

DML Reference Guide for Assembler
Release 18.5.00, 2nd Edition

CA IDMS™

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time. This

Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or
duplicated, in whole or in part, without the prior wri tten consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable

l i cense for such software remains in full force and effect. Should th e license terminate for any reason, i t is your responsibility to
certi fy in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,

DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such

l icense agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions

set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2014 CA. Al l rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA products:

■ CA IDMS™/DB

■ CA ADS™

■ CA IDMS™/DC

■ DC/UCF

■ CA IDMS™ UCF

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technica l assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at

http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Documentation Changes

The following documentation updates were made for the 18.5.00, 2nd Edition release of
this documentation:

■ @COPY IDMS (see page 411)—Added the conditions which cause the DML to define
record elements using the Assembler EQU instruction.

■ Output from the Precompiler (see page 457)—The output from the DML
precompiler has been updated.

■ Output from the Assembler (see page 467)—The output from the Assembler has
been updated.

■ IDMS Communications Block (see page 34), 18-Byte Communications Blocks (see
page 541)—Updated the tables and field descriptions.

The following documentation updates were made for the 18.5.00 release of this

documentation:

■ @ACCEPT DBKEY FROM CURRENCY (see page 85)—Added the PGINFO parameter to
this statement.

■ @ACCEPT DBKEY RELATIVE TO CURRENCY (see page 87)—Added the PGINFO

parameter to this statement.

■ @Ready (see page 308)—The description of the FORCE option was added.

■ Online Debugger Syntax (see page 543)—This new appendix was previously

available in the Programming Quick Reference Guide.

Contents 5

Contents

Chapter 1: Introduction 17

Syntax Diagram Conventions ... 17

Chapter 2: Introduction to CA IDMS Data Manipulation Language 21

Operating Environments... 21

Accessing the Database... 22

Programming in the DC/UCF Environment.. 24

Assembling and Executing Programs.. 25

Callable Services and Common Facilities ... 27

Callable Services ... 27

Common Facilities .. 27

Chapter 3: DML Precompiler Options 29

Dictionary Usage Mode... 29

Comment Generation.. 30

List Generation ... 30

Log Suppression.. 31

Chapter 4: Communications Blocks and Error Detection 33

IDMS Communications Block ... 34

Field Descriptions ... 36

ERRSTAT Field and Codes.. 41

DB Status Codes.. 41

DC Status Codes.. 47

Testing for DML Error-Status Codes.. 52

Logical-Record Request Control (LRC) Block ... 52

Field Descriptions ... 54

Testing for the Logical-Record Path Status.. 55

DC/UCF General Registers .. 58

DC/UCF Status Codes... 59

Testing for DC/UCF Return Codes ... 68

Chapter 5: Data Manipulation Language Statements 73

Functions of DML Statements .. 76

#ABEND—terminates the issuing task abnormally .. 82

6 DML Reference Guide for Assembler

#ABEND Syntax ... 83

#ABEND Parameters .. 83

#ABEND Example.. 83

#ABEND Status Codes.. 84

@ACCEPT BIND—moves the bind address .. 84

@ACCEPT BIND Syntax .. 84

@ACCEPT BIND Parameters ... 84

@ACCEPT BIND Status Codes... 85

@ACCEPT BIND Example... 85

@ACCEPT DBKEY FROM CURRENCY—moves the db-key of the current record .. 85

@ACCEPT DBKEY FROM CURRENCY Syntax .. 86

@ACCEPT DBKEY FROM CURRENCY Parameters .. 86
@ACCEPT DBKEY FROM CURRENCY Status Codes ... 87

@ACCEPT DBKEY FROM CURRENCY Example ... 87

@ACCEPT DBKEY RELATIVE TO CURRENCY—moves the db-key ... 87

@ACCEPT DBKEY RELATIVE TO CURRENCY Syntax... 88

@ACCEPT DBKEY RELATIVE TO CURRENCY Parameters .. 88

@ACCEPT DBKEY RELATIVE TO CURRENCY Example ... 89

@ACCEPT DBKEY RELATIVE TO CURRENCY Status Codes ... 90

@ACCEPT PGINFO—moves the page information... 90

@ACCEPT PGINFO Syntax ... 90

@ACCEPT PGINFO Parameters .. 91

@ACCEPT PGINFO Example.. 91

@ACCEPT PGINFO Status Codes .. 91

@ACCEPT PROC—moves the information block .. 92

@ACCEPT PROC Syntax ... 92

@ACCEPT PROC Parameters .. 92

@ACCEPT PROC Example.. 92

@ACCEPT PROC Status Codes .. 93

@ACCEPT STATS—moves system runtime statistics ... 93

@ACCEPT STATS Syntax .. 93
@ACCEPT STATS Parameters ... 93

@ACCEPT STATS Status Codes ... 95

@ACCEPT STATS Example... 96

#ACCEPT—retrieves system task-related information .. 96

#ACCEPT Syntax .. 96

#ACCEPT Parameters ... 97

#ACCEPT Status Codes... 98

#ACCEPT Example .. 98

#ATTACH—instructs the system to initiate a new task ... 98

#ATTACH Syntax ... 99

#ATTACH Parameters .. 99

Contents 7

#ATTACH Status Codes ..101

#ATTACH Example..102

@BIND PROC—establishes communication..103

@BIND PROC Syntax ..103

IDMSDB--@BIND PROC Parameters ...103

@BIND PROC Status Codes...104

@BIND PROC Example ..104

@BIND REC—establishes addressability for a record..104

@BIND REC Syntax ...105

@BIND REC Parameters ..105

@BIND REC Status Codes..105

@BIND REC Example..106
@BIND SUBSCH—helps the run unit ..106

@BIND SUBSCH Syntax ...107

@BIND SUBSCH Parameters...107

@BIND SUBSCH Status Codes ..108

@BIND SUBSCH Example ..110

#BIND TASK—initiates a DC/UCF task ..110

#BIND TASK Syntax...110

#BIND TASK Parameters..110

#BIND TASK Status Codes ...110

#BIND TASK Example ...111

#CHAP—changes the dispatching priority ...111

#CHAP Syntax ..111

#CHAP Parameters ...111

#CHAP Status Codes...112

#CHAP Example ..112

@COMMIT—commits changes made to the database ...112

@COMMIT Syntax ..112

@COMMIT Parameters ...112

@COMMIT Status Codes...112
#COMMIT—commits changes made to the database...113

#COMMIT Syntax..113

#COMMIT Parameters...113

#COMMIT Status Codes ..113

@CONNECT—establishes a record occurrence ..113

@CONNECT Syntax ..116

@CONNECT Parameters ...116

@CONNECT Status Codes ...117

@CONNECT Example ...118

#DELETE—notifies the DC/UCF system ..118

#DELETE Syntax...119

8 DML Reference Guide for Assembler

#DELETE Parameters..119

#DELETE Status Codes ...120

#DELETE Example ...120

#DELQUE—deletes all or part of a queue ..121

#DELQUE Syntax ...121

#DELQUE Parameters ..121

#DELQUE Status Codes..123

#DELQUE Example..124

#DELSCR—deletes scratch records ...125

#DELSCR Syntax ..125

#DELSCR Parameters ...126

#DELSCR Status Codes ...128
#DELSCR Example ...129

#DEQ—releases resources acquired by the issuing task...129

#DEQ Syntax ..129

#DEQ Parameters ...129

#DEQ Status Codes...131

#DEQ Example...131

@DISCON—cancels the current membership of a specified record...132

@DISCON Syntax ..132

@DISCON Parameters ...133

@DISCON Status Codes...133

@DISCON Example...134

#ENQ—acquires resources or tests for availability..135

#ENQ Syntax ..135

#ENQ Parameters ...136

#ENQ Status Codes...138

#ENQ Example ..139

#ENDPAG—terminates a map paging session ..139

#ENDPAG Syntax ..139

#ENDPAG Parameters ...140
#ENDPAG Status Codes ...140

#ENDPAG Example ...140

@ERASE—disconnects or erases records ..141

@ERASE Syntax...142

@ERASE Parameters..142

@ERASE Status Codes ...143

@ERASE Example ...144

@ERASE (LRF)—deletes logical record occurrences ..146

@ERASE (LRF) Syntax...146

@ERASE (LRF) Parameters..147

@ERASE (LRF) Status Codes ...147

Contents 9

@ERASE (LRF) Example ...147

@FIND/@OBTAIN Statements—accesses database records ...148

@FIND/@OBTAIN CALC/DUPLICATE ..149

@FIND/@OBTAIN CURRENT ..151

@FIND/@OBTAIN DBKEY..155

@FIND/@OBTAIN OWNER ...158

@FIND/@OBTAIN USING SORT KEY..161

@FIND/@OBTAIN WITHIN SET/AREA...164

@FINISH—commits changes to database and terminates run unit ...170

@FINISH Syntax ..170

@FINISH Status Codes...170

#FINISH—commits changes to the database ..171
#FINISH Syntax ..171

#FINISH Parameters ...171

#FINISH Status Codes...172

#FREESTG—requests that the system release variable storage ..172

IDMSDB--#FREESTG ...172

#FREESTG Parameters ...173

#FREESTG Status Codes...173

#FREESTG Example...173

@GET—transfers the contents of an accessed record occurrence ..174

@GET Syntax ...174

@GET Parameters ..174

@GET Status Codes..174

@GET Example..175

#GETIME—gets time and date from the operating system..175

#GETIME Syntax..176

#GETIME Parameters...176

#GETIME Status Codes ..177

#GETIME Example ..177

#GETQUE—retrieves a queue record ...177
#GETQUE Syntax...177

#GETQUE Parameters..178

#GETQUE Status Codes ...182

#GETQUE Example ...184

#GETSCR—retrieves a scratch record...184

#GETSCR Syntax ..185

#GETSCR Parameters ...185

#GETSCR Status Codes...189

#GETSCR Example ..190

#GETSTG—acquires variable storage from a storage pool ...190

#GETSTG Syntax..191

10 DML Reference Guide for Assembler

#GETSTG Parameters...191

#GETSTG Status Codes ..196

#GETSTG Example ..196

@IF—tests for the presence of member record occurrences ...197

@IF Syntax ...198

@IF Parameters ..198

@IF Status Codes..199

@IF Example..199

@KEEP—places an explicit shared or exclusive lock on a record..200

@KEEP Syntax ...201

@KEEP Parameters ..201

@KEEP Status Codes ..201
@KEEP Example..202

#KEEP—establishes long-term record locks ..202

#KEEP Syntax ...204

#KEEP Parameters ..205

#KEEP Status Codes..207

#KEEP Example ...207

#LINEEND—requests termination of the current l ine I/O session ..208

#LINEEND Syntax ..208

#LINEEND Parameters ...208

#LINEEND Status Codes...208

#LINEIN—requests a synchronous transfer of data ...208

#LINEIN Syntax ..209

#LINEIN Parameters ...209

#LINEIN Status Codes...212

#LINEIN Example ..213

#LINEOUT—requests a transfer of data ...214

#LINEOUT Syntax ..215

#LINEOUT Parameters ...216

#LINEOUT Status Codes...219
#LINEOUT Example ..220

#LINK—establishes linkage with a program ..220

#LINK Syntax..220

#LINK Parameters...221

#LINK Status Codes ..222

#LINK Example ..223

#LOAD—loads a module into the program pool ..224

#LOAD Syntax..224

#LOAD Parameters...225

#LOAD Status Codes ..228

#LOAD Example ..229

Contents 11

#MAPINQ ...229

Moving Map-Related Data ...230

Testing for Global Map Input Conditions...233

Testing Cursor Position ...235

Testing for Identical Data..237

Testing for Input Conditions...238

#MAPMOD—requests that the system modify options in the map request block..243

#MAPMOD Syntax..243

#MAPMOD Parameters...245

#MAPMOD Status Codes ..253

#MAPMOD Example ..254

@MODIFY—replaces element values of the database record ..255
@MODIFY Syntax ...256

@MODIFY Parameters ..256

@MODIFY Status Codes ..257

@MODIFY Example ..258

@MODIFY (LRF)—changes field values of an existing logical -record occurrence ..259

@MODIFY (LRF) Syntax ...259

@MODIFY (LRF) Parameters ..259

@MODIFY (LRF) Status Codes ..260

@MODIFY (LRF) Example ..260

#MREQ—determines how data is transferred..260

#MREQ Syntax ..261

#MREQ Parameters..266

#MREQ Status Codes ...278

#MREQ Example ...281

@OBTAIN (LRF)—retrieves the named logical record ...282

@OBTAIN (LRF) Syntax ..283

@OBTAIN (LRF) Parameters ...283

@OBTAIN (LRF) Status Codes...284

@OBTAIN (LRF) Example...284
#POST—modifies an event control block ..285

#POST Syntax ..285

#POST Parameters ...285

#POST Status Codes ...286

#POST Example ...286

#PRINT—requests that the system transmit data..286

#PRINT Syntax ...288

#PRINT Parameters ..289

#PRINT Status Codes..296

#PRINT Example..297

#PUTJRNL—writes a task-defined record to the journal file..297

12 DML Reference Guide for Assembler

#PUTJRNL Syntax ..297

#PUTJRNL Parameters ...298

#PUTJRNL Status Codes...299

#PUTJRNL Example...299

#PUTQUE—stores a queue record in the queue ..300

#PUTQUE Syntax...300

#PUTQUE Parameters..300

#PUTQUE Status Codes ...302

#PUTQUE Example ...303

#PUTSCR—stores or replaces a scratch record...303

#PUTSCR Syntax..304

#PUTSCR Parameters...304
#PUTSCR Status Codes ..307

#PUTSCR Example ..308

@READY—prepares a database area for access by DML functions..308

@READY Syntax ..309

@READY Parameters ...309

@READY Status Codes...310

@READY Example...311

@RETURN ..311

@RETURN Syntax ...312

@RETURN Parameters ..312

@RETURN Status Codes ..313

@RETURN Example..313

#RETURN—returns control to a program ..314

@ROLLBAK—rolls back uncommitted changes made to the database..315

@ROLLBACK Syntax ...316

@ROLLBACK Parameters ..316

@ROLLBACK Status Codes ..317

@ROLLBACK Example ..317

#ROLLBAK—rolls back uncommitted changes made to the database ...317
#ROLLBAK Syntax ...318

#ROLLBAK Parameters...318

#ROLLBAK Status Codes ..319

#ROLLBAK Example ..319

#SENDMSG—sends a message to another terminal or user..319

#SENDMSG Syntax ...320

#SENDMSG Parameters ..320

#SENDMSG Status Codes ..323

#SENDMSG Example ..323

#SETIME ...323

#SNAP ...328

Contents 13

#STAE ..331

@STORE ...332

@STORE (LRF) ...338

#STRTPAG ..340

#TREQ ...343

Regular and Execute #TREQ Description..344

Regular and Execute #TREQ Syntax ..345

List #TREQ ..367

#TRNSTAT ..369

#WAIT ...374

#WTL...378

#XCTL ..386
Logical Record Clauses ..388

WHERE Clause...388

ON Clause ..393

Logical-Record Status Codes ..395

Chapter 6: Assembler DML Coding Considerations 399

Coding User-Supplied Operands..399

Coding Parameters...401

Synonym Processing ..401

Logical Record Facility Keywords...403

Chapter 7: DML Precompiler-Directive Statements 405

@MODE—initializes global SET symbols ...406

@Mode Syntax ...407

@MODE Parameters ...407

@INVOKE ...409

@COPY IDMS...411

#MRB ..419
#MAPBIND ...420

@SSCTRL ..421

@SSLRCTL ..421

Chapter 8: Considerations for Assembler Programs in a DC/UCF Online
System 423

SVC Instructions in an Online Program ..423

Making Your Assembler Program Reentrant...424

Methods of Calling an Online Assembler Subprogram ...425

TRANFER CONTROL, #LINK, or ADS LINK ..425

14 DML Reference Guide for Assembler

COBOL or PL/I CALL ..425

Assembler LINK macro ..425

Standard IBM calling conventions...426

Appendix A: DML Precompile, Assembly, and Link-Edit JCL 427

IDMSDMLA Under z/OS...429

IDMSDMLA Under z/VSE...436

IDMSDMLA Under CMS...447

Link-Edit Considerations ...450

Appendix B: Sample CA IDMS/DB Batch Program 453

Input to the Precompiler...454

Output from the Precompiler ..457

Output from the Assembler ...467

Appendix C: Sample DC/UCF Online Program 483

Input to the DML Precompiler ...484

Output from the DML Precompiler...487

Output from the Assembler ...490

Appendix D: Assembler DML Macros and Error Messages 495

DML Macros ..495

Error Messages ...497

Appendix E: STAE Exits 507

Overview ..507

Appendix F: EMPLOYEE Data Structure Diagram 511

Overview ..511

Appendix G: Systems Network Architecture Considerations (SNA) 513

General Considerations...515

SNA Terminology ..515

Program Communications in the SNA Environment..517

Error Handling...521

SNA Functions in a CA IDMS/DC Environment..522

Allocating a Session..525

Contents 15

Establishing Conversation Attributes ...526

Issuing the #TREQ ALLOC Statement ..527

Starting a Task on a Remote Logical Unit...529

Starting a Task from a Remote System ..530

Synchronous and Asynchronous Processing ...530

Sending Data ...531

LU6.2 Considerations for Sending Data..531

Non-LU6.2 Considerations for Sending Data...532

Requesting a Confirmation...532

Responding to a Confirmation Request ...533

Sending Error Information ..533

Changing Direction: Send to Receive..534
Receiving Data ..535

Changing Direction: Receive to Send ..537

Terminating a Conversation ...538

Normal Termination ..538

Abnormal Termination ..539

Terminating a Session..539

Appendix H: 18-Byte Communications Blocks 541

Overview ..541

Appendix I: Online Debugger Syntax 543

General Registers Symbols ...543

DC/UCF System Symbols...544

Address Symbols and Markers...544

User Symbols...545

Program Symbols ...545

Syntax: Data Field Names ...545

Syntax: Line Numbers..545
Syntax: Qualifying Program Symbols ..545

Expression Operators ..545

Delimiters ..546

Debugger Commands ..546

Syntax: AT ..546

Syntax: DEBUG ..547

Syntax: EXIT ...547

Syntax: IOUSER ...547

Syntax: LIST..547

Syntax: MENU ...547

Syntax: PROMPT ...547

16 DML Reference Guide for Assembler

Syntax: QUALIFY ...548

Syntax: QUIT..548

Syntax: RESUME ...548

Syntax: SET ..548

Syntax: SNAP ...548

Syntax: WHERE ...549

Index 551

Chapter 1: Introduction 17

Chapter 1: Introduction

This guide presents navigational and LRF DML statements for use in CA IDMS/DB and CA
IDMS/DC and CA IDMS UCF data communications environments.

Most data communications DML statements are applicable in both CA IDMS/DC and CA
IDMS UCF environments. The acronym DC/UCF is used to represent this.

This guide is intended for Assembler language programmers who run programs against
CA IDMS/DB databases and who want to use the DC/UCF system facil ities.

This section contains the following topics:

Syntax Diagram Conventions (see page 17)

Syntax Diagram Conventions

The syntax diagrams presented in this guide use the following notation conventions:

UPPERCASE OR SPECIAL CHARACTERS

Represents a required keyword, partial keyword, character, or symbol that must be

entered completely as shown.

lowercase

Represents an optional keyword or partial keyword that, if used, must be entered

completely as shown.

italicized lowercase

Represents a value that you supply.

lowercase bold

Represents a portion of the syntax shown in greater detail at the end of the syntax
or elsewhere in the document.

◄─

Points to the default in a l ist of choices.

►►────────────────────

Indicates the beginning of a complete piece of syntax.

────────────────────►◄

Indicates the end of a complete piece of syntax.

─────────────────────►

Indicates that the syntax continues on the next l ine.

►─────────────────────

Syntax Diagram Conventions

18 DML Reference Guide for Assembler

Indicates that the syntax continues on this l ine.

────────────────────►─

Indicates that the parameter continues on the next l ine.

─►────────────────────

Indicates that a parameter continues on this l ine.

►── parameter ─────────►

Indicates a required parameter.

►──┬─ parameter ─┬─────►
 └─ parameter ─┘

Indicates a choice of required parameters. You must select one.

►──┬─────────────┬─────►
 └─ parameter ─┘

Indicates an optional parameter.

►──┬─────────────┬─────►
 ├─ parameter ─┤
 └─ parameter ─┘

Indicates a choice of optional parameters. Select one or none.

 ┌─────────────┐
►─▼─ parameter ─┴──────►

Indicates that you can repeat the parameter or specify more than one parameter.

 ┌─── , ─────────┐
►─▼─ parameter ───┴──────►

Indicates that you must enter a comma between repetitions of the parameter.

Syntax Diagram Conventions

Chapter 1: Introduction 19

Sample Syntax Diagram

The following sample explains how the notation conventions are used:

Chapter 2: Introduction to CA IDMS Data Manipulation Language 21

Chapter 2: Introduction to CA IDMS Data
Manipulation Language

This guide discusses how to use Assembler Data Manipulation Language (DML)
statements in your Assembler program to perform the following:

■ Access a CA IDMS/DB database

■ Perform data communications functions through CA IDMS/DC and CA IDMS UCF
(DC/UCF)

Assembler DML statements are embedded in the program source as if they were part of
the host language. During assembly, most DML precompiler statements are expanded
into executable Assembler source code (whether or not the DML precompiler was

executed), and source-level error checking is performed.

Depending on your operating environment, your Assembler program uses different sets
of DML statements. For example, a batch program uses database DML statements; an
online program can use both database and data communications DML statements.

This chapter discusses the following:

■ When to use different sets of Assembler DML statements depending on your

operating environment

How to use the DML precompiler to prepare your program for assembly and execution

This section contains the following topics:

Operating Environments (see page 21)

Assembling and Executing Programs (see page 25)
Callable Services and Common Facil ities (see page 27)

Operating Environments

This manual presents the following categories of Assembler DML statements:

■ Database statements perform CA IDMS/DB database access functions in either a
batch or an online environment. Database DML statements have an at sign (@)
prefix; for example, @STORE.

■ Data communications, also called online statements, perform data
communications functions for CA IDMS/DC and CA IDMS UCF (DC/UCF) programs.

Online DML statements have a pound sign (#) prefix; for example, #LINK.

Operating Environments

22 DML Reference Guide for Assembler

■ DC-batch statements are a subset of online DML statements that allow batch
application programs to access DC/UCF facil ities such as queues and printers. This

category consists of the following DML statements: #DELQUE, #GETQUE, #PUTQUE,
and #PRINT.

Note: For more information about DC-batch programming, see the Navigational
DML Programming Guide.

Accessing the Database

Your program can access a CA IDMS/DB database by using either navigational or LRF
(logical record) DML statements:

■ Navigational statements access database records and sets one record at a time.

■ LRF statements access predefined groups of database records using the Logical

Record Facil ity (LRF).

Navigational and LRF DML statements are discussed separately below.

Navigating the Database

Navigational DML statements access database records and sets one record at a time,
checking and maintaining currency in order to assure correct results. Navigational DML
statements provide:

■ Control over error checking—You can check the result of each navigational

statement

■ Flexibility in choosing how you want to access the database—For example, your
program can access the database either sequentially (performing an area sweep),
by using a symbolic key value (CALC), or by using a database key value (DIRECT)

To use navigational DML statements, you must have a thorough knowledge of the

database structure. The database structure is i l lustrated in a data structure diagram. For
an example of a data structure diagram, see the EMPLOYEE Data Structure Diagram.

Operating Environments

Chapter 2: Introduction to CA IDMS Data Manipulation Language 23

The following figure il lustrates a database structure that contains two owner records
(EMPLOYEE and JOB) that share one member record (EMPOSITION). To obtain

EMPLOYEE and JOB information, the program must retrieve an EMPLOYEE record, the
first EMPOSITION record in the EMP-EMPOSITION set, and the owner record in the
JOB-EMPOSITION set.

Navigational DML statements are grouped into four categories:

■ Control statements initiate and terminate processing, effect recovery, prevent

concurrent updates, and evaluate set conditions

■ Retrieval statements locate data in the database and make it available to the
application program

■ Modification statements update the database

■ Accept statements pass database keys, storage address information, and statistics

to the program

Accessing the Database Through LRF

LRF DML statements use the Logical Record Facil ity (LRF) to access database records.
LRF accesses fields from multiple database records as if they were data fields in a single
record. LRF DML statements allow your program to specify selection criteria (by using

the WHERE clause) that enable your program to access only the logical records you
need.

Note: For more information, see the Logical Record Facility Guide.

LRF DML statements provide:

■ Easy access to database records—You need not be familiar with database
structure, and your programs need not include database navigation logic.

Operating Environments

24 DML Reference Guide for Assembler

■ Data flexibility—You do not usually have to modify or recompile your LRF program
when the database is changed.

■ Runtime efficiency—LRF minimizes communication between the program and the
database management system (DBMS).

The following figure il lustrates how to use LRF DML statements to access the EMPJOBLR
record. The EMPJOBLR record is a logical record that contains the EMPLOYEE record, the
EMPOSITION record, the OFFICE record, and the JOB record. The EMPJOBLR logical

record contains information from the EMPLOYEE, EMPOSITION, and JOB records.

The LRF DML statements are :

■ @ERASE deletes a logical record from the database.

■ @MODIFY updates a logical record.

■ @OBTAIN retrieves a logical record.

■ @STORE adds a new logical record to the database.

Programming in the DC/UCF Environment

DC/UCF application programs can use both database and online DML statements.

Online DML statements perform the following types of functions:

■ Program management statements govern flow of control and abend processing

■ Storage management statements allocate and release variable storage

■ Task management statements provide runtime services that control task processing

■ Time management statements obtain the time and date and define time-related
events

■ Scratch management statements create, delete, or retrieve records from the
scratch area

■ Queue management statements create, delete, or retrieve records in a queue area

Assembling and Executing Programs

Chapter 2: Introduction to CA IDMS Data Manipulation Language 25

■ Terminal management statements transfer data between the application program
and a terminal

■ Utility function statements retrieve task-related information or statistics, send
messages, and monitor access to database records

■ Recovery statements perform functions relating to database, scratch, and queue
area recovery in the event of a system failure

Example

The following example il lustrates how online DML statements access the database and
perform data communications functions. Specifically, this example maps in data entered
from the terminal, retrieves and displays the specified information, and performs a DC

return, naming TSK02 as the next task to be performed.

#MREQ IN,MRB=EMPMAP,INDATA=YES,COND=ALL,ERROR=ERRORTN

#MREQ OUT,MRB=EMPMAP,OUTDATA=YES,OPTNS=NEWPAGE

#RETURN NXTTASK=TSK02

Assembling and Executing Programs

An Assembler source program that contains DML statements is processed by the DML

precompiler (IDMSDMLA) before it is submitted to the assembler. The DML precompiler
performs the following functions:

■ Converts most DML statements into standard Assembler source statements.

■ Ensures that all statements issued by the program are consistent with the logical

structure of the database, the subschema view of the program, and the access
restrictions defined in the subschema.

■ Copies information maintained in the dictionary into program storage. Dictionary
entities include database record descriptions, fi le definitions, map records, map
definitions, logical records, and other predefined modules.

■ Updates the dictionary with compile-time statistics used to monitor database
activities for a given application program.

■ Performs source level error checking.

■ Generates an optional source statement l isting of error conditions detected during
DML processing.

■ Supports the use of native VSAM files in conjunction with database access methods.

■ Recognizes record, element, and fi le synonyms defined in the dictionary.

■ Allows programs to be compiled for execution under various TP monitors without

changing the source DML statements.

Assembling and Executing Programs

26 DML Reference Guide for Assembler

An Assembler program must be submitted to the DML precompiler if the program
contains any of the following statements:

■ An @COPY IDMS statement

■ An @INVOKE statement

■ Logical-record DML statement containing a WHERE clause

If none of these statements is included, the Assembler program can bypass the DML
precompiler. The source can be submitted directly to the assembler because most

Assembler DML statements are macro instructions that are expanded during assembly.
It is recommended, however, that all programs accessing the database or running under
a DC/UCF system use the DML precompiler. For a l ist of Assembler DML macros, see the

Assembler DML Macros and Error Messages.

Output from the DML precompiler is a card-image source fi le that serves as input to the

assembler. Output from the assembler consists of an object program and a source listing
that includes any generated diagnostics. During assembly, most procedural DML verbs
are expanded into executable Assembler source code, whether or not the DML

precompiler was executed.

After the program is assembled, it is submitted to the linkage editor. The linkage editor

l ink edits the object program into a specified load library. Output from the linkage editor
consists of a load module and a l ink map.

The following figure il lustrates the steps involved in assembling and executing an
Assembler program containing DML statements.

Callable Services and Common Facilities

Chapter 2: Introduction to CA IDMS Data Manipulation Language 27

Callable Services and Common Facilities

CA IDMS provides callable services and common facil ities to use with your application
programs.

Callable Services

The callable services include:

■ The IDMSCALC util ity that lets you sort input into target page sequence.

■ The IDMSIN01 facil ity that lets you perform miscellaneous CA IDMS functions.

■ The TCP/IP socket program interface that lets you communicate with another
TCP/IP application.

Note: For more information about using these callable services, see the Callable Services

Guide.

Common Facilities

The common facil ities include:

■ The Command Facil ity that lets you submit command statements in a batch or

online environment.

■ The Online Compiler Text Editor that lets you edit compiler output and resubmit it
as input using the CA IDMS development tools.

■ The Transfer Control Facil ity that lets you transfer between CA IDMS development
tools.

■ The SYSIDMS parameter fi le that contains parameters that you can add to a batch
job running in local mode or under the central version. These parameters let you
specify environment requirements, runtime directives, and operating
system-dependent information.

Note: For more information about using these common facil ities and the SYSIDMS
parameter fi le, see the Common Facilities Guide.

Chapter 3: DML Precompiler Options 29

Chapter 3: DML Precompiler Options

This chapter contains syntax for the DML precompiler options. DML precompiler option
statements are included in the input source code to the DML precompiler. These
statements are used to:

■ Override the default shared update usage mode for the DDLDML area of the

dictionary and ready the area in either retrieval or protected update mode

■ Print comment lines stored in the dictionary for subschema data items on the DML
listing

■ Generate a source statement l isting of the output from the DML precompiler

■ Suppress the logging of program activity statistics in the dictionary

These options are discussed separately below.

This section contains the following topics:

Dictionary Usage Mode (see page 29)

Comment Generation (see page 30)
List Generation (see page 30)
Log Suppression (see page 31)

Dictionary Usage Mode

When the main area (DDLDML area) of the dictionary accessed by the DML precompiler

is readied, several options are available. The default usage mode, shared update usage,
is defined at system generation. Shared update mode readies the DDLDML area for both
retrieval and update and allows other concurrently executing run units to ready the

DDLDML area in shared update or shared retrieval usage mode. You can override the
default usage mode by specifying either retrieval or protected update usage mode in
your application program.

Syntax

 ►─┬─ *RETRIEVAL ────────┬──►
 └─ *PROTECTED-UPDATE ─┘

The asterisk (*) must be in column 1.

Parameters

*RETRIEVAL

Readies the DDLDML area for retrieval only and allows other concurrently executing
run units to open the DDLDML area in shared retrieval, shared update, protected
retrieval, or protected update mode.

Comment Generation

30 DML Reference Guide for Assembler

Note: If the DDLDML area is readied for retrieval only, no program activity statistics
can be logged.

*PROTECTED-UPDATE

Readies the DDLDML area for both retrieval and update and allows other
concurrently executing run units to open the DDLDML area in retrieval usage mode

only. The protected update usage mode prevents concurrent update of the area by
run units executing under the same central version.

If included, the dictionary usage mode statement must precede all source statements.

Comment Generation

The *SCHEMA-COMMENTS option causes schema-defined data item comments and

IDD-defined record-element comments in the dictionary to be printed on the DML
source listing. You can specify this option by including the following entry at the
beginning of the input source code, after the dictionary usage mode statements (if

present) and before any DML or Assembler statements.

Syntax

 ►─── *SCHEMA-COMMENTS ───►

The asterisk (*) must be in column 1.

If the input does not include a *SCHEMA-COMMENTS entry, comment lines are not
generated.

List Generation

You can turn on or off the source statement l isting output by the DML precompiler by

inserting a l ist generation option in the source program.

Syntax

 ►─┬───────────────┬──►
 ├─ *NODMLIST ◄ ─┤
 └─ *DMLIST ─────┘

The asterisk (*) must be in column 1.

Parameters

*NODMLIST

Specifies that no source code listing is to be generated for the DML statements that

follow.

Log Suppression

Chapter 3: DML Precompiler Options 31

*DMLIST

Generates the source code listing for all the DML statements that follow.

In general, you would include one of these entries at the beginning of the input source
code before any standard DML or Assembler statements. However, generation of the
list can be turned on or off any number of times within one source program by inserting

appropriate *DMLIST/*NODMLIST entries in the code.

Note: The DML precompiler always produces a l isting of error messages. The *DMLIST

option controls l isting of the DML source code.

Log Suppression

You can suppress the logging of program activity statistics in the dictionary by using the
*NO-ACTIVITY-LOG option. This option, if included, is placed at the beginning of the

DML source program. The DML precompiler generates and logs the following program
activity statistics unless the *NO-ACTIVITY-LOG option is included in the program source
code:

■ Program name

■ Language

■ Date last compiled

■ Number of l ines

■ Number of compilations

■ Date created

■ Subschema name (if any)

■ File statistics

■ Database access statistics (for example, records and modules copied from the
dictionary; subprograms called; and records, sets, and areas accessed by DML
verbs)

Syntax

 ►─── *NO-ACTIVITY LOG ───►

The asterisk (*) must be in column 1.

Note: Program activity statistics cannot be logged if you ready the dictionary DDLDML
area for retrieval only.

Chapter 4: Communications Blocks and Error Detection 33

Chapter 4: Communications Blocks and
Error Detection

This chapter describes the communication blocks and registers available under CA
IDMS/DB and DC/UCF systems to return status information to an application program
that requests database and data communication services.

CA IDMS/DB and DC/UCF systems use the following facilities to communicate with your
application program:

■ The IDMS communications block returns information from the database
management system (DBMS) to your application program.

The ERRSTAT field of the IDMS communications block receives a status code that

indicates the successful or unsuccessful execution of a DML command. You can test
for the content of the ERRSTAT field in your database program.

■ The logical-record request control (LRC) block returns information from the Logical
Record Facil ity (LRF) to your application program when you are accessing logical
records that have been created by LRF.

The LRSTAT field of the LRC block returns the path status for a logical -record DML

request. You can test for the contents of the LRSTAT field in your program.

■ Register 15 is used by the DC/UCF system to return information regarding the

successful or unsuccessful execution of DML commands that request data
communication services. You can test for the content of register 15 to determine
the outcome of a DC/UCF DML statement.

In addition to the above topics, this chapter l ists the status codes returned by the DBMS
for database requests and the return codes issued by DC/UCF system for data
communications requests.

This section contains the following topics:

IDMS Communications Block (see page 34)
ERRSTAT Field and Codes (see page 41)
Testing for DML Error-Status Codes (see page 52)

Logical-Record Request Control (LRC) Block (see page 52)
DC/UCF General Registers (see page 58)

IDMS Communications Block

34 DML Reference Guide for Assembler

IDMS Communications Block

The IDMS communications block passes information between the DBMS and the
application program. Whenever a run unit issues a call to the DBMS for a database
operation, the DBMS returns information about the outcome of the requested service
to the ERRSTAT field in the application program's IDMS communications block.

To receive status information from the DBMS, an application program must define the

IDMS communications block in variable storage. You must either copy the IDMS
communications block from the dictionary i nto your program's variable storage by using
the @COPY IDMS statement or generate the IDMS communications block by using the
@SSCTRL statement. The following example il lustrates the @COPY IDMS statement

before and after it has been expanded by the DML precompiler:

 @COPY IDMS,SUBSCHEMA-CTRL (Before DML expansion)

 @COPY IDMS,SUBSCHEMA-CTRL (After DML expansion)

 DS 0D

 SSCTRL DS 0CL216

 PGMNAME DC CL8' '

 ERRSTAT DC CL4'1400'

 DBKEY DS FL4

 RECNAME DC CL16' '

 AREANAME DC CL16' '

 ERRORSET DC CL16' '

 ERRORREC DC CL16' '

 ERRAREA DC CL16' '

 SSCIDBCM DS 0CL100

 IDBMSCOM DS 100CL1

 ORG SSCIDBCM

 RDBMSCOM DS 0CL100

 PGINFO DS 0CL4

 PGINFGRP DS HL2

 PGINFDBK DS HL2

 DS CL96

 DIRDBKEY DC FL4'0'

 DBSTATUS DS 0CL8

 DBSTMTCD DS CL2

 DBSTATCD DS CL5

 DS CL1

 RECOCCUR DC FL4'0'

 DMLSEQ DC FL4'0'

IDMS Communications Block

Chapter 4: Communications Blocks and Error Detection 35

The same expansion would result by using the @SSCTRL statement in your application
program instead of the @COPY IDMS,SUBSCHEMA-CTRL statement. The @SSCTRL

statement is a macro that generates the variable storage definitions of the IDMS
communications block instead of copying the block from the dictionary.

Note: For more information about the differences between these statements, see the

DML Precompiler Options (see page 29) .

After every call to the DBMS, the DBMS issues an error-status code that indicates
successful or unsuccessful completion of the requested service. This status code is
returned to the ERRSTAT field in the IDMS communications block. You should examine

the ERRSTAT field after every call to the DBMS. Depending on the error-status code, it
may be useful to examine other fields and/or branch to a routine that responds to the
condition indicated by the error-status code.

The following figure shows the layout of the 16-byte IDMS communications block; each

field is described separately. Starting with offset 200, the layout of the block differs for
application programs that run under CICS.

Note: For more information about the 18-byte IDMS communications block, see the

18-Byte Communications Blocks.

IDMS Communications Block

36 DML Reference Guide for Assembler

 ┌──┐
 │ 16-CHARACTER IDMS COMMUNICATIONS BLOCK │
 └──┘

 Length
 Field Data Type (bytes) Initial Value
 ┌──────────┐
 *│ 0 7 │ PROGRAM-NAME Alphanumeric 8 Program Name
 ├────────┬─┘
 │ 8 11 │ ERROR-STATUS Alphanumeric 4 '1400'
 ├────────┤
 │ 12 15 │ DBKEY Binary 4(Fullword) 0000
 ├────────┴───┐
 │ 16 31 │ RECORD-NAME Alphanumeric 16 Spaces
 ├────────────┤
 │ 32 47 │ AREA-NAME Alphanumeric 16 Spaces
 ├────────────┤
 │ 48 63 │ ERROR-SET Alphanumeric 16 Spaces
 ├────────────┤
 │ 64 79 │ ERROR-RECORD Alphanumeric 16 Spaces
 ├────────────┤
 │ 80 95 │ ERROR-AREA Alphanumeric 16 Spaces
 ├─────────┬──┘
**│ 96 99 │ PAGE-INFO Binary 4(Fullword) 0000
 └─────────┘
 ┌──────────┐
 │ 96...195 │ IDBMSCOM-AREA Alphanumeric 100 Low Values
 ├──────────┤
 │ 196 199 │ DIRECT-DBKEY Binary 4(Fullword) 0000
 └──────────┘
 ┌─────────┐
 │ 200 206 │ DATABASE-STATUS Alphanumeric 7 Spaces
 ├─────┬───┘
 │ 207 │ FILLER ... 1 ...
 ├─────┴───┐
 │ 208 211 │ RECORD-OCCUR Binary 4(Fullword) 0000
 ├─────────┤
 │ 212 215 │ DML-SEQUENCE Binary 4(Fullword) 0000
 └─────────┘

 * word aligned
 ** PAGE-INFO-GROUP overlays bytes 97 and 98 and PAGE-INFO-DBK-FORMAT
 overlays bytes 99 and 100. Both of these fields are binary datatype,
 each with a length of two bytes. Suggested initial values for
 both are 00. Together these two fields represent PAGE-INFO.

Field Descriptions

Program Status Fields

The IDMS communications block contains the following fields that describe program
status information:

■ PGMNAME (offsets 0-7) is an 8-byte alphanumeric field that contains the name of
the program being executed. This field is initialized automatically at the beginning

of program execution if the program contains an @COPY IDMS SUBSCHEMA-BINDS
statement. Otherwise, it must be initialized by the programmer.

■ ERRSTAT (offsets 8-11) is a 4-byte alphanumeric field that contains a value
indicating the outcome of the DML statement that calls the DBMS. The ERRSTAT
field must be initialized to 1400 by the program. The DBMS updates this field

immediately before returning control to the user program after performing
(attempting) a requested database service.

IDMS Communications Block

Chapter 4: Communications Blocks and Error Detection 37

The ERRSTAT field and its use are described under Testing for DML Error-Status
Codes (see page 52) later in this chapter.

Note: A program that consists of two or more run units must reinitialize the
ERRSTAT field to 1400 after finishing one run unit and before binding the next.

■ DBKEY (offsets 12-15) is a 4-byte (fullword) binary field that contains the database
key (db-key) of the last record accessed by the run unit. For example, after
successful execution of an @FIND command, DBKEY is updated with the db-key of

the located record. DBKEY is not changed if the call to the DBMS results in an error
condition.

■ RECNAME (offsets 16-31) is a 16-byte alphanumeric field that contains the name of
the last record accessed successfully by the run unit. This field is left justified and
padded with spaces on the right.

■ AREANAME (offsets 32-47) is a 16-byte alphanumeric field that contains the name

of the last area accessed successfully by the run unit. This field is left justified and
padded with spaces on the right.

■ ERRORSET (offsets 48-63) is a 16-byte alphanumeric field that contains the name of
the set involved in the last operation to produce an error condition. This field is left
justified and padded with spaces on the right.

■ ERRORREC (offsets 64-79) is a 16-byte alphanumeric field that contains the name of

the record involved in the last operation to produce an error condition. This field is
left justified and padded with spaces on the right.

■ ERRAREA (offsets 80-95) is a 16-byte alphanumeric field that contains the name of
the area involved in the last operation to produce an error condition. This field is
left justified and padded with spaces on the right.

■ IDBMSCOM (offsets 96-195) is a 100-byte alphanumeric array that is used internally

by CA IDMS/DB for specification of runtime function information.

■ PGINFO (offsets 96-99) is a 4-byte binary field that represents the page information
associated with the last record accessed by the rununit. For example, after
successful execution of an @FIND command, PGINFO is updated with the page

information of the located record.

Page information is not changed if the call to the DBMS results in a nonzero status
condition.

Page information is a 4-byte field consisting of the following sub-fields:

– Bytes 1-2: Page group number (PGINFGRP)

– Bytes 3-4: Dbkey radix (PGINFDBK)

The PGINFO field overlays part of the IDBMSCOM area in the subschema control.

IDMS Communications Block

38 DML Reference Guide for Assembler

The dbkey radix portion of the page information can be used in interpreting a dbkey
for display purposes and in formatting a dbkey from page and line numbers. The

dbkey radix represents the number of bits within a dbkey value that are reserved
for the line number of a record. By default, this value is 8, meaning that up to 255
records can be stored on a single page of the area. Given a dbkey, you can separate

its associated page number by dividing the dbkey by 2 raised to the power of the
dbkey radix. For example, if the dbkey radix is 4, you would divide the dbkey value
by 2**4. The resulting value is the page number of the dbkey. To separate the line
number, you would multiply the page number by 2 raised to the power of the

dbkey radix and subtract this value from the dbkey value. The result would be the
line number of the dbkey. The following two formulas can be used to calculate the
page and line numbers from a dbkey value:

Page-number = dbkey value / (2 ** dbkey radix)

Line-number = dbkey value - (page-number * (2 ** dbkey radix))

■ DIRDBKEY (offsets 196-199) is a 4-byte (fullword binary) field that contains a
user-specified db-key value or a null db-key value of -1. This field is used for storing
a record with a location mode of direct. DIRDBKEY must be initialized by the user; it

is not updated by the DBMS.

Note: (native VSAM users) The DIRDBKEY field can be used only when storing a

record in a native VSAM relative record data set (RRDS). This field must be
initialized by the user to the relative record number of the record being stored.

■ Reserved for system (offsets 200-206) is a 7-byte alphanumeric field reserved for
CA IDMS/DB use.

■ FILLER (offset 207) is a 1-byte field used to ensure fullword alignment.

■ RECOCCUR (offsets 208-211) is a 4-byte (fullword) binary field that contains a

record-occurrence sequence identifier used internally by the DBMS.

■ DMLSEQ (offsets 212-215) is a 4-byte (fullword) binary field that contains the
source-level sequence number generated by the DML macros, if DEBUG is specified.
It is not used by the runtime system, with the exception of SYSIDMS DMLTRACE=ON
tracing.

Updating the Fields

After a call to the DBMS, one or more of the fields described above may be updated,
depending on the DML statement issued and whether or not the statement was
executed successfully.

Example of Updating Fields

The following figure il lustrates the updating process; only those fields accessed by the

runtime system are shown. Fields used internally by the DBMS are not shown. Blank
fields are not updated by DML statements.

Key for this figure:

IDMS Communications Block

Chapter 4: Communications Blocks and Error Detection 39

* If true, field is set to zone decimal zeroes (0000); if false, field is set to 1601

0 Field is set to zone decimal zeroes

Y Field is updated

C Field is cleared to spaces

N Field is set to null db-key value (-1)

nn Specific minor error code

IDMS Communications Block

40 DML Reference Guide for Assembler

ERRSTAT Field and Codes

Chapter 4: Communications Blocks and Error Detection 41

ERRSTAT Field and Codes

You can use the ERRSTAT field of the IDMS communications block to determine if a DML
request was processed successfully. The DBMS system returns a value to the ERRSTAT
field indicating the result of each DML request. For more information about the

ERRSTAT field, see Testing for DML Error-Status Codes (see page 52).

LRF users: You should check the LR-STATUS field of the LRC block before checking the
ERRSTAT field.

Major and Minor Codes

The ERRSTAT field is a four-byte zoned decimal field. The first two bytes represent a
major code; the second two bytes represent a minor code. Major codes identify the

function performed; minor codes describe the status of that function.

Value of Codes

A value of 0000 indicates successful completion of the requested function. A value other
than 0000 indicates completion of the function in a manner that may or may not be in
error, depending on your expectations. For example, 0326 (DB-REC-NOT-FOUND) should

be anticipated after FIND CALC retrieval; this allows you to trap the condition a nd
continue processing.

DB status codes have a major code in the range 01 to 20. They occur during database
access in batch or online processing. DC status codes have a major code in the range 30
to 51. They occur in online or DC-BATCH processing. Status codes with a major code of

00 apply to all DML functions. DB status codes and DC status codes are discussed
separately below.

DB Status Codes

The following tables l ist DB major and minor codes and their meanings.

ERRSTAT Field and Codes

42 DML Reference Guide for Assembler

Major DB Status Codes

Major
Code

Database Function

00 Any DML statement

01 FINISH

02 ERASE

03 FIND/OBTAIN

05 GET

06 KEEP

07 CONNECT

08 MODIFY

09 READY

11 DISCONNECT

12 STORE

14 BIND

15 ACCEPT

16 IF

17 RETURN

18 COMMIT

19 ROLLBACK

20 LRF requests

Minor DB Status Codes

Minor

Code

Database Function Status

00 Combined with a major code of 00, this code indicates successful completion
of the DML operation. Combined with a nonzero major code, this code

indicates that the DML operation was not completed successfully due to
central version causes, such as time-outs and program checks.

01 An area has not been readied. When this code is combined with a major
code of 16, an IF operation has resulted in a valid false condition.

ERRSTAT Field and Codes

Chapter 4: Communications Blocks and Error Detection 43

Minor
Code

Database Function Status

02 Either the db-key used with a FIND/OBTAIN DB-KEY statement or the direct
db-key suggested for a STORE is not wi thin the page range for the specified
record name.

03 Invalid currency for the named record, set, or area. This can only occur when
a run unit is sharing a transaction with other database sessions. The 03
minor status is returned if the run unit tries to retrieve or update a record
using a currency that has been invalidated because of changes made by

another database session that is sharing the same transaction.

04 The occurrence count of a variably occurring element has been specified as
either less than zero or greater than the maximum number of occurrences
defined in the control element.

05 The specified DML function would have violated a duplicates -not-allowed
option for a CALC, sorted, or index set.

06 No currency has been established for the named record, set, or area.

07 The end of a set, area, or index has been reached or the set is empty.

08 The specified record, set, procedure, or LR verb is not in the subschema or
the specified record is not a member of the set.

09 The area has been readied with an incorrect usage mode.

10 An existing access restriction or subschema usage prohibits execution of the
specified DML function. For LRF users, the subschema in use allows access to
database records only. Combined with a major code of 00, this code means

the program has attempted to access a database record, but the subschema
in use allows access to logical records only.

11 The record cannot be stored in the specified area due to insufficient space.

12 There is no db-key for the record to be stored. This is a system internal error

and should be reported.

13 A current record of run unit either has not been established or has been
null ified by a previous ERASE statement.

14 The CONNECT statement cannot be executed because the requested record
has been defined as a mandatory automatic member of the set.

15 The DISCONNECT statement cannot be executed because the requested
record has been defined as a mandatory member of the set.

16 The record cannot be connected to a set of which it is already a member.

17 The transaction manager encountered an error.

18 The record has not been bound.

19 The run unit's transaction was forced to back out.

ERRSTAT Field and Codes

44 DML Reference Guide for Assembler

Minor
Code

Database Function Status

20 The current record is not the same type as the specified record name.

21 Not all areas being used have been readied in the correct usage mode.

22 The record name specified is not currently a member of the set name

specified.

23 The area name specified is either not in the subschema or not an extent
area; or the record name specified has not been defined within the area
name specified.

25 No currency has been established for the named set.

26 No duplicates exist for the named record or the record occurrences cannot
be found.

28 The run unit has attempted to ready an area that has been readied

previously.

29 The run unit has attempted to place a lock on a record that is locked already
by another run unit. A deadlock results. Unless the run unit issued either a

FIND/OBTAIN KEEP EXCLUSIVE or a KEEP EXCLUSIVE, the run unit is aborted.

30 An attempt has been made to erase the owner record of a nonempty set.

31 The retrieval statement format conflicts with the record's location mode.

32 An attempt to retrieve a CALC/DUPLICATE record was unsuccessful; the

value of the CALC field in variable storage is not equal to the value of the
CALC control element in the current record of run unit.

33 At least one set in which the record participates has not been included in the

subschema.

40 The WHERE clause in an OBTAIN NEXT logical-record request is inconsistent
with a previous OBTAIN FIRST or OBTAIN NEXT command for the same
record. Previously specified criteria, such as reference to a key field, have

been changed. A path status of LR-ERROR is returned to the LRC block.

41 The subschema contains no path that matches the WHERE clause in a
logical-record request. A path status of LR-ERROR is returned to the LRC

block.

42 An ON clause included in the path by the DBA specified return of the
LR-ERROR path status to the LRC block; an error has occurred while
processing the LRF request.

ERRSTAT Field and Codes

Chapter 4: Communications Blocks and Error Detection 45

Minor
Code

Database Function Status

43 A program check has been recognized during evaluation of a WHERE clause;
the program check indicates that either a WHERE clause has specified
comparison of a packed decimal field to an unpacked nonnumeric data field,

or data in variable storage or a database record does not conform to its
description. A path status of LR-ERROR is returned to the LRC block unless
the DBA has included an ON clause to override this action in the path.

44 The WHERE clause in a logical-record request does not supply a key element

(sort key, CALC key, or db-key) expected by the path. A path status of
LR-ERROR is returned to the LRC block.

45 During evaluation of a WHERE clause, a program check has been recognized
because a subscript value is neither greater than 0 nor less than its

maximum allowed value plus 1. A path status of LR-ERROR is returned to the
LRC block unless the DBA has included an ON clause to override this action
in the path.

46 A program check has revealed an arithmetic exception (for example:
overflow, underflow, significance, divide) during evaluation of a WHERE
clause. A path status of LR-ERROR is returned to the LRC block unless the
DBA has included an ON clause to override this action in the path.

53 The subschema definition of an indexed set does not match the indexed
set's physical structure in the database.

54 Either the prefix length of an SR51 record is less than zero or the data length

is less than or equal to zero.

55 An invalid length has been defined for a variable-length record.

56 An insufficient amount of memory to accommodate the CA IDMS
compression/decompression routines is available.

57 A retrieval-only run unit has detected an inconsistency in an index that
should cause an 1143 abend, but optional APAR bit 216 has been turned on.

58 An attempt was made to rollback updates in a local mode program. Updates

made to an area during a local mode program's execution cannot be
automatically rolled out. The area must be manually recovered.

60 A record occurrence type is inconsistent with the set named in the
ERROR-SET field in the IDMS communications block. This code usually

indicates a broken chain.

61 No record can be found for an internal db-key. This code usually indicates a
broken chain.

62 A system-generated db-key points to a record occurrence, but no record

with that db-key can be found. This code usually indicates a broken chain.

ERRSTAT Field and Codes

46 DML Reference Guide for Assembler

Minor
Code

Database Function Status

63 The DBMS cannot interpret the DML function to be performed. When
combined with a major code of 00, this code means invalid function
parameters have been passed on the call to the DBMS. For LRF users, a

WHERE clause includes a keyword that is longer than the 32 characters
allowed.

64 The record cannot be found; the CALC control element has not been defined
properly in the subschema.

65 The database page read was not the page requested.

66 The area specified is not available in the requested usage mode.

67 The subschema invoked does not match the subschema object tables.

68 The CICS interface was not started.

69 A BIND RUN-UNIT may not have been issued; the CV may be inactive or not
accepting new run units; or the connection with the CV may have been
broken due to time out or other factors. When combined with a major code

of 00, this code means the program has been disconnected from the DBMS.

70 The database will not ready properly; a JCL error is the probable cause.

71 The page range or page group for the area being readied or the page
requested cannot be found in the DMCL.

72 There is insufficient memory to dynamically load a subschema or database
procedure.

73 A central version run unit will exceed the MAXERUS value specified at

system generation.

74 The dynamic load of a module has failed. If operating under the central
version, a subschema or database procedure module either was not found in
the data dictionary or the load (core image) l ibrary or, if loaded, will exceed

the number of subschema and database procedures provided for at system
generation.

75 A read error has occurred.

76 A write error has occurred.

77 The run unit has not been bound or has been bound twice. When combined
with a major code of 00, this code means either the program is no longer
signed on to the subschema or the variable subschema tabl es have been

overwritten.

78 An area wait deadlock has occurred.

79 The run unit has requested more db-key locks than are available to the
system.

ERRSTAT Field and Codes

Chapter 4: Communications Blocks and Error Detection 47

Minor
Code

Database Function Status

80 The target node is either not active or has been disabled.

81 The converted subschema requires specified database name to be in the
DBNAME table.

82 The subschema must be named in the DBNAME table.

83 An error has occurred in accessing native VSAM data sets.

87 The owner and member records for a set to be updated are not in the same
page group or do not have the same db-key radix.

91 The subschema requires a DBNAME to do the bind run unit.

92 No subschema areas map to DMCL.

93 A subschema area symbolic was not found in DMCL.

94 The specified dbname is neither a dbname defined in the DBNAME table,

nor a SEGMENT defined in the DMCL.

95 The specified subschema failed DBTABLE mapping using the specified
dbname.

Note: For a complete description of DB runtime status codes, see the chapter "CA IDMS
Status Codes" in the Messages and Codes Guide.

DC Status Codes

The following tables l ist the DC major and minor codes and their meanings.

Major DC Status Codes

Major
Code

Function

00 Any DML statement

30 TRANSFER CONTROL

31 WAIT/POST

32 GET STORAGE/FREE STORAGE

33 SET ABEND EXIT/ABEND CODE

34 LOAD/DELETE TABLE

35 GET TIME/SET TIMER

ERRSTAT Field and Codes

48 DML Reference Guide for Assembler

Major
Code

Function

36 WRITE LOG

37 ATTACH/CHANGE PRIORITY

38 BIND/ACCEPT/END TRANSACTION STATISTICS

39 ENQUEUE/DEQUEUE

40 SNAP

43 PUT/GET/DELETE SCRATCH

44 PUT/GET/DELETE QUEUE

45 BASIC MODE TERMINAL MANAGEMENT

46 MAPPING MODE TERMINAL MANAGEMENT

47 LINE MODE TERMINAL MANAGEMENT

48 ACCEPT/WRITE PRINTER

49 SEND MESSAGE

50 COMMIT TASK/ROLLBACK TASK/FINISH TASK/WRITE JOURNAL

51 KEEP LONGTERM

58 SVC SEND/RECEIVE

Minor DC Status Codes

Minor
Code

Function Status

00 Combined with a major code of 00, this code indicates either successful

completion of the DML function or that all tested resources have been
enqueued.

01 The requested operation cannot be performed immediately; waiting will
cause a deadlock.

02 Either there is insufficient storage in the storage pool or the storage
required for control blocks is unavailable.

03 The scratch area ID cannot be found.

04 Either the queue ID (header) cannot be found or a paging session was in
progress when a second STARTPAGE command was received (that is, an
implied ENDPAGE was processed before this STARTPAGE was executed
successfully).

05 The specified scratch record ID or queue record cannot be found.

ERRSTAT Field and Codes

Chapter 4: Communications Blocks and Error Detection 49

Minor
Code

Function Status

06 No resource control element (RCE) exists for the queue record; currency has
not been established.

07 Either an I/O error has occurred or the queue upper l imit has been reached.

08 The requested resource is not available.

09 The requested resource is available.

10 New storage has been assigned.

11 A maximum task condition exists.

12 The named task code is invalid.

13 The named resource cannot be found.

14 The requested module is defined as nonconcurrent and is currently in use.

15 The named module has been overlaid and cannot be reloaded immediately.

16 The specified interval control element (ICE) address cannot be found.

17 The record has been replaced.

18 No printer terminals have been defined for the current DC system.

19 The return area is too small; data has been truncated.

20 An I/O, program-not-found, or potential -deadlock status condition exists.

21 The message destination is undefined, the long term ID cannot be found, or
a KEEP LONGTERM request was issued by a nonterminal task.

22 A record already exists for the scratch area specified.

23 No storage or resource control element (RCE) could be allocated for the
reply area.

24 The maximum number of outstanding replies has been exceeded.

25 An attention interrupt has been received.

26 There is a logical error in the output data stream.

27 A permanent I/O error has occurred.

28 The terminal dial -up line is disconnected.

29 An invalid parameter has been passed in the list set up by the DML
processor.

30 The named function has not yet been implemented.

ERRSTAT Field and Codes

50 DML Reference Guide for Assembler

Minor
Code

Function Status

31 An invalid parameter has been passed; the TRB, LRB, or MRB contains an
invalid field; or the request is invalid because of a possible logic error in the
application program. In a DC-BATCH environment, a possible cause is that

the record length specified by the command exceeds the maximum length
based on the packet size.

32 The derived length of the specified variable storage is negative or zero.

33 Either the named table or the named map cannot be found in the data

dictionary load area.

34 The named variable-storage area must be an 01-level entry in the LINKAGE
SECTION.

35 A GET STORAGE request is invalid because the LINKAGE SECTION variable

has already been allocated.

36 The program either was not defined during system generation or is marked
out-of-service.

37 A GET STORAGE operand is invalid because the specified va riable storage
area is in the WORKING-STORAGE SECTION instead of the LINKAGE SECTION.

38 Either no GET STORAGE operand was specified or the specified LINKAGE
SECTION variable has not been allocated.

39 The terminal device being used is out of service.

40 NOIO has been specified but the datastream cannot be found.

41 An IF operation resulted in a valid true condition.

42 The named map does not support the terminal device in use.

43 A line I/O session has been cancelled by the terminal operator.

44 The referenced field does not participate in the specified map; a possible
cause is an invalid subscript.

45 An invalid terminal type is associated with the issuing task.

46 A terminal I/O error has occurred.

47 The named area has not been readied.

48 The run unit has not been bound.

49 NOWAIT has been specified but WAIT is required.

50 Statistics are not being kept.

51 A lock manager error occurred during the processing of a KEEP LONGTERM

request

52 The specified table is missing or invalid.

ERRSTAT Field and Codes

Chapter 4: Communications Blocks and Error Detection 51

Minor
Code

Function Status

53 An error occurred from a user-written edit routine.

54 Either there is invalid internal data or a data conversion error has occurred.

55 The user-written edit routine cannot be found.

56 No DFLDS have been defined for the map.

57 The ID cannot be found, is not a long-term permanent ID, or is being used by
another run unit.

58 Either the LRID cannot be found, the maximum number of concurrent task

threads was exceeded, or an attempt was made to rollback database
changes in local mode.

59 An error occurred in transferring the KEEP LONGTERM request to IDMSKEEP

60 The requested KEEP LONGTERM lock id was already in use with a different

page group

63 Invalid function parameters have been passed on the call to the DBMS.

64 No detail exists currently for update; no action has been taken.

Alternatively, the requested node for a header or detail is either not present
or not updated.

68 There are no more updated details to MAP IN or the amount of storage
defined for pageable maps at sysgen is insufficient. In the latter case,

subsequent MAP OUT DETAIL statements are i gnored.

72 No detail occurrence, footer, or header fields exist to be mapped out by a
MAP OUT RESUME command, or the scratch record that contains the

requested detail could not be accessed. The latter case is a mapping internal
error and should be reported.

76 The first screen page has been transmitted to the terminal.

77 Either the program is no longer signed on to the subschema or the variable

subschema tables have been overwritten.

80 The target node is either not active or has been disabled.

97 An error was encountered processing a syncpoint request; check the log for

details.

98 An unsupported COBOL compiler option (for example, DEBUG) has been
specified for an online program or a program running in a batch region has
issued a DML verb that is only valid when running online under CA

IDMS/DC/UCF.

99 An unexpected internal return code has been received; the terminal device
is out of service.

Testing for DML Error-Status Codes

52 DML Reference Guide for Assembler

Note: For a complete description of DC runtime status codes, see the chapter "CA IDMS
Status Codes" in the Messages and Codes Guide.

Testing for DML Error-Status Codes

Testing for the value of the ERRSTAT field in an Assembler program is a simple
procedure. CA IDMS/DB places a value in the ERRSTAT field after each DML statement
requesting database services is executed. This value can be compared to known

error-status codes to determine whether execution was successful. For example, you
can check for successful completion by comparing the ERRSTAT field to a working
storage field defined as 0000. The program can then perform a conditional branch.

The following example demonstrates a test for the successful execution of the
@OBTAIN statement. After completion of the @OBTAIN statement, the value returned

to the ERRSTAT field is compared to the defined constant STATOK. If the @OBTAIN is
successfully completed, processing continues. Otherwise, the program branches to
routine OBERR2, which evaluates the ERRSTAT field and determines the next statement
to be executed.

 @OBTAIN OWNER,SET='DEPT-EMPLOYEE'

 CLC ERRSTAT,STATOK

 BNE OBERR2

 MVC DID,DEPTID

 .

 .

 .

STATOK DC CL4'0000'

In topic Data Manipulation Language Statements, the status codes that can be returned
to the ERRSTAT field of the IDMS communications block are l isted after the description
of each database command. To determine test conditions based on error -status codes
see Data Manipulation Language Statements (see page 73) .

Logical-Record Request Control (LRC) Block

The logical-record request control (LRC) block passes information between the
application program and LRF. It is used in conjunction with the IDMS communications
block to pass information to LRF about a l ogical-record request and to return path status

information about the processing of the request to the program.

Logical-Record Request Control (LRC) Block

Chapter 4: Communications Blocks and Error Detection 53

To receive information about a logical-record request, the application program must
define the LRC block in variable storage. You must either copy the LRC block from the

dictionary into the program's variable storage by using the @COPY IDMS statement or
generate the LRC block by using the @SSLRCTL statement. The following example
il lustrates the @COPY IDMS statement before and after expansion by the DML

precompiler:

 @COPY IDMS,SUBSCHEMA-LR-CTRL (before DML expansion)

 * @COPY IDMS,SUBSCHEMA-LR-CTRL (after DML expansion)

 DS 0D

 SSLRCTL DS 0CL576

 LRPXLN DS HL2

 LRMVXP DS HL2

 LRIDENT DC CL4'LRC '

 LRVERB DC CL8' '

 LRNAME DC CL16' '

 LRSTAT DC CL16' '

 LRFILL DC CL16' '

 LRPXE DS 512CL1

The same expansion would result by using the @SSLRCTL statement in your application
program instead of the @COPY IDMS,SUBSCHEMA-LR-CTRL statement. The @SSLRCTL

statement is a macro that generates the variable storage definitions of the LRC block
instead of copying the block from the dictionary. For more information about the
differences between these statements, see DML Precompiler-Directive Statements (see
page 405) .

When a program issues a logical-record request, the LRC block stores the DML verb used

by the program, the name of the logical -record, and the selection criteria of the request.
LRF uses this information to select the appropriate path to handle the request.

Logical-Record Request Control (LRC) Block

54 DML Reference Guide for Assembler

After LRF has processed a request, it returns path status information in the LRC block.
After issuing the path status, LRF returns an error-status code in the ERRSTAT field of

the IDMS communications block. You can use this information to evaluate the result of
the request and to determine further processing based on that result. The following
figure shows the layout of the LRC block; each field is des cribed separately following the

figure.

Field Descriptions

The LRC block contains the following fields:

■ LRPXLN (offsets 0-1) is a halfword field that describes the length of the LRC block
for a logical record.

■ LRMVXP (offsets 2-3) is a halfword field that describes the evaluation work area
length used for processing the logical record.

■ LRIDENT (offsets 4-7) is a 4-byte alphanumeric field used internally by LRF. (It
contains the constant LRC followed by a space.)

■ LRVERB (offsets 8-15) is an 8-byte alphanumeric field used to record the DML verb

issued by the LRF program.

■ LRNAME (offsets 16-31) is a 16-byte alphanumeric field that contains the name of
the logical record being accessed.

■ LRSTAT (offsets 32-47) is a 16-byte alphanumeric field that contains the path status
of a logical-record request. The standard path statuses are LR-FOUND,

LR-NOT-FOUND, and LR-ERROR. Path statuses can also be defined by the DBA.
Testing for the value of the LRSTAT field is described below in "Testing for the
logical-record path status."

Logical-Record Request Control (LRC) Block

Chapter 4: Communications Blocks and Error Detection 55

■ LXFIL (offsets 48-63) is a 16-byte fi l ler.

■ LRPXE (offset 64-end) is a variable length data area that contains information

regarding the logical -record request's WHERE clause. This field is usually 512 bytes
(default). You can code the SIZE option of the @BIND SUBSCH, @COPY
IDMS,SUBSCHEMA-LR-CTRL, and @SSLCTRL statements to lengthen this field to

accommodate a long, complex WHERE clause. (For more information about
increasing the size of this field, see @COPY IDMS (see page 411).)

Testing for the Logical-Record Path Status

Path statuses are issued during execution of the path selected to service a logical-record

request. LRF returns a specific path status to the LRSTAT field of the program's LRC block
to indicate the result of each logical-record request. You can examine thi s information
to determine further processing.

Path Statuses

Path statuses are 1- to 16-byte character strings; they can either be standard or defined

by the DBA in the subschema. The standard path statuses are:

■ LR-FOUND—Indicates the logical -record request has been successfully executed.
This status can be returned as the result of any LRF DML statement. When
LR-FOUND is returned, the ERRSTAT field of the IDMS communications block

contains 0000.

■ LR-NOT-FOUND—Indicates the specified logical record cannot be found because
either no such record exists or all such occurrences have already been retrieved.

This status can be returned as the result of any LRF DML statement, provided that
the path to which LRF is directed includes retrieval logic. When LR-NOT-FOUND is
returned, the ERRSTAT field of the IDMS communications block contains 0000.

■ LR-ERROR—Indicates that either a logical -record request is issued incorrectly or an
error occurs in the processing of the path selected to service the request.

Code Depends on Type of Error

When LR-ERROR is returned, the type of status code returned to the program in the

ERRSTAT field of the IDMS communications block differs according to the type of error.
If the error occurs in the logical-record path, the ERRSTAT field contains a status code
issued by CA IDMS/DB with a major code from 00 to 19.

When the error occurs in the request itself, LRF returns the path status LR-ERROR to the
LRSTAT field of the LRC block and places one of the fol lowing codes in the ERRSTAT field

of the IDMS communications block:

Logical-Record Request Control (LRC) Block

56 DML Reference Guide for Assembler

Note: Any of these error-status codes can result from any of the logical-record DML
statements. The only exception is code 2040, which applies only to the @OBTAIN NEXT

DML statement.

2008

Either the named logical record is not defined in the subschema or the specified

DML verb is not permitted with the named logical record.

2010

The program has attempted to access a logical record, but the subschema in use
allows access to database records only.

2018

A path command has attempted to access a database record that has not been
bound.

2040

The WHERE clause included in an @OBTAIN NEXT statement has directed LRF to a

different path than did the WHERE clause in the preceding @OBTAIN statement for
the same logical record. Either an @OBTAIN FIRST should have been issued instead
of @OBTAIN NEXT or the WHERE clause is incorrect.

2041

LRF was unable to match the request's WHERE clause to a path to service the

request.

2042

An ON clause included in the path by the DBA specified return of the LR-ERROR path

status to the program.

2043

During evaluation of a WHERE clause, a program check has been recognized for one
of the following reasons:

■ A WHERE clause has specified that a packed decimal field be compared to a

field that is not packed and that cannot be converted to a packed field due to
the presence of nonnumeric data.

■ Data in either variable storage or a database record does not conform to its
description.

A path status of LR-ERROR is returned to the program unless the DBA has included
an ON clause in the path to override this action.

Logical-Record Request Control (LRC) Block

Chapter 4: Communications Blocks and Error Detection 57

2044

The WHERE clause in a logical-record request does not include a field of information

required by the path.

2045

During evaluation of a WHERE clause, a program check has been recognized

because a subscript value is either less than zero or greater than its maximum
allowed value plus 1. A path status of LR-ERROR is returned to the program unless
the DBA has included an ON clause in the path to override this action.

2046

A program check has been recognized during evaluation of a WHERE clause for one

of the following reasons:

■ An arithmetic overflow would occur (fixed point, decimal, or exponent).

■ An arithmetic underflow would occur (exponent).

■ A divide exception would occur (fixed point, decimal, or floating point).

■ A significance exception has occurred.

A path status of LR-ERROR is returned to the program unless the DBA has included
an ON clause in the path to override this action.

2063

A logical-record request's WHERE clause includes a keyword that is longer than the

32 characters allowed.

2064

A path command has attempted to access a CALC data item that has not been

described properly in the subschema.

2072

Storage is not available for the work areas required to evaluate the logical -record
request's WHERE clause.

Optional ONLRSTS Clause

In addition to directly testing the value of the LRSTAT field, you can include an ON clause
that tests for a specific standard or DBA-defined path status for each DML statement;
for example:

@OBTAIN NEXT,REC='EMPJOBLR',ONLRSTS='LR-NOT-FOUND',GOTO=RECERROR

The ONLRSTS clause tests for the standard path status of LR-NOT-FOUND. If
LR-NOT-FOUND is returned, the branch imperative GOTO=RECERROR will be executed

and the program will branch to the label RECERROR.

DC/UCF General Registers

58 DML Reference Guide for Assembler

Syntax

►─┬───┬────────────────────────────►
 └─ ,ONLRSTS=path-status,GOTO=branch-location ─┘

Parameters

ONLRSTS=path-status

Tests the LRSTAT field for a path status returned as the result of the logical-record
request issued by the program. Path-status must be a quoted literal (1-16 bytes
under z/OS and OS/390 or 1-6 bytes under VSE) or program variable.

GOTO=branch-location

Specifies the program action to be taken if the specified path status is found in

LRSTAT.

Note: For more information about LRF DML commands and clauses see Data
Manipulation Language Statements (see page 73).

DC/UCF General Registers

General registers 0, 1, and 15 pass information about data communica tion services from

the DC/UCF system to the application program. The registers are used in the following
manner:

■ Register 0 is used by several DC/UCF commands to return information regarding

specific parameters of the DML statement.

■ Register 1 is sometimes used to either store the address of the IDMS
communications block after an I/O error occurs during execution of a DML
command, or to receive information from the DC/UCF system regarding certain
status conditions that are associated with a return code.

■ Register 15 is used to receive the return code from the system after execution of a

DML verb that requests a data communications service.

The value of the return code in register 15 indicates whether a DML request for
data communication services was successful. The return codes issued by the system
after execution of a DML statement are l isted on the following pages.

Note: If your program uses DML commands to request data communication services

and to access the CA IDMS/DB database, you must check register 15 for return codes
issued by the DC/UCF system, and the ERRSTAT field of the IDMS communications block
for the status codes issued by CA IDMS/DB.

DC/UCF General Registers

Chapter 4: Communications Blocks and Error Detection 59

DC/UCF Status Codes

Following each DML request for data communication services, the system places a
return code in register 15 to indicate either an error or a specific c ondition that occurred
during processing. Table 3-3 l ists the runtime register 15 return codes for the DML

statements associated with DC/UCF services. Specific return codes are l isted for each
command in Chapter 6.

For every DML verb, a register 15 value of X'00' indicates that the request has been
serviced successfully.

The following table shows the DC/UCF Runtime Register 15 Return Codes.

R15 Value DML Verb Return Condition

X'00' All verbs No error

 #ENQ ■ ACQUIRE—All requested resources have
been acquired.

■ TEST—All tested resources have already
been enqueued by the issuing task with
the EXCLUSIVE/SHARED option specified by
the test request.

 #SETIME The request to cancel a previously issued
#SETIME has been serviced successfully.

X'04' #ATTACH The maximum number of tasks has already

been attached; no new tasks can be attached at
this time.

 #COMMIT Internal run-unit table full; check the CA
IDMS/DC log for details.

 #DELQUE The parameter l ist is invalid.

 #DELSCR The parameter l ist is invalid.

 #DEQ At least one resource id (RSCID) cannot be
found; all that were located have been

dequeued.

DC/UCF General Registers

60 DML Reference Guide for Assembler

R15 Value DML Verb Return Condition

 #ENQ ■ ACQUIRE—At least one of the resources

indicated is currently owned by another
task and is not available for the
EXCLUSIVE/SHARED option specified; no

new resources have been acquired.

■ TEST—At least one of the tested resources
is owned by another task and is not
available to this task for the

EXCLUSIVE/SHARED option specified.

 #FINISH There are too many run units for the internal
run-unit table. This is a system internal error
and should be reported.

 #GETQUE The parameter l ist is invalid.

 #GETSCR The parameter l ist is invalid.

 #GETSTG The request specified a storage id that did not

previously exist; the indicated space has been
allocated.

 #LINEIN The input area specified for return of data to
the issuing program is too small to

accommodate the full data stream; the
returned data has been truncated accordingly.

 #LINK Either the request cannot be serviced because

of an I/O, program-not-found, or potential
deadlock error or no null program definition
elements (PDEs) have been allocated. If the
load fails, the link will fail and a minor code will

be returned in register 1.

 #LOAD There is not enough space in the program pool
to load the program.

 #MREQ The specified edit or code table cannot be
found or is invalid for use with the named map.

 #PRINT An I/O error occurred during processing.

 #PUTJRNL The derived journal record length is zero or

negative.

 #PUTQUE Invalid #PUTQUE request. Check for proper
queue-id specification and logical selection of
options.

DC/UCF General Registers

Chapter 4: Communications Blocks and Error Detection 61

R15 Value DML Verb Return Condition

 #PUTSCR Invalid request. Check for proper scratch-id

specification and logical selection of options as
specified in the #PUTSCR statement.

 #ROLLBAK Internal run-unit table full; check the CA

IDMS/DC log for details.

 #SENDMSG An I/O error occurred during processing.

 #SETIME For a #SETIME TYPE=CANCEL request, the
internal control element (ICE) address specified

cannot be found.

 #STRTPAG A paging session was already in progress when
another #STRTPAG command was issued. An
implied #ENDPAG has been processed and the

#STRTPAG has been executed successfully.

 #TREQ For a #TREQ GET, #TREQ PUTGET, or #TREQ
CHECK request, the input area speci fied for the

return of data to the issuing program is too
small to accommodate the full data stream; the
returned data has been truncated accordingly.

 #TRNSTAT A new transaction statistics block (TSB) has

been allocated.

X'08' #ATTACH The requested task code is invalid.

 #COMMIT An invalid request has been issued. #COMMIT

is valid only if the program accesses CA
IDMS/DB database or dictionary entities (that
is, CA IDMS/DB records or DC/UCF
scratch/queue records). Typically, #COMMIT

need be specified only when CA IDMS/DB
database or dictionary entities are accessed in
an update usage mode.

 #DELQUE The requested queue header record (QUEID)
cannot be found.

 #DELSCR The requested scratch area id (SAID) cannot be
found.

 #ENQ ■ ACQUIRE—Not applicable.

■ TEST—At least one of the tested resources
is not already owned by any task and is
available for the EXCLUSIVE/SHARED

option specified. If both conditions
described for return codes X'04' and X'08'
exist, the register 15 value will be X'04'.

DC/UCF General Registers

62 DML Reference Guide for Assembler

R15 Value DML Verb Return Condition

 #FINISH An invalid request has been issued. #FINISH is

only valid if the program accesses CA IDMS/DB
database or dictionary entities (that is, CA
IDMS/DB records or DC/UCF scratch/queue

records). #FINISH need be specified only when
the program performs database or dictionary
accessing activities.

 #GETQUE The requested queue header record (QUEID)

cannot be found.

 #GETSCR The requested scratch area id (SAID) cannot be
found.

 #GETSTG There is insufficient storage in the storage pool

to process the request.

 #LINEIN The I/O session has been canceled; the
terminal operator has pressed the CLEAR

(3270), ATTENTION (2741), or BREAK (teletype)
key.

 #LINEOUT The I/O session has been canceled; the
terminal operator has pressed the CLEAR

(3270), ATTENTION (2741), or BREAK (teletype)
key.

 #LOAD An I/O error occurred during a load from a load

library.

 #MREQ I/O has been interrupted; the terminal
operator has pressed the ATTENTION (2741) or
CLEAR (3270) key.

 #PRINT The parameter l ist passed to #PRINT contains
an invalid field.

 #PUTJRNL The required storage is not available for the

necessary control blocks.

 #ROLLBAK An invalid request has been issued. There is a
possible logic error in the program. Ensure that
checkpoints are made (by means of #COMMIT)

in the program logic before the #ROLLBAK
request.

 #SENDMSG The parameter l ist is invalid.

 #TREQ For a #TREQ GET, #TREQ PUTGET, or #TREQ

CHECK request, output has been interrupted;
the terminal operator has pressed the
ATTENTION (2741) or CLEAR (3270) key.

DC/UCF General Registers

Chapter 4: Communications Blocks and Error Detection 63

R15 Value DML Verb Return Condition

 #TRNSTAT Storage for the transaction statistics block (TSB)

is not available; waiting would cause a
deadlock.

 #WAIT Waiting on the specified ECBs would cause a

deadlock.

X'0C' #ATTACH The request cannot be serviced due to a
security violation.

 #COMMIT An invalid status has been issued from

DBIO/DBMS; check the CA IDMS/DC log for
details.

 #DELQUE The requested queue record cannot be found

 #DELSCR The requested scratch record id (SRID) cannot

be found within the named SAID.

 #ENQ ■ ACQUIRE—A requested resource cannot be
enqueued immediately and waiting would

cause a deadlock; no new resources have
been acquired.

■ TEST—Not applicable.

 #FINISH An invalid status has been issued from

DBIO/DBMS; check the CA IDMS/DC log for
details.

 #GETQUE The requested queue record cannot be found.

 #GETSCR The requested scratch record id (SRID) cannot
be found within the named SAID.

 #GETSTG The parameter l ist is invalid.

 #LINEIN A logical or permanent I/O error has been

encountered in the input data stream.

 #LINEOUT A logical or permanent I/O error has been
encountered in the output data stream.

 #LOAD The requested program is nonconcurrent and
in use.

 #MREQ A logical error (for example, invalid control
character) has been encountered in the output

data stream.

 #PRINT No printer logical terminals have been defined
in this DC/UCF system.

DC/UCF General Registers

64 DML Reference Guide for Assembler

R15 Value DML Verb Return Condition

 #PUTJRNL An invalid error status has been issued from

DBIO/DBMS; check the IDMS/DC log for details.

 #ROLLBAK An invalid error status has been issued from
DBIO/DBMS; check the IDMS/DC log for details.

 #SENDMSG The message destination is undefined.

 #TREQ For a #TREQ GET, #TREQ PUTGET, or #TREQ
CHECK request a logical error (for example,
invalid control character) has been

encountered in the output data stream.

 #TRNSTAT No transaction statistics block (TSB) exists;
#TRNSTAT TYPE=BIND has not been issued. This
return code is valid only for #TRNSTAT

TYPE=ACCEPT and #TRNSTAT TYPE=END
statements.

X'10' #DELQUE No resource control element (RCE) exists for

the queue record; currency has not been
established.

 #GETSTG The requested storage cannot be allocated
immediately (insufficient storage) and waiting

would cause a deadlock.

 #LINEIN The line request block (LRB) contains an invalid
field.

 #LINEOUT The line request block (LRB) contains an invalid
field.

 #LOAD The requested program has been temporarily
overlayed in the program pool, resulting in a

storage conflict.

 #MREQ A permanent I/O error occurred during
processing.

 #PRINT A print screen request has been made from a
non-3270-type terminal or from a 3270-type
terminal without read buffer support.

 #PUTSCR The request to replace a scratch record has

been serviced successfully.

 #TREQ For a #TREQ GET, #TREQ PUTGET, or #TREQ
CHECK request, a permanent I/O error occurred
during processing.

 #TRNSTAT Either the task in question is not associated
with a terminal or the request is invalid.

DC/UCF General Registers

Chapter 4: Communications Blocks and Error Detection 65

R15 Value DML Verb Return Condition

X'14' #LINEOUT The name specified for DESTID, USERID, or

LTERMID is unknown to this DC/UCF system.

 #LOAD The requested program is not defined to the
program definition table (PDT), the requested

program is marked as out of service, or a null
program definition element (PDE) could not be
allocated for the program.

 #MREQ The dial-up line for the terminal is

disconnected.

 #PRINT Either the specified printer destination is
invalid or, for OPTNS=DIRECT, LTEID or
LTEADDR is invalid.

 #PUTSCR The request to add a new scratch record
cannot be processed because the record id
specified by the SRID operand already exists for

the named scratch area.

 #TREQ For a #TREQ GET, #TREQ PUTGET, or #TREQ
CHECK request, the dial -up line for the terminal
is disconnected.

 #TRNSTAT Transaction statistics or task statistics are not
enabled in this DC/UCF system.

X'18' #GETQUE The user area specified for the return of the

queue record is too small; the returned record
has been truncated to fit in the available
storage space.

 #GETSCR The user area specified for the return of the

scratch record is too small; the returned record
has been truncated to fit in the available
storage space.

 #GETSTG Allocated XA storage above the 16 megabyte
line cannot be addressed by a 24-bit task.

 #LOAD The requested program cannot be loaded
immediately due to insufficient space; waiting

would cause a deadlock.

 #MREQ The terminal being used is out of service.

 #PRINT A terminal I/O error occurred during a #PRINT
request.

DC/UCF General Registers

66 DML Reference Guide for Assembler

R15 Value DML Verb Return Condition

 #TREQ For a #TREQ GET, #TREQ PUTGET, or #TREQ

CHECK request, the terminal being used is out
of service.

X'1C' #DELQUE An I/O error occurred during a delete queue

operation.

 #DELSCR An I/O error occurred during a delete scratch
operation.

 #GETQUE An I/O error occurred during get queue

processing.

 #GETSCR An I/O error occurred during get scratch
processing.

 #PRINT No printer can be found to satisfy the

print-direct request and OPTNS=NOWAIT has
been specified.

 #PUTSCR An I/O error occurred during processing.

 #TREQ For a #TREQ GET, #TREQ PUTGET, or #TREQ
CHECK request, the terminal is closed or was
never opened.

X'20' #ATTACH The maximum number of concurrent tasks has

been reached.

 #LOAD An I/O error occurred during a load from the
dictionary DDLDCLOD area.

 #MREQ The map request block (MRB) contains an
invalid field, indicating a possible error in
application program parameters.

 #PRINT The print-direct request specified an LTEID or

LTEADDR that is out of service.

 #TREQ The terminal request block (TRB) contains an
invalid field.

X'24' #MREQ The map load module requested by the map
request block (MRB) cannot be found.

 #PRINT The print-direct request specified a wait;
waiting would cause a deadlock.

 #TREQ The name specified for DESTID, LTERMID, or
USERID is invalid.

X'28' #MREQ The requested map does not support the
terminal device type being used.

DC/UCF General Registers

Chapter 4: Communications Blocks and Error Detection 67

R15 Value DML Verb Return Condition

 #PRINT A DCMT VARY PRINTER CANCEL command has

been issued in the DC/UCF system for this
direct printer.

X'2C' #MREQ An error was detected upon return from a

user-written edit module. An invalid pointer to
the data stream has been returned to register
1.

 #PRINT A DCMT VARY PRINTER REQUEUE command

had been issued in the DC/UCF system for this
direct printer.

X'30' #MREQ Invalid internal data has been encountered.
Either the data in the record does not match

the internal data or the internal data cannot be
converted to the external format, as specified
in the external picture.

X'34' #MREQ The named user-written edit module cannot be
found.

X'38' #MREQ An invalid immediate write request to DESTID,
LTERMID, or USERID has been issued.

X'3C' #MREQ The map load module is invalid.

X'40' #MREQ For an #MREQ IN request, the requested node
for a header or detail was either not present or

not updated. For an #MREQ OUT request, there
is no current detail occurrence to be updated.
No action is taken.

X'44' #MREQ No more modified detail occurrences require a

mapin. For an #MREQ OUT request, the
maximum amount of storage defined for
pageable maps during system generation is

insufficient.

X'48' #MREQ For an #MREQ IN request, the scratch record
that contains the requested detail could not be
accessed (internal error). For an #MREQ

OUT,RESUME request, no detail occurrence,
footer, or header fields exist.

X'4C' #MREQ For an #MREQ OUT request, the first screen
page has been transmitted to the terminal.

DC/UCF General Registers

68 DML Reference Guide for Assembler

R15 Value DML Verb Return Condition

X'50' #MREQ An #MREQ IN,COND=MPNS or #MREQ

OUT,COND=MPNS request has been received
when no map paging session is in progress.
Either a #STRTPAG command was not issued

prior to this #MREQ IN command or a
#ROLLBAK was issued that rendered the scratch
area for the pageable map (area id MPGPSCRA)
unavailable. If the COND specification is not

MPNS, this condition abends the map paging
task.

Testing for DC/UCF Return Codes

Testing for the return code in register 15 is usually not necessary because most DML

commands have options that take action based on the return code value.

Specifying Conditions

The COND (condition) parameter provides a conditional return to the issuing program
should a specified error or special condition occur during processing. This return of
control can be directed to one of the following locations:

■ The next sequential instruction

■ A specified exit routine

The options of a COND parameter consist of statement-specific conditions that can

occur during the execution of a DML statement. Any number of conditions can be
specified. For example, the following COND parameter requests a return of control in
the event of an I/O error or deadlock condition:

COND=(IOER,DEAD)

If a condition associated with a specified parameter arises, control will be returned to

the issuing program. If a condition occurs for which no COND parameter is coded, a
default action will be taken. Typically, the default action either aborts the task or waits
for the condition to change.

Specifying COND with an Exit Routine

When more than one conditional parameter is permitted, you can code the value ALL to

indicate that all of the permitted COND parameters apply. If a condition corresponding
to an available parameter occurs and ALL is specified, control will be returned to the
issuing program.

DC/UCF General Registers

Chapter 4: Communications Blocks and Error Detection 69

Most DC/UCF DML statements provide the facil ity to associate an exit routine with each
special condition. To return control to a specific exit when a condition occurs, you

include both the appropriate condition (COND parameter) and the name of its
associated exit routine.

For example, a DML statement may include a COND parameter of IOER and the IOERXIT
parameter, which names the routine to which control will be returned in the event of an
I/O error that occurs during execution of the DML command; for example:

COND=(IOER),IOERXIT=IOERROR

Specifying COND Without an Exit Routine

Specifying only the COND parameter without an exit routine causes a return of control
to the next sequential instruction in the program that issues the DML statement. In this
case, you can examine the contents of register 15 to determine which condition code
was set as a result of the operation.

Specifying a General Exit Routine

You can specify a general exit routine by using the ERROR parameter. The system passes
control to this routine when a condition occurs for which no specific exit routine was
coded.

Note: If a condition occurs for which an associated exit routine and the ERROR
parameter are specified, control will be returned to the routine named by the specific

exit. If you have multiple exit routines containing the same logic, you should specify only
the ERROR parameter to avoid redundant coding.

Syntax

The following syntax l ists the COND parameter and exit routines found in the #LOAD
statement. The NOSTXIT exit is associated with the NOST condition, the IOERXIT exit is

associated with the IOER condition, and so forth.

►►─┬───────────────────────────────┬───►
 └─ ,COND= ─┬── NO ◄ ───────────┬┘
 ├── ALL ────────────┤
 │ ┌───── , ───┐ │
 └─(─▼─┬─ NOST ─┬┴─)─┘
 ├─ IOER ─┤
 ├─ SNGL ─┤
 ├─ LDCF ─┤
 ├─ PGNF ─┤
 └─ DEAD ─┘

 ►─┬──────────────────────────────────────┬───────────────────────────────────►
 └─ NOSTXIT=insufficient-storage-label ─┘

 ►─┬────────────────────────────┬───►
 └─ ,IOERXIT=i/o-error-label ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 └─ ,SNGLXIT=single-thread-in-use-label ─┘

DC/UCF General Registers

70 DML Reference Guide for Assembler

 ►─┬──┬─────────────────────────────►
 └─ ,LDCFXIT=storage-location-conflict-label ─┘

 ►─┬────────────────────────────────────┬─────────────────────────────────────►
 └─ ,PGNFXIT=program-not-found-label ─┘

 ►─┬───────────────────────────┬──►
 └─ ,DEADXIT=deadlock-label ─┘

 ►─┬──────────────────────┬───►◄
 └─ ,ERROR=error-label ─┘

Some DML statements have only a single condition, as the following excerpt from the

#LINK statement i l lustrates.

Syntax

 ►─┬─────────────────────┬──►
 └─ ,COND= ─┬─ NO ◄ ──┬┘
 └─ PGNA ──┘

 ►─┬──┬─────────────────────────────────►
 └─ ,PGNAXIT=program-not-available-label ─┘

 ►─┬──────────────────────┬───►
 └─ ,ERROR=error-label ─┘

In this case, the general ERROR parameter functions identically to the specific PGNAXIT
parameter. It supplies the name of a routine to which the program will branch when a

program-not-available error occurs.

Note: The COND parameter l ist is enclosed in parentheses. If multiple parameters are
specified, each parameter is separated from the previous one by a comma.

Example of COND in #LOAD

The following example of the #LOAD statement attempts to load the program JOBMAP1
into the program pool. The COND parameter is set to PGNF, which will return control to
the issuing program only if the requested program cannot be dynamically loaded or is
marked as out of service. The return code for this condition is X'14'.

In this example, if the return code matches the PGNF condition, the system returns

control to the issuing program at label ERRMSG, indicated by the ERROR parameter. If
the system returns a code of X'00' the program JOBMAP1 will have been successfully
loaded into the program pool. Return codes other then X'00' or X'14' will result in an
abend and control will be returned to either a higher-level program or the system.

DC/UCF General Registers

Chapter 4: Communications Blocks and Error Detection 71

LOAD1 #LOAD PGM=JOBMAP1,COND=PGNF,ERROR=ERRMSG

 .

 .

 .

ERRMSG EQU *

 .

 .

Testing for DML Statements that Request DC/UCF Services

In addition to the COND parameter, you can test for the return code value in register 15

for each DML statement that requests DC/UCF services. Your program can compare the
register 15 value to a l iteral or a defined constant, then execute a conditional branch.

In the following example, if the value in register 15 equals the numeric value 0000, the
program branches to the label CONTINU. Any value other than zero causes a branch to
the program label RCCOND.

 .

 .

 C 15,=F'0'

 BE CONTINU

 B RCCOND

 .

 .

CONTINU EQU *

 .

 .

 .

RCCOND EQU *

 .

 .

Chapter 5: Data Manipulation Language Statements 73

Chapter 5: Data Manipulation Language
Statements

This chapter describes each data manipulation language (DML) statement that requests
CA IDMS/DB database access or online service. The DML commands are presented in
two ways:

■ The first table presents the commands by function.

■ Each DML command is presented in alphabetical order. The discussion of each
command includes:

– A description of the DML statement

– Syntax and syntax rules

DC/UCF General Registers

74 DML Reference Guide for Assembler

– Currency considerations, where applicable

– An example of how to use the statement

– Error handling after a DML statement is issued

The WHERE and ON clauses that are used with DML statements to access logical records
created by the Logical Record Facil ity (LRF) are described at the end of this chapter.

This section contains the following topics:

Functions of DML Statements (see page 76)
#ABEND—terminates the issuing task abnormally (see page 82)
@ACCEPT BIND—moves the bind address (see page 84)

@ACCEPT DBKEY FROM CURRENCY—moves the db-key of the current record (see page
85)
@ACCEPT DBKEY RELATIVE TO CURRENCY—moves the db-key (see page 87)
@ACCEPT PGINFO—moves the page information (see page 90)

@ACCEPT PROC—moves the information block (see page 92)
@ACCEPT STATS—moves system runtime statistics (see page 93)
#ACCEPT—retrieves system task-related information (see page 96)

#ATTACH—instructs the system to initiate a new task (see page 98)
@BIND PROC—establishes communication (see page 103)
@BIND REC—establishes addressability for a record (see page 104)
@BIND SUBSCH—helps the run unit (see page 106)

#BIND TASK—initiates a DC/UCF task (see page 110)
#CHAP—changes the dispatching priority (see page 111)
@COMMIT—commits changes made to the database (see page 112)

#COMMIT—commits changes made to the database (see page 113)
@CONNECT—establishes a record occurrence (see page 113)
#DELETE—notifies the DC/UCF system (see page 118)
#DELQUE—deletes all or part of a queue (see page 121)

#DELSCR—deletes scratch records (see page 125)
#DEQ—releases resources acquired by the issuing task (see page 129)
@DISCON—cancels the current membership of a specified record (see page 132)

#ENQ—acquires resources or tests for availability (see page 135)
#ENDPAG—terminates a map paging session (see page 139)
@ERASE—disconnects or erases records (see page 141)
@ERASE (LRF)—deletes logical record occurrences (see page 146)

@FIND/@OBTAIN Statements—accesses database records (see page 148)
@FINISH—commits changes to database and terminates run unit (see page 170)
#FINISH—commits changes to the database (see page 171)
#FREESTG—requests that the system release variable storage (see page 172)

@GET—transfers the contents of an accessed record occurrence (see page 174)
#GETIME—gets time and date from the operating system (see page 175)
#GETQUE—retrieves a queue record (see page 177)

#GETSCR—retrieves a scratch record (see page 184)
#GETSTG—acquires variable storage from a storage pool (see page 190)
@IF—tests for the presence of member record occurrences (see page 197)
@KEEP—places an explicit shared or exclusive lock on a record (see page 200)

DC/UCF General Registers

Chapter 5: Data Manipulation Language Statements 75

#KEEP—establishes long-term record locks (see page 202)
#LINEEND—requests termination of the current l ine I/O session (see page 208)

#LINEIN—requests a synchronous transfer of data (see page 208)
#LINEOUT—requests a transfer of data (see page 214)
#LINK—establishes l inkage with a program (see page 220)

#LOAD—loads a module into the program pool (see page 224)
#MAPINQ (see page 229)
#MAPMOD—requests that the system modify options in the map request block (see
page 243)

@MODIFY—replaces element values of the database record (see page 255)
@MODIFY (LRF)—changes field values of an existing logical-record occurrence (see page
259)
#MREQ—determines how data is transferred (see page 260)

@OBTAIN (LRF)—retrieves the named logical record (see page 282)
#POST—modifies an event control block (see page 285)
#PRINT—requests that the system transmit data (see page 286)

#PUTJRNL—writes a task-defined record to the journal fi le (see page 297)
#PUTQUE—stores a queue record in the queue (see page 300)
#PUTSCR—stores or replaces a scratch record (see page 303)
@READY—prepares a database area for access by DML functions (see page 308)

@RETURN (see page 311)
#RETURN—returns control to a program (see page 314)
@ROLLBAK—rolls back uncommitted changes made to the database (see page 315)

#ROLLBAK—rolls back uncommitted changes made to the database (see page 317)
#SENDMSG—sends a message to another terminal or user (see page 319)
#SETIME (see page 323)
#SNAP (see page 328)

#STAE (see page 331)
@STORE (see page 332)
@STORE (LRF) (see page 338)

#STRTPAG (see page 340)
#TREQ (see page 343)
#TRNSTAT (see page 369)
#WAIT (see page 374)

#WTL (see page 378)
#XCTL (see page 386)
Logical Record Clauses (see page 388)

Functions of DML Statements

76 DML Reference Guide for Assembler

Functions of DML Statements

The data manipulation language enables you to access the database management
system (DBMS) and to request LRF and DC/UCF services from your Assembler program.
The DML statements can be grouped into 14 categories by function:

■ Control statements perform the following:

– Initiate and terminate processing

– Effect recovery

– Prevent concurrent retrieval and update of database records

– Evaluate set conditions

■ Retrieval statements locate records in the database and make them available to the
application program.

■ Modification statements add new records to the database and modify and delete
existing records.

■ Accept statements allow you to move special information such as database keys,
storage addresses, and statistics from the DBMS to the application program's
variable storage.

■ Logical-record statements allow you to retrieve, modify, store, and erase logical

records created through Logical Record Facil ity.

■ Program management statements perform the following:

– Pass and return control from one program to another

– Load and delete programs and tables

– Define exit routines to be performed before an abnormal program termination

(abend)

– Force an abend condition

■ Storage management statements allocate and release variable storage.

■ Task management statements perform the following:

– Initiate a new task

– Change the dispatching priority of the issuing task

– Enqueue and dequeue system resources

– Signal that a task is to wait pending completion of an event

– Post an event control block (ECB) indicating completion of an event

■ Time management statements obtain the time and date and set up time-related
events. These events include:

– Placing the issuing task in a wait state for a specified time

Functions of DML Statements

Chapter 5: Data Manipulation Language Statements 77

– Posting a user-specified ECB after a specified interval

– Initiating a new task after a specified interval

■ Scratch management statements create, delete, or retrieve records from the

scratch area.

■ Queue management statements create, delete, or retrieve records from the queue
area.

■ Terminal management statements transfer data between the application program
and a terminal or printer.

■ Utility function statements perform the following:

– Request retrieval of task-related information

– Request a memory dump of selected parts of storage

– Retrieve and send a predefined message stored in the dictionary

– Send a specified message to one or more users or logical terminals

– Collect, retrieve, and write DC/UCF system statistics on a transaction basis

– Establish long-term database locks and monitor access to database records
used across tasks in a pseudo-conversational transaction

■ Recovery statements perform functions relating to database, scratch, and queue

area recovery in the event of a system failure. These functions perform the
following:

– Establish checkpoints on the journal fi le for database, scratch, and queue

records used by the issuing task

– Roll back user database, scratch, and queue record areas to the last checkpoint

established

– Establish an end-of-task checkpoint and relinquish control of all database,
scratch, and queue record areas associated with the issuing task

– Write user defined records to the journal fi le

The following table groups the DML statements by function and gives a brief description

of each command.

DML Statements Grouped by Function

Function DML statement Description

Control
Statements

@BIND SUBSCH Signs on the application program
to the CA IDMS/DB database
management system

Functions of DML Statements

78 DML Reference Guide for Assembler

Function DML statement Description

 @BIND REC Establishes addressability in

variable storage for one or more
records included in the
program's subschema

 @BIND PROC Establishes communication
between the application
program and a DBA-defined
database procedure

 @READY Prepares database areas for
processing

 @FINISH Commits changes made to the
database through an individual

run unit and terminates the run
unit

 @IF Evaluates the presence of

records in a set and specifies
action based on the outcome

 @COMMIT Commits changes made to the
database by an individual run

unit

 @ROLLBAK Rolls back uncommitted changes
made to the database through

an individual run unit

 @KEEP Places locks on record
occurrences

Retrieval

Statements

@FIND/OBTAIN DBKEY Accesses a record by using a

db-key previously saved by the
program

 @FIND/OBTAIN CURRENT Accesses a record by using

established currencies

 @FIND/OBTAIN WITHIN
SET/AREA

Accesses a record based on its
logical location within a set or its
physical location within an area

 @FIND/OBTAIN OWNER Accesses the owner record of a
set occurrence

 @FIND/OBTAIN
CALC/DUPLICATE

Accesses a record by using its
CALC-key value

 @FIND/OBTAIN USING SORT KEY Accesses a record in a sorted set
by using its sort-key value

Functions of DML Statements

Chapter 5: Data Manipulation Language Statements 79

Function DML statement Description

 @GET Moves all data associated with a

previously located record into
program variable storage

Modification

Statements

@STORE Adds a new record to the

database

 @MODIFY Changes the contents of an
existing record

 @CONNECT Links a record to a set

 @DISCON Removes a member record from
a set

 @ERASE Deletes a record from the
database

Accept
Statements

@ACCEPT DBKEY FROM
CURRENCY

Saves the db-key of the current
record of run unit, record type,
set, or area

 @ACCEPT DBKEY RELATIVE TO
CURRENCY

Saves the db-key of the next,
prior, or owner record relative to
the current record of a set

 @ACCEPT PAGE INFORMATION

FOR A GIVEN RECORD

Saves the page information for a

record current record of a set

 @ACCEPT STATS Returns system runtime statistics
to the program

 @ACCEPT BIND Returns a record's bind address
to the program

 @ACCEPT PGINFO Returns page information for a
given record to the program

 @ACCEPT PROC Returns information in the
application program information
block associated with a database

procedure to the program

 @RETURN Retrieves a database key of a
record entry that has been
indexed under integrated

indexing.

Logical Record
Facil ity (LRF)
Statements

@OBTAIN logical -record
@MODIFY logical -record
@STORE logical-record @ERASE

logical-record

Retrieves a logical record
Modifies a logical record Stores a
new logical record Deletes a

logical record

Functions of DML Statements

80 DML Reference Guide for Assembler

Function DML statement Description

Program

Management
Statements

#LINK Passes control to another

program with the expectation of
receiving it back

 #RETURN Returns control to the next

higher level call ing program

 #LOAD Loads a program or table into
the program pool

 #DELETE Signals that the program has

finished using a program or table
in the program pool

 #STAE Establishes l inkage to a program
or routine that will receive

control in the event of an abend

 #ABEND Abnormally terminates the
issuing task

 #XCTL Passes control to another
program with no expectation of
having it returned

Storage

Management
Statements

#GETSTG

#FREESTG

Allocates variable storage from a

DC/UCF storage pool Frees all or
part of a block of variable
storage

Task
Management
Statements

#ATTACH Attaches a new task within the
DC/UCF system

 #CHAP Changes the dispatching priority

of the issuing task

 #ENQ Acquires a resource or a l ist of
resources

 #DEQ Releases a resource

 #WAIT Relinquishes control to the
system while awaiting the
completion of an event

 #POST Posts an event control block

Time
Management
Statements

#GETIME Obtains the time and date from
the system

 #SETIME Defines a timed event

Functions of DML Statements

Chapter 5: Data Manipulation Language Statements 81

Function DML statement Description

Scratch

Management
Statements

#PUTSCR #GETSCR #DELSCR Stores a scratch record Retrieves

a scratch record Deletes a
scratch record

Queue

Management
Statements

#PUTQUE #GETQUE #DELQUE Stores a queue record Retrieves

a queue record Deletes a queue
record

Terminal
Management

(Basic Mode)

#TREQ Transfers data and device
dependent information to or

from the terminal, or establishes
a terminal request block (TRB)
for use by subsequent #TREQ
operations. The #TREQ

statement can be used to
communicate in an SNA network
environment

Terminal
Management
(Line Mode)

#LINEIN Requests a synchronous data
transfer from the terminal to the
issuing program

 #LINEOUT Requests a synchronous or

asynchronous data transfer from
the issuing program to the
terminal

 #LINEEND Terminates the current l ine I/O
session

Terminal
Management

(Mapping
Mode)

#MREQ Requests a transfer of data from
the issuing program to the

terminal and/or vice versa

 #MAPINQ Obtains information or tests

conditions concerning the
previous map operation

 #MAPMOD Requests modifications of
mapping options for a map

 #STRTPAG Begins a map paging session and
specifies options for that session

 #ENDPAG Terminates a map paging session

Terminal

Management
(Print Mode)

#PRINT Transfers data from a task to a

terminal defined as a printer.

#ABEND—terminates the issuing task abnormally

82 DML Reference Guide for Assembler

Function DML statement Description

Utility Functions #ACCEPT Retrieves task-related

information

 #SNAP Requests a memory dump of
selected parts of storage

 #SENDMSG Sends a message to a user,
logical terminal, l ist of users, or
l ist of logical terminals

 #TRNSTAT Requests or terminates statistics

collection; retrieves transaction
statistics into program storage

 #KEEP Enables database locks or
database monitoring for records,

sets, or areas or terminates a
prior #KEEP request

 #WTL Retrieves a message from the

dictionary and sends it to a
predefined destination

Recovery
Statements

#COMMIT Commits changes made to the
database through an individual

run unit or through all database
sessions associated with a task

 #FINISH Commits changes made to the

database through an individual
run unit or through all database
sessions associated with a task

 #ROLLBAK Rolls back uncommitted changes

made to the database through
an individual run unit or through
all database sessions associated

with a task

 #PUTJRNL Writes user-defined records to
the journal fi le

#ABEND—terminates the issuing task abnormally

The #ABEND statement terminates the issuing task abnormally and specifies whether
the system invokes previously established abend exits or writes a task dump to the log
fi le.

After completion of the #ABEND function, control is returned to the system.

#ABEND—terminates the issuing task abnormally

Chapter 5: Data Manipulation Language Statements 83

#ABEND Syntax

►►─┬─────────┬─ #ABEND ABCODE=abend-code-pointer ─────────────────────────────►
 └─ label ─┘

 ►─┬────────────────────────┬───►
 └─ ,STAE= ─┬─ INVOKE ◄ ─┬┘
 └─ IGNORE ───┘

 ►─┬─────────────────────┬──►◄
 └─ ,DUMP= ─┬─ NO ◄ ──┬┘
 └─ YES ───┘

#ABEND Parameters

ABCODE=

Specifies a 4-character user-defined abend code.

abend-code

A register pointing to a field that contains the abend code, the symbol name of a
user-defined field containing the code, or the abend-code literal enclosed in single
quotation marks.

Note: Because the specified abend code appears in the system log and is displayed

at the task's terminal, you should not use DC/UCF system abend codes.

STAE=INVOKE/IGNORE

Specifies whether the system invokes or ignores abend routines that were
previously established by #STAE requests; the default is INVOKE.

DUMP=NO/YES

Specifies whether the system writes a formatted task dump to the DC/UCF log fi le.
The default is NO.

#ABEND Example

Example: Terminating the issuing task

The following example of the #ABEND statement terminates the issuing task abnormally
and specifies the register that points to a field in the application program containing the
abend code. This statement requests that the system ignore abend routines and to

write a task dump to the DC/UCF log fi le. Control returns to the system after completion
of the #ABEND statement.

#ABEND ABCODE=(R12),STAE=IGNORE,DUMP=YES

@ACCEPT BIND—moves the bind address

84 DML Reference Guide for Assembler

#ABEND Status Codes

The #ABEND request is unconditional; control is passed to the DC/UCF program control
module.

@ACCEPT BIND—moves the bind address

The @ACCEPT BIND statement moves the bind address of a record to a location in

program variable storage. The requesting program is usually a subprogram that requires
the address of a record in order to access it.

Currency

Currency must be established for the record whose bind address will be returned to the
application program.

A successful execution of the @ACCEPT BIND command does not update the currency of
the record type or the run unit.

@ACCEPT BIND Syntax
►►─── @ACCEPT BIND=bind-address───►

 ►─── ,REC=record-name ───►◄

@ACCEPT BIND Parameters

BIND=bind-address

Specifies the 4-byte (fullword) location in storage to which the system returns the

record's bind address. Note that bind-address does not specify a database key.

REC=

Specifies the record whose bind address will be returned to the specified location in
program variable storage.

record-name

Must be a record previously bound by the run unit.

@ACCEPT DBKEY FROM CURRENCY—moves the db-key of the current record

Chapter 5: Data Manipulation Language Statements 85

@ACCEPT BIND Status Codes

After completion of the @ACCEPT BIND statement, the ERRSTAT field in the IDMS
communications block indicates the outcome of the operation. The following is a l ist of
the acceptable status codes for this function and their corresponding meaning:

0000

The request has been serviced successfully.

1508

The specified record is not in the named subschema

@ACCEPT BIND Example

The following @ACCEPT BIND statement moves the bind address for an EMPLOYEE
record to register 1.

@ACCEPT BIND=(R1),REC='EMPLOYEE'

@ACCEPT DBKEY FROM CURRENCY—moves the db-key of the
current record

The @ACCEPT DBKEY FROM CURRENCY statement moves the db-key of the current
record of run unit, record type, set, or area to a specified location in program variable
storage. Use the PGINFO option to specify a location in program variable storage where

the page information associated with the returned dbkey is moved. Records whose
db-key are saved in this manner are available for subsequent direct access by using an
@FIND/@OBTAIN DBKEY statement.

Currency

The record must be current of run unit, record type, set, or area before execution of the

@ACCEPT DBKEY FROM CURRENCY statement. Currency is maintained but not updated
after the statement is executed.

Note: You must establish set currency before using this statement. If no set currency
has been established, the DBMS returns 0000 to the ERRSTAT field and -1 to the DB-KEY

field.

For more information on page information fields, see @ACCEPT PGINFO (see page 90).

@ACCEPT DBKEY FROM CURRENCY—moves the db-key of the current record

86 DML Reference Guide for Assembler

@ACCEPT DBKEY FROM CURRENCY Syntax

►►─── @ACCEPT DBKEY=db-key ─────┬─────────────────────┬───────────────────────►
 └─ ,PGINFO=pg-info-v ─┘

 ►─┬────────────────────┬───►◄
 ├─ ,REC=record-name ─┤
 ├─ ,SET=set-name ─┤
 └─ ,AREA=area-name ─┘

@ACCEPT DBKEY FROM CURRENCY Parameters

DBKEY=db-key

Identifies the location in variable storage that will contain the db-key of the named

record. Must identify a full -word binary field.

