT=i/0-error-label

Specifies the symbolic name of the routine to which control should be returned ifa
permanent or logical I/O erroris detected in the output data stream.

INVPXIT=invalid-parameter-list-label

Specifies the symbolic name of the routine to which control should be returned in
the event of aninvalid parameterinthe LRB.

UNDFXIT=invalid-destid-ltermid-label

Specifies the symbolic name of the routine to which control should be returned if
anundefined DESTID or LTERMID is specified ina #LINEQOUT blastrequest.

ERROR=error-label

Specifies the symbolic name of the routine to which control should be returned ifa
condition specified inthe COND parameter occurs for which no other exit routine
was coded.

#LINEOUT Status Codes

By default, the #LINEOUT request is unconditional;any runtimeerror will resultinan
abend of the issuingtask. The issuing programcanrequest return of control with the
COND parameter to avoid an abend.

After completion of the #LINEOUT, the valueinregister 15 indicates the outcome of the
operation:

Register 15 Value | Meaning

X'00' The request has been serviced successfully.

Chapter 5: Data Manipulation Language Statements 219

#LINK—establishes linkage with a program

X'08' The linel/O session has been canceled by the operator pressing
the CLEAR (3270), ATTENTION (2741), or BREAK (teletype) key.

x'oc' A logical or permanent I/O error has been encountered inthe
output data stream.

X'10' The linerequest block (LRB) contains aninvalidfield,indicatinga
possibleerrorinthe #LINEOUT parameters.

X'14' The name specified for DESTID, USERID, or LTERMID is unknown
to this DC/UCF system.

#LINEOUT Example

The example of the #LINEOUT statement shown below performs the following
functions:

m Specifies that register 7 contains the length of the output data stream
m Uses the defaultstorage area SYSPLIST to buildthe linerequest block (LRB)
m Identifies OUT1 as the storage area that contains the output data stream

m Specifies a write-direct-to-terminal request to a group of users defined during
system generation as USERLIST

m Specifies a conditional return of control to the routine labeled LISTERR in the event
that DESTID 'USERLIST' is not defined to the system

#LINEOUT OUTLEN=(R7),0UTAREA=QUT1,DESTID='USERLIST',COND=UNDF,
UNDFXIT=LISTERR

#LINK—establishes linkade with a program

The #LINK statement establishes linkage with, and passes control and an optional
parameter listto, a specified program. When the linked programterminates or executes
a #RETURN request, the program issuingthe #LINK expects return of control to the
instructionimmediately following the #LINK statement.

#LINK Syntax

v

7L gaper J

v

»— #LINK T PGM=program-name-pointer]
EPADDR=entry-point-address

v

~ L pList= [SYSPLIST « J'
parameter-value-list-pointer

220 DML Reference Guide for Assembler

#LINK—establishes linkage with a program

v

|—,PARMS=A|:NO< Jl
I ,
(—v— parameter-pointer L)

v

"T o
s ND:TNO<
YES

v

L ,PGNAXIT=program-not-available-label —I

M

L ,ERROR=error-1abel]

#LINK Parameters
PGM=

Specify the programand/or entry-point address of the programto which control is
transferred.

program-name-pointer

Specifies the 1-to 8-character name of the program to which control is transferred.
Program-name is a register that points to a field that contains the program name,
the symbolic name of a user-defined field that contains the program name, or the
program-name literal enclosed in quotation marks.

entry-point-address

Specifies the entry-point address of the program to which control is transferred.
Entry-point-address is a register or symbolic name of a fullword user-definedfield
that contains the entry-point address.

PLIST=

Specifies the location of the storagearea that contains one or more parameters to
be passedto the programreceiving control.

SYSPLIST

(Default); is the symbolic name of the storagearea in which the system will build
the parameter list.

parameter-value-list-pointer

A register that points to the area in which the system will build thelistor the
symbolic name of that area.

The size of the parameter-listarea, in fullwords, mustbe equal to 2 plus the
number of parameters listed inthe PARMS parameter described below.

Thus, if no parameters are specified (PARMS=NO), the length of this storageareais
two fullwords;if one parameter is specified, the length is three fullwords.

Chapter 5: Data Manipulation Language Statements 221

#LINK—establishes linkage with a program

PARMS=

Specifies the location of each parameter to be passedto the program receiving
control.

NO

(Default); indicates thatno parameters will be passed to the program.

parameter-pointer

Indicates thatparameters are to be passed to the program. Parameter is a register
that contains the address of the parameter or the symbolic name of a user-defined
field that contains the parameter.

The parameter listmustbe enclosedin parentheses. If multiple parameters are
specified, eachis separated from the previous one by a comma.

COND=

Specifies whether this #LINK is conditional;thatis, whether control should be
returned to the issuing programin the event of an error:

NO
(Default); specifies thatthe requestis not conditional.
PGNA

Specifies that the request is conditional. Control is returned if the #LINK cannot be
serviced becausethe programis notavailable.

PGNAXIT=program-not-available-label

Specifies the symbolic name of the routine to which control should be returned if
the #LINK request cannot be serviced because the programis not available.

ERROR=error-label

Specifies the symbolic name of the routine to which control should be returned ifa
condition specifiedinthe COND parameter occurs for which no other exit routine
was coded. Inthis case, the ERROR parameter functions the same as PGNAXIT.

#LINK Status Codes

By default, the #LINK requestis unconditional. Error conditions

that canoccurare described below:

m A no-space-in-program-pool condition, caused when the amount of storage in the
program pool isinadequateto accommodate the program, will resultina delay
until sufficientstoragespacebecomes available (unless such a waitwould causea
deadlock,in which caseanabortwould occur).

222 DML Reference Guide for Assembler

#LINK—establishes linkage with a program

#LINK Example

A nonconcurrent-program-in-use condition, caused when a copy of the programis
alreadyinuseand is marked as nonconcurrent (indicating thatthis program can be
used by a maximum of one task), will resultin a delay until the program becomes
available.

A storage-conflictcondition, caused when a copy of the programpreviouslyloaded
is temporarily overlayed whilein use by a waitingtask, will resultin a delay until the
programisreplacedinthe program pool.

Any abnormal condition willresultinanabend. Conditions in this categoryinclude
the following:

- 1/Oerror
- Program not found in program definition table (PDT)

- A waiton storage (default action resulting fromthe
no-storage-in-program-pool condition) would resultin a deadlock

The issuing programcan requestreturn of control with the COND parameter to avoid a
delayor anabend.

After completion of the #LINK function, the valueinregister 15 indicates the outcome of
the operation:

Register 15 Value Meaning
X'00' The request has been serviced successfully.
X'04' The request cannotbe serviced becausean 1/0,

program-not-found, or potential-deadlock error has
occurred, or the program has not been defined in the
program definition element (PDE).

The example of the #LINK statement shown below performs the

following functions:

Specifies that control will betransferred to the program HELPLK

Uses the defaultstorage area, SYSPLIST, in which the system builds the parameter
list

Identifies the parameters, PARM1 and PARM2, to be passedto the program HELPLK
Specifies a conditional return of control if the program HELPLK is not availableand

identifies the routine NOPROG that will receive control in the event of a PGNA error
condition

#LINK PGM='HELPLK', PARMS=(PARM1,PARM2) , COND=PGNA,, PGNAXIT=NOPROG

Chapter 5: Data Manipulation Language Statements 223

#LOAD—loads a module into the program pool

#LOAD—loads a module into the program pool

The #LOAD statement loads a module (programor table) into the program pool. In
responseto a #LOAD, the system returns the entry-point address of the module and the
address of the resource control element (RCE) to the issuing program.

#LOAD Syntax

v

»—I_—__I_ #LOAD PGM=program-name-pointer
label

v

»
»

L VERSION=vers ion-number —-|
L ,DICTNOD=nodename-pointer il
L ,DICINAM=d7ictionary-name-pointer]
- L EpaDDR= I © « 1 | "
entry-point-adadress
L ,TYPE= T PROGRAM
TABLE
L ,PLIST= T SYSPLIST « Jl
parameter-value-1ist-pointer
- L ,COND= NO « — g
—
(= NOST)—
IOER
SNGL
LDCF
PGNF
DEAD
L NOSTXIT=7nsufficient-storage-1label - g
- L 10eRx1T=7/0-error-1aber - -
L ,SNGLXIT=s7ngle-thread-in-use-1abel] g

v
v

L ,LDCFXIT=storage-location-conflict-label .

\ 4
\ 4

L ,PGNFXIT=program-not- found- label I

A\ 4
v

L ,DEADXIT=deadlock-1abel J

v
M

L ,ERROR=error-label Bl

224 DML Reference Guide for Assembler

#LOAD—loads a module into the program pool

#LOAD Parameters

PGM=

Specifies the 1-to 8-character name of the module to be loadedinthe program
pool.

program-name-pointer

A register that points to a field that contains the programname, the symbolic name
of a user-defined field that contains the programname, or the program-name
literal enclosedin quotation marks.

VERSION=version-number

Specifies a version number. Version-number can be anabsolutevalue, a halfword
or fullword value, or a register.

DICTNOD=

Identifies the node that controls the dictionaryin which the program resides.
nodename-pointer

A register that points to a field that contains the name of the node, the symbolic
name of a user-defined field containing the name of the node, or the nodename
literal enclosedin quotation marks. A blankvaluerefers to the local node.

DICTNAM=
Identifies the defaultdictionaryin which the named program resides.
dictionary-name-pointer

A register that points to a field containing the dictionary name, the symbolic name
of a user-defined field containing the dictionary name, or the dictionary name
literal enclosedin quotation marks.

Note: If the DICTNAM and/or DICTNOD is specified, the system searches only the
specified dictionary for the module. A program-not-found conditionis returned if
the module cannotbe found inthe specified dictionary.

EPADDR=

Specifies where the system will return the entry-point address of the loaded
program.

(0)
(Default) specifies thatthe system will return the entry-point address to register 0.
entry-point-address

Specifies that the system will return the entry-point address to a user-defined
Entry-point-address is a register location or the symbolic name of a fullword
user-defined field that contains the entry-point address.

Chapter 5: Data Manipulation Language Statements 225

#LOAD—loads a module into the program pool

,TYPE=
Qualifies thetype of load to perform.
PROGRAM

Has been pre-defined as a program at system generation or dynamically defined as
a program via DCMT VARY DYNAMIC PROGRAM command.

Note: The program must residein a load library. No attempt will be made to load
the program from a dictionaryload area.

TABLE

Has been pre-defined as a table at system generation or dynamically defined using
a DCMT VARY DYNAMIC PROGRAM command.

PLIST=

Specifies the location of the storagearea in which the system builds the #LOAD
parameter list.

SYSPLIST

Is the symbolic name of the storage area in which the system builds the #LOAD
parameter list.

parameter-value-list-pointer
A register that points to the area or the symbolic name of the area.

Note: The PLIST parameter is required onlyifthe DICNAM or DICTNOD options are
specified.

COND=

Specifies whether this #LOAD is conditionaland under what conditions control
should be returned to the issuing program:

NO
(Default); specifies thatthe requestis not conditional.
ALL

Specifies that the request is conditional. Control is returned if the load cannotbe
serviced for one or more of the reasons listed under condition.

condition

Specifies conditions under which control is returned to the program.
NOST

Availablestorageinthe program pool is insufficienttoload the requested program.
IOER

An |/O error occurs duringthe load.

226 DML Reference Guide for Assembler

#LOAD—loads a module into the program pool

SNGL
The requested program has been defined as nonconcurrentandis currentlyinuse.
LDCF

The requested programisinuseby another task but has been overlayed
temporarilyinthe program pool, causinga storagelocation conflict.

PGNF

The requested program cannot be found in the programdefinition table (PDT), or is
marked as out-of-service.

DEAD

The requested program cannot be loaded immediately because of a
no-storage-in-program-pool condition and waiting would causea deadlock.

NOSTXIT=insufficient-storage-label

Specifies the symbolic name of a routineto which control should be returned ifthe
#LOAD request cannotbe serviced due to insufficientstorageinthe program pool.

IOERXIT=i/o0-error-label

Specifies the symbolic name of a routineto which control should be returned ifthe
#LOAD request cannotbe serviced due to an /O error while processingthe load.

SNGLXIT=single-thread-in-use-label

Specifies the symbolic name of a routineto which control should be returned if the
#LOAD request is for a program marked nonconcurrent and the programisinuse.

LDCFXIT=storage-location-conflict-label

Specifies the symbolic name of a routineto which control should be returned if the
#LOAD request cannotbe serviced due to a storage location conflict.

PGNFXIT=program-not-found-label

Specifies the symbolic name of a routineto which control should be returned if
either the requested program cannotbe found inthe PDT oris out-of-service.

DEADXIT=deadlock-label

Specifies the symbolic name of a routineto which control should be returned if the
requested program cannot be loaded immediately and to waiton its availability
would causea deadlock.

ERROR=error-label

Specifies the symbolic name of the routine to which control should be returned ifa
condition specified inthe COND parameter occurs for which no other exit routine
was coded.

Chapter 5: Data Manipulation Language Statements 227

#LOAD—loads a module into the program pool

#LOAD Status Codes

By default, the #LOAD request is unconditional. Error conditions thatcan occur are:

m A no-storage-in-program-pool conditioniscaused when there is not enough storage
inthe program pool to accommodate the program. This conditions results in a delay

until sufficientstoragebecomes available (unless such a waitwould causea
deadlock).

® A nonconcurrent-program-in-use conditionis caused when a copy of the programis
alreadyinuseand is marked as nonconcurrent (indicating thatthis program can be
used by a maximum of one task ata time). This conditions results ina delay until
the program becomes available.

m A storage-conflictcondition occurswhen a previously loaded copy of the programis
temporarily overlayed while in use by a waitingtask. This conditionresultsina
delay until the program is replaced inthe program pool.

m Any abnormal conditionwillresultinanabend. Conditions in this categoryinclude
the following:

- 1/Oerror
— Program not found in PDT, or marked as out-of-service
- Waitingfor storage-pool or program-pool memory, the defaultactionresulting
from the no-storage-in-program-pool condition, would causea deadlock
The issuing programcan requestreturn of control with the COND parameter to

avoid a delayor anabend.

After completion of the #LOAD function, the valueinregister 15 indicates the outcome
of the operation:

Register 15 Value Meaning
X'00' The request has been serviced successfully.
X'04' The request cannotbe serviced due to insufficientstoragein

the program pool.

X'08' The request cannotbe serviced due to an I/O error duringa
loadfromaloadlibrary.

x'oc' The requested programis nonconcurrentand inuse.

X'10' The requested program has been overlayed temporarilyinthe
program pool, resultingin a storage conflict.

X'14' The requested program is not defined to the PDT, is marked as
out-of-service, or a null PDE could not be allocated for the
program.

228 DML Reference Guide for Assembler

#MAPINQ

X'18' The requested program cannot be loaded immediately
(insufficientstorage); to wait would causea deadlock.

X'20' The requested program cannot be loaded immediately due to
anl/0 errorduringa load from the dictionary DDLDCLOD area.

The values in a user-defined register and register 1 also contain thefollowing
information:

m Register n specifies the entry-point address of the loaded program. The register
number nis assigned by the EPADDR parameter of the # OAD statement.

m Register 1 specifies the address of the RCE of the loaded program.

#LOAD Example

The #LOAD statement shown below loads the program EMPMENU into the program
pool:

#LOAD PGM='EMPMENU'

#MAPINQ

The #MAPINQ statement is used after a map inputrequest to accomplish one of the
followingactions related to the inputoperation:

m Move map-related informationintovariablestorage

m Test for conditions relatingto global mapinput operations
m Test specific mapfields for the presence of the cursor

m Test for conditions relating to specific map fields

If you usethe #MAPINQ statement to test for conditions, you must specify a routine
that receives control if the conditionis true.

Each of the four types of #MAPINQ statements is discussed in this chapter.

Chapter 5: Data Manipulation Language Statements 229

#MAPINQ

Moving Map-Related Data

This version of the #MAPINQ statement moves the followinginformationintovariable
storage:

m The cursor position (rowand column).

m The attention ID (AID) key used. An AID key is the key that was lastpressed during
the input operation.

m The entered length of a specificinputfield.

Syntax

»»—— #MAPINQ MRB=map-request-block-pointer

v

v

L ,MRBLIST= MRBPLIST « |
L J
mrb-parameter-1ist-pointer

T

V- ,CURSOR=cursor-position |
AlD=a7d- Tnsicator ———
field-options

Expansion of field-options

)

»»—— FIELD=F7eld-name

v

v

L , INDEX=7ndex-register l

M

L ,INLEN=F7eld-length-register -

Parameters
MRB=

Specifies the storagearea associated with the MRB of the map about which the
inquiryis being made.

map-request-block
A register that points to the MRB storage area or the symbolic name of that area.
MRBLIST=

Specifies the location of the 20-fullword storagearea that is substituted for the
DC/UCF portion of SUBSCHEMA-CTRL.

MRBPLIST

(Default); is the symbolic name of the storagearea that will besubstituted for the
DC/UCF portion of SUBSCHEMA-CTRL.

mrb-parameter-list

A register that points to the area or the symbolic name of the area.

230 DML Reference Guide for Assembler

#MAPINQ

CURSOR=

Requests that the system return the cursor address fromthe lastmap inoperation
to the specified locationintheissuing program.

cursor-position

The symbolic name of a 2-byte user-defined field. The system will setthe value of
cursor-position to the row and the column, each a 1-byte binary number, of the
cursor position onthe screen.

AID=

Requests that the system return the AID to the specifiedlocationintheissuing
program.

aid-indicator

The symbolic name of a 1-byte user-defined field that will be set to the 3270 AID
character received inthe lastmapinrequest.

FIELD=

Requests that the system move the entered length of the specified map field for
whichinformationis required.

field-name
Specifies the name of the map field.

Note: For each #MAPINQ request to return map-related data, field-specific
information can be requested for one map field;if informationis needed for
multiplefields, additional #HtMAPINQ commands must be issued.

INDEX=
Specifies the occurrence of the field if field-name is a multiply-occurring field.
index-register

Either a register or the symbolic name of a user-defined field that contains the
subscriptoranabsoluteexpression.

INLEN=

Requests that the system return the entered length, in bytes, of the specified map
field to the issuing program.

field-length-register

A register or the symbolic name of a halfword or fullword user-defined field to
which the system will return the length.

Chapter 5: Data Manipulation Language Statements 231

#MAPINQ

Example

The following #MAPINQ statement moves the contents of map field EMPNUM to the
areainthe program labeled BLOCK1. The valueof the 3270 AID character receivedin
the lastmapinrequest is returned to the user-defined field AIDBYTE. This fieldis tested
for the specific AID key valuethat indicates theoperator is finished with this program.

#MAPINQ MRB=BLOCK1,AID=AIDBYTE, FIELD=EMPNUM
CLI AIDBYTE,CLEAR

BE RETURN

CLEAR EQU X'eD'

The followingtablelists attention ID (AID) key values.

Key AID Character Key AID Character
ENTER """ (single quote) PF14 'B'
CLEAR ' " (underscore) PF15 'C'
PFO1 1 PF16 'D'
PFO2 2! PF17 'E'
PFO3 '3 PF18 'F'
PFO4 ‘4 PF19 'G'
PFO5 '5' PF20 'H'
PFO6 '6' PF21 I"
PFO7 '7' PF22 ¢
PFO8 '8’ PF23
PFO9 '9' PF24 <!
PF10 B PAO1 '%'
PF11 # PAO2 >
PF12 ‘@' PAO3
PF13 ‘A

232 DML Reference Guide for Assembler

#MAPINQ

Testing for Global Map Input Conditions

This version of the #MAPINQ statement tests for one of the following conditions related
to map inputoperations:

m The screen was not previouslyformatted before the map in was performed.

m Oneor more input fields were truncated when transferred to programvariable
storage.

m Oneor more input fields were modified on the screen before being transferred.

m Oneor more fields, which were modified on the screen, are undefined in the map
being used.

Syntax

»»—— #MAPINQ MRB=map-request-block-pointer

v

v

- L wreLIST= [MREPLIST « Jl
mrb-parameter-list-pointer

»—— ,CURSOR=cursor-position

v

»— ,AID=aid-indicator

v

|
L
)

TRUNCATE, truncated-data- label
CHANGED, ypdated-data-1abel

L JIF= (E UNFORMAT ,unformatted-screen-1abel
XTRNEOUS , extraneous-input-data-label —

Parameters
MRB=

Specifies the storagearea associated with the MRB of the map about which the
inquiryis being made.

map-request-block-pointer
A register that points to the MRB area or the symbolic nameof that area.
MRBLIST=

Specifies the location of the 20-fullword storagearea that is substituted for the
DC/UCF portion of SUBSCHEMA-CTRL.

MRBPLIST

(Default); is the symbolic name of the storagearea that will besubstituted for the
DC/UCF portion of SUBSCHEMA-CTRL.

mrb-parameter-list-pointer

A register that points to the area or the symbolic name of the area.

Chapter 5: Data Manipulation Language Statements 233

#MAPINQ

CURSOR=

Requests that the system return the cursor address fromthe lastmap inoperation
to the specified locationintheissuing program.

cursor-position

The symbolic name of a 2-byte user-defined field. The system will setthe value of
cursor-position to the row and the column, each a 1-byte binary number, of the
cursor position onthe screen.

AID=

Requests that the system return the AID to the specifiedlocationintheissuing
program.

aid-indicator

The symbolic name of a 1-byte user-defined field that will be set to the 3270 AID
character received inthe lastmapinrequest.

IF=

Tests the outcome of the lastmapinrequest for a conditionrelatingto the data
input as a whole. Map data fields that arein error are not transferred to program
variablestorage.

Note: For more information about testing map inputconditions, see the Mapping
Facility Guide.

For each condition, the associated label specifies the symbolic name of the routine
inthe issuing programto which the system will pass controlif the tested condition
is true. The IF-parameter condition and label mustbe enclosed in parentheses.

UNFORMAT,unformatted-screen-label

Tests whether the screen had been formatted before the input operationwas
performed.

TRUNCATE,truncated-data-label

Tests whether any of the screen fields had been truncated when transmitted to
program variablestorage.

CHANGED,updated-data-label

Tests whether any of the screen fields actually had been mapped to programdata
fields when the map in operation was performed.

XTRNEOUS,extraneous-input-data-label

Tests whether the data stream that had been read from the terminal contains any
data from a field undefined to the map. If this condition occurs, the system does
not move the undefined data field to program variablestorage.

234 DML Reference Guide for Assembler

#MAPINQ

Example

The following example of the #MAPINQ statement tests if any of the screen fields have
been updated to the program data fields of the map identified by BLOCK1 when the last
map inoperation was performed. If the test is true, the program branches to the label
NEWINFO. A falsecondition causes the program to execute the next sequential
instruction:

#MAPINQ MRB=BLOCK1,IF=(CHANGED,NEWINFO)

Testing Cursor Position

This version of the #MAPINQ statement tests a specified map field for the presence of
the cursor.

Syntax
»»—— #MAPINQ MRB=map-request-block-pointer

v

»

- L mreLIsT= [MRBPLIST < _Jl
mrb-parameter-list-pointer

v

v

L ,CURSOR=cursor-position —J

v

L ,AID=aid-indicator ——I

»—— ,FIELD=F7eld-name

v

v

L , INDEX=7ndex-register -

v

L ,INLEN=f7eld-length-register —'

X

L ,IF=(CURSOR, cursor-at-this-field-label)]

Parameters
MRB=

Specifies the storage area associated with the MRB of the map about which the
inquiryis beingmade.

map-request-block-pointer
A register that points to the MRB area or the symbolic nameof that area.
MRBLIST=

Specifies the location of the 20-fullword storagearea that is substituted for the
DC/UCF portion of SUBSCHEMA-CTRL:

Chapter 5: Data Manipulation Language Statements 235

#MAPINQ

MRBPLIST

(Default); is the symbolic name of the storagearea that will besubstituted for the
DC/UCF portion of SUBSCHEMA-CTRL.

mrb-parameter-list-pointer
A register that points to the area or the symbolic name of the area.
CURSOR=

Requests that the system return the cursor address fromthe lastmapin operation
to the specified locationintheissuing program.

cursor-position

The symbolic name of a 2-byte user-defined field. The system will setthe value of
cursor-position to the row and the column, each a 1-byte binary number, of the
cursor positiononthe screen.

AID=

Requests that the system return the AID to the specifiedlocationintheissuing
program.

aid-indicator

The symbolic name of a 1-byte user-defined field that will be set to the 3270 AID
character received inthe lastmapinrequest.

FIELD=

Requests that the system move field-related information to the issuing program.
field-name

Specifies the name of the map field being tested.

Note: For each #MAPINQ request to test for cursor position, field-specific
information can be requested for one map field;if informationis needed for
multiplefields, additional #HMAPINQ commands must be issued.

INDEX=
Specifies the occurrence of the field if field-name is a multiply-occurring field.
index-register

Either a register or the symbolic name of a user-defined field that contains the
subscriptoranabsoluteexpression.

INLEN=

Requests that the system return the entered length, in bytes, of the specified map
field to the issuing program.

field-length-register

Either a register or the symbolic name of a halfword or fullword user-defined field
to whichthe system will return the length.

236 DML Reference Guide for Assembler

#MAPINQ

IF=CURSOR,

Tests the outcome of the lastmapinrequest to determine whether the cursor was
inthe named field duringthe lastmapinoperation.

cursor-at-this-field-label

Specifies the symbolic name of the routine withinthe issuing programto which the
system will pass control ifthecursorisinthe named field duringthe lastmapin
operation.

Example

The #MAPINQ statement shown below moves information about the EMPNUM field to
the issuingtask.The IF statement tests the outcome of the lastmapinrequest; ifthe
cursorwas inthat field duringthe lastmapin operation, the system passes control to
the routine labeled CURATNUM.

#MAPINQ MRB=BLOCK1,FIELD=EMPNUM,IF=(CURSOR,CURATNUM)

Testing for Identical Data

You can compare the contents of a mapped-in field with the map data thatis currently
inyour program's record buffer.

You canuse#MAPINQ when you want to reduce the number of databasel/O operations
performed for your programs, updatingthe databaseonlywhen the user enters
different data.

To test for identical data, usethe DATAIDEN and DATADIFF options of the IF= clause(see
Testing for Input Conditions (see page 238)).

Example

Use a #MAPINQ statement to test whether the user has entered identical datainthe
EMPNUM, EMPNAME, CONCODE and UPDFLAG.

m Ifthe identical conditionis true (the user enters identical data inthese fields), the
program branches to NEXPRO2.

m Ifthe identical conditionis false (the user has changed at leastone of these fields),

control continues with the next executable instruction.

Use a #MAPINQ statement to test whether the user has entered a new department ID. If
the user enters a new ID (different is true), the program branches to label OBTDEPT.

#MAPINQ MRB=BLOCK1,FLIST=(FIELD,DEPTID-0410), FOR=ANY,
IF=(DATADIFF,OBTDEPT)

Chapter 5: Data Manipulation Language Statements 237

#MAPINQ

Testing for Input Conditions

This version of the #MAPINQ statement tests for the followinginputconditions related
to specificmapfields:

m Ifmap fields havebeen modified and the data fields in storagecontain the new
(changed) contents of that field.

m |fmap fields havenot been modified and the data fields instorageremain
unchanged.

m Ifmap fields havebeen erased by operator action.

m Ifmap fields havebeen truncated.

m Ifthe specified mapfields areeither inerror (the error flaghas been set on) or the
map fields arecorrect, (the error flag has been set off). This option applies only to
those maps and map fields for which automatic editing is enabled.

Syntax

v

»»—— #MAPINQ MRB=map-request-block-pointer

v

L ,MRBLIST= T MRBPLIST « _Jl
mrb-parameter-1ist-pointer

»

v

L ,CURSOR=cursor-position J

v

L ,AID=aid-indicator —|

field-options
EE flist-options
for-options 2T

if-options

)4

Expansion of field-options

»w—— FIELD=F7eld-name

v

v

L , INDEX=7ndex-register -

)4

L ,INLEN=f7eld-1ength-number —|

Expansion of flist-options

»»—— FLIST=

v

T
»— (—Vv— FIELD, field-name !)

v

L ,INDEX=17ndex-register a

M

L ,PLIST= T SYSPLIST « _Il
parameter-value-list-pointer

238 DML Reference Guide for Assembler

#MAPINQ

Expansion of for-options

»—— ,FOR= >
CURRENT >«
ALL
NONE —
SOME ——
ANY
Expansion of if-options
»— IF= >
— (DATANO,unchanged-field-1abel) »><
DATAYES, updated-field-label
DATAERAS , erased-field-1abel
DATARUN, truncated-field-label
EDITERR, edit-error-field-label —
EDITCOR, edit-correct-field-1label —
DATAIDEN, 7dentical-data-label
DATADIFF, different-data-1label
Parameters
MRB=

Specifies the storagearea associated with the MRB about which the inquiryis being
made.

map-request-block-pointer
A register that points to the MRB area or the symbolic nameof that area.
MRBLIST=

Specifies the location of the 20-fullword storagearea that is substituted for the
DC/UCF portion of SUBSCHEMA-CTRL.

MRBPLIST

(Default); is the symbolic name of the storagearea that will besubstituted for the
DC/UCF portion of SUBSCHEMA-CTRL.

mrb-parameter-list-pointer
A register that points to the area or the symbolic name of the area.
CURSOR=

Requests that the system return the cursoraddress fromthe lastmapin operation
to the specified locationintheissuing program.

cursor-position

The symbolic name of a 2-byte user-defined field. The system will setthe value of
cursor-position to the row andthe column, each a 1-byte binary number, of the
cursor position onthe screen.

Chapter 5: Data Manipulation Language Statements 239

#MAPINQ

AID=

Requests the system to return the AID to the specified locationintheissuing
program.

aid-indicator

The symbolic name of a 1-byte user-defined field that will be set to the 3270 AID
character received inthe lastmapinrequest.

FIELD=

Moves field-related information to the issuing program.

field-name

Specifies the name of the map field being tested. The followingoptions can be used
with FIELD:

FLIST=

INDEX=index specifies the occurrence of the fieldif field-name is a
multiply-occurringfield. Indexis either a register or the symbolic nameof a
user-defined field that contains the subscriptoranabsoluteexpression.

INLEN=field-length. requests that the system return the entered length, in
bytes, of the specified map field to the issuing program. Field-length is a
register or the symbolic name of a halfword or fullword user-defined field to
which the system will return the length.

Specifies a listof map fields to be tested, as indicated by the FOR parameter,
described below. The FLIST-parameter values must be enclosed in parentheses.
Each field specification mustbe coded on a separateline. The FLIST parameters are:

FOR=

Field-name is the name of the map data field to be tested.

INDEX= specifies the occurrence of the field if field-name is a multiply-occurring
field. Index-register is a register or the symbolic name of a user-define field that
contains the subscriptor anabsoluteexpression.

PLIST= (optional);indicates thelocationin which the system will build thefield
parameter list.

SYSPLIST (default); is the symbolic name of the storage area in which the
system will build thefield parameter list.

Parameter-value-list-pointer is a register that points to the area or the symbolic
name of the area.

Specifies the map data fields to which the test applies.

240 DML Reference Guide for Assembler

#MAPINQ

CURRENT

Specifies that the test applies only to the current data field; thatis, the data field
that was referenced inthe last#MAPMOD or #MAPINQ statement issued by the
program. Ifthe last#MAPMOD or #MAPINQ statement specified a field list, no
currency exists.

ALL
Specifies that the test is true ifall map data fields meet the specified condition.
NONE

Specifies that the test is true if none of the map data fields meet the specified
condition.

SOME

Specifies that the test is true if more than one, but not all of the map data fields
meet the specified condition.

ANY

Specifies that the test is true if one or more of the map data fields meet the
specified condition.

ALLBUT

Specifies that the test is true ifall map fields except for the named field meet the
specified condition.

NTCURFLD

Specifies that the test is trueifall map fields except the current field meet the
specified condition.

IF=
Specifies the inputtest condition. For each condition, the associated label specifies
the symbolic name of the routine in the issuing programto which the system will
pass control ifthe tested conditionis true. The IF-parameter conditionand label
must be enclosed in parentheses.

DATANO
Determines if the terminal operator did not enter data inthe named map fields.
This conditionis trueifthe field has not been modified or ifit had been modified
but the INDATA=NO option was in effect for the field duringthe last#MREQ IN
request.

DATAYES

Determines if the terminal operator entered data inthe named map fields.

Chapter 5: Data Manipulation Language Statements 241

#MAPINQ

DATAERAS

Determines ifthe data has been erased from the named map fields using 3270 local
editing features. Inthis case, the data fields would remain unchanged unless a
paddingcharacter had been specified, which would fill the field with that character.

DATATRUN

Determines ifthe data has been truncated inthe named map fields. A field that has
been truncated would also fulfill the condition DATAYES, described above.

EDITERR

Determines ifthe named map fields were found to be inerror duringautomatic
editing. To test for this condition, automatic editing must be enabled for the map
and for each of the named map fields.

EDITCOR

Determines ifthe named map fields were found to be correct duringautomatic
editing. To test for this condition, automatic editing must be enabled for the map
and for each of the named map fields.

DATAIDEN

Tests whether input datais identical to map data currentlyin program variable
storage. DATAIDEN is true in either of the followingcases:

m The field's modified data tag (MDT) is off. On mapin, the MDT is off if the user
did not type any charactersinthefield, a previous modify map did not set it, or
the map specifies Nto MDT on Y/N.

m The field's MDT is on, but each character that the user typed inis identical
(including capitalization) to the data in variablestorage.

DATADIFF

Tests whether input data is different from map data currentlyin program variable
storage. DATADIFF is true ifthe field's MDT is on and at leastone input character
differs from the data invariablestorage.

Example

The following example of the #MAPINQ statement tests for whether the terminal
operator entered datain more than one, but not all of the fields described in the FLIST
parameter. Ifthis conditionis true the programbranches to the label CHECFLDS. A false
condition returns control to the next executable instruction.

#MAPINQ MRB=BLOCK1,FLIST=(FIELD,SCREENF2,
FIELD,SCREENF3,
FIELD, SCREENF4,
FIELD,SCREENF5),
FOR=SOME , IF=(DATAYES, CHECFLDS)

O I

*

242 DML Reference Guide for Assembler

#MAPMOD—requests thatthe system modify options in the map request block

Status Codes

The #MAPINQ request is unconditional;anyreturn code other than X'00' will resultinan
abend of the issuingtask.

#MAPMOD—requests that the system modify options in the
map request block

The #MAPMOD statement requests that the system modify options inthe map request
block (MRB) for a map; modificationscanbedesignated as permanent or temporary.
Requested revisions can befield-specific and/or non field-specific. Field-s pecific
revisions apply tothe map's variabledata fields, notto literal fields.

The following considerationsapply:

m Ifmodification of one fieldis necessary, the FIELD, MRB, and the optional PLIST
parameters, described below, should be specified.

m Ifmodification of more than one fieldis necessary, the FLIST, FOR, and MRBLIST
parameters, described below, should be specified.

m The #MAPMOD attribute parameters revise predefined map and/or map data field
attributes, and thus have no defaults. If a #MAPMOD attribute parameter is not
specified, that parameter remains set to the valuespecified at map generation or to
the valueset with a previouslyissued #HMAPMOD statement specifying TYPE=PERM.
Conflictingattributes areresolved by runtime mapping.

#MAPMOD Syntax

»»— #MAPMOD

- TYPEs — PR < ——

»—— ,MRB=map-request-block-pointer

v

v

v

Chapter 5: Data Manipulation Language Statements 243

#MAPMOD—requests that the system modify options in the map request block

, = <
L PLIST —ESYSPLIST n |

parameter-1list-pointer

v

L MRBLIST= — MRBPLIST « B ‘
mrb-parameter-1ist-pointer

v

L ,CURSOR=(T cursor-row, cursor-column I)]
FIELD, fieldname .

,INDEX, 7ndex-register —]

v

L wee= RESETMDT ———
NOMDT —— |

RESETKBD
NOKBD — T
ALARM T
IélOALARM
TARTPRT
NOPRT =T

NLCR
40CR ﬂ
64CR
80CR

v

L FIELD=Field-name I_ - |
,INDEX=7ndex-register

v

L,

T
L ,FLIST= (—v— FIELD, field-name C m
,INDEX, 7ndex-register

v

]

L FOR= — ALL
ERROR ——|
CORRECT —|
CURRENT —|
NOTCURNT —
FLIST ——|
NOTFLIST —

v

- L Backsch= — YES
NO

v

YES —

L ,OUTDATA= —
NO ——

AE ERASE
ATTRibute —

v

L , INDATA= T YSS_—I—l
N

v

T JusTIFY- RIGHT
’ "L
LEFT

v

C'pad-character'
X' pad-character'

L PAD= NO |
| =

244 DML Reference Guide for Assembler

v

#MAPMOD—requests thatthe system modify options in the map request block

v

T EDIT= ERROR ﬁ—J
' L CcorrecT

g T REQUIREDj—l
L opTIONAL

v

v

L , ERRMSG= T ACTIVE « :I—J
SUPPRESS

]
M

I s

L ,ATTR= (—W SKIP

T ALPHA T
NUMERIC

—E PROTECT
UNPROT j

DISPLAY
E DARK
BRIGHT
— DETECT
MDT
L NOMDT —
T BLINK T
NOBLINK
T REVERSE — T
NRMVIDEO
T UNDERSCR
NOUNDER —T1]
NOCOLOR
BLUE
RED
PINK
GREEN
TURQUOIS —

YELLOW —
WHITE

#MAPMOD Parameters
MRB=

Specifies the storagearea associated with the MRB of the map thatis being
modified. This storagearea is of variablelength according to the number of fields
includedinthe map;itis copiedinto program variablestorage by the #MRB
statement.

map-request-block-pointer
A register that points to the MRB area or the symbolic nameof that area.

Note: Map-request-block cannot be a register if the FIELD=field-name operand is
alsospecifiedinthe #MAPMOD statement.

TYPE=
Specifies whether the modificationsareto be permanent or temporary.
PERM

(Default); specifies that modificationsapply to all mapping mode /0 requests
issued until the program terminates or until a subsequent #MAPMOD request
overrides the requested revisions.

Chapter 5: Data Manipulation Language Statements 245

#MAPMOD—requests that the system modify options in the map request block

TEMP
Specifies that modifications will apply only to the next #MREQ request.
PLIST=

Indicates the location of the storage area in which the system will build thefield
parameter listspecified by the FLIST parameter, described below.

SYSPLIST

(Default); is the symbolic nameof the storagearea in which the system will build
the field parameter list.

parameter-value-list-pointer
A register that points to the area or the symbolic name of the area.
MRBLIST=

Indicates the location of the 20-fullword storagearea that is substituted for the
DC/UCF portion of SUBSCHEMA-CTRL. Itis generated atthe bottom of the firstmap
request blockinthe program.

MRBPLIST

(Default) is the symbolic name of the storage area that will be substituted for the
DC/UCF portion of SUBSCHEMA-CTRL.

mrb-parameter-list-pointer
A register that points to the area or the symbolic name of the area.
CURSOR=

Identifies the screen location atwhich the cursor will be positioned during output
operations.

cursor-row,cursor-column

Specifies the row and column on the terminal screen to which the cursor will be
moved. Cursor-row is a numericliteral indicatingthe row value. Cursor-column is a
numeric literal indicatingthe column value.

field-name
Specifies the field to which the cursor will be moved. Field-name is the name of a
map data field.

index-register

Optionally specifies theoccurrence of the fieldif field-name is a multiply-occurring
field. Index is either a register or the symbolic name of a user-defined field that
contains the subscriptoranabsoluteexpression.

246 DML Reference Guide for Assembler

#MAPMOD—requests thatthe system modify options in the map request block

WCC=

Specifies the write-control character (WCC) options requested for the output
operation. The WCCis a single byte transmitted with a screen during a #tMREQ OUT,
that indicates the functions that the 3270 control unitis to perform asitdisplays
the information on the screen.

Ifa #MAPMOD request alters any WCC option, the system resets unspecified
options to the followingvalues:

m NOMDT
= NOKBD
m NOALARM

Multiple WCC parameter values must be enclosed in parentheses and separated by
commas.

RESETMDT/NOMDT

Specifies whether the modified data tags (MDTs) for the map fields will bereset to
off automatically whenthe map is displayed. If RESETMDT is specified, the contents
of variablefieldsaretransmitted to storageonly if the terminal operator modified
the field or ifthe MDT has been set programmatically.

RESETMDT

States that the MDTs will be reset (turned off).
NOMDT

States that the MDTs will notbe reset.
RESETKBD/NOKBD

Specifies whether the keyboard will be unlocked automatically when the map is
displayed.

RESETKBD

States that the keyboard will be unlocked.
NOKBD

States that the keyboard will notbe unlocked.
ALARM/NOALARM

Specifies whether the terminal audiblealarm,ifinstalled, will sound automatically
when the map (for example, a screen that displays error messages),is displayed.

ALARM
States that the alarmwill sound.
NOALARM

States that the alarmwill notsound.

Chapter 5: Data Manipulation Language Statements 247

#MAPMOD—requests that the system modify options in the map request block

STARTPRT/NOPRT

(3280 printers only); specifies whether the contents of the terminal buffer will be
printed automatically when the map is displayed.

STARTPRT

States that the contents of the terminal buffer will be printed.
NOPRT

States that the contents of the terminal buffer will notbe printed.
NLCR/40CR/64CR/80CR

Specifies the characters-per-lineformatting for 3280 printer output, meaningful
onlyifthe STARTPRT option, described above, has been specified.

NLCR

States that no lineformatting will be performed on the printer output. Printing will
begin on a new lineonlyifthe printer encounters new line(NL) and carriagecontrol
(CR) characters.

40CR

States that the contents of the 3280 printbuffer will be printed at40 characters per
line.

64CR

States that the contents of the 3280 printbuffer will be printed at64 characters per
line.

80CR

States that the contents of the 3280 printbuffer will be printed at80 characters per
line.

FIELD/FLIST

Specifies one or more map fields to be modified. Choose one of these parameters
to changefield-specific options such as FOR, BACKSCN, OUTDATA, INDATA, JUSTIFY,
PAD, EDIT, INPUT, and ATTR.

FIELD=

Specifies one map field to be modified.
FIELD

Specifies that one map fieldis to be modified.
field-name

Is the name of the map data field to be modified.

248 DML Reference Guide for Assembler

#MAPMOD—requests thatthe system modify options in the map request block

index

Specifies the occurrence of the field if field-name is a multiply-occurringfield. Index
is a register, the symbolic nameof a user-defined field that contains the subscript,
or anabsoluteexpression.

FLIST=

Specifies a listof map fields to be modified or to be excluded from modification, as
indicated by the FOR=FLIST and FOR=NOTFLIST parameters described below. The
FLIST parameter values must be enclosedin parentheses. Each field specification
must be coded on a separateline.Specify each field by usingthe following
parameters.

field-name
Is the name of the map data field to be modified.
index-register

Specifies the occurrence of the field if field-name is a multiply-occurringfield.
Index-register is a register,the symbolic nameof a user-defined field that contains
the subscript, or an absolute expression.

FOR=

Specifies the map fields to be modified or excluded from modification:
ALL

Modifies all fields.
ERROR

Modifies those fields found to be inerror duringautomatic editing.
CORRECT

Modifies those fields found to be correct duringautomatic editing.
CURRENT

Modifies only the field found to be current duringautomatic editing. The current
fieldis the map field that was referenced inthe last#MAPMOD or #MAPINQ
request issued by the program. A #tMAPMOD or #MAPINQ that specifies a field list
does not establish currency.

NOCURNT

Modifies all thefields except the current field duringautomatic editing. The current
fieldis the map field that was referenced inthe last#MAPMOD or #MAPINQ
request issued by the program. A #MAPMOD or #MAPINQ that specifies a field list
does not establish currency.

FLIST

Modifies all thefields inthe field listdefined by the FLIST parameter above.

Chapter 5: Data Manipulation Language Statements 249

#MAPMOD—requests that the system modify options in the map request block

NOTFLIST

Modifies all fields exceptthose inthe field list defined by the FLIST parameter
above.

BACKSCN=

Specifies whether the system is to backscan thespecified field to remove trailing
blanks before performing the map output operation.

YES

Requests that the system send all characters up to the lastnonblank character to
the terminal; fields remainingon the screen will contain whatever characters were
present before the #HMREQ request was issued. If the #MREQ request specifies the
NEWPAGE option, the system erases the contents of all map data fields.

NO
Requests that the system leave intrailingblanks.
OUTDATA=

Indicates whether map fields will beset to the value of the corresponding
variable-storagedata fields.

YES
Specifies that the value of the variablestoragefield will be mapped out to the map
field.

NO
Specifies that data from the record buffer as well as the attribute byte will notbe
mapped out.

ERASE

Requests that the system erase the map data fields.

ATTRIBUTE

Requests that the system transfer only the attribute byte from the record buffer to
the map field.

INDATA=YES/NO

Indicates whether the map fields will be moved automatically to the corresponding
variable-storage data fields (YES) or left unchanged (NO) duringan inputoperation.

JUSTIFY=RIGHT/LEFT
Indicates whether the variable-storagefield should berightor left justified oninput.
PAD=

Indicates whether the alphanumeric variable-storage data field should be padded
on input and defines the padvalueor character:

250 DML Reference Guide for Assembler

#MAPMOD—requests thatthe system modify options in the map request block

NO

Does not pad the field.

pad-character

Pads the field with the specified pad character on the left if JUSTIFY=RIGHT is
specified and on the rightif JUSTIFY=LEFT is specified. Pad-character is a binary
numeric literal pad-character value.

EDIT=ERROR/CORRECT

Explicitly sets theerror flagon (ERROR) or off (CORRECT) for the specified map
fields.Ifthis parameter is specified, automatic editing must be enabled for the map
and for the named map fields.

The abilitytoset the error flagenables programs to perform their own editing and
validationin addition tothat provided by the automatic editing feature.

INPUT=

Specifies whether the terminal operator will be required to add inputinthe
specified map fields.

REQUIRED

Specifies thatinputis required. An error results if the terminal operator fails to
enter data inarequired field.

OPTIONAL

Specifies thatinputis optional.An error will notresultifthe terminal operator fails
to enter datainan optional field.

ERRMSG
ACTIVE

(Default); enables display of the error message associated with the field.

SUPPRESS

Disables display of the error message associated with the field. If the map is
redisplayed becauseof errors, the message defined for the map field will notbe
displayed even if the field contains editerrors. You typically enabledisplay of a
message only after specifying ERRMSG=SUPPRESS forthe map ina previous
#MAPMOD TYPE=PERM statement.

ATTR=

Specifies the 3270 and 3279 attributes for the named map fields. Multiple ATTR
parameter values mustbe enclosedin parentheses and separated by commas. Only
the named attributes will be modified inthe MRB. ATTR options are.

Chapter 5: Data Manipulation Language Statements 251

#MAPMOD—requests that the system modify options in the map requestblock

SKIP

Requests that the system reposition the cursor automatically over the ma fields to
the next unprotected field. When SKIP is specified, the named map fields are
implicitly assigned the NUMERIC and PROTECT attributes (described below)
automatically.

ALPHA/NUMERIC

Specifies whether the data inputto the map fields by the terminal operator are
alphanumeric (any character on the 3270 terminal keyboard) or numeric. ALPHA
cannot be specified if SKIP has been specified.

PROTECT/UNPROT

Specifies whether or not map fields will be protected from data entry or
modification by the terminal operator. UNPROT cannotbe specified if SKIP has been
specified.

DISPLAY/DARK/BRIGHT
Specifies how map fields aredisplayed.
DISPLAY

Specifies that the map fields will bedisplayed with normal intensity. DISPLAY
cannot be specified if DETECT, described below, has been specified.

DARK

Specifies that the map fields will notbe displayed. DARK cannot be specifiedif
DETECT, described below, has been specified.

BRIGHT

Specifies that the map fields will bedisplayed with bright intensity. BRIGHT cannot
be specified if DETECT, described below, has been specified.

DETECT

Specifies that the map fields will belight-pen-detectable. All fields assigned the
BRIGHT attribute will automatically be detectable by a light pen.

MDT/NOMDT

Specifies whether MDTs areautomatically set (turned on) for the map field when
displayed.

MDT

Requests that the system automatically setthe MDT for the map fields when
displayed.

NOMDT

Requests that the system not automatically setthe MDT for the map fields when
displayed.

252 DML Reference Guide for Assembler

#MAPMOD—requests thatthe system modify options in the map request block

BLINK/NOBLINK

(3279 terminals only); specifies whether map fields will be displayed with blinking
characters.

BLINK

Specifies that the fields characters will blink.
NOBLINK

Suppresses blinking.
REVERSE/NRMVIDEO

(3279 terminals only); specifies whether map fields will bedisplayedinreverse
video; dark characters ona lightbackground.

REVERSE
Indicates thatmap fields will bedisplayedinreverse video.
NRMVIDEO

Specifies that the map fields will bedisplayed in normal video;lightcharactersona
dark background.

UNDERSCR/NOUNDER

(3279 terminals only); specifies whether the map fields aredisplayed with
underlined characters.

UNDERSCR

Specifies that the map fields will be displayed with underlined characters.
NOUNDER

Specifies that the map fields will be displayed with nonunderlined characters.
NOCOLOR/BLUE/RED/PINK/GREEN/TURQUOIS/YELLOW/WHITE

(3279 terminals only); specifies thatthe map fields will bedisplayed with no color
attribute or with one of the seven availablecolor attributes.

Note: The BLINK/NOBLINK, REVERSE/NRMVIDEO, and UNDERSCR/NOUNDER
options are mutually exclusive;the lastattribute specified will overrideany
previously specified attribute.

#MAPMOD Status Codes

The #MAPMOD request is unconditional;any return code other then X'00' will resultin
anabend of the issuingtask.

Chapter 5: Data Manipulation Language Statements 253

#MAPMOD—requests that the system modify options in the map request block

#MAPMOD Example

The example of the #MAPMOD statement shown below performs the following
functions:

Identifies BLOCK1 as the storage area associated with the MRB of the map thatis
being modified

Accepts the default of setting the modificationslisted in this statement as
permanent until the program terminates or another #MAPMOD statement is issued

Accepts the default of MRBPLIST as the symbolic name of the storage area that will
be substituted for the DC/UCF portion of SUBSCHEMA-CTRL

Identifies the initial position of the cursor duringa map out operation on the first
position of the field SCREENF1

Defines the WCC character options requested for output operations
Specifies that all the fields listed in the FLIST parameter areto be modified

Specifies that duringan output operation the screen fields associated with the fields
listedinthe FLIST parameter are to be set to the valueof the storage fields

Specifies that duringaninput operation the storage fields areto be set to the value
of the correspondingscreen fields

Specifies that the storage fields will beleftjustified oninput

Specifies that on inputthe storagefields will be padded on the right with blank
spaces

Specifies thatinputis optional
Specifies the 3270 attributes for the specified map fields

#MAPMOD MRB=BLOCK1, CURSOR=(SCREENF1) ,WCC=(NOMDT,RESETKDB, *
NOALARM, NOPRT) , FLIST=(FIELD,SCREENF1, *
FIELD, SCREENF2

*

FIELD, SCREENF3

FIELD,SCREENF4),

FOR=FLIST, OUTDATA=YES, INDATA=YES,
JUSTIFY=LEFT,PAD=C' ',INPUT=0PTIONAL,
ATTR=(SKIP,BRIGHT, UNDERSCR)

I

254 DML Reference Guide for Assembler

@MODIFY—replaces element values of the database record

The following #MAPMOD statement shows how to suppress display of defaulterror
messages for fields EMPID and DEPTID on the current map.

#MAPMOD TYPE=TEMP,MRB=MAPMRB, *
FLIST=(FIELD,EMPID FIELD,DEPTID), *
FOR=FLIST, ERRMSG=SUPPRESS

Because this #H#MAPMOD statement specifies TEMP, error messages for these fields are
suppressed for the next mapout only. If PERM (default) were used, the error messages
would be suppressed until the programterminated or until the error message
specifications were overridden by a subsequent #MAPMOD statement.

@MODIFY—replaces element values of the database record

The @MODIFY statement replaces element values of the specified databaserecord with
new element values presentin program variablestorage.

Before execution of the @MODIFY statement, the following conditions mustbe met:

m All areas affected, either implicitly or explicitly, mustbe readied in one of the
update usage modes (see @READY (see page 308) inthis chapter).

m The named record must be established as currentof run unit. Ifthe record thatis
current of run unitis not an occurrence of the named record, an error condition
results.

m The values of all elements defined for the named recordinthe subschema view
must be invariablestorage. Ifthe @MODIFY statement is not preceded by an
@OBTAIN statement, you mustinitializethe appropriatevalues.Itis recommended
that you issuean @OBTAIN statement to ensure that all the elements inthe
modified record are present invariablestorage before you alter the values, then
issuethe @MODIFY statement.

Modifying CALC- and Sort-Control Elements

The following special considerations apply to the modification of CALC- and sort-control
elements:

m Ifmodification of a CALC- or sort-control element will violatea
duplicates-not-allowed option, the record is not modified and an error condition
results.

m [fa CALC-control element is modified, successful execution of the @ MODIFY
statement enables the record to be accessed on the basis of its new CALC-key
value. The db-key of the specified recordis not changed.

Chapter 5: Data Manipulation Language Statements 255

@MODIFY—replaces element values of the database record

@MODIFY Syntax

m [fa sort-control element is to be modified, the sorted set in which the named
record participates mustbe includedin the subschema invoked by the program. A
record occurrencethat is a member of a set not defined inthe subschema canbe
modified if the undefined set is notsorted.

m Ifany of the modified elements inthe specified record are defined as sort-control
elements for any set occurrencein whichthatrecord is currently a member, the set
occurrence is examined. If necessary, the specified recordis automatically
disconnected and reconnected inthe set occurrenceto maintain the set order
specifiedinthe schema.

Native VSAM Considerations

The following special considerations apply to the modification of records in native VSAM
data sets:

m The length of arecord inanentry-sequenced data set (ESDS) cannotbe changed
even ifthe recordis variablelength.

m The prime key for a key-sequenced data set (KSDS) cannotbe modified.

Currency

Before execution of the @MODIFY statement:

m The specified record must be established as current of run unit. If the record thatis
current of run unitis not an occurrence of the specified record, an error condition
results.

m The values of all elements defined for the named recordinthe program's
subschema view must be invariablestorage. If the @MODIFY statement is not
preceded by an @OBTAIN statement, the programmer must initialize the
appropriatevalues.The best practiceis toissuean @OBTAIN statement to ensure
that all the elements inthe modified record arepresent invariablestorage before
alteringthe values as desired and then issuethe @MODIFY statement.

Followinga successfully executed @MODIFY statement, the modified record becomes
current of its run unit, record type, area, and all sets in whichin participates as owner or
member.

»»—— @MODIFY REC=record-name

M

@MODIFY Parameters

REC=record-name

Defines the named record occurrence, as specifiedin programvariablestorage.
Record-name must specify a record type includedinthe subschema.

256 DML Reference Guide for Assembler

@MODIFY—replaces element values of the databaserecord

@MODIFY Status Codes

After completion of the @MODIFY function, the ERRSTAT fieldinthe IDMS
communications blockindicates the outcome of the operation. The followingis a list of
the acceptablestatus codes for this function and their corresponding meaning:

0800
The request has been serviced successfully.
0804

The OCCURS DEPENDING ON item is less than O or greater than the maximum
number of occurrences of the control element.

0805

Modification of the record would violatea duplicates -not-allowed option for a CALC
record, a sorted set, or anindex set.

0806
Currency has not been established for the specified record.
0808

The specified record cannot be found. The record name has probably been
misspelled.

0809

The specified record's area has not been readied in one of the three update usage
modes.

0810

The subschema specifies anaccess restriction that prohibits modification of the
named record.

0811
There is insufficientspaceto hold the modified variable-length record occurrence.
0813

A current record of run unit has not been established or has been nullified by a
previous @ERASE statement.

0818

The record has not been bound.
0820

The current record of run unitis not the same type as the specified record.
0821

An area other than the area of the named record has been readied with an
incorrectusage mode.

Chapter 5: Data Manipulation Language Statements 257

@MODIFY—replaces element values of the database record

0825
No current record of set type has been established.
0833

All sorted sets in which the specified record participates have not been includedin
the subschema.

0855
An invalid length has been defined for a variable-length record.
0860

A record occurrence has been encountered whose type is inconsistentwiththe set
named inthe ERROR-SET field of the IDMS communications block. Probablecauses
are either a broken chainandimproper databasedescription.

0861

No record can be found for aninternal db-key. This code usuallyindicates a broken
chain.

0883

Either the length of arecord ina native VSAM ESDS has been changed, or a prime
key innative VSAM KSDS has been modified.

@MODIFY Example

The following example illustrates the steps involved in modifying an occurrence of the
EMPLOYEE record. Assume that the employee name is to be changed. The firststep is to
retrieve the desired EMPLOYEE record and move its contents to variablestorage by
usingthe statements shown below:

MvC EMPID, INEMPID
@OBTAIN CALC,REC='EMPLOYEE'

The next step is to update the value of the EMPLOYEE field by moving the new
employee name into the proper locationinthe EMPLOYEE record:

MVC EMPNAME, NEWNAME

The final stepis toissuean @MODIFY statement to return all data items inthe
EMPLOYEE recordto the database:

@ODIFY REC='EMPLOYEE'

258 DML Reference Guide for Assembler

@MODIFY (LRF)—changes field values of an existing logical-record occurrence

@MODIFY (LRF)—changes field values of an existing
logical-record occurrence

The @MODIFY statement changes field values of an existinglogical-record occurrence.
LRF uses the field values presentinthe variable-storagelocation reserved for the logical
record to update the appropriatedatabaserecordsinthe database.You canoptionally
specifyanalternativevariable-storagelocation fromwhich the changed field values are
to be taken.

@MODIFY (LRF) Syntax

»»—— @MODIFY REC=logical-record-name

v

»
»

»

v

L ,I0OAREA=alt-logical-record-Ilocation —

v

L ,ONLRSTS=path-status,GOTO=branch-location —J

)

L ,WHERE boolean-expression a

@MODIFY (LRF) Parameters

REC=logical-record-name

Defines the logical record. Unless the IOAREA clauseis specified (see below), the
field values used to update the databasearetaken from the areainprogram
variablestoragereserved for the specified logicalrecord. Logical-record-name must
specify a logical record defined in the subschema.

IOAREA=alt-logical-record-location

Identifies an alternativevariable-storagelocation fromwhich the field values areto
be obtained to perform the requested modification. When modifying a logical
record that was retrieved into analternativelocationinvariablestorage, you
should usethe IOAREA clauseto name the same location specified inthe @ OBTAIN
request. Ifthe IOAREA clauseis included inthe @ MODIFY statement,
alt-logical-record-location must identify a record location defined in the program.

ONLRSTS=path-status,GOTO=branch-location

Tests for the indicated path status. Path-status must be a quoted literal or program
variable(1to 16 bytes under z/OS and 0S/390 or 1 to 6 bytes under the z/VSE
operating system). If path-status results from this @ MODIFY statement, the action
specified by GOTO=branch-location is performed. See ON Clause (see page 393)in
this chapter for details.

WHERE boolean-expression

Specifies the selection criteria tobe applied to the named logical record. See
WHERE Clause (see page 388),later inthis chapter, for details.

Chapter 5: Data Manipulation Language Statements 259

#MREQ—determines how data is transferred

@MODIFY (LRF) Status Codes

When using LRF, the type of status code returned to the programinthe ERRSTAT field of
the IDMS communications block differs according to the type of error. If the error occurs
inthe logical-record path, the ERRSTAT field contains a status codeissued by CA
IDMS/DB with a major code from 00to 19. For a listofthese codes, see ERRSTAT Field
and Codes (see page 41).

When the error occurs inthe request itself, LRF returns the path status LR-ERROR to the
LRSTAT field of the LRC blockand places a status code with a major code of 20 inthe
ERRSTAT field of the IDMS communications block. For a listof these codes, see Testing
for the Logical-Record Path Status (see page 55).

@MODIFY (LRF) Example

The samplecode shown below illustrates the steps taken to modify an occurrence of the
EMPSKLLR logical record. Assumethat the department name for department 1200is to
be changed, as well as the maximum salary for a specificjob workingin this department
(jobidentification number 5051).

1. Retrieve the desiredlogicalrecord:

@OBTAIN FIRST,REC=EMPSKLLR, *
WHERE DEPTID EQ '1200' *
AND JOBID EQ '5651'

2. Update the JOBNAME and MAXSAL fields by moving the new department name and
the revised maximum salary to the proper fields inthe obtained DEPJOBLR logical
record:

MVC JOBNAME, NEWNAME
MVC MAXSAL,NEWSAL

3. Issuethe @MODIFY statement for the update EMPSKLLR logicalrecord:
@YODIFY REC=EMPSKLLR

#MREQ—determines how data is transferred

The #MREQ, statement determines how data is transferred between the terminal and

program variablestorage. There are three types of #MREQ statements, each performing
a different type of I/O operation:

m #MREQ IN transfers data from the terminal device to programvariablestorage.
m #MREQ OUT transfers data from program variablestorageto the terminal device.

m #MREQ OUTIN transfers data from program variablestorageto the terminal device,
followed by a transfer from the terminal device backto program variablestorage.

260 DML Reference Guide for Assembler

#MREQ—determines how data is transferred

#MREQ Syntax

Native Mode Transfers
You canalsousethe #MREQ statement to perform the following native-mode data
transfers:

m Mapindatafromanareainvariablestoragethatcontainsa3270-likedata stream
to data fields defined for the map.

m Map out data to another areainvariablestorage.

Synchronous and Asynchronous Requests
All #MREQ inputrequests are synchronous; output requests can be either synchronous
or asynchronous:

m For synchronous requests, control does not return to the issuing programuntil the
1/O operation is completed. You specify a synchronous inputrequest (the default
for mappingoutput) by indicating YESin the CHECK parameter, as described below.

m For asynchronous requests, control is returned to the issuing programimmediately
after the requested 1/0 operationisinitiated. The program continues to execute
concurrently with the 1/0 operation. An ECB is established that will be posted after
the 1/0 has been completed. The address of the ECB is contained inregister 1.

To ensure that the previous #MREQ processing has been completed before you
issuean #MREQ request, your program mustissuea #TREQ CHECK following
asynchronous data transfer.

Note: For more information about the #TREQ CHECK statement, see #TREQ (see
page 343) laterin this chapter.

To transfer data immediately from program variablestorageto the terminal, your
program canissuea write-direct-to-terminal #MREQ OUT request (blast). Blastrequests
must be directed to 3270 devices that support mapping-mode terminal I/O operations.

Note: For more information about mapping functions, see the Mapping Facility Guide.

Syntax for each of the these #MREQ statements follows:
= #MREQ IN

m #MREQ OUT

= #MREQ OUTIN

Parameter descriptions followthesyntax diagrams.

Chapter 5: Data Manipulation Language Statements 261

#MREQ—determines how data is transferred

Syntax

#MREQ IN

»»— #MREQ IN

»—— ,MRB=map-request-block-pointer

v

v

L ,PLIST= T SYSPLIST « —_l——‘
parameter-1list-pointer

»

v

»

L JOPTNS= — (——v— NOIO —J
UPPER
UPLOW

v

L _
,INDATA= —— YES
Lo

v

,STREAMA=data-stream-location- in_—l—l
,STREAML=data-stream-length-in

v

»—— ,DETAIL=
—E YES —-] ,FIRST= —E NO

»— ,HEADER= T NO 4

L conp= N « ———]
T
(¥ ATTN —7)/

PERM —
DISC —
INVP —
MPNF —
DNSP ——
TBL —
UERR —
IDAT —
EDNF —
MPNS —

]

||l|||||||

v

s T T RTRKEY= Freld-name

name ——
,RTRNKEY:
,RTRNKEY=F7eld-name

field-name |

v

YES

v

L ,PAGE=page-number —I

v

L ,MODIFY= —E NO <

v

L ATTNKIT=attent ion-key-1abel =)

v

- L ,PERMXIT=permanent-i/o-error-1label ——I

v

L ,DISKXIT=terminal -disconnected-label]

v

L ,INVPXIT=17nval id-mrb-information-label —I

v

262 DML Reference Guide for Assembler

#MREQ—determines how data is transferred

v

L ,MPNFXIT=map-not-found-label -

v

L ,DNSPXIT=terminal -device-not-supported-1abel]

v

L ,IBLXIT=error-in-table-1abel —I

v

L L,UERRXIT=error-in-return-user-edit-mod-1abel]

v

L ,IDATXIT=17nternal-data-error-1label i

\ 4

~ L EDNFXIT=eq7 t-module-not - found- 1abel —

v

- L ,MPNSXIT=paging-session-error-1label .

)4

L ,ERROR=error-label i
Syntax

#MREQ OUT

v

> #MREQ OUT
L 7ape1 J

v

»—— ,MRB=map-request-block-pointer
- L pList= [SYSPLIST « —_IJ
parameter-1list-pointer

L ,OPTNS= — (—¢ NEWPAGE —L) —J

v

v

LITERALS —
NOTO
SAVE
EAU
L outpataA= — YEs ————1
ERASE
ATTRibute —

\ 4

» |_ ~
,DETAIL= T NO «
YES 1L ,UPDATE= |

NEW <
"L ocurrent = L kev=key

v

»— RESUME= —— NO <
Loves —T L page= CURRENT <« |

NEXT
PRIOR
FIRST
LAST
page-number ————————
(page-number-pointer) —

Chapter 5: Data Manipulation Language Statements 263

#MREQ—determines how data is transferred

T

,CHECK= T YES;I—J
NO

v

L

, STREAMA= T (1) «]

return-data-stream-address-out-register

v

L

, STREAML= T (0) «] |
return-data-stream-length-out-register

v

E

,DESTID=destination-id-pointer
,USERID=user-id-pointer ——————————
,LTERMID=1Iogical-terminal-id-pointer —

v

> T

A

,COND= N «———
F AL
(— ATIN —L—)—

LOGL —
PERM —
DISC —
INVP —
MPNF —
DNSP —
TBL —
UERR —
IDAT —
EDNF —
UNDF —
MPNS —

T

v

v

,ATTNXIT=attention-key-label |

v

v

,LOGLXIT= logical-output-error-label —

v

v

,PERMXIT=permanent-i/o-error-1abel -

v

v

,DISCXIT=terminal -disconnected-1label -

v

v

L INVPXIT=7nval id-mrb-information-1label |

v

v

,MPNFXIT=map-not-found-label l

v

,DNSPXIT=terminal -device-not-supported-1abel i

v

v

,IBLXIT=error-in-table-1abel —-|

v

v

L,UERRXIT=error-in-return-user-edit-mod-1abel]

v

v

,IDATXIT=17nternal-data-error-label il

v

v

,EDNFXIT=ed7t-module-not- found-1label il

v

v

v
) gy oo N r r r

,UNDFXIT=7nval id-destid-1ltermid-1abel -

\ 4

264 DML Reference Guide for Assembler

#MREQ—determines how data is transferred

v

L ,MPNSXIT=paging-session-error-1label —-]

v

L ,ERROR=error-label ——I

‘Y

L ,MSGADDR=message-start-location-register

T - MSGLEN=message-length-register —_l—l
,MSGEND=message-end-location-register

X

Syntax

#MREQ OUTIN

PP'—'_—_J— #MREQ OUTIN
label

»—— ,MRB=map-request-block-pointer
~ L pList= [SYSPLIST « —_l_'
parameter-1ist-pointer

—]

L opms — e L
LITERALS —
UPPER ——
UPLOW ——
EAU ——

L OUTDATA= —— YES ——
ERASE
ATTRibute —

v

v

v

v

v

v

L , INDATA= T YES
NO

L ,CHECK= T mgs_—l—.

L ,COND= F
(

v

&
A
L
v

4._|§

ATTN

LOGL —
PERM
DISC
INVP
MPNF
DNSP
TBL
UERR
IDAT
EDNF
MPNS

T
L

Chapter 5: Data Manipulation Language Statements 265

#MREQ—determines how data is transferred

L L,ATTNXIT=attention-key-label -

v

L ,LOGLXIT=1ogical-output-error-1label —I

v

L ,PERMXIT=permanent-i/o-error-1label —|

v

L ,DISCKXIT=terminal -disconnected-label]

v

v

L ,INVPXIT=7nval id-mrb-information-1label -

v

v

,MPNFXIT=map-not-found-1abel -

v

\ 4

,DNSPXIT=terminal -device-not-supported-1abel .

v

\ 4

TBLXIT=error-in-table-1abel —

v

v

L,UERRXIT=error-in-return-user-edit-mod-1abel -

v

,IDATXIT=17nternal-data-error-label ——‘

v

v

,EDNFXIT=ed7t-module-not- found-1label -

v

v

,MPNSXIT=paging-session-error-1label -

v

v

,ERROR=error-1abel i

v

v

v
) oo o or

A 4

,MSGADDR=message-start-location-register

T MSGLEN=message-length-register —_l—l
,MSGEND=message-end-location-register

#MREQ Parameters

MRB=map-request-block-pointer

Specifies the location of the MRB for the mapping operation, as copiedinto
program variablestorage by the #MRB statement. The #MRB statement is
described under #MRB (see page 419). Map-request-block-pointer is either a
register that points to the MRB area or the symbolic name of that area.

PLIST=

Specifies the location of the storagearea in which the system builds the #HMREQ
parameter list.

SYSPLIST

(Default); is the symbolic name of the storagearea.

)4

266 DML Reference Guide for Assembler

#MREQ—determines how data is transferred

parameter-list-pointer

Is either a register that points to the area or the symbolic nameof the area.

OPTNS=

Specifies several options applicableto terminal I/O operations. Multiple OPTNS
parameter values mustbe enclosedin parentheses and separated by commas.

NEWPAGE

(#MREQ OUT and #MREQ OUTIN only); requests that the system activatethe
erase-write mechanismto clear the contents of a screen. If NEWPAGE is not
specified, the system will write over any existingscreen display withoutfirsterasing
it.

You canmarkindividualfieldsto be erased by usingthe OUTDATA=ERASE option of
the #MAPMOD statement, described earlierinthis chapter.

LITERALS

(HMREQ OUT and #MREQ OUTIN only); requests that the system transmitliteral
fields as well as variable-storage data fields to the terminal. If LITERALS is not
specified, the system writes literal fieldsto the map onlyif NEWPAGE is specified.

NOIO

(#MREQ IN and #MREQ OUT only); requests that the system transfer a native-mode
data stream, a 3270-likedata streamthat consists of user dataandall
device-control characters, to programstorage. No terminal I/Ois associated with
the request:

m For IN requests, the native-mode data stream replaces data that would
normally be read from the terminal by the system.

m For OUT requests, the native-mode data stream replaces data that would
normally be written out to the terminal by the system.

When OPTNS=(NOIOQ) is specified, the STREAMA= and STREAML= parameters must
alsobedefined, as described below.

SAVE

(Non-write-direct-to-terminal #MREQ OUT only); requests that the system preserve
the mapped output from the #MREQ OUT request inthe event thatan unsolicited
write-direct-to-terminal data stream is received atthe issuingterminal whilethe
map is being displayed. This option overrides the task SAVE/NOSAVE option
specified during system generation.

UPPER

(#MREQ IN and #MREQ OUTIN only); requests that the system translateall letters in
amap inrequestinto uppercasecharacters.

Chapter 5: Data Manipulation Language Statements 267

#MREQ—determines how data is transferred

UPLOW

(HMREQ IN and #MREQ OUTIN only); requests that lowercasecharacters arenot
translated into uppercasecharactersina mapinrequest. This canalsobe
accomplished byissuinga DCUF SET UPLOW statement before startingthe mapping
session.

EAU

(HMREQ OUT and #MREQ OUTIN only); allows you to request the 3270 erase all
unprotected command. This command sets all unprotected character locations to
nulls, resets the MDTs for all unprotected fields, unlocks the keyboard, resets the
AID key, and places the cursor atthe firstunprotected field. This option cannotbe
used with OPTNS=(NEWPAGE).

OUTDATA=

(#MREQ OUT and #MREQ OUTIN only); specifies howthe variable-storage data
fields areto be transmitted to the terminal. This specification applies toall
variable-storagedata fields unless overridden by an OUTDATA= clauseina
previouslyissued HMAPMOD request.