PGINFO=pg-info-v

Specifies the name of a four-byte field that is made up of two halfword fields.

Identifies the location in variable storage that contains page information for the
specified record. Upon successful completion of this statement, the first two bytes
of the field contain the page group number and the last two bytes contain a value
that may be used for interpreting dbkeys.

REC=record-name/SET=set-name/AREA=area-name

Specifies the record whose db-key will be placed in the location identified by
db-key. If the record, set, or area qualifiers are omitted, the db-key of the current
record of run unit i s saved. Otherwise, db-keys are saved as follows:

■ REC=record-name saves the db-key of the record that is current of the specified

record type.

■ SET=set-name saves the db-key of the record that is current of the specified
set.

■ AREA=area-name saves the db-key of the record that is current of the specified
area.

@ACCEPT DBKEY RELATIVE TO CURRENCY—moves the db-key

Chapter 5: Data Manipulation Language Statements 87

@ACCEPT DBKEY FROM CURRENCY Status Codes

After completion of the @ACCEPT DBKEY FROM CURRENCY function, the ERRSTAT field
in the IDMS communications block indicates the outcome of the operation.

The following is a l ist of the acceptable status codes for this function and their

corresponding meaning:

0000

The request has been serviced successfully.

1508

The specified record is not in the subschema. The program has probably invoked
the wrong subschema.

@ACCEPT DBKEY FROM CURRENCY Example

The following statements i l lustrate the use of the @ACCEPT DBKEY FROM CURRENCY

statement. The program performs the following steps:

1. Establishes an EMPLOYEE record as current of run unit

2. Saves its db-key in location SAVEDKEY

3. Accesses the EMPLOYEE record occurrence by using the saved db-key, after further
processing has changed currency

MVC EMPID,=CL4'7690'

@FIND CALC,REC='EMPLOYEE'

@ACCEPT DBKEY=SAVEDKEY

.

.

@OBTAIN DBKEY=SAVEDKEY

@ACCEPT DBKEY RELATIVE TO CURRENCY—moves the db-key

The @ACCEPT DBKEY RELATIVE TO CURRENCY statement moves the db-key of the next,

prior, or owner record relative to the current record of set to a location in variable
storage. Use the PGINFO option to specify a location in program variable storage where
the page information associated with the returned dbkey is moved. The DBMS examines
the current record of the named set and extracts the requested pointer from its prefix.

This statement allows you to save the db-key of a record within a set without actually
having to access the record. Records whose db-keys are saved in this manner are
available for subsequent direct access by an @FIND/@OBTAIN DBKEY statement.

@ACCEPT DBKEY RELATIVE TO CURRENCY—moves the db-key

88 DML Reference Guide for Assembler

Note: Native VSAM users—The @ACCEPT DBKEY RELATIVE TO CURRENCY statement is
not valid for native VSAM data sets.

Note: You must establish set currency before using this statement. If no set currency
has been established, the DBMS returns 0000 to the ERRSTAT field and -1 to the DB-KEY
field.

Currency

Currency is not updated after execution of an @ACCEPT DBKEY RELATIVE TO CURRENCY
statement. The record that is current of record type before the @ACCEPT statement will
remain current immediately after the statement is executed.

For more information on page information fields, see @ACCEPT PGINFO (see page 90).

@ACCEPT DBKEY RELATIVE TO CURRENCY Syntax
►►─── @ACCEPT DBKEY=db-key ─────┬─────────────────────┬───────────────────────►
 └─ ,PGINFO=pg-info-v ─┘

 ►──┬─ ,SETN= ─┬─ set-name ──►◄
 ├─ ,SETP= ─┤
 └─ ,SETO= ─┘

@ACCEPT DBKEY RELATIVE TO CURRENCY Parameters

DBKEY=db-key

Identifies the location in variable storage that will contain the db-key of the
requested record.

PGINFO=pg-info-v

Specifies the name of a four-byte field that is made up of two halfword fields.
Identifies the location in variable storage that contains page information for the
specified record. Upon successful completion of this statement, the first two bytes

of the field contain the page group number and the last two bytes contain a value
that may be used for interpreting dbkeys.

SETN=/SETP=/SETO=set-name

Determines the record whose db-key will be placed in the location identified by

db-key. Set-name must be a set included in the subschema. The saved db-key can
belong to the next, prior, or owner record rel ative to the current record of the
named set:

■ SETN=set-name saves the db-key of the next record relative to the record that
is current of the specified set. A request for SETN currency cannot be specified

unless the named set has prior pointers; prior pointers ensure that the next
pointer in the prefix of the current record does not point to a logically deleted
record.

@ACCEPT DBKEY RELATIVE TO CURRENCY—moves the db-key

Chapter 5: Data Manipulation Language Statements 89

■ SETP=set-name saves the db-key of the prior record relative to the record that
is current of the specified set. A request for SETP currency cannot be specified

unless the named set has prior pointers.

Note: No indication of an end-of-set condition is possible for an @ACCEPT SETN
or SETP. A retrieval statement must be i ssued to determine whether the next
or prior record in the set occurrence is the owner record.

■ SETO=set-name saves the db-key of the owner of the current set. A request for
SETO currency cannot be executed unless the named set has owner pointers. If

the current record of the named set is the owner record occurrence, requests
for SETO currency return the db-key of the record itself, even if this set does
not have owner pointers.

Note: When a record declared as an optional or manual member of a set is
accessed, it is not established as current of set if it is not currently connected to

the named set. A subsequent attempt to access the owner record will instead
locate the owner of the current record of set. In such cases, determine whether
the retrieved record is actually a set member before executing the @ACCEPT
DBKEY=db-key, SETO=set-name statement. The @IF statement (see "@IF" later

in this chapter) can be used for this purpose.

@ACCEPT DBKEY RELATIVE TO CURRENCY Example

The following statements i l lustrate the use of the @ACCEPT DBKEY RELATIVE TO
CURRENCY statement. The program performs the following steps:

1. Traverses the DEPT-EMPLOYEE set

2. Saves the db-key of the owner record of the OFFICE-EMPLOYEE set

3. Accesses the owner record of the OFFICE-EMPLOYEE set by using the saved db-key,
after further processing has changed currency

MVC DEPTID,=CL4'1234'

@FIND CALC,REC='DEPARTMENT'

@FIND NEXT,SET='DEPT-EMPLOYEE'

@ACCEPT DBKEY=SAVDKEY,SETO='OFFICE-EMPLOYEE'

.

.

@OBTAIN DBKEY=SAVEDKEY

@ACCEPT PGINFO—moves the page information

90 DML Reference Guide for Assembler

@ACCEPT DBKEY RELATIVE TO CURRENCY Status Codes

After completion of the @ACCEPT DBKEY RELATIVE TO CURRENCY function, the
ERRSTAT field in the IDMS communications block indicates the outcome of the
operation.

The following is a l ist of the acceptable status codes for this function and their
corresponding meaning:

0000

The request has been serviced successfully.

1508

The specified record is not in the subschema. The program has probably invoked the
wrong subschema.

@ACCEPT PGINFO—moves the page information

The @ACCEPT PGINFO statement moves the page information for a given record to a

specified location in program variable storage. Page information that is saved in this
manner is available for subsequent direct access by using a @FIND/@OBTAIN DBKEY
statement.

The dbkey radix portion of the page information can be used in interpreting a dbkey for

display purposes and in formatting a dbkey from page and line numbers. The dbkey
radix represents the number of bits within a dbkey value that are reserved for the line
number of a record. By default, this value is 8, meaning that up to 255 records can be
stored on a single page of the area. Given a dbkey, you can separate its associated page

number by dividing the dbkey by 2 raised to the power of the dbkey radix. For example,
if the dbkey radix is 4, you would divide the dbkey value by 2**4. The resulting value is
the page number of the dbkey. To separate the line number, you would multiply the
page number by 2 raised to the power of the dbkey radix and subtract thi s value from

the dbkey value. The result would be the line number of the dbkey. The following two
formulas can be used to calculate the page and line numbers from a dbkey value:

■ Page-number = dbkey value / (2 ** dbkey radix)

■ Line-number = dbkey value - (page-number * (2 ** dbkey radix))

@ACCEPT PGINFO Syntax

►►─ @ACCEPT PGINFO=pg-info-v,REC=record-name ────────────────────────────────►◄

@ACCEPT PGINFO—moves the page information

Chapter 5: Data Manipulation Language Statements 91

@ACCEPT PGINFO Parameters

PGINFO=pg-info-v

Specifies the name of a four-byte field that is made up of two halfword fields.
Identifies the location in variable storage that contains page information for the

specified record. Upon successful completion of this statement, the first two bytes
of the field contain the page group number and the last two bytes contain a value
that may be used for interpreting dbkeys.

REC=record-name

Specifies the record whose page information will be placed in the specified location.

@ACCEPT PGINFO Example

The following example retrieves the page information for the DEPARTMENT record.

PAGEINFO DS 0F

PGROUP DS H

RADIX DS H

 @ACCEPT PGINFO=PAGEINFO,REC='DEPARTMENT'

@ACCEPT PGINFO Status Codes

Status Codes

After completion of the @ACCEPT PGINFO statement, the ERROR-STATUS field in the
IDMS communications block indicates the outcome of the operation.

The following is a l ist of the acceptable status codes for this function and their
corresponding meaning:

0000

The request has been serviced successfully.

1508

The specified record is not in the subschema. The program has probably invoked the
wrong subschema.

@ACCEPT PROC—moves the information block

92 DML Reference Guide for Assembler

@ACCEPT PROC—moves the information block

The @ACCEPT PROC statement moves the 256-byte application program information
block associated with a previously defined database procedure to a specified location in
program variable storage. Information is placed in this block by a previously issued
@BIND PROC statement (discussed later in this chapter). This information may have

subsequently been updated by the procedure. The @ACCEPT PROC statement can be
used by programs running under, but in a different partition from, the central version.

@ACCEPT PROC Syntax
►►─── @ACCEPT PROC=procedure-name ──►

 ►─── ,COMAREA=procedure-control-location ────────────────────────────────────►◄

@ACCEPT PROC Parameters

PROC=procedure-name

Specifies the name of the database procedure whose application program

information block is to be moved to program variable storage. Procedure-name
must identify a fullword-aligned 8-byte l iteral.

COMAREA=procedure-control-location

Specifies the fullword-aligned 256-byte field in program variable storage to which
the application program information block is to be moved.

@ACCEPT PROC Example

The following statement moves the application program information block used by the

CHECKALL procedure to the location identified as CHECKIT in the application program's
variable storage:

@ACCEPT PROC='CHECKALL',COMAREA=CHECKIT

@ACCEPT STATS—moves system runtime statistics

Chapter 5: Data Manipulation Language Statements 93

@ACCEPT PROC Status Codes

After completion of the @ACCEPT PROC function, the ERRSTAT field in the IDMS
communications block indicates the outcome of the operation.

The following is a l ist of the acceptable status codes for this function and their

corresponding meaning:

0000

The request has been serviced successfully.

1508

The specified record is not in the subschema. The program has probably invoked the
wrong subschema.

@ACCEPT STATS—moves system runtime statistics

The @ACCEPT STATS statement moves system runtime statistics located in the
program's IDMS statistics block to program variable storage. You can issue this

statement any number of times during the execution of a run unit. For example, you
might request database statistics after storing a variable-length record to determine
whether the entire record was stored in one place or if fragments were placed in an

overflow area.

The @ACCEPT STATS statement does not reset any of the statistics fields to zero. The
IDMS statistics block fields are reset when you issue an @FINISH statement.

@ACCEPT STATS Syntax

►►─── @ACCEPT STATS=db-statistics ──►

 ►───┬────────────────────────────────┬───────────────────────────────────────►◄
 └─ STATX=extended-db-statistics ─┘

@ACCEPT STATS Parameters

STATS=

Moves system runtime statistics to a location in program variable storage identified

by db-statistics.

db-statistics

Identifies an aligned, 100-byte field. The dictionary contains a record, DBSTATS, for
the system runtime statistics. You can copy this record into program variable
storage by coding the following statement:

@ACCEPT STATS—moves system runtime statistics

94 DML Reference Guide for Assembler

 @COPY IDMS,DBSTATS

 DBSTATS DS OD

 DATE2DAY DS CL8 TODAY'S DATE

 TIME2DAY DS CL8 CURRENT TIME OF DAY

 PAGESRED DS F PHYSICAL PAGES READ

 PAGESWRT DS F PHYSICAL PAGES WRITTEN

 PAGESQST DS F LOGICAL PAGES READ

 CALCTARG DS F NO. CALC STORES ON TARGET PAGE

 CALCOVFL DS F NO. CALC OVERFLOWS

 VIATARGT DS F NO. VIA STORES ON OWNER PAGE

 VIAOVRFL DS F NO. VIA OVERFLOWS

 LINERQST DS F RECORDS (LINES) REQUESTED

 CURRECDS DS F RECORDS CURRENT

 IDMSCALL DS F NO. CALLS TO IDMSDBMS

 FRAGMTST DS F NO. VAR-LENGTH FRAGMENTS STORED

 RELORECS DS F NO. RECORDS RELOCATED

 LOCKREQS DS F TOTAL NO. RECORD LOCKS HELD

 SELECLOK DS F TOTAL NO. SELECT LOCKS HELD

 UPDATLOC DS F TOTAL NO. EXCLUSIVE LOCKS HELD

 RUNUNIT# DS F RUN-UNIT ID NUMBER

 TASK#ID DS F TASK ID NUMBER

 LOCAL#ID DS CL8 LOCAL ID NUMBER

 DS CL8 RESERVED

The LOCAL#ID field consists of the 4-byte identifier of the interface in which the run

unit originated (for example, BATC, DBDC, CICS) and a unique identifier (a fullword
binary value) assigned to the run unit by that interface. For batch and CMS run
units, this identifier specifies the internal machine time. For CICS run units, this

identifier specifies the CICS transaction number assigned to the run unit. To display
the originating interface identifier and the run-unit identifier for a program, you can
move the LOCAL#ID field to a work field:

WRKLCID DS 0D

WRKLCORG DC CL4' '

WRKLCNUM DC F'0'

Note: The DBSTATS record can be modified by your DBA to define two subordinate
fields for the LOCAL#ID field.

STATX=

Moves extended system runtime statistics to a location in program variable storage
identified by extended-db-statistics.

@ACCEPT STATS—moves system runtime statistics

Chapter 5: Data Manipulation Language Statements 95

extended-db-statistics

Identifies an aligned, 100-byte field. The dictionary contains a record, DBSTATX, for

the system runtime extended statistics. You can copy this record into program
variable storage by coding the following statement:

 @COPY IDMS,DBSTATS

 DS OD

 DBSTATX DS 0CL100

 SR8SPLIT DS FL4 Number of SR8 splits

 SR8SPAWN DS FL4 Number of SR8 spawns

 SR8STORE DS FL4 Number of SR8 STOREs

 SR8ERASE DS FL4 Number of SR8 ERASEs

 SR7STORE DS FL4 Number of SR7 STOREs

 SR7ERASE DS FL4 Number of SR7 ERASEs

 BSRCHTOT DS FL4 Number of binary searches

 LSRCHTOT DS FL4 Number of levels searched

 ORPHADPT DS FL4 Number of orphans adopted

 LSRCHBST DS HL2 Best number of levels searched

 LSRCHWST DS HL2 Worst number of levels searched

 DS CL60

Most of these counters are self-explanatory. The BSRCHTOT field indicates the total
number of binary searches performed during the course of the run unit. LSRCHTOT
indicates the total number of index levels searched.

The LSRCHBST and LSRCHWST fields describe the best and worst cases, respectively,
for all random searches (such as generic searches) of all indexes. In other words,

these statistics indicate the smallest and largest number of levels searched for a
single request.

@ACCEPT STATS Status Codes

After completion of the @ACCEPT STATS function, the ERRSTAT field in the IDMS

communications block indicates the outcome of the operation. The following is a l ist of
the acceptable status codes for this function and their corresponding meaning:

0000

The request has been serviced successfully

1518

The database statistics location has not been bound properly.

#ACCEPT—retrieves system task-related information

96 DML Reference Guide for Assembler

@ACCEPT STATS Example

The following statements establish currency for the sets in which a new EMPLOYEE
record will participate as a member, store the EMPLOYEE record, and move statistics
regarding the stored EMPLOYEE record to the DBSTATS location in main storage:

MVC DEPTID,INDEPTID

@FIND CALC,REC='DEPARTMENT'

MVC OFFCODE,IOFFCODE

@FIND CALC,REC='OFFICE'

@STORE REC='EMPLOYEE'

@ACCEPT STATS=DBSTATS

#ACCEPT—retrieves system task-related information

The #ACCEPT statement retrieves the following system task-related information:

■ Current task code

■ Task identifier

■ Logical terminal identifier

■ Physical terminal identifier

■ DC/UCF system version

■ The ID of the user signed on to the task's logical terminal

■ Physical terminal screen dimensions

#ACCEPT Syntax
►►─┬─────────┬──►
 └─ label ─┘

 ►─── #ACCEPT TYPE= ─┬─ TASKCODE ──┬──►
 ├─ TASKID ────┤
 ├─ LTERMID ───┤
 ├─ SYSVERSN ──┤
 ├─ PTERMID ───┤
 ├─ USERID ────┤
 └─ SCRNSIZE ──┘

 ►─── ,FIELD=return-value-location-pointer ───────────────────────────────────►◄

#ACCEPT—retrieves system task-related information

Chapter 5: Data Manipulation Language Statements 97

#ACCEPT Parameters

TYPE=

Retrieves the requested information:

TASKCODE

Retrieves the 1- to 8-character code that invokes the current task.

TASKID

Retrieves the task identifier assigned by the system. The task identifier is a unique
sequence number stored in a binary fullword numeric field. At system startup, the

system sets the identifier to zero; each time a task is executed, the s ystem
increments the identifier by one.

LTERMID

Retrieves the 1- to 8-character identifier of the logical terminal associated with the
current task.

SYSVERSN

Retrieves the version of the current DC/UCF system. The version number is an
integer in the range 0 through 9999 stored in a binary halfword numeric field.

PTERMID

Retrieves the 1- to 8-character identifier of the physical terminal associated with
the current task.

USERID

Retrieves the 32-character identifier of each user signed on to the logical terminal

associated with the current task. If no user is signed on, the system returns blank.

SCRNSIZE

Retrieves the screen dimensions of the physical terminal associated with the
current task. The screen size is returned in a field that is divided into two halfword

fields: the first halfword contains the row, the second halfword contains the
column. For example, a 24-line by 80-character screen is represented by a value of
24 in the first halfword and 80 in the second halfword. If the current task is not
associated with a terminal, the system returns a null value of 0.

FIELD=

Specifies the location to which the system returns the requested task-related
information.

return-value-location

A register that points to the field or the symbolic name of a user-defined field

whose length is compatible with the length of the field containing the requested
data.

#ATTACH—instructs the system to initiate a new task

98 DML Reference Guide for Assembler

#ACCEPT Status Codes

After completion of the #ACCEPT statement, the value in register 15 indicates the
outcome of the operation. The following is a l ist of the Register 15 value and the
corresponding meaning:

X'00'

The request has been serviced successfully.

X'04'

An invalid return-value location address has been specified in the FIELD parameter.

X'08'

#ACCEPT TYPE=PTERM was specified but no PTERM exists.

#ACCEPT Example

The following example of the #ACCEPT statement retrieves the user ID of each user

signed on to the logical terminal associated with the current task. This information is
placed into the field USERSL2, which is defined in the application program's variable
storage.

#ACCEPT TYPE=USERID,FIELD=USERSL2

#ATTACH—instructs the system to initiate a new task

The #ATTACH statement instructs the system to initiate a new task by acquiring the

necessary task control elements (TCEs) and storage and by adding the task to its
dispatching list. The issuing program retains processing control; the system simply
initializes the attached task and gives it processor time according to its established

priority. (Note that task code priorities established during system generation can be
overridden by the #ATTACH or #CHAP statements.) The #ATTACH may optionally
designate an ECB upon which initial execution of a new task will depend.

#ATTACH—instructs the system to initiate a new task

Chapter 5: Data Manipulation Language Statements 99

#ATTACH Syntax

►►─┬─────────┬─ #ATTACH TSKCD=task-code-pointer ──────────────────────────────►
 └─ label ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 └─ ,PLIST= ─┬─ SYSPLIST ◄ ─────────────┬┘
 └─ parameter-list-pointer ─┘

 ►─┬──────────────────┬───►
 └─ ,PRI=priority ──┘

 ►─┬──────────────────────────┬───►
 └─ ECB=return-ecb-address ─┘

 ►─┬─────────────────────────────────────┬────────────────────────────────────►
 └─ ,TCEADDR= ─┬─ (1) ◄ ──────────────┬┘
 └─ return-tce-address ─┘

 ►─┬──────────────────────────────────┬───────────────────────────────────────►
 └─ ,COND= ────┬─ NO ◄ ───────────┬─┘
 ├─ ALL ────────────┤
 │ ┌──── , ─────┐ │
 └(─▼─┬─ MAXT ─┬─┴─)┘
 ├─ INVT ─┤
 ├─ SCTY ─┤
 └─ MAXC ─┘

 ►─┬───────────────────────────┬──►
 └─ ,MAXTXIT=max-task-label ─┘

 ►─┬───────────────────────────────┬──►
 └─ ,INVTXIT=invalid-task-label ─┘

 ►─┬─────────────────────────────────────┬────────────────────────────────────►
 └─ ,SCTYXIT=security-violation-label ─┘

 ►─┬─────────────────────────────────┬──►
 └─ ,MAXCXIT=max-concurrent-label ─┘

 ►─┬──────────────────────┬───►◄
 └─ ,ERROR=error-label ─┘

#ATTACH Parameters

TSKCD=

Specifies the 1- to 8-character code of the task to be initiated.

task-code

A register pointing to a field that contains the task code, symbolic name of a
user-defined field containing the task code, or the task-code literal enclosed in

quotation marks. Task-code must have been defined either during system
generation or dynamically by using the DCMT VARY DYNAMIC TASK command.

PLIST=

Specifies the location of the 5-fullword storage area that contains one or more

parameters to be passed to the program receiving control.

SYSPLIST

(Default); the symbolic name of the storage area in which the system will build the
#ATTACH parameter l ist.

#ATTACH—instructs the system to initiate a new task

100 DML Reference Guide for Assembler

parameter-list

A register that points to the area in which the system will build the #ATTACH

parameter l ist or the symbolic name of that area.

PRI=

Specifies the dispatching priority of the attached task.

priority

A register containing the priority in the low-order byte or an absolute expression.
Valid codes are 0 through 240; the default is the priority established during system

generation for the specified task code, and the applicable terminal and user.

ECB=

Specifies the location to which the system will return the address of the event
control block (ECB) for the initiated task. Use ECB to control execution of the
attached task through the ECB; if ECB is not defined, the attached task will be set

ready-to-run.

return-ecb-address

A register or the symbolic name of a fullword user-defined field.

TCEADDR=(1)/return-tce-address

Specifies the location to which the system will return the address of the TCE for the
initiated task. return-tce-address

A register or the symbolic name of a fullword user-defined field; the default is
register 1.

COND=

Specifies whether this #ATTACH is conditional and under what conditions control
should be returned to the issuing program.

NO

(Default); specifies that the request is not conditional.

ALL

Specifies that the request is conditional. Control is returned if the attach cannot be

serviced for one or more of the reasons l isted below.

condition

Specifies under what conditions control is returned to the issuing program. Multiple
condition values must be enclosed in parentheses and separated by commas.

MAXT

A maximum-task condition exists; that is, if the number of tasks specified as the

maximum during system generation are currently active. If MAXT is not specified
and a maximum-task condition exists, the attaching task will wait until the attach
can be completed successfully.

#ATTACH—instructs the system to initiate a new task

Chapter 5: Data Manipulation Language Statements 101

INVT

The specified task code is invalid. If INVT is not specified and the specified task is

not valid, the attaching task will be abended.

SCTY

The user signed on to the issuing task is denied access to the requested task
because of a security violation. If SCTY is not specified and a security violation is
detected, the attaching task will be abended.

MAXC

An attempt is being made to attach a task for which a MAXIMUM CONCURRENT
value is specified in the system generation. The maximum number of occurrences
of the task are already active. If MAXC is not specified and a maximum concurrent
condition is detected, the attaching task will be abended.

MAXTXIT=max-task-label

Specifies the symbolic name of a routine to which control is returned if the
#ATTACH request cannot be serviced because of a maximum-task condition.

INVTXIT=invalid-task-label

Specifies the symbolic name of a routine to which control is returned if the
#ATTACH request cannot be serviced because the task code is invalid.

SCTYXIT=security-violation-label

Specifies the symbolic name of a routine to which control is returned if the
#ATTACH request cannot be serviced because of a security violation.

MAXCXIT=max-concurrent-label

Specifies the symbolic name of a routine to which control is returned if the
#ATTACH request cannot be serviced because of a maximum concurrent condition.

ERROR=error-label

Specifies the symbolic name of the routine to which control is returned if a
condition specified in the COND parameter occurs for which no other exit routine
was coded.

#ATTACH Status Codes

By default, the attach request is unconditional . Error conditions that can occur are
described below:

■ A maximum-task condition will result in a delay until another task terminates. The
maximum number of active tasks is set during system generation.

■ Any abnormal condition will result in an abend. Conditions in this category include:

– Invalid task code specified

#ATTACH—instructs the system to initiate a new task

102 DML Reference Guide for Assembler

– The user signed on to the issuing task is denied access to the requested new
task because of a security violation

The issuing program can request return of control to avoid a delay or an abend by using
the COND parameter.

After completion of the #ATTACH request, the value returned to register 15 indicates
the outcome of the operation. The following is a l ist of the Register 15 values and the
corresponding meaning:

X'00'

The request has been serviced successfully.

X'04'

The request cannot be serviced because the maximum number of tasks have
already been attached; no new tasks can currently be attached.

X'08'

The request cannot be serviced due to an invalid task code.

X'0C'

The request cannot be serviced due to a task security violation.

X'14'

The task cannot be attached because the maximum concurrent task l imit (for that
task code) has been exceeded.

Additionally, the values in two user-defined registers or fullwords contain information:

■ Register n contains the address of the ECB of the initiated task is found in the
register or fullword assigned by the ECB= parameter. If the task has been set
ready-to-run, as described above for the ECB parameter, this register is not set.

■ Register m contains the address of the TCE of the initiated task is placed in the

register or fullword assigned by the TCEADDR parameter.

#ATTACH Example

Example

The example shown below of the #ATTACH statement performs the following functions:

■ Task MENU3 is initiated and added to the system dispatching list with a priority
setting of 150.

■ WPLIST is the work area where the system builds the parameter l ist.

■ Register 3 is designated to receive the address of the ECB for the initiated task from
the system.

@BIND PROC—establishes communication

Chapter 5: Data Manipulation Language Statements 103

■ Control will be returned to the exit routine MENERR if the attach cannot be serviced
for any of the optional conditions associated with the COND parameter.

#ATTACH TSKCD='MENU3',PLIST=WPLIST,PRI=150,ECB=(3),COND=ALL, *

 ERROR=MENERR

@BIND PROC—establishes communication

The @BIND PROC statement establishes communication between a program and a
DBA-written database procedure (for example, a security routine). You should use this
statement only when the application program is required to pass more information to

the procedure than is provided by CA IDMS/DB itself. Such instances are unusual; in
most cases, you will not be aware of which procedures gain control befor e or after the
various DML functions.

@BIND PROC Syntax

►►─── @BIND PROC=procedure-name ──►

 ►─── ,COMAREA=procedure-control-location ────────────────────────────────────►◄

IDMSDB--@BIND PROC Parameters

PROC=

Establishes addressability for the specified database procedure in program variable
storage.

procedure-name

Must refer to an 8-character l iteral aligned on a fullword boundary.

COMAREA=

Identifies the program storage location to which the named procedure will be
bound.

procedure-control-location

Must identify a 256-byte (fixed-length) area.

A program running in a different partition than the central version may need to pass

certain information to the database procedure. When the DBMS invokes the database
procedure, this information is copied from the program storage area, identified by
procedure-control-location, into the CA IDMS/DB application program information block.

The information passed is the information in the program storage location at the time
the BIND PROC was performed; it is not the information in the program's storage at the
time of the procedure call.

@BIND REC—establishes addressability for a record

104 DML Reference Guide for Assembler

@BIND PROC Status Codes

After completion of the BIND PROC function, the ERRSTAT field in the IDMS
communications block indicates the outcome of the operation. The following is a l ist of
the acceptable status codes for this function and their corresponding meaning:

0000

The request has been serviced successfully.

1400

The @BIND PROC statement cannot be recognized. This code usually indicates that

the IDMS communications block (SUBSCHEMA-CTRL) is not aligned on a fullword
boundary.

1418

The procedure has been bound improperl y to location 0.

1472

The memory available is insufficient to load dynamically the database procedure.

@BIND PROC Example

The following example of the @BIND PROC statement specifies that register 8 contains
the name of the database procedure to receive information from the program's variable

storage area labeled DBPASS:

@BIND PROC=(R8),COMAREA=DBPASS

@BIND REC—establishes addressability for a record

The @BIND REC statement establishes addressability for a record in variable storage. In
most cases, you do not need to issue individual @BIND REC statements, since the
necessary statements typically are generated as a group by the @COPY
IDMS,SUBSCHEMA-BINDS statement see Assembler DML Coding Considerations (see

page 399). However, you can issue these statements separately as necessary.

For example, since the @COPY IDMS,SUBSCHEMA-BINDS statement does not verify that
each record is bound successfully, you may wish to issue an @BIND REC s tatement for
each record and to check the ERRSTAT field in the IDMS communications block after
each @BIND REC statement. You can also issue separate @BIND REC statements to bind

several records to the same storage location. In any case, you must establish
addressability for each subschema record to be used by the program.

@BIND REC—establishes addressability for a record

Chapter 5: Data Manipulation Language Statements 105

Note: If program registration is in effect, you should code a @COPY
IDMS,SUBSCHEMA-BINDS statement to properly assign the programs to the subschema

control block. Otherwise your program must explicitly initialize the PGNAME field in the
IDMS communications block before the @BIND SUBSCHEMA and @BIND REC
statements are executed.

@BIND REC Syntax

►►─── @BIND REC=record-name ──►

 ►─── ,IOAREA=record-location ──►◄

@BIND REC Parameters

REC=record-name

Binds the named record to a location in variable storage that corresponds to the
record description copied into the program. Record-name must specify a record
included in the subschema.

IOAREA=record-location

Identifies the specific location in the program's variable storage to which the record
is bound.

Note: Use care with this option because source-object mismapping can result from
improper use. In cases where the description of a given CA IDMS/DB record is

present in more than one location in variable storage, you must ensure that the
proper record description is bound at the proper time.

@BIND REC Status Codes

After completion of the @BIND REC function, the ERRSTAT field in the IDMS

communications block indicates the outcome of the operation. The following is a l ist of
the acceptable status codes for this function and their corresponding meaning:

0000

The request has been serviced successfully.

1408

The name record is not in the subschema. The program has probably invoked the
wrong subschema.

1418

The record has been bound improperly to location 0.

@BIND SUBSCH—helps the run unit

106 DML Reference Guide for Assembler

@BIND REC Example

The following example of the @BIND REC statement establishes addressability for the
database record EMPLOYEE to the program's variable storage area labeled EMPLOYE:

@BIND REC='EMPLOYEE',IOAREA=EMPLOYE

@BIND SUBSCH—helps the run unit

The @BIND SUBSCH statement performs the following:

■ Signs on the run unit to the DBMS

■ Identifies the location of optional user-specified IDMS and LRC communication
blocks to the DBMS

■ Names the subschema to be loaded for the run unit

■ Names the Distributed Database System (DDS) node under which the run unit will
execute

■ Identifies the database to be accessed

You must code the @BIND SUBSCH statement as the first DML statement in the
program that is passed to CA IDMS/DB at execution time. This statement must be first
both logically and physically; you cannot branch to @BIND SUBSCH.

In most cases, specific designation of @BIND SUBSCH within an application program is
not necessary since the @COPY IDMS,SUBSCHEMA-BINDS statement (see @COPY IDMS

(see page 411)) automatically invokes the necessary @BIND statements.

Note: If program registration is in effect, the @COPY IDMS,SUBSCHEMA-BINDS
statement is required to properly assign the programs to the subschema control block.
Individual @BIND SUBSCH and @BIND REC statements should not be used if program

registration was enabled during system generation.

@BIND SUBSCH—helps the run unit

Chapter 5: Data Manipulation Language Statements 107

@BIND SUBSCH Syntax

►►─── @BIND SUBSCH=subschema-name ──►

 ►─┬─────────────────────────┬──►
 └─ ,PGMNAME=program-name ─┘

 ►─┬──────────────────────────────────┬───────────────────────────────────────►
 └─ ,LRC=lr-control-block-location ─┘

 ►─┬────────────────────────────────┬───►
 └─ ,LRSIZ=lr-control-block-size ─┘

 ►─┬─────────────────────────────────┬──►
 └─ ,DBNAME=database-name-pointer ─┘

 ►─┬────────────────────────────┬───►
 └─ ,DBNODE=nodename-pointer ─┘

 ►─┬────────────────────────────────────┬─────────────────────────────────────►
 └─ ,DICTNAM=dictionary-name-pointer ─┘

 ►─┬──┬─────────────────────────────────►◄
 └─ ,DICTNOD=dictionary-nodename-pointer ─┘

@BIND SUBSCH Parameters

SUBSCH=

Signs on the application program to CA IDMS/DB.

subschema-name

Identifies the subschema in use. The run unit uses the standard IDMS
communications block brought previously into the program by compiler -directive

statements.

PGMNAME=program-name

Identifies the user program.

LRC=lrc-block-location

Identifies the address of a logical -record request control (LRC) block other than that
brought into the program by the DML precompiler. The definition of this
user-specified subschema control area must be consistent with the standard

SSLRCTL block as normally invoked and used.

LRSIZ=lrc-block-size

Specifies the size of that portion of the LRC block that contains information about
the request's WHERE clause. Lrc-block-size defaults to 576 bytes. For the algorithm

for calculating lrc-block-size, see @COPY IDMS (see page 411).

@BIND SUBSCH—helps the run unit

108 DML Reference Guide for Assembler

DBNAME=

Identifies the database to be accessed by the program. If this parameter is

specified, database-name may be overridden by IDMSOPTI module or SYSCTL fi le
specifications.

database-name

Must specify a register that points to the name of the database, a 1- to 8-character
field, or a quoted literal.

DBNODE=

Optionally names the node that will service database requests issued by the
program. If this parameter is specified, nodename may or may not be overridden by

IDMSOPTI module or SYSCTL fi le specifications (z/OS and OS/390 only).

nodename-pointer

Must be a register that points to the name of the node, a 1- to 8-character field, or
a quoted literal.

DICTNAM=

The dictionary that contains the subschema.

dictionary-name-pointer

Either a register that points to the field that contains the dictionary name or a
quoted literal.

DICTNOD=

The dictionary node that contains the subschema.

dictionary-nodename-pointer

Either a register that points to the field that contains the name of the dictionary or
a quoted literal.

@BIND SUBSCH Status Codes

Status Codes

After completion of the @BIND SUBSCH function, the ERRSTAT field in the IDMS
communications block indicates the outcome of the operation. The following is a l ist of

the acceptable status codes for this function and their corresponding meaning:

0000

The request has been serviced successfully.

1400

The @BIND SUBSCH statement cannot be recognized. This code usually indicates
that the IDMS communications block (SUBSCHEMA-CTRL) is not aligned on a
fullword boundary.

@BIND SUBSCH—helps the run unit

Chapter 5: Data Manipulation Language Statements 109

1467

The subschema invoked does not match the subschema object tables.

1469

The run unit is not bound to the DBMS. This code indicates that the central version
is not active or is not accepting new run units, or that the run unit's connection to

the central version is broken due to timeout or other factors, as noted on the CV
log.

1470

The journal fi le will not open (local mode only); under OS, the most probable cause

is that a DD statement for the journal fi le is missing in the JCL.

1472

The available memory is insufficient to dynamically load a subschema or database
procedure.

1473

The central version is not accepting new run units.

1474

The subschema was not found in the dictionary load area or in the load library.

1477

The run unit has been bound previously.

1480

The node specified in the NODENAME clause either is not active or has been
disabled from the communications network.

1481

The database specified in the CA IDMS network clause is not known to CA IDMS/DB.

1482

The named subschema is not allowed under the database specified in the DBNAME
clause.

1483

The available memory is insufficient to allocate native VSAM work areas.

#BIND TASK—initiates a DC/UCF task

110 DML Reference Guide for Assembler

@BIND SUBSCH Example

The following example of the @BIND SUBSCH statement signs on the application
program EMPUPD to CA IDMS/DB, identifies the subschema EMPSS01, and identifies the
address in program variable storage of the user-specified communications block

EMPCTRL:

@BIND SUBSCH='EMPSS01',SCB=EMPCTRL,PGMNAME='EMPUPD'

#BIND TASK—initiates a DC/UCF task

The #BIND TASK statement initiates a DC/UCF task when the operating mode is
DC-BATCH. This statement establishes communication with the system and, if accessing
DC/UCF queues and printers, allocates a packet-data movement buffer to contain the

queue or printer data. Once a task is started, the program can issue any number of
consecutive BIND-READY-FINISH sequences.

#BIND TASK Syntax
►►─┬─────────┬─ #BIND TASK ───►
 └─ label ─┘

 ►─┬───────────────────┬──►◄
 └─ ,NODE=nodename ──┘

#BIND TASK Parameters

,NODE=

Specifies the 1- to 8-character name of the node to which the task will be bound.

nodename

Either the symbolic name of a user-defined field that contains the nodename or the
nodename itself enclosed in quotation marks. The specified nodename must match

the node named in the nodename statement at system generation.

#BIND TASK Status Codes

After completion of the BIND TASK function, the status field in the IDMS
communications block indicates the outcome of the operation.

#CHAP—changes the dispatching priority

Chapter 5: Data Manipulation Language Statements 111

#BIND TASK Example

The following statement establishes communication with a DC/UCF system:

#BIND TASK.

#CHAP—changes the dispatching priority

The #CHAP statement changes the dispatching priority of the issuing task. #CHAP does
not relinquish control to another task and cannot be used to alter the priority of other

tasks.

#CHAP Syntax

►►─┬─────────┬─ #CHAP PRI=priority ──┬─────────────────────────┬─────►◄
 └─ label ─┘ └─ACTION=───┬─ SET ◄ ─────┤
 ├─ ADD ───────┤
 └─ SUBTRACT ──┘

#CHAP Parameters

PRI=

Specifies a new dispatching priority for the issuing task.

priority

A register that contains the priority in the low-order byte, the symbolic name of a
user-defined field that contains the priority, or an absolute expression in the range
0 through 240.

ACTION=

Specifies the meaning of the priority value using one of the following options:

SET

The priority is an absolute value. SET is the default.

ADD

The priority is a relative value and is added to the task's current priority.

SUBTRACT

The priority is a relative value and is subtracted from the task's current priority.

@COMMIT—commits changes made to the database

112 DML Reference Guide for Assembler

#CHAP Status Codes

The change-priority request is unconditional; any return code other than X'00' will result
in an abend of the task.

#CHAP Example

The following example of the #CHAP statement changes the dispatching priority to one

less than the current dispatching priority:

#CHAP PRI=1,ACTION=SUBTRACT

@COMMIT—commits changes made to the database

The @COMMIT statement commits changes made to the database by an individual run
unit. @COMMIT simulates an @FINISH-@BIND-@READY sequence without relinquishing

control of database resources.

If the run unit is sharing its transaction with another database session, the run unit's

changes may not be committed at the time the @COMMIT statement is executed.

Note: For more information about the impact of transaction sharing, see the
Navigational DML Programming Guide.

Currency

Specifying @COMMIT ALL sets all currencies to null.

@COMMIT Syntax

►►─── @COMMIT ─┬────────┬───►◄
 └─ ,ALL ─┘

@COMMIT Parameters

ALL

Releases record locks and sets all currencies to null.

@COMMIT Status Codes

The only acceptable status code returned for an @COMMIT function is 0000.

#COMMIT—commits changes made to the database

Chapter 5: Data Manipulation Language Statements 113

#COMMIT—commits changes made to the database

The #COMMIT statement commits changes made to the database through an individual
run unit or through all database sessions associated with a task. A task-level commit also
commits all changes made in conjunction with scratch, queue and print activity.

All locks held on current records except for select locks are released. #COMMIT
simulates an #FINISH/@BIND/@READY sequence but does not relinquish control of

database resources.

If the commit applies to an individual run unit and the run unit is sharing its transaction

with another database session, the run unit's changes may not be committed at the
time the #COMMIT statement is executed.

Note: For more information about the impact of transaction sharing, see the
Navigational DML Programming Guide.

Run units (and SQL sessions) impacted by the COMMIT statement remain active after

the operation is complete.

The #COMMIT statement is used in both the navigational and logical record facility
environments. The #COMMIT TASK statement is also used in an SQL programming
environment.

Currency

Specifying #COMMIT ALL sets all currencies to null.

#COMMIT Syntax

►►─┬─────────┬──►
 └─ label ─┘

 ►─── #COMMIT ─┬─────────┬─┬────────┬───►◄
 └─ ,TASK ─┘ └─ ,ALL ─┘

#COMMIT Parameters

#COMMIT Status Codes

@CONNECT—establishes a record occurrence
The @CONNECT statement establishes a record occurrence as a member of a set
occurrence. The specified record must be defined as an optional automatic, optional

manual, or mandatory manual member of the set.

@CONNECT—establishes a record occurrence

114 DML Reference Guide for Assembler

Note: Native VSAM users—The @CONNECT statement is not valid since all sets in
native VSAM data sets must be defined as mandatory automatic.

Currency

Before execution of the @CONNECT statement, you must satisfy the following
conditions:

■ All areas affected either explicitly or implicitly by the @CONNECT statement must
be readied in one of the update usage modes (see @READY (see page 308) later in

this chapter).

■ The named record must be established as current of its record type.

■ The appropriate occurrence of the set into which the named record will be
connected must be established. The current record of set determines the set
occurrence. If the set order is NEXT or PRIOR, this record determines the position of

the new member within the set.

Following successful execution of the @CONNECT statement, the named record is
current of run unit, its record type, its area, and all sets in which it currently participates.
The following figure il lustrates the steps required to connect an EMPLOYEE record to an
occurrence of the OFFICE-EMPLOYEE set.

@CONNECT—establishes a record occurrence

Chapter 5: Data Manipulation Language Statements 115

To connect EMPLOYEE 459 to the OFFICE 1 occurrence of the OFFICE- EMPLOYEE set,
you must establish EMPLOYEE 459 as current of record type, locate the proper

occurrence of the OFFICE record, and connect EMPLOYEE 459 to the OFFICE-EMPLOYEE
set.

@CONNECT—establishes a record occurrence

116 DML Reference Guide for Assembler

@CONNECT Syntax

►►─── @CONNECT REC=record-name ───►

 ►─── ,SET=set-name ──►◄

@CONNECT Parameters

REC=

Connects the current occurrence of the named record to the current occurrence of
the specified set.

record-name

Must be a record included in the subschema and must be defined as an optional
automatic, optional manual, or mandatory manual member of the set to which it is

being connected. Record-name may be specified as a register, a user-defined
variable data field, or a user-supplied value in quotation marks.

SET=

Specifies the set to which the member record is to be connected.

@CONNECT—establishes a record occurrence

Chapter 5: Data Manipulation Language Statements 117

set-name

Must specify a set included in the subschema. The record is connected to the set in

accordance with the ordering rules defined for that set in the schema. Set-name
may be specified as a register, a user-defined variable data field, or a user-supplied
value in quotation marks.

@CONNECT Status Codes

Status Codes

After completion of the @CONNECT function, the ERRSTAT field in the IDMS
communications block indicates the outcome of the operation. The following is a l ist of

the acceptable status codes for this function and their corresponding meaning:

0000

The request has been serviced successfully.

0705

The @CONNECT would violate a duplicates -not-allowed option.

0706

Currency has not been established for the named record or set.

0708

The specified record is not in the subschema. The program has probably invoked
the wrong subschema.

0709

The named record's area has not been readied in one of the three update usage

modes.

0710

The subschema specifies an access restriction that prohibits connecting the named

record in the named set.

0714

The @CONNECT statement cannot be executed because the named record has
been defined as a mandatory automatic member of the set.

0716

The record cannot be connected to a set in which it is already a member.

#DELETE—notifies the DC/UCF system

118 DML Reference Guide for Assembler

0721

An area other than the area of the named record has been readied with an

incorrect usage mode.

0725

Currency has not been established for the named set type.

@CONNECT Example

The following statements connect an EMPLOYEE record from the DEPT-EMPLOYEE set to
the OFFICE-EMPLOYEE set as a new member.

MVC DEPTID,=C'5200'

@FIND CALC,REC='DEPARTMENT'

@OBTAIN FIRST,SET='DEPT-EMPLOYEE'

MVI OFFCODE,C'1'

@FIND CALC,REC='OFFICE'

@CONNECT REC='EMPLOYEE',SET='OFFICE-EMPLOYEE'

#DELETE—notifies the DC/UCF system

The #DELETE statement notifies the DC/UCF system that the issuing task has finished
using a module from the program pool. This module is identified by the program name
or entry-point address that was previously specified by the #LOAD request that placed
the module into the program pool. If your site uses multiple dictionaries you can specify

either the dictionary in which the program resides or the node tha t controls the
dictionary. Other options for a multiple dictionary environment include specifying a
parameter l ist and a program version number for the program you are requesting to

delete.

#DELETE does not physically delete the module from the program pool unless the

program has been defined as NONREUSABLE. Rather, it decrements the in-use count
maintained by the DC/UCF system. An in-use count of 0 indicates to the system that the
space occupied by the module can be reused.

#DELETE—notifies the DC/UCF system

Chapter 5: Data Manipulation Language Statements 119

#DELETE Syntax

►►─┬─────────┬──►
 └─ label ─┘

 ►─── #DELETE─┬─ PGM=program-name-pointer ───┬────────────────────────────────►
 └─ EPADDR=entry-point-address ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 └─ ,PLIST= ─┬─ SYSPLIST ◄ ─────────────┬┘
 └─ parameter-list-pointer ─┘

 ►─┬─────────────────────────────┬──►
 └─ .DICTNOD=nodename-pointer ─┘

 ►─┬────────────────────────────────────┬─────────────────────────────────────►◄
 └─ ,DICTNAM=dictionary-name-pointer ─┘

#DELETE Parameters

PGM=

Specifies the 1- to 8-character name of the module being released from use.

program-name-pointer

A register that points to a field containing the program name, the symbolic name of

a user-defined field containing the program name, or the program-name literal
enclosed in quotation marks.

EPADDR=

Specifies the entry-point address of the module being released from use. This
address was returned to the issuing program when the module was originally

loaded.

entry-point-address

Either a register or the symbolic name of a fullword user-defined field containing
the entry-point address.

PLIST=

Specifies the location of the storage area the system uses to build the parameter

l ist. The PLIST parameter is required only if the DICTNAM or DICTNOD parameters
are specified.

SYSPLIST

The symbolic name of the storage area in which the system will build the #DELETE
parameter l ist.

parameter-list-pointer

A register that points to the area in which the system will build the #DELETE
parameter l ist or the symbolic name of that area.

DICTNOD=

Identifies the node that controls the dictionary in which the program resides.

#DELETE—notifies the DC/UCF system

120 DML Reference Guide for Assembler

nodename-pointer

A register that points to a field that contains the name of the node, the symbolic

name of a user-defined field containing the name of the node, or the nodename
literal enclosed in quotation marks.

DICTNAM=

Identifies the dictionary in which the named program resides.

dictionary-name-pointer

A register that points to a field containing the dictionary name, the symbolic name

of a user-defined field containing the dictionary name, or the dictionary name
literal enclosed in quotation marks.

Note: The DICTNOD or DICTNAM parameters must correspond to those specified on
a previously issued #LOAD statement. If either DICTNOD or DICTNAM or both are

specified, the PLIST parameter must be included.

#DELETE Status Codes

The #DELETE request is unconditional; any error detected during execution will result in

an abend of the issuing task.

#DELETE Example

The following example of the #DELETE statement notifies the system that the program
or module whose entry-point address is contained in register 5 is no longer needed by

the issuing task. The system can reuse this area in the program pool if space is needed.

#DELETE EPADDR=(R5)

The example shown below il lustrates the use of the #LOAD and the #DELETE statements
in a multiple dictionary environment. After execution of the #DELETE statement the
area in the program pool in which EMPMENU resides is released and can be reused by
issuing a new #LOAD request statement.

#LOAD PGM='EMPMENU'

.

.

.

#DELETE PGM='EMPMENU'

#DELQUE—deletes all or part of a queue

Chapter 5: Data Manipulation Language Statements 121

#DELQUE—deletes all or part of a queue

The #DELQUE statement deletes all or part of a queue. If only one queue record is
deleted, the system maintains currency within the queue by using the next and prior
pointers of the queue record.

#DELQUE Syntax

►►─┬─────────┬─ #DELQUE ──►
 └─ label ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 └─ ,PLIST= ─┬─ SYSPLIST ◄ ─────────────┬┘
 └─ parameter-list-pointer ─┘

 ►─┬───────────────────────────┬──►
 └─ ,QUEID=queue-id-pointer ─┘

 ►─┬────────────────────────┬───►
 └─ ,LOC= ─┬─ CURRENT ◄ ┬─┘
 └─ ALL ──────┘

 ►─┬───────────────────────────────┬──►
 └─ ,COND= ─┬── NO ◄ ───────────┬┘
 ├── ALL ────────────┤
 │ ┌─── , ─────┐ │
 └─(─▼─┬─ NQID ─┬┴─)─┘
 ├─ NRID ─┤
 ├─ NRCE ─┤
 ├─ IOER ─┤
 └─ INVP ─┘

 ►─┬──────────────────────────────┬───►
 └─ ,NQIDXIT=no-queue-id-label ─┘

 ►─┬──────────────────────────────────┬───────────────────────────────────────►
 └─ ,NRIDXIT=no-queue-record-label ─┘

 ►─┬───┬────────────────────────────────►
 └─ ,NRCEXIT=no-current-of-run-unit-label ─┘

 ►─┬────────────────────────────┬───►
 └─ ,IOERXIT=i/o-error-label ─┘

 ►─┬───┬────────────────────────────────►
 └─ ,INVPXIT=invalid-parameter-list-label ─┘

 ►─┬──────────────────────┬───►◄
 └─ ,ERROR=error-label ─┘

#DELQUE Parameters

PLIST=

Specifies the location of the 2-fullword storage area in which the system will build
the #DELQUE parameter l ist.

#DELQUE—deletes all or part of a queue

122 DML Reference Guide for Assembler

SYSPLIST

(Default); is the symbolic name of the storage area in which the system will build

the #DELQUE parameter l ist.

parameter-list-pointer

Either a register that points to the area or the symbolic name of the area.

QUEID=

Specifies the 1- to 16-character queue header ID associated with the queue or

queue record to be deleted.

queue-id-pointer

A register that points to a field containing the id, the symbolic name of a
user-defined field containing the ID, or the ID litera l enclosed in quotation marks. If
the queue header ID is not specified, a blank ID is assumed.

LOC=

Indicates the portion of the queue to be deleted.

CURRENT

(Default); deletes only the current record of the queue associated with the
requesting task.

ALL

Deletes all records in the queue and the queue header id.

COND=

Specifies whether this #DELQUE is conditional and under what conditions control
should be returned to the issuing program:

NO

(Default); specifies that the request is not conditional.

ALL

Specifies that the request is conditional. Control is returned if the delete cannot be
serviced for one or more of the reasons l isted below.

condition

Specifies under what conditions control should be returned to the issuing program.
Multiple values must be enclosed in parentheses and separated by commas.
Condition options are as follows:

■ NQID—The queue header record cannot be found.

#DELQUE—deletes all or part of a queue

Chapter 5: Data Manipulation Language Statements 123

■ NRID—LOC=CURRENT has been specified and the record previously established
as current of queue cannot be found.

■ NRCE—LOC=CURRENT has been specified and no resource control element
(RCE) exists for the current record; that is, no record has been established as
current of queue.

■ IOER—An I/O error occurs while processing the delete.

■ INVP—The parameter l ist built for the #DELQUE is invalid.

NQIDXIT=no-queue-id-label

Specifies the symbolic name of the routine to which control should be returned if
the #DELQUE request cannot be serviced because the queue header record cannot
be found.

NRIDXIT=no-queue-record-label

Specifies the symbolic name of the routine to which control should be returned if

the #DELQUE request cannot be serviced because the record previously established
as current of queue cannot be found.

NRCEXIT=no-current-of-run-unit-label

Specifies the symbolic name of the routine to which control should be returned if
the #DELQUE request cannot be serviced because no current of queue has been

established (no resource control element exists for the queue record).

IOERXIT=i/o-error-label

Specifies the symbolic name of the routine to which control should be returned if
the #DELQUE request cannot be serviced because of an I/O error while processing
the delete.

INVPXIT=invalid-parameter-list-label

Specifies the symbolic name of the routine to which control should be returned if
the #DELQUE request cannot be serviced because of an i nvalid parameter in the
parameter l ist.

ERROR=error-label

Specifies the symbolic name of the routine to which control should be returned if a

condition specified in the COND parameter occurs for which no other exit routine
was coded.

#DELQUE Status Codes

By default, the #DELQUE request is unconditional; any runtime error will result in an

abend of the issuing task. To avoid an abend, you can request return of control to the
issuing program by using the COND parameter.

#DELQUE—deletes all or part of a queue

124 DML Reference Guide for Assembler

After completion of the #DELQUE function, the value in register 15 indicates the
outcome of the operation. The following is a l ist of the Register 15 values and the

corresponding meaning:

X'00'

The request has been serviced successfully.

X'04'

The request cannot be serviced due to an invalid parameter l ist.

X'08'

The request cannot be serviced because the requested queue header record
(identified by QUEID) cannot be found.

X'0C'

The request cannot be serviced because the requested queue record cannot be
found.

X'10'

The request for a #DELQUE LOC=CURRENT cannot be serviced because no resource
control element (RCE) exists for the queue record, indicating that currency has not
been established.

X'1C'

A database error occurred during queue processing. A common cause is a DBKEY
deadlock. For a PUT QUEUE operation, this code can also mean that the queue
upper l imit has been reached.

If a database error has occurred, there are usually be other messages in the
CA-IDMS/DC/UCF log indicating a problem encountered in RHDCRUAL, the internal
Run Unit Manager. If a deadlock has occurred, messages DC001000 and DC001002
are also produced.

If an I/O error occurs while processing a #DELQUE request, the system wil l return the
address of the IDMS communications block to register 1. In this situation, you can check
the status code in the ERRSTAT field (for more information, see ERRSTAT Field and

Codes (see page 41)).

#DELQUE Example

The following example of the #DELQUE statement deletes an entire queue area. The
address of the queue header ID is contained in register 4. In the event of an I/O error,

control will be returned to the ERROR5 routine of the issuing program; other error
conditions will result in an abend of the issuing task.

#DELQUE QUEID=(R4),LOC=ALL,COND=IOER,IOERXIT=ERROR5

#DELSCR—deletes scratch records

Chapter 5: Data Manipulation Language Statements 125

#DELSCR—deletes scratch records

The #DELSCR statement deletes one or all scratch records in a scratch area.

#DELSCR Syntax

►►─┬─────────┬─ #DELSCR ──►
 └─ label ─┘

 ►─┬──┬─────────────────────────────►
 └─ PLIST= ─┬─ SYSPLIST ◄ ───────────────────┬┘
 └─ parameter-value-list-pointer ─┘

 ►─┬─────────────────────────────────┬──►
 └─ ,SAID=scratch-area-id-pointer ─┘

 ►─┬──┬─────────────────────────►
 └─ ,LOC= ─┬─ Next ◄ ───────────────────────────┬─┘
 ├─ Current ──────────────────────────┤
 ├─ First ────────────────────────────┤
 ├─ Last ─────────────────────────────┤
 ├─ Prior ────────────────────────────┤
 ├─ All ──────────────────────────────┤
 └─ (SRID,scratch-record-id-pointer) ─┘

 ►─┬───┬──────────────────────────────►
 └─ ,RTNSRID= ─┬─ (1) ◄ ────────────────────┬┘
 └─ return-scratch-record-id ─┘

 ►─┬───────────────────────────────┬──►
 └─ ,COND= ─┬── NO ◄ ───────────┬┘
 ├── ALL ────────────┤
 │ ┌─── , ─────┐ │
 └─(─▼─┬─ NAID ─┬┴─)─┘
 ├─ NIRD ─┤
 ├─ IOER ─┤
 └─ INVP ─┘

 ►─┬─────────────────────────────────────┬────────────────────────────────────►
 └─ ,NAIDXIT=no-scratch-area-id-label ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 └─ ,NRIDXIT=no-scratch-record-id-label ─┘

 ►─┬─────────────────────────────┬──►
 └─ ,IOERXIT=i/o-error-label ─┘

 ►─┬───┬────────────────────────────────►
 └─ ,INVPXIT=invalid-parameter-list-label ─┘

 ►─┬──────────────────────┬───►◄
 └─ ,ERROR=error-label ─┘

#DELSCR—deletes scratch records

126 DML Reference Guide for Assembler

#DELSCR Parameters

PLIST=

Specifies the location of the 3-fullword storage area in which the system will build
the #DELSCR parameter l ist.

SYSPLIST

(Default); the symbolic name of the storage area in which the system will build the
#DELSCR parameter l ist.

parameter-list-pointer

A register that points to the area or the symbolic name of the area in which the
system will build the #DELSCR parameter l ist.

SAID=

Specifies the 1- to 8-character ID of the scratch area associated with the scratch
record being deleted.

scratch-area-id-pointer

A register that points to a field containing the id, the symbolic name of a
user-defined field containing the ID, or the ID literal enclosed in quotation marks. If
the SAID parameter is not specified, a scratch area ID of 8 blanks is assumed.

LOC=

Specifies the scratch record to be deleted from the area associated with the

specified scratch record id.

NEXT

(Default); deletes the next record. If currency has not been established, NEXT is
equivalent to FIRST.

CURRENT

Deletes the current record, that record most recently referenced by another scratch

function.

FIRST

Deletes the first record. (Records are always stored in ascending order by scratch
record ID.)

LAST

Deletes the last record.

PRIOR

Deletes the prior record. If currency has not been established, PRIOR is equivalent

to LAST.

ALL

Deletes all records.

#DELSCR—deletes scratch records

Chapter 5: Data Manipulation Language Statements 127

(SRID,scratch-record-id)

Deletes the record identified by scratch-record-id. Scratch-record-id is a register

that points to the 4-byte scratch record id, the symbolic name of a user-defined
field containing the id, or an absolute expression of the id.

RTNSRID=(1)/

Specifies the location to which the system will return the scratch record ID of the
last record deleted with a #DELSCR function.

return-scratch-record-id

A register or the symbolic name of a fullword user-defined field to which the system
will return the scratch record ID of the last record deleted, the default is register 1.

COND=

Specifies whether this #DELSCR is conditional and under what conditions control
should be returned to the issuing program, as follows.

NO

(Default); specifies that the request is not conditional.

ALL

Specifies that the request is conditional. Control is returned if the delete cannot be
serviced for any of the reasons l isted below.

condition

Specifies conditions under which control is returned to the issuing program.

Multiple condition options must be enclosed in parentheses and separated by
commas. Condition options are as follows:

■ NAID The scratch area ID cannot be found.

■ NRID The scratch record ID cannot be found.

■ IOER An I/O error occurs while processing the deletion.

■ INVP The parameter l ist built for the #DELSCR is invalid.

NAIDXIT=no-scratch-area-id-label

Specifies the symbolic name of the routine to which control should be returned if
the #DELSCR request cannot be serviced because the scratch area ID cannot be
found.

NRIDXIT=no-scratch-record-id-label

Specifies the symbolic name of the routine to which control should be returned if

the #DELSCR request cannot be serviced because the scratch record ID cannot be
found.

#DELSCR—deletes scratch records

128 DML Reference Guide for Assembler

IOERXIT=i/o-error-label

Specifies the symbolic name of the routine to which control should be returned if

the #DELSCR request cannot be serviced because of an I/O error while proc essing
the #DELSCR request.

INVPXIT=invalid-parameter-list-label

Specifies the symbolic name of the routine to which control should be returned if
the #DELSCR request cannot be serviced because of an invalid parameter l ist.

ERROR=error-label

Specifies the symbolic name of the routine to which control should be returned if a
condition specified in the COND parameter occurs for which no other exit routine
was coded.

#DELSCR Status Codes

By default, the #DELSCR request is unconditional; any runtime error will result in an
abend of the issuing task. You can request return of control to the issuing program by
using the COND parameter to avoid an abend.

After completion of the #DELSCR, the value in register 15 indicates the outcome of the

operation. The following is a l ist of the Register 15 values and the corresponding
meaning:

X'00'

The request has been serviced successfully.

X'04'

The request cannot be serviced due to an invalid parameter l ist

X'08'

The request cannot be serviced because the requested scratch area ID (SAID)
cannot be found.

X'0C'

The request cannot be serviced because the requested scratch record ID (SRID)
cannot be found within the named SAID.

X'1C'

The request cannot be serviced due to an I/O error during processing.

If an I/O error occurs while processing a #DELSCR request, the system will return the
address of the IDMS communications block to register 1. In this situation, you can check
the status code in the ERRSTAT field for more information (see ERRSTAT Field and Codes

(see page 41)). If no error occurs during processing, a user-defined register assigned by
the RTNSRID parameter will contain the SRID of the last scratch record deleted.

#DEQ—releases resources acquired by the issuing task

Chapter 5: Data Manipulation Language Statements 129

#DELSCR Example

The following example of the #DELSCR statement deletes the current record within the
scratch area labeled SCRAREA1. The ID of the deleted record will be placed in register 1.
The request is not conditional; any error condition resulting from the execution of this

statement will result in an abend of the issuing task.

#DELSCR SAID='SCRAREA1',LOC=CURRENT,RTNSRID=(R1),COND=NO

#DEQ—releases resources acquired by the issuing task

The #DEQ statement releases resources acquired by the issuing task with an #ENQ
request. All acquired resources will be released, either explicitly with a #DEQ request or
automatically at task termination.

#DEQ Syntax

►►─┬─────────┬──►
 └─ label ─┘

 ►─── #DEQ RSCID= ─┬─ ALL ─────────────────────────┬──────────────────────────►
 └─ resource-id-pointer-options ─┘

 ►─┬───┬──────────────────────────────►
 └─ PLIST= ─┬─ SYSPLIST ◄ ───────────────────┤
 └─ parameter-value-list-pointer ─┘

 ►─┬─────────────────────────┬──►
 └─ ,COND= ─┬─ NO ◄ ──────┬┘
 └─ IDNF ──────┘

 ►─┬──┬─────────────────────────────────►
 └─ ,IDNFXIT=resource-id-not-found-label ─┘

 ►─┬──────────────────────┬───►◄
 └─ ,ERROR=error-label ─┘

Expansion of resource-id-pointer-options

 ┌──┐
►─── (──▼── resource─id─pointer ─┬───────────────────────┬─┴─) ────────────►
 └─ ,resource-id-length ─┘

#DEQ Parameters

RSCID=

Specifies the resources to be released.

ALL

Requests that the system release all resources acquired by the issuing task by

means of the #ENQ requests.

#DEQ—releases resources acquired by the issuing task

130 DML Reference Guide for Assembler

resource-id-pointer-options

Specifies the ID associated with a specific resource to be dequeued.

Resource-id-pointer is a register that points to a field containing the id, the symbolic
name of a user-defined field containing the id, or the ID literal enclosed in
quotation marks. Resource-id-pointer must be enclosed in parentheses.

The optional resource-id-length specifies the length of the resource ID named by
resource-id-pointer (up to 256 bytes). Resource-id-length is a register that contains

the length, the symbolic name of a fullword, halfword, or byte-length user-defined
field containing the length, or an absolute expression. The length of the ID need not
be specified if resource-id-pointer is provided as a l iteral enclosed in quotation

marks.

Multiple RSCID parameters must be in successive order, separated by commas.

PLIST=

Specifies the location of the storage area in which the system will build the #DEQ
parameter l ist, as follows.

SYSPLIST

(Default); is the symbolic name of the storage area in which the system will build

the #DEQ parameter l ist.

parameter-value-list-pointer

A register that points to the area or the symbolic name of the area in which the
system will build the #DEQ parameter l ist.

The size, in fullwords, of the parameter-list area is equal to:

1 + 2P + ((R + 3)/4),

where:

■ P is the number of resource-id specifications named for the RSCID parameter
(described above).

■ R is the number of resource-id-length specifications named in register notation

for the RSCID parameter.

If RSCID=ALL is specified, the length of this storage area is one fullword; if five

resource ids are specified and four have a length indicated in register notation, it is
13 fullwords. (Note that in this case the calculated value of 12.75 was rounded up
to a whole number.)

COND=

Specifies whether this #DEQ is conditional and under what conditions control

should be returned to the issuing program:

NO

(Default); specifies that the request is not conditional.

#DEQ—releases resources acquired by the issuing task

Chapter 5: Data Manipulation Language Statements 131

IDNF

Specifies that the request is conditional. Control is returned if one or more resource

ids identified by the RSCID parameter cannot be found.

IDNFXIT=resource-id-not-found-label

Specifies the symbolic name of the routine to which control should be retur ned if
the #DEQ request cannot be completely serviced because one or more resource ids
cannot be found.

ERROR=error-label

Specifies the symbolic name of the routine to which control should be returned if a
condition specified in the COND parameter occurs for which no other exit routine
was coded. In this case, the ERROR parameter functions the same as IDNFXIT.

#DEQ Status Codes

By default, the #DEQ is unconditional. Error conditions that can occur are described
below. If one or more resources cannot be found, the issuing task will abend. You can
avoid an abend by specifying the COND parameter, requesting the DC/UCF system to
return control to the issuing program.

After completion of the #DEQ request, the value in register 15 indicates the outcome of

the operation. The following is a l ist of the Register 15 values and the corresponding
meaning:

X'00'

The request has been serviced successfully.

X'04'

#DEQ Example

The following example of the #DEQ statement releases the resource that is identified in
the program variable storage field labeled RESOURC3. Register 4 contains the length of

the resource. If the resource cannot be found, control will be returned to the routine
NOTFOUND.

#DEQ RSCID=(RESOURC3,(4)),COND=IDNF,IDNFXIT=NOTFOUND

At least one resource ID (RSCID) could not be found; all that were located ha ve
been dequeued.

@DISCON—cancels the current membership of a specified record

132 DML Reference Guide for Assembler

@DISCON—cancels the current membership of a specified
record

The @DISCON statement cancels the current membership of a specified record in a set
occurrence. The specified record must be defined as an optional member of the named
set.

Note: Native VSAM users—The @DISCON statement is not valid because all sets in

native VSAM data sets must be defined as mandatory automatic.

The following consideration apply:

■ All areas affected, either explicitly or implicitly, by the @DISCON statement must be

readied with one of the update usage modes (see @READY (see page 308) later in
this chapter).

■ After successful execution of the @DISCON statement, you can no longer access the
specified record through the set for which membership was canceled. However,
you can access the disconnected record through all the other sets in which it

participates as a member, or if it has a location mode of CALC. It is always accessible
by means of a complete scan of the area in which it participates or directly through
its db-key, if known.

Currency

Before execution of the @DISCON statement, the following currency-related conditions

must be satisfied:

■ The specified record must be established as current of its record type.

■ The specified record must currently participate as a member in an occurrence of
the named set.

A successfully executed @DISCON statement nullifies currency in the named set.

However, the next of set and prior of set are maintained, thereby enabling continued
access within the set. The disconnected record is current of run unit, its record type, and
its area.

@DISCON Syntax

►►─── @DISCON REC=record-name ──►

 ►─── ,SET=set-name ──►◄

@DISCON—cancels the current membership of a specified record

Chapter 5: Data Manipulation Language Statements 133

@DISCON Parameters

REC=

Disconnects the specified record from the named set.

record-name

Must be a record included in the subschema and must be defined as an optional
member of the specified set.

SET=

Specifies the set from which the named record will be disconnected.

set-name

Must be a set included in the subschema.

@DISCON Status Codes

After completion of the @DISCON function, the ERRSTAT field in the IDMS
communications block indicates the outcome of the operation. The following is a l ist of

the acceptable status codes for this function and their corresponding meani ng:

1106

Currency has not been established for the named record.

1108

The named record is not in the subschema. The program has probably invoked the
wrong subschema.

1109

The specified record's area has not been readied in one of the three update usa ge

modes.

1110

The subschema specifies an access restriction that prohibits use of the @DISCON

statement.

1115

The @DISCON statement cannot be executed because the specified record has
been defined as a mandatory member of the set.

1121

An area other than the area of the specified record has been readied with an
incorrect usage mode.

1122

The specified record is not currently a member of the specified set.

@DISCON—cancels the current membership of a specified record

134 DML Reference Guide for Assembler

@DISCON Example

The following example demonstrates the use of the @DISCON statement to remove an
EMPLOYEE record from the OFFICE-EMPLOYEE set occurrence. The EMPLOYEE record
remains a member in the other set occurrences in which it participates:

MVC OFFCODE,=CL4'3200'

@FIND CALC,REC='OFFICE'

@FIND FIRST,REC='EMPLOYEE',SET='OFFICE-EMPLOYEE'

@DISCON REC='EMPLOYEE',SET='OFFICE-EMPLOYEE'

The following figure il lustrates the above example. To disconnect EMPLOYEE 4 from the
OFFICE 1 occurrence of the OFFICE-EMPLOYEE set, enter the database on OFFICE 1,

establish EMPLOYEE 4 as current of the EMPLOYEE record type, and disconnect it from
the OFFICE-EMPLOYEE set.

#ENQ—acquires resources or tests for availability

Chapter 5: Data Manipulation Language Statements 135

#ENQ—acquires resources or tests for availability

The #ENQ statement acquires resources or tests for availability of a resource or l ist of
resources. Defined during installation, resources can be storage areas, common
routines, queues, and processor time.

An enqueued resource can be exclusive or shared:

■ Exclusive specifies that the resource is owned exclusively by the issuing task and is
not available to any other tasks. The system prohibits other tasks from issuing #ENQ
requests for exclusive resources.

■ Shared specifies that the resource is available for use by all tasks. The system allows

other tasks to issue nonexclusive #ENQ requests for the resources, permitting the
resources to be shared.

An exclusive #ENQ request prohibits another task from enqueuing a resource by name;
however, it does not prohibit the use of the resource by another task. Therefore, to

effect queue resource protection, you must apply the enqueue/dequeue mechanism
consistently, according to your site standards.

#ENQ Syntax
►►─┬─────────┬─ #ENQ RSCID= ──►
 └─ label ─┘

 ►─── (resource-id-pointer ─┬───────────────────────┬──┬───────┬─) ──────────►
 └─ ,resource-id-length ─┘ ├─ ,E ◄ ┤
 └─ ,S ──┘

 ►─┬───┬────────────────────────────►
 └─ ,PLIST= ─┬─ SYSPLIST ◄ ───────────────────┬┘
 └─ parameter-value-list-pointer ─┘

 ►─┬────────────────────────┬───►
 └─ ,TYPE= ─┬─ ACQUIRE ◄ ┬┘
 └─ TEST ─────┘

 ►─┬───────────────────────────────┬──►
 └─ ,COND= ─┬── NO ◄ ───────────┬┘
 ├── ALL ────────────┤
 │ ┌─── , ─────┐ │
 └─(─▼─┬─ RSNA ─┬┴─)─┘
 └─ DEAD ─┘

 ►─┬───┬────────────────────────────────►
 └─ ,RSNAXIT=resource-not-available-label ─┘

 ►─┬───────────────────────────┬──►
 └─ ,DEADXIT=deadlock-label ─┘

 ►─┬──────────────────────┬───►
 └─ ,ERROR=error-label ─┘

 ►─┬───────────────────────────────┬──►◄
 └─ ,FREEXIT=test-is-free-label ─┘

#ENQ—acquires resources or tests for availability

136 DML Reference Guide for Assembler

#ENQ Parameters

RSCID=

Names one or more resources to be acquired or tested, specifies the length of each
resource, and designates the resource as exclusi ve or shared.

resource-id-pointer

Specifies the character ID associated with a resource. The resource-id-pointer can
be a register that points to a field that contains the ID, he symbolic name of a
user-defined field that contains the ID, or the ID litera l enclosed in quotation marks.

The source-id is a 1 to 256 byte character string used to identify the resource upon
which an enqueue is to be set or tested. Any character string may be defined as
long as all programs that access the resource use the same name and the name is
unique relative to all other names used to identify other resources within the CV.

resource-id-length

Specifies the length of the resource id. Resource-id-length is a register that contains
either the length, the symbolic name of a fullword, halfword, or byte-length
user-defined field that contains the length, or an absolute expression. You need not
specify the length of the ID if resource-id-pointer is provided as a l iteral enclosed in

quotation marks.

E/S

Assigns the exclusive (E) (default) or shared (S) attribute to the named resource.

Note: Multiple RSCID parameters must be in successive order, separated by

commas.

PLIST=

Specifies the location of the storage area in which the system will build the #ENQ
parameter l ist.

SYSPLIST

(Default); is the symbolic name of the storage area in which the system will build
the #ENQ parameter l ist.

parameter-value-list-pointer

Either a register that points to the area or the symbolic name of the area in which
the system will build the #ENQ parameter l ist.

The size of the parameter-list area, in fullwords, is equal to:

1 + 3P + ((R + 3)/4)

where:

■ P is the number of resource-id specifications in the RSCID parameter (described

above).

■ R is the number of resource-id-length specifications named in register notation
for the RSCID parameter.

#ENQ—acquires resources or tests for availability

Chapter 5: Data Manipulation Language Statements 137

Thus, if four resource IDs are specified and three are identified using register
notation, the length of this storage area is 15 fullwords. In this case the calculated

value of 14.5 was rounded up to a whole number. Calculated values are always
rounded up to the nearest whole number, regardless of the remainder value.

TYPE=

Specifies whether the issuing task is to test a resource for availability or request
acquisition of a resource:

ACQUIRE

(Default); requests that the system acquire the specified resources.

TEST

Requests that the system test the availability of the specified resource.

COND=

Specifies whether this #ENQ request is conditional and under what conditions

control should be returned to the issuing program. Only acquire requests can be
conditional; this parameter should not be specified when testing the enqueue
status of a resource.

NO

(Default); specifies that the request is not conditional.

ALL

Specifies that the request is conditional. Control is returned if the #ENQ cannot be
serviced for any of the reasons l isted below.

condition

Specifies specific conditions you can test for. Multiple conditions must be enclosed

in parentheses and separated by commas.

RSNA

Specifies that control is returned if any of the requested resources is not available in
the usage mode requested.

DEAD

Specifies that control is returned if a requested resource cannot be enqueued

immediately because of an unavailable condition, and or to wait would cause a
deadlock.

RSNAXIT=resource-not-available-label

Specifies the symbolic name of a routine to which control should be returned if the
#ENQ request cannot be serviced because at least one of the requested resources is

not available.

#ENQ—acquires resources or tests for availability

138 DML Reference Guide for Assembler

DEADXIT=deadlock-label

Specifies the symbolic name of a routine to which control should be returned if the

#ENQ request cannot be serviced because one of the requested resources cannot
be enqueued immediately, and if to wait on its availability would cause a deadlock.

ERROR=error-label

Specifies the symbolic name of the routine to which control should be returned if a
condition specified in the COND parameter occurs for which no other exit routine

was coded.

FREEXIT=test-is-free-label

(Test requests only); specifies the symbolic name of a routine to which control
should be returned if at least one of the resources is free.

#ENQ Status Codes

By default, an acquire #ENQ is unconditional. Error conditions that can occur are
described below:

■ A resource-not-available condition, caused when at least one of the resources
cannot be acquired by the issuing task, will result in a del ay until the resource

becomes available (unless such a wait would cause a deadlock).

■ A potential deadlock condition, caused when a wait on a resource would cause a
deadlock, will result in an abend of the issuing task.

You can request return of control with the COND parameter while processing an acquire
#ENQ to avoid a delay or an abend.

By default, a test #ENQ is unconditional. The return code, contained in register 15,
indicates the outcome of the test. Control is returned to the next instruction in the
issuing program following the #ENQ. Through the FREEXIT parameter, however, you can

request a return of control to a specific label or routine in the event that at least one of
the resources tested is free.

After completion of the #ENQ request, the value in register 15 indicates the outcome of
the operation.

X'00'

ACQUIRE - All requested resources have been acquired.

TEST - All test resources have already been enqueued by the issuing task with the
exclusive/shared option indicated by the test request.

#ENDPAG—terminates a map paging session

Chapter 5: Data Manipulation Language Statements 139

X'04'

ACQUIRE-At least one of the resources indicated is currently owned by another task

and is not available for the exclusive/shared option specified; no new resources
have been acquired.

TEST- At least one of the tested resources is owned by another task and is not

available to this task for the exclusive/shared option specified.

X'08'

ACQUIRE -Not applicable.

TEST - At least one of the tested resources is not already owned by any task and is
available for the exclusive/shared option specified.

X'0C'

ACQUIRE - A requested resource could not be enqueued immediately and to wait
would cause a deadlock; no new resources have been acquired.

TEST - Not applicable.

#ENQ Example

The following example of the #ENQ statement tests for the availability of a resource.
Register 5 contains the address of the field that contains the resource id, the
user-defined field LENGTH contains the length of the resource id, and if the test

indicates the resource is free, control is returned to the routine labeled GETRTN:

#ENQ RSCID=(R5),LENGTH,TYPE=TEST,FREEXIT=GETRTN

#ENDPAG—terminates a map paging session

The #ENDPAG statement terminates a map paging session, clears the scratch record for
the session, and clears the map paging options for the completed session. A

#STRTPAG/#ENDPAG pair encloses commands that handle a pageable map at runtime.

Note: For more information about the #STRTPAG statement, see #STRTPAG (see
page 340) later in this chapter.

#ENDPAG Syntax

►►─── #ENDPAG ──►

 ►─┬───┬────────────────────────────►
 └─ ,PLIST= ─┬─ SYSPLIST ◄ ───────────────────┬┘
 └─ parameter-value-list-pointer ─┘

 ►─┬───┬──────────────────────────►◄
 └─ ,MRBPGDS= ─┬─ MRBPGDS ◄ ────────────────────┬┘
 └─ paging-request-block-pointer ─┘

#ENDPAG—terminates a map paging session

140 DML Reference Guide for Assembler

#ENDPAG Parameters

PLIST=

Specifies the location of the storage area in which the system will build the
#ENDPAG parameter l ist.

SYSPLIST

(Default); is the symbolic name of the storage area in which the system will build

the #ENDPAG parameter l ist.

parameter-value-list-pointer

A register that points to the area or the symbolic name of the area.

MRBPGDS=

Specifies the location of the 16-byte map paging request block.

MRBPGDS

(Default); is the symbolic name of the area in program variable storage in which the

map paging request block was copied by an #MRB DML statement.

paging-request-block-pointer

A register that points to the area or the symbolic name of the area that contains the
map paging request block.

#ENDPAG Status Codes

The #ENDPAG statement is unconditional; any runtime error will result in an abend of

the issuing task.

#ENDPAG Example

The following example of the #ENDPAG statement terminates a map paging session that
began with the #STRTPAG statement, clears the BACKPAG=YES and FLAG=UPDATE map

paging options, and specifies the address of the #ENDPAG parameter l ist in register 3:

#STRTPAG MRB=(R4),BACKPAG=YES,FLAG=UPDATE

.

. (*** MAP PAGING SESSION ***)

.

#ENDPAG PLIST=(R3)

@ERASE—disconnects or erases records

Chapter 5: Data Manipulation Language Statements 141

@ERASE—disconnects or erases records

The @ERASE statement performs the following functions:

■ Disconnects the specified record from all set occurrences in which it participates as
a member and physically deletes the record from the database

■ Optionally erases all records that are mandatory members of set occurrences

owned by the specified record

■ Optionally disconnects or erases all records that are optional members of set
occurrences owned by the specified record

Erasure is a two-step process that first cancels the existing membership of the specified
record in specific set occurrences and then releases for reuse the space occupied by the

named record and its db-key. Erased records are unavailable for further processing by
any DML statement.

Before using the @ERASE statement, you must ready all the areas affected, either
implicitly or explicitly, in one of the three update usage modes (see Dictionary Usage
Mode (see page 29)).

Currency

Before execution of the @ERASE statement, the following currency-related conditions
must be satisfied:

■ All sets in which the specified record participates as owner either directly or
indirectly (for example, as owner of a set with a member that is owner of another

set) and all member record types in those sets must be included in the subschema
in use.

■ The named record must be established as current of run unit.

Following successful execution of an @ERASE statement, currency is nulli fied for all
record types both explicitly and implicitly involved in the erase and for all sets in which

erased records participate. Run unit and area currency remain unchanged.

Note: Native VSAM users—When the @ERASE statement is used against a native VSAM
area, the area currency changes and reflects the next record in the native VSAM area.

An attempt to retrieve erased records results in an error condition. However, if the
erased record was reached by walking the set occurrence of the erased record, the prior
of set is maintained for the erased record, whether or not prior pointers were defined

for that set. (The next of set is also maintained, as usual). Also, CA IDMS/DB maintains
the next, prior, and owner pointers for the last erased record occurrence that
participates as a member in any other set occurrence not the object of the @ERASE. In

this case, you can retrieve the next or prior records in the area, or the next, prior, or
owner records in the set in which the erased record participated.

@ERASE—disconnects or erases records

142 DML Reference Guide for Assembler

@ERASE Syntax

►►─── @ERASE= ─┬─ REC ───────┬──►
 ├─ PERMANENT ─┤
 ├─ SELECTIVE ─┤
 └─ ALL ───────┘

 ►─── ,REC=record-name ───►◄

@ERASE Parameters

REC/PERMANENT/SELECTIVE/ALL,REC=record-name

Erases a record from the database.

REC

Erases the specified record if it is not an owner of any member records. An error

condition results if the named record is the owner of any nonempty set
occurrences.

Note: Native VSAM users—@ERASE REC,REC=record-name is the only form of the
@ERASE statement valid for records in a native VSAM KSDS or RRDS; no form of the

@ERASE statement is allowed for a native VSAM entry-sequenced data set (ESDS).

PERMANENT

Erases the specified record and all mandatory member record occurrences owned
by that record. Optional member records are disconnected. If any of the erased
mandatory members are themselves the owners of any set occurrences, the

@ERASE statement is executed on such records as if they were directly the named
record of an @ERASE PERMANENT statement (that is, all mandatory members of
such sets are also erased). This process continues until all (direct and indirect)

members have been processed.

Note: The statement ERASE/PERMANENT/SELECTIVE/ALL cannot be used where
there exists a cyclical relationship between two or more of the records that are to
be erased. The following describes a cyclical set relationship:

REC-A owns REC-B in the A-B set

REC-B owns REC-C in the B-C set

REC-C owns REC-B in the C-B set

(cyclical relationship between REC-B and REC-C)

Junction records should be used to define the needed relationships.

SELECTIVE

Erases that record and all mandatory member record occurrences owned by the
specified record. Optional member records are erased if they do not currently
participate as members in other set occurrences. All erased records that are
themselves the owners of any set occurrences are treated as if they were the object

of an @ERASE SELECTIVE statement.

@ERASE—disconnects or erases records

Chapter 5: Data Manipulation Language Statements 143

ALL

Erases the specified record and all mandatory member record occurrences owned

by the specified record. All erased records that are themselves the owners of any
set occurrences are treated as if they were the specified record of an @ERASE ALL
statement.

REC=record-name

A record included in the subschema. The current of record-name must be current of
run unit.

@ERASE Status Codes

After completion of the @ERASE function, the ERRSTAT field in the IDMS
communications block indicates the outcome of the operation. The following is a l ist of
the acceptable status codes for this function and their corresponding meaning:

0000

The request has been serviced successfully.

0208

The named record is not in the specified subschema, or the record name has been
misspelled.

0209

The specified record's area has not been readied in one of the three update usage
modes.

0210

The subschema specifies an access restriction that prohibits use of the @ERASE
statement. For integrated indexing users, this code can also indicate use of an
invalid form of the @ERASE statement.

0213

A current record of run unit has not been established or has been nullified by a

previous @ERASE statement.

0217

A db-key has been encountered that contains a long-term permanent lock.

0220

The current record of run unit is not the same type as the specified record.

0221

An area other than the area of the named record has been readied with an
incorrect usage mode.

@ERASE—disconnects or erases records

144 DML Reference Guide for Assembler

0225

Currency has not been established. For integrated indexing users, this usually

indicates that an @FIND statement has been issued for an indexed record and
followed by an @ERASE statement for the same record. Only an @OBTAIN
statement updates index set currencies.

0226

A broken chain has been encountered in the process of executing an @ERASE ALL,

PERMANENT, or SELECTIVE statement.

0230

An attempt has been made to erase the owner record of a nonempty set.

0233

Erasure of the record occurrence is not allowed in this subschema, or all sets in

which the record participates have not been included in the subschema.

0237

There are cyclical set relationships present under the target record of the erase
verb

0260

A record occurrence has been encountered whose type is inconsistent with the set
named in the ERRORSET field of the IDMS communications block; probable causes
could be a broken chain or improper database descriptions.

0261

No record can be found for an internal db-key. This code usually indicates a broken
chain.

@ERASE Example

 @ERASE PERMANENT,REC='DEPT'

 @ERASE SELECTIVE,REC='TCHR'

 @ERASE ALL,REC='TCHR'

@ERASE—disconnects or erases records

Chapter 5: Data Manipulation Language Statements 145

The sample employee database affords no appropriate examples of these parameters; a
sample high school database is used instead. The outcome of the @ERASE statement

varies, based on the qualifier specified (PERMANENT, SELECTIVE, or ALL). Although all
three qualifiers cause all mandatory members owned by the specified record to be
erased, they differ in their effect on optional members.

@ERASE (LRF)—deletes logical record occurrences

146 DML Reference Guide for Assembler

@ERASE (LRF)—deletes logical record occurrences

The @ERASE statement can also be used to delete logical record occurrences. The
@ERASE statement does not necessarily result in the deletion of all or any of the
database records used to create the specified logical record; the path selected to service

an @ERASE logical -record request performs whatever database access operations the
DBA has specified to service the request.

LRF uses field values present in the variable-storage location reserved for the logical

record to update the database. You can specify an alternative storage location from
which LRF is to take field values to make the appropriate updates to the database.

@ERASE (LRF) Syntax
►►─── @ERASE REC=logical-record-name ───►

 ►─┬──────────────────────────────────────┬───────────────────────────────────►
 └─ ,IOREA=alt-logical-record-location ─┘

 ►─┬───┬────────────────────────────►
 └─ ,ONLRSTS=path-status,GOTO=branch-location ─┘

 ►─┬─────────────────────────────┬──►◄
 └─ ,WHERE boolean-expression ─┘

@ERASE (LRF)—deletes logical record occurrences

Chapter 5: Data Manipulation Language Statements 147

@ERASE (LRF) Parameters

REC=logical-record-name

Deletes the named logical record. Unless the IOAREA clause (below) is included, LRF
uses field values present in the variable-storage location reserved for the logical

record to make any necessary updates to the database. Logical-record-name must
specify a logical record defined in the subschema.

IOAREA=alt-logical-record-location

Identifies an alternative variable-storage location from which LRF is to obtain field
values to perform the appropriate database updates in response to this statement.

When erasing a logical record that has previously been retrieved into an alternative
storage location, you should use the IOAREA parameter to name the same location
specified in the @OBTAIN request. If the IOAREA parameter is incl uded in the
@ERASE statement, alt-logical-record-location must identify a record location

defined in the program.

ONLRSTS=path-status,GOTO=branch-location

Tests for the indicated path status. If path-status results from this @ERASE
statement, the action specified by GOTO=branch-location is performed. Path-status
must be a l iteral (1-16 bytes) enclosed in quotation marks or a program variable.

WHERE boolean-expression

Specifies the selection criteria to be applied to the specified logical record.

Note: For more information about the WHERE clause, see WHERE Clause (see
page 388) later in this chapter.

@ERASE (LRF) Status Codes

When using LRF, the type of status code returned to the program in the ERRSTAT field of
the IDMS communications block differs according to the type of error. If the error occurs
in the logical-record path, the ERRSTAT field contains a status code issued by CA
IDMS/DB with a major code from 00 to 19. For a l ist of these codes, see ERRSTAT Field

and Codes (see page 41).

When the error occurs in the request itself, LRF returns the path status LR-ERROR to the
LRSTAT field of the LRC block and places a status code with a major code of 20 in the
ERRSTAT field of the IDMS communications block.

@ERASE (LRF) Example

The example below il lustrates a request to erase the OFFEMPLR logical record for office
012's employee ID 1234.

@FIND/@OBTAIN Statements—accesses database records

148 DML Reference Guide for Assembler

In this example, the DBA has designated the keyword DELETE-EMPLOYEE to direct the
request to the path designed to retrieve the appropriate OFFEMPLR logical record and

to delete the indicated employee information from the database.

@ERASE REC=OFFEMPLR, *

 ONLRSTS='NO-OFFICE',GOTO=END, *

 WHERE OFFCODE EQ '012' *

 AND EMPID EQ '1234' *

 AND DELETE-EMPLOYEE

@FIND/@OBTAIN Statements—accesses database records

The @FIND and @OBTAIN statements are used to access database records:

■ @FIND locates a record occurrence in the database, but does not move it into

program variable storage.

■ @OBTAIN locates the record occurrence in the database and moves it into program
variable storage.

Six formats

@FIND and @OBTAIN have six different formats:

■ @FIND/@OBTAIN CALC/DUPLICATE accesses a record occurrence using its
CALC-key value.

■ @FIND/@OBTAIN CURRENT accesses a record occurrence using previously
established currencies.

■ @FIND/@OBTAIN DBKEY accesses a record occurrence using a db-key that was

previously saved by the program.

■ @FIND/@OBTAIN OWNER accesses the owner of a set occurrence.

■ @FIND/@OBTAIN USING SORT KEY accesses a record occurrence in a sorted set,
using its sort-key value.

■ @FIND/@OBTAIN WITHIN SET/AREA accesses a record occurrence based either on

the record's logical location in a set or on its physical location in an area.

Each of these @FIND/@OBTAIN statements is discussed on the following pages.

@FIND/@OBTAIN Statements—accesses database records

Chapter 5: Data Manipulation Language Statements 149

@FIND/@OBTAIN CALC/DUPLICATE

The @FIND/@OBTAIN CALC/DUPLICATE statement accesses a record based on the value
of an element in the record defined as a CALC-key. The requested record must be stored
in the database with a location mode of CALC. Before issuing the @FIND/@OBTAIN

CALC/DUPLICATE statement, you must initialize a field in program variable storage with
the CALC-key value.

You can use the DUPLICATE option to access records with the same CALC-key value as
the record that is current of record type, provided that an @FIND/@OBTAIN CALC

statement has previously accessed an occurrence of the same record type.

Currency

You do not need to establish currency before executing a @FIND/@OBTAIN CALC
statement. However, record currency must be established by a prior @FIND/@OBTAIN
CALC statement before executing a @FIND/@OBTAIN DUPLICATE statement.

Following successful execution of an @FIND/@OBTAIN CALC/DUPLICATE statement, the

accessed record becomes the current record of run unit, its area, its record type, and all
sets in which it currently participates as member or owner.

Syntax

►►─┬─ @FIND ───┬──┬─┬─ CALC ─┬──┬───►
 └─ @OBTAIN ─┘ │ └─ ANY ──┘ │
 └─ DUPLICATE ─┘

 ►─── REC=record-name ──►

 ►─┬───────────────────────────┬──►◄
 └─ ,KEEP= ─┬─ SHARED ──────┬┘
 └─ EXCLUSIVE ───┘

Parameters

CALC/DUPLICATE,REC=record-name

Accesses the record specified by record-name using the value of its CALC-key.

CALC

Accesses the first or only occurrence of the designated record type whose CALC-key

matches the value of the CALC data item in program variable storage. ANY is a
synonym of CALC.

DUPLICATE

Accesses the next record with the same CALC-key value as the current record type.
Use of the DUPLICATE option requires prior selection of an occurrence of the same

record type with the CALC option. If the value of the CALC-key in variable storage is
not equal to the CALC-key field of the current of record type, a status code of 0332
is returned.

@FIND/@OBTAIN Statements—accesses database records

150 DML Reference Guide for Assembler

REC=record-name

Names the record being accessed. Record-name can be a register containing the

name of the record or a user-supplied value enclosed in quotation marks.

KEEP=

Optionally places a shared or exclusive lock on the accessed record.

SHARED

Places a shared lock on the specified record.

EXCLUSIVE

Places an exclusive lock on the specified record.

Example

To retrieve an occurrence of the EMPLOYEE record with the @FIND/@OBTAIN
CALC/DUPLICATE statement, you must first initialize a field in program variable storage
with the CALC-control element. The following statements initialize the CALC field EMPID

and retrieve an occurrence of the EMPLOYEE record:

MVC EMPID,INEMPID

@OBTAIN CALC,REC='EMPLOYEE'

Status codes

After completion of the @FIND/@OBTAIN CALC/DUPLICATE function, the ERRSTAT field
in the IDMS communications block indicates the outcome of the operation. The

following is a l ist of the acceptable status codes for this function and their
corresponding meaning:

0000

The request has been serviced successfully.

0301

The area in which the named record participates has not been readied.

0306

A successful @FIND/@OBTAIN CALC has not yet been executed (applies to the
DUPLICATE option only).

0308

The specified record is not in the subschema. The program has probably invoked
the wrong subschema, or the record name has been misspelled.

0310

The subschema specifies an access restriction that prohibits retrieval of the named
record.

@FIND/@OBTAIN Statements—accesses database records

Chapter 5: Data Manipulation Language Statements 151

0318

The record has not been bound.

0326

The record or integrated indexing entry cannot be found, or no more duplicates
exist for the named record.

0331

The retrieval statements format conflicts with the record's location mode.

0332

The value of the CALC data item in program variable storage does not equal the
value of the CALC data item in the current record (applies to the DUPLICATE option

only).

0364

The CALC control element has not been described correctly either in the progra m or
in the subschema.

0370

A database fi le will not open properly.

When the KEEP parameter is specified a major code of 06 will be returned if an error
occurs during the KEEP processing. The major code of 03 states that an error has
occurred in the @FIND/@OBTAIN processing.

@FIND/@OBTAIN CURRENT

The @FIND/@OBTAIN CURRENT statement accesses the record that is current of its
record type, set, or area. This form of the @FIND/@OBTAIN verb is an efficient means of
establishing the proper record as current of run unit before executing a DML verb that

util izes run-unit currency (for example, @ACCEPT, @IF, @GET, @MODIFY, or @ERASE).

Currency - Following successful execution of an @FIND/@OBTAIN CURRENT statement,
the accessed record is current of run unit, its area, its record type, and all sets in which it
currently participates as member or owner.

Syntax

►►─┬─ @FIND ───┬────── CURRENT ───►
 └─ @OBTAIN ─┘

 ►─┬────────────────────┬───►
 ├─ ,REC=record-name ─┤
 ├─ ,SET=set-name ────┤
 └─ ,AREA=area─name ──┘

 ►─┬───────────────────────────┬──►◄
 └─ ,KEEP= ─┬─ SHARED ──────┬┘
 └─ EXCLUSIVE ───┘

@FIND/@OBTAIN Statements—accesses database records

152 DML Reference Guide for Assembler

Parameters

@FIND/@OBTAIN CURRENT

Accesses the record occurrence that is current of run unit.

REC=record-name/SET=set-name/AREA=area-name

Specifies that the current record of the named record type, set, or area is to be

accessed.

REC=

Accesses the record that is current of run unit.

record-name

A register containing the record name, a user-defined variable field, or a

user-supplied value enclosed in quotation marks.

SET=

Accesses the set that is current of run unit.

set-name

A register containing the set name, a user-defined variable field, or a user-supplied
value enclosed in quotation marks.

AREA=

Accesses the area that is current of run unit.

area-name

A register containing the area name, a user-defined variable field, or a
user-supplied value enclosed in quotation marks.

KEEP=

Places a shared or exclusive lock on the accessed record.

SHARED

Places a shared lock on the specified record.

EXCLUSIVE

Places an exclusive lock on the specified record.

@FIND/@OBTAIN Statements—accesses database records

Chapter 5: Data Manipulation Language Statements 153

Example

The following figure il lustrates the use of the @FIND/@OBTAIN CURRENT statement to

establish a record as current of run unit before that record is modified. (See @MODIFY
(see page 255) later in this chapter for a complete description of the @MODIFY verb and
its use.) Enter the database on DEPARTMENT 5100 by using CALC retrieval. Then

examine EMPLOYEE 466 and obtain further information from its owner OFFICE record.
OFFICE 8 becomes current of run unit. Before modifying EMPLOYEE 466, you must issue
the @FIND CURRENT statement to reestablish EMPLOYEE 466 as current of run unit.

@FIND/@OBTAIN Statements—accesses database records

154 DML Reference Guide for Assembler

Status Codes

After completion of the @FIND/@OBTAIN CURRENT function, the ERRSTAT field in the

IDMS communications block indicates the outcome of the operation. The following is a
l ist of the acceptable status codes for this function and their corresponding meaning:

0000

The request has been serviced successfully.

0301

The area in which the named record participates has not been readied.

0306

Currency has not been established for the named record, set, or area.

0308

The specified record is not in the subschema. The program has probably invoked
the wrong subschema.

0310

The subschema specifies an access restriction that prohibits retrieval of the named
record.

0313

A current record of run unit has not been establ ished or has been nullified by a
previous @ERASE statement.

0323

The area name specified has not been included in the subschema invoked.

When the KEEP parameter is specified, a major code of 06 will be returned if an error

occurs during the KEEP processing. The major code of 03 states that an error has
occurred in the @FIND/@OBTAIN processing.

@FIND/@OBTAIN Statements—accesses database records

Chapter 5: Data Manipulation Language Statements 155

@FIND/@OBTAIN DBKEY

The @FIND/@OBTAIN DBKEY statement accesses a record occurrence directly by using a
database key that has been stored previously by the program. You can use the DML
@ACCEPT verb (see @ACCEPT DBKEY FROM CURRENCY (see page 85) and @ACCEPT

DBKEY RELATIVE TO CURRENCY (see page 87)) or an Assembler assignment statement to
save a db-key. In this manner, you can directly access any record in the program's
subschema regardless of its location mode.

Additionally, the DML @ACCEPT PGINFO verb (see @ACCEPT PGINFO (see page 90),

@ACCEPT DBKEY FROM CURRENCY (see page 85), and @ACCEPT DBKEY RELATIVE TO
CURRENCY (see page 87)) can be used to save page information that can be used to
directly access the record from a specific page group when the Mixed Page Binds
Allowed feature is used.

For more information about the Mixed Page Group Binds Allowed feature, see the
Database Administration Guide.

Note: Native VSAM users—This statement is not valid for accessing data records in a
native VSAM key-sequenced data set (KSDS).

Currency

Currency is not used to determine the location of the record specified in the
@FIND/@OBTAIN DBKEY statement; the record is identified by its db-key and,
optionally, by its record name.

Following successful execution of an @FIND/@OBTAIN DBKEY statement, the accessed

record becomes the current record of run unit, its area, its record type, and all sets in
which it currently participates as member or owner. The RECNAME field of the IDMS
communications block is updated with the name of the accessed record.

Syntax

►►─┬─ @FIND ───┬───►
 └─ @OBTAIN ─┘

 ►─┬──────────────────────────┬──►
 └─ ,KEEP= ─┬─ SHARED ────┬─┘
 └─ EXCLUSIVE ─┘

 ►─┬─ DBKEY=db-key ─┬───────────────────┬─┬──────────────────────────────────►◄
 │ └─ ,PGINFO=pg-info ─┘ │
 └─┬───────────────────┬─ DBKEY=db-key ─┘
 └─ REC=record-name ─┘

Parameters

@FIND/@OBTAIN DBKEY=db-key

Accesses a record directly by using a db-key value contained in program variable
storage.

@FIND/@OBTAIN Statements—accesses database records

156 DML Reference Guide for Assembler

db-key

Identifies the location in program variable storage that contains a db-key previously

saved by the program. If a record name is specified, db-key must contain the db-key
of an occurrence of the named record type. If a record name is not specified, db-key
can contain the db-key of an occurrence of any record type in the subschema.

Db-key must identify a binary fullword synchronized field; it can be a register or a
user-defined variable.

KEEP=

Places a shared or exclusive lock on the accessed record:

SHARED

Places a shared lock on the specified record.

EXCLUSIVE

Places an exclusive lock on the specified record.

PGINFO=pg-info

Specifies page information that is used to determine the area with which the db-key
is associated. If not specified, the page information associated with the record that
is current of rununit is used.

Note: Page information is only used if the subschema includes areas that have
mixed page groups; otherwise, it is ignored.

Pg-info, a four-byte field that is made up of two halfword fields, identifies the
location in variable storage that contains the page information previously saved by
the program.

Page information is returned in the PGINFO field in the subschema control area if
the subschema includes areas in mixed page groups. Page information can also be

returned using the @ACCEPT PGINFO, @ACCEPT DBKEY FROM CURRENCY, and
@ACCEPT DBKEY RELATIVE TO CURRENCY statements.

REC=record-name

Optionally identifies the record type of the requested record. Record-name must
identify a record that is included in the subschema; it can be a register, a

user-defined variable, or a user-supplied variable enclosed in quotes.

Example

The following @FIND statement locates an occurrence of the EMPLOYEE record whose
db-key matches the value of a field in program variable storage called SAVEDKEY.

The located record becomes current of run unit, current of the EMPLOYEE record type,

current of the DEPT-EMPLOYEE, OFFICE-EMPLOYEE, and all other sets in which it
currently participates as member or owner, and current of the ORDER-REGION area.

@FIND DBKEY=SAVEDKEY,REC='EMPLOYEE'

@FIND/@OBTAIN Statements—accesses database records

Chapter 5: Data Manipulation Language Statements 157

Status codes

After completion of the @FIND/@OBTAIN DBKEY function, the ERRSTAT field in the

IDMS communication block indicates the outcome of the operation. The following is a
l ist of the acceptable status codes for this function and their corresponding meaning:

0000

This request has been serviced successfully.

0301

The area in which the named record participates has not been readied.

0302

The db-key is inconsistent with the area in which the record is stored. The db-key

has not been initialized properly, or the record name is incorrect.

0308

The requested record is not in the subschema. The program has probably invoked
the wrong subschema.

0310

The subschema specifies an access restriction that prohibits retrieval of the na med
record.

0326

The specified record cannot be found.

0370

A database fi le will not open properly.

When the KEEP parameter is specified as part of an @FIND/@OBTAIN statement, a
major code of 06 will be returned if an error occurs during the KEEP processing (see
@KEEP (see page 200) later in this chapter). The major code of 03 states that an error

has occurred in the @FIND/@OBTAIN processing.

@FIND/@OBTAIN Statements—accesses database records

158 DML Reference Guide for Assembler

@FIND/@OBTAIN OWNER

The @FIND/@OBTAIN OWNER statement accesses the owner record of the current set
occurrence. You can use this statement to retrieve the owner record of any set whether
or not that set has been assigned owner pointers.

Note: Native VSAM users—The @FIND/@OBTAIN OWNER statement is not valid since
the owner records are not defined in native VSAM data sets.

Currency

To execute an @FIND/@OBTAIN OWNER statement, currency must be established for

the specified set.

Note: When a record declared as an optional or manual member of a set is retrieved, it
is not established as current of set if it is not currently connected to the named set. A
subsequent attempt to retrieve the owner record will instead locate the owner of the
current record of set. In such cases, you should determine whether the retrieved record

is actually a member of the named set before issuing the @FIND/@OBTAIN OWNER
statement. The @IF statement (see @IF (see page 197) in this chapter) can be used for
this purpose.

Following successful execution of an @FIND/@OBTAIN OWNER statement, the accessed
record becomes the current record of run unit, its area, its record type, and all sets in

which it currently participates as member or owner. If the current record of set is the
owner record when the statement is executed, currency in the specified set remains
unchanged.

Syntax

►►─┬─ @FIND ───┬────── OWNER ───►
 └─ @OBTAIN ─┘

 ►─── ,SET=set-name ──►

 ►─┬───────────────────────────┬──►◄
 └─ ,KEEP= ─┬─ SHARED ──────┬┘
 └─ EXCLUSIVE ───┘

Parameters

@FIND/@OBTAIN OWNER

Accesses the owner record of the specified set occurrence.

SET=set-name

Names the set whose owner record is to be retrieved. Set-name must be a set
included in the subschema; it can be a register, a user-defined variable, or a

user-supplied variable enclosed in quotes.

@FIND/@OBTAIN Statements—accesses database records

Chapter 5: Data Manipulation Language Statements 159

KEEP=

Places a shared or exclusive lock on the accessed record:

SHARED

Places a shared lock on the accessed record.

EXCLUSIVE

Places an exclusive lock on the accessed record.

Example

The following figure provides an example of how you would use the @OBTAIN OWNER
statement, in conjunction with other @OBTAIN statements, to navigate the database
and access the owner record of the OFFICE-EMPLOYEE set from the owner record

occurrence of the DEPT-EMPLOYEE set.

@FIND/@OBTAIN Statements—accesses database records

160 DML Reference Guide for Assembler

Status codes

After completion of the @FIND/@OBTAIN OWNER function, the ERRSTAT field in the

IDMS communications block indicates the outcome of the operation. The following is a
l ist of the acceptable status codes for this function and their corresponding meaning:

0000

The request has been serviced successfully.

0301

The area in which the named record participates has not been readied.

0306

Currency has not been established for the named record, set, or area.

0308

The named record or the named set is not in the subschema, or the named record is
not defined as a member of the named set. The program has probably invoked the
wrong subschema. or the record name has been misspelled.

0310

The subschema specifies an access restriction that prohibits retrieval of the named
record.

0360

A record occurrence has been encountered whose record type is not a member or

owner of the set as it is defined in the subschema.

0370

A database fi le will not open properly

When the KEEP parameter is specified as part of an @FIND/@OBTAIN statement, a
major code of 06 will be returned if an error occurs during the KEEP processing (see
@KEEP (see page 200) in this chapter). The major code of 03 states that an error has
occurred in the @FIND/@OBTAIN processing.

@FIND/@OBTAIN Statements—accesses database records

Chapter 5: Data Manipulation Language Statements 161

@FIND/@OBTAIN USING SORT KEY

The @FIND/@OBTAIN USING SORT KEY statement accesses a member record in a sorted
set. Sorted sets are ordered in ascending or descending sequence based on the value of
a sort-control element in each member record. The search begins with the current of set

or the owner of the current of set, and always proceeds through the set in the NEXT
direction.

Before issuing this statement, you must initialize the sort-control element in program
variable storage. The selected record occurrence will have a key value equa l to the value

of the sort-control element. If more than one record occurrence contains a sort key
equal to the key value in variable storage, the first such record will be selected.

Currency

Before execution of an @FIND/@OBTAIN USING SORT KEY statement you have to
establish currency for the specified set.

Following successful execution of an @FIND/@OBTAIN USING SORT KEY statement, the

accessed record becomes current of run unit, its area, its record type, and all sets in
which it currently participates as owner or member. If a member record with the
requested sort-key value is not found, the current of set is nullified but the next of set
and prior of set are maintained. The next of set is the member record with the next

higher sort-key value (or next lower for descending sets) than the requested value; the
prior of set is the member record with the next lower value (or higher for descending
sets) than requested. Because these currencies are maintained, the program can walk

the set to do a generic search on the sort-key value.

Syntax

►►─┬─ @FIND ───┬────┬───────────┬─ ,REC=record-name ──────────────────────────►
 └─ @OBTAIN ─┘ └─ CURRENT ─┘

 ►─── ,SET=set-name ──►

 ►─── USING=sort-field-name ──►

 ►─┬───────────────────────────┬──►◄
 └─ ,KEEP= ─┬─ SHARED ──────┬┘
 └─ EXCLUSIVE ───┘

Parameters

@FIND/@OBTAIN,REC=record-name,SET=set=name

Accesses the named record in a sorted set. The search begins with the owner of the
current record of the specified set. Record-name must be a record that is defined in
the subschema and that participates in the specified set.

@FIND/@OBTAIN Statements—accesses database records

162 DML Reference Guide for Assembler

CURRENT

Current indicates that the search begins with the currencies already established for

the specified set. If the key value for the record that is current of set is higher than
the key value of the specified record (assuming ascending set order), an error
condition results.

USING=

Specifies the sort-control element to be used in searching the sorted set.

sort-field-name

The name of the sort-control element in the record or the name of a field in
program variable storage that contains the value of the sort-control element.

Note: The value coded for sort-field-name can only specify a single field name. If the
sort key is composed of multiple fields, the value coded must point to an area of
contiguous storage that contains the values of the various key components. These

field values must be in the same sequence as the corresponding fields within the
set's schema definition and their data formats must match the formats of the fields
within the database record's definition.

KEEP=

Places a shared or exclusive lock on the accessed record.

SHARED

Places a shared lock on the specified record.

EXCLUSIVE

Places an exclusive lock on the specified record.

Example

The following example il lustrates the use of an @FIND/@OBTAIN USING SORT KEY
statement. Assume that the DEPT-EMPLOYEE set is ordered in ascending sequence,

based on the value stored in EMPNAME in each EMPLOYEE record occurrence. The
@FIND statement assumes that the user has previously selected an occurrence of a
DEPARTMENT record to establish the set currency. Retrieval of an EMPLOYEE record
with a name (last name, first name) equal to IANDOLI, LUIGI is accomplished by the

following statements:

MVC EMPNAME,=CL25'IANDOLI, LUIGI'

@FIND REC='EMPLOYEE',SET='DEPT-EMPLOYEE',USING=EMPNAME

@FIND/@OBTAIN Statements—accesses database records

Chapter 5: Data Manipulation Language Statements 163

Status codes

After completion of the @FIND/@OBTAIN USING SORT KEY function, the ERRSTAT field

in the IDMS communications block indicates the outcome of the operation. The
following is a l ist of the acceptable status codes for this function and their
corresponding meaning:

0000

The request has been serviced successfully.

0301

The area in which the named record participates has not been readied.

0306

Currency has not been established for the named set.

0308

The named record or the named set is not in the subschema, or the named record is
not a member of the named set. The program has probably invoked the wrong

subschema.

0310

The subschema specifies an access restriction that prohibits retrieval of the named

record.

0326

The record cannot be found.

0331

The retrieval statement format conflicts with the record's location mode.

0360

A record occurrence has been encountered whose record type is not a member or

owner of the set as it is defined in the subschema.

0361

A record cannot be found because of a broken chain in the database.

0370

A database fi le will not open properly.

When the KEEP parameter is specified as part of an @FIND/@OBTAIN statement, a
major code of 06 will be returned if an error occurs during the KEEP processing (see

@KEEP (see page 200) in this chapter). The major code of 03 states that an error has
occurred in the @FIND/@OBTAIN processing.

@FIND/@OBTAIN Statements—accesses database records

164 DML Reference Guide for Assembler

@FIND/@OBTAIN WITHIN SET/AREA

The @FIND/@OBTAIN WITHIN SET/AREA statement accesses records logically based on
set relationships or physically based on database location. The formats of this statement
allow you serial access to each record in a set or area, or selection of specific

occurrences of a given record type in a set or area.

Set currency

The following rules apply to currency and the selection of member records in a set:

■ The set occurrence used as the basis for the operation is determined by the current

record of the specified set. Set currency must be established before attempting to
access records in a set.

■ The next or prior record in a set is the subsequent or previous record, respectively,
relative to the current record of the named set in the logical order of the set. The
prior record in a set can be retrieved only if the set has been assigned prior

pointers.

■ The first or last record in a set is the first or last member occurrence in terms of the
logical order of the set. The record selected is the same as would be selected if the
current of set were the owner record and the next or prior record had been
requested. The last record in a set can be retrieved only if the set has prior pointers.

■ The nth occurrence of a record in a set can be retrieved by specifying a sequence
number that identifies the position of the record in the set. CA IDMS/DB begins its
search with the owner of the current of set for the specified set and continues until

it locates the nth record or encounters an end-of-set condition. If the specified
sequence number is negative, the search proceeds in the prior direction in the set.
Note, however, that prior pointers are required to exercise this option.

■ When an end-of-set condition occurs, the owner record occurrence of the set

becomes the current record of run unit, current of its record type, current of its
area, and current of only the set involved in this operation. Currency of other sets in
which the specified record participates as owner or member remains unaffected.

Note: Note 1If @OBTAIN has been specified, the contents of the owner record are not
moved to program variable storage (@OBTAIN under these circumstances is treated as

an @FIND).

Note: Note 2(Native VSAM users): When an end-of-set condition occurs, all currencies

remain the same.

Area currency

The following rules apply to currency and the selection of records in an area:

■ The first record occurrence in an area is the one with the lowest db-key; the last
record is the one with the highest db-key.

@FIND/@OBTAIN Statements—accesses database records

Chapter 5: Data Manipulation Language Statements 165

■ The next record in an area is the one with the next higher db-key relative to the
current record of the named area; the prior record is the one with the next lower

db-key relative to the current of area.

■ The first, last, or nth occurrence of a record in an area must be retrieved to
establish correct starting position before next or prior records are requested.

Following successful execution of an @FIND/@OBTAIN WITHIN SET/AREA statement,
the accessed record becomes the current record of run unit, its area, its record type,

and all sets in which it currently participates as member or owner.

Syntax

►►─┬─ @FIND ───┬─┬─ NEXT ──┬──►
 └─ @OBTAIN ─┘ ├─ PRIOR ─┤
 ├─ FIRST ─┤
 ├─ LAST ──┤
 └─ NTH ───┘

 ►─┬─ ,SET=set-name ───┬──►
 └─ ,AREA=area-name ─┘

 ►─┬────────────────────┬───►
 └─ ,REC=record-name ─┘

 ►─┬───────────────────┬──►
 └─ ,OCCUR=sequence ─┘

 ►─┬───────────────────────────┬──►◄
 └─ ,KEEP= ─┬─ SHARED ──────┬┘
 └─ EXCLUSIVE ───┘

Parameters

NEXT/PRIOR/FIRST/LAST/NTH

Accesses a record based on its location in a set or area.

NEXT

Accesses the next record in the specified set or area relative to the current record

of the set or area.

PRIOR

Accesses the prior record in the specified set or area relative to the current record
of the set or area. The specified set must have prior pointers.

FIRST

Accesses the first record in the specified set or area.

LAST

Accesses the last record in the specified set or area. The specified set must have
prior pointers.

@FIND/@OBTAIN Statements—accesses database records

166 DML Reference Guide for Assembler

NTH

Accesses the nth record in the specified set or area. NTH requires the use of the

OCCUR parameter (see below) to specify which record is to be accessed.

Note: Native VSAM users—FIRST, LAST, and NTH options are not allowed for a
native VSAM KSDS with spanned records.

SET=set-name/AREA=area-name

Specifies the set or area to be searched.

SET=set-name

Specifies the name of the set that contains the record to be accessed. Set-name

must identify an set included in the subschema.

AREA=area-name

Specifies the name of the area that contains the record to be accessed. Area-name
must identify an area included in the subschema.

REC=

Specifies that in a set or area, only occurrences of the named record type will be
accessed.

record-name

Must be defined as a member of the specified set or contained in the specified
area.

OCCUR=

Identifies the position of the record in the set (that is, the numeric occurrence that
is associated with the keyword NTH).

sequence

Must specify a positive or negative number that is stored in a numerical field used

by CA IDMS/DB in searching for the nth record occurrence. If sequence specifies a
negative number, the specified set must have prior pointers.

KEEP=

Places a shared or exclusive lock on the accessed record.

SHARED

Places a shared lock on the specified record.

EXCLUSIVE

Places an exclusive lock on the specified record.

@FIND/@OBTAIN Statements—accesses database records

Chapter 5: Data Manipulation Language Statements 167

Example

The following example il lustrates the retrieval of records in an occurrence of the

DEPT-EMPLOYEE set. The @FIND CALC statement establishes currency in the
DEPT-EMPLOYEE set. Member EMPLOYEE records are then retrieved by a series of
OBTAIN WITHIN SET statements. Note that when EMPLOYEE 106 is retrieved, the end of

the set is reached and the next OBTAIN statement positions the program on the owner
of the set, DEPARTMENT 2000.

@FIND/@OBTAIN Statements—accesses database records

168 DML Reference Guide for Assembler

The following figure il lustrates special considerations relating to the retrieval of records
in an area that contains multiple record types. In this example, the user wishes to sweep

the EMP-DEMO-REGION area, retrieving sequentially each EMPLOYEE record and all
records in the associated EMP-EXPERTISE set. The first command retrieves EMPLOYEE
119. Subsequent @OBTAIN WITHIN SET statements retrieve the associated EXPERTISE

records and establish currency on EXPERTISE 03. The @FIND DBKEY statement is used to
reestablish the proper position before retrieving EMPLOYEE 48. Note that if @FIND
DBKEY for the employee record is not specified, an attempt to retrieve the next
EMPLOYEE record in the area would return EMPLOYEE 23.

@FIND/@OBTAIN Statements—accesses database records

Chapter 5: Data Manipulation Language Statements 169

Status codes

After completion of the @FIND/@OBTAIN WITHIN SET/AREA function, the ERRSTAT field

in the IDMS communications block indicates the outcome of the operation. The
following is a l ist of the acceptable status codes for this function and their
corresponding meaning:

0000

This request has been serviced successfully.

0301

The area in which the named record participates has not been readied.

0304

A sequence number of zero or a variable field that contains a value of zero was
specified for the named record.

0306

Currency has not been established for the named record, set, or area.

0307

The end of the set or area has been reached, or the set is empty.

0308

Either the named record or the named set is not in the subschema, or the named
record is not defined as a member of the named set. The program has probably

invoked the wrong subschema, or has misspelled the record or set name.

0310

The subschema specifies an access restriction that prohibits retrieval of the named

record.

0323

The area name specified has not been included in the subschema invoked, the
record name specified has not been defined in the named area, or the area name

has been misspelled.

0326

The record cannot be found.

0360

A record occurrence has been encountered whose record type is not a member or

owner of the set as it is defined in the subschema.

@FINISH—commits changes to database and terminates run unit

170 DML Reference Guide for Assembler

0361

The record cannot be stored because of broken chains in the database.

0370

A database fi le will not open properly.

When the KEEP parameter is specified as part of the @FIND/@OBTAIN statement a
major code of 06 will be returned if an error occurs during the KEEP processing (see
@KEEP (see page 200) in this chapter). The major code of 03 states that an error has

occurred in the @FIND/@OBTAIN processing.

@FINISH—commits changes to database and terminates run
unit

The @FINISH statement commits changes made to the database through an individual

run unit and terminates the run unit. No further DML retrieval or modification
statements can be executed until the appropriate BINDs have been issued and the
necessary areas have been readied again.

If the run unit is sharing its transaction with another database session, the run unit's
changes may not be committed at the time the @FINISH statement is executed.

Note: For more information about the impact of transaction sharing, see the
Navigational DML Programming Guide.

.

Currency

Following the successful execution of an @FINISH, all currencies are set to null. You
cannot perform database access activities until you issue an @BIND/@READY sequence.

@FINISH Syntax

►►─── @FINISH ──►◄

@FINISH Status Codes

The only acceptable status code returned for an @FINISH function is 0000.

#FINISH—commits changes to the database

Chapter 5: Data Manipulation Language Statements 171

#FINISH—commits changes to the database

\The #FINISH statement commits changes made to the database through an individual
run unit or through all database sessions associated with a task. A task-level finish also
commits all changes made in conjunction with scratch, queue, and print activity.

If the finish applies to an individual run unit and the run unit is sharing its transaction

with another database session, the run unit's changes may not be committed at the
time the #FINISH statement is executed.

Note: For more information about the impact of transaction sharing, see the
Navigational DML Programming Guide.

Run units (and SQL sessions) impacted by the #FINISH statement end, and their access

to the database is terminated.

The #FINISH statement is used in both the navigational and logical record facility
environments. The #FINISH TASK statement is also used in an SQL programming
environment.

Currency

Following the successful execution of a #FINISH request, all currencies are set to null

and the issuing task cannot perform database access through an impacted run unit
without executing an @BIND/@READY sequence.

#FINISH Syntax
►►──┬─────────┬─ #FINISH ─┬────────┬──►◄
 └─ label ─┘ └─ TASK ─┘

#FINISH Parameters

TASK

Commits the changes made by all scratch, queue, and print activity and all top-level
run units associated with the current task. Its impact on SQL sessions associated
with the task depends on whether those sessions are suspended and whether their

transactions are eligible to be shared.

More information:

For more information about the impact of a #FINISH TASK statement on SQL sessions,
see the SQL Programming Guide.

For more information about run units and the impact of #FINISH TASK, see the

Navigational DML Programming Guide.

#FREESTG—requests that the system release variable storage

172 DML Reference Guide for Assembler

#FINISH Status Codes

After completion of the #FINISH statement, the value in register 15 indicates the
outcome of the operation. The following is a l ist of the Register 15 values and the
corresponding meaning:

X'00'

The request has been serviced successfully.

X'08'

The request cannot be serviced due to an invalid request.

X'14'

The request cannot be serviced because the transaction was backed out.

X'0C'

The request cannot be serviced because an internal error was detected. Check the
DC/UCF log fi le for details.

#FREESTG—requests that the system release variable storage

The #FREESTG statement requests that the system release all or a part of a block of
variable storage. The storage to be released may have been acquired with a #GETSTG
request in the issuing task or by another task running on the same terminal as the

issuing task. A partial release is valid only for user storage; shared storage must be freed
in its entirety.

The #FREESTG request is unconditional; any runtime error will result in an abend of the
issuing task.

IDMSDB--#FREESTG

►►─┬─────────┬──►
 └─ label ─┘

 ►─── #FREESTG ─┬─ ADDR=storage-address ─┬────────────────────────────────────►
 └─ STGID=storage-id ─────┘

 ►─┬─────────────────────┬──►◄
 └─ ,NEWLEN=newlength ─┘

#FREESTG—requests that the system release variable storage

Chapter 5: Data Manipulation Language Statements 173

#FREESTG Parameters

ADDR=storage-address/STGID=storage-id

Specifies the storage area to be released. One of these options must be specified.

storage-address

Specifies the address of the storage area to be released. Storage-address is a
register or the symbolic name of a fullword user-defined field that contains the
storage area address.

storage-id

Specifies the 4-byte identifier of the variable storage area to be released. Storage-id

is a register that contains the ID, the symbolic name of a user-defined field aligned
on a fullword boundary that contains the ID, or the ID literal enclosed in quotation
marks.

NEWLEN=

Specifies the number of bytes to be retained in the storage pool, indicating a partial

storage release (release of only part of the area originally allocated).

new-length

A register that contains the number of bytes, the symbolic name of a user -defined
halfword or fullword field that contains the number of bytes, or an absolute
expression.

When a release is partial, the low-address portion of storage will be retained and
the high-address portion released.

#FREESTG Status Codes

The #FREESTG request is unconditional; any runtime error will result in an abend of the

issuing task.

#FREESTG Example

The following example il lustrates the use of the #FREESTG statement to release part of
the user storage area that is identified by the value in register 7. The number of bytes to

remain in the storage area is specified in the variable field SPACE1.

#FREESTG STGID=(R7),NEWLEN=SPACE1

@GET—transfers the contents of an accessed record occurrence

174 DML Reference Guide for Assembler

@GET—transfers the contents of an accessed record occurrence

The @GET statement transfers the contents of an accessed record occurrence into
program variable storage. Elements in the accessed record are moved to their
respective locations in variable storage according to the subschema view of the record.
The transferred elements will appear in storage at the location to which the record has

been bound. (For further details, see @BIND REC (see page 104) in this chapter.)

Currency

The @GET statement operates only on the record that is current of run unit.

Following successful execution of an @GET statement, the accessed record is current of

run unit, its area, its record type, and all sets in which it participates as owner or
member.

@GET Syntax
►►─── @GET ──┬───────────────────┬──►◄
 └─ REC=record-name ─┘

@GET Parameters

REC=record-name

Retrieves the record that is current of run unit. If the optional REC=record-name
clause is used, the current of run unit must be an occurrence of the named record
type.

@GET Status Codes

After completion of the @GET function, the ERRSTAT field in the IDMS communications
block indicates the outcome of the operation. The following is a l ist of the acceptable
status codes for this function and their corresponding meaning:

0000

The request has been serviced successfully.

0508

The requested record is not in the subschema. The program has probably invoked
the wrong subschema or the record name is misspelled.

#GETIME—gets time and date from the operating system

Chapter 5: Data Manipulation Language Statements 175

0510

The subschema specifies an access restriction that prohibits retrieval of the named

record.

0513

A current record of run unit has not been established or has been nullified by a

previous @ERASE statement.

0518

The record has not been bound.

0520

The current record is not the same type as the named record.

0526

The requested record has been erased.

0555

An invalid length has been returned for a variable-length field.

@GET Example

The following statement moves the EMPLOYEE record that is current of run unit into
program variable storage:

@GET REC='EMPLOYEE'

#GETIME—gets time and date from the operating system

The #GETIME statement obtains the time and date from the operating system. The

system time is returned to the issuing task in binary absolute, binary formatted, packed
decimal, or edited format, as specified by the task. The date is returned to the program
in packed decimal format.

After completion of the #GETIME request, a user-defined register and register 1 contain
the following time and date information:

■ Register n specifies system time (if requested in binary formatted or binary
absolute format) or the address of a field that contain the system time (if requested

in packed or edited format). The register number (n) is assigned by the FORMAT
parameter; if not specified, the default is register 0.

Note: The return-time location can be defined by the FORMAT parameter as a
variable field name rather than a register number; in this instance, register 0 will
sti l l contain the time value or return-time address, as described above.

#GETIME—gets time and date from the operating system

176 DML Reference Guide for Assembler

■ Register 1 contains the Julian date in packed format: 0yyydddc (padded zero,
current year relative to 1900, days in year, sign). For example, 0099365C would

represent December 31, 1999. 0100001C would represent January 1, 2000.

#GETIME Syntax
►►─┬─────────┬──►
 └─ label ─┘

 ►─── #GETIME FORMAT= ──►

 ►─── (─┬─ BINABS ─┬─ , ─┬──(0) ◄ ───────────────┬─) ───────────────────────►◄
 ├─ BINFMT ─┤ └─ return-time-pointer ─┘
 ├─ PACK ───┤
 └─ EDIT ───┘

#GETIME Parameters

FORMAT=

Specifies how and where the time is returned by the operating system.

BINABS/BINFMT/PACK/EDIT

Specifies the format of the time which is returned. The returned value indicates the

elapsed time since midnight.

BINABS

(Binary absolute) (default); returns time as a fullword binary integer representing
elapsed time since midnight in intervals of ten-thousandths of a second.

Note: BINABS returns the most precise time.

BINFMT

(Binary formatted); returns time as a fullword binary value which, when translated
to decimal form, is formatted as: hhmmsstttt (hours, minutes, seconds, and
ten-thousandths seconds).

PACK

(Packed); returns time as a 6-byte packed decimal value, formatted as:

0hhmmssttttc (hours, minutes, seconds, ten-thousandths seconds, and sign).

EDIT

(Edited); returns time as an 11-byte edited value, formatted as: hh:mm:ss:hh
(hours, minutes, seconds, and hundredths seconds).

(0)/return-time

Specifies the location to which the time is returned.

#GETQUE—retrieves a queue record

Chapter 5: Data Manipulation Language Statements 177

(0)

(Default); is the register that contains the time or points to a field that contains the

time.

return-time

A register that contains the time (FORMAT is BINABS or BINFMT), a register that
points to the time (FORMAT is PACK or EDIT), or the symbolic name of a
user-defined field (FORMAT is BINABS, BINFMT, PACK, or EDIT). The required size of

the field is dependent on the format requested.

#GETIME Status Codes

The #GETIME request is unconditional; any runtime error will result in an abend of the
issuing task.

#GETIME Example

The following example of the #GETIME statement obtains the time from the operating
system into the variable field TIMECK and the Julian date is returned in register 1. The
time is in an 11-byte edited format; the Julian date is in packed decimal format.

#GETIME FORMAT=(EDIT,TIMECK)

#GETQUE—retrieves a queue record

The #GETQUE statement retrieves a queue record, places it in a storage area associated
with the issuing program and optionally deletes it from the queue. If the queue record is
larger than the designated storage area, the record is truncated as necessary.

#GETQUE Syntax

►►─┬─────────┬──►
 └─ label ─┘

 ►─── #GETQUE RECORD=return-queue-data-location-pointer ──────────────────────►

 ►─── ,RECLEN= ─┬─ queue-data-max-length ─┬───────────────────────────────────►
 └─ queue-data-length ─────┘

#GETQUE—retrieves a queue record

178 DML Reference Guide for Assembler

 ►─┬───┬────────────────────────────►
 └─ ,PLIST= ─┬─ SYSPLIST ◄ ───────────────────┬┘
 └─ parameter-value-list-pointer ─┘

 ►─┬───────────────────────────┬──►
 └─ ,QUEID=queue-id-pointer ─┘

 ►─┬──┬───────────────────────────►
 └─ ,LOC= ─┬─ Next ◄ ──────────────────────────┬┘
 ├─ First ───────────────────────────┤
 ├─ Last ────────────────────────────┤
 ├─ Prior ───────────────────────────┤
 ├─ (NTH, sequence-pointer) ─────────┤
 └─ (QRID, queue-record-id-pointer) ─┘

 ►─┬───────────────────────────┬──►
 └─ ,DISP= ─┬─ DELETE ◄ ────┬┘
 └─ KEEP ────────┘

 ►─┬───┬────────────────────────────────►
 └─ ,RTNQRID= ─┬─ (1) ◄ ──────────────────┬┘
 └─ return-queue-record-id ─┘

 ►─┬──────────────────────────────────────┬───────────────────────────────────►
 │ ┌────────────────┐ │
 └─ ,OPTION= ──(──▼─┬┬─ LOCK ◄ ─┬─┬┴─)──┘
 │└─ NOLOCK ─┘ │
 └┬─ NOWAIT ◄ ┬┘
 └─ WAIT ────┘

 ►─┬───────────────────────────────┬──►
 └─ ,COND= ─┬── NO ◄ ───────────┬┘
 ├── ALL ────────────┤
 │ ┌─── , ─────┐ │
 └─(─▼─┬─ NQID ─┬┴─)─┘
 ├─ NRID ─┤
 ├─ INVP ─┤
 └─ IOER ─┘

 ►─┬──────────────────────────────┬───►
 └─ ,NQIDXIT=no-queue-id-label ─┘

 ►─┬─────────────────────────────────────┬────────────────────────────────────►
 └─ ,NRIDXIT=no-queue-record-id-label ─┘

 ►─┬────────────────────────────┬───►
 └─ ,IOERXIT=i/o-error-label ─┘

 ►─┬───┬────────────────────────────────►
 └─ ,INVPXIT=invalid-parameter-list-label ─┘

 ►─┬──────────────────────┬───►◄
 └─ ,ERROR=error-label ─┘

#GETQUE Parameters

RECORD=

Specifies the location to which the system will return the requested queue record.

return-queue-data-location-pointer

A register that points to the area or the symbolic name of the area.

#GETQUE—retrieves a queue record

Chapter 5: Data Manipulation Language Statements 179

RECLEN=

Specifies the length of the area defined by the RECORD parameter and, if provided

in the form of a user-defined variable field name, assigns an area into which the
system will place the actual length of the retrieved queue record.

queue-data-max-length

Specifies the length of the data area associated with the requested queue record. It
is a register that contains the length or an absolute expression.

queue-data-length

A symbolic user-defined field, specifies a two-fullword area that is subdivided into
two fullwords. The first fullword contains the length of the data area associated

with the requested queue record. The system returns the actual length of the
retrieved queue record to the second fullword. If the record length is provided in
register notation or as an absolute expression, a two-fullword area as defined by
queue- data-length wil l be built dynamically at runtime in the sixth and seventh

fullwords of the parameter l ist.

PLIST=

Specifies the location of the seven-fullword storage area in which the system will
build the #GETQUE parameter l ist.

SYSPLIST

(Default); is the symbolic name of the storage area in which the system F builds the
#GETQUE parameter l ist.

parameter-value-list-pointer

A register that points to the area or the symbolic name of the area.

QUEID=

Specifies the 1- to 16-character ID of the queue associated with the record to be
retrieved.

queue-id-pointer

A register that points to a field that contains the ID, the symbolic name of a
user-defined field that contains the ID, or the ID literal enclosed in quotation marks.

If the queue ID is not specified, a null queue ID (16 blanks) is assumed.

LOC=

Specifies the queue record to be retrieved:

NEXT

(Default); retrieves the next record in the queue. If currency in the queue has not
been established, NEXT is equivalent to FIRST.

FIRST

Retrieves the first record in the queue.

#GETQUE—retrieves a queue record

180 DML Reference Guide for Assembler

LAST

Retrieves the last record in the queue.

PRIOR

Retrieves the prior record in the queue. If currency in the queue has not been
established, PRIOR is equivalent to LAST.

(NTH,sequence)

Retrieves the nth record in the queue as defined by sequence. Sequence is a

register that points to a field that contains the record sequence number (n), the
symbolic name of a user-defined field that contains the number, or an absolute
expression. (Within each queue, records are assigned numbers beginning with 1,

not 0.)

(QRID,queue-record-id)

Retrieves the record identified by queue-record-id. Queue-record-id is a register
that points to a field that contains the queue record id, the symbolic name of a
user-defined field that contains the id, or an absolute expression.

DISP=

Specifies the disposition of the queue record after it is passed to the requesting

program.

DELETE

(Default); deletes the record from the queue. If DELETE is specified and the record is

truncated, some data may be lost.

KEEP

Keeps the record in the queue.

RTNQRID=

Specifies the location in the program to which the system will return the

system-assigned ID of the retrieved queue record. The returned ID can be saved
and used to retrieve or delete the queue record.

(1)

(Default); the register to which the system wil l return the queue record ID.

return-queue-record-id

A register or the symbolic name of a fullword user-defined field to which the system
will return the queue record ID.

#GETQUE—retrieves a queue record

Chapter 5: Data Manipulation Language Statements 181

OPTION=

Specifies whether to retain a lock on the current queue record and whether the

issuing task suspends execution if the requested record cannot be accessed in the
queue:

LOCK/NOLOCK

These parameters have been non-functional since CA IDMS Release 12.0. They are
included as parameters for release compatibil ity. Queue record locking is
performed as part of the standard database locking routines since CA IDMS Release
12.0.

NOWAIT

Continues task execution in the event of a nonexistent queue. The system returns a
value of X'0C' to register 15 in the event that the requested queue does not
currently exist.

WAIT

Suspends task execution until the requested queue exists.

COND=

Specifies whether the #GETQUE is conditional and under what conditions control
should be returned to the issuing program:

NO

(Default); specifies that the request is not conditional.

ALL

Specifies that the request is conditional. Control is returned if the request cannot be
serviced for any of the reasons l isted below.

condition

Specifies conditions under which the system returns control to the program.
Multiple conditions must be enclosed in parentheses and separated by commas.

NQID

The queue ID cannot be found.

NRID

The queue record cannot be found.

IOER

An I/O error occurs while processing the request.

INVP

The parameter l ist built for the #GETQUE is invalid. A l ist of conditions must be
enclosed in parentheses. If multiple conditions are specified, each is separated from
the previous one by a comma.

#GETQUE—retrieves a queue record

182 DML Reference Guide for Assembler

NQIDXIT=no-queue-id-label

Specifies the symbolic name of the routine to which control should be returned if

the #GETQUE request cannot be serviced because the header record identified by
the QUEID parameter cannot be found.

NRIDXIT=no-queue-record-id-label

Specifies the symbolic name of the routine to which control should be returned if
the #GETQUE request cannot be serviced because the queue record ID cannot be
found.

IOERXIT=i/o-error-label

Specifies the symbolic name of the routine to which control should be returned if

the #GETQUE parameter cannot be serviced because of an I/O error.

INVPXIT=invalid-parameter-list-label

Specifies the symbolic name of the routine to which control should be returned if
the #GETQUE cannot be serviced because of an invalid parameter in the parameter
l ist.

ERROR=error-label

Specifies the symbolic name of the routine to which control should be returned if a
condition specified in the COND parameter occurs for which no other exit routine
was coded.

#GETQUE Status Codes

By default, the #GETQUE request is unconditional; any runtime error will result in an
abend of the issuing task. The issuing program can request return of control with the
COND parameter to avoid an abend.

After completion of the #GETQUE function, the value in register 15 indicates the

outcome of the operation. The following is a l ist of the Register 15 values and the
corresponding meaning:

X'00'

The request has been serviced successfully.

X'04'

The request cannot be serviced due to an invalid parameter l ist.

X'08'

The request cannot be serviced because the requested queue header record
(identified by QUEID) cannot be found.

#GETQUE—retrieves a queue record

Chapter 5: Data Manipulation Language Statements 183

X'0C'

The request cannot be serviced because the requested queue record cannot be

found.

X'18'

The program storage area specified for return of the queue record is too small; the
returned record has been truncated to fit the available storage.

X'1C'

A database error occurred during queue processing. A common cause is a DBKEY
deadlock. For a PUT QUEUE operation, this code can also mean that the queue
upper l imit has been reached.

If a database error has occurred, there are usually be other messages in the
CA-IDMS/DC/UCF log indicating a problem encountered in RHDCRUAL, the internal
Run Unit Manager. If a deadlock has occurred, messages DC001000 and DC001002
are also produced.

If an I/O error occurs while processing a #GETQUE request, the system will return the

address of the IDMS communications block to register 1. If no error occurs during
processing, a user-defined register, as assigned by the RTNQRID parameter, will contain
the queue record ID (QRID) of the retrieved queue record.

#GETSCR—retrieves a scratch record

184 DML Reference Guide for Assembler

#GETQUE Example

The example of the #GETQUE statement shown below performs

the following functions:

■ Specifies location QREC5 as the area in program variable storage to receive the

requested queue record

■ Specifies the length of area QREC5 in register 6

■ Uses the default location to build the parameter l ist, SYSPLIST

■ Specifies that register 7 will hold the address of the field that contains the ID of the

queue associated with the record to be retrieved

■ Specifies the next record (in regard to queue currency) in the queue as the record
to be retrieved

■ Specifies that the record will not be deleted from the queue after it has been

passed to the requesting program

■ Uses the register 1 default to receive the system-assigned ID of the retrieved
scratch record

■ Specifies the WAIT option to suspend task execution until the requested queue
record is available

■ Specifies that this request is not conditional; any runtime error will result in an
abend of the issuing task

#GETQUE RECORD=QREC5,RECLEN=(6),QUEID=(7),LOC=NEXT,DISP=KEEP, _

OPTION=WAIT,COND=NO

#GETSCR—retrieves a scratch record

The #GETSCR statement retrieves a scratch record and places it in a storage area
associated with the issuing program. The storage area must already be all ocated to the
requesting task; no implicit #GETSTG function is performed during the #GETSCR

operation. If the scratch record is larger than the designated storage area, the record is
truncated as necessary.

By default, the #GETSCR request is unconditiona l; any runtime error will result in an
abend of the issuing task. The issuing program can request return of control with the
COND parameter to avoid an abend.

#GETSCR—retrieves a scratch record

Chapter 5: Data Manipulation Language Statements 185

#GETSCR Syntax

►►─┬─────────┬──►
 └─ label ─┘

 ►─── #GETSCR RECORD=return-scratch-data-location-pointer ────────────────────►

 ►─── ,RECLEN= ─┬── scratch-data-max-length ──┬───────────────────────────────►
 └─ scratch-data-length ──────┘

 ►─┬───┬────────────────────────────►
 └─ ,PLIST= ─┬─ SYSPLIST ◄ ───────────────────┬┘
 └─ parameter-value-list-pointer ─┘

 ►─┬─────────────────────────────────┬──►
 └─ ,SAID=scratch-area-id-pointer ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 └─ ,LOC= ─┬─ Next ◄ ───────────────────┬┘
 ├─ First ────────────────────┤
 ├─ Last ─────────────────────┤
 ├─ Current ──────────────────┤
 ├─ Prior ────────────────────┤
 └─ (SRID,scratch-record-id) ─┘

 ►─┬───────────────────────┬──►
 └─ ,DISP= ─┬─ DELETE ◄ ┬┘
 └─ KEEP ────┘

 ►─┬───┬──────────────────────────────►
 └─ ,RTNSRID= ─┬─ (1) ◄ ────────────────────┬┘
 └─ return-scratch-record-id ─┘

 ►─┬───────────────────────────────┬──►
 └─ ,COND= ─┬── NO ◄ ───────────┬┘
 ├── ALL ────────────┤
 │ ┌─── , ─────┐ │
 └─(─▼─┬─ NAID ─┬┴─)─┘
 ├─ NRID ─┤
 ├─ IOER ─┤
 └─ INVP ─┘

 ►─┬─────────────────────────────────────┬────────────────────────────────────►
 └─ ,NAIDXIT=no-scratch-area-id-label ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 └─ ,NRIDXIT=no-scratch-record-id-label ─┘

 ►─┬─────────────────────────────┬──►
 └─ ,IOERXIT=i/o-error-label ─┘

 ►─┬───┬────────────────────────────────►
 └─ ,INVPXIT=invalid-parameter-list-label ─┘

 ►─┬──────────────────────┬───►◄
 └─ ,ERROR=error-label ─┘

#GETSCR Parameters

RECORD=

Specifies the location to which the system will return the scratch record.

record-scratch-data-location-pointer

A register that points to the variable storage area or the user-defined symbolic
name of the area.

#GETSCR—retrieves a scratch record

186 DML Reference Guide for Assembler

RECLEN=

Specifies the length of the area defined by the RECORD parameter and, if provided

in the form of a user-defined variable field, assigns an area into which the system
will place the actual length of the returned data.

scratch-data-max-length

Specifies the length of the data area associated with the requested scratch record.
It is a register that contains the length or an absolute expression.

scratch-data-length

A symbolic user-defined field, specifies an area which is subdivided into two
fullwords. The first fullword contains the length of the data area associated with the

requested scratch record. The system returns the actual length of the requested
scratch record to the second. If the record has been scratch-data-length will contain
the length of the scratch record. If the record length is provided in register notation
or as an absolute expression, an area composed of two fullwords, as defined by

scratch-data-length, will be built dynamically at runtime in the sixth and seventh
fullwords of the parameter l ist.

PLIST=

Specifies the location of the seven-fullword storage area in which the system will
build the #GETSCR parameter l ist.

SYSPLIST

(Default); is the symbolic name of the storage area in which the system will build
the #GETSCR parameter l ist.

parameter-list-pointer

A register that points to the area in which the system will build the #GETSCR

parameter l ist or the symbolic name of that area.

SAID=

Specifies the 1- to 8-character ID of the scratch area associated with the record

being retrieved.

scratch-area-id-pointer

A register that points to a field that contains the id, the symbolic name of a
user-defined field that contains the ID, or the ID literal enclosed in quotation marks.
If the SAID parameter is not specified, a null scratch area ID of 8 blanks i s assumed.

LOC=

Specifies the scratch record to be retrieved.

#GETSCR—retrieves a scratch record

Chapter 5: Data Manipulation Language Statements 187

NEXT

(Default); retrieves the next record in the scratch area.

FIRST

Retrieves the first record in the scratch area. (Records are always stored in
ascending order by scratch record id.)

LAST

Retrieves the last record in the scratch area.

CURRENT

Retrieves the current record; that is, that record most recently referenced by
another scratch function.

PRIOR

Retrieves the prior record in the scratch area. If currency in the scratch area has not

been established, PRIOR is equivalent to LAST.

(SRID,scratch-record-id)

Retrieves the scratch record identified by scratch-record-id. Scratch-record-id is a

register that points to the 4-byte scratch record id, the symbol ic name of a
user-defined field that contains the id, or an absolute expression of the id.

DISP=

Specifies whether the scratch record is to be kept after it is passed to the
requesting program.

DELETE

(Default); deletes the record from the scratch area . If DELETE is specified and the
record has been truncated, some data may be lost. To maintain currency following
a DELETE request, the system saves the next and prior pointers of the deleted

record.

KEEP

Keeps the record in the scratch area.

RTNSRID=

Specifies the location to which the system will return the scratch record ID of the

retrieved record.

(1)

(Default); is the register into which the system will place the ID of the scratch
record.

return-scratch-record-id

A register or the symbolic name of a fullword user-defined field to which the system
will return the ID of the retrieved scratch record.

#GETSCR—retrieves a scratch record

188 DML Reference Guide for Assembler

COND=

Specifies whether this #GETSCR is conditional and under what conditions control

should be returned to the issuing program:

NO

(Default); specifies that the request is not conditional.

ALL

Specifies that the request is conditional. Control is returned if the request cannot be

serviced for any of the reasons l isted below.

condition

Specifies conditions under which the system returns control to the issuing task.

Multiple conditions must be included in parentheses and separated by commas.

NAID

The scratch area ID cannot be found.

NRID

The scratch record ID cannot be found.

IOER

An I/O error occurs while processing the retrieval.

INVP

The parameter l ist built for the #GETSCR is invalid.

NAIDXIT=no-scratch-area-id-label

Specifies the symbolic name of the routine to which control should be returned if

the #GETSCR cannot be serviced because the scratch area ID cannot be found.

NRIDXIT=no-scratch-record-id-label

Specifies the symbolic name of the routine to which control should be returned if
the #GETSCR cannot be serviced because the scratch area record ID cannot be

found.

IOERXIT=i/o-error-label

Specifies the symbolic name of the routine to which control should be returned if
the #GETSCR cannot be serviced because of an I/O error.

#GETSCR—retrieves a scratch record

Chapter 5: Data Manipulation Language Statements 189

INVPXIT=invalid-parameter-list-label

Specifies the symbolic name of the routine to which control should be returned if

the #GETSCR request cannot be serviced because of an invalid parameter in the
parameter l ist.

ERROR=error-label

Specifies the symbolic name of the routine to which control should be returned if a
condition specified in the COND parameter occurs for which no other exit routine
was coded.

#GETSCR Status Codes

After completion of the #GETSCR function, the value in register 15 indicates the
outcome of the operation.

X'00'

The request has been serviced successfully

X'04'

The request cannot be serviced due to an invalid parameter l ist.

X'08'

The request cannot be serviced because the requested scratch area ID (SAID)
cannot be found

X'0C'

The request cannot be serviced because the requested scratch record ID (SRID)
cannot be found in the named SAID.

X'18'

The request cannot be serviced because the program storage area specified for

return of the scratch record is too small; the returned record has been truncated to
fit the available space.

X'1C'

The request cannot be serviced due to an I/O error during processing.

If an I/O error occurs while processing a #GETSCR request, the system will return the

address of the IDMS communications block to register 1. If no error occurs during
processing, a user-defined register, assigned by the RTNSRID parameter, will contain the
scratch record ID of the obtained record.

#GETSTG—acquires variable storage from a storage pool

190 DML Reference Guide for Assembler

#GETSCR Example

The example of the #GETSCR statement shown below performs the following functions:

■ Specifies location SREC5 as the area in program variable storage to receive the
requested scratch record.

■ Specifies the length of area SREC5 in user-defined field SCRLENG.

■ Uses the default location to build the parameter l ist, SYSPLIST.

■ Specifies the literal SCR3 as the ID of the scratch area associated with the record to
be retrieved.

■ Specifies the first record in the scratch area as the record to be retrieved.

■ Specifies that the record will be deleted from the scratch area after it has been
passed to the requesting program.

■ Specifies that register 4 will receive the system-assigned ID of the retrieved scratch

record.

■ Specifies that this request is conditional. If the scratch record id cannot be found
control will be returned to the routine labeled NORECRTN.

#GETSCR RECORD=SREC5,RECLEN=SCRLENG,SAID='SCR3',LOC=FIRST, _

DISP=DELETE,COND=NRID,NRIDXIT=NORECRTN

#GETSTG—acquires variable storage from a storage pool

The #GETSTG statement acquires variable storage from a storage pool or obtains the

address of a previously acquired storage area. Once acquired, the storage is available for
use:

■ By the issuing task only (user storage)

■ By subsequent tasks running on the same logical terminal (user -kept storage)

■ By all tasks in the system (shared or shared-kept storage)

Storage availability is governed by #GETSTG parameter specifications. The value stored

in a user-defined register assigned by the ADDR parameter contains the address of
acquired storage.

#GETSTG—acquires variable storage from a storage pool

Chapter 5: Data Manipulation Language Statements 191

#GETSTG Syntax

►►─┬─────────┬──►
 └─ label ─┘

 ►─── #GETSTG TYPE= (─┬─ USER ───┬─ , ─┬─ LONG ──┬──┬─────────┬─) ──────────►
 └─ SHARED ─┘ └─ SHORT ─┘ └─ ,KEEP ─┘

 ►─┬───┬────────────────────────────►
 └─ ,PLIST= ─┬─ SYSPLIST ◄ ───────────────────┬┘
 └─ parameter-value-list-pointer ─┘

 ►─┬───────────────────────┬──►
 └─ ,LEN=storage-length ─┘

 ►─┬───────────────────────┬──►
 └─ ,INIT=initial-value ─┘

 ►─┬───────────────────────────────┬──►
 └─ ,ADDR= ─┬─ (1) ◄ ───────────┬┘
 └─ storage-address ─┘

 ►─┬─────────────────────┬──►
 └─ ,STGID=storage-id ─┘

 ►─┬─────────────────────┬──►
 └─ ,LOC= ─┬─ ANY ◄ ──┬┘
 ├─ BELOW ──┤
 └─ XA ─────┘

 ►─┬───────────────────────────────┬──►
 └─ ,COND= ─┬── NO ◄ ───────────┬┘
 ├── ALL ────────────┤
 │ ┌─── , ─────┐ │
 └─(─▼─┬─ NOST ─┬┴─)─┘
 ├─ INVP ─┤
 ├─ DEAD ─┤
 └─ XAST ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 └─ ,NOSTXIT=insufficient-storage-label ─┘

 ►─┬───┬────────────────────────────────►
 └─ ,INVPXIT=invalid-parameter-list-label ─┘

 ►─┬───────────────────────────┬──►
 └─ ,DEADXIT=deadlock-label ─┘

 ►─┬──┬───────────────────────────►
 └─ ,XASTXIT=extended-addressing-storage-label ─┘

 ►─┬──────────────────────────────┬───►
 └─ ,NWSTXIT=new-storage-label ─┘

 ►─┬──────────────────────┬───►◄
 └─ ,ERROR=error-label ─┘

#GETSTG Parameters

TYPE=

Required for all requests for storage, specifies three subparameters. Specified
subparameters must be enclosed in parentheses.

USER/SHARED

Specifies whether access to the storage is to be restricted to the issuing task or is to

be available to all tasks in the system.

#GETSTG—acquires variable storage from a storage pool

192 DML Reference Guide for Assembler

USER

Specifies that access to the storage area is to be restricted to the issuing task or, if

KEEP is specified, to subsequent tasks executing on the same terminal.

Note: During system generation, a program defined with the NOPROTECT option
can access any storage area in the system, including an area associated exclusively

with another task. Thus, the USER attribute may not protect the storage area being
acquired. However, storage areas can be protected on a system-wide or
program-by-program basis during system generation and by the modes specified
when storage is allocated.

SHARED

Specifies that any task in the DC/UCF system can access and modify the acquired
storage. Each task must establish addressability to the storage area by explicitly
issuing a #GETSTG request.

LONG/SHORT

Specifies whether the system should allocate the storage from the bottom or the
top of the storage pool.

LONG

Specifies that storage, used long-term, is allocated from the bottom of the storage
pool.

SHORT

Specifies that storage, used short-term, is allocated from the top of the storage
pool. An incorrect LONG/SHORT specification will not affect normal program

execution; however, it may affect the overall performance of the DC/UCF system.

Note: For more information about the use of the LONG/SHORT option, see the CA
IDMS Navigational DML Programming Guide.

KEEP

Optionally specifies whether the storage area will be used by subsequent tasks

executing on the same logical terminal. When KEEP is specified, the storage area
can be accessed by subsequent tasks; otherwise the storage area cannot be
accessed by subsequent tasks.

Note: For more information about the KEEP parameter, see the CA IDMS

Navigational DML Programming Guide.

PLIST=

Specifies whether the six-fullword #GETSTG parameter l ist will be built inline or in a

variable storage area and, if built in a variable storage area, identifies the location
of that area.

#GETSTG—acquires variable storage from a storage pool

Chapter 5: Data Manipulation Language Statements 193

SYSPLIST

(Default); builds the list in a variable storage area identified by the symbolic name

SYSPLIST.

*

Builds the list inline. The generated parameter l ist will be reentrant; that is, no

generated code will modify it. If PLIST=* is specified, other parameters of the
#GETSTG statement cannot be identified with register notation.

parameter-list

Builds the list in a variable storage area associated with the task. Parameter -list is a
register which points to the area or the symbolic name of that area.

LEN=

Specifies the size, in bytes, of a new storage area.

storage-length

A register or the symbolic name of a user-defined halfword or fullword field that
contains the number of bytes, or an absolute expression.

Note: If the parameter l ist is being generated inline (PLIST=*), the LEN parameter
must specify the symbolic name of a fullword field or an absolute expression;
register notation and a halfword variable field name are invalid.

INIT=

Specifies an initial value for a new storage area.

initial-value

An absolute expression of the initial value. Each byte of the acquired storage area is
initialized to the specified value.

ADDR=

Specifies the address of the acquired or previously acquired storage:

(1)

(Default); is a register or the symbolic name of a fullword user-defined field to
which the system will return the address of the acquired storage.

storage-address

A register or the symbolic name of a fullword user-defined field to which the system
returns the address of the acquired storage.

STGID=

Specifies the 4-character ID associated with the storage area. The STGID parameter

must be specified with #GETSTG requests for previously allocated storage areas or
areas to be reallocated.

#GETSTG—acquires variable storage from a storage pool

194 DML Reference Guide for Assembler

storage-id

A register that contains the id, the symbolic name of a 4-byte user-defined field

which is aligned on a fullword boundary and contains the ID, or the ID literal
enclosed in single quotation marks.

Note: If the parameter l ist is being generated inline, the STGID parameter must

specify the symbolic name of a variable field or a l iteral enclosed in quotation
marks; register notation is invalid. When using the STGID option to request the
address of an existing storage area, the #GETSTG statement must specify the same
USER/SHARED option as the original #GETSTG request issued by the task to acquire

the area.

Note: All storage ids owned by a task must be unique. While more than one
variable storage area with the same storage ID can exist (for example, one shared
and the other user) only one such area can be owned by a task at a time.

LOC=

Indicates where the system allocates storage.

ANY

(Default); indicates that storage can be allocated anywhere in the region.

BELOW

Requests that the system allocate storage below the 16-megabyte line.

XA

Requests that the system allocate storage above the 16-megabyte line. This option
is ignored if the system has no XA storage pools defined or if it is not XA-enabled.

COND=

Specifies whether this #GETSTG statement is conditional and under what condition
control should be returned to the issuing program:

NO

(Default); specifies that the request is not conditional.

ALL

Specifies that the request is conditional. Control is returned if the request cannot be
serviced for any of the reasons l isted below.

condition

Specifies conditions under which the system returns control to the issuing task.

Multiple conditions must be enclosed in parentheses and separated by commas.

NOST

Available space in the storage pool is insufficient to satisfy the request. Do not wait
for additional storage to become available.

#GETSTG—acquires variable storage from a storage pool

Chapter 5: Data Manipulation Language Statements 195

INVP

The parameter l ist built for the #GETSTG is invalid.

DEAD

The available space in the storage pool is insufficient to satisfy the request and if to
wait would cause a deadlock

XAST

Allocated storage above the 16-megabyte line cannot be addressed by the 24-bit

task.

NOSTXIT=insufficient-storage-label

Specifies the symbolic name of the routine to which control should be returned if

the #GETSTG cannot be serviced because the available storage is insufficient to
satisfy the request.

INVPXIT=invalid-parameter-list-label

Specifies the symbolic name of the routine to which control should be returned if
the #GETSTG cannot be serviced because of an invalid parameter in the parameter

l ist.

DEADXIT=deadlock-label

Specifies the symbolic name of the routine to which control should be returned if
the #GETSTG cannot be serviced because the available storage is insufficient to

satisfy the request, and if to wait would cause a deadlock.

NWSTXIT=new-storage-label

Specifies the symbolic name of the routine to which control should be returned if
the #GETSTG request names a STGID that does not exist in the system
(TYPE=SHARED) or in the task (TYPE=USER).

XASTXIT=extended-addressing-storage-label

Specifies the symbolic name of the routine to which control is returned if the
allocated storage above the 16-megabyte line cannot be addressed by the 24-bit
task.

ERROR=error-label

Specifies the symbolic name of the routine to which control should be returned if a
condition specified in the COND parameter occurs for which no other exit routine
was coded.

#GETSTG—acquires variable storage from a storage pool

196 DML Reference Guide for Assembler

#GETSTG Status Codes

By default, the #GETSTG request is unconditional. Error conditions that can occur are:

■ A short-on-storage condition, caused when the amount of storage in the storage
pool is inadequate to accommodate the request, will result in a delay until sufficient

storage becomes available (unless such a wait would cause a deadlock)

■ Any abnormal condition will result in an abend. Conditions in this category include

the following:

– I/O error

– A wait on storage (default action resulting from the short-on-storage condition)

would result in a deadlock

The issuing program can request return of control with the COND to avoid a delay or an
abend.

After completion of the #GETSTG request, the value in register 15 indicates the outcome
of the operation:

Register 15
Value

Meaning

X'00' The request has been serviced successfully.

X'04' The request has specified a storage ID which did not previously exist;
the indicated space has been allocated.

X'08' The request cannot be serviced due to insufficient storage in the

storage pool.

X'0C' The request cannot be serviced due to an invalid parameter l ist.

X'10' The requested storage cannot be allocated immediately (insufficient
storage), and to wait would cause a deadlock.

X'18' Allocated XA storage cannot be accessed by a 24-bit task. This
situation occurs if storage is requested by STGID and the storage was
initially allocated by an XA task.

#GETSTG Example

The example of the #GETSTG statement shown below performs the following functions:

■ Specifies that the requested storage area is to be shared by any task in the DC/UCF
system, that it will contain short-term storage allocated from the top of the storage
pool, and that it will not be available for use by subsequent tasks

■ Builds the parameter l ist, SYSPLIST (default), in the variable storage area

@IF—tests for the presence of member record occurrences

Chapter 5: Data Manipulation Language Statements 197

■ Specifies the length of the new storage area in register 2

■ Specifies that every byte in the storage area be initialized to blanks

■ Uses register 1 (default) to receive the address of the acquired storage from the

system

■ Specifies the ID of the storage area in register 9

■ Specifies that control will be returned to the routine labeled NOSTGRTN if the
amount of available storage is insufficient to satisfy the request, otherwise, any
runtime error will result in an abend of the issuing task

#GETSTG TYPE=(SHARED,SHORT),LEN=(2),INIT=' ',STGID=(9), _

COND=NOST,NOSTXIT=NOSTGRTN

@IF—tests for the presence of member record occurrences

The @IF statement allows you to test for the presence of member record occurrences in
a set or to determine the membership status of a record occurrence in a specified set;
once the set has been evaluated, the @IF statement specifies further action based on
the outcome of the evaluation. For example, you might use an @IF statement to

determine whether a set occurrence is empty and, if it is empty, to erase the owner
record.

Note: Native VSAM users—This statement is not allowed for sets defined with member
records that are stored in native VSAM data sets.

Each @IF statement contains a conditional phrase and a branch statement. When an
@IF is issued, the DML precompiler first generates a call to CA IDMS/DB to execute the

conditional phrase. CA IDMS/DB tests for a status code of 0000 or 1601, as requested in
the conditional phrase; the results of the test determine whether or not the branch
statement is executed.

Currency

Depending on its format, the @IF statement uses set or run-unit currency. The set

occurrence of an @IF statement is determined by the current record of the named set;
the named record occurrence is the record that is current of run unit.

Currency is not updated after execution of the @IF statement.

@IF—tests for the presence of member record occurrences

198 DML Reference Guide for Assembler

@IF Syntax

►►─── @IF SET=set-name ───►

 ►─┬─ MEMBER= ─┬─┬─ YES ─┬──►
 └─ EMPTY= ──┘ └─ NO ──┘

 ►─── ,GOTO=branch-location ──►

 ►─┬──────────────────────────────────┬───────────────────────────────────────►◄
 └─ ,ERRSTAT=error-status-location ─┘

@IF Parameters

SET=set-name

Identifies the set that is to be tested for existing member record occurrences.
Set-name must specify a set included in the subschema.

MEMBER=

Determines whether the current record of run unit participates as a member in any
occurrence of the named set and, depending on the outcome of the evaluation,
executes the branch statement.

YES

Specifies that the branch statement is executed only if the record is a member of

the set (that is, ERRSTAT is 0000).

NO

Specifies that the branch statement is executed only if the named record is not a
member of the named set (that is, ERRSTAT is 1601).

EMPTY=

Evaluates the current occurrence of the named set for the presence of member
record occurrences and, depending on the outcome of the evaluation, executes the
branch statement.

YES

Specifies that the branch statement is executed only if the set is empty (that is,
ERRSTAT is 0000).

@IF—tests for the presence of member record occurrences

Chapter 5: Data Manipulation Language Statements 199

NO

Specifies that the branch statement is executed only if the specified set has one or

more member records (that is, ERRSTAT is 1601).

GOTO=branch-location

Identifies the next statement in the program be executed. Branch-location must be

a statement label; register notation is not supported for this parameter.

ERRSTAT=status-location

Specifies the name of the status field in the IDMS communications block. If the
status field is other than ERRSTAT, this clause is required. Status-location must be a

statement label; register notation is not supported for this parameter

@IF Status Codes

After completion of the @IF function, the ERRSTAT field in the IDMS communications
block indicates the outcome of the operation:

Status Code Meaning

0000 The set is empty, or the current record of run unit is a member of the
set.

1601 The set is not empty, or the current record of run unit is not a

member of the set.

1606 Currency has not been established for the specified set.

1608 An invalid set name has been specified, or the current record of run
unit is not a member of the named set. A misspelled set name can

account for this message.

1613 A current record of run unit has not been established or has been
nullified by a preceding @ERASE statement.

@IF Example

The following examples i l lustrate two uses of the @IF statement.

In the first example, the @IF statement tests the DEPT-EMPLOYEE set for existing
EMPLOYEE members and, if no occurrences of the EMPLOYEE record are found (that is,
ERRSTAT is 0000), moves a message to that effect to location EMPLSWS.

@KEEP—places an explicit shared or exclusive lock on a record

200 DML Reference Guide for Assembler

If the current occurrence of the DEPT-EMPLOYEE set contains one or more occurrences
of the EMPLOYEE record (that is, ERRSTAT is 1601), the GOTO clause is ignored and the

next statement in the program is executed.

 @IF SET='DEPT-EMPLOYEE',EMPTY=YES, _

 GOTO=NOEMPL

 .

 .

 NOEMPL EQU _

 MVC EMPLSWS,=CL2_'NO EMPLOYEES IN SET'

In this next example, the @IF statement is used to verify that the EMPLOYEE record that
is current of run unit is not a member of the current occurrence of the
OFFICE-EMPLOYEE set before code is executed to connect the EMPLOYEE record to that
set.

If the EMPLOYEE record is not a member of OFFICE-EMPLOYEE (that is, ERRSTAT is

1601), the program branches to the LINKSET paragraph. If the EMPLOYEE record is
already a member of the OFFICE-EMPLOYEE set (that is, ERRSTAT is 0000), the GOTO
clause is ignored and the next statement in the program is executed.

@IF SET='OFFICE-EMPLOYEE',MEMBER=NO,GOTO=LINKSET

@KEEP—places an explicit shared or exclusive lock on a record

The @KEEP statement places an explicit shared or exclusive lock on a record that is

current of run unit, record, set, or area. Explicit record locks are used to maintain record
locks that would otherwise be released following a change in currency:

■ Explicit shared—Other run units can retrieve the locked record but cannot update it
as long as the lock is in effect. Any number of concurrently executing run units can

place a shared lock on a record; however, no run unit can place a shared lock on a
record on which another run unit has placed an exclusive lock.

■ Explicit exclusive—No other run unit can access the record as long as the lock is in
effect. Only one run unit at a time can place an exclusive lock on a record; that run
unit has exclusive control of the record. In order for a run unit to place an exclusive

lock or a record, that record cannot hold either an exclusive or a shared lock
assigned by any other run unit.

Locks placed on records by the @KEEP function are maintained for the duration of the
recovery unit or until explicitly released by means of the @COMMIT verb.

@KEEP—places an explicit shared or exclusive lock on a record

Chapter 5: Data Manipulation Language Statements 201

Currency

Currency on run unit, record, set, or area must be established before execution of the

@KEEP statement.

Currency is not updated after execution of the @KEEP statement.

@KEEP Syntax
►►─── @KEEP ─┬─ EXCLUSIVE ─┬─ , ─┬─ CURRENT ─────────┬────────────────────────►◄
 └─ SHARED ────┘ ├─ REC=record-name ─┤
 ├─ SET=set-name ────┤
 └─ AREA=area-name ──┘

@KEEP Parameters

EXCLUSIVE/SHARED

Places an exclusive or shared lock on a current record.

CURRENT/REC=

Specifies which record to lock.

CURRENT

Specifies the current record of run unit.

REC=record-name

Specifies the current occurrence of the named record type.

SET=set-name

Specifies the current occurrence of the named set type.

AREA=area-name

Specifies the current occurrence of the named area

@KEEP Status Codes

After completion of the @KEEP function, the ERRSTAT field in the IDMS communications
block indicates the outcome of the operation:

Status Code Meaning

0000 This request has been serviced successfully.

0606 Currency has not been established for the named record, set, or area.

0608 The named record, set, or area is not in the subschema, or the current

record of run unit is not a member of the named set or is misspelled.

#KEEP—establishes long-term record locks

202 DML Reference Guide for Assembler

0610 The program's subschema specifies an access restriction that prohibits
execution of the @KEEP function.

0623 The named area is not in the subschema or has been misspelled.

0626 The record to be kept has been erased.

0629 Deadlock occurred during locking of target record.

@KEEP Example

The following example of the @KEEP statement places an exclusive lock on the current
record occurrence of the set OFFICE-EMPLOYEE:

@KEEP EXCLUSIVE,SET='OFFICE-EMPLOYEE'

The currency of the set for this example would have to be established before this

statement can be executed.

#KEEP—establishes long-term record locks

The #KEEP statement is used in DC/UCF pseudo-conversational transactions to establish
long-term record locks and to monitor access to records between tasks. Long-term
database locks can be shared or exclusive:

■ Long-term shared locks allow other run units to access the locked record but
prevent run units from updating the record as long as the lock i s maintained.

■ Long-term exclusive locks prevent other run units from accessing the locked
record. However, run units executing on the logical terminal associated with a task
that establishes a long-term exclusive lock are not restricted from accessing the

locked record. Therefore, subsequent tasks in a transaction can access the locked
record and complete the database processing required by the transaction.

If a record has been locked with a #KEEP request, restrictions may exist on the type of
lock that can be placed on that record by other run units, based on existing locks and
whether the requesting run unit is executing on the same logical terminal as the run unit

that originally placed the lock on the record. The following table i l lustrates these
restrictions.

Type of lock in effect Type of lock allowed for
other run units

Type of lock disallowed for
other run units

Shared Shared and longterm shared Exclusive and longterm
exclusive

#KEEP—establishes long-term record locks

Chapter 5: Data Manipulation Language Statements 203

Type of lock in effect Type of lock allowed for
other run units

Type of lock disallowed for
other run units

Exclusive None Shared, exclusive, longterm,
shared, and longterm exclusive

Longterm shared For all run units: shared and

long term shared For run
units on the same terminal:
exclusive and longterm
exclusive

For run units on other

terminals: exclusive and
longterm exclusive

Longterm exclusive For run units on the same
terminal: shared exclusive,
longterm shared, and
longterm exclusive

For run units on other
terminals: shared exclusive,
longterm shared, longterm
exclusive

Tasks can monitor database activity associated with a specified record during a
pseudo-converse and, if desired, can place a long-term lock on the record being
monitored. A subsequent task can then make inquiries about that database activity for

the record and take the appropriate action.

The system maintains information on database activity using five-bit flags, each of which
is either turned on (binary 1) or turned off (binary 0). This information is returned from
the system to the low-order byte of register 0 as a numeric value. The bit assignments,
the corresponding numeric value returned to the program, and a description of the

associated database activity follows:

X'10'

The record has been physically deleted.

X'08'

The record has been logically deleted.

X'04'

The record's prefix has been modified, that is, a set operation (for example,
@CONNECT or @DISCON) occurred involving the record.

X'02'

The record's data has been modified.

X'01'

The record has been obtained.

Any combination of these bits may be set. To determine the action or combination of

actions that has occurred, you can compare the numeric value returned to the program
in register 0 with an appropriate constant; for example:

#KEEP—establishes long-term record locks

204 DML Reference Guide for Assembler

■ If the returned value is 0, no database activity occurred for the monitored record.

■ If the returned value is 2, the data in the record was modified.

■ If the returned value is 3, the record has been obtained and modified.

■ If the returned value is 8 or greater, the record was deleted.

The maximum possible value is 31 (X'1F'), indicating that all the above actions occurred
for the monitored record. The example of the #KEEP statement, shown later in this
topic, i l lustrates a test for the value of the five bit flags returned by the system to the
low-order byte of register 0.

You may prefer to monitor database activity across a pseudo-converse rather than to

set long-term locks. Long-term locks can prevent access to a record by other run units
for an undesirably long time if, during a pseudo-converse, the terminal operator fails to
enter a response. Monitoring does not restrict access to database records, sets, or areas
by other run units; however, it does enable a program to test a record for alterations

made by other run units. When long-term locks are used, it may be desirable to release
those locks at specified timeout intervals.

Note: For more information about the use of timeout intervals, see the System
Generation Guide.

#KEEP Syntax

►►─┬─────────┬──►
 └─ label ─┘

 ►─── #KEEP ─┬─ NOTIFY ───────────┬───►
 ├─ SHARE ────────────┤
 ├─ EXCLUSIVE ────────┤
 ├─ UPGRADESHARE ─────┤
 ├─ UPGRADEEXCLUSIVE ─┤
 ├─ TEST ─────────────┤
 └─ RELEASE ──────────┘

 ►─── ,LONGID= ─┬─ 'ALL' ───────────┬───►
 └─ long-id-pointer ─┘

 ►─┬──────────────────────────────┬───►
 └─ ,CURRENT= ─┬─ record-name ─┬┘
 ├─ set-name ────┤
 └─ area-name ───┘

 ►─┬──────────────────────────┬───►
 └─ ,WAIT= ─┬─ WAIT ◄ ─────┬┘
 ├─ NOWAIT ───┤
 └─ NODEADLOCK ─┘

 ►─┬──┬─────────────────────────────────►
 └─ ,NWTXIT=nowait-on-lock-release-label ─┘

 ►─┬───────────────────────────┬──►
 └─ ,DEADXIT=deadlock-label ─┘

 ►─┬──────────────────────┬───►◄
 └─ ,ERROR=error-label ─┘

#KEEP—establishes long-term record locks

Chapter 5: Data Manipulation Language Statements 205

#KEEP Parameters

NOTIFY/SHARE/EXCLUSIVE/UPGRADESHARE/UPGRADEEXCLUSIVE/TEST/RELEASE

Specifies the type of record lock or monitoring.

NOTIFY

Requests that the system monitor database activity associated with the current
record type, set, or area specified in the CURRENT parameter, described following.
When NOTIFY is specified, the system initializes register 0 to contain information on
database activity for the specified record. Only the low-order byte of register 0 will

actually contain the value of the five bit flags used to monitor database activity of
the specified record.

SHARE

Specifies that the current occurrence of the record type, set, or area specified in the
CURRENT parameter, described below, will receive a long-term shared lock.

EXCLUSIVE

Specifies that the current occurrence of the record type, set, or area specified in the
CURRENT parameter, described below, will receive a long-term exclusive lock.

UPGRADESHARE

Upgrades a previous #KEEP NOTIFY request by placing a shared long-term lock on

the record identified by the LONGID parameter, described below.

UPGRADEEXCLUSIVE

Upgrades a previous #KEEP NOTIFY request by placing an exclusive long-term lock

on the record identified by the LONGID parameter, described below.

TEST

Requests that the system return information on database activity associated with
the record identified by the LONGID parameter of a previously issued #KEEP NOTIFY
statement. The system returns the information to the low-order byte of register 0

as a numeric value.

The TEST request must specify a long-term lock ID that matches the long-term lock
ID specified in a previous #KEEP NOTIFY request.

RELEASE

Releases the long-term lock for the record identified by the LONGID parameter,

described below. RELEASE also releases the statistics block allocated by a previous
#KEEP NOTIFY request.

LONGID=

Specifies either the record locks to be upgraded or the records for which

information about database activity is desired.

#KEEP—establishes long-term record locks

206 DML Reference Guide for Assembler

'ALL'

(#KEEP RELEASE requests only); requests that the system release all long-term locks

kept for the logical terminal associated wi th the current task.

long-id-pointer

Specifies the 1- to 16-character identifier that will be used by subsequent #KEEP

requests to upgrade a long-term lock or to make inquiries about database activity
associated with the specified record. Long-id is a register that contains the address
of the long-term id, the symbolic name of a user-defined field that contains the
long-term id, or an absolute expression.

CURRENT=record-name/set-name/area-name

Specifies the record type, set, or area for which the system will monitor database
activity or assign a long-term shared or exclusive lock. One of the keywords NOTIFY,
SHARE, or EXCLUSIVE must also be specified with the CURRENT parameter. The
value of the CURRENT parameter can be a register or the symbolic name of a

user-defined field that contains the record name, set name, or area name or the
name itself enclosed in quotation marks.

WAIT=

(#KEEP SHARE/EXCLUSIVE/UPGRADESHARE/ UPGRADEEXCLUSIVE requests only);
specifies whether the issuing task is to wait if the requested lock cannot be set

immediately because of an existing lock on the named

record.

WAIT

(Default); Requests that the system wait for the existing lock to be released in order
to set the requested lock. If the wait would cause a deadlock, the system
terminates the issuing task abnormally.

NOWAIT

Requests that the system not wait for the existing lock to be released.

NODEADLOCK

Requests that the system wait for the existing lock to be released, unless to do so
would cause a deadlock. If the wait would cause a deadlock, the system returns
control to the issuing task.

NWTXIT=nowait-on-lock-release-label

Specifies the symbolic name of a routine to which control should be returned if the
#KEEP request that specified the NOWAIT option cannot be serviced because the
requested lock cannot be set immediately.

#KEEP—establishes long-term record locks

Chapter 5: Data Manipulation Language Statements 207

DEADXIT=deadlock-label

(#KEEP requests specifying WAIT only);

Specifies the symbolic name of a routine to which control is returned if the
requested lock cannot be set immediately, and if to wait would cause a deadlock.

ERROR=error-label

Specifies the symbolic name of a routine to which control should be returned if a
condition occurs for which no other exit routine was coded.

#KEEP Status Codes

After completion of the #KEEP request, the value in register 15 indicates the outcome of

the operation:

Register 15 Value Meaning

X'00' This request has been serviced successfully.

X'04' Either the requested longterm ID cannot be found or the #KEEP
request has been issued by a nonterminal task.

X'14' The request cannot be serviced because a lock on the specified
record already exists; NOWAIT has been specified.

X'18' The request cannot be serviced because to wait for an existing lock
to be released would cause a deadlock.

#KEEP Example

The following is an example of the #KEEP statement that requests that the system

monitor the database activity of a record. The #KEEP NOTIFY statement selects an
EMPLOYEE record that is current of the EMPLOYEE record type and assigns it a
long-term lock ID of REC1. Use of the NOTIFY parameter causes the system to initialize

register 0, which will receive the information regarding database activities.

The #KEEP TEST statement calls on the system to return the database activity
information for the record identified by a lock ID of REC1 to the low-order byte of
register 0. The information is returned as a numeric value and is tested by comparing
the value in register 0 to the numeric l iteral that contains the value 2. If the value in

register 0 is greater than or equal to 2, the program will branch to location MODREC. If
the value is less than the value of register 0 the program will proceed to the next
statement.

#LINEEND—requests termination of the current line I/O session

208 DML Reference Guide for Assembler

#KEEP NOTIFY,LONGID='REC1',CURRENT='EMPLOYEE'

.

.

.

#KEEP TEST,LONGID='REC1'

C (R_),=F'2'

BNL MODREC

.

.

#LINEEND—requests termination of the current line I/O
session

The #LINEEND statement requests termination of the current l ine I/O session and
deletes any outstanding buffered output l ines and pages queued for asynchronous I/O.
Unless NOBKPG is specified, all pages processed by the terminal operator during the I/O
session remain available until the operator signals completion of the review by pressing

ENTER with no request to see another page. At that time, all pages for the session are
deleted, page header l ines are cleared, and the current page number is set to 1.

#LINEEND Syntax
►►─┬─────────┬─ #LINEEND ───►◄
 └─ label ─┘

#LINEEND Parameters

#LINEEND

Requests that the system terminate the current l ine I/O session and to delete any
remaining buffered output l ines and pages queued for asynchronous I/O.

#LINEEND Status Codes

The #LINEEND request is unconditional; any error detected during execution will result
in an abend of the issuing task.

#LINEIN—requests a synchronous transfer of data

The #LINEIN statement requests a synchronous transfer of data from the terminal to the
issuing program.

#LINEIN—requests a synchronous transfer of data

Chapter 5: Data Manipulation Language Statements 209

#LINEIN Syntax

►►─┬─────────┬─ #LINEIN ──►
 └─ label ─┘

 ►─┬───┬────────────────────────────────►
 └─ ,LRB= ─┬─ SYSPLIST ◄ ─────────────────┬┘
 └─ line-request-block-pointer ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 └─ ,INAREA=input-data-location-pointer ─┘

 ►─┬────────────────────────────────┬───►
 └─ ,MAXIN=input-data-max-length ─┘

 ►─┬───┬────────────────────────────────►
 └─ ,INLEN= ─┬─ (0) ◄ ────────────────────┬┘
 └─ input-data-actual-length ─┘

 ►─┬─────────────────────────────────────┬────────────────────────────────────►
 │ ┌───── , ─────┐ │
 └─ ,OPTNS= ───(───▼─┬─ LOCATE ─┬┴──)──┘
 ├─ ECHO ───┤
 ├─ UNPROT ─┤
 ├─ NOBKPG ─┤
 ├─ UPPER ──┤
 ├─ UPLOW ──┤
 └─ INVIS ──┘

 ►─┬───────────────────────────────┬──►
 └─ ,COND= ─┬── NO ◄ ───────────┬┘
 ├── ALL ────────────┤
 │ ┌───── , ───┐ │
 └─(─▼─┬─ TRUN ─┬┴─)─┘
 ├─ CANC ─┤
 ├─ IOER ─┤
 └─ INVP ─┘

 ►─┬──────────────────────────────────────┬───────────────────────────────────►
 └─ ,TRUNXIT=truncate-input-data-label ─┘

 ►─┬──────────────────────────────────┬───────────────────────────────────────►
 └─ ,CANCXIT=cancel-line-i/o-label ─┘

 ►─┬────────────────────────────┬───►
 └─ ,IOERXIT=i/o-error-label ─┘

 ►─┬───┬────────────────────────────────►
 └─ ,INVPXIT=invalid-parameter-list-label ─┘

 ►─┬──────────────────────┬───►◄
 └─ ,ERROR=error-label ─┘

#LINEIN Parameters

LRB=

Specifies the three-fullword storage area in which the system will build the #LINEIN
parameter l ist.

SYSPLIST

(Default); is the symbolic name of the storage area in which the system will build
the line request block (LRB).

#LINEIN—requests a synchronous transfer of data

210 DML Reference Guide for Assembler

line-request-block-pointer

A register that points to the area or the symbolic name of the area in which the

system will build the LRB.

INAREA=

Specifies the storage area into which the data will be read.

input-data-location-pointer

A register that points to the area or the symbolic name of the area. When INAREA is

specified, the LOCATE option should not be requested.

MAXIN=

Specifies the length, in bytes, of the data area, defined by INAREA, that is reserved

for the input data stream.

input-data-max-length

A register that contains the length of the data area or an absolute expression. When
MAXIN is specified, the LOCATE option should not be requested.

INLEN=

Specifies the location to which the system will return the actual length of the input
data stream. If INAREA is too small to hold the entire input l ine, resulting in
truncation, the returned length will indicate the original length of the data stream
before truncation.

(0)

(Default); is the register to which the system will return the actual length of the
input data stream.

input-data-actual-length

A register or the symbolic name of a halfword or fullword user -defined field to

which the system will return the actual length of the input data stream.

OPTNS=

Specifies several options applicable to terminal input operations. This parameter is
never required and should be specified only when appropriate. The
OPTNS-parameter values must be enclosed in parentheses. If multiple values are

specified, each is separated from the previous one by a comma.

LOCATE

Allocates a buffer area for the data being read into the program, rather than a
user-defined area. The system allocates the buffer when the read operation is

completed. Register 1 contains the address of this buffer on completion of the input
operation. The issuing program is responsible for releasing the buffer area, using a
#FREESTG command. When this option is requested, INAREA and MAXIN should not
be specified.

#LINEIN—requests a synchronous transfer of data

Chapter 5: Data Manipulation Language Statements 211

ECHO

(3270 devices only); requests that the system save the line of input data as

displayed on the screen in the current page. If OPTNS=ECHO is not specified, data
entered will not be retained and will not be available for review by the terminal
operator.

UNPROT

(3270 devices only); causes the first l ine of output that follows the #LINEIN to be

unprotected. At runtime, the terminal operator can reuse the unprotected first l ine
of an output display for input to a subsequent #LINEIN. The UNPROT option can be
used with or without the ECHO parameter. For example, if the terminal operator

has made an error in previous input data, the data that is retained by the ECHO
option can be rekeyed and corrected. If UNPROT is not included, all l ines of the
following output display remain protected.

NOBKPG

(3270 devices only); requests the system not to keep pages that have been input in

a scratch area. If NOBKPG is specified, the terminal operator can view only the
current page of data. NOBKPG is valid only with the first request in a l ine mode
session.

UPPER

Directs the system to translate all letters in a #LINEIN request into uppercase
characters.

UPLOW

Specifies that no uppercase translation of characters in a #LINEIN request be
performed.

INVIS

Specifies that the operator's response to the #LINEIN command will not appear on
the screen as it is typed in. This option is useful when expecting a secret pas sword

to be entered.

COND=

Specifies whether this #LINEIN is conditional and under what conditions control
should be returned to the issuing program.

NO

(Default); specifies that the request is not conditional.

ALL

Specifies that the request is conditional. Control is returned if the request cannot be
serviced for any of the reasons l isted below.

condition

Specifies conditions under which the system returns control to the issuing task.
Multiple conditions must be enclosed in parentheses and separated by commas.

#LINEIN—requests a synchronous transfer of data

212 DML Reference Guide for Assembler

TRUN

The input data is truncated due to insufficient storage in the specified INAREA.

CANC

The line I/O session is terminated by the terminal operator pressing CLEAR (3270),
ATTENTION (2741), or BREAK (teletype).

IOER

A logical or permanent I/O error is encountered in the input data stream.

INVP

There is an invalid parameter in the LRB.

TRUNXIT=truncate-input-dat a-label

Specifies the symbolic name of the routine to which control should be returned if
input data is truncated due to insufficient storage in the INAREA buffer.

CANCXIT=cancel-line-i/o-label

Specifies the symbolic name of the routine to which control should be returned if
the line I/O session is terminated by the terminal operator.

IOERXIT=i/o-error-label

Specifies the symbolic name of the routine to which control should be returned if a

permanent or logical error is detected in the input data stream.

INVPXIT=invalid-parameter-list-label

Specifies the symbolic name of the routine to which control should be returned in
the event of an invalid parameter in the LRB.

ERROR=error-label

Specifies the symbolic name of the routine to which control should be returned if a
condition specified in the COND parameter occurs for which no other exit routine
was coded.

#LINEIN Status Codes

By default, the #LINEIN request is unconditional; any runtime error will result in an
abend of the issuing task. The issuing program can request return of control with the
COND parameter to avoid an abend.

After completion of the #LINEIN, the value in regi ster 15 indicates the outcome of the
operation.

Register 15 Value Meaning

X'00' The request has been serviced successfully.

#LINEIN—requests a synchronous transfer of data

Chapter 5: Data Manipulation Language Statements 213

X'04' The input area specified for the return of data to the issuing
program is too small; the returned data has been truncated to fit

available space.

X'08' The line I/O session has been canceled; the terminal operator has
pressed CLEAR (3270), ATTENTION (2741), or BREAK (teletype).

X'0C' A logical or permanent I/O error has been encountered in the
input data stream.

X'10' The line request block (LRB) contains an invalid field, indicating a
possible error in the program parameters.

Upon successful completion of a #LINEIN request, register 1 and a user -defined register
will contain the following information:

■ Register 1 (LOCATE option only) contains the address of the buffer into which the
input data has been placed.

■ Register n contains the actual length of returned data from the input operation; it
can be a register or a user-defined field. The register number, n, is assigned by the
INLEN parameter.

#LINEIN Example

The example of the #LINEIN statement shown below performs the following functions:

■ Uses the default storage area, SYSPLIST, to build the line request block

■ Specifies that the data is to be read into an input storage area located at the

address contained in register 5

■ Specifies that register 6 contains the length of the data area, defined by the INAREA
parameter, that is reserved for the input data stream

■ Uses the default register 0 to receive the actual length of the input data stream
from the system

■ Specifies the conditional return of control if either the input data stream is

truncated due to insufficient storage in the specified INAREA or the I/O session is
terminated by the terminal operator

■ Specifies the two routines to receive control in the event of a TRUN or CANC
condition

#LINEIN INAREA=(R5),MAXIN=(R6),COND=(TRUN,CANC),TRUNXIT=TRUNRTN, _

CANCXIT=OPERTER

#LINEOUT—requests a transfer of data

214 DML Reference Guide for Assembler

#LINEOUT—requests a transfer of data

The #LINEOUT statement requests a transfer of data from the issuing program to the
terminal, after appending line and device control characters appropriate to the physical
terminal in use. #LINEOUT also establishes, modifies, and deletes page header l ines.

A data transfer requested by the #LINEOUT statement can be synchronous or

asynchronous; requests are asynchronous only when the NOWAIT option is specified:

■ Synchronous—Following a synchronous request, control passes to the DC/UCF
system. The system places the issuing task in an inactive state; when the #LINEOU
request is completed, the task is redispatched according to its established priority.
With 3270 terminals, a synchronous #LINEOUT request causes a processing delay

immediately following the request while the system transfers the line to the page
buffer. If the line of data fi l ls the buffer, the system transfers the entire page of data
to the terminal. Control does not return to the issuing program until the terminal

operator has pressed the ENTER key. Thus, the program is made conversational.

■ Asynchronous—Following an asynchronous request, control returns immediately to

the issuing program. Thereafter, each time the program issues a l ine-mode I/O
request, the system automatically checks to determine if the last asynchronous
request has completed, and whether a new data transfer can be initiated.

Asynchronous requests enable programs to buffer all required pages of output
without suspending task execution during the actual data transmission. With an

asynchronous request, the task can optionally terminate itself, freeing all its
resources. The terminal operator can then review the buffered output, if desired.

The system processes I/O requests in the sequence received from the task; thus, if a
program issues a synchronous #LINEOUT request after issuing one or more
asynchronous requests, the system will complete all I/O requests before returning

control to the issuing program.

The #LINEOUT request issued automatically by the system to empty partially-fil led
buffers on completion of a task is synchronous ; therefore the terminal operator can
view all screens and catch up with processing at that time.

If an application necessitates allowing the terminal operator to interrupt or terminate
processing at some point in a task, a synchronous request must be is sued to suspend

processing while waiting for an operator response.

To transfer data immediately to a terminal, a write-direct-to-terminal #LINEOUT request
(blast) can be issued. The system does not page multiple blast requests. The following
#LINEOUT parameters are ignored during blast requests:

■ HDR=

■ OPTNS=(NOWAIT/NOBKPG/NEWPAGE)

(The NEWPAGE option is automatically forced during blast requests.)

#LINEOUT—requests a transfer of data

Chapter 5: Data Manipulation Language Statements 215

Header l ines can be defined for each new page of output to be transferred to a ter minal.
A maximum of three header l ines can be established for each new page of output. The

#LINEOUT statement specifies a header l ine and corresponding header-line number that
can be used in subsequent new pages. The established header l ines are sent to the
terminal and written with each new page of output. The existing header l ines may be

overridden or deleted at any time during processing by issuing a #LINEOUT request
specifying the appropriate l ine number and, for an override, the corresponding new
header l ine.

#LINEOUT Syntax

►►─┬─────────┬──►
 └─ label ─┘

 ►─── #LINEOUT OUTLEN=output-data-length ─────────────────────────────────────►

 ►─┬──┬───────────────────────────────►
 └─ ,LRB= ─┬─ SYSPLIST ◄ ─────────────────┬─┘
 └─ line-request-block-pointer ─┘

 ►─┬───┬────────────────────────────────►
 └─ ,OUTAREA=output-data-location-pointer ─┘

 ►─┬─────────────────────────────────────┬────────────────────────────────────►
 │ ┌───── , ───────┐ │
 └─ ,OPTNS= ───(───▼─┬─ NEWPAGE ─┬─┴─)─┘
 ├─ NOWAIT ──┤
 ├─ NOBKPG ──┤
 └─ SAVE ────┘

 ►─┬──────────────────────┬───►
 └─ ,HDR=header-number ─┘

 ►─┬──┬─────────────────────────────────►
 ├─ ,DESTID=destination-id-pointer ───────┤
 ├─ ,USERID=user-id-pointer ──────────────┤
 └─ ,LTERMID=logical-terminal-id-pointer ─┘

 ►─┬───────────────────────────────┬──►
 └─ ,COND= ─┬── NO ◄ ───────────┬┘
 ├── ALL ────────────┤
 │ ┌─── , ─────┐ │
 └─(─▼─┬─ CANC ─┬┴─)─┘
 ├─ IOER ─┤
 ├─ INVP ─┤
 └─ UNDF ─┘

 ►─┬──────────────────────────────────┬───────────────────────────────────────►
 └─ ,CANCXIT=cancel-line-i/o-label ─┘

 ►─┬────────────────────────────┬───►
 └─ ,IOERXIT=i/o-error-label ─┘

 ►─┬───┬────────────────────────────────►
 └─ ,INVPXIT=invalid-parameter-list-label ─┘

 ►─┬───┬────────────────────────────────►
 └─ ,UNDFXIT=invalid-destid-ltermid-label ─┘

 ►─┬──────────────────────┬───►◄
 └─ ,ERROR=error-label ─┘

#LINEOUT—requests a transfer of data

216 DML Reference Guide for Assembler

#LINEOUT Parameters

OUTLEN=

Specifies the length, in bytes, of the data stream to be written to the terminal.

output-data-length

A register that contains the length or an absolute expression of the length. Output
data lengths of 0 and 1 can be used in the following situations:

■ OUTLEN=0 Specifies that no data is to be written to the terminal or that a
header l ine is to be deleted:

When the HDR parameter is not specified, OUTLEN=0 specifies a dummy write.
No I/O is initiated by this request unless the NEWPAGE option, described below
for the OPTNS parameter, is specified; if OPTNS=(NEWPAGE), this request
writes a partially-filled buffer to the

terminal.

When the HDR parameter is specified, OUTLEN=0 specifies a deletion of a
header l ine. The HDR parameter indicates the number of the header l ine to be
deleted.

■ OUTLEN=1 Specifies that a 1-byte data stream is to be written to the terminal.
Typically, OUTLEN=1 is used to write a blank line to the screen. In this case, the

OUTAREA parameter, described below, should designate a single blank
character.

LRB=

Specifies the three-fullword storage area in which the system will build the
#LINEOUT parameter l ist

SYSPLIST

(Default); is the symbolic name of the storage area in which the system will build
the line request block.

line-request-block

A register that points to the area or the symbolic name of that area in which the

system will build the LRB.

OUTAREA=

Specifies the storage area that contains data to be output. OUTAREA need not be

defined if OUTLEN=0 has been specified.

output-data-location

A register that points to the area or the symbolic name of the area.

#LINEOUT—requests a transfer of data

Chapter 5: Data Manipulation Language Statements 217

OPTNS=terminal-option

Specifies several options applicable to terminal output operations. This parameter

is never required and should be specified only when appropriate. The OPTNS
parameter values must be enclosed in parentheses. If multiple values are specified,
each is separated from the previous one by a comma.

NEWPAGE

Requests that the system write the output data l ine beginning on a new page. For

3270 devices, the NEWPAGE option forces the system to output all l ines stored in
the current buffer, even if the buffer is not full.

NOWAIT

Requests an asynchronous transfer of data; the issuing task executes concurrently
with the output operation.

NOBKPG

(3270 devices only); requests the system not to keep pages that have been output
in a scratch area. If NOBKPG is specifi ed, the terminal operator can view only the
current page of data. NOBKPG is valid only with the first request in a l ine mode
session.

SAVE

Directs the system to preserve the output from the #LINEOUT in the event that an
unsolicited write-direct-to-terminal data stream is received at the issuing terminal
while the #LINEOUT data stream is being displayed. This option overrides the task

SAVE/NOSAVE option specified during system generation.

HDR=

Specifies the number of the page header l ine being defined, modified, or deleted.

header-line-number

An absolute expression of the line number. If OUTLEN is other than 0 the value
stored in OUTAREA will be moved to the designated (first, second, or third) header
l ine. If a header l ine with the same number has been previously defined for this I/O

session, the system will replace it with the value stored in OUTAREA. If OUTLEN=0,
the designated header l ine will be deleted.

DESTID/USERID/LTERMID

Specifies a write-direct-to-terminal request. The HDR= and
OPTNS=(NOWAIT/NOBKPG/NEWPAGE) parameters are ignored during a blast

request.

DESTID=

Specifies a write-direct-to-terminal request (blast) to the following destinations
defined during system generation:

■ List of logical terminals indicates that the system will send the #LINEOUT data
stream specified in the OUTAREA parameter to all available terminals in the list.

#LINEOUT—requests a transfer of data

218 DML Reference Guide for Assembler

■ List of users indicates that the system will send the #LINEOUT data stream
specified in the OUTAREA parameter to all users in the list who are currently

signed on to the system.

destination-id

A register that points to the destination id, the symbolic name of a user -defined
field that contains the destination ID, or the ID itself enclosed in quotation marks.
The destination list can include both 3270 and TTY devices.

USERID=

Specifies a blast request to a specific signed-on user. The system will send the
#LINEOUT data stream specified in the OUTAREA parameter to a specific signed-on
user.

user-id

A register that points to the user id, the symbolic name of a user-defined field that

contains the user ID, or the ID itself enclosed in quotation marks.

LTERMID=

(#LINEOUT only); specifies a blast request to a specific in-service terminal. The
system will send the #LINEOUT data stream specified in the OUTAREA parameter to
a specific in-service terminal.

logical-terminal-id

A register that points to the logical terminal id, the symbolic name of a user -defined
field that contains the logical terminal ID, or the ID itself enclosed in quotation
marks.

COND=

Specifies whether this #LINEOUT is conditional and under what conditions control

should be returned to the issuing program.

NO

(Default); specifies that the request is not conditional.

ALL

Specifies that the request is conditional. Control is returned if the request cannot be

serviced for any of the reasons l isted below.

condition

Specifies conditions under which the system returns control to the issuing task.
Multiple conditions must be enclosed in parentheses and separated by commas.

#LINEOUT—requests a transfer of data

Chapter 5: Data Manipulation Language Statements 219

CANC

The line I/O session is terminated by the terminal operator pressing CLEAR (3270),

ATTENTION (2741), or BREAK (teletype).

IOER

A logical or permanent I/O error is encountered in the output data stream.

INVP

There is an invalid parameter in the LRB.

UNDF

An undefined DESTID or LTERMID is specified in a #LINEOUT blast request.

CANCXIT=cancel-line-i/o-label

Specifies the symbolic name of the routine to which control should be returned if
the line I/O session is terminated by the terminal operator.

IOERXIT=i/o-error-label

Specifies the symbolic name of the routine to which control should be returned if a
permanent or logical I/O error is detected in the output data stream.

INVPXIT=invalid-parameter-list-label

Specifies the symbolic name of the routine to which control should be returned in
the event of an invalid parameter in the LRB.

UNDFXIT=invalid-destid-ltermid-label

Specifies the symbolic name of the routine to which control should be returned if
an undefined DESTID or LTERMID is specified in a #LINEOUT blast request.

ERROR=error-label

Specifies the symbolic name of the routine to which control should be returned if a
condition specified in the COND parameter occurs for which no other exit routine

was coded.

#LINEOUT Status Codes

By default, the #LINEOUT request is unconditional; any runtime error will result in an
abend of the issuing task. The issuing program can request return of control with the

COND parameter to avoid an abend.

After completion of the #LINEOUT, the value in register 15 indicates the outcome of the
operation:

Register 15 Value Meaning

X'00' The request has been serviced successfully.

#LINK—establishes linkage with a program

220 DML Reference Guide for Assembler

X'08' The line I/O session has been canceled by the operator pressing
the CLEAR (3270), ATTENTION (2741), or BREAK (teletype) key.

X'0C' A logical or permanent I/O error has been encountered in the
output data stream.

X'10' The line request block (LRB) contains an invalid field, indicating a

possible error in the #LINEOUT parameters.

X'14' The name specified for DESTID, USERID, or LTERMID is unknown
to this DC/UCF system.

#LINEOUT Example

The example of the #LINEOUT statement shown below performs the following
functions:

■ Specifies that register 7 contains the length of the output data stream

■ Uses the default storage area SYSPLIST to build the line request block (LRB)

■ Identifies OUT1 as the storage area that contains the output data stream

■ Specifies a write-direct-to-terminal request to a group of users defined during
system generation as USERLIST

■ Specifies a conditional return of control to the routine labeled LISTERR in the event
that DESTID 'USERLIST' is not defined to the system

#LINEOUT OUTLEN=(R7),OUTAREA=OUT1,DESTID='USERLIST',COND=UNDF, _

UNDFXIT=LISTERR

#LINK—establishes linkage with a program

The #LINK statement establishes l inkage with, and passes control and an optional
parameter l ist to, a specified program. When the linked program terminates or executes
a #RETURN request, the program issuing the #LINK expects return of control to the

instruction immediately following the #LINK statement.

#LINK Syntax

►►─┬─────────┬──►
 └─ label ─┘

 ►─── #LINK ─┬─ PGM=program-name-pointer ───┬─────────────────────────────────►
 └─ EPADDR=entry-point-address ─┘

 ►─┬───┬────────────────────────────►
 └─ ,PLIST= ─┬─ SYSPLIST ◄ ───────────────────┬┘
 └─ parameter-value-list-pointer ─┘

#LINK—establishes linkage with a program

Chapter 5: Data Manipulation Language Statements 221

 ►─┬──┬───────────────────────────►
 └─ ,PARMS= ─┬─ NO ◄ ──────────────────────────┬┘
 │ ┌──────── , ──────────┐ │
 └─ (─▼─ parameter-pointer ─┴─) ─┘

 ►─┬────────────────────┬───►
 └─ ,COND= ─┬─ NO ◄ ─┬┘
 └─ YES ──┘

 ►─┬──┬─────────────────────────────────►
 └─ ,PGNAXIT=program-not-available-label ─┘

 ►─┬──────────────────────┬───►◄
 └─ ,ERROR=error-label ─┘

#LINK Parameters

PGM=

Specify the program and/or entry-point address of the program to which control is
transferred.

program-name-pointer

Specifies the 1- to 8-character name of the program to which control is transferred.
Program-name is a register that points to a field that contains the program name,
the symbolic name of a user-defined field that contains the program name, or the

program-name literal enclosed in quotation marks.

entry-point-address

Specifies the entry-point address of the program to which control is transferred.
Entry-point-address is a register or symbolic name of a fullword user-defined field
that contains the entry-point address.

PLIST=

Specifies the location of the storage area that contains one or more parameters to
be passed to the program receiving control.

SYSPLIST

(Default); is the symbolic name of the storage area in which the system will build

the parameter l ist.

parameter-value-list-pointer

A register that points to the area in which the system will build the list or the
symbolic name of that area.

The size of the parameter-list area, in fullwords, must be equal to 2 plus the

number of parameters l isted in the PARMS parameter described below.

Thus, if no parameters are specified (PARMS=NO), the length of this storage area is
two fullwords; if one parameter is specifi ed, the length is three fullwords.

#LINK—establishes linkage with a program

222 DML Reference Guide for Assembler

PARMS=

Specifies the location of each parameter to be passed to the program receiving

control.

NO

(Default); indicates that no parameters will be passed to the program.

parameter-pointer

Indicates that parameters are to be passed to the program. Parameter is a register

that contains the address of the parameter or the symbolic name of a user -defined
field that contains the parameter.

The parameter l ist must be enclosed in parentheses. If multiple parameters are

specified, each is separated from the previous one by a comma.

COND=

Specifies whether this #LINK is conditional; that is, whether control should be
returned to the issuing program in the event of an error:

NO

(Default); specifies that the request is not conditional.

PGNA

Specifies that the request is conditional. Control is returned if the #LINK cannot be
serviced because the program is not available.

PGNAXIT=program-not-available-label

Specifies the symbolic name of the routine to which control should be returned if

the #LINK request cannot be serviced because the program is not available.

ERROR=error-label

Specifies the symbolic name of the routine to which control should be returned if a
condition specified in the COND parameter occurs for which no other exit routine

was coded. In this case, the ERROR parameter functions the same as PGNAXIT.

#LINK Status Codes

By default, the #LINK request is unconditional. Error conditions

that can occur are described below:

■ A no-space-in-program-pool condition, caused when the amount of storage in the
program pool is inadequate to accommodate the program, will result in a delay
until sufficient storage space becomes available (unless such a wait would cause a
deadlock, in which case an abort would occur).

#LINK—establishes linkage with a program

Chapter 5: Data Manipulation Language Statements 223

■ A nonconcurrent-program-in-use condition, caused when a copy of the program is
already in use and is marked as nonconcurrent (indicating that this program can be

used by a maximum of one task), will result in a delay until the program becomes
available.

■ A storage-conflict condition, caused when a copy of the program previously loaded
is temporarily overlayed while in use by a waiting task, will result in a delay until the
program is replaced in the program pool.

■ Any abnormal condition will result in an abend. Conditions in this category include

the following:

– I/O error

– Program not found in program definition table (PDT)

– A wait on storage (default action resulting from the

no-storage-in-program-pool condition) would result in a deadlock

The issuing program can request return of control with the COND parameter to avoid a
delay or an abend.

After completion of the #LINK function, the value in register 15 indicates the outcome of
the operation:

Register 15 Value Meaning

X'00' The request has been serviced successfully.

X'04' The request cannot be serviced because an I/O,

program-not-found, or potential -deadlock error has
occurred, or the program has not been defined in the
program definition element (PDE).

#LINK Example

The example of the #LINK statement shown below performs the

following functions:

■ Specifies that control will be transferred to the program HELPLK

■ Uses the default storage area, SYSPLIST, in which the system builds the parameter

l ist

■ Identifies the parameters, PARM1 and PARM2, to be passed to the program HELPLK

■ Specifies a conditional return of control if the program HELPLK is not available and
identifies the routine NOPROG that will receive control in the event of a PGNA error

condition

#LINK PGM='HELPLK',PARMS=(PARM1,PARM2),COND=PGNA,PGNAXIT=NOPROG

#LOAD—loads a module into the program pool

224 DML Reference Guide for Assembler

#LOAD—loads a module into the program pool

The #LOAD statement loads a module (program or table) into the program pool. In
response to a #LOAD, the system returns the entry-point address of the module and the
address of the resource control element (RCE) to the issuing program.

#LOAD Syntax

►►─┬─────────┬─ #LOAD PGM=program-name-pointer ───────────────────────────────►
 └─ label ─┘

 ►─┬──────────────────────────┬───►
 └─ VERSION=version-number ─┘

 ►─┬─────────────────────────────┬──►
 └─ ,DICTNOD=nodename-pointer ─┘

 ►─┬────────────────────────────────────┬─────────────────────────────────────►
 └─ ,DICTNAM=dictionary-name-pointer ─┘

 ►─┬──────────────────────────────────────┬───────────────────────────────────►
 └─ ,EPADDR= ─┬─ (0) ◄ ───────────────┬─┘
 └─ entry-point-address ─┘

 ►─┬────────────────────────┬───►
 └─ ,TYPE= ─┬─ PROGRAM ─┬─┘
 └─ TABLE ───┘

 ►─┬───┬────────────────────────────►
 └─ ,PLIST= ─┬─ SYSPLIST ◄ ───────────────────┬┘
 └─ parameter-value-list-pointer ─┘

 ►─┬───────────────────────────────┬──►
 └─ ,COND= ─┬── NO ◄ ───────────┬┘
 ├── ALL ────────────┤
 │ ┌───── , ───┐ │
 └─(─▼─┬─ NOST ─┬┴─)─┘
 ├─ IOER ─┤
 ├─ SNGL ─┤
 ├─ LDCF ─┤
 ├─ PGNF ─┤
 └─ DEAD ─┘

 ►─┬──────────────────────────────────────┬───────────────────────────────────►
 └─ NOSTXIT=insufficient-storage-label ─┘

 ►─┬────────────────────────────┬───►
 └─ ,IOERXIT=i/o-error-label ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 └─ ,SNGLXIT=single-thread-in-use-label ─┘

 ►─┬──┬─────────────────────────────►
 └─ ,LDCFXIT=storage-location-conflict-label ─┘

 ►─┬────────────────────────────────────┬─────────────────────────────────────►
 └─ ,PGNFXIT=program-not-found-label ─┘

 ►─┬───────────────────────────┬──►
 └─ ,DEADXIT=deadlock-label ─┘

 ►─┬──────────────────────┬───►◄
 └─ ,ERROR=error-label ─┘

#LOAD—loads a module into the program pool

Chapter 5: Data Manipulation Language Statements 225

#LOAD Parameters

PGM=

Specifies the 1- to 8-character name of the module to be loaded in the program
pool.

program-name-pointer

A register that points to a field that contains the program name, the symbolic name
of a user-defined field that contains the program name, or the program-name
literal enclosed in quotation marks.

VERSION=version-number

Specifies a version number. Version-number can be an absolute value, a halfword
or fullword value, or a register.

DICTNOD=

Identifies the node that controls the dictionary in which the program resides.

nodename-pointer

A register that points to a field that contains the name of the node, the symbolic
name of a user-defined field containing the name of the node, or the nodename
literal enclosed in quotation marks. A blank value refers to the local node.

DICTNAM=

Identifies the default dictionary in which the named program resides.

dictionary-name-pointer

A register that points to a field containing the dictionary name, the symbolic name

of a user-defined field containing the dictionary name, or the dictionary name
literal enclosed in quotation marks.

Note: If the DICTNAM and/or DICTNOD is specified, the system searches only the

specified dictionary for the module. A program-not-found condition is returned if
the module cannot be found in the specified dictionary.

EPADDR=

Specifies where the system will return the entry-point address of the loaded
program.

(0)

(Default) specifies that the system will return the entry-point address to register 0.

entry-point-address

Specifies that the system will return the entry-point address to a user-defined
Entry-point-address is a register location or the symbolic name of a fullword

user-defined field that contains the entry-point address.

#LOAD—loads a module into the program pool

226 DML Reference Guide for Assembler

,TYPE=

Qualifies the type of load to perform.

PROGRAM

Has been pre-defined as a program at system generation or dynamically defined as
a program via DCMT VARY DYNAMIC PROGRAM command.

Note: The program must reside in a load library. No attempt will be made to load
the program from a dictionary load area.

TABLE

Has been pre-defined as a table at system generation or dynamically defined using
a DCMT VARY DYNAMIC PROGRAM command.

PLIST=

Specifies the location of the storage area in which the system builds the #LOAD
parameter l ist.

SYSPLIST

Is the symbolic name of the storage area in which the system builds the #LOAD

parameter l ist.

parameter-value-list-pointer

A register that points to the area or the symbolic name of the area.

Note: The PLIST parameter is required only if the DICNAM or DICTNOD options are

specified.

COND=

Specifies whether this #LOAD is conditional and under what conditions control
should be returned to the issuing program:

NO

(Default); specifies that the request is not conditional.

ALL

Specifies that the request is conditional. Control is returned if the load cannot be
serviced for one or more of the reasons l isted under condition.

condition

Specifies conditions under which control is returned to the program.

NOST

Available storage in the program pool is insufficient to load the requested program.

IOER

An I/O error occurs during the load.

#LOAD—loads a module into the program pool

Chapter 5: Data Manipulation Language Statements 227

SNGL

The requested program has been defined as nonconcurrent and is currently in use.

LDCF

The requested program is in use by another task but has been overlayed
temporarily in the program pool, causing a storage location conflict.

PGNF

The requested program cannot be found in the program definition table (PDT), or is

marked as out-of-service.

DEAD

The requested program cannot be loaded immediately because of a

no-storage-in-program-pool condition and waiting would cause a deadlock.

NOSTXIT=insufficient-storage-label

Specifies the symbolic name of a routine to which control should be returned if the
#LOAD request cannot be serviced due to insufficient storage in the program pool.

IOERXIT=i/o-error-label

Specifies the symbolic name of a routine to which control should be returned if the
#LOAD request cannot be serviced due to an I/O error while processing the load.

SNGLXIT=single-thread-in-use-label

Specifies the symbolic name of a routine to which control should be returned if the
#LOAD request is for a program marked nonconcurrent and the program is in use.

LDCFXIT=storage-location-conflict-label

Specifies the symbolic name of a routine to which control should be returned if the
#LOAD request cannot be serviced due to a storage location conflict.

PGNFXIT=program-not-found-label

Specifies the symbolic name of a routine to which control should be returned if
either the requested program cannot be found in the PDT or is out-of-service.

DEADXIT=deadlock-label

Specifies the symbolic name of a routine to which control should be returned if the
requested program cannot be loaded immediately and to wait on its availability

would cause a deadlock.

ERROR=error-label

Specifies the symbolic name of the routine to which control should be returned if a
condition specified in the COND parameter occurs for which no other exit routine
was coded.

#LOAD—loads a module into the program pool

228 DML Reference Guide for Assembler

#LOAD Status Codes

By default, the #LOAD request is unconditi onal. Error conditions that can occur are:

■ A no-storage-in-program-pool condition is caused when there is not enough storage
in the program pool to accommodate the program. This conditions results in a delay

until sufficient storage becomes available (unl ess such a wait would cause a
deadlock).

■ A nonconcurrent-program-in-use condition is caused when a copy of the program is
already in use and is marked as nonconcurrent (indicating that this program can be
used by a maximum of one task at a time). This conditions results in a delay until

the program becomes available.

■ A storage-conflict condition occurs when a previously loaded copy of the program is

temporarily overlayed while in use by a waiting task. This condition results in a
delay until the program is replaced in the program pool.

■ Any abnormal condition will result in an abend. Conditions in this category include
the following:

– I/O error

– Program not found in PDT, or marked as out-of-service

– Waiting for storage-pool or program-pool memory, the default action resulting
from the no-storage-in-program-pool condition, would cause a deadlock

The issuing program can request return of control wi th the COND parameter to

avoid a delay or an abend.

After completion of the #LOAD function, the value in register 15 indicates the outcome
of the operation:

Register 15 Value Meaning

X'00' The request has been serviced successfully.

X'04' The request cannot be serviced due to insufficient storage in

the program pool.

X'08' The request cannot be serviced due to an I/O error during a
load from a load library.

X'0C' The requested program is nonconcurrent and in use.

X'10' The requested program has been overlayed temporarily in the
program pool, resulting in a storage conflict.

X'14' The requested program is not defined to the PDT, is marked as

out-of-service, or a null PDE could not be allocated for the
program.

#MAPINQ

Chapter 5: Data Manipulation Language Statements 229

X'18' The requested program cannot be loaded immediately
(insufficient storage); to wait would cause a deadlock.

X'20' The requested program cannot be loaded immediately due to
an I/O error during a load from the dictionary DDLDCLOD area.

The values in a user-defined register and register 1 also contain the following

information:

■ Register n specifies the entry-point address of the loaded program. The register
number n is assigned by the EPADDR parameter of the #LOAD statement.

■ Register 1 specifies the address of the RCE of the loaded program.

#LOAD Example

The #LOAD statement shown below loads the program EMPMENU into the program
pool:

#LOAD PGM='EMPMENU'

#MAPINQ

The #MAPINQ statement is used after a map input request to accomplish one of the

following actions related to the input operation:

■ Move map-related information into variable storage

■ Test for conditions relating to global map input operations

■ Test specific map fields for the presence of the cursor

■ Test for conditions relating to specific map fields

If you use the #MAPINQ statement to test for conditions, you must specify a routine

that receives control if the condition is true.

Each of the four types of #MAPINQ statements is discussed in this chapter.

#MAPINQ

230 DML Reference Guide for Assembler

Moving Map-Related Data

This version of the #MAPINQ statement moves the following information into variable
storage:

■ The cursor position (row and column).

■ The attention ID (AID) key used. An AID key is the key tha t was last pressed during
the input operation.

■ The entered length of a specific input field.

Syntax

►►─── #MAPINQ MRB=map-request-block-pointer ──────────────────────────────────►

 ►─┬───┬────────────────────────────►
 └─ ,MRBLIST= ─┬─ MRBPLIST ◄ ─────────────────┬┘
 └─ mrb-parameter-list-pointer ─┘

 ┌───────────────────────────────┐
 ►─▼─┬─ ,CURSOR=cursor-position ──┬┴──►◄
 ├─ ,AID=aid-indicator ───────┤
 └─ field-options ────────────┘

Expansion of field-options

►►─── ,FIELD=field-name ──►

 ►─┬─────────────────────────┬──►
 └─ ,INDEX=index-register ─┘

 ►─┬────────────────────────────────┬───►◄
 └─ ,INLEN=field-length-register ─┘

Parameters

MRB=

Specifies the storage area associated with the MRB of the map about which the
inquiry is being made.

map-request-block

A register that points to the MRB storage area or the symbolic name of that area.

MRBLIST=

Specifies the location of the 20-fullword storage area that is substituted for the

DC/UCF portion of SUBSCHEMA-CTRL.

MRBPLIST

(Default); is the symbolic name of the storage area that will be substituted for the
DC/UCF portion of SUBSCHEMA-CTRL.

mrb-parameter-list

A register that points to the area or the symbolic name of the area.

#MAPINQ

Chapter 5: Data Manipulation Language Statements 231

CURSOR=

Requests that the system return the cursor address from the last map in operation

to the specified location in the issuing program.

cursor-position

The symbolic name of a 2-byte user-defined field. The system will set the value of
cursor-position to the row and the column, each a 1-byte binary number, of the
cursor position on the screen.

AID=

Requests that the system return the AID to the specified location in the issuing
program.

aid-indicator

The symbolic name of a 1-byte user-defined field that will be set to the 3270 AID
character received in the last map in request.

FIELD=

Requests that the system move the entered length of the specified map field for
which information is required.

field-name

Specifies the name of the map field.

Note: For each #MAPINQ request to return map-related data, field-specific

information can be requested for one map field; if information is needed for
multiple fields, additional #MAPINQ commands must be issued.

INDEX=

Specifies the occurrence of the field if field-name is a multiply-occurring field.

index-register

Either a register or the symbolic name of a user-defined field that contains the

subscript or an absolute expression.

INLEN=

Requests that the system return the entered length, in bytes, of the specified map
field to the issuing program.

field-length-register

A register or the symbolic name of a halfword or fullword user -defined field to
which the system will return the length.

#MAPINQ

232 DML Reference Guide for Assembler

Example

The following #MAPINQ statement moves the contents of map field EMPNUM to the

area in the program labeled BLOCK1. The value of the 3270 AID character received in
the last map in request is returned to the user-defined field AIDBYTE. This field is tested
for the specific AID key value that indicates the operator is finished with this program.

 #MAPINQ MRB=BLOCK1,AID=AIDBYTE,FIELD=EMPNUM

 CLI AIDBYTE,CLEAR

 BE RETURN

 .

 .

CLEAR EQU X'6D'

The following table l ists attention ID (AID) key values.

Key AID Character Key AID Character

ENTER "'" (single quote) PF14 'B'

CLEAR '_' (underscore) PF15 'C'

PF01 '1' PF16 'D'

PF02 '2' PF17 'E'

PF03 '3' PF18 'F'

PF04 '4' PF19 'G'

PF05 '5' PF20 'H'

PF06 '6' PF21 'I'

PF07 '7' PF22 ¢

PF08 '8' PF23 '.'

PF09 '9' PF24 '<'

PF10 ':' PA01 '%'

PF11 '#' PA02 '>'

PF12 '@' PA03 ','

PF13 'A'

#MAPINQ

Chapter 5: Data Manipulation Language Statements 233

Testing for Global Map Input Conditions

This version of the #MAPINQ statement tests for one of the following conditions related
to map input operations:

■ The screen was not previously formatted before the map in was performed.

■ One or more input fields were truncated when transferred to program variable
storage.

■ One or more input fields were modified on the screen before being transferred.

■ One or more fields, which were modified on the screen, are undefined in the map

being used.

Syntax

►►─── #MAPINQ MRB=map-request-block-pointer ──────────────────────────────────►

 ►─┬───┬────────────────────────────►
 └─ ,MRBLIST= ─┬─ MRBPLIST ◄ ─────────────────┬┘
 └─ mrb-parameter-list-pointer ─┘

 ►─── ,CURSOR=cursor-position ──►

 ►─── ,AID=aid-indicator ───►

 ►─┬───┬────────────────►◄
 └─ ,IF= (─┬─ UNFORMAT,unformatted-screen-label─────┬─) ─┘
 ├─ TRUNCATE,truncated-data-label ────────┤
 ├─ CHANGED,updated-data-label ───────────┤
 └─ XTRNEOUS,extraneous-input-data-label ─┘

Parameters

MRB=

Specifies the storage area associated with the MRB of the map about which the
inquiry is being made.

map-request-block-pointer

A register that points to the MRB area or the symbolic name of that area.

MRBLIST=

Specifies the location of the 20-fullword storage area that is substituted for the
DC/UCF portion of SUBSCHEMA-CTRL.

MRBPLIST

(Default); is the symbolic name of the storage area that will be substituted for the
DC/UCF portion of SUBSCHEMA-CTRL.

mrb-parameter-list-pointer

A register that points to the area or the symbolic name of the area.

#MAPINQ

234 DML Reference Guide for Assembler

CURSOR=

Requests that the system return the cursor address from the last map in operation

to the specified location in the issuing program.

cursor-position

The symbolic name of a 2-byte user-defined field. The system will set the value of
cursor-position to the row and the column, each a 1-byte binary number, of the
cursor position on the screen.

AID=

Requests that the system return the AID to the specified location in the issuing
program.

aid-indicator

The symbolic name of a 1-byte user-defined field that will be set to the 3270 AID
character received in the last map in request.

IF=

Tests the outcome of the last map in request for a condition relating to the data
input as a whole. Map data fields that are in error are not transferred to program
variable storage.

Note: For more information about testing map input conditions, see the Mapping

Facility Guide.

For each condition, the associated label specifies the symbolic name of the routine
in the issuing program to which the system will pass control if the tested condition

is true. The IF-parameter condition and label must be enclosed in parentheses.

UNFORMAT,unformatted-screen-label

Tests whether the screen had been formatted before the input operation was
performed.

TRUNCATE,truncated-data-label

Tests whether any of the screen fields had been truncated when transmitted to
program variable storage.

CHANGED,updated-data-label

Tests whether any of the screen fields actually had been mapped to program data
fields when the map in operation was performed.

XTRNEOUS,extraneous-input-data-label

Tests whether the data stream that had been read from the terminal contains any
data from a field undefined to the map. If this condition occurs, the system does

not move the undefined data field to program variable storage.

#MAPINQ

Chapter 5: Data Manipulation Language Statements 235

Example

The following example of the #MAPINQ statement tests if any of the screen fields have

been updated to the program data fields of the map identified by BLOCK1 when the last
map in operation was performed. If the test is true, the program branches to the label
NEWINFO. A false condition causes the program to execute the next sequential

instruction:

#MAPINQ MRB=BLOCK1,IF=(CHANGED,NEWINFO)

Testing Cursor Position

This version of the #MAPINQ statement tests a specified map field for the presence of
the cursor.