YES

Transfers the contents of variable-storage data fields to the corresponding map
fields.

NO

Requests that map fields remain unchanged.
ERASE

Does not transfer the contents of variable-storage data fields to the screen.
ATTRIBUTE

Transmits only the attribute byte of each variable-storagefield to the screen. Data
inthe variable-storagefieldis nottransmitted.

INDATA=

(#MREQ IN and #MREQ OUTIN only); specifies whether the contents of the map
fields aremoved automaticallyinto variable-storagedata fields. This specification
applies toall variable-storage data fields unless overridden by an INDATA= clausein
a previouslyissued #{MAPMOD request.

YES

Transfers the contents of map fields to the correspondingvariable-storage data
fields.

NO

Does not transfer the contents of map fields to the correspondingvariable-storage
datafields.

268 DML Reference Guide for Assembler

#MREQ—determines how data is transferred

DETAIL/HEADER

(Pageablemap #MREQ IN only); specifies whether the #MREQ IN operation is to
retrieve data from a detail occurrenceor from the header or footer area.

Note: For more information about pageable maps, see the Mapping Facility Guide.

DETAIL=

Specifies whether the #MREQ IN operation is to retrieve data from a modified detail
occurrence (modified data tag set on):

NO
(Default); specifies thatdata is not to be retrieved from a detail occurrence.
YES

Specifies that datais to be retrieved from a modified detail occurrence (MDT set
on). By default, the next sequential modified detail occurrence is retrieved; a
different detail occurrencecan be specified by usingthe
FIRST/KEY/SEQNBR/RTRNKEY clause.

The contents of all map fields inthe detail occurrenceare retrieved unless
MODIFY=YES is specified for the #MREQ IN,DETAIL statement. MODIFY=YES causes
only modified fields to be retrieved.

FIRST/KEY/SEQNBR/RTRN KEY
Specifies the detail occurrenceto be retrieved. Only one option can be specified.
FIRST=

Specifies whether the firstavailable modified detail occurrenceis to be retrieved.

NO

(Default); specifies thatthe FIRST clauseis notused to determine the detail
occurrence to be retrieved.

YES

Retrieves the firstavailable modified detail occurrence. An end-of-data condition
results ifthere are no more modified detail occurrences to be retrieved.

The optional RTRNKEY=data-field-name parameter specifies the name of avariable
fieldin which the system stores the key value(ifany) associated with the retrieved
detail occurrence. If no valueis associated with the detail occurrence, the system
sets data-field-name to 0. Data-field-name must be a 4-byte value (not necessarily a
binary fullword).

Note: A valueis associated with a detail occurrence by usingthe KEY parameter in
an #MREQ OUT,DETAIL=YES command for that occurrence.

KEY=key

Retrieves a modified detail occurrencebased on the valueassociated with the
detail occurrence. Key is a 4-byte variablefield.

Chapter 5: Data Manipulation Language Statements 269

#MREQ—determines how data is transferred

Note: A valueis associated with a detail occurrence by usingthe KEY parameter in
an #MREQ OUT,DETAIL=YES command for that occurrence.

A detail-not-found conditionis returned if the specified occurrenceis not a
modified detail occurrenceorif no detail occurrencewith the specified valueis
found.

SEQNBR=data-field-name

Retrieves a detail occurrenceby sequence number. Detail occurrences are builtby
the application programatrun time and arestored inthe sequence in which they
are created. Data-field-name is a 4-byte binary fullword field.

RTRNKEY=data-field-name

(Optional); names the variablefield used to store the 4-byte value (if any) of the
retrieved detail occurrence.If no valueis associated with the detail occurrence,
data-field-name is set to 0. (Data-field-name does not have to be a binary fullword).

Note: A valueis associated with a detail occurrenceby usingthe KEY parameter in
an #MREQ OUT,DETAIL=YES command for that occurrence.

RTRNKEY=data-field-name

Retrieves the next sequential modified detail occurrence, and specifies thename of
the variablefield in which the system stores the value (ifany) associated with the
retrieved detail occurrence.If no valueis associated with the detail occurrence,
data-field-name is set to 0. Data-field-name must be a 4-byte value (not necessarily
a binary fullword).

Note: A valueis associated with a detail occurrence by usingthe KEY parameter in
an #MREQ OUT,DETAIL=YES command for that occurrence.

HEADER=

(Pageablemap #MREQ IN only); specifies whether the map in operationis to
retrieve the contents of data fields in the header and footer areas.

NO

(Default); specifies thatdata from the header and footer areas is notto be
retrieved.

YES
Specifies that data from the header and footer areas is to be retrieved.

The contents of all data fields intheheader and footer areas areretrieved unless
MODIFY=YES is specifiedinthe #MREQ IN,HEADER statement; MODIFY=YES causes
only modified fields to be retrieved.

PAGE=page-number

Specifies the name of a numeric variablefield to store the current binary fullword
value of the SPAGE fieldon map in.

270 DML Reference Guide for Assembler

#MREQ—determines how data is transferred

MODIFY=
Specifies whether the contents of modified fields areto be retrieved.
NO

(Default); retrieves all fieldsfromthe header and footer areas when a modified field
(MDT set on) is foundinthe occurrence or areas.

YES

Retrieves onlythe contents of modified fields from the header and footer areas;
datainunmodified fields is notretrieved.

DETAIL/RESUME

(Pageable map #MREQ OUT only); specifies whether the #MREQ OUT command is
to create or modify a detail occurrence, or to map out a page of existing detail
occurrences.

DETAIL=

Specifies whether the #MREQ OUT command is to create or modify a detail
occurrence.

NO

(Default); specifies thatthe #HMREQ OUT command does not create or modify detail
occurrences.

YES

Specifies that the #MREQ OUT command can either create or modify individual
detail occurrences. You can optionally associatea numeric key valuewith each
occurrence.

UPDATE=NEW/CURRENT
Specifies whether the detail occurrenceis to be created or modified.
NEW

(Default); creates a detail occurrenceina pageable map. Occurrences aredisplayed
inthe order inwhich they arecreated by the application program.

CURRENT

Modifies the detail occurrencereferenced by the most recent #HMREQ OUT or
#MREQ IN command.

Chapter 5: Data Manipulation Language Statements 271

#MREQ—determines how data is transferred

KEY=key

(Optional);specifies a valueto be associated with the created or modified detail
occurrence. The 4-byte numeric valueis not displayed on the terminal screen. Key is
the name of the variablefield thatcontains the database key of the database
record associated with the detail occurrence.

When the KEY parameter is used with the #MREQ
OUT,HEADER=YES,UPDATE=CURRENT command, the specified valuereplaces the
value(ifany) previously associated with the detail occurrence.

RESUME=

Specifies whether a page of detail occurrences is to be displayed on the terminal
screen.

NO

(Default); specifies thatthe #MREQ OUT command does not map out a page of
detail occurrences to the terminal.

YES

Specifies that the #MREQ OUT command maps out a page of detail occurrences to
the terminal.

PAGE=

(Optional); determines the page of occurrences to be displayed on the terminal
screen.

CURRENT

(Default); redisplaysthecurrent page. If no page has been displayed, the first page
of the pageable map is displayed.

NEXT

Displaysthe page that follows the current page. If no page follows the current page,
the current page is redisplayed.

PRIOR

Displaysthe page that precedes the current page. If no page precedes the current
page, the current pageis redisplayed.

FIRST
Displaysthefirstavailable page of detail occurrences.
LAST

Displaysthe page of detail occurrences with the highest available page number.

272 DML Reference Guide for Assembler

#MREQ—determines how data is transferred

page-number

Displaysthenumeric variablefield thatcontains the binary fullword number of the
page. A page number is previouslystoredinthe variablefield by an #MREQ
IN,HEADER=YES,P AGE=page-number statement that names the same numeric
variablefield.

(page-number)

Specifies the register that contains the address of a 4-byte binaryfullword fieldin
variablestoragethatcontains the number of the page to be displayed.
Page-number must be enclosed in single quotes.

CHECK=

(#MREQ OUT and #MREQ OUTIN only); specifies whether the data transferis
synchronous or asynchronous.

YES

Specifies that the data transferis synchronous.the system places the issuingtaskin
aninactivestate. When the output operationis completed, the task resumes
processingaccordingtoits established dispatching priority.

NO

Specifies that the data transferis asynchronous.thesystem returns control to the
issuing programimmediately after initiating the output operation and establishing
an ECB to be posted when the output operationis completed.

An asynchronous transfer mustbe followed by a CHECK #TREQ request before
another #MREQ request is issued to ensure that the previous #MREQ processing
has been completed.

Note: For more information about synchronous and asynchronous processing, see
HTREQ (see page 343)laterinthis chapter.

Specifying CHECK=NO ina #MREQ OUT statement issued before task termination
frees the task resources when the taskterminates; the system automaticallyissues
a #TREQ CHECK.

STREAMA/STREAML

(OPTNS=(NOIO only); specifies the location and the length of the inputdata stream
to be transmitted.

STREAMA=
Specifies the location of the native-mode data stream to be transmitted.
data-stream-location-in

Either a register that points to the data stream or the symbolic name of the area
that contains the data stream.

STREAML=

Specifies the length of the native-mode data stream to be transmitted.

Chapter 5: Data Manipulation Language Statements 273

#MREQ—determines how data is transferred

data-stream-length-in
A register that contains either the length or an absolute expression of the length.
STREAMA/STREAML

Specifies the length of the output data stream and the location to which itis
returned.

STREAMA=(1)/return-data-stream-address-out
Specifies the location to which the system transfers the mapped data.
(1)

(Default); is the register that contains the address of the location to which the
system transfers the mapped data.

return-data-stream-address-out

Specifies the location to which the system transfers the mapped data.
Return-data-stream-address-out is either a register or the symbolic nameof a
fullword user-defined area.

STREAML=

Specifies the location to which the system returns the length of the output data
stream.

(0)

(Default); is the register to which the system returns the length, in bytes, of the
output data stream.

return-data-stream-length-out

Specifies the location to which the system returns the length, in bytes, of the
output data stream. Return-data-stream-length-out is either a register or the
symbolic name of a halfword or fullword user-defined field.

DESTID/USERID/LTERMID

(HMREQ OUT only); specifies a write-direct-to-terminal request (blast) to either a
destination, user, or logical terminal.

DESTID=destination-id

Specifies a write-direct-to-terminal request to one of the followingdestinations
defined during system generation.

m Alist of logical terminals indicates thatthe system sends the #MREQ data
stream specified inthe OUTAREA parameter to all availableterminalsinthelist

m Alist of users indicates thatthe system sends the #MREQ data stream
specifiedinthe OUTAREA parameter to all usersinthelistwho arecurrently
signed on to the system.

Note: This works onlyifthere is a valid OUTAREA parameter for line mode
(HLINEOUT) as well as for mapping mode (#MREQ).

274 DML Reference Guide for Assembler

#MREQ—determines how data is transferred

destination-id

A register that points to the destinationid, the symbolic name of a user-defined
field that contains the destination ID, or the ID itselfenclosed in quotation marks.

Note: The destinationlistcanincludedifferent3270 models. Ifa map has been
generated to support a specified terminal device, the system will writethe map to
that device. Ifthe targeted terminal-devicetype is notinthe map device list, the
system will ignorethat terminal device.

USERID=

Specifies a write-direct-to-terminal request to a specific signed-on user. The system
sends the #MREQ data stream specified in the OUTAREA parameter to a specific
signed-on user.

user-id

Either a register that points to the user ID, the symbolic name of a user-defined
field that contains the user id, or the ID itselfenclosed in quotation marks.

LTERMID=

Specifies a write-direct-to-terminal request to a specificin-serviceterminal.The
system will send the #MREQ data stream specified in the OUTAREA parameter to a
specificin-serviceterminal.

logical-terminal-id

Either a register that points to the logical terminal id, thesymbolic name of a
user-defined field that contains the logical terminal ID, or the ID itselfenclosedin
guotation marks.

COND=

Specifies whether this #MREQ is conditionaland under what conditions control
should be returned to the issuing program.

NO
(Default); specifies thatthe requestis not conditional.
ALL

Specifies that the request is conditional. Control is returnedifthe request cannotbe
serviced for any of the reasons listed under condition.

condition

Specifies one or more conditions under which the system returns control to the
issuing program. Multiple conditions mustbe enclosed in parentheses and
separated by commas. You can specify one or more of the following conditions.

m ATIN

The I/0 is interrupted by the terminal operator pressingthe ATTENTION (2471)
or BREAK (teletype) key duringan output operation.

Chapter 5: Data Manipulation Language Statements 275

#MREQ—determines how data is transferred

s LOGL
A logical erroris encountered in the output data stream.
m PERM
A permanent 1/O error has occurred.
m DISC
The dial-uplineis disconnected or the terminal goes out of service.
= INVP
There is aninvalid parameter in the MRB.
m MPNF

The map load module requested by the MRB cannotbe found inthe load area
of the dictionary.

m NSP
The requested map does not supportthe terminal device type being used.
s TBL

The named edit or code table cannotbe found or is invalid for use with the
requested map.

m UERR
An error has occurredina user-written edit module.
m IDAT

A data conversion error occurs where the internal map data does not match
the map data description.

m EDNF

The user-written edit module cannot be found orisinvalid for usewith the
requested map.

m UNDF

(HMREQ OUT only); an undefined DESTID or LTERMID is specified in an #fMREQ
blastrequest.

m MPNS
A map paging #MREQ is issued when no pagingsessionisin progress.
ATTNXIT=attention-key-label

Specifies the symbolic name of the routine to which control should be returned if
the 1/0O operation is interrupted by the terminal operator.

276 DML Reference Guide for Assembler

#MREQ—determines how data is transferred

LOGLXIT=logical-output-error-label

Specifies the symbolic name of the routine to which control should be returned ifa
logical erroris detected in the output data stream.

PERMXIT=permanent-i/o-error-label

Specifies the symbolic name of the routine to which control should be returned ifa
permanent |I/O error occurs.

DISCXIT=terminal-disconnected-label

Specifies the symbolic name of the routine to which control should be returned if
the terminal line or terminal goes out of service.

INVPXIT=invalid-mrb-information-label

Specifies the symbolic name of the routine to which control should be returned if
the #MREQ cannotbe serviced because of aninvalid parameter inthe MRB.

MPNFXIT=map-not-found-label

Specifies the symbolic name of the routine to which control should be returned if
the #MREQ cannotbe serviced because the map requested by MRB cannot be
found.

DNSPXIT=terminal-device-not-supported-label

Specifies the symbolic name of the routine to which control should be returned if
the #MREQ cannotbe serviced because the terminal device in use is not supported
by the requested map.

TBLXIT=error-in-table-label

Specifies the symbolic name of the routine to which control should be returned if
anedit or code tablecannot be found orisinvalid for use with the requested map.

UERRXIT=error-in-return-user-edit-mod-label

Specifies the symbolic name of the routine to which control should be returned if
anerror has occurredina user-written edit module.

IDATXIT=internal-data-error-label

Specifies the symbolic name of the routine to which control should be returned if
the internal map data does not match the map data description.

EDNFXIT=edit-module-not-found-label

Specifies the symbolic name of the routine to which control should be returned ifa
user-written edit module cannot be found or is invalid for use with the requested
map.

UNDFXIT=invalid-destid-Itermid-lab el

(#MREQ OUT only); specifies the symbolic name of the routine to which control
should be returned ifan undefined DESTID or LTERMID is specifiedinan #MREQ
OUT blastrequest.

Chapter 5: Data Manipulation Language Statements 277

#MREQ—determines how data is transferred

MPNSXIT=paging-session-error-label

Specifies the symbolic name of the routine to which control should be returned ifa
map paging #MREQ specificationis issued when a no pagingsessionisinprogress.

ERROR=error-label

Specifies the symbolic name of the routine to which control should be returned ifa
condition specifiedinthe COND parameter occurs for which no other exit routine
was coded.

MSGADDR=message-start-location, MSGLEN =messa ge-length/
MSGEND=message-end-location

(#MREQ OUT and #MREQ OUTIN only); specifies a program-supplied messageto be
displayedinthe map message area.The message text isa 1-to 80-character
alphanumeric value. Message-start-location is either a register that points to the
message area or the symbolic name of that area. Specify the end of the messagein
one of the following ways.

MSGLEN=message-length

Specifies the length, in bytes, of the message output data area. Message-length is a
register that contains the length, the symbolic nameof a user-defined field that
contains the length, or the length itself expressed as a numeric constant.

MSGEND=message-end-location

Specifies the end of the message by referencing the next data item followingthe
message storage area. Message-end-location is a register or a fullword that points
to the firstdata item followingthe message storagearea. This dataitem may be a
dummy byte, a data item not associated with the output data, or the symbolic
name of that data item.

#MREQ Status Codes

By default, the #MREQ request is unconditional;any return-code other than X'00' will
resultinan abend of the issuingtask.The issuingprogramcan request return of control
with the COND parameter to avoid anabend.

The valuereturned to register 15 differs accordingto whether the #MREQ request is a
pagingor a nonpagingrequest. Status codes issued as a resultof a nonpaging HtMREQ
request fall intherange of '00'to '38'; pagingrequests return values in the range of '40'
to '50".

278 DML Reference Guide for Assembler

#MREQ—determines how data is transferred

After completion of an #MREQ statement that does not involve pageable maps, the
valueinregister 15 indicates the outcome of the operation. The followingstatus codes
applyto nonpageable maps:

X'00'
The request has been serviced successfully.
X'o4'

The specified edit or code table cannot be found oris invalid for use with the
named map.

X'o8’

The 1/0 has been interrupted; the terminal operator has pressed ATTENTION (2741)
or BREAK (teletype).

x'ocC'

A logical error (for example, an invalid control character) has been encountered in
the output data stream.

X'10'
A permanent 1/0O error has occurred during processing.
X'14'
The dial-up linefor the terminal is disconnected.
X'18'
The terminal being used is out of service.
X'20'

The map request block (MRB) contains aninvalid field, indicatinga possibleerrorin
program parameters.

X'24'
The map load module named inthe MRB either cannot be found in the dictionary
load area (DDLDCLOD) orisinvalid.

X'28'
The requested map does not supportthe terminal device type being used.

X'2C'
An error has occurredina user-written edit module. An invalid pointer to the data
stream has been returned to register 1.

X'30'
A data conversion error has occurred; the internal map data does not match the
map data description.

Chapter 5: Data Manipulation Language Statements 279

#MREQ—determines how data is transferred

X'34'
The specified user-written edit module cannotbe found or is invalid for use with
the named map.

X'38'
Invalid blastrequestto DESTID, LTERMID, or USER ID.
X'3C'
Invalid map load module.
After completion of an #MREQ function that involves pageable maps, the valuein

register 15 indicates the outcome of the operation:The followingstatus codes apply to
pageable maps:

X'40'
(#MREQ IN) The requested node for a header or detail was either not present or not
updated.
(HMREQ OUT) There is no current detail occurrenceto be updated. No actionis
taken

X'a4'

(#MREQ IN) No more modified detail occurrences requiremap in.

(#MREQ OUT) The maximum amount of storage defined for pageable maps at
system generation has been reached. This and any ensuing map out detail
occurrences areignored.

X'48'

(#MREQ IN) The scratch record containingthe requested detail could not be
accessed (internal error).

(#MREQ OUT) No detail occurrence, footer, or header fields existto be mapped out
by an #MREQ OUT,RESUME command.

x'4C'

(HMREQ OUT) The firstscreen page has been transmitted to the terminal.

280 DML Reference Guide for Assembler

#MREQ—determines how data is transferred

X's0'

(HMREQ IN) An #MREQ IN,COND=MPNS or an #MREQ OUT,COND=MPNS request
was received when no map pagingsessionisin progress. Either a #STRTPAG
command was not received prior to this #MREQ IN command or a #ROLLBAK was
issued sothat the scratch area for the pageablemap (area ID MPGPSCRA) is no
longer available. Unless the COND=MPNS is specified for #HtMREQ, this condition
abends the map paging task with the message DC242021.

(HMREQ OUT) A mapout command was received when no map pagingsessionwas
inprogress. Either the #STRTPAG command was not received prior to this mapout
command or a #ROLLBAK was issued so thatthe scratch area for the pageable map
(area ID MPGPSCRA) is nolonger available. This return code is received only when
COND=MPNS is specified for #MREQ; otherwise, this condition abends the map
pagingtask.

X'54'

(#MREQ OUT) Valuereturned to register 15 when a pageable map page is built
before the page is actually displayed. Test for the new map pagingreturn code after
each #MREQ OUT DETAIL=YES statement. This allows you to detect when the last
detail that canfit on a page has been placed on that page.

Upon successful completion of certain #MREQ requests, four registers contain the
followinginformation:

#MREQ Example

Register 0, for #MREQ OUT blastrequests, contains the actual number of terminals
to which the data stream has been routed.

Register 1, for asynchronous outputrequests, contains the address of the ECB that
the system posts on completion of the 1/0 operation.

Register n, for non-1/0 requests (OPTNS=(NOIO) parameter), contains the address
of the native-mode data stream. The register number n is assigned by the STREAMA
parameter. This register does not have to be assigned for non-1/0 requests; the
system can placethe address of the native-mode data stream in a user-defined
storage area rather than inaregister.

Register m, for non-1/0 requests, contains the length of the native-mode data
stream. The register number m is assigned by the STREAML parameter. This register
does not have to be assigned for non-1/0 requests. The following conditions apply:

— For output requests, the system can placethe length of the native-mode data
streamina user-defined storagearea.

— Forinputrequests, the length can be defined as anabsoluteexpression.

The followingexamples illustrate howto use the #MREQ statement:

Chapter 5: Data Manipulation Language Statements 281

@OBTAIN (LRF)—retrieves the named logical record

The #MREQ IN statement shown below requests that the system read the map
associated with the map request block TESTMAP1. Data values aretransferred from
map fields to the correspondingvariable-storage data fields. Subsequent commands can
evaluate the inputvalues and perform appropriate processing. For any error condition
that can be specified by the COND=ALL parameter, control will bereturned to the
routine labeled ERRORTN.

#MREQ IN,MRB=TESTMAP1,INDATA=YES, COND=ALL,ERROR=ERRORTN

The #MREQ IN statement shown below requests that the system map in the next
(default) modified detail occurrence of the pageable map associated with the map
request block TESTPAG1.

#MREQ IN,MRB=TESTPAG1,DETAIL=YES,MODIFY=YES, COND=ALL, *
ERROR=ERRORTN

The #MREQ OUT statement shown below requests that the system map out all literal
and data fields associated with the map request block TESTMAP1. The NEWPAGE option
clears the screen before transferringthe TESTMAP1 data fields to the screen.

#MREQ OUT,MRB=TESTMAP1, OUTDATA=YES, OPTNS=(NEWPAGE)

The #MREQ OUT statement shown below creates a new detail occurrenceand maps out
a page of detail occurrences to the terminal screen. The detail occurrencecan be
displayedin mixed uppercaseand lowercasecharacters. Control is returned to the
ERRRTN routine ifthe request cannot be serviced due to any of the conditions listed
under the COND options. A program-supplied messageis mapped out to the map
message area. Register 7 points to where the message is stored; register 4 contains the
message length

#MREQ OUT,MRB=TESTPAG1, OPTNS=(UPLOW) ,DETAIL=YES,RESUME=YES, *
COND=ALL , ERROR=ERRRTN, MSGADDR=(R7) ,MSGLEN=(R4)

@OBTAIN (LRF)—retrieves the named logical record

The @OBTAIN statement retrieves the named logical recordand placesitinthe
variable-storagelocationreserved for that logical record. The @OBTAIN statement can
perform the followingfunctions:

m Retrieve an occurrenceof alogicalrecord thatmeets criteria specifiedinthe
WHERE clause.

m Specify that the retrieved logicalrecordis to be placedintoanalternative
variable-storagelocation.

282 DML Reference Guide for Assembler

@OBTAIN (LRF)—retrieves the named logical record

@OBTAIN (LRF) Syntax

»»—— @OBTAIN T ﬁ%é‘SFT<_—J— ,REC=1o0gical-record-name

»

v

»

L ,I0AREA=alt-1logical-record-location]

v

L ,ONLRSTS=path-status,GOTO=branch-location —J

v

L ,WHERE boolean-expression a

@OBTAIN (LRF) Parameters

NEXT/FIRST,REC=logical-record-name

Retrieves alogical recordand placesitinprogramvariablestorage.
Logical-record-name must specify a logicalrecord defined inthe subschema.

NEXT/FIRST
Specifies which occurrence of the logicalrecordis to be retrieved.

NEXT

X

(Default); retrieves a subsequent occurrence of the named logicalrecord. @ OBTAIN

NEXT is generally usedto serially retrievelogical-record occurrences.

When LRF receives repeated @OBTAIN NEXT commands, itreplaces fieldvaluesin

program variablestorage with new values obtained through repeated access to

databaserecords.

Ifthe programissues an @OBTAIN NEXT statement withoutissuingan @OBTAIN

FIRST, orif the lastpath status returned for the path was LR-NOT-FOUND, LRF

interprets the @OBTAIN NEXT as @OBTAIN FIRST. After LR-ERROR or a DBA-defined

path status, LRF does not interpret @ OBTAIN NEXT as @OBTAIN FIRST.

FIRST

Retrieves the firstoccurrence of the logical record. @ OBTAIN FIRST is generally

used to retrieve the firstina series of logical-record occurrences.

Ifan @OBTAIN FIRST statement is followed by an @OBTAIN NEXT statement to

retrieve a series of occurrences of the same logical record, the @ OBTAIN

statements must direct LRF to the same path. For this reason, you must ensure that
the selection criteria specified in the WHERE clauses accompanyingthe @ OBTAIN
FIRST and @OBTAIN NEXT statements describethe same attributes of the desired

logical record.

IOAREA=alt-logical-record-location

Identifies an alternativelocationinvariablestorageinto which LRF is to placethe

retrieved logicalrecord.

Chapter 5: Data Manipulation Language Statements 283

@OBTAIN (LRF)—retrieves the named logical record

Any subsequent @MODIFY, @STORE, or @ERASE statements for a logical record
placedinthe named location should namethat area. LRF is to obtain the data to be
used to update the logical record fromthe named area. Alt-logical-record-location
must identify a record location defined in the program.

ONLRSTS=path-status,GOTO= branch-location

Tests for the indicated path status. Path-status is a quoted literal programvariable
(1 to 16 bytes). If path-status results from this @ OBTAIN statement, the action
specified by GOTO=branch-location is performed.

Note: For more information about how to code this clause,see ON Clause (see
page 393) later in this chapter.

WHERE boolean-expression
Specifies the selection criteria to be applied to the specified logical record.

Note: For details abouthow to code the WHERE clause, see WHERE Clause (see
page 388) later in this chapter.

@OBTAIN (LRF) Status Codes

When using LRF, the type of status code returned to the programinthe ERRSTAT field of
the IDMS communications block differs according to the type of error:

m If the error occurs in the logical-record path, the ERRSTAT field contains an status
code issued by CAIDMS/DB with a major code from 00 to 19. For a listofthese
codes, see ERRSTAT Fieldand Codes (see page 41).

m If the erroroccurs in the requestitself, LRF returns the path status LR-ERROR to the
LRSTAT field of the LRC blockand places anstatus code with a major code of 20 in
the ERRSTAT field of the IDMS communications block.

For alistofthese codes, see Testing for the Logical-Record Path Status.

@OBTAIN (LRF) Example

The @OBTAIN NEXT statement shown below retrieves a series of logical -record
occurrences. The program issues the @ OBTAIN NEXT statement iteratively to retrieve
the firstand all subsequentoccurrences of the DEPEMPLR logical record for department
5100.Each @OBTAIN NEXT statement retrieves an employee 1D and employee name for

the department with an ID of 5100 (assumingthat department 5100 has more than one
employee).

284 DML Reference Guide for Assembler

#POST—modifies an event controlblock

GETEMPL EQU *
@OBTAIN NEXT,REC=DEPEMPLR,

ONLRSTS='LR-NOT-FOUND' , GOTO=END,

WHERE DEPTID EQ '5100'

B GETEMPL

The followingfigureillustrates howto use the @OBTAIN command in conjunction with
the WHERE clause, described later in this chapter, to retrieve occurrences of the
EMPJOBLR logical record. Onlythosedetail occurrences with a department-id value
equal to 5100 areretrieved. The EMPJOBLR logicalrecord contains information fromthe
employee, job, office, and department records. The WHERE clauseis used to obtain only

those employees in department 5100.

DEPARTMENT EMPLOYEE OFFICE

ONE OCCURRENGE

OF EMP-JOB-LR 5100 466 8
5100 467 8
5100 334 5
5100 457 8

#POST—modifies an event control block

JOoB
SNOWBLOWER
WINDKEEPER
RAINDANCE

STURM UND
DRANG

The #POST statement modifies an event control block (ECB) inone of two ways:

m PostinganECB to indicatecompletion of an event for which another taskis waiting

m Clearingan ECB to anunposted status

The ECB wait must have been previously established by a #WAIT or #ATTACH request.

#POST Syntax

»—ﬁ_ #POST ECB=ecb-pointer
label =

ECBID=ecb-7id-register

#POST Parameters
ECB=

Specifies the ECB to be posted.

L , TYPE=CLEAR .

Chapter 5: Data Manipulation Language Statements 285

#PRINT—requests thatthe system transmit data

ech
Either a register that points to the ECB or the symbolic nameof a user-defined
fullword field that contains the ECB.

ECBID=
Specifies the 4-character ID of the ECB to be posted or to be cleared to an unposted
status.

ech-id
A register that contains the ECB ID, the symbolic nameof a fullword field that
contains theID, or the ID literal enclosed in quotation marks.

TYPE=CLEAR
(Optional);clears the ECB to an unposted status. Programs that are posting and
waiting for the posting of ECBs are responsiblefor clearingthe ECB. An ECB must be
cleared prior to issuinga subsequent#WAIT request.

#POST Status Codes

#POST Example

The #POST request is unconditional;any runtimeerror will resultinan abend of the
issuingtask.

The following example of the #POST statement clears the event control blockidentified
by the ID literal ECB4 to an unposted status.

#POST ECBID='ECB4',TYPE=CLEAR

#PRINT—requests that the system transmit data

The #PRINT statement requests that the system transmitdata from a task to a terminal
defined as a printer device during system generation. The terminal designated as a
printer is usually a hard-copy device. The following considerations apply to the use of
the #PRINT statement:

m The DC/UCF system does not usually transmitdata directly from program storage to
the terminal inresponse to a #PRINT command. Datais passedtoa queue
maintained by the system, then from the queue to the printer terminal.The data
stream passed to the queue by the #PRINT request contains puredata; the system
inserts lineand device control characters automatically when it writes the data to
the printer.

m To bypass the queuing process described aboveand to transfer data immediately to
a printer device, issuea print-direct request by specifying #PRINT OPTNS=(DIRECT).

286 DML Reference Guide for Assembler

#PRINT—requests that the system transmit data

You canusea #PRINT request to transmit native-mode data streams, data streams
that contain device-control information as well as user data. This capabilityis useful
informatting reports for 3280-type printers.To transmitnative-mode data streams,
you issuea #MREQ NOIO request, followed by a #PRINT request with
OPTNS=(NATIVE).

Each lineof data transmitted by a #PRINT requestis considered a record. Each
record is associated with a reportinthe printqueue. A report consists of one or
more records. Each taskcanhave up to 256 active printreports. A program can
issue multiple #PRINT requests, each specifying a different report. The DC/UCF
system maintains the status of each report individually.

The #PRINT request transmits data or screen contents to printclasses or to
destinations:

— Print classes—During system generation, one or more printclasses are
associated with each terminal designated as a printer. For each report, the first
record transmitted to the print queue with a #PRINT request establishes the
printclass intherange of 1 to 64 for that report. The reportis printed on the
firstavailable printer assigned the same printclass.

- Destinations—Destinations aregroups of terminals, printers, or users. If
destinations havebeen defined duringsystem generation, the #PRINT request
candirect areport to a destination. Reports sent to printer destinations are
printed either on the firstavailable printer for the destination or on all printers
inthat destination, regardless of printclass.

You canrequest that the system hold the report rather than printitimmediately.
You canexplicitlyreleasethe report at a later time.

The DC/UCF system prints a report only when that report is completed, either
explicitly as partofa #PRINT request or implicitly when the issuingtask terminates.
Ifthe taskabends, all reports inthe printqueue that have not been ended explicitly
are deleted without being printed.

After completion of a #PRINT request, register 1 contains the address of a
10-characteridentifier thatuniquelyidentifies the report in the DC/UCF system.
This identifier is notthe user-defined report ID described below for the RPTID
parameter. Itis a valueassigned by the system primarily for internal use. This value
appears onthe master terminal when report statisticsarerequested from that
terminal.

A report can be printed several times by indicating to the system to keep the report
after it has been printed, rather than automatically deletingit. The report can be
manuallyreleased to be printed usinga DCMT VARY REPORT RELEASE command.

Chapter 5: Data Manipulation Language Statements 287

#PRINT—requests thatthe system transmit data

#PRINT Syntax

»h

L 7aper -

>

»—— #PRINT RECORD=message-location-pointer ,RECLEN=message-length-register —»

»

L - [
RPTID= —— 1 < N

report-id-register

»
>

_ |
L cLAss= T 1+ _|

printer-class-register

v

I— JOPTNS= — (=¥~ option ——) _l

v

L we=
I

v

v

,DEST=printer-destination-pointer
,LTEID=d7irect-printer-I1termid-pointer —
,LTEADDR=d7rect-printer-1term-address —

v

v

,ECBADDR=d7rect-print-return-ecb-address -

v

v

v

,JOBNAME=batch-request-jobname-pointer |

v

i rp rrrj

1

=3
Ta

,COND= F
(_

J
]

NOPR —L—)—
T0ER
INVP
UNDF
SCRN
IWT
WAIT
ouTS
DEAD
CANC
REQU

T
L]

v

L = I
\PRB= —— SYSPLIST « =

print-request-block-pointer

v

L ,NOPRXIT=no-printer-label |

v

L ,INVPXIT=7nval id-parameter-1ist-1abel i

v

L ,IOERXIT=7/0-error-1label]

v

L ,UNDFXIT=7nvalid-destid-1ist-1abel]

v

288 DML Reference Guide for Assembler

#PRINT—requests that the system transmit data

v

,SCRNXIT=screen-term-i/o-error-label]

v

L L, INVIXIT=7nvalid-terminal - 1abel |

v

L JMWAITXIT=wait-for-direct-printer-1label i

v

L ,OUTSXIT=d7rect-printer-out-of-service-1label]

\ 4

L ,DEADXIT=deadlock-on-direct-print-1label —|

v

L ,CANKXIT=cancel-direct-report-1label —|

v

- L ,REQUXIT=requeve-direct-report-label .

)4

L ,ERROR=error-label i

#PRINT Parameters

RECORD=

Specifies the storagearea that contains data to be output.
message-location-pointer

Either a register that points to the area or the symbolic name of the area.
RECLEN=

Specifies the length, in bytes, of the data stream to be output.
message-length-register

A register that contains the length, the symbolic nameof a user-defined halfword
or fullword field that contains the length, or anabsolute expression.

RPTID=1/

Specifies the identifier of the report to be printed. The reportidentifier must be an
integer inthe range 1 through 255; the defaultis 1.

report-id-register

A register that contains the ID, the symbolic name of a user-defined field that
contains the ID, or an absolute expression.

CLASS=1/

Specifies the class of the printer to which the reportis assigned. Valid printclasses
are 1through 64; the defaultis 1.

Chapter 5: Data Manipulation Language Statements 289

#PRINT—requests that the system transmit data

printer-class-register

A register that contains the class, the symbolic name of a user-defined field that
contains the class,or anabsolute expression. This parameter should be specified
only for the firstline (record) of each report. If no printer classis specified, the
default printclassassigned to the issuingtask's physical terminal during system
generation is used.

OPTNS=options

Specifies several options availableto print1/O. This parameter is never required and
should be specified only when appropriate. The OPTNS parameter values must be
enclosedin parentheses. Separate multiplevalues with commas.

NATIVE

Indicates thatthe data stream contains device control characters. If NATIVE is not
specified, the system automaticallyinserts the necessary characters.

NEWPAGE
Requests that the system printthe data stream beginningon a new page.
ENDRPT

Indicates thatthe data stream constitutes the lastrecordin the specified report.
When ENDRPT is specified, the report can be printed before the issuingtask has
terminated. To printthe report immediately, the program mustissuea HCOMMIT
TASK request. Reports not explicitly ended with an ENDRPT areautomatically ended
attasktermination.

SCREEN

(3270-type devices only) transmits the contents of the currently displayed screen to
the printqueue. When SCREEN is specified, the system implicitly assigns the NATIVE
option andignores the RECORD= and RECLEN= clauses.Theterminal operator can
printscreen contents by pressingthe printkey established duringsystem
generation. Ifthe SCREEN option is specified for a non-3270 terminal or a remote
3270terminal runningunder TCAM, an error results.

ALL

Causes the report to be printed on all printers associated with the destination
specifiedinthe DEST parameter. The reportis printed on one printer at a time and
saved until ithas been printed on all of the printers.You canuse a DCMT DISPLAY
REPORT DESTINATION command to displaythereport name followed by a listof the
printer names on which the report has yet to be printed.

HOLD

Requests that the system hold a report inthe print queue before itis printed. The
reportis not printed until a DCMT VARY REPORT RELEASE command isissued.

290 DML Reference Guide for Assembler

#PRINT—requests that the system transmit data

KEEP

Keeps a reportinthe printqueue after the report has printed. A report marked with
the KEEP option canbe manuallyreleased for printing with the DCMT VARY REPORT
RELEASE command. The report can be deleted either manually byissuinga DCMT
VARY REPORT DELETE command or automatically through the queue expiration
date.

DIRECT

Indicates a print-directrequest that will berouted directly to the destination
specified. Specify the destination by using the CLASS parameter, as described
above, or the DEST, LTEID, or LTEADDR parameters, described below. IfLTEID or
LTEADDR is specified, the system will acquirethe specific printer. If CLASS or DEST is
specified, the system will acquirethefirstavailable printer that satisfies the
requested class or destination.

NOWAIT

(default) Requests that the DC/UCF system not waitfor a printer to become
availableifthe request cannot be immediately serviced;control is returned to the
issuing programwith a status code indicating thatthe printer device is unavailable.

WAIT

Requests that the system wait for a printer to become availableifthe request
cannot be immediately serviced. If COND=OUTS or COND=ALL has been specified,
the total waittime will bethe product of the task's stallintervaltoa maximum of
60 seconds and the MAXIMUM ERRORS parameter of the PTE. Otherwise, the
maximum wait time equals the stall interval.

MF=

Specifies the type of #PRINT request.

Identifies a regular #PRINT request. The DC/UCF system builds a new print request
block (PRB) for each request and performs the requested operation.

Identifies a list #PRINT request. The DC/UCF system adds a predefined PRB inthe
data definition section of program storage. The PRB contains parameters whose
values remain constantthroughout the program. The #PRINT label used to identify
the PRB is referenced by the PRB parameter in subsequent execute-type requests.
Onlythe label and the MF parameter are required for list-type #PRINT requests;
other parameters should be specified only when required to predefine PRB
parameter values.

Identifies an execute #PRINT request. The DC/UCF system adds to or overrides the
predefined PRB with the parameters defined inthe request and performs the
requested operation.

Chapter 5: Data Manipulation Language Statements 291

#PRINT—requests that the system transmit data

DEST/LTEID/LTEADDR

Identifies the printers to which a reportis routed. These parameters canonly be
specified with OPTNS=DIRECT; you specify the destination.

DEST=

Specifies a destination defined duringsystem generation. The destination can be
one of the following:

m Alist of logical terminals requesting that the system route the report to all
availableterminalsinthelist

m A list of users requesting that the system route the report to all listed users
who arecurrentlysigned on to the system

printer-destination-pointer

A register that points to the destination ID, the symbolic name of a user-defined
field that contains the destination ID, or the ID itself enclosed in quotation marks.

LTEID=
Specifies the logical terminal ID of a specific printer-terminal device.
direct-printer-Itermid-pointer

A register that points to the logical terminal ID, the symbolic name of a user-defined
field that contains the logical terminal ID, or the ID itself enclosed in quotation
marks.

LTEADDR=

Specifies the logical terminal element (LTE) address of a specific printer-terminal
device.

direct-printer-lterm-address

A register that points to the address of the LTE, the symbolic nameof a
user-defined field that contains the address of the LTE, or the address itself
enclosedin quotation marks.

ECBADDR=

Specifies the location to which the system returns the address of a list of event
control blocks (ECBs) ifthe print-directrequest cannotbe serviced immediately. If
OPTNS=(DIRECT,NOWAIT) has been specified and the system cannot immediately
acquirethe requested printer device, the system returns the address ofa listof
ECBs to the requesting task.One ECB from the listis posted when the requested
printer becomes available. At that time, the print-directrequest can be reissued.

Note: If you use the ECBADDR= parameter and specify OPTNS=(DIRECT,NOWAIT),
the system will allocatestoragefor the ECBLIST. The programis responsiblefor
freeing the storagespace.

292 DML Reference Guide for Assembler

#PRINT—requests that the system transmit data

direct-print-return-ecb-address

Either a register that points to the ECB area or the symbolic name of a user-defined
field that contains the address of the area.

JOBNAME=

Specifies the name of the system report to be associated with a printrequest from
a batch program. The JOBNAME parameter is for informational use

only.
batch-request-jobname-pointer

A 1- to 8-character job name that is displayed as theoriginal logical terminal ID
when a DCMT DISPLAY REPORTS command is issued. Batch-request-jobname is a
register that points to the job name, the symbolic name of a user-defined field that
contains the job name, or the name itselfenclosed in quotation marks.

COND=

Specifies the conditions under which control is to be returned to the issuing
program.

NO

(Default); specifies thatthe requestis not conditional.Control is notreturned to
your programunder anycircumstances.

ALL

Specifies that the request is conditional. Control is returned to your program if the
#PRINT request cannotbe serviced for one or more of the reasons listed below.

condition

Specifies under which conditions control is returned to your program. Multiple
conditions mustbe enclosedin parentheses and separated by commas. Conditions
canspecify one or more of the following conditions:

m NOPR—No printer logicalterminals were defined during system generation.
m IOER—AnN 1/0 error occurred during processing.
m INVP—There isaninvalid parameter inthe PRB.

m UNDF—AnN undefined destinationis specified or, for a print-directrequest, an
invalid LTEID or LTEADDR is specified.

m SCRN—A print-screen type request results in a terminal I/O error.

m INVT—A print-screenrequest has been made from a non-3270-type terminal or
from a 3270-type terminal without read-buffer support.

Chapter 5: Data Manipulation Language Statements 293

#PRINT—requests that the system transmit data

m WAIT—No printer canbe found to servicea print-directrequest that specifies
OPTNS=(DIRECT,NOWAIT).

m OUTS—The printer specified by the LTEID or LTEADDR parameters ina
print-directrequestis out of service.

m DEAD—A print-directrequest has been issued with OPTNS=(DIRECT,WAIT) and
a deadlock condition would otherwise occur.

m CANC—A DCMT VARY PRINTER CANCEL command has been issued for the
printer ina print-directrequest.

m REQU—A DCMT VARY PRINTER REQUEUE command has been issued for the
printer specifiedin a print-directrequest.

PRB=

Specifies the location of the storagearea in which the system will build the PRB
(MF=R) or has builtthe PRB (MF=E).

SYSPLIST

(Default for regular-type requests only); is the symbolic name of the storage areain
which the system builds the PRB.

print-request-block-pointer

A register that points to the area or the symbolic name of the area in which the
system will build the PRB. For execute-type requests (MF=E), this entry explicitly
defines the area by identifying label, provided in a previously-issued list-type
#PRINT that established the PRB.

NOPRXIT=no-printer-label

Specifies the symbolic name of the routine to which control should be returned if
the #PRINT request cannot be serviced because no printer terminal was defined
during system generation.

INVPXIT=invalid-parameter-list-label

Specifies the symbolic name of a routineto which control should be returned ifthe
H#PRINT request cannotbe serviced because of aninvalid parameter inthe PRB.

IOERXIT=i/0-error-label

Specifies the symbolic name of a routineto which control should be returned ifthe
#PRINT request cannotbe serviced because of an1/0 error during processing.

UNDFXIT=invalid-dest-id-label

Specifies the symbolic name of a routineto which control should be returned ifthe
#PRINT request cannotbe serviced because aninvalid destination was specified or,
for OPTNS=(DIRECT) type requests, aninvalid LTEID or LTEADDR was specified.

294 DML Reference Guide for Assembler

#PRINT—requests that the system transmit data

SCRNXIT=screen-term-i/o-error-label

Specifies the symbolic name of a routineto which control should be returned ifthe
#PRINT request cannotbe serviced because a terminal |/O error occurredin
responseto a #PRINT request to printthe screen contents.

INVTXIT=invalid-terminal-label

Specifies the symbolic name of a routineto which control should be returned ifthe
screen #PRINT request cannotbe serviced becausean invalid terminal was
specified.

WAITXIT=wait-for-direct-printer-label

Specifies the symbolic name of a routineto which control should be returned ifthe
#PRINT request cannotbe serviced because OPTNS=(DIRECT,NOWAIT) was
requested and no printeris availabletoservicethe request immediately.

OUTSXIT=direct-printer-out-of-service-label

Specifies the symbolic name of a routineto which control should be returned ifthe
#PRINT request cannotbe serviced because the printeridentified by LTEID or
LTEADDR ina print-directrequest is out of service.

DEADXIT=deadlock-on-direct-print-label

Specifies the symbolic name of a routineto which control should be returned ifthe
#PRINT request cannotbe serviced because OPTNS=(DIRECT,WAIT) was specified
and would otherwise causea deadlock condition to occur.

CANCXIT=cancel-direct-report-label

Specifies the symbolic name of a routineto which control should be returned ifthe
#PRINT request cannotbe serviced because a DCMT VARY PRINTER CANCEL has
been issued for the specified printer while the printrequest is beingserviced.

REQUXIT=requeue-direct-report-label

Specifies the symbolic name of a routineto which control should be returned ifthe
#PRINT request cannotbe serviced because a DCMT VARY PRINTER REQUEUE has
been issued for the specified printer while the printrequest is beingserviced.

ERROR=error-label

Specifies the symbolic name of a routineto which control should be returned ifa
conditioninthe COND parameter occurs for which no other exit routine was coded.

Chapter 5: Data Manipulation Language Statements 295

#PRINT—requests that the system transmit data

#PRINT Status Codes

After completion of a #PRINT request, the valueinregister 15 indicates the outcome of
the operation. The followingis a listof the Register 15 values and the corresponding
meaning:

X'o0’
The request has been serviced successfully.

X'o4'
The request cannotbe serviced becausean 1/O error occurred duringa #PUTQUE
request or, for OPTNS=(DIRECT), a permanent I/O occurred on the direct printer.

X'os'

The request cannotbe serviced becausethe parameter listpassed to #PRINT
contains aninvalidfield.

x'oc'
The request cannotbe serviced becauseno printer logical terminalshavebeen
defined for the current system.

X'10'

The request cannotbe serviced becausea printscreen request has been made from
anon-3270-type terminal or from a 3270-type terminal without read-buffer
support.

X'14'

The request cannotbe serviced becausethe specified printer destinationis invalid
or, for OPTNS=(DIRECT), the LTEID or LTEADDR specificationisinvalid.

X'18'

The request cannotbe serviced becausea terminal I/O error occurred duringa
print-screen type #PRINT request.

X'ic'

The request cannotbe serviced becauseno printer could be found to satisfy the
print-directrequest, and OPTNS=(NOWAIT) was specified.

X'20'

The request cannotbe serviced becausethe print-directrequest has specifiedan
LTEID or LTEADDR thatis out of service.

X'24'

The request cannotbe serviced becausethe print-directrequest specified a wait,
andto waitwould causea deadlock.

296 DML Reference Guide for Assembler

#PUTJRNL—writes a task-defined record to the journal file

X'28'
The request cannotbe serviced becausea DCMT VARY PRINTER CANCEL command
has been issuedinthe DC/UCF system for this directprinter.

X'2c'
The request cannotbe serviced becausea DCMT VARY PRINTER REQUEUE
command has been issuedinthe DC/UCF system for this direct printer.

#PRINT Example

The #PRINT statement shown below performs the following functions:

m Directs the system to transmitthe data instorage area RECOUT to a terminal
defined as a printer device.

m Specifies that the length of data transmitted is containedin the field OUTLEN.

m Directs the printrequest to a specific printer, bypassingthe queuing process.

m Asks the system to wait until the named printer is ableto servicethe request. If the
waittime exceeds the stall interval defined atsystem generation, the program will
abort.

m Names the printer by logical terminal ID.

#PRINT RECORD=RECOUT, RECLEN=OUTLEN, OPTNS=DIRECT,WALT,LTEID='LV009"

#PUTJRNL—writes a task-defined record to the journal file

The #PUTJRNL statement writes a task-defined record to the journal file. The records
written to the journal fileareavailableto user-defined exit routines duringa
task-initiated or system-initiated rollback.

#PUTJRNL Syntax

7 L qaber J g

»—— #PUTJRNL RECORD=record-location-pointer,RECLEN=record-length-register —»

»

L ,OPTIONS= —(—¢ NOWAIT «)—-l
E WAIT
SPAN «
NOSPAN

L ,ERROR=error-label -

>

M

Chapter 5: Data Manipulation Language Statements 297

#PUTJRNL—writes a task-defined record to the journal file

#PUTJRNL Parameters
RECORD=

Specifies the location of the record to be written to the journal file.

record-location-pointer

Either a register that points to the record area or the symbolic name of the record
area.

RECLEN=
Specifies the length, in bytes, of the record to be written to the journalfile.
record-length-register

Either a register that contains the length of the record or the symbolic nameof a
fullword user-defined field that contains the length of the record.

OPTIONS=

Specifies whether the issuingtaskis towaitfor completion of the #PUTJRNL
function before resuming task execution and indicates howthe system writes the
named record to the journal file. Multiple options areenclosed in parentheses and
separated by commas.

The following options determine whether the issuingtask will waitfor completion
of the #PUTJRNL function.

NOWAIT

(Default); specifies thatthe issuingtask will notwaitfor completion of the
#PUTJRNL function; the journal record remains in a storage buffer until a future
request necessitates writingthe buffer to the journal file.

WAIT

Specifies that the issuingtask will waitfor completion of the #PUTJRNL operation
before continuing. This option Requests that the system write a partiallyfilled
buffer to the journal file.

When arecord is shorter thana journal fileblock, based on spaceavailableinthe
current journal block, the system either places the recordinthe block, splits it
across multipleblocks (SPAN), or writes it to a new block after the current blockis
filled (NOSPAN). The following options determine how the system writes the named
record to the journal file.

SPAN

(Default); specifies thatthe DC/UCF system will writethe record across several
journal blocks, if necessary.In general, the SPAN option provides better space
utilizationinthejournal filebecauseitincreases theaverage fullness of each block.

NOSPAN

Specifies that the system will writethe record into a singlejournal block, assuming
that the record fits. If the record is longer thanthe journal block, itwill besplit.

298 DML Reference Guide for Assembler

#PUTJRNL—writes a task-defined record to the journal file

The following considerationsapply to usingan exit routine to retrieve journal file
records during recovery:

m |fa #PUTJRNL statement issued before a failurespecifies the SPAN option,
records may have been written across several journal blocks. Toretrieve these
records, the program must invoke the exit routine once for each segment of
each record to be retrieved.

m Ifa #PUTJIRNL statement issued before a failurespecified the NOSPAN option,
andrecords written to the journal fileareshorter than journal blocks, theexit
routine need only be concerned with the complete records.

ERROR=error-label

Specifies the symbolic name of the routine to which control is to be returned in the
event of anerror condition duringthe #PUTJRNL operation.

#PUTJRNL Status Codes

After completion of the #PUTJRNL request, the valueinregister 15indicates the
outcome of the operation:

X'00'
The request has been serviced successfully.

X'o4'
The request cannotbe serviced becausethe journal record lengthis zero or
negative

X'08'
The request cannotbe serviced becausethe required storage is not availablefor
necessary control blocks.

X'oc'

The request cannotbe serviced becausean invalid error status has been received
from DBIO/DBMS. Check the DC/UCF log for details.

#PUTJRNL Example

The following example of the #PUTJRNL statement writes a record to the journal file.
The address of the recordis contained inregister 5, the length of the record is contained
inregister 7. The default SPAN and NOWAIT options are in effect.

#PUTIRNL RECORD=(R5) ,RECLEN=(R7)

Chapter 5: Data Manipulation Language Statements 299

#PUTQUE—stores a queue record in the queue

#PUTQUE—stores a queue record in the queue

The #PUTQUE statement stores a queue recordinthe queue (DDLDCRUN or DDLDCQUE)
area of the dictionary, causingthe system to placethe record in the
queue-header/queue-record set referenced by the QUEID parameter. A program does
not assignanIDto a queue record; the #UTQUE request stores the record atthe

beginningor end of the queue and the system automatically assigns the queue record
ID.

#PUTQUE Syntax
o L label Bl >

»—— #PUTQUE RECORD=gueve-data-location,RECLEN=queue-data-length-register —»

L ,PLIST= T SYSPLIST « —_|—J
parameter-1list-pointer

»
| 2

v

L ,QUEID=queue-id-pointer J

v

» I_ —
,LOC= LAST «
L FIRST

v

T _ I
,RTNQRID —E (1) « J

return-queue-record-id-register

v

g I— COND= NO
, _E <
IOER

L ,IOERXIT=7/0-error-label —J

v

v

L ,ERROR=error-1abel il

X

L ,RETAIN=retention-period-register il

#PUTQUE Parameters

RECORD=

Specifies the location of the user area that contains data to be stored inthe queue
record.

queue-data-location
A register that points to the area or the user-defined symbolic name of the area.
RECLEN=

Specifies the length of the data area to be stored inthe queue record.

300 DML Reference Guide for Assembler

#PUTQUE—stores a queuerecord in the queue

queue-data-length-register

A register that contains the length, the symbolic name of a fullword user-defined
field that contains the length, or an absolute expression.

PLIST=SYSPLIST

Specifies the location of the seven-fullword storagearea in which the system builds
the #PUTQUE parameter list.

SYSPLIST

(Default); is the symbolic name of the storagearea in which the system builds the
#PUTQUE parameter list.

parameter-list-pointer
Either a register that points to the area or the symbolic name of the area.
QUEID=

Specifies the 1-to 16-character ID of the queue with which the record being stored
is associated.

queue-id-pointer

A register that points to a field that contains the ID, the symbolic nameof a
user-defined field that contains the ID, or the ID literal enclosed in quotation marks.
Ifa queue ID is not specified, 16 blanks areassumed.

LOC=LAST/FIRST

Specifies whether the queue record is to be placed at the beginningor end of the
queue.

LAST

(Default); stores the record atthe end of the queue.
FIRST

Stores the record at the beginning of the queue.
RTNQRID=

Specifies the locationinthe programto which the system returns the
system-assigned ID of the stored queue record; the returned ID can be savedand
used to retrieve or delete the queue record.

(1)
(Default); is the register to which the system returns the queue record ID.
return-queue-record-id-register

Either a register or the symbolic name of a fullword user-defined field to which the
system returns the queue record ID.

Chapter 5: Data Manipulation Language Statements 301

#PUTQUE—stores a queue record in the queue

COND=

Specifies whether this ##UTQUE is conditionaland under what conditions control
should be returned to the issuingprogram.

NO
(Default); specifies thatthe requestis not conditional.
IOER

Specifies that the request is conditional. Control is returnedifan1/O error occurs
whileprocessingthe request.

IOERXIT=i/0-error-label

Specifies the symbolic name of the routine to which control should be returned if
the #PUTQUE cannotbe serviced becauseof anl/O error.

ERROR=error-label

Specifies the symbolic name of the routine to which control should be returned ifa
conditioninthe COND parameter occurs for which no other exit routine was coded.
In this case, the ERROR parameter functions identically to IOERXIT.

RETAIN=

Specifies the amount of time, in days, that the system will retain the queue inthe
dictionary. At system startup, queues whose retention periods haveexpired are
deleted automatically by the system. The retention period begins when the first
record is storedinthe queue.

If RETAIN is omitted, the defaultretention period for dynamic queues is taken.

Note: For more information on the default retention period for dynamic queues,
see the CA IDMS System Generation Guide.

retention-period-register

A register that points to a field that contains the retention period, the symbolic
name of a user-defined fixed-binary field thatcontains the retention period, or an
absoluteexpression.The retention period must be a numeric constantinthe range
0 through 255. A retention period of 255 indicates thatthe queue is never to be
deleted automatically by the system.

#PUTQUE Status Codes

By default, the #PUTQUE request is unconditional;a runtimel/O errorresults inan
abend of the issuingtask. The issuing programcan request return of control with the
COND parameter to avoid anabend.

302 DML Reference Guide for Assembler

#PUTSCR—stores orreplaces a scratch record

After completion of a ##UTQUE request, the value in register 15 indicates the outcome
of the operation:

X'00'
The request has been serviced successfully.
X'o4'

The request cannotbe serviced; check for proper queue-id specification (for

example, a negative queue IDis animproper specification)and for logical selection
of options.

X'ic'

A databaseerror occurred during queue processing. Acommon causeis a DBKEY
deadlock. For a PUT QUEUE operation, this code canalso mean that the queue
upper limithas been reached.

Ifa databaseerror has occurred, there areusually be other messagesinthe
CA-IDMS/DC/UCF log indicatinga problemencountered in RHDCRUAL, the internal

Run Unit Manager. Ifa deadlockhas occurred, messages DC0O01000 and DC001002
arealsoproduced.

Ifan /0 error occurs while processing a ##UTQUE request, the system returns the
address of the communications blockto register 1. If no error occurs during processing,
a user-defined register, assigned by the RTNQRID parameter, contains the queue record
ID of the stored queue record.

#PUTQUE Example

The following example Requests that the system store the data containedinthe field
RECQ1 inthe beginning of the RES-Q queue. The length of the datais containedin

register 8. The DC/UCF system is requested to return the ID of the record to the QRECID
fieldandto retainthe queue for 45 days.

#PUTQUE RECORD=RECQ1,RECLEN=(R8),QUEID='RES-Q',LOG=FIRST, *
RTNQRID=QRECID,RETAIN=45

#PUTSCR—stores or replaces a scratch record

The #PUTSCR statement stores or replaces a scratchrecordinthe scratch area of the
dictionary. For new records, #PUTSCR generates anindex entry ina scratch area
associated with the issuingtask. Ifthe scratch area does not already exist, the system
allocates itdynamicallyin thestorage pool.

Chapter 5: Data Manipulation Language Statements 303

#PUTSCR—stores orreplaces a scratch record

After completion of the #PUTSCR function, control is returned to the issuing programat
the next sequential instruction following the #PUTSCR request. Through the REPXIT,
NEWXIT, and EREPXIT parameters, you canrequest return of control to a specified label
after a successfulreplaceorstore, or after confirmation that the new record already
exists for the task.

#PUTSCR Syntax

L zaper J g

»— #PUTSCR RECORD=scratch-data-location,RECLEN=scratch-data-length-register —»
"L pList= [SYSPLIST « —_|—' -
parameter-1ist-pointer

L ,SAID=scratch-area-id-pointer il

v

v

L ,SRID=scratch-record-id-pointer —]

- L REPLACE= NO >
, = —E <
YES

v

v
l_

,RTNSRID= (1) «
L return-scratch-record-id-register -

v

v
l_

,COND= NO < :I—J
L TR

v

L ,IOERXIT=7/0-error-label -

v

L ERROR=error-label -

v

L ,REPXIT=successful-replace-label il

v

L ,NEWXIT=successful-store-1label —-I

M

L ,EREPXIT=record-already-exists-1label l

#PUTSCR Parameters

RECORD=

Specifies the location of the user area that contains the data area to be stored in
the scratch record.

scratch-data-location

Either a register that points to the area or the user-defined symbolic name of the
area.

304 DML Reference Guide for Assembler

#PUTSCR—stores orreplaces a scratch record

RECLEN=
Specifies the length of the record to be stored.
scratch-data-length-register

A register that contains the length, the symbolic name of a fullword user-defined
field that contains the length, or an absoluteexpression.

When replacinga scratch record, the RECLEN specified need not agree with that of
the oldrecord, because the replaceis effected with a delete and anadd. Ifa replace
of a nonexistent recordis requested, the system performs the request with anadd,
andan error status valueof Ois returned intoregister 15.

PLIST=

Specifies the location of the seven-fullword storagearea in which the system builds
the #PUTSCR parameter list.

SYSPLIST

(Default); is the symbolic nameof the storagearea in which the system will build
the #PUTSCR parameter list.

parameter-list-pointer

Either a register that points to the area in which the system will build the #PUTSCR
parameter listor the symbolic name of that area.

SAID=

Specifies the 1-to 8-character ID of the scratch area associated with the record
being allocated.

scratch-area-id

Either a register that points to a field that contains the ID, the symbolic nameof a
user-defined field that contains the ID, or the ID literal enclosed in quotation marks.
Ifthe SAID parameter is notspecified, 8 blanks areassumed.

SRID=
Specifies the fullword ID of the scratch record being stored.
scratch-record-id-pointer

A register that points to the ID, the symbolic name of a user-defined field that
contains the ID, or anabsolute expression.

An SRID must be specified for all replace-type #PUTSCR requests or an 1/O error will
result. If not specified for add-type requests, the SRIDis assigned automatically by
the system and is returned inthe register defined in the RTNSRID parameter.

REPLACE=

Indicates whether the scratchrecordis added or replaced.

Chapter 5: Data Manipulation Language Statements 305

#PUTSCR—stores orreplaces a scratch record

NO

(Default); directs the system to add a new record to a scratch area.
YES

Directs the system to replaceanexistingrecordin the scratch area.
RTNSRID=

Specifies the location to which the system will return the automatically assigned
scratch record ID of the stored record.

(1)
(Default); is the register into which the system will placethescratch recordID.
return-scratch-record-id-register

A register or the symbolic name of a fullword user-defined field into which the
system will placethe scratchrecord ID.

COND=

Specifies whether this #PUTSCR is conditionaland under what conditions control
should be returned to the issuing program.

NO
(Default); specifies thatthe requestis not conditional.
IOER

Specifies that control is returned to the issuingprogramifan|/O error occurs while
processingthe request.

IOERXIT=i/o-error-label

Specifies the symbolic name of the routine to which control should be returned if
the #PUTSCR cannot be serviced because of an /O error.

ERROR=error-label

Specifies the symbolic name of the routine to which control should be returned ifa
conditionspecifiedinthe COND parameter occurs for which no other exit routine
was coded. Inthis case, the ERROR and IOERXIT parameters function identically.

REPXIT=successful-replace-label

(REPLACE=YES only); specifies the symbolic name of the routineto which control
should be returned when the request is serviced successfully. If no REPXIT is
defined in a successful replace-type #PUTSCR request, control will bereturned to
the next sequential instruction following the #PUTSCR.

306 DML Reference Guide for Assembler

#PUTSCR—stores orreplaces a scratch record

NEWXIT=successful-store-label

(Add requests only); specifies the symbolic name of the routine to which control
should be returned when the request is successful. [f no NEWXIT is definedin a
successful add-typerequest, control will be returned to the next sequential
instruction following the #PUTSCR.

EREPXIT=record-already-exists-label

(Add requests only) specifies the symbolic name of the routine to which control
should be returned when the scratch record ID specified by the SRID parameter
already exists inthe scratch area identified by the SAID parameter. If no EREPXIT is
defined for an add-type request and the requested SRID already exists, control is
returned to the next sequential instruction following the #PUTSCR.

#PUTSCR Status Codes

By default, the #PUTSCR request is unconditional;a runtime 1/O error will resultinan
abend of the issuingtask. The issuing program canrequest return of control with the
COND parameter to avoid anabend.

After completion of the #PUTSCR function, the valuein register 15 indicates the
outcome of the operation. The followingis a listof the Register 15 values and the
corresponding meaning:

X'o0’
The request to add a new record has been serviced successfully.
X'04'

The request cannotbe serviced; check for proper scratch-id specification (for
example, a negative scratch IDis animproper specification) and for logical selection
of options.

X'10'
The request to replacea scratchrecord has been serviced successfully.
X'14'

The request to add a new scratch record cannot be serviced because the scratch
record ID specified by the SRID parameter already exists for the named scratch area
and REPLACE=YES has not been specified.

X'ic'

The request cannotbe serviced due to an |/O error during processing.

Ifan /0 error occurs while processing a #PUTSCR request, the system returns the
address of the communications block to register 1. If no error occurs during processing,
a user-defined register, assigned by the RTNSRID parameter, contains the SRID of the
stored or replaced record.

Chapter 5: Data Manipulation Language Statements 307

@READY—prepares a database area for access by DML functions

#PUTSCR Example

The following example of the #PUTSCR statement stores a scratch record containingthe
data in SCR605 inthe dictionary. The length of the record is contained in the fullword
field SCRLN1. SCRID1 is the ID of the scratch area into which the record will be stored.

#PUTSCR RECORD=SCR605 ,RECLEN=SCRLN1,SAID="'SCRID1'

@READY—prepares a database area for access by DML
functions

The @READY statement prepares a databasearea foraccess by DML functions and
specifies the usage mode of the area. @READY also defines and logs the initial
checkpoint for a recovery unit to facilitaterecovery operations.

The DBA canspecify default usage modes inthe subschema.A run-unitusinga
subschema with specified defaultusage modes need not issueany @READY statements;
the areas arereadied automaticallyin the predefined usage modes. However, ifa
run-unitissues an @READY statement for one area, it mustissue @READY statements
for all areas thatitaccesses unlessthe FORCE option was specified for the default usage
mode. Areas usingthe default usage mode combined with the FORCE option are
automaticallyreadied even if the run-unitalreadyissued @READY for other areas.

The usage mode specifiedinthe @READY statement (orin the subschema)indicates the
runtime operations thatthe readyingrununit canor cannotperform againstthe
databasearea.The following usage modes can be specified:

m UPDATE=YES indicates thatthe readyingrun unitis permitted to issueall DML
functions for records in that area.

m RDONLY=YES indicates thatthe readyingrununitis prohibited fromissuingthe
STORE, ERASE, MODIFY, CONNECT, or DISCON functions for records inthat area.

The specified usage mode canbe qualified witha PROTECTED or EXCLUSIVE optionto
prevent update or use, respectively, of areas by other run units executing concurrently
under the CA IDMS/DB central version.Each area canbe readied inits own usage mode.
Usage modes can be changed duringa recovery unit by executing an @FINISH
statement andreadyingthe areas ina different usage mode. Note, however, that the
appropriate BIND statements mustalsobeissued.

When the rununit (rather than the subschema)readies databaseareas, allareascanbe
readied with a single @READY statement or each area to be accessed can be readied
individually. You must ready all areas explicitly or implicitly affected by the DML
statements issued by the rununit. Areas areaffected implicitly, for example, when a
set's owner and member records belong to different areas.Some areas includedinthe
subschema may not need to be specifiedinan @READY statement, as onlythose areas
that are explicitly orimplicitly affected need to be readied.

308 DML Reference Guide for Assembler

@READY—prepares a database area for access by DML functions

@READY Syntax

The @READY statement canappear anywhere inan application program; however, to
avoid runtime deadlock, the best practiceis toready all areas beforeissuingany other
DML statements.

»»—— @READY T ALL « T T UPDATE= YES (SHARED)
AREA=area-name RDONLY= PROTECTED i
EXCLUSIVE

@READY Parameters

ALL/AREA=

Opens the databaseareas.
ALL

(Default); opens all databaseareas inthesubschema.
AREA=area-name

Opens onlythe specified area. Area-name must be an area includedinthe
subschema.

UPDATE/RDONLY=YES/PROTECTED/EXCLUSIVE

Specifies how the databaseareas areopened and qualify databasearea usage.
UPDATE/RDONLY

Specifies how the databaseareas are opened.
UPDATE

Specifies that the databaseareas areopened in both update andretrieval modes.
RDONLY

Specifies that the databaseareas areopened inretrieval mode only.
YES/PROTECTED/EXCLUSIVE

Qualifies databasearea usage.
YES

Allows other concurrently executing run units to open the same areainshared

retrieval or shared update usage modes. Keywords YES and SHARED are
synonymous.

Chapter 5: Data Manipulation Language Statements 309

@READY—prepares a database area for access by DML functions

PROTECTED

Prevents concurrentupdate of the areas by run units executing under the same
central version.Once a run unit has readied an area with the protected option, no
other rununitcanready that areainany update usage mode until the firstrununit
releases itby means of a FINISH statement. A rununitcannotready anarea with
the protected optionifanother rununit has readied the areainupdate usage
mode.

EXCLUSIVE

Prevents concurrentuse of the areas by any other run unitexecuting under the
central version.Once a run unit has readied an area with the exclusive option, no
other rununit canready that areainany usagemode until the firstrun unitreleases
it.

If, under the central version,an @READY statement wouldresultina mode usage
conflictforanarea, the rununitissuingthe @READY is placedina waitstate on the
firstfunctional databasecall.

Modification statements involving areas opened in one of the update usage modes
are not allowed if they affect sets thatincluderecordsinan area opened inone of
the retrieval usage modes.

@READY Status Codes

After completion of the @READY function, the ERRSTAT field inthe IDMS
communications blockindicates the outcome of the operation. The followingis a list of
the acceptablestatus codes for this function and their corresponding meaning:

0910

The subschema specifies anaccess restriction that prohibits readyingthe area in the
specified usage mode.

0923

The named areais not inthe subschema.
0928

The run unithas attempted to ready anarea that has been readied previously.
0966

The area specifiedis notavailablein the requested usage mode. Probablecauses
for the return of this status code are:

m Ifrunninginlocal mode,the areaislocked againstupdate.

m Ifrunningunder the central version, either the area is offlineto the central
version, or anupdate usagemode was requested andthe areaisinretrieval
mode to the central version.

310 DML Reference Guide for Assembler

@RETURN

@READY Example

@RETURN

0970
The databasewill notready properly;a JCL erroris the probablecause.
0971

The page group or page range for the area being readied could not be found in the
DMCL.

0978

A waitfor anarea would causea deadlock. Either you should ready all areas before
the firstfunctional call or all user programs should ready areas inthesame order.

The following example of the @READY statement prepares all databaseareasinthe
subschema for retrieval usagemode only (read only). YES is equivalentto SHARED usage
mode, allowing other concurrently executing run units to open the same areainshared
retrieval usage mode.

@READY ALL,RDONLY=YES

The @RETURN statement retrieves the databasekey for anindexed record without
retrieving the record itself, thus establishing currencyinthe indexset. The record's
symbolickey is moved into the data fields within the recordin program variablestorage.
The contents of all non-key fields after the execution of the @RETURN verb are
unpredictable. Alternatively, you can have the record's symbolic key moved into some
other specifiedvariablestoragelocation.

Index currencyis established by:

m Successful execution of the @RETURN statement, which sets current of index at the
index entry from which the databasekey was retrieved.

m Astatus code 1707 (end of index), which sets currency on the index owner. The
DBMS returns the owner's db-key.

m Astatus code 1726 (end of set), which sets current of index as follows:
— Between the two entries that are higher and lower than the specified value

— After the highestentry, ifthe specified valueis higher thanall index entries

— Before the lowest entry, if the specified valueis lower than all index entries

The @RETURN statement is usedin both navigationaland LRF environments.

Chapter 5: Data Manipulation Language Statements 311

@RETURN

@RETURN Syntax

Navigational @RETURN

»»—— @RETURN E&JE?ENT —— ,SET=7ndex-set-name, DBKEY=db-key ———— >«

LAST —
NEXT —
PRIOR —

LRF @RETURN

»»—— @RETURN SET=7index-set-name,DBKEY=db-key ,USING=index-key-value ——— >«

@RETURN Parameters

CURRENT/FIRST/LAST/NEXT/PRIOR

Indicates the record whose databasekey will be returned.
CURRENT

Retrieves the databasekey for the currentindex entry.
FIRST

Retrieves the databasekey for the firstindex entry.
LAST

Retrieves the databasekey for the lastindex entry.
NEXT

Retrieves the databasekey for the index entry following current of index. If the
current of index is the lastentry, an error status of 1707 (end of index) is returned.