Syntax

►►─── #MAPINQ MRB=map-request-block-pointer ──────────────────────────────────►

 ►─┬───┬────────────────────────────►
 └─ ,MRBLIST= ─┬─ MRBPLIST ◄ ─────────────────┬┘
 └─ mrb-parameter-list-pointer ─┘

 ►─┬───────────────────────────┬──►
 └─ ,CURSOR=cursor-position ─┘

 ►─┬──────────────────────┬───►
 └─ ,AID=aid-indicator ─┘

 ►─── ,FIELD=field-name ──►

 ►─┬─────────────────────────┬──►
 └─ ,INDEX=index-register ─┘

 ►─┬────────────────────────────────┬───►
 └─ ,INLEN=field-length-register ─┘

 ►─┬───┬──────────────────────────────►◄
 └─ ,IF=(CURSOR,cursor-at-this-field-label) ─┘

Parameters

MRB=

Specifies the storage area associated with the MRB of the map about which the

inquiry is being made.

map-request-block-pointer

A register that points to the MRB area or the symbolic name of that area.

MRBLIST=

Specifies the location of the 20-fullword storage area that is substituted for the
DC/UCF portion of SUBSCHEMA-CTRL:

#MAPINQ

236 DML Reference Guide for Assembler

MRBPLIST

(Default); is the symbolic name of the storage area that will be substituted for the

DC/UCF portion of SUBSCHEMA-CTRL.

mrb-parameter-list-pointer

A register that points to the area or the symbolic name of the area.

CURSOR=

Requests that the system return the cursor address from the last map in operation
to the specified location in the issuing program.

cursor-position

The symbolic name of a 2-byte user-defined field. The system will set the value of
cursor-position to the row and the column, each a 1-byte binary number, of the
cursor position on the screen.

AID=

Requests that the system return the AID to the specified location in the issuing

program.

aid-indicator

The symbolic name of a 1-byte user-defined field that will be set to the 3270 AID
character received in the last map in request.

FIELD=

Requests that the system move field-related information to the issuing program.

field-name

Specifies the name of the map field being tested.

Note: For each #MAPINQ request to test for cursor position, field-specific
information can be requested for one map field; if information is needed for
multiple fields, additional #MAPINQ commands must be issued.

INDEX=

Specifies the occurrence of the field if field-name is a multiply-occurring field.

index-register

Either a register or the symbolic name of a user-defined field that contains the
subscript or an absolute expression.

INLEN=

Requests that the system return the entered length, in bytes, of the specified map
field to the issuing program.

field-length-register

Either a register or the symbolic name of a halfword or fullword user -defined field
to which the system will return the length.

#MAPINQ

Chapter 5: Data Manipulation Language Statements 237

IF=CURSOR,

Tests the outcome of the last map in request to determine whether the cursor was

in the named field during the last map in operation.

cursor-at-this-field-label

Specifies the symbolic name of the routine within the issuing program to which the
system will pass control if the cursor is in the named field during the last map in
operation.

Example

The #MAPINQ statement shown below moves information about the EMPNUM field to
the issuing task. The IF statement tests the outcome of the last map in request; if the
cursor was in that field during the last map in operation, the system passes contr ol to
the routine labeled CURATNUM.

#MAPINQ MRB=BLOCK1,FIELD=EMPNUM,IF=(CURSOR,CURATNUM)

Testing for Identical Data

You can compare the contents of a mapped-in field with the map data that is currently
in your program's record buffer.

You can use #MAPINQ when you want to reduce the number of database I/O operations

performed for your programs, updating the database only when the user enters
different data.

To test for identical data, use the DATAIDEN and DATADIFF options of the IF= clause (see
Testing for Input Conditions (see page 238)).

Example

Use a #MAPINQ statement to test whether the user has entered identical data in the
EMPNUM, EMPNAME, CONCODE and UPDFLAG.

■ If the identical condition is true (the user enters identical data in these fields), the
program branches to NEXPRO2.

■ If the identical condition is false (the user has changed at least one of these fields),
control continues with the next executable instruction.

Use a #MAPINQ statement to test whether the user has entered a new department ID. If
the user enters a new ID (different is true), the program branches to label OBTDEPT.

#MAPINQ MRB=BLOCK1,FLIST=(FIELD,DEPTID-0410),FOR=ANY,

 IF=(DATADIFF,OBTDEPT)

#MAPINQ

238 DML Reference Guide for Assembler

Testing for Input Conditions

This version of the #MAPINQ statement tests for the following input conditions related
to specific map fields:

■ If map fields have been modified and the data fields in storage contain the new

(changed) contents of that field.

■ If map fields have not been modified and the data fields in storage remain
unchanged.

■ If map fields have been erased by operator action.

■ If map fields have been truncated.

■ If the specified map fields are either in error (the error flag has been set on) or the
map fields are correct, (the error flag has been set off). This option applies only to

those maps and map fields for which automatic editing is enabled.

Syntax

►►─── #MAPINQ MRB=map-request-block-pointer ──────────────────────────────────►

 ►─┬───┬────────────────────────────►
 └─ ,MRBLIST= ─┬─ MRBPLIST ◄ ─────────────────┬┘
 └─ mrb-parameter-list-pointer ─┘
 ►─┬───────────────────────────┬──►
 └─ ,CURSOR=cursor-position ─┘

 ►─┬──────────────────────┬───►
 └─ ,AID=aid-indicator ─┘

 ►─┬─ field-options ────┬───►◄
 ├─┬─ flist-options ─┬┤
 │ └─ for-options ───┘│
 └─ if-options ───────┘

Expansion of field-options

►►─── ,FIELD=field-name ──►

 ►─┬─────────────────────────┬──►
 └─ ,INDEX=index-register ─┘

 ►─┬──────────────────────────────┬───►◄
 └─ ,INLEN=field-length-number ─┘

Expansion of flist-options

►►─── ,FLIST= ──►

 ┌──────────────────── , ────────────────────────┐
 ►─── (─▼─ FIELD,field-name ─┬─────────────────────────┬┴─) ────────────────►
 └─ ,INDEX=index-register ─┘

 ►─┬───┬────────────────────────────►◄
 └─ ,PLIST= ─┬─ SYSPLIST ◄ ───────────────────┬┘
 └─ parameter-value-list-pointer ─┘

#MAPINQ

Chapter 5: Data Manipulation Language Statements 239

Expansion of for-options

►►─── ,FOR= ──►

 ►───┬─ CURRENT ─┬──►◄
 ├─ ALL ─────┤
 ├─ NONE ────┤
 ├─ SOME ────┤
 └─ ANY ─────┘

Expansion of if-options

►►─── ,IF= ───►

 ►─── (─┬─ DATANO,unchanged-field-label ─────┬─) ───────────────────────────►◄
 ├─ DATAYES,updated-field-label ──────┤
 ├─ DATAERAS,erased-field-label ──────┤
 ├─ DATARUN,truncated-field-label ────┤
 ├─ EDITERR,edit-error-field-label ───┤
 ├─ EDITCOR,edit-correct-field-label ─┤
 ├─ DATAIDEN,identical-data-label ────┤
 └─ DATADIFF,different-data-label ────┘

Parameters

MRB=

Specifies the storage area associated with the MRB about which the inquiry is being
made.

map-request-block-pointer

A register that points to the MRB area or the symbolic name of that area.

MRBLIST=

Specifies the location of the 20-fullword storage area that is substituted for the
DC/UCF portion of SUBSCHEMA-CTRL.

MRBPLIST

(Default); is the symbolic name of the storage area that will be substituted for the

DC/UCF portion of SUBSCHEMA-CTRL.

mrb-parameter-list-pointer

A register that points to the area or the symbolic name of the area.

CURSOR=

Requests that the system return the cursor address from the last map in operation
to the specified location in the issuing program.

cursor-position

The symbolic name of a 2-byte user-defined field. The system will set the value of

cursor-position to the row and the column, each a 1-byte binary number, of the
cursor position on the screen.

#MAPINQ

240 DML Reference Guide for Assembler

AID=

Requests the system to return the AID to the specified location in the issuing

program.

aid-indicator

The symbolic name of a 1-byte user-defined field that will be set to the 3270 AID
character received in the last map in request.

FIELD=

Moves field-related information to the issuing program.

field-name

Specifies the name of the map field being tested. The following options can be used
with FIELD:

■ INDEX=index specifies the occurrence of the field if field-name is a
multiply-occurring field. Index is either a register or the symbolic name of a

user-defined field that contains the subscript or an absolute expression.

■ INLEN=field-length. requests that the system return the entered length, in
bytes, of the specified map field to the issuing program. Field-length is a
register or the symbolic name of a halfword or fullword user-defined field to
which the system will return the length.

FLIST=

Specifies a l ist of map fields to be tested, as indicated by the FOR parameter,
described below. The FLIST-parameter values must be enclosed in parentheses.
Each field specification must be coded on a separate l ine. The FLIST parameters are:

■ Field-name is the name of the map data field to be tested.

■ INDEX= specifies the occurrence of the field if field-name is a multiply-occurring

field. Index-register is a register or the symbolic name of a user-define field that
contains the subscript or an absolute expression.

■ PLIST= (optional); indicates the location in which the system will build the field

parameter l ist.

■ SYSPLIST (default); is the symbolic name of the storage area in which the
system will build the field parameter l ist.

■ Parameter-value-list-pointer is a register that points to the area or the symbolic
name of the area.

FOR=

Specifies the map data fields to whi ch the test applies.

#MAPINQ

Chapter 5: Data Manipulation Language Statements 241

CURRENT

Specifies that the test applies only to the current data field; that is, the data field

that was referenced in the last #MAPMOD or #MAPINQ statement issued by the
program. If the last #MAPMOD or #MAPINQ statement specified a field l ist, no
currency exists.

ALL

Specifies that the test is true if all map data fields meet the specified condition.

NONE

Specifies that the test is true if none of the map data fields meet the specified
condition.

SOME

Specifies that the test is true if more than one, but not all of the map data fields
meet the specified condition.

ANY

Specifies that the test is true if one or more of the map data fields meet the
specified condition.

ALLBUT

Specifies that the test is true if all map fields except for the named field meet the
specified condition.

NTCURFLD

Specifies that the test is true if all map fields except the current field meet the
specified condition.

IF=

Specifies the input test condition. For each condition, the associated label specifies
the symbolic name of the routine in the issuing program to which the system will

pass control if the tested condition is true. The IF-parameter condition and label
must be enclosed in parentheses.

DATANO

Determines if the terminal operator did not enter data in the named map fields.
This condition is true if the field has not been modified or if it had been modified

but the INDATA=NO option was in effect for the field during the last #MREQ IN
request.

DATAYES

Determines if the terminal operator entered data in the named map fields.

#MAPINQ

242 DML Reference Guide for Assembler

DATAERAS

Determines if the data has been erased from the named map fields using 3270 local

editing features. In this case, the data fields would remain unchanged unless a
padding character had been specified, which would fi l l the field with that character.

DATATRUN

Determines if the data has been truncated in the named map fields. A field that has
been truncated would also fulfi ll the condition DATAYES, described above.

EDITERR

Determines if the named map fields were found to be in error during automatic
editing. To test for this condition, automatic editing must be enabled for the map
and for each of the named map fields.

EDITCOR

Determines if the named map fields were found to be correct during automatic

editing. To test for this condition, automatic editing must be enabled for the map
and for each of the named map fields.

DATAIDEN

Tests whether input data is identical to map data currently in program variable
storage. DATAIDEN is true in either of the following cases:

■ The field's modified data tag (MDT) is off. On mapin, the MDT is off if the user
did not type any characters in the field, a previous modify map did not set it, or
the map specifies N to MDT on Y/N.

■ The field's MDT is on, but each character that the user typed in is identical
(including capitalization) to the data in variable storage.

DATADIFF

Tests whether input data is different from map data currently in program variable
storage. DATADIFF is true if the field's MDT is on and at least one input character

differs from the data in variable storage.

Example

The following example of the #MAPINQ statement tests for whether the terminal
operator entered data in more than one, but not all of the fields described in the FLIST
parameter. If this condition is true the program branches to the label CHECFLDS. A false

condition returns control to the next executable instruction.

#MAPINQ MRB=BLOCK1,FLIST=(FIELD,SCREENF2, *

 FIELD,SCREENF3, *

 FIELD,SCREENF4, *

 FIELD,SCREENF5), *

 FOR=SOME,IF=(DATAYES,CHECFLDS)

#MAPMOD—requests that the system modify options in the map request block

Chapter 5: Data Manipulation Language Statements 243

Status Codes

The #MAPINQ request is unconditional; any return code other than X'00' will result in an

abend of the issuing task.

#MAPMOD—requests that the system modify options in the
map request block

The #MAPMOD statement requests that the system modify options in the map request

block (MRB) for a map; modifications can be designated as permanent or temporary.
Requested revisions can be field-specific and/or non field-specific. Field-specific
revisions apply to the map's variable data fields, not to l iteral fields.

The following considerations apply:

■ If modification of one field i s necessary, the FIELD, MRB, and the optional PLIST

parameters, described below, should be specified.

■ If modification of more than one field is necessary, the FLIST, FOR, and MRBLIST
parameters, described below, should be specified.

■ The #MAPMOD attribute parameters revise predefined map and/or map data field
attributes, and thus have no defaults. If a #MAPMOD attribute parameter is not
specified, that parameter remains set to the value specified at map generation or to
the value set with a previously issued #MAPMOD statement specifying TYPE=PERM.

Conflicting attributes are resolved by runtime mapping.

#MAPMOD Syntax
►►── #MAPMOD ───►

 ►─┬──────────────────────────┬───►
 └─ TYPE= ───┬─ PERM ◄ ──┬──┘
 └─ TEMP ────┘

 ►─── ,MRB=map-request-block-pointer ───►

#MAPMOD—requests that the system modify options in the map request block

244 DML Reference Guide for Assembler

 ►─┬───┬──────────────────────────────►
 └─ ,PLIST= ──┬─ SYSPLIST ◄ ─────────────┬───┘
 └─ parameter-list-pointer ─┘

 ►─┬───┬──────────────────────────►
 └─ ,MRBLIST= ──┬─ MRBPLIST ◄ ─────────────────┬─┘
 └─ mrb-parameter-list-pointer ─┘

 ►─┬──┬───►
 └─ ,CURSOR= (─┬─ cursor-row,cursor-column ─────────────────────┬─) ──┘
 └─ FIELD,fieldname ─┬──────────────────────────┬─┘
 └─ ,INDEX,index-register ──┘

 ►─┬────────────────────────────┬───►
 └─ ,WCC= ─┬─┬─ RESETMDT ─┬─┬─┘
 │ └─ NOMDT ────┘ │
 ├─┬─ RESETKBD ─┬─┤
 │ └─ NOKBD ────┘ │
 ├─┬─ ALARM ───┬──┤
 │ └─ NOALARM ─┘ │
 ├─┬─ STARTPRT ─┬─┤
 │ └─ NOPRT ────┘ │
 └─┬─ NLCR ─┬─────┘
 ├─ 40CR ─┤
 ├─ 64CR ─┤
 └─ 80CR ─┘

 ►─┬───┬────────────────────────►
 └─ ,FIELD=field-name ─┬─────────────────────────┬─┘
 └─ ,INDEX=index-register ─┘

 ►─┬───┬──────►
 │ ┌──┐ │
 └─ ,FLIST= (─▼─ FIELD,field-name ─┬─────────────────────────┬─┴─)───┘
 └─ ,INDEX,index-register ─┘

 ►─┬────────────────────────┬───►
 └─ ,FOR= ─┬─ ALL ──────┬─┘
 ├─ ERROR ────┤
 ├─ CORRECT ──┤
 ├─ CURRENT ──┤
 ├─ NOTCURNT ─┤
 ├─ FLIST ────┤
 └─ NOTFLIST ─┘

 ►─┬───────────────────────┬──►
 └─ ,BACKSCN= ─┬─ YES ─┬─┘
 └─ NO ──┘

 ►─┬──────────────────────────────┬───►
 └─ ,OUTDATA= ─┬─ YES ───────┬──┘
 ├─ NO ────────┤
 ├─ ERASE ─────┤
 └─ ATTRibute ─┘

 ►─┬──────────────────────┬───►
 └─ ,INDATA= ─┬─ YES ─┬─┘
 └─ NO ──┘

 ►─┬─────────────────────────┬──►
 └─ ,JUSTIFY= ─┬─ RIGHT ─┬─┘
 └─ LEFT ──┘

 ►─┬─────────────────────────────────┬──►
 └─ ,PAD= ─┬─ NO ────────────────┬─┘
 ├─ C'pad-character' ──┤
 └─ X'pad-character' ──┘

#MAPMOD—requests that the system modify options in the map request block

Chapter 5: Data Manipulation Language Statements 245

 ►─┬─────────────────────────┬──►
 └─ ,EDIT= ─┬─ ERROR ───┬──┘
 └─ CORRECT ─┘

 ►─┬──────────────────────────┬───►
 └─ ,INPUT= ─┬─ REQUIRED ─┬─┘
 └─ OPTIONAL ─┘

 ►─┬────────────────────────────┬───►
 └─ ,ERRMSG= ─┬─ ACTIVE ◄ ─┬──┘
 └─ SUPPRESS ─┘

 ►─┬─────────────────────────────────────┬────────────────────────────────────►◄
 │ ┌──────── , ───────────┐ │
 └─ ,ATTR= (─▼─┬──── SKIP ────────┬─┴)─┘
 ├──┬─ ALPHA ─────┬─┤
 │ └─ NUMERIC ───┘ │
 ├──┬─ PROTECT ───┬─┤
 │ └─ UNPROT ────┘ │
 ├──┬─ DISPLAY ───┬─┤
 │ ├─ DARK ──────┤ │
 │ └─ BRIGHT ────┘ │
 ├──── DETECT ──────┤
 ├──┬─ MDT ───────┬─┤
 │ └─ NOMDT ─────┘ │
 ├──┬─ BLINK ─────┬─┤
 │ └─ NOBLINK ───┘ │
 ├──┬─ REVERSE ───┬─┤
 │ └─ NRMVIDEO ──┘ │
 ├──┬─ UNDERSCR ──┬─┤
 │ └─ NOUNDER ───┘ │
 └──┬─ NOCOLOR ───┬─┘
 ├─ BLUE ──────┤
 ├─ RED ───────┤
 ├─ PINK ──────┤
 ├─ GREEN ─────┤
 ├─ TURQUOIS ──┤
 ├─ YELLOW ────┤
 └─ WHITE ─────┘

#MAPMOD Parameters

MRB=

Specifies the storage area associated with the MRB of the map that is being
modified. This storage area is of variable length according to the number of fields

included in the map; it is copied into program variable storage by the #MRB
statement.

map-request-block-pointer

A register that points to the MRB area or the symbolic name of that area.

Note: Map-request-block cannot be a register if the FIELD=field-name operand is
also specified in the #MAPMOD statement.

TYPE=

Specifies whether the modifications are to be permanent or temporary.

PERM

(Default); specifies that modifications apply to all mapping mode I/O requests
issued until the program terminates or until a subsequent #MAPMOD request

overrides the requested revisions.

#MAPMOD—requests that the system modify options in the map request block

246 DML Reference Guide for Assembler

TEMP

Specifies that modifications will apply only to the next #MREQ request.

PLIST=

Indicates the location of the storage area in which the system will build the field
parameter l ist specified by the FLIST parameter, described below.

SYSPLIST

(Default); is the symbolic name of the storage area in which the system will build
the field parameter l ist.

parameter-value-list-pointer

A register that points to the area or the symbolic name of the area.

MRBLIST=

Indicates the location of the 20-fullword storage area that is substituted for the
DC/UCF portion of SUBSCHEMA-CTRL. It is generated at the bottom of the first map
request block in the program.

MRBPLIST

(Default) is the symbolic name of the storage area that will be substituted for the

DC/UCF portion of SUBSCHEMA-CTRL.

mrb-parameter-list-pointer

A register that points to the area or the symbolic name of the area.

CURSOR=

Identifies the screen location at which the cursor will be positioned during output
operations.

cursor-row,cursor-column

Specifies the row and column on the terminal screen to which the cursor will be
moved. Cursor-row is a numeric l iteral indicating the row val ue. Cursor-column is a
numeric l iteral indicating the column value.

field-name

Specifies the field to which the cursor will be moved. Field-name is the name of a

map data field.

index-register

Optionally specifies the occurrence of the field if field-name is a multiply-occurring
field. Index is either a register or the symbolic name of a user-defined field that
contains the subscript or an absolute expression.

#MAPMOD—requests that the system modify options in the map request block

Chapter 5: Data Manipulation Language Statements 247

WCC=

Specifies the write-control character (WCC) options requested for the output

operation. The WCC is a single byte transmitted with a screen during a #MREQ OUT,
that indicates the functions that the 3270 control unit is to perform as it displays
the information on the screen.

If a #MAPMOD request alters any WCC option, the system resets unspecified
options to the following values:

■ NOMDT

■ NOKBD

■ NOALARM

Multiple WCC parameter values must be enclosed in parentheses and separated by
commas.

RESETMDT/NOMDT

Specifies whether the modified data tags (MDTs) for the map fields will be reset to
off automatically when the map is displayed. If RESETMDT is specified, the contents
of variable fields are transmitted to storage only if the terminal opera tor modified
the field or if the MDT has been set programmatically.

RESETMDT

States that the MDTs will be reset (turned off).

NOMDT

States that the MDTs will not be reset.

RESETKBD/NOKBD

Specifies whether the keyboard will be unlocked automaticall y when the map is
displayed.

RESETKBD

States that the keyboard will be unlocked.

NOKBD

States that the keyboard will not be unlocked.

ALARM/NOALARM

Specifies whether the terminal audible alarm, if installed, will sound automatically
when the map (for example, a screen that displays error messages), is displayed.

ALARM

States that the alarm will sound.

NOALARM

States that the alarm will not sound.

#MAPMOD—requests that the system modify options in the map request block

248 DML Reference Guide for Assembler

STARTPRT/NOPRT

(3280 printers only); specifies whether the contents of the terminal buffer will be

printed automatically when the map is displayed.

STARTPRT

States that the contents of the terminal buffer will be printed.

NOPRT

States that the contents of the termi nal buffer will not be printed.

NLCR/40CR/64CR/80CR

Specifies the characters-per-line formatting for 3280 printer output, meaningful

only if the STARTPRT option, described above, has been specified.

NLCR

States that no line formatting will be performed on the printer output. Printing will
begin on a new line only if the printer encounters new line (NL) and carriage control
(CR) characters.

40CR

States that the contents of the 3280 print buffer will be printed at 40 characters per

l ine.

64CR

States that the contents of the 3280 print buffer will be printed at 64 characters per
l ine.

80CR

States that the contents of the 3280 print buffer will be printed at 80 characters per

l ine.

FIELD/FLIST

Specifies one or more map fields to be modified. Choose one of these parameters
to change field-specific options such as FOR, BACKSCN, OUTDATA, INDATA, JUSTIFY,
PAD, EDIT, INPUT, and ATTR.

FIELD=

Specifies one map field to be modified.

FIELD

Specifies that one map field is to be modified.

field-name

Is the name of the map data field to be modified.

#MAPMOD—requests that the system modify options in the map request block

Chapter 5: Data Manipulation Language Statements 249

index

Specifies the occurrence of the field if field-name is a multiply-occurring field. Index

is a register, the symbolic name of a user-defined field that contains the subscript,
or an absolute expression.

FLIST=

Specifies a l ist of map fields to be modified or to be excluded from modification, as
indicated by the FOR=FLIST and FOR=NOTFLIST parameters described below. The

FLIST parameter values must be enclosed in parentheses. Each field specification
must be coded on a separate l ine. Specify each field by using the following
parameters.

field-name

Is the name of the map data field to be modified.

index-register

Specifies the occurrence of the field if field-name is a multiply-occurring field.
Index-register is a register, the symbolic name of a user-defined field that contains
the subscript, or an absolute expression.

FOR=

Specifies the map fields to be modified or excluded from modification:

ALL

Modifies all fields.

ERROR

Modifies those fields found to be in error during automatic editing.

CORRECT

Modifies those fields found to be correct during automatic editing.

CURRENT

Modifies only the field found to be current during automatic editing. The current
field is the map field that was referenced in the last #MAPMOD or #MAPINQ
request issued by the program. A #MAPMOD or #MAPINQ that specifies a field l ist
does not establish currency.

NOCURNT

Modifies all the fields except the current field during automatic editing. The current
field is the map field that was referenced in the last #MAPMOD or #MAPINQ
request issued by the program. A #MAPMOD or #MAPINQ that specifies a field l ist
does not establish currency.

FLIST

Modifies all the fields in the field l ist defined by the FLIST parameter above.

#MAPMOD—requests that the system modify options in the map request block

250 DML Reference Guide for Assembler

NOTFLIST

Modifies all fields except those in the field l ist defined by the FLIST parameter

above.

BACKSCN=

Specifies whether the system is to backscan the specified field to remove trail ing
blanks before performing the map output operation.

YES

Requests that the system send all characters up to the last nonblank character to

the terminal; fields remaining on the screen will contain whatever characters were
present before the #MREQ request was issued. If the #MREQ request specifies the
NEWPAGE option, the system erases the contents of all map data fields.

NO

Requests that the system leave in trail ing blanks.

OUTDATA=

Indicates whether map fields will be set to the value of the corresponding
variable-storage data fields.

YES

Specifies that the value of the variable storage field will be mapped out to the map
field.

NO

Specifies that data from the record buffer as well as the attribute byte will not be
mapped out.

ERASE

Requests that the system erase the map data fields.

ATTRIBUTE

Requests that the system transfer only the attribute byte from the record buffer to
the map field.

INDATA=YES/NO

Indicates whether the map fields will be moved automatically to the corresponding
variable-storage data fields (YES) or left unchanged (NO) during an input operation.

JUSTIFY=RIGHT/LEFT

Indicates whether the variable-storage field should be right or left justified on input.

PAD=

Indicates whether the alphanumeric variable-storage data field should be padded

on input and defines the pad value or character:

#MAPMOD—requests that the system modify options in the map request block

Chapter 5: Data Manipulation Language Statements 251

NO

Does not pad the field.

pad-character

Pads the field with the specified pad character on the left if JUSTIFY=RIGHT is
specified and on the right if JUSTIFY=LEFT is specified. Pad-character is a binary
numeric l iteral pad-character value.

EDIT=ERROR/CORRECT

Explicitly sets the error flag on (ERROR) or off (CORRECT) for the specified map

fields. If this parameter is specified, automatic editing must be enabled for the map
and for the named map fields.

The ability to set the error flag enables programs to perform their own editing and
validation in addition to that provided by the automatic editing feature.

INPUT=

Specifies whether the terminal operator will be required to add input in the
specified map fields.

REQUIRED

Specifies that input is required. An error results if the terminal operator fails to
enter data in a required field.

OPTIONAL

Specifies that input is optional. An error will not result if the terminal operator fails
to enter data in an optional field.

ERRMSG

ACTIVE

(Default); enables display of the error message associated with the field.

SUPPRESS

Disables display of the error message associated with the field. If the map is
redisplayed because of errors, the message defined for the map field will not be
displayed even if the field contains edit errors. You typically enable display of a
message only after specifying ERRMSG=SUPPRESS for the map in a previous

#MAPMOD TYPE=PERM statement.

ATTR=

Specifies the 3270 and 3279 attri butes for the named map fields. Multiple ATTR
parameter values must be enclosed in parentheses and separated by commas. Only
the named attributes will be modified in the MRB. ATTR options are.

#MAPMOD—requests that the system modify options in the map request block

252 DML Reference Guide for Assembler

SKIP

Requests that the system reposition the cursor automati cally over the ma fields to

the next unprotected field. When SKIP is specified, the named map fields are
implicitly assigned the NUMERIC and PROTECT attributes (described below)
automatically.

ALPHA/NUMERIC

Specifies whether the data input to the map fi elds by the terminal operator are

alphanumeric (any character on the 3270 terminal keyboard) or numeric. ALPHA
cannot be specified if SKIP has been specified.

PROTECT/UNPROT

Specifies whether or not map fields will be protected from data entry or
modification by the terminal operator. UNPROT cannot be specified if SKIP has been

specified.

DISPLAY/DARK/BRIGHT

Specifies how map fields are displayed.

DISPLAY

Specifies that the map fields will be displayed with normal intensity. DISPLAY
cannot be specified if DETECT, described below, has been specified.

DARK

Specifies that the map fields will not be displayed. DARK cannot be specified if
DETECT, described below, has been specified.

BRIGHT

Specifies that the map fields will be displayed with bright intensity. BRIGHT cannot
be specified if DETECT, described below, has been specified.

DETECT

Specifies that the map fields will be l ight-pen-detectable. All fields assigned the
BRIGHT attribute will automatically be detectable by a l ight pen.

MDT/NOMDT

Specifies whether MDTs are automatically set (turned on) for the map field when
displayed.

MDT

Requests that the system automatically set the MDT for the map fields when

displayed.

NOMDT

Requests that the system not automatically set the MDT for the map fields when
displayed.

#MAPMOD—requests that the system modify options in the map request block

Chapter 5: Data Manipulation Language Statements 253

BLINK/NOBLINK

(3279 terminals only); specifies whether map fields will be displayed with blinking

characters.

BLINK

Specifies that the fields characters will blink.

NOBLINK

Suppresses blinking.

REVERSE/NRMVIDEO

(3279 terminals only); specifies whether map fields will be displayed in reverse
video; dark characters on a l ight background.

REVERSE

Indicates that map fields will be displayed in reverse video.

NRMVIDEO

Specifies that the map fields will be displayed in normal video; l ight characters on a

dark background.

UNDERSCR/NOUNDER

(3279 terminals only); specifies whether the map fields are displayed with
underlined characters.

UNDERSCR

Specifies that the map fields will be displayed with underlined characters.

NOUNDER

Specifies that the map fields will be displayed with nonunderlined characters.

NOCOLOR/BLUE/RED/PINK/GREEN/TURQUOIS/YELLOW/WHITE

(3279 terminals only); specifies that the map fields will be displayed with no color
attribute or with one of the seven available color attributes.

Note: The BLINK/NOBLINK, REVERSE/NRMVIDEO, and UNDERSCR/NOUNDER
options are mutually exclusive; the last attribute specified will override any

previously specified attribute.

#MAPMOD Status Codes

The #MAPMOD request is unconditional; any return code other then X'00' will result in
an abend of the issuing task.

#MAPMOD—requests that the system modify options in the map request block

254 DML Reference Guide for Assembler

#MAPMOD Example

The example of the #MAPMOD statement shown below performs the following
functions:

■ Identifies BLOCK1 as the storage area associated with the MRB of the map that is

being modified

■ Accepts the default of setting the modifications l isted in this statement as
permanent until the program terminates or another #MAPMOD statement is issued

■ Accepts the default of MRBPLIST as the symbolic name of the storage area that will
be substituted for the DC/UCF portion of SUBSCHEMA-CTRL

■ Identifies the initial position of the cursor during a map out operation on the first
position of the field SCREENF1

■ Defines the WCC character options requested for output operations

■ Specifies that all the fields l isted in the FLIST parameter are to be modified

■ Specifies that during an output operation the screen fields associated with the fields
l isted in the FLIST parameter are to be set to the value of the storage fields

■ Specifies that during an input operation the storage fields are to be set to the value

of the corresponding screen fields

■ Specifies that the storage fields will be left justified on input

■ Specifies that on input the storage fields will be padded on the right with blank
spaces

■ Specifies that input is optional

■ Specifies the 3270 attributes for the specified map fields

#MAPMOD MRB=BLOCK1,CURSOR=(SCREENF1),WCC=(NOMDT,RESETKDB, *

 NOALARM,NOPRT),FLIST=(FIELD,SCREENF1, *

 FIELD,SCREENF2 *

 FIELD,SCREENF3 *

 FIELD,SCREENF4), *

 FOR=FLIST,OUTDATA=YES,INDATA=YES, *

 JUSTIFY=LEFT,PAD=C' ',INPUT=OPTIONAL, *

 ATTR=(SKIP,BRIGHT,UNDERSCR)

@MODIFY—replaces element values of the database record

Chapter 5: Data Manipulation Language Statements 255

The following #MAPMOD statement shows how to suppress display of default error
messages for fields EMPID and DEPTID on the current map.

#MAPMOD TYPE=TEMP,MRB=MAPMRB, *

 FLIST=(FIELD,EMPID FIELD,DEPTID), *

 FOR=FLIST,ERRMSG=SUPPRESS

Because this #MAPMOD statement specifies TEMP, error messages for these fields are
suppressed for the next mapout only. If PERM (default) were used, the error messages
would be suppressed until the program terminated or until the error message

specifications were overridden by a subsequent #MAPMOD statement.

@MODIFY—replaces element values of the database record

The @MODIFY statement replaces element values of the specified database record with
new element values present in program variable storage.

Before execution of the @MODIFY statement, the following conditions must be met:

■ All areas affected, either implicitly or explicitly, must be readied in one of the

update usage modes (see @READY (see page 308) in this chapter).

■ The named record must be established as current of run unit. If the record that is
current of run unit is not an occurrence of the named record, an error condition
results.

■ The values of all elements defined for the named record in the subschema view

must be in variable storage. If the @MODIFY statement is not preceded by an
@OBTAIN statement, you must initialize the appropriate values. It is recommended
that you issue an @OBTAIN statement to ensure that all the elements in the
modified record are present in variable storage before you alter the values, then

issue the @MODIFY statement.

Modifying CALC- and Sort-Control Elements

The following special considerations apply to the modification of CALC- and sort-control
elements:

■ If modification of a CALC- or sort-control element will violate a

duplicates-not-allowed option, the record is not modified and an error condition
results.

■ If a CALC-control element is modified, successful execution of the @MODIFY
statement enables the record to be accessed on the basi s of its new CALC-key

value. The db-key of the specified record is not changed.

@MODIFY—replaces element values of the database record

256 DML Reference Guide for Assembler

■ If a sort-control element is to be modified, the sorted set in which the named
record participates must be included in the subschema invoked by the program. A

record occurrence that is a member of a set not defined in the subschema can be
modified if the undefined set is not sorted.

■ If any of the modified elements in the specified record are defined as sort-control
elements for any set occurrence in which that record is currently a member, the set
occurrence is examined. If necessary, the specified record is automatically

disconnected and reconnected in the set occurrence to maintain the set order
specified in the schema.

Native VSAM Considerations

The following special considerations apply to the modification of records in native VSAM
data sets:

■ The length of a record in an entry-sequenced data set (ESDS) cannot be changed
even if the record is variable length.

■ The prime key for a key-sequenced data set (KSDS) cannot be modified.

Currency

Before execution of the @MODIFY statement:

■ The specified record must be established as current of run unit. If the record that is
current of run unit is not an occurrence of the specifi ed record, an error condition
results.

■ The values of all elements defined for the named record in the program's

subschema view must be in variable storage. If the @MODIFY statement is not
preceded by an @OBTAIN statement, the programmer must initialize the
appropriate values. The best practice is to issue an @OBTAIN statement to ensure
that all the elements in the modified record are present in variable storage before

altering the values as desired and then issue the @MODIFY statement.

Following a successfully executed @MODIFY statement, the modified record becomes
current of its run unit, record type, area, and all sets in which in participates as owner or
member.

@MODIFY Syntax

►►─── @MODIFY REC=record-name ──►◄

@MODIFY Parameters

REC=record-name

Defines the named record occurrence, as specified in program variable storage.

Record-name must specify a record type included in the subschema.

@MODIFY—replaces element values of the database record

Chapter 5: Data Manipulation Language Statements 257

@MODIFY Status Codes

After completion of the @MODIFY function, the ERRSTAT field in the IDMS
communications block indicates the outcome of the operation. The following is a l ist of
the acceptable status codes for this function and their corresponding meaning:

0800

The request has been serviced successfully.

0804

The OCCURS DEPENDING ON item is less than 0 or greater than the maximum

number of occurrences of the control element.

0805

Modification of the record would violate a duplicates -not-allowed option for a CALC
record, a sorted set, or an index set.

0806

Currency has not been established for the specified record.

0808

The specified record cannot be found. The record name has probably been
misspelled.

0809

The specified record's area has not been readied in one of the three update usage
modes.

0810

The subschema specifies an access restriction that prohibits modification of the
named record.

0811

There is insufficient space to hold the modified variable-length record occurrence.

0813

A current record of run unit has not been established or has been nullified by a
previous @ERASE statement.

0818

The record has not been bound.

0820

The current record of run unit is not the same type as the specified record.

0821

An area other than the area of the named record has been readied with an
incorrect usage mode.

@MODIFY—replaces element values of the database record

258 DML Reference Guide for Assembler

0825

No current record of set type has been established.

0833

All sorted sets in which the specified record participates have not been included in
the subschema.

0855

An invalid length has been defined for a variable-length record.

0860

A record occurrence has been encountered whose type is inconsistent with the set
named in the ERROR-SET field of the IDMS communications block. Probable causes

are either a broken chain and improper database description.

0861

No record can be found for an internal db-key. This code usually indicates a broken
chain.

0883

Either the length of a record in a native VSAM ESDS has been changed, or a prime
key in native VSAM KSDS has been modified.

@MODIFY Example

The following example il lustrates the steps involved in modifying an occurrence of the
EMPLOYEE record. Assume that the employee name is to be changed. The first step is to
retrieve the desired EMPLOYEE record and move its contents to variable storage by
using the statements shown below:

MVC EMPID,INEMPID

@OBTAIN CALC,REC='EMPLOYEE'

The next step is to update the value of the EMPLOYEE field by moving the new

employee name into the proper location in the EMPLOYEE record:

MVC EMPNAME,NEWNAME

The final step is to issue an @MODIFY statement to return all data items in the
EMPLOYEE record to the database:

@MODIFY REC='EMPLOYEE'

@MODIFY (LRF)—changes field values of an existing logical-record occurrence

Chapter 5: Data Manipulation Language Statements 259

@MODIFY (LRF)—changes field values of an existing
logical-record occurrence

The @MODIFY statement changes field values of an existing logical -record occurrence.
LRF uses the field values present in the variable-storage location reserved for the logical
record to update the appropriate database records in the database. You can optionally

specify an alternative variable-storage location from which the changed field values are
to be taken.

@MODIFY (LRF) Syntax
►►─── @MODIFY REC=logical-record-name ──►

 ►─┬───┬────────────────────────────────►
 └─ ,IOAREA=alt-logical-record-location ───┘

 ►─┬──┬───────────────────────────►
 └─ ,ONLRSTS=path-status,GOTO=branch-location ──┘

 ►─┬─────────────────────────────┬──►◄
 └─ ,WHERE boolean-expression ─┘

@MODIFY (LRF) Parameters

REC=logical-record-name

Defines the logical record. Unless the IOAREA clause is specified (see below), the

field values used to update the database are taken from the area in program
variable storage reserved for the specified logical record. Logical-record-name must
specify a logical record defined in the subschema.

IOAREA=alt-logical-record-location

Identifies an alternative variable-storage location from which the field values are to

be obtained to perform the requested modification. When modifying a logical
record that was retrieved into an alternative location in variable storage, you
should use the IOAREA clause to name the same location specified in the @OBTAIN
request. If the IOAREA clause is included in the @MODIFY statement,

alt-logical-record-location must identify a record location defined in the program.

ONLRSTS=path-status,GOTO=branch-location

Tests for the indicated path status. Path-status must be a quoted literal or program
variable (1 to 16 bytes under z/OS and OS/390 or 1 to 6 bytes under the z/VSE
operating system). If path-status results from this @MODIFY statement, the action

specified by GOTO=branch-location is performed. See ON Clause (see page 393) in
this chapter for details.

WHERE boolean-expression

Specifies the selection criteria to be applied to the named logical record. See
WHERE Clause (see page 388), later in this chapter, for details.

#MREQ—determines how data is transferred

260 DML Reference Guide for Assembler

@MODIFY (LRF) Status Codes

When using LRF, the type of status code returned to the program in the ERRSTAT field of
the IDMS communications block differs according to the type of error. If the error occurs
in the logical-record path, the ERRSTAT field contains a status code issued by CA

IDMS/DB with a major code from 00 to 19. For a l ist of these codes, see ERRSTAT Field
and Codes (see page 41).

When the error occurs in the request itself, LRF returns the path status LR-ERROR to the
LRSTAT field of the LRC block and places a status code with a major code of 20 in the
ERRSTAT field of the IDMS communications block. For a l ist of these codes, see Testing

for the Logical-Record Path Status (see page 55).

@MODIFY (LRF) Example

The sample code shown below il lustrates the steps taken to modify an occurrence of the
EMPSKLLR logical record. Assume that the department name for department 1200 is to

be changed, as well as the maximum salary for a specific job working in this department
(job identification number 5051).

1. Retrieve the desired logical record:

@OBTAIN FIRST,REC=EMPSKLLR, *

 WHERE DEPTID EQ '1200' *

 AND JOBID EQ '5051'

2. Update the JOBNAME and MAXSAL fields by moving the new department name and
the revised maximum salary to the proper fields in the obtained DEPJOBLR logical
record:

MVC JOBNAME,NEWNAME

MVC MAXSAL,NEWSAL

3. Issue the @MODIFY statement for the update EMPSKLLR logical record:

@MODIFY REC=EMPSKLLR

#MREQ—determines how data is transferred

The #MREQ statement determines how data is transferred between the terminal and

program variable storage. There are three types of #MREQ statements, each performing
a different type of I/O operation:

■ #MREQ IN transfers data from the terminal device to program variable storage.

■ #MREQ OUT transfers data from program variable storage to the terminal device.

■ #MREQ OUTIN transfers data from program variable storage to the terminal device,

followed by a transfer from the terminal device back to program variable storage.

#MREQ—determines how data is transferred

Chapter 5: Data Manipulation Language Statements 261

Native Mode Transfers

You can also use the #MREQ statement to perform the following native-mode data

transfers:

■ Map in data from an area in variable storage that contains a 3270-like data stream
to data fields defined for the map.

■ Map out data to another area in variable storage.

Synchronous and Asynchronous Requests

All #MREQ input requests are synchronous; output requests can be either synchronous

or asynchronous:

■ For synchronous requests, control does not return to the issuing program until the
I/O operation is completed. You specify a synchronous input request (the default
for mapping output) by indicating YES in the CHECK parameter, as described below.

■ For asynchronous requests, control is returned to the issuing program immediately

after the requested I/O operation is initiated. The program continues to execute
concurrently with the I/O operation. An ECB is established that will be posted after
the I/O has been completed. The address of the ECB is contained in register 1.

To ensure that the previous #MREQ processing has been completed before you
issue an #MREQ request, your program must issue a #TREQ CHECK following

asynchronous data transfer.

Note: For more information about the #TREQ CHECK statement, see #TREQ (see
page 343) later in this chapter.

To transfer data immediately from program variable storage to the terminal, your
program can issue a write-direct-to-terminal #MREQ OUT request (blast). Blast requests

must be directed to 3270 devices that support mapping-mode terminal I/O operations.

Note: For more information about mapping functions, see the Mapping Facility Guide.

#MREQ Syntax

Syntax for each of the these #MREQ statements follows:

■ #MREQ IN

■ #MREQ OUT

■ #MREQ OUTIN

Parameter descriptions follow the syntax diagrams.

#MREQ—determines how data is transferred

262 DML Reference Guide for Assembler

Syntax

#MREQ IN

►►─── #MREQ IN ───►

 ►─── ,MRB=map-request-block-pointer ───►

 ►─┬───┬────────────────────────────────►
 └─ ,PLIST= ──┬─ SYSPLIST ◄ ─────────────┬─┘
 └─ parameter-list-pointer ─┘

 ►─┬────────────────────────────────────┬─────────────────────────────────────►
 │ ┌── , ───┐ │
 └─ ,OPTNS= ── (─┬─▼─ NOIO ─┴─┬─) ──┘
 ├─── UPPER ──┤
 └─── UPLOW ──┘

 ►─┬──────────────────────┬───►
 └─ ,INDATA= ─┬─ YES ─┬─┘
 └─ NO ──┘

 ►─┬──────────────────────────────────────┬───────────────────────────────────►
 ├─ ,STREAMA=data-stream-location-in ─┬─┘
 └─ ,STREAML=data-stream-length-in ───┘

 ►─┬─────────────────────────────┬──►
 └─ ,COND= ─┬── NO ◄ ────────┬─┘
 ├── ALL ─────────┤
 │ ┌───,────┐ │
 └(┬─▼─ ATTN ─┴─┬)┘
 ├─── PERM ───┤
 ├─── DISC ───┤
 ├─── INVP ───┤
 ├─── MPNF ───┤
 ├─── DNSP ───┤
 ├─── TBL ────┤
 ├─── UERR ───┤
 ├─── IDAT ───┤
 ├─── EDNF ───┤
 └─── MPNS ───┘

 ►──── ,DETAIL= ─┬─ NO ◄ ─┬─┬───┬─►
 └─ YES ──┘ ├─ ,FIRST= ─┬─ NO ◄ ─┬─┬──────────────────────┬─┤
 │ └─ YES ──┘ └─,RTRNKEY=field-name ─┘ │
 ├─ ,KEY=key ────────────────────────────────────┤
 ├─ ,SEQNBR=field-name ─┬──────────────────────┬─┤
 │ └─,RTRNKEY=field-name ─┘ │
 └─ ,RTRNKEY=field-name ─────────────────────────┘

 ►─── ,HEADER= ─┬─ NO ◄ ─┬──►
 └─ YES ──┘

 ►─┬─────────────────────┬──►
 └─ ,PAGE=page-number ─┘

 ►─┬──────────────────────┬───►
 └─ ,MODIFY= ─┬─ NO ◄ ─┬┘
 └─ YES ──┘

 ►─┬────────────────────────────────┬───►
 └─ ,ATTNXIT=attention-key-label ─┘

 ►─┬──────────────────────────────────────┬───────────────────────────────────►
 └─ ,PERMXIT=permanent-i/o-error-label ─┘

 ►─┬──┬─────────────────────────────────►
 └─ ,DISCXIT=terminal-disconnected-label ─┘

 ►─┬──┬───────────────────────────────►
 └─ ,INVPXIT=invalid-mrb-information-label ─┘

#MREQ—determines how data is transferred

Chapter 5: Data Manipulation Language Statements 263

 ►─┬────────────────────────────────┬───►
 └─ ,MPNFXIT=map-not-found-label ─┘

 ►─┬──┬─────────────────────────►
 └─ ,DNSPXIT=terminal-device-not-supported-label ─┘

 ►─┬────────────────────────────────┬───►
 └─ ,TBLXIT=error-in-table-label ─┘

 ►─┬──┬─────────────────────────►
 └─ ,UERRXIT=error-in-return-user-edit-mod-label ─┘

 ►─┬──────────────────────────────────────┬───────────────────────────────────►
 └─ ,IDATXIT=internal-data-error-label ─┘

 ►─┬──┬─────────────────────────────────►
 └─ ,EDNFXIT=edit-module-not-found-label ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 └─ ,MPNSXIT=paging-session-error-label ─┘

 ►─┬──────────────────────┬───►◄
 └─ ,ERROR=error-label ─┘

Syntax

#MREQ OUT

►►─┬─────────┬─── #MREQ OUT ──►
 └─ label ─┘

 ►─── ,MRB=map-request-block-pointer ───►

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 └─ ,PLIST= ─┬─ SYSPLIST ◄ ─────────────┬┘
 └─ parameter-list-pointer ─┘

 ►─┬───┬────────────────────────────►
 │ ┌─────── , ─────────┐ │
 └─ ,OPTNS= ── (───▼──┬─ NEWPAGE ──┬───┴─) ──┘
 ├─ LITERALS ─┤
 ├─ NOIO ─────┤
 ├─ SAVE ─────┤
 └─ EAU ──────┘

 ►─┬─────────────────────────────┬──►
 └─ ,OUTDATA= ─┬─ YES ───────┬─┘
 ├─ NO ────────┤
 ├─ ERASE ─────┤
 └─ ATTRibute ─┘

 ►─┬───┬──────►
 └─ ,DETAIL= ─┬─ NO ◄ ─┬─┬───┬─┘
 └─ YES ──┘ └─ ,UPDATE= ─┬─ NEW ◄ ───┬─┬────────────┬─┘
 └─ CURRENT ─┘ └─ ,KEY=key ─┘

 ►─── ,RESUME= ─┬─ NO ◄ ─┬─┬───────────────────────────────────────┬──────────►
 └─ YES ──┘ └─ ,PAGE= ─┬─ CURRENT ◄ ─────────────┬──┘
 ├─ NEXT ──────────────────┤
 ├─ PRIOR ─────────────────┤
 ├─ FIRST ─────────────────┤
 ├─ LAST ──────────────────┤
 ├─ page-number ───────────┤
 └─ (page-number-pointer) ─┘

#MREQ—determines how data is transferred

264 DML Reference Guide for Assembler

 ►─┬─────────────────────┬──►
 └─ ,CHECK= ─┬─ YES ─┬─┘
 └─ NO ──┘

 ►─┬───┬──────────────►
 └─ ,STREAMA= ─┬─ (1) ◄ ───────────────────────────────────┬─┘
 └─ return-data-stream-address-out-register ─┘

 ►─┬──┬───────────────►
 └─ ,STREAML= ─┬─ (0) ◄ ──────────────────────────────────┬─┘
 └─ return-data-stream-length-out-register ─┘

 ►─┬──┬─────────────────────────────────►
 ├─ ,DESTID=destination-id-pointer ───────┤
 ├─ ,USERID=user-id-pointer ──────────────┤
 └─ ,LTERMID=logical-terminal-id-pointer ─┘

 ►─┬──────────────────────────────────┬───────────────────────────────────────►
 └─ ,COND= ─┬── NO ◄ ────────────┬──┘
 ├── ALL ─────────────┤
 │ ┌──── , ──┐ │
 └(─┬─▼── ATTN ─┴┬─)──┘
 ├──── LOGL ──┤
 ├──── PERM ──┤
 ├──── DISC ──┤
 ├──── INVP ──┤
 ├──── MPNF ──┤
 ├──── DNSP ──┤
 ├──── TBL ───┤
 ├──── UERR ──┤
 ├──── IDAT ──┤
 ├──── EDNF ──┤
 ├──── UNDF ──┤
 └──── MPNS ──┘

 ►─┬────────────────────────────────┬───►
 └─ ,ATTNXIT=attention-key-label ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 └─ ,LOGLXIT=logical-output-error-label ─┘

 ►─┬──────────────────────────────────────┬───────────────────────────────────►
 └─ ,PERMXIT=permanent-i/o-error-label ─┘

 ►─┬──┬─────────────────────────────────►
 └─ ,DISCXIT=terminal-disconnected-label ─┘

 ►─┬──┬───────────────────────────────►
 └─ ,INVPXIT=invalid-mrb-information-label ─┘

 ►─┬────────────────────────────────┬───►
 └─ ,MPNFXIT=map-not-found-label ─┘

 ►─┬──┬─────────────────────────►
 └─ ,DNSPXIT=terminal-device-not-supported-label ─┘

 ►─┬────────────────────────────────┬───►
 └─ ,TBLXIT=error-in-table-label ─┘

 ►─┬──┬─────────────────────────►
 └─ ,UERRXIT=error-in-return-user-edit-mod-label ─┘

 ►─┬──────────────────────────────────────┬───────────────────────────────────►
 └─ ,IDATXIT=internal-data-error-label ─┘

 ►─┬──┬─────────────────────────────────►
 └─ ,EDNFXIT=edit-module-not-found-label ─┘

 ►─┬───┬────────────────────────────────►
 └─ ,UNDFXIT=invalid-destid-ltermid-label ─┘

#MREQ—determines how data is transferred

Chapter 5: Data Manipulation Language Statements 265

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 └─ ,MPNSXIT=paging-session-error-label ─┘

 ►─┬──────────────────────┬───►
 └─ ,ERROR=error-label ─┘

 ►─┬──►─
 └─ ,MSGADDR=message-start-location-register ───────────────────────────────

─►───┬──────────────────────────────►◄
 ─┬─ ,MSGLEN=message-length-register ───────┬─┘
 └─ ,MSGEND=message-end-location-register ─┘

Syntax

#MREQ OUTIN

►►─┬─────────┬─── #MREQ OUTIN ──►
 └─ label ─┘

 ►─── ,MRB=map-request-block-pointer ───►

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 └─ ,PLIST= ─┬─ SYSPLIST ◄ ─────────────┬┘
 └─ parameter-list-pointer ─┘

 ►─┬─────────────────────────────────────┬────────────────────────────────────►
 │ ┌─── , ─────┐ │
 └─ ,OPTNS= ──(──┬─▼─ NEWPAGE ─┴─┬──)──┘
 ├─── LITERALS ──┤
 ├─── UPPER ─────┤
 ├─── UPLOW ─────┤
 └─── EAU ───────┘

 ►─┬───────────────────────────┬──►
 └─ ,OUTDATA= ─┬─ YES ───────┤
 ├─ NO ────────┤
 ├─ ERASE ─────┤
 └─ ATTRibute ─┘

 ►─┬──────────────────────┬───►
 └─ ,INDATA= ─┬─ YES ─┬─┘
 └─ NO ──┘

 ►─┬─────────────────────┬──►
 └─ ,CHECK= ─┬─ YES ─┬─┘
 └─ NO ──┘

 ►─┬───────────────────────────────┬──►
 └─ ,COND= ─┬── NO ◄ ───────────┬┘
 ├── ALL ────────────┤
 │ ┌─── , ───┐ │
 └(─┬─▼── ATTN ─┴─┬──┘
 ├──── LOGL ───┤
 ├──── PERM ───┤
 ├──── DISC ───┤
 ├──── INVP ───┤
 ├──── MPNF ───┤
 ├──── DNSP ───┤
 ├──── TBL ────┤
 ├──── UERR ───┤
 ├──── IDAT ───┤
 ├──── EDNF ───┤
 └──── MPNS ───┘

#MREQ—determines how data is transferred

266 DML Reference Guide for Assembler

 ►─┬────────────────────────────────┬───►
 └─ ,ATTNXIT=attention-key-label ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 └─ ,LOGLXIT=logical-output-error-label ─┘

 ►─┬──────────────────────────────────────┬───────────────────────────────────►
 └─ ,PERMXIT=permanent-i/o-error-label ─┘

 ►─┬──┬─────────────────────────────────►
 └─ ,DISCXIT=terminal-disconnected-label ─┘

 ►─┬──┬───────────────────────────────►
 └─ ,INVPXIT=invalid-mrb-information-label ─┘

 ►─┬────────────────────────────────┬───►
 └─ ,MPNFXIT=map-not-found-label ─┘

 ►─┬──┬─────────────────────────►
 └─ ,DNSPXIT=terminal-device-not-supported-label ─┘

 ►─┬────────────────────────────────┬───►
 └─ ,TBLXIT=error-in-table-label ─┘

 ►─┬──┬─────────────────────────►
 └─ ,UERRXIT=error-in-return-user-edit-mod-label ─┘

 ►─┬──────────────────────────────────────┬───────────────────────────────────►
 └─ ,IDATXIT=internal-data-error-label ─┘

 ►─┬──┬─────────────────────────────────►
 └─ ,EDNFXIT=edit-module-not-found-label ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 └─ ,MPNSXIT=paging-session-error-label ─┘

 ►─┬──────────────────────┬───►
 └─ ,ERROR=error-label ─┘

 ►─┬──►─
 └─ ,MSGADDR=message-start-location-register ───────────────────────────────

─►───┬──────────────────────────────►◄
 ─┬─ ,MSGLEN=message-length-register ───────┬─┘
 └─ ,MSGEND=message-end-location-register ─┘

#MREQ Parameters

MRB=map-request-block-pointer

Specifies the location of the MRB for the mapping operation, as copied into
program variable storage by the #MRB statement. The #MRB statement is

described under #MRB (see page 419). Map-request-block-pointer is either a
register that points to the MRB area or the symbolic name of that area.

PLIST=

Specifies the location of the storage area in which the system builds the #MREQ
parameter l ist.

SYSPLIST

(Default); is the symbolic name of the storage area.

#MREQ—determines how data is transferred

Chapter 5: Data Manipulation Language Statements 267

parameter-list-pointer

Is either a register that points to the area or the symbolic name of the area.

OPTNS=

Specifies several options applicable to terminal I/O operations. Multiple OPTNS
parameter values must be enclosed in parentheses and separated by commas.

NEWPAGE

(#MREQ OUT and #MREQ OUTIN only); requests that the system activate the
erase-write mechanism to clear the contents of a screen. If NEWPAGE is not

specified, the system will write over any existing screen display without first erasing
it.

You can mark individual fields to be erased by using the OUTDATA=ERASE option of
the #MAPMOD statement, described earlier in this chapter.

LITERALS

(#MREQ OUT and #MREQ OUTIN only); requests that the system transmit l iteral
fields as well as variable-storage data fields to the terminal. If LITERALS is not
specified, the system writes l iteral fi elds to the map only if NEWPAGE is specified.

NOIO

(#MREQ IN and #MREQ OUT only); requests that the system transfer a native-mode

data stream, a 3270-like data stream that consists of user data and all
device-control characters, to program storage. No terminal I/O is associated with
the request:

■ For IN requests, the native-mode data stream replaces data that would
normally be read from the termi nal by the system.

■ For OUT requests, the native-mode data stream replaces data that would
normally be written out to the terminal by the system.

When OPTNS=(NOIO) is specified, the STREAMA= and STREAML= parameters must
also be defined, as described below.

SAVE

(Non-write-direct-to-terminal #MREQ OUT only); requests that the system preserve
the mapped output from the #MREQ OUT request in the event that an unsolicited

write-direct-to-terminal data stream is received at the issuing terminal while the
map is being displayed. This option overrides the task SAVE/NOSAVE option
specified during system generation.

UPPER

(#MREQ IN and #MREQ OUTIN only); requests that the system translate all letters in

a map in request into uppercase characters.

#MREQ—determines how data is transferred

268 DML Reference Guide for Assembler

UPLOW

(#MREQ IN and #MREQ OUTIN only); requests that lowercase characters are not

translated into uppercase characters in a map in request. This can also be
accomplished by issuing a DCUF SET UPLOW statement before starting the mapping
session.

EAU

(#MREQ OUT and #MREQ OUTIN only); allows you to request the 3270 erase all

unprotected command. This command sets all unprotected character locations to
nulls, resets the MDTs for all unprotected fields, unlocks the keyboard, resets the
AID key, and places the cursor at the first unprotected field. This option cannot be

used with OPTNS=(NEWPAGE).

OUTDATA=

(#MREQ OUT and #MREQ OUTIN only); specifies how the variable-storage data
fields are to be transmitted to the terminal. This specification applies to all
variable-storage data fields unless overridden by an OUTDATA= clause in a

previously issued #MAPMOD request.

YES

Transfers the contents of variable-storage data fields to the corresponding map
fields.

NO

Requests that map fields remain unchanged.

ERASE

Does not transfer the contents of variable-storage data fields to the screen.

ATTRIBUTE

Transmits only the attribute byte of each variable-storage field to the screen. Data
in the variable-storage field is not transmitted.

INDATA=

(#MREQ IN and #MREQ OUTIN only); specifies whether the contents of the map
fields are moved automatically into variable-storage data fields. This specification

applies to all variable-storage data fields unless overridden by an INDATA= clause in
a previously issued #MAPMOD request.

YES

Transfers the contents of map fields to the corresponding variable-storage data
fields.

NO

Does not transfer the contents of map fields to the corresponding variable-storage
data fields.

#MREQ—determines how data is transferred

Chapter 5: Data Manipulation Language Statements 269

DETAIL/HEADER

(Pageable map #MREQ IN only); specifies whether the #MREQ IN operation is to

retrieve data from a detail occurrence or from the header or footer area.

Note: For more information about pageable maps, see the Mapping Facility Guide.

DETAIL=

Specifies whether the #MREQ IN operation is to retrieve data from a modified detail
occurrence (modified data tag set on):

NO

(Default); specifies that data is not to be retrieved from a detail occurrence.

YES

Specifies that data is to be retrieved from a modified detail occurrence (MDT set
on). By default, the next sequential modified detail occurrence is retrieved; a

different detail occurrence can be specified by using the
FIRST/KEY/SEQNBR/RTRNKEY clause.

The contents of all map fields in the detail occurrence are retrieved unless

MODIFY=YES is specified for the #MREQ IN,DETAIL statement. MODIFY=YES causes
only modified fields to be retrieved.

FIRST/KEY/SEQNBR/RTRNKEY

Specifies the detail occurrence to be retrieved. Only one option can be specified.

FIRST=

Specifies whether the first available modified detail occurrence is to be retrieved.

NO

(Default); specifies that the FIRST clause is not used to determine the detail

occurrence to be retrieved.

YES

Retrieves the first available modified detail occurrence. An end-of-data condition
results if there are no more modified detail occurrences to be retrieved.

The optional RTRNKEY=data-field-name parameter specifies the name of a variable

field in which the system stores the key value (if any) associated wi th the retrieved
detail occurrence. If no value is associated with the detail occurrence, the system
sets data-field-name to 0. Data-field-name must be a 4-byte value (not necessarily a

binary fullword).

Note: A value is associated with a detail occurrence by using the KEY parameter in

an #MREQ OUT,DETAIL=YES command for that occurrence.

KEY=key

Retrieves a modified detail occurrence based on the value associated with the

detail occurrence. Key is a 4-byte variable field.

#MREQ—determines how data is transferred

270 DML Reference Guide for Assembler

Note: A value is associated with a detail occurrence by using the KEY parameter in
an #MREQ OUT,DETAIL=YES command for that occurrence.

A detail-not-found condition is returned if the specified occurrence is not a
modified detail occurrence or if no detail occurrence with the specified value is
found.

SEQNBR=data-field-name

Retrieves a detail occurrence by sequence number. Detail occurrences are built by

the application program at run time and are stored in the sequence in which they
are created. Data-field-name is a 4-byte binary fullword field.

RTRNKEY=data-field-name

(Optional); names the variable field used to store the 4-byte value (if any) of the
retrieved detail occurrence. If no value is associated with the detail occurrence,

data-field-name is set to 0. (Data-field-name does not have to be a binary fullword).

Note: A value is associated with a detail occurrence by using the KEY parameter in
an #MREQ OUT,DETAIL=YES command for that occurrence.

RTRNKEY=data-field-name

Retrieves the next sequential modified detail occurrence, and specifies the name of

the variable field in which the system stores the value (if any) associated with the
retrieved detail occurrence. If no value is associated with the detail occurrence,
data-field-name is set to 0. Data-field-name must be a 4-byte value (not necessarily

a binary fullword).

Note: A value is associated with a detail occurrence by using the KEY parameter in
an #MREQ OUT,DETAIL=YES command for that occurrence.

HEADER=

(Pageable map #MREQ IN only); specifies whether the map in operation is to

retrieve the contents of data fields in the header and footer areas.

NO

(Default); specifies that data from the header and footer areas is not to be
retrieved.

YES

Specifies that data from the header and footer areas is to be retrieved.

The contents of all data fields in the header and footer areas are retrieved unless
MODIFY=YES is specified in the #MREQ IN,HEADER statement; MODIFY=YES causes
only modified fields to be retrieved.

PAGE=page-number

Specifies the name of a numeric variable field to store the current binary fullword

value of the $PAGE field on map in.

#MREQ—determines how data is transferred

Chapter 5: Data Manipulation Language Statements 271

MODIFY=

Specifies whether the contents of modified fields are to be retrieved.

NO

(Default); retrieves all fields from the header and footer areas when a modified field
(MDT set on) is found in the occurrence or areas.

YES

Retrieves only the contents of modified fields from the header and footer areas;
data in unmodified fields is not retrieved.

DETAIL/RESUME

(Pageable map #MREQ OUT only); specifies whether the #MREQ OUT command is
to create or modify a detail occurrence, or to map out a page of existing detail
occurrences.

DETAIL=

Specifies whether the #MREQ OUT command is to create or modify a detail

occurrence.

NO

(Default); specifies that the #MREQ OUT command does not create or modify detail
occurrences.

YES

Specifies that the #MREQ OUT command can either create or modify individual
detail occurrences. You can optionally associate a numeric key value with each
occurrence.

UPDATE=NEW/CURRENT

Specifies whether the detail occurrence is to be created or modified.

NEW

(Default); creates a detail occurrence in a pageable map. Occurrences are displayed
in the order in which they are created by the application program.

CURRENT

Modifies the detail occurrence referenced by the most recent #MREQ OUT or
#MREQ IN command.

#MREQ—determines how data is transferred

272 DML Reference Guide for Assembler

KEY=key

(Optional); specifies a value to be associated with the created or modified detail

occurrence. The 4-byte numeric value is not displayed on the terminal screen. Key is
the name of the variable field that contains the database key of the database
record associated with the detail occurrence.

When the KEY parameter is used with the #MREQ
OUT,HEADER=YES,UPDATE=CURRENT command, the specified value replaces the
value (if any) previously associated with the detail occurrence.

RESUME=

Specifies whether a page of detail occurrences is to be displayed on the terminal

screen.

NO

(Default); specifies that the #MREQ OUT command does not map out a page of
detail occurrences to the terminal.

YES

Specifies that the #MREQ OUT command maps out a page of detail occurrences to
the terminal.

PAGE=

(Optional); determines the page of occurrences to be displayed on the terminal
screen.

CURRENT

(Default); redisplays the current page. If no page has been displayed, the first page
of the pageable map is displayed.

NEXT

Displays the page that follows the current page. If no page follows the current page,
the current page is redisplayed.

PRIOR

Displays the page that precedes the current page. If no page precedes the current
page, the current page is redisplayed.

FIRST

Displays the first available page of detail occurrences.

LAST

Displays the page of detail occurrences with the highest available page number.

#MREQ—determines how data is transferred

Chapter 5: Data Manipulation Language Statements 273

page-number

Displays the numeric variable field that contains the binary fullword number of the

page. A page number is previously stored in the variable field by an #MREQ
IN,HEADER=YES,PAGE=page-number statement that names the same numeric
variable field.

(page-number)

Specifies the register that contains the address of a 4-byte binary fullword field in

variable storage that contains the number of the page to be displayed.
Page-number must be enclosed in single quotes.

CHECK=

(#MREQ OUT and #MREQ OUTIN only); specifies whether the data transfer is
synchronous or asynchronous.

YES

Specifies that the data transfer is synchronous. the system places the issuing task in
an inactive state. When the output operation is completed, the task resumes
processing according to its established dispatching priority.

NO

Specifies that the data transfer is asynchronous. the system returns control to the

issuing program immediately after initiating the output operation and establishing
an ECB to be posted when the output operation is completed.

An asynchronous transfer must be followed by a CHECK #TREQ request before

another #MREQ request is issued to ensure that the previous #MREQ processing
has been completed.

Note: For more information about synchronous and asynchronous processing, see
#TREQ (see page 343) later in this chapter.

Specifying CHECK=NO in a #MREQ OUT statement issued before task termination

frees the task resources when the task terminates; the system automatically issues
a #TREQ CHECK.

STREAMA/STREAML

(OPTNS=(NOIO only); specifies the location and the length of the input data stream
to be transmitted.

STREAMA=

Specifies the location of the native-mode data stream to be transmitted.

data-stream-location-in

Either a register that points to the data stream or the symbolic name of the area
that contains the data stream.

STREAML=

Specifies the length of the native-mode data stream to be transmitted.

#MREQ—determines how data is transferred

274 DML Reference Guide for Assembler

data-stream-length-in

A register that contains either the length or an absolute expression of the length.

STREAMA/STREAML

Specifies the length of the output data stream and the location to which it is
returned.

STREAMA=(1)/return-data-stream-address-out

Specifies the location to which the system transfers the mapped data.

(1)

(Default); is the register that contains the address of the location to which the

system transfers the mapped data.

return-data-stream-address-out

Specifies the location to which the system transfers the mapped da ta.
Return-data-stream-address-out is either a register or the symbolic name of a
fullword user-defined area.

STREAML=

Specifies the location to which the system returns the length of the output data

stream.

(0)

(Default); is the register to which the system returns the length, in bytes, of the
output data stream.

return-data-stream-length-out

Specifies the location to which the system returns the length, in bytes, of the

output data stream. Return-data-stream-length-out is either a register or the
symbolic name of a halfword or fullword user-defined field.

DESTID/USERID/LTERMID

(#MREQ OUT only); specifies a write-direct-to-terminal request (blast) to either a
destination, user, or logical terminal.

DESTID=destination-id

Specifies a write-direct-to-terminal request to one of the following destinations
defined during system generation.

■ A list of logical terminals indicates that the system sends the #MREQ data
stream specified in the OUTAREA parameter to all available terminals in the list.

■ A list of users indicates that the system sends the #MREQ data stream

specified in the OUTAREA parameter to all users in the list who are currently
signed on to the system.

Note: This works only if there is a valid OUTAREA parameter for l ine mode
(#LINEOUT) as well as for mapping mode (#MREQ).

#MREQ—determines how data is transferred

Chapter 5: Data Manipulation Language Statements 275

destination-id

A register that points to the destination id, the symbolic name of a user -defined

field that contains the destination ID, or the ID itself enclosed in quotation marks.

Note: The destination list can include different 3270 models. If a map has been
generated to support a specified terminal device, the system will write the map to
that device. If the targeted terminal -device type is not in the map device l ist, the
system will ignore that terminal device.

USERID=

Specifies a write-direct-to-terminal request to a specific signed-on user. The system
sends the #MREQ data stream specified in the OUTAREA parameter to a specific
signed-on user.

user-id

Either a register that points to the user ID, the symbolic name of a user -defined

field that contains the user id, or the ID itself enclosed in quotation marks.

LTERMID=

Specifies a write-direct-to-terminal request to a specific in-service terminal. The
system will send the #MREQ data stream specified in the OUTAREA parameter to a
specific in-service terminal.

logical-terminal-id

Either a register that points to the logical terminal id, the symbolic name of a
user-defined field that contains the logical terminal ID, or the ID itself enclosed in
quotation marks.

COND=

Specifies whether this #MREQ is conditional and under what conditions control

should be returned to the issuing program.

NO

(Default); specifies that the request is not conditional.

ALL

Specifies that the request is conditional. Control is returned i f the request cannot be
serviced for any of the reasons l isted under condition.

condition

Specifies one or more conditions under which the system returns control to the

issuing program. Multiple conditions must be enclosed in parentheses and
separated by commas. You can specify one or more of the following conditions.

■ ATTN

The I/O is interrupted by the terminal operator pressing the ATTENTION (2471)
or BREAK (teletype) key during an output operation.

#MREQ—determines how data is transferred

276 DML Reference Guide for Assembler

■ LOGL

A logical error is encountered in the output data stream.

■ PERM

A permanent I/O error has occurred.

■ DISC

The dial-up line is disconnected or the terminal goes out of service.

■ INVP

There is an invalid parameter in the MRB.

■ MPNF

The map load module requested by the MRB cannot be found in the load area
of the dictionary.

■ NSP

The requested map does not support the terminal device type being used.

■ TBL

The named edit or code table cannot be found or is invalid for use with the
requested map.

■ UERR

An error has occurred in a user-written edit module.

■ IDAT

A data conversion error occurs where the internal map data does not match

the map data description.

■ EDNF

The user-written edit module cannot be found or is invalid for use with the
requested map.

■ UNDF

(#MREQ OUT only); an undefined DESTID or LTERMID is specified in an #MREQ

blast request.

■ MPNS

A map paging #MREQ is issued when no paging session is in progress.

ATTNXIT=attention-key-label

Specifies the symbolic name of the routine to which control should be returned if
the I/O operation is interrupted by the terminal operator.

#MREQ—determines how data is transferred

Chapter 5: Data Manipulation Language Statements 277

LOGLXIT=logical-output-error-label

Specifies the symbolic name of the routine to which control should be returned if a

logical error is detected in the output data stream.

PERMXIT=permanent-i/o-error-label

Specifies the symbolic name of the routine to which control should be returned if a
permanent I/O error occurs.

DISCXIT=terminal-disconnected-label

Specifies the symbolic name of the routine to which control should be returned if

the terminal l ine or terminal goes out of service.

INVPXIT=invalid-mrb-information-label

Specifies the symbolic name of the routine to which control should be returned if
the #MREQ cannot be serviced because of an invalid parameter in the MRB.

MPNFXIT=map-not-found-label

Specifies the symbolic name of the routine to which control should be returned if

the #MREQ cannot be serviced because the map requested by MRB cannot be
found.

DNSPXIT=terminal-device-not-supported-label

Specifies the symbolic name of the routine to which control should be returned if
the #MREQ cannot be serviced because the terminal device in use is not supported

by the requested map.

TBLXIT=error-in-table-label

Specifies the symbolic name of the routine to which control should be returned if
an edit or code table cannot be found or is invalid for use with the requested map.

UERRXIT=error-in-return-user-edit-mod-label

Specifies the symbolic name of the routine to which control should be returned if

an error has occurred in a user-written edit module.

IDATXIT=internal-data-error-label

Specifies the symbolic name of the routine to which control should be returned if
the internal map data does not match the map data description.

EDNFXIT=edit-module-not-found-label

Specifies the symbolic name of the routine to which control should be returned if a
user-written edit module cannot be found or is invalid for use with the requested

map.

UNDFXIT=invalid-destid-ltermid-label

(#MREQ OUT only); specifies the symbolic name of the routine to which control
should be returned if an undefined DESTID or LTERMID is specified in an #MREQ
OUT blast request.

#MREQ—determines how data is transferred

278 DML Reference Guide for Assembler

MPNSXIT=paging-session-error-label

Specifies the symbolic name of the routine to which control should be returned if a

map paging #MREQ specification is issued when a no paging session is in progress.

ERROR=error-label

Specifies the symbolic name of the routine to which control should be returned if a
condition specified in the COND parameter occurs for which no other exit routine
was coded.

MSGADDR=message-start-location,MSGLEN=message-length/

MSGEND=message-end-location

(#MREQ OUT and #MREQ OUTIN only); specifies a program-supplied message to be
displayed in the map message area. The message text is a 1- to 80-character
alphanumeric value. Message-start-location is either a register that points to the

message area or the symbolic name of that area. Specify the end of the message in
one of the following ways.

MSGLEN=message-length

Specifies the length, in bytes, of the message output data area. Message-length is a
register that contains the length, the symbolic name of a user-defined field that

contains the length, or the length itself expressed as a numeric constant.

MSGEND=message-end-location

Specifies the end of the message by referencing the next data item following the
message storage area. Message-end-location is a register or a fullword that points

to the first data item following the message storage area. This data item may be a
dummy byte, a data item not associated with the output data, or the symbolic
name of that data item.

#MREQ Status Codes

By default, the #MREQ request is unconditional; any return-code other than X'00' will
result in an abend of the issuing task. The issuing program can request return of control
with the COND parameter to avoid an abend.

The value returned to register 15 differs according to whether the #MREQ request is a

paging or a nonpaging request. Status codes issued as a result of a nonpaging #MREQ
request fall in the range of '00' to '38'; paging requests return values in the range of '40'
to '50'.

#MREQ—determines how data is transferred

Chapter 5: Data Manipulation Language Statements 279

After completion of an #MREQ statement that does not involve pageable maps, the
value in register 15 indicates the outcome of the operation. The following status codes

apply to nonpageable maps:

X'00'

The request has been serviced successfully.

X'04'

The specified edit or code table cannot be found or is invalid for use with the
named map.

X'08'

The I/O has been interrupted; the terminal operator has pressed ATTENTION (2741)

or BREAK (teletype).

X'0C'

A logical error (for example, an invalid control character) has been encountered in
the output data stream.

X'10'

A permanent I/O error has occurred during processing.

X'14'

The dial-up line for the terminal is disconnected.

X'18'

The terminal being used is out of service.

X'20'

The map request block (MRB) contains an invalid field, indicating a possible error in
program parameters.

X'24'

The map load module named in the MRB either cannot be found in the dictionary

load area (DDLDCLOD) or is invalid.

X'28'

The requested map does not support the terminal device type being used.

X'2C'

An error has occurred in a user-written edit module. An invalid pointer to the data

stream has been returned to register 1.

X'30'

A data conversion error has occurred; the internal map data does not match the

map data description.

#MREQ—determines how data is transferred

280 DML Reference Guide for Assembler

X'34'

The specified user-written edit module cannot be found or is invalid for use with

the named map.

X'38'

Invalid blast request to DESTID, LTERMID, or USER ID.

X'3C'

Invalid map load module.

After completion of an #MREQ function that involves pageable maps, the value in

register 15 indicates the outcome of the operation: The following status codes apply to
pageable maps:

X'40'

(#MREQ IN) The requested node for a header or detail was either not present or not

updated.

(#MREQ OUT) There is no current detail occurrence to be updated. No action is
taken

X'44'

(#MREQ IN) No more modified detail occurrences require map in.

(#MREQ OUT) The maximum amount of storage defined for pageable maps at
system generation has been reached. This and any ensuing map out detail
occurrences are ignored.

X'48'

(#MREQ IN) The scratch record containing the requested detail could not be
accessed (internal error).

(#MREQ OUT) No detail occurrence, footer, or header fields exist to be mapped out
by an #MREQ OUT,RESUME command.

x'4C'

(#MREQ OUT) The first screen page has been transmitted to the terminal.

#MREQ—determines how data is transferred

Chapter 5: Data Manipulation Language Statements 281

X'50'

(#MREQ IN) An #MREQ IN,COND=MPNS or an #MREQ OUT,COND=MPNS request

was received when no map paging session is in progress. Either a #STRTPAG
command was not received prior to this #MREQ IN command or a #ROLLBAK was
issued so that the scratch area for the pageable map (area ID MPGPSCRA) is no

longer available. Unless the COND=MPNS is specified for #MREQ, this condition
abends the map paging task with the message DC242021.

(#MREQ OUT) A mapout command was received when no map paging session was
in progress. Either the #STRTPAG command was not received prior to this mapout

command or a #ROLLBAK was issued so that the scratch area for the pageable map
(area ID MPGPSCRA) is no longer available. This return code is received only when
COND=MPNS is specified for #MREQ; otherwise, this condition abends the map
paging task.

X'54'

(#MREQ OUT) Value returned to register 15 when a pageable map page is built
before the page is actually displayed. Test for the new map paging return code after
each #MREQ OUT DETAIL=YES statement. This allows you to detect when the last

detail that can fit on a page has been placed on that page.

Upon successful completion of certain #MREQ requests, four registers contain the

following information:

■ Register 0, for #MREQ OUT blast requests, contains the actual number of terminals
to which the data stream has been routed.

■ Register 1, for asynchronous output requests, contains the address of the ECB that
the system posts on completion of the I/O operation.

■ Register n, for non-I/O requests (OPTNS=(NOIO) parameter), contains the address
of the native-mode data stream. The register number n is assigned by the STREAMA
parameter. This register does not have to be assigned for non-I/O requests; the

system can place the address of the native-mode data stream in a user-defined
storage area rather than in a register.

■ Register m, for non-I/O requests, contains the length of the native-mode data
stream. The register number m is assigned by the STREAML parameter. This register
does not have to be assigned for non-I/O requests. The following conditions apply:

– For output requests, the system can place the length of the native-mode data
stream in a user-defined storage area.

– For input requests, the length can be defined as an absolute expression.

#MREQ Example

The following examples i l lustrate how to use the #MREQ statement:

@OBTAIN (LRF)—retrieves the named logical record

282 DML Reference Guide for Assembler

The #MREQ IN statement shown below requests that the system read the map
associated with the map request block TESTMAP1. Data values are transferred from

map fields to the corresponding variable-storage data fields. Subsequent commands can
evaluate the input values and perform appropriate processing. For any error condition
that can be specified by the COND=ALL parameter, control will be returned to the

routine labeled ERRORTN.

#MREQ IN,MRB=TESTMAP1,INDATA=YES,COND=ALL,ERROR=ERRORTN

The #MREQ IN statement shown below requests that the system map in the next

(default) modified detail occurrence of the pageable map associated with the map
request block TESTPAG1.

#MREQ IN,MRB=TESTPAG1,DETAIL=YES,MODIFY=YES,COND=ALL, *

 ERROR=ERRORTN

The #MREQ OUT statement shown below requests that the system map out all l iteral
and data fields associated with the map request block TESTMAP1. The NEWPAGE option
clears the screen before transferring the TESTMAP1 data fields to the screen.

#MREQ OUT,MRB=TESTMAP1,OUTDATA=YES,OPTNS=(NEWPAGE)

The #MREQ OUT statement shown below creates a new detail occurrence and maps out
a page of detail occurrences to the terminal screen. The detail occurrence can be

displayed in mixed uppercase and lowercase characters. Control is returned to the
ERRRTN routine if the request cannot be serviced due to any of the conditions l isted
under the COND options. A program-supplied message is mapped out to the map
message area. Register 7 points to where the message is stored; register 4 contains the

message length

#MREQ OUT,MRB=TESTPAG1,OPTNS=(UPLOW),DETAIL=YES,RESUME=YES, *

 COND=ALL,ERROR=ERRRTN,MSGADDR=(R7),MSGLEN=(R4)

@OBTAIN (LRF)—retrieves the named logical record

The @OBTAIN statement retrieves the named logical record a nd places it in the
variable-storage location reserved for that logical record. The @OBTAIN statement can

perform the following functions:

■ Retrieve an occurrence of a logical record that meets criteria specified in the
WHERE clause.

■ Specify that the retrieved logical record is to be placed into an alternative

variable-storage location.

@OBTAIN (LRF)—retrieves the named logical record

Chapter 5: Data Manipulation Language Statements 283

@OBTAIN (LRF) Syntax

►►─── @OBTAIN ─┬─ NEXT ◄ ─┬─ ,REC=logical-record-name ───────────────────────►
 └─ FIRST ──┘

 ►─┬──┬────────────────────────────────►
 └─ ,IOAREA=alt-logical-record-location ──┘

 ►─┬──┬──────────────────────────►
 └─ ,ONLRSTS=path-status,GOTO=branch-location ──┘

 ►─┬─────────────────────────────┬───►◄
 └─ ,WHERE boolean-expression ─┘

@OBTAIN (LRF) Parameters

NEXT/FIRST,REC=logical-record-name

Retrieves a logical record and places it in program variable storage.
Logical-record-name must specify a logical record defined in the subschema.

NEXT/FIRST

Specifies which occurrence of the logical record is to be retrieved.

NEXT

(Default); retrieves a subsequent occurrence of the named logical record. @OBTAIN
NEXT is generally used to serially retrieve logical -record occurrences.

When LRF receives repeated @OBTAIN NEXT commands, it replaces field values in
program variable storage with new values obtained through repeated access to

database records.

If the program issues an @OBTAIN NEXT statement without issuing an @OBTAIN

FIRST, or if the last path status returned for the path was LR-NOT-FOUND, LRF
interprets the @OBTAIN NEXT as @OBTAIN FIRST. After LR-ERROR or a DBA-defined
path status, LRF does not interpret @OBTAIN NEXT as @OBTAIN FIRST.

FIRST

Retrieves the first occurrence of the logical record. @OBTAIN FIRST is generally

used to retrieve the first in a series of logical-record occurrences.

If an @OBTAIN FIRST statement is followed by an @OBTAIN NEXT statement to
retrieve a series of occurrences of the same logical record, the @OBTAIN

statements must direct LRF to the same path. For this reason, you must ensure that
the selection criteria specified in the WHERE clauses accompanying the @OBTAIN
FIRST and @OBTAIN NEXT statements describe the same attributes of the desired
logical record.

IOAREA=alt-logical-record-location

Identifies an alternative location in variable storage into which LRF is to place the
retrieved logical record.

@OBTAIN (LRF)—retrieves the named logical record

284 DML Reference Guide for Assembler

Any subsequent @MODIFY, @STORE, or @ERASE statements for a logical record
placed in the named location should name that area. LRF is to obtain the data to be

used to update the logical record from the named area. Alt-logical-record-location
must identify a record location defined in the program.

ONLRSTS=path-status,GOTO= branch-location

Tests for the indicated path status. Path-status is a quoted literal program variable
(1 to 16 bytes). If path-status results from this @OBTAIN statement, the action

specified by GOTO=branch-location is performed.

Note: For more information about how to code this clause, see ON Clause (see
page 393) later in this chapter.

WHERE boolean-expression

Specifies the selection criteria to be applied to the specified logical record.

Note: For details about how to code the WHERE clause, see WHERE Clause (see

page 388) later in this chapter.

@OBTAIN (LRF) Status Codes

When using LRF, the type of status code returned to the program in the ERRSTAT field of
the IDMS communications block differs according to the type of error:

■ If the error occurs in the logical-record path, the ERRSTAT field contains an status
code issued by CA IDMS/DB with a major code from 00 to 19. For a l ist of these
codes, see ERRSTAT Field and Codes (see page 41).

■ If the error occurs in the request itself, LRF returns the path status LR-ERROR to the
LRSTAT field of the LRC block and places an status code with a major code of 20 in

the ERRSTAT field of the IDMS communications block.

For a l ist of these codes, see Testing for the Logical -Record Path Status.

@OBTAIN (LRF) Example

The @OBTAIN NEXT statement shown below retrieves a series of logical -record

occurrences. The program issues the @OBTAIN NEXT statement iteratively to retrieve
the first and all subsequent occurrences of the DEPEMPLR logical record for department
5100. Each @OBTAIN NEXT statement retrieves an employee ID and employee name for

the department with an ID of 5100 (assuming that department 5100 has more than one
employee).

#POST—modifies an event control block

Chapter 5: Data Manipulation Language Statements 285

GETEMPL EQU *

 @OBTAIN NEXT,REC=DEPEMPLR, *

 ONLRSTS='LR-NOT-FOUND',GOTO=END, *

 WHERE DEPTID EQ '5100'

 .

 .

 .

 B GETEMPL

The following figure il lustrates how to use the @OBTAIN command in conjunction with
the WHERE clause, described later in this chapter, to retrieve occurrences of the
EMPJOBLR logical record. Only those detail occurrences with a department-id value

equal to 5100 are retrieved. The EMPJOBLR logical record contains information from the
employee, job, office, and department records. The WHERE clause is used to obtain only
those employees in department 5100.

#POST—modifies an event control block

The #POST statement modifies an event control block (ECB) in one of two ways:

■ Posting an ECB to indicate completion of an event for which another task is waiting

■ Clearing an ECB to an unposted status

The ECB wait must have been previously established by a #WAIT or #ATTACH request.

#POST Syntax

►►─┬─────────┬── #POST ─┬─ ECB=ecb-pointer ────────────────────────────────┬──►◄
 └─ label ─┘ └─ ECBID=ecb-id-register ─┬───────────────┬────────┘
 └─ ,TYPE=CLEAR ─┘

#POST Parameters

ECB=

Specifies the ECB to be posted.

#PRINT—requests that the system transmit data

286 DML Reference Guide for Assembler

ecb

Either a register that points to the ECB or the symbolic name of a user -defined

fullword field that contains the ECB.

ECBID=

Specifies the 4-character ID of the ECB to be posted or to be cleared to an unposted
status.

ecb-id

A register that contains the ECB ID, the symbolic name of a fullword field that

contains the ID, or the ID literal enclosed in quotation marks.

TYPE=CLEAR

(Optional); clears the ECB to an unposted status. Programs that are posting and
waiting for the posting of ECBs are responsible for clearing the ECB. An ECB must be
cleared prior to issuing a subsequent #WAIT request.

#POST Status Codes

The #POST request is unconditional; any runtime error will result in an abend of the
issuing task.

#POST Example

The following example of the #POST statement clears the event control block identified
by the ID literal ECB4 to an unposted status.

#POST ECBID='ECB4',TYPE=CLEAR

#PRINT—requests that the system transmit data

The #PRINT statement requests that the system transmit data from a task to a terminal
defined as a printer device during system generation. The terminal designated as a

printer is usually a hard-copy device. The following considerations apply to the use of
the #PRINT statement:

■ The DC/UCF system does not usually transmit data directly from program storage to

the terminal in response to a #PRINT command. Data is passed to a queue
maintained by the system, then from the queue to the printer terminal. The data
stream passed to the queue by the #PRINT request contains pure data; the system
inserts l ine and device control characters automatically when it writes the data to

the printer.

■ To bypass the queuing process described above and to transfer data immediately to
a printer device, issue a print-direct request by specifying #PRINT OPTNS=(DIRECT).

#PRINT—requests that the system transmit data

Chapter 5: Data Manipulation Language Statements 287

■ You can use a #PRINT request to transmit native-mode data streams, data streams
that contain device-control information as well as user data. This capability is useful

in formatting reports for 3280-type printers. To transmit native-mode data streams,
you issue a #MREQ NOIO request, followed by a #PRINT request with
OPTNS=(NATIVE).

■ Each l ine of data transmitted by a #PRINT request is considered a record. Each
record is associated with a report in the print queue. A report consists of one or

more records. Each task can have up to 256 active print reports. A program can
issue multiple #PRINT requests, each specifying a different report. The DC/UCF
system maintains the status of each report individually.

■ The #PRINT request transmits data or screen contents to print classes or to
destinations:

– Print classes—During system generation, one or more print classes are
associated with each terminal designated as a printer. For each report, the first
record transmitted to the print queue with a #PRINT request establishes the

print class in the range of 1 to 64 for that report. The report is printed on the
first available printer assigned the same print class.

– Destinations—Destinations are groups of terminals, printers, or users. If
destinations have been defined during system generation, the #PRINT request
can direct a report to a destination. Reports sent to printer destinations are

printed either on the first available printer for the destination or on all printers
in that destination, regardless of print class.

■ You can request that the system hold the report rather than print it immediately.
You can explicitly release the report at a later time.

■ The DC/UCF system prints a report only when that report is completed, either

explicitly as part of a #PRINT request or implicitly when the issuing task terminates.
If the task abends, all reports in the print queue that have not been ended explicitly
are deleted without being printed.

■ After completion of a #PRINT request, register 1 contains the address of a
10-character identifier that uniquely identifies the report in the DC/UCF system.

This identifier is not the user-defined report ID described below for the RPTID
parameter. It is a value assigned by the system primarily for internal use. This value
appears on the master terminal when report statistics are requested from that

terminal.

■ A report can be printed several times by indicating to the system to keep the report

after it has been printed, rather than automatically deleting it. The report can be
manually released to be printed using a DCMT VARY REPORT RELEASE command.

#PRINT—requests that the system transmit data

288 DML Reference Guide for Assembler

#PRINT Syntax

►►──┬─────────┬───►
 └─ label ─┘

 ►─── #PRINT RECORD=message-location-pointer,RECLEN=message-length-register ──►

 ►─┬───────────────────────────────────┬──────────────────────────────────────►
 └─ ,RPTID= ─┬─ 1 ◄ ────────────────┬┘
 └─ report-id-register ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 └─ ,CLASS= ─┬─ 1 ◄ ────────────────────┬┘
 └─ printer-class-register ─┘

 ►─┬─────────────────────────────────┬──►
 │ ┌─── , ────┐ │
 └─ ,OPTNS= ───(─▼─ option ─┴─) ──┘

 ►─┬───────────────┬──►
 └─ ,MF= ─┬─ R ─┬┘
 ├─ L ─┤
 └─ E ─┘

 ►─┬───┬────────────────────────────────►
 ├─ ,DEST=printer-destination-pointer ─────┤
 ├─ ,LTEID=direct-printer-ltermid-pointer ─┤
 └─ ,LTEADDR=direct-printer-lterm-address ─┘

 ►─┬──┬─────────────────────────────►
 └─ ,ECBADDR=direct-print-return-ecb-address ─┘

 ►─┬──┬───────────────────────────────►
 └─ ,JOBNAME=batch-request-jobname-pointer ─┘

 ►─┬─────────────────────────────────┬──►
 └─ ,COND= ─┬── NO ◄ ─────────────┬┘
 ├── ALL ──────────────┤
 │ ┌─── , ────┐ │
 └(─┬──▼── NOPR ──┴┬─)─┘
 ├───── IOER ───┤
 ├───── INVP ───┤
 ├───── UNDF ───┤
 ├───── SCRN ───┤
 ├───── INVT ───┤
 ├───── WAIT ───┤
 ├───── OUTS ───┤
 ├───── DEAD ───┤
 ├───── CANC ───┤
 └───── REQU ───┘

 ►─┬───┬──────────────────────────────►
 └─ ,PRB= ─┬─ SYSPLIST ◄ ──────────────────┬─┘
 └─ print-request-block-pointer ─┘

 ►─┬─────────────────────────────┬──►
 └─ ,NOPRXIT=no-printer-label ─┘

 ►─┬───┬────────────────────────────────►
 └─ ,INVPXIT=invalid-parameter-list-label ─┘

 ►─┬─────────────────────────────┬──►
 └─ ,IOERXIT=i/o-error-label ──┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 └─ ,UNDFXIT=invalid-destid-list-label ──┘

#PRINT—requests that the system transmit data

Chapter 5: Data Manipulation Language Statements 289

 ►─┬──┬─────────────────────────────────►
 └─ ,SCRNXIT=screen-term-i/o-error-label ─┘

 ►─┬───────────────────────────────────┬──────────────────────────────────────►
 └─ ,INVTXIT=invalid-terminal-label ─┘

 ►─┬──┬───────────────────────────────►
 └─ ,WAITXIT=wait-for-direct-printer-label ─┘

 ►─┬──┬─────────────────────────►
 └─ ,OUTSXIT=direct-printer-out-of-service-label ─┘

 ►─┬───┬──────────────────────────────►
 └─ ,DEADXIT=deadlock-on-direct-print-label ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 └─ ,CANCXIT=cancel-direct-report-label ─┘

 ►─┬──┬─────────────────────────────────►
 └─ ,REQUXIT=requeue-direct-report-label ─┘

 ►─┬──────────────────────┬───►◄
 └─ ,ERROR=error-label ─┘

#PRINT Parameters

RECORD=

Specifies the storage area that contains data to be output.

message-location-pointer

Either a register that points to the area or the symbolic name of the area.

RECLEN=

Specifies the length, in bytes, of the data stream to be output.

message-length-register

A register that contains the length, the symbolic name of a user-defined halfword
or fullword field that contains the length, or an absolute expression.

RPTID=1/

Specifies the identifier of the report to be printed. The report i dentifier must be an
integer in the range 1 through 255; the default is 1.

report-id-register

A register that contains the ID, the symbolic name of a user-defined field that
contains the ID, or an absolute expression.

CLASS=1/

Specifies the class of the printer to which the report is assigned. Valid print classes
are 1 through 64; the default is 1.

#PRINT—requests that the system transmit data

290 DML Reference Guide for Assembler

printer-class-register

A register that contains the class, the symbolic name of a user-defined field that

contains the class, or an absolute expression. This parameter should be specified
only for the first l ine (record) of each report. If no printer class is specified, the
default print class assigned to the issuing task's physical terminal during system

generation is used.

OPTNS=options

Specifies several options available to print I/O. This parameter is never required and
should be specified only when appropriate. The OPTNS parameter values must be
enclosed in parentheses. Separate multiple values with commas.

NATIVE

Indicates that the data stream contains device control characters. If NATIVE is not

specified, the system automatically inserts the necessary characters.

NEWPAGE

Requests that the system print the data stream beginning on a new page.

ENDRPT

Indicates that the data stream constitutes the last record in the specified report.
When ENDRPT is specified, the report can be printed before the issuing task has

terminated. To print the report immediately, the program must issue a #COMMIT
TASK request. Reports not explicitly ended with an ENDRPT are automatically ended
at task termination.

SCREEN

(3270-type devices only) transmits the contents of the currently displayed screen to

the print queue. When SCREEN is specified, the system implicitly assigns the NATI VE
option and ignores the RECORD= and RECLEN= clauses. The terminal operator can
print screen contents by pressing the print key established during system

generation. If the SCREEN option is specified for a non-3270 terminal or a remote
3270 terminal running under TCAM, an error results.

ALL

Causes the report to be printed on all printers associated with the destination
specified in the DEST parameter. The report is printed on one printer at a time and

saved until it has been printed on all of the printers. You can use a DCMT DISPLAY
REPORT DESTINATION command to display the report name followed by a l ist of the
printer names on which the report has yet to be printed.

HOLD

Requests that the system hold a report in the print queue before it is printed. The

report is not printed until a DCMT VARY REPORT RELEASE command is issued.

#PRINT—requests that the system transmit data

Chapter 5: Data Manipulation Language Statements 291

KEEP

Keeps a report in the print queue after the report has printed. A report marked with

the KEEP option can be manually released for printing with the DCMT VARY REPORT
RELEASE command. The report can be deleted either manually by issuing a DCMT
VARY REPORT DELETE command or automatically through the queue expiration

date.

DIRECT

Indicates a print-direct request that will be routed directly to the destination
specified. Specify the destination by using the CLASS parameter, as described
above, or the DEST, LTEID, or LTEADDR parameters, described below. If LTEID or

LTEADDR is specified, the system will acquire the specific printer. If CLASS or DEST is
specified, the system will acquire the first available printer that satisfies the
requested class or destination.

NOWAIT

(default) Requests that the DC/UCF system not wait for a printer to become

available if the request cannot be immediately serviced; control is returned to the
issuing program with a status code indicating that the printer device is unavailable.

WAIT

Requests that the system wait for a printer to become available if the request
cannot be immediately serviced. If COND=OUTS or COND=ALL has been specified,

the total wait time will be the product of the task's stall interval to a maximum of
60 seconds and the MAXIMUM ERRORS parameter of the PTE. Otherwise, the
maximum wait time equals the stall interval.

MF=

Specifies the type of #PRINT request.

R

Identifies a regular #PRINT request. The DC/UCF system builds a new print request
block (PRB) for each request and performs the requested operation.

L

Identifies a list #PRINT request. The DC/UCF system adds a predefined PRB in the
data definition section of program storage. The PRB contains parameters whose

values remain constant throughout the program. The #PRINT label used to identify
the PRB is referenced by the PRB parameter in subsequent execute-type requests.
Only the label and the MF parameter are required for l ist-type #PRINT requests;
other parameters should be specified only when required to predefine PRB

parameter values.

E

Identifies an execute #PRINT request. The DC/UCF system adds to or overrides the
predefined PRB with the parameters defined in the request and performs the
requested operation.

#PRINT—requests that the system transmit data

292 DML Reference Guide for Assembler

DEST/LTEID/LTEADDR

Identifies the printers to which a report is routed. These parameters can only be

specified with OPTNS=DIRECT; you specify the destination.

DEST=

Specifies a destination defined during system generation. The destination can be
one of the following:

■ A list of logical terminals requesting that the system route the report to all

available terminals in the list

■ A list of users requesting that the system route the report to all l isted users
who are currently signed on to the system

printer-destination-pointer

A register that points to the destination ID, the symbolic name of a user -defined

field that contains the destination ID, or the ID itself enclosed in quotation marks.

LTEID=

Specifies the logical terminal ID of a specific printer-terminal device.

direct-printer-ltermid-pointer

A register that points to the logical terminal ID, the symbolic name of a user-defined
field that contains the logical terminal ID, or the ID itself enclosed in quotation

marks.

LTEADDR=

Specifies the logical terminal element (LTE) address of a specific printer -terminal
device.

direct-printer-lterm-address

A register that points to the address of the LTE, the symbolic name of a

user-defined field that contains the address of the LTE, or the address itself
enclosed in quotation marks.

ECBADDR=

Specifies the location to which the system returns the address of a l ist of event
control blocks (ECBs) if the print-direct request cannot be serviced immediately. If

OPTNS=(DIRECT,NOWAIT) has been specified and the system cannot immediately
acquire the requested printer device, the system returns the address of a l is t of
ECBs to the requesting task. One ECB from the list is posted when the requested
printer becomes available. At that time, the print-direct request can be reissued.

Note: If you use the ECBADDR= parameter and specify OPTNS=(DIRECT,NOWAIT),

the system will allocate storage for the ECBLIST. The program is responsible for
freeing the storage space.

#PRINT—requests that the system transmit data

Chapter 5: Data Manipulation Language Statements 293

direct-print-return-ecb-address

Either a register that points to the ECB area or the symbolic name of a user -defined

field that contains the address of the area.

JOBNAME=

Specifies the name of the system report to be associated with a print request from
a batch program. The JOBNAME parameter is for informational use

 only.

batch-request-jobname-pointer

A 1- to 8-character job name that is displayed as the original logical terminal ID
when a DCMT DISPLAY REPORTS command is issued. Batch-request-jobname is a
register that points to the job name, the symbolic name of a user -defined field that
contains the job name, or the name itself enclosed in quotation marks.

COND=

Specifies the conditions under which control is to be returned to the issuing
program.

NO

(Default); specifies that the request is not conditional. Control is not returned to
your program under any circumstances.

ALL

Specifies that the request is conditional. Control is returned to your program if the
#PRINT request cannot be serviced for one or more of the reasons l isted below.

condition

Specifies under which conditions control is returned to your program. Multiple
conditions must be enclosed in parentheses and separated by commas. Conditions

can specify one or more of the following conditions:

■ NOPR—No printer logical terminals were defined during system generation.

■ IOER—An I/O error occurred during processing.

■ INVP—There is an invalid parameter in the PRB.

■ UNDF—An undefined destination is specified or, for a print-direct request, an

invalid LTEID or LTEADDR is specified.

■ SCRN—A print-screen type request results in a terminal I/O error.

■ INVT—A print-screen request has been made from a non-3270-type terminal or
from a 3270-type terminal without read-buffer support.

#PRINT—requests that the system transmit data

294 DML Reference Guide for Assembler

■ WAIT—No printer can be found to service a print-direct request that specifies
OPTNS=(DIRECT,NOWAIT).

■ OUTS—The printer specified by the LTEID or LTEADDR parameters in a
print-direct request is out of service.

■ DEAD—A print-direct request has been issued with OPTNS=(DIRECT,WAIT) and

a deadlock condition would otherwise occur.

■ CANC—A DCMT VARY PRINTER CANCEL command has been issued for the

printer in a print-direct request.

■ REQU—A DCMT VARY PRINTER REQUEUE command has been issued for the
printer specified in a print-direct request.

PRB=

Specifies the location of the storage area in which the system will build the PRB
(MF=R) or has built the PRB (MF=E).

SYSPLIST

(Default for regular-type requests only); is the symbolic name of the storage area in

which the system builds the PRB.

print-request-block-pointer

A register that points to the area or the symbolic name of the area in which the
system will build the PRB. For execute-type requests (MF=E), this entry explicitly
defines the area by identifying label, provided in a previously-issued list-type

#PRINT that established the PRB.

NOPRXIT=no-printer-label

Specifies the symbolic name of the routine to which control should be returned if
the #PRINT request cannot be serviced because no printer terminal was defined
during system generation.

INVPXIT=invalid-parameter-list-label

Specifies the symbolic name of a routine to which control should be returned if the
#PRINT request cannot be serviced because of an invalid parameter in the PRB.

IOERXIT=i/o-error-label

Specifies the symbolic name of a routine to which control should be returned if the
#PRINT request cannot be serviced because of an I/O error during processing.

UNDFXIT=invalid-dest-id-label

Specifies the symbolic name of a routine to which control should be returned if the

#PRINT request cannot be serviced because an invalid destination was specified or,
for OPTNS=(DIRECT) type requests, an invalid LTEID or LTEADDR was specified.

#PRINT—requests that the system transmit data

Chapter 5: Data Manipulation Language Statements 295

SCRNXIT=screen-term-i/o-error-label

Specifies the symbolic name of a routine to which control should be returned if the

#PRINT request cannot be serviced because a terminal I/O error occurred in
response to a #PRINT request to print the screen contents.

INVTXIT=invalid-terminal-label

Specifies the symbolic name of a routine to which control should be returned if the
screen #PRINT request cannot be serviced because an invalid terminal was

specified.

WAITXIT=wait-for-direct-printer-label

Specifies the symbolic name of a routine to which control should be returned if the
#PRINT request cannot be serviced because OPTNS=(DIRECT,NOWAIT) was
requested and no printer is available to service the request immediately.

OUTSXIT=direct-printer-out-of-service-label

Specifies the symbolic name of a routine to which control should be returned if the
#PRINT request cannot be serviced because the printer identified by LTEID or
LTEADDR in a print-direct request is out of service.

DEADXIT=deadlock-on-direct-print-label

Specifies the symbolic name of a routine to which control should be returned if the

#PRINT request cannot be serviced because OPTNS=(DIRECT,WAIT) was specified
and would otherwise cause a deadlock condition to occur.

CANCXIT=cancel-direct-report-label

Specifies the symbolic name of a routine to which control should be returned if the
#PRINT request cannot be serviced because a DCMT VARY PRINTER CANCEL has

been issued for the specified printer while the print request i s being serviced.

REQUXIT=requeue-direct-report-label

Specifies the symbolic name of a routine to which control should be returned if the
#PRINT request cannot be serviced because a DCMT VARY PRINTER REQUEUE has
been issued for the specified printer while the print request is being serviced.

ERROR=error-label

Specifies the symbolic name of a routine to which control should be returned if a
condition in the COND parameter occurs for which no other exit routine was coded.

#PRINT—requests that the system transmit data

296 DML Reference Guide for Assembler

#PRINT Status Codes

After completion of a #PRINT request, the value in register 15 indicates the outcome of
the operation. The following is a l ist of the Register 15 values and the corresponding
meaning:

X'00'

The request has been serviced successfully.

X'04'

The request cannot be serviced because an I/O error occurred during a #PUTQUE

request or, for OPTNS=(DIRECT), a permanent I/O occurred on the direct pri nter.

X'08'

The request cannot be serviced because the parameter l ist passed to #PRINT
contains an invalid field.

X'0C'

The request cannot be serviced because no printer logical terminals have been

defined for the current system.

X'10'

The request cannot be serviced because a print screen request has been made from
a non-3270-type terminal or from a 3270-type terminal without read-buffer

support.

X'14'

The request cannot be serviced because the specified printer destination is invalid
or, for OPTNS=(DIRECT), the LTEID or LTEADDR specification is invalid.

X'18'

The request cannot be serviced because a terminal I/O error occurred during a

print-screen type #PRINT request.

X'1C'

The request cannot be serviced because no printer could be found to satisfy the
print-direct request, and OPTNS=(NOWAIT) was specified.

X'20'

The request cannot be serviced because the print-direct request has specified an
LTEID or LTEADDR that is out of service.

X'24'

The request cannot be serviced because the print-direct request specified a wait,
and to wait would cause a deadlock.

#PUTJRNL—writes a task-defined record to the journal file

Chapter 5: Data Manipulation Language Statements 297

X'28'

The request cannot be serviced because a DCMT VARY PRINTER CANCEL command

has been issued in the DC/UCF system for this direct printer.

X'2C'

The request cannot be serviced because a DCMT VARY PRINTER REQUEUE

command has been issued in the DC/UCF system for this direct printer.

#PRINT Example

The #PRINT statement shown below performs the following functions:

■ Directs the system to transmit the data in storage area RECOUT to a terminal

defined as a printer device.

■ Specifies that the length of data transmitted is contained in the field OUTLEN.

■ Directs the print request to a specific printer, bypassing the queuing process.

■ Asks the system to wait until the named printer is able to service the request. If the
wait time exceeds the stall interval defined at system generation, the program will

abort.

■ Names the printer by logical terminal ID.

#PRINT RECORD=RECOUT,RECLEN=OUTLEN,OPTNS=DIRECT,WAIT,LTEID='LV009'

#PUTJRNL—writes a task-defined record to the journal file

The #PUTJRNL statement writes a task-defined record to the journal fi le. The records
written to the journal fi le are available to user-defined exit routines during a

task-initiated or system-initiated rollback.

#PUTJRNL Syntax
►►─┬─────────┬──►
 └─ label ─┘

 ►──── #PUTJRNL RECORD=record-location-pointer,RECLEN=record-length-register ─►

 ►─┬──┬─────────────────────────────►
 │ ┌─────── , ─────────┐ │
 └─ ,OPTIONS= ─(───▼─┬─┬─ NOWAIT ◄ ─┬─┬┴─)────┘
 │ └─ WAIT ─────┘ │
 └─┬─ SPAN ◄ ─┬───┘
 └─ NOSPAN ─┘

 ►─┬──────────────────────┬───►◄
 └─ ,ERROR=error-label ─┘

#PUTJRNL—writes a task-defined record to the journal file

298 DML Reference Guide for Assembler

#PUTJRNL Parameters

RECORD=

Specifies the location of the record to be written to the journal fi le.

record-location-pointer

Either a register that points to the record area or the symbolic name of the record
area.

RECLEN=

Specifies the length, in bytes, of the record to be written to the journal fi le.

record-length-register

Either a register that contains the length of the record or the symbolic name of a
fullword user-defined field that contains the length of the record.

OPTIONS=

Specifies whether the issuing task is to wait for completion of the #PUTJRNL
function before resuming task execution and indicates how the system writes the
named record to the journal fi le. Multiple options are enclosed in parentheses and
separated by commas.

The following options determine whether the issuing task will wait for completion

of the #PUTJRNL function.

NOWAIT

(Default); specifies that the issuing task will not wait for completion of the
#PUTJRNL function; the journal record remains in a storage buffer until a future

request necessitates writing the buffer to the journal fi le.

WAIT

Specifies that the issuing task will wait for completion of the #PUTJRNL operation
before continuing. This option Requests that the system write a partially fi lled

buffer to the journal fi le.

When a record is shorter than a journal fi le block, based on space available in the

current journal block, the system either places the record in the block, splits it
across multiple blocks (SPAN), or writes it to a new block after the current block is
fi l led (NOSPAN). The following options determine how the system writes the named

record to the journal fi le.

SPAN

(Default); specifies that the DC/UCF system will write the record across several
journal blocks, if necessary. In general, the SPAN option provides better space
util ization in the journal fi le because it increases the average fullness of each block.

NOSPAN

Specifies that the system will write the record into a single journal block, assuming

that the record fits. If the record is longer than the journal block, it will be split.

#PUTJRNL—writes a task-defined record to the journal file

Chapter 5: Data Manipulation Language Statements 299

The following considerations apply to using an exit routine to retrieve journal fi le
records during recovery:

■ If a #PUTJRNL statement issued before a failure specifies the SPAN option,
records may have been written across several journal blocks. To retrieve these
records, the program must invoke the exit routine once for each segment of

each record to be retrieved.

■ If a #PUTJRNL statement issued before a failure specified the NOSPAN option,

and records written to the journal fi le are shorter than journal blocks, the exit
routine need only be concerned with the complete records.

ERROR=error-label

Specifies the symbolic name of the routine to which control is to be returned in the
event of an error condition during the #PUTJRNL operation.

#PUTJRNL Status Codes

After completion of the #PUTJRNL request, the value in register 15 indi cates the
outcome of the operation:

X'00'

The request has been serviced successfully.

X'04'

The request cannot be serviced because the journal record length is zero or

negative

X'08'

The request cannot be serviced because the required storage is not available for
necessary control blocks.

X'0C'

The request cannot be serviced because an invalid error status has been received
from DBIO/DBMS. Check the DC/UCF log for details.

#PUTJRNL Example

The following example of the #PUTJRNL statement writes a record to the journal fi le.

The address of the record is contained in register 5, the length of the record is contained
in register 7. The default SPAN and NOWAIT options are in effect.