PRIOR

Retrieves the databasekey for the index entry preceding current of index. If the
current of index is the firstentry, anerror status of 1707 (end of index) is returned.

SET=
Identifies the indexed set from which the specified databasekey is to be returned.
index-set-name

Either a register containing the name of the indexed set or a quoted variable
containing the name of the set.

DBKEY=
Where the databasekey is returned.
db-key

A register containingthe databasekey or a user defined variabledata field.

312 DML Reference Guide for Assembler

@RETURN

USING=
Saves the symbolic key (CALC, sort, orindex) or the specified record.
index-key-value

A register containingthe index key valueor the name of the user-defined
alphanumeric field into which the symbolic key of the specified record will be
returned. Index-key-value must be largeenough to accommodate the symbolic key.
For example, if the setis indexed on employee lastname (15 characters)and
employee firstname (10 characters) the index-key-value must be large enough to
accommodate 25 characters.

@RETURN Status Codes

After the @RETURN statement has been processed, the ERRSTAT field inthe IDMS
communications blockindicates the outcome of the operation. The followingis a list of
the acceptablestatus codes for this function and their corresponding meaning:

0000

The request has been serviced successfully.

1707

Either the end of the indexed set has been reached or the indexed setis empty.
1725

Currency has not been established for the specified indexed set.
1726

The index entry cannot be found.

@RETURN Example

The @RETURN statement shown below retrieves the databasekey for the firstindex
entry inthe EMPLNAMX set and moves the record's db-key into the LNAMXKEY field:

@RETURN FIRST, SET=EMPLNAMX, DBKEY=LNAMXKEY

Chapter 5: Data Manipulation Language Statements 313

#RETURN—returns controlto a program

#RETURN—returns control to a program

The #RETURN statement performs the followingfunctions:

m Returns control to a program at the next higher level ina task, optionally specifying
the next taskto beinitiated on the same terminal.

® Inabend routines established by #STAE functions, HRETURN specifies the recovery
procedure to beinitiated by the abend exitif the taskterminates abnormally.

Note: For more information about #STAE exits, see #STAE (see page 331) laterin
this chapter.

m Specifies the action the system takes when the terminal operator does not enter
the response required to initiatethe specified task.

Followinga #RETURN request, control returns to the program at the next higherlevel in
the task. Ifthe issuing programis the highest level program, control returns to the
system. Any #RETURN statement canincludea NXTTASK option to specify the next task
to beinitiated by the system. However, the position of the issuing programin the task
governs whether the specified taskwill,infact, receive control.

When the system receives control from the highest level program thatissueda
HRETURN NXTTASK request, the specified taskis executed immediately if the specified
task code has been assigned the NOINPUT attribute during system generation. Ifthe
task code has been assigned the INPUT attribute, the task executes only when the
terminal operator enters the requested data.

You can define tasks that relinquish control to the system while awaiting completion of
anevent. This way, resources for the issuingtaskarefreed duringthe time it takes for a
particularevent to finish and the next taskto start.

314 DML Reference Guide for Assembler

@ROLLBAK—rolls back uncommitted changes made to the database

The DC/UCF system gives control to the next task when a specific event control block
(ECB) is posted, indicating thatthe event is completed.

When initiated, the next taskis associated with the same logical terminal (LTERM) as the
taskthat issued the #RETURN. An example of the flow of control between tasksis
illustrated inthe followingfigure.

PROGRAM POOL .
6. Program A issues a

1. Task A invokes TASK A #RETURN NXTTASK =X

program A Program A request. Since A is at the
highest level in the
#LINK PROGRAM B I task, task X is invoked.
2, Program A #RETURN NXTTASK=X
links to
program B 5. Pragram B issues a
' program B #RETURN NXTTASK=Y
request, which overrides
#LINK PROGRAM C [t program C's task code
specification. Control
#RETURN NXTTASK=Y returns to program A.
3. Program B
links to
pragram C 4. Program C issues a
| Program C #RETURN NXTTASK=27;
control returns to
program B.
#RETURN NXTTASK=Z
TASK X
Program X o —

@ROLLBAK—rolls back uncommitted chandes made to the
database

The @ROLLBAK statement rolls back uncommitted changes made to the database
through an individual run unit.

Whether the changes areautomatically backed outdepends on the execution
environment:

m Ifthe changes were made under the control of a central versionthatis journaling to
adiskfile, they are backed out automatically. Thecentral version continues to
process other applications during recovery.

Chapter 5: Data Manipulation Language Statements 315

@ROLLBAK—rolls back uncommitted changes made to the database

m The changes are not backed out automatically under the following circumstances:

- Ifthe changes were made under the control of a central version thatis
journalingtoa tapefile.

— Ifthe changes were made inlocal mode.

Inthese cases,the @ROLLBAK statement causes the affected areas to remain
locked againstsubsequent access by other databasesessions. They must be
manually recovered. If changes cannotbe backed out and CONTINUE was specified
on the rollbackrequest,a non-zero error status is returned to the applicationand
the run unitis terminated.

Note: For more information about manual recovery, see the Database
Administration Guide.

If CONTINUE is notspecified, the run unitends and its access to the databaseis
terminated. If CONTINUE is specified, the run unitremains active after the operationis
complete.

Currency
Followingan @ROLLBAK statement, all currencies aresetto null.Unless the CONTINUE

parameter is specified, the issuing program cannot perform databaseaccess through
the run unitwithout executing another @BIND/@READY sequence.

@ROLLBACK Syntax

»»—— @ROLLBAK

M

L CONTINUE .

@ROLLBACK Parameters
CONTINUE

Central version only. Causes the run unitto remain active after its changes are
backed out. Databaseaccess can beresumed without reissuing @BIND and
@READY statements.

Note: The CONTINUE option should not be used inlocal modeifdatabasechanges
have been made.

316 DML Reference Guide for Assembler

#ROLLBAK—rolls back uncommitted changes made to the database

@ROLLBACK Status Codes

After completion of the @ROLLBAK function, the ERRSTAT field of the IDMS
communications blockindicates the outcome of the operation. The followingis a list of
the acceptablestatus codes for this function and their corresponding meaning:

0000
The request has been serviced successfully.
1958

CONTINUE was specified and database changes could not be backed out. The run
unit has been terminated.

@ROLLBACK Example

The @ROLLBAK statement shown below reverses the effects of the run unitthrough
whichitisissued butdoes not terminate it.

@ROLLBAK CONTINUE

#ROLLBAK—rolls back uncommitted changes made to the

database

The #ROLLBAK statement rolls back uncommitted changes made to the database
through an individual run unitor through all databasesessions associated with a task. A
task-level rollbackalso backs outall uncommitted changes made in conjunction with
scratch, queue, and print activity.

Whether the changes areautomatically backed outdepends on the execution
environment:

m Ifthe changes were made under the control of a central versionthatis journaling to
adiskfile, they are backed out automatically. Thecentral version continues to
process other applications during recovery.

m The changes are not backed out automatically under the followingcircumstances:

— Ifthe changes were made under the control of a central version thatis
journalingto a tape file.

— Ifthe changes were made inlocal mode.

Inthese cases,the #ROLLBAK statement causes the affected areas to remainlocked
againstsubsequentaccess by other databasesessions. They must be manually
recovered. If changes cannot be backed out and CONTINUE was specified on the
rollbackrequest,a non-zero error status is returned to the applicationandifthe
request was for anindividual run unit, that run unitis terminated.

Chapter 5: Data Manipulation Language Statements 317

#ROLLBAK—rolls back uncommitted changes made to the database

Note: For more information about manual recovery, see the Database
Administration Guide.

If CONTINUE is notspecified, run units (and SQL sessions) impacted by the #ROLLBAK
statement end, andtheir access to the databaseis terminated. If CONTINUE is specified,
impacted databasesessionsremain activeafter the operationis complete.

The #ROLLBAK statement is usedin both the navigationaland logical record facility
environments. The #ROLLBAK TASK statement is alsousedinan SQL programming
environment.

Currency
Following a #HROLLBAK statement, all currencies aresetto null.Unless the CONTINUE

option is specified, the issuing program or task cannot perform databaseaccess through
animpacted run unit without executing another @BIND/@READY sequence.

#ROLLBAK Syntax

H#ROLLBAK
L 7aper J L task 4 L contonue J

M

#ROLLBAK Parameters
TASK

Rolls back the uncommitted changes made by all scratch, queue, and print activity
and all top-level run units associated with the current task and terminates those run
units. Its impacton SQL sessions associated with the task depends on whether
those sessions aresuspended and whether their transactionsareeligibleto be
shared.

More information:

For more information aboutthe impact of a #ROLLBAK TASK statement on SQL
sessions, seethe SQL Programming Guide.

For more information aboutrun units and the impactof #ROLLBAK TASK, see the
Navigational DML Programming Guide.

CONTINUE

Central version only. Causes the affected run units and SQL sessionstoremain
activeafter their changes arebacked out. Databaseaccess can beresumed without
reissuing @BIND and @READY statements.

Note: The CONTINUE option should not be used inlocal modeifdatabasechanges
have been made.

318 DML Reference Guide for Assembler

#SENDMSG—sendsamessage to another terminal oruser

#ROLLBAK Status Codes

After completion of the #ROLLBAK function, the valueinregister 15 indicates the
outcome of the operation.The followingis a listof the Register 15 values and the
corresponding meaning:

X'o0’
The request has been serviced successfully.
X'o8’
The request cannotbe serviced due to an invalid request.
X'10'
CONTINUE was specified and databasechanges could not be backed out.
x'oc'

An error was encountered processinga syncpointrequest; check the log for details.

#ROLLBAK Example

The following backs outthe uncommitted effects of all non-suspended database
sessions associated with the taskand all changes associated with scratch, queue and
report processing. The affected databasesessionsareterminated.

#ROLLBAK TASK

#SENDMSG—sends a messade to another terminal or user

The #SENDMSG statement sends a message to another terminal or user, or to a group of
terminals or users defined as a destination during system generation. The #SENDMSG
statement does not send messages directly from the message area of the dictionary.
Rather, the system places each message ina queue andsends the message to the
appropriateterminals when itcan do so without disrupting executing tasks. Normally,
the system sends queued messages to a terminal the next time the ENTER NEXT TASK
CODE messageis displayed.

Note: For more information about message destinations, see the System Generation
Guide.

Chapter 5: Data Manipulation Language Statements 319

#SENDMSG—sendsamessage to another terminal oruser

#SENDMSG Syntax

v

»—I_—__I_ #SENDMSG RECORD=message-location-pointer
label

»—— ,RECLEN=message-length-register
,DESTID=destination-id-pointer
E ,USERID=user-id-pointer —J
,LTERMID=Iogical-terminal-id-pointer

T - j_l
P T Qi3

v

v

v

L sure= [SYSPLIST « R |
send-message-request-block-pointer
L cono= NO < |
E ALL
.
(v— IOER)—

=
UNDF

\10ERXIT=7/0-error- label —

v
v

v
v

,INVPXIT=7nval id-parameter-1ist-1abel -

v

,UNDFXIT=wunderined-destination-1label]

v
1 r] r

v
M

,ERROR=error-label —|

#SENDMSG Parameters

RECORD=
Specifies the locationin programstoragethat contains the message to be sent.
message-location-pointer

Either a register that points to the message text or the symbolic name of the area
that contains the message text.

RECLEN=
Specifies the length, in bytes, of the message text.
message-length-register

A register that contains the length of the message, the symbolic nameof a
user-defined field that contains the length, or anabsolute expression.

DESTID=

Specifies the destination receiving the message. The destinationis a listoflogical
terminals or users defined during system generation.

320 DML Reference Guide for Assembler

#SENDMSG—sendsamessage to another terminal oruser

destination-id-pointer

A register that points to the destination ID, the symbolic nameof a user-defined
field that contains the ID, or the ID literal enclosed in quotation marks.

USERID=

Specifies the user to receive the message. The user can be signed on to any
terminal.

user-id

A register that points to the user ID or the symbolic name of a user-defined field
that contains the ID.

LTERMID=
Specifies the logical terminal to receive the message.
logical-terminal-id-pointer

A register that points to the logical terminal ID, the symbolic name of a user-defined
field that contains the ID, or the ID literal enclosed in quotation marks.

OPTNS=

Specifies whether the systemis to queue the message if the specified destination,
user, or terminal is notcurrently being used.

ONLY

(Default); The DC/UCF system sends the message immediately if the
destination, user, or terminal is available,and does not queue the message for
subsequent transmission if the destination, user, or terminal is not available.

Note: If ONLY is specified with the DESTID parameter, described above, the
system sends the message to those users or terminals in the destination that
are available.The sender is not aware of any unsuccessful transmissions.

ALWAYS

The DC/UCF system sends the message immediately if the destination, user, or
terminal is available,and queues the message for later transmissionif the
destination, user, or terminal is not available.

SMRB=

Specifies the location of the storagearea in which the system builds the #SENDMSG
parameter list.

SYSPLIST

(Default); is the symbolic name of the storagearea in which the system builds
the #SENDMSG parameter list.

send-message-request-block

A register that points to the area or the symbolic name of the area in which the
system builds the HSENDMSG parameter list.

Chapter 5: Data Manipulation Language Statements 321

#SENDMSG—sendsamessage to another terminal oruser

COND=

Specifies whether this #SENDMSG is conditionaland under what conditions control
should be returned to the issuingprogram.

NO
(Default); specifies thatthe requestis not conditional.
ALL

Specifies that control is returned if the #8ENDMSG cannot be serviced for one
or more of the reasons listed in condition.

condition-option

Specifies conditions under which control is returned to the program. Multiple
conditions mustbe enclosed in parentheses and separated by commas.

IOER
An I/O error occurred during processing.
INVP
The parameter listis invalid.
UNDF
The specified message destinationis notdefined to the system.
IOERXIT=i/0-error-label

Specifies the symbolic name of a routineto which control should be returned ifthe
#SENDMSG request cannotbe serviced becauseof anl/O error.

INVPXIT=invalid-parameter-list-label

Specifies the symbolic name of a routineto which control should be returned ifthe
H#SENDMSG cannot be serviced because of aninvalid parameter list.

UNDFXIT=undefined-destination-lab el

Specifies the symbolic name of a routineto which control should be returned ifthe
H#SENDMSG cannot be serviced because the specified destinationis undefined to
the system.

ERROR=error-label

Specifies the symbolic name of a routineto which control should be returned ifa
condition specified inthe COND parameter occurs for which no other exit routine
was coded.

322 DML Reference Guide for Assembler

#SETIME

#SENDMSG Status Codes

By default, the #SENDMSG statement is unconditional;anyruntimeerror resultsinan
abend of the issuingtask. The issuing programcanrequest return of control with the
COND parameter to avoid an abend.

After completion of the #SENDMSG, the valueinregister 15 indicates the outcome of
the operation. The followingis a listof Register 15 values and the corresponding
meaning:

X'o4'

The request cannotbe serviced due to an |/O error during processing.
X'o8'

The request cannotbe serviced due to an invalid parameter list.
x'oc'

The request cannotbe serviced becausethe message destinationis undefined.

#SENDMSG Example

#SETIME

The #SENDMSG statement shown below sends the message labeled MESSO1 in program
storage to a group of logical terminalsidentified by RMT007. The length of the message
is heldin LENO1. The DC/UCF system transmits the message immediately if any of the
logical terminalsinthedestinationareavailable,and queues the message for later
transmission if none of the logical terminalsareavailable.

#SENDMSG RECORD=MESSO1, RECLEN=LENO1,DESTID=RMT007 ,0PTNS=ALWAYS

The #SETIME statement defines anevent thatis to occur after a specified time interval

or cancels theeffect of a previouslyissued #SETIME request. The followingtime-related
events can be defined:

m Delaytask processingfor a specified period of time
m Postanevent control block (ECB) atthe end of a specified period of time

m |nitiateataskat the end of a specified period of time

Chapter 5: Data Manipulation Language Statements 323

#SETIME

Syntax

v

#SETIME TYPE= WAIT
label POST —
STRTASK —

CANCEL —
L ,PLIST= T SYSPLIST « —_|—.
parameter-1ist-pointer

L ,INTVL=t7me-before-action-taken-register —I

v

v

v

L ,ECB=post-ecb-pointer |

v

L ,TSKCD=start-task-code-pointer -

v

L ,PRI=priority-register -

v

L ,DATADDR=start-task-data-location-register |

v

L ,DATALEN=start-task-data-length-register]

v

L ,ICEADDR=7ce-address-register -

M

L ,ICNFXIT=7ce-not-found-label -

Parameters
TYPE=

Requests that the system establish a time-related event or cancels a previously
requested time-dependent action.

WAIT

Places theissuingtaskina waitstateand instructs thesystem to redispatch the
issuingtaskafter the specified time interval elapses. Asubsequent #SETIME request
cannot be used to cancel this event until the time interval has elapsed.

POST

Posts an ECB after the specified time interval elapses. The issuingtask continues to
run. The ECB is specified usingthe ECB parameter (described below).

Note: The POST instruction willonly POSTan ECB thatis within storage owned by
the TASK initiatingthe POST instruction. If the storage is not owned by the same
task, it will notbe executed.

STRTASK

Initiates a task after the specified time interval elapses.The taskis specified using
the TSKCD parameter (described below).

324 DML Reference Guide for Assembler

#SETIME

CANCEL

Cancels the effect of a previouslyissued #SETIME request. If CANCEL is specified,
the ICEADDR parameter (described below) must also bespecified.

PLIST= Specifies the location of the six-fullword storagearea in which the system builds
the #SETIME parameter list.

SYSPLIST

(Default); is the symbolic name of the storagearea in which the system builds the
parameter list.

parameter-list-pointer

Is a register that points to the area in which the system builds the listor the
symbolic name of that area.

INTVL= (WAIT, POST, STRTASK requests only); specifies when the event is to occur. The
interval is the amount of time in seconds between when the #SETIME requestisissued
to when the requested event is to occur.

time-before-action-taken-pointer

A register that contains the time interval, the symbolic name of a user-defined field
that contains the time interval, or an absoluteexpression.

Note: For efficiencyreasons, the time when the event is to occuris calculated by adding
the INTVL valueto the time at which the lastTICKER interval expired. Therefore, the
actual interval beforethe event occurs may vary plus or minus from INTVL by an amount
up to the TICKER interval.For more information aboutthe TICKER interval, see the
System Generation Guide.

ECB= (POST only); specifies thelocation of the ECB to be posted.
post-ecb-pointer

A register that points to the ECB or the symbolic name of a user-defined field that
contains the ECB. The ECB is aninternal ECB whichis three (3) fullwords in length
andshould be initialized with nulls.

TSKCD= (STRTASK only); specifies the1- to 8-character task code of the taskto be
initiated.

start-task-code-pointer

A register that points to the task code, the symbolic name of a user-defined field
that contains the task code, or the task-code literal enclosed by single quotation
marks. The specified task code must have been defined duringsystem generation or
defined dynamically usingthe DCMT VARY DYNAMIC TASK command.

PRI= (STRTASK only); specifies a dispatching priority for the task to be initiated.

Chapter 5: Data Manipulation Language Statements 325

#SETIME

priority

A register that contains the priority or anabsolute expression Valid codes are0
through 240. The task's priority defaults to the priority defined for the task either
during system generation or at dynamic definition using the DCMT VARY DYNAMIC
TASK command.

DATADDR= (STRTASK only);identifies the user data to be passed to the new task.
start-task-data-location

A register that points to the data or the symbolic name of a user-defined field that
contains the data. A register that points to the data or the symbolicnameof a
user-defined field that contains the data. The DATALEN parameter must be
specified with DATADDR.

When the new taskis started, the first programreceiving control canaccess the
data area (parameter list) through register 1. Register 1 will contain the address ofa
halfword which contains the valuespecified in DATALEN. This halfword will be
followed by the data.

DATALEN= (STRTASK,DATADDR only); specifies thelength, in bytes, of the data area
identified by start-task-data-location.
start-task-data-length-register
A register that contains the length, the symbolic nameof a user-defined field that
contains the length, or an absolute expression.
ICEADDR= (POST, STRTASK, CANCEL only); specifies theaddress of the interval control
element (ICE) associated with the time event.
POST or STRTASK

The optional ICEADDR parameter specifies the location to which the system returns
the ICE address.

ice-address-register

A register or the symbolic name of a fullword user-defined field. name of a fullword
user-defined field.

Note: The ICEADDR parameter must be specified with POST and STRTASK requests if
the programis to issuesubsequent#SETIME TYPE=CANCEL requests.

CANCEL

The ICEADDR must be specified. The ICEADDR references the location thatcontains
the ICE address followinga previouslyissued POST or STRTASK request.

ICNFXIT=ice-not-found-label (CANCEL only); specifies the symbolic name of the routine
to which control should be returned if the ICE referenced by the ICEADDR parameter
cannot be found. If ICNFXIT is not specified, control returns to the next sequential
instruction following the HSETIME statement.

326 DML Reference Guide for Assembler

#SETIME

Examples

The #SETIME statement shown below requests that the system initiatethe task labeled
TSKO1 sixty seconds after the #SETIME request is issued:

#SETIME TYPE=STRTASK, TSKCD="'TSKOE1', INTVL=60
Status Codes
The #SETIME request is unconditional. Error conditions thatcan occuraredescribed

below:

m For wait, post, and start-taskrequests, any runtime error results inan abend of the
issuingtask.

m For cancel requests, any runtime error other than an
interval-control-element-not-found condition results in an abend of the issuingtask.

The interval-control-element-not-found condition, caused when the ICE cannot be
located, results in a return of control to the issuing program, either at a defined
routine (ICNFXIT, described above) or at the next sequential instruction after the
#SETIME statement.

After completion of the #SETIME request, the valueinregister 15 indicates the outcome
of the operation. Register 15 values aresignificantonly for requests that cancel a
previouslyissued #SETIME request.
The followingis a list of Register 15 values and the corresponding meaning:
X'00'

The request to cancel a previouslyissued #SETIME has been serviced successfully.
X'o4'

The request to cancel a #SETIME request cannotbe serviced because the specified
ICE address cannotbe found.

X'o8'
The specified task code is not known to the DC/UCF system.

Chapter 5: Data Manipulation Language Statements 327

#SNAP

#SNAP

The #SNAP statement requests a memory snap of one or more of the followingareas:

m Specified locations in memory— The snapincludes oneor more areas of memory
specifically requested by location and length.

m Task areas—The snapincludes allresources associated with the issuingtask, as well
as the task control element (TCE), dispatch control element (DCE), logical terminal
element (LTE), and physicalterminal element (PTE) for the task. Information
displayed by the snapis formatted with headers.

m System areas—The snapincludes areas for alltasks and DC/UCF internal control
blocks.Taskareas arenot itemized separately. Information displayed by the snapis
formatted with headers.

The information requested by the #SNAP is written to the DC/UCF log file. A
user-suppliedtitlecan be displayed with any of these types of snaps.

Syntax

v

»p- #SNAP
L label —,

L FORMAT=(ALL)]
BT
TASK
L ,PLIST= T SYSPLIST « —_|—.
parameter-1ist-pointer

L ,TITLE=title-pointer -

v

v

v

v

. .]
|— ,AREA=(—V— data-area-pointer, o’ata—length—register—l—)

M

» I_ —
,REGS= YES «
Lo

Parameters
FORMAT=

Requests a formatted snap of system and/or task areas.
ALL

Requests that the system write a snap of both taskand system areas. Areas
associated with the issuingtaskareitemized and formatted separately from
the system areas.The entire task control areais included as oneitem with a
system snap.

328 DML Reference Guide for Assembler

#SNAP

SYS
Requests that the system write a snap of system areas.

Note: In most systems, this is a very largeamount of memory; system snaps
will impede system performance and should be reserved for special use.

TASK

Requests that the system write a snap of taskareas and resources associated
with the issuingtask.

PLIST=

Specifies the location of the storagearea in which the system builds the #SNAP
parameter list.

SYSPLIST

(Default); is the symbolic name of the storagearea in which the system builds
the #SNAP parameter list.

parameter-list-pointer

A register that points to the area or the symbolic name of the area in which the
system builds the #SNAP parameter list.

Calculatethe size of the parameter-listarea usingthis formula:
5+2P+T
where the following conditionsare met:

m Pisthenumber of data-area-pointer,data-length-register pairs coded for
the AREA parameter, described below.

m TisequaltoOifthe TITLE parameter, described below, has not been
specified, or 1 ifthe TITLE parameter has been specified.

For example, if four pairs arespecified and the TITLE parameter is omitted, the
length of this storageareais 13 fullwords.

TITLE=

Specifies the titleto be printed at the beginning of the snap. Ifrequested, the title
canbe, at most, 133 characters. The firstcharacter must be a valid ASA carriage
control character (A, O, 1, or +). Inaddition, there must be a 1-byte field defined
prior to the ASA control character which designates the length of the title field. For
example, this denotes a length of 133:

LEN DC AL1(133)
title-pointer

A register that points to the title, or the symbolic name of a user-defined field
that contains the title.

Chapter 5: Data Manipulation Language Statements 329

AREA=

Requests a snap of the specified areas.The AREA parameter can be specified
independently of or together with the FORMAT specification. The memory defined
by the AREA parameter may or may not be included inthe memory areas
associated with task or system areas specified by the FORMAT parameter.

data-area-pointer

Specifies the area to be snapped. Data-area-pointer may be the symbolic name
of the area, or a register that points to the area. Register 1 is reserved for
internal use; any other register is valid.

data-length-register

Specifies the length, in bytes, of the area to be included in the snap.
Data-length-register is a register that contains the length, the symbolic name of
a user-defined halfword or fullword field that contains the length, or an
absoluteexpression of the length of the data area.

REGS=
Specifies whether values contained in the register should be printed.

YES

(Default); specifies thatthe snapincludes all register values.

NO

Specifies that the snap does not includeregister values.

Examples

The #SNAP statement shown below requests a snap of two specifictaskareas.The
MAINSAVE area (80 bytes inlength) is the area to be snapped. A titleis printed at the
top of each page of the snap.

#SNAP AREA=(MAINSAVE, 80), TITLE=TITLE1

TITLE1 DC AL1(L'TITLE+1)
cC DC c'1
TITLE DC C'ABEND EXIT PROGRAM AND WORKAREA SAMPLE'

Status Codes

The #SNAP request is unconditional;any runtimeerror results inan abend of the issuing
task.

330 DML Reference Guide for Assembler

#STAE

#STAE

The #STAE (system task abend exit) statement establishes or cancelslinkagetoan abend
routine. Control passes tothe abend routine ifthe issuingtask terminates abnormally.
Any programin ataskcanestablish a #STAE exit; only one abend exit can be in effect at
any given time for each tasklevel. If more than one abend exit has been established, the
system recognizes the last#STAE requestissued.

A taskcanterminate abnormallyfollowinga processingerror or on request by an
#ABEND function. Abend exits for the program that is executing at the time of the
abend and for all higher level programs are executed before the taskis terminated. You
canoverride the automatic execution of abend exits by includingan #ABEND function in
the program or by including a #RETURN function inthe abend routine.

Note: A #STAE command issued with no parameters cancels any previouslyissued
#STAE. For further information see STAE Exits.

-
~
Q¥
ISy
)
~
L
+*
n
5
m
v

)

PGM=program-name-pointer 4_'
EPADDR=entry-point-address-register

Parameters
PGM=

Specifies whether linkageis established to another programor to anabend routine
inthe issuing program.

program-name-pointer

Identifies the 1- to 8-character name of the program. Program-name-pointer is a
register that points to a field that contains the program name, the symbolic name
of a user-defined field that contains the programname, or the program-name
literal enclosedin quotation marks.

Note: The DC/UCF system does not test whether the specified programname is
valid when the #STAE request is issued. Ifthe program is not found or is otherwise
unloadablewhen the system attempts to execute it, the #STAE request will be
ignored.

EPADDR=

Identifies the abend entry-point address ofan abend routine inthe issuing program.
The named routine must have a separateentry pointin the program.

entry-point-address-register

Either a register or the symbolic name of a fullword user-defined field that contains
the entry-point address.

Chapter 5: Data Manipulation Language Statements 331

@STORE

Example

The #STAE statement shown below establishes a link to the abend routine ABRT02. The
program ABRTO2 receives control inthe event of anabnormal termination of the issuing
task.

#STAE PGM=ABRT02
Status Codes

The #STAE instructionis unconditional;any error detected duringexecution resultsinan
abend of the issuingtask.

@STORE

Functions of @STORE

The @STORE statement performs the followingfunctions:
m Acquires spaceanda databasekey for a new record occurrence inthe database

m Transfers the values of the appropriate elements from program variablestorageto
the requested record occurrence inthe database

m Connects the requested recordinto all sets for whichitis defined as anautomatic
member

Location Modes

A recordis stored inthe databaseaccordingto the location mode specifiedin the
schema definition of the record. The location modes areas follows:

m CALC places the record on or near a page calculated by CA IDMS/DB from a control
element (the CALC key) inthe record.

m VIA places therecordas follows:

- Ifthe owner and member record occurrences sharea common page range, the
DBMS places the record as close possibletoits owner record occurrence.

- Ifthe owner and member record occurrences do not sharea common page
range, the DBMS places the recordinthe same relative position in the member
record's page range as the owner record occurrenceisinits associated page
range.

m DIRECT places the record on or near a user-specified page, as determined by the
valueinthe DIRDBKEY field of the IDMS communications block:

— If DIRDBKEY contains a valid db-key for the record being stored, the DBMS
assignsa db-key to the new record occurrence on that page if spaceis
available.

332 DML Reference Guide for Assembler

@STORE

— If DIRDBKEY does not containavalid db-key for the record being stored, the
DBMS assignsthe next availabledb-key, subjectto the page-range limits of the
record being stored.

— If DIRDBKEY contains avalueof-1, the DBMS assigns therecord the first db-key
availableinthe page range in which the record is to be stored.

Inany case, the db-key of the stored record occurrence is returned to DBKEY
(positions 13-16 inthe IDMS communications block). The contents of DIRDBKEY
remain unchanged.

Before Executing @STORE

Before execution of the @STORE statement, the followingconditions mustbe met:

All areas affected either implicitly or explicitly by the @STORE statement must be
readiedin one of the three update usage modes. Update usage modes are
discussed along with the @READY statement earlier in this chapter.

All control elements (CALC andsorted set control fields) mustbe initialized.

Ifthe record being stored has a location mode of DIRECT, the contents of DIRDBKEY
(the direct db-key, positions 197-200 of the IDMS communications block) mustbe
initialized with a db-key value or a null db-key value of -1.

Ifthe recordis to be stored ina native VSAM relative-record data set (RRDS), the
contents of DIRDBKEY must be initialized with the relativerecord number that
represents the locationinthe data set where the record is to be stored.

Every setinwhich the named record is defined as an automatic member, andthe
owner record of every such set, must be includedinthe subschema. Sets for which
the named recordis defined as a manual member need not be defined inthe
subschema sincethe @STORE statement does not access thosesets. An automatic
member is connected automatically to the selected set occurrencewhen the record
is stored; a manual member is not connected automaticallytothe selected set
occurrence.

Ifthe record being stored has a location mode of VIA, currency must be established
for the setinwhich the record participates as a member; this is true whether the
record being stored is an automatic or manual member of that set.

Currency

Currency must be established for all setoccurrences in which the stored record will
participateas an automatic member. The @STORE statement uses currency depending
on how the setis ordered:

Ifthe stored recordis defined as a member of a set that is ordered FIRST or LAST,
the record thatis current of set establishes theset occurrence to which the stored
record will beconnected.

Chapter 5: Data Manipulation Language Statements 333

@STORE

DEPARTMENT
3100

EMPLOYEE EMPLOYEE
28 476

m |fthe stored recordis defined as a member of a set that is ordered NEXT or PRIOR,
the record thatis current of set establishes theset occurrence into which the stored
record will beconnected and determines its positionintheset.

m Ifthe stored recordis defined as a member of a sorted set, the record thatis
current of set establishesthe set occurrence into which the stored record will be
connected. IDMS compares the sortkey of the stored record with the sort key of
the current record of set to determine ifthe stored record can beinserted into the
set by movement inthe next direction:

— Ifthe record canbe inserted by movement inthe next direction, the set
occurrence remains positioned atthe record that is currentof set and the
stored record is inserted.

— Ifthe record cannot be inserted by movement inthe next direction,the DBMS
positions theset occurrenceat the owner record occurrence (not necessarily
the current occurrence of the owner record type) and moves as far forwardin
the next direction as is necessary to determine the logical insertion pointfor
the stored record.

Following successful execution of an @STORE statement, the stored record becomes
current of run unit, its record type, its area,and all sets in which it participates as owner
or automatic member.

The followingfigureillustrates the currency issues involved in addinga new EMPLOYEE
record to the database.

Since EMPLOYEE is defined as an automatic member of both the DEPT-EMPLOYEE and
OFFICE-EMPLOYEE sets, currency must be established in each of those sets before
issuingthe @STORE statement. The firsttwo DML commands establish
DEPARTMENT-3100 and OFFICE-1 as currentof the DEPT-EMPLOYEE and
OFFICE-EMPLOYEE sets, respectively. When EMPLOYEE-27 is stored, itis connected
automaticallytoeachset.

DEPARTMENT OFFICE
a0 Jr Jss Jeac aso |r J7e Jeac
DEPT-ID-0410 Jon OFFICE-CODE-0450 Jon
ORG-DEMO-REGION ORG-DEMO-REGION
DEPT EMPLOYEE GFFICE-EMPLOYEE
NPO OA 10 OA
ASC(EMP-LAST-NAME 0415 ASC{EMP-LAST-NAME-0415
EMP-FIRST-NAME-0415) DL EMP-FIRST-NAME-0415) DL
EMPLOYEE
215 |r Jiis Jeac
EMP-ID-0415 Jon
EMP-DEMO-REGION

334 DML Reference Guide for Assembler

@STORE

CURRENCIES:
RUN UNIT, RECORD, SET, AREA

> /=
& /9 /9
S
£ /& /& &
u Ly 5 O
£ /5)& $/ad/5/5
= T~ = Ly Py 1 W 4y
N & <) o 3) Q Q
< Q Q Y Q Iy 9] al
fu} Ly o Ly [y a
g/ & /g /5/&/8/8/3
MVC OFFCODE,OFFCODIN
@ FIND CALC, REC = 'OFFICE"] ’ ’ 1
MVC DEPTID, DEPTIN
@FIND CALC, REC = 'DEPARTMENT' | 3100 | 3100 1|38100 13100
@STORE, REC — 'EMPLOYEE' 27 | 3100 | 27 1| 27| 27 |3100| 27

X

Syntax
»»—— @STORE REC=record-name

Parameters
REC=record-name
Specifies the record occurrence to be moved from variablestorageto the database.

The @STORE statement connects the requested record to anoccurrence of each set
for whichitis defined as an automatic member, and establishesitas the owner of a

set. The @STORE statement also establishes the named record as the owner of a
set occurrence for each set for which itis defined as an owner. The ordering rules
for each set govern the insertion pointofthe named record inthe set. Record-name

must specify a record type included in the subschema.

Chapter 5: Data Manipulation Language Statements 335

@STORE

Example

The @STORE statement shown below performs the following:

m Moves a singleoccurrence of the EMPLOYEE record from programvariablestorage
to the database

m Connects this occurrence of EMPLOYEE to each set for whichitis definedas an
automatic member

m Establishes EMPLOYEE as the owner ineach set occurrenceinwhichitis defined as
the owner

@STORE REC=EMPLOYEE

Status Codes

After the completion of the @STORE function, the ERRSTAT field inthe IDMS
communications blockindicates the outcome of the operation. The followingis a list of
the acceptablestatus codes for this function and their corresponding meaning:

1201
The area inwhich the named record is to be stored has not been readied.
1202

The suggested DIRDBKEY valueis notinthe page range for the named record.
1205

Storage of the record would violatea duplicates-not-allowed option for a CALC
record, a sorted set, or anindex set.

1208

The named record is notinthe subschema.The program has probablyinvoked the
wrong subschema, or the record name has been misspelled.

1209

The named record's area has not been readied in one of the three update usage
modes.

1210

The subschema specifies anaccess restriction that prohibits storage of the named
record.

1211

The record cannotbe stored inthe area because of insufficients pace.

336 DML Reference Guide for Assembler

@STORE

1212

The record cannotbe stored because no db-key is available. This is a system
internal error.

1218

The record has not been bound.

1221

An area other than the area of the named record occurrence has been readied with
anincorrectusage mode.

1225

A set occurrence has not been established for each set in which the named record is
to be stored.

1233

All sets in which the record participates as an automatic member have not been
included inthe subschema.

1253

The subschema definition of an indexed set does not match the indexed set's
physicalstructureinthe database.

1254

Either the prefix length of an SR51 recordis less than zero or the data length is less
than or equal to zero.

1255
An invalid length has been defined for a variable-length record.
1260

A record occurrence encountered inthe process of connecting automatic sets is
inconsistent with the set named inthe ERRORSET field of the IDMS communications
block; probablecausesincludea broken chainoranimproper databasedescription.

1261

The record cannotbe stored because of broken chains inthe database.

Chapter 5: Data Manipulation Language Statements 337

@STORE (LRF)

@STORE (LRF)

The @STORE statement canalsoupdate the databasewith field values for new logical
record occurrences. The @STORE statement does not necessarily storenew occurrences
of all orany of the databaserecords that participateinthe logical record; the path
selected to servicean @STORE logical-record requestperforms whatever database
access operations the DBA has specified to servicethe request.

LRF uses field values stored in the variable-storagelocation reserved for the logical
record to make the appropriate updates to the database. You canoptionallynamean
alternate storagelocation from which the new field values areto be obtained to
perform the requested store operation.

Syntax

»»—— @STORE REC=Ilogical-record-name

v

»
| 2

v

L ,I0AREA=al t-logical-record-location —

A\ 4

L ,ONLRSTS=path-status,GOTO=branch-location —I

X

L ,WHERE boolean-expression l

Parameters
REC=logical-record-name

Names a new occurrence of the named logicalrecord. Unless the IOAREA
parameter (see below) isincluded, LRF updates the databaseby usingfield values
stored ina variable-storagelocation reserved for the named logical record.
Logical-record-name must specify a logical record defined in the subschema.

IOAREA=alt-logical-record-location

Identifies an alternativevariable-storagelocation thatcontains thefield values to
be used to update the database. When storinga logical record thathas previously
been retrieved into analternativevariable-storagelocation,youshould usethe
IOAREA clauseto name the same area specified inthe @OBTAIN request. Ifthe
IOAREA clauseis includedinthe @STORE statement, alt-logical-record-location
must identify a record location defined in the program.

ONLRSTS=path-status,GOTO=branch-location

Tests for the indicated path status. Path-status must be a quoted literal (1to 16) or
a program variable. If path-status results from this @STORE statement, the action
specified by branch-location is performed. For more information about how to code
the ONLRSTS clause, see the discussion of the ON clauselaterinthis chapter.

338 DML Reference Guide for Assembler

@STORE (LRF)

WHERE boolean-expression

Specifies selection criteria to be applied to the named logical record. For details on
how to code the WHERE clause, refer to the discussion of the WHERE clauselaterin
this chapter.

Example

The example below illustrates howto add a new office by adding occurrences of the
OFFEMPLR logicalrecord.The program subsequently stores one occurrence of the
OFFEMPLR logicalrecord for each employee added to the office.

STOROFF EQU *
MVC OFFICE,NEWOFF
@STORE REC=OFFEMPLR,WHERE ADD-OFFICE

STOREMP EQU *
MvVC EMPL,NBEWEMP

@STORE REC=OFFEMPLR,WHERE ADD-EMP

B STOREMP

Inthe above example, the DBA has designated the keywords ADD-OFFICE and ADD-EMP
to directthe request to a path designed to store new employee informationfora new
office. The path to which the firstrequestis directed stores the appropriate new office
information before storingthe new employee information.

All inputdata concerningthe new employee is containedin group fields called NEWOFF
and NEWEMP, whose layouts correspond to those of the OFFICE and EMPLOYEE
positions, respectively, of the OFFEMPLR logical record. The program moves the input
field NEWOFF to the logical-record group field OFFICE and the input field NEWEMP to
the logical-record group field EMPL.

Status Codes

After you issued an @STORE statement for a logicalrecord, the type of status code
returned to the programin the ERRSTAT field of the IDMS communications block
depends on the type of error. Ifthe error occurs inthe logical-record path, the ERRSTAT
field contains a status codeissued by CA IDMS/DB with a major code from 00 to 19. For
alistofthese codes, see ERRSTAT Field and Codes (see page 41).

When the error occurs inthe request itself, LRF returns the path status LR-ERROR to the
LRSTAT field of the LRC blockand places a status code with a major code of 20 in the
ERRSTAT field of the IDMS communications block. These codes arelistedin Testing for
the Logical-Record Path Status (see page 55).

Chapter 5: Data Manipulation Language Statements 339

#STRTPAG

#STRTPAG

The #STRTPAG statement initiates a map pagingsession,and specifies themap paging
options in effect for that session. The pagingsession can containany number of DML
statements, including #MREQ IN and #MREQ OUT; the #STRTPAG statement must
precede any of these mapping commands. The map pagingsessionis terminated by an
HENDPAG statement, or by the next #STRTPAG statement if no HENDPAG statement is
coded.

Note: Only one pageablemap can be handled by the statements enclosed by a given
HSTRTPAG/#ENDPAG pair.

Syntax

»»—— #STRTPAG MRB=map-request-block-pointer
- L pList [SYSPLIST < —JJ
parameter-1ist-pointer

L ,MRBPGDS= T MRBPGDS «] |
paging-request-block-pointer

L rypes NOWAIT <
WALT
RETURN
= = [YEs <
_BACKPAG= —— YES <
Lo

T fiac UPDATE <_—IJ
’ L BrowsE

v

v

v

v

v

v

)

I— ,AUTO= —[YES «
NO

Parameters
MRB=map-request-block-pointer

Specifies the location of the map request block for the mapping operation, as
copiedinto program variablestorageby a previouslyissued #MRB statement.

map-request-block-pointer
Either a register that points to the MRB area or the symbolic nameof that area.
PLIST=

The location of the storage area in which the system builds the #$STRTPAG
parameter list.

SYSPLIST

(Default); is the symbolic name of the storagearea in which the system builds the
H#STRTPAG parameter list.

340 DML Reference Guide for Assembler

#STRTPAG

parameter-list-pointer

Either a register that points to the area or the symbolic name of the area.
MRBPGDS=

Specifies the location of the 16-byte map pagingrequest block.
MRBPGDS

(Default); is the symbolic name of the area in program variablestoragethat
contains the map pagingrequest block. The map pagingrequest blockis copied bya
previouslyissued #MRB statement.

paging-request-block-pointer

Either a register pointingto the area that contains the map paging request block or
the symbolic name of the area.

TYPE=
Specifies the runtime flow of control when the operator presses a control key.
NOWAIT

(Default); specifies thatruntime mappingautomatically handlesall pagingand
update transactions. Control is passed to the program only when neither anupdate
nor a pagingrequest is made when the operator presses a control key.

WAIT

Specifies that runtime mapping automatically handles pagingtransactionsthatdo
not causedata to be updated. Control is passed tothe programwhen the terminal
operator presses a control key that requests an update or nonpaging operation.

RETURN

Specifies that runtime mapping does not handleany terminal transactionsin the
pagingsession.Control is passed to the programwhenever the operator presses a
control key.

Runtime mapping does not update program variablestorageunless an #MREQ IN
command isissued.In cases where the operator can update data (FLAG=UPDATE), it
is recommended that WAIT and RETURN be specified for the sessionsothatdata
canbe retrieved asitis updated.

BACKPAG=
Specifies whether the terminal operator candisplaya previous map page.
YES

(Default); specifies thatthe operator can display previous pages of the map.

Chapter 5: Data Manipulation Language Statements 341

#STRTPAG

NO

Specifies that the operator cannotdisplay any pageof detail occurrences with a
page number lower than the current page number. Modifications madeon a given
page of the map must be requested by #MREQ IN statements inthe application
program before an #MREQ OUT,RESUME=YES command is issued. The previous
page of detail occurrences is deleted from the session scratch record when a new
map pageis displayed.

Note: BACKPAG=NO cannotbe assigned if FLAG=UPDATE (discussed below)and
TYPE=NOWAIT are specified for the session.

FLAG=
Specifies whether the terminal operator can modify map data fields.

UPDATE

(Default); specifies thatthe terminal operator can modify variablemapfields,
subjectto restrictions specified for the map either at map definition time or by the
statements inthe program.

BROWSE

Specifies that the terminal operator can modify only the page and responsefields of
the map. At runtime, runtime mapping automatically protects all variablefields. The
MDTs for variablefields onthe map canbe set onlyaccordingto specifications
made either inthe map definition or by statements inthe program.

AUTO

You canoverridethe automatic mapout of a pageablemap's first page. Overriding
automatic displayofa map's first page allows you to modify the map page and
defined messages before the pageis displayed. To determine when the firstpage of
the map is built, you test the new map return code. By default, the firstpage of a
pageablemap is displayed as soon as thefirstdetail occurrence of the second map
pageis written to scratch. You determine whether the first page of a pageable map
is automatically displayed by using the AUTO parameter.

YES
(Default); enables automatic display of the pageablemap's first page.
NO
Disables automatic display of the pageablemap's firstpage. You manually display
the page by usinga #MREQ statement.
Example
The following example of the #STRTPAG statement initiates a pageablemap session
with the following map paging options in effect:

m MRBPROGI is the symbolic name of the locationinvariablestoragethatcontains
the map-request block for the mappingoperation.

342 DML Reference Guide for Assembler

#TREQ

#TREQ

WAIT indicates thatruntime mapping passes control to the programwhen an
update ora nonpagingrequestis made. Runtime mappingautomatically handles all
pagingrequests that do not involvefield updates.

Unless otherwise coded, the location of the map-pagingrequest blockis foundin
MRBPGDS in programvariablestorage. By default, the operator candisplay
previous map pages and data fields.

#STRTPAG MRB=MRBPROG1,TYPE=WAIT

The following example illustrates usage of the AUTO parameter:

#STRTPAG MRB=EMPMAPPG,AUTO=NO

Status Codes

After completion of a #STRTPAG request, the valueinregister 15 indicates the outcome
of the operation. The followingis a listof Register 15 values and the corresponding
meaning:

X'o0’

The request has been serviced successfully.

X'o4'

A pagingsessionwas alreadyin progress when this #STRTPAG command was
received. An implied #ENDPAG statement was processed before this #STRTPAG
command was successfully executed.

Functions of #TREQ

The #TREQ statement allows your programto do the following:

Transfer data between a terminal device andyour application programin basic

mode. Device-control characters appropriateto your terminal device are sent along
with the data.

Converse with SNA resources.

Acquire andreleasestorage areas used for 1/0 buffers. The following considerations
apply:

- Inresponseto an input request, the input for data-item descriptions isacquired
dynamically fromthe storage pool.Use the LOCATE option of the #TREQ GET or
H#TREQ READ statement to acquirethe inputbuffer. When you specify LOCATE,
your programis responsiblefor releasingtheacquired storage with a #FREESTG
statement. If the storage is notexplicitly freed, the system releases all acquired
input buffers when the task terminates.

Chapter 5: Data Manipulation Language Statements 343

#TREQ

- Inresponse to an output request, a previouslyacquired storagearea for the
output buffer is released. To releasethe output buffer, use the FREEBUF option
of the #TREQ PUT, #TREQ WRITE, #TREQ PUTGET, or #TREQ WRITREAD
statement. The output buffer is released on completion of the output request.

DC/UCF Response to #TREQ

The DC/UCF system does the followinginresponseto a #TREQ request:

m Automaticallyinserts theappropriatelinecontrol characters

m Builds and/or modifies a terminal request block (TRB), depending on the type of
#TREQ request:

- For regular #TREQ requests (MF=R), the system builds a new TRB for each
request. Constant values arespecified for each subsequent #TREQ request.

- For list #TREQ requests (MF=L), the system builds a TRB in the data definition
section of program storage. Subsequent #TREQ statements include parameters
that add to or override this predefined TRB. The list #TREQ statement defines
constantvalues; subsequent execute (MF=E) #TREQ statements modify the
previously designate TRB. This technique saves codingtime and storage space.

m |nitiates the requested I/O operation and transfers the data

Regular and Execute #TREQ Description

The regular and execute versions of the #TREQ statement request a transfer of data
from the issuingprogramto the physicalterminal and/or from the physicalterminal to
the program. The requested transferis designated as synchronous or asynchronous:

m Synchronous—Control is not returned to the issuing programuntil the I/O
operationis completed. Synchronous transferis accomplished by using #TREQ GET,
PUT, PUTGET, or ALLOC statements.

m Asynchronous—Control is returned to the issuing programimmediately after the
requested 1/0 operationis initiated; the program continues to execute concurrently
with the I/O operation. An event control block (ECB) is established thatwill be
posted after the I/O operationis completed. Asynchronous transferis accomplished
by usingthe #TREQ READ, WRITE, WRITREAD, or ALLOC statements.

An asynchronous request must be followed by a #sTREQ CHECK before continuing
with further terminal /O operations to ensure that the previous #TREQ processing
is completed. Most error message codes associated with sTREQ READ, WRITE,
WRITREAD, or ALLOC requests are returned when the #TREQ CHECK statement is
issued.

To send a data stream immediately to a terminal or group of terminals,youcanissuea
HTREQ WRITE/PUT (blast) request, using the DESTID, USERID, and LTERMID parameters.
For write-direct-to-terminal requests, the system ignores the SAVE, EOT, and TRANSPAR
options. Write-direct-to-terminal requests are not supported for list HTREQ requests.

344 DML Reference Guide for Assembler

#TREQ

Regular and Execute #TREQ Syntax

HTREQ syntaxis presented alphabetically:
m H#TREQ ALLOC

m H#TREQ CHECK

= #TREQ DISC

m HTREQ GET

= H#TREQ PUT

m HTREQ PUTGET

m H#TREQ READ

® #TREQ UIOCB

® #TREQ WRITE

m H#TREQ WRITEREAD

HTREQ syntax for listrequests is presented in the next section.

Syntax

’ﬁ_ #TREQ ALLOC
label

»— ,UIOCBA=user-io-control-block-pointer

T
L,OPTNS= —(— ANY <)—'

CONN
IMM
WAIT «
NOWAIT

v

v

v

v

X

L ,LTERMID=1Iogical-terminal -element-pointer —'

Parameters
#TREQ ALLOC

Establishes a sessionand allocates an SNA conversation between your programand
an SNA logical unit.

Note: For more information about usingthe #TREQ ALLOC statement, see Systems
Network Architecture Considerations (SNA).

Chapter 5: Data Manipulation Language Statements 345

#TREQ

Syntax

*ﬁ— #TREQ CHECK
label
T

,MF —I: E <

_ |
,TRB= SYSPLIST «
L terminal -request-block-pointer]

v

v

v

v
'_

v

v
l_

- |
JINLEN= —— (0) <« =

input-data-actual -length-register

,COND= NO « ——
-
(- ATTN)—

DISC
INVP
LOGL
PERM
TRUN

v

v
,_

1

v
v

ATTNXIT=at tent ion-key- label —

v

,DISCXIT=terminal-disconnected-1label -

v
v

,INVPXIT=7'/7v.aZ7'd—trb—7‘n7"or7nat7‘on—Zabe'l-—I

v

v
] rp

v

,LOGLXIT=1ogical-output-error-1label —|

v
v

L ,PERMXIT=permanent-i/o-error-label —

v

L ,TRUNXIT=truncate-i/zout—data-label-J

M

L ,ERROR=err0r-ZabeZ-—I
Parameters

#TREQ CHECK Delays task processinguntil a previously requested asynchronous I/0
operationis completed. The DC/UCF system places the taskinan inactivestateifthe I/O
operationis incomplete. When the 1/0 operation is complete, the task resumes
processingaccordingtoits established dispatching priority.

Syntax

W #TREQ DISC
label

v

X

L ,LTEADDR=Zte-aa’a’ress-register——I

346 DML Reference Guide for Assembler

#TREQ

Parameters

#TREQ DISC

(SNA conversations only); terminates an SNA session between your program and
another logical unit.

Syntax

>>'—'_—_J— #TREQ GET
label

T

»
| 2

v

v

v

|—TRB= YSPLIST |
, —ESS ST «]

terminal -request-block-pointer

v

L ,INAREA=Tnput-data-location-pointer -

v

L ,MAXIN=7nput-data-max-length-register |

v

T

= I
, INLEN —E) « __|

input-data-actual -length-register

v

L ,LTEADDR=1te-address-register i

v

|— L OPTNS= — (—y——— BUFFER ——'—)—]
INFMHY
L INFMiN
LL
L NocHasM
L LOCATE ——
L MODIFIED —|
L POSITION —

—— UPLOW
—— UPPER

v

L ,FROMPOS=screen-position -

L cono= N« ————————
F AL — |

|
(——¥— DISC y—]

— INWP
— PERM
— TRUN

L
v

v

L ,DISCXIT=terminal -disconnected-1abel il

v

L L INVPXIT=7nval id-trb-information-1label -

Chapter 5: Data Manipulation Language Statements 347

#TREQ

L ,PERMXIT=permanent-i/o-error-1label —-I

v

L ,TRUNXIT=truncate-input-data-1label ——‘

v

L ,ERROR=error-1abel 1

Parameters

#TREQ GET

X

Requests synchronous transfer of data from a device to program storage when the
terminal operator signals completion of data entry by pressing ENTER or a special

function key.

Syntax

”‘—Iﬁ_ #TREQ PUT
label

v

T

»

v

»

L ,TRB= T SYSPLIST « m |
terminal -request-block-pointer

v

L ,OUTAREA=output-data-location-pointer |

v

L ,OUTLEN= T output—data—Zength—regfstﬂ—.

log-data-length-register

v

I— ,OPTNS= — (—¥——— CHKICONT ——|—)—]
— CONFIRM —
CONFIRMED —
EOT ——

—— ERASUNPR —
— ERROR

FREEBUF—
INVITE —
NEWPAGE —
— NOCR
OUTFMHY
L OUTFMHN T
— SAVE
—— SIGNAL —
—— TRANSPAR —

v

- L ,LTEADDR=[te-address-register -

v

L ,SENSE=sna-sense-code-register -

v

- L ,LOGDATA=log-data-address-register -

v

348 DML Reference Guide for Assembler

#TREQ

v

,USERID=user-id-pointer ————————
,LTERMID=1Iogical-terminal -id-pointer —

L conp= N « —————
F AL ————————]
— .,
(—-v— ATIN)—

E ,DESTID=destination-id-pointer

v

v

L L,ATTNXIT=attention-key-label -

v

L ,DISKXIT=terminal -disconnected-1label]

v

L ,INVPXIT=7nvalid-trb-information-1label —'

v

L ,LOGLXIT=1ogical-output-error-1label]

v

L ,PERMXIT=permanent-i/o-error-1label il

v

L L,UNDFXIT=7nval id-destid-1termid-1abel J

M

L ,ERROR=error-label Bl

Parameters
#TREQ PUT
Requests synchronous transfer of data from program storage to a terminal or
device.
Syntax
»ﬁ_ #TREQ PUTGET >
label
o= - >
,MF= R «
L¢
"T 1re- | >
,TRB T SYSPLIST « n

terminal -request-block-pointer

v

- L ,OUTAREA=output—data—Zocation—pointer—I

v

L ,OUTLEN=0output-data-length-register]

v

L , INAREA=7nput-data-Ilocation-pointer]

v

L ,MAXIN=7nput-data-max-length-register]

Chapter 5: Data Manipulation Language Statements 349

#TREQ

L , INLEN= T ©)

input-data-actual -length-register

<

_I

v

L ,LTEADDR=te-address-register |

v

[
I— ,OPTNS= —(—¥—

—— CHNCONT —
CONFIRM —
ERASUNPR —
FREEBUF —

T
]

LL T
NOCHASM

— LOCATE —
—— NEWPAGE —

T OUTFMHY T
OUTFMHN
— UPLOW

1, |

— UPPER

v

L ,COND= NO « ——————
— .
(= ATTN)—

DISC
INVP
LOGL
PERM
TRUN
UNDF

v

L ,ATTNXIT=attention-key-label -

v

L ,DISKXIT=terminal -disconnected-label]

v

L ,INVPXIT=7nvalid-trb-information-1label i

v

L ,LOGLXIT=1ogical-output-error-1label —|

v

L ,PERMXIT=permanent-i/o-error-1label i

v

- L ,TRUNXIT=¢truncate-input-data-1label -

v

~ L UNDFXIT=7nvalid-destid-1termid-1abel —

v

" L ERRR=error-1aver

Parameters

#TREQ PUTGET

Requests a synchronous data transfer from programstorage to a terminal, then
backto the programwhen the terminal operator indicates completion of data

entry.

M

350 DML Reference Guide for Assembler

#TREQ

Syntax

Wﬁ— #TREQ READ
label

gar—rpm

L Tre= [SYSPLIST < 7 |
terminal -request-block-pointer

v

v

v

v

L , INAREA=7nput-data-location-pointer —I

v

L ,MAXIN=7nput-data-max-length-register l

v

L = [
JINLEN= —— (9) <« ~

input-data-actual -length-register

v

L ,LTEADDR=te-address-register |

v

— _
L ,OPTNS= —(—¥——— BUFFER ————)
— INFMHY ——
INFMHN
L INVITE 1]
L Nocrash]
—— LOCATE ——
— MODIFIED —
—— POSITION —

—— UPLOW
— UPPER

v

L ,FROMPOS=screen-position -

L conp= NO
’ I
INVP

v

v

L L,INVPXIT=7nval id-trb-information-1label —'

)4

L ,ERROR=error-label —|

Parameters
#TREQ READ

Requests asynchronous transfer of data from a terminal or device to program
storage when the terminal operator signals completion of the data entry by
pressing ENTER or a special function key.

Chapter 5: Data Manipulation Language Statements 351

#TREQ

#TREQ UIOCB

Syntax

Pb'ﬁ— #TREQ
label

uIocs

v

L ,UIOCBA=user-i/o-control-block-pointer -

v

L ,LTEADDR=1te-address-register i

Parameters

#TREQ UIOCB

Locates a user I/O communications block used to maintain the status of an SNA
conversation and of the data being passed between logical units.

Syntax

Pb'ﬁ— #TREQ
label

)4

WRITE

v

T

v

v

L ,TRB= T SYSPLIST «]
terminal -request-block-pointer

L ,OUTAREA=output-data-location-pointer -

v

- L ,OUTLEN= output-data-length-register
T

log-data-length-register

L ,LTEADDR=te-address-register]

v

L LOPTNS= —(—¥—

EOT

LAST
— NOCR

—— ABEND ——

CONFIRMED —

ERASUNPR —
ERROR
FREEBUF —
INVITE —

NEWPAGE —

T OUTFMHY T
OUTFMHN

=

v

352 DML Reference Guide for Assembler

#TREQ

v

,SENSE=sna-sense-code —-|

v

L ,LOGDATA=log-data-address-register ——‘

,DESTID=destination-id-pointer ——]
,USERID=user-id-pointer ————————
,LTERMID=1Io0gical-terminal-id-pointer —

| COND= N« ——
f AL ———
(INVP)
L ONDF

v

v

© L INPXIT=7nvalid-tro- information-1abel =

v

" L UNDFXIT=7nvalid-destid-1termid-1abel —

M

" L ERROR=error-1apvel

Parameters
#TREQ WRITE
Requests an asynchronous data transfer from program storageto a terminal or
device.
Syntax
Pb'ﬁ— #TREQ WRITREAD >
label
S I
s - | >
TRB= YSPLIST «
, T SYSPLIS]

terminal -request-block-pointer

v

- L ,OUTAREA=output-data-location-pointer |

v

L ,OUTLEN=0utput—data—length—register—I

v

L , INAREA= input-data-Iocation-pointer—I

v

,MAXIN=7nput-data-max-length-register |

Chapter 5: Data Manipulation Language Statements 353

#TREQ

L =
VINLEN= —— (0) < =

input-data-actual -length-register

v

L ,LTEADDR=te-address-register |

v

I— JOPTNS= — (—¥——— CHKICONT ———L)—J

—— CONFIRM —
—— ERASUNPR —
—— FREEBUF —

T INFMHY T

INFMHN

— INVITE —

T LL T
NOCHASM

— LOCATE —

—— NEWPAGE —
—— NOCR

T OUTFMHY T
OUTFMHN

— UPLOW
— UPPER

oM N0 4 ——-

© L INPXIT=7nvalid-tro- information-1abel —

v

v

X

L ,ERROR=error-1abel —|

Parameters
#TREQ WRITREAD

Requests an asynchronous data transfer from program storageto a terminal or
device, then backto program storage when the terminal operator indicates
completion of data entry.

Syntax rules for the #TREQ statements are shown below. One complete set of syntax
rules is provided; the explanation for each parameter indicates the applicable #TREQ
statements. #TREQ options necessaryto comply with SNA protocols arealsoindicated.

Note: For more information about SNA programming considerations, see Systems
Network Architecture Considerations (SNA).

The discussion of syntax applies to regular and execute commands, with the following
exceptions:

m The TRB parameter of an execute request identifies a terminal request block (TRB)
previously established by a list #TREQ request.

m For anexecute request, parameters already defined to the TRB need not be
specified.If they are specified, the requested parameters will overridethe existing
values inthe TRB.

354 DML Reference Guide for Assembler

#TREQ

Parameters
MF=

Specifies the category of #TREQ.

(Default); specifies a regular #TREQ statement.

Specifies an execute #TREQ statement.
TRB=

Specifies the five-fullword storagearea in which the system will build the TRB
(MF=R) or has builtthe TRB (MF=E).

SYSPLIST

(Default for regular requests only); is the symbolic name of the storage areain
which the system will build the TRB.

terminal-request-block

Either a register that contains the address of the area or the symbolic nameof the
areainwhichthe system will build or has builtthe TRB. For execute requests, this
entry explicitly defines thearea by identifying label, provided in the list#TREQ that
generated the TRB.

OUTAREA=

(PUT, WRITE, PUTGET, and WRITREAD only) specifies the storage area that contains
data to be output. OUTAREA need not be defined ifthe OUTLEN parameter,
described below, is 0.

output-data-location

Either a register that contains the address of the area or the symbolic name of the
area.

OUTLEN=

(PUT, WRITE, PUTGET and WRITREAD only); specifies the length, in bytes, of the
data stream to be transmitted.

output-data-length

Specifies the length of data being sent to a terminal. Output-data-length is either a
register that contains the length or an absolute expression of the length of data
sentina normal exchange.

log-data-length

A register that contains the length or an absolute expression of the length of data to
be sent alongwith error informationinan SNA conversation.

Chapter 5: Data Manipulation Language Statements 355

#TREQ

INAREA=

(GET, READ, PUTGET, and WRITREAD only); specifies the storage area into which the
data will be read. When INAREA is specified, the LOCATE option, described under
the OPTNS parameter below, should not be requested.

input-data-location
Either a register that points to the area or the symbolic name of the area.
MAXIN=

(GET, READ, PUTGET, and WRITREAD only);specifies the maximum length in bytes
of the data area defined by INAREA that is reserved for the input data stream.
When MAXIN is specified, the LOCATE option, described under the OPTNS
parameter below, should not be requested.

input-data-max-length
Either a register that contains the length of the data area or anabsolute expression.
INLEN=

(GET, PUTGET, or CHECK followingan asynchronous inputrequest); specifies the
location to which the system returns the actual length of the input data stream. If
the input data stream has been truncated, the originallength of the data stream
before truncationis returned.

(0)

(Default); is the register to which the system returns the actual length of the input
data stream.

input-data-actual-length

A register or the symbolic name of a halfword or fullword user-defined field to
which the system will return the actual length of the inputdata stream.

UIOCBA=

(ALLOC and UIOCB only); specifies the location of the storage area that contains the
user 1/0 control block (UIOCB) used for the conversation.

user-if/o-control-block
Either a register containingthe address or the symbolic name of the area.

Note: For more information about the user /0 control block, see Systems Network
Architecture Considerations (SNA).

LTEADDR=

(SNA only); specifies the address of the logical terminal element (LTE) of the remote
taskinthe conversation.

Ite-address

Either a register containingthe address or the symbolic name of the area.

356 DML Reference Guide for Assembler

#TREQ

OPTNS=(treq-option)

Specifies several options applicableto the inputor output operation. Multiple
values must be enclosed in parentheses and separated by commas.

The BUFFER, MODIFIED, and POSITION options specify special purposeread
operations for 3270 devices. They should not be confused with normal READ/GET
requests that read modified fields when the operator presses the ENTER key ora
special function key.

ABEND (SNA WRITE only)

Notifies the remote system that the taskis terminatingabnormally and thatthe
conversation has ended.

ANY/CONN/IMM (SNA ALLOC only)
Specifies the type of sessionto be established:

m ANY (default) specifies thatthe system allocatea sessionin the following
order:

1. A sessionthatis immediately available and currently unused

2. A sessionthatis disconnected; thatis, the session has notyet been
established

3. Asessionthatis busy; thatis, the sessionisestablishedandis allocated to
another task

If neither animmediately availablenor a disconnected sessionisavailable, the
system waits for a busy session to become available.

m CONN requests the system not to waitfor a busy session. The system first
attempts to allocateanimmediately availablesession, then a disconnected
session.

m IMM specifies thatonlyimmediately availablesessionsareacceptablefor the
allocationrequest.

BUFFER

(GET and READ with 3270 devices only) Indicates thatthe data will betransmitted
to programstorage automatically. BUFFER requests that the system execute an
immediate READ BUFFER command; this reads the entire contents of the 3270
terminal buffer into the program storage specified by INAREA and MAXIN.

CHNCONT

(SNA non-LU6.2 PUT, PUTGET, WRITE, and WRITREAD only) Specifies that the user
taskis providing a chain of outbound messages, and that the current sTREQ output
request is notthe lastmessageinthe chain. Omitting OPTNS=CHNCONT after it has
been specified once indicates thatthe current message is the final chain element.

Chapter 5: Data Manipulation Language Statements 357

#TREQ

CONFIRM

(SNA PUT, PUTGET, WRITE, and WRITREAD only) Sends a confirmationrequest to a
remote SNA logical unit. For example, when your program specifies #TREQ
WRITE,OPTNS=CONFIRM, the system requests that the remote logical unitconfirm
that the request has been sent.

CONFIRMED
(SNA WRITE and PUT only) Sends a positiveresponseto a confirmation request.
EOT

(PUT or WRITE to 3741 or 3780 bisynchronous batch terminals only) Specifies that
there is no more data to follow.

ERASUNPR

(PUT, PUTGET, WRITE, and WRITREAD with 3270 devices only) Causes the system to
activatethe erase-all-unprotected mechanism. Because no datais transferred for
an ERASUNPR request, use of this option implies that OUTLEN=0; no output data
need be defined with the OUTAREA parameter described above.

ERROR

(SNA WRITE and PUT only) Allows a task to send a negative response to a remote
logical unit, or to reject a confirmation request that was found unacceptable. Do
not usethe ERROR optionifthe CONFIRMED option is specified.

FREEBUF

(PUT, PUTGET, WRITE, and WRITREAD only) Frees the storagearea that contains the
output data stream. The buffer area being freed must have been acquired by a
HGETSTG statement or the LOCATE option of a previouslyissuedinput request.

If FREEBUF is not specified, the system does not releasethe output buffers
associated with the output request until the issuingtask terminates. When the task
is terminated, all storageacquired by a #GETSTG or a LOCATE will be released.

INFMHY/INFMHN

(SNA non-LU6.2 GET, READ, PUTGET and WRITREAD only) Specifies whether a
function management header (FMH) is passed to the program:

m INFMHY indicates thatall FMHs onthe inbound message are passed to the
program.

m INFMHN requests that the system remove any FMHs before the data is passed
to the program.

INVITE

(SNA WRITE, PUT, WRITREAD, and PUTGET) Allows a taskto specify a change of
direction from the send to the receive state.

LAST

(SNA WRITE and PUT only) Ends a conversation between two logical units.

358 DML Reference Guide for Assembler

#TREQ

LL/NOCHASM

(SNA GET, PUTGET, READ, WRITREAD only) Specifies the format of the data to be
input to the program:

m LLindicates whether a generalized data stream (GDS) header is to be removed
froman LU6.2 data record before itis received by a conversation.Fora
mapped conversation, LL specifies thatone LU6.2 data record is received with
the GDS header removed. For an unmapped conversation, LL specifies thatone
LU6.2 data record is received, without GDS removal.

m NOCHASM (SNA GET, PUTGET, READ, and WRITREAD only; not allowed for
LU6.2 mapped conversations) specifies thatinbound chains ina conversation
are passed to the user task individually. The chains arepassed a singlechain
element at a time, without assemblingthe entire chainintoa buffer. A single
chain element consists of one SNA request unit (RU).

LOCATE

(GET, PUTGET, READ, and WRITREAD only) Allocates a buffer area for the data being
read intothe program, rather than a user-specified area. The DC/UCF system
allocates the buffer when the read operationis completed. Register 1 contains the
address of the buffer that will contain the inputdata on completion of the input
operation. The issuing programis responsible for using a #FREESTG to free the
buffer area.

When this optionis requested, do not specify INAREA and MAXIN.

MODIFIED

(GET and READ with 3270 devices only) Indicates thatthe data will betransmitted
to programstorage automatically, withoutwaiting for a signal of completion of data
entry from the terminal operator. MODIFIED requests that the system read all
modified fields inthe 3270 terminal buffer into the program storage specified by
INAREA and MAXIN.

NEWPAGE

(PUT, PUTGET, WRITE, and WRITREAD with SYSINOUT or 3270 devices only)
Requests that the system activatethe page-eject (SYSINOUT) or erase-write (3270)
mechanismto erasethe contents of a screen. If NEWPAGE is not specified, the
HTREQ request will write over any existingscreen display withoutfirsterasingit.

NOCR

(PUT, PUTGET, WRITE, and WRITREAD with teletype terminals only) Specifies that
carriage-control and line-feed characters should notbe automatically appended to
anoutput data stream.

OUTFMHY/OUTFMHN

(SNA non-LU6.2 PUT, PUTGET, WRITE, and WRITREAD only) Specifies whether a
function management header (FMH) has been included in the beginning of the
write buffer:

Chapter 5: Data Manipulation Language Statements 359

#TREQ

m OUTFMHY indicates thatan FMH has been provided. The FMH overrides the
default defined at system generation.

m OUTFMHN indicates thatno FMH has been added to the outbound message.

POSITION

(GET and READ with 3270 devices only), used in conjunction with the BUFFER or
MODIFIED options, indicates thatthe FROMPOS parameter, described below, will
specify the position atwhich the read buffer contents will begin.

UPPER

(GET, PUTGET, READ, and WRITREAD only); Directs the system to translateall
letters inan inputdata stream into uppercasecharacters.

SAVE

(PUT and WRITE non-write-direct-to-terminal only) Directs the system to preserve
the output from the #TREQ request inthe event that anunsolicited
write-direct-to-terminal data stream is received atthe issuingterminal whilethe
HTREQ data streamis being displayed. This option overrides the task SAVE/NOSAVE
option specified during system generation.

SIGNAL

(SNA WRITE and PUT only) Requests a change of direction from the receive to the
send state. SIGNAL is used with the SENSE parameter, discussed below.

TRANSPAR

(PUT or WRITE to 3741 or 3780 bisynchronous batch terminals only) Specifies that
the output may containlinecontrol characters and mustbe written with a
transparentwrite operation.

UPLOW

(GET, PUTGET, READ, and WRITREAD only) Specifies that no uppercasetranslation
of charactersinaninputdata streamis performed.

UPPER

(GET, PUTGET, READ, and WRITREAD only) Directs the system to translateall letters
inaninput data stream into uppercasecharacters.

WAIT/NOWAIT

(SNA ALLOC only) Specifies whether the allocationrequestis synchronous or
asynchronous:

m WAIT (default) indicates thatthe allocation requestis synchronous.

m NOWAIT indicates thatthe allocation requestis asynchronous. After specifying
H#TREQ ALLOC with OPTNS=NOWAIT, you must code a #TREQ CHECK request
before any other 1/0 requests areissued. The NOWAIT option cannot be
specified with OPTNS=ANY.

360 DML Reference Guide for Assembler

#TREQ

SENSE=

(SNA WRITE and PUT only); specifies a sensecode that describes errors thatthe
system encounters in conversation processing.

snha-sense-code

Either a register containingthe sensecode or a 4-byte hexadecimal valueenclosed
inquotation marks.Sense codes supported by the system arelisted in Systems
Network Architecture Considerations (SNA).

LTERMID=

(ALLOC only); identifies the logical terminal element (LTE) of a remote logical unitin
an SNA conversation, or a write-direct-to-terminal destination for a non-SNA #TREQ
request.

logical-terminal-element-name

Either a register pointingto the area containingthe LTE or the name of a
user-supplied variabledata field thatholds the address.

LOGDATA=

(SNA LU6.2 WRITE only); specifies the address of a data buffer containing data that
will besent alongwith errorinformation to the remote task.

log-data-address

Either a register containingthe address of the data buffer or a user-defined variable
field. When LOGDATA is specified, you must code the OUTLEN parameter to
indicatethe length of the data being sent.

FROMPOS=

(#TREQ GET and READ requests with 3270 devices; BUFFER or MODIFIED options
only); specifies the 2-character EBCDIC buffer address atwhich the read will start.

screen-position

Either the symbolic name of a user-defined fixed binary field thatcontains the
buffer address or the address itself enclosed in quotation marks.

DESTID/USERID/LTERMID

(PUT and WRITE only); specifies thedestination of a write-direct-to-terminal
request.

DESTID=

Specifies a write-direct-to-terminal request (blast) to one of the following
destinations defined during system generation:

m List of logical terminals indicates thatthe system will send the #TREQ data
stream specified inthe OUTAREA parameter to all availableterminalsinthelist

Chapter 5: Data Manipulation Language Statements 361

#TREQ

m List of users indicates thatthe system will send the #TREQ data stream
specifiedinthe OUTAREA parameter to all usersinthelistwho arecurrently
signed on the system.

destination-id

A register that points to the destinationid, the symbolic name of a user-defined
field that contains the destinationid, or the iditselfenclosed in quotation marks.

Each destination should refer to terminal devices of the same type to ensure
compatibility with program-supplied device control information. Ifa #TREQ blast
request is routed to an incompatibledevicetype, the system will rejectthe request
andreturn control to the issuing program.

USERID=

Specifies a blastrequest to a specific signed-on user.The DC/UCF system will send
the #TREQ data stream specified in the OUTAREA parameter to a specific signed-on
user.

user-id

A register that points to the user id, the symbolic name of a user-defined field that
contains the userid, or the iditselfenclosed in quotation marks.

LTERMID=

Specifies a blastrequest to a specificin-serviceterminal.The DC/UCF system will
send the #TREQ data stream specified inthe OUTAREA parameter to a specific
in-serviceterminal.

logical-terminal-id

A register that points to the logical terminal id, thesymbolic name of a user-defined
field that contains the logical terminal id, or the id itselfenclosed in quotation
marks.

COND=

Specifies whether the #TREQ is conditional and under what conditions control
should be returned to the issuing program:

NO
(Default); specifies thatthe requestis not conditional.
ALL

Specifies that the request is conditional. Control is returned if the request cannotbe
serviced for any of the reasons listed under condition.

362 DML Reference Guide for Assembler

#TREQ

condition

Can be any of the following options. Multiple options mustbe enclosedin
parentheses and separated by commas. Condition options areas follows:

m ATTIN (PUT, PUTGET, or CHECK)—The I/O operation is interrupted by the
terminal operator pressing ATTENTION or BREAK.

m DISC (PUT, GET, PUTGET, or CHECK)—The dial-uplineis disconnected or the
terminal goes out of service.

m INVP—There isaninvalid parameter in the TRB.

m LOGL (PUT, PUTGET, or CHECK)—A logical erroris encountered in the output
data stream.

m PERM (PUT, GET, PUTGET, or CHECK)—A permanent |/O error occurs during
processing.

m TRUN (GET, PUTGET, or CHECK)—The data has been truncated due to
insufficientstoragein the specified INAREA.

m UNDF—Control is returned if an undefined DESTID or LTERMID is specifiedina
H#TREQ blastrequest.

The following parameters represent routines to which control is returned as a result
of one of the preceding conditions:

ATTNXIT=attention-key-label

Specifies the symbolic name of the routine to which control should be returned if
the output is interrupted by the terminal operator.

DISCXIT=terminal-disconnected-label

Specifies the symbolic name of the routine to which control should be returned if
the terminalis disconnected or the terminal goes out of service.

INVPXIT=invalid-trb-information-label

Specifies the symbolic name of the routine to which control should be returned if
the #TREQ cannot be serviced because of aninvalid parameter inthe TRB.

LOGLXIT=logical-output-error-label

Specifies the symbolic name of the routine to which control should be returned ifa
logical erroris detected in the output data stream.

PERMXIT=permanent-i/o-error-label

Specifies the symbolic name of the routine to which control should be returned ifa
permanent |/O error occurs.

TRUNXIT=truncate-input-data-label

Specifies the symbolic name of the routine to which control should be returned if
input datais truncated due to insufficientstorageinthe INAREA buffer.

Chapter 5: Data Manipulation Language Statements 363

#TREQ

UNDFXIT=invalid-destid-Itermid-lab el

Specifies the symbolic name of the routine to which control should be returned if
anundefined DESTID or LTERMID is specified ina #TREQ PUT or WRITE blast
request.

ERROR=error-label

Specifies the symbolic name of the routine to which control should be returned ifa
condition specifiedinthe COND parameter occurs for which no other exit routine
was coded.

Examples
The followingexamples illustrate howto use the #TREQ statement.

The following #TREQ ALLOC statement allocates a session between your LU and a
remote LU that is identified inthe user 1/0 control block. OPTNS=ANY specifies thatthe
system will attempt to assigna currently unused sessionfirst;if oneis notavailableit
will attempt to assign a sessionthathas not yet been established. If neither of these
sessiontypes is possible, the system will waitfor a busy session to become available.
OPTNS=WAIT indicates synchronous processing. COND=ALL specifies thatcontrol is
returned to the programrequest cannot be serviced due to any terminating conditions.

#TREQ ALLOC,UIOCBA=(R3),0PTNS=(ANY,WAIT),COND=ALL

The following #TREQ DISC statement terminates a session between your LU and the
remote LU identified by the LTE address containedinregister 8.

#TREQ DISC,LTEADDR=(R8)

The following #TREQ GET statement transfers data from a terminal to programvariable
storage after the terminal operator presses the ENTER key. #TREQ GET indicates
synchronous data transfer. SYSPLIST is the symbolic name of the storage area in which
the system builds the TRB. Input read from the terminal is moved to INPROGO02; the
maximum length of the input datais 40 bytes.

#TREQ GET,MF=R,TRB=SYSPLIST, INAREA=INPROGO2,MAXIN=40

The following #TREQ PUT statement issues a write-direct-to-terminal request. The blast
request transfers the 50 byte output data stream in OUTPGMS directlyto all usersinthe
currently signed-on users in DEST09.

364 DML Reference Guide for Assembler

#TREQ

#TREQ PUT,TRB=SYSPLIST, OUTAREA=QUTPGM9, OUTLEN=50, DESTID=DEST09

The following #TREQ PUTGET statement is beingused ina non-LU6.2 SNA conversation
between the system task and a remote 3600 device. The remote LU is identified by the
LTE address in LU3603 because your task may be having more than one conversation at
atime. The data you are sendingis heldin the output buffer OUTQ09, and canbe up to 60
bytes long. If the data returned by the remote LU exceeds the MAXIN specification (60
bytes), the system buffers the data sothat itwill be availableto your next read request.
OUTFMHN requests the system not to add any function management headers to the
output data stream. INFMHN requests that the system remove any incoming FMH from
the data before itis passedtoyour task.

#TREQ PUTGET,OUTAREA=0UTQ9, OUTLEN=60, INAREA=INO9, MAXIN=60, *
LTEADDR=LU3603, OPTNS=(OUTFMHN, INFMHN)

The following execute #TREQ READ statement reads the contents of the buffer INAREA.
The MODIFIED option specifies that modified data is transmitted to program storage
automatically, without waiting until the terminal operator has signaled completion of
data entry. The NEWPAGE option requests that the system erase the contents of the
screen before the new datais readin. Control is returned to the RTNINVP routineif
there is aninvalid parameterinthe TRB.

#TREQ READ,MF=E, TRB=SYSPLIST, INAREA=INAREA, OPTNS=(MODIFIED ,NEWPAGE), *
COND=INVP, INVPXIT=RTNINVP

The following #TREQ WRITE statement requests that the system initiatethe
erase-all-unprotected mechanismfor output. No datais transferred with this request
(OUTLEN=0); no output data has to be defined in OUTAREA.

#TREQ WRITE, OUTAREA=OUTPGM9, 0PTNS=(ERASUNPR)

The following #TREQ WRITREAD statement sends the output data stream inthe buffer
OUTPGMO8 to the terminal.FREEBUF releases the contents of OUTPGMO08 after the
WRITREAD request has been completed. OUTPGMO08 must have been previously
acquired by a #GETSTG statement or the LOCATE option of a previouslyissuedinput
request. Data is sent from the terminal to the INPGMOS8 buffer.

#TREQ WRITREAD, TRB=SYSPLIST,OUTAREA=OUTPG108, OUTLEN=60, *
INAREA=INPGMO8, INLEN=60, OPTNS=FREEBUF

The following #TREQ UIOCB statement assigns a user |/O control blocktoan SNA
conversationstarted by a remote task. The address of the UIOCB is inregister 8.

#TREQ UIOCB,UIOCBA=(R8)
Status Codes

Upon successful completion of certain #TREQ requests, three registers contain
information aboutthe outcome of the request:

Chapter 5: Data Manipulation Language Statements 365

#TREQ

m Register 0 contains the actual number of terminals to which the data stream has
been routed for a blastrequest (PUT or WRITE).

m Register 1 contains information related to the type of request:

— For asynchronous requests, Register 1 contains the address of the ECB that will
be posted by the system on completion of the |/O operation.

— For LOCATE requests and after asynchronous CHECK requests, register 1
contains the address of the buffer into which the inputdata has been placed.

m Register n contains the actual length of returned data for aninput operation (GET,
PUTGET, READ, or WRITREAD). The register number n is assigned by the INLEN
parameter.

By default, the #TREQ request is unconditional;any runtime error will resultinanabend
of the issuingtask. The issuing programcan request return of control with the COND
parameter to avoidanabend.

After completion of the #TREQ, the valueinregister 15 indicates the outcome of the
operation. The followingis a list of the Register 15 values and the corresponding
meaning:

X'o0’
The request has been serviced successfully.
X'o4'
For a GET, PUTGET, or CHECK request, the inputarea specified for the return of

data to the issuing programis too small;the returned data has been truncated to fit
the availablespace.

X'o8'
For a GET, PUTGET, or CHECK request, the output has been interrupted; the
terminal operator has pressed ATTENTION or BREAK.

x'ocC'

For a GET, PUTGET, or CHECK request, a logical error (for example, an invalid
control character) has been encountered in the output data stream.

X'10'
For a GET, PUT, PUTGET, or CHECK request, a permanent I/O error has occurred
during processing.

X'14'
For a GET, PUT, PUTGET, or CHECK request, the dial-up linefor the terminal has
been disconnected.

X'18'

For a GET, PUT, PUTGET, or CHECK request, the terminal associated with the issuing
taskis out of service.

366 DML Reference Guide for Assembler

#TREQ

List #TREQ

X'ic'
For a GET, PUTGET, or CHECK request, the terminal is closed, or was never opened.
X'20'

The TRB contains aninvalidfield, indicatinga possibleerrorinthe program
parameters.

X'24'

For a PUT or WRITE request, the requested logicalterminal id or listof logical
terminals or users identified by LTERMID, USERID, or DESTID cannotbe found.

Usingthe list#TREQ you can build a terminal request block (TRB) inthe data definition
section of program storage, and assign constantvalues. After you have issued one list
H#TREQ statement, subsequent execute #TREQ statements override onlythe fields inthe
named TRB that need to be updated.

The TRB is identified by the list #TREQ /abel. This label is referenced by the TRB
parameter insubsequent execute requests.

Inthe list#TREQ, onlythe label and the MF parameter arerequired; all other
parameters should be specified only when required to predefine TRB parameter values.

Ina list#TREQ request, parameter values cannot be specified by usingregister notation.
The list#TREQ syntax presented here shows onlythose parameters that areaffected by
this restriction. Syntax for the list#TREQ statement is shown below:

Syntax

Pb'ﬁ— #TREQ —— ALLOC

label — CHECK —
— DISC
— GET
— PUT
— PUTGET —
— READ
— UIOCB —
— WRITE —
— WRITREAD —

v

—— MF=L

v

v

T on-pointer
,OUTAREA=output-data-location-pointer

v

L ,OUTLEN=output-data-length-register]

Chapter 5: Data Manipulation Language Statements 367

#TREQ

L , INAREA=7nput-data-location-pointer]

v

L ,MAXIN=7nput-data-max-length-register]

v

L ,UIOCBA=user-i/o-control-block |

v

L ,LTEADDR=1te-address J

v

L ,SENSE=sna-sense-code |

v

L ,LOGDATA=[og-data-address -

v

g ,DESTID=destination-id-pointer
,USERID=user-id-pointer ————————
,LTERMID=Iogical-terminal-id-pointer —

Parameters

ALLOC/CHECK/DISC/GET/PUT/PUTGET/READ/ UIOCB/WRITE/WRITREAD
Specifies the type of #TREQ statement.

MF=L
Specifies a list #TREQ.

Each parameter (other than MF=L) functions identically to the corresponding
parameter inthe regularand execute forms of #TREQ statements, described
previously.

For example, the value specified for OUTAREA must be a symbolic name of a
user-defined area, whereas inthe regular and execute forms it could be either a
register that points to the area or the symbolic name of the area.

)4

368 DML Reference Guide for Assembler

#TRNSTAT

#HTRNSTAT

The #TRNSTAT statement enables your programto access transaction statisticsabout
task-related activities. The system allocates a block of storage, called a transaction
statistics block (TSB), in which to accumulatethese statistics.

Three versions of the #TRNSTAT statement collectand write transaction statistics:

m #TRNSTAT TYPE=BIND starts recordingtransaction statistics for the requestor's
logical terminal.

m HTRNSTAT TYPE=ACCEPT copies transaction statistics fromthe TSB and places them
inastorage area associated with the issuingtaskand/or writes them to the DC/UCF
logfile.

m H#TRNSTAT TYPE=END stops collectingtransaction statistics for the requestor's
logical terminal and optionally writes the statisticsto a storage area associated with
the issuingtaskand/or to the DC/UCF log file.

Note: Do not attempt to collecttransaction statistics usingthe #TRNSTAT statement if
your Assembler programis a subroutineto a CA ADS dial og.

For more information aboutthe transaction statistics block (TSB), see the DSECT
Reference Guide.

Syntax
»»—H#TRNSTAT TYPE= BIND >
ACCERT L LElsla?:ﬁl — parm-value —
Fo L LEISIg%Ei —— parm-value —
»—FPLIST= —L—(SYSPLIST)] >

parm-value-list-pointer

»

v

L ,RECORD=record-name-register —'

v

L ,ID=identifier-name-register]

"T Taske — vEs <
’ LT no __—|_|
g E— YES:IJ
’ T NO

L ,COND= NO €« ——
(= DEAD)—

E SBNF

INVP

NOTR

L DEADXIT=deadlock-label —

v

v

L
v

v

Chapter 5: Data Manipulation Language Statements 369

#TRNSTAT

v

L ,SBNFXIT=statistics-block-not-found-label —i

v

L ,INVPXIT=invalid-parameter-list-label i

v

L ,NOTRXIT=no-transaction-statistics-allowed-1label —'

X

L ,ERROR=error-1label l

Parameters
TYPE=

Specifies the type of transaction statistics activity.
BIND

Defines the beginning of a transaction for the purposes of collectingtransaction
statistics. The system allocates a block of storageto collectthese statistics. Because
this blockis owned by the logical terminal associated with the current task, the
H#TRNSTAT=BIND canonlybe used with terminal tasks.

Note: Ifa terminal statistics block (TSB) is already allocated for the logical terminal
associated with the current task, the BIND request writes any existing statistics to
the log and clears the TSB for new statistics.

When a #TRNSTAT TYPE=BIND request is issued, the system assigns thetransaction
a 40-characteridentifier. The first32 characters arethe identifier of the signed-on
user, ifany. The last8 characters arethe identifier of the logical terminal associated
with the current task.

ACCEPT

Requests that the system return the contents of the TSB to a preallocated location
inprogram storageand/or write the block to the DC/UCF logfile by the WRITE
option described below. The system does not delete the contents of the TSB as a
resultof the ACCEPT option; transaction statistics can accumulate between
HTRNSTAT statements where the ACCEPT optionis specified. To prevent the
program from altering the contents of the TSB and to ensure integrity of the data,
the system returns a copy of the TSB to the program.

LENGTH (parm-value)

Specifies the length of the TSB to be returned. Can be specifiedas avalue,
register or storage area.

Default: 388

370 DML Reference Guide for Assembler

#TRNSTAT

END

Ends the transaction and frees the TSB. The system ends the transaction when the
taskissuing the #sTRNSTAT TYPE=END request terminates. Optionally, END can write
the TSB to a preallocated locationin programstorage by usingthe RECORD option
described below. To prevent the programfrom alteringthe contents of the TSB and
to ensure integrity of the data, the system returns a copy of the TSB to the
program.

LENGTH (parm-value)

Specifies the length of the TSB to be returned. Can be specified as a value,
register or storage area.

Default: 388
PLIST (parm-value-list-pointer)

Specifies the location of the storagearea where he system builds the 5 TRNSTAT
parameter list.

RECORD=

(HTRNSTAT TYPE=ACCEPT or END requests only);specifies the location of the
storage area into which the system places the TSB.

record-name-register

A register that contains the location of the area, the symbolic name of the area, or
anabsoluteexpression.

ID=

(for HTRNSTAT TYPE=BIND requests only) Specifies the location of a storage area
that contains an 8-byte identifier to be placed inthe Transaction Statistics Block.

identifier-name-register

Specifies a register that contains the location of the identifier,a symbolic name of
the identifier's location, or an absolute expression.

TASK=

(for HTRNSTAT TYPE=BIND or END requests only) Specifies the actionthatis taken
relativeto the current task.

YES

(Default)

(for #TRNSTAT TYPE=BIND requests only) Specifies that the collection of statistics
starts atthe beginning of the current task.

(for HTRNSTAT TYPE=END requests only) Specifies that if statisticsare being written
to the DC/UCF logfile, they arewritten at the end of the current task.

Chapter 5: Data Manipulation Language Statements 371

#TRNSTAT

NO

(for HTRNSTAT TYPE=BIND requests only) Specifies that the collection of statistics
starts atthe time of the execution of the #TRNSTAT macro.

(for HTRNSTAT TYPE=END requests only) Specifies thatif statisticsarebeingwritten
to the DC/UCF logfile, they arewritten immediately.

WRITE=

(for #TRNSTAT TYPE=ACCEPT or END requests only) Specifies that the system writes
the contents of the TSB to the DC/UCF logfile.

YES

(Default) Specifies that the system writes the TSB to the log file.
NO

Specifies that the system does not write the TSB to the logfile.
COND=

Specifies whether the #TRNSTAT request is conditionaland under what error
conditions control should bereturned to the issuing program.

NO
(Default); specifies thatthe requestis not conditional.

ALL

Specifies that control is returned to your program if the #sTRNSTAT request cannot
be serviced for any of the reasons described under condition.

condition

Specifies one or more conditions under which the system returns control to the
issuing program. Multiple conditions mustbe enclosed in parentheses

and separated by commas. The followingoptions can be specified:

m DEAD (TYPE=BIND only)specifies thatstorage for the TSB is notavailable;
waitingwould causea deadlock.

m SBNF specifies thata TSB for the user terminal cannot be found for a #sTRNSTAT
TYPE=ACCEPT or END request. This conditionis probably dueto a #TRNSTAT
BIND not havingbeen issued.

m INVP specifies thatthe requested taskis not associated with a logical terminal
or that the request is invalid.

372 DML Reference Guide for Assembler

#TRNSTAT

m NOTR specifies thattransaction statistics or task statistics arenotenabled in
the DC/UCF system.

DEADXIT=deadlock-label

Specifies the symbolic name of a routineto which the system returns control if
storage for the TSB is not available,and waiting would causea deadlock.

SBNFXIT=statistics-block-not-found-label

Specifies the symbolic name of a routineto which the system returns control ifa
TSB for the terminal cannotbe found for a #TRNSTAT TYPE=ACCEPT or END request.

INVPXIT=invalid-parameter-list-label

Specifies the symbolic name of the routine to which the system returns control
when the requested taskis not associated with a logical terminal or when the
request isinvalid.

NOTRXIT=no-transaction-statistics-allowed-label

Specifies the symbolic name of a routineto which the system returns control when
transaction statistics or task statistics arenotenabled in the DC/UCF system.

ERROR=error-label

Specifies the symbolic name of a routineto which the system returns control ifa
condition specified inthe COND parameter occurs for which no other exit routine
was coded.

Example

The #TRNSTAT statement shown below requests that the system return the contents of
the TSB to TSBAREA inprogramvariablestorageandto write the blockto the DC/UCF
logfile. Control is returned to the program ifthis request would resultina deadlockorif
the TSB cannot be found.

Chapter 5: Data Manipulation Language Statements 373

#WALT

H#FWAIT

#TRNSTAT TYPE=ACCEPT , RECORD=TSBAREA,WRITE=YES, COND=(SBNF,DEAD)
Status Codes

By default, the #TRNSTAT statement is unconditional;anyruntime error will resultinan
abend of the issuingtask.

After completion of the #TRNSTAT request, the value inregister 15 indicates the
outcome of the operation. The followingis a listof Register 15 values and the
corresponding meaning:

X'00'

The request has been serviced successfully. For TYPE=BIND only, an existing TSB has
been written to the DC/UCF log.

X'o4'
The request has been serviced;a new TSB has been allocated (TYPE=BIND only).
X'08'
Storage forthe TSB is not availableand waitingwould causea deadlock (TYPE=BIND
only).
X'oc'
No TSB exists;a #TRNSTAT TYPE=BIND request has not been issued (TYPE=ACCEPT
or END only).

X'10'
The taskissuingthe sTRNSTAT request is not associated with a logical terminal or
the request is invalid.

X'14'
The collection of task statistics or transaction statistics was notenabled during
system generation.

The #WAIT statement relinquishes control to the system. Control is relinquished for one
of the followingreasons:

m To waitfor the completion of one or more events

m To give other higher priority ready-to-runtasks a chanceto be dispatched by the
system.

Ifa taskrelinquishes control to await completion of an event, an event control block
(ECB) must be defined for each event for which the taskis waiting.1fan ECB is already
posted when the #WAIT isissued, the taskis redispatched immediately and control does
not pass to another task.

374 DML Reference Guide for Assembler

#FWALT

An ECB is a binary three-fullword field used to indicatethe status of an event. Ifthe ECB
contains zeros, the event is not complete or has not been posted. Ifthe ECB contains a
nonzero value, the event has been posted. The ECB field can be allocated explicitly by
individual programs or implicitly by the system:

m Program allocation—A three-fullword storage area must be defined in the variable
storage of the associated programs. Programs usingthe ECB fieldareresponsible
for establishing addressability to the ECB as well as indicating the status of the
event.

m DC/UCF system allocation — The three-fullword field associated with the ECB is
allocated by the system. To wait on an event, the program specifies the 4-character
ECB ID. The system associates the ECB ID with a fullword field and automatically
sets the status of the ECB field.

Syntax
”‘—'ﬁ_ H#WALT >
label
L tvpe= — LonG
—E SHORT
HICCUP
- L , ECB=ecb-pointer .
ECBID=ecb-id-register
ECBLIST=ecb-17ist-pointer
~ L cono= — No < g
ALL
INACT
DEAD

v

" L DEADXIT=deadlock- 1abel —

v

»
L INACTXIT=7nactive-1abel —

)

L ,ERROR=error-1abel i

Parameters
TYPE=

Specifies whether the taskis relinquishing control to awaitthe completion of an
event, or is giving other tasks the chance to be dispatched.

LONG=/SHORT=

TYPE=LONG and TYPE=SHORT have been obsolete since 10.2 releases of CA IDMS
but are allowed to be specified for downward compatibility with existing client
sourcecode. Specifying TYPE=LONG or TYPE=SHORT will resultinanassembler
NOTE as follows:

"NOTE: TYPE=SHORT IS NO LONGER MEANINGFUL. IT WILL BE IGNORED."

Chapter 5: Data Manipulation Language Statements 375

#WALT

"NOTE: TYPE=LONG ISNO LONGER MEANINGFUL. IT WILL BE IGNORED."
HICCuP

Relinquishes control to another ready-to-run task before being dispatched. HICCUP

requests do not require an ECB.

ECB=ecb-pointer

Defines the ECB for which the task will wait. Ecb-pointer is a register that points to

the user-defined three-fullword field that contains the ECB or the symbolic name of

the ECB field.

ECBID=ecb-id-register

Specifies the 4-character ID of a previously defined ECB for which the task will wait.

Ecb-id-register is a register that contains the ECB ID, the symbolic name of a

fullword field that contains the ECB ID, or the ID literal enclosed in quotation marks.

ECBLIST=ecb-list-pointer

Specifies that the waitis for more than one event. Each event in the listis
represented by a pair of fullwords:

m The firstfullwordis a pointer to the ECB associated with the event

m The second fullwordis zeros

Note: To identify the end of the list, the high-order bit of the lastfullwordinthe
parameter listmustbe turned on.

Ecb-list-pointer is aregister that points to the listor the user-defined symbolic
name of the fullword area containingthe list of ECBs.

COND=

Specifies whether this #WAIT request is conditional and under what condition
control should be returned to the issuingprogram.

NO
(Default); specifies thatthe requestis not conditional.

ALL
Specifies that the request is conditional. Control is returned to the requesting
program ifthe waitcannot be serviced for any reason.

INACT
Specifies that the request is conditional. Control is returned to the requesting
program ifthe waitresulted ina task exceeded the STALL INTERVAL.

DEAD

Specifies that the request is conditional. Control is returned if waiting for the
specified ECBs would causea deadlock.

376 DML Reference Guide for Assembler

#FWALT

DEADXIT=deadlock-label

Specifies the symbolic name of the routine to which control should be returned if
waiting for the specified ECBs would causea deadlock.

INACTXIT=inactive-label

Specifies the symbolic name of the routine to which control should be returned if
waiting for the specified ECBs would causethe taskto surpassthe STALL INTERVAL.

ERROR=error-label

Specifies the symbolic name of the routine to which control is returned ifa
condition specifiedinthe COND parameter occurs for which no other exit routine
was coded. Inthis case, the ERROR parameter functions the same as DEADXIT.

Example

The #WAIT statement shown below passes control to the system whilewaiting for
terminal input. Processingis suspended until the ECB for the taskis posted, indicating
that the terminal input operationis completed. If this #WAIT request would causea
deadlock, control is returned to the LOCKRTN9 routine.

#WAIT ECB=ECB 9, COND=DEAD,DEADXIT=LOCKRTNO
Status Codes

By default, the #WAIT request is unconditional;any runtime error results inan abend of
the issuingtask.

After completion of the #WAIT request, the valueinregister 15 indicates the outcome
of the operation. The followingis a listof Register 15 values and the corresponding
meaning:

X'00'
The request has been serviced successfully.
X'08'

The request cannotbe serviced becauseto waitfor the specified ECBs would cause
a deadlock.

X'12'

The request cannotbe serviced becausethe taskstalled waiting for the specified
ECBs.

Chapter 5: Data Manipulation Language Statements 377

#FWTL

H#WTL

The #WTL (write to log) statement performs the following functions:
m Retrieves a predefined message from the message area of the dictionary
m Sends the message to selected destinations

m Optionallywrites the message to a specified locationin programstorage

Messages are stored inthe message area of the dictionary. Each message inthe
dictionary consists of the message text and the message destination. Typical
destinations arethe operator consoleand the DC/UCF logfile. Messages are defined in
the dictionary by usingthe IDD DDDL compiler.

Note: For more information about the IDD DDDL compiler, see the IDD DDDL Reference.

The message text canbe dynamically changed by your program usingsymbolic
parameters. You canalsooptionally requestthe system not to retrieve the message but
to send only the message ID and symbolic parameter replacement values to the
selected destinations.

The message ID specifiedina #WTL statement is a 7-digitnumber. The firstsix digits
containthe message identifier used to retrieve the message from the dictionary.The
seventh digitis a severity code. When the programrequests that the system retrieve the
message from the dictionary (MSGDICT=YES), a predefined severity code is retrieved
alongwith the message text.

When the dictionarylookupis bypassed (MSGDICT=NO), the system uses the severity
code specifiedinthe program. The severity level determines the actionthe system takes
after the message is written to the log.

The dictionary severity may be overridden by usingthe OVRIDES parameter.

The possibleseverity codes and their resulting DC/UCF system responses arelisted
below:

Severity code DC/UCF system action

0 Returns control to the issuing programand continues processing

1 Snaps all taskresources to the logand returns control to the issuing
program

2 Snaps all systemareas to the log and returns control to the issuing
program

3 Snaps all taskresources and abends the task with a taskabend code
of D002

378 DML Reference Guide for Assembler

#WTL

Severity code DC/UCF system action

4 Snaps all systemareas and abends the task with a taskabend code of
D002

5 Abends the task with a task abend code of D002

6 Undefined

7 Undefined

8 Snaps all systemareas and abends the system with a system abend
code of 3996

9 Terminates the system with a system abend code of 3996

Ifa #HWTL statement specifies a message ID thatis notinthe message dictionary, the
systemissues a prototype message with severity level 0. Messages should be defined in
the message dictionary before they are issued by an executing program.

The message text can be dynamically altered by using symbolic parameters. Messages
stored inthe message dictionary can contain symbolic parameters, identified by an
ampersand (&). followed by a 2-digitnumeric identifier. Symbolic parameters can
appearinany order inthe message.

The #WTL statement can specify replacement values for one or more symbolic
parameters by usingthe PARMS operand. The position of replacement values inthe
HWTL request must correspond exactly with the 2-digitnumericidentifierin the
message text. For example, the firstvaluespecified corresponds to &01., the second
&02., and the third &03., as shown inthe example below.

The stored message text reads:

THIS IS TEXT &01. AND &03. OR &02.

The PARMS clausereads:PARMS=('A",'B','C'). The resultingtext would read:

THIS IS TEXT A AND C R B

Ifthe message destinationis theoperator console, the #WTL can optionallyrequesta
reply. An event control block (ECB) can be defined that will permitcontrol to be
returned immediately to the issuingtask withoutwaiting for the reply. The ECB will be
posted by the system when the reply is sent. If no ECB is defined, control is not returned
to the issuingtaskuntil thereply has been received.

Chapter 5: Data Manipulation Language Statements 379

#FWTL

Syntax

*Iﬁ—— #WTL MSGID=message-id-pointer
label

»

v

L = DC’ I
/MSGPREF= —— 'DC' T

v

message-prefix-pointer

- L pList= [SYSPLIST « —_l—J
parameter-1list-pointer

v

L ,MSGDICT= T YES «

v

NO

v

L , PARMS= I_ NO « _]l

T
(—vY— parameter-register —l—)

v

L ,REPLY= NO «
—E (YES, reply-location ——)

,reply-max-length -
(CANCEL , reply-1location)

v

v

L T ECB=ecb-pointer —J_J
ECBID=ecb-id-register

v

|—, RTNTEXT=return-text-location T |
,RTNLEN=return-text-length-pointer

I

L ,OVRIDES=override-address-pointer -

Parameters

MSGID=message-id

Specifies the 7-digitmessage|D thatis stored inthe message dictionary. Message-id
canbe specified as follows:

m Aregisterthat points to the field containing the message ID
m The symbolic name of a user-defined message ID
m A messageIDliteral enclosedin quotation marks

A message ID must be a 4-byte packed decimal field (PL4), formatted as nnnnnnS,
where nnnnnn is the 6-digitIDand S is the severity code. Message-id can specify
any number in the range 900001 through 999999;id numbers 000001 through
900000 arereserved for useby the system.

MSGPREF=DC/messag e-prefix-pointer

Specifies a 2-character alphanumeric prefix to the message ID. The default message
prefixis 'DC".

Note: Itis importantwhen usingthe MSGPREF option that you keep the message ID
withinthe user range of 900001 through 999999. The system uses message prefixes
which could causea conflict with user message prefixes unless this restrictionis
observed.

380 DML Reference Guide for Assembler

#WTL

message-prefix-pointer

A register that points to the prefix, the symbolic name of a user-defined field
containingthe prefix, or the prefix literal enclosed in quotation marks.

PLIST=
Specifies the area in which the system builds the #WTL parameter list.
SYSPLIST

(Default); is the symbolic name of the storagearea in which the system builds the
HWTL parameter list.

parameter-list-pointer

A register that points to the area or the symbolic name of the area in which the
system builds the #WTL parameter list.

If MSGID is the only operand specified on the #/VTL request, you do not need to
specify PLIST. Ifany additional operands areincluded, the followingrules determine
the size of the PLIST:

1+P+X
where the followingconditionsare met:
m Pisthenumber of parameters coded inthe PARMS operand (described below).
m Xisasfollows:
- Atleastl ifeither RTNTEXT or REPLY is specified
- Atleast3 ifOVRIDES is specified
- Atleast4ifECB or ECBID is specified
- Atleast5 if RTNLEN is specified
MSGDICT=
Specifies whether to retrieve the message from the message area of the dictionary.
YES

(Default); requests that the system locatethe predefined message, apply
substitution values,and send the message to the designated destinations.

NO

Requests that the system bypass the dictionary. The system writes a message to the
consoleoperator and logfilethat contains onlythe message IDand any
replacement values specified inthe PARMS parameter.

OVRIDES=

Override the defaultdestination and/or severity code values.

Chapter 5: Data Manipulation Language Statements 381

#FWTL

override-address-pointer

A register that points to the address of the overridevalues or the symbolic name of
the field containingthe override values.

Override values mustbe defined in the following manner:

Bytes Contents

0 X'80'-Destination is the DC log
X'40'-Destination is the console operator
X'20'-Destination is the terminal
operator
X'10'-Destination is the ID of any
terminal
X'08'—0Override the severity with severity
passed in message ID
X'01'-Null override

1-2 Overrides for MVS descriptionin the format OONO, where Nis avalid
MVS descriptor code.

3-4 Overrides for MVS route code inthe format OONO, where N is a valid
MVS route code.

PARMS=

Specifies replacement values for one or more symbolic parameters stored with the
message text.

Note: If the text parameters containanybinary zeroes (x'00'),CA IDMS/DC

automatically changes them to blanks (x'40') after copying the parameters to an
internal work area.

NO

(Default); specifies thatthere are no symbolic parameters to be replaced, or
requests that the system not replaceany of the symbolic parameters.

parameter-register

Requests that the system replacethe specified parameters. Parameter-register is a
register that points to the replacement field, the symbolic nameof a user-defined
replacement field, or the replacement valueliteral enclosed in quotation marks.

When parameter-register is a register or user-defined field, each parameter field
must begin with a 1-byte field from which the system obtains the length of the

adjacentreplacement field. The valueinthe length does notincludethe length
byte.

REPLY=
Performs one of the following functions:

m Specifies that your programexpects a reply to the message being sent

382 DML Reference Guide for Assembler

#WTL

m Cancels apreviouslyissued #WTL request for a replyto a message

The REPLY and RTNTEXT options are mutually exclusive; do not specify both options
on asingle #WTL request. The following options can be specified for the REPLY
parameter:

NO
(Default); specifies thatnoreply is expected.
(YES,reply-location,reply-max-length)

Specifies that areply is expected and should be returned to the area defined by
reply-location and, optionally, reply-max-length.

reply-location

Specifies the location of the area reserved for a reply to the message issued by a
HWTL request. Reply-location is either a register that points to the area or the
symbolic name of that area.

reply-max-length

Specifies the maximum length, in bytes, of the area reserved for the reply.
Reply-max-length is anabsoluteexpression of the area length. If the maximum
length is not specified by usingthe REPLY option, you must indicatethe maximum
length in the second halfword of the reply location.

Note: If YES is specified, the ECB or the ECBID parameters must be included to
identify the ECB to be posted.

When the replyis sent, the reply area will beformatted by the system, as shown

below:

Bytes Contents

0-1 Reserved for system use

2-3 Length of the reply text expressed as a halfword binaryvalue. Ifthe
maximum reply length is not specified, you must set this maximum
length before issuingthe #HWTL request. On completion of the #WTL
request, this field will contain theactual Iength of the text.

4-n Reply text

(CANCEL,reply-location)

Cancels arequest for areply to a previouslyissued #WTL request. Reply-location
specifies the area reserved for a reply to the message. Reply-location is either a
register that points to the area or the symbolic name of the area.

Chapter 5: Data Manipulation Language Statements 383

#FWTL

ECB=

(HWTL requests with REPLY=YES only); identifies the ECB to be posted when the
reply has been sent to its destination. Naming an ECB allows control to return
immediately to the issuingtask withoutwaiting for a reply. The system will postthe
ECB when the reply is sent. [f no ECB is defined, the system does not return control
to the issuingtaskuntil thereply is received.

ECB=

Identifies the ECB thatis posted when the replyis sent.

ecb-pointer

Either a register that points to the fullword ECB or the symbolic name of the ECB.

ECBID=

Identifies the 4-character symbolic ECBthat is posted when the replyis sent.

ecb-id-register

Either a register that contains the ECB ID, the symbolic name of a fullword field that
contains the ECB ID, or the IDliteral enclosed in quotation marks.

RTNTEXT=return-text-location

Specifies the location into which the system places the retrieved message text
identified by message-id. Any replacement values specifiedin the PARMS
parameter areincludedinthe retrieved text.

Ifthe length of the retrieved message text (RTNLEN) is not specified, the firstbyte
of the return text receivingfield must specify the length, in hexadecimal notation,
of the returned string.

return-text-location

Either a register that points to the storage area reserved for the message text or the
symbolic name of a user-defined field reserved for the message text.

Note: The RTNTEXT and REPLY options are mutually exclusive; only one of these
operands can be specifiedina single #WTL request.

RTNLEN=

Indicates the length of the return text receiving field.

return-text-length-pointer

A register that points to the length of the field, a halfword or fullword field
containingthe length of the field, or an absolute expression of the length of the
field enclosed in quotation marks.

If this parameter is included, the first byte of the RTNTEXT receivingfield does not
have to be a length indicator. If the length specifiedis notlarge enough to
accommodate the entire message, register 1 will containthe number of lines that
could not be sent.

384 DML Reference Guide for Assembler

#WTL

Example

The followingfigureillustrates a #WWTL statement that supplies threereplacement
parameters and requests a reply. Program A issues a #WTL request for message 990100
with a prefix DC. The message text and severity are stored inthe message area of the
dictionary.Symbolic parameters arewithin the message text. The program specifies
values to replacethe symbolic parameters &01., &02., and &03. stored inthe message
area of the dictionary along with the message text. The system sends the message to
terminal A, whichis the logicalterminal associated with the issuingtask,and waits fora
reply. The replyis returned to the area specified by REPLY; the length of the reply can be

up to 20 bytes.

ADD MESSAGE NAME IS DC9390100
LINE 1
DESTINATION IS TERMINAL
SEVERITY IS O
MESSAGE IS "FLIGHT &01 FROM
802 TO &03 FULLY BOOKED". IDD DDDL Compiler
DATA
DICTIONARY
N
Flight 599 from | | ME\%%':GE
Chicago to Denver

~_

fully booked

#WTL MSGID =MFIELD,PLIST =WKPLIST,PARMS =(FLIGHT,SOURCE.DEST)

MFIELD DC PL4'9901000
WKPLIST DC
FLIGHT DC
SOURCE DC
DEST DC

Status Codes

The system returns the followingvalues to register 15 duringprocessingofa #WTL
request. Any valuegreater than zero indicates thatthe request was not serviced, and no
HWTL was performed. Register 15 values areas follows:

X'00'
The request has been serviced successfully.
X'o4'

An invalid parameter or combination of parameters has been specified.

Chapter 5: Data Manipulation Language Statements 385

#XCTL

#XCTL

X'o8’

A resourcenecessary for the processingof the request, for example, a resource
control element, is not available.

Xx'oc'
The maximum number of outstandingreplies was exceeded.
X'10'

The length of the return text areais notlargeenough to containthe entire message
text.

The #XCTL statement transfers control and sends an optional parameter listtoa

specified program. Control does not return to the issuing programwhen the specified
program ends.

Syntax

»—ﬁ— #XCTL PGM=program-name-pointer
label

L ,PLIST= T SYSPLIST « —_|—.
parameter-1ist-pointer

T _ I
, PARMS= —E NO « n

(parameter-pointer)

v

v

I

Parameters
PGM=

Specifies the 1-to 8-character name of the program to which control is transferred.
program-name

A register that points to a field that contains the programname, the symbolic name
of a user-defined field that contains the programname, or the program-name
literal enclosed in quotation marks.

PLIST=

Specifies the location of the storagearea that contains oneor more parameters to
be passedto the programreceiving control.

SYSPLIST

(Default); is the symbolic name of the storagearea in which the system builds the
parameter list.

386 DML Reference Guide for Assembler

#XCTL

parameter-list-pointer

Either a register that points to the area in which the system builds the listor the
symbolic name of the area.

The sizeof the parameter-listareais equal to two fullwords plus onefullword for
each parameter listed. Thus, if no parameters are specified (PARMS=NO), the length
of the storage areais two fullwords;if one parameter is specified, the length is
three fullwords.

PARMS=

Specifies whether parameters will be passed to the programreceiving control.
NO

(Default); specifies thatno parameters will be passed to the program.
parameter-pointer

Specifies that parameters will be passed to the program. Parameter-register is
either a register that contains the address of the parameter or the symbolic name
of a user-defined field that contains the parameter.

Example

The #XCTL statement shown below transfers control to the Cloud Airlines flightbooking
program and passes parameters that specify the flight, the city of departure, and the
flight destination.

#XCTL PGM='CLBOOK' ,PARMS=(FLT, DEPART,DEST)

Status Codes

By default, the #XCTL request is unconditional. Error conditionsthatcan occur are
described below:

m A no-space-available-in-program-pool conditionis caused when there is not enough
storage inthe program pool to accommodate the program. The system delays
processinguntil sufficient storage becomes available.|fsuch a waitwould causea
deadlock, the system aborts the program.

® A nonconcurrent-program-in-use conditionis caused when a copy of the programis
alreadyinuseand is marked as nonconcurrent (indicatingthatthis program can be
used by one taskat a time). The system delays processinguntil the program
becomes available.

m Astorage-conflictconditioniscaused when a copy of the previouslyloaded
programis temporarily overlayed whilebeing used by a waitingtask. The system
delays processinguntil the program is replacedinthe program pool.

Chapter 5: Data Manipulation Language Statements 387

Logical Record Clauses

m Any abnormal condition causesthe system to terminate the program abnormally.
Conditions in this categoryinclude:

- Anl/Oerror

- A programnot found inthe PDT (program definition table) or marked
out-of-service

- A wait-on-storage (default action resulting fromthe
no-space-available-in-program-pool condition) would resultin a deadlock

Logical Record Clauses

Logical record clauses areused with any of the four DML statements that access logical
records: @OBTAIN, @MODIFY, @STORE, and @ERASE. The logical record clauses areas
follows:

m WHERE specifies criteriaused to selectlogical-record occurrences or to limitthe
selection of logical-record occurrences

m ON tests for a specific path status returned to indicatethe resultof a logical-record

DML statement

The WHERE and ON clauses areexplainedin this section.

WHERE Clause

Functions of the WHERE Clause

The WHERE clausehas two major functions:

m To direct the program to a predefined path inthe subschema.The pathis defined
by the DBA and is transparentto the application program. Predefined paths allow
the program to access databaserecords withoutissuingspecificinstructions for
navigatingthe database.

m To specify selection criteria to be applied to a logical record. Selection criteria
allowthe program to specify attributes of the desired logical record, reducingthe
need for the program to inspectmultiplelogical record occurrences.

Two Elements in a WHERE Clause

The WHERE clauseis constructed fromtwo elements:

m A positional parameter that contains the key value WHERE

m An Assembler remark that encodes a Boolean expressionthat consists of
comparisons and keywords connected by Boolean operators (AND, OR, and NOT)

388 DML Reference Guide for Assembler

Logical Record Clauses

An Assembler logical record DML statement that contains a WHERE clauseconsists ofan
Assembler macro parameter concatenated with a compiler-level expression. The remark
is resolved by the DML precompiler, not by the assembler. Therefore, programs that
containlogicalrecord DML statements using WHERE clauses must be submitted to the
DML precompiler before assembly.

Coding WHERE

Because the Boolean expressionis treated as an Assembler remark, itcan be written in
a more readableform than conventional Assembler statements. WHERE clauses can
spanseveral lines inan Assembler program. The keyword WHERE must begin in column
16, continuation lines mustbe in column 16 or greater, and are marked by codinga
nonblank characterincolumn 72. Descriptivecomments cannot be on the samelineas
the WHERE clause.

Including Boolean Operators

Individual comparisonsand keywords must be connected by the Boolean operators
AND, OR, and NOT. Parentheses can be usedto clarify a multiple-comparison Boolean
expression or to override preceding operators.

Operatorsina WHERE clauseareevaluated in the followingorder:

1. Comparisons enclosedinparentheses,inorder of precedence within parentheses

2. Arithmetic, comparison,and Boolean operators in order of precedence, from
highest to lowest:

a. Unary plus or minusinanarithmetic expression

b. Multiplication or divisioninan arithmetic expression
c. Additionor subtractioninanarithmetic expression
d. MATCHES or CONTAINS comparison operators

e. EQ, NE, GT, LT, GE, LE comparison operators

f. NOT Boolean operator

g. AND Booleanoperator

h. ORBoolean operator

3. From left to right within operators of equal precedence

Syntax

»»— WHERE T 1L designated-keyword
NOT comparison =/]

| 2
LI
V-

LCxR—T CwrJd L des’g"afed'%—'—]
R NOT comparison

v

M

Chapter 5: Data Manipulation Language Statements 389

Logical Record Clauses

Expansion of comparison

Iiteral
idd-defined-variable-field-name

logical-record-field-name T =T
OF LR

arithmetic-expression

CONTAINS
MATCHES —
A B
T
>

LT T
<

GE
LE

v

v

TAATATI

literal
idd-defined-variable-field-name
logical-record-field-name

M

OF LR

arithmetic-expression

Parameters
dba-designated-keyword/comparison

Specify selection criteria to be applied to the logical record.
dba-designated-keyword

Specifies a keyword that applies tothe named logical record. The DBA has
previously associated this keyword with the named logical record; the keyword
routes the logical-record requestto the appropriate predetermined path inthe
subschema. Dba-designated-keyword canbe no longer than 32 characters.

Note: A path must existto servicea request thatincludes dba-designated-keyword.
If no such path exists, the DML precompilerissues an error message.

comparison

Specifies the comparison operation to be performed, usingthe indicated operands
and operators. Comparison also may direct the logical record requestto a path in
the subschema.

Syntax for comparison contains individual comparisonsand keywords that are
connected by the Boolean operators AND, OR, and NOT. Parentheses can be used
to clarify a multiple-comparison Boolean expression or to overridethe precedence
of operators.

literal/idd-defined-variable-field-name/
logical-record-field-name/arithmetic-expression

Identifies a left or right comparison operand.
literal

Specifies analphanumeric or numeric literal. Alphanumericliterals mustbe
enclosedinsite-standard quotation marks.

390 DML Reference Guide for Assembler

Logical Record Clauses

dd-defined-variable-field-name
Specifies a program variablestoragefield predefined inthe dictionary.
logical-record-field-name

Specifies a data field that participates in the named logical record.
Logical-record-field-name uniquely identifies the named logical-recordfield.

The optional OF LR entry specifies thatthe value of the named field atthe time the
request is issued will beused throughout request processing. If the value of the
field changes duringrequest processing, LRF will continueto use the original value.
Ifthe OF LR entry is not included and the value of the field changes during request
processing, the new field valuein variablestoragewill beused.

arithmetic-expression

Specifies an arithmetic expression designated as a unary minus (-), unary plus (+),
simplearithmetic operation, or compound arithmetic operation. Arithmetic
operators permitted inanarithmetic expressionareplus (+), minus (-), an asterisk
(*), and a slash (/). These arithmetic operators must have a blankon either side.

Operands can be the literals, variablefields, or the logical-record fields described
above.

CONTAINS/MATCHES/EQ/NE/GT/LT/GE/LE
Specifies the comparison operator.
CONTAINS

Is true if the valueof the right operand occurs in the value of the left operand. Both
operands included with the CONTAINS parameter must be alphanumeric values.

MATCHES

Is true if each characterinthe left operand matches a corresponding characterin
the right operand (the mask). LRF compares the left operand with the mask, one
character ata time, moving from left to right.

The resultof the match is either true or false:

m The resultis true if LRF reaches the end of the mask before encountering a

characterinthe left operand that does not match a corresponding mask
character.

m The resultis false if LRF encounters a characterin the left operandthat does
not match a maskcharacter.

Three special characters canbeused inthe maskto perform pattern matching:
m @ matches anyalphabetic character
m # matches any numeric character

m * matches anyalphabetic or numeric character

Chapter 5: Data Manipulation Language Statements 391

Logical Record Clauses

EQ

NE

GT

LT

GE

LE

Both the left operand and the mask must be alphanumericvalues.

Is true if the value of the left operand is equal to the value of the rightoperand.

Is true if the valueof the left operand is not equal to the valueof the right operand.

Is true if the valueof the left operand is greater than the value of the rightoperand.

Is true if the valueof the left operand is less than the value of the rightoperand.

Is true if the valueof the left operand is greater than or equal to the value of the
rightoperand.

Is true if the valueof the left operand is less than or equal to the value of the right
operand.

The WHERE clausecan containas many comparisonsand keywords as arerequired
to specify the criteria youwant. Processingefficiencyis notaffected by the
composition of the WHERE clause (other than the logical order of the operators),
since LRF automatically uses the most efficient path to process the logical-record
request.

If necessary, the value of the SIZE parameter on the @COPY
IDMS,SUBSCHEMA-LR-CTRL, @SSLRCTL, and @BIND SUBSCH statements can be
increased to accommodate very largeand complex WHERE clausespecifications.
For the algorithmto calculate Irc-block-size, see @ COPY IDMS (see page 411).

Examples

The WHERE clauseshown below uses Boolean selection criteria to obtainthe requested
EMPJOBLR occurrence. This statement retrieves any customer in Massachusetts who
has anoutstanding balancegreater than $1500, or who has an outstandingbalanceless
than $500 and has a questionablecreditrating.

@OBTAIN EMPJOBLR WHERE MASSACHUSETTS AND ((UNITS * PRICE) - *

PAYMENT GT 1500 OR ((UNITS * PRICE) - *
PAYMENT GT 500 AND (CREDRATE *
EQ 'REF' OR CREDRATE EQ 'REJ')))

392 DML Reference Guide for Assembler

Logical Record Clauses

ON Clause

The ON clausetests for a specific path status returned to indicatethe resultof a logical
record request. If LRF returns the specified path status, the imperative statement
includedinthe ON clauseis executed. The imperative statement usually consists of a
GOTO statement. Ifthe path status is not returned, the imperativestatement included
inthe ON clauseis ignored.

Note: Onlyone ON clausecan be coded per logical record DML statement; onlyone
specific path status can be tested for.

Standard Path Statuses

Path statuses areissued during execution of the path selected to servicethe request.
The followingstandard path statuses can be returned:

LR-FOUND is returned when the logical-record request has executed successfully.
LR-FOUND can be returned as the resultof:

— Any @OBTAIN LRF statement

- Any of the other LRF statements containinga WHERE clause

When LR-FOUND is returned, the ERRSTAT field of the IDMS communications block
contains 0000.

LR-NOT-FOUND is returned when the specified logical record cannotbe found,
either because no suchrecord exists or becauseall such occurrences havealready
been retrieved. LR-NOT-FOUND can be returned as the result of any of the four LRF
DML statements, provided that the path to which LRF is directed includes retrieval
logic. When LR-NOT-FOUND is returned, the ERRSTAT field of the IDMS
communications block contains 0000.

LR-ERROR is returned when alogical recordrequestis issuedincorrectly or when an
error occurs inthe processing of the path selected to servicethe request. When
LR-ERROR is returned, the type of status code returned to the programinthe
ERRSTAT field of the IDMS communications block differs accordingto the type of
error:

— When the error occurs in the logical-record request, the ERRSTAT field contains
a status code issued by LRF (with a major code of 20). For a listof these codes,
see Logical-Record Status Codes (see page 395).

- When anerror occurs in logical-record path processing, the ERRSTAT field
contains a status codeissued by the DBMS (with a major code from 00 to 19).
For alistofthese codes, see ERRSTAT Fieldand Codes (see page 41).

Chapter 5: Data Manipulation Language Statements 393

Logical Record Clauses

When accessing ASF-defined data tables, you should always check for all of the
following path statuses:

m INVALID-DATA is returned when the data violates the definition-time selection
criteria. For example, INVALID-DATA is returned when the selectioncriteriais
WHERE STATE ='MA' andthe program tries to replacethe state with 'NY'. When
INVALID-DATA is returned, the ERRSTAT fieldinthe IDMS communications blockis
setto 0000.

m DEFN-MISSING is returned when the record definition cannotbe found. When
DEFN-MISSING is returned, the ERRSTAT fieldinthe IDMS communications blockis
set to 0000.

m OOAK-MISSING is returned when a one-of-a-kind record cannot be found. When
OOAK-MISSING is returned, the ERRSTAT fieldinthe IDMS communications blockis
set to 0000.

m SYNC-ERROR isreturned when the time stamp in the catalogandthe table
definition do not match. When SYNC-ERROR is returned, the ERRSTAT fieldin the
IDMS communications blockis setto 0000.

The return of one or more of these path statuses indicates a fatal error. For more
information, consultyour DBA.

Syntax

\ 4

~ L oNLRSTS=path-status,GoTo=branch-1ocation —

Parameters
ONLRSTS=path-status

Tests for a path status returned as the resultof the logical-record requestissued by
the program. Path-status must be a quoted literal (1 to 16 bytes under z/OS or 1 to
6 bytes under z/VSE) or a program variable.

Note: In addition to testing for a specific path status (using ONLRSTS), your program
should check for standard path statuses (for example, LR-NOT-FOUND and
LR-ERROR, and path statuses for ASF defined tables if applicable) whenever the
program issues a logical record request.

GOTO=branch-location

Specifies the programactionto be taken ifthe indicated path status results from
the logical-record request.

394 DML Reference Guide for Assembler

Logical Record Clauses

Example

The following ON clause causes the program to branch to the NOFFICE label when the
path status specified inthe variable NOOFFis met. NOOFF indicates a path status
indicatingthatthere areno offices that meet the criteria specified inthe WHERE clause.
Standard LRF path statuses arechecked as well.

@OBTAIN REC=EMPJOBLR, *
ONLRSTS=NOOFF, GOTO=NOFFICE, *
WHERE OFFICE-CODE-0450 EQ '0980'

CLC LRSTAT,=CL16'LR-FOUND'

BE CRDITREF

CLC LRSTAT,=CL16'LR-ERROR'

BE LRERRTN
CLC LRSTAT,=CL16'LR-NOT-FOUND'
BE LRNTFND

Logical-Record Status Codes

A path status of LR-ERROR signifies anerrorinthe processingofa logical-record request.
When the error occurs in the requestitself, LRF returns a path of LR-ERROR to the
LR-STATUS field of the logical-record requestcontrol (LRC) blockand places one of the
following codes in the ERRSTAT field of the IDMS communications block:

2008

The named logicalrecordis notdefined inthe subschema, or the specified DML
verb is not permitted with the named logical record. The logical record name may
have been misspelled.

2010
The subschema prohibits accesstological records.
2018

A path command has attempted to access a databaserecordthat has not been
bound.

2040

The WHERE clauseinan @OBTAIN NEXT statement has directed LRF to a different
processing path than did the WHERE clausein the preceding @OBTAIN statement
for the same logical record. Either the WHERE clauseis incorrectoran @OBTAIN
FIRST should have been issuedinstead of @ OBTAIN NEXT.

Chapter 5: Data Manipulation Language Statements 395

Logical Record Clauses

2041
LRF was unableto match the request's WHERE clauseto a path inthe subschema.
2042

The logical-record path for the request specifies return of the LR-ERROR path status
to the program.

2043

Bad orinconsistentdata was encountered inthe logical-record buffer during
evaluation ofthe request's WHERE clause:

m A WHERE clausehas specified thata packed decimal field should be compared
to afieldthatis not packed; the field that is not packed cannot be converted to
packed becauseit contains nonnumeric data.

m Datainvariablestorageorina databaserecord does not conform to its
description.

A path status of LR-ERROR is returned to the programunless the DBA has included
anON clauseinthe path to override this action.

2044

The request's WHERE clausedoes not includeinformation required by the
logical-record path.

2045

A subscriptvalueina WHERE clauseis either less than O or greater than its
maximum allowed value. A path status of LR-ERROR is returned to the program
unless the DBA has includedan ON clauseinthe path to override this action.

2046

A programcheck has been issued duringevaluation of a WHERE clausefor one of
the followingreasons:

m An arithmetic overflow would occur (fixed point, decimal, or exponent).
m An arithmetic underflow would occur (exponent).

m Adivideexception would occur (fixed point, decimal, or floating point).
m Asignificanceexception has occurred.

A path status of LR-ERROR is returned to the programunless the DBA has included
anON clauseinthe path to override this action.

396 DML Reference Guide for Assembler

Logical Record Clauses

2063
A request's WHERE clausecontains a keyword that exceeds 32 characters.
2064

A path command has attempted to access a CALC data item that has not been
defined properly inthe subschema.

2072

LRF cannot acquiresufficientstorageto evaluate the request.

These status codes canresultfrom any of the logical-record DMLstatements with the
exception of 2040, which applies to @ OBTAIN NEXT only.

Chapter 5: Data Manipulation Language Statements 397

Chapter 6: Assembler DML Coding
Considerations

This chapter describes howto code Assembler DML statements. The followingtopics are
discussed:

m Codinguser-supplied operands
m Coding DML statement parameters

® Synonym processing
Logical Record Facility keywords

This section contains the followingtopics:

Coding User-Supplied Operands (see page 399)
Coding Parameters (see page 401)

Synonym Processing (see page 401)

Logical Record Facility Keywords (see page 403)

Coding User-Supplied Operands

User-supplied operands in DML statements can be specified by name, inregister
notation, or in data field notation.

By Name

Record, set, or area names can be specified explicitly by name. Unless QUOTES=NO has
been specifiedinthe @MODE statement, the name must be enclosedin quotation
marks; for example:

SUBSCH="'DEMOSUBS '
The DML precompiler performs validity checking for explicitly specified names.

Note: z/VSE USERS—A quoted name operand in a logical-record DML statement cannot
exceed 6 characters. A program variablecan be used for a path status that exceeds 6
characters. An exception is a quoted operand ina WHERE clause, which can be up to 32
characters long.

Chapter 6: Assembler DML Coding Considerations 399

Coding User-Supplied Operands

Note: ASSEMBLER G USERS—A quoted name operandin a logical record DML
statement cannot exceed 6 characters unless themaximum variablesizeis modified by
the appropriate Assembler PARM. A maximum variablesizeofatleast18 characters is
recommended. An exception is a quoted operand ina WHERE clause, which can be up
to 32 characters long.

Note: ASSEMBLER H USERS—The DML precompiler(IDMSDMLA) supports 32-character
names and converts hyphens to underscores.

In Register Notation

A register can contain either the variablevalueorthe variableaddress. The general
register symbol or register reference must be enclosedin parentheses; for example:

#FREESTG STGID=(7)

The DML precompiler does not perform validity checking of operands specified by
register notation.

Note: z/VSE USERS—A general register symbol or register reference ina logicalrecord
DML statement cannot exceed 6 characters.

Note: ASSEMBLER G USERS—A general register symbol or register reference ina logical
record DML statement cannotexceed 6 characters, unless themaximum variablesizeis
modified by the appropriate Assembler PARM. A maximum variablesizeof at least 18
characters is recommended.

In Data Field Notation

Your program can specify the name of avariablefield containingthe desired data name;
for example:

@OBTAIN CURRENT,REC=RECFLD

The DML precompiler does not perform validity checking of operands specified by data
field notation.

400 DML Reference Guide for Assembler

Coding Parameters

Coding Parameters

Types of Parameters

There are two types of parameters in DML statements:

Positional parameters—Positional parameters appear inspecific relativelocations;
for example:

#GETSTG TYPE=(USER, LONG, KEEP)

Keyword parameters—Keyword parameters are constructed from:

1. Akeyword—A character stringthatis predefined to the system

2. An equal sign (=)

3. Avariable-value parameter—Containingone or more variablevalues
For example:

@OBTAIN NEXT,SET='CUSTOMER-ORDER',REC="'0RDER'

CA IDMS keywords are listed in Logical Record Facility Keywords (see page 403)
later in this chapter.

Coding Considerations

The followingconsiderationsapply to coding DML parameters:

All DML statements except for logical-record DMLstatements use keyword
parameter notation. The DML precompiler generates positional-pairparameter
notation.

Logical-record DML statements that bypass the DML precompiler must be coded
using positional-pair parameter notation. The assembler misinterprets or rejects
logical-record DML statements that contain keyword parameters.

Logical-record DML statements that are processed by the DML precompiler can be
coded usingeither keyword parameter or positional-pairparameter notation.

Synonym Processing

CA IDMS/DB allows alternativeidentification of records and elements in the dictionary.
Synonyms are added to the dictionary by using DDDL statements. The DML precompiler
automatically copies these language dependent synonyms in placeof the primary
names whenever an @COPY IDMS statement appears inthe application program.

Chapter 6: Assembler DML Coding Considerations 401

Synonym Processing

Note: ASSEMBLER H USERS—The DML precompiler supports32-character field names
and conversion of hyphens to underscores,inaccordancewith the new features of
Assembler H. CAIDMS/DB record names remain restricted to 16 characters and CA
IDMS/DB element names to 32 characters.Synonyms are therefore not required for
user supplied names and for fields containing hyphens in Assembler H programs using
the DML precompiler.

IDD record names canbe up to 16 characters long,and IDD element names can be up to
32 characters long. Because Assembler versions Fand G restrictnames to 8 characters,
alternativeand unique 8 character names for use in Assembler F and Assembler G
programs should be defined in the dictionary.Use of synonyms is recommended if
@COPY IDMS and @INVOKE statements areto be includedin Assembler programs.

Synonyms cannot be defined for logical record names. Assembler programs that access
logical records mustuse a separatesubschema in which logicalrecords are defined
accordingto Assembler restrictions.

How the Precompiler Copies Synonyms

When the DML precompiler copies record descriptions fromthe dictionaryinto program
variablestorage,itcopies synonyms accordingto the followingrules:

m Ifarecordis defined for the program's language, but the primaryrecord name is
not, the synonym is copied into the program.

m Ifmore than one synonym for a given record is defined for Assembler, the firstone
found inthe dictionaryis copied.

m Ifthe primaryrecord nameis defined for Assembler, the primaryname is copied
into the program.

For example, assumethat the followingrecordis defined inthe dictionary with three
synonyms:

RECORD JOB

RECORD NAME SYNONYM JOBSYN1 LANGUAGE ASSHMBLER
RECORD NAME SYNONYM JOB-SYN2

RECORD NAME SYNONYM JOBSYN3 LANGUAGE ASSEMBLER

Sincethe dictionary defines JOBSYN1 as the firstsynonym for Assembler, the DML
precompiler copies itinto the program. The DML precompiler would copy the primary
record name (JOB) ifitwere defined for Assembler.

These rules apply regardless of the record name or synonym that appears inthe schema
and subschema invoked by the program.

402 DML Reference Guide for Assembler

Logical Record Facility Keywords

Synonyms are Recognized as Primary Records

The DML precompiler treats a synonym as ifitwere the primaryrecord. The expansion
of a DML statement will includethe record name of the primaryrecord name, even if
the synonym is copiedinto program variablestorage.

For example, an @COPY IDMS,SUBSCHEMA-BINDS statement used inan Assembler
program generates the following @BIND REC statement for the employee record:

@BIND REC='EMPLOYEE', IOAREA=EMPLOYE

This statement lists both the primary record name (EMPLOYEE) and the Assembler
synonym (EMPLOYE).

Note: For more information about synonym facilities, seethe IDD DDDL Reference
Guide.

Logical Record Facility Keywords

The followingis a listof LRF keywords recognized by the Assembler DML precompiler.
These keywords should not be used as labels in Assembler DML programs that use the
Logical Record Facility:

m FIRST

= GOTO

= [R

m LRSTAT

m NEXT

® ONLRSTS
m REC

= WHERE

Chapter 6: Assembler DML Coding Considerations 403

Chapter 7: DML Precompiler-Directive

Statements

This chapter presents syntax for precompiler-directive statements.

Function of Precompiler Directives

To use DML statements that request CA IDMS/DB and DC/UCF services, you must
include precompiler-directive statements inyour application program.
Precompiler-directive statements:

Ensure that the assembler performs the proper expansion of DML statements into
callingsequences appropriatetothe CAIDMS environment

Identify the dictionary resources (subschema and/or maps) required by the
program

Causepredefined sourcemodules to be copied into the program from the
dictionary

Generate sourcedata description code

Summary of Statements

The DML precompiler-directive statements are summarized below:

@MODE initializes all global SET symbols that control the expansion of subsequent
macros and DML commands into callingsequences appropriateto the CA IDMS/DB
environment. You must code the @MODE directive before all procedural
statements inthe program, including DML commands for CA IDMS/DB and DC/UCF
requests.

@INVOKE identifies all dictionary resources used by the application program. The
@INVOKE statement must precede all procedural statements in the program,
including DMLcommands for CA IDMS/DB and DC/UCF requests. This statement
will generate non-executable sourcecode when the MAP= operand is used for a
map with multipleoccurringfields.

@COPY IDMS copies the sourcedata description codeassociated with CAIDMS/DB
databaserecords, the IDMS communications block, map records, and the map
request block, as well as other predefined source modules and records, into the
program from the dictionary atthe location of the @COPY IDMS statement.

Chapter 7: DML Precompiler-Directive Statements 405

@MODE—initializes global SET symbols

m #MRB establishes a maprequest block (MRB), whichis required for the mapping
mode of terminal |/O operations. The MRB is a variablestorageareainthe
application programandis used for communications between the program and the
mapping compiler duringa mapping /0 request.

m #MAPBIND initializes the MRB for mappingrequests issued by the application
program. #MAPBIND generates executable code.

m @SSCTRL generates the sourcedata description codeassociated with the IDMS
communications blockinthe program.

B @SSLRCTL generates the sourcedata description codeassociated with the LRC
blockinthe program.

This section contains the followingtopics:

@MODE—initializes global SETsymbols (see page 406)
@INVOKE (see page 409)

@COPY IDMS (see page 411)

#MRB (see page 419)

#MAPBIND (see page 420)

@SSCTRL (see page 421)

@SSLRCTL (see page 421)

@MODE—initializes dglobal SET symbols

The @MODE statement initializes global SET symbols for the assembler; these symbols
control the generation of macros associated with CA IDMS/DB requests. You must
specify the operating mode for programs that access a CAIDMS/DB database. If you do
not code an @MODE statement, you can specify the CA IDMS/DB environment by using
the MODE parameter of the @INVOKE statement, described later inthis chapter. For CA
IDMS programs that do not require access to a CA IDMS/DB database, the function of
the @MODE statement is to indicatethe operating mode: batch or online. An online
mode selectionis made from one of the valid teleprocessing monitors.

The @MODE and the @INVOKE statement must precede all other DML statements in
the program. Either statement can be placed before the other.

406 DML Reference Guide for Assembler

@MODE—initializes global SET symbols

@Mode Syntax

»»—— @MODE MODE= BATCH

v

IDMSDC —
DCBATCH —
CICS
CICS-EXEC —
INTERCOMM —
SHADOW ——

- L quotes= T YES <]—‘
NO

v

L , DEBUG T NO «

v

YES

@MODE Parameters

L ,WORKREG= T 0 « —J—I
register-number

)4

MODE=

Defines the operating environment for which the callingsequencewill be
generated. If the @MODE statement is notused, the CA IDMS/DB environment
must be specifiedinthe @INVOKE statement, whichis discussed below.

BATCH

(Default); specifies to execute the programin batch mode. The IDMS
communications blockis copiedintovariablestorage; standard CALL
statements are generated.

IDMSDC

Specifies to execute the program in IDMS DC mode. The IDMS DC
communications blockis copiedintovariablestorage; CAIDMS/DC CALL
statements are generated for CA IDMS/DC requests.

DCBATCH

Specifies to execute the program in DC-BATCH mode. The IDMS DC
communications blockis copiedintovariablestorage; DC-BATCH CALL
statements are generated for CA IDMS/DC requests. Specify MODE=DCBATCH

to access DCqueues and printers from batch applications running under the CA
IDMS central version.

CICS/CICS-EXEC/INTERCO MM/SHADOW

Specifies to execute the programina special environmentunder the specified
teleprocessing monitor. The appropriatecommunications blockiscopiedinto
variablestorageand operating-mode-specific CALL sequences are generated.

Chapter 7: DML Precompiler-Directive Statements 407

@MODE—initializes global SET symbols

QUOTES=

Required for programs that access the CA IDMS/DB database;indicates whether
names (such as record name or area name) coded in DML statements must be
enclosedinsite-standard quotation marks.

YES

(Default); specifies to enclose names specifiedin CAIDMS/DB database
requests insite-standard quotation marks.

NO

Specifies to not enclose names specifiedin CAIDMS/DB databaserequestsin
site-standard quotation marks.

DEBUG=

Required for programs that access the CA IDMS/DB database;requests the DML
precompiler to savesequence numbers associated with DML statements in the
IDMS communications block, as follows:

NO

(Default); specifies notto savesequence numbers of DML statements.

YES

Generates the appropriatecode for saving sequence numbers associated with
DML statements. At runtime, the sequence number of each DML statement is
moved to the IDMS communications block before program execution. These
sequence numbers appearinthe Assembler sourcestatement listinginthe
form DML-SEQUENCE=n. Depending on the error routine defined by the DBA,
the DML sequence number can be reported when errors occur and can be used
to assistyouindebugging your Assembler program.

Note: This option does not apply to DC/UCF requests. Statement numbers
associated with DC/UCF requests cannot be saved becausethe system does not
use the IDMS communications block.

WORKREG=0/

Required for programs that access the CA IDMS/DB database;specifies the general
purpose register to be used for constructingthe IDMS parameter listfor callsto
IDMS.

register

An integer inthe range 0 through 15, or anyvalid symbolicor definingterm for
the general-purposeregister (for example, RO). The defaultis general register
0.

408 DML Reference Guide for Assembler

@INVOKE

@INVOKE

The @INVOKE statement performs the followingfunctions:

m Specifies the subschema and maps required by the program

m Defines the operating mode if not previously defined by an @ MODE statement
m Identifies the programif programregistration has been implemented

m Identifies the programfor use duringstatistics collection

The @INVOKE statement and the @MODE statement must precede all other

precompiler-directiveand DML statements inthe program. @INVOKE must be included
ifthe DML precompiler will beused and if the programrequests CA IDMS/DB services.

Syntax

»»—— @INVOKE

v

L proGRAM= - |
program-niane L ,VERSION=vers jon-number il

v

L , SUBSCH=subschema-name]

v

L scHema= |

schema-name
L ,VERSION=version-number |

v

L mope= BATCH
TDMSDC ——
DCBATCH —|
CIcs
CICS-EXEC —
INTERCOMM —
SHADOW ——

v

I_, MAP=Iﬂap-/73/ﬂE' |_ _—‘
,VERSION=version-number

v

L ,MRBTYPE= T STANDARD «
EXTENDED

)

" PAGING = — O
' B R
YES

Parameters
PROGRAM=program-name

Required if program registrationis in effect; specifies the 1- to 8-character name of
the registered program. If in effect, subschema authorization specifies that
programs must be registered with the named subschema in order to be compiled
againstit.