#PUTJRNL RECORD=(R5),RECLEN=(R7)

#PUTQUE—stores a queue record in the queue

300 DML Reference Guide for Assembler

#PUTQUE—stores a queue record in the queue

The #PUTQUE statement stores a queue record in the queue (DDLDCRUN or DDLDCQUE)
area of the dictionary, causing the system to place the record in the
queue-header/queue-record set referenced by the QUEID parameter. A program does
not assign an ID to a queue record; the #PUTQUE request stores the record at the

beginning or end of the queue and the system automatically assigns the queue record
ID.

#PUTQUE Syntax
►►─┬─────────┬──►
 └─ label ─┘

 ►──── #PUTQUE RECORD=queue-data-location,RECLEN=queue-data-length-register ──►

 ►─┬──┬─────────────────────────────────►
 └─ ,PLIST= ─┬─ SYSPLIST ◄ ─────────────┬─┘
 └─ parameter-list-pointer ─┘

 ►─┬───────────────────────────┬──►
 └─ ,QUEID=queue-id-pointer ─┘

 ►─┬─────────────────────┬──►
 └─ ,LOC= ─┬─ LAST ◄ ─┬┘
 └─ FIRST ──┘

 ►─┬──┬───────────────────────►
 └─ ,RTNQRID= ─┬─ (1) ◄ ───────────────────────────┬┘
 └─ return-queue-record-id-register ─┘

 ►─┬─────────────────────┬──►
 └─ ,COND= ─┬─ NO ◄ ─┬─┘
 └─ IOER ─┘

 ►─┬────────────────────────────┬───►
 └─ ,IOERXIT=i/o-error-label ─┘

 ►─┬──────────────────────┬───►
 └─ ,ERROR=error-label ─┘

 ►─┬─────────────────────────────────────┬────────────────────────────────────►◄
 └─ ,RETAIN=retention-period-register ─┘

#PUTQUE Parameters

RECORD=

Specifies the location of the user area that contains data to be stored in the queue
record.

queue-data-location

A register that points to the area or the user-defined symbolic name of the area.

RECLEN=

Specifies the length of the data area to be stored in the queue record.

#PUTQUE—stores a queue record in the queue

Chapter 5: Data Manipulation Language Statements 301

queue-data-length-register

A register that contains the length, the symbolic name of a fullword user -defined

field that contains the length, or an absolute expression.

PLIST=SYSPLIST

Specifies the location of the seven-fullword storage area in which the system builds
the #PUTQUE parameter l ist.

SYSPLIST

(Default); is the symbolic name of the storage area in which the system builds the

#PUTQUE parameter l ist.

parameter-list-pointer

Either a register that points to the area or the symbolic name of the area.

QUEID=

Specifies the 1- to 16-character ID of the queue with which the record being stored
is associated.

queue-id-pointer

A register that points to a field that contains the ID, the symbolic name of a

user-defined field that contains the ID, or the ID literal enclosed in quotation marks.
If a queue ID is not specified, 16 blanks are assumed.

LOC=LAST/FIRST

Specifies whether the queue record is to be placed at the beginning or end of the

queue.

LAST

(Default); stores the record at the end of the queue.

FIRST

Stores the record at the beginning of the queue.

RTNQRID=

Specifies the location in the program to which the system returns the
system-assigned ID of the stored queue record; the returned ID can be saved and

used to retrieve or delete the queue record.

(1)

(Default); is the register to which the system returns the queue record ID.

return-queue-record-id-register

Either a register or the symbolic name of a fullword user-defined field to which the
system returns the queue record ID.

#PUTQUE—stores a queue record in the queue

302 DML Reference Guide for Assembler

COND=

Specifies whether this #PUTQUE is conditional and under what conditions control

should be returned to the issuing program.

NO

(Default); specifies that the request is not conditional.

IOER

Specifies that the request is conditional. Control is returned if an I/O error occurs
while processing the request.

IOERXIT=i/o-error-label

Specifies the symbolic name of the routine to which control should be returned if
the #PUTQUE cannot be serviced because of an I/O error.

ERROR=error-label

Specifies the symbolic name of the routine to which control should be returned if a
condition in the COND parameter occurs for which no other exit routine was coded.

In this case, the ERROR parameter functions identically to IOERXIT.

RETAIN=

Specifies the amount of time, in days, that the system will retain the queue in the
dictionary. At system startup, queues whose retention periods have expired are
deleted automatically by the system. The retention period begins when the first

record is stored in the queue.

If RETAIN is omitted, the default retention period for dynamic queues is taken.

Note: For more information on the default retention period for dynamic queues,
see the CA IDMS System Generation Guide.

retention-period-register

A register that points to a field that contains the retention period, the symbolic
name of a user-defined fixed-binary field that contains the retention period, or an
absolute expression. The retention period must be a numeric constant in the range
0 through 255. A retention period of 255 indicates that the queue is never to be

deleted automatically by the system.

#PUTQUE Status Codes

By default, the #PUTQUE request is unconditional; a runtime I/O error results in an
abend of the issuing task. The issuing program can request return of control with the

COND parameter to avoid an abend.

#PUTSCR—stores or replaces a scratch record

Chapter 5: Data Manipulation Language Statements 303

After completion of a #PUTQUE request, the value in register 15 indicates the outcome
of the operation:

X'00'

The request has been serviced successfully.

X'04'

The request cannot be serviced; check for proper queue-id specification (for
example, a negative queue ID is an improper specification) and for logical selection
of options.

X'1C'

A database error occurred during queue processing. A common cause is a DBKEY

deadlock. For a PUT QUEUE operation, this code can also mean that the queue
upper l imit has been reached.

If a database error has occurred, there are usually be other messages i n the
CA-IDMS/DC/UCF log indicating a problem encountered in RHDCRUAL, the internal

Run Unit Manager. If a deadlock has occurred, messages DC001000 and DC001002
are also produced.

If an I/O error occurs while processing a #PUTQUE request, the system returns the
address of the communications block to register 1. If no error occurs during processing,
a user-defined register, assigned by the RTNQRID parameter, contains the queue record

ID of the stored queue record.

#PUTQUE Example

The following example Requests that the system store the data contained in the field
RECQ1 in the beginning of the RES-Q queue. The length of the data is contained in

register 8. The DC/UCF system is requested to return the ID of the record to the QRECID
field and to retain the queue for 45 days.

#PUTQUE RECORD=RECQ1,RECLEN=(R8),QUEID='RES-Q',LOC=FIRST, *

 RTNQRID=QRECID,RETAIN=45

#PUTSCR—stores or replaces a scratch record

The #PUTSCR statement stores or replaces a scratch record in the scratch area of the

dictionary. For new records, #PUTSCR generates an index entry in a scratch area
associated with the issuing task. If the scratch area does not already ex ist, the system
allocates it dynamically in the storage pool.

#PUTSCR—stores or replaces a scratch record

304 DML Reference Guide for Assembler

After completion of the #PUTSCR function, control is returned to the issuing program at
the next sequential instruction following the #PUTSCR request. Through the REPXIT,

NEWXIT, and EREPXIT parameters, you can request return of control to a specified label
after a successful replace or store, or after confirmation that the new record already
exists for the task.

#PUTSCR Syntax

►►─┬─────────┬──►
 └─ label ─┘

 ►─ #PUTSCR RECORD=scratch-data-location,RECLEN=scratch-data-length-register ─►

 ►─┬──┬─────────────────────────────────►
 └─ ,PLIST= ─┬─ SYSPLIST ◄ ─────────────┬─┘
 └─ parameter-list-pointer ─┘

 ►─┬─────────────────────────────────┬──►
 └─ ,SAID=scratch-area-id-pointer ─┘

 ►─┬───────────────────────────────────┬──────────────────────────────────────►
 └─ ,SRID=scratch-record-id-pointer ─┘

 ►─┬────────────────────────┬───►
 └─ ,REPLACE= ─┬─ NO ◄ ─┬─┘
 └─ YES ──┘

 ►─┬───┬────────────────────►
 └─ ,RTNSRID= ─┬─ (1) ◄ ─────────────────────────────┬─┘
 └─ return-scratch-record-id-register ─┘

 ►─┬─────────────────────┬──►
 └─ ,COND= ─┬─ NO ◄ ─┬─┘
 └─ IOER ─┘

 ►─┬────────────────────────────┬───►
 └─ ,IOERXIT=i/o-error-label ─┘

 ►─┬─────────────────────┬──►
 └─ ERROR=error-label ─┘

 ►─┬────────────────────────────────────┬─────────────────────────────────────►
 └─ ,REPXIT=successful-replace-label ─┘

 ►─┬──────────────────────────────────┬───────────────────────────────────────►
 └─ ,NEWXIT=successful-store-label ─┘

 ►─┬──┬─────────────────────────────────►◄
 └─ ,EREPXIT=record-already-exists-label ─┘

#PUTSCR Parameters

RECORD=

Specifies the location of the user area that contains the data area to be stored in
the scratch record.

scratch-data-location

Either a register that points to the area or the user-defined symbolic name of the
area.

#PUTSCR—stores or replaces a scratch record

Chapter 5: Data Manipulation Language Statements 305

RECLEN=

Specifies the length of the record to be stored.

scratch-data-length-register

A register that contains the length, the symbolic name of a fullword user -defined
field that contains the length, or an absolute expression.

When replacing a scratch record, the RECLEN specified need not agree with that of
the old record, because the replace is effected with a delete and an add. If a replace
of a nonexistent record is requested, the system performs the request with an add,

and an error status value of 0 is returned into register 15.

PLIST=

Specifies the location of the seven-fullword storage area in which the system builds
the #PUTSCR parameter l ist.

SYSPLIST

(Default); is the symbolic name of the storage area in which the system will build

the #PUTSCR parameter l ist.

parameter-list-pointer

Either a register that points to the area in which the system will build the #PUTSCR
parameter l ist or the symbolic name of that area.

SAID=

Specifies the 1- to 8-character ID of the scratch area associated with the record

being allocated.

scratch-area-id

Either a register that points to a field that contains the ID, the symbolic name of a
user-defined field that contains the ID, or the ID literal enclosed in quotation marks.
If the SAID parameter is not specified, 8 blanks are assumed.

SRID=

Specifies the fullword ID of the scratch record being stored.

scratch-record-id-pointer

A register that points to the ID, the symbolic name of a user-defined field that
contains the ID, or an absolute expression.

An SRID must be specified for all replace-type #PUTSCR requests or an I/O error will
result. If not specified for add-type requests, the SRID is assigned automatically by

the system and is returned in the register defined in the RTNSRID parameter.

REPLACE=

Indicates whether the scratch record is added or replaced.

#PUTSCR—stores or replaces a scratch record

306 DML Reference Guide for Assembler

NO

(Default); directs the system to add a new record to a scratch area.

YES

Directs the system to replace an existing record in the scratch area.

RTNSRID=

Specifies the location to which the system will return the automatically assigned
scratch record ID of the stored record.

(1)

(Default); is the register into which the system will place the scratch record ID.

return-scratch-record-id-register

A register or the symbolic name of a fullword user-defined field into which the

system will place the scratch record ID.

COND=

Specifies whether this #PUTSCR is conditional and under what conditions control
should be returned to the issuing program.

NO

(Default); specifies that the request is not conditional.

IOER

Specifies that control is returned to the issuing program if an I/O error occurs while
processing the request.

IOERXIT=i/o-error-label

Specifies the symbolic name of the routine to which control should be returned if
the #PUTSCR cannot be serviced because of an I/O error.

ERROR=error-label

Specifies the symbolic name of the routine to which control should be returned if a
condition specified in the COND parameter occurs for which no other exit routine
was coded. In this case, the ERROR and IOERXIT parameters function identically.

REPXIT=successful-replace-label

(REPLACE=YES only); specifies the symbolic name of the routine to which c ontrol

should be returned when the request is serviced successfully. If no REPXIT is
defined in a successful replace-type #PUTSCR request, control will be returned to
the next sequential instruction following the #PUTSCR.

#PUTSCR—stores or replaces a scratch record

Chapter 5: Data Manipulation Language Statements 307

NEWXIT=successful-store-label

(Add requests only); specifies the symbolic name of the routine to which control

should be returned when the request is successful. If no NEWXIT is defined in a
successful add-type request, control will be returned to the next sequential
instruction following the #PUTSCR.

EREPXIT=record-already-exists-label

(Add requests only) specifies the symbolic name of the routine to which control

should be returned when the scratch record ID specified by the SRID parameter
already exists in the scratch area identified by the SAID parameter. If no EREPXIT is
defined for an add-type request and the requested SRID already exists, control is

returned to the next sequential instruction following the #PUTSCR.

#PUTSCR Status Codes

By default, the #PUTSCR request is unconditional; a runtime I/O error will result in an
abend of the issuing task. The issuing program can request return of control with the

COND parameter to avoid an abend.

After completion of the #PUTSCR function, the value in register 15 indicates the

outcome of the operation. The following is a l ist of the Register 15 values and the
corresponding meaning:

X'00'

The request to add a new record has been serviced successfully.

X'04'

The request cannot be serviced; check for proper scratch-id specification (for
example, a negative scratch ID is an improper specification) and for logical selection

of options.

X'10'

The request to replace a scratch record has been serviced successfully.

X'14'

The request to add a new scratch record cannot be serviced because the scratch

record ID specified by the SRID parameter already exists for the named scratch area
and REPLACE=YES has not been specified.

X'1C'

The request cannot be serviced due to an I/O error during processing.

If an I/O error occurs while processing a #PUTSCR request, the system returns the

address of the communications block to register 1. If no error occurs during processing,
a user-defined register, assigned by the RTNSRID parameter, contains the SRID of the
stored or replaced record.

@READY—prepares a database area for access by DML functions

308 DML Reference Guide for Assembler

#PUTSCR Example

The following example of the #PUTSCR statement stores a scratch record containing the
data in SCR605 in the dictionary. The length of the record is contained in the fullword
field SCRLN1. SCRID1 is the ID of the scratch area into which the record will be stored.

#PUTSCR RECORD=SCR605,RECLEN=SCRLN1,SAID='SCRID1'

@READY—prepares a database area for access by DML
functions

The @READY statement prepares a database area for access by DML functions and
specifies the usage mode of the area. @READY also defines and logs the initial
checkpoint for a recovery unit to facil itate recovery operations.

The DBA can specify default usage modes in the subschema. A run-unit using a
subschema with specified default usage modes need not issue any @READY statements;
the areas are readied automatically in the predefined usage modes. However, if a

run-unit issues an @READY statement for one area, it must issue @READY statements
for all areas that it accesses unless the FORCE option was specified for the default usage
mode. Areas using the default usage mode combined with the FORCE option are
automatically readied even if the run-unit already issued @READY for other areas.

The usage mode specified in the @READY statement (or in the subschema) indicates the

runtime operations that the readying run unit can or cannot perform against the
database area. The following usage modes can be specified:

■ UPDATE=YES indicates that the readying run unit is permitted to issue all DML
functions for records in that area.

■ RDONLY=YES indicates that the readying run unit is prohibited from issuing the

STORE, ERASE, MODIFY, CONNECT, or DISCON functions for records in that area.

The specified usage mode can be qualified with a PROTECTED or EXCLUSIVE option to
prevent update or use, respectively, of areas by other run units executing concurrently
under the CA IDMS/DB central version. Each area can be readied in its own usage mode.
Usage modes can be changed during a recovery unit by executing an @FINISH

statement and readying the areas in a different usage mode. Note, however, that the
appropriate BIND statements must also be issued.

When the run unit (rather than the subschema) readies database areas, all areas can be
readied with a single @READY statement or each area to be accessed can be readied
individually. You must ready all areas explicitly or implicitly affected by the DML

statements issued by the run unit. Areas are affected implicitly, for example, when a
set's owner and member records belong to different areas. Some areas inc luded in the
subschema may not need to be specified in an @READY statement, as only those areas

that are explicitly or implicitly affected need to be readied.

@READY—prepares a database area for access by DML functions

Chapter 5: Data Manipulation Language Statements 309

The @READY statement can appear anywhere in an application program; however, to
avoid runtime deadlock, the best practice is to ready all areas before issuing any other

DML statements.

@READY Syntax
►►─── @READY ─┬─ ALL ◄ ──────────┬─ , ─┬─ UPDATE= ─┬─┬─ YES(SHARED) ──┬───────►◄
 └─ AREA=area-name ─┘ └─ RDONLY= ─┘ ├─ PROTECTED ────┤
 └─ EXCLUSIVE ────┘

@READY Parameters

ALL/AREA=

Opens the database areas.

ALL

(Default); opens all database areas in the subschema.

AREA=area-name

Opens only the specified area. Area-name must be an area included in the
subschema.

UPDATE/RDONLY=YES/PROTECTED/EXCLUSIVE

Specifies how the database areas are opened and qualify database area usage.

UPDATE/RDONLY

Specifies how the database areas are opened.

UPDATE

Specifies that the database areas are opened in both update and retrieval modes.

RDONLY

Specifies that the database areas are opened in retrieval mode only.

YES/PROTECTED/EXCLUSIVE

Qualifies database area usage.

YES

Allows other concurrently executing run units to open the same area in shared

retrieval or shared update usage modes. Keywords YES and SHARED are
synonymous.

@READY—prepares a database area for access by DML functions

310 DML Reference Guide for Assembler

PROTECTED

Prevents concurrent update of the areas by run units executing under the same

central version. Once a run unit has readied an area with the protected option, no
other run unit can ready that area in any update usage mode until the first run unit
releases it by means of a FINISH statement. A run unit cannot ready an area with

the protected option if another run unit has readied the area in update usage
mode.

EXCLUSIVE

Prevents concurrent use of the areas by any other run unit executing under the
central version. Once a run unit has readied an area with the exclusive option, no

other run unit can ready that area in any usage mode until the first run unit releases
it.

If, under the central version, an @READY statement would result in a mode usage
conflict for an area, the run unit issuing the @READY is placed in a wait state on the
first functional database call.

Modification statements involving areas opened in one of the update usage modes
are not allowed if they affect sets that include records in an area opened in one of

the retrieval usage modes.

@READY Status Codes

After completion of the @READY function, the ERRSTAT field in the IDMS
communications block indicates the outcome of the operation. The following is a l ist of

the acceptable status codes for this function and their corresponding meaning:

0910

The subschema specifies an access restriction that prohibits readying the area in the

specified usage mode.

0923

The named area is not in the subschema.

0928

The run unit has attempted to ready an area that has been readied previously.

0966

The area specified is not available in the requested usage mode. Probable causes
for the return of this status code are:

■ If running in local mode, the area is locked against update.

■ If running under the central version, either the area is offl ine to the central
version, or an update usage mode was requested and the area is in retrieval
mode to the central version.

@RETURN

Chapter 5: Data Manipulation Language Statements 311

0970

The database will not ready properly; a JCL error is the probable cause.

0971

The page group or page range for the area being readied could not be found in the
DMCL.

0978

A wait for an area would cause a deadlock. Either you should ready all areas before
the first functional call or all user programs should ready areas in the same order.

@READY Example

The following example of the @READY statement prepares all database areas in the
subschema for retrieval usage mode only (read only). YES is equivalent to SHARED usage
mode, allowing other concurrently executing run units to open the same area in shared
retrieval usage mode.

@READY ALL,RDONLY=YES

@RETURN

The @RETURN statement retrieves the database key for an indexed record without
retrieving the record itself, thus establishing currency in the index set. The record's
symbolic key is moved into the data fields within the record in program variable storage.

The contents of all non-key fields after the execution of the @RETURN verb are
unpredictable. Alternatively, you can have the record's symbolic key moved into some
other specified variable storage location.

Index currency is established by:

■ Successful execution of the @RETURN statement, which sets current of index at the
index entry from which the database key was retrieved.

■ A status code 1707 (end of index), which sets currency on the index owner. The
DBMS returns the owner's db-key.

■ A status code 1726 (end of set), which sets current of index as follows:

– Between the two entries that are higher and lower than the specified value

– After the highest entry, if the specified value is higher than all index entries

– Before the lowest entry, if the specified value is lower than all index entries

The @RETURN statement is used in both navigational and LRF environments.

@RETURN

312 DML Reference Guide for Assembler

@RETURN Syntax

Navigational @RETURN

►►─── @RETURN ─┬─ CURRENT ─┬─ ,SET=index-set-name, DBKEY=db-key ──────────────►◄
 ├─ FIRST ───┤
 ├─ LAST ────┤
 ├─ NEXT ────┤
 └─ PRIOR ───┘

LRF @RETURN

►►─── @RETURN SET=index-set-name,DBKEY=db-key,USING=index-key-value ──────────►◄

@RETURN Parameters

CURRENT/FIRST/LAST/NEXT/PRIOR

Indicates the record whose database key will be returned.

CURRENT

Retrieves the database key for the current index entry.

FIRST

Retrieves the database key for the first index entry.

LAST

Retrieves the database key for the last index entry.

NEXT

Retrieves the database key for the index entry following current of index. If the
current of index is the last entry, an error status of 1707 (end of index) is returned.

PRIOR

Retrieves the database key for the index entry preceding current of index. If the

current of index is the first entry, an error status of 1707 (end of index) is returned.

SET=

Identifies the indexed set from which the specified database key is to be returned.

index-set-name

Either a register containing the name of the indexed set or a quoted variable
containing the name of the set.

DBKEY=

Where the database key is returned.

db-key

A register containing the database key or a user defined variable data field.

@RETURN

Chapter 5: Data Manipulation Language Statements 313

USING=

Saves the symbolic key (CALC, sort, or index) or the specified record.

index-key-value

A register containing the index key value or the name of the user-defined
alphanumeric field into which the symbolic key of the specified record will be
returned. Index-key-value must be large enough to accommodate the symbolic key.
For example, if the set is indexed on employee last name (15 characters) and

employee first name (10 characters) the index-key-value must be large enough to
accommodate 25 characters.

@RETURN Status Codes

After the @RETURN statement has been processed, the ERRSTAT field in the IDMS

communications block indicates the outcome of the operation. The following is a l ist of
the acceptable status codes for this function and their corresponding meaning:

0000

The request has been serviced successfully.

1707

Either the end of the indexed set has been reached or the indexed set is empty.

1725

Currency has not been established for the specified indexed set.

1726

The index entry cannot be found.

@RETURN Example

The @RETURN statement shown below retrieves the database key for the first index

entry in the EMPLNAMX set and moves the record's db-key into the LNAMXKEY field:

@RETURN FIRST,SET=EMPLNAMX,DBKEY=LNAMXKEY

#RETURN—returns control to a program

314 DML Reference Guide for Assembler

#RETURN—returns control to a program

The #RETURN statement performs the following functions:

■ Returns control to a program at the next higher level in a task, optionally specifying
the next task to be initiated on the same terminal.

■ In abend routines established by #STAE functions, #RETURN specifies the recovery

procedure to be initiated by the abend exit if the task terminates abnormally.

Note: For more information about #STAE exits, see #STAE (see page 331) later in
this chapter.

■ Specifies the action the system takes when the terminal operator does not enter
the response required to initiate the specified task.

Following a #RETURN request, control returns to the program at the next higher level in

the task. If the issuing program is the highest level program, control returns to the
system. Any #RETURN statement can include a NXTTASK option to specify the next task
to be initiated by the system. However, the position of the issuing program in the task
governs whether the specified task will, in fact, receive control.

When the system receives control from the highest level program that issued a

#RETURN NXTTASK request, the specified task is executed immediately if the specified
task code has been assigned the NOINPUT attribute during system generation. If the
task code has been assigned the INPUT attribute, the task executes only when the
terminal operator enters the requested data.

You can define tasks that relinquish control to the system while awaiting completion of

an event. This way, resources for the issuing task are freed during the time it takes for a
particular event to finish and the next task to start.

@ROLLBAK—rolls back uncommitted changes made to the database

Chapter 5: Data Manipulation Language Statements 315

The DC/UCF system gives control to the next task when a specific event control block
(ECB) is posted, indicating that the event is completed.

When initiated, the next task is associated with the same logical terminal (LTERM) as the
task that issued the #RETURN. An example of the flow of control between tasks is
i l lustrated in the following figure.

@ROLLBAK—rolls back uncommitted changes made to the
database

The @ROLLBAK statement rolls back uncommitted changes made to the database
through an individual run unit.

Whether the changes are automatically backed out depends on the execution

environment:

■ If the changes were made under the control of a central version that is journaling to
a disk fi le, they are backed out automatically. The central version continues to
process other applications during recovery.

@ROLLBAK—rolls back uncommitted changes made to the database

316 DML Reference Guide for Assembler

■ The changes are not backed out automatically under the following circumstances:

– If the changes were made under the control of a central version that is

journaling to a tape fi le.

– If the changes were made in local mode.

In these cases, the @ROLLBAK statement causes the affected areas to remain
locked against subsequent access by other database sessions. They must be
manually recovered. If changes cannot be backed out and CONTINUE was specified

on the rollback request, a non-zero error status is returned to the application and
the run unit is terminated.

Note: For more information about manual recovery, see the Database
Administration Guide.

If CONTINUE is not specified, the run unit ends and its access to the database is

terminated. If CONTINUE is specified, the run unit remains active after the operation is
complete.

Currency

Following an @ROLLBAK statement, all currencies are set to null. Unless the CONTINUE
parameter is specified, the issuing program cannot perform database access through

the run unit without executing another @BIND/@READY sequence.

@ROLLBACK Syntax
►►─── @ROLLBAK ─┬────────────┬──►◄
 └─ CONTINUE ─┘

@ROLLBACK Parameters

CONTINUE

Central version only. Causes the run unit to remain active after its changes are
backed out. Database access can be resumed without reissuing @BIND and
@READY statements.

Note: The CONTINUE option should not be used in local mode if database changes

have been made.

#ROLLBAK—rolls back uncommitted changes made to the database

Chapter 5: Data Manipulation Language Statements 317

@ROLLBACK Status Codes

After completion of the @ROLLBAK function, the ERRSTAT field of the IDMS
communications block indicates the outcome of the operation. The following is a l ist of
the acceptable status codes for this function and their corresponding meaning:

0000

The request has been serviced successfully.

1958

CONTINUE was specified and database changes could not be backed out. The run

unit has been terminated.

@ROLLBACK Example

The @ROLLBAK statement shown below reverses the effects of the run unit through
which it is issued but does not terminate it.

@ROLLBAK CONTINUE

#ROLLBAK—rolls back uncommitted changes made to the
database

The #ROLLBAK statement rolls back uncommitted changes made to the database
through an individual run unit or through all database sessions associated with a task. A

task-level rollback also backs out all uncommitted changes made in conjunction with
scratch, queue, and print activity.

Whether the changes are automatically backed out depends on the execution
environment:

■ If the changes were made under the control of a central version that is journaling to
a disk fi le, they are backed out automatically. The central version continues to
process other applications during recovery.

■ The changes are not backed out automatically under the following circumstances:

– If the changes were made under the control of a central version that is

journaling to a tape fi le.

– If the changes were made in local mode.

In these cases, the #ROLLBAK statement causes the affected areas to remain locked
against subsequent access by other database sessions. They must be manually

recovered. If changes cannot be backed out and CONTINUE was specified on the
rollback request, a non-zero error status is returned to the application and if the
request was for an individual run unit, that run unit is terminated.

#ROLLBAK—rolls back uncommitted changes made to the database

318 DML Reference Guide for Assembler

Note: For more information about manual recovery, see the Database
Administration Guide.

If CONTINUE is not specified, run units (and SQL sessions) impacted by the #ROLLBAK
statement end, and their access to the database is terminated. If CONTINUE is specified,
impacted database sessions remain active after the operation is complete.

The #ROLLBAK statement is used in both the navigationa l and logical record facility
environments. The #ROLLBAK TASK statement is also used in an SQL programming

environment.

Currency

Following a #ROLLBAK statement, all currencies are set to null. Unless the CONTINUE
option is specified, the issuing program or task cannot perform database access through
an impacted run unit without executing another @BIND/@READY sequence.

#ROLLBAK Syntax

►►─┬─────────┬─ #ROLLBAK ─┬────────┬─┬─────────────┬──────────────────────────►◄
 └─ label ─┘ └─ TASK ─┘ └─ ,CONTINUE ─┘

#ROLLBAK Parameters

TASK

Rolls back the uncommitted changes made by all scratch, queue, and print activity

and all top-level run units associated with the current task and terminates those run
units. Its impact on SQL sessions associated with the task depends on whether
those sessions are suspended and whether their transactions are eligible to be
shared.

More information:

For more information about the impact of a #ROLLBAK TASK statement on SQL
sessions, see the SQL Programming Guide.

For more information about run units and the impact of #ROLLBAK TASK, see the
Navigational DML Programming Guide.

CONTINUE

Central version only. Causes the affected run units and SQL sessions to remain
active after their changes are backed out. Database access can be resumed without
reissuing @BIND and @READY statements.

Note: The CONTINUE option should not be used in local mode if database changes
have been made.

#SENDMSG—sends a message to another terminal or user

Chapter 5: Data Manipulation Language Statements 319

#ROLLBAK Status Codes

After completion of the #ROLLBAK function, the value in register 15 indicates the
outcome of the operation. The following is a l ist of the Register 15 values and the
corresponding meaning:

X'00'

The request has been serviced successfully.

X'08'

The request cannot be serviced due to an invalid request.

X'10'

CONTINUE was specified and database changes could not be backed out.

X'0C'

An error was encountered processing a syncpoint request; check the log for details.

#ROLLBAK Example

The following backs out the uncommitted effects of all non-suspended database
sessions associated with the task and all changes associated with scratch, queue and
report processing. The affected database sessions are terminated.

#ROLLBAK TASK

#SENDMSG—sends a message to another terminal or user

The #SENDMSG statement sends a message to another terminal or user, or to a group of

terminals or users defined as a destination during system generation. The #SENDMSG
statement does not send messages directly from the message area of the dictionary.
Rather, the system places each message in a queue and sends the message to the

appropriate terminals when it can do so without disrupting executing tasks. Normally,
the system sends queued messages to a terminal the next time the ENTER NEXT TASK
CODE message is displayed.

Note: For more information about message destinations, see the System Generation

Guide.

#SENDMSG—sends a message to another terminal or user

320 DML Reference Guide for Assembler

#SENDMSG Syntax

►►─┬─────────┬─ #SENDMSG RECORD=message-location-pointer ─────────────────────►
 └─ label ─┘

 ►─── ,RECLEN=message-length-register ──►

 ►─┬─ ,DESTID=destination-id-pointer ───────┬─────────────────────────────────►
 ├─ ,USERID=user-id-pointer ──────────────┤
 └─ ,LTERMID=logical-terminal-id-pointer ─┘

 ►─┬──────────────────────────┬───►
 └─ ,OPTNS= ───┬─ ONLY ◄ ─┬─┘
 └─ ALWAYS ─┘

 ►─┬───┬──────────────────────►
 └─ ,SMRB= ─┬─ SYSPLIST ◄ ─────────────────────────┬─┘
 └─ send-message-request-block-pointer ─┘

 ►─┬──────────────────────────────────────┬───────────────────────────────────►
 └─ ,COND= ──┬─ NO ◄ ──────────────────┬┘
 ├─ ALL ───────────────────┤
 │ ┌─── , ────┐ │
 └─(──┬─▼── IOER ──┴─┬──)──┘
 ├──── INVP ────┤
 └──── UNDF ────┘

 ►─┬────────────────────────────┬───►
 └─ ,IOERXIT=i/o-error-label ─┘

 ►─┬───┬────────────────────────────────►
 └─ ,INVPXIT=invalid-parameter-list-label ─┘

 ►─┬──┬─────────────────────────────────►
 └─ ,UNDFXIT=undefined-destination-label ─┘

 ►─┬──────────────────────┬───►◄
 └─ ,ERROR=error-label ─┘

#SENDMSG Parameters

RECORD=

Specifies the location in program storage that contains the message to be sent.

message-location-pointer

Either a register that points to the message text or the symbolic name of the area
that contains the message text.

RECLEN=

Specifies the length, in bytes, of the message text.

message-length-register

A register that contains the length of the message, the symbolic name of a
user-defined field that contains the length, or an absolute expression.

DESTID=

Specifies the destination receiving the message. The destination is a l ist of logical

terminals or users defined during system generation.

#SENDMSG—sends a message to another terminal or user

Chapter 5: Data Manipulation Language Statements 321

destination-id-pointer

A register that points to the destination ID, the symbolic name of a user -defined

field that contains the ID, or the ID literal enclosed in quotation marks.

USERID=

Specifies the user to receive the message. The user can be signed on to any
terminal.

user-id

A register that points to the user ID or the symbolic name of a user -defined field

that contains the ID.

LTERMID=

Specifies the logical terminal to receive the message.

logical-terminal-id-pointer

A register that points to the logical terminal ID, the symbolic name of a user -defined
field that contains the ID, or the ID literal enclosed in quotation marks.

OPTNS=

Specifies whether the system is to queue the message if the specified destination,

user, or terminal is not currently being used.

ONLY

(Default); The DC/UCF system sends the message immediately if the
destination, user, or terminal is available, and does not queue the message for

subsequent transmission if the destination, user, or terminal is not available.

Note: If ONLY is specified with the DESTID parameter, described above, the

system sends the message to those users or terminals in the destination that
are available. The sender is not aware of any unsuccessful transmissions.

ALWAYS

The DC/UCF system sends the message immediately if the destination, user, or
terminal is available, and queues the message for later transmission if the

destination, user, or terminal is not available.

SMRB=

Specifies the location of the storage area in which the system builds the #SENDMSG
parameter l ist.

SYSPLIST

(Default); is the symbolic name of the storage area in which the system builds

the #SENDMSG parameter l ist.

send-message-request-block

A register that points to the area or the symbolic name of the area in which the
system builds the #SENDMSG parameter l ist.

#SENDMSG—sends a message to another terminal or user

322 DML Reference Guide for Assembler

COND=

Specifies whether this #SENDMSG is conditional and under what conditions control

should be returned to the issuing program.

NO

(Default); specifies that the request is not conditional.

ALL

Specifies that control is returned if the #SENDMSG cannot be serviced for one
or more of the reasons l isted in condition.

condition-option

Specifies conditions under which control is returned to the program. Multiple
conditions must be enclosed in parentheses and separated by commas.

IOER

An I/O error occurred during processing.

INVP

The parameter l ist is invalid.

UNDF

The specified message destination is not defined to the system.

IOERXIT=i/o-error-label

Specifies the symbolic name of a routine to which control should be returned if the
#SENDMSG request cannot be serviced because of an I/O error.

INVPXIT=invalid-parameter-list-label

Specifies the symbolic name of a routine to which control should be returned if the
#SENDMSG cannot be serviced because of an invalid parameter l ist.

UNDFXIT=undefined-destination-label

Specifies the symbolic name of a routine to which control should be returned if the
#SENDMSG cannot be serviced because the specified destination is undefined to
the system.

ERROR=error-label

Specifies the symbolic name of a routine to which control should be returned if a

condition specified in the COND parameter occurs for which no other exit routine
was coded.

#SETIME

Chapter 5: Data Manipulation Language Statements 323

#SENDMSG Status Codes

By default, the #SENDMSG statement is unconditional; any runtime error results in an
abend of the issuing task. The issuing program can request return of control with the
COND parameter to avoid an abend.

After completion of the #SENDMSG, the value in register 15 indicates the outcome of
the operation. The following is a l ist of Register 15 values and the corresponding

meaning:

X'04'

The request cannot be serviced due to an I/O error during processing.

X'08'

The request cannot be serviced due to an invalid parameter l ist.

X'0C'

The request cannot be serviced because the message destination is undefined.

#SENDMSG Example

The #SENDMSG statement shown below sends the message labeled MESS01 in program
storage to a group of logical terminals identified by RMT007. The length of the message
is held in LEN01. The DC/UCF system transmits the message immediately if any of the

logical terminals in the destination are available, and queues the message for later
transmission if none of the logical terminals are available.

#SENDMSG RECORD=MESS01,RECLEN=LEN01,DESTID=RMT007,OPTNS=ALWAYS

#SETIME

The #SETIME statement defines an event that is to occur after a specified time interval

or cancels the effect of a previously issued #SETIME request. The following time-related
events can be defined:

■ Delay task processing for a specified period of time

■ Post an event control block (ECB) at the end of a specified period of time

■ Initiate a task at the end of a specified period of time

#SETIME

324 DML Reference Guide for Assembler

Syntax

►►─┬─────────┬─ #SETIME TYPE= ─┬─ WAIT ────┬──────────────────────────────────►
 └─ label ─┘ ├─ POST ────┤
 ├─ STRTASK ─┤
 └─ CANCEL ──┘

 ►─┬──┬─────────────────────────────────►
 └─ ,PLIST= ─┬─ SYSPLIST ◄ ─────────────┬─┘
 └─ parameter-list-pointer ─┘

 ►─┬──┬─────────────────────────────►
 └─ ,INTVL=time-before-action-taken-register ─┘

 ►─┬─────────────────────────┬──►
 └─ ,ECB=post-ecb-pointer ─┘

 ►─┬──────────────────────────────────┬───────────────────────────────────────►
 └─ ,TSKCD=start-task-code-pointer ─┘

 ►─┬──────────────────────────┬───►
 └─ ,PRI=priority-register ─┘

 ►─┬──┬───────────────────────────►
 └─ ,DATADDR=start-task-data-location-register ─┘

 ►─┬──┬─────────────────────────────►
 └─ ,DATALEN=start-task-data-length-register ─┘

 ►─┬─────────────────────────────────┬──►
 └─ ,ICEADDR=ice-address-register ─┘

 ►─┬────────────────────────────────┬───►◄
 └─ ,ICNFXIT=ice-not-found-label ─┘

Parameters

TYPE=

Requests that the system establish a time-related event or cancels a previously
requested time-dependent action.

WAIT

Places the issuing task in a wait state and instructs the system to redispatch the
issuing task after the specified time interval elapses. A subsequent #SETIME request
cannot be used to cancel this event until the time interval has elapsed.

POST

Posts an ECB after the specified time interval elapses. The issuing task continues to

run. The ECB is specified using the ECB parameter (described below).

Note: The POST instruction will only POST an ECB that is within storage owned by
the TASK initiating the POST instruction. If the storage is not owned by the same
task, it will not be executed.

STRTASK

Initiates a task after the specified time interval elapses. The task is specified using

the TSKCD parameter (described below).

#SETIME

Chapter 5: Data Manipulation Language Statements 325

CANCEL

Cancels the effect of a previously issued #SETIME request. If CANCEL is specified,

the ICEADDR parameter (described below) must also be specified.

PLIST= Specifies the location of the six-fullword storage area in which the system builds
the #SETIME parameter l ist.

SYSPLIST

(Default); is the symbolic name of the storage area in which the system builds the
parameter l ist.

parameter-list-pointer

Is a register that points to the area in which the system builds the list or the
symbolic name of that area.

INTVL= (WAIT, POST, STRTASK requests only); specifies when the event is to occur. The
interval is the amount of time in seconds between when the #SETIME request is issued
to when the requested event is to occur.

time-before-action-taken-pointer

A register that contains the time interval, the symbolic name of a user -defined field

that contains the time interval, or an absolute expression.

Note: For efficiency reasons, the time when the event is to occur is calculated by adding
the INTVL value to the time at which the last TICKER interval expired. Therefore, the
actual interval before the event occurs may vary plus or minus from INTVL by an amount

up to the TICKER interval. For more information about the TICKER interval, see the
System Generation Guide.

ECB= (POST only); specifies the location of the ECB to be posted.

post-ecb-pointer

A register that points to the ECB or the symbolic name of a user-defined field that
contains the ECB. The ECB is an internal ECB which is three (3) fullwords in length
and should be initialized with nulls.

TSKCD= (STRTASK only); specifies the 1- to 8-character task code of the task to be

initiated.

start-task-code-pointer

A register that points to the task code, the symbolic name of a user-defined field
that contains the task code, or the task-code literal enclosed by single quotation
marks. The specified task code must have been defined during system generation or

defined dynamically using the DCMT VARY DYNAMIC TASK command.

PRI= (STRTASK only); specifies a dispatching priority for the task to be initiated.

#SETIME

326 DML Reference Guide for Assembler

priority

A register that contains the priority or an absolute expression Valid codes are 0

through 240. The task's priority defaults to the priority defined for the task either
during system generation or at dynamic definition using the DCMT VARY DYNAMIC
TASK command.

DATADDR= (STRTASK only); identifies the user data to be passed to the new task.

start-task-data-location

A register that points to the data or the symbolic name of a user -defined field that
contains the data. A register that points to the data or the symbolic name of a
user-defined field that contains the data. The DATALEN parameter must be

specified with DATADDR.

When the new task is started, the first program receiving control can access the

data area (parameter l ist) through register 1. Register 1 will contain the address of a
halfword which contains the value specified in DATALEN. This halfword will be
followed by the data.

DATALEN= (STRTASK,DATADDR only); specifies the length, in bytes, of the data area
identified by start-task-data-location.

start-task-data-length-register

A register that contains the length, the symbolic name of a user-defined field that
contains the length, or an absolute expression.

ICEADDR= (POST, STRTASK, CANCEL only); specifies the address of the interval control
element (ICE) associated with the time event.

POST or STRTASK

The optional ICEADDR parameter specifies the location to which the system returns

the ICE address.

ice-address-register

A register or the symbolic name of a fullword user-defined field. name of a fullword
user-defined field.

Note: The ICEADDR parameter must be specified with POST and STRTASK requests if

the program is to issue subsequent #SETIME TYPE=CANCEL requests.

CANCEL

The ICEADDR must be specified. The ICEADDR references the location that contains
the ICE address following a previously issued POST or STRTASK request.

ICNFXIT=ice-not-found-label (CANCEL only); specifies the symbolic name of the routine
to which control should be returned if the ICE referenced by the ICEADDR parameter

cannot be found. If ICNFXIT is not specified, control returns to the next sequential
instruction following the #SETIME statement.

#SETIME

Chapter 5: Data Manipulation Language Statements 327

Examples

The #SETIME statement shown below requests that the system initiate the task labeled

TSK01 sixty seconds after the #SETIME request is issued:

#SETIME TYPE=STRTASK,TSKCD='TSK01',INTVL=60

Status Codes

The #SETIME request is unconditional. Error conditions that can occur are described
below:

■ For wait, post, and start-task requests, any runtime error results in an abend of the

issuing task.

■ For cancel requests, any runtime error other than an
interval-control-element-not-found condition results in an abend of the issuing task.

The interval-control-element-not-found condition, caused when the ICE cannot be
located, results in a return of control to the issuing program, either at a defined

routine (ICNFXIT, described above) or at the next sequential instruction after the
#SETIME statement.

After completion of the #SETIME request, the value in register 15 indicates the outcome
of the operation. Register 15 values are significant only for requests that cancel a

previously issued #SETIME request.

The following is a l ist of Register 15 values and the corresponding meaning:

X'00'

The request to cancel a previously issued #SETIME has been serviced successfully.

X'04'

The request to cancel a #SETIME request cannot be serviced because the specified
ICE address cannot be found.

X'08'

The specified task code is not known to the DC/UCF sys tem.

#SNAP

328 DML Reference Guide for Assembler

#SNAP

The #SNAP statement requests a memory snap of one or more of the following areas:

■ Specified locations in memory— The snap includes one or more areas of memory
specifically requested by location and length.

■ Task areas—The snap includes all resources associated with the issuing task, as well

as the task control element (TCE), dispatch control element (DCE), logical terminal
element (LTE), and physical terminal element (PTE) for the task. Information
displayed by the snap is formatted with headers.

■ System areas—The snap includes areas for all tasks and DC/UCF internal control
blocks. Task areas are not itemized separately. Information displayed by the s nap is

formatted with headers.

The information requested by the #SNAP is written to the DC/UCF log fi le. A
user-supplied title can be displayed with any of these types of snaps.

Syntax

►►─┬─────────┬─ #SNAP ──►
 └─ label ─┘

 ►─┬───────────────────────────┬──►
 └─ FORMAT=(─┬─ ALL ──┬─) ─┘
 ├─ SYS ──┤
 └─ TASK ─┘

 ►─┬──┬─────────────────────────────────►
 └─ ,PLIST= ─┬─ SYSPLIST ◄ ─────────────┬─┘
 └─ parameter-list-pointer ─┘

 ►─┬────────────────────────┬───►
 └─ ,TITLE=title-pointer ─┘

 ►─┬──┬─────────────►
 │ ┌────────────────── , ─────────────────────┐ │
 └─ ,AREA=(─▼─ data-area-pointer,data-length-register ─┴─) ─┘

 ►─┬──────────────────────┬───►◄
 └─ ,REGS= ─┬─ YES ◄ ─┬─┘
 └─ NO ────┘

Parameters

FORMAT=

Requests a formatted snap of system and/or task areas.

ALL

Requests that the system write a snap of both task and system areas. Areas
associated with the issuing task are itemized and formatted separately from

the system areas. The entire task control area is included as one item with a
system snap.

#SNAP

Chapter 5: Data Manipulation Language Statements 329

SYS

Requests that the system write a snap of system areas.

Note: In most systems, this is a very large amount of memory; system snaps
will impede system performance and should be reserved for special use.

TASK

Requests that the system write a snap of task areas and resources associated
with the issuing task.

PLIST=

Specifies the location of the storage area in which the system builds the #SNAP
parameter l ist.

SYSPLIST

(Default); is the symbolic name of the storage area in which the system builds
the #SNAP parameter l ist.

parameter-list-pointer

A register that points to the area or the symbolic name of the area in which the
system builds the #SNAP parameter l ist.

Calculate the size of the parameter-list area using this formula:

5 + 2P + T

where the following conditions are met:

■ P is the number of data-area-pointer,data-length-register pairs coded for

the AREA parameter, described below.

■ T is equal to 0 if the TITLE parameter, described below, has not been
specified, or 1 if the TITLE parameter has been specified.

For example, if four pairs are specified and the TITLE parameter is omitted, the

length of this storage area is 13 fullwords.

TITLE=

Specifies the title to be printed at the beginning of the snap. If requested, the title
can be, at most, 133 characters. The first character must be a valid ASA carriage
control character (, 0, 1, or +). In addition, there must be a 1-byte field defined

prior to the ASA control character which designates the length of the title field. For

example, this denotes a length of 133:

LEN DC AL1(133)

title-pointer

A register that points to the title, or the symbolic name of a user-defined field
that contains the title.

#SNAP

330 DML Reference Guide for Assembler

AREA=

Requests a snap of the specified areas. The AREA parameter can be specified

independently of or together with the FORMAT specification. The memory defined
by the AREA parameter may or may not be included in the memory areas
associated with task or system areas specified by the FORMAT parameter.

data-area-pointer

Specifies the area to be snapped. Data-area-pointer may be the symbolic name

of the area, or a register that points to the area. Register 1 is reserved for
internal use; any other register is valid.

data-length-register

Specifies the length, in bytes, of the area to be included in the snap.
Data-length-register is a register that contains the length, the symbolic name of

a user-defined halfword or fullword field that contains the length, or an
absolute expression of the length of the data area.

REGS=

Specifies whether values contained in the register should be printed.

YES

(Default); specifies that the snap includes all register values.

NO

Specifies that the snap does not include register values.

Examples

The #SNAP statement shown below requests a snap of two specific task areas. The
MAINSAVE area (80 bytes in length) is the area to be snapped. A title is printed at the
top of each page of the snap.

#SNAP AREA=(MAINSAVE,80),TITLE=TITLE1

 .

 .

 .

 TITLE1 DC AL1(L'TITLE+1)

 CC DC C'1'

 TITLE DC C'ABEND EXIT PROGRAM AND WORKAREA SAMPLE'

Status Codes

The #SNAP request is unconditional; any runtime error results in an abend of the issuing
task.

#STAE

Chapter 5: Data Manipulation Language Statements 331

#STAE

The #STAE (system task abend exit) statement establishes or cancels l inkage to an abend
routine. Control passes to the abend routine if the issuing task terminates abnormally.
Any program in a task can establish a #STAE exit; only one abend exit can be in effect at
any given time for each task level. If more than one abend exit has been esta blished, the

system recognizes the last #STAE request issued.

A task can terminate abnormally following a processing error or on request by an
#ABEND function. Abend exits for the program that is executing at the time of the
abend and for all higher level programs are executed before the task is terminated. You

can override the automatic execution of abend exits by including an #ABEND function in
the program or by including a #RETURN function in the abend routine.

Note: A #STAE command issued with no parameters cancels any previously issued
#STAE. For further information see STAE Exits.

Syntax

►►─┬─────────┬─ #STAE ──►
 └─ label ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►◄
 ├─ PGM=program-name-pointer ────────────┤
 └─ EPADDR=entry-point-address-register ─┘

Parameters

PGM=

Specifies whether l inkage is established to another program or to an abend routine
in the issuing program.

program-name-pointer

Identifies the 1- to 8-character name of the program. Program-name-pointer is a

register that points to a field that contains the program name, the symbolic name
of a user-defined field that contains the program name, or the program-name
literal enclosed in quotation marks.

Note: The DC/UCF system does not test whether the specified program name is
valid when the #STAE request is issued. If the program is not found or is otherwise
unloadable when the system attempts to execute it, the #STAE request will be
ignored.

EPADDR=

Identifies the abend entry-point address of an abend routine in the issuing program.
The named routine must have a separate entry point in the program.

entry-point-address-register

Either a register or the symbolic name of a fullword user-defined field that contains

the entry-point address.

@STORE

332 DML Reference Guide for Assembler

Example

The #STAE statement shown below establishes a l ink to the abend routine ABRT02. The

program ABRT02 receives control in the event of an abnormal termination of the issuing
task.

#STAE PGM=ABRT02

Status Codes

The #STAE instruction is unconditional; any error detected during execution results in an
abend of the issuing task.

@STORE

Functions of @STORE

The @STORE statement performs the following functions:

■ Acquires space and a database key for a new record occurrence in the database

■ Transfers the values of the appropriate elements from program variable storage to
the requested record occurrence in the database

■ Connects the requested record into all sets for which it is defined as an automatic
member

Location Modes

A record is stored in the database according to the location mode specified in the
schema definition of the record. The location modes are as follows:

■ CALC places the record on or near a page calculated by CA IDMS/DB from a control
element (the CALC key) in the record.

■ VIA places the record as follows:

– If the owner and member record occurrences share a common page range, the
DBMS places the record as close possible to its owner record occurrence.

– If the owner and member record occurrences do not share a common page
range, the DBMS places the record in the same relative position in the member

record's page range as the owner record occurrence is in its associated page
range.

■ DIRECT places the record on or near a user-specified page, as determined by the
value in the DIRDBKEY field of the IDMS communications block:

– If DIRDBKEY contains a valid db-key for the record being stored, the DBMS
assigns a db-key to the new record occurrence on that page if space is
available.

@STORE

Chapter 5: Data Manipulation Language Statements 333

– If DIRDBKEY does not contain a valid db-key for the record being stored, the
DBMS assigns the next available db-key, subject to the page-range limits of the

record being stored.

– If DIRDBKEY contains a value of -1, the DBMS assigns the record the first db-key
available in the page range in which the record is to be stored.

In any case, the db-key of the stored record occurrence is returned to DBKEY
(positions 13-16 in the IDMS communications block). The contents of DIRDBKEY

remain unchanged.

Before Executing @STORE

Before execution of the @STORE statement, the following conditions must be met:

■ All areas affected either implicitly or explicitly by the @STORE statement must be
readied in one of the three update usage modes. Update usage modes a re

discussed along with the @READY statement earlier in this chapter.

■ All control elements (CALC and sorted set control fields) must be initialized.

■ If the record being stored has a location mode of DIRECT, the contents of DIRDBKEY
(the direct db-key, positions 197-200 of the IDMS communications block) must be
initialized with a db-key value or a null db-key value of -1.

■ If the record is to be stored in a native VSAM relative-record data set (RRDS), the

contents of DIRDBKEY must be initialized with the relative record number that
represents the location in the data set where the record is to be stored.

■ Every set in which the named record is defined as an automatic member, and the
owner record of every such set, must be included in the subschema. Sets for which
the named record is defined as a manual member need not be defined in the

subschema since the @STORE statement does not access those sets. An automatic
member is connected automatically to the selected set occurrence when the record
is stored; a manual member is not connected automatically to the selected set

occurrence.

■ If the record being stored has a location mode of VIA, currency must be established

for the set in which the record participates as a member; this is true whether the
record being stored is an automatic or manual member of that set.

Currency

Currency must be established for all set occurrences in which the stored record will
participate as an automatic member. The @STORE statement uses currency depending

on how the set is ordered:

■ If the stored record is defined as a member of a set that is ordered FIRST or LAST,
the record that is current of set establishes the set occurrence to which the stored

record will be connected.

@STORE

334 DML Reference Guide for Assembler

■ If the stored record is defined as a member of a set that is ordered NEXT or PRIOR,
the record that is current of set establishes the set occurrence into which the stored

record will be connected and determines its position in the s et.

■ If the stored record is defined as a member of a sorted set, the record that is
current of set establishes the set occurrence into which the stored record will be
connected. IDMS compares the sort key of the stored record with the sort key of
the current record of set to determine if the stored record can be inserted into the

set by movement in the next direction:

– If the record can be inserted by movement in the next direction, the set
occurrence remains positioned at the record that is current of set and the
stored record is inserted.

– If the record cannot be inserted by movement in the next direction, the DBMS
positions the set occurrence at the owner record occurrence (not necessarily

the current occurrence of the owner record type) and moves as far forward in
the next direction as is necessary to determine the logical insertion point for
the stored record.

Following successful execution of an @STORE statement, the stored record becomes
current of run unit, its record type, its area, and all sets in which it participates as owner

or automatic member.

The following figure il lustrates the currency issues involved in adding a new EMPLOYEE
record to the database.

Since EMPLOYEE is defined as an automatic member of both the DEPT-EMPLOYEE and
OFFICE-EMPLOYEE sets, currency must be established in each of those sets before
issuing the @STORE statement. The first two DML commands establish
DEPARTMENT-3100 and OFFICE-1 as current of the DEPT-EMPLOYEE and

OFFICE-EMPLOYEE sets, respectively. When EMPLOYEE-27 is stored, it is connected
automatically to each set.

@STORE

Chapter 5: Data Manipulation Language Statements 335

Syntax

►►─── @STORE REC=record-name ───►◄

Parameters

REC=record-name

Specifies the record occurrence to be moved from variable storage to the database.
The @STORE statement connects the requested record to an occurrence of each set
for which it is defined as an automatic member, and establishes it as the owner of a

set. The @STORE statement also establishes the named record as the owner of a
set occurrence for each set for which it is defined as an owner. The ordering rules
for each set govern the insertion point of the named record in the set. Record-name
must specify a record type included in the subschema.

@STORE

336 DML Reference Guide for Assembler

Example

The @STORE statement shown below performs the following:

■ Moves a single occurrence of the EMPLOYEE record from program variable storage
to the database

■ Connects this occurrence of EMPLOYEE to each set for which it is defined as an

automatic member

■ Establishes EMPLOYEE as the owner in each set occurrence in which it is defined as
the owner

@STORE REC=EMPLOYEE

Status Codes

After the completion of the @STORE function, the ERRSTAT field in the IDMS

communications block indicates the outcome of the operation. The following is a l ist of
the acceptable status codes for this function and their corresponding meaning:

1201

The area in which the named record is to be stored has not been readied.

1202

The suggested DIRDBKEY value is not in the page range for the named record.

1205

Storage of the record would violate a duplicates -not-allowed option for a CALC
record, a sorted set, or an index set.

1208

The named record is not in the subschema. The program has probably invoked the
wrong subschema, or the record name has been misspelled.

1209

The named record's area has not been readied in one of the three update usage

modes.

1210

The subschema specifies an access restriction that prohibits storage of the named
record.

1211

The record cannot be stored in the area because of insufficient s pace.

@STORE

Chapter 5: Data Manipulation Language Statements 337

1212

The record cannot be stored because no db-key is available. This is a system

internal error.

1218

The record has not been bound.

1221

An area other than the area of the named record occurrence has been readied with

an incorrect usage mode.

1225

A set occurrence has not been established for each set in which the named record is

to be stored.

1233

All sets in which the record participates as an automatic member have not been
included in the subschema.

1253

The subschema definition of an indexed set does not match the indexed set's
physical structure in the database.

1254

Either the prefix length of an SR51 record is less than zero or the data length is less

than or equal to zero.

1255

An invalid length has been defined for a variable-length record.

1260

A record occurrence encountered in the process of connecting automatic sets is

inconsistent with the set named in the ERRORSET field of the IDMS communications
block; probable causes include a broken chain or an improper database description.

1261

The record cannot be stored because of broken chains in the database.

@STORE (LRF)

338 DML Reference Guide for Assembler

@STORE (LRF)

The @STORE statement can also update the database with field values for new logical
record occurrences. The @STORE statement does not necessarily store new occurrences
of all or any of the database records that participate in the logi cal record; the path
selected to service an @STORE logical -record request performs whatever database

access operations the DBA has specified to service the request.

LRF uses field values stored in the variable-storage location reserved for the logical
record to make the appropriate updates to the database. You can optionally name an
alternate storage location from which the new field values are to be obtained to

perform the requested store operation.

Syntax

►►─── @STORE REC=logical-record-name ───►

 ►─┬───┬────────────────────────────►
 └─ ,IOAREA=alt-logical-record-location ───────┘

 ►─┬───┬────────────────────────────►
 └─ ,ONLRSTS=path-status,GOTO=branch-location ─┘

 ►─┬─────────────────────────────┬──►◄
 └─ ,WHERE boolean-expression ─┘

Parameters

REC=logical-record-name

Names a new occurrence of the named logical record. Unless the IOAREA
parameter (see below) is included, LRF updates the database by using field values
stored in a variable-storage location reserved for the named logical record.

Logical-record-name must specify a logical record defined in the subschema.

IOAREA=alt-logical-record-location

Identifies an alternative variable-storage location that contains the field values to
be used to update the database. When storing a logical record that has previously
been retrieved into an alternative variable-storage location, you should use the

IOAREA clause to name the same area specified in the @OBTAIN request. If the
IOAREA clause is included in the @STORE statement, alt-logical-record-location
must identify a record location defined in the program.

ONLRSTS=path-status,GOTO=branch-location

Tests for the indicated path status. Path-status must be a quoted literal (1 to 16) or

a program variable. If path-status results from this @STORE statement, the action
specified by branch-location is performed. For more information about how to code
the ONLRSTS clause, see the discussion of the ON clause later in this chapter.

@STORE (LRF)

Chapter 5: Data Manipulation Language Statements 339

WHERE boolean-expression

Specifies selection criteria to be applied to the named logical record. For details on

how to code the WHERE clause, refer to the discussion of the WHERE clause later in
this chapter.

Example

The example below il lustrates how to add a new office by adding occurrences of the
OFFEMPLR logical record. The program subsequently stores one occurrence of the

OFFEMPLR logical record for each employee added to the office.

STOROFF EQU *

 MVC OFFICE,NEWOFF

 @STORE REC=OFFEMPLR,WHERE ADD-OFFICE

 .

 .

STOREMP EQU *

 MVC EMPL,NEWEMP

 @STORE REC=OFFEMPLR,WHERE ADD-EMP

 .

 .

 B STOREMP

In the above example, the DBA has designated the keywords ADD-OFFICE and ADD-EMP
to direct the request to a path designed to store new employee information for a new
office. The path to which the first request is directed stores the appropriate new office

information before storing the new employee information.

All input data concerning the new employee is contained in group fields called NEWOFF
and NEWEMP, whose layouts correspond to those of the OFFICE and EMPLOYEE
positions, respectively, of the OFFEMPLR logical record. The program moves the input
field NEWOFF to the logical-record group field OFFICE and the input field NEWEMP to

the logical-record group field EMPL.

Status Codes

After you issued an @STORE statement for a logical record, the type of status code
returned to the program in the ERRSTAT field of the IDMS communications block
depends on the type of error. If the error occurs in the logical-record path, the ERRSTAT

field contains a status code issued by CA IDMS/DB with a major code from 00 to 19. For
a l ist of these codes, see ERRSTAT Field and Codes (see page 41).

When the error occurs in the request itself, LRF returns the path status LR-ERROR to the
LRSTAT field of the LRC block and places a status code with a major code of 20 in the
ERRSTAT field of the IDMS communications block. These codes are l isted in Testing for

the Logical-Record Path Status (see page 55).

#STRTPAG

340 DML Reference Guide for Assembler

#STRTPAG

The #STRTPAG statement initiates a map paging session, and specifies the map paging
options in effect for that session. The paging session can contain any number of DML
statements, including #MREQ IN and #MREQ OUT; the #STRTPAG statement must
precede any of these mapping commands. The map paging session is terminated by an

#ENDPAG statement, or by the next #STRTPAG statement if no #ENDPAG statement is
coded.

Note: Only one pageable map can be handled by the statements enclosed by a given
#STRTPAG/#ENDPAG pair.

Syntax

►►─── #STRTPAG MRB=map-request-block-pointer ─────────────────────────────────►

 ►─┬──────────────────────────────────────┬───────────────────────────────────►
 └─ ,PLIST ─┬─ SYSPLIST ◄ ─────────────┬┘
 └─ parameter-list-pointer ─┘

 ►─┬──┬─────────────────────────►
 └─ ,MRBPGDS= ─┬─ MRBPGDS ◄ ────────────────────┬─┘
 └─ paging-request-block-pointer ─┘

 ►─┬────────────────────────┬───►
 └─ ,TYPE= ─┬─ NOWAIT ◄ ─┬┘
 ├─ WAIT ─────┤
 └─ RETURN ───┘

 ►─┬────────────────────────┬───►
 └─ ,BACKPAG= ─┬─ YES ◄ ─┬┘
 └─ NO ────┘

 ►─┬────────────────────────┬───►
 └─ ,FLAG= ─┬─ UPDATE ◄ ─┬┘
 └─ BROWSE ───┘

 ►─┬─────────────────────┬──►◄
 └─ ,AUTO= ─┬─ YES ◄ ─┬┘
 └─ NO ────┘

Parameters

MRB=map-request-block-pointer

Specifies the location of the map request block for the mapping operation, as
copied into program variable storage by a previously issued #MRB statement.

map-request-block-pointer

Either a register that points to the MRB area or the symbolic name of that area.

PLIST=

The location of the storage area in which the system builds the #STRTPAG
parameter l ist.

SYSPLIST

(Default); is the symbolic name of the storage area in which the system builds the
#STRTPAG parameter l ist.

#STRTPAG

Chapter 5: Data Manipulation Language Statements 341

parameter-list-pointer

Either a register that points to the area or the symbolic name of the area.

MRBPGDS=

Specifies the location of the 16-byte map paging request block.

MRBPGDS

(Default); is the symbolic name of the area in program variable storage that
contains the map paging request block. The map paging request block is copied by a
previously issued #MRB statement.

paging-request-block-pointer

Either a register pointing to the area that contains the map paging request block or
the symbolic name of the area.

TYPE=

Specifies the runtime flow of control when the operator presses a control key.

NOWAIT

(Default); specifies that runtime mapping automatically handles all paging and
update transactions. Control is passed to the program only when neither an update

nor a paging request is made when the operator presses a control key.

WAIT

Specifies that runtime mapping automatically handles paging transactions that do
not cause data to be updated. Control is passed to the program when the terminal

operator presses a control key that requests an update or nonpaging operation.

RETURN

Specifies that runtime mapping does not handle any terminal transactions in the
paging session. Control is passed to the program whenever the operator presses a
control key.

Runtime mapping does not update program variable storage unless an #MREQ IN
command is issued. In cases where the operator can update data (FLAG=UPDATE), it

is recommended that WAIT and RETURN be specified for the session so that data
can be retrieved as it is updated.

BACKPAG=

Specifies whether the terminal operator can display a previous map page.

YES

(Default); specifies that the operator can display previous pages of the map.

#STRTPAG

342 DML Reference Guide for Assembler

NO

Specifies that the operator cannot display any page of detail occurrences with a

page number lower than the current page number. Modifications made on a given
page of the map must be requested by #MREQ IN statements in the application
program before an #MREQ OUT,RESUME=YES command is issued. The previous

page of detail occurrences is deleted from the session scratch record when a new
map page is displayed.

Note: BACKPAG=NO cannot be assigned if FLAG=UPDATE (discussed below) and
TYPE=NOWAIT are specified for the session.

FLAG=

Specifies whether the terminal operator can modify map data fields.

UPDATE

(Default); specifies that the terminal operator can modify variable map fields,
subject to restrictions specified for the map either at map definition time or by the
statements in the program.

BROWSE

Specifies that the terminal operator can modify only the page and response fields of

the map. At runtime, runtime mapping automatically protects all variable fields. The
MDTs for variable fields on the map can be set only according to specifications
made either in the map definition or by statements in the program.

AUTO

You can override the automatic mapout of a pageable map's first page. Overriding
automatic display of a map's first page allows you to modify the map page and
defined messages before the page is displayed. To determine when the first page of
the map is built, you test the new map return code. By default, the first page of a

pageable map is displayed as soon as the first detail occurrence of the second map
page is written to scratch. You determine whether the first page of a pageable map
is automatically displayed by using the AUTO parameter.

YES

(Default); enables automatic display of the pageable map's first page.

NO

Disables automatic display of the pageable map's first page. You manually display
the page by using a #MREQ statement.

Example

The following example of the #STRTPAG statement initiates a pageable map session
with the following map paging options in effect:

■ MRBPROG1 is the symbolic name of the location in variable storage that contains
the map-request block for the mapping operati on.

#TREQ

Chapter 5: Data Manipulation Language Statements 343

■ WAIT indicates that runtime mapping passes control to the program when an
update or a nonpaging request is made. Runtime mapping automatically handles all

paging requests that do not involve field updates.

■ Unless otherwise coded, the location of the map-paging request block is found in
MRBPGDS in program variable storage. By default, the operator can display
previous map pages and data fields.

#STRTPAG MRB=MRBPROG1,TYPE=WAIT

The following example il lustrates usage of the AUTO parameter:

#STRTPAG MRB=EMPMAPPG,AUTO=NO

Status Codes

After completion of a #STRTPAG request, the value in register 15 indicates the outcome

of the operation. The following is a l ist of Register 15 values and the corresponding
meaning:

X'00'

The request has been serviced successfully.

X'04'

A paging session was already in progress when this #STRTPAG command was
received. An implied #ENDPAG statement was processed before this #STRTPAG
command was successfully executed.

#TREQ

Functions of #TREQ

The #TREQ statement allows your program to do the following:

■ Transfer data between a terminal device and your application program in basic

mode. Device-control characters appropriate to your terminal device are sent along
with the data.

■ Converse with SNA resources.

■ Acquire and release storage areas used for I/O buffers. The following considerations

apply:

– In response to an input request, the input for data-item descriptions is acquired
dynamically from the storage pool. Use the LOCATE option of the #TREQ GET or
#TREQ READ statement to acquire the input buffer. When you specify LOCATE,

your program is responsible for releasing the acquired storage with a #FREESTG
statement. If the storage is not explicitly freed, the system releases all acquired
input buffers when the task terminates.

#TREQ

344 DML Reference Guide for Assembler

– In response to an output request, a previously acquired storage area for the
output buffer is released. To release the output buffer, use the FREEBUF option

of the #TREQ PUT, #TREQ WRITE, #TREQ PUTGET, or #TREQ WRITREAD
statement. The output buffer is released on completion of the output request.

DC/UCF Response to #TREQ

The DC/UCF system does the following in response to a #TREQ request:

■ Automatically inserts the appropriate l ine control characters

■ Builds and/or modifies a terminal request block (TRB), depending on the type of

#TREQ request:

– For regular #TREQ requests (MF=R), the system builds a new TRB for each
request. Constant values are specified for each subsequent #TREQ request.

– For list #TREQ requests (MF=L), the system builds a TRB in the data definition
section of program storage. Subsequent #TREQ statements include parameters

that add to or override this predefined TRB. The list #TREQ statement defines
constant values; subsequent execute (MF=E) #TREQ statements modify the
previously designate TRB. This technique saves coding time and storage space.

■ Initiates the requested I/O operation and transfers the data

Regular and Execute #TREQ Description

The regular and execute versions of the #TREQ statement request a transfer of data
from the issuing program to the physical terminal and/or from the physical terminal to
the program. The requested transfer is designated as synchronous or asynchronous:

■ Synchronous—Control is not returned to the issuing program until the I/O
operation is completed. Synchronous transfer is accomplished by using #TREQ GET,
PUT, PUTGET, or ALLOC statements.

■ Asynchronous—Control is returned to the issuing program immediately after the

requested I/O operation is initiated; the program continues to execute concurrently
with the I/O operation. An event control block (ECB) is established that will be
posted after the I/O operation is completed. Asynchronous transfer is accomplished
by using the #TREQ READ, WRITE, WRITREAD, or ALLOC statements.

An asynchronous request must be followed by a #TREQ CHECK before continuing

with further terminal I/O operations to ensure that the previous #TREQ processing
is completed. Most error message codes associated with #TREQ READ, WRITE,
WRITREAD, or ALLOC requests are returned when the #TREQ CHECK statement is
issued.

To send a data stream immediately to a terminal or group of terminals, you can issue a

#TREQ WRITE/PUT (blast) request, using the DESTID, USERID, and LTERMID parameters.
For write-direct-to-terminal requests, the system ignores the SAVE, EOT, and TRANSPAR
options. Write-direct-to-terminal requests are not supported for l ist #TREQ requests.

#TREQ

Chapter 5: Data Manipulation Language Statements 345

Regular and Execute #TREQ Syntax

#TREQ syntax is presented alphabetically:

■ #TREQ ALLOC

■ #TREQ CHECK

■ #TREQ DISC

■ #TREQ GET

■ #TREQ PUT

■ #TREQ PUTGET

■ #TREQ READ

■ #TREQ UIOCB

■ #TREQ WRITE

■ #TREQ WRITEREAD

#TREQ syntax for l ist requests is presented in the next section.

Syntax

►►─┬─────────┬─ #TREQ ALLOC ──►
 └─ label ─┘

 ►─── ,UIOCBA=user-io-control-block-pointer ──────────────────────────────────►

 ►─┬──────────────────┬───►
 └─ ,MF= ─┬─ R ◄ ─┬─┘
 ├─ E ───┤
 └─ L ───┘

 ►─┬─────────────────────────────────────┬────────────────────────────────────►
 │ ┌─────── , ────────┐ │
 └──,OPTNS= ─(──▼─┬─┬─ ANY ◄ ─┬──┬─┴─)─┘
 │ ├─ CONN ──┤ │
 │ └─ IMM ──┘ │
 └─┬─ WAIT ◄ ─┬─┘
 └─ NOWAIT ─┘

 ►─┬───┬────────────────────────────►◄
 └─ ,LTERMID=logical-terminal-element-pointer ─┘

Parameters

#TREQ ALLOC

Establishes a session and allocates an SNA conversation between your program and

an SNA logical unit.

Note: For more information about using the #TREQ ALLOC statement, see Systems
Network Architecture Considerations (SNA).

#TREQ

346 DML Reference Guide for Assembler

Syntax

►►─┬─────────┬─ #TREQ CHECK ──►
 └─ label ─┘

 ►─┬─────────────────┬──►
 └─ ,MF= ─┬─ R ◄ ─┬┘
 └─ E ───┘

 ►─┬──┬───────────────────────────►
 └─ ,TRB= ─┬─ SYSPLIST ◄ ─────────────────────┬─┘
 └─ terminal-request-block-pointer ─┘

 ►─┬───┬──────────────────────►
 └─ ,INLEN= ─┬─ (0) ◄ ─────────────────────────────┬─┘
 └─ input-data-actual-length-register ─┘

 ►─┬─────────────────────────────────┬──►
 └─ ,COND= ─┬── NO ◄ ────────────┬─┘
 ├── ALL ─────────────┤
 │ ┌──── , ─────┐ │
 └─(─▼─┬─ ATTN ─┬─┴─)─┘
 ├─ DISC ─┤
 ├─ INVP ─┤
 ├─ LOGL ─┤
 ├─ PERM ─┤
 └─ TRUN ─┘

 ►─┬────────────────────────────────┬───►
 └─ ,ATTNXIT=attention-key-label ─┘

 ►─┬──┬─────────────────────────────────►
 └─ ,DISCXIT=terminal-disconnected-label ─┘

 ►─┬──┬───────────────────────────────►
 └─ ,INVPXIT=invalid-trb-information-label ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 └─ ,LOGLXIT=logical-output-error-label ─┘

 ►─┬──────────────────────────────────────┬───────────────────────────────────►
 └─ ,PERMXIT=permanent-i/o-error-label ─┘

 ►─┬──────────────────────────────────────┬───────────────────────────────────►
 └─ ,TRUNXIT=truncate-input-data-label ─┘

 ►─┬──────────────────────┬───►◄
 └─ ,ERROR=error-label ─┘

Parameters

#TREQ CHECK Delays task processing until a previously requested asynchronous I/O
operation is completed. The DC/UCF system places the task in an inactive state if the I/O
operation is incomplete. When the I/O operation is complete, the task resumes

processing according to its established dispatching priority.

Syntax

►►─┬─────────┬─ #TREQ DISC ───►
 └─ label ─┘

 ►─┬─────────────────────────────────┬──►◄
 └─ ,LTEADDR=lte-address-register ─┘

#TREQ

Chapter 5: Data Manipulation Language Statements 347

Parameters

#TREQ DISC

(SNA conversations only); terminates an SNA session between your program and
another logical unit.

Syntax

►►─┬─────────┬─ #TREQ GET ──►
 └─ label ─┘

 ►─┬─────────────────┬──►
 └─ ,MF= ─┬─ R ◄ ─┬┘
 └─ E ───┘

 ►─┬──┬───────────────────────────►
 └─ ,TRB= ─┬─ SYSPLIST ◄ ─────────────────────┬─┘
 └─ terminal-request-block-pointer ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 └─ ,INAREA=input-data-location-pointer ─┘

 ►─┬───┬────────────────────────────────►
 └─ ,MAXIN=input-data-max-length-register ─┘

 ►─┬───┬──────────────────────►
 └─ ,INLEN= ─┬─ (0) ◄ ─────────────────────────────┬─┘
 └─ input-data-actual-length-register ─┘

 ►─┬─────────────────────────────────┬──►
 └─ ,LTEADDR=lte-address-register ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 │ ┌─────── , ─────────┐ │
 └─ ,OPTNS= ──(──▼─┬─── BUFFER ───┬─┴─)─┘
 ├─┬─ INFMHY ─┬──┤
 │ └─ INFMHN ─┘ │
 ├─┬─ LL ──────┬─┤
 │ └─ NOCHASM ─┘ │
 ├─── LOCATE ────┤
 ├─── MODIFIED ──┤
 ├─── POSITION ──┤
 ├─── UPLOW ─────┤
 └─── UPPER ─────┘

 ►─┬────────────────────────────┬───►
 └─ ,FROMPOS=screen-position ─┘

 ►─┬─────────────────────────────────┬──►
 └─ ,COND= ─┬── NO ◄ ─────────────┬┘
 ├── ALL ──────────────┤
 │ ┌─── , ─────┐ │
 └(─┬─▼── DISC ─┬─┴─)──┘
 ├──── INVP ─┤
 ├──── PERM ─┤
 └──── TRUN ─┘

 ►─┬──┬─────────────────────────────────►
 └─ ,DISCXIT=terminal-disconnected-label ─┘

 ►─┬──┬───────────────────────────────►
 └─ ,INVPXIT=invalid-trb-information-label ─┘

#TREQ

348 DML Reference Guide for Assembler

 ►─┬──────────────────────────────────────┬───────────────────────────────────►
 └─ ,PERMXIT=permanent-i/o-error-label ─┘

 ►─┬──────────────────────────────────────┬───────────────────────────────────►
 └─ ,TRUNXIT=truncate-input-data-label ─┘

 ►─┬──────────────────────┬───►◄
 └─ ,ERROR=error-label ─┘

Parameters

#TREQ GET

Requests synchronous transfer of data from a device to program storage when the
terminal operator signals completion of data entry by pressing ENTER or a special
function key.

Syntax

►►─┬─────────┬─ #TREQ PUT ──►
 └─ label ─┘

 ►─┬─────────────────┬──►
 └─ ,MF= ─┬─ R ◄ ─┬┘
 └─ E ───┘

 ►─┬──┬───────────────────────────►
 └─ ,TRB= ─┬─ SYSPLIST ◄ ─────────────────────┬─┘
 └─ terminal-request-block-pointer ─┘

 ►─┬───┬────────────────────────────────►
 └─ ,OUTAREA=output-data-location-pointer ─┘

 ►─┬──┬───────────────────────────►
 └─ ,OUTLEN= ─┬─ output-data-length-register ─┬─┘
 └─ log-data-length-register ────┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 │ ┌─────── , ─────────┐ │
 └─ ,OPTNS= ──(──▼─┬─── CHNCONT ───┬─┴─)─┘
 ├─── CONFIRM ───┤
 ├─── CONFIRMED ─┤
 ├─── EOT ───────┤
 ├─── ERASUNPR ──┤
 ├─── ERROR ─────┤
 ├─── FREEBUF────┤
 ├─── INVITE ────┤
 ├─── NEWPAGE ───┤
 ├─── NOCR ──────┤
 ├─┬─ OUTFMHY ─┬─┤
 │ └─ OUTFMHN ─┘ │
 ├─── SAVE ──────┤
 ├─── SIGNAL ────┤
 └─── TRANSPAR ──┘

 ►─┬─────────────────────────────────┬──►
 └─ ,LTEADDR=lte-address-register ─┘

 ►─┬──────────────────────────────────┬───────────────────────────────────────►
 └─ ,SENSE=sna-sense-code-register ─┘

 ►─┬──────────────────────────────────────┬───────────────────────────────────►
 └─ ,LOGDATA=log-data-address-register ─┘

#TREQ

Chapter 5: Data Manipulation Language Statements 349

 ►─┬──┬─────────────────────────────────►
 ├─ ,DESTID=destination-id-pointer ───────┤
 ├─ ,USERID=user-id-pointer ──────────────┤
 └─ ,LTERMID=logical-terminal-id-pointer ─┘

 ►─┬──────────────────────────────────┬───────────────────────────────────────►
 └─ ,COND= ─┬── NO ◄ ──────────────┬┘
 ├── ALL ───────────────┤
 │ ┌─── , ────┐ │
 └─(─┬─▼── ATTN ─┴┬─)──┘
 ├──── DISC ───┤
 ├──── INVP ───┤
 ├──── LOGL ───┤
 ├──── PERM ───┤
 └──── UNDF ───┘

 ►─┬────────────────────────────────┬───►
 └─ ,ATTNXIT=attention-key-label ─┘

 ►─┬──┬─────────────────────────────────►
 └─ ,DISCXIT=terminal-disconnected-label ─┘

 ►─┬──┬───────────────────────────────►
 └─ ,INVPXIT=invalid-trb-information-label ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 └─ ,LOGLXIT=logical-output-error-label ─┘

 ►─┬──────────────────────────────────────┬───────────────────────────────────►
 └─ ,PERMXIT=permanent-i/o-error-label ─┘

 ►─┬───┬────────────────────────────────►
 └─ ,UNDFXIT=invalid-destid-ltermid-label ─┘

 ►─┬──────────────────────┬───►◄
 └─ ,ERROR=error-label ─┘

Parameters

#TREQ PUT

Requests synchronous transfer of data from program storage to a terminal or
device.

Syntax

►►─┬─────────┬─ #TREQ PUTGET ───►
 └─ label ─┘

 ►─┬─────────────────┬──►
 └─ ,MF= ─┬─ R ◄ ─┬┘
 └─ E ───┘

 ►─┬──┬───────────────────────────►
 └─ ,TRB= ─┬─ SYSPLIST ◄ ─────────────────────┬─┘
 └─ terminal-request-block-pointer ─┘

 ►─┬───┬────────────────────────────────►
 └─ ,OUTAREA=output-data-location-pointer ─┘

 ►─┬──┬─────────────────────────────────►
 └─ ,OUTLEN=output-data-length-register ──┘

 ►─┬──┬─────────────────────────────────►
 └─ ,INAREA=input-data-location-pointer ──┘

 ►─┬───┬────────────────────────────────►
 └─ ,MAXIN=input-data-max-length-register ─┘

#TREQ

350 DML Reference Guide for Assembler

 ►─┬──┬───────────────────────►
 └─ ,INLEN= ─┬─ (0) ◄ ─────────────────────────────┬┘
 └─ input-data-actual-length-register ─┘

 ►─┬─────────────────────────────────┬──►
 └─ ,LTEADDR=lte-address-register ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 │ ┌────── , ──────────┐ │
 └─ ,OPTNS= ──(──▼─┬─── CHNCONT ───┬─┴─)─┘
 ├─── CONFIRM ───┤
 ├─── ERASUNPR ──┤
 ├─── FREEBUF ───┤
 ├─┬─ INFMHY ─┬──┤
 │ └─ INFMHN ─┘ │
 ├─── LAST ──────┤
 ├─┬─ LL ──────┬─┤
 │ └─ NOCHASM ─┘ │
 ├─── LOCATE ────┤
 ├─── NEWPAGE ───┤
 ├─── NOCR ──────┤
 ├─┬─ OUTFMHY ─┬─┤
 │ └─ OUTFMHN ─┘ │
 ├─── UPLOW ─────┤
 └─── UPPER ─────┘

 ►─┬─────────────────────────────────┬──►
 └─ ,COND= ─┬── NO ◄ ────────────┬─┘
 ├── ALL ─────────────┤
 │ ┌──── , ─────┐ │
 └─(─▼─┬─ ATTN ─┬─┴─)─┘
 ├─ DISC ─┤
 ├─ INVP ─┤
 ├─ LOGL ─┤
 ├─ PERM ─┤
 ├─ TRUN ─┤
 └─ UNDF ─┘

 ►─┬────────────────────────────────┬───►
 └─ ,ATTNXIT=attention-key-label ─┘

 ►─┬──┬─────────────────────────────────►
 └─ ,DISCXIT=terminal-disconnected-label ─┘

 ►─┬──┬───────────────────────────────►
 └─ ,INVPXIT=invalid-trb-information-label ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 └─ ,LOGLXIT=logical-output-error-label ─┘

 ►─┬──────────────────────────────────────┬───────────────────────────────────►
 └─ ,PERMXIT=permanent-i/o-error-label ─┘

 ►─┬──────────────────────────────────────┬───────────────────────────────────►
 └─ ,TRUNXIT=truncate-input-data-label ─┘

 ►─┬───┬────────────────────────────────►
 └─ ,UNDFXIT=invalid-destid-ltermid-label ─┘

 ►─┬──────────────────────┬───►◄
 └─ ,ERROR=error-label ─┘

Parameters

#TREQ PUTGET

Requests a synchronous data transfer from program storage to a terminal, then
back to the program when the terminal operator indicates completion of data
entry.

#TREQ

Chapter 5: Data Manipulation Language Statements 351

Syntax

►►─┬─────────┬─ #TREQ READ ───►
 └─ label ─┘

 ►─┬─────────────────┬──►
 └─ ,MF= ─┬─ R ◄ ─┬┘
 └─ E ───┘

 ►─┬──┬───────────────────────────►
 └─ ,TRB= ─┬─ SYSPLIST ◄ ─────────────────────┬─┘
 └─ terminal-request-block-pointer ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 └─ ,INAREA=input-data-location-pointer ─┘

 ►─┬───┬────────────────────────────────►
 └─ ,MAXIN=input-data-max-length-register ─┘

 ►─┬───┬──────────────────────►
 └─ ,INLEN= ─┬─ (0) ◄ ─────────────────────────────┬─┘
 └─ input-data-actual-length-register ─┘

 ►─┬─────────────────────────────────┬──►
 └─ ,LTEADDR=lte-address-register ─┘

 ►─┬───┬────────────────────────────────►
 │ ┌─────── , ─────────┐ │
 └─ ,OPTNS= ──(──▼─┬─── BUFFER ────┬─┴──)──┘
 ├─── INFMHY ────┤
 ├─┬─ INFMHN ──┬─┤
 │ └─ INVITE ──┘ │
 ├─┬─ LL ──────┬─┤
 │ └─ NOCHASM ─┘ │
 ├─── LOCATE ────┤
 ├─── MODIFIED ──┤
 ├─── POSITION ──┤
 ├─── UPLOW ─────┤
 └─── UPPER ─────┘

 ►─┬────────────────────────────┬───►
 └─ ,FROMPOS=screen-position ─┘

 ►─┬─────────────────────┬──►
 └─ ,COND= ─┬─ NO ◄ ─┬─┘
 └─ INVP ─┘

 ►─┬──┬───────────────────────────────►
 └─ ,INVPXIT=invalid-trb-information-label ─┘

 ►─┬──────────────────────┬───►◄
 └─ ,ERROR=error-label ─┘

Parameters

#TREQ READ

Requests asynchronous transfer of data from a terminal or device to program
storage when the terminal operator signals completion of the data entry by
pressing ENTER or a special function key.

#TREQ

352 DML Reference Guide for Assembler

#TREQ UIOCB

Syntax

►►─┬─────────┬─ #TREQ UIOCB ──►
 └─ label ─┘

 ►─┬──┬───────────────────────────────►
 └─ ,UIOCBA=user-i/o-control-block-pointer ─┘

 ►─┬─────────────────────────────────┬──►◄
 └─ ,LTEADDR=lte-address-register ─┘

Parameters

#TREQ UIOCB

Locates a user I/O communications block used to maintain the status of an SNA

conversation and of the data being passed between logical units.

Syntax

►►─┬─────────┬─ #TREQ WRITE ──►
 └─ label ─┘

 ►─┬─────────────────┬──►
 └─ ,MF= ─┬─ R ◄ ─┬┘
 └─ E ───┘

 ►─┬──┬───────────────────────────►
 └─ ,TRB= ─┬─ SYSPLIST ◄ ─────────────────────┬─┘
 └─ terminal-request-block-pointer ─┘

 ►─┬───┬────────────────────────────────►
 └─ ,OUTAREA=output-data-location-pointer ─┘

 ►─┬───┬────────────────────────────►
 └─ ,OUTLEN= ─┬─ output-data-length-register ─┬┘
 └─ log-data-length-register ────┘

 ►─┬─────────────────────────────────┬──►
 └─ ,LTEADDR=lte-address-register ─┘

 ►─┬───────────────────────────────────────┬──────────────────────────────────►
 │ ┌─────── , ─────────┐ │
 └─ ,OPTNS= ──(──▼─┬─── ABEND ───┬─┴─)─┘
 ├─── CHNCONT ───┤
 ├─── CONFIRM ───┤
 ├─── CONFIRMED ─┤
 ├─── EOT ───────┤
 ├─── ERASUNPR ──┤
 ├─── ERROR ─────┤
 ├─── FREEBUF ───┤
 ├─── INVITE ────┤
 ├─── LAST ───┤
 ├─── NEWPAGE ───┤
 ├─── NOCR ──────┤
 ├─┬─ OUTFMHY ─┬─┤
 │ └─ OUTFMHN ─┘ │
 ├─── SAVE ─────┤
 ├─── SIGNAL ────┤
 └─── TRANSPAR ──┘

#TREQ

Chapter 5: Data Manipulation Language Statements 353

 ►─┬─────────────────────────┬──►
 └─ ,SENSE=sna-sense-code ─┘

 ►─┬──────────────────────────────────────┬───────────────────────────────────►
 └─ ,LOGDATA=log-data-address-register ─┘

 ►─┬──┬─────────────────────────────────►
 ├─ ,DESTID=destination-id-pointer ───────┤
 ├─ ,USERID=user-id-pointer ──────────────┤
 └─ ,LTERMID=logical-terminal-id-pointer ─┘

 ►─┬───────────────────────────────┬──►
 └─ ,COND= ─┬── NO ◄ ───────────┬┘
 ├── ALL ────────────┤
 │ ┌───── , ───┐ │
 └─(─▼─┬─ INVP ─┬┴─)─┘
 └─ UNDF ─┘

 ►─┬──┬───────────────────────────────►
 └─ ,INVPXIT=invalid-trb-information-label ─┘

 ►─┬───┬────────────────────────────────►
 └─ ,UNDFXIT=invalid-destid-ltermid-label ─┘

 ►─┬──────────────────────┬───►◄
 └─ ,ERROR=error-label ─┘

Parameters

#TREQ WRITE

Requests an asynchronous data transfer from program storage to a terminal or
device.

Syntax

►►─┬─────────┬─ #TREQ WRITREAD ───►
 └─ label ─┘

 ►─┬─────────────────┬──►
 └─ ,MF= ─┬─ R ◄ ─┬┘
 └─ E ───┘

 ►─┬──┬───────────────────────────►
 └─ ,TRB= ─┬─ SYSPLIST ◄ ─────────────────────┬─┘
 └─ terminal-request-block-pointer ─┘

 ►─┬───┬────────────────────────────────►
 └─ ,OUTAREA=output-data-location-pointer ─┘

 ►─┬──┬─────────────────────────────────►
 └─ ,OUTLEN=output-data-length-register ──┘

 ►─┬──┬─────────────────────────────────►
 └─ ,INAREA=input-data-location-pointer ──┘

 ►─┬───┬────────────────────────────────►
 └─ ,MAXIN=input-data-max-length-register ─┘

#TREQ

354 DML Reference Guide for Assembler

 ►─┬──┬───────────────────────►
 └─ ,INLEN= ─┬─ (0) ◄ ─────────────────────────────┬┘
 └─ input-data-actual-length-register ─┘

 ►─┬─────────────────────────────────┬──►
 └─ ,LTEADDR=lte-address-register ─┘

 ►─┬───┬────────────────────────────────►
 │ ┌─────── , ─────────┐ │
 └─ ,OPTNS= ──(──▼─┬─── CHNCONT ───┬─┴─)───┘
 ├─── CONFIRM ───┤
 ├─── ERASUNPR ──┤
 ├─── FREEBUF ───┤
 ├─┬─ INFMHY ─┬──┤
 │ └─ INFMHN ─┘ │
 ├─── INVITE ────┤
 ├─┬─ LL ──────┬─┤
 │ └─ NOCHASM ─┘ │
 ├─── LOCATE ────┤
 ├─── NEWPAGE ───┤
 ├─── NOCR ──────┤
 ├─┬─ OUTFMHY ─┬─┤
 │ └─ OUTFMHN ─┘ │
 ├─── UPLOW ─────┤
 └─── UPPER ─────┘

 ►─┬───────────────────────────┬──►
 └─ ,COND= ─┬─ NO ◄ ───────┬─┘
 └─ INVP ───────┘

 ►─┬──┬───────────────────────────────►
 └─ ,INVPXIT=invalid-trb-information-label ─┘

 ►─┬──────────────────────┬───►◄
 └─ ,ERROR=error-label ─┘

Parameters

#TREQ WRITREAD

Requests an asynchronous data transfer from program storage to a terminal or

device, then back to program storage when the terminal operator indicates
completion of data entry.

Syntax rules for the #TREQ statements are shown below. One complete set of syntax
rules is provided; the explanation for each parameter indicates the applicable #TREQ
statements. #TREQ options necessary to comply with SNA protocols are also indicated.

Note: For more information about SNA programming considerations, see Systems
Network Architecture Considerations (SNA).

The discussion of syntax applies to regular and execute commands, with the following
exceptions:

■ The TRB parameter of an execute request identifies a terminal request block (TRB)

previously established by a l ist #TREQ request.

■ For an execute request, parameters already defined to the TRB need not be
specified. If they are specified, the requested parameters will override the existing
values in the TRB.

#TREQ

Chapter 5: Data Manipulation Language Statements 355

Parameters

MF=

Specifies the category of #TREQ.

R

(Default); specifies a regular #TREQ statement.

E

Specifies an execute #TREQ statement.

TRB=

Specifies the five-fullword storage area in which the system will build the TRB

(MF=R) or has built the TRB (MF=E).

SYSPLIST

(Default for regular requests only); is the symbolic name of the storage area in
which the system will build the TRB.

terminal-request-block

Either a register that contains the address of the area or the symbolic name of the
area in which the system will build or has built the TRB. For execute requests, this

entry explicitly defines the area by identifying label, provided in the list #TREQ that
generated the TRB.

OUTAREA=

(PUT, WRITE, PUTGET, and WRITREAD only) specifies the storage area that contains

data to be output. OUTAREA need not be defined if the OUTLEN parameter,
described below, is 0.

output-data-location

Either a register that contains the address of the area or the symbolic name of the
area.

OUTLEN=

(PUT, WRITE, PUTGET and WRITREAD only); specifies the length, in bytes, of the

data stream to be transmitted.

output-data-length

Specifies the length of data being sent to a terminal. Output-data-length is either a
register that contains the length or an absolute expression of the length of data
sent in a normal exchange.

log-data-length

A register that contains the length or an absolute expression of the length of data to
be sent along with error information in an SNA conversation.

#TREQ

356 DML Reference Guide for Assembler

INAREA=

(GET, READ, PUTGET, and WRITREAD only); specifies the storage area into which the

data will be read. When INAREA is specified, the LOCATE option, described under
the OPTNS parameter below, should not be requested.

input-data-location

Either a register that points to the area or the symbolic name of the area.

MAXIN=

(GET, READ, PUTGET, and WRITREAD only); specifies the maximum length in bytes

of the data area defined by INAREA that is reserved for the input data stream.
When MAXIN is specified, the LOCATE option, described under the OPTNS
parameter below, should not be requested.

input-data-max-length

Either a register that contains the length of the data area or an absolute expression.

INLEN=

(GET, PUTGET, or CHECK following an asynchronous input request); specifies the
location to which the system returns the actual length of the input data stream. If
the input data stream has been truncated, the original length of the data stream
before truncation is returned.

(0)

(Default); is the register to which the system returns the actual length of the input
data stream.

input-data-actual-length

A register or the symbolic name of a halfword or fullword user -defined field to
which the system will return the actual length of the input data stream.

UIOCBA=

(ALLOC and UIOCB only); specifies the location of the storage area that contains the
user I/O control block (UIOCB) used for the conversation.

user-i/o-control-block

Either a register containing the address or the symbolic name of the area.

Note: For more information about the user I/O control block, see Systems Network
Architecture Considerations (SNA).

LTEADDR=

(SNA only); specifies the address of the logical terminal element (LTE) of the remote

task in the conversation.

lte-address

Either a register containing the address or the symbolic name of the area.

#TREQ

Chapter 5: Data Manipulation Language Statements 357

OPTNS=(treq-option)

Specifies several options applicable to the input or output operation. Multiple

values must be enclosed in parentheses and separated by commas.

The BUFFER, MODIFIED, and POSITION options specify special purpose read
operations for 3270 devices. They should not be confused with normal READ/GET

requests that read modified fields when the operator presses the ENTER key or a
special function key.

ABEND (SNA WRITE only)

Notifies the remote system that the task is terminating abnormally and that the
conversation has ended.

ANY/CONN/IMM (SNA ALLOC only)

Specifies the type of session to be established:

■ ANY (default) specifies that the system allocate a session in the following
order:

1. A session that is immediately available and currently unused

2. A session that is disconnected; that is, the session has not yet been
established

3. A session that is busy; that is, the session is established and is allocated to

another task

If neither an immediately available nor a disconnected session is available, the
system waits for a busy session to become available.

■ CONN requests the system not to wait for a busy session. The system first
attempts to allocate an immediately available session, then a disconnected

session.

■ IMM specifies that only immediately available sessions are acceptable for the
allocation request.

BUFFER

(GET and READ with 3270 devices only) Indicates that the data will be transmitted

to program storage automatically. BUFFER requests that the system execute an
immediate READ BUFFER command; this reads the entire contents of the 3270
terminal buffer into the program storage specified by INAREA and MAXIN.

CHNCONT

(SNA non-LU6.2 PUT, PUTGET, WRITE, and WRITREAD only) Specifies that the user

task is providing a chain of outbound messages, and that the current #TREQ output
request is not the last message in the chain. Omitting OPTNS=CHNCONT after it has
been specified once indicates that the current message is the final chain element.

#TREQ

358 DML Reference Guide for Assembler

CONFIRM

(SNA PUT, PUTGET, WRITE, and WRITREAD only) Sends a confirmation request to a

remote SNA logical unit. For example, when your program specifies #TREQ
WRITE,OPTNS=CONFIRM, the system requests that the remote logical unit confirm
that the request has been sent.

CONFIRMED

(SNA WRITE and PUT only) Sends a positive response to a confirmation request.

EOT

(PUT or WRITE to 3741 or 3780 bisynchronous batch terminals only) Specifies that
there is no more data to follow.

ERASUNPR

(PUT, PUTGET, WRITE, and WRITREAD with 3270 devices only) Causes the system to
activate the erase-all-unprotected mechanism. Because no data is transferred for

an ERASUNPR request, use of this option implies that OUTLEN=0; no output data
need be defined with the OUTAREA parameter described above.

ERROR

(SNA WRITE and PUT only) Allows a task to send a negative response to a remote
logical unit, or to reject a confirmation request that was found unacceptable. Do

not use the ERROR option if the CONFIRMED option is specified.

FREEBUF

(PUT, PUTGET, WRITE, and WRITREAD only) Frees the storage area that contains the
output data stream. The buffer area being freed must have been acquired by a
#GETSTG statement or the LOCATE option of a previously issued input request.

If FREEBUF is not specified, the system does not release the output buffers

associated with the output request until the issuing task terminates. When the task
is terminated, all storage acquired by a #GETSTG or a LOCATE will be released.

INFMHY/INFMHN

(SNA non-LU6.2 GET, READ, PUTGET and WRITREAD only) Specifies whether a
function management header (FMH) is passed to the program:

■ INFMHY indicates that all FMHs on the inbound message are passed to the
program.

■ INFMHN requests that the system remove any FMHs before the data is passed
to the program.

INVITE

(SNA WRITE, PUT, WRITREAD, and PUTGET) Allows a task to specify a change of
direction from the send to the receive state.

LAST

(SNA WRITE and PUT only) Ends a conversation between two logical units.

#TREQ

Chapter 5: Data Manipulation Language Statements 359

LL/NOCHASM

(SNA GET, PUTGET, READ, WRITREAD only) Specifies the format of the data to be

input to the program:

■ LL indicates whether a generalized data stream (GDS) header is to be removed
from an LU6.2 data record before it is received by a conversation. For a
mapped conversation, LL specifies that one LU6.2 data record is received with
the GDS header removed. For an unmapped conversation, LL specifies that one

LU6.2 data record is received, without GDS removal.

■ NOCHASM (SNA GET, PUTGET, READ, and WRITREAD only; not allowed for
LU6.2 mapped conversations) specifies that inbound chains in a conversation
are passed to the user task individually. The chains are passed a single chain
element at a time, without assembling the entire chain into a buffer. A single

chain element consists of one SNA request unit (RU).

LOCATE

(GET, PUTGET, READ, and WRITREAD only) Allocates a buffer area for the data being
read into the program, rather than a user-specified area. The DC/UCF system
allocates the buffer when the read operation is completed. Register 1 contains the

address of the buffer that will contain the input data on completion of the input
operation. The issuing program is responsible for using a #FREESTG to free the
buffer area.

When this option is requested, do not specify INAREA and MAXIN.

MODIFIED

(GET and READ with 3270 devices only) Indicates that the data will be transmitted
to program storage automatically, without waiting for a signal of completion of data
entry from the terminal operator. MODIFIED requests that the system read all

modified fields in the 3270 terminal buffer into the program storage specified by
INAREA and MAXIN.

NEWPAGE

(PUT, PUTGET, WRITE, and WRITREAD with SYSINOUT or 3270 devices only)
Requests that the system activate the page-eject (SYSINOUT) or erase-write (3270)

mechanism to erase the contents of a screen. If NEWPAGE is not specified, the
#TREQ request will write over any existing screen display without first erasing it.

NOCR

(PUT, PUTGET, WRITE, and WRITREAD with teletype terminals only) Specifies that
carriage-control and line-feed characters should not be automatically appended to

an output data stream.

OUTFMHY/OUTFMHN

(SNA non-LU6.2 PUT, PUTGET, WRITE, and WRITREAD only) Specifies whether a
function management header (FMH) has been included in the beginning of the
write buffer:

#TREQ

360 DML Reference Guide for Assembler

■ OUTFMHY indicates that an FMH has been provided. The FMH overrides the
default defined at system generation.

■ OUTFMHN indicates that no FMH has been added to the outbound message.

POSITION

(GET and READ with 3270 devices only), used in conjunction with the BUFFER or
MODIFIED options, indicates that the FROMPOS parameter, described below, will
specify the position at which the read buffer contents will begin.

UPPER

(GET, PUTGET, READ, and WRITREAD only); Directs the system to translate all
letters in an input data stream into uppercase characters.

SAVE

(PUT and WRITE non-write-direct-to-terminal only) Directs the system to preserve
the output from the #TREQ request in the event that an unsolicited

write-direct-to-terminal data stream is received at the issuing terminal while the
#TREQ data stream is being displayed. This option overrides the task SAVE/NOSAVE
option specified during system generation.

SIGNAL

(SNA WRITE and PUT only) Requests a change of direction from the receive to the

send state. SIGNAL is used with the SENSE parameter, discussed below.

TRANSPAR

(PUT or WRITE to 3741 or 3780 bisynchronous batch terminals only) Specifies that
the output may contain l ine control characters and must be written with a
transparent write operation.

UPLOW

(GET, PUTGET, READ, and WRITREAD only) Specifies that no uppercase translation
of characters in an input data stream is performed.

UPPER

(GET, PUTGET, READ, and WRITREAD only) Directs the system to translate all letters
in an input data stream into uppercase characters.

WAIT/NOWAIT

(SNA ALLOC only) Specifies whether the allocation request is synchronous or
asynchronous:

■ WAIT (default) indicates that the allocation request is synchronous.

■ NOWAIT indicates that the allocation request is asynchronous. After specifying
#TREQ ALLOC with OPTNS=NOWAIT, you must code a #TREQ CHECK request

before any other I/O requests are issued. The NOWAIT option cannot be
specified with OPTNS=ANY.

#TREQ

Chapter 5: Data Manipulation Language Statements 361

SENSE=

(SNA WRITE and PUT only); specifies a sense code that describes errors that the

system encounters in conversation processing.

sna-sense-code

Either a register containing the sense code or a 4-byte hexadecimal value enclosed
in quotation marks. Sense codes supported by the system are listed in Systems
Network Architecture Considerations (SNA).

LTERMID=

(ALLOC only); identifies the logical terminal element (LTE) of a remote logical unit in
an SNA conversation, or a write-direct-to-terminal destination for a non-SNA #TREQ
request.

logical-terminal-element-name

Either a register pointing to the area containing the LTE or the name of a

user-supplied variable data field that holds the address.

LOGDATA=

(SNA LU6.2 WRITE only); specifies the address of a data buffer containing data that
will be sent along with error information to the remote task.

log-data-address

Either a register containing the address of the data buffer or a user -defined variable

field. When LOGDATA is specified, you must code the OUTLEN parameter to
indicate the length of the data being sent.

FROMPOS=

(#TREQ GET and READ requests with 3270 devices; BUFFER or MODIFIED options
only); specifies the 2-character EBCDIC buffer address at which the read will start.

screen-position

Either the symbolic name of a user-defined fixed binary field that contains the
buffer address or the address itself enclosed in quotation marks.

DESTID/USERID/LTERMID

(PUT and WRITE only); specifies the destination of a write-direct-to-terminal
request.

DESTID=

Specifies a write-direct-to-terminal request (blast) to one of the following

destinations defined during system generation:

■ List of logical terminals indicates that the system will send the #TREQ data
stream specified in the OUTAREA parameter to all available terminals in the list.

#TREQ

362 DML Reference Guide for Assembler

■ List of users indicates that the system will send the #TREQ data stream
specified in the OUTAREA parameter to all users in the list who are currently

signed on the system.

destination-id

A register that points to the destination id, the symbolic name of a user -defined
field that contains the destination id, or the id itself enclosed in quotation marks.

Each destination should refer to terminal devices of the same type to ensure
compatibil ity with program-supplied device control information. If a #TREQ blast

request is routed to an incompatible device type, the system will reject the request
and return control to the issuing program.

USERID=

Specifies a blast request to a specific signed-on user. The DC/UCF system will send
the #TREQ data stream specified in the OUTAREA parameter to a specific signed-on

user.

user-id

A register that points to the user id, the symbolic name of a user-defined field that
contains the user id, or the id itself enclosed in quotation marks.

LTERMID=

Specifies a blast request to a specific in-service terminal. The DC/UCF system will

send the #TREQ data stream specified in the OUTAREA parameter to a specific
in-service terminal.

logical-terminal-id

A register that points to the logical terminal id, the symbolic name of a user -defined
field that contains the logical terminal id, or the id itself enclosed in quotation

marks.

COND=

Specifies whether the #TREQ is conditional and under what conditions control
should be returned to the issuing program:

NO

(Default); specifies that the request is not conditional.

ALL

Specifies that the request is conditional. Control is returned if the request cannot be

serviced for any of the reasons l isted under condition.

#TREQ

Chapter 5: Data Manipulation Language Statements 363

condition

Can be any of the following options. Multiple options must be enclosed in

parentheses and separated by commas. Condition options are as follows:

■ ATTN (PUT, PUTGET, or CHECK)—The I/O operation is interrupted by the
terminal operator pressing ATTENTION or BREAK.

■ DISC (PUT, GET, PUTGET, or CHECK)—The dial-up line is disconnected or the
terminal goes out of service.

■ INVP—There is an invalid parameter in the TRB.

■ LOGL (PUT, PUTGET, or CHECK)—A logical error is encountered in the output
data stream.

■ PERM (PUT, GET, PUTGET, or CHECK)—A permanent I/O error occurs during
processing.

■ TRUN (GET, PUTGET, or CHECK)—The data has been truncated due to
insufficient storage in the specified INAREA.

■ UNDF—Control is returned if an undefined DESTID or LTERMID is specified in a
#TREQ blast request.

The following parameters represent routines to which control is returned as a result

of one of the preceding conditions:

ATTNXIT=attention-key-label

Specifies the symbolic name of the routine to which control should be returned if
the output is interrupted by the terminal operator.

DISCXIT=terminal-disconnected-label

Specifies the symbolic name of the routine to which control should be returned if

the terminal is disconnected or the terminal goes out of service.

INVPXIT=invalid-trb-information-label

Specifies the symbolic name of the routine to which control should be returned if
the #TREQ cannot be serviced because of an invalid parameter in the TRB.

LOGLXIT=logical-output-error-label

Specifies the symbolic name of the routine to which control should be returned if a

logical error is detected in the output data stream.

PERMXIT=permanent-i/o-error-label

Specifies the symbolic name of the routine to which control should be returned if a
permanent I/O error occurs.

TRUNXIT=truncate-input-data-label

Specifies the symbolic name of the routine to which control should be returned if

input data is truncated due to insufficient storage in the INAREA buffer.

#TREQ

364 DML Reference Guide for Assembler

UNDFXIT=invalid-destid-ltermid-label

Specifies the symbolic name of the routine to which control should be returned if

an undefined DESTID or LTERMID is specified in a #TREQ PUT or WRITE blast
request.

ERROR=error-label

Specifies the symbolic name of the routine to which control should be returned if a
condition specified in the COND parameter occurs for which no other exit routine

was coded.

Examples

The following examples i l lustrate how to use the #TREQ statement.

The following #TREQ ALLOC statement allocates a session between your LU and a
remote LU that is identified in the user I/O control block. OPTNS=ANY specifies that the

system will attempt to assign a currently unused session first; if one is not available it
will attempt to assign a session that has not yet been established. If neither of these
session types is possible, the system will wait for a busy session to become available.

OPTNS=WAIT indicates synchronous processing. COND=ALL specifies that control is
returned to the program request cannot be serviced due to any terminating conditions.

#TREQ ALLOC,UIOCBA=(R3),OPTNS=(ANY,WAIT),COND=ALL

The following #TREQ DISC statement terminates a session between your LU and the
remote LU identified by the LTE address contained in register 8.

#TREQ DISC,LTEADDR=(R8)

The following #TREQ GET statement transfers data from a terminal to program variable
storage after the terminal operator presses the ENTER key. #TREQ GET indicates

synchronous data transfer. SYSPLIST is the symbolic name of the storage area in which
the system builds the TRB. Input read from the terminal is moved to INPROG02; the
maximum length of the input data is 40 bytes.

#TREQ GET,MF=R,TRB=SYSPLIST,INAREA=INPROG02,MAXIN=40

The following #TREQ PUT statement issues a write-direct-to-terminal request. The blast
request transfers the 50 byte output data stream in OUTPGM9 directly to all users in the

currently signed-on users in DEST09.

#TREQ

Chapter 5: Data Manipulation Language Statements 365

#TREQ PUT,TRB=SYSPLIST,OUTAREA=OUTPGM9,OUTLEN=50,DESTID=DEST09

The following #TREQ PUTGET statement is being used in a non-LU6.2 SNA conversation
between the system task and a remote 3600 device. The remote LU is identified by the

LTE address in LU3603 because your task may be having more than one conversation at
a time. The data you are sending is held in the output buffer OUT09, and can be up to 60
bytes long. If the data returned by the remote LU exceeds the MAXIN specification (60

bytes), the system buffers the data so that it will be available to your next read request.
OUTFMHN requests the system not to add any function management headers to the
output data stream. INFMHN requests that the system remove any incoming FMH from
the data before it is passed to your task.

#TREQ PUTGET,OUTAREA=OUT09,OUTLEN=60,INAREA=IN09,MAXIN=60, *

 LTEADDR=LU3603,OPTNS=(OUTFMHN,INFMHN)

The following execute #TREQ READ statement reads the contents of the buffer INAREA.
The MODIFIED option specifies that modified data is transmitted to program storage
automatically, without waiting until the terminal operator has signaled completion of

data entry. The NEWPAGE option requests that the system erase the contents of the
screen before the new data is read in. Control is returned to the RTNINVP routine if
there is an invalid parameter in the TRB.

#TREQ READ,MF=E,TRB=SYSPLIST,INAREA=INAREA,OPTNS=(MODIFIED,NEWPAGE), *

 COND=INVP,INVPXIT=RTNINVP

The following #TREQ WRITE statement requests that the system initiate the
erase-all-unprotected mechanism for output. No data is transferred with this request
(OUTLEN=0); no output data has to be defined in OUTAREA.

#TREQ WRITE,OUTAREA=OUTPGM9,OPTNS=(ERASUNPR)

The following #TREQ WRITREAD statement sends the output data stream in the buffer

OUTPGM08 to the terminal. FREEBUF releases the contents of OUTPGM08 after the
WRITREAD request has been completed. OUTPGM08 must have been previously
acquired by a #GETSTG statement or the LOCATE option of a previously issued input
request. Data is sent from the terminal to the INPGM08 buffer.

#TREQ WRITREAD,TRB=SYSPLIST,OUTAREA=OUTPGM08,OUTLEN=60, *

 INAREA=INPGM08,INLEN=60,OPTNS=FREEBUF

The following #TREQ UIOCB statement assigns a user I/O control block to an SNA

conversation started by a remote task. The address of the UIOCB is in register 8.