Ifthe programhas been previously definedin the dictionary using DD,
program-name must match the assigned name of the program; otherwise the DML
precompiler will notrecognize itas the same program.

Chapter 7: DML Precompiler-Directive Statements 409

@INVOKE

Version=version-number

Optional;indicates theversion number of the program to distinguish multiple
versions of the same program-name. Version is a numeric literal intherange 1
through 9999. If the version number is not specified,and program-name is
found inthe dictionary, the version number defaults to the highest value
defined in the dictionary for the program. If program-name is unknown to the
data dictionary, the version number defaults to 1.

SUBSCH=
Identifies the subschema to be used by the program.
subschema-name
Specifies a subschema defined in the dictionary.
SCHEMA=schema-name
Identifies the schema with which the subschema is associated.
Version=version-number

Optionally specifies theversion of the schema as defined in the dictionary. It
defaults to the highestversion of the named schema.

MODE=

Defines the operating mode for the program. This clauseis optional;itcanreplace
the @MODE statement if @COPY is the onlyadditional DMLstatement in use, but
should be omitted in all other cases.

BATCH

Specifies to execute the program in batch mode. The IDMS communications
blockis copiedintovariablestorage;standard CALL statements are generated.

IDMSDC

Specifies to execute the program in IDMS DC mode. The IDMS DC
communications blockis copied into variablestorage; CA IDMS/DC CALL
statements are generated for CA IDMS/DC requests.

DCBATCH

Specifies to execute the program in DC-BATCH mode. The IDMS DC
communications blockis copiedintovariablestorage; DC-BATCH CALL
statements are generated for CA IDMS/DC requests. Specify MODE=DCBATCH
to access DCqueues and printers from batch applications running under the CA
IDMS central version.

CICS/CICS-EXEC/INTERCO MM/SHADOW

Specifies to execute the programina special environmentunder the specified
teleprocessing monitor. The appropriatecommunications blockis copiedinto
variablestorageand operating-mode-specific CALL sequences are generated.

410 DML Reference Guide for Assembler

@COPY IDMS

@COPY IDMS

MAP=

Specifies that mapping mode terminal I/Ois required by the program and identifies
the maps stored in the dictionary. Multiple maps can be specifiedinasingle
@INVOKE statement by defininga separate MAP clausefor each map.

map-name
Specifies the 1-to 8-character name of a map defined inthe dictionary.

Version=version-number
Optionally specifies theversion of the map being used. It defaults to the
highest version of the named schema.

MRBTYPE=STANDARD/EXTEN DED

Specifies the format of the map request block (MRB) builtfor the map:

m STANDARD (default) specifies thatthe map has standard 3270-typeterminal
attributes.

m EXTENDED specifies thatthe map has extended 3279-type terminal attributes,
suchas color, blinkingfields,and reversevideo.

PAGING=NO/YES

Specifies whether the programuses pageable maps.A pageable mapisasinglemap
thatis associated with an unlimited number of map fields. You can use pageable
maps when all the map fields cannotfiton aterminal operator's screen at one time.
The defaultis NO.

The DML statements #MREQ, #STRTPAG, and #ENDPAG areused to control the
pageable map option. For more information, see the descriptions of these
commands in Data Manipulation Language Statements (see page 73).

The @COPY IDMS statement copies sourcedata description codeand modules from the
dictionaryinto the program at the location of the @COPY IDMS statement. This
statement copies CAIDMS/DB databaserecord descriptions,the IDMS communications
block, map record descriptions, or MRBs. However, anysource module or record
description storedinthe dictionarycan becopied into either a CSECT or DSECT, as
specified by the DSECT parameter (discussed below).

Chapter 7: DML Precompiler-Directive Statements 411

@COPY IDMS

Source code requirements differ accordingto the usage (DML, LR, or MIXED) defined in
the program's subschema. The program should not copy components that conflictwith
its usage. These usages determine the types of records a program can access, as follows:

m DML allows a programthatuses the named subschema to access databaserecords
onlyand requires the followingsourcecode components:

SUBSCHEMA-CTRL— The IDMS communications block through which the
application programand the DBMS communicate (for further details,see IDMS
Communications Block (see page 34))

SUBSCHEMA-RECORDS— The descriptions of all records to which the
subschema permits access

m LRallows a programto access logical records only and requires the following source
code components

SUBSCHEMA-CTRL— The IDMS communications block through which the LRF
and the DBMS communicate

SUBSCHEMA-LR-CTRL— The logical-record requestcontrol (LRC) block through
whichthe application programand the Logical Record Facility communicate
(for further details, see Logical-Record Request Control (LRC) Block (see

page 52))

SUBSCHEMA-LR-RECORDS— The descriptions of all logical records defined in
the subschema

m MIXED allows a programto access both databaserecords andlogical records;this
usage requires the following source code components:

SUBSCHEMA-CTRL— The IDMS communications block through which the
application programand the LRF communicates with the DBMS, For further
details,see IDMS Communications Block (see page 34).

SUBSCHEMA-RECORDS— The descriptions of all records to which the
subschema permits access

SUBSCHEMA-LR-CTRL— The logical-record requestcontrol (LRC) block, through
whichthe application programand the LRF communicate (for further details,
see Logical-Record Request Control (LRC) Block (see page 52))

SUBSCHEMA-LR-RECORDS— The descriptions of all logical records defined in
the subschema

The DML precompiler determines whether source record descriptions arecopiedintoa
CSECT or DSECT portion of the program, and applies the followingrules:

m Ifthe recordis being copiedinto a CSECT, the DML precompiler defines record
elements that have specifiedinitial values by means of the Assembler DC (define
constant) data definitioninstruction.

412 DML Reference Guide for Assembler

@COPY IDMS

m Ifthe recordis being copiedinto a DSECT, DML defines record elements that have
specifiedinitial values by means of the Assembler DS (Define Storage) data
definitioninstruction.

Note: The DML defines record elements usingthe Assembler EQU instruction if the
record element is:

m created in the dictionary (IDD) with the USAGE CONDITION-NAME parameter
(accordingtothe COBOL 88-level convention)

and

m copiedinto a CSECT or DSECT.

Note: If the optional keyword DSECT is coded inthe @COPY IDMS statement, the record
being copiedis established as anindividual DSECT named with the record name.

Syntax

»»—— @COPY IDMS

, SUBSCHEMA-DML-LR DESCRIPTION
, SUBSCHEMA-DESCRIPTION
, SUBSCHEMA-CTRL
, SUBSCHEMA-RECORDS

,RECORD=record-name T]
VERSION=version-number

, SUBSCHEMA-LR-DESCRIPTION
, SUBSCHEMA-LR-CTRL T
,SIZE=

, SUBSCHEMA-LR-CONTROL
, SUBSCHEMA-LR-RECORDS
,LR=Iogical-record-name
,MAPS
,MAP=map-name
,MAP-CONTROLS
,MAP-CONTROL=map-name
,MAP-RECORDS

,MODULE=module-name
L VERSION=version-number -

, SUBSCHEMA-BINDS
,MAP-BINDS

v

»—

v

Irc-block-size -

TTTTTTTTI

)

v
I_

_DSECT —

Parameters
SUBSCHEMA-DML-LR-DESCRIPTION

(Subschema usageis mixed); copies all components required to access both
databaseandlogical records: SUBSCHEMA-CTRL, SUBSCHEMA-RECORDS,
SUBSCHEMA-LR-CTRL, and SUBSCHEMA-LR-RECORDS.

Chapter 7: DML Precompiler-Directive Statements 413

@COPY IDMS

SUBSCHEMA-DESCRIPTION

(Subschema usageis DML); copies the sourcedata description codefor the IDMS
communications block (SUBSCHEMA-CTRL) and for all records
(SUBSCHEMA-RECORDS) defined inthe subschema specifiedinthe @INVOKE
statement.

SUBSCHEMA-CTRL

Copies the IDMS communications blockinto the program.

SUBSCHEMA-RECORDS

Copies the sourcedata description code for all records defined in the subschema
into the program. You can copy Assembler synonyms defined for the subschema
records in the data dictionaryinto the program accordingto the rules of synonym
usage.

RECORD=

Copies the description of an individual record defined in the dictionary.

record-name

Can be the primary name or a synonym for a record or module stored inthe
dictionary.

A record that has been copiedinto a schema canonlybe copied intoa program that
uses a subschema associated with the schema. In other words, schema-owned
records cannotbe copiedinto non-IDMS programs (that is, programs thatdo not
use a subschema and that do not access the database). However, a synonym
defined for the schema-owned record can be copiedinto a non-IDMS program (use
the VERSION clauseto identify the synonym).

VERSION=version-number

Optional;canbe used to qualify IDD records (butnot schema-owned records) with
aversion number. If no version number is specified, CAIDMS/DB firstassumes that
record-name identifies a record thatisincludedinthe subschema named inthe
@INVOKE statement, andlooks for itinthat subschema.Ifthe record is not
associated with a subschema, version defaults to the highest version number of the
record defined inthe dictionaryfor the operating mode under which the program s
being compiled.

SUBSCHEMA-LR-DESCRIPTION

Copies all components required to access logical records: SUBSCHEMA-CTRL,
SUBSCHEMA-LR-CTRL, and SUBSCHEMA-LR-RECORDS.

SUBSCHEMA-LR-CTRL

Copies the LRC block data description.

414 DML Reference Guide for Assembler

@COPY IDMS

SIZE=Irc-block-size

Optional;specifies thesize of that portion of the LRC block that contains
information aboutthe logical-record request's WHERE clause. Lrc-block-size
defaults to 576 bytes. If included, itshould specify a sizelarge enough to
accommodate the most complex WHERE clauseinthe program. Lrc-block-size is
calculated as follows:

1.

4,
5.

Multiply the greatest number of operands and operators that will beincluded
inasingle WHERE clauseby 16 bytes.

Add the number of bytes, rounded up to the nearest multipleof 8, associated
with the data field for each operand; thatis:

m The number of characters ina keyword

m The number of charactersina field described by a programvariableor by a
logical-record field named in the OF LR clause.

Add the length, rounded up to the nearest multiple of 8, of each operand that
is a character literal.

Add 12 bytes for each operand thatis a numeric literal.

Add 64 bytes for fixed logical-record request control (LRC) overhead.

Lrc-block-size must be a positiveinteger inthe range 64 through 9999. Note that 64
canbe specifiedif none of the logical-record requests issued by the program
include WHERE clauses.

SUBSCHEMA-LR-CONTROL copies the SUBSCHEMA-CTRL and
SUBSCHEMA-LR-CTRL components. Do notinclude SUBSCHEMA-LR-CONTROL if
the subschema's usageis DML.

SUBSCHEMA-LR-RECORDS copies the descriptions of all logical records defined
inthe subschema.

LR=logical-record-name copies the description of an individual logical record
defined in the subschema.

MAPS copies the #MRB statements required to establish the MRBs for all maps
specifiedinthe @INVOKE statement. Additionally, the @ COPY IDMS,MAPS
statement copies the sourcedata description codefor map records associated
with all maps specified inthe @INVOKE statement.

MAP=map-name copies the #MRB statement and map records associated with
the named map. Map-name is the 1-to 8-character name of the map. The
version number of the map defaults to the version number specified for the
map inthe @INVOKE statement.

MAP-CONTROLS copies the #MRB statements for all maps specified inthe
@INVOKE statement.

Chapter 7: DML Precompiler-Directive Statements 415

@COPY IDMS

m MAP-CONTROL=map-name copies the #MRB statement for the named map.
Map-name is the 1- to 8-character name of the requested map. The version
number of the map defaults to the version number specifiedinthe @INVOKE
statement.

m MAP-RECORDS copies the map records associated with all maps specifiedin
the @INVOKE statement.

m MODULE=module-name,VERSION=version copies a sequence of Assembler
sourcestatements stored in the dictionary. Module-name is the 1- to
8-character name of the requested module; itcan be optionally qualified by
version. The version number defaults to the highestversion number defined in
the dictionary for the requested module.

The @COPY IDMS,MODULE statement copies a module from the dictionaryinto
the sourceprogram. The DBA must have previouslyadded this module to the
data dictionary by means of the IDD DDDL compiler.

The DML precompiler places the module into the programat the location of
the request. The module may contain DML statements. If DML statements are
present, they are treated as ifthe programmer had coded them directly.
@COPY IDMS,MODULE statements canbe nested (thatis, code invoked by an
@COPY IDMS,MODULE statement canitselfcontaina @COPY IDMS,MODULE
statement). However, you must ensure that a copied module does not, inturn,
copy itself.

m SUBSCHEMA-BINDS copies @BIND SUBSCH and @BIND REC statements for
each CA IDMS/DB databaserecord accessed by the program.

The @COPY IDMS,SUBSCHEMA-BINDS statement instructs the precompiler to
bringinto the sourceprogram a standard @BIND SUBSCH statement and
appropriatestandard @BIND REC statements for each CA IDMS/DB subschema
record explicitly copiedinto the programvariablestorage by means of @ COPY
IDMS statements. @COPY IDMS does not automatically generate BINDS for all
subschema records;it also does not generate BINDS for logical records.

All @COPY IDMS,RECORD statements must precede any @ COPY
IDMS,SUBSCHEMA-BINDS statement, becausethe DML precompiler is a
one-pass precompiler. The DML precompiler will notgenerate BINDS for any
record-type descriptions copied into the program after the @ COPY
IDMS,SUBSCHEMA-BINDS statement.

Instead of issuingan @COPY IDMS,SUBSCHEMA-BINDS statement, you can
issue @BIND SUBSCH and @BIND REC statements. Separately issued @BIND
READY and @BIND REC statements allowthe program to perform the
following:

— Check the ERRSTAT field after each @BIND REC statement

416 DML Reference Guide for Assembler

@COPY IDMS

— Bindseveral records to the samelocation byincludinga DML @BIND
statement for eachrecord (see @BIND REC (see page 104))

Note: The subschema registration featurerequires the @COPY
IDMS,SUBSCHEMA-BINDS statement to properlyassigntheprograms to the
subschema control block. Individual @BIND SUBSCH and @BIND REC
statements should not be used if programregistrationis in effect.

Note: If a record or a synonym of the record has been copiedintwice, an
@BIND REC statement will not be automatically generated for the record due
to the ambiguity.

m MAP-BINDS copies appropriate #MAPBIND statements for all maps specifiedin
the @INVOKE statement. (#MAPBIND statements arediscussed laterinthis
chapter.) The @COPY IDMS,MAPS statement must be coded before this
statement inorder to generate binds for the map records.

m DSECT copies the sourcedata description codeand sourcemodules defined in
any of the above @COPY IDMS statements into a DSECT. Records canbe
individually copied into a DSECT by including the DSECT parameter ineach
@COPY IDMS statement. Several records canbe copiedinto a single DSECT by
explicituse of the Assembler DSECT instruction followed by the individual
@COPY IDMS statements; inthis case, the DSECT parameter is not specifiedin
the @COPY IDMS statements. When specifyinga DSECT, the program is
responsiblefor designating the end of the DSECT storage area.

The following example illustrates the use of the DSECT parameter to create
individual dummy control sections for the IDMS communications blockand fora
map request block:

@0DE MODE=IDMSDC
Q@INVOKE SUBSCHEMA=XYZ, SCHEMA=ABC,
PROGRAM=TESTXYZ , MAP=DEFMAP

* THE FOLLOWING @COPY IDMS STATEMENT COPIES THE SOURCE DATA
* DESCRIPTION CODE FOR THE IDMS COMMUNICATION BLOCK (SUBSCHEMA-CTRL):

@COPY IDMS,SUBSCHEMA-CTRL,DSECT

THE DML PRECOMPILER GENERATES THE DSECT INSTRUCTION FOR THE DUMMY
CONTROL SECTION TO CONTAIN THE SOURCE DATA DESCRIPTION CODE OF THE

* IDMS COMMUNICATIONS BLOCK:

DSECT
SSCTRL DS

* THE FOLLOWING @COPY IDMS STATEMENT COPIES THE SOURCE DATA

Chapter 7: DML Precompiler-Directive Statements 417

@COPY IDMS

* DESCRIPTION CODE FOR THE REQUIRED MAP REQUEST BLOCK (MAP-CONTROLS):

@COPY IDMS,MAP-CONTROL=DEFMAP,DSECT

* THE DML PRECOMPILER GENERATES THE DSECT INSTRUCTION FOR THE DUMMY
CONTROL SECTION TO CONTAIN THE SOURCE DATA DESQRIPTION CODE FOR
THE MRB:

*

DSECT
DS

* THE END OF EACH DSECT MUST BE DESIGNATED EITHER BY AN ASSEMBLER
* END, CSECT, OR ANOTHER DSECT INSTRUCTION.

A single DSECT is created for the IDMS communications block, CA IDMS/DB record
descriptions, MRB, and map record description.

@V0DE MODE=IDMSDC
@INVOKE SUBSCHEMA=XYZ, SCHEMA=ABC, *
PROGRAM=TESTXYZ , MAP=DEFMAP

* THE FOLLOWING ASSEMBLER DSECT INSTRUCTION IS CODED BY THE
* PROGRAMMER TO DEFINE THE BEGINNING OF A DUMMY CONTROL SECTION:

IDMSSTG DSECT
* COPY STATBMENTS WITHIN A DSECT ENABLE RECORD DESCRIPTIONS TO BE
* COPIED INTO THE DUMMY CONTROL SECTION. NOTE THAT THE DSECT

* PARAMETER IS NOT INCLUDED IN THE @COPY IDMS STATEMENTS:

@COPY IDMS,SUBSCHEMA-DESCRIPTION
SSCTRL DS

DS

@COPY IDMS,MAPS
DS

418 DML Reference Guide for Assembler

#MRB

#MRB

DS

* THE END OF THE DSECT MUST BE DESIGNATED BY AN ASSEMBLER END,
* (CSECT, OR ANOTHER DSECT INSTRUCTION.

The #MRB statement establishes a maprequest block (MRB) inthe program's variable
storage area. |t allocates storage, butdoes not initializethatstorage. For each mapping
request, the MRB communicates between the programand the mappingcompiler.A
separate MRB must be defined for each map used by a program. The DML precompiler
uses map information stored inthe dictionaryto determine the actual size of the MRB,
and generates the necessary Assembler DS instructions with macros.

One or more #MRB statements can be copiedinto the programby usingthe @ COPY
IDMS statement, discussed earlierin this chapter.

Syntax

»»— #MRB MAPNAME=map-name

v

»— ,FIELDS=f7eld-count

v

»—— ,RECORDS=record-count

X

Parameters
MAPNAME=map-name
Specifies the 1-to 8-character name of an existing map.
FIELDS=
Specifies the number of data and response fields in the specified map.
field-count
Absolute expression of the number of fields.
RECORDS=
Specifies the number of records inthe map.
record-count

Absolute expression of the number of records.

Chapter 7: DML Precompiler-Directive Statements 419

#MAPBIND

#MAPBIND

For each map request block used by a program, a #MAPBIND request specifies the MRB
locationandinitializes the fields of the MRB. #MAPBIND statements can be global or
record-specific:

m Global—By specifyingonly the map name, the #MAPBIND statement applies to the
map as a whole. Itinitializes theentire MRB and fillsinfields thatapply to the map
ingeneral.

m Record-specific—By specifying RECNAME and RECADDR parameters as well as the
map name, the #MAPBIND statement applies onlytothe named map record. It
initializes thevariablestorageaddress of the named recordinthe MRB.

A programtypicallyissues a global #MAPBIND statement for each map, followed by
#MAPBIND statements for each map record used by the program. The programcan alter
the storage address for a map record at any time by issuinganother #fMAPBIND
statement for that record.

After the initialglobal bind, all records areconsidered unbound; map operations that
use those records will nothave any effect on storage. After bindinga record to a storage
address, subsequent map operations will usethataddress to access the record. To
unbind a record, issuea record-specific #MAPBIND statement and specify a null (0) bind
location usingthe RECADDR parameter.

All global and record-specific#VIAPBIND statements fora map can be copied
automaticallyinto the program with the @COPY IDMS statement, discussed earlierin

this chapter.

Syntax

v

»»— #MRB MAPNAME=map-name

v

»—— ,FIELDS=fF7eld-count

»—— ,RECORDS=record-count

X

Parameters
MRB=

Initializes the MRB associated with the named map.
map-name

Specifies the 1-to 8-character name of an existing map.
RECNAME=record-name

Is the 1- to 32-character name of a record used by the map.

420 DML Reference Guide for Assembler

@SSCTRL

@SSCTRL

@SSLRCTL

RECADDR=

Requests that the named record be unbound or specifies thestorage address to
which the record will be bound.

(Default); specifies thatthe named record is to be unbound.
record-address

Specifies a register that contains either the address of the area or the symbolic
name of a user-defined field containingthe address of the area.Subsequent |1/0
operations will usethe specified area of storage for any operations dealing with the
record.

The @SSCTRL statement is an Assembler macro used to generate sourcedata
description codefor the IDMS communications block. @SSCTRL must be used in place of
the @COPY IDMS,SUBSCHEMA-CTRL statement when the DML precompileris not used.

Syntax

»»— @SSCTRL »><

Note: To usean IDMS communications blockin which the RECORD, AREA, and
ERROR-SET/RECORD/AREA fields are 18 bytes, specify @SSC120 instead.

The @SSLRCTL statement is an Assembler macroinstruction thatgenerates sourcedata
description codefor the LRC block. @SSLRCTL must be used in place of the @COPY
IDMS,SUBSCHEMA-LR-CTRL statement when the DML precompileris notused.

Syntax
»»—— @SSLRCTL

M

L LRSIZ=1Ir-control-block-size —I

Parameters
LRSIZ=

Specifies the size of that portion of the LRC block that contains information about
the logical-record request's WHERE clause.

Chapter 7: DML Precompiler-Directive Statements 421

@SSLRCTL

Irc-block-size

Defaults to 576 bytes; ifincluded, itshould specify a sizelarge enough to
accommodate the most complex WHERE clauseinthe program. (For the algorithm
for calculating Irc-block-size, see @COPY IDMS (see page 411)earlierinthis
chapter.)

422 DML Reference Guide for Assembler

Chapter 8: Considerations for Assembler
Programs in a DC/UCF Online System

Certain coding conventions should be observed in Assembler programs which are to be
used ina DC/UCF onlinesystem both for stand-alone programs and programs which are
to be called fromanother online program. This chapter will discuss the following topics:

m SVCinstructionsinanonlineprogram
m Makingyour assembler programreentrant

m Methods of callinganassembler subprogram
Definingan assembler programwhich uses standard IBM calling conventions

This section contains the followingtopics:

SVC Instructionsinan Online Program (see page 423)

Making Your Assembler Program Reentrant (see page 424)

Methods of Callingan Online Assembler Subprogram (see page 425)
Standard IBM calling conventions (see page 426)

SVC Instructions in an Online Program

You should avoid codingany SVC instructions or macros thatgenerate SVC instructions
inanonlineDC/UCF assembler program. Whilean SVC is in control, no other onlinetask
canuse the DC/UCF system. This prevents the system from allocating resources
between tasks asitis designedto do. Inaddition,anyerror that occurs duringthe
processingofanSVC instruction can causea hangor abnormal termination of the entire
DC/UCF system.

Ifitis absolutely necessarytocode suchaninstructioninanonlineprogram,the
program must not be called via a COBOL or PL/I CALL instruction. This restrictionis
explained further inlater sections of this chapter.

Chapter 8: Considerations for Assembler Programs in aDC/UCF Online System 423

Making Your Assembler Program Reentrant

Making Your Assembler Program Reentrant

All programs that are designed to run inanonlineDC environment should be written
using fully reentrant codingtechniques. This means that the program should never
update its own storage. Any variablestoragethat your programneeds to update should
be inanareareserved for the exclusiveuseof a singletask. Typically, you would define
a DSECT to map this area. Several techniques can be used to achievethis goal.Two or
more of these techniques can be combined ina singleprogram.

m Specify ISASIZE on the PROGRAM statement inthe DC Sysgen. On entry to your
program, register 11 will be set to point to an area of this sizereserved for the use
of your program.

m On entry to your program, code a #GETSTG ...PLIST=* LENGTH=constant.... This
form of the #GETSTG macro does not update any programvariablestorage. The
sampleprogram in Appendix C of this manual uses this technique.

m An assembler subprogramcan usestorage passedto itfrom its caller provided that
storageisitselfreentrant.

m Ifone of the above techniques is used to obtain enough storage for a PLIST, then a
more generic form of the #GETSTG macro can be used to obtain further variable
storage.

m Specify SAVEAREA on the PROGRAM statement inthe DC Sysgen. See section 7.4
below for more information.

A non-reentrant assembler routinecan be used inanonlineDC environment under
certain limited circumstances, butthis is not recommended for reasons explained
below.

® A non-reentrant stand-aloneassembler program,i.e., an assembler program which
is linked as its own load module or phase, can be invoked directly from a TASK
CODE orcanbe calledvia a high level language TRANSFER CONTROL, a #LINK from
another assembler programor a LINK PROGRAM from an ADS dialog.Sucha
program must be defined inthe DC/UCF Sysgen as non-reentrant. Note that this will
causeseparate copies of the load module to be loaded for every concurrent task
usingthe program. This is generally highly inefficient.

® A non-reentrant assembler subprogramcan be called via a dynamic or static COBOL
CALL verb, ora PL/I CALL verb ifall of the following conditions are met:

— The subprogramdoes notissueanySVC or PC calls. Note that many IBM
macros generate such calls.

— The subprogramdoes notissueany DML calls.
- Multitaskingis notin effect on the DC/UCF system.

This technique is not recommended becausea small changeinthe program or
onlineenvironment may causethe program to stop functioningcorrectlyand
potentiallyallowitto causestorage and data corruption.

424 DML Reference Guide for Assembler

Methods of Calling an Online Assembler Subprogram

Methods of Calling an Online Assembler Subprogram

TRANFER CONTROL, #LINK, or ADS LINK

The preferred method for callingan assembler subprogramis a TRANSFER CONTROL
from COBOL or PL/I, a #LINK from another assembler program, or a LINK instruction
from ADS. Ifthis method of control is used, the DC/UCF system is in control of the
calling process. This method provides the followingadvantages:

m Ifanerror occursinthe subprogram,system error messages will reflectthe correct
program name.

m Any limits setfor that programwill be taken into account

m SVC screeningwill beturned off. This is imperativeifthe subprogramissues any SVC
instructions anditis called froma COBOL or PL/I program.

COBOL or PL/I CALL

Itisvalidtocallastand-aloneassembler subprogramvia a CALL IDENTIFIER from a
COBOL programor CALL from a PL/l program provided that the programdoes not issue
anySVC instructions.Anassembler subprogramcan also belink edited in the same load
module with its caller provided thatitdoes not issueany SVC instructions or DML calls.
The DC/UCF system will notbe awarethat the subprogramhas been called. So any limits
or system-generated error messages will not reflect the call.

A COBOL or PL/I CALL may use somewhat less CPU than a TRANSFER CONROL DML verb.
Therefore, it may be desirableto use this technique ifa qualified subprogramis called
many times inthe same task.

Assembler LINK macro

Itis never valid to use the assembler LINK macro inanonlineassembler program. This
macro generates an SVC thatis incompatible with DC/UCF online processing. An
abnormal termination of the DC/UCF system may occur.

Chapter 8: Considerations for Assembler Programs in a DC/UCF Online System 425

Standard IBM calling conventions

Standard IBM calling conventions

An assembler programthatis written usingstandard IBM calling conventions can be
used as a top-level program or a subprogramina DC/UCF onlinesystem. Such a
program will typicallyissueaninstructiontosaveits registersinanarea pointed to by
General Register 13 on entry. The following conventions must be observed:

m Ifthe programis atop-level program orisinvoked via a TRANSFER CONTROL, #LINK
or ADS LINK, then the SAVEAREA parameter must be specified onthe PROGRAM
statement inthe DC/UCF Sysgen. SAVEREA is notneeded ifthe programis invoked
viaa COBOL or PL/I CALL, butthe SAVEAREA parameter will notcausea problem if
itis specified.

m |fthe programsets register 13 to pointatits own save area andstores into it, then
the savearea must be inreentrant storage obtained using one of the methods
describedinsection7.3.

426 DML Reference Guide for Assembler

Appendix A: DML Precompile, Assembly,
and Link-Edit JCL

This appendix describes processing for Assembler programs containing DML statements.
It also provides samples of the z/0S, z/VSE and CMS, commands you use to prepare
these programs.

Processing Assembler Programs Containing DML

To prepare a DML program for execution, you firstexecute the DML precompiler
(IDMSDMLA). After this,you assembleand linkedit.

Component Input Output
IDMSDMLA m Assembler source m Source Assembler program
program containing DML with DML-generated code
m Protocol/control m DML and sourcelistingand
information diagnostics

m Dictionaryrecord
descriptions

Assembler Source program produced by g Object program
IDMSDMLA
m Assembler listing
Linkage Editor Object programproducedby g |0ad module
assembler

m Link-edit map

Appendix A: DML Precompile, Assembly, and Link-Edit JCL 427

Standard IBM calling conventions

Steps for Assembly

The followingfigureillustrates steps involvedin assemblinga DML Assembler program.

ASSEMBLER
SOURCE PROGRAM
WITH DML
STATEMENTS

¢ STEP 1

IDMSDMLA DML
COMPILER LISTING

DATA
DICTIONARY

ASSEMBLER

SOURCE

ASSEMBLER
ASSEMBELER = SOURCE LISTING
& DIAGNOSTICS

OBJECT
PROGRAM
LINK MAP
LOAD LINKAGE
LIBRARY EDITOR
LOAD
MODULE

This section contains the followingtopics:

IDMSDMILA Under z/0S (see page 429)
IDMSDMLA Under z/VSE (see page 436)
IDMSDMLA Under CMS (see page 447)
Link-Edit Considerations (see page 450)

428 DML Reference Guide for Assembler

IDMSDMLA Under z/0S

IDMSDMLA Under z/0S

Executing Under the Central Version IDMSDMLA (z/0S)

//***

//** PRECOMPILE PROGRAM HoK
//***
//precomp EXEC PGM=IDMSDMLA,REGION=1024K

//STEPLIB DD DSN=idhms.dba. loadlib,DISP=SHR

// DD DSN=idns.custom.loadlib,DISP=SHR

// DD DSN=idms.cagjload,DISP=SHR

//sysctl DD DSN=idms.sysctl,DISP=SHR

//dcmsg DD DSN=idns.sysmsg.ddldcmsg,DISP=SHR

//SYSPCH DD DSN=&.&source. ,DISP=(NEW,PASS),

// UNIT=disk,SPACE=(TRK, (10,5) ,RLSE),

// DCB=(RECFM=FB, LRECL=80, BLKSIZE=3120)

//SYSLST DD SYSOUT=A

//SYSIDMS DD *

DMCL=dmc-name

DICTNAME=dictionary-name

Other SYSIDMS parameters, as appropriate

/*

//SYSIPT DD *

Assembler DML source statements

/*
//***
//** ASSEMBLE PROGRAM *ok
/[RFFRR Rk sk sk okk kR sk okok kR tofkokkskokkotokokskoskok ko sok sk skok kR soror kR ko kok
//asm EXEC PGM=assembler,REGION=1024K, PARM="'DECK, LIST,NOLOAD'
//SYSPRINT DD SYSOUT=A

//SYSLIB DD DSN=sysl.maclib,DISP=SHR

// DD DSN=yourHLQ.CAGIMAC,DISP=SHR

//SYSUT1 DD UNIT=disk,SPACE=(CYL,(3,2))

//SYSUT2 DD UNIT=disk,SPACE=(CYL,(3,2))

//SYSUT3 DD UNIT=disk,SPACE=(CYL,(3,2))

//SYSPUNCH DD DSN=&.&object. ,DISP=(NEW,PASS),

// UNIT=disk,SPACE=(TRK, (10,5) ,RLSE),

// DCB=(RECFM=FB, LRECL=80, BLKSIZE=3120)

Appendix A: DML Precompile, Assembly, and Link-Edit JCL 429

IDMSDMLA Under z/0S

//SYSIN DD DSN=&.&source. ,DISP=(0LD,DELETE)

//***

//** LINK PROGRAM MODULE *ok

//***

//link EXEC PGM=IBEWL,REGION=300K,PARM="LET,LIST,NCAL,XREF'
//SYSUTL DD UNIT=disk,SPACE=(TRK, (20,5))

//loadlib DD DSN=idns. loadlib,DISP=SHR

//SYSLMOD DD DSN=user. loadlib,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSLIN DD DSN=&.&object. ,DISP=(OLD,DELETE)

// DD *

INCLUDE loadlib(IDMS) required for BATCH and DCBATCH, omit for CICS
INCLUDE loadlib (IDMSCINT) for CICS only

INCLUDE loadlib(IDMSCANC) optional; BATCH and DGBATCH only
INCLUDE loadlib(IDMSOPTI) optional; BATCH and DGBATCH only
ENTRY userentry

NAME userprog(R)

/*

/7*

idms.dba.loadlib

Data set name of the load library containingthe DMCL and databasename table
load modules

idms.custom.loadlib

Data set name of the load library containing the customized CA IDMS executable
modules

idms.cagjload

Data set name of the load library containingthevanilla CAIDMS executable
modules

sysctl

DDname of SYSCTL file
idms.sysctl|

Data set name of SYSCTL file
dcmsg

DDname of the system message (DDLDCMSG) area
idms.sysmsg.ddldcmsg

Data set name of the system message (DDLDCMSG) area
&.&source

Name of the temporary data set output from the precompiler

430 DML Reference Guide for Assembler

IDMSDMLA Under z/0S

disk

Symbolic device name for work files
dmcl-name

specifies the name of the dictionary the DMLF precompiler should access
dictionary-name

Identifies the DC/UCF system to bind at runtime
assembler

Name of the assembler program
sysl.maclib

Vendor-supplied system macro library
yourHLQ.CAGIMAC

Vendor-suppliedidms macrolibrary, created at installation time
&.&object.

Name of temporary data set output from Assembler
user.loadlib

User applicationloadlibrary
loadlib

DDname of the idms.loadlib
userentry

Name of a program entry point
userprog

Name of programinloadlibrary

Note: Depending on the central version operating environment, an IDMSOPTI module
link edited with IDMSDMLA can be used in placeof orin addition to the SYSCTL file.

The link of CICS application programs that use IDMSCINT must incorporateJCL to resolve
external reference DFHEI1. The particularJCLdepends on the nature and language of
your application. See the appropriate|BM CICS application programming
documentation for details.

Appendix A: DML Precompile, Assembly, and Link-Edit JCL 431

IDMSDMLA Under z/0S

Executing in Local Mode IDMSDMLA (z/0S)

//***

//** PRECOMPILE PROGRAM *ok
//***
//precomp EXEC PGM=IDMSDMLA,REGION=1024K

//STEPLIB DD DSN=idms.dba. loadlib,DISP=SHR

// DD DSN=idnms.custom.loadlib,DISP=SHR

// DD DSN=idns.cagjload,DISP=SHR

//dictb DD DSN=idns.appldict.ddldml,DISP=SHR

//dcmsg DD DSN=idns.sysmsg.ddldcmsg,DISP=SHR

//sysjrnl DD DSN=idns.tapejrnl,DISP=(NEW,CATLG),UNIT=tape
//SYSPCH DD DSN=&.&source. ,DISP=(NEW,PASS),

// UNIT=disk,SPACE=(TRK, (10,5) ,RLSE),

// DCB=(RECFM=FB, LRECL=80, BLKSIZE=3120)

//SYSLST DD SYSOUT=A

//SYSIDMS DD *

DMCL=dmc1-name

DICTNAME=dictionary-name

Other SYSIDMS parameters, as appropriate

/*

//SYSIPT DD *

Assembler DML source statements

/*
//***
/7** ASSEMBLE PROGRAM *k
//***
//asm EXEC PGM=assembler,REGION=1024K, PARM="'DECK, LIST ,NOLOAD"
//SYSPRINT DD SYSOUT=A

//SYSLIB DD DSN=sysl.maclib,DISP=SHR

// DD DSN=idms.cagjmac,DISP=SHR

//SYSUT1 DD UNIT=disk,SPACE=(CYL,(3,2))

//SYSUT2 DD UNIT=disk,SPACE=(CYL,(3,2))

//SYSUT3 DD UNIT=disk,SPACE=(CYL, (3,2))

//SYSPUNCH DD DSN=&.&object. ,DISP=(NEW,PASS),

// UNIT=disk,SPACE=(TRK, (10,5) ,RLSE),

// DCB=(RECFM=FB, LRECL=80, BLKSIZE=3120)

//SYSIN DD DSN=&.&source. ,DISP=(0LD,DELETE)

//***

//** LINK PROGRAM MODULE *k

//***

432 DML Reference Guide for Assembler

IDMSDMLA Under z/0S

//link EXEC PGM=IBWL,REGION=300K,PARM='LET,LIST,NCAL,XREF'
UNIT=disk,SPACE=(TRK, (20,5))

DSN=1idns. cagjload,DISP=SHR

DSN=idns. custom. loadlib,DISP=SHR

DSN=idns. custom. loadlib,DISP=SHR

//SYSUT1 DD
//VANILLA DD
//CUSTOM DD
//SYSLMOD DD
//SYSPRINT DD
//SYSLIN DD
// DD

SYSOUT=A

DSN=&.&object. ,DISP=(OLD,DELETE)

*

INCLUDE VANILLA(IDMS)
INCLUDE CUSTOM(IDMSCINT) for CICS only

INCLUDE CUSTOM(IDMSOPTI)

ENTRY userentry
NAME userprog(R)

/%
/7*

required for BATCH and DCBATCH, omit for CICS

optional; BATCH and DCBATCH only

Appendix A: DML Precompile, Assembly, and Link-Edit JCL 433

IDMSDMLA Under z/0S

idms.dba.loadlib

Data set name of the load library containingthe DMCL and databasename table
load modules

idms.custom.loadlib

Data set name of the load library containing the customized CA IDMS executable
modules

idms.cagjload

Data set name of the load library containingthevanilla CAIDMS executable
modules

dictb

DDname of journal file
idms.appldict.ddidml

File-1D of the application dictionary definition (DDLDML) area
dcmsg

Filename of the system message (DDLDCMSG) area
idms.sysmsg.ddidcmsg

File-1D of the system message (DDLDCMSG) area
sysjrnl

DDname of the tape journal file
idms.tapejrnl

FileID of tape journal file
tape

Device name for the tape journal file
&.&source.

Name of the temporary data set output from the precompiler
disk

Symbolic device name for work files

434 DML Reference Guide for Assembler

IDMSDMLA Under z/0S

dmcl-name

Specifies the name of the dictionary the DMLF precompiler should access
dictionary-name

Identifies the DC/UCF system to bind at runtime
assembler

Name of the assembler program
sysl.maclib

Vendor-supplied system macro library
idms.cagjmac

Vendor-suppliedidms macrolibrary, supplied atinstallation time
&.&object.

Name of temporary data set output from Assembler
user.loadlib

User applicationloadlibrary
VANILLA

DDname for the loadlib created during the SMP/E install
CUSTOM

DDname for the loadlib created during configuration
userentry

Name of a program entry point
userprog

Name of programinloadlibrary

Appendix A: DML Precompile, Assembly, and Link-Edit JCL 435

IDMSDMLA Under z/VSE

IDMSDMLA Under z/VSE

Executing Under the Central Version IDMSDMLA (z/VSE)

/**

/** PRECOMPILE PROGRAM ok

/**

* stepl

// EXEC PROC=IDMSLBLS

// UPSI b if specified in IDMSOPTI module
// DLBL idmspch, 'temp.dmla',0

// EXTENT SYS020,nmnnnn, , ,ssss, L1111
// ASSGN SYS020,DISK, VOL=nnnnnn, SHR
// EXEC IDMSDMLA

Input SYSIDMS parameters here, as required
/*
Assembler/DML source statements

/**

/** COMPILE PROGRAM ok
/**
/*
* step2
// DLBL IJSYSIN, 'temp.dmla’',0
// EXTENT SYSIPT, nnnnnn
ASSGN SYSIPT,DISK, VOL=nnnnnn, SHR
// OPTION CATAL, NODECK, NOSYM
PHASE userprog,*
// EXEC ASSEMBLY

/**

Ve LINK PROGRAM MODULE *ok
/**
* step3

CLOSE SYSIPT, SYSRDR
ENTRY (dmla)
// EXEC LNKEDT
/*

436 DML Reference Guide for Assembler

IDMSDMLA Under z/VSE

IDMSLBLS

Name of the procedure provided atinstallation thatcontains the file definitions for
CA IDMS dictionaries and databases.

Note: For a complete listing of IDMSLBLS, see "IDMSLBLS Procedure".

b
Appropriate UPSI switch, 1 through 8 characters, if specified in the IDMSOPTI
module
idmspch
Filename of data set output from the IDMSDMLA precompiler
temp.dmla
File D of data set output from the IDMSDMLA precompiler
SYS020
Logical unitassignmentof the DMLA output
nnnnnn
Volume serial identifier of appropriatedisk volume
ssss
Starting track (CKD) or block (FBA) of disk extent
m
Number of tracks (CKD) or blocks (FBA) of disk extent
userprog
Name of program inthe library
dmla

Name of Assembler/DML module
Runtime Parameters

You canuseSYSIDMS parameters to specify information aboutyour runtime
environment.

Appendix A: DML Precompile, Assembly, and Link-Edit JCL 437

IDMSDMLA Under z/VSE

Note: For more information aboutoptional SYSIDMS parameters, see the Common
Facilities Guide.

INCLUDE Statements

For programs thatincludean Assembler internal sort, placethe following statements in
the second step, before EXEC ASSEMBLY:

ACTION NOAUTO prevents multiple inclusions of IDMS
INCLUDE IDMS IDMS interface for use with COMRG
INCLUDE IDMSOPTI IDMSOPTI module

(omit in local mode)

INCLUDE IDMSCANC local mode abort entry point
(omit IDMSCANC if TP application)

Note: Assembler overlay programs must resolve references to IDMS within their root
segment; caremust be taken to prevent the overlaying of the IDMS interface. Use of
IDMS and IDMSLDPT is recommended for these programs.

Executing in Local Mode

To execute the IDMSDMLA precompilerinlocal mode, remove the UPSI specification
and add the following statements instep 1 (the IDMSDMLA step):

// TLBL sysjrnl, 'idms.tapejml', ,nnnnnn, ,f
// ASSGN SYS009, TAPE, VOL=nnnnnn

idms.tapejrnl

FileID of tape journalfile

File number of tape journal file
sys009

Logical unitassignmentfor journal file

IDMSLBLS Procedure

The IDMSLBLS procedure is provided during CA IDMS installation. [tcontains file
definitions for the CAIDMS components, such as these:

m Dictionaries

m Sample databases

438 DML Reference Guide for Assembler

IDMSDMLA Under z/VSE

m Diskjournal files

m SYSIDMS file

Tailor the IDMSLBLS procedure to reflect the filenames and definitions in useatyour
siteand includethis procedurein z/VSE JCL job streams.

Appendix A: DML Precompile, Assembly, and Link-Edit JCL 439

IDMSDMLA Under z/VSE

The followingis a listing of the IDMSLBLS procedure:
o LIBDEFS -----------

// LIBDEF *,SEARCH=idnslib.sublib

// LIBDEF *,CATALOG=user.sublib

YA T LABELS ----------mmmiem o
// DLBL idnslib, 'idns. library',1999/365

// EXTENT ,nnnnnn,,,ssss,1500

// DLBL dcdml, 'idms. system. ddldml',1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,101

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dclod, 'idms. system. ddldclod',1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,21

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dclog, 'idms. system. ddldclog',h1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,401

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcrun, 'idms. system.ddldcrun',1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,68

// ASSGN SYSnnn,DISK, VOL=nnnnnn,SHR

// DLBL dcscr, 'idms. system. ddldcscr',1999/365,DA
// EXTENT SYSnnn,nnnnnn, ,,ssss,135

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dansg, 'idms. sysmsg. ddldcmsg',1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,201

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dclscr, 'idms. sysloc.adlocscr',1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dirldb, 'idms.sysdirl.ddldml',1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,201

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dirllod, 'idns.sysdirl.ddldclod',1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,SSSS,2

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL empdemo, ' idns. empdemol ' ,1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,11

// ASSGN SYSnnn,DISK, VOL=nnnnnn,SHR

// DLBL insdemo, 'idns.insdemol',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK, VOL=nnnnnn,SHR

// DLBL orgdemo, 'idns.orgdemol',1999/365,DA

// EXTENT SYSnnn,nnnnnn, ,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL empldem, 'idns. sqldemo.empldemo' ,1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,11

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL infodem, 'idns.sqldemo. infodemo',1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,6
// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

440 DML Reference Guide for Assembler

IDMSDMLA Under z/VSE

// DLBL
// EXTENT
// ASSGN
// DLBL
// EXTENT
// ASSGN
// DLBL
// EXTENT
// ASSGN
// DLBL
// EXTENT
// ASSGN
// DLBL
// EXTENT
// ASSGN
// DLBL
// EXTENT
// ASSGN
// DLBL
// EXTENT
// ASSGN
// DLBL
// EXTENT
// ASSGN
// DLBL
// EXTENT
// ASSGN
// DLBL
// EXTENT
// ASSGN

projdem, 'idns.projseg.projdemo',1999/365,DA
SYSnnn,nnnnnn, , ,555S,6
SYSnnn,DISK,VOL=nnnnnn,SHR

indxdem, 'idns.sqldemo. indxdemo',1999/365,DA
SYSnnn,nnnnnn, , ,555S,6
SYSnnn,DISK,VOL=nnnnnn,SHR

sysctl, 'idms.sysctl',1999/365,SD
SYSnnn,nnnnnn, , ,SSss,2

SYSnnn,DISK, VOL=nnnnnn, SHR

secdd, 'idms. sysuser.ddlsec',1999/365,DA
SYSnnn,nnnnnn, , ,5sss,26

SYSnnn,DISK, VOL=nnnnnn, SHR

dictdb, 'idms.appldict.ddldml',1999/365,DA
SYSnnn,nnnnnn, , ,5sss,51

SYSnnn,DISK, VOL=nnnnnn,SHR

dloddb, 'idms.appldict.ddldclod',1999/365,DA
SYSnnn,nnnnnn, , ,5sss,51

SYSnnn,DISK, VOL=nnnnnn,SHR

sqldd, 'idms. syssql.ddlcat',1999/365,DA
SYSnnn,nnnnnn, , ,ssss,101
SYSnnn,DISK,VOL=nnnnnn,SHR

sqllod, 'idms.syssql.ddlcatl',1999/365,DA
SYSnnn,nnnnnn, , ,55s5s,51
SYSnnn,DISK,VOL=nnnnnn,SHR

sqlxdd, 'idms.syssql.ddlcatx',1999/365,DA
SYSnnn,nnnnnn, , , 555,26
SYSnnn,DISK,VOL=nnnnnn,SHR

asfdml, 'idms.asfdict.ddldml',h1999/365,DA
SYSnnn,nnnnnn, , ,55ss,201

SYSnnn,DISK, VOL=nnnnnn, SHR

Appendix A: DML Precompile, Assembly, and Link-Edit JCL 441

IDMSDMLA Under z/VSE

// DLBL asflod, 'idms.asfdict.asflod',1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,401

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asfdata, 'idns.asfdict.asfdata',1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,201

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL ASFDEFN, 'idns.asfdict.asfdefn',1999/365,DA
// EXTENT SYSnnn,nnnnnn,,,ssss,101

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j1jrnl, 'idms.j1jrnl',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j2jrnl, 'idms. j2jrnl',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j3jrnl, 'idms. j3jrnl',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL SYSIDMS, '#SYSIPT',0,D

/+

/*

idmslib.sublib

Name of the sublibrary within thelibrary containing CAIDMS modules
user.sublib

Name of the sublibrary withinthelibrary containing user modules
idmslib

Filename of the file containing CA IDMS modules
idms.library

File-ID associated with the file containing CA IDMS modules
SYSnnn

Logical unitof the volume for which the extent is effective
nnnnnn

Volume serial identifier of appropriatedisk volume
ssss

Starting track (CKD) or block (FBA) of disk extent
dccat

Filename of the system dictionary catalog (DDLCAT) area

442 DML Reference Guide for Assembler

IDMSDMLA Under z/VSE

idms.system.dccat

File-1D of the system dictionary catalog (DDLCAT) area
dccatl

Filename of the system dictionary catalogload (DDLCATLOD) area
idms.system.dccatlod

File-1D of the system dictionary catalogload (DDLCATLOD) area
dccatx

Filename of the system dictionary catalogindex (DDLCATX) area
idms.system.dccatx

File-ID of the system dictionary catalogindex (DDLCATX) area
dcdml

Filename of the system dictionary definition (DDLDML) area
idms.system.ddldml|

File-ID of the system dictionary definition (DDLDML) area
dclod

Filename of the system dictionary definition load (DDLDCLOD) area
idms.system.ddldclod

File-1D of the system dictionary definition load (DDLDCLOD) area
dclog

Filename of the system log area (DDLDCLOG) area
idms.system.ddldclog

File-ID of the system log (DDLDCLOG) area
dcrun

Filename of the system queue (DDLDCRUN) area
idms.system.ddIdcrun

File-1D of the system queue (DDLDCRUN) area
descr

Filename of the system scratch (DDLDCSCR) area
idms.system.ddlIdcscr

File-1D of the system scratch (DDLDCSCR) area
dcmsg

Filename of the system message (DDLDCMSG) area

Appendix A: DML Precompile, Assembly, and Link-Edit JCL 443

IDMSDMLA Under z/VSE

idms.sysmsg.ddldcmsg

File-1D of the system message (DDLDCMSG) area
dclscr

Filename of the local modesystem scratch (DDLOCSCR) area
idms.sysloc.ddlocscr

File-1D of the local modesystem scratch (DDLOCSCR) area
dirldb

Filename of the IDMSDIRL definition (DDLDML) area
idms.sysdirl.ddidml

File-1D of the IDMSDIRL definition (DDLDML) area
dirllod

Filename of the IDMSDIRL definition load (DDLDCLOD) area
idms.sysdirl.dirllod

File-1D of the IDMSDIRL definition load (DDLDCLOD) area
empdemo

Filename of the EMPDEMO area
idms.empdemo1

File-ID of the EMPDEMO area
insdemo

Filename of the INSDEMO area
idms.insdemo1

File-1D of the INSDEMO area
orgdemo

Filename of the ORGDEMO area
idms.orgdemo1

File-ID of the ORDDEMO area
empldem

Filename of the EMPLDEMO area
idms.sqldemo.empldemo

File-1D of the EMPLDEMO area

444 DML Reference Guide for Assembler

IDMSDMLA Under z/VSE

infodem

Filename of the INFODEMO area
idms.sqgldemo.infod emo

File-ID of the INFODEMO area
projdem

Filename of the PROJDEMO area
idms.projseg.projdemo

File-ID of the PROJDEMO area
indxdem

Filename of the INDXDEMO area
idms.sqldemo.indxdemo

File-1D of the INDXDEMO area
sysctl

Filename of the SYSCTL file
idms.sysctl|

File-1D of the SYSCTL file
secdd

Filename of the system user catalog (DDLSEC) area
idms.sysuser.ddlsec

File-1D of the system user catalog (DDLSEC) area
dictdb

Filename of the application dictionary definition area
idms.appldict.ddidml

File-1D of the application dictionary definition (DDLDML) area
dloddb

Filename of the application dictionary definition load area
idms.appldict.ddidclod

File-1D of the application dictionary definition load (DDLDCLOD) area
sqldd

Filename of the SQL catalog (DDLCAT) area
idms.syssql.ddicat

File-1D of the SQL catalog (DDLCAT) area

Appendix A: DML Precompile, Assembly, and Link-Edit JCL 445

IDMSDMLA Under z/VSE

sqllod

Filename of the SQL catalogload (DDLCATL) area
idms.syssql.ddicat!

Filename of the SQL catalogindex (DDLCATX) area
sqixdd

Filename of the SQL catalogindex (DDLCATX) area
idms.syssql.ddicatx

File-1D of the SQL catalogindex (DDLCATX) area
asfdml

Filename of the asfdictionary definition (DDLDML) area
idms.asfdict.ddidml

File-1D of the asfdictionary definition (DDLDML) area
asflod

Filename of the asfdictionary definition load (ASFLOD) area
idms.asfdict.asflod

File-ID of the asfdictionary definition load (ASFLOD) area
asfdata

Filename of the asfdata (ASFDATA) area
idms.asfdict.asfdata

File-1D of the asfdata area (ASFDATA) area
ASFDEFN

Filename of the asfdata definition (ASFDEFN) area
idms.asfdict.asfdefn

File-1D of the asfdata definition area (ASFDEFN) area
jijrnl

Filename of the firstdiskjournalfile
idms.j1jrnl

File-1D of the firstdiskjournalfile
j2jrnl

Filename of the second diskjournal file

446 DML Reference Guide for Assembler

IDMSDMLA Under CMS

idms.j2jrnl

File-1D of the second diskjournal file
j3jrnl

Filename of the third diskjournal file
idms.j3jrnl

File-1D of the third diskjournal file
SYSIDMS

Filename of the SYSIDMS parameter file

IDMSDMLA Under CMS

Executing Under the Central Version IDMSDMLA (CMS)

FILEDEF SYSIPT DISK sysipt data a (RECFM F LRECL ppp BLKSIZE nnn

FILEDEF SYSP(H DISK prgnme assemble a

FILEDEF SYSIDMS DISK sysidms parms a (RECFM F LRECL ppp. BLKSIZE nnn

EXEC IDMSFD

OSRUN IDMSDMLA PARM='CVMACH=vmid' Precompiler step

FILEDEF TEXT DISK prgmme text a

GLOBAL TXTLIB asmlibvs IDMSLIB1

ASSEMBLE prgmme (OSDECK APOST LIB Assemble step

TXTLIB DEL utextlib prgnme

TXTLIB ADD utextlib prgnme

FILEDEF SYSLMOD uloadlib loadlib a (RECFM V LRECL 1024 BLKSIZE 10 24

FILEDEF objlib DISK utextlib txtlib a

FILEDEF SYSLIB DISK asmlibvs txtlib p

LKED linkctl data a (LIST XREF LET MAP RENT NOTERM PRINT SIZE 512K 64K
Link edit step

sysipt data a

Filename, type, and mode of the filecontainingthe Assembler/DML source
statements

PPp

Record length of the data file
nnn

Blocksize of the data file
prgnme assemble a

Filename of the Assembler program

Appendix A: DML Precompile, Assembly, and Link-Edit JCL 447

IDMSDMLA Under CMS

sysidms parms a

Filename, filetype, and filemode of the filethat contains SYSIDMS parameters
(parameters that define your runtime environment)

vmid

ID of the virtual machinerunningthe CA IDMS/DB central version
asmlibvs

Filename of the library thatcontains Assembler logic modules
utextlib

Filename of the user text library
uloadlib loadlib a

Filename, filetype, and filemode of the user load library
objlib1

DDname of the first CA IDMS/DB object library
objlib

DDname of the user object library
asmlibvs txtlib p

Filename, filetype, and filemode of the library thatcontains Assembler logic
modules

linkctl

Filename of the filethat contains the linkage editor control statements

448 DML Reference Guide for Assembler

IDMSDMLA Under CMS

How to Edit the SYSIDMS File

To edit the SYSIDMS file, enter these CMS commands:

XEDIT sysidms parms a (NOPROF
INPUT

SYSIDMS parameters

FILE

To run IDMSDMLA, you mustincludethe NODENAME and DICTNAME SYSIDMS
parameters.

Note: For more information on SYSIDMS, see the Common Facilities Guide.
How to Create the SYSIPT File

To create the SYSIPT file, enter these CMS commands:

XEDIT sysipt data a (NOPROF
INPUT

DML source statements

FILE

Appendix A: DML Precompile, Assembly, and Link-Edit JCL 449

Link-Edit Considerations

How to Create the LINKCTL File

To create the LINKCTL file, enter these CMS commands:

XEDIT linkctl data a (NOPROF
INPUT

INCLUDE objlib(prgnme)

INCLUDE objlibl(IDMS) IDMS is required, omit for CICS
INCLUDE objlibl(IDMSCINT) for CICS only

INCLUDE objlibl(IDMSCANC) IDMSCANC for BATCH and DCBATCH
ENTRY prgnme

NAME prgnme (R)

FILE

Executing in Local Mode

To execute the IDMSDMLA precompilerinlocal mode, remove the CVMACH parameter
from OSRUN, and do one of the following:

m Link IDMSDMLA with an IDMSOPTI program that specifies local execution mode

m Specify *LOCAL* asthe firstinputparameter inthe filespecifiedinthe FILEDEF
SYSIPT statement

m Modify the OSRUN statement, as follows:
OSRUN IDMSDMLA PARM='*_QCAL*'

Note: This optionis valid onlyifthe OSRUN command isissued froma System
Product Interpreter or from an EXEC2 file.

Link-Edit Considerations

The modules involvedinthe link editof an application programcontain sixexternal
references. Some must be resolved depending on the mode of operation. The following
table lists and explainsthe external references; unresolved references should be
checked againstthis tableto ensure proper linkageto the program.

Reference Referenced by Resolved by Comments
ABORT Application IDMSCANC Should be resolved
Program

450 DML Reference Guide for Assembler

Link-Edit Considerations

Reference Referenced by Resolved by Comments
IDCSACON Application IDMSBALI Must be resolved;
Program alternatively, includethe
#BALI macrointhe
application programifyou
use the HRETURN macro
IDMS Application IDMS Must be resolved
Program
IDMSOPTI* IDMS IDMSOPTI Must be resolved under
module z/0S if using the central
version without a SYSCTL
file,and under z/VSE ifusing
the central version
IDMSWAIT* IDMS IDMSWAIT Must be resolved if

user-written wait programis
desired; otherwise, system
routineis used

* Under z/0S, IDMSOPTI is a weak external reference (WXTRN)

Appendix A: DML Precompile, Assembly, and Link-Edit JCL 451

Appendix B: Sample CA IDMS/DB Batch

Program

This appendix contains a samplebatch Assembler program that accesses database
records using navigational DMLstatements. The sample programshown performs the
following:

Performs anarea sweep of the ORG-DEMO region for officerecords

Walks the OFFICE-EMPLOYEE set
m Uses ajunctionrecord (EMPLOYEE)
m Walks the DEPT-EMPLOYEE set

m Tests databaseconditions

This section contains the followingtopics:

Input to the Precompiler (see page 454)
Output from the Precompiler (see page 457)
Output from the Assembler (see page 467)

Appendix B: Sample CA IDMS/DB Batch Program 453

Inputto the Precompiler

Input to the Precompiler

The followingillustrates a samplebatch programas inputto the DML precompiler.

454 DML Reference Guide for Assembler

Inputto the Precompiler

*RETRIEVAL
*DMLIST
*NO-ACTIVITY-LOG
RO EQU ©
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
SPACE 1
* ENTER FROM NEXT HIGHER LEVEL
SPACE 1
PRINT GEN ASSEMBLER PRINT OPTIONS
SYBPG2 CSECT
LR R12,R15 ESTABLISHES REGISTER 12 AS THE

USING SYBPG2,R12
USING STORAGE,R10

BASE REGISTER
ESTABLISH ADDRESSABILITY OF DSECT

B PROCESS BRANCH TO FIND INVOKING TASKCODE
EJECT
@INVOKE MODE=IDMSDC, MAP=SYBMAP

* OPERATING MODE: IDMS DC/MAPPING
EJECT
SPACE 1

RETURN DS OH
#FREESTG STGID='SYB4'
#RETURN
SPACE 1
RETURNXT DS OH
#RETURN NXTTASK=SYBTSKO3
SPACE 1
* MAINLINE PROGRAM
SPACE 1
PROCESS DS 6H
#GETSTG TYPE=(USER, LONG, KEEP) ,PLIST=*,LEN=STORLGTH,
STGID='SYB4', COND=(ALL) ,ERROR=ERRORTN, ADDR=(R10),
INIT=X'40"'
* ACQUIRE VARIABLE STORAGE
SPACE 1
#APBIND MRB=SYBMAP BIND MAP AND RECORDS
#MAPBIND MRB=SYBMAP, RECNAME=SYBREC

FREE THE STORAGE ACQUIRED EARLIER
RETURN TO HIGHER LEVEL

PASS CONTROL BACK TO ITSELF

SPACE 1

ACCEPTSK #ACCEPT TYPE=TASKCODE, FIELD=TASKCODE

* ACCEPT TASK CODE TO INVOKE TASK
CLC TASKCODE, SYBTSK2 FIRST TIME CALLED ?
BNE RECCUR YES - OUTPUT FIRST SCREEN

* NO - INPUT DATA FROM SCREEN

FIRSTIME DS 6H

MVC SYBDEPID,=C'0000" PRIME DATA FIELD

SPACE
#MREQ OUT, MRB=SYBMAP,0PTNS=(NEWPAGE), ERROR=ERRORTN,
COND=(ALL)
* MAP OUT PROMPT
SPACE
B RETURNXT EXIT & WAIT FOR OPERATOR RESPONSE
SPACE 2

RECCLIR DS OH
#MREQ IN,MRB=SYBMAP, ERROR=ERRORTN,COND=(ALL)

* MAP IN TERMINAL INPUT
SPACE 1
#MAPINQ MRB=SYBMAP,AID=AIDBYTE
* MOVE MAP DATA TO PROG VARIABLE STG

CLI AIDBYTE,CLEAR
BE RETURN

DID THE OPERATOR REQUEST FINISH?
YES - EXIT PGM, BACK TO IDMS DC

Appendix B: Sample CA IDMS/DB Batch Program 455

Inputto the Precompiler

*

ERRORTN

CLEAR
SYBTSK2
SYBTSK63

STORAGE

SYBMAPLN

SYSPLIST
TASKCODE
AIDBYTE

STORLGTH

SPACE
#MREQ OUT, MRB=SYBMAP,ERROR=ERRORTN,
COND=(ALL)
MAP OUT DATA
SPACE
B RETURNXT EXIT & WAIT FOR OPERATOR RESPONSE
NO - MAPOUT, WAIT ON OPERATOR
DS 6H HERE FOR NONZERO RETURN CODE
#SNAP AREA=(SYBMAP, SYBMAPLN)
B RETURN EXIT
EQU X'eD' CLEAR AIDBYTE VALUE
DC CL8'SYBTSK2 * DC TASK INVOKING VALUE (EXTERNAL)
DC CL8'SYBTSKO3' DC TASK INVOKING VALUE (INTERNAL)
LTORG
#BALI
SPACE 2
3k 3k skok koK ok 5k Kok skok %ok dkok 3kok %k koK ok skok 3Kk Xk %ok skok 3ok %ok 5k ok skok %ok ok 3ok %k ok Xk Skok kK X Xk ok Kk %k >k X
DSECT STORAGE DSECT
@COPY IDMS, MAP-CONTROL=SYBMAP
EQU *-SYBMAP LENGTH OF #MRB FOR SNAP
SPACE 1
@COPY IDMS, MAP-RECORDS
SPACE 1
DS 20F MAP OUT PARAMETER LIST AREA
DS CL8 TASK CODE WHICH INVOKED PROGRAM
DS X ATTENTION IDENTIFIER BYTE
DS 3X RESERVED
EQU *-STORAGE TOTAL LENGTH OF STORAGE NEEDED
SPACE 1
END SYBPG2

456 DML Reference Guide for Assembler

Outputfrom the Precompiler

Output from the Precompiler

The followingillustrates the samplebatch program as output from the DML
precompiler.

Appendix B: Sample CA IDMS/DB Batch Program 457

Output from the Precompiler

*DMLIST
SAMPLE1 START #REGEQU
STM R14,R12,12(R13)
LR R12,R15
USING SAMPLE1,R12,R11,R10
LR R11,R12
LA R11,4095(R11)
LA R11,1(R11)
LA R10,4095(R11)
LA R10,1(R10)
ST R13,SAVEAREA+4
LA R7, SAVEAREA
ST R7,8(R13)
LA R13,SAVEAREA
B BEGIN
@I0DE MODE=BATCH, DEBUG=YES
* @INVOKE SUBSCH=EMPSSO1,SCHEMA=EMPSCHM,VERSION=100
* @COPY IDMS, SUBSCHEMA -CTRL
DS oD
SSCTRL DS 0CL216
PGMNAME DC cs"' '
ERRSTAT DC CL4'1400'
DBKEY DS FL4
RECNAME DC CL16' '
AREANAME DC CL16" '
ERRORSET DC CL16' '
ERRORREC DC CL16' '
ERRAREA DC CL16" '
SSCIDBMM DS 0CL100
IDBMSCOM DS 100CL1
ORG SSCIDBCM
RDBMSCOM DS 0CL100
PGINFO DS 0CL4
PGINFGRP DS HL2
PGINFDBK DS HL2
DS CL96
DIRDBKEY DC FL4'0'
DBSTATUS DS oCL8
DBSTMTCD DS CL2
DBSTATCD DS CL5
DS CL1
RECOCCUR DC FL4'0"
DMLSEQ DC FL4'0'
3k 3k 5kok 3ok Xk 5k Kok skok %ok skok skok X ok ok skok %Kok 5k Xk skok ok Xk k kk
* @COPY IDMS, SUBSCHEMA -RECORDS
DS oD
STRUCTUR DS 0CL12
STRCODE DS CL2
ADMIN EQU C'A’
PROJECT EQU C'P1'
STRDATE DS oCL8
STRYEAR DS CL4
STRMONTH DS CL2
STRDAY DS CL2
DS CL2
stk ok skok stk K Skok Kok ok ok skok sk ok skok ok ok ok Kok ok ok skok K Kok
DS CL4
DS oD
SKILLA DS 0CL76
SKILID DS CL4
SKILNAME DS CL12
SKILDESC DS CL60
3k 5k skok koK %ok 5k Kok skok %ok dkok ko Xk ok ok skok %Kok 5k Xk skok ok Xk k kk
DS CL4
DS oD
OFFIC DS 0CL76
OFFCODE DS CL3
OFFADDR DS 0CL46
OFFSTRT DS CL20
OFFCITY DS CL15
OFFSTATE DS CL2
OFFZIP DS oCL9
OFFZIPF5 DS CL5

458 DML Reference Guide for Assembler

Outputfrom the Precompiler

OFFZIPL4
OFFPHONE
OFFAREA

OFFSPEED

sk sk stok skok stok sk ok stok skok ok skok sk stok skok ok stok sk ok skok ok ok ok Kok

NONHSPCL
NHCLMDT
NHCLMYR
NHCLMMO
NHCLMDAY
NHPTNAME
NHPTFNAM
NHPTLNAM
NHPTBDAT
NHPTBYR
NHPTBMO
NHPTBDA
NHPTSEX
NHRELEMP
NHPHYNAM
NHPHYFNM
NHPHYLNM
NHPHYADD
NHPHYSTR
NHPHYCTY
NHPHYSTA
NHPHYZIP
NHPHYZ5
NHPHYZ4
NHPHYSID
NHDIAGN
NHNOPROC

NHPHYCHG
NHSERVDT
NHSERVYR
NHSERVMO
NHSERVDA
NHPROCCD
NHDESCSV
NHFEE

sk sk stok skok stok sk ok stok skok ok skok sk stok skok ok skok sk ok stok ok ok ok ok

JOBA
JOBID
JOBTITLE
JOBDESCR
JOBDSCLN
JOBRQUNT
JOBREQLN
JOBMNSAL
JOBMXSAL
JOBSALGR
JOBNMPOS
JOBNMOPN

sk sk stok skok stk sk skok stok skok ok skok k stok skok ok skok k stok skok ok skok K stk

INSPLAN
INPCODE
GROUPLIF
HMO
GRPHLTH
GROUPDNT
INPCNAME
INPCADDR
INPCSTRT
INPCCITY
INPCSTAT

DS CcL4

DS 3CL7
DS CL3

DS CL3

DS CL4

DS 0D

DS 0CL1052
DS 0CL8
DS CcL4

DS CL2

DS CL2

DS 0CL25
DS CL10
DS CL15
DS ocL8
DS CL4

DS CL2

DS CL2

DS CL1

DS CL10
DS 0CL25
DS CL10
DS CL15
DS 0CL46
DS CL20
DS CL15
DS CL2

DS 0CL9
DS CL5

DS CL4

DS CL6

DS 2CL60
DS HL2

DS CL1

DS 0CL800
DS oCL8
DS CcL4

DS CL2

DS CL2

DS CL4

DS CL60
DS PL5

DS c3

DS CL720
DS CL4

DS oD

DS 0CL296
DS CL4

DS CL20
DS 0CL120
DS 2CL60
DS 0CL120
DS 2CL60
DS CL8

DS CL8

DS 4CL2
DS CL3

DS CL3

DS CL2

DS 0D

DS 0CL132
DS CL3
EQU C'ee1’
EQU C'ee2’
EQU C'ee3’
EQU C'oe4’
DS CL45
DS 0CL46
DS CL20
DS CL15
DS CL2

Appendix B: Sample CA IDMS/DB Batch Program 459

Outputfrom the Precompiler

INPCZIP DS oCL9
INPCZPF5 DS CL5
INPCZPL4 DS CL4
INPCPHON DS CL10
INPGRPNO DS CL6
INPDESCR DS 0CL20
INPDEDCT DS PL5
INPMXLIF DS PL5
INPFAMCS DS PL5
INPDEPCS DS PL5

DS CL2
3k 3k 5kok koK Xk 5k Kok skok %ok dkok 3ok X %ok ok skok %Kok 5k Xk skok ok Xk k kk

DS CL4

DS oD
HOSPCLM DS 0CL300
HCCLMDT DS 0CL8
HCCLMYR DS CL4
HCCLMMO DS CL2
HCCLMDAY DS CL2
HCPTNAME DS 0CL25
HCPTFNAM DS CcL10
HCPTLNAM DS CL15
HCPTBDAT DS oCL8
HCPTBYR DS CL4
HCPTBMO DS CL2
HCPTBDA DS CL2
HCPTSEX DS CcL1
HCRELEMP DS CcL10
HCHSPNAM DS CL25
HCHSPADD DS 0CL46
HCHSPSTR DS CL20
HCHSPCTY DS CL15
HCHSPSTA DS CL2
HCHSPZIP DS oCL9
HCHSPZF5 DS CL5
HCHSPZL4 DS CL4
HCADMTDT DS oCL8
HCADMTYR DS CL4
HCADMTMO DS CL2
HCADMTDA DS CL2
HCDSCGDT DS oCL8
HCDSCGYR DS CL4
HCDSCGMO DS CL2
HCDSCGDA DS CL2
HCDIAGN DS 2CL60
HCHSPCHG DS 0CL41
HCRMBRD DS 0CL26
HCWARD DS 0CL13
HCWDDAYS DS PL3
HCWDRATE DS PL5
HCWDTOTL DS PL5
HCSPRIV DS 0CL13
HCSDAYS DS PL3
HCSRATE DS PL5
HCSTOTAL DS PL5
HCOTHCHG DS 0CL15
HCDELVCH DS PL5
HCANSTHC DS PL5
HCLABCST DS PL5
sk sk stok ok stok sk ok stok skok ok skok sk stok skok ok stok sk ok stok ok ok ok Kok

DS CL4

DS oD
EXPRTISE DS 0CL12
EXPSKLVL DS CL2
EXPERT EQU C'04'
PROFICNT EQU C'03'
COMPETNT EQU C'02'
ELEMNTRY EQU C'ol’
EXPDATE DS 0CL8
EXPYEAR DS CL4
EXPMONTH DS CL2
EXPDAY DS CL2

DS CL2

ok stk stok stok sk skok stk stok stk stok sk kok skok stk stok sk ok dkok dkok Kok ok ok

460 DML Reference Guide for Assembler

Outputfrom the Precompiler

EMPOSITN
EPSTRTDT
EPSTRTYR
EPSTRTMO
EPSTRTDA
EPFINIDT
EPFINIYR
EPFINIMO
EPFINIDA
EPSALGRD
EPSALAMT
EPBONPCT
EPQMMPCT
EPOTRATE

DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS

CL3

sk sk stk stk stk sk skok skok stk stk stk sk skok skok skok skok sk skok skok skok skok ok ok

EMPLOYE
EMPID
EMPNAME
EMPFNAME
EMPLNAME
EMPADDR
EMPSTRET
EMPCITY
EMPSTATE
EMPZIP
EMPZIPF5
EMPZIPL4
EMPPHONE
EMPSTATU
ACTIVE
STDSBL
LTDSBL
LVOFAB
TRMINATD
EMPSSNUM
EMPSTDT
EMPSTYR
EMPSTMO
EMPSTDA
EMPTRMDT
EMPTRMYR
EMPTRMMO
EMPTRMDA
EMPBIRDT
EMPBIRYR
EMPBIRMO
EMPBIRDA

DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
EQU
EQU
EQU
EQU
EQU
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS

0D
0CL120
CcL4
0CL25
CL10
CL15
0CL46
CL20
CL15
CL2
0CL9
CL5
CL4
CL10
CL2
c'ol’
c'o2'
c'e3
c'o4
c'o5
CcLo
oCL8
CL4

CL2
CL2

sk >k ok ok ok ok ko kok ok ok ok >k kok ok ok ok ko ok ok ok k kok

DEPARTMT
DEPTID

DEPTNAME
DEPTHDID

DS
DS
DS
DS
DS
DS

oD
0CL56
CL4
CL45
CcL4
CL3

stk ok skok ok K Stk ok ok ok skok sk skok skok ok ok Sk Kok ok ok Kok K ko

DENTCLM
DCCLMDT
DCCLMYR
DCCLMMO
DCCLMDA
DCPNAME
DCPFNAME
DCPLNAME
DCPBIRDT
DCPBIRYR
DCPBIRMO
DCPBIRDA
DCPSEX
DCRELEMP

DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS

0D
0CL932
ocL8
CL4

Appendix B: Sample CA IDMS/DB Batch Program 461

Output from the Precompiler

DCDNNAME DS 0CL25
DCDNFNAM DS cL10
DCDNLNAM DS CL15
DCDNADDR DS 0CL46
DCDNSTR DS CcL20
DCDNCITY DS CL15
DCDNSTAT DS CL2
DCDNZIP DS 0CL9
DCDNZPF5 DS CL5
DCDNZPL4 DS CL4
DCDNLICN DS CL6
DCNOPROC DS HL2

DS CL1
DCDNCHGS DS 0CL800
DCTOTHNO DS CL2
DCSERVDT DS 0CL8
DCSERVYR DS CL4
DCSERVMO DS CL2
DCSERVDA DS CL2
DCPROCCD DS CL4
DCDESCSV DS CL60
DCFEE DS PL5

DS CL1

DS CL720
3k 3k skok ok ok 5k Kok skok %ok dkok koK Xk ok ok skok %ok 5k Xk skok ok Xk k kk

DS CL4

DS oD
COVERGE DS 0CL20
COVSELDT DS oCL8
COVSELYR DS CL4
COVSELMO DS CL2
COVSELDA DS CL2
COVTRMDT DS oCL8
COVTRMYR DS CL4
COVTRMMO DS CL2
COVTRMDA DS CL2
COVTYPE DS CL1
COWASTR EQU C'M'
COVFAMLY EQU C'F'
COVDPNDT EQU C'D'
COVPLNCD DS CL3
GROUP_LIFE EQU C'oel’
HMO EQU C'002'
GROUP_HEALTH EQU C'003'
GROUP_DENTAL EQU C'004'
stk stok skok stok sk ok stok skok ok skok ok stok skok ok skok K stok skok ok skok K stk

DS CL4
BEGIN DS OF
* @COPY IDMS, SUBSCHEMA -BINDS

@IND SUBSCH='EMPSSO1 ',SCB=SSCTRL,DICTNAM='APPLDICT'
@BIND REC='OFFICE', IOAREA=OFFIC

@BIND REC='EMPLOYEE',IOAREA=EMPLOYE

@IND REC='DEPARTMENT' ,IOAREA=DEPARTMT

OPEN (OUTFILE, QUTPUT)

MVC EDSW,=C'N' SET SWITCHES

MvC DSW,=C'N'

MWC ESW,=C'N'

LA R5,MAINGOO LOAD ADDRESS OF MAINLINE ROUTINE
B PRTHEAD

MAINGO® EQU *
@READY ALL,RDONLY=YES READY ALL DATABASE AREAS

CLC ERRSTAT,STATOK CHECK IF ERROR

BNE AREAERR BRANCH TO ERROR ROUTINE

@BTAIN FIRST,AREA='ORG-DEMO-REGION',REC='0OFFICE"
NEWOFFC CLC ERRSTAT,STATOK CHECK IF NO OFFICE

BNE AREAERR

MvC 0CODE,OFFCODE
MvC OCITY,OFFCITY
@)BTAIN FIRST,SET='0OFFICE-EMPLOYEE',REC="'EMPLOYEE'

CLC ERRSTAT,STATOK CHECK IF NO EMPLOYEE

BNE OBERR1

MvC EID,EMPID MOVE EMPLOYEE ID

MvC FNAME,EMPFNAME MOVE EMPLOYEE FIRST NAME
MVC LNAME,EMPLNAME MOVE EMPLOYEE LAST NAME

462 DML Reference Guide for Assembler

Outputfrom the Precompiler

MVC WALK, EMPID SAVE ID
MVC STATNUM,EMPSTATU MOVE EMPLOYEE STATUS
LA R6 ,NEWDPT LOAD ADDRESS OF NEW DEPT ROUTINE
B CKSTAT BRANCH TO STATUS -CHECK RTN
NEWDPT EQU *
@)BTAIN OWNER,SET='DEPT-EMPLOYEE'
CLC ERRSTAT,STATOK CHECK IF DEPARTMENT
BNE OBERR2
MvC DID,DEPTID
MvC DEPT, DEPTNAME
LA R5,MAING20 LOAD ADDRESS OF SET-WALK RTN
B PRINTREC PRINT DEPARTMENT INFORMATION
MAING20 EQU * *
@IBTAIN NEXT,SET='DEPT-EMPLOYEE ', REC="'EMPLOYEE"
CLC ERRSTAT,0307 CHECK IF END OF SET
BE MAINO30 BRANCH IF END OF SET
CLC ERRSTAT,STATOK CHECK IF ERROR
BNE OBERR3
MC EID,EMPID MOVE EMPLOYEE ID
MVC FNAME,EMPFNAME MOVE EMPLOYEE FIRST NAME
MVC LNAME,EMPLNAME MOVE EMPLOYEE LAST NAME
MVC STATNUM,EMPSTATU MOVE EMPLOYEE STATUS
LA R6 ,MAING25 LOAD ADDRESS OF PRINT LINK
B CKSTAT
MAING25 EQU *
LA R5,MAING20
B PRINTREC
MAING3O EQU *
MC EMPID,WALK
@FIND CALC,REC='EMPLOYEE' FIND NEXT EMPLOYEE
CLC ERRSTAT,STATOK CHECK IF ERROR
BNE CALCERR
REPEAT EQU *
@BTAIN NEXT, SET="OFFICE-EMPLOYEE', REC='EMPLOYEE"
CLC ERRSTAT,=C'0307' END OF SET ?
BE MAINO4O BRANCH IF END OF SET
CLC ERRSTAT,STATOK
BNE OBERR1
@IF SET='DEPT-EMPLOYEE', MEMBER=YES, GOTO=REPEAT
MvC EID,EMPID MOVE EMPLOYEE ID
MWC FNAME,EMPFNAME MOVE EMPLOYEE FIRST NAME
MVC LNAME,EMPLNAME MOVE EMPLOYEE LAST NAME
MVC WALK, EMPID
MVC STATNUM,EMPSTATU
LA R6 ,NEWDPT ADDRESS OF DEPT ROUTINE
B CKSTAT
MAING4O EQU *
@BTAIN NEXT, AREA='0RG -DEMO-REGION' ,REC="0FFICE'
B NEWOF FC
EOF EQU *
@FINISH *
CLC ERRSTAT,STATOK
BNE FINERR
CLOSE (OUTFILE)
L R13, SAVEAREA+4
M R14,R12,12(R13)
BR R14 RETURN
* ERROR ROUTINES *
BSERROR EQU *
MWI ERRMSG,C' '
MVC ERRMSG+1(19), ERRMSG
MVI ERRNUM,C' '
MVC ERRNUM+1(3) ,ERRNUM
MVC ERRNUM, ERRSTAT
MVC ERRMSG, BSMSG
B PRINTERR
BRERROR EQU *

MWI ERRMSG,C' '

MVC ERRMSG+1(19), ERRMSG
MVI ERRNUM,C' '

MVC ERRNUM+1(3) ,ERRNUM
MVC ERRNUM, ERRSTAT

MVC ERRMSG, BRMSG

B PRINTERR

Appendix B: Sample CA IDMS/DB Batch Program 463

Output from the Precompiler

AREAERR EQU *
MVI ERRMSG,C' '
MVC ERRMSG+1(19), ERRMSG
MVI ERRNUM,C'
MVC ERRNUM+1(3) ,ERRNUM
MVC ERRNUM, ERRSTAT
MVC ERRMSG, AREAMSG
B PRINTERR
CALCERR EQU *
MVI ERRMSG,C' '
MVC ERRMSG+1(19), ERRMSG
MVI ERRNUM,C' '
MVC ERRNUM+1(3) ,ERRNUM
MVC ERRNUM, ERRSTAT
MVC ERRMSG, CALMSG
B PRINTERR
FINERR EQU *
MVI ERRMSG,C' '
MVC ERRMSG+1(19), ERRMSG
MVI ERRNUM,C' '
MvC ERRNUM+1(3) ,ERRNUM
MVC ERRNUM, ERRSTAT
MVC ERRMSG, FINMSG
B PRINTERR
OBERR1 EQU *
MvC EDSW,=C'Y"'
LA R5,MAING40
B PRINTREC
OBERR2 EQU *
mwC DSw,=C'Y'
LA R5 ,REPEAT
B PRINTREC
OBERR3 EQU *
MvC ESW,=C'Y'
LA R5,MAING30
B PRINTREC
* PRINT ROUTINES
PRINTERR EQU *
MVC ERRLINE,C' '
MVC ERRLINE+1(132),ERRLINE
MWI ERRLINE,C'O'
PUT OUTFILE,ERRLINE

B EOF
PRINTREC EQU *
MVI LINEL,C" '

MVC LINE1+1(132),LINEL
MVI LINE1,C'O'
MWI LINE2,C" '
MVC LINE2+1(132),LINE2
CLC EDSW,=C'Y'

BE SKIPED
CLC DSW,=C'Y'
BE SKIPD

MVC LINE1+27(45),DEPT
MWC LINE2+27(4),DID
CLC DSW,=C'Y'
BE SKIPED
SKIPD EQU *
MVC LINE1+77(27), ENAME
MWC LINE2+77(4) ,EID
MVC LINE1+109(20),STAT
SKIPED EQU *
MVC LINE1+7(15),0CITY
MVC LINE2+7(4),0CODE
PUT OUTFILE,LINE1l
PUT OUTFILE,LINE2
MvC EDSW,=C'N’
MmC DSW,=C'N'
MVC ESW,=C'N'
BR R5
* CHECK STATUS ROUTINE *
CKSTAT EQU *
CLC STATNWM,=C'01'
BE ACT

464 DML Reference Guide for Assembler

Outputfrom the Precompiler

CLC STATNWM,=C'02"'

BE STD
CLC STATNUM,=C'03"'
BE LTD
CLC STATNUM,=C'04'
BE Lvo
CLC STATNUM,=C'05"'
BE TRM
MVC STAT,=C' STATUS CODE ERROR '
BR R6

ACT EQU *
MVC STAT,=C' ACTIVE !
BR R6

STD EQU *
MVC STAT,=C' SHORT TERM DISABLED'
BR R6

LTD EQU *
MVC STAT,=C' LONG TERM DISBALED '
BR R6

LvO EQU *
MVC STAT,=C' LEAVE OF ABSENCE '
BR R6

TRM EQU *
MVC STAT,=C' TERMINATED !
BR R6

* PRINT REPORT HEADING ROUTINE *
PRTHEAD EQU *
MVI LINE1,C' '
MVC LINE1+1(132),LINEL
MWI LINEL,C'1'
MVC LINE1+54(26),HEADL
PUT OUTFILE,LINE1l

MWI LINEL,C' '
MVC LINE1+1(132),LINEL
MWI LINEL,C'-'

MVC LINE1+6(18) ,HEAD20
MVC LINE1+26(26),HEAD2D
MVC LINE1+76(20),HEAD2E
MVC LINE1+108(15),HEAD2S
PUT OUTFILE,LINE1l
BR R5

*

WORKFLDS DC C'WORK-FIELDS'

SAVEAREA DC 18F'0’

STATNUM DS CL2

STAT DS CL20

STATOK DC CL4'0000"

STATUS DS CL2

0CODE DS L3

0CITY DS CL15

EID DS CL4

ENAME DS ocL27

FNAME DS CL10
DS CL2

LNAME DS CL15

WALK DS CL4

DID DS CcL4

DEPT DS CL45

ERRLINE DS 0CL133

DS CL1
DC CLAB'* * * * * % % % % % % *k % % * * % *k * *
DC CL6' !

ERRMSG DS CL20
ERRNUIM DS CL4

DC CL6' !
DC CLAB ' * * * * * % sk % % % % *k %k % *k * * *k * *
DC CL5' !

BSMSG DC CL20'BIND SUBSCH ERROR
BRMSG DC CL20'BIND RECORD ERROR
AREAMSG DC CL20'READY AREA ERROR
CALMSG DC CL20'FIND CALC ERROR
FINMSG DC CL20'@FINISH ERROR
EDSW DS CL1

DSW DS L1

#H W W KW

Appendix B: Sample CA IDMS/DB Batch Program 465

Output from the Precompiler

ESW DS L1
LINEL DS CL133
LINE2 DS CL133
HEAD1 DC CL26'OFFICE PERSONNEL LISTING'
HEAD20 DC CL18'OFFICE/OFFICE CODE'
HEAD2D DC CL26 ' DEPARTMENT/DEPARTMENT CODE'
HEAD2E DC CL20 ' EMPLOYEE/EMPLOYEE ID'
HEAD2S DC CL15'EMPLOYEE STATUS'
* OUTPUT FILE DCB INFO
OUTFILE DCB DDNAME=OUTFILE,MACRF=PM,BLKSIZE=133, LRECL=133,
DSORG=PS
LTORG
END SAMPLE1

466 DML Reference Guide for Assembler

Outputfrom the Assembler

Output from the Assembler

The followingillustrates the samplebatch program as output from the assembler.

Appendix B: Sample CA IDMS/DB Batch Program 467

Outputfrom the Assembler

1 *DMLIST
000000 2 SAMPLEL START
3 #REGEQU
e
5% REGISTER EQUATES
6+*
00000 74RO EQU © 01-#REGE
00001 8+RL EQU 1 01-#REGE
00062 %R2 EQU 2 01-#REGE
00003 16+R3 EQU 3 01-#REGE
00004 11+R4 EQU 4 01-#REGE
00005 12+R5 EQU 5 01-#REGE
00006 13+R6 EQU 6 01-#REGE
00007 14+R7 QU 7 01-#REGE
00008 15+R8 EQU 8 01-#REGE
00009 16+R9 EQU 9 01-#REGE
0006A 17+R10 EQU 10 01-#REGE
00008 18+R11 EQU 11 01-#REGE
0006C 19+R12 EQU 12 01-#REGE
00060 20+R13 EQU 13 01-#REGE
000GE 21+R14 EQU 14 01-#REGE
0006F 22+R15 EQU 15 01-#REGE
000000 90EC DOOC 0006C 23 STM R14,R12,12 (R13)
000004 18CF 24 R R12,R15
R:CBA 00000 25 USING SAMPLEL,R12,R11,R10
000006 18BC 26 R R11,R12
000008 41BB OFFF OOFFF 27 LA R11,4095 (R11)
00000C 41BB 0001 00001 28 LA R11,1(R11)
000010 41AB OFFF OOFFF 29 LA R10,4005 (R11)
000014 41AA 0001 00001 30 LA R10,1(R10)
000018 50D0 B410 01410 31 ST R13,SAVEAREA+4
00001C 4170 B4OC 0146C 32 LA R7, SAVEAREA
000020 507D 0008 00008 33 ST R7,8(R13)
000024 41D0 B40C 0146C 34 LA R13,SAVEAREA
000028 47F0 CD58 0e58 35 B BEGIN
36 @IODE MODE=BATCH, DEBUG=YES
37 * @INVOKE SUBSCH=EMPSSO1,SCHEMA=EMPSCHM, VERSION=100
38 * @COPY IDMS, SUBSCHEMA -CTRL
000030 39 DS oD
000030 40 SSCTRL DS 0CL216
000030 4040404040404640 41 PGMNAME D CL8'
000038 F1F4FOFO 42 ERRSTAT DC CL4'1400"
00003C 43 DBKEY DS FL4
000040 4040404040404640 44 RECNAME DC CL16'
000050 4040404040404640 45 AREANAME DC CL16'
000060 4040404040404640 46 ERRORSET DC CLl6'
000070 4040404040404640 47 ERRORREC DC CL16'
000080 4040404040404640 48 ERRAREA DC CL16'
000090 49 SSCIDBCM DS 0CL100
000090 50 IDBMSCOM DS 100CL1
0000F4 00090 51 ORG SSCIDBCM
000090 52 RDBMSCOM DS 0CL100
000090 53 PGINFO DS ocL4
000090 54 PGINFGRP DS HL2
000092 55 PGINFDBK DS HL2
000094 56 DS CL96
0000F4 00000000 57 DIRDBKEY DC FL4'O"
0000F8 58 DBSTATUS DS 0OCL8
0000F8 59 DBSTMICD DS CL2
0000FA 60 DBSTATCD DS CLs
0000FF 61 DS CLL
000100 00000000 62 RECOCCUR DC FL4'O"
000104 00000000 63 DMLSEQ DC FL4'O"
64 Sk ok skok skok ok skok ok ko skok ok skok skok skok skok sk kok skok ok skok skok ok kok
65 * @COPY IDMS, SUBSCHEMA -RECORDS
000108 66 DS oD
000108 67 STRUCTUR DS OCLI2
000108 68 STRCODE DS CL2
69 ADMIN EQU C'A’
70 PROJECT EQU C'P1'
00010A 71 STRDATE DS 0CL8
00010A 72 STRYEAR DS Cl4
00010E 73 STRMONTH DS CL2

468 DML Reference Guide for Assembler

Outputfrom the Assembler

000110
000112

000114
000118
000118
000118
00011C
000128

000164
000168
000168
000168
000168
000168
00017F
00018E
000190
000190
000195
000199
0001AE
0001B1

0001B4
0001B8
0001B8
0001B8
0001B8
0001BC
0001BE
0001CO
0001CO
0001CA
0001D9
0001D9
0001DD
0001DF
0001E1
0001E2
0001EC
0001EC
0001F6
000205
000205
000219
000228
00022A
00022A
00022F
000233
000239
0002B1
0002B3
0002B4
0002B4
0002B4
0002B8
0002BA
0002BC
0002C0
0002FC
000301
000304

0005D4
0005D8
0005D8
0005D8
0005DC
0005F0
0005F0
000668

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

STRDAY

DS
DS

CL2
CL2

stk stk stk stok sk kok skok skok skok sk ok dkok dkok skok ok ok ok ok ok dkok ok ok

SKILLA
SKILID
SKILNAME
SKILDESC

RR R

CcL4
0D
0CL76
cL4
CL12
CL60

ok skok skok ok Kok ok ok skok sk Kok Kok Kok ok o ok ok ok Kok ok K kok

OFFIC

OFFCODE
OFFADDR
OFFSTRT
OFFCITY
OFFSTATE
OFFZIP

OFFZIPF5
OFFZIPL4
OF FPHONE
OFFAREA
OFFSPEED

DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS

DS
DS

CcL4
oD
0CL76
C3
0CL46
CL20
CL15
CL2
0CL9
CL5
CcL4
3CL7
CcL3
Cc3

stk stk stk stok sk kok skok skok skok sk kok skok skok skok ok ok ok dkok dkok dkok ok ok

NONHSPCL
NHCLMDT
NHCLMYR
NHCLMMO
NHCLMDAY
NHPTNAME
NHPTFNAM
NHPTLNAM
NHPTBDAT
NHPTBYR
NHPTBMO
NHPTBDA
NHPTSEX
NHRELEMP
NHPHYNAM
NHPHYFNM
NHPHYLNM
NHPHYADD
NHPHYSTR
NHPHYCTY
NHPHYSTA
NHPHYZIP
NHPHYZ5
NHPHYZ4
NHPHYSID
NHDIAGN
NHNOPROC

NHPHYCHG
NHSERVDT
NHSERVYR
NHSERVMO
NHSERVDA
NHPROCCD
NHDESCSV
NHFEE

DS

RRRARARRARBRRIRZRRR

DS
DS

CcL4
0D
0CL1052
0CL8
CL4
CL2
CL2
0CL25
CL10
CL15
0CL8

CL720

stk stk stk stok sk kok skok skok skok ok ok ok dkok dkok ok ok ok ok ok ok ok ok

JOBA
JOBID
JOBTITLE
JOBDESCR
JOBDSCLN
JOBRQMNT

DS
DS

DS
DS
DS
DS
DS
DS

CcL4

oD
0CL296
CcL4
CL20
0CL120
2CL60
0CL120

Appendix B: Sample CA IDMS/DB Batch Program 469

Outputfrom the Assembler

000668
0006EQ
0006E8
0006F0
0006F8
0006FB
0006FE

000700
000700
000700

000703
000730
000730
000744
000753
000755
000755
00075A
00075E
000768
00076E
00076E
000773
000778
00077D
000782

000784
000788
000788
000788
000788
00078C
00078E
000790
000790
00079A
0007A9
0007A9
0007AD
0007AF
0007B1
0007B2
0007BC
0007D5
0007D5
0007E9
0007F8
0007FA
0007FA
0007FF
0008603
0008603
000807
000809
000808
000808
00080F
000811
000813
00088B
000888
00088B
00088B
00088E
000893
000898
000898
000898

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

JOBREQLN
JOBMNSAL
JOBMXSAL
JOBSALGR
JOBNMPOS
JOBNMOPN

FRRARARRR

ok stok skok stk ok ok stok koK stok ok ok skok ok skok ok ok skok ok skok

INSPLAN
INPCODE
GROUPLIF
HV0
GRPHLTH
GROUPDNT
INPCNAME
INPCADDR
INPCSTRT
INPCCITY
INPCSTAT
INPCZIP
INPCZPF5
INPCZPLA
INPCPHON
INPGRPNO
INPDESCR
INPDEDCT
INPMXLIF
INPFAMCS
INPDEPCS

ok stok skok stok ok ok stok skok stok ok ok skok skok skok ok ok skok ok skok skok sk skok

HOSPCLM
HCCLMDT
HCCLMYR
HCCLMMO
HCCLMDAY
HCPTNAME
HCPTFNAM
HCPTLNAM
HCPTBDAT
HCPTBYR
HCPTBMO
HCPTBDA
HCPTSEX
HCRELEMP
HCHSPNAM
HCHSPADD
HCHSPSTR
HCHSPCTY
HCHSPSTA
HCHSPZIP
HCHSPZF5
HCHSPZL4
HCADMTDT
HCADMTYR
HCADMTMO
HCADMTDA
HCDSCGDT
HCDSCGYR
HCDSCGMO
HCDSCGDA
HCDIAGN
HCHSPCHG
HCRVBRD
HCWARD
HCWDDAYS
HCWDRATE
HCWDTOTL
HCSPRIV
HCSDAYS
HCSRATE

AR KA

CcL4
oD
0CL300
0CL8
cL4

oCL8
CcL4
CL2
CL2
2CL60
0CL41
0CL26
0CL13
PL3
PL5

0CL13
PL3
PL5

470 DML Reference Guide for Assembler

Outputfrom the Assembler

0008A0
0008A5
0008A5
0008AA
0008AF

0008B4
0008B8
0008B8
000888

0008BA
0008BA
00068BE
0008CO
0008C2

0008C4
0008C8
0008C8
0008C8
0008C8
0008CC
0008CE
00068D0
0008DO
0008D4
0008D6
0008D8
0008DA
00068DF
00068E1
00068E3
0008E5

0008E8
0008E8
0008ES
00068EC
00068EC
0008F6
000905
000905
000919
000928
00092A
00092A
00092F
000933
00093D

00093F
000948
000948
00094C
00094E
000950
000950
000954
000956
000958
000958
00095C
00095E

000960
000960

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

HCSTOTAL
HCOTHCHG
HCDELVCH
HCANSTHC
HCLABCST

DS
DS
DS
DS
DS

PL5
0CL15
PL5
PL5
PL5

stk stk stk stok sk kok skok skok skok sk ok dkok dkok skok ok ok ok ok ok dkok ok ok

EXPRTISE
EXPSKLVL
EXPERT
PROFICNT
COMPETNT
ELEMNTRY
EXPDATE
EXPYEAR
EXPMONTH
EXPDAY

DS
DS
DS
DS
EQU
EQU
EQU
EQU
DS
DS
DS
DS
DS

CcL4

stk stk skok stk sk skok skok skok skok ok sk skok skok skok sk ok ok ok ok dkok sk ok

EMPOSITN
EPSTRTDT
EPSTRTYR
EPSTRTMO
EPSTRTDA
EPFINIDT
EPFINIYR
EPFINIMO
EPFINIDA
EPSALGRD
EPSALAMT
EPBONPCT
EPQMMPCT
EPOTRATE

ok stok skok ok ok ok stok skok ok ok skok stok skok ok ok ok ok skok

EMPLOYE
EMPID
EMPNAME
EMPFNAME
EMPLNAME
EMPADDR
EMPSTRET
EMPCITY
EMPSTATE
EMPZIP
EMPZIPF5
EMPZIPL4
EMPPHONE
EMPSTATU
ACTIVE
STDSBL
LTDSBL
LVOFAB
TRMINATD
EMPSSNUM
EMPSTDT
EMPSTYR
EMPSTMO
EMPSTDA
EMPTRMDT
EMPTRMYR
EMPTRMMO
EMPTRMDA
EMPBIRDT
EMPBIRYR
EMPBIRMO
EMPBIRDA

DS
DS
DS
DS

PRRRRARRBRARRARRRIZRABRAIIRARRRARR

FRAR

cL4
0D
0CL32
0CL8
CL4
CL2
CL2
0CL8

stk stk skok skok sk skok skok skok skok ok sk skok dkok Skok sk ok ok ok ok ok k ok

DEPARTMT

DS
DS

oD
0CL56

Appendix B: Sample CA IDMS/DB Batch Program 471

Outputfrom the Assembler

000960
000964
000991
000995

000998
000998
000998
000998
00099C
00099
0009A0
0009A0
0009AA
0009B9
0009B9
0009BD
0009BF
0009C1
0009C2
0009CC
0009CC
0009D6
0009E5
0009E5
0009F9
000A08
000A0A
000A0A
000AOF
000A13
000A19
000A1B
000A1C
000A1C
000A1E
000A1E
000A22
000A24
000A26
000A2A
000A66
000AGB
0006A6C

0006D3C
0006D40
000D40
000D40
0006D40
000D44
000D46
000D48
000D48
0006D4C
0006D4E
0006D50

0006D51

000D54
000D58

006D58 4100 CO30
006D5C 5000 CE94
006D60 4100 COCA

00030
00094
000CA

296 DEPTID DS CL4
297 DEPTNAME DS CL45
298 DEPTHDID DS CL4
299 DS Cc3
OO ok ok ok ok ok skok sk ok ok o skok skok skok skok o stok skok skok skok skok ok ok
301 DS 0D
302 DENTCLM DS 0CL932
303 DCCLMDT DS 0CL8
304 DCCLMYR DS CL4
305 DCCLMMO DS CL2
306 DCCLMDA DS CL2
307 DCPNAME DS 0CL25
308 DCPFNAME DS CL10
309 DCPLNAME DS CL15
310 DCPBIRDT DS oCL8
311 DCPBIRYR DS CL4
312 DCPBIRMO DS CL2
313 DCPBIRDA DS CL2
314 DCPSEX DS CL1
315 DCRELEMP DS CL10
316 DCDNNAME DS 0CL25
317 DCDNFNAM DS CL10
318 DCDNLNAM DS CL15
319 DCDNADDR DS 0CL46
320 DCDNSTR DS CL20
321 DCDNCITY DS CL15
322 DCDNSTAT DS CL2
323 DCDNZIP DS 0CL9
324 DCDNZPF5 DS CL5
325 DCDNZPL4 DS CcL4
326 DCDNLICN DS CL6
327 DCNOPROC DS HL2
328 DS CL1
329 DCDNCHGS DS 0CL800
330 DCTOTHNO DS CL2
331 DCSERVDT DS 0CL8
332 DCSERVYR DS CcL4
333 DCSERVMO DS CL2
334 DCSERVDA DS CL2
335 DCPROCCD DS CcL4
336 DCDESCSV DS CL60
337 DCFEE DS PL5
338 DS CL1
339 CL720
341 CL4
342 DS oD
343 COVERGE DS 0CL20
344 COVSELDT DS 0CL8
345 COVSELYR DS CL4
346 COVSELMO DS CL2
347 COVSELDA DS CL2
348 COVTRMDT DS 0CL8
349 COVTRMYR DS CL4
350 COVTRMMO DS CL2
351 COVTRMDA DS CL2
352 COVTYPE DS CL1
353 COWASTR EQU C'M'
354 COVFAMLY EQU C'F'
355 COVDPNDT EQU C'D'
356 COVPLNCD DS CL3
357 GROUP_LIFE EQU C'eoe1’
358 HM0 EQU C'ee2’
359 GROUP_HEALTH EQU C'e03'
360 GROUP_DENTAL EQU C'oe4’

361 ok ok ook ok ok ok ok ok ok ok oK ok oK ok ok oK ok KoK ok KoK K Kok

362 DS CL4

363 BEGIN DS OF

364 * @COPY IDMS, SUBSCHEMA -BINDS

365 @IND SUBSCH='EMPSS@1 ', SCB=SSCTRL,DICTNAM='APPLDICT'
366+* *%% BEGIN DML EXPANSION ***
367+ LA 0, SSCTRL

368+ ST 0, SSCIDBCM+4

369+ LA 0, SSCIDBCM+59-1

02 -@IDMS
02-@IDMS
02-@IDMS

472 DML Reference Guide for Assembler

Outputfrom the Assembler

000D64
000D68
006D6C
006D70
000D74
006D78
006D7C
000D80
000D84
000D88
006DSE
000094
000D98
006D9C
006DAO
000DA4

0006DA8
006DAC
0006DBO

006DB2
0006DB6
006DBA
00ODBE
006DC2
000DC6
006DCA
006DCE
0006DD2
0006DD6
006DDA

000DDE
006DE2
000DE6

006DES
00ODEC
006DFO
000DF4
006DF8
006DFC
000E0O
000E04
000EG8
000EOC
000E10

000E14
0006E18
000E1C

000E1E
000E22
000E26
000E2A
000E2E
000E32
000E36
000E3A
000E3E
000E42
000E46

000E4A
00OE4E
000E52

5000
4100
5000
4100
5000
4100
5000
4100
5000
D207
D207
4100
5000
9680
4100
5000

4110
58F0
O5EF

4100
5000
4100
5000
4100
5000
4100
5000
9680
4100
5000

4110
58F0
O5EF

4100
5000
4100
5000
4100
5000
4100
5000
9680
4100
5000

4110
58F0
O5EF

4100
5000
4100
5000
4100
5000
4100
5000
9680
4100
5000

4110
58F0
O5EF

Co98
Cco30
Coe9C
B834
COAO
Co30
COA4
Co30
COA8
Co50
Co58
Co50
COAC
COAC
0001
Clo4

Co94
B7BO

Co30
Co94
COBF
C098
B846
Co9C
C168
COAO
COAO
0002
Clo4

Co94
B7BO

Co30
C094
COBF
Co98
B858
Co9C
C8E8
COAO
COAO
0003
Clo4

C094
B7B0O

Co30
Co94
COBF
C098
B86A
Co9C
C9%0
COAO
COAO
0004
Clo4

Co94
B7B0

B7A0 00050
B7A8 00058

0006AC

000A0

000A0

000A0

00098
00030
0009C
01834
000A0
00030
000A4
00030
000A8
017A0
017A8
00050
000AC

00001
00104

00094
017B0

00030
00094
000BF
00098
01846
0009C
00168
000A0

00002
00104

00094
017B0

00030
00094
000BF
00098
01858
0009C
0O8E8
000A0

00003
00104

00094
01780

00030
00094
000BF
00098
0186A
0009C
00960
000A0

00004
00104

00094
017B0

370+
371+
372+
373+
374+
375+
376+
377+
378+
379%
380+
381+
382+
383+
384+
385+
386+*,
387+
388+
389+
390+*
391
392+*
393+
394+
395+
396+
397+
398+
399+
400+
401+
402+
403+
404+*
405+
406+
407+
408+*
409
410+*
411+
412+
413+
414+
415+
416+
417+
418+
419+
420+
421+
4224%,
423+
424+
425+
426+*
427
428+*
429+
430+
431+
432+
433+
434+
435+
436+
437+
438+
439+
440+%,
441+
442+
443+

ST

ST

234595
[aNe]

-

BALR

@BIND

ST
ST
ST

ST
0I

ST

BALR

@BIND

ST
ST
ST

ST
01

ST

0, SSCIDBCM+8

0, SSCTRL

0, SSCIDBCM+12
0,=CL18"'EMPSSO1

0, SSCIDBCM+16

0, SSCTRL

0, SSCIDBCM+20

0, SSCTRL

0, SSCIDBCM+24
AREANAME(8) ,=CL8"' '
AREANAME+8(8),=CL8 'APPLDICT'
0, AREANAME

0, SSCIDBCM+28
SSCIDBCM+28,X' 80"

0,1
0,DMLSEQ
DML-SEQUENCE = 1
1,SSCIDBCM+4
15, =V (IDMS)
14,15 *#k CALL IDMS MODE=BATCH ***

% END DML EXPANSION *
REC='0FFICE' ,I0AREA=OFFIC
% BEGIN DML EXPANSION *
0, SSCTRL
0, SSCIDBCM+4
0, SSCIDBCM+48-1
0, SSCIDBCM+8
0,=CL18'OFFICE'
0, SSCIDBCM+12
0,0FFIC
0, SSCIDBCM+16
SSCIDBCM+16,X'80"

0,2
0,DMLSEQ
DML-SEQUENCE = 2
1, SSCIDBCM+4
15, =V (IDMS)
14,15 **k% CALL IDMS MODE=BATCH ***

*%% END DML EXPANSION ***
REC='EMPLOYEE' ,I0AREA=EMPLOYE
*%% BEGIN DML EXPANSION ***
0, SSCTRL
0, SSCIDBCM+4
0, SSCIDBCM+48-1
0, SSCIDBCM+8
0,=CL18 "'EMPLOYEE"'
0, SSCIDBCM+12
0, EMPLOYE
0, SSCIDBCM+16
SSCIDBCM+16,X"'80 "

0,3
0,DMLSEQ
DML-SEQUENCE = 3
1,SSCIDBCM+4
15, =V (IDMS
14,15 **% CALL IDMS MODE=BATCH ***

%k END DML EXPANSION **
REC="'DEPARTMENT' , IOAREA=DEPARTMT

%k BEGIN DML EXPANSION **
0, SSCTRL
0, SSCIDBCM+4
0, SSCIDBCM+48-1
0, SSCIDBCM+8
0,=CL18 'DEPARTMENT '
0, SSCIDBCM+12
0, DEPARTMT
0, SSCIDBCM+16
SSCIDBCM+16,X' 80"
0,4
0,DMLSEQ

DML- SEQUENCE = 4

1,SSCIDBCM+4
15, =V (IDMS)

14,15 *#% CALL IDMS MODE=BATCH ***

02 -@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02 -@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
01-@BIND
01-@BIND
02 -@IDMS
02-@IDMS
02 -@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS

02-@IDMS
02 -@IDMS
02-@IDMS
02-@IDMS
02 -@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02 -@IDMS
02-@IDMS
02-@IDMS

02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02 -@IDMS
02-@IDMS
02-@IDMS
02 -@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS

02-@IDMS
02 -@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02 -@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS

Appendix B: Sample CA IDMS/DB Batch Program 473

Outputfrom the Assembler

444+%
445
000E54 446+
00OE54 4510 CE5C OOE5SC 447+
00OES8 8F 448+
00OE59 00173C 449+
0OOESC 0A13 450+
OOOESE D200 B5C4 B8BC 015C4 018BC 451
000E64 D200 B5C5 B8BC 015C5 018BC 452
OOOE6A D200 B5C6 B8BC 015C6 018BC 453
00OE70 4150 CE78 0O0E78 454
000E74 47F0 B3A4 013M 455
OOE78 456 MAINGOO
457
458+*
00OE78 4100 CO30 00030 459+
0OOE7C 5000 C094 00094 460+
O0OESD 4100 COB4 000B4 461+
000E84 5000 CO98 00098 462+
OOOE88 9680 €098 00098 463+
OOOESC 4100 0005 00005 464+
00OE90 5000 C104 00104 465+
466+*,
000E9%4 4110 C094 00094 467+
O0OE98 58F0 B7BO 017B0 468+
0OOE9C O5EF 469+
470+*
OOOE9E D503 C038 B46A 00038 0146A 471
000EA4 4770 B1F4 011F4 472
473
474+%
OOOEA8 4100 €630 00030 475+
OOOEAC 5000 C094 00094 476+
OOOEBO 4100 COA2 000A2 477+
00OEB4 5000 €098 00098 478+
OOOEB3 4100 B846 01846 479+
0OOEBC 5000 CO9C 0009C 480+
OOOECO 4100 B87C 0187C 481+
OOOEC4 5000 COAO 000A0 482+
0OOOEC8 4100 COBA 000BA 483+
OOOECC 5000 COA4 000A4 484+
OOOEDO 9680 COA4 000A4 485+
O0OED4 4100 0006 00006 486+
O0OED8 5000 C104 00104 487+
488+*,
0OOEDC 4110 CO94 00094 489+
OOOEEQ 58F0 B7BO 017B0 490+
OOOEE4 O5EF 491+
492+*
OOOEE6 D503 C038 BA6A 00038 0146A 493 NEWOFFC
OOOEEC 4770 B1F4 011F4 494
OOOEFO D202 B470 C168 01470 00168 495
OOOEF6 D20E B473 C17F 01473 0017F 496
497
498+*
OOOEFC 4100 €630 00030 499+
000FO0 5000 CO94 00094 500+
000F04 4100 COAl 000A1 501+
000FE8 5000 €698 00098 502+
000FOC 4100 B858 01858 503+
000F10 56000 COIC 0009C 504+
000F14 4100 B8BE 0188E 505+
000F18 5000 COAO 000A0 506+
000F1C 4100 COBA 000BA 507+
000F20 5000 COA4 000A4 508+
000F24 9680 COA4 000A4 509+
000F28 4100 06007 00007 510+
000F2C 5000 C104 00164 511+
512+%,
000F30 4110 C094 00094 513+
000F34 58F0 B7BO 017B0 514+
000F38 O5EF 515+
516+*
0O00F3A D503 C038 B46A 00038 0146A 517

EQU

(OUTFILE, QUTPUT)
0,4

1,*+48

AL1(143)

AL3 (OUTFILE)

19

EDSW,=C'N"
DSW,=C'N'
ESW,=C'N'
R5,MAINGOO

PRTHEAD
*

@READY ALL,RDONLY=YES

LA
ST
LA
ST
0I
LA
ST

LA
L
BALR

CLC
BNE

0, SSCTRL

0, SSCIDBCM+4

0, SSCIDBCM+37-1
0, SSCIDBCM+8
SSCIDBCM+8,X'80"
0,5

0,DMLSEQ

*#k END DML EXPANSION ***
ALIGN LIST TO FULLWORD
LOAD REG1 W/LIST ADDR. @L2A
OPTION BYTE
DCB ADDRESS
ISSUE OPEN SVC

SET SWITCHES

LOAD ADDRESS OF MAINLINE ROUTINE

READY ALL DATABASE AREAS
% BEGIN DML EXPANSION *

DML-SEQUENCE = 5

1,SSCIDBCM+4
15,=V(IDMS)
14,15

ERRSTAT ,STATOK
AREAERR

% CALL IDMS MODE=BATCH *
% END DML EXPANSION *
CHECK IF ERROR

BRANCH TO ERROR ROUTINE

@BTAIN FIRST,AREA='0RG-DEMO-REGION ', REC='0FFICE'

LA
ST
LA
ST
LA
ST
LA
ST
LA
ST
0I
LA
ST

LA
L
BALR

CLC
BNE
MvC
MvC

0, SSCTRL
0, SSCIDBCM+4

0,SSCIDBCM+18+1-1

0, SSCIDBCM+8
0,=CL18"'OFFICE"
0, SSCIDBCM+12

*ofok

BEGIN DML EXPANSION ***

0,=CL18 'ORG -DEMO-REGION'

0, SSCIDBCM+16
0,SSCIDBCM+43-1
0, SSCIDBCM+20

SSCIDBCM+20, X' 80"

0,6
0,DMLSEQ

DML-SEQUENCE = 6

1,SSCIDBCM+4
15, =V (IDMS)
14,15

ERRSTAT ,STATOK
AREAERR

0CODE ,0FFCODE
OCITY,OFFCITY

% CALL IDMS MODE=BATCH *
% END DML EXPANSION *
CHECK IF NO OFFICE

@BTAIN FIRST,SET='0OFFICE-EMPLOYEE' ,REC='EMPLOYEE'

LA
ST
LA
ST
LA
ST
LA
ST
LA
ST
01
LA
ST

LA
L
BALR

CLC

0, SSCTRL
0, SSCIDBCM+4

0,SSCIDBCM+18+0-1

0, SSCIDBCM+8

0,=CL18 'EMPLOYEE"'

0, SSCIDBCM+12

* ook

BEGIN DML EXPANSION ***

0,=CL18"'OFFICE-EMPLOYEE'

0, SSCIDBCM+16
0,SSCIDBCM+43-1
0, SSCIDBCM+20

SSCIDBCM+20,X'80"

0,7
0,DMLSEQ

DML-SEQUENCE = 7

1,SSCIDBCM+4
15, =V (IDMS)
14,15

ERRSTAT ,STATOK

#% CALL IDMS MODE=BATCH ***
% END DML EXPANSION *
CHECK IF NO EMPLOYEE

01-0PEN
01-0PEN
01-0PEN
01-0PEN
01-0PEN

02-@IDMS
02 -@IDMS
02-@IDMS
02-@IDMS
02 -@IDMS
02 -@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS

03-@IDMS
03-@IDMS
03-@IDMS
03-@IDMS
03-@IDMS
03-@IDMS
03-@IDMS
03 -@IDMS
02-@IDMS
02-@IDMS
02 -@IDMS
02-@IDMS
02 -@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS

03-@IDMS
03-@IDMS
03-@IDMS
03-@IDMS
03-@IDMS
03 -@IDMS
03-@IDMS
03-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS

474 DML Reference Guide for Assembler

Outputfrom the Assembler

000F40
000F44
000F4A
000F50
000F56
000F5C
000F62
000F66

000F6A
000F6E
000F72
000F76
000F7A
000F7E
000F82
000F86
000F8A
000F8E
000F92

000F9%
000F9A
000F9E

000FAQ
000FA6
000FAA
000FBO
000FB6
000FBA

00OFBE
000FC2
000FC6
000FCA
000FCE
000FD2
000FD6
00OFDA
000OFDE
000FE2
000OFE6
O0OFEA
O0OFEE

000FF2
000FF6
000OFFA

00OFFC
001062
001006
00106C
001010
001016
00101C
001022
001028
00102C

001030
001034

001038

00103E

001042
001046

4770
D263
D209
D20E
D263
D201
4160
47F0

4100
5000
4100
5000
4100
5000
4100
5000
9680
4100
5000

4110
58F0
O5EF

D563
4770
D263
D22C
4150
47F0

4100
5000
4100
5000
4100
5000
4100
5000
4100
5000
9680
4100
5000

4110
58F0
O5EF

D563
4780
D563
4770
D263
D269
D20E
D201
4160
47F0

4150
47F0

D203

4100

5000
4100

B260
B482
B486
B492
B4A1l
B454
CF6A
B342

Co30
C094
COAE
Co98
B8AO
Co9C
COBA
COAO
COAO
0008
Clo04

C094
B7B0O

Cco38
B26E
B4A5
B4A9
CFBE
B2AE

Co30
C094
Co99
€098
B858
Coe9C
B8AO
COAO
COBA
COA4
COoA4
0009
Cl04

C094
B7B0

Cco38
BO38
Co38
B27C
B482
B486
B492
B454
BO30
B342

CFBE
B2AE

C8E8

Co30

C094
COAF

C8E8
C8EC
C8F6
C8E8
93D

B46A

(960
0964

0133
B46A
C8E8
C8EC

C8F6
93D

B4A1l

01482
01486
01492
014A1
01454

000A0

00038

014A5
014A9

000A4

00038
00038
01482
01486

01492
01454

008E8

01260
OO8E8
0O8EC
008F6
OO8E8
0093D
00F6A
01342
O0F6A

00030
00094
000AE
00098
018A0
0009C
000BA
000A0

00008
00104

00094
017B0

0146A
0126E
00960
00964
OOFBE
012AE
OOFBE

00030
00094
00099
00098
01858
0009C
018A0
000A0
000BA
000A4

00009
001064

00094
017B0

00133
01038
0146A
0127C
OO8E8
008EC
008F6
0093D
01030
01342
01030
0OOFBE
012AE
01038
014A1

00030
00094
000AF

518
519
520
521
522
523
524
525
526 NEWDPT
527
528+*
529+
530+
531+
532+
533+
534+
535+
536+
537+
538+
539+
540+%,
541+
542+
543+
544+%
545
546
547
548
549
550
551 MAING20
552
553+*
554+
555+
556+
557+
558+
559+
560+
561+
562+
563+
564+
565+
566+
567+%,
568+
569+
5706+
571+*
572
573
574
575
576
577
578
579
580
581
582 MAING25
583
584
585 MAING30
586
587
588+*
589+
590+
591+

BNE
MvC
MvC
MvC
MvC
MvC
LA
B
EQU

OBERR1

EID,EMPID MOVE EMPLOYEE ID

FNAME , EMP FNAME MOVE EMPLOYEE FIRST NAME
LNAME , EMPLNAME MOVE EMPLOYEE LAST NAME
WALK, EMPID SAVE ID

STATNUM,EMPSTATU MOVE EMPLOYEE STATUS

R6 , NEWDPT LOAD ADDRESS OF NEW DEPT ROUTINE

CKSTAT BRANCH TO STATUS -CHECK RTN

*

@BTAIN OWNER,SET='DEPT-EMPLOYEE'

LA
ST
LA
ST
LA
ST
LA
ST
0I
LA
ST

LA
L
BALR

CLC
BNE
mcC
MvC
LA
B
EQU

*%% BEGIN DML EXPANSION ***
0, SSCTRL
0, SSCIDBCM+4
0,SSCIDBCM+31-1
0, SSCIDBCM+8
0,=CL18 'DEPT -EMPLOYEE'
0, SSCIDBCM+12
0,SSCIDBCM+43-1
0, SSCIDBCM+16
SSCIDBCM+16,X'80 "

0,8
0,DMLSEQ
DML-SEQUENCE = 8
1,SSCIDBCM+4
15, =V (IDMS)
14,15 **% CALL IDMS MODE=BATCH ***

% END DML EXPANSION *

ERRSTAT ,STATOK CHECK IF DEPARTMENT

OBERR2

DID,DEPTID

DEPT, DEPTNAME

R5,MAING20 LOAD ADDRESS OF SET-WALK RTN
PRINTREC PRINT DEPARTMENT INFORMATION
* *

@BTAIN NEXT, SET='DEPT -EMPLOYEE',REC="EMPLOYEE"

LA
ST
LA
ST
LA
ST
LA
ST
LA
ST
0I
LA
ST

LA
L
BALR

CLC
BE

CLC
BNE
MvC
MvC
MvC

*** BEGIN DML EXPANSION ***
0, SSCTRL
0, SSCIDBCM+4
0, SSCIDBCM+10+0-1
0, SSCIDBCM+8
0,=CL18"'EMPLOYEE"
0, SSCIDBCM+12
0,=CL18 'DEPT -EMPLOYEE'
0, SSCIDBCM+16
0, SSCIDBCM+43-1
0, SSCIDBCM+20
SSCIDBCM+20,X'80"

0,9
0,DMLSEQ
DML-SEQUENCE = 9
1,SSCIDBCM+4
15, =V (IDMS)
14,15 *#k CALL IDMS MODE=BATCH ***
% END DML EXPANSION *
ERRSTAT,0307 CHECK IF END OF SET
MAINO30 BRANCH IF END OF SET
ERRSTAT,STATOK CHECK IF ERROR
OBERR3
EID,EMPID MOVE EMPLOYEE ID

FNAME , EMPFNAVE MOVE EMPLOYEE FIRST NAME
LNAME , EMPLNAME MOVE EMPLOYEE LAST NAME
STATNUM,EMPSTATU ~ MOVE EMPLOYEE STATUS
R6, MAING25 LOAD ADDRESS OF PRINT LINK
CKSTAT
*
RS, MAING20
PRINTREC
¥
EMPID WALK
CALC,REC="EMPLOYEE' FIND NEXT EMPLOYEE
*k BEGIN DML EXPANSION *+*
0, SSCTRL
0,SSCIDBCM+4
0, SSCIDBCM+32- 1

03-@IDMS
03-@IDMS
03-@IDMS
03-@IDMS
03-@IDMS
03 -@IDMS
02-@IDMS
02-@IDMS
02 -@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS

03-@IDMS
03-@IDMS
03-@IDMS
03-@IDMS
03-@IDMS
03-@IDMS
03-@IDMS
03 -@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS

02 -@IDMS
02-@IDMS
02-@IDMS

Appendix B: Sample CA IDMS/DB Batch Program 475

Outputfrom the Assembler

00104A 5000
00104E 4100
001052 5000
001056 9680
00105A 4100
00105E 5000

001062 4110
001066 58F0
00106A O5EF

00106C D503
001072 4770

001076 4100
00107A 5000
00107E 4100
001082 5000
001086 4100
00108A 5000
00108E 4100
001092 5000
001096 4100
00109A 5000
00109 9680
0010A2 4100
0010A6 5000

0010AA 4110
0010AE 58F0
0010B2 O5EF

0010B4 D503
0010BA 4780
0010BE D503
0010C4 4770

0010C8 4100
0010CC 5000
0010D0 4100
0010D4 5000
0010D8 4100
0010DC 5000
0010E0 9680
0010E4 4100
0010E8 5000

0010EC 4110
0010F0 58F0
0010F4 O5EF

0010F6 D503
0010FC 4780
001100 D203
0011066 D209
001106C D20E
001112 D203
001118 D201
00111E 4160
001122 47F0

001126 4100
00112A 5000
00112E 4100
001132 5000
001136 4100
00113A 5000
00113E 4100
001142 5000

Co98
B858
Coe9C
coeoc
000A
Cl104

C094
B7B0O

Cco38
B218

Co30
Co94
C099
Co98
B858
Co9C
B88E
COAO
COBA
COA4
COA4
000B
Cl04

Co94
B7B0

Co38
B126
Cco38
B260

Co30
Co94
cocB
Co98
B8AO
Co9C
Co9C
000C
Cl04

C094
B7B0

Cco38
BO76
B482
B486
B492
B4A1
B454
CF6A
B342

Co30
C094
CO9A
Co98
B846
Co9C
B87C
COAO

0009C

B46A 00038

000A4

B7B4 00038

B46A 00038

0009C

B7B8 00038

C8E8 01482
C8EC 01486
C8F6 01492
C8E8 014A1
C93D 01454

00098
01858
0009C

0000A
00104

00094
017B0

0146A
01218
01076

00030
00094
00099
00098
01858
0009C
0188E
000A0
000BA
000A4

00008
00104

00094
017B0

01784
01126
0146A
01260

00030
00094
000CB
00098
018A0
0009C

0000C
00104

00094
017B0

01788
01076
OO8E8
008EC
008F6
OO8E8
0093D
O0F6A
01342
01126

00030
00094
0009A
00098
01846
0009C
0187C
000A0

592+
593+
594+
595+
596+
597+
598+*,
599+
600+
601+
602+*
603
604
605 REPEAT
606
607+*
608+
609+
6106+
611+
612+
613+
614+
615+
616+
617+
618+
619+
620+
621+%,
622+
623+
624+
625+*
626
627
628
629
630
631+*
632+
633+
634+
635+
636+
637+
638+
639+
640+
641+%,
642+
643+
644+
645+*
646+
647+
648
649
650
651
652
653
654
655 MAING40
656
657+*
658+
659+
660+
661+
662+
663+
664+
665+

ST 0, SSCIDBCM+8
LA 0,=CL18'EMPLOYEE"
ST 0, SSCIDBCM+12
0I SSCIDBCM+12,X'80"
LA 0,10
ST 0,DMLSEQ
DML-SEQUENCE = 10
LA 1,SSCIDBCM+4
L 15, =V (IDMS)

BALR 14,15 ¥k CALL IDMS MODE=BATCH ***
*%% END DML EXPANSION ***

CLC ERRSTAT,STATOK CHECK IF ERROR

BNE CALCERR

EQU *

@BTAIN NEXT, SET="OFFICE-EMPLOYEE ', REC='EMPLOYEE'
% BEGIN DML EXPANSION *

LA 0, SSCTRL

ST 0, SSCIDBCM+4

LA 0, SSCIDBCM+10+0-1

ST 0, SSCIDBCM+8

LA 0,=CL18'EMPLOYEE"

ST 0, SSCIDBCM+12

LA 0,=CL18"'OFFICE -EMPLOYEE"

ST 0, SSCIDBCM+16

LA 0,SSCIDBCM+43-1

ST 0, SSCIDBCM+20

01 SSCIDBCM+20,X'80"

LA 0,11

ST 0, DMLSEQ

DML-SEQUENCE = 11

LA 1,SSCIDBCM+4

L 15, =V (IDMS)

BALR 14,15 **k CALL IDMS MODE=BAT(CH ***
% END DML EXPANSION *

CLC ERRSTAT,=C'0307' END OF SET ?

BE MAINO4O BRANCH IF END OF SET
CLC ERRSTAT,STATOK
BNE OBERR1

@IF SET='DEPT-EMPLOYEE', MEMBER=YES, GOTO=REPEAT
% BEGIN DML EXPANSION *
LA 0, SSCTRL
ST 0, SSCIDBCM+4
LA 0, SSCIDBCM+60- 1
ST 0, SSCIDBCM+8
LA 0,=CL18 'DEPT -EMPLOYEE'
ST 0,SSCIDBCM+12
01 SSCIDBCM+12,X'80"
LA 0,12
ST 0,DMLSEQ
DML-SEQUENCE = 12
LA 1,SSCIDBCM+4
L 15, =V (IDMS)
BALR 14,15 **% CALL IDMS MODE=BATCH ***
% END DML EXPANSION *
CLC ERRSTAT,=C'0000"

BE REPEAT

MmC EID,EMPID MOVE EMPLOYEE ID

MVC FNAME,EMPFNAME MOVE EMPLOYEE FIRST NAME
MVC LNAME,EMPLNAME MOVE EMPLOYEE LAST NAME

MVC WALK, EMPID
MVC STATNUM,EMPSTATU

LA R6 , NEWDPT ADDRESS OF DEPT ROUTINE
B CKSTAT
EQU *

@BTAIN NEXT, AREA='ORG -DEMO-REGION' ,REC="0FFICE"'
#% BEGIN DML EXPANSION ***
LA 0, SSCTRL
ST 0, SSCIDBCM+4
LA 0,SSCIDBCM+10+1-1
ST 0, SSCIDBCM+8
LA 0,=CL18"'OFFICE'
ST 0, SSCIDBCM+12
LA 0,=CL18 'ORG -DEMO-REGION'
ST 0, SSCIDBCM+16

02 -@IDMS
02-@IDMS
02 -@IDMS
02 -@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02 -@IDMS
02-@IDMS

03 -@IDMS
03-@IDMS
03-@IDMS
03-@IDMS
03-@IDMS
03-@IDMS
03-@IDMS
03-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02 -@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS

02-@IDMS
02 -@IDMS
02-@IDMS
02 -@IDMS
02-@IDMS
02-@IDMS
02 -@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS

01-@IF
01-@IF

03-@IDMS
03-@IDMS
03-@IDMS
03-@IDMS
03-@IDMS
03-@IDMS
03-@IDMS
03-@IDMS

476 DML Reference Guide for Assembler

Outputfrom the Assembler

001146
00114A
00114E
001152
001156

00115A
00115E
001162

001164

001168
00116C
001170
001174
001178
00117C
001180

001184
001188
00118C

00118E
001194

001198
001198
00119C
00119D
0011A0
0011A2
0011A6
0011AA

0011AC
0011BO
0011B6
0011BA
0011C0
0011C6
0011CC

0011D0
0011D4
0011DA
0011DE
0011E4
0011EA
0011F0

0011F4
0011F8
0011FE
001202
001208
00120E
001214

001218
00121C
001222
001226
00122C
001232
001238

00123C
001240
001246

4100
5000
9680
4100
5000

4110
58F0
O5EF

47F0

4100
5000
4100
5000
9680
4100
5000

4110
58F0
O5EF

D563
4770

4510
80

COBA
COA4
CoA4
000D
Clo4

C094
B7B0

CEE6

Co30
C094
Co91
Co98
C098
000E
Clo4

Co94
B7BO

Co38
B23C

B1AO

00173C

0A14
58D0
98EC
O7FE

9240
D212
9240
D262
D263
D213
47F0

9240
D212
9240
D262
D263
D213
47F0

9240
D212
9240
D262
D263
D213
47F0

9240
D212
9240
D262
D263
D213
47F0

9240
D212
9240

B410
DooC

B50D
B50E
B521
B522
B521
B50D
B28A

B50D
B50E
B521
B522
B521
B50D
B28A

B50D
B50E
B521
B522
B521
B50D
B28A

B50D
B50E
B521
B522
B521
B50D
B28A

B50D
B50E
B521

B46A

B50D
B521

038
B560

B50D
B521

038
B574

B50D
B521

(038
B588

B50D
B521

€038
B59C

B50D

000A4

00098

00038

0150D
0150E
01521
01522
01521
0150D

0150D
0150E
01521
01522
01521
0150D

0150D
0150E
01521
01522
01521
0150D

0150D
0150E
01521
01522
01521
0156D

0150D
0150E
01521

000BA
000A4

0006D
00104

00094
017B0

OOEE6
01168

00030
00094
00091
00098

0000E
00104

00094
017B0

0146A
0123C

011A0

01410
0000C

011AC

0156D

01521
00038
01560
0128A
011D0

0156D

01521
00038
01574
0128A
011F4

0156D

01521
00038
01588
0128A
01218

0156D

01521
00038
0159C
0128A
0123C

0156D

666+ LA 0,SSCIDBCM#43-1
667+ ST 0,SSCIDBCM+20

668+ OI SSCIDBCM+20,X'80"

669+ LA 0,13

676+ ST 0,DMLSEQ

671+, DML- SEQUENCE = 13

672+ LA 1,SSCIDBCM+4

673+ L 15, =V (IDMS)

674+ BAIR 14,15 %% CALL IDMS MODE=BATCH **x
675+* % END DML EXPANSION ***
676 B NEWOF FC

677 EOF EQU *

678 @ INISH *

679+* k% BEGIN DML EXPANSION *
6806+ LA 0,SSCTRL

681+ ST 0,SSCIDBCM+4

682+ LA ©,SSCIDBCM+2-1

683+ ST 0,SSCIDBCM+8

684+ 0I SSCIDBCM+8,X'80'

685+ A 0,14

686+ ST 0,DMLSEQ

687+%, DML- SEQUENCE = 14

688+ LA 1,SSCIDBCM+4

689+ L 15, =V (IDMS)

690+ BALR 14,15 %k CALL TDMS MODE=BATCH **
691+* 6% END DML EXPANSION *<*
692 CLC ERRSTAT,STATOK

693 BNE FINERR

694 CLOSE (OUTFILE)

695+ NOP 0,4 ALIGN LIST T0 F
696+ BAL 1,*+8 LOAD REGL W/LIST ADD
697+ DC AL1(128) OPTION BYTE
698+ DC AL3(OUTFILE) DCB ADDRESS
699+ Ve 20 ISSUE CLOSE SVC
700 L R13,SAVEAREA+4

701 IM R14,R12,12(R13)

702 BR Rl4 RETURN

703 * ERROR ROUTINES *

704 BSERROR EQU *

705 MWI ERRMSG,C' '

706 M/C ERRMSG+1(19) ,ERRMSG

707 MVI ERRNUM,C' °

708 M/C ERRNUM+1(3), ERRNUM

709 MVC ERRNUM, ERRSTAT

710 MWC ERRMSG, BSMSG

711 B PRINTERR

712 BRERROR EQU *

713 MWI ERRMSG,C' '

714 M/C ERRMSG+1(19) ,ERRMSG

715 MWI ERRNUM,C'

716 M/C ERRNUM+1(3), ERRNUM

717 MVC ERRNUM, ERRSTAT

718 M/C ERRMSG, BRMSG

719 B PRINTERR

720 AREAERR EQU *

721 MWI ERRMSG,C' '

722 MW/C ERRMSG+1(19) ,ERRMSG

723 M/I ERRNUM,C'

724 M/C ERRNUM+1(3), ERRNUM

725 M/C ERRNUM, ERRSTAT

726 MWC ERRMSG, AREAMSG

727 B PRINTERR

728 CALCERR EQU *

729 WI ERRMSG,C' '

730 MWC ERRMSG+1(19) ,ERRMSG

731 MW/I ERRNUM,C'

732 M/C ERRNUM+1(3), ERRNUM

733 M/C ERRNUM, ERRSTAT

734 MWC ERRMSG, CALMSG

735 B PRINTERR

736 FINERR EQU *

737 WI ERRMSG,C' '

738 MW/C ERRMSG+1(19) ,ERRMSG

739 WI ERRNUM,C' '

02-@IDMS
02-@IDMS
02 -@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-Q@IDMS
02 -@IDMS

02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02 -@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS
02-@IDMS

ULLWORD
R. @2A

01-CLOSE
01-CLOSE
01-CLOSE
01-CLOSE
01-CLOSE

Appendix B: Sample CAID

MS/DB Batch Program 477

Outputfrom the Assembler

00124A
001250
001256
00125C

001260
001266
00126A

00126E
001274
001278

00127C
001282
001286

00128A
001290
00129%

00129A
00129E
0012A2
0012A4
0012A8
0012AA

0012AE
0012B2
001288
0012BC
0012C0
0012C6
0012CC
0012D0
0012D6
0012DA
0012E0
0012E6
0012EC

0012F0
0012F6
0012FC

001362
001308

00136E
001312
001316
001318
00131C

00131E
001322
001326
001328
00132C
00132E
001334
00133A
001340

001342
001348
00134C
001352
001356
00135C
001360

D202
D263
D213
47F0

D200
4150
47F0

D200
4150
47F0

D200
4150
47F0

D284
D283
92F0

4110
4100
1FFF
BFF7
05EF
47F0

9240
D283
92F0
9240
D283
D500
4780
D500
4780
D22C
D263
D500
4780

D21A
D263
D213

D20E
D263

4110
4100
1FFF
BFF7
O5EF

4110
4100
1FFF
BFF7
O5EF
D200
D200
D200
07F5

D501
4780
D501
4780
D501
4780
D501

B522
B521
B50D
B28A

B5C4
B126
B2AE

B5C5
BO76
B2AE

B5C6
BO38
B2AE

B4D6
B4D7
B4D6

B73C
B4D6

1031

B168

B5C7
B5C8
B5C7
B64C
B64D
B5C4
B302
B5C5
B2F0
B5E2
B667
B5C5
B302

B614
B699
B634

B5CE
B653

B73C
B5C7

1631

B73C
B64C

1631

B5C4
B5C5
B5C6

B454
B37C
B454
B384
B454
B38C
B454

B521
(038
B5BO

B8BD

B8BD

B8BD

0040
B4D6

B5C7

B64C

B8BD

B8BD

B4A9

B4A5
B8BD

B486
B482
B456

B473
B470

B8BC
B8BC
B8BC

B3B2

B8B4

B8B6

B8B8

01522
01521
0150D

015C4

015C5

015C6

014D6
014D7
014D6

015C7
015C8
015C7
0164C
0164D
015C4

015C5
015E2

01667
015C5

01614
01699
01634

015CE
01653

015C4
015C5
015C6

01454

01454

01454

01454

01521
00038
015B0
0128A
01260
018BD
01126
012AE
0126E
018BD
01076
012AE
0127C
018BD
01038
012AE

0128A
00040
014D6

0173C
014D6

00031

01168
012AE

015C7

0164C
018BD
01302
018BD
012F0
014A9
014A5
018BD
01302
012F0
01486
01482
01456
01302
01473
01470

0173C
015C7

00031

0173C
0164C

00031

018BC
018BC
018BC

01342
018B2
0137C
01884
01384
018B6
0138C
018B8

740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762+
763+
764+
765+
766+
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790+
791+
792+
793+
794+
795
796+
797+
798+
799+
800+
801
802
803
804
805
806
807
808
809
810
811
812
813

OBERR1

OBERR2

OBERR3

ERRNUM+1(3) , ERRNUM
ERRNUM, ERRSTAT
ERRMSG, FINMSG
PRINTERR

*

EDSW,=C"'Y"
R5,MAING40
PRINTREC

*

DSW,=C"Y"
R5, REPEAT
PRINTREC

*
ESW,=C'Y"
R5,MAING30
PRINTREC

* PRINT ROUTINES

PRINTERR

PRINTREC

SKIPD

SKIPED

EQU
MvC
MvC
WI
PUT
LA
LA
SLR
ICM
BALR

EQU

SLR
ICM

SLR
™
BALR
MvC
MvC
mwc
BR

*

ERRLINE,C' '

ERRLINE+1(132) ,ERRLINE

ERRLINE,C'0"
OUTFILE,ERRLINE

1, 0UTFILE

0, ERRLINE

15,15

15,7,49(1)

14,15

EOF

*

LINEL,C'
LINE1+1(132) ,LINEL
LINE1,C'0"
LINE2,C'
LINE2+1(132) ,LINE2
EDSW,=C'Y"

SKIPED

DSW,=C'Y"

SKIPD

LINE1+27(45) ,DEPT
LINE2+27(4) ,DID
DSW,=C'Y"

SKIPED

*

LINE1+77(27) ,ENAME
LINE2+77(4) , EID
LINE1+109 (20), STAT
*

LINE1+7(15),0CITY
LINE2+7 (4), 0CODE
OUTFILE,LINE1
1,0UTFILE

0, LINE1

15,15

15,7,49(1)

14,15
OUTFILE,LINE2
1,0UTFILE

0, LINE2

15,15

15,7,49(1)

14,15

EDSW,=C'N"
DSW,=C'N
ESW,=C'N*

R5

* CHECK STATUS ROUTINE

CKSTAT

EQU
CLC
BE
CLC
BE
CLC
BE
CLC

*
STATNWM,=C' 01"
ACT
STATNUM,=C' 02"
STD
STATNUM,=C' 03"
LTD
STATNUM,=C' 04’

LOAD PARAMETER REG 1
LOAD PARAMETER REG 0

CLEAR REGISTER

LOAD PUT ROUTINE ADDR

LINK TO PUT ROUTINE

@L1A
@.1C

LOAD PARAMETER REG 1
LOAD PARAMETER REG 0

CLEAR REGISTER

LOAD PUT ROUTINE ADDR

LINK TO PUT ROUTINE

@1A
@.1C

LOAD PARAMETER REG 1
LOAD PARAMETER REG 0

CLEAR REGISTER

LOAD PUT ROUTINE ADDR

LINK TO PUT ROUTINE

@1A
@.1C

02-IHBIN
02-TIHBIN
01-PUT
01-PUT
01-PUT

02-IHBIN
02-IHBIN
01-PUT
01-PUT
01-PUT

02-IHBIN
02-IHBIN
01-PUT
01-PUT
01-PUT

478 DML Reference Guide for Assembler

Outputfrom the Assembler

001366
00136A
001370
001374
00137A

00137C
001382

001384
00138A

00138C
001392

001394
00139A

00139C
0013A2

0013A4
0013A8
0013AE
001382

0013B8
0013BC
0013C0
0013C2
0013C6
0013C8
0013CC
0013D2
0013D6
0013DC
0013E2
0013E8

0013EE
0013F2
0013F6
0013F8
0013FC
0013FE

001400
001408
00146C
001454
001456
00146A
00146E
001470
001473
001482
001486
001486
001490
001492
0014A1
0014A5
0014A9
0014D6
0014D6
0014D7
001507
00156D
001521
001525
001528
001558
001560

4780 B394
D501 B454 BSBA 01454
4780 B39C

D213 B456 B7BC 01456
07F6

D213 B456 B7DO 01456
07F6

D213 B456 B7E4 01456
07F6

D213 B456 B7F8 01456
07F6

D213 B456 BSOC 01456
07F6

D213 B456 B820 01456
07F6

9249 B5C7 015C7
D283 B5C8 B5C7 015C8
92F1 B5C7 015C7
D219 BSFD B6D1 O15FD
4110 B73C

4100 B5C7

1FFF

BFF7 1031

O5EF

9240 B5C7 015C7
D283 B5C8 B5C7 015C8
9260 B5C7 015C7
D211 B5CD B6EB 015CD
D219 BSE1 B6FD O15E1
D213 B613 B717 01613
D20E B633 B72B 01633
4110 B73C

4100 B5C7

1FFF

BFF7 1031

05EF

07F5
E6D6D9ID260C6CICS

00

0000000000600000
FOFOFOFO
5C405C405C405C40
404040404040
404040404040
5C405C405C405C40
4040404040
C2C9D5C440E2E4C2

01394
018BA
0139C
017BC

0137C
017D0

01384
017E4

0138C
017F8

01394
01806C

0139C

01820

013M

015C7

016D1

0173C
015C7

00031

015C7

016EB
016FD
01717
01728

0173C
015C7

00031

814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841+
842+
843+
844+
845+
846
847
848
849
850
851
852
853
854+
855+
856+
857+
858+
859
860
861

862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886

ACT

STD

LTD

LvVO

TRM

BE
CLC
BE
MvC
BR
EQU
MvC
BR
EQU
MvC
BR
EQU
mC
BR
EQU
MvC
BR
EQU
MvC
BR

LvO
STATNUM,=C' 05"

TRM

STAT,=C' STATUS CODE ERROR
R6

*
STAT,=C'
R6

*
STAT,=C'
R6

*

STAT, =C'
R6

*
STAT,=C'
R6

*

STAT, ="
R6

ACTIVE !

SHORT TERM DISABLED'

LONG TERV DISBALED '

LEAVE OF ABSENCE '

TERMINATED !