#TREQ UIOCB,UIOCBA=(R8)

Status Codes

Upon successful completion of certain #TREQ requests, three registers contain
information about the outcome of the request:

#TREQ

366 DML Reference Guide for Assembler

■ Register 0 contains the actual number of terminals to which the data stream has
been routed for a blast request (PUT or WRITE).

■ Register 1 contains information related to the type of request:

– For asynchronous requests, Register 1 contains the address of the ECB that will
be posted by the system on completion of the I/O operation.

– For LOCATE requests and after asynchronous CHECK requests, register 1
contains the address of the buffer into which the input data has been placed.

■ Register n contains the actual length of returned data for an input operation (GET,

PUTGET, READ, or WRITREAD). The register number n is assigned by the INLEN
parameter.

By default, the #TREQ request is unconditional; any runtime error will result in an abend
of the issuing task. The issuing program can request return of control with the COND

parameter to avoid an abend.

After completion of the #TREQ, the value in register 15 indicates the outcome of the
operation. The following is a l ist of the Register 15 values and the corresponding
meaning:

X'00'

The request has been serviced successfully.

X'04'

For a GET, PUTGET, or CHECK request, the input area specified for the return of

data to the issuing program is too small; the returned data has been truncated to fit
the available space.

X'08'

For a GET, PUTGET, or CHECK request, the output has been interrupted; the

terminal operator has pressed ATTENTION or BREAK.

X'0C'

For a GET, PUTGET, or CHECK request, a logical error (for example, an invalid
control character) has been encountered in the output data stream.

X'10'

For a GET, PUT, PUTGET, or CHECK request, a permanent I/O error has occurred
during processing.

X'14'

For a GET, PUT, PUTGET, or CHECK request, the dial -up line for the terminal has

been disconnected.

X'18'

For a GET, PUT, PUTGET, or CHECK request, the terminal associated with the issuing
task is out of service.

#TREQ

Chapter 5: Data Manipulation Language Statements 367

X'1C'

For a GET, PUTGET, or CHECK request, the terminal is closed, or was never opened.

X'20'

The TRB contains an invalid field, indicating a possible error in the program
parameters.

X'24'

For a PUT or WRITE request, the requested logical terminal id or l ist of logical
terminals or users identified by LTERMID, USERID, or DESTID cannot be found.

List #TREQ

Using the list #TREQ you can build a terminal request block (TRB) in the data definition
section of program storage, and assign constant values. After you have issued one list
#TREQ statement, subsequent execute #TREQ statements override only the fields in the
named TRB that need to be updated.

The TRB is identified by the list #TREQ label. This label is referenced by the TRB
parameter in subsequent execute requests.

In the list #TREQ, only the label and the MF parameter are required; all other
parameters should be specified only when required to predefine TRB parameter values.

In a l ist #TREQ request, parameter values cannot be specified by using register notation.

The list #TREQ syntax presented here shows only those parameters that are affected by
this restriction. Syntax for the list #TREQ statement is shown below:

Syntax

►►─┬─────────┬─ #TREQ ─┬─ ALLOC ────┬───►
 └─ label ─┘ ├─ CHECK ────┤
 ├─ DISC ─────┤
 ├─ GET ──────┤
 ├─ PUT ──────┤
 ├─ PUTGET ───┤
 ├─ READ ─────┤
 ├─ UIOCB ────┤
 ├─ WRITE ────┤
 └─ WRITREAD ─┘

 ►─── ,MF=L ──►

 ►─┬───┬────────────────────────────────►
 └─ ,OUTAREA=output-data-location-pointer ─┘

 ►─┬──┬─────────────────────────────────►
 └─ ,OUTLEN=output-data-length-register ──┘

#TREQ

368 DML Reference Guide for Assembler

 ►─┬──┬─────────────────────────────────►
 └─ ,INAREA=input-data-location-pointer ──┘

 ►─┬───┬────────────────────────────────►
 └─ ,MAXIN=input-data-max-length-register ─┘

 ►─┬──────────────────────────────────┬───────────────────────────────────────►
 └─ ,UIOCBA=user-i/o-control-block ─┘

 ►─┬────────────────────────┬───►
 └─ ,LTEADDR=lte-address ─┘

 ►─┬─────────────────────────┬──►
 └─ ,SENSE=sna-sense-code ─┘

 ►─┬─────────────────────────────┬──►
 └─ ,LOGDATA=log-data-address ─┘

 ►─┬──┬─────────────────────────────────►◄
 ├─ ,DESTID=destination-id-pointer ───────┤
 ├─ ,USERID=user-id-pointer ──────────────┤
 └─ ,LTERMID=logical-terminal-id-pointer ─┘

Parameters

ALLOC/CHECK/DISC/GET/PUT/PUTGET/READ/UIOCB/WRITE/WRITREAD

Specifies the type of #TREQ statement.

MF=L

Specifies a l ist #TREQ.

Each parameter (other than MF=L) functions identically to the corresponding
parameter in the regular and execute forms of #TREQ statements, described

previously.

For example, the value specified for OUTAREA must be a symbolic name of a
user-defined area, whereas in the regular and execute forms it could be either a

register that points to the area or the symbolic name of the area.

#TRNSTAT

Chapter 5: Data Manipulation Language Statements 369

#TRNSTAT

The #TRNSTAT statement enables your program to access transaction statistics about
task-related activities. The system allocates a block of storage, called a transaction
statistics block (TSB), in which to accumulate these statistics.

Three versions of the #TRNSTAT statement collect and write transaction statistics:

■ #TRNSTAT TYPE=BIND starts recording transaction statistics for the requestor's
logical terminal.

■ #TRNSTAT TYPE=ACCEPT copies transaction statistics from the TSB and places them
in a storage area associated with the issuing task and/or writes them to the DC/UCF

log fi le.

■ #TRNSTAT TYPE=END stops collecting transaction statistics for the requestor's
logical terminal and optionally writes the statistics to a storage area associated with

the issuing task and/or to the DC/UCF log fi le.

Note: Do not attempt to collect transaction statistics using the #TRNSTAT statement if
your Assembler program is a subroutine to a CA ADS dial og.

For more information about the transaction statistics block (TSB), see the DSECT
Reference Guide.

.

Syntax

►►────#TRNSTAT TYPE=──┬─BIND──┬─────►
 ├ ACCEPT ─────┬───(388)──────────────────────┬────┤
 │ └ LENgth= ─── parm-value ──────┘ │
 └ END ────┬───(388)──────────────────────┬────┘
 └ LENgth= ─── parm-value ──────┘

 ►─────PLIST= ──┬─(SYSPLIST)──────────────┬───────────────────────────────────►
 └ parm-value-list-pointer ┘

 ►─┬────────────────────────────────┬───►
 └─ ,RECORD=record-name-register ─┘

 ►─┬────────────────────────────────┬───►
 └─ ,ID=identifier-name-register ─┘

 ►─┬─────────────────────┬──►
 └─ ,TASK= ─┬─ YES ◄ ─┬┘
 └─ NO ────┘

 ►─┬──────────────────────┬───►
 └─ ,WRITE= ─┬─ YES ◄ ─┬┘
 └─ NO ────┘

 ►─┬─────────────────────────────────┬──►
 └─ ,COND= ─┬── NO ◄ ────────────┬─┘
 ├── ALL ─────────────┤
 │ ┌──── , ─────┐ │
 └─(─▼─┬─ DEAD ─┬─┴─)─┘
 ├─ SBNF ─┤
 ├─ INVP ─┤
 └─ NOTR ─┘

 ►──┬───────────────────────────┬───►
 └─ ,DEADXIT=deadlock-label ─┘

#TRNSTAT

370 DML Reference Guide for Assembler

 ►──┬───┬───────────────────────────►
 └─ ,SBNFXIT=statistics-block-not-found-label ─┘

 ►──┬───┬───────────────────────────────►
 └─ ,INVPXIT=invalid-parameter-list-label ─┘

 ►──┬──┬────────────────────►
 └─ ,NOTRXIT=no-transaction-statistics-allowed-label ─┘

 ►──┬──────────────────────┬──►◄
 └─ ,ERROR=error-label ─┘

Parameters

TYPE=

Specifies the type of transaction statistics activity.

BIND

Defines the beginning of a transaction for the purposes of collecting transaction
statistics. The system allocates a block of storage to collect these statistics. Because

this block is owned by the logical terminal associated with the current task, the
#TRNSTAT=BIND can only be used with terminal tasks.

Note: If a terminal statistics block (TSB) is already allocated for the logical terminal
associated with the current task, the BIND request writes any existing statistics to

the log and clears the TSB for new statistics.

When a #TRNSTAT TYPE=BIND request is issued, the system assigns the transaction

a 40-character identifier. The first 32 characters are the identifier of the signed-on
user, if any. The last 8 characters are the identifier of the logical terminal associated
with the current task.

ACCEPT

Requests that the system return the contents of the TSB to a preallocated location

in program storage and/or write the block to the DC/UCF log fi le by the WRITE
option described below. The system does not delete the contents of the TSB as a
result of the ACCEPT option; transaction statistics can accumulate between

#TRNSTAT statements where the ACCEPT option is specified. To prevent the
program from altering the contents of the TSB and to ensure integrity of the data,
the system returns a copy of the TSB to the program.

LENGTH (parm-value)

Specifies the length of the TSB to be returned. Can be specified as a value,
register or storage area.

Default: 388

#TRNSTAT

Chapter 5: Data Manipulation Language Statements 371

END

Ends the transaction and frees the TSB. The system ends the transaction when the

task issuing the #TRNSTAT TYPE=END request terminates. Optionally, END can write
the TSB to a preallocated location in program storage by using the RECORD option
described below. To prevent the program from altering the contents of the TSB and

to ensure integrity of the data, the system returns a copy of the TSB to the
program.

LENGTH (parm-value)

Specifies the length of the TSB to be returned. Can be specified as a value,

register or storage area.

Default: 388

PLIST (parm-value-list-pointer)

Specifies the location of the storage area where he system builds the #TRNSTAT

parameter l ist.

RECORD=

(#TRNSTAT TYPE=ACCEPT or END requests only); specifies the location of the

storage area into which the system places the TSB.

record-name-register

A register that contains the location of the area, the symbolic name of the area, or
an absolute expression.

ID=

(for #TRNSTAT TYPE=BIND requests only) Specifies the location of a storage area

that contains an 8-byte identifier to be placed in the Trans action Statistics Block.

identifier-name-register

Specifies a register that contains the location of the identifier, a symbolic name of
the identifier's location, or an absolute expression.

.

TASK=

(for #TRNSTAT TYPE=BIND or END requests only) Specifies the action that is taken
relative to the current task.

YES

(Default)

(for #TRNSTAT TYPE=BIND requests only) Specifies that the collection of statistics
starts at the beginning of the current task.

(for #TRNSTAT TYPE=END requests only) Specifies that if statistics are being written
to the DC/UCF log fi le, they are written at the end of the current task.

#TRNSTAT

372 DML Reference Guide for Assembler

NO

(for #TRNSTAT TYPE=BIND requests only) Specifies that the collection of statistics

starts at the time of the execution of the #TRNSTAT macro.

(for #TRNSTAT TYPE=END requests only) Specifies that if statistics are being written
to the DC/UCF log fi le, they are written immediately.

WRITE=

(for #TRNSTAT TYPE=ACCEPT or END requests only) Specifies that the system writes

the contents of the TSB to the DC/UCF log fi le.

YES

(Default) Specifies that the system writes the TSB to the log fi le.

NO

Specifies that the system does not write the TSB to the log fi le.

COND=

Specifies whether the #TRNSTAT request is conditional and under what error

conditions control should be returned to the issuing program.

NO

(Default); specifies that the request is not conditional.

ALL

Specifies that control is returned to your program if the #TRNSTAT request cannot
be serviced for any of the reasons described under condition.

condition

Specifies one or more conditions under which the system returns control to the

issuing program. Multiple conditions must be enclosed in parentheses

 and separated by commas. The following options can be specified:

■ DEAD (TYPE=BIND only) specifies that storage for the TSB is not available;
waiting would cause a deadlock.

■ SBNF specifies that a TSB for the user terminal cannot be found for a #TRNSTAT
TYPE=ACCEPT or END request. This condition is probably due to a #TRNSTAT
BIND not having been issued.

■ INVP specifies that the requested task is not associated with a logical terminal
or that the request is invalid.

#TRNSTAT

Chapter 5: Data Manipulation Language Statements 373

■ NOTR specifies that transaction statistics or task statistics are not enabled in
the DC/UCF system.

DEADXIT=deadlock-label

Specifies the symbolic name of a routine to which the system returns control if
storage for the TSB is not available, and waiting would cause a deadlock.

SBNFXIT=statistics-block-not-found-label

Specifies the symbolic name of a routine to which the system returns control if a

TSB for the terminal cannot be found for a #TRNSTAT TYPE=ACCEPT or END request.

INVPXIT=invalid-parameter-list-label

Specifies the symbolic name of the routine to which the system returns control
when the requested task is not associated with a logical terminal or when the
request is invalid.

NOTRXIT=no-transaction-statistics-allowed-label

Specifies the symbolic name of a routine to which the system returns control when
transaction statistics or task statistics are not enabled in the DC/UCF system.

ERROR=error-label

Specifies the symbolic name of a routine to which the system returns control if a
condition specified in the COND parameter occurs for which no other exit routine

was coded.

Example

The #TRNSTAT statement shown below requests that the system return the contents of
the TSB to TSBAREA in program variable storage and to write the block to the DC/UCF
log fi le. Control is returned to the program if this request would result in a deadlock or if

the TSB cannot be found.

#WAIT

374 DML Reference Guide for Assembler

#TRNSTAT TYPE=ACCEPT,RECORD=TSBAREA,WRITE=YES,COND=(SBNF,DEAD)

Status Codes

By default, the #TRNSTAT statement is unconditional; any runtime error will result in an

abend of the issuing task.

After completion of the #TRNSTAT request, the value in register 15 indicates the
outcome of the operation. The following is a l ist of Register 15 values and the

corresponding meaning:

X'00'

The request has been serviced successfully. For TYPE=BIND only, an existing TSB has
been written to the DC/UCF log.

X'04'

The request has been serviced; a new TSB has been allocated (TYPE=BIND only).

X'08'

Storage for the TSB is not available and waiting would cause a deadlock (TYPE=BIND
only).

X'0C'

No TSB exists; a #TRNSTAT TYPE=BIND request has not been issued (TYPE=ACCEPT
or END only).

X'10'

The task issuing the #TRNSTAT request is not associated with a logical terminal or

the request is invalid.

X'14'

The collection of task statistics or transaction statistics was not enabled during

system generation.

#WAIT

The #WAIT statement relinquishes control to the system. Control is relinquished for one
of the following reasons:

■ To wait for the completion of one or more events

■ To give other higher priority ready-to-run tasks a chance to be dispatched by the
system.

If a task relinquishes control to await completion of an event, an event control block

(ECB) must be defined for each event for which the task is waiting. If an ECB is already
posted when the #WAIT is issued, the task is redispatched immediately and control does
not pass to another task.

#WAIT

Chapter 5: Data Manipulation Language Statements 375

An ECB is a binary three-fullword field used to indicate the status of an event. I f the ECB
contains zeros, the event is not complete or has not been posted. If the ECB contains a

nonzero value, the event has been posted. The ECB field can be allocated explicitly by
individual programs or implicitly by the system:

■ Program allocation—A three-fullword storage area must be defined in the variable
storage of the associated programs. Programs using the ECB field are responsible
for establishing addressability to the ECB as well as indicating the status of the

event.

■ DC/UCF system allocation — The three-fullword field associated with the ECB is
allocated by the system. To wait on an event, the program specifies the 4-character
ECB ID. The system associates the ECB ID with a fullword field and automatically
sets the status of the ECB field.

Syntax

►►─┬─────────┬─ #WAIT ──►
 └─ label ─┘

 ►─┬─────────────────────┬──►
 └─ TYPE= ─┬─ LONG ───┬┘
 ├─ SHORT ──┤
 └─ HICCUP ─┘

 ►─┬────────────────────────────────────┬─────────────────────────────────────►
 └─ , ─┬─ ECB=ecb-pointer ──────────┬─┘
 ├─ ECBID=ecb-id-register ────┤
 └─ ECBLIST=ecb-list-pointer ─┘

 ►─┬─────────────────────┬──►
 └─ ,COND= ─┬─ NO ◄ ──┬┘
 ├─ ALL ───┤
 ├─ INACT ─┤
 └─ DEAD ──┘

 ►─┬───────────────────────────┬──►
 └─ ,DEADXIT=deadlock-label ─┘

 ►─┬────────────────────────────┬───►
 └─ ,INACTXIT=inactive-label ─┘

 ►─┬──────────────────────┬───►◄
 └─ ,ERROR=error-label ─┘

Parameters

TYPE=

Specifies whether the task is relinquishing control to await the completion of an
event, or is giving other tasks the chance to be dispatched.

LONG=/SHORT=

TYPE=LONG and TYPE=SHORT have been obsolete since 10.2 releases of CA IDMS
but are allowed to be specified for downward compatibil ity with existing client

source code. Specifying TYPE=LONG or TYPE=SHORT will result in an assembler
NOTE as follows:

"NOTE: TYPE=SHORT IS NO LONGER MEANINGFUL. IT WILL BE IGNORED."

#WAIT

376 DML Reference Guide for Assembler

"NOTE: TYPE=LONG IS NO LONGER MEANINGFUL. IT WILL BE IGNORED."

HICCUP

Relinquishes control to another ready-to-run task before being dispatched. HICCUP
requests do not require an ECB.

ECB=ecb-pointer

Defines the ECB for which the task will wait. Ecb-pointer is a register that points to
the user-defined three-fullword field that contains the ECB or the symbolic name of

the ECB field.

ECBID=ecb-id-register

Specifies the 4-character ID of a previously defined ECB for which the task will wait.
Ecb-id-register is a register that contains the ECB ID, the symbolic name of a
fullword field that contains the ECB ID, or the ID literal enclosed in quotation marks.

ECBLIST=ecb-list-pointer

Specifies that the wait is for more than one event. Each event in the list is
represented by a pair of fullwords:

■ The first fullword is a pointer to the ECB associated with the event

■ The second fullword is zeros

Note: To identify the end of the list, the high-order bit of the last fullword in the

parameter l ist must be turned on.

Ecb-list-pointer is a register that points to the list or the user-defined symbolic
name of the fullword area containing the list of ECBs.

COND=

Specifies whether this #WAIT request is conditional and under what condition

control should be returned to the issuing program.

NO

(Default); specifies that the request is not conditional.

ALL

Specifies that the request is conditional. Control is returned to the requesting
program if the wait cannot be serviced for any reason.

INACT

Specifies that the request is conditional. Control is returned to the requesting
program if the wait resulted in a task exceeded the STALL INTERVAL.

DEAD

Specifies that the request is conditional. Control is returned if waiting for the
specified ECBs would cause a deadlock.

#WAIT

Chapter 5: Data Manipulation Language Statements 377

DEADXIT=deadlock-label

Specifies the symbolic name of the routine to which control should be returned if

waiting for the specified ECBs would cause a deadlock.

INACTXIT=inactive-label

Specifies the symbolic name of the routine to which control should be returned if
waiting for the specified ECBs would cause the task to surpass the STALL INTERVAL.

ERROR=error-label

Specifies the symbolic name of the routine to which control is returned if a

condition specified in the COND parameter occurs for which no other exit routine
was coded. In this case, the ERROR parameter functions the same as DEADXIT.

Example

The #WAIT statement shown below passes control to the system while waiting for
terminal input. Processing is suspended until the ECB for the task is posted, indicating

that the terminal input operation is completed. If this #WAIT request would cause a
deadlock, control is returned to the LOCKRTN9 routine.

#WAIT ECB=ECB_9,COND=DEAD,DEADXIT=LOCKRTN9

Status Codes

By default, the #WAIT request is unconditional; any runtime error results in an abend of
the issuing task.

After completion of the #WAIT request, the value in register 15 indicates the outcome

of the operation. The following is a l ist of Register 15 values and the corresponding
meaning:

X'00'

The request has been serviced successfully.

X'08'

The request cannot be serviced because to wait for the specified ECBs would cause
a deadlock.

X'12'

The request cannot be serviced because the task stalled waiting for the specified
ECBs.

#WTL

378 DML Reference Guide for Assembler

#WTL

The #WTL (write to log) statement performs the following functions:

■ Retrieves a predefined message from the message area of the dictionary

■ Sends the message to selected destinations

■ Optionally writes the message to a specified location in program storage

Messages are stored in the message area of the dictionary. Each message in the
dictionary consists of the message text and the message destination. Typical
destinations are the operator console and the DC/UCF log fi le. Messages are defined in
the dictionary by using the IDD DDDL compiler.

Note: For more information about the IDD DDDL compiler, see the IDD DDDL Reference.

The message text can be dynamically changed by your program using symbolic
parameters. You can also optionally request the system not to retrieve the message but
to send only the message ID and symbolic parameter replacement values to the

selected destinations.

The message ID specified in a #WTL statement is a 7-digit number. The first six digits

contain the message identifier used to retrieve the message from the dictionary. The
seventh digit is a severity code. When the program requests that the system retrieve the
message from the dictionary (MSGDICT=YES), a predefined severity code is retrieved

along with the message text.

When the dictionary lookup is bypassed (MSGDICT=NO), the system uses the severity

code specified in the program. The severity level determines the action the system takes
after the message is written to the log.

The dictionary severity may be overridden by using the OVRIDES parameter.

The possible severity codes and their resulting DC/UCF system responses are l isted
below:

Severity code DC/UCF system action

0 Returns control to the issuing program and continues processing

1 Snaps all task resources to the log and returns control to the issuing
program

2 Snaps all system areas to the log and returns control to the issuing
program

3 Snaps all task resources and abends the task with a task abend code
of D002

#WTL

Chapter 5: Data Manipulation Language Statements 379

Severity code DC/UCF system action

4 Snaps all system areas and abends the task with a task abend code of

D002

5 Abends the task with a task abend code of D002

6 Undefined

7 Undefined

8 Snaps all system areas and abends the system with a system abend
code of 3996

9 Terminates the system with a system abend code of 3996

If a #WTL statement specifies a message ID that is not in the message dictionary, the
system issues a prototype message with severity level 0. Messages should be defined in
the message dictionary before they are issued by an executing program.

The message text can be dynamically altered by using symbolic parameters. Messages
stored in the message dictionary can contain symbolic parameters, identified by an

ampersand (&). followed by a 2-digit numeric identifier. Symbolic parameters can
appear in any order in the message.

The #WTL statement can specify replacement values for one or more symbolic
parameters by using the PARMS operand. The position of replacement values in the
#WTL request must correspond exactly with the 2-digit numeric identifier in the

message text. For example, the first value specified corresponds to &01., the second
&02., and the third &03., as shown in the example below.

The stored message text reads:

THIS IS TEXT &01. AND &03. OR &02.

The PARMS clause reads: PARMS=('A','B','C'). The resulting text would read:

THIS IS TEXT A AND C OR B

If the message destination is the operator console, the #WTL can optionally request a
reply. An event control block (ECB) can be defined that will permit control to be
returned immediately to the issuing task without waiting for the reply. The ECB will be

posted by the system when the reply is sent. If no ECB is defined, control is not returned
to the issuing task until the reply has been received.

#WTL

380 DML Reference Guide for Assembler

Syntax

►►─┬─────────┬─ #WTL MSGID=message-id-pointer ────────────────────────────────►
 └─ label ─┘

 ►─┬───┬────────────────────────────────►
 └─ ,MSGPREF= ─┬─ 'DC' ◄ ─────────────────┬┘
 └─ message-prefix-pointer ─┘

 ►─┬──┬─────────────────────────────────►
 └─ ,PLIST= ─┬─ SYSPLIST ◄ ─────────────┬─┘
 └─ parameter-list-pointer ─┘

 ►─┬────────────────────────┬───►
 └─ ,MSGDICT= ─┬─ YES ◄ ─┬┘
 └─ NO ────┘

 ►─┬──┬─────────────────────────────►
 └─ ,PARMS= ─┬─── NO ◄ ─────────────────────┬┘
 │ ┌──────────────────────┐ │
 └─(──▼─ parameter-register ─┴─)─┘

 ►─┬───┬────────►
 └─ ,REPLY= ─┬─ NO ◄ ──┬─┘
 ├─ (YES,reply-location ─┬─────────────────────┬─) ─┤
 │ └─ ,reply-max-length ─┘ │
 └─ (CANCEL,reply-location) ─────────────────────────┘

 ►─┬─────────────────────────────────┬──►
 └─ , ─┬─ ECB=ecb-pointer ───────┬─┘
 └─ ECBID=ecb-id-register ─┘

 ►─┬───┬──►
 └─,RTNTEXT=return-text-location ─┬─────────────────────────────────────┬┘
 └─,RTNLEN=return-text-length-pointer ─┘

 ►─┬─────────────────────────────────────┬────────────────────────────────────►◄
 └─ ,OVRIDES=override-address-pointer ─┘

Parameters

MSGID=message-id

Specifies the 7-digit message ID that is stored in the message dictionary. Message-id
can be specified as follows:

■ A register that points to the field containing the message ID

■ The symbolic name of a user-defined message ID

■ A message ID literal enclosed in quotation marks

A message ID must be a 4-byte packed decimal field (PL4), formatted as nnnnnnS,

where nnnnnn is the 6-digit ID and S is the severity code. Message-id can specify
any number in the range 900001 through 999999; id numbers 000001 through
900000 are reserved for use by the system.

MSGPREF=DC/message-prefix-point er

Specifies a 2-character alphanumeric prefix to the message ID. The default message

prefix is 'DC'.

Note: It is important when using the MSGPREF option that you keep the message ID
within the user range of 900001 through 999999. The system uses message prefixes
which could cause a conflict with user message prefixes unless this restriction is

observed.

#WTL

Chapter 5: Data Manipulation Language Statements 381

message-prefix-pointer

A register that points to the prefix, the symbolic name of a user-defined field

containing the prefix, or the prefix l iteral enclosed in quotation marks.

PLIST=

Specifies the area in which the system builds the #WTL parameter l ist.

SYSPLIST

(Default); is the symbolic name of the storage area in which the system builds the
#WTL parameter l ist.

parameter-list-pointer

A register that points to the area or the symbolic name of the area in which the
system builds the #WTL parameter l ist.

If MSGID is the only operand specified on the #WTL request, you do not need to
specify PLIST. If any additional operands are included, the following rules determine

the size of the PLIST:

1 + P + X

where the following conditions are met:

■ P is the number of parameters coded in the PARMS operand (described below).

■ X is as follows:

– At least 1 if either RTNTEXT or REPLY is specified

– At least 3 if OVRIDES is specified

– At least 4 if ECB or ECBID is specified

– At least 5 if RTNLEN is specified

MSGDICT=

Specifies whether to retrieve the message from the message area of the dictionary.

YES

(Default); requests that the system locate the predefined message, apply
substitution values, and send the message to the designated destinations.

NO

Requests that the system bypass the dictionary. The system writes a message to the

console operator and log fi le that contains only the message ID and any
replacement values specified in the PARMS parameter.

OVRIDES=

Override the default destination and/or severity code values.

#WTL

382 DML Reference Guide for Assembler

override-address-pointer

A register that points to the address of the override values or the symbolic name of

the field containing the override values.

Override values must be defined in the following manner:

Bytes Contents

0 X'80'—Destination is the DC log

X'40'—Destination is the console operator

X'20'—Destination is the terminal

operator

X'10'—Destination is the ID of any

terminal

X'08'—Override the severity with severity

passed in message ID

X'01'—Null override

1 - 2 Overrides for MVS description in the format 00N0, where N is a valid

MVS descriptor code.

3 - 4 Overrides for MVS route code in the format 00N0, where N is a valid
MVS route code.

PARMS=

Specifies replacement values for one or more symbolic parameters stored with the
message text.

Note: If the text parameters contain any binary zeroes (x'00'),CA IDMS/DC

automatically changes them to blanks (x'40') after copying the parameters to an
internal work area.

NO

(Default); specifies that there are no symbolic parameters to be replaced, or
requests that the system not replace any of the symbolic parameters.

parameter-register

Requests that the system replace the specified parameters. Parameter-register is a
register that points to the replacement field, the symbolic name of a user -defined
replacement field, or the replacement value literal enclosed in quotation marks.

When parameter-register is a register or user-defined field, each parameter field
must begin with a 1-byte field from which the system obtains the length of the

adjacent replacement field. The value in the length does not include the length
byte.

REPLY=

Performs one of the following functions:

■ Specifies that your program expects a reply to the message being sent

#WTL

Chapter 5: Data Manipulation Language Statements 383

■ Cancels a previously issued #WTL request for a reply to a message

The REPLY and RTNTEXT options are mutually exclusive; do not specify both options

on a single #WTL request. The following options can be specified for the REPLY
parameter:

NO

(Default); specifies that no reply is expected.

(YES,reply-location,reply-max-length)

Specifies that a reply is expected and should be returned to the area defined by

reply-location and, optionally, reply-max-length.

reply-location

Specifies the location of the area reserved for a reply to the message issued by a
#WTL request. Reply-location is either a register that points to the area or the
symbolic name of that area.

reply-max-length

Specifies the maximum length, in bytes, of the area reserved for the reply.
Reply-max-length is an absolute expression of the area length. If the maximum
length is not specified by using the REPLY option, you must indicate the maximum
length in the second halfword of the reply location.

Note: If YES is specified, the ECB or the ECBID parameters must be included to

identify the ECB to be posted.

When the reply is sent, the reply area will be formatted by the system, as shown
below:

Bytes Contents

0 - 1 Reserved for system use

2 - 3 Length of the reply text expressed as a halfword binary value. If the
maximum reply length is not specified, you must set this maximum
length before issuing the #WTL request. On completion of the #WTL

request, this field will contain the actual length of the text.

4 - n Reply text

 (CANCEL,reply-location)

Cancels a request for a reply to a previously issued #WTL request. Reply-location
specifies the area reserved for a reply to the message. Reply-location is either a
register that points to the area or the symbolic name of the area.

#WTL

384 DML Reference Guide for Assembler

ECB=

(#WTL requests with REPLY=YES only); identifies the ECB to be posted when the

reply has been sent to its destination. Naming an ECB allows control to return
immediately to the issuing task without waiting for a reply. The system will post the
ECB when the reply is sent. If no ECB is defined, the system does not return control

to the issuing task until the reply is received.

ECB=

Identifies the ECB that is posted when the reply is sent.

ecb-pointer

Either a register that points to the fullword ECB or the symbolic name of the ECB.

ECBID=

Identifies the 4-character symbolic ECB that is posted when the reply is sent.

ecb-id-register

Either a register that contains the ECB ID, the symbolic name of a fullword field that

contains the ECB ID, or the ID literal enclosed in quotation marks.

RTNTEXT=return-text-location

Specifies the location into which the system places the retrieved message text
identified by message-id. Any replacement values specified in the PARMS
parameter are included in the retrieved text.

If the length of the retrieved message text (RTNLEN) is not specified, the first byte

of the return text receiving field must specify the length, in hexadecimal notation,
of the returned string.

return-text-location

Either a register that points to the storage area reserved for the message text or the
symbolic name of a user-defined field reserved for the message text.

Note: The RTNTEXT and REPLY options are mutually exclusive; only one of these
operands can be specified in a single #WTL request.

RTNLEN=

Indicates the length of the return text receiving field.

return-text-length-pointer

A register that points to the length of the field, a halfword or fullword field
containing the length of the field, or an absolute expression of the length of the

field enclosed in quotation marks.

If this parameter is included, the first byte of the RTNTEXT receiving field does not
have to be a length indicator. If the length specified is not large enough to
accommodate the entire message, register 1 will contain the number of l ines that
could not be sent.

#WTL

Chapter 5: Data Manipulation Language Statements 385

Example

The following figure il lustrates a #WTL statement that supplies three replacement

parameters and requests a reply. Program A issues a #WTL request for message 990100
with a prefix DC. The message text and severity are stored in the message area of the
dictionary. Symbolic parameters are within the message text. The program specifies

values to replace the symbolic parameters &01., &02., and &03. stored in the message
area of the dictionary along with the message text. The system sends the message to
terminal A, which is the logical terminal associated with the issuing task, and waits for a
reply. The reply is returned to the area specified by REPLY; the length of the reply can be

up to 20 bytes.

Status Codes

The system returns the following values to register 15 during processing of a #WTL
request. Any value greater than zero indicates that the request was not serviced, and no
#WTL was performed. Register 15 values are as follows:

X'00'

The request has been serviced successfully.

X'04'

An invalid parameter or combination of parameters has been specified.

#XCTL

386 DML Reference Guide for Assembler

X'08'

A resource necessary for the processing of the request, for example, a resource

control element, is not available.

X'0C'

The maximum number of outstanding replies was exceeded.

X'10'

The length of the return text area is not large enough to contain the entire message
text.

#XCTL

The #XCTL statement transfers control and sends an optional parameter l ist to a

specified program. Control does not return to the issuing program when the specified
program ends.

Syntax

►►─┬─────────┬─ #XCTL PGM=program-name-pointer ───────────────────────────────►
 └─ label ─┘

 ►─┬──┬─────────────────────────────────►
 └─ ,PLIST= ─┬─ SYSPLIST ◄ ─────────────┬─┘
 └─ parameter-list-pointer ─┘

 ►─┬────────────────────────────────────┬─────────────────────────────────────►◄
 └─ ,PARMS= ─┬─ NO ◄ ────────────────┬┘
 └─ (parameter-pointer) ─┘

Parameters

PGM=

Specifies the 1- to 8-character name of the program to which control is transferred.

program-name

A register that points to a field that contains the program name, the symbolic name
of a user-defined field that contains the program name, or the program-name
literal enclosed in quotation marks.

PLIST=

Specifies the location of the storage area that contains one or more parameters to

be passed to the program receiving control.

SYSPLIST

(Default); is the symbolic name of the storage area in which the system builds the
parameter l ist.

#XCTL

Chapter 5: Data Manipulation Language Statements 387

parameter-list-pointer

Either a register that points to the area in which the system builds the list or the

symbolic name of the area.

The size of the parameter-list area is equal to two fullwords plus one fullword for
each parameter l isted. Thus, if no parameters are specifi ed (PARMS=NO), the length
of the storage area is two fullwords; if one parameter is specified, the length is
three fullwords.

PARMS=

Specifies whether parameters will be passed to the program receiving control.

NO

(Default); specifies that no parameters will be passed to the program.

parameter-pointer

Specifies that parameters will be passed to the program. Parameter-register is
either a register that contains the address of the parameter or the symbolic name

of a user-defined field that contains the parameter.

Example

The #XCTL statement shown below transfers control to the Cloud Airlines fl ight booking
program and passes parameters that specify the fl ight, the city of departure, and the
fl ight destination.

#XCTL PGM='CLBOOK',PARMS=(FLT,DEPART,DEST)

Status Codes

By default, the #XCTL request is unconditional. Error conditions that can occur are
described below:

■ A no-space-available-in-program-pool condition is caused when there is not enough
storage in the program pool to accommodate the program. The system delays

processing until sufficient storage becomes available. If such a wait would cause a
deadlock, the system aborts the program.

■ A nonconcurrent-program-in-use condition is caused when a copy of the program is
already in use and is marked as nonconcurrent (indicating that this program can be
used by one task at a time). The system delays processing until the program

becomes available.

■ A storage-conflict condition is caused when a copy of the previously loaded

program is temporarily overlayed while being used by a waiting task. The system
delays processing until the program is replaced in the program pool.

Logical Record Clauses

388 DML Reference Guide for Assembler

■ Any abnormal condition causes the system to terminate the program abnormally.
Conditions in this category include:

– An I/O error

– A program not found in the PDT (program definition table) or marked
out-of-service

– A wait-on-storage (default action resulting from the
no-space-available-in-program-pool condition) would result in a deadlock

Logical Record Clauses

Logical record clauses are used with any of the four DML statements that access logical
records: @OBTAIN, @MODIFY, @STORE, and @ERASE. The logical record clauses are as

follows:

■ WHERE specifies criteria used to select logical -record occurrences or to l imi t the
selection of logical-record occurrences

■ ON tests for a specific path status returned to indicate the result of a logical-record
DML statement

The WHERE and ON clauses are explained in this section.

WHERE Clause

Functions of the WHERE Clause

The WHERE clause has two major functions:

■ To direct the program to a predefined path in the subschema. The path is defined
by the DBA and is transparent to the application program. Predefined paths allow

the program to access database records without issuing specific instructions for
navigating the database.

■ To specify selection criteria to be applied to a logical record. Selection criteria
allow the program to specify attributes of the desired logical record, reducing the

need for the program to inspect multiple logical record occurrences.

Two Elements in a WHERE Clause

The WHERE clause is constructed from two elements:

■ A positional parameter that contains the key value WHERE

■ An Assembler remark that encodes a Boolean expression that consists of
comparisons and keywords connected by Boolean operators (AND, OR, and NOT)

Logical Record Clauses

Chapter 5: Data Manipulation Language Statements 389

An Assembler logical record DML statement that contains a WHERE clause consists of an
Assembler macro parameter concatenated with a compiler-level expression. The remark

is resolved by the DML precompiler, not by the assembler. Therefore, programs that
contain logical record DML statements using WHERE clauses must be submitted to the
DML precompiler before assembly.

Coding WHERE

Because the Boolean expression is treated as an Assembler remark, it can be written in

a more readable form than conventional As sembler statements. WHERE clauses can
span several l ines in an Assembler program. The keyword WHERE must begin in column
16, continuation lines must be in column 16 or greater, and are marked by coding a

nonblank character in column 72. Descriptive comments cannot be on the same line as
the WHERE clause.

Including Boolean Operators

Individual comparisons and keywords must be connected by the Boolean operators
AND, OR, and NOT. Parentheses can be used to clarify a multiple-comparison Boolean

expression or to override preceding operators.

Operators in a WHERE clause are evaluated in the following order:

1. Comparisons enclosed in parentheses, in order of precedence within parentheses

2. Arithmetic, comparison, and Boolean operators in order of precedence, from
highest to lowest:

a. Unary plus or minus in an arithmetic expression

b. Multiplication or division in an arithmetic expression

c. Addition or subtraction in an arithmetic expression

d. MATCHES or CONTAINS comparison operators

e. EQ, NE, GT, LT, GE, LE comparison operators

f. NOT Boolean operator

g. AND Boolean operator

h. OR Boolean operator

3. From left to right within operators of equal precedence

Syntax

►►─── ,WHERE ─┬───────┬─┬─ designated-keyword ─┬──────────────────────────────►
 └─ NOT ─┘ └─ comparison ─────────┘

►─┬──┬─────────────────────►◄
 │ ┌──┐ │
 └─▼──┬─ AND ─┬──┬───────┬─┬─ designated-keyword ─┬─┴─┘
 └─ OR ──┘ └─ NOT ─┘ └─ comparison ─────────┘

Logical Record Clauses

390 DML Reference Guide for Assembler

Expansion of comparison

►►─┬─ literal ─────────────────────────────────┬──────────────────────────────►
 ├─ idd-defined-variable-field-name ─────────┤
 ├─ logical-record-field-name ─┬─────────┬───┤
 │ └─ OF LR ─┘ │
 └─ arithmetic-expression ───────────────────┘

 ►──┬── CONTAINS ─┬───►
 ├── MATCHES ──┤
 ├┬─ EQ ─┬─────┤
 │└─ = ──┘ │
 ├── NE ───────┤
 ├┬─ GT ─┬─────┤
 │└─ > ─┘ │
 ├┬─ LT ─┬─────┤
 │└─ < ─┘ │
 ├── GE ───────┤
 └── LE ───────┘

 ►─┬─ literal ─────────────────────────────────┬──────────────────────────────►◄
 ├─ idd-defined-variable-field-name ─────────┤
 ├─ logical-record-field-name ─┬─────────┬───┤
 │ └─ OF LR ─┘ │
 └─ arithmetic-expression ───────────────────┘

Parameters

dba-designated-keyword/comparison

Specify selection criteria to be applied to the logical record.

dba-designated-keyword

Specifies a keyword that applies to the named logical record. The DBA has
previously associated this keyword with the named logical record; the keyword

routes the logical -record request to the appropriate predetermined path in the
subschema. Dba-designated-keyword can be no longer than 32 characters.

Note: A path must exist to service a request that includes dba-designated-keyword.
If no such path exists, the DML precompiler issues an error message.

comparison

Specifies the comparison operation to be performed, using the indicated operands

and operators. Comparison also may direct the logical record request to a path in
the subschema.

Syntax for comparison contains individual comparisons and keywords that are
connected by the Boolean operators AND, OR, and NOT. Parentheses can be used
to clarify a multiple-comparison Boolean expression or to override the precedence

of operators.

literal/idd-defined-variable-field-name/
logical-record-field-name/arithmetic-expression

Identifies a left or right comparison operand.

literal

Specifies an alphanumeric or numeric l iteral. Alphanumeric l iterals must be

enclosed in site-standard quotation marks.

Logical Record Clauses

Chapter 5: Data Manipulation Language Statements 391

dd-defined-variable-field-name

Specifies a program variable storage field predefined in the dictionary.

logical-record-field-name

Specifies a data field that participates in the named logical record.
Logical-record-field-name uniquely identifies the named logical-record field.

The optional OF LR entry specifies that the value of the named field at the time the
request is issued will be used throughout request processing. If the value of the

field changes during request processing, LRF will continue to use the original value.
If the OF LR entry is not included and the value of the field changes during request
processing, the new field value in variable storage will be used.

arithmetic-expression

Specifies an arithmetic expression designated as a unary minus (-), unary plus (+),

simple arithmetic operation, or compound arithmetic operation. Arithmetic
operators permitted in an arithmetic expression are plus (+), minus (-), an asterisk
(*), and a slash (/). These arithmetic operators must have a blank on either side.

Operands can be the literals, variable fields, or the logical -record fields described
above.

CONTAINS/MATCHES/EQ/NE/GT/LT/GE/LE

Specifies the comparison operator.

CONTAINS

Is true if the value of the right operand occurs in the value of the left operand. Both

operands included with the CONTAINS parameter must be alphanumeric values.

MATCHES

Is true if each character in the left operand matches a corresponding character in
the right operand (the mask). LRF compares the left operand with the mask, one
character at a time, moving from left to right.

The result of the match is either true or false:

■ The result is true if LRF reaches the end of the mask before encountering a

character in the left operand that does not match a corresponding mask
character.

■ The result is false if LRF encounters a character in the left operand that does
not match a mask character.

Three special characters can be used in the mask to perform pattern matching:

■ @ matches any alphabetic character

■ # matches any numeric character

■ * matches any alphabetic or numeric character

Logical Record Clauses

392 DML Reference Guide for Assembler

Both the left operand and the mask must be alphanumeric values.

EQ

Is true if the value of the left operand is equal to the value of the right operand.

NE

Is true if the value of the left operand is not equal to the value of the right operand.

GT

Is true if the value of the left operand is greater than the value of the right operand.

LT

Is true if the value of the left operand is less than the value of the right operand.

GE

Is true if the value of the left operand is greater than or equal to the value of the

right operand.

LE

Is true if the value of the left operand is less than or equal to the value of the right
operand.

The WHERE clause can contain as many comparisons and keywords as are required
to specify the criteria you want. Processing efficiency is not affected by the

composition of the WHERE clause (other than the logical order of the operators),
since LRF automatically uses the most efficient path to process the logical-record
request.

If necessary, the value of the SIZE parameter on the @COPY
IDMS,SUBSCHEMA-LR-CTRL, @SSLRCTL, and @BIND SUBSCH statements can be

increased to accommodate very large and complex WHERE clause specifications.
For the algorithm to calculate lrc-block-size, see @COPY IDMS (see page 411).

Examples

The WHERE clause shown below uses Boolean selection criteria to obtain the requested
EMPJOBLR occurrence. This statement retrieves any customer in Massachusetts who

has an outstanding balance greater than $1500, or who has an outstanding balance less
than $500 and has a questionable credit rating.

@OBTAIN EMPJOBLR WHERE MASSACHUSETTS AND ((UNITS * PRICE) - *

 PAYMENT GT 1500 OR ((UNITS * PRICE) - *

 PAYMENT GT 500 AND (CREDRATE *

 EQ 'REF' OR CREDRATE EQ 'REJ')))

Logical Record Clauses

Chapter 5: Data Manipulation Language Statements 393

ON Clause

The ON clause tests for a specific path status returned to indicate the result of a logical
record request. If LRF returns the specified path status, the imperative statement
included in the ON clause is executed. The imperative statement usually consists of a

GOTO statement. If the path status is not returned, the imperative statement included
in the ON clause is ignored.

Note: Only one ON clause can be coded per logical record DML statement; only one
specific path status can be tested for.

Standard Path Statuses

Path statuses are issued during execution of the path selected to service the request.
The following standard path statuses can be returned:

■ LR-FOUND is returned when the logical -record request has executed successfully.
LR-FOUND can be returned as the result of:

– Any @OBTAIN LRF statement

– Any of the other LRF statements containing a WHERE clause

When LR-FOUND is returned, the ERRSTAT field of the IDMS communications block
contains 0000.

■ LR-NOT-FOUND is returned when the specified logical record cannot be found,
either because no such record exists or because all such occurrences have already

been retrieved. LR-NOT-FOUND can be returned as the result of any of the four LRF
DML statements, provided that the path to which LRF is directed includes retrieval
logic. When LR-NOT-FOUND is returned, the ERRSTAT field of the IDMS
communications block contains 0000.

■ LR-ERROR is returned when a logical record request is issued incorrectly or when an

error occurs in the processing of the path selected to service the request. When
LR-ERROR is returned, the type of status code returned to the program in the
ERRSTAT field of the IDMS communications block differs according to the type of
error:

– When the error occurs in the logical-record request, the ERRSTAT field contains

a status code issued by LRF (with a major code of 20). For a l ist of these codes,
see Logical-Record Status Codes (see page 395).

– When an error occurs in logical-record path processing, the ERRSTAT field
contains a status code issued by the DBMS (with a major code from 00 to 19).
For a l ist of these codes, see ERRSTAT Field and Codes (see page 41).

Logical Record Clauses

394 DML Reference Guide for Assembler

When accessing ASF-defined data tables, you should always check for all of the
following path statuses:

■ INVALID-DATA is returned when the data violates the definition-time selection
criteria. For example, INVALID-DATA is returned when the selection criteria is
WHERE STATE = 'MA' and the program tries to replace the state with 'NY'. When

INVALID-DATA is returned, the ERRSTAT field in the IDMS communications block is
set to 0000.

■ DEFN-MISSING is returned when the record definition cannot be found. When
DEFN-MISSING is returned, the ERRSTAT field in the IDMS communications block is
set to 0000.

■ OOAK-MISSING is returned when a one-of-a-kind record cannot be found. When
OOAK-MISSING is returned, the ERRSTAT field in the IDMS communications block is

set to 0000.

■ SYNC-ERROR is returned when the time stamp in the catalog and the table
definition do not match. When SYNC-ERROR is returned, the ERRSTAT field in the
IDMS communications block is set to 0000.

The return of one or more of these path statuses indicates a fatal error. For more
information, consult your DBA.

Syntax

►─┬───┬────────────────────────────►
 └─ ,ONLRSTS=path-status,GOTO=branch-location ─┘

Parameters

ONLRSTS=path-status

Tests for a path status returned as the result of the logical -record request issued by
the program. Path-status must be a quoted literal (1 to 16 bytes under z/OS or 1 to
6 bytes under z/VSE) or a program variable.

Note: In addition to testing for a specific path status (using ONLRSTS), your program
should check for standard path statuses (for example, LR-NOT-FOUND and

LR-ERROR, and path statuses for ASF defined tables if applicable) whenever the
program issues a logical record request.

GOTO=branch-location

Specifies the program action to be taken if the indicated path status results from
the logical-record request.

Logical Record Clauses

Chapter 5: Data Manipulation Language Statements 395

Example

The following ON clause causes the program to branch to the NOFFICE label when the

path status specified in the variable NOOFF is met. NOOFF indicates a path status
indicating that there are no offices that meet the criteria specified in the WHERE clause.
Standard LRF path statuses are checked as well.

@OBTAIN REC=EMPJOBLR, *

 ONLRSTS=NOOFF,GOTO=NOFFICE, *

 WHERE OFFICE-CODE-0450 EQ '0980'

CLC LRSTAT,=CL16'LR-FOUND'

BE CRDITREF

CLC LRSTAT,=CL16'LR-ERROR'

BE LRERRTN

CLC LRSTAT,=CL16'LR-NOT-FOUND'

BE LRNTFND

Logical-Record Status Codes

A path status of LR-ERROR signifies an error in the processing of a logical-record request.

When the error occurs in the request itself, LRF returns a path of LR-ERROR to the
LR-STATUS field of the logical-record request control (LRC) block and places one of the
following codes in the ERRSTAT field of the IDMS communications block:

2008

The named logical record is not defined in the subschema, or the specified DML
verb is not permitted with the named logical record. The logical record name may
have been misspelled.

2010

The subschema prohibits access to logical records.

2018

A path command has attempted to access a database record that has not been
bound.

2040

The WHERE clause in an @OBTAIN NEXT statement has directed LRF to a different
processing path than did the WHERE clause in the preceding @OBTAIN statement
for the same logical record. Either the WHERE clause is incorrect or an @OBTAIN

FIRST should have been issued instead of @OBTAIN NEXT.

Logical Record Clauses

396 DML Reference Guide for Assembler

2041

LRF was unable to match the request's WHERE clause to a path in the subschema.

2042

The logical-record path for the request specifies return of the LR-ERROR path status
to the program.

2043

Bad or inconsistent data was encountered in the logical-record buffer during

evaluation of the request's WHERE clause:

■ A WHERE clause has specified that a packed decimal field should be compared
to a field that is not packed; the field that is not packed cannot be converted to

packed because it contains nonnumeric data.

■ Data in variable storage or in a database record does not conform to its
description.

A path status of LR-ERROR is returned to the program unless the DBA has included

an ON clause in the path to override this action.

2044

The request's WHERE clause does not include information required by the
logical-record path.

2045

A subscript value in a WHERE clause is either less than 0 or greater than its

maximum allowed value. A path status of LR-ERROR is returned to the program
unless the DBA has included an ON clause in the path to override this action.

2046

A program check has been issued during evaluation of a WHERE clause for one of
the following reasons:

■ An arithmetic overflow would occur (fixed point, decimal, or exponent).

■ An arithmetic underflow would occur (exponent).

■ A divide exception would occur (fixed point, decimal, or floating point).

■ A significance exception has occurred.

A path status of LR-ERROR is returned to the program unless the DBA has included
an ON clause in the path to override this action.

Logical Record Clauses

Chapter 5: Data Manipulation Language Statements 397

2063

A request's WHERE clause contains a keyword that exceeds 32 characters.

2064

A path command has attempted to access a CALC data item that has not been
defined properly in the subschema.

2072

LRF cannot acquire sufficient storage to evaluate the request.

These status codes can result from any of the logical-record DML statements with the
exception of 2040, which applies to @OBTAIN NEXT only.

Chapter 6: Assembler DML Coding Considerations 399

Chapter 6: Assembler DML Coding
Considerations

This chapter describes how to code Assembler DML statements. The following topics are
discussed:

■ Coding user-supplied operands

■ Coding DML statement parameters

■ Synonym processing

Logical Record Facil ity keywords

This section contains the following topics:

Coding User-Supplied Operands (see page 399)

Coding Parameters (see page 401)
Synonym Processing (see page 401)
Logical Record Facil ity Keywords (see page 403)

Coding User-Supplied Operands

User-supplied operands in DML statements can be specified by name, in register

notation, or in data field notation.

By Name

Record, set, or area names can be specified explicitly by name. Unless QUOTES=NO has

been specified in the @MODE statement, the name must be enclosed i n quotation
marks; for example:

SUBSCH='DEMOSUBS'

The DML precompiler performs validity checking for explicitly specified names.

Note: z/VSE USERS—A quoted name operand in a logical-record DML statement cannot
exceed 6 characters. A program variable can be used for a path status that exceeds 6
characters. An exception is a quoted operand in a WHERE clause, which can be up to 32

characters long.

Coding User-Supplied Operands

400 DML Reference Guide for Assembler

Note: ASSEMBLER G USERS—A quoted name operand in a logical record DML
statement cannot exceed 6 characters unless the maximum variable size is modified by

the appropriate Assembler PARM. A maximum variable size of at least 18 characters is
recommended. An exception is a quoted operand in a WHERE clause, which can be up
to 32 characters long.

Note: ASSEMBLER H USERS—The DML precompiler(IDMSDMLA) supports 32-character
names and converts hyphens to underscores.

In Register Notation

A register can contain either the variable value or the variable address. The general
register symbol or register reference must be enclosed in parentheses; for example:

#FREESTG STGID=(7)

The DML precompiler does not perform validity checking of operands specified by
register notation.

Note: z/VSE USERS—A general register symbol or register reference in a logical record
DML statement cannot exceed 6 characters.

Note: ASSEMBLER G USERS—A general register symbol or register reference in a logical
record DML statement cannot exceed 6 characters, unless the maximum variable size is
modified by the appropriate Assembler PARM. A maximum variable size of at least 18
characters is recommended.

In Data Field Notation

Your program can specify the name of a variable field containing the desired data name;
for example:

@OBTAIN CURRENT,REC=RECFLD

The DML precompiler does not perform validity checking of operands specified by data
field notation.

Coding Parameters

Chapter 6: Assembler DML Coding Considerations 401

Coding Parameters

Types of Parameters

There are two types of parameters in DML statements:

■ Positional parameters—Positional parameters appear in specific relative locations;
for example:

#GETSTG TYPE=(USER,LONG,KEEP)

■ Keyword parameters—Keyword parameters are constructed from:

1. A keyword—A character string that is predefined to the system

2. An equal sign (=)

3. A variable-value parameter—Containing one or more variable values

For example:

@OBTAIN NEXT,SET='CUSTOMER-ORDER',REC='ORDER'

 CA IDMS keywords are l isted in Logical Record Facil ity Keywords (see page 403)
later in this chapter.

Coding Considerations

The following considerations apply to coding DML parameters:

■ All DML statements except for logical -record DML statements use keyword
parameter notation. The DML precompiler generates positional-pair parameter
notation.

■ Logical-record DML statements that bypass the DML precompiler must be coded
using positional-pair parameter notation. The assembler misinterprets or rejects

logical-record DML statements that contain keyword parameters.

■ Logical-record DML statements that are processed by the DML precompiler can be
coded using either keyword parameter or positional-pair parameter notation.

Synonym Processing

CA IDMS/DB allows alternative identification of records and elements in the dictionary.
Synonyms are added to the dictionary by using DDDL statements. The DML precompiler
automatically copies these language dependent synonyms in place of the primary
names whenever an @COPY IDMS statement appears in the application program.

Synonym Processing

402 DML Reference Guide for Assembler

Note: ASSEMBLER H USERS—The DML precompiler supports32-character field names
and conversion of hyphens to underscores, in accordance with the new features of

Assembler H. CA IDMS/DB record names remain restricted to 16 characters and CA
IDMS/DB element names to 32 characters. Synonyms are therefore not required for
user supplied names and for fields containing hyphens in Assembler H programs using

the DML precompiler.

IDD record names can be up to 16 characters long, and IDD element names can be up to

32 characters long. Because Assembler versions F and G restrict names to 8 characters,
alternative and unique 8 character names for use in Assembler F and Assembler G
programs should be defined in the dictionary. Use of synonyms is recommended if

@COPY IDMS and @INVOKE statements are to be included in Assembler programs.

Synonyms cannot be defined for logical record names. Assembler programs that access

logical records must use a separate subschema in which logical records are defined
according to Assembler restrictions.

How the Precompiler Copies Synonyms

When the DML precompiler copies record descriptions from the dictionary into program
variable storage, it copies synonyms according to the following rules:

■ If a record is defined for the program's language, but the primary record name is
not, the synonym is copied into the program.

■ If more than one synonym for a given record is defined for Assembler, the first one
found in the dictionary is copied.

■ If the primary record name is defined for Assembler, the primary name is copied
into the program.

For example, assume that the following record is defined in the dictionary with three
synonyms:

RECORD JOB

RECORD NAME SYNONYM JOBSYN1 LANGUAGE ASSEMBLER

RECORD NAME SYNONYM JOB-SYN2

RECORD NAME SYNONYM JOBSYN3 LANGUAGE ASSEMBLER

Since the dictionary defines JOBSYN1 as the first synonym for Assembler, the DML
precompiler copies it into the program. The DML precompiler would copy the primary
record name (JOB) if it were defined for Assembler.

These rules apply regardless of the record name or synonym that appears in the schema
and subschema invoked by the program.

Logical Record Facility Keywords

Chapter 6: Assembler DML Coding Considerations 403

Synonyms are Recognized as Primary Records

The DML precompiler treats a synonym as if it were the primary record. The expansion

of a DML statement will include the record name of the primary record name, even if
the synonym is copied into program variable storage.

For example, an @COPY IDMS,SUBSCHEMA-BINDS statement used in an Assembler
program generates the following @BIND REC statement for the employee record:

@BIND REC='EMPLOYEE',IOAREA=EMPLOYE

This statement l ists both the primary record name (EMPLOYEE) and the Assembler
synonym (EMPLOYE).

Note: For more information about synonym facil ities, see the IDD DDDL Reference
Guide.

Logical Record Facility Keywords

The following is a l ist of LRF keywords recognized by the Assembler DML precompiler.
These keywords should not be used as labels in Assembler DML programs that use the

Logical Record Facil ity:

■ FIRST

■ GOTO

■ LR

■ LRSTAT

■ NEXT

■ ONLRSTS

■ REC

■ WHERE

Chapter 7: DML Precompiler-Directive Statements 405

Chapter 7: DML Precompiler-Directive
Statements

This chapter presents syntax for precompiler-directive statements.

Function of Precompiler Directives

To use DML statements that request CA IDMS/DB and DC/UCF services, you must
include precompiler-directive statements in your application program.
Precompiler-directive statements:

■ Ensure that the assembler performs the proper expansion of DML statements i nto
call ing sequences appropriate to the CA IDMS environment

■ Identify the dictionary resources (subschema and/or maps) required by the

program

■ Cause predefined source modules to be copied into the program from the
dictionary

■ Generate source data description code

Summary of Statements

The DML precompiler-directive statements are summarized below:

■ @MODE initializes all global SET symbols that control the expansion of subsequent
macros and DML commands into call ing sequences appropriate to the CA IDMS/DB
environment. You must code the @MODE directive before all procedural
statements in the program, including DML commands for CA IDMS/DB and DC/UCF

requests.

■ @INVOKE identifies all dictionary resources used by the application program. The
@INVOKE statement must precede all procedural statements in the program,
including DML commands for CA IDMS/DB and DC/UCF requests. This statement

will generate non-executable source code when the MAP= operand is used for a
map with multiple occurring fields.

■ @COPY IDMS copies the source data description code associated with CA IDMS/DB
database records, the IDMS communications block, map records, and the map

request block, as well as other predefined source modules and records, into the
program from the dictionary at the location of the @COPY IDMS statement.

@MODE—initializes global SET symbols

406 DML Reference Guide for Assembler

■ #MRB establishes a map request block (MRB), which is required for the mapping
mode of terminal I/O operations. The MRB is a varia ble storage area in the

application program and is used for communications between the program and the
mapping compiler during a mapping I/O request.

■ #MAPBIND initializes the MRB for mapping requests issued by the application

program. #MAPBIND generates executable code.

■ @SSCTRL generates the source data description code associated with the IDMS
communications block in the program.

■ @SSLRCTL generates the source data description code associated with the LRC

block in the program.

This section contains the following topics:

@MODE—initializes global SET symbols (see page 406)
@INVOKE (see page 409)

@COPY IDMS (see page 411)
#MRB (see page 419)
#MAPBIND (see page 420)

@SSCTRL (see page 421)
@SSLRCTL (see page 421)

@MODE—initializes global SET symbols

The @MODE statement initializes global SET symbols for the assembler; these symbols
control the generation of macros associated with CA IDMS/DB requests. You must

specify the operating mode for programs that access a CA IDMS/DB database. If you do
not code an @MODE statement, you can specify the CA IDMS/DB environment by using
the MODE parameter of the @INVOKE statement, described later in this chapter. For CA

IDMS programs that do not require access to a CA IDMS/DB database, the function of
the @MODE statement is to indicate the operating mode: batch or online. An online
mode selection is made from one of the valid teleprocessing monitors.

The @MODE and the @INVOKE statement must precede all other DML statements in
the program. Either statement can be placed before the other.

@MODE—initializes global SET symbols

Chapter 7: DML Precompiler-Directive Statements 407

@Mode Syntax

►►─── @MODE MODE= ─┬─ BATCH ─────┬──►
 ├─ IDMSDC ────┤
 ├─ DCBATCH ───┤
 ├─ CICS ──────┤
 ├─ CICS-EXEC ─┤
 ├─ INTERCOMM ─┤
 └─ SHADOW ────┘

 ►─┬──────────────────────┬───►
 └─ ,QUOTES= ─┬─ YES ◄ ┬┘
 └─ NO ───┘

 ►─┬─────────────────────┬──►
 └─ ,DEBUG ─┬─ NO ◄ ─┬┘
 └─ YES ───┘

 ►─┬──────────────────────────────────┬───────────────────────────────────────►◄
 └─ ,WORKREG= ─┬─ 0 ◄ ─────────────┬┘
 └─ register-number ─┘

@MODE Parameters

MODE=

Defines the operating environment for which the call ing sequence will be

generated. If the @MODE statement is not used, the CA IDMS/DB environment
must be specified in the @INVOKE statement, whi ch is discussed below.

BATCH

(Default); specifies to execute the program in batch mode. The IDMS
communications block is copied into variable storage; standard CALL

statements are generated.

IDMSDC

Specifies to execute the program in IDMS DC mode. The IDMS DC
communications block is copied into variable storage; CA IDMS/DC CALL
statements are generated for CA IDMS/DC requests.

DCBATCH

Specifies to execute the program in DC-BATCH mode. The IDMS DC
communications block is copied into variable storage; DC-BATCH CALL
statements are generated for CA IDMS/DC requests. Specify MODE=DCBATCH

to access DC queues and printers from batch applications running under the CA
IDMS central version.

CICS/CICS-EXEC/INTERCOMM/SHADOW

Specifies to execute the program in a special environment under the specified
teleprocessing monitor. The appropriate communications block is copied into

variable storage and operating-mode-specific CALL sequences are generated.

@MODE—initializes global SET symbols

408 DML Reference Guide for Assembler

QUOTES=

Required for programs that access the CA IDMS/DB database; indicates whether

names (such as record name or area name) coded in DML statements must be
enclosed in site-standard quotation marks.

YES

(Default); specifies to enclose names specified in CA IDMS/DB database
requests in site-standard quotation marks.

NO

Specifies to not enclose names specified in CA IDMS/DB database requests in
site-standard quotation marks.

DEBUG=

Required for programs that access the CA IDMS/DB database; requests the DML
precompiler to save sequence numbers associated with DML statements in the

IDMS communications block, as follows:

NO

(Default); specifies not to save sequence numbers of DML statements.

YES

Generates the appropriate code for saving sequence numbers associated with
DML statements. At runtime, the sequence number of each DML statement is

moved to the IDMS communications block before program execution. These
sequence numbers appear in the Assembler source statement l isting in the
form DML-SEQUENCE=n . Depending on the error routine defined by the DBA,
the DML sequence number can be reported when errors occur and can be used

to assist you in debugging your Assembler program.

Note: This option does not apply to DC/UCF requests. Statement numbers
associated with DC/UCF requests cannot be saved because the system does not
use the IDMS communications block.

WORKREG=0/

Required for programs that access the CA IDMS/DB database; specifies the general
purpose register to be used for constructing the IDMS parameter l ist for calls to
IDMS.

register

An integer in the range 0 through 15, or any valid symbolic or defining term for

the general-purpose register (for example, R0). The default is general register
0.

@INVOKE

Chapter 7: DML Precompiler-Directive Statements 409

@INVOKE

The @INVOKE statement performs the following functions:

■ Specifies the subschema and maps required by the program

■ Defines the operating mode if not previously defined by an @MODE statement

■ Identifies the program if program registration has been implemented

■ Identifies the program for use during statistics collection

The @INVOKE statement and the @MODE statement must precede all other
precompiler-directive and DML statements in the program. @INVOKE must be included
if the DML precompiler will be used and if the program requests CA IDMS/DB services.

Syntax

►►─── @INVOKE ─┬───┬────────►
 └─ PROGRAM=program-name ─┬───────────────────────────┬┘
 └─ ,VERSION=version-number ─┘

 ►─┬──────────────────────────┬───►
 └─ ,SUBSCH=subschema-name ─┘

 ►─┬───┬──────────────────────►
 └─,SCHEMA=schema-name ─┬───────────────────────────┬┘
 └─ ,VERSION=version-number ─┘

 ►─┬────────────────────────┬───►
 └─ ,MODE= ─┬─ BATCH ─────┤
 ├─ IDMSDC ────┤
 ├─ DCBATCH ───┤
 ├─ CICS ──────┤
 ├─ CICS-EXEC ─┤
 ├─ INTERCOMM ─┤
 └─ SHADOW ────┘

 ►─┬───┬────────────────────────────►
 └─,MAP=map-name ─┬───────────────────────────┬┘
 └─ ,VERSION=version-number ─┘

 ►─┬─────────────────────────────┬──►
 └─ ,MRBTYPE= ─┬─ STANDARD ◄ ─┬┘
 └─ EXTENDED ───┘

 ►─┬───────────────────────┬──►◄
 └─ ,PAGING = ─┬─ NO ◄ ─┬┘
 └─ YES ──┘

Parameters

PROGRAM=program-name

Required if program registration is in effect; specifies the 1- to 8-character name of
the registered program. If in effect, subschema authorization specifies that

programs must be registered with the named subschema in order to be compiled
against it.

If the program has been previously defined in the dictionary using IDD,
program-name must match the assigned name of the program; otherwise the DML

precompiler will not recognize it as the same program.

@INVOKE

410 DML Reference Guide for Assembler

Version=version-number

Optional; indicates the version number of the program to distinguish multiple

versions of the same program-name. Version is a numeric l iteral in the range 1
through 9999. If the version number is not specified, and program-name is
found in the dictionary, the version number defaults to the highest value

defined in the dictionary for the program. If program-name is unknown to the
data dictionary, the version number defaults to 1.

SUBSCH=

Identifies the subschema to be used by the program.

subschema-name

Specifies a subschema defined in the dictionary.

SCHEMA=schema-name

Identifies the schema with which the subschema is associated.

Version=version-number

Optionally specifies the version of the schema as defined in the dictionary. It
defaults to the highest version of the named schema.

MODE=

Defines the operating mode for the program. This clause is optional; it can replace
the @MODE statement if @COPY is the only additional DML statement in use, but

should be omitted in all other cases.

BATCH

Specifies to execute the program in batch mode. The IDMS communications
block is copied into variable storage; standard CALL statements are generated.

IDMSDC

Specifies to execute the program in IDMS DC mode. The IDMS DC

communications block is copied into variable storage; CA IDMS/DC CALL
statements are generated for CA IDMS/DC requests.

DCBATCH

Specifies to execute the program in DC-BATCH mode. The IDMS DC
communications block is copied into variable storage; DC-BATCH CALL

statements are generated for CA IDMS/DC requests. Specify MODE=DCBATCH
to access DC queues and printers from batch applications running under the CA
IDMS central version.

CICS/CICS-EXEC/INTERCOMM/SHADOW

Specifies to execute the program in a special environment under the specified

teleprocessing monitor. The appropriate communications block is copied into
variable storage and operating-mode-specific CALL sequences are generated.

@COPY IDMS

Chapter 7: DML Precompiler-Directive Statements 411

MAP=

Specifies that mapping mode terminal I/O is required by the program and identifies

the maps stored in the dictionary. Multiple maps can be specified in a single
@INVOKE statement by defining a separate MAP clause for each map.

map-name

Specifies the 1- to 8-character name of a map defined in the dictionary.

Version=version-number

Optionally specifies the version of the map being used. It defaults to the

highest version of the named schema.

MRBTYPE=STANDARD/EXTENDED

Specifies the format of the map request block (MRB) built for the map:

■ STANDARD (default) specifies that the map has standard 3270-type terminal
attributes.

■ EXTENDED specifies that the map has extended 3279-type terminal attributes,
such as color, blinking fields, and reverse video.

PAGING=NO/YES

Specifies whether the program uses pageable maps. A pageable map is a single map
that is associated with an unlimited number of map fields. You can use pageable

maps when all the map fields cannot fit on a terminal operator's screen at one time.
The default is NO.

The DML statements #MREQ, #STRTPAG, and #ENDPAG are used to control the
pageable map option. For more information, see the descriptions of these
commands in Data Manipulation Language Statements (see page 73).

@COPY IDMS

The @COPY IDMS statement copies source data description code and modules from the
dictionary into the program at the location of the @COPY IDMS statement. This
statement copies CA IDMS/DB database record descriptions, the IDMS communications

block, map record descriptions, or MRBs. However, any source module or record
description stored in the dictionary can be copied into either a CSECT or DSECT, as
specified by the DSECT parameter (discussed below).

@COPY IDMS

412 DML Reference Guide for Assembler

Source code requirements differ according to the usage (DML, LR, or MIXED) defined in
the program's subschema. The program should not copy components that conflict with

its usage. These usages determine the types of records a program can access, as follows:

■ DML allows a program that uses the named subschema to access database records
only and requires the following source code components:

– SUBSCHEMA-CTRL— The IDMS communications block through which the
application program and the DBMS communicate (for further details, see IDMS
Communications Block (see page 34))

– SUBSCHEMA-RECORDS— The descriptions of all records to which the
subschema permits access

■ LR allows a program to access logical records only and requires the following source
code components

– SUBSCHEMA-CTRL— The IDMS communications block through which the LRF
and the DBMS communicate

– SUBSCHEMA-LR-CTRL— The logical-record request control (LRC) block through

which the application program and the Logical Record Facil ity communicate
(for further details, see Logical-Record Request Control (LRC) Block (see
page 52))

– SUBSCHEMA-LR-RECORDS— The descriptions of all logical records defined in
the subschema

■ MIXED allows a program to access both database records and logical records; this
usage requires the following source code components:

– SUBSCHEMA-CTRL— The IDMS communications block through which the
application program and the LRF communicates with the DBMS, For further
details, see IDMS Communications Block (see page 34).

– SUBSCHEMA-RECORDS— The descriptions of all records to which the
subschema permits access

– SUBSCHEMA-LR-CTRL— The logical-record request control (LRC) block, through
which the application program and the LRF communicate (for further details,
see Logical-Record Request Control (LRC) Block (see page 52))

– SUBSCHEMA-LR-RECORDS— The descriptions of all logical records defined in
the subschema

The DML precompiler determines whether source record descriptions are copied into a

CSECT or DSECT portion of the program, and applies the following rules:

■ If the record is being copied into a CSECT, the DML precompiler defines record

elements that have specified initial values by means of the Assembler DC (define
constant) data definition instruction.

@COPY IDMS

Chapter 7: DML Precompiler-Directive Statements 413

■ If the record is being copied into a DSECT, DML defines record elements that have
specified initial values by means of the Assembler DS (Define Storage) data

definition instruction.

Note: The DML defines record elements using the Assembler EQU instruction if the
record element is:

■ created in the dictionary (IDD) with the USAGE CONDITION-NAME parameter
(according to the COBOL 88-level convention)

and

■ copied into a CSECT or DSECT.

Note: If the optional keyword DSECT is coded in the @COPY IDMS statement, the record
being copied is established as an individual DSECT named with the record name.

Syntax

►►─── @COPY IDMS ───►

 ►─┬─ ,SUBSCHEMA-DML-LR DESCRIPTION ───────────────────────┬──────────────────►
 ├─ ,SUBSCHEMA-DESCRIPTION ──────────────────────────────┤
 ├─ ,SUBSCHEMA-CTRL ─────────────────────────────────────┤
 ├─ ,SUBSCHEMA-RECORDS ──────────────────────────────────┤
 ├─ ,RECORD=record-name ─┬──────────────────────────┬────┤
 │ └─ VERSION=version-number ─┘ │
 ├─ ,SUBSCHEMA-LR-DESCRIPTION ───────────────────────────┤
 ├─ ,SUBSCHEMA-LR-CTRL ─┬────────────────────────┬───────┤
 │ └─ ,SIZE=lrc-block-size ─┘ │
 ├─ ,SUBSCHEMA-LR-CONTROL ───────────────────────────────┤
 ├─ ,SUBSCHEMA-LR-RECORDS ───────────────────────────────┤
 ├─ ,LR=logical-record-name ─────────────────────────────┤
 ├─ ,MAPS ───┤
 ├─ ,MAP=map-name ───────────────────────────────────────┤
 ├─ ,MAP-CONTROLS ───────────────────────────────────────┤
 ├─ ,MAP-CONTROL=map-name ───────────────────────────────┤
 ├─ ,MAP-RECORDS ──┤
 ├─ ,MODULE=module-name ─┬──────────────────────────┬────┤
 │ └─ VERSION=version-number ─┘ │
 ├─ ,SUBSCHEMA-BINDS ────────────────────────────────────┤
 └─ ,MAP-BINDS ──┘

 ►─┬──────────┬───►◄
 └─ ,DSECT ─┘

Parameters

SUBSCHEMA-DML-LR-DESCRIPTION

(Subschema usage is mixed); copies all components required to access both
database and logical records: SUBSCHEMA-CTRL, SUBSCHEMA-RECORDS,

SUBSCHEMA-LR-CTRL, and SUBSCHEMA-LR-RECORDS.

@COPY IDMS

414 DML Reference Guide for Assembler

SUBSCHEMA-DESCRIPTION

(Subschema usage is DML); copies the source data description code for the IDMS

communications block (SUBSCHEMA-CTRL) and for all records
(SUBSCHEMA-RECORDS) defined in the subschema specified in the @INVOKE
statement.

SUBSCHEMA-CTRL

Copies the IDMS communications block into the program.

SUBSCHEMA-RECORDS

Copies the source data description code for all records defined in the subschema
into the program. You can copy Assembler synonyms defined for the subschema

records in the data dictionary into the program according to the rules of synonym
usage.

RECORD=

Copies the description of an individual record defined in the dictionary.

record-name

Can be the primary name or a synonym for a record or module stored in the
dictionary.

A record that has been copied into a schema can only be copied into a program that
uses a subschema associated with the schema. In other words, schema -owned
records cannot be copied into non-IDMS programs (that is, programs that do not

use a subschema and that do not access the database). However, a synonym
defined for the schema-owned record can be copied into a non-IDMS program (use
the VERSION clause to identify the synonym).

VERSION=version-number

Optional; can be used to qualify IDD records (but not schema -owned records) with

a version number. If no version number is specified, CA IDMS/DB first assumes that
record-name identifies a record that is included in the subschema named in the
@INVOKE statement, and looks for it in that subschema. If the record is not
associated with a subschema, version defaults to the highest version number of the

record defined in the dictionary for the operating mode under which the program is
being compiled.

SUBSCHEMA-LR-DESCRIPTION

Copies all components required to access logical records: SUBSCHEMA-CTRL,

SUBSCHEMA-LR-CTRL, and SUBSCHEMA-LR-RECORDS.

SUBSCHEMA-LR-CTRL

Copies the LRC block data description.

@COPY IDMS

Chapter 7: DML Precompiler-Directive Statements 415

SIZE=lrc-block-size

Optional; specifies the size of that portion of the LRC block that contains

information about the logical -record request's WHERE clause. Lrc-block-size
defaults to 576 bytes. If included, it should specify a size large enough to
accommodate the most complex WHERE clause in the program. Lrc-block-size is

calculated as follows:

1. Multiply the greatest number of operands and operators that will be included

in a single WHERE clause by 16 bytes.

2. Add the number of bytes, rounded up to the nearest multiple of 8, associated
with the data field for each operand; that is:

■ The number of characters in a keyword

■ The number of characters in a field described by a program variable or by a

logical-record field named in the OF LR clause.

3. Add the length, rounded up to the nearest multiple of 8, of each operand that
is a character l iteral.

4. Add 12 bytes for each operand that is a numeric l iteral.

5. Add 64 bytes for fixed logical -record request control (LRC) overhead.

Lrc-block-size must be a positive integer in the range 64 through 9999. Note that 64
can be specified if none of the logical -record requests issued by the program
include WHERE clauses.

■ SUBSCHEMA-LR-CONTROL copies the SUBSCHEMA-CTRL and

SUBSCHEMA-LR-CTRL components. Do not include SUBSCHEMA-LR-CONTROL if
the subschema's usage is DML.

■ SUBSCHEMA-LR-RECORDS copies the descriptions of all logical records defined
in the subschema.

■ LR=logical-record-name copies the description of an individual logical record

defined in the subschema.

■ MAPS copies the #MRB statements required to establish the MRBs for all maps
specified in the @INVOKE statement. Additionally, the @COPY IDMS,MAPS
statement copies the source data description code for map records associated

with all maps specified in the @INVOKE statement.

■ MAP=map-name copies the #MRB statement and map records associated with
the named map. Map-name is the 1- to 8-character name of the map. The
version number of the map defaults to the version number specified for the
map in the @INVOKE statement.

■ MAP-CONTROLS copies the #MRB statements for all maps specified in the
@INVOKE statement.

@COPY IDMS

416 DML Reference Guide for Assembler

■ MAP-CONTROL=map-name copies the #MRB statement for the named map.
Map-name is the 1- to 8-character name of the requested map. The version

number of the map defaults to the version number specified in the @INVOKE
statement.

■ MAP-RECORDS copies the map records associated with all maps specified in

the @INVOKE statement.

■ MODULE=module-name,VERSION=version copies a sequence of Assembler

source statements stored in the dictionary. Module-name is the 1- to
8-character name of the requested module; it can be optionally qualified by
version. The version number defaults to the highest version number defined in

the dictionary for the requested module.

The @COPY IDMS,MODULE statement copies a module from the dictionary into

the source program. The DBA must have previously added this module to the
data dictionary by means of the IDD DDDL compiler.

The DML precompiler places the module into the program at the location of
the request. The module may contain DML statements. If DML statements are
present, they are treated as if the programmer had coded them directly.

@COPY IDMS,MODULE statements can be nested (that is, code invoked by an
@COPY IDMS,MODULE statement can itself contain a @COPY IDMS,MODULE
statement). However, you must ensure that a copied module does not, in turn,

copy itself.

■ SUBSCHEMA-BINDS copies @BIND SUBSCH and @BIND REC statements for
each CA IDMS/DB database record accessed by the program.

The @COPY IDMS,SUBSCHEMA-BINDS statement instructs the precompiler to
bring into the source program a standard @BIND SUBSCH statement and

appropriate standard @BIND REC statements for each CA I DMS/DB subschema
record explicitly copied into the program variable storage by means of @COPY
IDMS statements. @COPY IDMS does not automatically generate BINDS for all
subschema records; it also does not generate BINDS for logical records.

All @COPY IDMS,RECORD statements must precede any @COPY

IDMS,SUBSCHEMA-BINDS statement, because the DML precompiler is a
one-pass precompiler. The DML precompiler will not generate BINDS for any
record-type descriptions copied into the program after the @COPY

IDMS,SUBSCHEMA-BINDS statement.

Instead of issuing an @COPY IDMS,SUBSCHEMA-BINDS statement, you can

issue @BIND SUBSCH and @BIND REC statements. Separately issued @BIND
READY and @BIND REC statements allow the program to perform the
following:

– Check the ERRSTAT field after each @BIND REC statement

@COPY IDMS

Chapter 7: DML Precompiler-Directive Statements 417

– Bind several records to the same location by including a DML @BIND
statement for each record (see @BIND REC (see page 104))

Note: The subschema registration feature requires the @COPY
IDMS,SUBSCHEMA-BINDS statement to properly assign the programs to the
subschema control block. Individual @BIND SUBSCH and @BIND REC

statements should not be used if program registration is in effect.

Note: If a record or a synonym of the record has been copied in twice, an

@BIND REC statement will not be automatically generated for the record due
to the ambiguity.

■ MAP-BINDS copies appropriate #MAPBIND statements for all maps specified in
the @INVOKE statement. (#MAPBIND statements are discussed later in this
chapter.) The @COPY IDMS,MAPS statement must be coded before this

statement in order to generate binds for the map records.

■ DSECT copies the source data description code and source modules defined in
any of the above @COPY IDMS statements into a DSECT. Records can be

individually copied into a DSECT by including the DSECT parameter in each
@COPY IDMS statement. Several records can be copied into a single DSECT by
explicit use of the Assembler DSECT instruction followed by the individual
@COPY IDMS statements; in this case, the DSECT parameter is not specified in

the @COPY IDMS statements. When specifying a DSECT, the program is
responsible for designating the end of the DSECT storage area.

The following example il lustrates the use of the DSECT parameter to create
individual dummy control sections for the IDMS communications block and for a
map request block:

 @MODE MODE=IDMSDC

 @INVOKE SUBSCHEMA=XYZ,SCHEMA=ABC,
 *

 PROGRAM=TESTXYZ,MAP=DEFMAP

* THE FOLLOWING @COPY IDMS STATEMENT COPIES THE SOURCE DATA

* DESCRIPTION CODE FOR THE IDMS COMMUNICATION BLOCK (SUBSCHEMA-CTRL):

 @COPY IDMS,SUBSCHEMA-CTRL,DSECT

* THE DML PRECOMPILER GENERATES THE DSECT INSTRUCTION FOR THE DUMMY

* CONTROL SECTION TO CONTAIN THE SOURCE DATA DESCRIPTION CODE OF THE

* IDMS COMMUNICATIONS BLOCK:

 DSECT

SSCTRL DS

 .

 .

 .

* THE FOLLOWING @COPY IDMS STATEMENT COPIES THE SOURCE DATA

@COPY IDMS

418 DML Reference Guide for Assembler

* DESCRIPTION CODE FOR THE REQUIRED MAP REQUEST BLOCK (MAP-CONTROLS):

 @COPY IDMS,MAP-CONTROL=DEFMAP,DSECT

* THE DML PRECOMPILER GENERATES THE DSECT INSTRUCTION FOR THE DUMMY

* CONTROL SECTION TO CONTAIN THE SOURCE DATA DESCRIPTION CODE FOR

* THE MRB:

 DSECT

 DS

 .

 .

 .

* THE END OF EACH DSECT MUST BE DESIGNATED EITHER BY AN ASSEMBLER

* END, CSECT, OR ANOTHER DSECT INSTRUCTION.

A single DSECT is created for the IDMS communications block, CA IDMS/DB record
descriptions, MRB, and map record description.

 @MODE MODE=IDMSDC

 @INVOKE SUBSCHEMA=XYZ,SCHEMA=ABC, *

 PROGRAM=TESTXYZ,MAP=DEFMAP

* THE FOLLOWING ASSEMBLER DSECT INSTRUCTION IS CODED BY THE

* PROGRAMMER TO DEFINE THE BEGINNING OF A DUMMY CONTROL SECTION:

IDMSSTG DSECT

* COPY STATEMENTS WITHIN A DSECT ENABLE RECORD DESCRIPTIONS TO BE

* COPIED INTO THE DUMMY CONTROL SECTION. NOTE THAT THE DSECT

* PARAMETER IS NOT INCLUDED IN THE @COPY IDMS STATEMENTS:

 @COPY IDMS,SUBSCHEMA-DESCRIPTION

SSCTRL DS

 .

 .

 .

 DS

 .

 .

 @COPY IDMS,MAPS

 DS

 .

#MRB

Chapter 7: DML Precompiler-Directive Statements 419

 .

 .

 DS

 .

 .

 .

* THE END OF THE DSECT MUST BE DESIGNATED BY AN ASSEMBLER END,

* CSECT, OR ANOTHER DSECT INSTRUCTION.

#MRB

The #MRB statement establishes a map request block (MRB) in the program's variable
storage area. It allocates storage, but does not initialize that storage. For each mapping
request, the MRB communicates between the program and the mapping compiler. A

separate MRB must be defined for each map used by a program. The DML precompiler
uses map information stored in the dictionary to determine the actual size of the MRB,
and generates the necessary Assembler DS instructions with macros.

One or more #MRB statements can be copied into the program by using the @COPY
IDMS statement, discussed earlier in this chapter.

Syntax

►►─── #MRB MAPNAME=map-name ──►

 ►─── ,FIELDS=field-count ──►

 ►─── ,RECORDS=record-count ──►◄

Parameters

MAPNAME=map-name

Specifies the 1- to 8-character name of an existing map.

FIELDS=

Specifies the number of data and response fields in the specified map.

field-count

Absolute expression of the number of fields.

RECORDS=

Specifies the number of records in the map.

record-count

Absolute expression of the number of records.

#MAPBIND

420 DML Reference Guide for Assembler

#MAPBIND

For each map request block used by a program, a #MAPBIND request specifies the MRB
location and initializes the fields of the MRB. #MAPBIND statements can be global or
record-specific:

■ Global—By specifying only the map name, the #MAPBIND statement applies to the

map as a whole. It initializes the entire MRB and fi l ls in fields that apply to the map
in general.

■ Record-specific—By specifying RECNAME and RECADDR parameters as well as the
map name, the #MAPBIND statement applies only to the named map record. It

initializes the variable storage address of the named record in the MRB.

A program typically issues a global #MAPBIND statement for each map, followed by
#MAPBIND statements for each map record used by the program. The program can alter
the storage address for a map record at any time by issuing another #MAPBIND

statement for that record.

After the initial global bind, all records are considered unbound; map operations that

use those records will not have any effect on storage. After binding a record to a storage
address, subsequent map operations will use that address to access the record. To
unbind a record, issue a record-specific #MAPBIND statement and specify a null (0) bind

location using the RECADDR parameter.

All global and record-specific #MAPBIND statements for a map can be copied

automatically into the program with the @COPY IDMS statement, discussed earlier in
this chapter.

Syntax

►►─── #MRB MAPNAME=map-name ──►

 ►─── ,FIELDS=field-count ──►

 ►─── ,RECORDS=record-count ──►◄

Parameters

MRB=

Initializes the MRB associated with the named map.

map-name

Specifies the 1- to 8-character name of an existing map.

RECNAME=record-name

Is the 1- to 32-character name of a record used by the map.

@SSCTRL

Chapter 7: DML Precompiler-Directive Statements 421

RECADDR=

Requests that the named record be unbound or specifies the storage address to

which the record will be bound.

0

(Default); specifies that the named record is to be unbound.

record-address

Specifies a register that contains either the address of the area or the symbolic
name of a user-defined field containing the address of the area. Subsequent I/O

operations will use the specified area of storage for any operations dealing with the
record.

@SSCTRL

The @SSCTRL statement is an Assembler macro used to generate source data
description code for the IDMS communications block. @SSCTRL must be used in place of

the @COPY IDMS,SUBSCHEMA-CTRL statement when the DML precompiler is not used.

Syntax

►►─── @SSCTRL ──►◄

Note: To use an IDMS communications block in which the RECORD, AREA, and
ERROR-SET/RECORD/AREA fields are 18 bytes, specify @SSC120 instead.

@SSLRCTL

The @SSLRCTL statement is an Assembler macro instruction that generates source data
description code for the LRC block. @SSLRCTL must be used in place of the @COPY
IDMS,SUBSCHEMA-LR-CTRL statement when the DML precompiler is not used.

Syntax

►►─── @SSLRCTL ─┬───────────────────────────────┬─────────────────────────────►◄
 └─ LRSIZ=lr-control-block-size ─┘

Parameters

LRSIZ=

Specifies the size of that portion of the LRC block that contains information about
the logical-record request's WHERE clause.

@SSLRCTL

422 DML Reference Guide for Assembler

lrc-block-size

Defaults to 576 bytes; if included, it should specify a size large enough to

accommodate the most complex WHERE clause in the program. (For the algorithm
for calculating lrc-block-size, see @COPY IDMS (see page 411) earlier in this
chapter.)

Chapter 8: Considerations for Assembler Programs in a DC/UCF Online System 423

Chapter 8: Considerations for Assembler
Programs in a DC/UCF Online System

Certain coding conventions should be observed in Assembler programs which are to be
used in a DC/UCF online system both for stand-alone programs and programs which are
to be called from another online program. This chapter will discuss the following topics :

■ SVC instructions in an online program

■ Making your assembler program reentrant

■ Methods of call ing an assembler subprogram

Defining an assembler program which uses standard IBM calling conventions

This section contains the following topics:

SVC Instructions in an Online Program (see page 423)
Making Your Assembler Program Reentrant (see page 424)

Methods of Calling an Online Assembler Subprogram (see page 425)
Standard IBM calling conventions (see page 426)

SVC Instructions in an Online Program

You should avoid coding any SVC instructions or macros that generate SVC instructions
in an online DC/UCF assembler program. While an SVC is in control, no other online task

can use the DC/UCF system. This prevents the system from allocating resources
between tasks as it is designed to do. In addition, any error that occurs during the
processing of an SVC instruction can cause a hang or abnormal termination of the entire

DC/UCF system.

If it is absolutely necessary to code such an instruction in an online program, the
program must not be called via a COBOL or PL/I CALL instruction. This restriction is
explained further in later sections of this chapter.

Making Your Assembler Program Reentrant

424 DML Reference Guide for Assembler

Making Your Assembler Program Reentrant

All programs that are designed to run in an online DC environment should be written
using fully reentrant coding techniques. This means that the program should never
update its own storage. Any variable storage that your program needs to update should
be in an area reserved for the exclusive use of a single task. Typically, you would define

a DSECT to map this area. Several techniques can be used to achieve this goal. Two or
more of these techniques can be combined in a single program.

■ Specify ISASIZE on the PROGRAM statement in the DC Sysgen. On entry to your
program, register 11 will be set to point to an area of this size reserved for the use

of your program.

■ On entry to your program, code a #GETSTG ...PLIST=*,LENGTH=constant.... This
form of the #GETSTG macro does not update any program variable storage. The

sample program in Appendix C of this manual uses this technique.

■ An assembler subprogram can use storage passed to it from its caller provided that
storage is itself reentrant.

■ If one of the above techniques is used to obtain enough storage for a PLIST, then a
more generic form of the #GETSTG macro can be used to obtain further variable

storage.

■ Specify SAVEAREA on the PROGRAM statement in the DC Sysgen. See section 7.4
below for more information.

A non-reentrant assembler routine can be used in an online DC environment under
certain l imited circumstances, but this is not recommended for reasons explained

below.

■ A non-reentrant stand-alone assembler program, i.e., an assembler program which
is l inked as its own load module or phase, can be invoked directly from a TASK
CODE or can be called via a high level language TRANSFER CONTROL, a #LINK from
another assembler program or a LINK PROGRAM from an ADS dialog. Such a

program must be defined in the DC/UCF Sysgen as non-reentrant. Note that this will
cause separate copies of the load module to be loaded for every concurr ent task
using the program. This is generally highly inefficient.

■ A non-reentrant assembler subprogram can be called via a dynamic or static COBOL
CALL verb, or a PL/I CALL verb if all of the following conditions are met:

– The subprogram does not issue any SVC or PC calls. Note that many IBM

macros generate such calls.

– The subprogram does not issue any DML calls.

– Multitasking is not in effect on the DC/UCF system.

This technique is not recommended because a small change in the program or

online environment may cause the program to stop functioning correctly and
potentially allow it to cause storage and data corruption.

Methods of Calling an Online Assembler Subprogram

Chapter 8: Considerations for Assembler Programs in a DC/UCF Online System 425

Methods of Calling an Online Assembler Subprogram

TRANFER CONTROL, #LINK, or ADS LINK

The preferred method for call ing an assembler subprogram is a TRANSFER CONTROL
from COBOL or PL/I, a #LINK from another assembler program, or a LINK instruction

from ADS. If this method of control is used, the DC/UCF system is in control of the
call ing process. This method provides the following advantages:

■ If an error occurs in the subprogram, system error messages will reflect the correct
program name.

■ Any limits set for that program will be taken into account

■ SVC screening will be turned off. This is imperative if the subprogram issues any SVC
instructions and it is called from a COBOL or PL/I program.

COBOL or PL/I CALL

It is valid to call a stand-alone assembler subprogram via a CALL IDENTIFIER from a
COBOL program or CALL from a PL/I program provided that the program does not issue
any SVC instructions. An assembler subprogram can al so be link edited in the same load

module with its caller provided that it does not issue any SVC instructions or DML calls.
The DC/UCF system will not be aware that the subprogram has been called. So any limits
or system-generated error messages will not reflect the call.

A COBOL or PL/I CALL may use somewhat less CPU than a TRANSFER CONROL DML verb.

Therefore, it may be desirable to use this technique if a qualified subprogram is called
many times in the same task.

Assembler LINK macro

It is never valid to use the assembler LINK macro in an online assembler program. This

macro generates an SVC that is incompatible with DC/UCF online processing. An
abnormal termination of the DC/UCF system may occur.

Standard IBM calling conventions

426 DML Reference Guide for Assembler

Standard IBM calling conventions

An assembler program that is written using standard IBM calling conventions can be
used as a top-level program or a subprogram in a DC/UCF online sys tem. Such a
program will typically issue an instruction to save its registers in an area pointed to by
General Register 13 on entry. The following conventions must be observed:

■ If the program is a top-level program or is invoked via a TRANSFER CONTROL, #LINK
or ADS LINK, then the SAVEAREA parameter must be specified on the PROGRAM
statement in the DC/UCF Sysgen. SAVEREA is not needed if the program is invoked
via a COBOL or PL/I CALL, but the SAVEAREA parameter will not cause a problem if

it is specified.

■ If the program sets register 13 to point at its own save area and stores into it, then
the save area must be in reentrant storage obtained using one of the methods

described in section 7.3.

Appendix A: DML Precompile, Assembly, and Link-Edit JCL 427

Appendix A: DML Precompile, Assembly,
and Link-Edit JCL

This appendix describes processing for Assembler programs containing DML statements.
It also provides samples of the z/OS, z/VSE and CMS, commands you use to prepare
these programs.

Processing Assembler Programs Containing DML

To prepare a DML program for execution, you first execute the DML precompiler
(IDMSDMLA). After this, you assemble and link edi t.

Component Input Output

IDMSDMLA ■ Assembler source
program containing DML

■ Protocol/control
information

■ Dictionary record
descriptions

■ Source Assembler program
with DML-generated code

■ DML and source listing and
diagnostics

Assembler Source program produced by

IDMSDMLA
■ Object program

■ Assembler l isting

Linkage Editor Object program produced by
assembler

■ Load module

■ Link-edit map

Standard IBM calling conventions

428 DML Reference Guide for Assembler

Steps for Assembly

The following figure il lustrates steps involved in assembling a DML Assembler program.

This section contains the following topics:

IDMSDMLA Under z/OS (see page 429)
IDMSDMLA Under z/VSE (see page 436)
IDMSDMLA Under CMS (see page 447)

Link-Edit Considerations (see page 450)

IDMSDMLA Under z/OS

Appendix A: DML Precompile, Assembly, and Link-Edit JCL 429

IDMSDMLA Under z/OS

Executing Under the Central Version IDMSDMLA (z/OS)

//***

//** PRECOMPILE PROGRAM **

//***

//precomp EXEC PGM=IDMSDMLA,REGION=1024K

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.custom.loadlib,DISP=SHR

// DD DSN=idms.cagjload,DISP=SHR

//sysctl DD DSN=idms.sysctl,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//SYSPCH DD DSN=&.&source.,DISP=(NEW,PASS),

// UNIT=disk,SPACE=(TRK,(10,5),RLSE),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)

//SYSLST DD SYSOUT=A

//SYSIDMS DD *

DMCL=dmcl-name

DICTNAME=dictionary-name

Other SYSIDMS parameters, as appropriate

/*

//SYSIPT DD *

Assembler DML source statements

/*

//***

//** ASSEMBLE PROGRAM **

//***

//asm EXEC PGM=assembler,REGION=1024K,PARM='DECK,LIST,NOLOAD'

//SYSPRINT DD SYSOUT=A

//SYSLIB DD DSN=sys1.maclib,DISP=SHR

// DD DSN=yourHLQ.CAGJMAC,DISP=SHR

//SYSUT1 DD UNIT=disk,SPACE=(CYL,(3,2))

//SYSUT2 DD UNIT=disk,SPACE=(CYL,(3,2))

//SYSUT3 DD UNIT=disk,SPACE=(CYL,(3,2))

//SYSPUNCH DD DSN=&.&object.,DISP=(NEW,PASS),

// UNIT=disk,SPACE=(TRK,(10,5),RLSE),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)

IDMSDMLA Under z/OS

430 DML Reference Guide for Assembler

//SYSIN DD DSN=&.&source.,DISP=(OLD,DELETE)

//***

//** LINK PROGRAM MODULE **

//***

//link EXEC PGM=IEWL,REGION=300K,PARM='LET,LIST,NCAL,XREF'

//SYSUT1 DD UNIT=disk,SPACE=(TRK,(20,5))

//loadlib DD DSN=idms.loadlib,DISP=SHR

//SYSLMOD DD DSN=user.loadlib,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSLIN DD DSN=&.&object.,DISP=(OLD,DELETE)

// DD *

 INCLUDE loadlib(IDMS) required for BATCH and DCBATCH, omit for CICS

 INCLUDE loadlib (IDMSCINT) for CICS only

 INCLUDE loadlib(IDMSCANC) optional; BATCH and DCBATCH only

 INCLUDE loadlib(IDMSOPTI) optional; BATCH and DCBATCH only

 ENTRY userentry

 NAME userprog(R)

/*

//*

idms.dba.loadlib

Data set name of the load library containing the DMCL and database name table
load modules

idms.custom.loadlib

Data set name of the load library containing the customized CA IDMS executable
modules

idms.cagjload

Data set name of the load library containing the vanilla CA IDMS executable
modules

sysctl

DDname of SYSCTL fi le

idms.sysctl

Data set name of SYSCTL fi le

dcmsg

DDname of the system message (DDLDCMSG) area

idms.sysmsg.ddldcmsg

Data set name of the system message (DDLDCMSG) area

&.&source

Name of the temporary data set output from the precompiler

IDMSDMLA Under z/OS

Appendix A: DML Precompile, Assembly, and Link-Edit JCL 431

disk

Symbolic device name for work fi les

dmcl-name

specifies the name of the dictionary the DMLF precompiler should access

dictionary-name

Identifies the DC/UCF system to bind at runtime

assembler

Name of the assembler program

sys1.maclib

Vendor-supplied system macro library

yourHLQ.CAGJMAC

Vendor-supplied idms macro library, created at installation time

&.&object.

Name of temporary data set output from Assembler

user.loadlib

User application load library

loadlib

DDname of the idms.loadlib

userentry

Name of a program entry point

userprog

Name of program in load library

Note: Depending on the central version operating environment, an IDMSOPTI module
l ink edited with IDMSDMLA can be used in place of or in addition to the SYSCTL fi le.

The link of CICS application programs that use IDMSCINT must incorporate JCL to resolve
external reference DFHEI1. The particular JCL depends on the nature and language of

your application. See the appropriate IBM CICS application programming
documentation for details.

IDMSDMLA Under z/OS

432 DML Reference Guide for Assembler

Executing in Local Mode IDMSDMLA (z/OS)

//***

//** PRECOMPILE PROGRAM **

//***

//precomp EXEC PGM=IDMSDMLA,REGION=1024K

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.custom.loadlib,DISP=SHR

// DD DSN=idms.cagjload,DISP=SHR

//dictb DD DSN=idms.appldict.ddldml,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//sysjrnl DD DSN=idms.tapejrnl,DISP=(NEW,CATLG),UNIT=tape

//SYSPCH DD DSN=&.&source.,DISP=(NEW,PASS),

// UNIT=disk,SPACE=(TRK,(10,5),RLSE),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)

//SYSLST DD SYSOUT=A

//SYSIDMS DD *

DMCL=dmcl-name

DICTNAME=dictionary-name

Other SYSIDMS parameters, as appropriate

/*

//SYSIPT DD *

Assembler DML source statements

/*

//***

//** ASSEMBLE PROGRAM **

//***

//asm EXEC PGM=assembler,REGION=1024K,PARM='DECK,LIST,NOLOAD'

//SYSPRINT DD SYSOUT=A

//SYSLIB DD DSN=sys1.maclib,DISP=SHR

// DD DSN=idms.cagjmac,DISP=SHR

//SYSUT1 DD UNIT=disk,SPACE=(CYL,(3,2))

//SYSUT2 DD UNIT=disk,SPACE=(CYL,(3,2))

//SYSUT3 DD UNIT=disk,SPACE=(CYL,(3,2))

//SYSPUNCH DD DSN=&.&object.,DISP=(NEW,PASS),

// UNIT=disk,SPACE=(TRK,(10,5),RLSE),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)

//SYSIN DD DSN=&.&source.,DISP=(OLD,DELETE)

//***

//** LINK PROGRAM MODULE **

//***

IDMSDMLA Under z/OS

Appendix A: DML Precompile, Assembly, and Link-Edit JCL 433

//link EXEC PGM=IEWL,REGION=300K,PARM='LET,LIST,NCAL,XREF'

//SYSUT1 DD UNIT=disk,SPACE=(TRK,(20,5))

//VANILLA DD DSN=idms.cagjload,DISP=SHR

//CUSTOM DD DSN=idms.custom.loadlib,DISP=SHR

//SYSLMOD DD DSN=idms.custom.loadlib,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSLIN DD DSN=&.&object.,DISP=(OLD,DELETE)

// DD *

 INCLUDE VANILLA(IDMS) required for BATCH and DCBATCH, omit for CICS

 INCLUDE CUSTOM(IDMSCINT) for CICS only

 INCLUDE CUSTOM(IDMSOPTI) optional; BATCH and DCBATCH only

 ENTRY userentry

 NAME userprog(R)

/*

//*

IDMSDMLA Under z/OS

434 DML Reference Guide for Assembler

idms.dba.loadlib

Data set name of the load library containing the DMCL and database name table

load modules

idms.custom.loadlib

Data set name of the load library containing the customized CA IDMS executable

modules

idms.cagjload

Data set name of the load library containing the vanilla CA IDMS executable
modules

dictb

DDname of journal fi le

idms.appldict.ddldml

File-ID of the application dictionary definition (DDLDML) area

dcmsg

Filename of the system message (DDLDCMSG) area

idms.sysmsg.ddldcmsg

File-ID of the system message (DDLDCMSG) area

sysjrnl

DDname of the tape journal fi le

idms.tapejrnl

File ID of tape journal fi le

tape

Device name for the tape journal fi le

&.&source.

Name of the temporary data set output from the precompiler

disk

Symbolic device name for work fi les

IDMSDMLA Under z/OS

Appendix A: DML Precompile, Assembly, and Link-Edit JCL 435

dmcl-name

Specifies the name of the dictionary the DMLF precompiler should access

dictionary-name

Identifies the DC/UCF system to bind at runtime

assembler

Name of the assembler program

sys1.maclib

Vendor-supplied system macro library

idms.cagjmac

Vendor-supplied idms macro library, supplied at installation time

&.&object.

Name of temporary data set output from Assembler

user.loadlib

User application load library

VANILLA

DDname for the loadlib created during the SMP/E install

CUSTOM

DDname for the loadlib created during configuration

userentry

Name of a program entry point

userprog

Name of program in load library

IDMSDMLA Under z/VSE

436 DML Reference Guide for Assembler

IDMSDMLA Under z/VSE

Executing Under the Central Version IDMSDMLA (z/VSE)

/**

/** PRECOMPILE PROGRAM **

/**

* step1

// EXEC PROC=IDMSLBLS

// UPSI b if specified in IDMSOPTI module

// DLBL idmspch,'temp.dmla',0

// EXTENT SYS020,nnnnnn,,,ssss,llll

// ASSGN SYS020,DISK,VOL=nnnnnn,SHR

// EXEC IDMSDMLA

Input SYSIDMS parameters here, as required

/*

Assembler/DML source statements

/**

/** COMPILE PROGRAM **

/**

/*

* step2

// DLBL IJSYSIN,'temp.dmla',0

// EXTENT SYSIPT,nnnnnn

 ASSGN SYSIPT,DISK,VOL=nnnnnn,SHR

// OPTION CATAL,NODECK,NOSYM

 PHASE userprog,*

// EXEC ASSEMBLY

/**

/** LINK PROGRAM MODULE **

/**

* step3

 CLOSE SYSIPT,SYSRDR

ENTRY (dmla)

// EXEC LNKEDT

/*

IDMSDMLA Under z/VSE

Appendix A: DML Precompile, Assembly, and Link-Edit JCL 437

IDMSLBLS

Name of the procedure provided at ins tallation that contains the fi le definitions for

CA IDMS dictionaries and databases.

Note: For a complete l isting of IDMSLBLS, see "IDMSLBLS Procedure".

b

Appropriate UPSI switch, 1 through 8 characters, if specified in the IDMSOPTI
module

idmspch

Filename of data set output from the IDMSDMLA precompiler

temp.dmla

File ID of data set output from the IDMSDMLA precompiler

SYS020

Logical unit assignment of the DMLA output

nnnnnn

Volume serial identifier of appropriate disk volume

ssss

Starting track (CKD) or block (FBA) of disk extent

llll

Number of tracks (CKD) or blocks (FBA) of disk extent

userprog

Name of program in the library

dmla

Name of Assembler/DML module

Runtime Parameters

You can use SYSIDMS parameters to specify information about your runtime

environment.

IDMSDMLA Under z/VSE

438 DML Reference Guide for Assembler

Note: For more information about optional SYSIDMS parameters, see the Common
Facilities Guide.

INCLUDE Statements

For programs that include an Assembler internal sort, place the following statements in
the second step, before EXEC ASSEMBLY:

 ACTION NOAUTO prevents multiple inclusions of IDMS

 INCLUDE IDMS IDMS interface for use with COMRG

 INCLUDE IDMSOPTI IDMSOPTI module

 (omit in local mode)

 INCLUDE IDMSCANC local mode abort entry point

 (omit IDMSCANC if TP application)

Note: Assembler overlay programs must resolve references to IDMS within their root
segment; care must be taken to prevent the overlaying of the IDMS interface. Use of
IDMS and IDMSLDPT is recommended for these programs.

Executing in Local Mode

To execute the IDMSDMLA precompiler in local mode, remove the UPSI specification

and add the following statements in step 1 (the IDMSDMLA step):

// TLBL sysjrnl,'idms.tapejrnl',,nnnnnn,,f

// ASSGN SYS009,TAPE,VOL=nnnnnn

idms.tapejrnl

File ID of tape journal fi le

f

File number of tape journal fi le

sys009

Logical unit assignment for journal fi le

IDMSLBLS Procedure

The IDMSLBLS procedure is provided during CA IDMS installation. It contai ns fi le

definitions for the CA IDMS components, such as these:

■ Dictionaries

■ Sample databases

IDMSDMLA Under z/VSE

Appendix A: DML Precompile, Assembly, and Link-Edit JCL 439

■ Disk journal fi les

■ SYSIDMS fi le

Tailor the IDMSLBLS procedure to reflect the fi lenames and definitions in use at your

site and include this procedure in z/VSE JCL job streams.