* PRINT REPORT HEADING ROUTINE *

PRTHEAD

*

WORKFLDS

SAVEAREA
STATNUM
STAT
STATOK
STATUS
0CODE
ocITY
EID
ENAME
FNAME

LNAME
WALK
DID
DEPT
ERRLINE

ERRMSG
ERRNUM

BSMSG

EQU
WI
MvC
WI
MvC
PUT

SLR
M

BALR

BR

DC

DC
DS
DS
DC

DS
DS
DS
DS
DS
DS
DS
DS

DS
DS
DS
DC
DC
DS
DS
DC
DC
DC
DC

*

LINE1,C' *
LINE1+1(132),LINE1
LINE1,C'1"
LINE1+54(26) ,HEAD1
OUTFILE,LINE1
1,0UTFILE

0, LINE1

15,15

15,7,49(1)

14,15

LINE1,C' '
LINE1+1(132),LINEL
LINE1,C'-"
LINE1+6(18) ,HEAD20
LINE1+26(26) ,HEAD2D
LINE1+76(20) ,HEAD2E
LINE1+168(15),HEAD2S
OUTFILE,LINE1
1,0UTFILE

0, LINE1

15,15

15,7,49(1)

14,15

R5

LOAD PARAMETER REG 1 02-IHBIN

LOAD PARAMETER REG 6 02-IHBIN
CLEAR REGISTER @L1A 01-PUT
LOAD PUT ROUTINE ADDR @.1C 01-PUT
LINK TO PUT ROUTINE 01-PUT

LOAD PARAMETER REG 1 02-IHBIN

LOAD PARAMETER REG 0 02-IHBIN
CLEAR REGISTER @L1A 01-PUT
LOAD PUT ROUTINE ADDR @.1C 01-PUT
LINK TO PUT ROUTINE 01-PUT

C'WORK-FIELDS'

18F'0
cL2

cL2e

CL4'0000"

cL2

as

cLis

cLa

ocL27

e

a2

ais

cLa

cLa

cLas

ocL133

Ll

CL48'* * * >k *x >k % % % >k % % % * % * % * * x '
e '

cL2e

cLa

e -

CL48'* * * >k % >k % >k % x * X% % % % % % % % X '
as' :

CL20'BIND SUBSCH ERROR # '

Appendix B: Sample CA IDMS/DB Batch Program 479

Outputfrom the Assembler

001574
001588
00159C
0015B0
0015C4
0015C5
0015C6
0015C7
00164C
0016D1
0016EB
0016FD
001717
001728

00173A
00173C

00173C
00174C

001750
001751
001754
001756
001758

00175C
00175D
001760
001761

001764
00176C
00176D
00176E

001770
001771
001774
001778
00177A
00177C
001780

001784
001788
00178C
00178E
001790
001791
001794
001798
0017A0
0017A0
0017A8
001780
001784
001788
0017BC
0017D0
0017E4
0017F8
00186C
001820
001834
001846
001858
00186A
00187C

C2(09D5C440D9C5C3
D9C5C1C4E840C1D9
C6C9D5C440(3C1D3
7CC6CID5CIE2C840

D6C6C6CIC3C54040
D6C6C6C9C3C561D6
C4C5D7C1D9E3DACS
C5D4D7D3D6ESC5C5
C5D4D7D3D6ESC5C5

0000

0000000000000000
00000000

00
000001
0000
4000
00000001

00
000001
00
000000

D6E4E3C6CID3C540
02

00

0050

00
000001
00000001
0000
0085
00000000
00000001

00000001
00000001
0000
0085

00
000001
00000000
00000001

4040404040404040
C1D7D7D3C4C9C3E3
00000000

FOF3FOF7

FOFOFOFO

40E2E3C1E3E4E240
40C1C3E3C9E5C540
40E2C8D6D9E340E3
40D3D6D5C740E3C5
40D3C5C1E5C540D6
40E3C5D9D4C9D5C1
C5D4D7E2E2FOF 140
D6C6C6CIC3C54040
C5D4D7D3D6EBC5C5
C4C5D7C1D9E3DACS
D6D9C760C4C5D4D6

887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902

904+
905+

BRMSG
AREAMSG
CALMSG
FINMSG
EDSW
DSW
ESW
LINE1
LINE2
HEAD1
HEAD20
HEAD2D
HEAD2E
HEAD2S

DC

CL20'BIND RECORD ERROR # '
CL20'READY AREA ERROR # '
CL20'FIND CALC ERROR # '
CL20'@FINISH ERROR #!

CL1

CL1

CL1

CL133

CL133

CL26'OFFICE PERSONNEL LISTING'
CL18'OFFICE/OFFICE CODE'

CL26' DEPARTMENT/DEPARTMENT CODE '
CL20"' EMPLOYEE/EMPLOYEE ID'
CL15'EMPLOYEE STATUS'

* OUTPUT FILE DCB INFO

OUTFILE

*
*

DCB

906+0UTFILE DC

907+
908+
909+
916+
911+
912+
913+
914+
915+
916+
917+
918+
919+
920+
921+
922+
923+
924+
925+
926+
927+
928+
929+
930+
931+
932+
933+
934+
935+
936+
937+
938+
939+
940+
941+
942+
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959

*

*

*

*

*

*

DC
DC

DC
DC
DC
DC
DC

DC
DC
DC
DC

DC
DC
DC
DC

DC
DC
DC
DC
DC
DC
DC

DC
DC
DC
DC
DC
DC
DC
DC
LTORG

DDNAME=OUTFILE ,MACRF=PM,BLKSIZE=133, LRECL=133,
DSORG=PS
DATA CONTROL BLOCK

OF'0' ORIGIN ON WORD BOUNDARY
DIRECT ACCESS DEVICE INTERFACE
BL16'0’ FDAD, DVTBL
A(0) KEYLEN, DEVT, TRBAL
COMMON ACCESS METHOD INTERFACE
AL1(0) BUFNO, NUMBER OF BUFFERS
AL3(1) BUFCB, BUFFER POOL CONTROL BLOCK
AL2(0) BUFL, BUFFER LENGTH

BL2'0100000000000000 ' DSORG, DATA SET ORGANIZATION

A(1) IOBAD FOR EXCP OR RESERVED
FOUNDATION EXTENSION

BL1'00000000' BFTEK, BFALN, DCBE INDICATORS

AL3(1) EODAD (END OF DATA ROUTINE ADDRESS)

BL1'00000000' RECFM (RECORD FORMAT)

AL3(0) EXLST (EXIT LIST ADDRESS)
FOUNDATION BLOCK

CL8'OUTFILE' DDNAME

BL1'00000010' OFLGS (OPEN FLAGS)
BL1'00000000' IFLGS (IOS FLAGS)
BL2'0000000001010000' MACR (MACRO FORMAT)
BSAM-BPAM-QSAM INTERFACE
BL1'00000000' OPTCD, OPTION CODES

AL3(1) CHECK OR INTERNAL QSAM SYNCHRONIZING RTN.
A(1) SYNAD, SYNCHRONOUS ERROR RTN. (3 BYTES)
H'O' INTERNAL ACCESS METHOD FLAGS
AL2(133) BLKSIZE, BLOCK SIZE
F'o' INTERNAL ACCESS METHOD FLAGS
A(1) INTERNAL ACCESS METHOD USE
QSAM INTERFACE
A(1) EOBAD
A(1) RECAD
H'O' QSWS (FLAGS) AND EITHER DIRCT OR BUFOFF
AL2(133) LRECL
BL1'00000000' EROPT, ERROR OPTION
AL3(1) CNTRL
H'0,0' RESERVED AND PRECL
A(1) EOB, INTERNAL ACCESS METHOD FIELD
=CL8" '
=CL8' APPLDICT'
=V (IDMS)
=C'0307"
=C'0000"
=C' STATUS CODE ERROR '
=C' ACTIVE !

=C' SHORT TERM DISABLED'
=C' LONG TERM DISBALED '
=C' LEAVE OF ABSENCE !
=C' TERMINATED '
=CL18'EMPSSO1 '
=CL18'0OFFICE'
=CL18'EMPLOYEE'

=CL18 'DEPARTMENT*

=CL 18 '0RG -DEMO -REGION'

01-DCB

01-DCB
01-DCB

01-DCB
01-DCB
01-DCB
01-DCB
01-DCB

01-DCB
01-DCB
01-DCB
01-DCB

01-DCB
01-DCB
01-DCB
01-DCB

01-DCB
01-DCB
01-DCB
01-DCB
01-DCB
01-DCB
01-DCB

01-DCB
01-DCB
01-DCB
01-DCB
01-DCB
01-DCB
01-DCB
01-DCB

480 DML Reference Guide for Assembler

Outputfrom the Assembler

00188E
0018A0
0018B2
001884
0018B6
0018B8
0018BA
0018BC
0018BD
000000

D6C6C6CIC3C560C5
C4C5D7E360C5D4D7
FOF1

FOF2

FOF3

FOF4

FOF5

D5

E8

960
961
962
963
964
965
966
967
968
969

END

=CL18 ' OFFICE -EMPLOYEE'
=CL18 'DEPT- EMPLOYEE
='o1’

=o'

=03

=04’

=05

='N

=<'y

SAMPLEL

Appendix B: Sample CA IDMS/DB Batch Program 481

Appendix C: Sample DC/UCF Online
Program

This appendix contains a sample DC/UCF program that performs a map out operation,
prompting the terminal operator for a department ID.

This section contains the following topics:

Input to the DML Precompiler (see page 484)
Output from the DML Precompiler (see page 487)
Output from the Assembler (see page 490)

Appendix C: Sample DC/UCF Online Program 483

Inputto the DML Precompiler

Input to the DML Precompiler

The followingillustrates a sampleonline programas inputto the DML precompiler.

484 DML Reference Guide for Assembler

Inputto the DML Precompiler

*RETRIEVAL
*DMLIST
*NO-ACTIVITY-LOG
RO EQU ©
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
SPACE 1
* ENTER FROM NEXT HIGHER LEVEL
SPACE 1
PRINT GEN ASSEMBLER PRINT OPTIONS
SYBPG2 CSECT
LR R12,R15 ESTABLISHES REGISTER 12 AS THE

BASE REGISTER
ESTABLISH ADDRESSABILITY OF DSECT

USING SYBPG2,R12
USING STORAGE,R10

B PROCESS BRANCH TO FIND INVOKING TASKCODE
EJECT
@INVOKE MODE=IDMSDC, MAP=SYBMAP

* OPERATING MODE: IDMS DC/MAPPING
EJECT
SPACE 1

RETURN DS OH
#FREESTG STGID='SYB4'
#RETURN
SPACE 1
RETURNXT DS OH
#RETURN NXTTASK=SYBTSKO3
SPACE 1
* MAINLINE PROGRAM
SPACE 1
PROCESS DS OH
#GETSTG TYPE=(USER, LONG, KEEP) ,PLIST=* ,LEN=STORLGTH,
STGID='SYB4', COND=(ALL) ,ERROR=ERRORTN, ADDR=(R10),
INIT=X"'40"'
* ACQUIRE VARIABLE STORAGE
SPACE 1
#MAPBIND MRB=SYBMAP BIND MAP AND RECORDS
#APBIND MRB=SYBMAP, RECNAME=SYBREC

FREE THE STORAGE ACQUIRED EARLIER
RETURN TO HIGHER LEVEL

PASS CONTROL BACK TO ITSELF

SPACE 1

ACCEPTSK #ACCEPT TYPE=TASKCODE, FIELD=TASKCODE

* ACCEPT TASK CODE TO INVOKE TASK
CLC TASKCODE, SYBTSK2 FIRST TIME CALLED ?
BNE RECCUR YES - OUTPUT FIRST SCREEN

* NO - INPUT DATA FROM SCREEN

FIRSTIME DS OH
MvC SYBDEPID,=C'0000'
SPACE
#MREQ OUT, MRB=SYBMAP,0PTNS=(NEWPAGE), ERROR=ERRORTN,

PRIME DATA FIELD

COND=(ALL)
* MAP OUT PROMPT
SPACE
B RETURNXT EXIT & WAIT FOR OPERATOR RESPONSE
SPACE 2

RECCLIR DS 6H
#MREQ IN,MRB=SYBMAP, ERROR=ERRORTN,COND=(ALL)

* MAP IN TERMINAL INPUT
SPACE 1

*

Appendix C: Sample DC/UCF Online Program 485

Inputto the DML Precompiler

#APINQ MRB=SYBMAP, AID=AIDBYTE

* MOVE MAP DATA TO PROG VARIABLE STG
CLI AIDBYTE,CLEAR DID THE OPERATOR REQUEST FINISH?
BE RETURN YES - EXIT PGM, BACK TO IDMS DC
SPACE
#VREQ OUT,MRB=SYBMAP,ERROR=ERRORTN,
COND=(ALL)
* MAP OUT DATA
SPACE
B RETURNXT EXIT & WAIT FOR OPERATOR RESPONSE
* NO - MAPOUT, WAIT ON OPERATOR
ERRORTN DS OH HERE FOR NONZERO RETURN CODE
#SNAP AREA=(SYBMAP, SYBMAPLN)
B RETURN EXIT
CLEAR EQU X'eD' CLEAR AIDBYTE VALUE
SYBTSK2 DC CL8'SYBTSK2 ' DC TASK INVOKING VALUE (EXTERNAL)
SYBTSK03 DC CL8'SYBTSKO3' DC TASK INVOKING VALUE (INTERNAL)
LTORG
#BALI
SPACE 2
sk sk stok skok stk sk ok stok skok stk skok sk stok skok stk skok k stok skok ok skok sk stok skok ok skok ok sk skok ok skok ok sk skok ok skok ok sk ok
STORAGE DSECT STORAGE DSECT
@COPY IDMS,MAP-CONTROL=SYBMAP
SYBMAPLN EQU *-SYBMAP LENGTH OF #MRB FOR SNAP
SPACE 1
@COPY IDMS,MAP-RECORDS
SPACE 1
SYSPLIST DS 20F MAP OUT PARAMETER LIST AREA
TASKCODE DS CL8 TASK CODE WHICH INVOKED PROGRAM
AIDBYTE DS X ATTENTION IDENTIFIER BYTE
DS 3X RESERVED
STORLGTH EQU *-STORAGE TOTAL LENGTH OF STORAGE NEEDED
SPACE 1
END SYBPG2

486 DML Reference Guide for Assembler

Outputfrom the DML Precompiler

Output from the DML Precompiler

The followingillustrates the sampleonline programas output from the DML
precompiler.

Appendix C: Sample DC/UCF Online Program 487

Outputfrom the DML Precompiler

00001 *RETRIEVAL
00002 *DMLIST
00003 *NO-ACTIVITY-LOG

00004 RO EQU ©
00005 R1 EQU 1
00006 R2 EQU 2
00007 R3 EQU 3
00008 R4 EQU 4
00009 R5 EQU 5
00010 R6 EQU 6
00011 R7 EQU 7
00012 R8 EQU 8
00013 R9 EQU 9
00014 R10 EQU 10
00015 RI11 EQU 11
00016 RI12 EQU 12
00017 R13 EQU 13
00018 RI14 EQU 14
00019 RI15 EQU 15
00020 SPACE 1
00021 * ENTER FROM NEXT HIGHER LEVEL
00022 SPACE 1
00023 PRINT GEN ASSEMBLER PRINT OPTIONS
00024 SYBPG2 CSECT
00025 LR R12,R15 ESTABLISHES REGISTER 12 AS THE
00026 USING SYBPG2,R12 BASE REGISTER
00027 USING STORAGE,R10 ESTABLISH ADDRESSABILITY OF DSECT
00028 B PROCESS BRANCH TO FIND INVOKING TASKCODE
00029 EJECT
00030 @INVOKE MODE=IDMSDC, MAP=SYBMAP
00032 * OPERATING MODE: IDMS DC/MAPPING
00033 EJECT
00034 SPACE 1
00035 RETWRN DS OH
00036 #FREESTG STGID='SYB4' FREE THE STORAGE ACQUIRED EARLIER
00037 #RETURN RETURN TO HIGHER LEVEL
00038 SPACE 1
00039 RETURNXT DS OH
00040 #RETURN NXTTASK=SYBTSKO3 PASS CONTROL BACK TO ITSELF
00041 SPACE 1
00042 * MAINLINE PROGRAM
00043 SPACE 1
00044 PROCESS DS OH
00045 #GETSTG TYPE=(USER,LONG,KEEP) , PLIST=*, LEN=STORLGTH,
00046 STGID='SYB4',COND=(ALL) , ERROR=ERRORTN,ADDR=(R10) ,
00047 INIT=X'40'
00048 * ACQUIRE VARIABLE STORAGE
00049 SPACE 1
00050 #MAPBIND MRB=SYBMAP BIND MAP AND RECORDS
00057 #MAPBIND MRB=SYBMAP, RECNAME=SYBREC
- 00061 SPACE 1
00062 ACCEPTSK #ACCEPT TYPE=TASKCODE,FIELD=TASKCODE
00063 * ACCEPT TASK CODE TO INVOKE TASK
00064 CLC TASKCODE,SYBTSK2 FIRST TIME CALLED ?
00065 BNE RECCUR YES - OUTPUT FIRST SCREEN
00066 * NO - INPUT DATA FROM SCREEN
00067 FIRSTIME DS OH
00068 MVC SYBDEPID,=C'0000" PRIME DATA FIELD
00069 SPACE
00070 #MREQ OUT, MRB=SYBMAP , OPTNS=(NEWPAGE) ,ERROR=ERRORTN,
00071 COND=(ALL)
00072 * MAP OUT PROMPT
00073 SPACE
00074 B RETURNXT EXIT & WALT FOR OPERATOR RESPONSE
00075 SPACE 2
00076 RECCUR DS OH
00077 #MREQ IN,MRB=SYBMAP, ERROR=ERRORTN, COND=(ALL)
00078 * MAP IN TERMINAL INPUT
00079 SPACE 1
00080 #MAPINQ MRB=SYBMAP,AID=AIDBYTE
00082 * MOVE MAP DATA TO PROG VARIABLE STG
00083 CLI AIDBYTE, CLEAR DID THE OPERATOR REQUEST FINISH?
00084 BE RETURN YES - EXIT PGM, BACK TO IDMS DC

488 DML Reference Guide for Assembler

Outputfrom the DML Precompiler

DMLA

DMLA

00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119

SPACE
#MREQ OUT, MRB=SYBMAP , ERROR=ERRORTN,
COND=(ALL)

* MAP OUT DATA

SPACE

B RETURNXT EXIT & WAIT FOR OPERATOR RESPONSE
* NO - MAPOUT, WAIT ON OPERATOR
ERRORTN DS OH HERE FOR NONZERO RETURN CODE

#SNAP AREA=(SYBMAP,SYBMAPLN)

B RETURN EXIT
CLEAR EQU X'6D' CLEAR AIDBYTE VALUE
SYBTSK2 DC CL8'SYBTSK2 * DC TASK INVOKING VALUE (EXTERNAL)
SYBTSKO3 DC CL8'SYBTSKO3"* DC TASK INVOKING VALUE (INTERNAL)

LTORG

#BALI

SPACE 2
3k ko koK 3k skok %k skok skok okok 3kok %k Kok kk skok koK ok 5k dkok koK %ok skok %k skok skok >k skok %k kK kk skok %k Xk 5k >k>k kK X%k kok k
STORAGE DSECT STORAGE DSECT

@COPY IDMS,MAP-CONTROL=SYBMAP
#VRB MAPNAME=SYBMAP, FIELDS=0001 ,RECORDS=0001

SYBMAPLN EQU *-SYBMAP LENGTH OF #MRB FOR SNAP
SPACE 1
@COPY IDMS,MAP-RECORDS
DS oD
SYBREC DS ocL4
SYBDEPID DS CL4
sk ko skok ok skok o ok skok ok skok o ok skok ok stok ok sk skok ok stok ok sk ok
SPACE 1
SYSPLIST DS 20F MAP OUT PARAMETER LIST AREA
TASKCODE DS CL8 TASK CODE WHICH INVOKED PROGRAM
AIDBYTE DS X ATTENTION IDENTIFIER BYTE
DS 3X RESERVED
STORLGTH EQU *-STORAGE TOTAL LENGTH OF STORAGE NEEDED
SPACE 1
END SYBPG2

Appendix C: Sample DC/UCF Online Program 489

Outputfrom the Assembler

Output from the Assembler

The followingillustrates the sampleonline programas output from the assembler.

490 DML Reference Guide for Assembler

Outputfrom the Assembler

1 *DMLIST
2 *NO-ACTIVITY-LOG
00000 3 RO EQU ©
00001 4 R1 EQU 1
00002 5 R2 EQU 2
00003 6 R3 EQuU 3
00004 7 R4 EQU 4
00005 8 R5 EQU 5
00006 9 R6 EQU 6
00007 10 R7 EQU 7
00008 11 R8 EQU 8
00009 12 R9 EQU 9
0000A 13 R10 EQU 10
00008 14 R11 EQU 11
0000C 15 R12 EQU 12
0006D 16 R13 EQU 13
0000E 17 R14 EQU 14
0000F 18 R15 EQU 15
20 * ENTER FROM NEXT HIGHER LEVEL
22 PRINT GEN ASSEMBLER PRINT OPTIONS
000000 23 SYBPG2 CSECT
000000 18CF 24 LR R12,R15 ESTABLISHES REGISTER 12 AS THE
00000 25 USING SYBPG2,R12 BASE REGISTER
00000 26 USING STORAGE,R10 ESTABLISH ADDRESSABILITY OF DSECT
000002 47F0 CO3A 0003A 27 B PROCESS BRANCH TO FIND INVOKING TASKCODE
PAGE 3
29 * @INVOKE MODE=IDMSDC, MAP=SYBMAP
30 @INVOKE MRBTYPE=STANDARD ,PAGING=NO
31 * OPERATING MODE: IDMS DC/MAPPING
PAGE 4
000006 34 RETURN DS GH
35 #FREESTG STGID='SYB4' FREE THE STORAGE ACQUIRED EARLIER
36+ 44
000006 47F0 COLO 00010 37+ B $$LD00O2 + O1-#FREE
00000A 0700 38+ CNOP 0,4 + O1-#FREE
00000C E2E8C2F4 39+$$GCO062 DC CL4'SyB4! + O1-#FREE
00010 40+$$1LD0002 EQU * + O1-#FREE
000010 5810 COOC 0000C 41+ L 1, $$GC0002 + O1-#FREE
000014 4100 0012 00012 42+ LA 0,18 + O1-#FREE
000018 58F0 €240 00240 43+ L 15, =V (IDCSACON) + 02-#ENTE
00001C O5EF 44+ BALR 14,15 + 02-#ENTE
00001E 0002 45+ DC AL2(2) + 02-#ENTE
47 #RETURN RETURN TO HIGHER LEVEL
A8+ A A A A A A A e
000020 1B0O 49+ SR 0,0 + O1-#RETU
000022 1B11 50+ SR 1,1 + O1-#RETU
000024 58F0 C240 00240 51+ L 15, =V (IDCSACON) + 02-#ENTE
000028 O5EF 52+ BALR 14,15 + 02-#ENTE
00002A 0005 53+ DC AL2(5) + 02-#ENTE
S L A B B A RLAJRa e o o B
00002C 56 RETURNXT DS GH
57 #RETURN NXTTASK=SYBTSK63 PASS CONTROL BACK TO ITSELF
00002C 1B0O 59+ SR 0,0 + O1-#RETU
00002E 4110 C214 00214 60+ LA 1,SYBTSKO3 + O1-#RETU
000032 58F0 C240 00240 61+ L 15, =V (IDCSACON) + 02-#ENTE
000036 O5EF 62+ BALR 14,15 + 02-#ENTE
000038 0005 63+ DC AL2(5) + 02-#ENTE
66 * MAINLINE PROGRAM
00003A 68 PROCESS DS OH
69 #GETSTG TYPE=(USER,LONG, KEEP) ,PLIST=*, LEN=STORLGTH, *
STGID='SYB4"',COND=(ALL) ,ERROR=ERRORTN, ADDR=(R10), *
INIT=X"'40"
70+*
00003A 0700 71+ CNOP 0,4 + O1-#GETS
00003C 4510 CO58 00058 72+ BAL 1,*+28 + O1-#GETS
000040 0000004C 73+ DC A(*+12) ADDR OF PARM1 + O1-#GETS
000044 00000054 74+ DC A(*+16) ADDR OF PARM2 + O1-#GETS
000048 00000050 75+ DC A(*+8) ADDR OF PARM3 + O1-#GETS
00004C 00000120 76+ DC A(STORLGTH) + O1-#GETS
000050 E2E8C2F4 77+ DC CL4'SYB4' + O1-#GETS

Appendix C: Sample DC/UCF Online Program 491

Outputfrom the Assembler

000054
000055
000056
000057
000058
00005C
00005E
000060

000064
000068

00006A
00006A

000070
000076

00007C

000082
000086
00008A
00008E
000092
000096
00009A
00009E
0000A2
0000A6
0000AA
0000AE
0000B2
0000B6
0000BA
0000C0
0000C4
0000C8

0000CE
0000CE
0000D2
0000D6
0000DA

0000DE

0000DE
0000E2
0000E6
0O00OEA
0000EC

000OEE

0000F4

0000F8
0000F8

40
41
ED
00
58F0
O5EF
0001
49F0

4780
18A1

D207

D743
D20F

D207

4100
4000
4100
4000
4110
4010
41F0
4CFO
41FF
88F0
89F0
40F0
92D5
41E0
D76D
41E0
4AEQ
D703

41E0
4AEQ
41F0
50FE

4100
4110
58F0
O5EF
0033

D507
4770

D203

C240 00240
C248 00248
CIDA 001DA

A0OO C220 00000 00220

A0O8 AQO8 00008 00008

A008 (228 00008 00228
A018 (238 00018 00238
004C 0004C
AB3C 0003C
0001 00001
AG2A 0002A
0001 00001
AB2C 0002C
000E 0000E
AG2A 0002A
0003 00003
0002 00002
0002 00002
AG2E 0002E
AG3A 0003A

Av4C 0004C
EQ0O EO00 00000 00000
A04C 0004C
AG2E 0002E

EQ0O EO0O 00000 00000

Av4C 0004C
AG2E 0002E
ABCO 000C0
0000 00000
0000 00000
All4 00114
C240 00240

A114 C20C 00114 0020C
Cl44 00144

AOCO (244 000CO 00244

78+ DC AL1(X'40') + O1-#GETS
79+ DC ALL(65) + O1-#GETS
8o+ DC AL1(237) + O1-#GETS
81+ DC ALL(0) + O1-#GETS
82+ L 15,=V(IDCSACON) + 02-#ENTE
83+ BALR 14,15 + 02-#ENTE
84+ DC AL2(1) + 02-#ENTE
85+ H 15,=H'8" + O1-#GETS
PAGE 5
86+ BNL ERRORTN + O1-#GETS
87+ (R RLO,1 + O1-#GETS
88+*
89 * ACQUIRE VARIABLE STORAGE
91 * #MAPBIND MRB=SYBMAP BIND MAP AND RECORDS
92 #MAPBIND MRB=SYBMAP, *
TSTAMP='11/25/91171238R2" , *
SSNAME=* Y *
NFLDS=1, *
NRECS=1, *
SEG=NO
93+ DS OH +rrbrttts BIND MAP ++bbbrbttbbbbbbb bbbt bbbbbrbre O1-#MAPB
94+ MC SYBMAP(8),=CL8'SYBMAP' X01-#MAPB
+ MAP NAME
95+ XC SYBMAP+8(76-8) SYBMAP+8 CLEAR REST OF BASIC MRB 01-#MAPB
96+ MC SYBMAP+8(16),=CL16'11/25/91171238R2" X01-#MAPB
+ COMPILE DATE/TIME
97+ MWC SYBMAP+24(8) ,=CL8' ' X01-#MAPB
+ SUBSCHEMA NAME
98+ LA 0,76 01-#MAPB
99+ STH ©,SYBMAP+60 MRE OFFSET 01-#MAPB
100+ L o1 NUMBER OF FIELDS 01-#MAPB
101+ STH ©,SYBMAP+42 01-#MAPB
102+ L 1,1 NUMBER OF RECORDS 01-#MAPB
103+ STH 1,SYBMAP+44 01-#MAPB
104+ LA 15,14 LENGTH OF ONE MAP REQ ELEMENT @1-#MAPB
105+ M 15,SYBMAP+42 TIMES NUMBER OF FIELDS 01-#MAPB
106+ LA 15,3(15) ROUND UP TO NEXT FULLWORD 01-#MAPB
107+ SRL 15,2 RECOF=((L'MRE*#FIELDS)+3)/4)*4 @1-#MAPB
108+ SLL 15,2 01-#MAPB
109+ STH 15, SYBMAP+46 EQUALS LENGTH OF ALL MRE'S 01-#MAPB
110+ MWI SYBMAP+58,C'N' SUBSCHEMA VIEW NOT SEGUENTED ~ ©1-#MAPB
111+ LA 14,SYBUAP+76 POINT TO END OF BASIC MRB 01-#MAPB
112+ XC 0(1*14,14),0(14) CLEAR MAP REQUEST ELEMENTS 1-#MAPB
113+ LA 14,SYBVAP+76 POINT TO END OF MRB 01-#MAPB
114+ AH 14, SYBMAP+46 POINT TO RECORD ADDRESS SLOTS — @1-#MAPB
115+ XC 0(1%4,14),0(14) CLEAR DATA RECORD ADDRESS SLOTS @1-#MAPB
116+%
118 * #MAPBIND MRB=SYBMAP, RECNAME=SYBREC
119 #MAPBIND MRB=SYBMAP, *
RECNUM=1, *
RECADDR=SYBREC
120+ DS OH +hrbtttt BIND MAP +bbbbttbbbHh bbb+ O1-#MAPB
121+ LA 14,SYBMAP+76 POINT TO END OF BASIC MRB 01-#MAPB
122+ AH 14, SYBMAP+46 PNT TO START OF DATA REC SLOTS @1-#MAPB
123+ LA 15,SYBREC DATA RECORD ADDRESS 01-#MAPB
124+ ST 15,4%(1-1)(14) STORE IN MRB SLOT 01-#MAPB
125+ +H+H+H+H
128 ACCEPTSK #ACCEPT TYPE=TASKCODE, FIELD=TASKCODE
L20HHb+t-HHHHHh bbb bbb bbb
130+ACCEPTSK DS GH + O1-#ACCE
PAGE 6
131+ LA 9,1-1 SET RQST TYPE. + O1-#ACCE
132+ LA 1, TASKCODE POINT TO RECEIVING FIELD + O1-#ACCE
133+ L 15,=V(IDCSACON) + 02-#ENTE
134+ BALR 14,15 + 02-#ENTE
135+ DC AL2(51) + 02-#ENTE
136+ HbttHbbHhbbbb bbb bbb bbb bbb bbb bbb
137 * ACCEPT TASK CODE TO INVOKE TASK
138 CLC TASKCODE, SYBTSK2 FIRST TIME CALLED ?
139 BNE RECCUR YES - OUTPUT FIRST SCREEN
140 * NO - INPUT DATA FROM SCREEN
141 FIRSTIME DS OH
142 MC SYBDEPID,=C'0000" PRIME DATA FIELD
144 #MREQ OUT ,MRB=SYBMAP ,0PTNS=(NEWPAGE) , ERROR=ERRORTN, *

492 DML Reference Guide for Assembler

Outputfrom the Assembler

0000FE
0000FE
000162
000106
00010A
00016E
000112
000116
00011A
000120
000124
000128
00012C
000130
000132
000136
000138
00013A
00013C

000140
000144

000144
000144
000148
00014C
000150
000154
000158
00015C
000160
000166
00016A
00016E

000172
000176
000178
00017C
00017E
000180
000182

000186
000186

00018C
000190

000194
000194
000198
00019C
0001A0
0001A4
0001A8
0001AC
0001BO
0001B6
0001BA
0001BE
0001C2
0001C6
0001C8
0001CC

9205
9601
9601
9600
92FF
920F
41F0
D703
4110
501F
927F
9680
181F
58F0
O5EF
002E
12FF
4770

47F0

9206
9600
9600
9600
92FF
920F
41F0
D703
4110
501F
927F

9680
181F
58F0
O5EF
002E
12FF
4770

D200

956D
4780

9205
9600
9600
9600
92FF
920F
41F0
D703
4110
501F
927F
9680
181F
58F0
O5EF

A020
AG21
A022
A047
A023
A03B
AOC4
FOOO
A0OO
0004
FOOO
FO04

C240

CIDA

coz2c

A020
A021
A022
A047
A023
A03B
AOC4
FoOO
A0OO
0004
FoOO

FO04

C240

CIDA

AllC

Al11C
C0o06

A020
A021
A022
A047
A023
A03B
AOC4
FoOO
A0OO
0004
FoOO
Fo04

C240

FOOO

FOOO

A038

FOOO

00020
00021
00022
00047
00023
0003B

00000

00000
00004

00020
00021
00022
00047
00023
0003B

00000

00000

00004

0011C

0011C

00020
00021
00022
00047
00023
0003B

00000

00000
00004

000C4
00000
00000
00004

00240

001DA

0002C

000C4
00000
00000
00004

00240

001DA

00038

00006

000C4
00000
00000
00004

00240

COND=(ALL)
145+ DS OH ++++++-MAPPING REQUEST -+ttt -+ 01-#MREQ
146+ MVI 32+SYBVMAP,B'00101' REQUEST TYPE FLAGS + 01-#MREQ
147+ 0I 33+SYBVMAP,B' 00000001 ' FRST OPTION BYTE+ O1-#MREQ
148+ 0I 34+SYBMAP ,B' 00000001 * SECOND OPTION BYTE + 01-#MREQ
149+ 0I 71+SYBVAP ,B' 00000000 * THIRD OPTION BYTE + 01-#MREQ
150+ MVI 35+SYBVMAP,B'11111111"' COND FLAGS + 01-#MREQ
151+ MVI 59+SYBMAP,B'1111' COND FLAGS + 01-#MREQ
152+ LA 15, SYSPLIST + 01-#VMREQ
153+ XC 0(4,15),0(15) INITIALIZE THIS FULLWORD XA + 01-#MREQ
154+ LA 1, SYBMAP + 01-#MREQ
155+ ST 1,4(15) XA + 01-#MREQ
156+ WI 0(15),X'7F' INDICATE RELEASE 2+ PARMLIST XA + 01-#MREQ
157+ 0I 4(15) ,X'80" INDICATE END OF PLIST XA + 01-#MREQ
158+ LR 1,15 + 01-#MREQ
159+ L 15, =V (IDCSACON) + 02-#ENTE
160+ BALR 14,15 + 02-#ENTE
161+ DC AL2(46) + 02-#ENTE
162+ LTR 15,15 WERE THERE ANY ERRORS AT ALL? + 01-#VREQ
163+ BNZ ERRORTN YES + 01-#MREQ
166 * MAP OUT PROMPT
168 B RETURNXT EXIT & WAIT FOR OPERATOR RESPONSE
170 RECCLIR DS OH
171 #MREQ IN,MRB=SYBMAP, ERROR=ERRORTN,COND=(ALL)
172+ DS OH +++++MAPPING REQUEST -+ttt -+ 01-#MREQ
173+ MVI 32+SYBMAP,B'00110' REQUEST TYPE FLAGS + 01-#MREQ
174+ oI 33+SYBMAP,B' 00000000 ' FRST OPTION BYTE+ O1-#MREQ
175+ 0I 34+SYBMAP,B' 60000000 * SECOND OPTION BYTE + 01-#MREQ
176+ 0I 71+SYBMAP ,B' 00000000 * THIRD OPTION BYTE + 01-#MREQ
177+ MVI 35+SYBVMAP,B'11111111°' COND FLAGS + 01-#VMREQ
178+ MVI 59+SYBMAP,B'1111' COND FLAGS + 01-#MREQ
179+ LA 15, SYSPLIST + 01-#MREQ
180+ XC 0(4,15),0(15) INITIALIZE THIS FULLWORD XA + 01-#MREQ
181+ LA 1, SYBMAP + 01-#MREQ
182+ ST 1,4(15) XA + 01-#MREQ
183+ WI 0(15),X'7F' INDICATE RELEASE 2+ PARMLIST XA + 01-#MREQ
PAGE 7
184+ 0I 4(15) ,X'80' INDICATE END OF PLIST XA + 01-#MREQ
185+ LR 1,15 + 01-#MREQ
186+ L 15, =V (IDCSACON) + 02-#ENTE
187+ BALR 14,15 + 02-#ENTE
188+ DC AL2(46) + 02-#ENTE
189+ LTR 15,15 WERE THERE ANY ERRORS AT ALL? + 01-#VREQ
190+ BNZ ERRORTN YES + 01-#MREQ
193 * MAP IN TERMINAL INPUT
195 * #MAPINQ MRB=SYBMAP ,AID=AIDBYTE
196 #MAPINQ MRB=SYBMAP ,AID=AIDBYTE
197+ DS OH +++++++++++ INQUIRE ABOUT LAST MAP OPERATION ++++++++ 01-#MAPL
198+ MVC AIDBYTE(1),56+SYBMAP X01-#MAPI
+ ATTENTION IDENTIFIER
201 * MOVE MAP DATA TO PROG VARIABLE STG
202 CLI AIDBYTE,CLEAR DID THE OPERATOR REQUEST FINISH?
203 BE RETURN YES - EXIT PGM, BACK TO IDMS DC
205 #VREQ OUT,MRB=SYBMAP ,ERROR=ERRORTN, *
COND=(ALL)
206+ DS OH +++++MAPPING REQUEST -+ttt -+ 01-#MREQ
207+ MVI 32+SYBMAP,B'00101' REQUEST TYPE FLAGS + 01-#MREQ
208+ 0I 33+SYBMAP,B' 60000000 * FRST OPTION BYTE+ O1-#MREQ
209+ 0I 34+SYBMAP,B' 00000000 * SECOND OPTION BYTE + 01-#MREQ
2106+ 0I 71+SYBMAP ,B ' 00000000 * THIRD OPTION BYTE + 01-#MREQ
211+ MVI 35+SYBVMAP,B'11111111°' COND FLAGS + 01-#VMREQ
212+ MVI 59+SYBMAP,B'1111' COND FLAGS + 01-#MREQ
213+ LA 15, SYSPLIST + 01-#VREQ
214+ XC 0(4,15),0(15) INITIALIZE THIS FULLWORD XA + 01-#MREQ
215+ LA 1,SYBMAP + 01-#MREQ
216+ ST 1,4(15) XA + 01-#MREQ
217+ WI 0(15),X'7F' INDICATE RELEASE 2+ PARMLIST XA + 01-#MREQ
218+ 0I 4(15) ,X'80' INDICATE END OF PLIST XA + 01-#MREQ
219+ LR 1,15 + 01-#VMREQ
220+ L 15, =V (IDCSACON) + 02-#ENTE
221+ BALR 14,15 + 02-#ENTE

Appendix C: Sample DC/UCF Online Program 493

Outputfrom the Assembler

0001CE
0001D0
0001D2

0001D6

0001DA

0001DA
0001DE
0001E2

0001E6
0001EC
0001F0
0001F4
0001F8
0001FC
000200
000204
000206

0002608

000206C
000214
000220
000220
000228
000238
000240
000244
000248

000250
000250
000254
000258

000258
00024A

000000

000000
000000
00004C
00005A
00005C
000060
0000BO

0000CO
0000C0
0000CO

0000C4
000114

00011C
00011D

000000

002E
12FF

4770 CIDA

47F0 C02C

90E1
4110
9268

AOC4
AOC4
1010

D702
41E0
50E0
41E0
50E0
9680
58F0
O5EF
001D

1011
A0OO
1014
00Co
1018
1018
C240

47F0 CO06
E2E8C2E3E2D2F240
E2E8C2E3E2D2FOF3

E2E8C2D4C1D74040
F1F161F2F561F9F1
4040404040404040
00000000
FOFOFOFO

0008

58FF 0008
O7FF

00000258C35BC15B

0000000000000000
0000000000000000
0000

00000000
0000000000000000
0000000000000000

00010

1011 00011

00018

001DA

0002C

000C4

000C4

00011
00000
00014
000C0
00018

00240

00006
0006D

00008

000C0

00120

222+ DC AL2(46) + 02-#ENTE
223+ LTR 15,15 WERE THERE ANY ERRORS AT ALL? + 01-#MREQ
224+ BNZ ERRORTN YES + 01-#MREQ
227 * MAP OUT DATA
229 B RETURNXT EXIT & WAIT FOR OPERATOR RESPONSE
230 * NO - MAPOUT, WAIT ON OPERATOR
231 ERRORTN DS OH HERE FOR NONZERO RETURN CODE
232 #SNAP AREA=(SYBMAP,SYBMAPLN)
234+ STM 14,1,SYSPLIST + 01-#SNAP
235+ LA 1,SYSPLIST + 01-#SNAP
236+ MWI 16(1),96+8 + 01-#SNAP
PAGE 8
237+ XC 17(3,1),17(1) + 01-#SNAP
238+ LA 14, SYBVAP + 01-#SNAP
239+ ST 14,20(,1) + 01-#SNAP
240+ LA 14, SYBVAPLN + 01-#SNAP
241+ ST 14,20+4(,1) + 01-#SNAP
242+ 0L 28-4(1) ,X'80" + 01-#SNAP
243+ L 15, =V (IDCSACON) + 02-#ENTE
244+ BALR 14,15 + 02-#ENTE
245+ DC AL2(29) + 02-#ENTE
248 B RETURN EXIT
249 CLEAR EQU X'eD’ CLEAR AIDBYTE VALUE
250 SYBTSK2 DC CL8'SYBTSK2 * DC TASK INVOKING VALUE (EXTERNAL)
251 SYBTSKO3 DC CL8'SYBTSKO3"' DC TASK INVOKING VALUE (INTERNAL)
252 LTORG
253 =CL8' SYBMAP'
254 =CL16'11/25/91171238R2"
255 =CL8' !
256 =V (IDCSACON)
257 =C'0000"
258 =H'8'
259 #BALI
260+IDCSACON CSECT , IDMS DC ASSEMBLER PROGRAM INTERFACE 01-#BALI
261+ L 15,8(15) ADDRESS OF DC'S COMMON STORAGE AREA 01-#BALI
262+ BR 15 01-#BALI
264+ DS OF FORCE ALIGNMENT 01-#BALI
265+* THE FOLLOWING AD-CON IS FILLED IN BY THE DC PROGRAM LOADER.
266+ DC A(*),C'CA" 01-#BALI
268+SYBPG2 CSECT 01-#BALI
270 Skok Kok ok dkok %k skok kok dkok skok %k Kok ok dkok kK >k %ok dkok skok %ok dkok %k skok skok dkok ko %k Kk %k k>k kK Xk Xk dkok kK %k k>k k k
271 STORAGE DSECT STORAGE DSECT
272 * @COPY IDMS, MAP- CONTROL=SYBMAP
273 #MRB MAPNAME=SYBMAP,FIELDS=0001, RECORDS=0001
274+ DS 0A FORCE FULL-WORD ALIGNMENT 01-#MRB
275+SYBMAP DC XL76'0" BASIC MAP REQUEST BLOCK 01-#MRB
276+ DC (0001)XL14'0" MAP REQUEST ELEMENTS 01-#MRB
277+ DC (0001)A(0) DATA RECORD ADDRESS SLOTS 01-#MRB
278+MRBPLIST DC 20A(0) 01-#MRB
279+MRBPGDS DC 4A(0) #STRTPAG, #ENDPAG PARM LIST 01-#MRB
280 SYBMAPLN EQU *-SYBMAP LENGTH OF #MRB FOR SNAP
282 * @COPY IDMS, MAP-RECORDS
283 DS oD
284 SYBREC DS 0CL4
285 SYBDEPID DS CL4
286 Hok ok skokshok sk ok skok ok ok o ok ok skok skok sk skok skok ok ok skok sk ok
288 SYSPLIST DS 20F MAP OUT PARAMETER LIST AREA
289 TASKCODE DS CL8 TASK CODE WHICH INVOKED PROGRAM
PAGE 9
290 AIDBYTE DS X ATTENTION IDENTIFIER BYTE
291 DS 3X RESERVED
292 STORLGTH EQU *-STORAGE TOTAL LENGTH OF STORAGE NEEDED
294 END SYBPG2

494 DML Reference Guide for Assembler

Appendix D: Assembler DML Macros and
Error Messages

DML Macros

This appendix lists the following:

m Assembler DML macrosinalphabetical order

m The error messages generated upon assembly of these macros

This section contains the following topics:

DML Macros (see page 495)
Error Messages (see page 497)

Types of Macros

There are three types of Assembler DML macros, as follows:

m Statement—The macro instructionis coded in the application program as a DML

statement.

m Generated—The macro instructionisgenerated from a DML statement by the DML

precompiler.

m Invoked—The macroinstructionisinvoked by a DML statement macroduring

assembly.

List of Macros

The followingtablelists DMLmacros alphabetically.

Macro Type Function

@ACCEPT Statement Encodes the #ACCEPT statement
@BIND Statement Encodes the @BIND statement
@COMMIT Statement Encodes the #COMMIT statement
@CONNECT Statement Encodes the @CONNECT statement
@DISCON Statement Encodes the @DISCON statement
@ERASE Statement Encodes the @ERASE statement
@FIND Statement Encodes the @FIND statement

Appendix D: Assembler DML Macros and Error Messages 495

DML Macros

Macro Type Function

@FINISH Statement Encodes the @FINISH statement

@GET Statement Encodes the @GET statement

@IDMSGSS Invoked Defines the IDMS global variables

@IDMSINR Invoked Generates the IDMS callingsequence

@IF Statement Encodes the @IF statement

@INVOKE Statement Encodes the @INVOKE compiler-directive
statement

@KEEP Statement Encodes the @KEEP statement

@LRF Invoked Generates the logical record requestsequences

@MODE Statement Encodes the @MODE compiler-directive
statement

@MODIFY Statement Encodes the @MODIFY statement

@OBTAIN Statement Encodes the @OBTAIN statement

@PXE Generated Encodes a WHERE clause element

@READY Statement Encodes the @READY statement

@RETURN Statement Encodes the @RETURN statement

@ROLLBAK Statement Encodes the @ROLLBAK statement

@SSCTRL Statement Copies the IDMS communications block

@SSLRCTL Statement Copies the LRC block

@STORE Statement Encodes the @STORE statement

Note: @COPY is a DMLA sourcestatement, not an Assembler macro.

496 DML Reference Guide for Assembler

Error Messages

Error Messades

The remainder of this appendixlists and describes error messages that aregenerated
duringmacroassembly.

Note: For error messages generated by the DML precompiler and returned to the
ERRSTAT field of the IDMS communications block following DML requests, see the
Messages and Codes Guide.

@ACCEPT

INDECIPHERABLE COMBINATION OF OPERANDS

Excessiveor conflicting operands prevent interpretation of the macro.

Severity: 08

@BIND

LRC MUST BE SPECIFIED OR LRSIZ MUST BE OMITTED

The LRC parameter was omitted but the LRSIZ parameter was specified. Ifthe LRSIZ
parameter is specified, the LRC parameter must also be specified.

Severity: 08

INDECIPHERABLE COMBINATION OF OPERANDS

Excessiveor conflicting operands prevent interpretati on of the macro.

Severity: 08

TOO MANY OPERANDS SPECIFIED

Parameters were specified that are not allowed for the BIND statement being issued.
Severity: 08

@COMMIT

'ALL' PARAMETER MUST BE BLANK OR 'ALL'

The first positional parameter ALL must be specified as ALL or must be omitted.

Severity: 08

Appendix D: Assembler DML Macros and Error Messages 497

Error Messages

@CONNECT

BOTH RECORD NAME AND SET NAME ARE REQUIRED FOR CONNECT
Either the REC or SET parameter was omitted.

Severity: 08

@DISCON

BOTH RECORD NAME AND SET NAME ARE REQUIRED FOR DISCONNECT
Either the REC or SET parameter was omitted.

Severity: 08

@ERASE

TYPE OF ERASE IS MISSING OR INCORRECT

The (required) parameter for type of erasewas omitted orinvalid.Valid parameters are
REC, PERMANENT, SELECTIVE, or ALL.

Severity: 08

RECORD NAME IS REQUIRED FOR ERASE

The required REC parameter was not specified.

Severity: 08

@FIND

TYPE OPERAND IS MISSING OR INVALID

This type of FIND/OBTAIN was not specified (NEXT, FIRST, PRIOR, LAST, NTH).
Severity: 08

SET,AREA, USING, AND OCCUR ARE NOT ALLOWED FOR FORMAT 1

SET, AREA, USING, or OCCUR parameters were specified. These parameters arenot
allowed on FIND DBKEY statements.

Severity: 08

498 DML Reference Guide for Assembler

Error Messages

DBKEY, USING, AND OCCUR ARE NOT ALLOWED FOR FORMAT 2

DBKEY, USING, or OCCUR parameters were specified. These parameters are not allowed
on FIND CURRENT statements.

Severity: 08
REC, SET, AND AREA ARE MUTUALLY EXCLUSIVE FOR FORMAT 2

Two or more of the REC, SET, or AREA parameters were specified. Only one of these
parameters can be specified on FIND CURRENT statements.

Severity: 08
DBKEY AND USING ARE NOT ALLOWED FOR FORMAT 3

Either a DBKEY or a USING parameter was specified. These parameters arenot allowed
on FIND WITHIN SET/AREA statements.

Severity: 08
EITHER SET OR AREA MUST BE SPECIFIED

Neither SET nor AREA parameters were specified; one of these parameters must be
specified.

Severity: 08
OCCUR IS USED ONLY WITH FORMAT 3 FIND NTH

OCCUR parameters were specified. These parameters areonly allowed with FIND NTH
WITHIN SET/AREA statements.

Severity: 08
REC, AREA, DBKEY, USING, AND OCCUR NOT ALLOWED FOR FORMAT 4

REC, AREA, DBKEY, USING, or OCCUR parameters were specified. These parameters are
not allowed on FIND OWNER statements.

Severity: 08
SET OPERAND IS REQUIRED FOR FORMAT 4
The required SET parameter was not specified on a FIND OWNER statement.

Severity: 08

Appendix D: Assembler DML Macros and Error Messages 499

Error Messages

SET, AREA, DBKEY, USING, AND OCCUR ARE NOT ALLOWED FOR FORMAT 5

SET, AREA, DBKEY, USING, or OCCUR parameters were specified. These parameters are
not allowed on FIND CALC/DUPLICATE statements.

Severity: 08

REC OPERAND IS REQUIRED FOR FORMAT 5

The required REC parameter was not specified ona FIND CALC/DUPLICATE statement.
Severity: 08

AREA, DBKEY, AND OCCUR ARE NOT ALLOWED FOR FORMAT 6

AREA, DBKEY, or OCCUR parameters were specifiedandare not allowed for FIND
WITHIN SET USING SORT KEY statements.

Severity: 08
REC, SET, AND USING ARE REQUIRED FOR FORMAT 6

REC, SET, or USING parameters were not specified and are required for FIND WITHIN
SET USING SORT KEY statements.

Severity: 08

KEEP OPERAND NOT SPECIFIED AS SHARED OR EXCLUSIVE

The KEEP parameter was specified without either the SHARED or EXCLUSIVE parameter.
Severity: 08

UNEXPECTED ERROR IN FORMAT 3 FIND

Thisis a system internal error.

Severity: 20

@IDMSINR

@MODE MACRO DOES NOT PRECEDE THIS DML MACRO

The @MODE macrowas not specified before this macro.The @MODE macro must
precede all other macros and must occur only once.

Severity: 16

500 DML Reference Guide for Assembler

Error Messages

@MODE CONTAINED ERRORS, OR WAS NOT FIRST MACRO

The @MODE macro was coded incorrectly or was not specified before this macro.The
@MODE macro must precede all other macros and must occur only once.

Severity: 16

INVALID TYPE 'type' SPECIFIED IN @IDMSINR MACRO

This is a system internal error.

Severity: 20

INVALID OPERAND 'operand' IN @IDMSINR MACRO DML-SEQUENCE = 9999
Thisis a system internal error.

Severity: 20

INVALID MODE 'mode' IN @IDMSINR MACRO

Thisis asystemerror.

Severity: 20

@IF

INVALID SPECIFICATION FOR MEMBER OPERAND OR EMPTY OPERAND

The MEMBER/EMPTY parameter was specified incorrectly. Either MEMBER or EMPTY
must be specified.

Severity: 08
SET, GOTO, AND EITHER MEMBER OR EMPTY ARE REQUIRED FORIF

A required MEMBER or EMPTY, SET, or GOTO parameter was not specified.SET, GOTO
and either MEMBER or EMPTY parameters arerequired inan IF statement.

Severity: 08

@KEEP

TYPE NEITHER SHARED NOR EXCLUSIVE

Either the SHARED or EXCLUSIVE parameter is required on KEEP statements.

Severity: 08

Appendix D: Assembler DML Macros and Error Messages 501

Error Messages

INDECIPHERABLE COMBINATION OF OPERANDS

Excessive or conflicting operands prevent interpretation of the macro.

Severity: 08

@LRF

Key-value MISPLACED

The named key-value parameter was coded in anincorrectposition. Parameters must
be coded in the following sequence: FIRST/NEXT, REC, IOAREA, ONLRSTS, GOTO, and
WHERE.

Severity: 08

KEY-value,variable-value MISPLACED

The named positional pairof parameters was coded more than once or inincorrect
sequence within a logical-record DMLstatement. Parameters must be coded inthe
following sequence: FIRST/NEXT, REC, IOAREA, ONLRSTS, GOTO, and WHERE.
Severity: 08

KEYWORD PARAMETERS INVALID FOR LRF ACCESS MACROS

Logical-record DML statements must be coded using positional -pair parameter notation
at assembly time.

Severity: 08
Key-value NOT PAIRED

The named key-value positional parameter was coded without a correspondingvariable
value parameter.

Severity: 08
Key-value IS AN INVALID PARAMETER

The named key-value parameter is invalid. Valid key-value parameters inlogical-record
DML statements are: FIRST/NEXT, REC, IOAREA, ONLRSTS, GOTO and WHERE.

Severity: 08

502 DML Reference Guide for Assembler

Error Messages

"REC" MUST BE SPECIFIED

The REC parameter was not specified on a logical record request. All LRF access macros
must specify a logical record name.

Severity: 08

"WHERE" INVALID WHEN LRSIZ OMITTED ON @BIND

The LRSIZ parameter (specified on @BIND SUBSCH) was not specified; therefore, no
storage was made availablefor WHERE clauseresolution. Add the LRSIZ parameter to
@BIND SUBSCH andreassemble.

Severity: 08

SPECIFY BOTH "ONLRSTS" AND "GOTO" OR NEITHER

Either the ONLRSTS orthe GOTO parameter was omitted from a logical record request;
both parameters are needed to encode a DMLA ON clause. Either remove the
parameter specified or add the omitted parameter.

Severity: 08

MACRO ERROR: PASSED VERB verb

The named verb was incorrectly passed. This is a systeminternal error.

Severity: 08

@MODE

MULTIPLE OCCURRENCES OF @ MODE MACRO

The @MODE macro was specified more than one time; the @MODE macro must occur
onlyonce.

Severity: 08
INVALID SPECIFICATION mode FOR MODE OPERAND

The named mode is not valid.Valid mode parameters are BATCH, CICS, CICS-EXEC,
IDMSDC, INTERCOMM, SHADOW, and DCBATCH.

Severity: 16

Appendix D: Assembler DML Macros and Error Messages 503

Error Messages

INVALID SPECIFICATION debug FOR DEBUG OPERAND

The named debug parameter is not valid.Valid debug parameters are YES or NO.
Severity: 16

INVALID SPECIFICATION quotes FOR QUOTES OPERAND

The named quotes parameter is invalid.Valid parameters for quotes are YES or NO.
Severity: 16

@MODIFY

RECORD NAME IS REQUIRED FOR MODIFY

The record REC parameter was not specified.

Severity: 08

@OBTAIN

KEEP OPERAND NOT SPECIFIED AS SHARED OR EXCLUSIVE

The KEEP parameter was specified without either the SHARED or EXCLUSIVE parameter.
Ifthe KEEP parameter is specified, either SHARED or EXCLUSIVE must also bespecified.

Severity: 08
@PXE
LRPXE 9999 CHARACTERS TOO SHORT

Lrc-block-size (specified on @BIND SUBSCH) is too small to contain the specified WHERE
clause.Increaselrc-block-size and reassemble.

Severity: 08
DMLA/@PXE INCONSISTENCY: PXE TYPE=type
This is a system internal error.

Severity: 12

504 DML Reference Guide for Assembler

Error Messages

DMLA/@PXE INCONSISTENCY: V-TYPE=type
This is a system internal error.

Severity: 12

DMLA/@PXE INCONSISTENCY: MAX=9999/9999
This is a system internal error.

Severity: 12

DMLA/@PXE INCONSISTENCY: LEN=9999/9999
Thisis a system internal error.

Severity: 12

@READY

EITHER AREA OPERAND OR ALL OPERAND MUST BE SPECIFIED

Neither the AREA nor ALL parameter was specified. One of these parameters is required
for this macro.

Severity: 08
EITHER RDONLY OPERAND OR UPDATE OPERAND MUST BE SPECIFIED

Neither the RDONLY nor UPDATE parameter was specified.One of these parameters is
required for this macro.

Severity: 08
INVALID SPECIFICATION FOR UPDATE OR RDONLY OPERAND

The UPDATE/RDONLY parameter was specifiedincorrectly.Valid parameters for
UPDATE/RDONLY are: YES or SHARED, PROTECTED or PROTECT, or EXCLUSIVE.

Severity: 08
ALL OPERAND IS NOT SPECIFIED AS 'ALL'
The parameter ALL must be specified as ALL.

Severity: 08

Appendix D: Assembler DML Macros and Error Messages 505

Error Messages

@RETURN
BOTH SET AND DBKEY ARE REQUIRED OPERANDS FOR RETURN

The SET and/or DBKEY parameters were not specified. Both of these parameters are
required for this macro.

Severity: 08

EITHER TYPE OPERAND OR USING OPERAND MUST BE SPECIFIED

Neither the type-of-return parameter (i.e., CURRENT, FIRST, LAST, NEXT, or PRIOR) nor
the USING parameter was specified. RETURN macros mustinclude one of these
parameters.

Severity: 08

INVALID SPECIFICATION FOR TYPE OPERAND

The type operand was not specified correctly. Valid parameters are CURRENT, FIRST,
LAST, NEXT, or PRIOR.

Severity: 08

@ROLLBAK

POSITIONAL PARAMETER 'CONTINUE' INVALID

The CONTINUE parameter must be specified as CONTINUE or must be omitted.
Severity: 08

@STORE

RECORD NAME IS REQUIRED FOR STORE

The required REC parameter was not specified.

Severity: 08

506 DML Reference Guide for Assembler

Appendix E: STAE Exits

Overview

This section contains the following topics:

Overview (see page 507)

What are STAE Exits?

STAE exits (system task abend exits) are user-written recovery modules supported by
DC/UCF systems. STAE exits can be invoked inthe event of a program interruptor an
abnormal condition encountered by the task. The user-written module can attempt to
recover the task by correctingthe abnormal condition. Ifthe abnormal condition cannot
be resolved, the STAE program canrequest abnormal termination of the task.

How STAE Exits Work

For each tasklevel,a program can designatea STAE routine by issuing a #STAE request.
A taskabnormally terminates due to a processingerror or an #ABEND command. When
atask terminates abnormally, STAE routines for the abended program and for all
higher-level programs are executed. #STAE routines can be overridden by a #RETURN
statement or excluded explicitly by an #ABEND request from the program that failed.

Note: For more information abouthow to issuea #STAE request, see "#STAE" in Chapter
7.

STAE routines determine the causeof the abnormal condition or programinterrupt by
checkingthe abend control element (ACE). When control is transferred to the STAE
routine, DC/UCF automatically sets the valueinregister 1 to the address of a fullword
parameter listthatcontains the address of the ACE. When program execution is
interrupted, DC/UCF saves the contents of all registers fromthe abended programinthe
ACE.

Note: #ACEDS is a DSECT provided inthe DC/UCF macro library thatdefines the fields of
the ACE. #ACEDS can be copiedinto the program usingthe @COPY IDMS #ACEDS
statement.

Appendix E: STAE Exits 507

Overview

For more information aboutthe abend control element (ACE) DSECT, see the DSECT
Reference Guide.

Programming Considerations

Programming considerationsfor STAE routines areas follows:

m STAE programs must be defined at system generation.

m Resources held by the taskremain intactwhen the STAE routine is invoked.

m STAE routines canissue DC/UCF requests. However, ifanerror occurs which would
normally abortthe task,the DC/UCF system will abnormally terminate.

m STAE routines must end with a #RETURN statement. The #RETURN statement can
request further action to be taken by specifyingthe
TYPE=NORMAL/ABORT/CONTINUE parameter. If TYPE=CONTINUE is specified, the
STAE routine must load the address of the instruction fromwhere processingis to
continueinthe ACE.

Beginning Register Values
At the start of execution of a STAE routine, the DC/UCF system sets registers 1, 13, and
15 to the followingvalues:

m Register 1 holds the address of a 1-fullword parameter listthatcontains the
address of the ACE.

m Register 13 holds the address of the STAE routine save area if the SAVAREA option
has been defined for the STAE program at system generation.

m Register 15 holds the entry-point address of the STAE routine.

Displacement- Label in #ACEDS Contents Field Size

decimal (hex) DSECT

0(0) ACEPSW PSW at the time of the 8 bytes
interrupt

8(8) ACEGPRS General registers from 64 bytes
abended program0-15

72(48) ACEFPRS Floating pointregisters 32 bytes
from the abended program
0-6

112(70) ACEFLG ACE flag(see tablebelow) 1 byte

115(73) ACEABCOD Abend code set by DC/UCF 4 bytes

120(78) ACEPGMNM Name of the abended 4 bytes
program

129(81) ACEEPSW PSW in EBCDIC form 17 bytes

508 DML Reference Guide for Assembler

Overview

Displacement- Label in #ACEDS Contents Field Size
decimal (hex) DSECT
148(94) ACEOFFST Displacement of 6 bytes
instruction thatfailedin
the abended program
160(A0) ACEILC XA programinterrupt 1 byte
length counter
161(A1) ACEINTC XA interruption code 2 bytes
ACEPSWDA Dataat PSW Start 16 32 bytes
bytes before and
after PSW
Value Meaning Comments
X'80' Abort was in user mode Set by DC/UCF
X'40' Program check Set by DC/UCF
X'20' No messageis wanted Set by STAE routine
X'10' No SNAP is wanted Set by STAE routine
X'08' Abort taskimmediately Set by
H#RETURN, TYPE=ABORT
X'01' Continue processingatR14 Set by #RETURN,TYPE=

address

CONTINUE

Appendix E: STAE Exits 509

Appendix F: EMPLOYEE Data Structure
Diagram

This section contains the followingtopics:

Overview (see page 511)

Overview

The followingfigureis the data structure diagramfor the EMPLOYEE database. This
databaseis used for most of the examples in this document.

DEPARTMENT OFFICE
a0 [F]ss Jcac aso [F 76 Jeac
DEPT-ID-0410 DN QFFICE-CODE DN
JOB- 111 LE-NDX SKILL-NAME-NDX
Vo ORG-DEMO-REGION ORG-DEMO-REGION o
ASC TITLE-0440 DN DEPT EMPLOYEE OFFICE-EMPLOYEE ASC SKILL-NAME-0455 DN
NPG OA 10 oA
J08 ASC (EMP-LAST-NAME 0415 ASC {EMP-LAST-NAME-0415 SKILL
EMP-FIRST-NAME-0415) DL EMP-HIHSI -NAME-0415) DL
440 |rc 286 |carc) ! 455 |[F |76 |cac
JOB-ID-0440 DN SKILL-ID-0455 N
ORG-DEMO-REGION ORG-DEMO-REGION
EMP-NAME-NDX
Lon SKILL-EXPERTISE
JOB-EMPOSITION ASC (EMP-LAST-NAME 10 MA
NPO GM NEXI EMP-FIRSI-NAME-0425) DL DES SKILL-LEVEL DF
EMPOSIIION EMPLOVEE EXPEHIISE
120 [F Jea Jun s [r Jis[eac w2s]r o Jwa
EMP-EMPOSITION | EMP-ID-0415 DN EMP-EXPERTISE |
EMP-EMPOSITION EMP-EXPERTISE
EMP-DEMO-REGION v EMP-DEMO-REGION Hhe e EMP-DEMG-REGION
DES SKILL-LEVEL-Q425 DF
REPORTS-TO MANAGES
EMP-COVERAGE
NPO OM NEXI nPo M Nexi | oEP VS
STRUCTURE COVERAGE
wo|r e Jwa awo |r Jis Jwia
MANAGES | EMP-COVERAGE |
EMP-DEMO-REGION INS-DEMO-REGION
COVERAGE-CLAIMS
NP MA LAST
INSURANGE-FLAN HOSPITAL-GLAIM NON-HOSP-GLAIM DENTAL-GLAIM
435 |rc |13z |cmc 430 [F]ze2 [via 445 |v J100d via 205 [v Joa30 Jwia
INS-PLAN-CODE-0435 | DN COVERAGECLAIMS | COVERAGE-CLAIMS | COVERAGE-CLAIMS _|
INS-DEMO-REGION INS-DEMO-REGION INS-DEMO-REGION INS-DEMO-REGION

Appendix F: EMPLOYEE Data Structure Diagram 511

Appendix G: Systems Network Architecture
Considerations (SNA)

This appendix describes howto make your CA IDMS/DC Assembler program compatible
with SNA protocols, allowing you to exchange information with other SNA-compatible
products.The discussionwillincludeinformationon:

m General SNA programming considerationsinthe CA IDMS/DC environment
m Allocatingasession

m Startinga system taskfrom a remote system
m Asynchronous and synchronous processing
m Sending data

m Requesting a confirmation

m Responding to a confirmationrequest

m Sending error information

m Changingdirection:send to receive

m Receiving data

m Changingdirection:receive to send

m Terminating a conversation
What is SNA?

Systems Network Architecture (SNA) is a set of protocols and formats that enable
different types of communications products to function together ina network
environment. There are no specific SNA hardware or software products. Rather, SNA is a
set of rules, an architecture, to which a wide variety of products can conform.

SNA/VTAM Line Driver

The CA IDMS/DC SNA/VTAM linedriver (VTAMLU) is a task runningunder CA IDMS/DC
that allows your taskto communicate with other SNA-compatible devices. Many SNA
logical units, for example, 3270 terminals and printers, can communicate usingthe
standard CA IDMS/DC VTAM linedriver (VTAMLIN). VTAMLIN handles most SNA
protocols automatically,and should be used when possiblefor greater operating
efficiency.

Appendix G: Systems Network Architecture Considerations (SNA) 513

Overview

The CA IDMS/DC SNA/VTAM driver, and the material covered in this appendix, should
be used with logical unitconfigurations thatrequirespecial protocol control; for
example, LU6.2 logicalunits,and IBM 4700 or 3700 devices. The SNA protocols enabled
for a specificlogical unitaredefined through VTAM by bind parametersina VTAM
MODENT table. These bind parameters are the only way the CA IDMS/DC SNA/VTAM
driver can determine which specific SNA protocols havebeen established for a logical
unit; careshould be taken to ensure that the bind parameters accurately reflect the
capabilities of the logical unit.

Determining Compatibility and Need for Special Support

To determine whether SNA protocols for a given logical unitarecompatible with those
handled by the standard VTAM driver, or if they need special protocol supportfromthe
CA IDMS/DC SNA/VTAM driver, compare the bind parameter values inthe MODENT
table for your logical unitto those for a 3270 device. Ifthe MODENT values are
comparableto those for a 3270, it is probablethatthe standard VTAM driver can handle
any SNA protocols for that logical unit.

Note: For more information aboutestablishing bind parameters for a logical unit, see
the System Generation Guide.

Support Offered by the SNA/VTAM Line Driver

The followingtablelists the LU types, function management profiles,and transmission
service profiles thatare supported by the CA IDMS/DC SNA/VTAM driver (LU 6 is not

supported).

SNA Protocol Types Supported by CA IDMS/DC
LU Types 0,1,2,3,4,6.2

Function Management Profiles 2,3,4,7,18,19

Transmission Service Profiles 2,3,4,7

514 DML Reference Guide for Assembler

General Considerations

This section contains the followingtopics:

General Considerations (seepage 515)

SNA Functions ina CA IDMS/DC Environment (see page 522)
Allocatinga Session (see page 525)

Startinga Taskfrom a Remote System (see page 530)
Synchronous and Asynchronous Processing (see page 530)
Sending Data (see page 531)

Requesting a Confirmation (see page 532)

Responding to a Confirmation Request (see page 533)
Sending Error Information (see page 533)
ChangingDirection: Send to Receive (see page 534)
Receiving Data (see page 535)

ChangingDirection: Receive to Send (see page 537)
Terminating a Conversation (see page 538)

General Considerations

SNA Terminology

Before you start to write your SNA program, you should familiarizeyourself with the
following:

m SNA terms and their specific meanings inthe CA IDMS/DC environment

m The CA IDMS/DC facilities your programneeds to communicate in the SNA
environment

m How SNA messages and error information arehandled inthe CA IDMS/DC
environment

Each of these considerationsisdiscussed on the following pages.

The following SNA terms are used in this appendix. Special CA IDMS/DC considerations
areincluded along with their definitions:

m Alogical unit (LU)is a port through whichyou access the SNA network, asingle
network addressableunit(NAU). For example, an LU canbe an end-user terminal, a
program such as CICSor CAIDMS/DC, or a device such as a display writer.

Note: Unless otherwise specified, the discussionsin this appendix applytoall LU
types. Special LU6.2 considerations will be noted.

m A session is alogical connection between two logical units thatenables the
exchange of messages. Two logical units thatsharea single physical connection can
have one or more sessions between them. Each sessionisrepresented inthe CA
IDMS/DC environment by a single physical terminal element (PTE)/logical terminal
element (LTE) pair.

Appendix G: Systems Network Architecture Considerations (SNA) 515

General Considerations

m A conversation is equivalentto one complete transaction between logical units. A
conversationis delineated by a begin bracket and an end bracket. Inthe CA
IDMS/DC environment, a conversationis requested by a #TREQ ALLOC statement,
or is started by the remote LU, andis terminated by the LAST option on a #TREQ
WRITE statement. Datais exchanged by two logical unitsina conversation by using
various forms of the #TREQ READ and WRITE statements.

Multiple LU-LU Sessions

The followingfigureillustrates howthe SNA driver, functioningas an LU, takes partin
multiplesessions. Thereare four sessions established between the SNA driver and CICS,
andone session established between the SNA driver and a display writer. Each session
cansupportonly one conversationata time. This configuration can supportup to five
simultaneous conversations: four between CA IDMS/DC and CICS, and one between CA
IDMS/DC and the display writer.

LU L
\ 7\
I N Vd N
IDMS-DC - cics

Four sessions are established
between IDMS-DC and CICS.

One session is established
between IDMS-DC and the
Displaywriter.

Displaywriter

LU

516 DML Reference Guide for Assembler

General Considerations

Program Communications in the SNA Environment

Your program converses with other SNA network resources through #TREQ statements,
in conjunction with the user I/0 control block (UIOCB). CA IDMS/DC supports only
basic-modeaccess to other SNA devices; line-mode and mapping-mode arenot
currently supported.

#TREQ Command

You usethe #TREQ command to:

m Establish LU-LU sessions

m |nitiateconversations between logical units

m Exchange data anderror information between logical units

m Terminate conversations and sessions
Syntax and syntax rules for the #TREQ statement are discussed in #TREQ (see page 343).
User Control Block

The user 1/0 control block (UIOCB) contains LU-LU sessioninformation:
m Sessionattributes

m Conversationattributes

m Informationabout the data being sent and received

m Error information

Establishing Sessions

Sessions inthe CA IDMS/DC environment can be established in three ways:
m CAIDMS/DC canautomatically establish thesession atsystem startup.
m Aremote LU canestablishthesession.

m Your program canestablisha session using the #TREQ ALLOC statement, as
described later in this appendix.

When you issuea #TREQ ALLOC statement to allocatea conversation, before CA
IDMS/DC canselecta session foryou, you must establish the UIOCB and initialize UIOCB
fields with session attributes, such as which LU you want to talk to.

You alsousethe UIOCB to establish conversation attributes, for example, the maximum
sync level that you will need (LU6.2 only).

Appendix G: Systems Network Architecture Considerations (SNA) 517

General Considerations

After the conversation has begun, you use the UIOCB to obtaininformation aboutthe
conversation. For example, session and conversationinformation inthe UIOCB is
updated following #TREQ ALLOC or #TREQ UIOCB statements, and return codes, sense

codes, data-information fields,and VTAM-information fields areupdated followingread
requests.

518 DML Reference Guide for Assembler

General Considerations

Sample User Control Block
The followingfigureillustrates a sampleuser |/O control block (UIOCB).

For the layout of the UIOCB, refer to the DSECT Reference Guide.

UOICB DS OF

3K 3K 3K 3K oK 5k ok ok K ok ok ok Rok K Sk 5K ok K 3k >k Skok K Sk K ok 3k Sk K ok Rok K 3k >k ok K 3k >k Skok K Sk K ok K Sk K skok ok K Sk >k 5k >k Sk kok sk k sk ok sk ok sk kok k kK

*% *ok
*x UIOCB USER I/0 COMMUNICATIONS BLOCK **
*k *ok
** ## - LU6.2 ONLY **
** $$ - FOR FUTWRE USE **
ok K KKK KoK oK oK oK ok ok KKK Kok oK oK ok ok 3 K Kok KoK oK oK ok oK ok ok sk KKK sk oK ko ok ok ok sk Ktk KoK ok ok ok ok ok ok koK
UIOLTEA DS A ADDR OF LOGICAL TERMINAL ELEMENT

(CONVERSATION IDENTIFIER)

*Akk SESSION ATTRIBUTES Hokrokoiork

UIOBIND DS A ADDRESS OF BIND PARAMETERS
uIoLLu DS CL8 LOCAL LU NAME (OWN_LU_NAME)
UIORLU DS CL8 REMOTE LU NAME (PARTNER LU_NAME)
UIOMODE DS CL8 MODEENT NAME (MODE_NAME)

UIOSYNC DS X i SYNC_LEVEL

UIOSYNCN EQU X'00' SYNC_LEVEL = NONE

UIOSYNCC EQU X'O1' SYNC_LEVEL = CONFIRM

UIOSYNCS EQU X'02' SYNC_LEVEL = SYNCPOINT

UIOCONV DS X #H CONVERSATION TYPE

UIOCONVB EQU X'00' CONVERSATION TYPE = BASIC
UIOCONVM EQU X'01' CONVERSATION TYPE = MAPPED
UIOMAPN DS CL24 $$ LU6.2 MAP NAME

UIOTASK DS CL8 REMOTE TASK TO BE ALLOCATED (TPN)
UIOUSER DS CL8 #H USER ID TO BE PASSED WITH ALLOCATE
UIOPASS DS CL8 #H PASSWORD TO BE SENT WITH ALLOCATE
UIOPROFL DS CL8 #H PROFILE ID TO BE SENT W/ ALLOCATE
UIOINRU DS H MAX RU SIZE ON INPUT

UIOUTRU DS H MAX RU SIZE ON OUTPUT

UIORSV DS 4H RESERVED

skokk WHAT RECEIVED kxkskoxskokskorskskororok

UIODAT #FLAG X'80' DATA

UIOERR #FLAG X'40' H ERROR (SEND_ERROR RECEIVED)
UIOLST #FLAG X'20' DEALLOCATE (SEND LAST RECEIVED)
UIOCD #FLAG X'10' CHANGE DIRECTION (TIME TO SEND)
UIOCFM #FLAG X'08' CONFIRM (CONFIRMATION REQUESTED)
UIOSIG #FLAG X'04' SIGNAL (REQUEST TO SEND RECEIVED)
UIOSPT #FLAG X'02' $$ SYNCPOINT (TAKE SYNCPOINT)

UIOROL #FLAG X'O1' $$ SYNCPOINT ROLLBACK REQUIRED
UIOWREC DS X WHAT RECEIVED

KKK AR KA KKK KK H KK H KKK A K H KKK KKK F KKK KA KA KA KA KA A KA KK A KKK A KA KA KKK
UIOFMH #FLAG X'80' DATA CONTAINS FvH

Appendix G: Systems Network Architecture Considerations (SNA) 519

General Considerations

UIODTC
UIODATF

#FLAG X'40'

DS X

DATA COMPLETE (OFF = INCOMPLETE)
DATA TYPE FLAG

UIOURA
UI0UCOM
UIOCOMPG
UIOCOMPA
UIOCOMPL
UIOCOMPP
UIOCOMPD
UIOCOMPO
UIOCOMPC
UIOCOMPI
uIoucM2
UIOLGNR
UIOPROF
UIORTEX
UIONEGR
UIOSRPF
UIONUIO
UIOUNKI
UIOBBFL
UIOWQUR
UIOSTSN
UIOSTSR
UIOPLEC
UIOPLRD
uIoucb
UIORCAF
UIOLUSR
UIOCNNA
UTOUNXC
UIOCNCR
UIOCHRC
UIORCVF
UIOFMHG
UIOVMMT
UIOSNDF
UIOWBMS
UIOFMHS
UIOQECR
UIOPUNK
UIOLTNA
UIOPMXW
UIOOPNS
UIOWSZX
UIOSLUF
UIORBKF
UIORQRA

DS 0x

DS XL1

CA IDM5/DC ERROR CODE

EQU @ GOOD COMPLETION - I/O SUCCESSFUL

EQU 8 TERMINAL OPERATOR HIT ATTN OR BREAK DURING OUTPUT
EQU 12 LOGICAL ERRORS - INVALID COMMAND SEQUENCE

EQU 16 PERMANENT I/0 ERROR COMMAND SEQUENCE

EQU 20 SESSION WAS DISCONNECTED OR INTERVENTION REQ.

EQU 24 SESSION IS OUT-OF-SERVICE

EQU 28 SESSION IS CLOSED (OPEN DIDN'T WORK)

EQU 32 INVALID TRB PARAMETER LIST

DS XL1

EQU X'01'
EQU X'02*
EQU X'03"
EQU X'04'
EQU X'05"
EQU X'06"
EQU X'07'
EQU X'08'
EQU X'09'
EQU X'0A'
EQU X'0B'
EQU X'0C'
EQU X'0D'
EQU X'OE'
EQU X'OF'
EQU X'10*
EQU X'11'
EQU X'12*
EQU X'13"
EQU X'14'
EQU X'15"
EQU X'16"
EQU X'17*
EQU X'18"
EQU X'19*
EQU X'1A"
EQU X'1B'
EQU X'1C'
EQU X'1D*
EQU X'1E'
EQU X'1F'
EQU X'20'
EQU X'21'
EQU X'22'
EQU X'23'

ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR

SECONDARY DC ERR-CODE
LOGON ROUTINE
PRIOR OPEN FAILURE
RETRIES EXHAUSTED (MAX ERRS EXCEEDED)
NEGATIVE RESP TO SEND DATA
SEND RESPONSE FAILED
NO UIOCB ADDRESS AVAILABLE
UNKNOWN INPUT RECEIVED
BRACKET BID FAILURE
WAITING ON QUIESCE RELEASE
MSG RESYNC FAILURE (ON SEND CHAIN)
MSG RESYNC FAILURE REPETITIVELY
PIPELINE EXCEEDED MAX EXCP RESPONSES
PIPELINE READ RQST IS NOT SUPPORTED
UNIDENTIFIED NORMAL FLOW CMD RECEIVED
RESET TO CONT-ANY FAILED
UNKNOWN LUSTAT RECEIVED
CHAINED-INPUT NOT ALLOWED ON THIS PTE TYPE
UNEXPECTED COMMAND RECEIVED
CANCEL COMMAND RECEIVED
CHASE COMMAND RECEIVED
RECEIVE FAILED
FMH DEFAULT IN SYSGEN CAN'T BE USED
GENCB/MODCB FAILURE
SEND CMD FAILURE
WRITE BUFFER MISSING
FMH OR FMH-OPTION SPECIFICATION ERROR
QEC RECV'D, USER CONTROLS OUTB CHAINING
PTE TYPE UNKNOWN
LAST OPTION DISALLOWED
PIPELINE MAX NBR WRITES (1) EXCEEDED
OPT/RQST NOT SUPPTD THIS PTE OR LU TYPE
WRT SIZ GTR PRUSZ, & CHAIN NOT ALLOWED
SEND LUS (IN LIEU NEG RESP) FAILED
RESET BRACKET (SEND EB) FAILWRE
RQR ATTEMPTED

520 DML Reference Guide for Assembler

General Considerations

Error Handling

UIORBNS
UIOUCNR
UIONEGC
UIONRNR
UIOLURS
UIORCCE
UIOSIGR
UIOIGDS
UIOSCRM
UIOZLMR
UIONMRT
UIOALFR
UIOALFN
UIOALFS
UIOUNBD
UIOSNDE
UIOABND
UIOXLIM
UIOEBR

UIOURTC
UIOUFDB
UIOUSEI
UIOUSMI
UIOUUSI
UIORSV1
UIOUSIG
UTOURAL
UIORSV2

EQU X'24' ERR
EQU X'25' ERR
EQU X'26' ERR
EQU X'27' ERR
EQU X'28' ERR
EQU X'29' ERR
EQU X'2A’ ERR
EQU X'2B' ERR
EQU X'2C* ERR
EQU X'2D* ERR
EQU X'2E" ERR
EQU X'2F' ERR
EQU X'30* ERR
EQU X'31' ERR
EQU X'32" ERR
EQU X'33" ERR
EQU X'34' ERR
EQU X'35" ERR
EQU X'36" END
DS XLI

DS XLI

DS XLI

DS XLI

DS XL2

DS XL4

DS XL4
EQU *-UIOURA

DS XL27

UIODWORK DS XL1

UIOCBL

EQU *-UIOCB

- READ BUFFER NOT SUPPORTED
- OUTB USER (HANGING - NEG RESPONSE
- NEG RESP TO SEND COMMAND
- NEG RESP, SEND CHAIN, NO RECOVERY POSS
- LU RQST'D SHUTDOWN
- REQUEST CANCELLED, CONVERSTAION ENDED
- SIGNAL RECEIVED NOT RECOGNIZED
- INVALID LU6.2 GDS ID
- SEND CANCELLED, WE ARE IN RECV-MODE
- ZERO-LNG MSG RECEIVED
- INVALID/MISSING REQUEST TYPE
- ALLOCATE FAILED, SESSION BUSY, RETRY K
- ALLOCATE FAILED, NO RETRY
- ALLOCATE FAILED, SYNCLEVEL NOT SUPPORTED
- UNBIND RECEIVED
- LU6.2 SEND ERROR RECEIVED
- LU6.2 SEND ABEND RECEIVED
- LIMIT ON INPUT EXCEEDED, READ FAILED
BRACGKET RECEIVED - DEALLOCATE NORMAL
VTAM RTNCD
VTAM FDBK2
VTAM SENSE INFO
VTAM SENSE MODIFIER
VTAM USER SENSE INFO
RESERVED
SIGNAL DATA - EXPD-FLOW-CMD

LENGTH OF ERROR INFO FIELDS

RESERVED
WORK BYTE RESERVED FOR CA IDMS/DC

LENGTH OF UIOCB

Information about the outcome of your request is returned to your program in several
different ways:

m The outcome of anyrequest is indicated inregister 15. In most cases, register 15 is
all thatneeds to be checked.

m For debugging purposes, the followingfields inthe UIOCB contain additional
information:

The UIOUCM2 field of the UIOCB contains CA IDMS/DC secondary error codes.

The UIOURTC field of the UIOCB contains VTAM return code and feedback

information.

The UIOUSEI, UIOUSMI, and UIOUUSI fields of the UIOCB contain SNA sense

codes.

Appendix G: Systems Network Architecture Considerations (SNA) 521

SNAFunctions in a CA IDMS/DC Environment

The followingtablelists thesense codes CA IDMS/DC sends to the remote LU to inform
the remote system of errors encountered in conversation processing.Sensecodes are
specified with a 4-byte hexadecimal value. CA IDMS/DC sends the following SNA sense
codes to inform the remote system of errors encountered in conversation processing.

Sense code CA IDMS/DC definition SNA meaning
10086021 Tasknot defined to CA IDMS/DC Allocationerror,
TPN not
recognized
084C0000 Taskout of service Allocation error,
TPN not available
10086041 Sync-level not supported Sync-level not
supported
080F6051 Security violation Security not valid
08640000 Taskabended Deallocateabend
08890000 H#TREQ WRITE,OPTNS=ERROR sent Send error
request
08890101 Invalid LU6.2 GDS-ID Invalid GDS-ID
08460000 ERP message forthcoming ERP message
forthcoming
08240000 Rollbackrequested Syncpointrollback
08130000 Bracket bid reject (no RTR) Allocatefailure
08010000 Resource unavailable (busy) Allocatefailure
08060000 Resource unknown (LU not defined) Allocatefailure
08210000 Invalid session parameters Allocatefailure

SNA Functions in a CA IDMS/DC Environment

The remainder of this appendix will discuss how to perform SNA functionsina CA
IDMS/DC environment. Each SNA function, for example, ALLOCATE, will beaccompanied
by a discussion of how to implement the specific protocols usingthe #TREQ statement

andthe UIOCB.

The followingtablelists the SNA functions supported by the CA IDMS/DC SNA/VTAM
driver and their corresponding #TREQ statements.

522 DML Reference Guide for Assembler

SNAFunctions in a CAIDMS/DC Environment

Note: For more information aboutthe #TREQ statement, see #TREQ (see page 343).

SNA function CA IDMS/DC #TREQ statement
ALLOCATE H#TREQ ALLOC
LU_NAME UIOCBA
MODE_NAME OPTNS=
TPN IMM/CONN/ANY
SECURITY WAIT/NOWAIT
(PROGRAM LTERMID
(USER 1D,
PASSWORD))

TYPE (CONVERSATION)
RETURN_CONTROL

CONFIRM H#TREQ WRITE
RESOURCE OPTNS=CONFIRM
RETURN_CODE LTEADDR

CONFIRMED RESOURCE H#TREQ WRITE
RESOURCE OPTNS=CONFIRM

LTEADDR
H#TREQ

(any request except
H#TREQ WRITE, OPTNS=ERROR)

DEALLOCATE RESOURCE H#TREQ WRITE
TYPE (SYNC_LEVEL) OPTNS=LAST
TYPE LTEADDR
LOG_DATA H#TREQ WRITE
TYPE (LOCAL) OPTNS=ABEND
RESOURCE LTEADDR

SENSE
LOGDATA
OUTLEN
LTEADDR
#TREQ DISC
LTEADDR

Appendix G: Systems Network Architecture Considerations (SNA) 523

SNA Functions in a CAIDMS/DC Environment

SNA function CA IDMS/DC #TREQ statement
GET_ATTRIBUTES H#TREQ UIOCB
RESOURCE UIOCBA
GET_TYPE LTEADDR
RESOURCE
POST_ON RECEIPT All #TREQ requests
RESOURCE HWAIT
WAIT RESOURCE_LIST
RESOURCE
PREPARE_TO_RECEIVE H#TREQ WRITE
RESOURCE OPTNS=INVITE
RECEIVE_AND_WAIT H#TREQ GET
DATA INAREA
LENGTH MAXIN
FILL INLEN
WHAT_RECEIVED OPTNS=
RESOURCE LL
RETURN_CODE NOCHASM
LTEADDR
OPTNS=
INFMHY
INFMHN
REQUEST_TO_SEND #TREQ WRITE
RESOURCE OPTNS=SIGNAL
LTEADDR

524 DML Reference Guide for Assembler

Allocating a Session

SNA function CA IDMS/DC #TREQ statement
SEND_DATA H#TREQ WRITE
DATA OUTAREA
LENGTH OUTLEN
RESOURCE LTEADDR
RETURN_CODE OPTNS=
OUTFMHY
OUTFMHN

OPTNS=CHNCONT

SEND_ERROR
TYPE (PROGRAM) (SVC)

H#TREQ WRITE

OPTNS=ERROR

LOG_DATA SENSE

RESOURCE LOGDATA

RESOURCE_CODE OUTLEN
LTEADDR

Allocating a Session

ALLOCATE LU _NAME
MODE_NAME
SYNC_LEVEL
TPN
SECUIRITY (PROGRAM (USER ID, PASSWORD))
TYPE (CONVERSATION)
RETURN_CONTROL (WHEN SESSION ALLOCATED)
RETURN_CONTROL (IMMEDIATE)
RESOURCE
RETURN_CODE

The #TREQ ALLOC statement allows you to allocatea conversation with another logical
unit. In most cases, CAIDMS/DC selects a session for you from sessionsdefined at
system generation. The system bases its selection on session attributes you have
establishedinthe UIOCB. You shouldinitializethe following UIOCBfields before you
allocatea session:

m The name of the LU (UIORLU) with which your programwill be communicating.

m Insome special cases your programmay need to specify the name of a MODEENT
table (UIOMODE), requesting a specific session for the conversation. Most
programs do not have to specify UUOMODE.

Appendix G: Systems Network Architecture Considerations (SNA) 525

Allocating a Session

Note: For more information about session modes, see the System Generation
Guide.

m The maximum synclevel (UIOSYNC) your taskwill need (LU6.2 only).

Instead of codingthese parameters and letting CA IDMS/DC select a session for you, you
canuse the LTERMID parameter of the #TREQ ALLOC statement to allocatea specific
session,identified by the logical terminal name of the other LU. For example:

#TREQ ALLOC, LTERMID=LTERMIDA

When LTERMID is specified, the UIORLU and UIOMODE fields inthe UIOCB are ignored.

Establishing Conversation Attributes

For LU6.2 conversations only, you also usethe UIOCB to establish conversation
attributes. Conversation attributes include:

m Security information to be passedto the remote system, for example, user id
(UIOUSER), and user password (UIOPASS). These fields arevalid onlyifsecurityis
enforced on the remote system.

m Whether the conversationis basic(UIOCONVB) or mapped (UIOCONVM). In most
situations, your conversation will bein mapped mode. Unmapped (basic) modeis
used with remote LU6.2 logical unitsthatdo not have an application programming
interface (for example, anIBM display writer), or for system level service manager
programs.

m The (optional) name of the remote task (UIOTASK).

Note: For more information about the UIOTASK field, see the Startinga Task on a
Remote Logical Unit(see page 529)laterinthis appendix.

526 DML Reference Guide for Assembler

Allocating a Session

Issuing the #TREQ ALLOC Statement

After you have set the sessionand conversation attributes in the UIOCB, you must issue
a #TREQ ALLOC statement to allocatethe session.

Coding Considerations

You should consider the following parameters when codingyour #TREQ ALLOC
statement:

The OPTNS=ANY/CONN/IMM parameter of the #TREQ ALLOC statement establishes
criteria for choosinga session. The session you need can be inone of three states:

Immediately available—The session has already been established with the
requested LU and is not currentlyinuse.

Note: (LU6.2 only); the session mustbe a contention winner to be considered
immediately available.

For more information aboutcontention winners, see the System Generation
Guide.

Disconnected—The session has notyet been established.

Busy—The session has been established, butis currently allocated to another
logical unit. The session will become immediately available when that logical
unit ends its conversation.

The options on the #TREQ ALLOC statement are as follows:

ANY (default) specifies that CA IDMS/DC tries to allocatea sessioninthe
followingorder:

A sessionthatis immediately available and currently unused.
A session thatis disconnected.

A sessionthatis busy; CA IDMS/DC will waitfor a busysessionandreturn
control to your program once the sessionis allocated.

CONN requests CA IDMS/DC not to waitfor a busysession.CA IDMS/DC will
firstattempt to allocateanimmediately availablesession, then a disconnected
session.

IMM specifies thatonlyimmediately availablesessionsareacceptablefor the
allocationrequest.

You canspecify whether your #TREQ ALLOC requestis made synchronous (default)
by specifying OPTNS=WAIT or asynchronous by specifying OPTNS=NOWAIT.

Note: If you specify OPTNS=ANY, do not request asynchronous processing with
OPTNS=NOWAIT. OPTNS=ANY implies thatthe request may wait for a busysession.

The UIOCB parameter of the #TREQ ALLOC statement establishes a UIOCB for the
conversation.

Appendix G: Systems Network Architecture Considerations (SNA) 527

Allocating a Session

Example of LU-LU Session Allocation

The following example illustrates howyou would allocatean LU-LU session, establishing
the UIOCB, and setting session and conversation attributes:

m The first
m The next
m The next

m The #TRE

statement obtains storage for the UIOCB.
statement establishes theremote logical unit.
four statements establish LU6.2 conversation attributes.

Q ALLOC statement allocates the session, initiates the conversation,and

names the UIOCB.

UIOSTG #GE

ATTR MvC

MvC

MvC
MVI

MVI

TSTG TYPE=(USER, LONG) , PLIST=*, LEN=UIOLEN, INIT=X'00", *

STGID=UIOCBD,ADDR=(R1)

SESSION ATTRIBUTES
UIORLU,=C'VTMFO178" REMOTE LU

CONVERSATION ATTRIBUTES
UIOUSER,=C'BRANCHO1' USER ID: DENVER BRANCH
UIOPASS,=C'DENPR ' USER PASSWORD: DENVER
UIOCONV, UIOCONVM MAPPED MODE
UIOSYNC, UIOSYNCC MAXIMUM SYNC-LEVEL

#TREQ ALLOC,UIOCBA=UIO(B, COND=ALL

After Issuing

#TREQ ALLOC

After you have issued your #TREQ ALLOC request, you need to perform the following:

m Check the valueinregister 15:

— If register 15 contains a nonzero value, the allocation requestfailed. The
UIOUCM?2 fieldinthe UIOCB indicates whether the problem is permanent or
temporary:

If CA IDMS/DC returns UIOALFR to the UIOUCM?2 field, the allocaterequest
was denied due to a temporary problem; for example, CAIDMS/DC was
unableto waitfor a busy session.Inthis case,youshouldissuethe #TREQ
ALLOC request again.

If CA IDMS/DC returns UIOALFN to the UIOUCM?2 field, a permanent error
was encountered.

If CA IDMS/DC returns UIOALFS to the UIOUCM?2 field, the specified sync
level for the conversationis notsupported. This is a permanent error.

528 DML Reference Guide for Assembler

Allocating a Session

- If register 15 contains 0, the session has been successfully established. Register
1 contains the logical terminal address (LTEADDR) of the remote LU. The logical
terminal address (also stored in UIOLTEA) must be specified on all subsequent
HTREQ requests inthat session becausea singletask can haveconversations
with many logical units.

m |fthe #TREQ request was asynchronous (OPTNS=NOWAIT), you must issuea #TREQ
CHECK statement before you make anyfurther 1/0 requests. Your program must
specify the LTE address of the remote LU (UIOLTEA) to identify the conversation.

Startinga Task on a Remote Logical Unit
Non-LU6.2 Sessions

For non-LU6.2 sessions, ifthe UIOTASK field inthe UIOCB contains a taskname (is
nonzero and nonblank) when a #TREQ ALLOC is issued, CA IDMS/DC will automatically
send the task code to the remote system immediately after the sessionisestablished.

LU6.2 Sessions

For LU6.2 sessions, if the UIOTASK fieldinthe UIOCB contains a task name (is nonzero
and nonblank) when a #TREQ ALLOC isissued, CA IDMS/DC will automatically send the
LU6.2 allocaterequestto the remote system, requesting the remote system to startthe
named task.

Requests from Remote Units

When CA IDMS/DC receives anallocaterequestfrom a remote LU6.2, itdoes the
following:

m Ifthe allocaterequest contains a nonzero and nonblankvalueinthe userid
(UIOUSER) or password (UIOPASS) fields, CA IDMS/DC will run the signon task for
that session.

m The taskidentifiedinthe allocaterequestis then attached.

m The conversation type (UIOCONV) and sync-level (UIOSYNC) arealso passed by the
allocaterequestand moved into the UIOCB.

Any errors encountered while processinga remote allocation requestfor example,
task-not-defined or security violations,arereported to the remote system through an
SNA sense code.

Note: For more information about sensecodes, see Error Handling (see page 521) in this
appendix.

Appendix G: Systems Network Architecture Considerations (SNA) 529

Starting a Task from a Remote System

Starting a Task from a Remote System

GET_ATTRIBUTES

GET TYPE

When your conversationis started from a remote LU, you must issuea #TREQ UIOCB
statement before issuingany other #TREQ statements. The #TREQ UIOCB statement
establishes a UIOCBfor CA IDMS/DC to maintain session attributes and status
information.

Ifthe conversation was started from a remote system, the LTEADDR parameter canbe
|eft off, sincethe LTE address defaults to the LTE that started the task (that of the
remote system).

CA IDMS/DC fills all session attributefields upon completion of a #TREQ UIOCB or #TREQ
ALLOC request.

Synchronous and Asynchronous Processing
POST ON RECEIPT
WAIT RESOURCE LIST

The statements used to establish SNAsessions and to exchange data canbeissuedas
either synchronous or asynchronous requests.

Note: For more information about synchronous and asynchronous processing, seethe
HTREQ (see page 343).

When establishinga conversationyou canrequest:

m Synchronous processing by usingthe OPTNS=WAIT parameter of the #TREQ ALLOC
statement.

m Asynchronous processing by using sTREQ ALLOC,OPTNS=NOWAIT. You must issuea
H#TREQ CHECK, specifyingthe LTE address of the remote LU, prior to any other 1/0
requests for that conversation.

530 DML Reference Guide for Assembler

Sending Data

Sending Data

Note: For more information about the #TREQ ALLOC statement, the Allocatinga Session
(see page 525)inthis appendix.

When you areissuing #TREQ input and output statements, you canrequest:
m Synchronous processing by using #sTREQ GET, PUT, and PUTGET.

m Asynchronous processing by using #TREQ WRITE, READ, and WRITREAD. The #WAIT
statement is used to waiton an ECB list. All asynchronous requests mustbe
followed by a #TREQ CHECK statement before any other 1/O requests can be made
for that session.

SEND DATA DATA
LENGTH
RESOURCE
RETURN CODE

You canuseany #TREQ WRITE, PUT, PUTGET, or WRITREAD request to send data to
another LU ina conversation.

If the length of the data you aresending (OUTLEN) is larger than the SNA maximum
request unitsize (UIOTRU), CA IDMS/DC will chainthe output automatically.

LU6.2 Considerations for Sending Data

For LU6.2-mapped conversations, CAIDMS/DC appends a generalized data stream ID
(GDS ID) to the data.

For LU6.2 unmapped conversations, you must supply the correct GDS ID and attach itto
the data.

Note: For more information about GDS IDs, see the IBM SNA documentation.

Appendix G: Systems Network Architecture Considerations (SNA) 531

Requesting a Confirmation

Non-LU6.2 Considerations for Sending Data

For non-LU6.2 conversations, specifying OUTFMHY or OUTFMHN indicates whether or
not a function management header (FMH) has been added to the outbound message:

m OUTFMHY specifies thatyou have included an FMH at the beginning of the write
buffer that should be used instead of any sysgen defaults.

m OUTFMHN specifies thatno default FMH should be added to the outbound
message and that you have not provided an FMH.

The CHNCONT parameter (non-LU6.2 conversations only) specifies thatyour taskis
sendinga chain of outbound messages and that the current message

is not the lastinthe chain. Not specifying CHNCONT after it has been specified once
indicates the final chain element.

Requesting a Confirmation

CONFIRM RESOWRCE
RETURN_CODE

If you want to request a confirmation, for any application-defined reason, youcan
includethe CONFIRM option of the #TREQ WRITE, PUT, PUTGET, or WRITREAD
statements. Your program must specify the LTE address of the remote logicalunitto
identify the conversation.

Specifying OPTNS=CONFIRM sends a confirmation request to the remote LU. The
request is posted as complete as soonasitis received; a separateread statement is not
necessary to get the confirmation. CA IDMS/DC sets the send-error received flag
(UIOERR) on ifthe reply is negative.

The CONFIRM option can be specified with or without data (OUTLEN=0). Syntax and
syntaxrules for OPTNS=CONFIRM aredescribedin Data Manipulation Language
Statements (see page 73).

You canrequest a change of direction with the confirmation request by specifying
OPTNS=(INVITE,CONFIRM).

532 DML Reference Guide for Assembler

Responding to a Confirmation Request

You canalsorequestconfirmation before a conversation is terminated by specifying
OPTNS=(LAST,CONFIRM).

Note: For more information about terminatinga conversation, see Terminatinga
Conversation (see page 538)in this appendix.

For non-LU6.2 sessions, the following considerations apply:

m Ifthe bind parameters issuedatsystem generation indicatethat the definite
response protocol is supported, CA IDMS/DC will always requesta definite response
typel (RDR1) on the lastor only elements.

m |fyour program specifies OPTNS=CONFIRM, CA IDMS/DC will request a definite
responsetype2 instead of typel.

Responding to a Confirmation Request
CONFIRMED RESOURCE
SEND_ERROR

After your program has received a confirmationrequest (UIOCFM is seton), your
program can:

m Send a positiveresponse by specifying OPTNS=CONFIRMED on a write request

m AllowCA IDMS/DC to send a positiveresponse automatically the next time you
make a request (with the exception of write requests specifying OPTNS=ERROR)

m Send a negative responseby specifying OPTNS=ERROR on a write request

Sending Error Information

SEND_ERROR TYPE (PROGRAM) (SVC)
LOG_DATA
RESOURCE
RETURN_CODE

Your program cansend errorinformationto an LU by specifying OPTNS=ERROR on a
WRITE or PUT request. You cannotissuea #TREQ PUTGET or WRITREAD request
because the programremains inthe send state after the errorrequest is issued. Your
program must specify the LTE address of the remote LU (UIOLTEA) to identify the
conversation.

The error informationis sentinthe form of an 8 character hexadecimal SNA sense code,
specified by the SENSE parameter on a write request. The default sensecode is
X'08890000'.

Appendix G: Systems Network Architecture Considerations (SNA) 533

Changing Direction: Send to Receive

Note: For more information about sensecodes, see Error Handling (see page 521) in this
appendix.

Upon receipt of anerror, CA IDMS/DC moves the sense code to the UIOCB. CA IDMS/DC
indicates thatan error has been received by setting an error flag (UIOERR) in the
UIOWREC (what-received) field of the UIOCB and provides more specificinformation
about the error inthe secondary codes (UIOUCM2).

Note: Register 15is notsetinresponse to a SEND_ERROR verb. Therefore, UIOWREC
should be examined if the possibility of UIOERR exist.

LU6.2 Sessions
For anLU6.2 session,ifyousend the error request whileyou are inthe receive state, all

inputis purged until a change-directionindicatoris received, and then CA IDMS/DC
sends the error information.

Note: For more information about changingdirection, see Changing Direction:Send to
Receive (see page 534)inthis appendix.

After sendingerrorinformation,your program will beinthe send state. You canthen
send additional data to the remote LU.

You cansendlog data alongwith the error information by using the LOGDATA
parameter. Ifthe remote system supports logdata,the data will belogged onto the
remote system when itreceives the send-error request. LOGDATA specifies the address
of the data buffer. You must also specify the OUTLEN parameter to indicatethe length
of the data.

Non-LU6.2 Sessions

For a non-LU6.2 session, CAIDMS/DC sends the sense code in a negative responseif
your taskisinthe receive state andinan LUSTAT command if your taskis inthe send
state. If your programissues anerror request whileyour taskis inthe receive state, all
inputis purged until a change-directionindicatoris received. Your program must specify
the LTE address of the remote LU (UIOLTEA) to identify the conversation.

Chanding Direction: Send to Receive
PREPARE_TO RECEIVE

Your program can change from the send state to the receive state in either of the
followingways:

m Implicitly, byissuinganytype of read request (#TREQ READ, GET, WRITREAD,
PUTGET). CA IDMS/DC automatically sends a change-direction indicator to the
remote system before itissues theread request.

534 DML Reference Guide for Assembler

Receiving Data

m Explicitly, by usingthe OPTNS=INVITE parameter on any write request.

The change-directionindicatorissentwith data for all HTREQ PUTGET and WRITREAD
requests, and without data for all GET and READ requests.

Your program must specify the LTE address of the remote LU (UIOLTEA) to identify the
conversation.

Receiving Data

RECEIVE AND WAIT DATA
LENGTH
FILL
WHAT RECEIVED
RESOWRCE
RETURN_CODE

To read data sent from another LU, your programmust issuesome form of read request
(#TREQ READ, GET, PUTGET, or WRITREAD). CA IDMS/DC buffers all inputreceived from
alogical unit. Your program canissue multipleread statements until all ofthe data in
the buffer has been transferred to your program.

Parameters Applying to Incoming Data

The following parameters apply to incomingdata:
m The INAREA parameter specifies the location of the inputdata stream.

m The INLEN parameter specifies the actual length of the inputdata stream.

m The MAXIN parameter specifies the maximum length of data your program can
receive. CA IDMS/DC never truncates data;if the length of the input data stream
exceeds the MAXIN parameter inyour READ statement, CA IDMS/DC will buffer the
dataso thatitwill be availablefor your next read request.

m The LOCATE parameter requests CA IDMS/DC to allocate a buffer the exact size of
the input data stream. Register 1 contains the address of the buffer that will contain
the input data.The INLEN parameter canbe used to indicatethe actual amount of
datareceived. The LOCATE parameter and the INAREA and MAXIN parameters are
mutually exclusive.

Ifall of the input has been transferred from the data buffer to your programon
completion of a read request, the data-complete-flag (UIODC) will beset on. Ingeneral,
you should always continueissuingread requests until the change-direction (UIOCD) or
last (UIOLST) flag has been set.

Appendix G: Systems Network Architecture Considerations (SNA) 535

Receiving Data

LU6.2 Conversations

For LU6.2 conversations, CAIDMS/DC canreceive only one type of inputwith each
request. For example, if CAIDMS/DC receives input that contains data, a change of
directionindicator,anda confirmrequest, you must issuetwo read requests in order to
get all the information you need:

m First read request—Reads the data. The data (UIODAT) and data-complete
(UIODTC) flags inthe UIOCB are set on to indicatethatall of the data has been
received and given to your program (assumingthe buffer was large enough to hold
all of the data). If the input buffer is not largeenough to hold all of the data, CA
IDMS/DC will buffer the data sothat itwill be availableto your next read request.

m Second read request—Processes the change of direction and confirmation requests
by setting on the change-direction (UIOCD) and confirmation-requested (UIOCFM)
flags inthe UIOCB.

LU6.2 datais always passedin LU6.2 logical records, made up of a header and the user
data. The header consists ofa 2-byte length field and a 2-byte generalized data stream
ID (GDS ID).

LU6.2 Mapped Conversations

During LU6.2 mapped conversations, CAIDMS/DC removes the header from the logical
record (OPTNS=LL).

LU6.2 Unmapped Conversations

During LU6.2 unmapped (basic) conversations, a read request can specify the following
options:

m LLspecifies thatCA IDMS/DC will passonelU6.2 logical record, withoutremoving
the header.

m NOCHASM requests CA IDMS/DC to pass singlechain elements (RUs) to your task
one atatime, regardless of logical record, withoutassemblingthe chainintoa
buffer area. The last(or only) chain element is indicated by the UIODTC flag.

m Not specifying either option requests CA IDMS/DC to read an inputdata stream of
the length specified by the MAXIN operand, regardless of whether an entire logical
record is sent. The read is complete when the amount of data specified by MAXIN
has been read, or when the end-of-chain has been indicated.

536 DML Reference Guide for Assembler

Changing Direction: Receive to Send

Non-LU6.2 Conversations

For non-LU6.2 conversations, the following considerations apply:

m All currentlyavailabledata and read informationis passed to your programinone
read, unless the buffer is not large enough to hold all of the data.

m Areadrequest canspecify either OPTNS=NOCHASM or |l eave this parameter
unspecified:

- Specifying OPTNS=NOCHASM indicates thataninbound chainis passed to your
taska singlechain element (RU) at a time, without assemblingthe chainintoa
buffer. The last(or only) chain element is indicated by the UIODTC flag.

— Not specifying this option requests a read of a single buffer of the length
specifiedin MAXIN. All SNA chains areassembled into a single buffer; the read
is completed when either the specified length of data or the RU marked as the
end of the chainis received. The data-complete (UIODTC) flagis set when the
end of the chainis received.

m Your program canindicate how function management headers (FMH) arehandled
on input by specifying INFMHY or INFMHN:

- INFMHY indicates thatfunction management headers are passed to your task
alongwith the input data stream. The UIOFMH flaginthe UIOCB is set on to
indicatethe presence of an FMH inthe data stream.

— INFMHN requests CA IDMS/DC to remove anyincoming FMH from the input
data stream before the data is passed to your task.

Changing Direction: Receive to Send
REQUEST TO_SEND

Normally, your programremains inthe receive state until the remote LU sends a
change-directionindicator.

Your program canrequest a change of direction from the receive state to the send state
by specifying OPTNS=SIGNAL on a write request. The SIGNAL option sends a
change-direction signal code of X'00010000'.

If your program issues a writerequest whileitis inthe receive state, CA IDMS/DC sends
the signal command, requesting change of direction, to the remote LU. CA IDMS/DC
posts your program's write request as successfully completed with a logical error (R15 =
0C) andan error code inthe UIOUCM2 field of the UIOCB.

The UIOUCM2 field indicates thatyour program tried to send data while in the receive
state (UIOSCRM), and that CA IDMS/DC sent the change-direction signal for you. You
must continue to send read requests until the remote LU sends a change-direction
signal (UIOCD).

Appendix G: Systems Network Architecture Considerations (SNA) 537

Terminating a Conversation

Terminating a Conversation

DEALLOCATE RESOURCE TYPE (SYNC LEVEL)
TYPE (ABEND PROGRAM)
LOG DATA (VARIABLE)
TYPE (LOCAL)

A conversation between CA IDMS/DC and another LU can be terminated in the following
ways:

m Your program canrequest a normal termination of the conversation by specifying
OPTNS=LAST on a write request.

m Your program can notify the remote LU thatitis terminating abnormally by
specifying OPTNS=ABEND on a write request.

m The remote LU can terminate the conversation. CA IDMS/DC sets the UIOLST (send
lastreceived) flaginthe UIOCB.

Your program must specify the LTE address of the remote task (UIOLTEA) to identify the
conversation.

The sessionthatis being maintained between CA IDMS/DC and the remote LU is not
closed, but remains availableto be allocated to another conversation. This eliminates
the overhead of reestablishinganother session.

If you want to start another conversation after you have ended the current one, you
must allocatea new conversation tothe session.

Note: For more informationabout allocatinga conversation, see Allocatinga Session
(see page 525)inthis appendix.

Normal Termination

To end a conversation between two logical units normally, specify OPTNS=LAST on a
write request. CA IDMS/DC notifies the remote system, frees the sessionto make it
availablefor other conversations, and, for LU6.2 conversations, performs a signoff for
the remote LU.

The request to terminate a conversation can be made with or without data (OUTLEN=0).

You canrequest confirmation of the termination request by specifying
OPTNS=(LAST,CONFIRM) on a #TREQ WRITE or PUT request. CA IDMS/DC notifies the
remote system and will waitto free the sessionand performthe signoff until a positive
confirmationis received.

If your task ends or abends before the conversation terminates normally, CA1DMS/DC
performs the ABEND operation.

538 DML Reference Guide for Assembler

Terminating a Conversation

Abnormal Termination

You can notify the remote system that your taskis abendingand that the conversation
has ended by usingthe ABEND option of the #TREQ WRITE or PUT statements. CA
IDMS/DC notifies the remote system, terminates the conversation, frees the session,
and, for LU6.2 conversations only, signs off the remote LU.

LU6.2 Conversations

For LU6.2 conversations, CAIDMS/DC can pass log data along with the ABEND
notification. The LOGDATA parameter locates the buffer containingthe data. If the
remote LU6.2 system supports LOGDATA, the data will belogged on to the remote
system when the ABEND notificationis received. If you specify LOGDATA, you mustalso
includethe OULEN parameter to indicatethe length of the data.

Non-LU6.2 Conversations

For non-LU6.2 conversations,the SENSE option overrides the default sense code
(X'08640000';task abended).

Terminating a Session

You canterminate a non-LU6.2 session between CA IDMS/DC and another LU by using
the #TREQ DISC (disconnect) statement. The #TREQ DISC request must be followed by a
H#TREQ CHECK request. Your program must specify the LTE address of the remote LU
(UIOLTEA) to identify the conversation.

Appendix G: Systems Network Architecture Considerations (SNA) 539

Appendix H: 18-Byte Communications

Blocks

Overview

This section contains the followingtopics:

Overview (see page 541)

As analternativeto usingthe 16-byte IDMS DB communications blocks, you can specify
18-byte blocks. The difference between 16-byte blocks and 18-byte blocks is thatan
18-byte block contains an additional 18-bytefiller field, and the followingfields are 18
bytes instead of 16 bytes:

= RECNAME
® AREANAME
m ERRORSET
m ERRORREC
m ERRAREA

This appendix describes where to specify an 18-byte communications block and contains
figures showingthese blocks.

Note: For more information aboutthe fields in IDMS DB communications blocks, see
Communications Blocks and Error Detection (see page 33).

Where to Specify the 18-Byte Block

For Assembler, you specify an 18-byte communications block by usingthe @SSC120
statement in placeof the @SSCTRL statement.

Note: For more information, see @SSCTRL (see page 421).

Appendix H: 18-Byte Communications Blocks 541

18-Byte IDMS-DB Block

The followingfigureshows the 18-byte IDMS DB communications block:

*
(o)
~

8 11

12 15

[IDMS COMMUNICATIONS BLOCK

16 33

34 51

52 69

70 87

88 105

106 123

**1 124 127

:

224 227

228 234
235

236 239
240 243

124 ... 223

* word aligned

244 299

Field
PROGRAM-NAME
ERROR-STATUS
DBKEY
RECORD-NAME
AREA-NAME
FILLER
ERROR-SET
ERROR-RECORD
ERROR-AREA
PAGE-INFO

IDBMSCOM
DIRECT-DBKEY

DATABASE -STATUS

FILLER
RECORD-0CCUR
DML -SEQUENCE
FILLER

Length

Data Type (bytes) Initial Value

Alphanumeric 8 Program Name

Alphanumeric 4 '1400'

Binary 4(Fullword) 0000

Alphanumeric 18 Spaces
Alphanumeric 18 Spaces
Alphanumeric 18 Spaces
Alphanumeric 18 Spaces
Alphanumeric 18 Spaces
Alphanumeric 18 Spaces

Binary 4(Fullword) 0000

Alphanumeric 100 Spaces

Binary 4 (Fullword) 0000

Alphanumeric 7 Spaces
1

Binary 4(Fullword) 0000

Binary 4(Fullword) 0000

Alphanumeric 56 Spaces

** PGINFGRP overlays bytes 124 and 125 and PGINFDBK overlays bytes
126 and 127. Both of these fields are binary datatype each
having a length of two bytes. Suggested initial values for
both are 00. Together these two fields represent PGINFO.

542 DML Reference Guide for Assembler

Appendix I: Online Debudder Syntax

This section contains the following topics:

General Registers Symbols (see page 543)
DC/UCF System Symbols (see page 544)
Address Symbols and Markers (see page 544)
User Symbols (see page 545)

Program Symbols (see page 545)

Expression Operators (see page 545)
Delimiters (see page 546)

Debugger Commands (see page 546)

General Registers Symbols

General registersincludethe registers used by the program at the time of execution
andthe registers used by the DC/UCF system. The programstatus word (PSW) and

register definitions arealways preceded by a colon (:) and are specified by these
symbols:

m :PSW for the current program status word

m :Rnfor the user programregister at the time of interrupt, where n represents the
number of the register and can have a valueof 0 through 15

:REGS for all user programregisters at the time of interrupt

m :SRn for a DC/UCF system register at the time of interrupt, where n represents the
number of the register and can have a valueof 0 through 15

:SREGS for all DC/UCF system registers atthe time of interrupt

Important! A singledebug expression canreference only one general register.

AppendixI:0nline DebuggerSyntax 543

DC/UCF System Symbols

DC/UCF System Symbols

Certain DC/UCF system symbols alsofunction as debugger entities, and you can refer to
them duringa debugging session.Acolon (:) must precede each symbol.These are the
valid symbols:

:BAT

Specifies the baseaddress tablefor session.
:CSA

Specifies the DC/UCF common storage area.
:DLB

Specifies the debug local block, control block required for debugging session.
:LTE

Specifies the current logical terminal element.
:PTE

Specifies the current physical terminal element.
:TCE

Specifies the current task control element.
:VECT

Specifies the vector table for debugger.

Important! A singledebug expression canreference only one system entity.

Address Symbols and Markers

Symbol Symbol Name Designated Location

@ At sign Absolute address

S Dollarsign Load address

¢ Cent sign Address of current dialogprocess

544 DML Reference Guide for Assembler

UserSymbols

User Symbols

m :DRn for a debugger general register, where n represents the number of the
register and can have a valueof 0 through 15

m :DREGS for all debugger registers
m :H1 and:H2 for halfword 1 and halfword 2
m :F1and:F2 forfullword 1 and fullword 2
m :UCHR for a 48-byte character area
You canalsoreferto specified sections of this area:
- :UCO, the first16 bytes
— :UC16, the next 16 bytes
- :UC32, the last16 bytes

Program Symbols

Syntax: Data Field Names

»»—— data-field-name n >«
IN :[-— record-name
OF
Syntax: Line Numbers
»»—— # [ine-number >
. >
IN current-process-name
OF JL included-module-name C _Jl
OCCurrence occurrence-number
Syntax: Qualifying Program Symbols
»>—— process-name - . - program-symbol >«

Expression Operators

Operator Meaning

+ Addition

- Subtraction

AppendixI:0nline DebuggerSyntax 545

Delimiters

Delimiters

Operator Meaning
* Multiplication
/ Division
Delimiter Meaning
* Asterisk
Blank
) Comma
= Equal sign
! Exclamation point
- Hyphen
% Percent sign
Period
+ Plus sign
/ Slash

Debudger Commands

Syntax: AT

ADD Format

»»— AT debug-expression

v

>
L BEFore —[MAXimum <ﬁ—| L AFTer _[0« ﬁ—l
execution-count execution-count

v

g L EVE 8
ry 1 « ON «
L execution-count IGNore
INQUIRE Format
p—— AT ALL INQuire >
L debug-expression - ON
IGNore —
OFF

546 DML Reference Guide for Assembler

Debugger Commands

Syntax: DEBUG

Syntax: EXIT

Syntax: IOUSER

Syntax: LIST

Syntax: MENU

Syntax: PROMPT

ADD format

»»—— DEBug PROgram < —
DIAlog
MAP ———

SS
TABle

INQUIRE format

— entity-name
L VERsion version-number |

»—— DEBug entity-name C] C INQuire_—I——N
T VERsion version-number l OFF

ALL

»p»— EXIt

M

»»— I0User

MEMORY Format

M

List begin-debug-expression
JL Memory J

Display

v

TO end-debug-expression 4_| C
byte-count-number X
LENgth XC

ATTRIBUTES Format

»—E List — T SESsion ATTributes
Display

)

)

»»— MENu

L screen-name |

X

»»—— PROmpt

M

AppendixI:0nline DebuggerSyntax 547

Debugger Commands

Syntax: QUALIFY

RESET Format

v

»— QUALlify PROCess process-name
L DIAlog dialog-name -

X

L VERsion version-number -

INQUIRE Format

)

»»—— QUALify INQuire

Syntax: QUIT

M

»»— QUIt

Syntax: RESUME

M

»»—— RESume
LL—J_E debug-expression :,—'
AT ABEnd

Syntax: SET

MEMORY Format

>>—|: Set debug-expression >
Vary JL Memory il I: EQUals

data-field-name >«
H halfword —— | |: RESEt
F fullword — X NOReset «

XC

X hex-value
C character-string —
P packed-value

ATTRIBUTES Format

X

HEX

»»— Set E CHAr
BOTh

Syntax: SNAP

v

»— SNAp T TASK T

begin-debug-expression
L—[TO end-debug-expression 4_‘
byte-count-number
LENgth

L TITle title —J

M

548 DML Reference Guide for Assembler

Debugger Commands

Syntax: WHERE

»»—— WHEre

M

AppendixI:0nline DebuggerSyntax 549

Index

i

H#ABEND e 82

H#ABEND dump « 82, 84

H#ACCEPT 96

HATTACH 98

#BIND TASK » 110

H#CHAP 111

H#COMMIT 113

HDELETE » 118

#DELQUE » 121

HDELSCR e 125

#DEQ » 129

HENDPAG » 139

H#ENDPAG pageablemaps ¢ 135, 141

HENQ 135

H#FINISH ¢ 171

HFREESTG ¢ 172

H#GETIME » 175

HGETQUE e 177

H#GETSCR 184

HGETSTG e 190

HKEEP 202

HLINEEND e 208

HLINEIN 208

HLINEOUT ¢ 214

HLINK » 220,224

H#LOAD e« 224

#MAPINQ e 230, 233, 235,237, 238,243, 255
moving map-related data ¢ 230, 233
testing cursor position 235,237

testing for global map inputconditions ¢ 233,

235
testing for inputconditions ¢ 238
#MAPINQ pageablemaps ¢ 229
H#MAPMOD e 243
H#MREQ * 261, 282
#MREQ IN syntax e 261
#MREQ OUT syntax e 261
#MREQ OUTIN syntax ¢ 261
#MREQ syntaxrules ¢ 261
HMREQ syntaxrules e 261
#MREQ mapping mode ¢ 260
#POST o 285
#PRINT » 286

#PRINT printclasses 286,297

#PUTJRNL e 297

#PUTQUE e 300

#PUTSCR e 303

HRETURN e 314

H#ROLLBAK e 317

H#SENDMSG e 319

HSETIME 323

#SNAP o 328

#SNAP dump ¢ 328, 331

#STAE 331

#STAE abnormal termination e 332

#STRTPAG e 340

H#TREQ e 343,345,367,517
execute version ¢ 343
in SNA programminge 530
listversion 367
regularversion ¢ 343
syntaxrules ¢ 73,532

H#TREQ ALLOC e 345

H#TREQ CHECK e 345

H#TREQ DISC » 345

H#TREQ GET » 345

H#TREQ PUT e 345

H#TREQ PUTGET e 345

H#TREQ READ e 345

HTRNSTAT e 369

HTRNSTAT TSB 374,378

HWAIT ¢ 374

HWTL 378

#XCTL » 386

#XCTL transferring control 386, 388

@

@ACCEPT BIND » 84

@ACCEPT DBKEY FROM CURRENCY e 85
@ACCEPT DBKEY RELATIVE TO CURRENCY e 87
@ACCEPT PGINFO 92

@ACCEPT PROC » 92

@ACCEPT STATS 93

@BIND PROC ¢ 103

@BIND REC » 104

@BIND SUBSCH ¢ 106

@COMMIT » 113

@CONNECT » 112

Index 551

@COPYIDMS » 411
DSECT 411
MAP-BINDS ¢ 411
MAP-CONTROLS e« 411
MAP-RECORDS ¢ 411
MAPS ¢ 411
MODULE « 411
SUBSCHEMA-BINDS 411
SUBSCHEMA-DML-LR-DESCRIPTION e 411
SUBSCHEMA-LR-DESCRIPTION e 411
@DISCON » 132
@ERASE « 141
@ERASE (LRF) » 146
@FIND/@OBTAIN CALC/DUPLICATE 149
@FIND/@OBTAIN CURRENT e 151
@FIND/@OBTAIN DBKEY e 155
@FIND/@OBTAIN OWNER ¢ 158
@FIND/@OBTAIN Statements » 148
@FIND/@OBTAIN USING SORTKEY » 161
@FIND/@OBTAIN WITHIN SET/AREA e« 164
@FINISH » 170
@GET » 174
@IFe 197
@KEEP « 200
@MODIFY e 255
@MODIFY (LRF) » 259, 260
@OBTAIN (LRF) » 282
@READY e 308
@RETURN ¢ 311
@ROLLBAK e 315
@STORE » 332
@STORE (LRF) « 338
@STORE CALC key ¢ 332

A

accessingthedatabasee® 22, 24, 25, 27
LRF DML statements » 22, 24
navigational DMLstatements e 22
asynchronous processing ® 214,260, 343, 530
basic mode ¢ 344
in SNA programminge 530
linemode » 214
mapping mode ¢ 261

B

blastrequests » 214,220, 261, 344
basic mode ¢ 344
linemode ¢ 214

mapping mode ¢ 261

C

communication with CA IDMS/DB and CA IDMS/DC
programs e 52,58
IDMS databasecommunications block ¢34
logical-record requestcontrol (LRC) block e 55,
58
communication with CA IDMS/DB and DC/UCF
programs e 34,58, 59, 68, 399
DC/UCF general registers ¢ 58,399
DC/UCF return codes ¢ 59, 68
compiler options ¢ 29, 30, 31, 33,34
central versionand dictionaryidentification » 29
comment generation ¢ 30
dictionaryusage mode ¢ 29, 30
IDMS databasecommunications block ¢34
listgeneration e 30, 31
logsuppression 31,33
compiler options dictionaryidentification ¢ 29
compiler options DML precompiler options ¢ 29
confirmationrequest ¢ 533
respondingto ¢ 533
conversation (SNA) ¢ 531, 532,533,534, 535,538
normal termination ¢ 538
receivingdataine 535
sendingdata ine 531
sendingerror informationin e 533

D

databaseareas #308, 311
readying e 308
usage mode ¢ 308
databaserecordarea e 317
restoringe 317
date ¢ 175,177
obtaining e 285
dictionary ¢300, 303,378
message area ® 378
queue area * 300
scratcharea ¢ 303
DML codingconsiderations 399
codinguser-supplied operands ¢ 399
DML precompilere 21
how to execute ¢ 427
DML precompiler-directive statements ¢ 73, 406,
409,411,419, 420,421
#MAPBIND e 420,421

552 DML Reference Guide for Assembler

#MRB ¢ 419,420
@COPYIDMS » 411
@INVOKE » 409, 411
@MODE e 406,409
@SSCTRL ¢ 421
@SSLRCTL » 73,421
DMLmacros ¢ 497
DMS precompiler-directive statements ¢ 421
@SSCTRL 421

E

error handlinge521
in SNA programminge 530

I

IDMS databasecommunications block ¢ 34
ERRSTAT fieldand codes ¢ 41, 52
field descriptions ¢36,41
testing for DML Error-Status codes e 52
IDMS DB/DC assembler DML coding considerations e
401, 403
coding parameters ¢ 401
codinguser supplied operands 401
synonym processing 401, 403
IDMSDMLA e 427
how to execute ¢ 427
integrated indexing e 311
@RETURN ¢ 311

J

JCL » 429,436, 447,450
z/0OS » 429,436
z/VSE e« 436, 447

journalfilee297, 300
H#PUTJRNL e 297

K

kept storage » 172,174, 175,190, 197, 200
HFREESTG o 172
HGETSTG e« 190
obtaining e 285

L

linemode ¢ 214
HLINEEND e 208
HLINEIN 208
HLINEOUT 214

list#TREQ » 367, 369
syntaxandsyntaxrules ¢ 367,369
location modes ¢ 332,338
CALC 332,338
DIRECT e 332,338
VIA ¢ 332,338
locationmodes DIRECT ¢ 338
logical record clauses 388
ON clause* 395
logicalrecordclauses.LRF ¢ 388
selection criteria for « 388,395
WHERE ¢ 388
logical records » 146, 148,259, 282, 285,340
deleting » 146
modifying e 259
obtaining e 285
retrieving ¢ 282
logical-record request control (LRC) block ¢ 55, 58
logical-record path status ¢ 55,58
LogicalRecordFacility LRF e 22
logicalunitLU e 515

M

map request block e 139, 260,340, 343,411,419,
420
HENDPAG e+ 139
#MAPBIND e 420,421
#MRB ¢ 419,420
#MREQ * 261, 282
H#STRTPAG e 340
@COPY IDMS,MAPS ¢ 411
messages ¢ 319,323,378, 386
message queue ¢ 319
sendinge 319,378
severity code for ¢ 378
symbolic parametersine 378

0

Onlineprograme 423,424,425,426
makingreentrant ¢ 424
methods of calling 425
standard IBM calling conventions ¢ 426
SVC instructionsinan 423
operating environments ¢ 21
batch ¢ 21
CA IDMS/DB 21
DC/UCF systems ¢ 21

Index 553

P

program pool 224,229
loadinga moduleintoe 224

Q

queue record area » 121,125, 300, 303,317,319
deleting » 146
restoringe 317
storing e 303
queue records » 177,184
retrieving e 282

R

record « 84, 85, 87,90, 92,93, 104,106, 141,146,
200, 202,208

bind address ¢ 84
db-key * 332,338
disconnectingfromaset e 141
establishingaddressability for e 104
placingalockon e 200, 202

record locks €202

records » 148,149, 151,155, 158, 255,259, 332, 338

accessing*148
db-key * 332,338
modifying e 259
run unite 106,110,111,112,113,118, 121,315,
317
databasefor e 106
node for e 106
recovery of ¢ 315
signingonto DBMS ¢ 106
subschema for ¢ 106
runtime ¢ 93, 96, 98
statistics ¢ 93

S

scratchrecordarea ¢ 125,129, 132,139, 184, 190,
303, 308,317,423

deleting » 146

restoringe 317

retrieving ¢ 282

storing * 303
see=testingforidenticaldata #HMAPINQ e 237
Sequential Processing Facility e 311

@RETURN 311
SequentialProcessingFacility SPFe 314,315
sessions (SNA) e 515,525, 539

how to establish ¢525
LU-LU sessions 515,525
terminating ® 539
set e 332,338
connecting a record to ® 332,338
sets «158,161,164,170,171,172
ownershipe 158
storage management ¢ 172,190
H#FREESTG e 172
H#GETSTG e« 190
synchronous processing 208, 214, 260,343, 530
basic mode ¢ 344
inSNA programminge 530
linemode » 214
mapping mode ¢ 261
systemsnetworkarchitecture SNA ¢ 515

T

task e 98,103,104
attachingataske 98

time ¢ 323,328
setting a time interval ¢ 323

u

usage mode ¢ 308
DML e 411
LR ¢ 411
MIXED 411

vV

variablestoragee 172,190
acquiring*190
freeing » 172

w

WHEREclausepath insubschema ¢ 393

554 DML Reference Guide for Assembler

	CA IDMS DML Reference Guide for Assembler
	CA Technologies Product References
	Contact CA Technologies
	Documentation Changes
	Contents
	1: Introduction
	Syntax Diagram Conventions

	2: Introduction to CA IDMS Data Manipulation Language
	Operating Environments
	Accessing the Database
	Programming in the DC/UCF Environment

	Assembling and Executing Programs
	Callable Services and Common Facilities
	Callable Services
	Common Facilities

	3: DML Precompiler Options
	Dictionary Usage Mode
	Comment Generation
	List Generation
	Log Suppression

	4: Communications Blocks and Error Detection
	IDMS Communications Block
	Field Descriptions

	ERRSTAT Field and Codes
	DB Status Codes
	Major DB Status Codes
	Minor DB Status Codes

	DC Status Codes
	Major DC Status Codes
	Minor DC Status Codes

	Testing for DML Error-Status Codes
	Logical-Record Request Control (LRC) Block
	Field Descriptions
	Testing for the Logical-Record Path Status

	DC/UCF General Registers
	DC/UCF Status Codes
	Testing for DC/UCF Return Codes

	5: Data Manipulation Language Statements
	Functions of DML Statements
	#ABEND--terminates the issuing task abnormally
	#ABEND Syntax
	#ABEND Parameters
	#ABEND Example
	#ABEND Status Codes

	@ACCEPT BIND--moves the bind address
	@ACCEPT BIND Syntax
	@ACCEPT BIND Parameters
	@ACCEPT BIND Status Codes
	@ACCEPT BIND Example

	@ACCEPT DBKEY FROM CURRENCY--moves the db-key of the current record
	@ACCEPT DBKEY FROM CURRENCY Syntax
	@ACCEPT DBKEY FROM CURRENCY Parameters
	@ACCEPT DBKEY FROM CURRENCY Status Codes
	@ACCEPT DBKEY FROM CURRENCY Example

	@ACCEPT DBKEY RELATIVE TO CURRENCY--moves the db-key
	@ACCEPT DBKEY RELATIVE TO CURRENCY Syntax
	@ACCEPT DBKEY RELATIVE TO CURRENCY Parameters
	@ACCEPT DBKEY RELATIVE TO CURRENCY Example
	@ACCEPT DBKEY RELATIVE TO CURRENCY Status Codes

	@ACCEPT PGINFO--moves the page information
	@ACCEPT PGINFO Syntax
	@ACCEPT PGINFO Parameters
	@ACCEPT PGINFO Example
	@ACCEPT PGINFO Status Codes

	@ACCEPT PROC--moves the information block
	@ACCEPT PROC Syntax
	@ACCEPT PROC Parameters
	@ACCEPT PROC Example
	@ACCEPT PROC Status Codes

	@ACCEPT STATS--moves system runtime statistics
	@ACCEPT STATS Syntax
	@ACCEPT STATS Parameters
	@ACCEPT STATS Status Codes
	@ACCEPT STATS Example

	#ACCEPT--retrieves system task-related information
	#ACCEPT Syntax
	#ACCEPT Parameters
	#ACCEPT Status Codes
	#ACCEPT Example

	#ATTACH--instructs the system to initiate a new task
	#ATTACH Syntax
	#ATTACH Parameters
	#ATTACH Status Codes
	#ATTACH Example

	@BIND PROC--establishes communication
	@BIND PROC Syntax
	IDMSDB--@BIND PROC Parameters
	@BIND PROC Status Codes
	@BIND PROC Example

	@BIND REC--establishes addressability for a record
	@BIND REC Syntax
	@BIND REC Parameters
	@BIND REC Status Codes
	@BIND REC Example

	@BIND SUBSCH--helps the run unit
	@BIND SUBSCH Syntax
	@BIND SUBSCH Parameters
	@BIND SUBSCH Status Codes
	@BIND SUBSCH Example

	#BIND TASK--initiates a DC/UCF task
	#BIND TASK Syntax
	#BIND TASK Parameters
	#BIND TASK Status Codes
	#BIND TASK Example

	#CHAP--changes the dispatching priority
	#CHAP Syntax
	#CHAP Parameters
	#CHAP Status Codes
	#CHAP Example

	@COMMIT--commits changes made to the database
	@COMMIT Syntax
	@COMMIT Parameters
	@COMMIT Status Codes

	#COMMIT--commits changes made to the database
	#COMMIT Syntax
	#COMMIT Parameters
	#COMMIT Status Codes

	@CONNECT--establishes a record occurrence
	@CONNECT Syntax
	@CONNECT Parameters
	@CONNECT Status Codes
	@CONNECT Example

	#DELETE--notifies the DC/UCF system
	#DELETE Syntax
	#DELETE Parameters
	#DELETE Status Codes
	#DELETE Example

	#DELQUE--deletes all or part of a queue
	#DELQUE Syntax
	#DELQUE Parameters
	#DELQUE Status Codes
	#DELQUE Example

	#DELSCR--deletes scratch records
	#DELSCR Syntax
	#DELSCR Parameters
	#DELSCR Status Codes
	#DELSCR Example

	#DEQ--releases resources acquired by the issuing task
	#DEQ Syntax
	#DEQ Parameters
	#DEQ Status Codes
	#DEQ Example

	@DISCON--cancels the current membership of a specified record
	@DISCON Syntax
	@DISCON Parameters
	@DISCON Status Codes
	@DISCON Example

	#ENQ--acquires resources or tests for availability
	#ENQ Syntax
	#ENQ Parameters
	#ENQ Status Codes
	#ENQ Example

	#ENDPAG--terminates a map paging session
	#ENDPAG Syntax
	#ENDPAG Parameters
	#ENDPAG Status Codes
	#ENDPAG Example

	@ERASE--disconnects or erases records
	@ERASE Syntax
	@ERASE Parameters
	@ERASE Status Codes
	@ERASE Example

	@ERASE (LRF)--deletes logical record occurrences
	@ERASE (LRF) Syntax
	@ERASE (LRF) Parameters
	@ERASE (LRF) Status Codes
	@ERASE (LRF) Example

	@FIND/@OBTAIN Statements--accesses database records
	@FIND/@OBTAIN CALC/DUPLICATE
	@FIND/@OBTAIN CURRENT
	@FIND/@OBTAIN DBKEY
	@FIND/@OBTAIN OWNER
	@FIND/@OBTAIN USING SORT KEY
	@FIND/@OBTAIN WITHIN SET/AREA

	@FINISH--commits changes to database and terminates run unit
	@FINISH Syntax
	@FINISH Status Codes

	#FINISH--commits changes to the database
	#FINISH Syntax
	#FINISH Parameters
	#FINISH Status Codes

	#FREESTG--requests that the system release variable storage
	IDMSDB--#FREESTG
	#FREESTG Parameters
	#FREESTG Status Codes
	#FREESTG Example

	@GET--transfers the contents of an accessed record occurrence
	@GET Syntax
	@GET Parameters
	@GET Status Codes
	@GET Example

	#GETIME--gets time and date from the operating system
	#GETIME Syntax
	#GETIME Parameters
	#GETIME Status Codes
	#GETIME Example

	#GETQUE--retrieves a queue record
	#GETQUE Syntax
	#GETQUE Parameters
	#GETQUE Status Codes
	#GETQUE Example

	#GETSCR--retrieves a scratch record
	#GETSCR Syntax
	#GETSCR Parameters
	#GETSCR Status Codes
	#GETSCR Example

	#GETSTG--acquires variable storage from a storage pool
	#GETSTG Syntax
	#GETSTG Parameters
	#GETSTG Status Codes
	#GETSTG Example

	@IF--tests for the presence of member record occurrences
	@IF Syntax
	@IF Parameters
	@IF Status Codes
	@IF Example

	@KEEP--places an explicit shared or exclusive lock on a record
	@KEEP Syntax
	@KEEP Parameters
	@KEEP Status Codes
	@KEEP Example

	#KEEP--establishes long-term record locks
	#KEEP Syntax
	#KEEP Parameters
	#KEEP Status Codes
	#KEEP Example

	#LINEEND--requests termination of the current line I/O session
	#LINEEND Syntax
	#LINEEND Parameters
	#LINEEND Status Codes

	#LINEIN--requests a synchronous transfer of data
	#LINEIN Syntax
	#LINEIN Parameters
	#LINEIN Status Codes
	#LINEIN Example

	#LINEOUT--requests a transfer of data
	#LINEOUT Syntax
	#LINEOUT Parameters
	#LINEOUT Status Codes
	#LINEOUT Example

	#LINK--establishes linkage with a program
	#LINK Syntax
	#LINK Parameters
	#LINK Status Codes
	#LINK Example

	#LOAD--loads a module into the program pool
	#LOAD Syntax
	#LOAD Parameters
	#LOAD Status Codes
	#LOAD Example

	#MAPINQ
	Moving Map-Related Data
	Testing for Global Map Input Conditions
	Testing Cursor Position
	Testing for Identical Data
	Testing for Input Conditions

	#MAPMOD--requests that the system modify options in the map request block
	#MAPMOD Syntax
	#MAPMOD Parameters
	#MAPMOD Status Codes
	#MAPMOD Example

	@MODIFY--replaces element values of the database record
	@MODIFY Syntax
	@MODIFY Parameters
	@MODIFY Status Codes
	@MODIFY Example

	@MODIFY (LRF)--changes field values of an existing logical-record occurrence
	@MODIFY (LRF) Syntax
	@MODIFY (LRF) Parameters
	@MODIFY (LRF) Status Codes
	@MODIFY (LRF) Example

	#MREQ--determines how data is transferred
	#MREQ Syntax
	#MREQ Parameters
	#MREQ Status Codes
	#MREQ Example

	@OBTAIN (LRF)--retrieves the named logical record
	@OBTAIN (LRF) Syntax
	@OBTAIN (LRF) Parameters
	@OBTAIN (LRF) Status Codes
	@OBTAIN (LRF) Example

	#POST--modifies an event control block
	#POST Syntax
	#POST Parameters
	#POST Status Codes
	#POST Example

	#PRINT--requests that the system transmit data
	#PRINT Syntax
	#PRINT Parameters
	#PRINT Status Codes
	#PRINT Example

	#PUTJRNL--writes a task-defined record to the journal file
	#PUTJRNL Syntax
	#PUTJRNL Parameters
	#PUTJRNL Status Codes
	#PUTJRNL Example

	#PUTQUE--stores a queue record in the queue
	#PUTQUE Syntax
	#PUTQUE Parameters
	#PUTQUE Status Codes
	#PUTQUE Example

	#PUTSCR--stores or replaces a scratch record
	#PUTSCR Syntax
	#PUTSCR Parameters
	#PUTSCR Status Codes
	#PUTSCR Example

	@READY--prepares a database area for access by DML functions
	@READY Syntax
	@READY Parameters
	@READY Status Codes
	@READY Example

	@RETURN
	@RETURN Syntax
	@RETURN Parameters
	@RETURN Status Codes
	@RETURN Example

	#RETURN--returns control to a program
	@ROLLBAK--rolls back uncommitted changes made to the database
	@ROLLBACK Syntax
	@ROLLBACK Parameters
	@ROLLBACK Status Codes
	@ROLLBACK Example

	#ROLLBAK--rolls back uncommitted changes made to the database
	#ROLLBAK Syntax
	#ROLLBAK Parameters
	#ROLLBAK Status Codes
	#ROLLBAK Example

	#SENDMSG--sends a message to another terminal or user
	#SENDMSG Syntax
	#SENDMSG Parameters
	#SENDMSG Status Codes
	#SENDMSG Example

	#SETIME
	#SNAP
	#STAE
	@STORE
	@STORE (LRF)
	#STRTPAG
	#TREQ
	Regular and Execute #TREQ Description
	Regular and Execute #TREQ Syntax
	List #TREQ

	#TRNSTAT
	#WAIT
	#WTL
	#XCTL
	Logical Record Clauses
	WHERE Clause
	ON Clause
	Logical-Record Status Codes

	6: Assembler DML Coding Considerations
	Coding User-Supplied Operands
	Coding Parameters
	Synonym Processing
	Logical Record Facility Keywords

	7: DML Precompiler-Directive Statements
	@MODE--initializes global SET symbols
	@Mode Syntax
	@MODE Parameters

	@INVOKE
	@COPY IDMS
	#MRB
	#MAPBIND
	@SSCTRL
	@SSLRCTL

	8: Considerations for Assembler Programs in a DC/UCF Online System
	SVC Instructions in an Online Program
	Making Your Assembler Program Reentrant
	Methods of Calling an Online Assembler Subprogram
	TRANFER CONTROL, #LINK, or ADS LINK
	COBOL or PL/I CALL
	Assembler LINK macro

	Standard IBM calling conventions

	A: DML Precompile, Assembly, and Link-Edit JCL
	IDMSDMLA Under z/OS
	IDMSDMLA Under z/VSE
	IDMSDMLA Under CMS
	Link-Edit Considerations

	B: Sample CA IDMS/DB Batch Program
	Input to the Precompiler
	Output from the Precompiler
	Output from the Assembler

	C: Sample DC/UCF Online Program
	Input to the DML Precompiler
	Output from the DML Precompiler
	Output from the Assembler

	D: Assembler DML Macros and Error Messages
	DML Macros
	Error Messages

	E: STAE Exits
	Overview

	F: EMPLOYEE Data Structure Diagram
	Overview

	G: Systems Network Architecture Considerations (SNA)
	General Considerations
	SNA Terminology
	Program Communications in the SNA Environment
	Error Handling

	SNA Functions in a CA IDMS/DC Environment
	Allocating a Session
	Establishing Conversation Attributes
	Issuing the #TREQ ALLOC Statement
	Starting a Task on a Remote Logical Unit

	Starting a Task from a Remote System
	Synchronous and Asynchronous Processing
	Sending Data
	LU6.2 Considerations for Sending Data
	Non-LU6.2 Considerations for Sending Data

	Requesting a Confirmation
	Responding to a Confirmation Request
	Sending Error Information
	Changing Direction: Send to Receive
	Receiving Data
	Changing Direction: Receive to Send
	Terminating a Conversation
	Normal Termination
	Abnormal Termination
	Terminating a Session

	H: 18-Byte Communications Blocks
	Overview

	I: Online Debugger Syntax
	General Registers Symbols
	DC/UCF System Symbols
	Address Symbols and Markers
	User Symbols
	Program Symbols
	Syntax: Data Field Names
	Syntax: Line Numbers
	Syntax: Qualifying Program Symbols

	Expression Operators
	Delimiters
	Debugger Commands
	Syntax: AT
	Syntax: DEBUG
	Syntax: EXIT
	Syntax: IOUSER
	Syntax: LIST
	Syntax: MENU
	Syntax: PROMPT
	Syntax: QUALIFY
	Syntax: QUIT
	Syntax: RESUME
	Syntax: SET
	Syntax: SNAP
	Syntax: WHERE

	Index