IDMSDMLA Under z/VSE

440 DML Reference Guide for Assembler

The following is a l isting of the IDMSLBLS procedure:
* ----------- LIBDEFS -----------

// LIBDEF *,SEARCH=idmslib.sublib

// LIBDEF *,CATALOG=user.sublib

/* --------------------- LABELS -----------------------

// DLBL idmslib,'idms.library',1999/365

// EXTENT ,nnnnnn,,,ssss,1500

// DLBL dcdml,'idms.system.ddldml',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,101

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dclod,'idms.system.ddldclod',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,21

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dclog,'idms.system.ddldclog',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,401

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcrun,'idms.system.ddldcrun',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,68

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcscr,'idms.system.ddldcscr',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,135

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcmsg,'idms.sysmsg.ddldcmsg',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,201

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dclscr,'idms.sysloc.ddlocscr',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dirldb,'idms.sysdirl.ddldml',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,201

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dirllod,'idms.sysdirl.ddldclod',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,2

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL empdemo,'idms.empdemo1',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,11

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL insdemo,'idms.insdemo1',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL orgdemo,'idms.orgdemo1',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL empldem,'idms.sqldemo.empldemo',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,11

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL infodem,'idms.sqldemo.infodemo',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

IDMSDMLA Under z/VSE

Appendix A: DML Precompile, Assembly, and Link-Edit JCL 441

// DLBL projdem,'idms.projseg.projdemo',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL indxdem,'idms.sqldemo.indxdemo',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sysctl,'idms.sysctl',1999/365,SD

// EXTENT SYSnnn,nnnnnn,,,ssss,2

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL secdd,'idms.sysuser.ddlsec',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,26

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dictdb,'idms.appldict.ddldml',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,51

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dloddb,'idms.appldict.ddldclod',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,51

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sqldd,'idms.syssql.ddlcat',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,101

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sqllod,'idms.syssql.ddlcatl',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,51

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sqlxdd,'idms.syssql.ddlcatx',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,26

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asfdml,'idms.asfdict.ddldml',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,201

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

IDMSDMLA Under z/VSE

442 DML Reference Guide for Assembler

// DLBL asflod,'idms.asfdict.asflod',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,401

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asfdata,'idms.asfdict.asfdata',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,201

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL ASFDEFN,'idms.asfdict.asfdefn',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,101

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j1jrnl,'idms.j1jrnl',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j2jrnl,'idms.j2jrnl',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j3jrnl,'idms.j3jrnl',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL SYSIDMS,'#SYSIPT',0,SD

/+

/*

idmslib.sublib

Name of the sublibrary within the library containing CA IDMS modules

user.sublib

Name of the sublibrary within the library containing user modules

idmslib

Filename of the fi le containing CA IDMS modules

idms.library

File-ID associated with the fi le containing CA IDMS modules

SYSnnn

Logical unit of the volume for which the extent is effective

nnnnnn

Volume serial identifier of appropriate disk volume

ssss

Starting track (CKD) or block (FBA) of disk extent

dccat

Filename of the system dictionary catalog (DDLCAT) area

IDMSDMLA Under z/VSE

Appendix A: DML Precompile, Assembly, and Link-Edit JCL 443

idms.system.dccat

File-ID of the system dictionary catalog (DDLCAT) area

dccatl

Filename of the system dictionary catalog load (DDLCATLOD) area

idms.system.dccatlod

File-ID of the system dictionary catalog load (DDLCATLOD) area

dccatx

Filename of the system dictionary catalog index (DDLCATX) area

idms.system.dccatx

File-ID of the system dictionary catalog index (DDLCATX) area

dcdml

Filename of the system dictionary definition (DDLDML) area

idms.system.ddldml

File-ID of the system dictionary definition (DDLDML) area

dclod

Filename of the system dictionary definition load (DDLDCLOD) area

idms.system.ddldclod

File-ID of the system dictionary definition load (DDLDCLOD) area

dclog

Filename of the system log area (DDLDCLOG) area

idms.system.ddldclog

File-ID of the system log (DDLDCLOG) area

dcrun

Filename of the system queue (DDLDCRUN) area

idms.system.ddldcrun

File-ID of the system queue (DDLDCRUN) area

dcscr

Filename of the system scratch (DDLDCSCR) area

idms.system.ddldcscr

File-ID of the system scratch (DDLDCSCR) area

dcmsg

Filename of the system message (DDLDCMSG) area

IDMSDMLA Under z/VSE

444 DML Reference Guide for Assembler

idms.sysmsg.ddldcmsg

File-ID of the system message (DDLDCMSG) area

dclscr

Filename of the local mode system scratch (DDLOCSCR) area

idms.sysloc.ddlocscr

File-ID of the local mode system scratch (DDLOCSCR) area

dirldb

Filename of the IDMSDIRL definition (DDLDML) area

idms.sysdirl.ddldml

File-ID of the IDMSDIRL definition (DDLDML) area

dirllod

Filename of the IDMSDIRL definition load (DDLDCLOD) area

idms.sysdirl.dirllod

File-ID of the IDMSDIRL definition load (DDLDCLOD) area

empdemo

Filename of the EMPDEMO area

idms.empdemo1

File-ID of the EMPDEMO area

insdemo

Filename of the INSDEMO area

idms.insdemo1

File-ID of the INSDEMO area

orgdemo

Filename of the ORGDEMO area

idms.orgdemo1

File-ID of the ORDDEMO area

empldem

Filename of the EMPLDEMO area

idms.sqldemo.empldemo

File-ID of the EMPLDEMO area

IDMSDMLA Under z/VSE

Appendix A: DML Precompile, Assembly, and Link-Edit JCL 445

infodem

Filename of the INFODEMO area

idms.sqldemo.infodemo

File-ID of the INFODEMO area

projdem

Filename of the PROJDEMO area

idms.projseg.projdemo

File-ID of the PROJDEMO area

indxdem

Filename of the INDXDEMO area

idms.sqldemo.indxdemo

File-ID of the INDXDEMO area

sysctl

Filename of the SYSCTL fi le

idms.sysctl

File-ID of the SYSCTL fi le

secdd

Filename of the system user catalog (DDLSEC) area

idms.sysuser.ddlsec

File-ID of the system user catalog (DDLSEC) area

dictdb

Filename of the application dictionary definition area

idms.appldict.ddldml

File-ID of the application dictionary definition (DDLDML) area

dloddb

Filename of the application dictionary definition load area

idms.appldict.ddldclod

File-ID of the application dictionary definition load (DDLDCLOD) area

sqldd

Filename of the SQL catalog (DDLCAT) area

idms.syssql.ddlcat

File-ID of the SQL catalog (DDLCAT) area

IDMSDMLA Under z/VSE

446 DML Reference Guide for Assembler

sqllod

Filename of the SQL catalog load (DDLCATL) area

idms.syssql.ddlcatl

Filename of the SQL catalog index (DDLCATX) area

sqlxdd

File name of the SQL catalog index (DDLCATX) area

idms.syssql.ddlcatx

File-ID of the SQL catalog index (DDLCATX) area

asfdml

Filename of the asf dictionary definition (DDLDML) area

idms.asfdict.ddldml

File-ID of the asf dictionary definition (DDLDML) area

asflod

Filename of the asf dictionary definition load (ASFLOD) area

idms.asfdict.asflod

File-ID of the asf dictionary definition load (ASFLOD) area

asfdata

Filename of the asf data (ASFDATA) area

idms.asfdict.asfdata

File-ID of the asf data area (ASFDATA) area

ASFDEFN

Filename of the asf data definition (ASFDEFN) area

idms.asfdict.asfdefn

File-ID of the asf data definition area (ASFDEFN) area

j1jrnl

Filename of the first disk journal fi le

idms.j1jrnl

File-ID of the first disk journal fi le

j2jrnl

Filename of the second disk journal fi le

IDMSDMLA Under CMS

Appendix A: DML Precompile, Assembly, and Link-Edit JCL 447

idms.j2jrnl

File-ID of the second disk journal fi le

j3jrnl

Filename of the third disk journal fi le

idms.j3jrnl

File-ID of the third disk journal fi le

SYSIDMS

Filename of the SYSIDMS parameter fi le

IDMSDMLA Under CMS

Executing Under the Central Version IDMSDMLA (CMS)
FILEDEF SYSIPT DISK sysipt data a (RECFM F LRECL ppp BLKSIZE nnn

FILEDEF SYSPCH DISK prgnme assemble a

FILEDEF SYSIDMS DISK sysidms parms a (RECFM F LRECL ppp. BLKSIZE nnn

EXEC IDMSFD

OSRUN IDMSDMLA PARM='CVMACH=vmid' Precompiler step

FILEDEF TEXT DISK prgnme text a

GLOBAL TXTLIB asmlibvs IDMSLIB1

ASSEMBLE prgnme (OSDECK APOST LIB Assemble step

TXTLIB DEL utextlib prgnme

TXTLIB ADD utextlib prgnme

FILEDEF SYSLMOD uloadlib loadlib a (RECFM V LRECL 1024 BLKSIZE 10 24

FILEDEF objlib DISK utextlib txtlib a

FILEDEF SYSLIB DISK asmlibvs txtlib p

LKED linkctl data a (LIST XREF LET MAP RENT NOTERM PRINT SIZE 512K 64K

 Link edit step

sysipt data a

Filename, type, and mode of the fi le containing the Assembler/DML source
statements

ppp

Record length of the data fi le

nnn

Block size of the data fi le

prgnme assemble a

Filename of the Assembler program

IDMSDMLA Under CMS

448 DML Reference Guide for Assembler

sysidms parms a

Filename, fi letype, and fi lemode of the fi le that contains SYSIDMS parameters

(parameters that define your runtime environment)

vmid

ID of the virtual machine running the CA IDMS/DB central version

asmlibvs

Filename of the library that contains Assembler logic modules

utextlib

Filename of the user text l ibrary

uloadlib loadlib a

Filename, fi letype, and fi lemode of the user load library

objlib1

DDname of the first CA IDMS/DB object l ibrary

objlib

DDname of the user object l ibrary

asmlibvs txtlib p

Filename, fi letype, and fi lemode of the library that contains Assembler logic

modules

linkctl

Filename of the fi le that contains the linkage editor control statements

IDMSDMLA Under CMS

Appendix A: DML Precompile, Assembly, and Link-Edit JCL 449

How to Edit the SYSIDMS File

To edit the SYSIDMS fi le, enter these CMS commands:

XEDIT sysidms parms a (NOPROF

INPUT

 .

 .

 .

SYSIDMS parameters

 .

 .

 .

FILE

To run IDMSDMLA, you must include the NODENAME and DICTNAME SYSIDMS
parameters.

Note: For more information on SYSIDMS, see the Common Facilities Guide.

How to Create the SYSIPT File

To create the SYSIPT fi le, enter these CMS commands:

XEDIT sysipt data a (NOPROF

INPUT

 .

 .

 .

DML source statements

 .

 .

 .

FILE

Link-Edit Considerations

450 DML Reference Guide for Assembler

How to Create the LINKCTL File

To create the LINKCTL fi le, enter these CMS commands:

XEDIT linkctl data a (NOPROF

INPUT

 .

 .

 .

INCLUDE objlib(prgnme)

INCLUDE objlib1(IDMS) IDMS is required, omit for CICS

INCLUDE objlib1(IDMSCINT) for CICS only

INCLUDE objlib1(IDMSCANC) IDMSCANC for BATCH and DCBATCH

ENTRY prgnme

NAME prgnme(R)

 .

 .

 .

FILE

Executing in Local Mode

To execute the IDMSDMLA precompiler in local mode, remove the CVMACH parameter
from OSRUN, and do one of the following:

■ Link IDMSDMLA with an IDMSOPTI program that specifies local execution mode

■ Specify *LOCAL* as the first input parameter in the fi le specified in the FILEDEF

SYSIPT statement

■ Modify the OSRUN statement, as follows:

OSRUN IDMSDMLA PARM='*LOCAL*'

Note: This option is valid only if the OSRUN command is issued from a System

Product Interpreter or from an EXEC2 fi le.

Link-Edit Considerations

The modules involved in the link edit of an application program contain six external
references. Some must be resolved depending on the mode of operation. The following
table l ists and explains the external references; unresolved references should be

checked against this table to ensure proper l inkage to the program.

Reference Referenced by Resolved by Comments

ABORT Application
Program

IDMSCANC Should be resolved

Link-Edit Considerations

Appendix A: DML Precompile, Assembly, and Link-Edit JCL 451

Reference Referenced by Resolved by Comments

IDCSACON Application

Program

IDMSBALI Must be resolved;

alternatively, include the
#BALI macro in the
application program if you

use the #RETURN macro

IDMS Application
Program

IDMS Must be resolved

IDMSOPTI* IDMS IDMSOPTI

module

Must be resolved under

z/OS if using the central
version without a SYSCTL
fi le, and under z/VSE if using
the central version

.IDMSWAIT* IDMS IDMSWAIT Must be resolved if
user-written wait program is
desired; otherwise, system

routine is used

* Under z/OS , IDMSOPTI is a weak external reference (WXTRN)

Appendix B: Sample CA IDMS/DB Batch Program 453

Appendix B: Sample CA IDMS/DB Batch
Program

This appendix contains a sample batch Assembler program that accesses database
records using navigational DML statements. The sample program shown performs the
following:

Performs an area sweep of the ORG-DEMO region for office records

Walks the OFFICE-EMPLOYEE set

■ Uses a junction record (EMPLOYEE)

■ Walks the DEPT-EMPLOYEE set

■ Tests database conditions

This section contains the following topics:

Input to the Precompiler (see page 454)

Output from the Precompiler (see page 457)
Output from the Assembler (see page 467)

Input to the Precompiler

454 DML Reference Guide for Assembler

Input to the Precompiler

The following il lustrates a sample batch program as input to the DML precompiler.

Input to the Precompiler

Appendix B: Sample CA IDMS/DB Batch Program 455

*RETRIEVAL

*DMLIST
*NO-ACTIVITY-LOG

R0 EQU 0

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R10 EQU 10

R11 EQU 11

R12 EQU 12

R13 EQU 13
R14 EQU 14

R15 EQU 15

 SPACE 1
* ENTER FROM NEXT HIGHER LEVEL

 SPACE 1

 PRINT GEN ASSEMBLER PRINT OPTIONS
SYBPG2 CSECT

 LR R12,R15 ESTABLISHES REGISTER 12 AS THE

 USING SYBPG2,R12 BASE REGISTER
 USING STORAGE,R10 ESTABLISH ADDRESSABILITY OF DSECT

 B PROCESS BRANCH TO FIND INVOKING TASKCODE

 EJECT
 @INVOKE MODE=IDMSDC,MAP=SYBMAP

* OPERATING MODE: IDMS DC/MAPPING

 EJECT
 SPACE 1

RETURN DS 0H

 #FREESTG STGID='SYB4' FREE THE STORAGE ACQUIRED EARLIER
 #RETURN RETURN TO HIGHER LEVEL

 SPACE 1

RETURNXT DS 0H
 #RETURN NXTTASK=SYBTSK03 PASS CONTROL BACK TO ITSELF

 SPACE 1

* MAINLINE PROGRAM
 SPACE 1

PROCESS DS 0H

 #GETSTG TYPE=(USER,LONG,KEEP),PLIST=*,LEN=STORLGTH, *
 STGID='SYB4',COND=(ALL),ERROR=ERRORTN,ADDR=(R10), *

 INIT=X'40'

* ACQUIRE VARIABLE STORAGE

 SPACE 1

 #MAPBIND MRB=SYBMAP BIND MAP AND RECORDS

 #MAPBIND MRB=SYBMAP,RECNAME=SYBREC

 SPACE 1

ACCEPTSK #ACCEPT TYPE=TASKCODE,FIELD=TASKCODE

* ACCEPT TASK CODE TO INVOKE TASK

 CLC TASKCODE,SYBTSK2 FIRST TIME CALLED ?

 BNE RECCUR YES - OUTPUT FIRST SCREEN

* NO - INPUT DATA FROM SCREEN

FIRSTIME DS 0H

 MVC SYBDEPID,=C'0000' PRIME DATA FIELD

 SPACE
 #MREQ OUT,MRB=SYBMAP,OPTNS=(NEWPAGE),ERROR=ERRORTN, *

 COND=(ALL)

* MAP OUT PROMPT
 SPACE

 B RETURNXT EXIT & WAIT FOR OPERATOR RESPONSE

 SPACE 2
RECCUR DS 0H

 #MREQ IN,MRB=SYBMAP,ERROR=ERRORTN,COND=(ALL)

* MAP IN TERMINAL INPUT
 SPACE 1

 #MAPINQ MRB=SYBMAP,AID=AIDBYTE

* MOVE MAP DATA TO PROG VARIABLE STG
 CLI AIDBYTE,CLEAR DID THE OPERATOR REQUEST FINISH?

 BE RETURN YES - EXIT PGM, BACK TO IDMS DC

Input to the Precompiler

456 DML Reference Guide for Assembler

 SPACE

 #MREQ OUT,MRB=SYBMAP,ERROR=ERRORTN, *

 COND=(ALL)

* MAP OUT DATA

 SPACE
 B RETURNXT EXIT & WAIT FOR OPERATOR RESPONSE

* NO - MAPOUT, WAIT ON OPERATOR

ERRORTN DS 0H HERE FOR NONZERO RETURN CODE
 #SNAP AREA=(SYBMAP,SYBMAPLN)

 B RETURN EXIT

CLEAR EQU X'6D' CLEAR AIDBYTE VALUE
SYBTSK2 DC CL8'SYBTSK2 ' DC TASK INVOKING VALUE (EXTERNAL)

SYBTSK03 DC CL8'SYBTSK03' DC TASK INVOKING VALUE (INTERNAL)

 LTORG
 #BALI

 SPACE 2

**
STORAGE DSECT STORAGE DSECT

 @COPY IDMS,MAP-CONTROL=SYBMAP

SYBMAPLN EQU *-SYBMAP LENGTH OF #MRB FOR SNAP
 SPACE 1

 @COPY IDMS,MAP-RECORDS

 SPACE 1
SYSPLIST DS 20F MAP OUT PARAMETER LIST AREA

TASKCODE DS CL8 TASK CODE WHICH INVOKED PROGRAM

AIDBYTE DS X ATTENTION IDENTIFIER BYTE
 DS 3X RESERVED

STORLGTH EQU *-STORAGE TOTAL LENGTH OF STORAGE NEEDED

 SPACE 1
 END SYBPG2

Output from the Precompiler

Appendix B: Sample CA IDMS/DB Batch Program 457

Output from the Precompiler

The following il lustrates the sample batch program as output from the DML
precompiler.

Output from the Precompiler

458 DML Reference Guide for Assembler

*DMLIST

SAMPLE1 START #REGEQU
 STM R14,R12,12(R13)

 LR R12,R15

 USING SAMPLE1,R12,R11,R10

 LR R11,R12

 LA R11,4095(R11)

 LA R11,1(R11)

 LA R10,4095(R11)

 LA R10,1(R10)

 ST R13,SAVEAREA+4

 LA R7,SAVEAREA

 ST R7,8(R13)

 LA R13,SAVEAREA

 B BEGIN

 @MODE MODE=BATCH,DEBUG=YES

* @INVOKE SUBSCH=EMPSS01,SCHEMA=EMPSCHM,VERSION=100
* @COPY IDMS,SUBSCHEMA-CTRL

 DS 0D

SSCTRL DS 0CL216
PGMNAME DC CL8' '

ERRSTAT DC CL4'1400'

DBKEY DS FL4
RECNAME DC CL16' '

AREANAME DC CL16' '

ERRORSET DC CL16' '
ERRORREC DC CL16' '

ERRAREA DC CL16' '

SSCIDBCM DS 0CL100
IDBMSCOM DS 100CL1

 ORG SSCIDBCM

RDBMSCOM DS 0CL100
PGINFO DS 0CL4

PGINFGRP DS HL2

PGINFDBK DS HL2
 DS CL96

DIRDBKEY DC FL4'0'

DBSTATUS DS 0CL8
DBSTMTCD DS CL2

DBSTATCD DS CL5

 DS CL1
RECOCCUR DC FL4'0'

DMLSEQ DC FL4'0'

**
* @COPY IDMS,SUBSCHEMA-RECORDS

 DS 0D

STRUCTUR DS 0CL12

STRCODE DS CL2

ADMIN EQU C'A'

PROJECT EQU C'P1'

STRDATE DS 0CL8

STRYEAR DS CL4

STRMONTH DS CL2

STRDAY DS CL2

 DS CL2

**

 DS CL4

 DS 0D

SKILLA DS 0CL76
SKILID DS CL4

SKILNAME DS CL12

SKILDESC DS CL60
**

 DS CL4

 DS 0D
OFFIC DS 0CL76

OFFCODE DS CL3

OFFADDR DS 0CL46
OFFSTRT DS CL20

OFFCITY DS CL15

OFFSTATE DS CL2
OFFZIP DS 0CL9

OFFZIPF5 DS CL5

Output from the Precompiler

Appendix B: Sample CA IDMS/DB Batch Program 459

OFFZIPL4 DS CL4

OFFPHONE DS 3CL7

OFFAREA DS CL3

OFFSPEED DS CL3

**
 DS CL4

 DS 0D

NONHSPCL DS 0CL1052
NHCLMDT DS 0CL8

NHCLMYR DS CL4

NHCLMMO DS CL2
NHCLMDAY DS CL2

NHPTNAME DS 0CL25

NHPTFNAM DS CL10
NHPTLNAM DS CL15

NHPTBDAT DS 0CL8

NHPTBYR DS CL4
NHPTBMO DS CL2

NHPTBDA DS CL2

NHPTSEX DS CL1
NHRELEMP DS CL10

NHPHYNAM DS 0CL25

NHPHYFNM DS CL10
NHPHYLNM DS CL15

NHPHYADD DS 0CL46

NHPHYSTR DS CL20
NHPHYCTY DS CL15

NHPHYSTA DS CL2

NHPHYZIP DS 0CL9
NHPHYZ5 DS CL5

NHPHYZ4 DS CL4

NHPHYSID DS CL6
NHDIAGN DS 2CL60

NHNOPROC DS HL2

 DS CL1

NHPHYCHG DS 0CL800

NHSERVDT DS 0CL8

NHSERVYR DS CL4

NHSERVMO DS CL2

NHSERVDA DS CL2

NHPROCCD DS CL4

NHDESCSV DS CL60

NHFEE DS PL5

 DS CL3

 DS CL720

**

 DS CL4
 DS 0D

JOBA DS 0CL296

JOBID DS CL4
JOBTITLE DS CL20

JOBDESCR DS 0CL120

JOBDSCLN DS 2CL60
JOBRQMNT DS 0CL120

JOBREQLN DS 2CL60

JOBMNSAL DS CL8
JOBMXSAL DS CL8

JOBSALGR DS 4CL2

JOBNMPOS DS CL3
JOBNMOPN DS CL3

 DS CL2

**
 DS 0D

INSPLAN DS 0CL132

INPCODE DS CL3
GROUPLIF EQU C'001'

HMO EQU C'002'

GRPHLTH EQU C'003'
GROUPDNT EQU C'004'

INPCNAME DS CL45

INPCADDR DS 0CL46
INPCSTRT DS CL20

INPCCITY DS CL15

INPCSTAT DS CL2

Output from the Precompiler

460 DML Reference Guide for Assembler

INPCZIP DS 0CL9

INPCZPF5 DS CL5

INPCZPL4 DS CL4

INPCPHON DS CL10

INPGRPNO DS CL6
INPDESCR DS 0CL20

INPDEDCT DS PL5

INPMXLIF DS PL5
INPFAMCS DS PL5

INPDEPCS DS PL5

 DS CL2
**

 DS CL4

 DS 0D
HOSPCLM DS 0CL300

HCCLMDT DS 0CL8

HCCLMYR DS CL4
HCCLMMO DS CL2

HCCLMDAY DS CL2

HCPTNAME DS 0CL25
HCPTFNAM DS CL10

HCPTLNAM DS CL15

HCPTBDAT DS 0CL8
HCPTBYR DS CL4

HCPTBMO DS CL2

HCPTBDA DS CL2
HCPTSEX DS CL1

HCRELEMP DS CL10

HCHSPNAM DS CL25
HCHSPADD DS 0CL46

HCHSPSTR DS CL20

HCHSPCTY DS CL15
HCHSPSTA DS CL2

HCHSPZIP DS 0CL9

HCHSPZF5 DS CL5

HCHSPZL4 DS CL4

HCADMTDT DS 0CL8

HCADMTYR DS CL4

HCADMTMO DS CL2

HCADMTDA DS CL2

HCDSCGDT DS 0CL8

HCDSCGYR DS CL4

HCDSCGMO DS CL2

HCDSCGDA DS CL2

HCDIAGN DS 2CL60

HCHSPCHG DS 0CL41

HCRMBRD DS 0CL26
HCWARD DS 0CL13

HCWDDAYS DS PL3

HCWDRATE DS PL5
HCWDTOTL DS PL5

HCSPRIV DS 0CL13

HCSDAYS DS PL3
HCSRATE DS PL5

HCSTOTAL DS PL5

HCOTHCHG DS 0CL15
HCDELVCH DS PL5

HCANSTHC DS PL5

HCLABCST DS PL5
**

 DS CL4

 DS 0D
EXPRTISE DS 0CL12

EXPSKLVL DS CL2

EXPERT EQU C'04'
PROFICNT EQU C'03'

COMPETNT EQU C'02'

ELEMNTRY EQU C'01'
EXPDATE DS 0CL8

EXPYEAR DS CL4

EXPMONTH DS CL2
EXPDAY DS CL2

 DS CL2

**

Output from the Precompiler

Appendix B: Sample CA IDMS/DB Batch Program 461

 DS CL4

 DS 0D

EMPOSITN DS 0CL32

EPSTRTDT DS 0CL8

EPSTRTYR DS CL4
EPSTRTMO DS CL2

EPSTRTDA DS CL2

EPFINIDT DS 0CL8
EPFINIYR DS CL4

EPFINIMO DS CL2

EPFINIDA DS CL2
EPSALGRD DS CL2

EPSALAMT DS PL5

EPBONPCT DS PL2
EPCMMPCT DS PL2

EPOTRATE DS PL2

 DS CL3
**

 DS 0D

EMPLOYE DS 0CL120
EMPID DS CL4

EMPNAME DS 0CL25

EMPFNAME DS CL10
EMPLNAME DS CL15

EMPADDR DS 0CL46

EMPSTRET DS CL20
EMPCITY DS CL15

EMPSTATE DS CL2

EMPZIP DS 0CL9
EMPZIPF5 DS CL5

EMPZIPL4 DS CL4

EMPPHONE DS CL10
EMPSTATU DS CL2

ACTIVE EQU C'01'

STDSBL EQU C'02'

LTDSBL EQU C'03'

LVOFAB EQU C'04'

TRMINATD EQU C'05'

EMPSSNUM DS CL9

EMPSTDT DS 0CL8

EMPSTYR DS CL4

EMPSTMO DS CL2

EMPSTDA DS CL2

EMPTRMDT DS 0CL8

EMPTRMYR DS CL4

EMPTRMMO DS CL2

EMPTRMDA DS CL2
EMPBIRDT DS 0CL8

EMPBIRYR DS CL4

EMPBIRMO DS CL2
EMPBIRDA DS CL2

**

 DS 0D
DEPARTMT DS 0CL56

DEPTID DS CL4

DEPTNAME DS CL45
DEPTHDID DS CL4

 DS CL3

**
 DS 0D

DENTCLM DS 0CL932

DCCLMDT DS 0CL8
DCCLMYR DS CL4

DCCLMMO DS CL2

DCCLMDA DS CL2
DCPNAME DS 0CL25

DCPFNAME DS CL10

DCPLNAME DS CL15
DCPBIRDT DS 0CL8

DCPBIRYR DS CL4

DCPBIRMO DS CL2
DCPBIRDA DS CL2

DCPSEX DS CL1

DCRELEMP DS CL10

Output from the Precompiler

462 DML Reference Guide for Assembler

DCDNNAME DS 0CL25

DCDNFNAM DS CL10

DCDNLNAM DS CL15

DCDNADDR DS 0CL46

DCDNSTR DS CL20
DCDNCITY DS CL15

DCDNSTAT DS CL2

DCDNZIP DS 0CL9
DCDNZPF5 DS CL5

DCDNZPL4 DS CL4

DCDNLICN DS CL6
DCNOPROC DS HL2

 DS CL1

DCDNCHGS DS 0CL800
DCTOTHNO DS CL2

DCSERVDT DS 0CL8

DCSERVYR DS CL4
DCSERVMO DS CL2

DCSERVDA DS CL2

DCPROCCD DS CL4
DCDESCSV DS CL60

DCFEE DS PL5

 DS CL1
 DS CL720

**

 DS CL4
 DS 0D

COVERGE DS 0CL20

COVSELDT DS 0CL8
COVSELYR DS CL4

COVSELMO DS CL2

COVSELDA DS CL2
COVTRMDT DS 0CL8

COVTRMYR DS CL4

COVTRMMO DS CL2

COVTRMDA DS CL2

COVTYPE DS CL1

COVMASTR EQU C'M'

COVFAMLY EQU C'F'

COVDPNDT EQU C'D'

COVPLNCD DS CL3

GROUP_LIFE EQU C'001'

HMO EQU C'002'

GROUP_HEALTH EQU C'003'

GROUP_DENTAL EQU C'004'

**

 DS CL4
BEGIN DS 0F

* @COPY IDMS,SUBSCHEMA-BINDS

 @BIND SUBSCH='EMPSS01 ',SCB=SSCTRL,DICTNAM='APPLDICT'
 @BIND REC='OFFICE',IOAREA=OFFIC

 @BIND REC='EMPLOYEE',IOAREA=EMPLOYE

 @BIND REC='DEPARTMENT',IOAREA=DEPARTMT
 OPEN (OUTFILE,OUTPUT)

 MVC EDSW,=C'N' SET SWITCHES

 MVC DSW,=C'N'
 MVC ESW,=C'N'

 LA R5,MAIN000 LOAD ADDRESS OF MAINLINE ROUTINE

 B PRTHEAD
MAIN000 EQU *

 @READY ALL,RDONLY=YES READY ALL DATABASE AREAS

 CLC ERRSTAT,STATOK CHECK IF ERROR
 BNE AREAERR BRANCH TO ERROR ROUTINE

 @OBTAIN FIRST,AREA='ORG-DEMO-REGION',REC='OFFICE'

NEWOFFC CLC ERRSTAT,STATOK CHECK IF NO OFFICE
 BNE AREAERR

 MVC OCODE,OFFCODE

 MVC OCITY,OFFCITY
 @OBTAIN FIRST,SET='OFFICE-EMPLOYEE',REC='EMPLOYEE'

 CLC ERRSTAT,STATOK CHECK IF NO EMPLOYEE

 BNE OBERR1
 MVC EID,EMPID MOVE EMPLOYEE ID

 MVC FNAME,EMPFNAME MOVE EMPLOYEE FIRST NAME

 MVC LNAME,EMPLNAME MOVE EMPLOYEE LAST NAME

Output from the Precompiler

Appendix B: Sample CA IDMS/DB Batch Program 463

 MVC WALK,EMPID SAVE ID

 MVC STATNUM,EMPSTATU MOVE EMPLOYEE STATUS

 LA R6,NEWDPT LOAD ADDRESS OF NEW DEPT ROUTINE

 B CKSTAT BRANCH TO STATUS-CHECK RTN

NEWDPT EQU *
 @OBTAIN OWNER,SET='DEPT-EMPLOYEE'

 CLC ERRSTAT,STATOK CHECK IF DEPARTMENT

 BNE OBERR2
 MVC DID,DEPTID

 MVC DEPT,DEPTNAME

 LA R5,MAIN020 LOAD ADDRESS OF SET-WALK RTN
 B PRINTREC PRINT DEPARTMENT INFORMATION

MAIN020 EQU * *

 @OBTAIN NEXT,SET='DEPT-EMPLOYEE',REC='EMPLOYEE'
 CLC ERRSTAT,0307 CHECK IF END OF SET

 BE MAIN030 BRANCH IF END OF SET

 CLC ERRSTAT,STATOK CHECK IF ERROR
 BNE OBERR3

 MVC EID,EMPID MOVE EMPLOYEE ID

 MVC FNAME,EMPFNAME MOVE EMPLOYEE FIRST NAME
 MVC LNAME,EMPLNAME MOVE EMPLOYEE LAST NAME

 MVC STATNUM,EMPSTATU MOVE EMPLOYEE STATUS

 LA R6,MAIN025 LOAD ADDRESS OF PRINT LINK
 B CKSTAT

MAIN025 EQU *

 LA R5,MAIN020
 B PRINTREC

MAIN030 EQU *

 MVC EMPID,WALK
 @FIND CALC,REC='EMPLOYEE' FIND NEXT EMPLOYEE

 CLC ERRSTAT,STATOK CHECK IF ERROR

 BNE CALCERR
REPEAT EQU *

 @OBTAIN NEXT,SET='OFFICE-EMPLOYEE',REC='EMPLOYEE'

 CLC ERRSTAT,=C'0307' END OF SET ?

 BE MAIN040 BRANCH IF END OF SET

 CLC ERRSTAT,STATOK

 BNE OBERR1

 @IF SET='DEPT-EMPLOYEE',MEMBER=YES,GOTO=REPEAT

 MVC EID,EMPID MOVE EMPLOYEE ID

 MVC FNAME,EMPFNAME MOVE EMPLOYEE FIRST NAME

 MVC LNAME,EMPLNAME MOVE EMPLOYEE LAST NAME

 MVC WALK,EMPID

 MVC STATNUM,EMPSTATU

 LA R6,NEWDPT ADDRESS OF DEPT ROUTINE

 B CKSTAT

MAIN040 EQU *
 @OBTAIN NEXT,AREA='ORG-DEMO-REGION',REC='OFFICE'

 B NEWOFFC

EOF EQU *
 @FINISH *

 CLC ERRSTAT,STATOK

 BNE FINERR
 CLOSE (OUTFILE)

 L R13,SAVEAREA+4

 LM R14,R12,12(R13)
 BR R14 RETURN

* ERROR ROUTINES *

BSERROR EQU *
 MVI ERRMSG,C' '

 MVC ERRMSG+1(19),ERRMSG

 MVI ERRNUM,C' '
 MVC ERRNUM+1(3),ERRNUM

 MVC ERRNUM,ERRSTAT

 MVC ERRMSG,BSMSG
 B PRINTERR

BRERROR EQU *

 MVI ERRMSG,C' '
 MVC ERRMSG+1(19),ERRMSG

 MVI ERRNUM,C' '

 MVC ERRNUM+1(3),ERRNUM
 MVC ERRNUM,ERRSTAT

 MVC ERRMSG,BRMSG

 B PRINTERR

Output from the Precompiler

464 DML Reference Guide for Assembler

AREAERR EQU *

 MVI ERRMSG,C' '

 MVC ERRMSG+1(19),ERRMSG

 MVI ERRNUM,C' '

 MVC ERRNUM+1(3),ERRNUM
 MVC ERRNUM,ERRSTAT

 MVC ERRMSG,AREAMSG

 B PRINTERR
CALCERR EQU *

 MVI ERRMSG,C' '

 MVC ERRMSG+1(19),ERRMSG
 MVI ERRNUM,C' '

 MVC ERRNUM+1(3),ERRNUM

 MVC ERRNUM,ERRSTAT
 MVC ERRMSG,CALMSG

 B PRINTERR

FINERR EQU *
 MVI ERRMSG,C' '

 MVC ERRMSG+1(19),ERRMSG

 MVI ERRNUM,C' '
 MVC ERRNUM+1(3),ERRNUM

 MVC ERRNUM,ERRSTAT

 MVC ERRMSG,FINMSG
 B PRINTERR

OBERR1 EQU *

 MVC EDSW,=C'Y'
 LA R5,MAIN040

 B PRINTREC

OBERR2 EQU *
 MVC DSW,=C'Y'

 LA R5,REPEAT

 B PRINTREC
OBERR3 EQU *

 MVC ESW,=C'Y'

 LA R5,MAIN030

 B PRINTREC

* PRINT ROUTINES

PRINTERR EQU *

 MVC ERRLINE,C' '

 MVC ERRLINE+1(132),ERRLINE

 MVI ERRLINE,C'0'

 PUT OUTFILE,ERRLINE

 B EOF

PRINTREC EQU *

 MVI LINE1,C' '

 MVC LINE1+1(132),LINE1

 MVI LINE1,C'0'
 MVI LINE2,C' '

 MVC LINE2+1(132),LINE2

 CLC EDSW,=C'Y'
 BE SKIPED

 CLC DSW,=C'Y'

 BE SKIPD
 MVC LINE1+27(45),DEPT

 MVC LINE2+27(4),DID

 CLC DSW,=C'Y'
 BE SKIPED

SKIPD EQU *

 MVC LINE1+77(27),ENAME
 MVC LINE2+77(4),EID

 MVC LINE1+109(20),STAT

SKIPED EQU *
 MVC LINE1+7(15),OCITY

 MVC LINE2+7(4),OCODE

 PUT OUTFILE,LINE1
 PUT OUTFILE,LINE2

 MVC EDSW,=C'N'

 MVC DSW,=C'N'
 MVC ESW,=C'N'

 BR R5

* CHECK STATUS ROUTINE *
CKSTAT EQU *

 CLC STATNUM,=C'01'

 BE ACT

Output from the Precompiler

Appendix B: Sample CA IDMS/DB Batch Program 465

 CLC STATNUM,=C'02'

 BE STD

 CLC STATNUM,=C'03'

 BE LTD

 CLC STATNUM,=C'04'
 BE LVO

 CLC STATNUM,=C'05'

 BE TRM
 MVC STAT,=C' STATUS CODE ERROR '

 BR R6

ACT EQU *
 MVC STAT,=C' ACTIVE '

 BR R6

STD EQU *
 MVC STAT,=C' SHORT TERM DISABLED'

 BR R6

LTD EQU *
 MVC STAT,=C' LONG TERM DISBALED '

 BR R6

LVO EQU *
 MVC STAT,=C' LEAVE OF ABSENCE '

 BR R6

TRM EQU *
 MVC STAT,=C' TERMINATED '

 BR R6

* PRINT REPORT HEADING ROUTINE *
PRTHEAD EQU *

 MVI LINE1,C' '

 MVC LINE1+1(132),LINE1
 MVI LINE1,C'1'

 MVC LINE1+54(26),HEAD1

 PUT OUTFILE,LINE1
 MVI LINE1,C' '

 MVC LINE1+1(132),LINE1

 MVI LINE1,C'-'

 MVC LINE1+6(18),HEAD2O

 MVC LINE1+26(26),HEAD2D

 MVC LINE1+76(20),HEAD2E

 MVC LINE1+108(15),HEAD2S

 PUT OUTFILE,LINE1

 BR R5

*

WORKFLDS DC C'WORK-FIELDS'

SAVEAREA DC 18F'0'

STATNUM DS CL2

STAT DS CL20

STATOK DC CL4'0000'
STATUS DS CL2

OCODE DS CL3

OCITY DS CL15
EID DS CL4

ENAME DS 0CL27

FNAME DS CL10
 DS CL2

LNAME DS CL15

WALK DS CL4
DID DS CL4

DEPT DS CL45

ERRLINE DS 0CL133
 DS CL1

 DC CL48'* '

 DC CL6' '
ERRMSG DS CL20

ERRNUM DS CL4

 DC CL6' '
 DC CL48'* '

 DC CL5' '

BSMSG DC CL20'BIND SUBSCH ERROR # '
BRMSG DC CL20'BIND RECORD ERROR # '

AREAMSG DC CL20'READY AREA ERROR # '

CALMSG DC CL20'FIND CALC ERROR # '
FINMSG DC CL20'@FINISH ERROR # '

EDSW DS CL1

DSW DS CL1

Output from the Precompiler

466 DML Reference Guide for Assembler

ESW DS CL1

LINE1 DS CL133

LINE2 DS CL133

HEAD1 DC CL26'OFFICE PERSONNEL LISTING'

HEAD2O DC CL18'OFFICE/OFFICE CODE'
HEAD2D DC CL26'DEPARTMENT/DEPARTMENT CODE'

HEAD2E DC CL20'EMPLOYEE/EMPLOYEE ID'

HEAD2S DC CL15'EMPLOYEE STATUS'
* OUTPUT FILE DCB INFO

OUTFILE DCB DDNAME=OUTFILE,MACRF=PM,BLKSIZE=133,LRECL=133, X

 DSORG=PS
 LTORG

 END SAMPLE1

Output from the Assembler

Appendix B: Sample CA IDMS/DB Batch Program 467

Output from the Assembler

The following il lustrates the sample batch program as output from the assembler.

Output from the Assembler

468 DML Reference Guide for Assembler

 1 *DMLIST

000000 2 SAMPLE1 START
 3 #REGEQU

 4+*

 5+* REGISTER EQUATES

 6+*

 00000 7+R0 EQU 0 01-#REGE

 00001 8+R1 EQU 1 01-#REGE

 00002 9+R2 EQU 2 01-#REGE

 00003 10+R3 EQU 3 01-#REGE

 00004 11+R4 EQU 4 01-#REGE

 00005 12+R5 EQU 5 01-#REGE

 00006 13+R6 EQU 6 01-#REGE

 00007 14+R7 EQU 7 01-#REGE

 00008 15+R8 EQU 8 01-#REGE

 00009 16+R9 EQU 9 01-#REGE

 0000A 17+R10 EQU 10 01-#REGE
 0000B 18+R11 EQU 11 01-#REGE

 0000C 19+R12 EQU 12 01-#REGE

 0000D 20+R13 EQU 13 01-#REGE
 0000E 21+R14 EQU 14 01-#REGE

 0000F 22+R15 EQU 15 01-#REGE

000000 90EC D00C 0000C 23 STM R14,R12,12(R13)
000004 18CF 24 LR R12,R15

 R:CBA 00000 25 USING SAMPLE1,R12,R11,R10

000006 18BC 26 LR R11,R12
000008 41BB 0FFF 00FFF 27 LA R11,4095(R11)

00000C 41BB 0001 00001 28 LA R11,1(R11)

000010 41AB 0FFF 00FFF 29 LA R10,4095(R11)
000014 41AA 0001 00001 30 LA R10,1(R10)

000018 50D0 B410 01410 31 ST R13,SAVEAREA+4

00001C 4170 B40C 0140C 32 LA R7,SAVEAREA
000020 507D 0008 00008 33 ST R7,8(R13)

000024 41D0 B40C 0140C 34 LA R13,SAVEAREA

000028 47F0 CD58 00D58 35 B BEGIN
 36 @MODE MODE=BATCH,DEBUG=YES

 37 * @INVOKE SUBSCH=EMPSS01,SCHEMA=EMPSCHM,VERSION=100

 38 * @COPY IDMS,SUBSCHEMA-CTRL
000030 39 DS 0D

000030 40 SSCTRL DS 0CL216

000030 4040404040404040 41 PGMNAME DC CL8' '
000038 F1F4F0F0 42 ERRSTAT DC CL4'1400'

00003C 43 DBKEY DS FL4

000040 4040404040404040 44 RECNAME DC CL16' '
000050 4040404040404040 45 AREANAME DC CL16' '

000060 4040404040404040 46 ERRORSET DC CL16' '

000070 4040404040404040 47 ERRORREC DC CL16' '

000080 4040404040404040 48 ERRAREA DC CL16' '

000090 49 SSCIDBCM DS 0CL100

000090 50 IDBMSCOM DS 100CL1

0000F4 00090 51 ORG SSCIDBCM

000090 52 RDBMSCOM DS 0CL100

000090 53 PGINFO DS 0CL4

000090 54 PGINFGRP DS HL2

000092 55 PGINFDBK DS HL2

000094 56 DS CL96

0000F4 00000000 57 DIRDBKEY DC FL4'0'

0000F8 58 DBSTATUS DS 0CL8

0000F8 59 DBSTMTCD DS CL2
0000FA 60 DBSTATCD DS CL5

0000FF 61 DS CL1

000100 00000000 62 RECOCCUR DC FL4'0'
000104 00000000 63 DMLSEQ DC FL4'0'

 64 **

 65 * @COPY IDMS,SUBSCHEMA-RECORDS
000108 66 DS 0D

000108 67 STRUCTUR DS 0CL12

000108 68 STRCODE DS CL2
 69 ADMIN EQU C'A'

 70 PROJECT EQU C'P1'

00010A 71 STRDATE DS 0CL8
00010A 72 STRYEAR DS CL4

00010E 73 STRMONTH DS CL2

Output from the Assembler

Appendix B: Sample CA IDMS/DB Batch Program 469

000110 74 STRDAY DS CL2

000112 75 DS CL2

 76 **

000114 77 DS CL4

000118 78 DS 0D
000118 79 SKILLA DS 0CL76

000118 80 SKILID DS CL4

00011C 81 SKILNAME DS CL12
000128 82 SKILDESC DS CL60

 83 **

000164 84 DS CL4
000168 85 DS 0D

000168 86 OFFIC DS 0CL76

000168 87 OFFCODE DS CL3
00016B 88 OFFADDR DS 0CL46

00016B 89 OFFSTRT DS CL20

00017F 90 OFFCITY DS CL15
00018E 91 OFFSTATE DS CL2

000190 92 OFFZIP DS 0CL9

000190 93 OFFZIPF5 DS CL5
000195 94 OFFZIPL4 DS CL4

000199 95 OFFPHONE DS 3CL7

0001AE 96 OFFAREA DS CL3
0001B1 97 OFFSPEED DS CL3

 98 **

0001B4 99 DS CL4
0001B8 100 DS 0D

0001B8 101 NONHSPCL DS 0CL1052

0001B8 102 NHCLMDT DS 0CL8
0001B8 103 NHCLMYR DS CL4

0001BC 104 NHCLMMO DS CL2

0001BE 105 NHCLMDAY DS CL2
0001C0 106 NHPTNAME DS 0CL25

0001C0 107 NHPTFNAM DS CL10

0001CA 108 NHPTLNAM DS CL15

0001D9 109 NHPTBDAT DS 0CL8

0001D9 110 NHPTBYR DS CL4

0001DD 111 NHPTBMO DS CL2

0001DF 112 NHPTBDA DS CL2

0001E1 113 NHPTSEX DS CL1

0001E2 114 NHRELEMP DS CL10

0001EC 115 NHPHYNAM DS 0CL25

0001EC 116 NHPHYFNM DS CL10

0001F6 117 NHPHYLNM DS CL15

000205 118 NHPHYADD DS 0CL46

000205 119 NHPHYSTR DS CL20

000219 120 NHPHYCTY DS CL15
000228 121 NHPHYSTA DS CL2

00022A 122 NHPHYZIP DS 0CL9

00022A 123 NHPHYZ5 DS CL5
00022F 124 NHPHYZ4 DS CL4

000233 125 NHPHYSID DS CL6

000239 126 NHDIAGN DS 2CL60
0002B1 127 NHNOPROC DS HL2

0002B3 128 DS CL1

0002B4 129 NHPHYCHG DS 0CL800
0002B4 130 NHSERVDT DS 0CL8

0002B4 131 NHSERVYR DS CL4

0002B8 132 NHSERVMO DS CL2
0002BA 133 NHSERVDA DS CL2

0002BC 134 NHPROCCD DS CL4

0002C0 135 NHDESCSV DS CL60
0002FC 136 NHFEE DS PL5

000301 137 DS CL3

000304 138 DS CL720
 139 **

0005D4 140 DS CL4

0005D8 141 DS 0D
0005D8 142 JOBA DS 0CL296

0005D8 143 JOBID DS CL4

0005DC 144 JOBTITLE DS CL20
0005F0 145 JOBDESCR DS 0CL120

0005F0 146 JOBDSCLN DS 2CL60

000668 147 JOBRQMNT DS 0CL120

Output from the Assembler

470 DML Reference Guide for Assembler

000668 148 JOBREQLN DS 2CL60

0006E0 149 JOBMNSAL DS CL8

0006E8 150 JOBMXSAL DS CL8

0006F0 151 JOBSALGR DS 4CL2

0006F8 152 JOBNMPOS DS CL3
0006FB 153 JOBNMOPN DS CL3

0006FE 154 DS CL2

 155 **
000700 156 DS 0D

000700 157 INSPLAN DS 0CL132

000700 158 INPCODE DS CL3
 159 GROUPLIF EQU C'001'

 160 HMO EQU C'002'

 161 GRPHLTH EQU C'003'
 162 GROUPDNT EQU C'004'

000703 163 INPCNAME DS CL45

000730 164 INPCADDR DS 0CL46
000730 165 INPCSTRT DS CL20

000744 166 INPCCITY DS CL15

000753 167 INPCSTAT DS CL2
000755 168 INPCZIP DS 0CL9

000755 169 INPCZPF5 DS CL5

00075A 170 INPCZPL4 DS CL4
00075E 171 INPCPHON DS CL10

000768 172 INPGRPNO DS CL6

00076E 173 INPDESCR DS 0CL20
00076E 174 INPDEDCT DS PL5

000773 175 INPMXLIF DS PL5

000778 176 INPFAMCS DS PL5
00077D 177 INPDEPCS DS PL5

000782 178 DS CL2

 179 **
000784 180 DS CL4

000788 181 DS 0D

000788 182 HOSPCLM DS 0CL300

000788 183 HCCLMDT DS 0CL8

000788 184 HCCLMYR DS CL4

00078C 185 HCCLMMO DS CL2

00078E 186 HCCLMDAY DS CL2

000790 187 HCPTNAME DS 0CL25

000790 188 HCPTFNAM DS CL10

00079A 189 HCPTLNAM DS CL15

0007A9 190 HCPTBDAT DS 0CL8

0007A9 191 HCPTBYR DS CL4

0007AD 192 HCPTBMO DS CL2

0007AF 193 HCPTBDA DS CL2

0007B1 194 HCPTSEX DS CL1
0007B2 195 HCRELEMP DS CL10

0007BC 196 HCHSPNAM DS CL25

0007D5 197 HCHSPADD DS 0CL46
0007D5 198 HCHSPSTR DS CL20

0007E9 199 HCHSPCTY DS CL15

0007F8 200 HCHSPSTA DS CL2
0007FA 201 HCHSPZIP DS 0CL9

0007FA 202 HCHSPZF5 DS CL5

0007FF 203 HCHSPZL4 DS CL4
000803 204 HCADMTDT DS 0CL8

000803 205 HCADMTYR DS CL4

000807 206 HCADMTMO DS CL2
000809 207 HCADMTDA DS CL2

00080B 208 HCDSCGDT DS 0CL8

00080B 209 HCDSCGYR DS CL4
00080F 210 HCDSCGMO DS CL2

000811 211 HCDSCGDA DS CL2

000813 212 HCDIAGN DS 2CL60
00088B 213 HCHSPCHG DS 0CL41

00088B 214 HCRMBRD DS 0CL26

00088B 215 HCWARD DS 0CL13
00088B 216 HCWDDAYS DS PL3

00088E 217 HCWDRATE DS PL5

000893 218 HCWDTOTL DS PL5
000898 219 HCSPRIV DS 0CL13

000898 220 HCSDAYS DS PL3

00089B 221 HCSRATE DS PL5

Output from the Assembler

Appendix B: Sample CA IDMS/DB Batch Program 471

0008A0 222 HCSTOTAL DS PL5

0008A5 223 HCOTHCHG DS 0CL15

0008A5 224 HCDELVCH DS PL5

0008AA 225 HCANSTHC DS PL5

0008AF 226 HCLABCST DS PL5
 227 **

0008B4 228 DS CL4

0008B8 229 DS 0D
0008B8 230 EXPRTISE DS 0CL12

0008B8 231 EXPSKLVL DS CL2

 232 EXPERT EQU C'04'
 233 PROFICNT EQU C'03'

 234 COMPETNT EQU C'02'

 235 ELEMNTRY EQU C'01'
0008BA 236 EXPDATE DS 0CL8

0008BA 237 EXPYEAR DS CL4

0008BE 238 EXPMONTH DS CL2
0008C0 239 EXPDAY DS CL2

0008C2 240 DS CL2

 241 **
0008C4 242 DS CL4

0008C8 243 DS 0D

0008C8 244 EMPOSITN DS 0CL32
0008C8 245 EPSTRTDT DS 0CL8

0008C8 246 EPSTRTYR DS CL4

0008CC 247 EPSTRTMO DS CL2
0008CE 248 EPSTRTDA DS CL2

0008D0 249 EPFINIDT DS 0CL8

0008D0 250 EPFINIYR DS CL4
0008D4 251 EPFINIMO DS CL2

0008D6 252 EPFINIDA DS CL2

0008D8 253 EPSALGRD DS CL2
0008DA 254 EPSALAMT DS PL5

0008DF 255 EPBONPCT DS PL2

0008E1 256 EPCMMPCT DS PL2

0008E3 257 EPOTRATE DS PL2

0008E5 258 DS CL3

 259 **

0008E8 260 DS 0D

0008E8 261 EMPLOYE DS 0CL120

0008E8 262 EMPID DS CL4

0008EC 263 EMPNAME DS 0CL25

0008EC 264 EMPFNAME DS CL10

0008F6 265 EMPLNAME DS CL15

000905 266 EMPADDR DS 0CL46

000905 267 EMPSTRET DS CL20

000919 268 EMPCITY DS CL15
000928 269 EMPSTATE DS CL2

00092A 270 EMPZIP DS 0CL9

00092A 271 EMPZIPF5 DS CL5
00092F 272 EMPZIPL4 DS CL4

000933 273 EMPPHONE DS CL10

00093D 274 EMPSTATU DS CL2
 275 ACTIVE EQU C'01'

 276 STDSBL EQU C'02'

 277 LTDSBL EQU C'03'
 278 LVOFAB EQU C'04'

 279 TRMINATD EQU C'05'

00093F 280 EMPSSNUM DS CL9
000948 281 EMPSTDT DS 0CL8

000948 282 EMPSTYR DS CL4

00094C 283 EMPSTMO DS CL2
00094E 284 EMPSTDA DS CL2

000950 285 EMPTRMDT DS 0CL8

000950 286 EMPTRMYR DS CL4
000954 287 EMPTRMMO DS CL2

000956 288 EMPTRMDA DS CL2

000958 289 EMPBIRDT DS 0CL8
000958 290 EMPBIRYR DS CL4

00095C 291 EMPBIRMO DS CL2

00095E 292 EMPBIRDA DS CL2
 293 **

000960 294 DS 0D

000960 295 DEPARTMT DS 0CL56

Output from the Assembler

472 DML Reference Guide for Assembler

000960 296 DEPTID DS CL4

000964 297 DEPTNAME DS CL45

000991 298 DEPTHDID DS CL4

000995 299 DS CL3

 300 **
000998 301 DS 0D

000998 302 DENTCLM DS 0CL932

000998 303 DCCLMDT DS 0CL8
000998 304 DCCLMYR DS CL4

00099C 305 DCCLMMO DS CL2

00099E 306 DCCLMDA DS CL2
0009A0 307 DCPNAME DS 0CL25

0009A0 308 DCPFNAME DS CL10

0009AA 309 DCPLNAME DS CL15
0009B9 310 DCPBIRDT DS 0CL8

0009B9 311 DCPBIRYR DS CL4

0009BD 312 DCPBIRMO DS CL2
0009BF 313 DCPBIRDA DS CL2

0009C1 314 DCPSEX DS CL1

0009C2 315 DCRELEMP DS CL10
0009CC 316 DCDNNAME DS 0CL25

0009CC 317 DCDNFNAM DS CL10

0009D6 318 DCDNLNAM DS CL15
0009E5 319 DCDNADDR DS 0CL46

0009E5 320 DCDNSTR DS CL20

0009F9 321 DCDNCITY DS CL15
000A08 322 DCDNSTAT DS CL2

000A0A 323 DCDNZIP DS 0CL9

000A0A 324 DCDNZPF5 DS CL5
000A0F 325 DCDNZPL4 DS CL4

000A13 326 DCDNLICN DS CL6

000A19 327 DCNOPROC DS HL2
000A1B 328 DS CL1

000A1C 329 DCDNCHGS DS 0CL800

000A1C 330 DCTOTHNO DS CL2

000A1E 331 DCSERVDT DS 0CL8

000A1E 332 DCSERVYR DS CL4

000A22 333 DCSERVMO DS CL2

000A24 334 DCSERVDA DS CL2

000A26 335 DCPROCCD DS CL4

000A2A 336 DCDESCSV DS CL60

000A66 337 DCFEE DS PL5

000A6B 338 DS CL1

000A6C 339 DS CL720

 340 **

000D3C 341 DS CL4

000D40 342 DS 0D
000D40 343 COVERGE DS 0CL20

000D40 344 COVSELDT DS 0CL8

000D40 345 COVSELYR DS CL4
000D44 346 COVSELMO DS CL2

000D46 347 COVSELDA DS CL2

000D48 348 COVTRMDT DS 0CL8
000D48 349 COVTRMYR DS CL4

000D4C 350 COVTRMMO DS CL2

000D4E 351 COVTRMDA DS CL2
000D50 352 COVTYPE DS CL1

 353 COVMASTR EQU C'M'

 354 COVFAMLY EQU C'F'
 355 COVDPNDT EQU C'D'

000D51 356 COVPLNCD DS CL3

 357 GROUP_LIFE EQU C'001'
 358 HMO EQU C'002'

 359 GROUP_HEALTH EQU C'003'

 360 GROUP_DENTAL EQU C'004'
 361 **

000D54 362 DS CL4

000D58 363 BEGIN DS 0F
 364 * @COPY IDMS,SUBSCHEMA-BINDS

 365 @BIND SUBSCH='EMPSS01 ',SCB=SSCTRL,DICTNAM='APPLDICT'

 366+* *** BEGIN DML EXPANSION ***
000D58 4100 C030 00030 367+ LA 0,SSCTRL 02-@IDMS

000D5C 5000 C094 00094 368+ ST 0,SSCIDBCM+4 02-@IDMS

000D60 4100 C0CA 000CA 369+ LA 0,SSCIDBCM+59-1 02-@IDMS

Output from the Assembler

Appendix B: Sample CA IDMS/DB Batch Program 473

000D64 5000 C098 00098 370+ ST 0,SSCIDBCM+8 02-@IDMS

000D68 4100 C030 00030 371+ LA 0,SSCTRL 02-@IDMS

000D6C 5000 C09C 0009C 372+ ST 0,SSCIDBCM+12 02-@IDMS

000D70 4100 B834 01834 373+ LA 0,=CL18'EMPSS01 ' 02-@IDMS

000D74 5000 C0A0 000A0 374+ ST 0,SSCIDBCM+16 02-@IDMS
000D78 4100 C030 00030 375+ LA 0,SSCTRL 02-@IDMS

000D7C 5000 C0A4 000A4 376+ ST 0,SSCIDBCM+20 02-@IDMS

000D80 4100 C030 00030 377+ LA 0,SSCTRL 02-@IDMS
000D84 5000 C0A8 000A8 378+ ST 0,SSCIDBCM+24 02-@IDMS

000D88 D207 C050 B7A0 00050 017A0 379+ MVC AREANAME(8),=CL8' ' 01-@BIND

000D8E D207 C058 B7A8 00058 017A8 380+ MVC AREANAME+8(8),=CL8'APPLDICT' 01-@BIND
000D94 4100 C050 00050 381+ LA 0,AREANAME 02-@IDMS

000D98 5000 C0AC 000AC 382+ ST 0,SSCIDBCM+28 02-@IDMS

000D9C 9680 C0AC 000AC 383+ OI SSCIDBCM+28,X'80' 02-@IDMS
000DA0 4100 0001 00001 384+ LA 0,1 02-@IDMS

000DA4 5000 C104 00104 385+ ST 0,DMLSEQ 02-@IDMS

 386+*, DML-SEQUENCE = 1 02-@IDMS
000DA8 4110 C094 00094 387+ LA 1,SSCIDBCM+4 02-@IDMS

000DAC 58F0 B7B0 017B0 388+ L 15,=V(IDMS) 02-@IDMS

000DB0 05EF 389+ BALR 14,15 *** CALL IDMS MODE=BATCH *** 02-@IDMS
 390+* *** END DML EXPANSION ***

 391 @BIND REC='OFFICE',IOAREA=OFFIC

 392+* *** BEGIN DML EXPANSION ***
000DB2 4100 C030 00030 393+ LA 0,SSCTRL 02-@IDMS

000DB6 5000 C094 00094 394+ ST 0,SSCIDBCM+4 02-@IDMS

000DBA 4100 C0BF 000BF 395+ LA 0,SSCIDBCM+48-1 02-@IDMS
000DBE 5000 C098 00098 396+ ST 0,SSCIDBCM+8 02-@IDMS

000DC2 4100 B846 01846 397+ LA 0,=CL18'OFFICE' 02-@IDMS

000DC6 5000 C09C 0009C 398+ ST 0,SSCIDBCM+12 02-@IDMS
000DCA 4100 C168 00168 399+ LA 0,OFFIC 02-@IDMS

000DCE 5000 C0A0 000A0 400+ ST 0,SSCIDBCM+16 02-@IDMS

000DD2 9680 C0A0 000A0 401+ OI SSCIDBCM+16,X'80' 02-@IDMS
000DD6 4100 0002 00002 402+ LA 0,2 02-@IDMS

000DDA 5000 C104 00104 403+ ST 0,DMLSEQ 02-@IDMS

 404+*, DML-SEQUENCE = 2 02-@IDMS

000DDE 4110 C094 00094 405+ LA 1,SSCIDBCM+4 02-@IDMS

000DE2 58F0 B7B0 017B0 406+ L 15,=V(IDMS) 02-@IDMS

000DE6 05EF 407+ BALR 14,15 *** CALL IDMS MODE=BATCH *** 02-@IDMS

 408+* *** END DML EXPANSION ***

 409 @BIND REC='EMPLOYEE',IOAREA=EMPLOYE

 410+* *** BEGIN DML EXPANSION ***

000DE8 4100 C030 00030 411+ LA 0,SSCTRL 02-@IDMS

000DEC 5000 C094 00094 412+ ST 0,SSCIDBCM+4 02-@IDMS

000DF0 4100 C0BF 000BF 413+ LA 0,SSCIDBCM+48-1 02-@IDMS

000DF4 5000 C098 00098 414+ ST 0,SSCIDBCM+8 02-@IDMS

000DF8 4100 B858 01858 415+ LA 0,=CL18'EMPLOYEE' 02-@IDMS

000DFC 5000 C09C 0009C 416+ ST 0,SSCIDBCM+12 02-@IDMS
000E00 4100 C8E8 008E8 417+ LA 0,EMPLOYE 02-@IDMS

000E04 5000 C0A0 000A0 418+ ST 0,SSCIDBCM+16 02-@IDMS

000E08 9680 C0A0 000A0 419+ OI SSCIDBCM+16,X'80' 02-@IDMS
000E0C 4100 0003 00003 420+ LA 0,3 02-@IDMS

000E10 5000 C104 00104 421+ ST 0,DMLSEQ 02-@IDMS

 422+*, DML-SEQUENCE = 3 02-@IDMS
000E14 4110 C094 00094 423+ LA 1,SSCIDBCM+4 02-@IDMS

000E18 58F0 B7B0 017B0 424+ L 15,=V(IDMS) 02-@IDMS

000E1C 05EF 425+ BALR 14,15 *** CALL IDMS MODE=BATCH *** 02-@IDMS
 426+* *** END DML EXPANSION ***

 427 @BIND REC='DEPARTMENT',IOAREA=DEPARTMT

 428+* *** BEGIN DML EXPANSION ***
000E1E 4100 C030 00030 429+ LA 0,SSCTRL 02-@IDMS

000E22 5000 C094 00094 430+ ST 0,SSCIDBCM+4 02-@IDMS

000E26 4100 C0BF 000BF 431+ LA 0,SSCIDBCM+48-1 02-@IDMS
000E2A 5000 C098 00098 432+ ST 0,SSCIDBCM+8 02-@IDMS

000E2E 4100 B86A 0186A 433+ LA 0,=CL18'DEPARTMENT' 02-@IDMS

000E32 5000 C09C 0009C 434+ ST 0,SSCIDBCM+12 02-@IDMS
000E36 4100 C960 00960 435+ LA 0,DEPARTMT 02-@IDMS

000E3A 5000 C0A0 000A0 436+ ST 0,SSCIDBCM+16 02-@IDMS

000E3E 9680 C0A0 000A0 437+ OI SSCIDBCM+16,X'80' 02-@IDMS
000E42 4100 0004 00004 438+ LA 0,4 02-@IDMS

000E46 5000 C104 00104 439+ ST 0,DMLSEQ 02-@IDMS

 440+*, DML-SEQUENCE = 4 02-@IDMS
000E4A 4110 C094 00094 441+ LA 1,SSCIDBCM+4 02-@IDMS

000E4E 58F0 B7B0 017B0 442+ L 15,=V(IDMS) 02-@IDMS

000E52 05EF 443+ BALR 14,15 *** CALL IDMS MODE=BATCH *** 02-@IDMS

Output from the Assembler

474 DML Reference Guide for Assembler

 444+* *** END DML EXPANSION ***

 445 OPEN (OUTFILE,OUTPUT)

000E54 446+ CNOP 0,4 ALIGN LIST TO FULLWORD 01-OPEN

000E54 4510 CE5C 00E5C 447+ BAL 1,*+8 LOAD REG1 W/LIST ADDR. @L2A 01-OPEN

000E58 8F 448+ DC AL1(143) OPTION BYTE 01-OPEN
000E59 00173C 449+ DC AL3(OUTFILE) DCB ADDRESS 01-OPEN

000E5C 0A13 450+ SVC 19 ISSUE OPEN SVC 01-OPEN

000E5E D200 B5C4 B8BC 015C4 018BC 451 MVC EDSW,=C'N' SET SWITCHES
000E64 D200 B5C5 B8BC 015C5 018BC 452 MVC DSW,=C'N'

000E6A D200 B5C6 B8BC 015C6 018BC 453 MVC ESW,=C'N'

000E70 4150 CE78 00E78 454 LA R5,MAIN000 LOAD ADDRESS OF MAINLINE ROUTINE
000E74 47F0 B3A4 013A4 455 B PRTHEAD

 00E78 456 MAIN000 EQU *

 457 @READY ALL,RDONLY=YES READY ALL DATABASE AREAS
 458+* *** BEGIN DML EXPANSION ***

000E78 4100 C030 00030 459+ LA 0,SSCTRL 02-@IDMS

000E7C 5000 C094 00094 460+ ST 0,SSCIDBCM+4 02-@IDMS
000E80 4100 C0B4 000B4 461+ LA 0,SSCIDBCM+37-1 02-@IDMS

000E84 5000 C098 00098 462+ ST 0,SSCIDBCM+8 02-@IDMS

000E88 9680 C098 00098 463+ OI SSCIDBCM+8,X'80' 02-@IDMS
000E8C 4100 0005 00005 464+ LA 0,5 02-@IDMS

000E90 5000 C104 00104 465+ ST 0,DMLSEQ 02-@IDMS

 466+*, DML-SEQUENCE = 5 02-@IDMS
000E94 4110 C094 00094 467+ LA 1,SSCIDBCM+4 02-@IDMS

000E98 58F0 B7B0 017B0 468+ L 15,=V(IDMS) 02-@IDMS

000E9C 05EF 469+ BALR 14,15 *** CALL IDMS MODE=BATCH *** 02-@IDMS
 470+* *** END DML EXPANSION ***

000E9E D503 C038 B46A 00038 0146A 471 CLC ERRSTAT,STATOK CHECK IF ERROR

000EA4 4770 B1F4 011F4 472 BNE AREAERR BRANCH TO ERROR ROUTINE
 473 @OBTAIN FIRST,AREA='ORG-DEMO-REGION',REC='OFFICE'

 474+* *** BEGIN DML EXPANSION ***

000EA8 4100 C030 00030 475+ LA 0,SSCTRL 03-@IDMS
000EAC 5000 C094 00094 476+ ST 0,SSCIDBCM+4 03-@IDMS

000EB0 4100 C0A2 000A2 477+ LA 0,SSCIDBCM+18+1-1 03-@IDMS

000EB4 5000 C098 00098 478+ ST 0,SSCIDBCM+8 03-@IDMS

000EB8 4100 B846 01846 479+ LA 0,=CL18'OFFICE' 03-@IDMS

000EBC 5000 C09C 0009C 480+ ST 0,SSCIDBCM+12 03-@IDMS

000EC0 4100 B87C 0187C 481+ LA 0,=CL18'ORG-DEMO-REGION' 03-@IDMS

000EC4 5000 C0A0 000A0 482+ ST 0,SSCIDBCM+16 03-@IDMS

000EC8 4100 C0BA 000BA 483+ LA 0,SSCIDBCM+43-1 02-@IDMS

000ECC 5000 C0A4 000A4 484+ ST 0,SSCIDBCM+20 02-@IDMS

000ED0 9680 C0A4 000A4 485+ OI SSCIDBCM+20,X'80' 02-@IDMS

000ED4 4100 0006 00006 486+ LA 0,6 02-@IDMS

000ED8 5000 C104 00104 487+ ST 0,DMLSEQ 02-@IDMS

 488+*, DML-SEQUENCE = 6 02-@IDMS

000EDC 4110 C094 00094 489+ LA 1,SSCIDBCM+4 02-@IDMS

000EE0 58F0 B7B0 017B0 490+ L 15,=V(IDMS) 02-@IDMS
000EE4 05EF 491+ BALR 14,15 *** CALL IDMS MODE=BATCH *** 02-@IDMS

 492+* *** END DML EXPANSION ***

000EE6 D503 C038 B46A 00038 0146A 493 NEWOFFC CLC ERRSTAT,STATOK CHECK IF NO OFFICE
000EEC 4770 B1F4 011F4 494 BNE AREAERR

000EF0 D202 B470 C168 01470 00168 495 MVC OCODE,OFFCODE

000EF6 D20E B473 C17F 01473 0017F 496 MVC OCITY,OFFCITY
 497 @OBTAIN FIRST,SET='OFFICE-EMPLOYEE',REC='EMPLOYEE'

 498+* *** BEGIN DML EXPANSION ***

000EFC 4100 C030 00030 499+ LA 0,SSCTRL 03-@IDMS
000F00 5000 C094 00094 500+ ST 0,SSCIDBCM+4 03-@IDMS

000F04 4100 C0A1 000A1 501+ LA 0,SSCIDBCM+18+0-1 03-@IDMS

000F08 5000 C098 00098 502+ ST 0,SSCIDBCM+8 03-@IDMS
000F0C 4100 B858 01858 503+ LA 0,=CL18'EMPLOYEE' 03-@IDMS

000F10 5000 C09C 0009C 504+ ST 0,SSCIDBCM+12 03-@IDMS

000F14 4100 B88E 0188E 505+ LA 0,=CL18'OFFICE-EMPLOYEE' 03-@IDMS
000F18 5000 C0A0 000A0 506+ ST 0,SSCIDBCM+16 03-@IDMS

000F1C 4100 C0BA 000BA 507+ LA 0,SSCIDBCM+43-1 02-@IDMS

000F20 5000 C0A4 000A4 508+ ST 0,SSCIDBCM+20 02-@IDMS
000F24 9680 C0A4 000A4 509+ OI SSCIDBCM+20,X'80' 02-@IDMS

000F28 4100 0007 00007 510+ LA 0,7 02-@IDMS

000F2C 5000 C104 00104 511+ ST 0,DMLSEQ 02-@IDMS
 512+*, DML-SEQUENCE = 7 02-@IDMS

000F30 4110 C094 00094 513+ LA 1,SSCIDBCM+4 02-@IDMS

000F34 58F0 B7B0 017B0 514+ L 15,=V(IDMS) 02-@IDMS
000F38 05EF 515+ BALR 14,15 *** CALL IDMS MODE=BATCH *** 02-@IDMS

 516+* *** END DML EXPANSION ***

000F3A D503 C038 B46A 00038 0146A 517 CLC ERRSTAT,STATOK CHECK IF NO EMPLOYEE

Output from the Assembler

Appendix B: Sample CA IDMS/DB Batch Program 475

000F40 4770 B260 01260 518 BNE OBERR1

000F44 D203 B482 C8E8 01482 008E8 519 MVC EID,EMPID MOVE EMPLOYEE ID

000F4A D209 B486 C8EC 01486 008EC 520 MVC FNAME,EMPFNAME MOVE EMPLOYEE FIRST NAME

000F50 D20E B492 C8F6 01492 008F6 521 MVC LNAME,EMPLNAME MOVE EMPLOYEE LAST NAME

000F56 D203 B4A1 C8E8 014A1 008E8 522 MVC WALK,EMPID SAVE ID
000F5C D201 B454 C93D 01454 0093D 523 MVC STATNUM,EMPSTATU MOVE EMPLOYEE STATUS

000F62 4160 CF6A 00F6A 524 LA R6,NEWDPT LOAD ADDRESS OF NEW DEPT ROUTINE

000F66 47F0 B342 01342 525 B CKSTAT BRANCH TO STATUS-CHECK RTN
 00F6A 526 NEWDPT EQU *

 527 @OBTAIN OWNER,SET='DEPT-EMPLOYEE'

 528+* *** BEGIN DML EXPANSION ***
000F6A 4100 C030 00030 529+ LA 0,SSCTRL 03-@IDMS

000F6E 5000 C094 00094 530+ ST 0,SSCIDBCM+4 03-@IDMS

000F72 4100 C0AE 000AE 531+ LA 0,SSCIDBCM+31-1 03-@IDMS
000F76 5000 C098 00098 532+ ST 0,SSCIDBCM+8 03-@IDMS

000F7A 4100 B8A0 018A0 533+ LA 0,=CL18'DEPT-EMPLOYEE' 03-@IDMS

000F7E 5000 C09C 0009C 534+ ST 0,SSCIDBCM+12 03-@IDMS
000F82 4100 C0BA 000BA 535+ LA 0,SSCIDBCM+43-1 02-@IDMS

000F86 5000 C0A0 000A0 536+ ST 0,SSCIDBCM+16 02-@IDMS

000F8A 9680 C0A0 000A0 537+ OI SSCIDBCM+16,X'80' 02-@IDMS
000F8E 4100 0008 00008 538+ LA 0,8 02-@IDMS

000F92 5000 C104 00104 539+ ST 0,DMLSEQ 02-@IDMS

 540+*, DML-SEQUENCE = 8 02-@IDMS
000F96 4110 C094 00094 541+ LA 1,SSCIDBCM+4 02-@IDMS

000F9A 58F0 B7B0 017B0 542+ L 15,=V(IDMS) 02-@IDMS

000F9E 05EF 543+ BALR 14,15 *** CALL IDMS MODE=BATCH *** 02-@IDMS
 544+* *** END DML EXPANSION ***

000FA0 D503 C038 B46A 00038 0146A 545 CLC ERRSTAT,STATOK CHECK IF DEPARTMENT

000FA6 4770 B26E 0126E 546 BNE OBERR2
000FAA D203 B4A5 C960 014A5 00960 547 MVC DID,DEPTID

000FB0 D22C B4A9 C964 014A9 00964 548 MVC DEPT,DEPTNAME

000FB6 4150 CFBE 00FBE 549 LA R5,MAIN020 LOAD ADDRESS OF SET-WALK RTN
000FBA 47F0 B2AE 012AE 550 B PRINTREC PRINT DEPARTMENT INFORMATION

 00FBE 551 MAIN020 EQU * *

 552 @OBTAIN NEXT,SET='DEPT-EMPLOYEE',REC='EMPLOYEE'

 553+* *** BEGIN DML EXPANSION ***

000FBE 4100 C030 00030 554+ LA 0,SSCTRL 03-@IDMS

000FC2 5000 C094 00094 555+ ST 0,SSCIDBCM+4 03-@IDMS

000FC6 4100 C099 00099 556+ LA 0,SSCIDBCM+10+0-1 03-@IDMS

000FCA 5000 C098 00098 557+ ST 0,SSCIDBCM+8 03-@IDMS

000FCE 4100 B858 01858 558+ LA 0,=CL18'EMPLOYEE' 03-@IDMS

000FD2 5000 C09C 0009C 559+ ST 0,SSCIDBCM+12 03-@IDMS

000FD6 4100 B8A0 018A0 560+ LA 0,=CL18'DEPT-EMPLOYEE' 03-@IDMS

000FDA 5000 C0A0 000A0 561+ ST 0,SSCIDBCM+16 03-@IDMS

000FDE 4100 C0BA 000BA 562+ LA 0,SSCIDBCM+43-1 02-@IDMS

000FE2 5000 C0A4 000A4 563+ ST 0,SSCIDBCM+20 02-@IDMS

000FE6 9680 C0A4 000A4 564+ OI SSCIDBCM+20,X'80' 02-@IDMS
000FEA 4100 0009 00009 565+ LA 0,9 02-@IDMS

000FEE 5000 C104 00104 566+ ST 0,DMLSEQ 02-@IDMS

 567+*, DML-SEQUENCE = 9 02-@IDMS
000FF2 4110 C094 00094 568+ LA 1,SSCIDBCM+4 02-@IDMS

000FF6 58F0 B7B0 017B0 569+ L 15,=V(IDMS) 02-@IDMS

000FFA 05EF 570+ BALR 14,15 *** CALL IDMS MODE=BATCH *** 02-@IDMS
 571+* *** END DML EXPANSION ***

000FFC D503 C038 0133 00038 00133 572 CLC ERRSTAT,0307 CHECK IF END OF SET

001002 4780 B038 01038 573 BE MAIN030 BRANCH IF END OF SET
001006 D503 C038 B46A 00038 0146A 574 CLC ERRSTAT,STATOK CHECK IF ERROR

00100C 4770 B27C 0127C 575 BNE OBERR3

001010 D203 B482 C8E8 01482 008E8 576 MVC EID,EMPID MOVE EMPLOYEE ID
001016 D209 B486 C8EC 01486 008EC 577 MVC FNAME,EMPFNAME MOVE EMPLOYEE FIRST NAME

00101C D20E B492 C8F6 01492 008F6 578 MVC LNAME,EMPLNAME MOVE EMPLOYEE LAST NAME

001022 D201 B454 C93D 01454 0093D 579 MVC STATNUM,EMPSTATU MOVE EMPLOYEE STATUS
001028 4160 B030 01030 580 LA R6,MAIN025 LOAD ADDRESS OF PRINT LINK

00102C 47F0 B342 01342 581 B CKSTAT

 01030 582 MAIN025 EQU *
001030 4150 CFBE 00FBE 583 LA R5,MAIN020

001034 47F0 B2AE 012AE 584 B PRINTREC

 01038 585 MAIN030 EQU *
001038 D203 C8E8 B4A1 008E8 014A1 586 MVC EMPID,WALK

 587 @FIND CALC,REC='EMPLOYEE' FIND NEXT EMPLOYEE

 588+* *** BEGIN DML EXPANSION ***
00103E 4100 C030 00030 589+ LA 0,SSCTRL 02-@IDMS

001042 5000 C094 00094 590+ ST 0,SSCIDBCM+4 02-@IDMS

001046 4100 C0AF 000AF 591+ LA 0,SSCIDBCM+32-1 02-@IDMS

Output from the Assembler

476 DML Reference Guide for Assembler

00104A 5000 C098 00098 592+ ST 0,SSCIDBCM+8 02-@IDMS

00104E 4100 B858 01858 593+ LA 0,=CL18'EMPLOYEE' 02-@IDMS

001052 5000 C09C 0009C 594+ ST 0,SSCIDBCM+12 02-@IDMS

001056 9680 C09C 0009C 595+ OI SSCIDBCM+12,X'80' 02-@IDMS

00105A 4100 000A 0000A 596+ LA 0,10 02-@IDMS
00105E 5000 C104 00104 597+ ST 0,DMLSEQ 02-@IDMS

 598+*, DML-SEQUENCE = 10 02-@IDMS

001062 4110 C094 00094 599+ LA 1,SSCIDBCM+4 02-@IDMS
001066 58F0 B7B0 017B0 600+ L 15,=V(IDMS) 02-@IDMS

00106A 05EF 601+ BALR 14,15 *** CALL IDMS MODE=BATCH *** 02-@IDMS

 602+* *** END DML EXPANSION ***
00106C D503 C038 B46A 00038 0146A 603 CLC ERRSTAT,STATOK CHECK IF ERROR

001072 4770 B218 01218 604 BNE CALCERR

 01076 605 REPEAT EQU *
 606 @OBTAIN NEXT,SET='OFFICE-EMPLOYEE',REC='EMPLOYEE'

 607+* *** BEGIN DML EXPANSION ***

001076 4100 C030 00030 608+ LA 0,SSCTRL 03-@IDMS
00107A 5000 C094 00094 609+ ST 0,SSCIDBCM+4 03-@IDMS

00107E 4100 C099 00099 610+ LA 0,SSCIDBCM+10+0-1 03-@IDMS

001082 5000 C098 00098 611+ ST 0,SSCIDBCM+8 03-@IDMS
001086 4100 B858 01858 612+ LA 0,=CL18'EMPLOYEE' 03-@IDMS

00108A 5000 C09C 0009C 613+ ST 0,SSCIDBCM+12 03-@IDMS

00108E 4100 B88E 0188E 614+ LA 0,=CL18'OFFICE-EMPLOYEE' 03-@IDMS
001092 5000 C0A0 000A0 615+ ST 0,SSCIDBCM+16 03-@IDMS

001096 4100 C0BA 000BA 616+ LA 0,SSCIDBCM+43-1 02-@IDMS

00109A 5000 C0A4 000A4 617+ ST 0,SSCIDBCM+20 02-@IDMS
00109E 9680 C0A4 000A4 618+ OI SSCIDBCM+20,X'80' 02-@IDMS

0010A2 4100 000B 0000B 619+ LA 0,11 02-@IDMS

0010A6 5000 C104 00104 620+ ST 0,DMLSEQ 02-@IDMS
 621+*, DML-SEQUENCE = 11 02-@IDMS

0010AA 4110 C094 00094 622+ LA 1,SSCIDBCM+4 02-@IDMS

0010AE 58F0 B7B0 017B0 623+ L 15,=V(IDMS) 02-@IDMS
0010B2 05EF 624+ BALR 14,15 *** CALL IDMS MODE=BATCH *** 02-@IDMS

 625+* *** END DML EXPANSION ***

0010B4 D503 C038 B7B4 00038 017B4 626 CLC ERRSTAT,=C'0307' END OF SET ?

0010BA 4780 B126 01126 627 BE MAIN040 BRANCH IF END OF SET

0010BE D503 C038 B46A 00038 0146A 628 CLC ERRSTAT,STATOK

0010C4 4770 B260 01260 629 BNE OBERR1

 630 @IF SET='DEPT-EMPLOYEE',MEMBER=YES,GOTO=REPEAT

 631+* *** BEGIN DML EXPANSION ***

0010C8 4100 C030 00030 632+ LA 0,SSCTRL 02-@IDMS

0010CC 5000 C094 00094 633+ ST 0,SSCIDBCM+4 02-@IDMS

0010D0 4100 C0CB 000CB 634+ LA 0,SSCIDBCM+60-1 02-@IDMS

0010D4 5000 C098 00098 635+ ST 0,SSCIDBCM+8 02-@IDMS

0010D8 4100 B8A0 018A0 636+ LA 0,=CL18'DEPT-EMPLOYEE' 02-@IDMS

0010DC 5000 C09C 0009C 637+ ST 0,SSCIDBCM+12 02-@IDMS

0010E0 9680 C09C 0009C 638+ OI SSCIDBCM+12,X'80' 02-@IDMS
0010E4 4100 000C 0000C 639+ LA 0,12 02-@IDMS

0010E8 5000 C104 00104 640+ ST 0,DMLSEQ 02-@IDMS

 641+*, DML-SEQUENCE = 12 02-@IDMS
0010EC 4110 C094 00094 642+ LA 1,SSCIDBCM+4 02-@IDMS

0010F0 58F0 B7B0 017B0 643+ L 15,=V(IDMS) 02-@IDMS

0010F4 05EF 644+ BALR 14,15 *** CALL IDMS MODE=BATCH *** 02-@IDMS
 645+* *** END DML EXPANSION ***

0010F6 D503 C038 B7B8 00038 017B8 646+ CLC ERRSTAT,=C'0000' 01-@IF

0010FC 4780 B076 01076 647+ BE REPEAT 01-@IF
001100 D203 B482 C8E8 01482 008E8 648 MVC EID,EMPID MOVE EMPLOYEE ID

001106 D209 B486 C8EC 01486 008EC 649 MVC FNAME,EMPFNAME MOVE EMPLOYEE FIRST NAME

00110C D20E B492 C8F6 01492 008F6 650 MVC LNAME,EMPLNAME MOVE EMPLOYEE LAST NAME
001112 D203 B4A1 C8E8 014A1 008E8 651 MVC WALK,EMPID

001118 D201 B454 C93D 01454 0093D 652 MVC STATNUM,EMPSTATU

00111E 4160 CF6A 00F6A 653 LA R6,NEWDPT ADDRESS OF DEPT ROUTINE
001122 47F0 B342 01342 654 B CKSTAT

 01126 655 MAIN040 EQU *

 656 @OBTAIN NEXT,AREA='ORG-DEMO-REGION',REC='OFFICE'
 657+* *** BEGIN DML EXPANSION ***

001126 4100 C030 00030 658+ LA 0,SSCTRL 03-@IDMS

00112A 5000 C094 00094 659+ ST 0,SSCIDBCM+4 03-@IDMS
00112E 4100 C09A 0009A 660+ LA 0,SSCIDBCM+10+1-1 03-@IDMS

001132 5000 C098 00098 661+ ST 0,SSCIDBCM+8 03-@IDMS

001136 4100 B846 01846 662+ LA 0,=CL18'OFFICE' 03-@IDMS
00113A 5000 C09C 0009C 663+ ST 0,SSCIDBCM+12 03-@IDMS

00113E 4100 B87C 0187C 664+ LA 0,=CL18'ORG-DEMO-REGION' 03-@IDMS

001142 5000 C0A0 000A0 665+ ST 0,SSCIDBCM+16 03-@IDMS

Output from the Assembler

Appendix B: Sample CA IDMS/DB Batch Program 477

001146 4100 C0BA 000BA 666+ LA 0,SSCIDBCM+43-1 02-@IDMS

00114A 5000 C0A4 000A4 667+ ST 0,SSCIDBCM+20 02-@IDMS

00114E 9680 C0A4 000A4 668+ OI SSCIDBCM+20,X'80' 02-@IDMS

001152 4100 000D 0000D 669+ LA 0,13 02-@IDMS

001156 5000 C104 00104 670+ ST 0,DMLSEQ 02-@IDMS
 671+*, DML-SEQUENCE = 13 02-@IDMS

00115A 4110 C094 00094 672+ LA 1,SSCIDBCM+4 02-@IDMS

00115E 58F0 B7B0 017B0 673+ L 15,=V(IDMS) 02-@IDMS
001162 05EF 674+ BALR 14,15 *** CALL IDMS MODE=BATCH *** 02-@IDMS

 675+* *** END DML EXPANSION ***

001164 47F0 CEE6 00EE6 676 B NEWOFFC
 01168 677 EOF EQU *

 678 @FINISH *

 679+* *** BEGIN DML EXPANSION ***
001168 4100 C030 00030 680+ LA 0,SSCTRL 02-@IDMS

00116C 5000 C094 00094 681+ ST 0,SSCIDBCM+4 02-@IDMS

001170 4100 C091 00091 682+ LA 0,SSCIDBCM+2-1 02-@IDMS
001174 5000 C098 00098 683+ ST 0,SSCIDBCM+8 02-@IDMS

001178 9680 C098 00098 684+ OI SSCIDBCM+8,X'80' 02-@IDMS

00117C 4100 000E 0000E 685+ LA 0,14 02-@IDMS
001180 5000 C104 00104 686+ ST 0,DMLSEQ 02-@IDMS

 687+*, DML-SEQUENCE = 14 02-@IDMS

001184 4110 C094 00094 688+ LA 1,SSCIDBCM+4 02-@IDMS
001188 58F0 B7B0 017B0 689+ L 15,=V(IDMS) 02-@IDMS

00118C 05EF 690+ BALR 14,15 *** CALL IDMS MODE=BATCH *** 02-@IDMS

 691+* *** END DML EXPANSION ***
00118E D503 C038 B46A 00038 0146A 692 CLC ERRSTAT,STATOK

001194 4770 B23C 0123C 693 BNE FINERR

 694 CLOSE (OUTFILE)
001198 695+ CNOP 0,4 ALIGN LIST TO FULLWORD 01-CLOSE

001198 4510 B1A0 011A0 696+ BAL 1,*+8 LOAD REG1 W/LIST ADDR. @L2A 01-CLOSE

00119C 80 697+ DC AL1(128) OPTION BYTE 01-CLOSE
00119D 00173C 698+ DC AL3(OUTFILE) DCB ADDRESS 01-CLOSE

0011A0 0A14 699+ SVC 20 ISSUE CLOSE SVC 01-CLOSE

0011A2 58D0 B410 01410 700 L R13,SAVEAREA+4

0011A6 98EC D00C 0000C 701 LM R14,R12,12(R13)

0011AA 07FE 702 BR R14 RETURN

 703 * ERROR ROUTINES *

 011AC 704 BSERROR EQU *

0011AC 9240 B50D 0150D 705 MVI ERRMSG,C' '

0011B0 D212 B50E B50D 0150E 0150D 706 MVC ERRMSG+1(19),ERRMSG

0011B6 9240 B521 01521 707 MVI ERRNUM,C' '

0011BA D202 B522 B521 01522 01521 708 MVC ERRNUM+1(3),ERRNUM

0011C0 D203 B521 C038 01521 00038 709 MVC ERRNUM,ERRSTAT

0011C6 D213 B50D B560 0150D 01560 710 MVC ERRMSG,BSMSG

0011CC 47F0 B28A 0128A 711 B PRINTERR

 011D0 712 BRERROR EQU *
0011D0 9240 B50D 0150D 713 MVI ERRMSG,C' '

0011D4 D212 B50E B50D 0150E 0150D 714 MVC ERRMSG+1(19),ERRMSG

0011DA 9240 B521 01521 715 MVI ERRNUM,C' '
0011DE D202 B522 B521 01522 01521 716 MVC ERRNUM+1(3),ERRNUM

0011E4 D203 B521 C038 01521 00038 717 MVC ERRNUM,ERRSTAT

0011EA D213 B50D B574 0150D 01574 718 MVC ERRMSG,BRMSG
0011F0 47F0 B28A 0128A 719 B PRINTERR

 011F4 720 AREAERR EQU *

0011F4 9240 B50D 0150D 721 MVI ERRMSG,C' '
0011F8 D212 B50E B50D 0150E 0150D 722 MVC ERRMSG+1(19),ERRMSG

0011FE 9240 B521 01521 723 MVI ERRNUM,C' '

001202 D202 B522 B521 01522 01521 724 MVC ERRNUM+1(3),ERRNUM
001208 D203 B521 C038 01521 00038 725 MVC ERRNUM,ERRSTAT

00120E D213 B50D B588 0150D 01588 726 MVC ERRMSG,AREAMSG

001214 47F0 B28A 0128A 727 B PRINTERR
 01218 728 CALCERR EQU *

001218 9240 B50D 0150D 729 MVI ERRMSG,C' '

00121C D212 B50E B50D 0150E 0150D 730 MVC ERRMSG+1(19),ERRMSG
001222 9240 B521 01521 731 MVI ERRNUM,C' '

001226 D202 B522 B521 01522 01521 732 MVC ERRNUM+1(3),ERRNUM

00122C D203 B521 C038 01521 00038 733 MVC ERRNUM,ERRSTAT
001232 D213 B50D B59C 0150D 0159C 734 MVC ERRMSG,CALMSG

001238 47F0 B28A 0128A 735 B PRINTERR

 0123C 736 FINERR EQU *
00123C 9240 B50D 0150D 737 MVI ERRMSG,C' '

001240 D212 B50E B50D 0150E 0150D 738 MVC ERRMSG+1(19),ERRMSG

001246 9240 B521 01521 739 MVI ERRNUM,C' '

Output from the Assembler

478 DML Reference Guide for Assembler

00124A D202 B522 B521 01522 01521 740 MVC ERRNUM+1(3),ERRNUM

001250 D203 B521 C038 01521 00038 741 MVC ERRNUM,ERRSTAT

001256 D213 B50D B5B0 0150D 015B0 742 MVC ERRMSG,FINMSG

00125C 47F0 B28A 0128A 743 B PRINTERR

 01260 744 OBERR1 EQU *
001260 D200 B5C4 B8BD 015C4 018BD 745 MVC EDSW,=C'Y'

001266 4150 B126 01126 746 LA R5,MAIN040

00126A 47F0 B2AE 012AE 747 B PRINTREC
 0126E 748 OBERR2 EQU *

00126E D200 B5C5 B8BD 015C5 018BD 749 MVC DSW,=C'Y'

001274 4150 B076 01076 750 LA R5,REPEAT
001278 47F0 B2AE 012AE 751 B PRINTREC

 0127C 752 OBERR3 EQU *

00127C D200 B5C6 B8BD 015C6 018BD 753 MVC ESW,=C'Y'
001282 4150 B038 01038 754 LA R5,MAIN030

001286 47F0 B2AE 012AE 755 B PRINTREC

 756 * PRINT ROUTINES
 0128A 757 PRINTERR EQU *

00128A D284 B4D6 0040 014D6 00040 758 MVC ERRLINE,C' '

001290 D283 B4D7 B4D6 014D7 014D6 759 MVC ERRLINE+1(132),ERRLINE
001296 92F0 B4D6 014D6 760 MVI ERRLINE,C'0'

 761 PUT OUTFILE,ERRLINE

00129A 4110 B73C 0173C 762+ LA 1,OUTFILE LOAD PARAMETER REG 1 02-IHBIN
00129E 4100 B4D6 014D6 763+ LA 0,ERRLINE LOAD PARAMETER REG 0 02-IHBIN

0012A2 1FFF 764+ SLR 15,15 CLEAR REGISTER @L1A 01-PUT

0012A4 BFF7 1031 00031 765+ ICM 15,7,49(1) LOAD PUT ROUTINE ADDR @L1C 01-PUT
0012A8 05EF 766+ BALR 14,15 LINK TO PUT ROUTINE 01-PUT

0012AA 47F0 B168 01168 767 B EOF

 012AE 768 PRINTREC EQU *
0012AE 9240 B5C7 015C7 769 MVI LINE1,C' '

0012B2 D283 B5C8 B5C7 015C8 015C7 770 MVC LINE1+1(132),LINE1

0012B8 92F0 B5C7 015C7 771 MVI LINE1,C'0'
0012BC 9240 B64C 0164C 772 MVI LINE2,C' '

0012C0 D283 B64D B64C 0164D 0164C 773 MVC LINE2+1(132),LINE2

0012C6 D500 B5C4 B8BD 015C4 018BD 774 CLC EDSW,=C'Y'

0012CC 4780 B302 01302 775 BE SKIPED

0012D0 D500 B5C5 B8BD 015C5 018BD 776 CLC DSW,=C'Y'

0012D6 4780 B2F0 012F0 777 BE SKIPD

0012DA D22C B5E2 B4A9 015E2 014A9 778 MVC LINE1+27(45),DEPT

0012E0 D203 B667 B4A5 01667 014A5 779 MVC LINE2+27(4),DID

0012E6 D500 B5C5 B8BD 015C5 018BD 780 CLC DSW,=C'Y'

0012EC 4780 B302 01302 781 BE SKIPED

 012F0 782 SKIPD EQU *

0012F0 D21A B614 B486 01614 01486 783 MVC LINE1+77(27),ENAME

0012F6 D203 B699 B482 01699 01482 784 MVC LINE2+77(4),EID

0012FC D213 B634 B456 01634 01456 785 MVC LINE1+109(20),STAT

 01302 786 SKIPED EQU *
001302 D20E B5CE B473 015CE 01473 787 MVC LINE1+7(15),OCITY

001308 D203 B653 B470 01653 01470 788 MVC LINE2+7(4),OCODE

 789 PUT OUTFILE,LINE1
00130E 4110 B73C 0173C 790+ LA 1,OUTFILE LOAD PARAMETER REG 1 02-IHBIN

001312 4100 B5C7 015C7 791+ LA 0,LINE1 LOAD PARAMETER REG 0 02-IHBIN

001316 1FFF 792+ SLR 15,15 CLEAR REGISTER @L1A 01-PUT
001318 BFF7 1031 00031 793+ ICM 15,7,49(1) LOAD PUT ROUTINE ADDR @L1C 01-PUT

00131C 05EF 794+ BALR 14,15 LINK TO PUT ROUTINE 01-PUT

 795 PUT OUTFILE,LINE2
00131E 4110 B73C 0173C 796+ LA 1,OUTFILE LOAD PARAMETER REG 1 02-IHBIN

001322 4100 B64C 0164C 797+ LA 0,LINE2 LOAD PARAMETER REG 0 02-IHBIN

001326 1FFF 798+ SLR 15,15 CLEAR REGISTER @L1A 01-PUT
001328 BFF7 1031 00031 799+ ICM 15,7,49(1) LOAD PUT ROUTINE ADDR @L1C 01-PUT

00132C 05EF 800+ BALR 14,15 LINK TO PUT ROUTINE 01-PUT

00132E D200 B5C4 B8BC 015C4 018BC 801 MVC EDSW,=C'N'
001334 D200 B5C5 B8BC 015C5 018BC 802 MVC DSW,=C'N'

00133A D200 B5C6 B8BC 015C6 018BC 803 MVC ESW,=C'N'

001340 07F5 804 BR R5
 805 * CHECK STATUS ROUTINE *

 01342 806 CKSTAT EQU *

001342 D501 B454 B8B2 01454 018B2 807 CLC STATNUM,=C'01'
001348 4780 B37C 0137C 808 BE ACT

00134C D501 B454 B8B4 01454 018B4 809 CLC STATNUM,=C'02'

001352 4780 B384 01384 810 BE STD
001356 D501 B454 B8B6 01454 018B6 811 CLC STATNUM,=C'03'

00135C 4780 B38C 0138C 812 BE LTD

001360 D501 B454 B8B8 01454 018B8 813 CLC STATNUM,=C'04'

Output from the Assembler

Appendix B: Sample CA IDMS/DB Batch Program 479

001366 4780 B394 01394 814 BE LVO

00136A D501 B454 B8BA 01454 018BA 815 CLC STATNUM,=C'05'

001370 4780 B39C 0139C 816 BE TRM

001374 D213 B456 B7BC 01456 017BC 817 MVC STAT,=C' STATUS CODE ERROR '

00137A 07F6 818 BR R6
 0137C 819 ACT EQU *

00137C D213 B456 B7D0 01456 017D0 820 MVC STAT,=C' ACTIVE '

001382 07F6 821 BR R6
 01384 822 STD EQU *

001384 D213 B456 B7E4 01456 017E4 823 MVC STAT,=C' SHORT TERM DISABLED'

00138A 07F6 824 BR R6
 0138C 825 LTD EQU *

00138C D213 B456 B7F8 01456 017F8 826 MVC STAT,=C' LONG TERM DISBALED '

001392 07F6 827 BR R6
 01394 828 LVO EQU *

001394 D213 B456 B80C 01456 0180C 829 MVC STAT,=C' LEAVE OF ABSENCE '

00139A 07F6 830 BR R6
 0139C 831 TRM EQU *

00139C D213 B456 B820 01456 01820 832 MVC STAT,=C' TERMINATED '

0013A2 07F6 833 BR R6
 834 * PRINT REPORT HEADING ROUTINE *

 013A4 835 PRTHEAD EQU *

0013A4 9240 B5C7 015C7 836 MVI LINE1,C' '
0013A8 D283 B5C8 B5C7 015C8 015C7 837 MVC LINE1+1(132),LINE1

0013AE 92F1 B5C7 015C7 838 MVI LINE1,C'1'

0013B2 D219 B5FD B6D1 015FD 016D1 839 MVC LINE1+54(26),HEAD1
 840 PUT OUTFILE,LINE1

0013B8 4110 B73C 0173C 841+ LA 1,OUTFILE LOAD PARAMETER REG 1 02-IHBIN

0013BC 4100 B5C7 015C7 842+ LA 0,LINE1 LOAD PARAMETER REG 0 02-IHBIN
0013C0 1FFF 843+ SLR 15,15 CLEAR REGISTER @L1A 01-PUT

0013C2 BFF7 1031 00031 844+ ICM 15,7,49(1) LOAD PUT ROUTINE ADDR @L1C 01-PUT

0013C6 05EF 845+ BALR 14,15 LINK TO PUT ROUTINE 01-PUT
0013C8 9240 B5C7 015C7 846 MVI LINE1,C' '

0013CC D283 B5C8 B5C7 015C8 015C7 847 MVC LINE1+1(132),LINE1

0013D2 9260 B5C7 015C7 848 MVI LINE1,C'-'

0013D6 D211 B5CD B6EB 015CD 016EB 849 MVC LINE1+6(18),HEAD2O

0013DC D219 B5E1 B6FD 015E1 016FD 850 MVC LINE1+26(26),HEAD2D

0013E2 D213 B613 B717 01613 01717 851 MVC LINE1+76(20),HEAD2E

0013E8 D20E B633 B72B 01633 0172B 852 MVC LINE1+108(15),HEAD2S

 853 PUT OUTFILE,LINE1

0013EE 4110 B73C 0173C 854+ LA 1,OUTFILE LOAD PARAMETER REG 1 02-IHBIN

0013F2 4100 B5C7 015C7 855+ LA 0,LINE1 LOAD PARAMETER REG 0 02-IHBIN

0013F6 1FFF 856+ SLR 15,15 CLEAR REGISTER @L1A 01-PUT

0013F8 BFF7 1031 00031 857+ ICM 15,7,49(1) LOAD PUT ROUTINE ADDR @L1C 01-PUT

0013FC 05EF 858+ BALR 14,15 LINK TO PUT ROUTINE 01-PUT

0013FE 07F5 859 BR R5

 860 *
001400 E6D6D9D260C6C9C5 861 WORKFLDS DC C'WORK-FIELDS'

00140B 00

00140C 0000000000000000 862 SAVEAREA DC 18F'0'
001454 863 STATNUM DS CL2

001456 864 STAT DS CL20

00146A F0F0F0F0 865 STATOK DC CL4'0000'
00146E 866 STATUS DS CL2

001470 867 OCODE DS CL3

001473 868 OCITY DS CL15
001482 869 EID DS CL4

001486 870 ENAME DS 0CL27

001486 871 FNAME DS CL10
001490 872 DS CL2

001492 873 LNAME DS CL15

0014A1 874 WALK DS CL4
0014A5 875 DID DS CL4

0014A9 876 DEPT DS CL45

0014D6 877 ERRLINE DS 0CL133
0014D6 878 DS CL1

0014D7 5C405C405C405C40 879 DC CL48'* '

001507 404040404040 880 DC CL6' '
00150D 881 ERRMSG DS CL20

001521 882 ERRNUM DS CL4

001525 404040404040 883 DC CL6' '
00152B 5C405C405C405C40 884 DC CL48'* '

00155B 4040404040 885 DC CL5' '

001560 C2C9D5C440E2E4C2 886 BSMSG DC CL20'BIND SUBSCH ERROR # '

Output from the Assembler

480 DML Reference Guide for Assembler

001574 C2C9D5C440D9C5C3 887 BRMSG DC CL20'BIND RECORD ERROR # '

001588 D9C5C1C4E840C1D9 888 AREAMSG DC CL20'READY AREA ERROR # '

00159C C6C9D5C440C3C1D3 889 CALMSG DC CL20'FIND CALC ERROR # '

0015B0 7CC6C9D5C9E2C840 890 FINMSG DC CL20'@FINISH ERROR # '

0015C4 891 EDSW DS CL1
0015C5 892 DSW DS CL1

0015C6 893 ESW DS CL1

0015C7 894 LINE1 DS CL133
00164C 895 LINE2 DS CL133

0016D1 D6C6C6C9C3C54040 896 HEAD1 DC CL26'OFFICE PERSONNEL LISTING'

0016EB D6C6C6C9C3C561D6 897 HEAD2O DC CL18'OFFICE/OFFICE CODE'
0016FD C4C5D7C1D9E3D4C5 898 HEAD2D DC CL26'DEPARTMENT/DEPARTMENT CODE'

001717 C5D4D7D3D6E8C5C5 899 HEAD2E DC CL20'EMPLOYEE/EMPLOYEE ID'

00172B C5D4D7D3D6E8C5C5 900 HEAD2S DC CL15'EMPLOYEE STATUS'
 901 * OUTPUT FILE DCB INFO

 902 OUTFILE DCB DDNAME=OUTFILE,MACRF=PM,BLKSIZE=133,LRECL=133, X

 DSORG=PS
 904+* DATA CONTROL BLOCK

 905+*

00173A 0000
00173C 906+OUTFILE DC 0F'0' ORIGIN ON WORD BOUNDARY 01-DCB

 907+* DIRECT ACCESS DEVICE INTERFACE

00173C 0000000000000000 908+ DC BL16'0' FDAD, DVTBL 01-DCB
00174C 00000000 909+ DC A(0) KEYLEN, DEVT, TRBAL 01-DCB

 910+* COMMON ACCESS METHOD INTERFACE

001750 00 911+ DC AL1(0) BUFNO, NUMBER OF BUFFERS 01-DCB
001751 000001 912+ DC AL3(1) BUFCB, BUFFER POOL CONTROL BLOCK 01-DCB

001754 0000 913+ DC AL2(0) BUFL, BUFFER LENGTH 01-DCB

001756 4000 914+ DC BL2'0100000000000000' DSORG, DATA SET ORGANIZATION 01-DCB
001758 00000001 915+ DC A(1) IOBAD FOR EXCP OR RESERVED 01-DCB

 916+* FOUNDATION EXTENSION

00175C 00 917+ DC BL1'00000000' BFTEK, BFALN, DCBE INDICATORS 01-DCB
00175D 000001 918+ DC AL3(1) EODAD (END OF DATA ROUTINE ADDRESS) 01-DCB

001760 00 919+ DC BL1'00000000' RECFM (RECORD FORMAT) 01-DCB

001761 000000 920+ DC AL3(0) EXLST (EXIT LIST ADDRESS) 01-DCB

 921+* FOUNDATION BLOCK

001764 D6E4E3C6C9D3C540 922+ DC CL8'OUTFILE' DDNAME 01-DCB

00176C 02 923+ DC BL1'00000010' OFLGS (OPEN FLAGS) 01-DCB

00176D 00 924+ DC BL1'00000000' IFLGS (IOS FLAGS) 01-DCB

00176E 0050 925+ DC BL2'0000000001010000' MACR (MACRO FORMAT) 01-DCB

 926+* BSAM-BPAM-QSAM INTERFACE

001770 00 927+ DC BL1'00000000' OPTCD, OPTION CODES 01-DCB

001771 000001 928+ DC AL3(1) CHECK OR INTERNAL QSAM SYNCHRONIZING RTN. 01-DCB

001774 00000001 929+ DC A(1) SYNAD, SYNCHRONOUS ERROR RTN. (3 BYTES) 01-DCB

001778 0000 930+ DC H'0' INTERNAL ACCESS METHOD FLAGS 01-DCB

00177A 0085 931+ DC AL2(133) BLKSIZE, BLOCK SIZE 01-DCB

00177C 00000000 932+ DC F'0' INTERNAL ACCESS METHOD FLAGS 01-DCB
001780 00000001 933+ DC A(1) INTERNAL ACCESS METHOD USE 01-DCB

 934+* QSAM INTERFACE

001784 00000001 935+ DC A(1) EOBAD 01-DCB
001788 00000001 936+ DC A(1) RECAD 01-DCB

00178C 0000 937+ DC H'0' QSWS (FLAGS) AND EITHER DIRCT OR BUFOFF 01-DCB

00178E 0085 938+ DC AL2(133) LRECL 01-DCB
001790 00 939+ DC BL1'00000000' EROPT, ERROR OPTION 01-DCB

001791 000001 940+ DC AL3(1) CNTRL 01-DCB

001794 00000000 941+ DC H'0,0' RESERVED AND PRECL 01-DCB
001798 00000001 942+ DC A(1) EOB, INTERNAL ACCESS METHOD FIELD 01-DCB

0017A0 943 LTORG

0017A0 4040404040404040 944 =CL8' '
0017A8 C1D7D7D3C4C9C3E3 945 =CL8'APPLDICT'

0017B0 00000000 946 =V(IDMS)

0017B4 F0F3F0F7 947 =C'0307'
0017B8 F0F0F0F0 948 =C'0000'

0017BC 40E2E3C1E3E4E240 949 =C' STATUS CODE ERROR '

0017D0 40C1C3E3C9E5C540 950 =C' ACTIVE '
0017E4 40E2C8D6D9E340E3 951 =C' SHORT TERM DISABLED'

0017F8 40D3D6D5C740E3C5 952 =C' LONG TERM DISBALED '

00180C 40D3C5C1E5C540D6 953 =C' LEAVE OF ABSENCE '
001820 40E3C5D9D4C9D5C1 954 =C' TERMINATED '

001834 C5D4D7E2E2F0F140 955 =CL18'EMPSS01 '

001846 D6C6C6C9C3C54040 956 =CL18'OFFICE'
001858 C5D4D7D3D6E8C5C5 957 =CL18'EMPLOYEE'

00186A C4C5D7C1D9E3D4C5 958 =CL18'DEPARTMENT'

00187C D6D9C760C4C5D4D6 959 =CL18'ORG-DEMO-REGION'

Output from the Assembler

Appendix B: Sample CA IDMS/DB Batch Program 481

00188E D6C6C6C9C3C560C5 960 =CL18'OFFICE-EMPLOYEE'

0018A0 C4C5D7E360C5D4D7 961 =CL18'DEPT-EMPLOYEE'

0018B2 F0F1 962 =C'01'

0018B4 F0F2 963 =C'02'

0018B6 F0F3 964 =C'03'
0018B8 F0F4 965 =C'04'

0018BA F0F5 966 =C'05'

0018BC D5 967 =C'N'
0018BD E8 968 =C'Y'

000000 969 END SAMPLE1

Appendix C: Sample DC/UCF Online Program 483

Appendix C: Sample DC/UCF Online
Program

This appendix contains a sample DC/UCF program that performs a map out operation,
prompting the terminal operator for a department ID.

This section contains the following topics:

Input to the DML Precompiler (see page 484)
Output from the DML Precompiler (see page 487)
Output from the Assembler (see page 490)

Input to the DML Precompiler

484 DML Reference Guide for Assembler

Input to the DML Precompiler

The following il lustrates a sample online program as input to the DML precompiler.

Input to the DML Precompiler

Appendix C: Sample DC/UCF Online Program 485

*RETRIEVAL

*DMLIST
*NO-ACTIVITY-LOG

R0 EQU 0

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R10 EQU 10

R11 EQU 11

R12 EQU 12

R13 EQU 13
R14 EQU 14

R15 EQU 15

 SPACE 1

* ENTER FROM NEXT HIGHER LEVEL
 SPACE 1

 PRINT GEN ASSEMBLER PRINT OPTIONS

SYBPG2 CSECT
 LR R12,R15 ESTABLISHES REGISTER 12 AS THE

 USING SYBPG2,R12 BASE REGISTER

 USING STORAGE,R10 ESTABLISH ADDRESSABILITY OF DSECT
 B PROCESS BRANCH TO FIND INVOKING TASKCODE

 EJECT

 @INVOKE MODE=IDMSDC,MAP=SYBMAP
* OPERATING MODE: IDMS DC/MAPPING

 EJECT

 SPACE 1
RETURN DS 0H

 #FREESTG STGID='SYB4' FREE THE STORAGE ACQUIRED EARLIER

 #RETURN RETURN TO HIGHER LEVEL
 SPACE 1

RETURNXT DS 0H

 #RETURN NXTTASK=SYBTSK03 PASS CONTROL BACK TO ITSELF
 SPACE 1

* MAINLINE PROGRAM

 SPACE 1
PROCESS DS 0H

 #GETSTG TYPE=(USER,LONG,KEEP),PLIST=*,LEN=STORLGTH, *

 STGID='SYB4',COND=(ALL),ERROR=ERRORTN,ADDR=(R10), *

 INIT=X'40'

* ACQUIRE VARIABLE STORAGE

 SPACE 1

 #MAPBIND MRB=SYBMAP BIND MAP AND RECORDS

 #MAPBIND MRB=SYBMAP,RECNAME=SYBREC

 SPACE 1

ACCEPTSK #ACCEPT TYPE=TASKCODE,FIELD=TASKCODE

* ACCEPT TASK CODE TO INVOKE TASK

 CLC TASKCODE,SYBTSK2 FIRST TIME CALLED ?

 BNE RECCUR YES - OUTPUT FIRST SCREEN

* NO - INPUT DATA FROM SCREEN

FIRSTIME DS 0H
 MVC SYBDEPID,=C'0000' PRIME DATA FIELD

 SPACE

 #MREQ OUT,MRB=SYBMAP,OPTNS=(NEWPAGE),ERROR=ERRORTN, *

 COND=(ALL)
* MAP OUT PROMPT

 SPACE

 B RETURNXT EXIT & WAIT FOR OPERATOR RESPONSE
 SPACE 2

RECCUR DS 0H

 #MREQ IN,MRB=SYBMAP,ERROR=ERRORTN,COND=(ALL)
* MAP IN TERMINAL INPUT

 SPACE 1

Input to the DML Precompiler

486 DML Reference Guide for Assembler

 #MAPINQ MRB=SYBMAP,AID=AIDBYTE

* MOVE MAP DATA TO PROG VARIABLE STG

 CLI AIDBYTE,CLEAR DID THE OPERATOR REQUEST FINISH?

 BE RETURN YES - EXIT PGM, BACK TO IDMS DC

 SPACE
 #MREQ OUT,MRB=SYBMAP,ERROR=ERRORTN, *

 COND=(ALL)

* MAP OUT DATA
 SPACE

 B RETURNXT EXIT & WAIT FOR OPERATOR RESPONSE

* NO - MAPOUT, WAIT ON OPERATOR
ERRORTN DS 0H HERE FOR NONZERO RETURN CODE

 #SNAP AREA=(SYBMAP,SYBMAPLN)

 B RETURN EXIT
CLEAR EQU X'6D' CLEAR AIDBYTE VALUE

SYBTSK2 DC CL8'SYBTSK2 ' DC TASK INVOKING VALUE (EXTERNAL)

SYBTSK03 DC CL8'SYBTSK03' DC TASK INVOKING VALUE (INTERNAL)
 LTORG

 #BALI

 SPACE 2
**

STORAGE DSECT STORAGE DSECT

 @COPY IDMS,MAP-CONTROL=SYBMAP
SYBMAPLN EQU *-SYBMAP LENGTH OF #MRB FOR SNAP

 SPACE 1

 @COPY IDMS,MAP-RECORDS
 SPACE 1

SYSPLIST DS 20F MAP OUT PARAMETER LIST AREA

TASKCODE DS CL8 TASK CODE WHICH INVOKED PROGRAM
AIDBYTE DS X ATTENTION IDENTIFIER BYTE

 DS 3X RESERVED

STORLGTH EQU *-STORAGE TOTAL LENGTH OF STORAGE NEEDED
 SPACE 1

 END SYBPG2

Output from the DML Precompiler

Appendix C: Sample DC/UCF Online Program 487

Output from the DML Precompiler

The following il lustrates the sample online program as output from the DML
precompiler.

Output from the DML Precompiler

488 DML Reference Guide for Assembler

 00001 *RETRIEVAL

 00002 *DMLIST
 00003 *NO-ACTIVITY-LOG

 00004 R0 EQU 0

 00005 R1 EQU 1

 00006 R2 EQU 2

 00007 R3 EQU 3

 00008 R4 EQU 4

 00009 R5 EQU 5

 00010 R6 EQU 6

 00011 R7 EQU 7

 00012 R8 EQU 8

 00013 R9 EQU 9

 00014 R10 EQU 10

 00015 R11 EQU 11

 00016 R12 EQU 12

 00017 R13 EQU 13
 00018 R14 EQU 14

 00019 R15 EQU 15

 00020 SPACE 1
 00021 * ENTER FROM NEXT HIGHER LEVEL

 00022 SPACE 1

 00023 PRINT GEN ASSEMBLER PRINT OPTIONS
 00024 SYBPG2 CSECT

 00025 LR R12,R15 ESTABLISHES REGISTER 12 AS THE

 00026 USING SYBPG2,R12 BASE REGISTER
 00027 USING STORAGE,R10 ESTABLISH ADDRESSABILITY OF DSECT

 00028 B PROCESS BRANCH TO FIND INVOKING TASKCODE

 00029 EJECT
 00030 @INVOKE MODE=IDMSDC,MAP=SYBMAP

 00032 * OPERATING MODE: IDMS DC/MAPPING

 00033 EJECT
 00034 SPACE 1

 00035 RETURN DS 0H

 00036 #FREESTG STGID='SYB4' FREE THE STORAGE ACQUIRED EARLIER
 00037 #RETURN RETURN TO HIGHER LEVEL

 00038 SPACE 1

 00039 RETURNXT DS 0H
 00040 #RETURN NXTTASK=SYBTSK03 PASS CONTROL BACK TO ITSELF

 00041 SPACE 1

 00042 * MAINLINE PROGRAM
 00043 SPACE 1

 00044 PROCESS DS 0H

 00045 #GETSTG TYPE=(USER,LONG,KEEP),PLIST=*,LEN=STORLGTH, *
 00046 STGID='SYB4',COND=(ALL),ERROR=ERRORTN,ADDR=(R10), *

 00047 INIT=X'40'

 00048 * ACQUIRE VARIABLE STORAGE

 00049 SPACE 1

 00050 #MAPBIND MRB=SYBMAP BIND MAP AND RECORDS

 00057 #MAPBIND MRB=SYBMAP,RECNAME=SYBREC

- 00061 SPACE 1

 00062 ACCEPTSK #ACCEPT TYPE=TASKCODE,FIELD=TASKCODE

 00063 * ACCEPT TASK CODE TO INVOKE TASK

 00064 CLC TASKCODE,SYBTSK2 FIRST TIME CALLED ?

 00065 BNE RECCUR YES - OUTPUT FIRST SCREEN

 00066 * NO - INPUT DATA FROM SCREEN

 00067 FIRSTIME DS 0H

 00068 MVC SYBDEPID,=C'0000' PRIME DATA FIELD

 00069 SPACE
 00070 #MREQ OUT,MRB=SYBMAP,OPTNS=(NEWPAGE),ERROR=ERRORTN, *

 00071 COND=(ALL)

 00072 * MAP OUT PROMPT
 00073 SPACE

 00074 B RETURNXT EXIT & WAIT FOR OPERATOR RESPONSE

 00075 SPACE 2
 00076 RECCUR DS 0H

 00077 #MREQ IN,MRB=SYBMAP,ERROR=ERRORTN,COND=(ALL)

 00078 * MAP IN TERMINAL INPUT
 00079 SPACE 1

 00080 #MAPINQ MRB=SYBMAP,AID=AIDBYTE

 00082 * MOVE MAP DATA TO PROG VARIABLE STG
 00083 CLI AIDBYTE,CLEAR DID THE OPERATOR REQUEST FINISH?

 00084 BE RETURN YES - EXIT PGM, BACK TO IDMS DC

Output from the DML Precompiler

Appendix C: Sample DC/UCF Online Program 489

 00085 SPACE

 00086 #MREQ OUT,MRB=SYBMAP,ERROR=ERRORTN, *

 00087 COND=(ALL)

 00088 * MAP OUT DATA

 00089 SPACE
 00090 B RETURNXT EXIT & WAIT FOR OPERATOR RESPONSE

 00091 * NO - MAPOUT, WAIT ON OPERATOR

 00092 ERRORTN DS 0H HERE FOR NONZERO RETURN CODE
 00093 #SNAP AREA=(SYBMAP,SYBMAPLN)

 00094 B RETURN EXIT

 00095 CLEAR EQU X'6D' CLEAR AIDBYTE VALUE
 00096 SYBTSK2 DC CL8'SYBTSK2 ' DC TASK INVOKING VALUE (EXTERNAL)

 00097 SYBTSK03 DC CL8'SYBTSK03' DC TASK INVOKING VALUE (INTERNAL)

 00098 LTORG
 00099 #BALI

 00100 SPACE 2

 00101 **
 00102 STORAGE DSECT STORAGE DSECT

 DMLA 00103 @COPY IDMS,MAP-CONTROL=SYBMAP

 00104 #MRB MAPNAME=SYBMAP,FIELDS=0001,RECORDS=0001
 00105 SYBMAPLN EQU *-SYBMAP LENGTH OF #MRB FOR SNAP

 00106 SPACE 1

 DMLA 00107 @COPY IDMS,MAP-RECORDS
 00108 DS 0D

 00109 SYBREC DS 0CL4

 00110 SYBDEPID DS CL4
 00111 **

- 00112 SPACE 1

 00113 SYSPLIST DS 20F MAP OUT PARAMETER LIST AREA
 00114 TASKCODE DS CL8 TASK CODE WHICH INVOKED PROGRAM

 00115 AIDBYTE DS X ATTENTION IDENTIFIER BYTE

 00116 DS 3X RESERVED
 00117 STORLGTH EQU *-STORAGE TOTAL LENGTH OF STORAGE NEEDED

 00118 SPACE 1

 00119 END SYBPG2

Output from the Assembler

490 DML Reference Guide for Assembler

Output from the Assembler

The following il lustrates the sample online program as output from the assembler.

Output from the Assembler

Appendix C: Sample DC/UCF Online Program 491

1 *DMLIST

 2 *NO-ACTIVITY-LOG
 00000 3 R0 EQU 0

 00001 4 R1 EQU 1

 00002 5 R2 EQU 2

 00003 6 R3 EQU 3

 00004 7 R4 EQU 4

 00005 8 R5 EQU 5

 00006 9 R6 EQU 6

 00007 10 R7 EQU 7

 00008 11 R8 EQU 8

 00009 12 R9 EQU 9

 0000A 13 R10 EQU 10

 0000B 14 R11 EQU 11

 0000C 15 R12 EQU 12

 0000D 16 R13 EQU 13

 0000E 17 R14 EQU 14
 0000F 18 R15 EQU 15

 20 * ENTER FROM NEXT HIGHER LEVEL

 22 PRINT GEN ASSEMBLER PRINT OPTIONS
000000 23 SYBPG2 CSECT

000000 18CF 24 LR R12,R15 ESTABLISHES REGISTER 12 AS THE

 00000 25 USING SYBPG2,R12 BASE REGISTER
 00000 26 USING STORAGE,R10 ESTABLISH ADDRESSABILITY OF DSECT

000002 47F0 C03A 0003A 27 B PROCESS BRANCH TO FIND INVOKING TASKCODE

 PAGE 3
 29 * @INVOKE MODE=IDMSDC,MAP=SYBMAP

 30 @INVOKE MRBTYPE=STANDARD,PAGING=NO

 31 * OPERATING MODE: IDMS DC/MAPPING
 PAGE 4

000006 34 RETURN DS 0H

 35 #FREESTG STGID='SYB4' FREE THE STORAGE ACQUIRED EARLIER
 36+*++

000006 47F0 C010 00010 37+ B $$LD0002 + 01-#FREE

00000A 0700 38+ CNOP 0,4 + 01-#FREE
00000C E2E8C2F4 39+$$GC0002 DC CL4'SYB4' + 01-#FREE

 00010 40+$$LD0002 EQU * + 01-#FREE

000010 5810 C00C 0000C 41+ L 1,$$GC0002 + 01-#FREE
000014 4100 0012 00012 42+ LA 0,18 + 01-#FREE

000018 58F0 C240 00240 43+ L 15,=V(IDCSACON) + 02-#ENTE

00001C 05EF 44+ BALR 14,15 + 02-#ENTE
00001E 0002 45+ DC AL2(2) + 02-#ENTE

 46+*++

 47 #RETURN RETURN TO HIGHER LEVEL
 48+*++

000020 1B00 49+ SR 0,0 + 01-#RETU

000022 1B11 50+ SR 1,1 + 01-#RETU

000024 58F0 C240 00240 51+ L 15,=V(IDCSACON) + 02-#ENTE

000028 05EF 52+ BALR 14,15 + 02-#ENTE

00002A 0005 53+ DC AL2(5) + 02-#ENTE

 54+*++

00002C 56 RETURNXT DS 0H

 57 #RETURN NXTTASK=SYBTSK03 PASS CONTROL BACK TO ITSELF

 58+*++

00002C 1B00 59+ SR 0,0 + 01-#RETU

00002E 4110 C214 00214 60+ LA 1,SYBTSK03 + 01-#RETU

000032 58F0 C240 00240 61+ L 15,=V(IDCSACON) + 02-#ENTE

000036 05EF 62+ BALR 14,15 + 02-#ENTE

000038 0005 63+ DC AL2(5) + 02-#ENTE
 64+*++

 66 * MAINLINE PROGRAM

00003A 68 PROCESS DS 0H
 69 #GETSTG TYPE=(USER,LONG,KEEP),PLIST=*,LEN=STORLGTH, *

 STGID='SYB4',COND=(ALL),ERROR=ERRORTN,ADDR=(R10), *

 INIT=X'40'
 70+*++

00003A 0700 71+ CNOP 0,4 + 01-#GETS

00003C 4510 C058 00058 72+ BAL 1,*+28 + 01-#GETS
000040 0000004C 73+ DC A(*+12) ADDR OF PARM1 + 01-#GETS

000044 00000054 74+ DC A(*+16) ADDR OF PARM2 + 01-#GETS

000048 00000050 75+ DC A(*+8) ADDR OF PARM3 + 01-#GETS
00004C 00000120 76+ DC A(STORLGTH) + 01-#GETS

000050 E2E8C2F4 77+ DC CL4'SYB4' + 01-#GETS

Output from the Assembler

492 DML Reference Guide for Assembler

000054 40 78+ DC AL1(X'40') + 01-#GETS

000055 41 79+ DC AL1(65) + 01-#GETS

000056 ED 80+ DC AL1(237) + 01-#GETS

000057 00 81+ DC AL1(0) + 01-#GETS

000058 58F0 C240 00240 82+ L 15,=V(IDCSACON) + 02-#ENTE
00005C 05EF 83+ BALR 14,15 + 02-#ENTE

00005E 0001 84+ DC AL2(1) + 02-#ENTE

000060 49F0 C248 00248 85+ CH 15,=H'8' + 01-#GETS
 PAGE 5

000064 47B0 C1DA 001DA 86+ BNL ERRORTN + 01-#GETS

000068 18A1 87+ LR R10,1 + 01-#GETS
 88+*++

 89 * ACQUIRE VARIABLE STORAGE

 91 * #MAPBIND MRB=SYBMAP BIND MAP AND RECORDS
 92 #MAPBIND MRB=SYBMAP, *

 TSTAMP='11/25/91171238R2', *

 SSNAME=' ', *
 NFLDS=1, *

 NRECS=1, *

 SEG=NO
00006A 93+ DS 0H +++++++++ BIND MAP ++++++++++++++++++++++++++++++++++ 01-#MAPB

00006A D207 A000 C220 00000 00220 94+ MVC SYBMAP(8),=CL8'SYBMAP' X01-#MAPB

 + MAP NAME
000070 D743 A008 A008 00008 00008 95+ XC SYBMAP+8(76-8),SYBMAP+8 CLEAR REST OF BASIC MRB 01-#MAPB

000076 D20F A008 C228 00008 00228 96+ MVC SYBMAP+8(16),=CL16'11/25/91171238R2' X01-#MAPB

 + COMPILE DATE/TIME
00007C D207 A018 C238 00018 00238 97+ MVC SYBMAP+24(8),=CL8' ' X01-#MAPB

 + SUBSCHEMA NAME

000082 4100 004C 0004C 98+ LA 0,76 01-#MAPB
000086 4000 A03C 0003C 99+ STH 0,SYBMAP+60 MRE OFFSET 01-#MAPB

00008A 4100 0001 00001 100+ LA 0,1 NUMBER OF FIELDS 01-#MAPB

00008E 4000 A02A 0002A 101+ STH 0,SYBMAP+42 01-#MAPB
000092 4110 0001 00001 102+ LA 1,1 NUMBER OF RECORDS 01-#MAPB

000096 4010 A02C 0002C 103+ STH 1,SYBMAP+44 01-#MAPB

00009A 41F0 000E 0000E 104+ LA 15,14 LENGTH OF ONE MAP REQ ELEMENT 01-#MAPB

00009E 4CF0 A02A 0002A 105+ MH 15,SYBMAP+42 TIMES NUMBER OF FIELDS 01-#MAPB

0000A2 41FF 0003 00003 106+ LA 15,3(15) ROUND UP TO NEXT FULLWORD 01-#MAPB

0000A6 88F0 0002 00002 107+ SRL 15,2 RECOF=((L'MRE*#FIELDS)+3)/4)*4 01-#MAPB

0000AA 89F0 0002 00002 108+ SLL 15,2 01-#MAPB

0000AE 40F0 A02E 0002E 109+ STH 15,SYBMAP+46 EQUALS LENGTH OF ALL MRE'S 01-#MAPB

0000B2 92D5 A03A 0003A 110+ MVI SYBMAP+58,C'N' SUBSCHEMA VIEW NOT SEGMENTED 01-#MAPB

0000B6 41E0 A04C 0004C 111+ LA 14,SYBMAP+76 POINT TO END OF BASIC MRB 01-#MAPB

0000BA D70D E000 E000 00000 00000 112+ XC 0(1*14,14),0(14) CLEAR MAP REQUEST ELEMENTS 01-#MAPB

0000C0 41E0 A04C 0004C 113+ LA 14,SYBMAP+76 POINT TO END OF MRB 01-#MAPB

0000C4 4AE0 A02E 0002E 114+ AH 14,SYBMAP+46 POINT TO RECORD ADDRESS SLOTS 01-#MAPB

0000C8 D703 E000 E000 00000 00000 115+ XC 0(1*4,14),0(14) CLEAR DATA RECORD ADDRESS SLOTS 01-#MAPB

 116+*++
 118 * #MAPBIND MRB=SYBMAP,RECNAME=SYBREC

 119 #MAPBIND MRB=SYBMAP, *

 RECNUM=1, *
 RECADDR=SYBREC

0000CE 120+ DS 0H +++++++++ BIND MAP ++++++++++++++++++++++++++++++++++ 01-#MAPB

0000CE 41E0 A04C 0004C 121+ LA 14,SYBMAP+76 POINT TO END OF BASIC MRB 01-#MAPB
0000D2 4AE0 A02E 0002E 122+ AH 14,SYBMAP+46 PNT TO START OF DATA REC SLOTS 01-#MAPB

0000D6 41F0 A0C0 000C0 123+ LA 15,SYBREC DATA RECORD ADDRESS 01-#MAPB

0000DA 50FE 0000 00000 124+ ST 15,4*(1-1)(14) STORE IN MRB SLOT 01-#MAPB
 125+*++

 128 ACCEPTSK #ACCEPT TYPE=TASKCODE,FIELD=TASKCODE

 129+*++
0000DE 130+ACCEPTSK DS 0H + 01-#ACCE

 PAGE 6

0000DE 4100 0000 00000 131+ LA 0,1-1 SET RQST TYPE. + 01-#ACCE
0000E2 4110 A114 00114 132+ LA 1,TASKCODE POINT TO RECEIVING FIELD + 01-#ACCE

0000E6 58F0 C240 00240 133+ L 15,=V(IDCSACON) + 02-#ENTE

0000EA 05EF 134+ BALR 14,15 + 02-#ENTE
0000EC 0033 135+ DC AL2(51) + 02-#ENTE

 136+*+++

 137 * ACCEPT TASK CODE TO INVOKE TASK
0000EE D507 A114 C20C 00114 0020C 138 CLC TASKCODE,SYBTSK2 FIRST TIME CALLED ?

0000F4 4770 C144 00144 139 BNE RECCUR YES - OUTPUT FIRST SCREEN

 140 * NO - INPUT DATA FROM SCREEN
0000F8 141 FIRSTIME DS 0H

0000F8 D203 A0C0 C244 000C0 00244 142 MVC SYBDEPID,=C'0000' PRIME DATA FIELD

 144 #MREQ OUT,MRB=SYBMAP,OPTNS=(NEWPAGE),ERROR=ERRORTN, *

Output from the Assembler

Appendix C: Sample DC/UCF Online Program 493

 COND=(ALL)

0000FE 145+ DS 0H ++++++MAPPING REQUEST +++++++++++++++++++++++++++++++ 01-#MREQ

0000FE 9205 A020 00020 146+ MVI 32+SYBMAP,B'00101' REQUEST TYPE FLAGS + 01-#MREQ

000102 9601 A021 00021 147+ OI 33+SYBMAP,B'00000001' FRST OPTION BYTE+ 01-#MREQ

000106 9601 A022 00022 148+ OI 34+SYBMAP,B'00000001' SECOND OPTION BYTE + 01-#MREQ
00010A 9600 A047 00047 149+ OI 71+SYBMAP,B'00000000' THIRD OPTION BYTE + 01-#MREQ

00010E 92FF A023 00023 150+ MVI 35+SYBMAP,B'11111111' COND FLAGS + 01-#MREQ

000112 920F A03B 0003B 151+ MVI 59+SYBMAP,B'1111' COND FLAGS + 01-#MREQ
000116 41F0 A0C4 000C4 152+ LA 15,SYSPLIST + 01-#MREQ

00011A D703 F000 F000 00000 00000 153+ XC 0(4,15),0(15) INITIALIZE THIS FULLWORD XA + 01-#MREQ

000120 4110 A000 00000 154+ LA 1,SYBMAP + 01-#MREQ
000124 501F 0004 00004 155+ ST 1,4(15) XA + 01-#MREQ

000128 927F F000 00000 156+ MVI 0(15),X'7F' INDICATE RELEASE 2+ PARMLIST XA + 01-#MREQ

00012C 9680 F004 00004 157+ OI 4(15),X'80' INDICATE END OF PLIST XA + 01-#MREQ
000130 181F 158+ LR 1,15 + 01-#MREQ

000132 58F0 C240 00240 159+ L 15,=V(IDCSACON) + 02-#ENTE

000136 05EF 160+ BALR 14,15 + 02-#ENTE
000138 002E 161+ DC AL2(46) + 02-#ENTE

00013A 12FF 162+ LTR 15,15 WERE THERE ANY ERRORS AT ALL? + 01-#MREQ

00013C 4770 C1DA 001DA 163+ BNZ ERRORTN YES + 01-#MREQ
 164+*++

 166 * MAP OUT PROMPT

000140 47F0 C02C 0002C 168 B RETURNXT EXIT & WAIT FOR OPERATOR RESPONSE
000144 170 RECCUR DS 0H

 171 #MREQ IN,MRB=SYBMAP,ERROR=ERRORTN,COND=(ALL)

000144 172+ DS 0H ++++++MAPPING REQUEST +++++++++++++++++++++++++++++++ 01-#MREQ
000144 9206 A020 00020 173+ MVI 32+SYBMAP,B'00110' REQUEST TYPE FLAGS + 01-#MREQ

000148 9600 A021 00021 174+ OI 33+SYBMAP,B'00000000' FRST OPTION BYTE+ 01-#MREQ

00014C 9600 A022 00022 175+ OI 34+SYBMAP,B'00000000' SECOND OPTION BYTE + 01-#MREQ
000150 9600 A047 00047 176+ OI 71+SYBMAP,B'00000000' THIRD OPTION BYTE + 01-#MREQ

000154 92FF A023 00023 177+ MVI 35+SYBMAP,B'11111111' COND FLAGS + 01-#MREQ

000158 920F A03B 0003B 178+ MVI 59+SYBMAP,B'1111' COND FLAGS + 01-#MREQ
00015C 41F0 A0C4 000C4 179+ LA 15,SYSPLIST + 01-#MREQ

000160 D703 F000 F000 00000 00000 180+ XC 0(4,15),0(15) INITIALIZE THIS FULLWORD XA + 01-#MREQ

000166 4110 A000 00000 181+ LA 1,SYBMAP + 01-#MREQ

00016A 501F 0004 00004 182+ ST 1,4(15) XA + 01-#MREQ

00016E 927F F000 00000 183+ MVI 0(15),X'7F' INDICATE RELEASE 2+ PARMLIST XA + 01-#MREQ

 PAGE 7

000172 9680 F004 00004 184+ OI 4(15),X'80' INDICATE END OF PLIST XA + 01-#MREQ

000176 181F 185+ LR 1,15 + 01-#MREQ

000178 58F0 C240 00240 186+ L 15,=V(IDCSACON) + 02-#ENTE

00017C 05EF 187+ BALR 14,15 + 02-#ENTE

00017E 002E 188+ DC AL2(46) + 02-#ENTE

000180 12FF 189+ LTR 15,15 WERE THERE ANY ERRORS AT ALL? + 01-#MREQ

000182 4770 C1DA 001DA 190+ BNZ ERRORTN YES + 01-#MREQ

 191+*++

 193 * MAP IN TERMINAL INPUT
 195 * #MAPINQ MRB=SYBMAP,AID=AIDBYTE

 196 #MAPINQ MRB=SYBMAP,AID=AIDBYTE

000186 197+ DS 0H +++++++++++ INQUIRE ABOUT LAST MAP OPERATION ++++++++ 01-#MAPI
000186 D200 A11C A038 0011C 00038 198+ MVC AIDBYTE(1),56+SYBMAP X01-#MAPI

 + ATTENTION IDENTIFIER

 199+*++
 201 * MOVE MAP DATA TO PROG VARIABLE STG

00018C 956D A11C 0011C 202 CLI AIDBYTE,CLEAR DID THE OPERATOR REQUEST FINISH?

000190 4780 C006 00006 203 BE RETURN YES - EXIT PGM, BACK TO IDMS DC
 205 #MREQ OUT,MRB=SYBMAP,ERROR=ERRORTN, *

 COND=(ALL)

000194 206+ DS 0H ++++++MAPPING REQUEST +++++++++++++++++++++++++++++++ 01-#MREQ
000194 9205 A020 00020 207+ MVI 32+SYBMAP,B'00101' REQUEST TYPE FLAGS + 01-#MREQ

000198 9600 A021 00021 208+ OI 33+SYBMAP,B'00000000' FRST OPTION BYTE+ 01-#MREQ

00019C 9600 A022 00022 209+ OI 34+SYBMAP,B'00000000' SECOND OPTION BYTE + 01-#MREQ
0001A0 9600 A047 00047 210+ OI 71+SYBMAP,B'00000000' THIRD OPTION BYTE + 01-#MREQ

0001A4 92FF A023 00023 211+ MVI 35+SYBMAP,B'11111111' COND FLAGS + 01-#MREQ

0001A8 920F A03B 0003B 212+ MVI 59+SYBMAP,B'1111' COND FLAGS + 01-#MREQ
0001AC 41F0 A0C4 000C4 213+ LA 15,SYSPLIST + 01-#MREQ

0001B0 D703 F000 F000 00000 00000 214+ XC 0(4,15),0(15) INITIALIZE THIS FULLWORD XA + 01-#MREQ

0001B6 4110 A000 00000 215+ LA 1,SYBMAP + 01-#MREQ
0001BA 501F 0004 00004 216+ ST 1,4(15) XA + 01-#MREQ

0001BE 927F F000 00000 217+ MVI 0(15),X'7F' INDICATE RELEASE 2+ PARMLIST XA + 01-#MREQ

0001C2 9680 F004 00004 218+ OI 4(15),X'80' INDICATE END OF PLIST XA + 01-#MREQ
0001C6 181F 219+ LR 1,15 + 01-#MREQ

0001C8 58F0 C240 00240 220+ L 15,=V(IDCSACON) + 02-#ENTE

0001CC 05EF 221+ BALR 14,15 + 02-#ENTE

Output from the Assembler

494 DML Reference Guide for Assembler

0001CE 002E 222+ DC AL2(46) + 02-#ENTE

0001D0 12FF 223+ LTR 15,15 WERE THERE ANY ERRORS AT ALL? + 01-#MREQ

0001D2 4770 C1DA 001DA 224+ BNZ ERRORTN YES + 01-#MREQ

 225+*++

 227 * MAP OUT DATA
0001D6 47F0 C02C 0002C 229 B RETURNXT EXIT & WAIT FOR OPERATOR RESPONSE

 230 * NO - MAPOUT, WAIT ON OPERATOR

0001DA 231 ERRORTN DS 0H HERE FOR NONZERO RETURN CODE
 232 #SNAP AREA=(SYBMAP,SYBMAPLN)

 233+*++

0001DA 90E1 A0C4 000C4 234+ STM 14,1,SYSPLIST + 01-#SNAP
0001DE 4110 A0C4 000C4 235+ LA 1,SYSPLIST + 01-#SNAP

0001E2 9268 1010 00010 236+ MVI 16(1),96+8 + 01-#SNAP

 PAGE 8
0001E6 D702 1011 1011 00011 00011 237+ XC 17(3,1),17(1) + 01-#SNAP

0001EC 41E0 A000 00000 238+ LA 14,SYBMAP + 01-#SNAP

0001F0 50E0 1014 00014 239+ ST 14,20(,1) + 01-#SNAP
0001F4 41E0 00C0 000C0 240+ LA 14,SYBMAPLN + 01-#SNAP

0001F8 50E0 1018 00018 241+ ST 14,20+4(,1) + 01-#SNAP

0001FC 9680 1018 00018 242+ OI 28-4(1),X'80' + 01-#SNAP
000200 58F0 C240 00240 243+ L 15,=V(IDCSACON) + 02-#ENTE

000204 05EF 244+ BALR 14,15 + 02-#ENTE

000206 001D 245+ DC AL2(29) + 02-#ENTE
 247+*++

000208 47F0 C006 00006 248 B RETURN EXIT

 0006D 249 CLEAR EQU X'6D' CLEAR AIDBYTE VALUE
00020C E2E8C2E3E2D2F240 250 SYBTSK2 DC CL8'SYBTSK2 ' DC TASK INVOKING VALUE (EXTERNAL)

000214 E2E8C2E3E2D2F0F3 251 SYBTSK03 DC CL8'SYBTSK03' DC TASK INVOKING VALUE (INTERNAL)

000220 252 LTORG
000220 E2E8C2D4C1D74040 253 =CL8'SYBMAP'

000228 F1F161F2F561F9F1 254 =CL16'11/25/91171238R2'

000238 4040404040404040 255 =CL8' '
000240 00000000 256 =V(IDCSACON)

000244 F0F0F0F0 257 =C'0000'

000248 0008 258 =H'8'

 259 #BALI

000250 260+IDCSACON CSECT , IDMS DC ASSEMBLER PROGRAM INTERFACE 01-#BALI

000250 58FF 0008 00008 261+ L 15,8(15) ADDRESS OF DC'S COMMON STORAGE AREA 01-#BALI

000254 07FF 262+ BR 15 01-#BALI

000258 264+ DS 0F FORCE ALIGNMENT 01-#BALI

 265+* THE FOLLOWING AD-CON IS FILLED IN BY THE DC PROGRAM LOADER.

000258 00000258C35BC15B 266+ DC A(*),C'CA' 01-#BALI

00024A 268+SYBPG2 CSECT 01-#BALI

 270 **

000000 271 STORAGE DSECT STORAGE DSECT

 272 * @COPY IDMS,MAP-CONTROL=SYBMAP

 273 #MRB MAPNAME=SYBMAP,FIELDS=0001,RECORDS=0001
000000 274+ DS 0A FORCE FULL-WORD ALIGNMENT 01-#MRB

000000 0000000000000000 275+SYBMAP DC XL76'0' BASIC MAP REQUEST BLOCK 01-#MRB

00004C 0000000000000000 276+ DC (0001)XL14'0' MAP REQUEST ELEMENTS 01-#MRB
00005A 0000

00005C 00000000 277+ DC (0001)A(0) DATA RECORD ADDRESS SLOTS 01-#MRB

000060 0000000000000000 278+MRBPLIST DC 20A(0) 01-#MRB
0000B0 0000000000000000 279+MRBPGDS DC 4A(0) #STRTPAG, #ENDPAG PARM LIST 01-#MRB

 000C0 280 SYBMAPLN EQU *-SYBMAP LENGTH OF #MRB FOR SNAP

 282 * @COPY IDMS,MAP-RECORDS
0000C0 283 DS 0D

0000C0 284 SYBREC DS 0CL4

0000C0 285 SYBDEPID DS CL4
 286 **

0000C4 288 SYSPLIST DS 20F MAP OUT PARAMETER LIST AREA

000114 289 TASKCODE DS CL8 TASK CODE WHICH INVOKED PROGRAM
 PAGE 9

00011C 290 AIDBYTE DS X ATTENTION IDENTIFIER BYTE

00011D 291 DS 3X RESERVED
 00120 292 STORLGTH EQU *-STORAGE TOTAL LENGTH OF STORAGE NEEDED

000000 294 END SYBPG2

Appendix D: Assembler DML Macros and Error Messages 495

Appendix D: Assembler DML Macros and
Error Messages

This appendix l ists the following:

■ Assembler DML macros in alphabetical order

■ The error messages generated upon assembly of these macros

This section contains the following topics:

DML Macros (see page 495)
Error Messages (see page 497)

DML Macros

Types of Macros

There are three types of Assembler DML macros, as follows:

■ Statement—The macro instruction is coded in the application program as a DML
statement.

■ Generated—The macro instruction is generated from a DML statement by the DML
precompiler.

■ Invoked—The macro instruction is invoked by a DML statement macro during
assembly.

List of Macros

The following table l ists DML macros alphabetically.

Macro Type Function

@ACCEPT Statement Encodes the #ACCEPT statement

@BIND Statement Encodes the @BIND statement

@COMMIT Statement Encodes the #COMMIT statement

@CONNECT Statement Encodes the @CONNECT statement

@DISCON Statement Encodes the @DISCON statement

@ERASE Statement Encodes the @ERASE statement

@FIND Statement Encodes the @FIND statement

DML Macros

496 DML Reference Guide for Assembler

Macro Type Function

@FINISH Statement Encodes the @FINISH statement

@GET Statement Encodes the @GET statement

@IDMSGSS Invoked Defines the IDMS global variables

@IDMSINR Invoked Generates the IDMS call ing sequence

@IF Statement Encodes the @IF statement

@INVOKE Statement Encodes the @INVOKE compiler-directive
statement

@KEEP Statement Encodes the @KEEP statement

@LRF Invoked Generates the logical record request sequences

@MODE Statement Encodes the @MODE compiler-directive
statement

@MODIFY Statement Encodes the @MODIFY statement

@OBTAIN Statement Encodes the @OBTAIN statement

@PXE Generated Encodes a WHERE clause element

@READY Statement Encodes the @READY statement

@RETURN Statement Encodes the @RETURN statement

@ROLLBAK Statement Encodes the @ROLLBAK statement

@SSCTRL Statement Copies the IDMS communications block

@SSLRCTL Statement Copies the LRC block

@STORE Statement Encodes the @STORE statement

Note: @COPY is a DMLA source statement, not an Assembler macro.

Error Messages

Appendix D: Assembler DML Macros and Error Messages 497

Error Messages

The remainder of this appendix l ists and describes error messages that are generated
during macro assembly.

Note: For error messages generated by the DML precompiler and returned to the
ERRSTAT field of the IDMS communications block following DML requests, see the

Messages and Codes Guide.

@ACCEPT

INDECIPHERABLE COMBINATION OF OPERANDS

Excessive or conflicting operands prevent interpretation of the macro.

Severity: 08

@BIND

LRC MUST BE SPECIFIED OR LRSIZ MUST BE OMITTED

The LRC parameter was omitted but the LRSIZ parameter was specified. If the LRSIZ

parameter is specified, the LRC parameter must also be specified.

Severity: 08

INDECIPHERABLE COMBINATION OF OPERANDS

Excessive or conflicting operands prevent interpretati on of the macro.

Severity: 08

TOO MANY OPERANDS SPECIFIED

Parameters were specified that are not allowed for the BIND statement being issued.

Severity: 08

@COMMIT

'ALL' PARAMETER MUST BE BLANK OR 'ALL'

The first positional parameter ALL must be specifi ed as ALL or must be omitted.

Severity: 08

Error Messages

498 DML Reference Guide for Assembler

@CONNECT

BOTH RECORD NAME AND SET NAME ARE REQUIRED FOR CONNECT

Either the REC or SET parameter was omitted.

Severity: 08

@DISCON

BOTH RECORD NAME AND SET NAME ARE REQUIRED FOR DISCONNECT

Either the REC or SET parameter was omitted.

Severity: 08

@ERASE

TYPE OF ERASE IS MISSING OR INCORRECT

The (required) parameter for type of erase was omitted or invalid. Valid parameters are
REC, PERMANENT, SELECTIVE, or ALL.

Severity: 08

RECORD NAME IS REQUIRED FOR ERASE

The required REC parameter was not specified.

Severity: 08

@FIND

TYPE OPERAND IS MISSING OR INVALID

This type of FIND/OBTAIN was not specified (NEXT, FIRST, PRIOR, LAST, NTH).

Severity: 08

SET,AREA, USING, AND OCCUR ARE NOT ALLOWED FOR FORMAT 1

SET, AREA, USING, or OCCUR parameters were specified. These parameters are not
allowed on FIND DBKEY statements.

Severity: 08

Error Messages

Appendix D: Assembler DML Macros and Error Messages 499

DBKEY, USING, AND OCCUR ARE NOT ALLOWED FOR FORMAT 2

DBKEY, USING, or OCCUR parameters were specified. These parameters are not allowed

on FIND CURRENT statements.

Severity: 08

REC, SET, AND AREA ARE MUTUALLY EXCLUSIVE FOR FORMAT 2

Two or more of the REC, SET, or AREA parameters were specified. Only one of these
parameters can be specified on FIND CURRENT statements.

Severity: 08

DBKEY AND USING ARE NOT ALLOWED FOR FORMAT 3

Either a DBKEY or a USING parameter was specified. These parameters are not allowed
on FIND WITHIN SET/AREA statements.

Severity: 08

EITHER SET OR AREA MUST BE SPECIFIED

Neither SET nor AREA parameters were specified; one of these parameters must be
specified.

Severity: 08

OCCUR IS USED ONLY WITH FORMAT 3 FIND NTH

OCCUR parameters were specified. These parameters are only allowed with FIND NTH

WITHIN SET/AREA statements.

Severity: 08

REC, AREA, DBKEY, USING, AND OCCUR NOT ALLOWED FOR FORMAT 4

REC, AREA, DBKEY, USING, or OCCUR parameters were specified. These parameters are
not allowed on FIND OWNER statements.

Severity: 08

SET OPERAND IS REQUIRED FOR FORMAT 4

The required SET parameter was not specified on a FIND OWNER statement.

Severity: 08

Error Messages

500 DML Reference Guide for Assembler

SET, AREA, DBKEY, USING, AND OCCUR ARE NOT ALLOWED FOR FORMAT 5

SET, AREA, DBKEY, USING, or OCCUR parameters were specified. These parameters are

not allowed on FIND CALC/DUPLICATE statements.

Severity: 08

REC OPERAND IS REQUIRED FOR FORMAT 5

The required REC parameter was not specified on a FIND CALC/DUPLICATE statement.

Severity: 08

AREA, DBKEY, AND OCCUR ARE NOT ALLOWED FOR FORMAT 6

AREA, DBKEY, or OCCUR parameters were specified and are not allowed for FIND
WITHIN SET USING SORT KEY statements.

Severity: 08

REC, SET, AND USING ARE REQUIRED FOR FORMAT 6

REC, SET, or USING parameters were not specified and are required for FIND WITHIN

SET USING SORT KEY statements.

Severity: 08

KEEP OPERAND NOT SPECIFIED AS SHARED OR EXCLUSIVE

The KEEP parameter was specified without either the SHARED or EXCLUSIVE parameter.

Severity: 08

UNEXPECTED ERROR IN FORMAT 3 FIND

This is a system internal error.

Severity: 20

@IDMSINR

@MODE MACRO DOES NOT PRECEDE THIS DML MACRO

The @MODE macro was not specified before this macro. The @MODE macro must

precede all other macros and must occur only once.

Severity: 16

Error Messages

Appendix D: Assembler DML Macros and Error Messages 501

@MODE CONTAINED ERRORS, OR WAS NOT FIRST MACRO

The @MODE macro was coded incorrectly or was not specified before thi s macro. The

@MODE macro must precede all other macros and must occur only once.

Severity: 16

INVALID TYPE 'type' SPECIFIED IN @IDMSINR MACRO

This is a system internal error.

Severity: 20

INVALID OPERAND 'operand' IN @IDMSINR MACRO DML-SEQUENCE = 9999

This is a system internal error.

Severity: 20

INVALID MODE 'mode' IN @IDMSINR MACRO

This is a system error.

 Severity: 20

@IF

INVALID SPECIFICATION FOR MEMBER OPERAND OR EMPTY OPERAND

The MEMBER/EMPTY parameter was specified incorrectly. Either MEMBER or EMPTY
must be specified.

Severity: 08

SET, GOTO, AND EITHER MEMBER OR EMPTY ARE REQUIRED FOR IF

A required MEMBER or EMPTY, SET, or GOTO parameter was not specified. SET, GOTO
and either MEMBER or EMPTY parameters are required in an IF statement.

Severity: 08

@KEEP

TYPE NEITHER SHARED NOR EXCLUSIVE

Either the SHARED or EXCLUSIVE parameter is required on KEEP statements.

Severity: 08

Error Messages

502 DML Reference Guide for Assembler

INDECIPHERABLE COMBINATION OF OPERANDS

Excessive or conflicting operands prevent interpretation of the macro.

Severity: 08

@LRF

Key-value MISPLACED

The named key-value parameter was coded in an incorrect position. Parameters must
be coded in the following sequence: FIRST/NEXT, REC, IOAREA, ONLRSTS, GOTO, and

WHERE.

Severity: 08

KEY-value,variable-value MISPLACED

The named positional pair of parameters was coded more than once or in incorrect
sequence within a logical -record DML statement. Parameters must be coded in the

following sequence: FIRST/NEXT, REC, IOAREA, ONLRSTS, GOTO, and WHERE.

Severity: 08

KEYWORD PARAMETERS INVALID FOR LRF ACCESS MACROS

Logical-record DML statements must be coded using positional -pair parameter notation
at assembly time.

Severity: 08

Key-value NOT PAIRED

The named key-value positional parameter was coded without a corresponding var iable
value parameter.

Severity: 08

Key-value IS AN INVALID PARAMETER

The named key-value parameter is invalid. Valid key-value parameters in logical-record
DML statements are: FIRST/NEXT, REC, IOAREA, ONLRSTS, GOTO and WHERE.

Severity: 08

Error Messages

Appendix D: Assembler DML Macros and Error Messages 503

"REC" MUST BE SPECIFIED

The REC parameter was not specified on a logical record request. All LRF access macros

must specify a logical record name.

Severity: 08

"WHERE" INVALID WHEN LRSIZ OMITTED ON @BIND

The LRSIZ parameter (specified on @BIND SUBSCH) was not specified; therefore, no
storage was made available for WHERE clause resolution. Add the LRSIZ parameter to

@BIND SUBSCH and reassemble.

Severity: 08

SPECIFY BOTH "ONLRSTS" AND "GOTO" OR NEITHER

Either the ONLRSTS or the GOTO parameter was omitted from a logical record request;
both parameters are needed to encode a DMLA ON clause. Either remove the

parameter specified or add the omitted parameter.

Severity: 08

MACRO ERROR: PASSED VERB verb

The named verb was incorrectly passed. This is a system internal error.

Severity: 08

@MODE

MULTIPLE OCCURRENCES OF @MODE MACRO

The @MODE macro was specified more than one time; the @MODE macro must occur
only once.

Severity: 08

INVALID SPECIFICATION mode FOR MODE OPERAND

The named mode is not valid. Valid mode parameters are BATCH, CICS, CICS-EXEC,
IDMSDC, INTERCOMM, SHADOW, and DCBATCH.

Severity: 16

Error Messages

504 DML Reference Guide for Assembler

INVALID SPECIFICATION debug FOR DEBUG OPERAND

The named debug parameter is not valid. Valid debug parameters are YES or NO.

Severity: 16

INVALID SPECIFICATION quotes FOR QUOTES OPERAND

The named quotes parameter is invalid. Valid parameters for quotes are YES or NO.

Severity: 16

@MODIFY

RECORD NAME IS REQUIRED FOR MODIFY

The record REC parameter was not specified.

Severity: 08

@OBTAIN

KEEP OPERAND NOT SPECIFIED AS SHARED OR EXCLUSIVE

The KEEP parameter was specified without either the SHARED or EXCLUSIVE parameter.

If the KEEP parameter is specified, either SHARED or EXCLUSIVE must also be specified.

Severity: 08

@PXE

LRPXE 9999 CHARACTERS TOO SHORT

Lrc-block-size (specified on @BIND SUBSCH) is too small to contain the specified WHERE

clause. Increase lrc-block-size and reassemble.

Severity: 08

DMLA/@PXE INCONSISTENCY: PXE TYPE=type

This is a system internal error.

Severity: 12

Error Messages

Appendix D: Assembler DML Macros and Error Messages 505

DMLA/@PXE INCONSISTENCY: V-TYPE=type

This is a system internal error.

Severity: 12

DMLA/@PXE INCONSISTENCY: MAX=9999/9999

This is a system internal error.

Severity: 12

DMLA/@PXE INCONSISTENCY: LEN=9999/9999

This is a system internal error.

Severity: 12

@READY

EITHER AREA OPERAND OR ALL OPERAND MUST BE SPECIFIED

Neither the AREA nor ALL parameter was specified. One of these parameters is required
for this macro.

Severity: 08

EITHER RDONLY OPERAND OR UPDATE OPERAND MUST BE SPECIFIED

Neither the RDONLY nor UPDATE parameter was specified. One of these parameters is
required for this macro.

Severity: 08

INVALID SPECIFICATION FOR UPDATE OR RDONLY OPERAND

The UPDATE/RDONLY parameter was specified incorrectly. Valid parameters for
UPDATE/RDONLY are: YES or SHARED, PROTECTED or PROTECT, or EXCLUSIVE.

Severity: 08

ALL OPERAND IS NOT SPECIFIED AS 'ALL'

The parameter ALL must be specified as ALL.

Severity: 08

Error Messages

506 DML Reference Guide for Assembler

@RETURN

BOTH SET AND DBKEY ARE REQUIRED OPERANDS FOR RETURN

The SET and/or DBKEY parameters were not specified. Both of these parameters are
required for this macro.

Severity: 08

EITHER TYPE OPERAND OR USING OPERAND MUST BE SPECIFIED

Neither the type-of-return parameter (i.e., CURRENT, FIRST, LAST, NEXT, or PRIOR) nor

the USING parameter was specified. RETURN macros must include one of these
parameters.

Severity: 08

INVALID SPECIFICATION FOR TYPE OPERAND

The type operand was not specified correctly. Valid parameters are CURRENT, FIRST,

LAST, NEXT, or PRIOR.

Severity: 08

@ROLLBAK

POSITIONAL PARAMETER 'CONTINUE' INVALID

The CONTINUE parameter must be specified as CONTINUE or must be omitted.

Severity: 08

@STORE

RECORD NAME IS REQUIRED FOR STORE

The required REC parameter was not specified.

Severity: 08

Appendix E: STAE Exits 507

Appendix E: STAE Exits

This section contains the following topics:

Overview (see page 507)

Overview

What are STAE Exits?

STAE exits (system task abend exits) are user-written recovery modules supported by

DC/UCF systems. STAE exits can be invoked in the event of a program interrupt or an
abnormal condition encountered by the task. The user-written module can attempt to
recover the task by correcting the abnormal condition. If the abnormal condition cannot

be resolved, the STAE program can request abnormal termination of the task.

How STAE Exits Work

For each task level, a program can designate a STAE routine by issuing a #STAE request.
A task abnormally terminates due to a processing error or an #ABEND command. When
a task terminates abnormally, STAE routines for the abended program and for all

higher-level programs are executed. #STAE routines can be overridden by a #RETURN
statement or excluded explicitly by an #ABEND request from the program that failed.

Note: For more information about how to issue a #STAE request, see "#STAE" in Chapter
7.

STAE routines determine the cause of the abnormal condition or program interrupt by

checking the abend control element (ACE). When control is transferred to the STAE
routine, DC/UCF automatically sets the value in register 1 to the address of a fullword
parameter l ist that contains the address of the ACE. When program execution is
interrupted, DC/UCF saves the contents of all registers from the abended program in the

ACE.

Note: #ACEDS is a DSECT provided in the DC/UCF macro library that defines the fields of
the ACE. #ACEDS can be copied into the program using the @COPY IDMS #ACEDS
statement.

Overview

508 DML Reference Guide for Assembler

For more information about the abend control element (ACE) DSECT, see the DSECT
Reference Guide.

Programming Considerations

Programming considerations for STAE routines are as follows:

■ STAE programs must be defined at system generation.

■ Resources held by the task remain intact when the STAE routine is invoked.

■ STAE routines can issue DC/UCF requests. However, if an error occurs which would

normally abort the task, the DC/UCF system will abnormally terminate.

■ STAE routines must end with a #RETURN statement. The #RETURN statement can
request further action to be taken by specifying the
TYPE=NORMAL/ABORT/CONTINUE parameter. If TYPE=CONTINUE is specified, the
STAE routine must load the address of the instruction from where processing is to

continue in the ACE.

Beginning Register Values

At the start of execution of a STAE routine, the DC/UCF system sets registers 1, 13, and
15 to the following values:

■ Register 1 holds the address of a 1-fullword parameter l ist that contains the

address of the ACE.

■ Register 13 holds the address of the STAE routine save area if the SAVAREA option
has been defined for the STAE program at system generation.

■ Register 15 holds the entry-point address of the STAE routine.

Displacement-
decimal (hex)

Label in #ACEDS
DSECT

Contents Field Size

0(0) ACEPSW PSW at the time of the

interrupt

8 bytes

8(8) ACEGPRS General registers from
abended program 0-15

64 bytes

72(48) ACEFPRS Floating point registers

from the abended program
0-6

32 bytes

112(70) ACEFLG ACE flag (see table below) 1 byte

115(73) ACEABCOD Abend code set by DC/UCF 4 bytes

120(78) ACEPGMNM Name of the abended
program

4 bytes

129(81) ACEEPSW PSW in EBCDIC form 17 bytes

Overview

Appendix E: STAE Exits 509

Displacement-
decimal (hex)

Label in #ACEDS
DSECT

Contents Field Size

148(94) ACEOFFST Displacement of
instruction that failed in
the abended program

6 bytes

160(A0) ACEILC XA program interrupt
length counter

1 byte

161(A1) ACEINTC XA interruption code 2 bytes

ACEPSWDA Data at PSW Start 16

bytes before and
after PSW

32 bytes

Value Meaning Comments

X'80' Abort was in user mode Set by DC/UCF

X'40' Program check Set by DC/UCF

X'20' No message is wanted Set by STAE routine

X'10' No SNAP is wanted Set by STAE routine

X'08' Abort task immediately Set by
#RETURN,TYPE=ABORT

X'01' Continue processing at R14
address

Set by #RETURN,TYPE=
CONTINUE

Appendix F: EMPLOYEE Data Structure Diagram 511

Appendix F: EMPLOYEE Data Structure
Diagram

This section contains the following topics:

Overview (see page 511)

Overview

The following figure is the data structure diagram for the EMPLOYEE database. This

database is used for most of the examples in this document.

Appendix G: Systems Network Architecture Considerations (SNA) 513

Appendix G: Systems Network Architecture
Considerations (SNA)

This appendix describes how to make your CA IDMS/DC Assembler program compatible
with SNA protocols, allowing you to exchange information with other SNA-compatible
products. The discussion will include information on:

■ General SNA programming considerations in the CA IDMS/DC environment

■ Allocating a session

■ Starting a system task from a remote system

■ Asynchronous and synchronous processing

■ Sending data

■ Requesting a confirmation

■ Responding to a confirmation request

■ Sending error information

■ Changing direction: send to receive

■ Receiving data

■ Changing direction: receive to send

■ Terminating a conversation

What is SNA?

Systems Network Architecture (SNA) is a set of protocols and formats that enable

different types of communications products to function together in a network
environment. There are no specific SNA hardware or software products. Rather, SNA is a
set of rules, an architecture, to which a wide variety of products can conform.

SNA/VTAM Line Driver

The CA IDMS/DC SNA/VTAM line driver (VTAMLU) is a task running under CA IDMS/DC

that allows your task to communicate with other SNA-compatible devices. Many SNA
logical units, for example, 3270 terminals and printers, can communicate using the
standard CA IDMS/DC VTAM line driver (VTAMLIN). VTAMLIN handles most SNA
protocols automatically, and should be used when possible for greater operating

efficiency.

Overview

514 DML Reference Guide for Assembler

The CA IDMS/DC SNA/VTAM driver, and the material covered in this appendix, should
be used with logical unit configurations that require special protocol control; for

example, LU6.2 logical units, and IBM 4700 or 3700 devices. The SNA protocols enabled
for a specific logical unit are defined through VTAM by bind parameters in a VTAM
MODENT table. These bind parameters are the only way the CA IDMS/DC SNA/VTAM

driver can determine which specific SNA protocols have been established for a logical
unit; care should be taken to ensure that the bind parameters accurately reflect the
capabilities of the logical unit.

Determining Compatibility and Need for Special Support

To determine whether SNA protocols for a given logical unit are compatible with those

handled by the standard VTAM driver, or if they need special protocol support from the
CA IDMS/DC SNA/VTAM driver, compare the bind parameter values in the MODENT
table for your logical unit to those for a 3270 device. If the MODENT values are
comparable to those for a 3270, it is probable that the standard VTAM driver can handle

any SNA protocols for that logical unit.

Note: For more information about establishing bind parameters for a logical unit, see
the System Generation Guide.

Support Offered by the SNA/VTAM Line Driver

The following table l ists the LU types, function management profiles, and transmission

service profiles that are supported by the CA IDMS/DC SNA/VTAM driver (LU 6 is not
supported).

SNA Protocol Types Supported by CA IDMS/DC

LU Types 0, 1, 2, 3, 4, 6.2

Function Management Profiles 2, 3, 4, 7, 18, 19

Transmission Service Profiles 2, 3, 4, 7

General Considerations

Appendix G: Systems Network Architecture Considerations (SNA) 515

This section contains the following topics:

General Considerations (see page 515)

SNA Functions in a CA IDMS/DC Environment (see page 522)
Allocating a Session (see page 525)
Starting a Task from a Remote System (see page 530)

Synchronous and Asynchronous Processing (see page 530)
Sending Data (see page 531)
Requesting a Confirmation (see page 532)
Responding to a Confirmation Request (see page 533)

Sending Error Information (see page 533)
Changing Direction: Send to Receive (see page 534)
Receiving Data (see page 535)
Changing Direction: Receive to Send (see page 537)

Terminating a Conversation (see page 538)

General Considerations

Before you start to write your SNA program, you should familiarize yourself with the
following:

■ SNA terms and their specific meanings in the CA IDMS/DC environment

■ The CA IDMS/DC facil ities your program needs to communicate in the SNA
environment

■ How SNA messages and error information are handled in the CA IDMS/DC

environment

Each of these considerations is discussed on the following pages.

SNA Terminology

The following SNA terms are used in this appendix. Special CA IDMS/DC considerations

are included along with their definitions:

■ A logical unit (LU) is a port through which you access the SNA network, a single
network addressable unit (NAU). For example, an LU can be an end-user terminal, a

program such as CICS or CA IDMS/DC, or a device such as a display writer.

Note: Unless otherwise specified, the discussions in this appendix apply to all LU
types. Special LU6.2 considerations will be noted.

■ A session is a logical connection between two logical units that enables the
exchange of messages. Two logical units that share a single physical connection can

have one or more sessions between them. Each ses sion is represented in the CA
IDMS/DC environment by a single physical terminal element (PTE)/logical terminal
element (LTE) pair.

General Considerations

516 DML Reference Guide for Assembler

■ A conversation is equivalent to one complete transaction between logical units. A
conversation is delineated by a begin bracket and an end bracket. In the CA

IDMS/DC environment, a conversation is requested by a #TREQ ALLOC statement,
or is started by the remote LU, and is terminated by the LAST option on a #TREQ
WRITE statement. Data is exchanged by two logical units in a conversation by using

various forms of the #TREQ READ and WRITE statements.

Multiple LU-LU Sessions

The following figure il lustrates how the SNA driver, functioning as an LU, takes part in
multiple sessions. There are four sessions established between the SNA driver and CICS,
and one session established between the SNA driver and a display writer. Each session

can support only one conversation at a time. This configuration can support up to five
simultaneous conversations: four between CA IDMS/DC and CICS, and one between CA
IDMS/DC and the display writer.

General Considerations

Appendix G: Systems Network Architecture Considerations (SNA) 517

Program Communications in the SNA Environment

Your program converses with other SNA network resources through #TREQ statements,
in conjunction with the user I/O control block (UIOCB). CA IDMS/DC supports only
basic-mode access to other SNA devices; l ine-mode and mapping-mode are not

currently supported.

#TREQ Command

You use the #TREQ command to:

■ Establish LU-LU sessions

■ Initiate conversations between logical units

■ Exchange data and error information between logical units

■ Terminate conversations and sessions

Syntax and syntax rules for the #TREQ statement are discussed in #TREQ (see page 343).

User Control Block

The user I/O control block (UIOCB) contains LU-LU session information:

■ Session attributes

■ Conversation attributes

■ Information about the data being sent and received

■ Error information

Establishing Sessions

Sessions in the CA IDMS/DC environment can be established in three ways:

■ CA IDMS/DC can automatically establish the session at system startup.

■ A remote LU can establish the session.

■ Your program can establish a session using the #TREQ ALLOC statement, as

described later in this appendix.

When you issue a #TREQ ALLOC statement to allocate a conversation, before CA
IDMS/DC can select a session for you, you must establish the UIOCB and initialize UIOCB
fields with session attributes, such as which LU you want to talk to.

You also use the UIOCB to establish conversation attributes, for example, the maximum
sync level that you will need (LU6.2 only).

General Considerations

518 DML Reference Guide for Assembler

After the conversation has begun, you use the UIOCB to obtain information about the
conversation. For example, session and conversation information in the UIOCB is

updated following #TREQ ALLOC or #TREQ UIOCB statements, and return codes, sense
codes, data-information fields, and VTAM-information fields are updated following read
requests.

General Considerations

Appendix G: Systems Network Architecture Considerations (SNA) 519

Sample User Control Block

The following figure il lustrates a sample user I/O control block (UIOCB).

For the layout of the UIOCB, refer to the DSECT Reference Guide.

UOICB DS OF

**

** **

** UIOCB USER I/O COMMUNICATIONS BLOCK **

** **

** ## - LU6.2 ONLY **

** $$ - FOR FUTURE USE **

**

UIOLTEA DS A ADDR OF LOGICAL TERMINAL ELEMENT

 (CONVERSATION IDENTIFIER)

**** SESSION ATTRIBUTES *********

UIOBIND DS A ADDRESS OF BIND PARAMETERS

UIOLLU DS CL8 LOCAL LU NAME (OWN_LU_NAME)

UIORLU DS CL8 REMOTE LU NAME (PARTNER_LU_NAME)

UIOMODE DS CL8 MODEENT NAME (MODE_NAME)

UIOSYNC DS X ## SYNC_LEVEL

UIOSYNCN EQU X'00' SYNC_LEVEL = NONE

UIOSYNCC EQU X'01' SYNC_LEVEL = CONFIRM

UIOSYNCS EQU X'02' SYNC_LEVEL = SYNCPOINT

UIOCONV DS X ## CONVERSATION TYPE

UIOCONVB EQU X'00' CONVERSATION TYPE = BASIC

UIOCONVM EQU X'01' CONVERSATION TYPE = MAPPED

UIOMAPN DS CL24 $$ LU6.2 MAP NAME

UIOTASK DS CL8 REMOTE TASK TO BE ALLOCATED (TPN)

UIOUSER DS CL8 ## USER ID TO BE PASSED WITH ALLOCATE

UIOPASS DS CL8 ## PASSWORD TO BE SENT WITH ALLOCATE

UIOPROFL DS CL8 ## PROFILE ID TO BE SENT W/ ALLOCATE

UIOINRU DS H MAX RU SIZE ON INPUT

UIOUTRU DS H MAX RU SIZE ON OUTPUT

UIORSV DS 4H RESERVED

**** WHAT RECEIVED ***************

UIODAT #FLAG X'80' DATA

UIOERR #FLAG X'40' ## ERROR (SEND_ERROR RECEIVED)

UIOLST #FLAG X'20' DEALLOCATE (SEND LAST RECEIVED)

UIOCD #FLAG X'10' CHANGE DIRECTION (TIME TO SEND)

UIOCFM #FLAG X'08' CONFIRM (CONFIRMATION REQUESTED)

UIOSIG #FLAG X'04' SIGNAL (REQUEST_TO_SEND RECEIVED)

UIOSPT #FLAG X'02' $$ SYNCPOINT (TAKE_SYNCPOINT)

UIOROL #FLAG X'01' $$ SYNCPOINT ROLLBACK REQUIRED

UIOWREC DS X WHAT_RECEIVED

**

UIOFMH #FLAG X'80' DATA CONTAINS FMH

General Considerations

520 DML Reference Guide for Assembler

UIODTC #FLAG X'40' DATA_COMPLETE (OFF = INCOMPLETE)

UIODATF DS X DATA TYPE FLAG

********* ERROR INFORMATION FIELDS *************************************

UIOURA DS 0X

UIOUCOM DS XL1 CA IDMS/DC ERROR CODE

UIOCOMPG EQU 0 GOOD COMPLETION - I/O SUCCESSFUL

UIOCOMPA EQU 8 TERMINAL OPERATOR HIT ATTN OR BREAK DURING OUTPUT

UIOCOMPL EQU 12 LOGICAL ERRORS - INVALID COMMAND SEQUENCE

UIOCOMPP EQU 16 PERMANENT I/O ERROR COMMAND SEQUENCE

UIOCOMPD EQU 20 SESSION WAS DISCONNECTED OR INTERVENTION REQ.

UIOCOMPO EQU 24 SESSION IS OUT-OF-SERVICE

UIOCOMPC EQU 28 SESSION IS CLOSED (OPEN DIDN'T WORK)

UIOCOMPI EQU 32 INVALID TRB PARAMETER LIST

UIOUCM2 DS XL1 SECONDARY DC ERR-CODE

UIOLGNR EQU X'01' ERR - LOGON ROUTINE

UIOPROF EQU X'02' ERR - PRIOR OPEN FAILURE

UIORTEX EQU X'03' ERR - RETRIES EXHAUSTED (MAX ERRS EXCEEDED)

UIONEGR EQU X'04' ERR - NEGATIVE RESP TO SEND DATA

UIOSRPF EQU X'05' ERR - SEND RESPONSE FAILED

UIONUIO EQU X'06' ERR - NO UIOCB ADDRESS AVAILABLE

UIOUNKI EQU X'07' ERR - UNKNOWN INPUT RECEIVED

UIOBBFL EQU X'08' ERR - BRACKET BID FAILURE

UIOWQUR EQU X'09' ERR - WAITING ON QUIESCE RELEASE

UIOSTSN EQU X'0A' ERR - MSG RESYNC FAILURE (ON SEND CHAIN)

UIOSTSR EQU X'0B' ERR - MSG RESYNC FAILURE REPETITIVELY

UIOPLEC EQU X'0C' ERR - PIPELINE EXCEEDED MAX EXCP RESPONSES

UIOPLRD EQU X'0D' ERR - PIPELINE READ RQST IS NOT SUPPORTED

UIOUCD EQU X'0E' ERR - UNIDENTIFIED NORMAL FLOW CMD RECEIVED

UIORCAF EQU X'0F' ERR - RESET TO CONT-ANY FAILED

UIOLUSR EQU X'10' ERR - UNKNOWN LUSTAT RECEIVED

UIOCNNA EQU X'11' ERR - CHAINED-INPUT NOT ALLOWED ON THIS PTE TYPE

UIOUNXC EQU X'12' ERR - UNEXPECTED COMMAND RECEIVED

UIOCNCR EQU X'13' ERR - CANCEL COMMAND RECEIVED

UIOCHRC EQU X'14' ERR - CHASE COMMAND RECEIVED

UIORCVF EQU X'15' ERR - RECEIVE FAILED

UIOFMHG EQU X'16' ERR - FMH DEFAULT IN SYSGEN CAN'T BE USED

UIOVMMT EQU X'17' ERR - GENCB/MODCB FAILURE

UIOSNDF EQU X'18' ERR - SEND CMD FAILURE

UIOWBMS EQU X'19' ERR - WRITE BUFFER MISSING

UIOFMHS EQU X'1A' ERR - FMH OR FMH-OPTION SPECIFICATION ERROR

UIOQECR EQU X'1B' ERR - QEC RECV'D, USER CONTROLS OUTB CHAINING

UIOPUNK EQU X'1C' ERR - PTE TYPE UNKNOWN

UIOLTNA EQU X'1D' ERR - LAST OPTION DISALLOWED

UIOPMXW EQU X'1E' ERR - PIPELINE MAX NBR WRITES (1) EXCEEDED

UIOOPNS EQU X'1F' ERR - OPT/RQST NOT SUPPTD THIS PTE OR LU TYPE

UIOWSZX EQU X'20' ERR - WRT SIZ GTR PRUSZ, & CHAIN NOT ALLOWED

UIOSLUF EQU X'21' ERR - SEND LUS (IN LIEU NEG RESP) FAILED

UIORBKF EQU X'22' ERR - RESET BRACKET (SEND EB) FAILURE

UIORQRA EQU X'23' ERR - RQR ATTEMPTED

General Considerations

Appendix G: Systems Network Architecture Considerations (SNA) 521

UIORBNS EQU X'24' ERR - READ BUFFER NOT SUPPORTED

UIOUCNR EQU X'25' ERR - OUTB USER CHANGING - NEG RESPONSE

UIONEGC EQU X'26' ERR - NEG RESP TO SEND COMMAND

UIONRNR EQU X'27' ERR - NEG RESP, SEND CHAIN, NO RECOVERY POSS

UIOLURS EQU X'28' ERR - LU RQST'D SHUTDOWN

UIORCCE EQU X'29' ERR - REQUEST CANCELLED, CONVERSTAION ENDED

UIOSIGR EQU X'2A' ERR - SIGNAL RECEIVED NOT RECOGNIZED

UIOIGDS EQU X'2B' ERR - INVALID LU6.2 GDS ID

UIOSCRM EQU X'2C' ERR - SEND CANCELLED, WE ARE IN RECV-MODE

UIOZLMR EQU X'2D' ERR - ZERO-LNG MSG RECEIVED

UIONMRT EQU X'2E' ERR - INVALID/MISSING REQUEST TYPE

UIOALFR EQU X'2F' ERR - ALLOCATE FAILED, SESSION BUSY, RETRY OK

UIOALFN EQU X'30' ERR - ALLOCATE FAILED, NO RETRY

UIOALFS EQU X'31' ERR - ALLOCATE FAILED, SYNCLEVEL NOT SUPPORTED

UIOUNBD EQU X'32' ERR - UNBIND RECEIVED

UIOSNDE EQU X'33' ERR - LU6.2 SEND ERROR RECEIVED

UIOABND EQU X'34' ERR - LU6.2 SEND ABEND RECEIVED

UIOXLIM EQU X'35' ERR - LIMIT ON INPUT EXCEEDED, READ FAILED

UIOEBR EQU X'36' END BRACKET RECEIVED - DEALLOCATE NORMAL

UIOURTC DS XLI VTAM RTNCD

UIOUFDB DS XLI VTAM FDBK2

UIOUSEI DS XLI VTAM SENSE INFO

UIOUSMI DS XLI VTAM SENSE MODIFIER

UIOUUSI DS XL2 VTAM USER SENSE INFO

UIORSV1 DS XL4 RESERVED

UIOUSIG DS XL4 SIGNAL DATA - EXPD-FLOW-CMD

UIOURAL EQU *-UIOURA LENGTH OF ERROR INFO FIELDS

UIORSV2 DS XL27 RESERVED

UIODWORK DS XL1 WORK BYTE RESERVED FOR CA IDMS/DC

UIOCBL EQU *-UIOCB LENGTH OF UIOCB

Error Handling

Information about the outcome of your request is returned to your program in several

different ways:

■ The outcome of any request is indicated in register 15. In most cases, register 15 is
all that needs to be checked.

■ For debugging purposes, the following fields in the UIOCB contain additional

information:

– The UIOUCM2 field of the UIOCB contains CA IDMS/DC secondary error codes.

– The UIOURTC field of the UIOCB contains VTAM return code and feedback

information.

– The UIOUSEI, UIOUSMI, and UIOUUSI fields of the UIOCB contain SNA sense
codes.

SNA Functions in a CA IDMS/DC Environment

522 DML Reference Guide for Assembler

The following table l ists the sense codes CA IDMS/DC sends to the remote LU to inform
the remote system of errors encountered in conversation processing. Sense codes are

specified with a 4-byte hexadecimal value. CA IDMS/DC sends the following SNA sense
codes to inform the remote system of errors encountered in conversation processing.

Sense code CA IDMS/DC definition SNA meaning

 10086021 Task not defined to CA IDMS/DC Allocation error,

TPN not
recognized

 084C0000 Task out of service Allocation error,

TPN not available

 10086041 Sync-level not supported Sync-level not
supported

 080F6051 Security violation Security not valid

 08640000 Task abended Deallocate abend

 08890000 #TREQ WRITE,OPTNS=ERROR sent Send error
request

 08890101 Invalid LU6.2 GDS-ID Invalid GDS-ID

 08460000 ERP message forthcoming ERP message
forthcoming

 08240000 Rollback requested Syncpoint rollback

 08130000 Bracket bid reject (no RTR) Allocate failure

 08010000 Resource unavailable (busy) Allocate failure

 08060000 Resource unknown (LU not defined) Allocate failure

 08210000 Invalid session parameters Allocate failure

SNA Functions in a CA IDMS/DC Environment

The remainder of this appendix will discuss how to perform SNA functions in a CA
IDMS/DC environment. Each SNA function, for example, ALLOCATE, will be accompanied
by a discussion of how to implement the specific protocols using the #TREQ statement

and the UIOCB.

The following table l ists the SNA functions supported by the CA IDMS/DC SNA/VTAM
driver and their corresponding #TREQ statements.

SNA Functions in a CA IDMS/DC Environment

Appendix G: Systems Network Architecture Considerations (SNA) 523

Note: For more information about the #TREQ statement, see #TREQ (see page 343).

SNA function CA IDMS/DC #TREQ statement

ALLOCATE

 LU_NAME

 MODE_NAME

 TPN

 SECURITY

 (PROGRAM

 (USER ID,

 PASSWORD))

 TYPE (CONVERSATION)

 RETURN_CONTROL

#TREQ ALLOC

 UIOCBA

 OPTNS=

 IMM/CONN/ANY

 WAIT/NOWAIT

 LTERMID

CONFIRM

 RESOURCE

 RETURN_CODE

#TREQ WRITE

 OPTNS=CONFIRM

 LTEADDR

CONFIRMED RESOURCE

 RESOURCE

#TREQ WRITE

 OPTNS=CONFIRM

 LTEADDR

#TREQ

 (any request except

 #TREQ WRITE, OPTNS=ERROR)

DEALLOCATE RESOURCE

 TYPE (SYNC_LEVEL)

 TYPE

 LOG_DATA

 TYPE (LOCAL)

 RESOURCE

#TREQ WRITE

 OPTNS=LAST

 LTEADDR

#TREQ WRITE

 OPTNS=ABEND

 LTEADDR

 SENSE

 LOGDATA

 OUTLEN

 LTEADDR

#TREQ DISC

 LTEADDR

SNA Functions in a CA IDMS/DC Environment

524 DML Reference Guide for Assembler

SNA function CA IDMS/DC #TREQ statement

GET_ATTRIBUTES

 RESOURCE

GET_TYPE

 RESOURCE

#TREQ UIOCB

 UIOCBA

 LTEADDR

POST_ON RECEIPT

 RESOURCE

WAIT RESOURCE_LIST

 RESOURCE

All #TREQ requests

#WAIT

PREPARE_TO_RECEIVE

 RESOURCE

#TREQ WRITE

 OPTNS=INVITE

RECEIVE_AND_WAIT

 DATA

 LENGTH

 FILL

 WHAT_RECEIVED

 RESOURCE

 RETURN_CODE

#TREQ GET

 INAREA

 MAXIN

 INLEN

 OPTNS=

 LL

 NOCHASM

 LTEADDR

 OPTNS=

 INFMHY

 INFMHN

REQUEST_TO_SEND

 RESOURCE

#TREQ WRITE

 OPTNS=SIGNAL

 LTEADDR

Allocating a Session

Appendix G: Systems Network Architecture Considerations (SNA) 525

SNA function CA IDMS/DC #TREQ statement

SEND_DATA

 DATA

 LENGTH

 RESOURCE

 RETURN_CODE

#TREQ WRITE

 OUTAREA

 OUTLEN

 LTEADDR

 OPTNS=

 OUTFMHY

 OUTFMHN

 OPTNS=CHNCONT

SEND_ERROR

 TYPE (PROGRAM) (SVC)

 LOG_DATA

 RESOURCE

 RESOURCE_CODE

#TREQ WRITE

 OPTNS=ERROR

 SENSE

 LOGDATA

 OUTLEN

 LTEADDR

Allocating a Session

ALLOCATE LU_NAME

 MODE_NAME

 SYNC_LEVEL

 TPN

 SECURITY (PROGRAM (USER_ID, PASSWORD))

 TYPE (CONVERSATION)

 RETURN_CONTROL (WHEN_SESSION_ALLOCATED)

 RETURN_CONTROL (IMMEDIATE)

 RESOURCE

 RETURN_CODE

The #TREQ ALLOC statement allows you to allocate a conversation with another logical
unit. In most cases, CA IDMS/DC selects a session for you from sessions defined at
system generation. The system bases its selection on session attributes you have

established in the UIOCB. You should initialize the following UIOCB fields before you
allocate a session:

■ The name of the LU (UIORLU) with which your program will be communicating.

■ In some special cases your program may need to specify the name of a MODEENT

table (UIOMODE), requesting a specific session for the conversa tion. Most
programs do not have to specify UIOMODE.

Allocating a Session

526 DML Reference Guide for Assembler

Note: For more information about session modes, see the System Generation
Guide.

■ The maximum sync level (UIOSYNC) your task will need (LU6.2 only).

Instead of coding these parameters and letting CA IDMS/DC select a session for you, you
can use the LTERMID parameter of the #TREQ ALLOC statement to allocate a specific
session, identified by the logical terminal name of the other LU. For example:

#TREQ ALLOC,LTERMID=LTERMIDA

When LTERMID is specified, the UIORLU and UIOMODE fields in the UIOCB are ignored.

Establishing Conversation Attributes

For LU6.2 conversations only, you also use the UIOCB to establish conversation
attributes. Conversation attributes incl ude:

■ Security information to be passed to the remote system, for example, user id
(UIOUSER), and user password (UIOPASS). These fields are valid only if security is

enforced on the remote system.

■ Whether the conversation is basic (UIOCONVB) or mapped (UIOCONVM). In most
situations, your conversation will be in mapped mode. Unmapped (basic) mode is
used with remote LU6.2 logical units that do not have an application programming
interface (for example, an IBM display writer), or for system level service manager

programs.

■ The (optional) name of the remote task (UIOTASK).

Note: For more information about the UIOTASK field, see the Starting a Task on a
Remote Logical Unit (see page 529) later in this appendix.

Allocating a Session

Appendix G: Systems Network Architecture Considerations (SNA) 527

Issuing the #TREQ ALLOC Statement

After you have set the session and conversation attributes in the UIOCB, you must issue
a #TREQ ALLOC statement to allocate the session.

Coding Considerations

You should consider the following parameters when coding your #TREQ ALLOC
statement:

■ The OPTNS=ANY/CONN/IMM parameter of the #TREQ ALLOC statement establishes
criteria for choosing a session. The session you need can be in one of three states:

– Immediately available—The session has already been established with the
requested LU and is not currently in use.

Note: (LU6.2 only); the session must be a contention winner to be considered
immediately available.

For more information about contention winners, see the System Generation

Guide.

– Disconnected—The session has not yet been established.

– Busy—The session has been established, but is currently allocated to another
logical unit. The session will become immediately available when that logical
unit ends its conversation.

The options on the #TREQ ALLOC statement are as follows:

– ANY (default) specifies that CA IDMS/DC tries to allocate a session in the
following order:

 A session that is immediately available and currently unused.

 A session that is disconnected.

 A session that is busy; CA IDMS/DC will wait for a busy session and return
control to your program once the session is allocated.

– CONN requests CA IDMS/DC not to wait for a busy session. CA IDMS/DC will
first attempt to allocate an immediately available session, then a disconnected
session.

– IMM specifies that only immediately available sessions are acceptable for the

allocation request.

■ You can specify whether your #TREQ ALLOC request is made synchronous (default)
by specifying OPTNS=WAIT or asynchronous by specifying OPTNS=NOWAIT.

Note: If you specify OPTNS=ANY, do not request asynchronous processing with
OPTNS=NOWAIT. OPTNS=ANY implies that the request may wait for a busy session.

■ The UIOCB parameter of the #TREQ ALLOC statement establishes a UIOCB for the
conversation.

Allocating a Session

528 DML Reference Guide for Assembler

Example of LU-LU Session Allocation

The following example il lustrates how you would allocate an LU-LU session, establishing

the UIOCB, and setting session and conversation attributes:

■ The first statement obtains storage for the UIOCB.

■ The next statement establishes the remote logical unit.

■ The next four statements establish LU6.2 conversation attributes.

■ The #TREQ ALLOC statement allocates the session, initiates the conversation, and

names the UIOCB.

UIOSTG #GETSTG TYPE=(USER,LONG),PLIST=*,LEN=UIOLEN,INIT=X'00', *

 STGID=UIOCBD,ADDR=(R1)

* SESSION ATTRIBUTES

ATTR MVC UIORLU,=C'VTMFO178' REMOTE LU

* CONVERSATION ATTRIBUTES

 MVC UIOUSER,=C'BRANCH01' USER ID: DENVER BRANCH

 MVC UIOPASS,=C'DENPR ' USER PASSWORD: DENVER

 MVI UIOCONV,UIOCONVM MAPPED MODE

 MVI UIOSYNC,UIOSYNCC MAXIMUM SYNC-LEVEL

 #TREQ ALLOC,UIOCBA=UIOCB,COND=ALL

After Issuing #TREQ ALLOC

After you have issued your #TREQ ALLOC request, you need to perform the following:

■ Check the value in register 15:

– If register 15 contains a nonzero value, the allocation request failed. The
UIOUCM2 field in the UIOCB indicates whether the problem is permanent or

temporary:

■ If CA IDMS/DC returns UIOALFR to the UIOUCM2 field, the allocate request
was denied due to a temporary problem; for example, CA IDMS/DC was
unable to wait for a busy session. In this case, you should issue the #TREQ

ALLOC request again.

■ If CA IDMS/DC returns UIOALFN to the UIOUCM2 field, a permanent error
was encountered.

■ If CA IDMS/DC returns UIOALFS to the UIOUCM2 field, the specified sync
level for the conversation is not supported. This is a permanent error.

Allocating a Session

Appendix G: Systems Network Architecture Considerations (SNA) 529

– If register 15 contains 0, the session has been successfully established. Register
1 contains the logical terminal address (LTEADDR) of the remote LU. The logical

terminal address (also stored in UIOLTEA) must be specified on all subsequent
#TREQ requests in that session because a single task can have conversations
with many logical units.

■ If the #TREQ request was asynchronous (OPTNS=NOWAIT), you must issue a #TREQ
CHECK statement before you make any further I/O requests. Your program must
specify the LTE address of the remote LU (UIOLTEA) to identify the conversation.

Starting a Task on a Remote Logical Unit

Non-LU6.2 Sessions

For non-LU6.2 sessions, if the UIOTASK field in the UIOCB contains a task name (is
nonzero and nonblank) when a #TREQ ALLOC is issued, CA IDMS/DC will automatically
send the task code to the remote system immediately after the session is established.

LU6.2 Sessions

For LU6.2 sessions, if the UIOTASK field in the UIOCB contains a task name (is nonzero
and nonblank) when a #TREQ ALLOC is issued, CA IDMS/DC will automatically send the
LU6.2 allocate request to the remote system, requesting the remote system to start the
named task.

Requests from Remote Units

When CA IDMS/DC receives an allocate request from a remote LU6.2, it does the
following:

■ If the allocate request contains a nonzero and nonbl ank value in the user id
(UIOUSER) or password (UIOPASS) fields, CA IDMS/DC will run the signon task for

that session.

■ The task identified in the allocate request is then attached.

■ The conversation type (UIOCONV) and sync-level (UIOSYNC) are also passed by the
allocate request and moved into the UIOCB.

Any errors encountered while processing a remote allocation request for example,

task-not-defined or security violations, are reported to the remote system through an
SNA sense code.

Note: For more information about sense codes, see Error Handling (see page 521) in this

appendix.

Starting a Task from a Remote System

530 DML Reference Guide for Assembler

Starting a Task from a Remote System

 GET_ATTRIBUTES

 GET_TYPE

When your conversation is started from a remote LU, you must issue a #TREQ UIOCB
statement before issuing any other #TREQ statements. The #TREQ UIOCB statement
establishes a UIOCB for CA IDMS/DC to maintain session attributes and status
information.

If the conversation was started from a remote system, the LTEADDR parameter can be

left off, since the LTE address defaults to the LTE that started the ta sk (that of the
remote system).

CA IDMS/DC fi l ls all session attribute fields upon completion of a #TREQ UIOCB or #TREQ
ALLOC request.

Synchronous and Asynchronous Processing

 POST_ON_RECEIPT

 WAIT RESOURCE_LIST

The statements used to establish SNA sessions and to exchange data can be issued as
either synchronous or asynchronous requests.

Note: For more information about synchronous and asynchronous processing, see the

#TREQ (see page 343).

When establishing a conversation you can request:

■ Synchronous processing by using the OPTNS=WAIT parameter of the #TREQ ALLOC
statement.

■ Asynchronous processing by using #TREQ ALLOC,OPTNS=NOWAIT. You must issue a
#TREQ CHECK, specifying the LTE address of the remote LU, prior to any other I/O
requests for that conversation.

Sending Data

Appendix G: Systems Network Architecture Considerations (SNA) 531

Note: For more information about the #TREQ ALLOC statement, the Allocating a Session
(see page 525) in this appendix.

When you are issuing #TREQ input and output statements, you can request:

■ Synchronous processing by using #TREQ GET, PUT, and PUTGET.

■ Asynchronous processing by using #TREQ WRITE, READ, and WRITREAD. The #WAIT

statement is used to wait on an ECB list. All asynchronous requests must be
followed by a #TREQ CHECK statement before any other I/O requests can be made
for that session.

Sending Data

SEND_DATA DATA

 LENGTH

 RESOURCE

 RETURN_CODE

You can use any #TREQ WRITE, PUT, PUTGET, or WRITREAD request to send data to

another LU in a conversation.

If the length of the data you are sending (OUTLEN) is larger than the SNA maximum
request unit size (UIOTRU), CA IDMS/DC will chain the output automatically.

LU6.2 Considerations for Sending Data

For LU6.2-mapped conversations, CA IDMS/DC appends a generalized data stream ID
(GDS ID) to the data.

For LU6.2 unmapped conversations, you must supply the correct GDS ID and attach it to

the data.

Note: For more information about GDS IDs, see the IBM SNA documentation.

Requesting a Confirmation

532 DML Reference Guide for Assembler

Non-LU6.2 Considerations for Sending Data

For non-LU6.2 conversations, specifying OUTFMHY or OUTFMHN indicates whether or
not a function management header (FMH) has been added to the outbound message:

■ OUTFMHY specifies that you have included an FMH at the beginning of the write

buffer that should be used instead of any sysgen defaults.

■ OUTFMHN specifies that no default FMH should be added to the outbound
message and that you have not provided an FMH.

The CHNCONT parameter (non-LU6.2 conversations only) specifies that your task is

sending a chain of outbound messages and that the current message

 is not the last in the chain. Not specifying CHNCONT after it has been specified once
indicates the final chain element.

Requesting a Confirmation

CONFIRM RESOURCE

 RETURN_CODE

If you want to request a confirmation, for any application-defined reason, you can

include the CONFIRM option of the #TREQ WRITE, PUT, PUTGET, or WRITREAD
statements. Your program must specify the LTE address of the remote logical unit to
identify the conversation.

Specifying OPTNS=CONFIRM sends a confirmation request to the remote LU. The
request is posted as complete as soon as it is received; a separate read statement is not
necessary to get the confirmation. CA IDMS/DC sets the send-error received flag
(UIOERR) on if the reply is negative.

The CONFIRM option can be specified with or without data (OUTLEN=0). Syntax and

syntax rules for OPTNS=CONFIRM are described in Data Manipulation Language
Statements (see page 73).

You can request a change of direction with the confirmation request by specifying
OPTNS=(INVITE,CONFIRM).

Responding to a Confirmation Request

Appendix G: Systems Network Architecture Considerations (SNA) 533

You can also request confirmation before a conversation is terminated by specifying
OPTNS=(LAST,CONFIRM).

Note: For more information about terminating a conversation, see Terminating a
Conversation (see page 538) in this appendix.

For non-LU6.2 sessions, the following considerations apply:

■ If the bind parameters issued at system generation indicate that the definite
response protocol is supported, CA IDMS/DC will always request a definite response
type1 (RDR1) on the last or only elements.

■ If your program specifies OPTNS=CONFIRM, CA IDMS/DC will request a definite

response type2 instead of type1.

Responding to a Confirmation Request

 CONFIRMED_RESOURCE

 SEND_ERROR

After your program has received a confirmation request (UIOCFM is set on), your
program can:

■ Send a positive response by specifying OPTNS=CONFIRMED on a write request

■ Allow CA IDMS/DC to send a positive response automatically the next time you

make a request (with the exception of write requests specifying OPTNS=ERROR)

■ Send a negative response by specifying OPTNS=ERROR on a write request

Sending Error Information

SEND_ERROR TYPE (PROGRAM) (SVC)

 LOG_DATA

 RESOURCE

 RETURN_CODE

Your program can send error information to an LU by specifying OPTNS=ERROR on a

WRITE or PUT request. You cannot issue a #TREQ PUTGET or WRITREAD request
because the program remains in the send state after the error request is issued. Your
program must specify the LTE address of the remote LU (UIOLTEA) to identify the
conversation.

The error information is sent in the form of an 8 character hexadecimal SNA sense code,

specified by the SENSE parameter on a write request. The default sense code is
X'08890000'.

Changing Direction: Send to Receive

534 DML Reference Guide for Assembler

Note: For more information about sense codes, see Error Handling (see page 521) in this
appendix.

Upon receipt of an error, CA IDMS/DC moves the sense code to the UIOCB. CA IDMS/DC
indicates that an error has been received by setting an error flag (UIOERR) in the
UIOWREC (what-received) field of the UIOCB and provides more specific information

about the error in the secondary codes (UIOUCM2).

Note: Register 15 is not set in response to a SEND_ERROR verb. Therefore, UIOWREC

should be examined if the possibility of UIOERR exist.

LU6.2 Sessions

For an LU6.2 session, if you send the error request while you are in the receive state, all

input is purged until a change-direction indicator is received, and then CA IDMS/DC
sends the error information.

Note: For more information about changing direction, see Changing Direction: Send to
Receive (see page 534) in this appendix.

After sending error information, your program will be in the send state. You can then

send additional data to the remote LU.

You can send log data along with the error information by using the LOGDATA
parameter. If the remote system supports log data, the data will be logged onto the
remote system when it receives the send-error request. LOGDATA specifies the address
of the data buffer. You must also specify the OUTLEN parameter to indicate the length

of the data.

Non-LU6.2 Sessions

For a non-LU6.2 session, CA IDMS/DC sends the sense code in a negative response if
your task is in the receive state and in an LUSTAT command if your task is in the send
state. If your program issues an error request while your task is in the receive state, all

input is purged until a change-direction indicator is received. Your program must specify
the LTE address of the remote LU (UIOLTEA) to identify the conversation.

Changing Direction: Send to Receive

PREPARE_TO_RECEIVE

Your program can change from the send state to the receive state in either of the

following ways:

■ Implicitly, by issuing any type of read request (#TREQ READ, GET, WRITREAD,
PUTGET). CA IDMS/DC automatically sends a change-direction indicator to the
remote system before it issues the read request.

Receiving Data

Appendix G: Systems Network Architecture Considerations (SNA) 535

■ Explicitly, by using the OPTNS=INVITE parameter on any write request.

The change-direction indicator is sent with data for all #TREQ PUTGET and WRITREAD

requests, and without data for all GET and READ requests.

Your program must specify the LTE address of the remote LU (UIOLTEA) to identify the
conversation.

Receiving Data

RECEIVE_AND_WAIT DATA

 LENGTH

 FILL

 WHAT_RECEIVED

 RESOURCE

 RETURN_CODE

To read data sent from another LU, your program must issue some form of read request
(#TREQ READ, GET, PUTGET, or WRITREAD). CA IDMS/DC buffers all input received from
a logical unit. Your program can issue multiple read statements until all of the data in

the buffer has been transferred to your program.

Parameters Applying to Incoming Data

The following parameters apply to incoming data:

■ The INAREA parameter specifies the location of the input data stream.

■ The INLEN parameter specifies the actual length of the input data stream.

■ The MAXIN parameter specifies the maximum length of data your program can

receive. CA IDMS/DC never truncates data; if the length of the input data stream
exceeds the MAXIN parameter in your READ statement, CA IDMS/DC will buffer the
data so that it will be available for your next read request.

■ The LOCATE parameter requests CA IDMS/DC to allocate a buffer the exact size of
the input data stream. Register 1 contains the address of the buffer that will contain

the input data. The INLEN parameter can be used to indicate the actual amount of
data received. The LOCATE parameter and the INAREA and MAXIN parameters are
mutually exclusive.

If all of the input has been transferred from the data buffer to your program on
completion of a read request, the data-complete-flag (UIODC) will be set on. In general,

you should always continue issuing read requests until the change-direction (UIOCD) or
last (UIOLST) flag has been set.

Receiving Data

536 DML Reference Guide for Assembler

LU6.2 Conversations

For LU6.2 conversations, CA IDMS/DC can receive only one type of input with each

request. For example, if CA IDMS/DC receives input that contains data, a change of
direction indicator, and a confirm request, you must issue two read requests in order to
get all the information you need:

■ First read request—Reads the data. The data (UIODAT) and data-complete
(UIODTC) flags in the UIOCB are set on to indica te that all of the data has been

received and given to your program (assuming the buffer was large enough to hold
all of the data). If the input buffer is not large enough to hold all of the data, CA
IDMS/DC will buffer the data so that it will be available to your next read request.

■ Second read request—Processes the change of direction and confirmation requests
by setting on the change-direction (UIOCD) and confirmation-requested (UIOCFM)

flags in the UIOCB.

LU6.2 data is always passed in LU6.2 logical records, made up of a header and the user
data. The header consists of a 2-byte length field and a 2-byte generalized data stream
ID (GDS ID).

LU6.2 Mapped Conversations

During LU6.2 mapped conversations, CA IDMS/DC removes the header from the logical

record (OPTNS=LL).

LU6.2 Unmapped Conversations

During LU6.2 unmapped (basic) conversations, a read request can specify the following
options:

■ LL specifies that CA IDMS/DC will pass one LU6.2 logical record, without removing

the header.

■ NOCHASM requests CA IDMS/DC to pass single chain elements (RUs) to your task
one at a time, regardless of logical record, without assembling the chain into a
buffer area. The last (or only) chain element is indicated by the UIODTC flag.

■ Not specifying either option requests CA IDMS/DC to read an input data stream of
the length specified by the MAXIN operand, regardless of whether an entire logical

record is sent. The read is complete when the amount of data specified by MAXIN
has been read, or when the end-of-chain has been indicated.

Changing Direction: Receive to Send

Appendix G: Systems Network Architecture Considerations (SNA) 537

Non-LU6.2 Conversations

For non-LU6.2 conversations, the following considerations apply:

■ All currently available data and read information is passed to your program in one
read, unless the buffer is not large enough to hold all of the data.

■ A read request can specify either OPTNS=NOCHASM or l eave this parameter

unspecified:

– Specifying OPTNS=NOCHASM indicates that an inbound chain is passed to your

task a single chain element (RU) at a time, without assembling the chain into a
buffer. The last (or only) chain element is indicated by the UIODTC flag.

– Not specifying this option requests a read of a single buffer of the length
specified in MAXIN. All SNA chains are assembled into a single buffer; the read
is completed when either the specified length of data or the RU marked as the

end of the chain is received. The data-complete (UIODTC) flag is set when the
end of the chain is received.

■ Your program can indicate how function management headers (FMH) are handled
on input by specifying INFMHY or INFMHN:

– INFMHY indicates that function management headers are passed to your task

along with the input data stream. The UIOFMH flag i n the UIOCB is set on to
indicate the presence of an FMH in the data stream.

– INFMHN requests CA IDMS/DC to remove any incoming FMH from the input

data stream before the data is passed to your task.

Changing Direction: Receive to Send

REQUEST_TO_SEND

Normally, your program remains in the receive state until the remote LU sends a
change-direction indicator.

Your program can request a change of direction from the receive state to the send state

by specifying OPTNS=SIGNAL on a write reques t. The SIGNAL option sends a
change-direction signal code of X'00010000'.

If your program issues a write request while it is in the receive state, CA IDMS/DC sends
the signal command, requesting change of direction, to the remote LU. CA IDMS/DC

posts your program's write request as successfully completed with a logical error (R15 =
0C) and an error code in the UIOUCM2 field of the UIOCB.

The UIOUCM2 field indicates that your program tried to send data while in the receive
state (UIOSCRM), and that CA IDMS/DC sent the change-direction signal for you. You

must continue to send read requests until the remote LU sends a change-direction
signal (UIOCD).

Terminating a Conversation

538 DML Reference Guide for Assembler

Terminating a Conversation

DEALLOCATE RESOURCE TYPE (SYNC_LEVEL)

 TYPE (ABEND_PROGRAM)

 LOG_DATA (VARIABLE)

 TYPE (LOCAL)

A conversation between CA IDMS/DC and another LU can be terminated in the following
ways:

■ Your program can request a normal termination of the conversation by specifying
OPTNS=LAST on a write request.

■ Your program can notify the remote LU that it is terminating abnormally by
specifying OPTNS=ABEND on a write request.

■ The remote LU can terminate the conversation. CA IDMS/DC sets the UIOLST (send

last received) flag in the UIOCB.

Your program must specify the LTE address of the remote task (UIOLTEA) to identify the
conversation.

The session that is being maintained between CA IDMS/DC and the remote LU is not
closed, but remains available to be allocated to another conversation. This eliminates

the overhead of reestablishing another session.

If you want to start another conversation after you have ended the current one, you
must allocate a new conversation to the session.

Note: For more information about allocating a conversation, see Allocating a Session
(see page 525) in this appendix.

Normal Termination

To end a conversation between two logical units normally, specify OPTNS=LAST on a

write request. CA IDMS/DC notifies the remote system, frees the session to make it
available for other conversations, and, for LU6.2 conversations, performs a signoff for
the remote LU.

The request to terminate a conversation can be made with or without data (OUTLEN=0).

You can request confirmation of the termination request by specifying

OPTNS=(LAST,CONFIRM) on a #TREQ WRITE or PUT request. CA IDMS/DC notifies the
remote system and will wait to free the session and perform the signoff until a positive
confirmation is received.

If your task ends or abends before the conversation terminates normally, CA I DMS/DC

performs the ABEND operation.

Terminating a Conversation

Appendix G: Systems Network Architecture Considerations (SNA) 539

Abnormal Termination

You can notify the remote system that your task is abending and that the conversation
has ended by using the ABEND option of the #TREQ WRITE or PUT statements. CA
IDMS/DC notifies the remote system, terminates the conversation, frees the session,

and, for LU6.2 conversations only, signs off the remote LU.

LU6.2 Conversations

For LU6.2 conversations, CA IDMS/DC can pass log data along with the ABEND
notification. The LOGDATA parameter locates the buffer containing the data. If the
remote LU6.2 system supports LOGDATA, the data will be logged on to the remote

system when the ABEND notification is received. If you specify LOGDATA, you must also
include the OULEN parameter to indicate the length of the data.

Non-LU6.2 Conversations

For non-LU6.2 conversations, the SENSE option overrides the default sense code

(X'08640000'; task abended).

Terminating a Session

You can terminate a non-LU6.2 session between CA IDMS/DC and another LU by using
the #TREQ DISC (disconnect) statement. The #TREQ DISC request must be followed by a

#TREQ CHECK request. Your program must specify the LTE address of the remote LU
(UIOLTEA) to identify the conversation.

Appendix H: 18-Byte Communications Blocks 541

Appendix H: 18-Byte Communications
Blocks

This section contains the following topics:

Overview (see page 541)

Overview

As an alternative to using the 16-byte IDMS DB communications blocks, you can specify

18-byte blocks. The difference between 16-byte blocks and 18-byte blocks is that an
18-byte block contains an additional 18-byte fi l ler field, and the following fields are 18
bytes instead of 16 bytes:

■ RECNAME

■ AREANAME

■ ERRORSET

■ ERRORREC

■ ERRAREA

This appendix describes where to specify an 18-byte communications block and contains

figures showing these blocks.

Note: For more information about the fields in IDMS DB communications blocks, see
Communications Blocks and Error Detection (see page 33).

Where to Specify the 18-Byte Block

For Assembler, you specify an 18-byte communications block by using the @SSC120

statement in place of the @SSCTRL statement.

Note: For more information, see @SSCTRL (see page 421).

Overview

542 DML Reference Guide for Assembler

18-Byte IDMS-DB Block

The following figure shows the 18-byte IDMS DB communications block:

 ┌───────────────────────────┐
 │ IDMS COMMUNICATIONS BLOCK │
 └───────────────────────────┘

 Length
 Field Data Type (bytes) Initial Value
 ┌──────────┐
 *│ 0 7 │ PROGRAM-NAME Alphanumeric 8 Program Name
 ├────────┬─┘
 │ 8 11 │ ERROR-STATUS Alphanumeric 4 '1400'
 ├────────┤
 │ 12 15 │ DBKEY Binary 4(Fullword) 0000
 ├────────┴───┐
 │ 16 33 │ RECORD-NAME Alphanumeric 18 Spaces
 ├────────────┤
 │ 34 51 │ AREA-NAME Alphanumeric 18 Spaces
 ├────────────┤
 │ 52 69 │ FILLER Alphanumeric 18 Spaces
 ├────────────┤
 │ 70 87 │ ERROR-SET Alphanumeric 18 Spaces
 ├────────────┤
 │ 88 105 │ ERROR-RECORD Alphanumeric 18 Spaces
 ├────────────┤
 │ 106 123 │ ERROR-AREA Alphanumeric 18 Spaces
 ├─────────┬──┘
**│ 124 127 │ PAGE-INFO Binary 4(Fullword) 0000
 └─────────┘
 ┌─────┬───┬────┐
 │ 124 ... 223 │ IDBMSCOM Alphanumeric 100 Spaces
 ├─────┴───┴┬───┘
 │ 224 227 │ DIRECT-DBKEY Binary 4(Fullword) 0000
 └──────────┘
 ┌──────────┐
 │ 228 234 │ DATABASE-STATUS Alphanumeric 7 Spaces
 ├─────┬────┘
 │ 235 │ FILLER ... 1 ...
 ├─────┴────┐
 │ 236 239 │ RECORD-OCCUR Binary 4(Fullword) 0000
 ├──────────┤
 │ 240 243 │ DML-SEQUENCE Binary 4(Fullword) 0000
 ├──────────┴──┐
 │ 244 299 │ FILLER Alphanumeric 56 Spaces
 └─────────────┘

* word aligned
** PGINFGRP overlays bytes 124 and 125 and PGINFDBK overlays bytes
 126 and 127. Both of these fields are binary datatype each
 having a length of two bytes. Suggested initial values for
 both are 00. Together these two fields represent PGINFO.

Appendix I: Online Debugger Syntax 543

Appendix I: Online Debugger Syntax

This section contains the following topics:

General Registers Symbols (see page 543)
DC/UCF System Symbols (see page 544)
Address Symbols and Markers (see page 544)

User Symbols (see page 545)
Program Symbols (see page 545)
Expression Operators (see page 545)

Delimiters (see page 546)
Debugger Commands (see page 546)

General Registers Symbols

General registers include the registers used by the program at the time of execution
and the registers used by the DC/UCF system. The program status word (PSW) and

register definitions are always preceded by a colon (:) and are specified by these
symbols:

■ :PSW for the current program status word

■ :Rn for the user program register at the time of interrupt, where n represents the
number of the register and can have a value of 0 through 15

■ :REGS for all user program registers at the time of interrupt

■ :SRn for a DC/UCF system register at the time of interrupt, where n represents the

number of the register and can have a value of 0 through 15

■ :SREGS for all DC/UCF system registers at the time of interrupt

Important! A single debug expression can reference only one general register.

DC/UCF System Symbols

544 DML Reference Guide for Assembler

DC/UCF System Symbols

Certain DC/UCF system symbols also function as debugger entities, and you can refer to
them during a debugging session. A colon (:) must precede each symbol. These are the
valid symbols:

:BAT

Specifies the base address table for session.

:CSA

Specifies the DC/UCF common storage area.

:DLB

Specifies the debug local block, control block required for debugging session.

:LTE

Specifies the current logical terminal element.

:PTE

Specifies the current physical terminal element.

:TCE

Specifies the current task control element.

:VECT

Specifies the vector table for debugger.

Important! A single debug expression can reference only one system entity.

Address Symbols and Markers

Symbol Symbol Name Designated Location

@ At sign Absolute address

$ Dollar sign Load address

¢ Cent sign Address of current dialog process

User Symbols

Appendix I: Online Debugger Syntax 545

User Symbols
■ :DRn for a debugger general register, where n represents the number of the

register and can have a value of 0 through 15

■ :DREGS for all debugger registers

■ :H1 and :H2 for halfword 1 and halfword 2

■ :F1 and :F2 for fullword 1 and fullword 2

■ :UCHR for a 48-byte character area

You can also refer to specified sections of this area:

– :UC0, the first 16 bytes

– :UC16, the next 16 bytes

– :UC32, the last 16 bytes

Program Symbols

Syntax: Data Field Names

►►──── data-field-name ─┬──────────────────────┬──────────────────────────────►◄
 ├─ IN ─┬─ record-name ─┘
 └─ OF ─┘

Syntax: Line Numbers

►►──── # line-number ───►

 ►─┬──┬───►◄
 └─┬─ IN ─┬─┬─ current-process-name ───────────────────────────────────┬┘
 └─ OF ─┘ └─ included-module-name ─┬────────────────────────────────┬┘
 └─ OCCurrence occurrence-number ─┘

Syntax: Qualifying Program Symbols

►►─── process-name - . - program-symbol ──────────────────────────────────────►◄

Expression Operators

Operator Meaning

+ Addition

- Subtraction

Delimiters

546 DML Reference Guide for Assembler

Operator Meaning

* Multiplication

/ Division

Delimiters

Delimiter Meaning

* Asterisk

 Blank

, Comma

= Equal sign

! Exclamation point

- Hyphen

% Percent sign

. Period

+ Plus sign

/ Slash

Debugger Commands

Syntax: AT

ADD Format

►►─── AT debug-expression ──►

 ►─┬───────────────────────────────┬─┬──────────────────────────────┬─────────►
 └─ BEFore ─┬─ MAXimum ◄ ───────┬┘ └─ AFTer ─┬─ 0 ◄ ─────────────┬┘
 └─ execution-count ─┘ └─ execution-count ─┘

 ►─┬──────────────────────────────┬─┬──────────┬──────────────────────────────►◄
 └─ EVEry ─┬─ 1 ◄ ─────────────┬┘ ├─ ON ◄ ───┤
 └─ execution-count ─┘ └─ IGNore ─┘

INQUIRE Format

►►─── AT ─┬─ ALL ──────────────┬─┬─ INQuire ─┬────────────────────────────────►◄
 └─ debug-expression ─┘ ├─ ON ──────┤
 ├─ IGNore ──┤
 └─ OFF ─────┘

Debugger Commands

Appendix I: Online Debugger Syntax 547

Syntax: DEBUG

ADD format

►►─── DEBug ─┬─ PROgram ◄ ──┬─ entity-name ─┬──────────────────────────┬───────►◄
 ├─ DIAlog ─────┤ └─ VERsion version-number ─┘
 ├─ MAP ────────┤
 ├─ SS ─────────┤
 └─ TABle ──────┘

INQUIRE format

►►─── DEBug ─┬─ entity-name ─┬──────────────────────────┬─┬─┬─ INQuire ─┬─────►◄
 │ └─ VERsion version-number ─┘ │ └─ OFF ─────┘
 └─ ALL ──────────────────────────────────────┘

Syntax: EXIT
►►─── EXIt ───►◄

Syntax: IOUSER

►►─── IOUser ───►◄

Syntax: LIST

MEMORY Format

►►─┬─ List ────┬─┬──────────┬─ begin-debug-expression ────────────────────────►
 └─ Display ─┘ └─ Memory ─┘

 ►─┬──────────────────────────────────┬──┬──────┬─────────────────────────────►◄
 ├─ TO end-debug-expression ────────┤ ├─ C ──┤
 └─┬──────────┬─ byte-count-number ─┘ ├─ X ──┤
 └─ LENgth ─┘ └─ XC ─┘

ATTRIBUTES Format

►►─┬─ List ────┬─ SESsion ATTributes ───►◄
 └─ Display ─┘

Syntax: MENU
►►─── MENu ─┬───────────────┬───►◄
 └─ screen-name ─┘

Syntax: PROMPT
►►─── PROmpt ───►◄

Debugger Commands

548 DML Reference Guide for Assembler

Syntax: QUALIFY

RESET Format

►►─── QUAlify ─┬──────────────────────┬─ PROCess process-name ────────────────►
 └─ DIAlog dialog-name ─┘

 ►─┬──────────────────────────┬───►◄
 └─ VERsion version-number ─┘

INQUIRE Format

►►─── QUAlify INQuire ──►◄

Syntax: QUIT

►►─── QUIt ───►◄

Syntax: RESUME
►►─── RESume ─┬───────────────────────────────┬───────────────────────────────►◄
 └┬──────┬─┬─ debug-expression ─┬┘
 └─ AT ─┘ └─ ABEnd ────────────┘

Syntax: SET

MEMORY Format

►►─┬─ Set ──┬─┬──────────┬─ debug-expression ─┬──────────┬───────────────────►
 └─ Vary ─┘ └─ Memory ─┘ ├─ EQUals ─┤
 └─ = ──────┘

 ►─┬─ data-field-name ────┬─┬──────┬─┬─────────────┬──────────────────────────►◄
 ├─ H halfword ─────────┤ ├─ C ──┤ ├─ RESEt ─────┤
 ├─ F fullword ─────────┤ ├─ X ──┤ └─ NOReset ◄ ─┘
 ├─ X hex-value ────────┤ └─ XC ─┘
 ├─ C character-string ─┤
 └─ P packed-value ─────┘

ATTRIBUTES Format

►►─── Set ─┬─ CHAr ─┬───►◄
 ├─ HEX ──┤
 └─ BOTh ─┘

Syntax: SNAP

►►─── SNAp ─┬─ TASk ──┬───►
 └─ begin-debug-expression ─┬─────────────────────────────────┬┘
 ├─ TO end-debug-expression ───────┤
 └┬──────────┬─ byte-count-number ─┘
 └─ LENgth ─┘

 ►─┬───────────────┬──►◄
 └─ TITle title ─┘

Debugger Commands

Appendix I: Online Debugger Syntax 549

Syntax: WHERE

►►─── WHEre ──►◄

Index 551

Index

#ABEND • 82
#ABEND dump • 82, 84

#ACCEPT • 96
#ATTACH • 98
#BIND TASK • 110

#CHAP • 111
#COMMIT • 113
#DELETE • 118
#DELQUE • 121

#DELSCR • 125
#DEQ • 129
#ENDPAG • 139
#ENDPAG pageable maps • 135, 141

#ENQ • 135
#FINISH • 171
#FREESTG • 172

#GETIME • 175
#GETQUE • 177
#GETSCR • 184
#GETSTG • 190

#KEEP • 202
#LINEEND • 208
#LINEIN • 208

#LINEOUT • 214
#LINK • 220, 224
#LOAD • 224
#MAPINQ • 230, 233, 235, 237, 238, 243, 255

moving map-related data • 230, 233
testing cursor position • 235, 237
testing for global map input conditions • 233,

235
testing for input conditions • 238

#MAPINQ pageable maps • 229
#MAPMOD • 243

#MREQ • 261, 282
#MREQ IN syntax • 261
#MREQ OUT syntax • 261
#MREQ OUTIN syntax • 261

#MREQ syntax rules • 261
.#MREQ syntax rules • 261

#MREQ mapping mode • 260

#POST • 285
#PRINT • 286

#PRINT print classes • 286, 297
#PUTJRNL • 297
#PUTQUE • 300
#PUTSCR • 303

#RETURN • 314
#ROLLBAK • 317
#SENDMSG • 319

#SETIME • 323
#SNAP • 328
#SNAP dump • 328, 331
#STAE • 331

#STAE abnormal termination • 332
#STRTPAG • 340
#TREQ • 343, 345, 367, 517

execute version • 343
in SNA programming • 530
list version • 367
regular version • 343

syntax rules • 73, 532
#TREQ ALLOC • 345
#TREQ CHECK • 345
#TREQ DISC • 345

#TREQ GET • 345
#TREQ PUT • 345
#TREQ PUTGET • 345

#TREQ READ • 345
#TRNSTAT • 369
#TRNSTAT TSB • 374, 378
#WAIT • 374

#WTL • 378
#XCTL • 386
#XCTL transferring control • 386, 388

@

@ACCEPT BIND • 84
@ACCEPT DBKEY FROM CURRENCY • 85

@ACCEPT DBKEY RELATIVE TO CURRENCY • 87
@ACCEPT PGINFO • 92
@ACCEPT PROC • 92
@ACCEPT STATS • 93

@BIND PROC • 103
@BIND REC • 104
@BIND SUBSCH • 106

@COMMIT • 113
@CONNECT • 112

552 DML Reference Guide for Assembler

@COPY IDMS • 411
DSECT • 411

MAP-BINDS • 411
MAP-CONTROLS • 411
MAP-RECORDS • 411

MAPS • 411
MODULE • 411
SUBSCHEMA-BINDS • 411
SUBSCHEMA-DML-LR-DESCRIPTION • 411

SUBSCHEMA-LR-DESCRIPTION • 411
@DISCON • 132
@ERASE • 141
@ERASE (LRF) • 146

@FIND/@OBTAIN CALC/DUPLICATE • 149
@FIND/@OBTAIN CURRENT • 151
@FIND/@OBTAIN DBKEY • 155

@FIND/@OBTAIN OWNER • 158
@FIND/@OBTAIN Statements • 148
@FIND/@OBTAIN USING SORT KEY • 161
@FIND/@OBTAIN WITHIN SET/AREA • 164

@FINISH • 170
@GET • 174
@IF • 197

@KEEP • 200
@MODIFY • 255
@MODIFY (LRF) • 259, 260
@OBTAIN (LRF) • 282

@READY • 308
@RETURN • 311
@ROLLBAK • 315

@STORE • 332
@STORE (LRF) • 338
@STORE CALC key • 332

A

accessing the database • 22, 24, 25, 27
LRF DML statements • 22, 24
navigational DML statements • 22

asynchronous processing • 214, 260, 343, 530
basic mode • 344
in SNA programming • 530

line mode • 214
mapping mode • 261

B

blast requests • 214, 220, 261, 344
basic mode • 344
line mode • 214

mapping mode • 261

C

communication with CA IDMS/DB and CA IDMS/DC
programs • 52, 58

IDMS database communications block • 34
logical-record request control (LRC) block • 55,

58
communication with CA IDMS/DB and DC/UCF

programs • 34, 58, 59, 68, 399
DC/UCF general registers • 58, 399
DC/UCF return codes • 59, 68

compiler options • 29, 30, 31, 33, 34

central version and dictionary identification • 29
comment generation • 30
dictionary usage mode • 29, 30

IDMS database communications block • 34
list generation • 30, 31
log suppression • 31, 33

compiler options dictionary identification • 29

compiler options DML precompiler options • 29
confirmation request • 533

responding to • 533

conversation (SNA) • 531, 532, 533, 534, 535, 538
normal termination • 538
receiving data in • 535
sending data in • 531

sending error information in • 533

D

database areas • 308, 311

readying • 308
usage mode • 308

database record area • 317

restoring • 317
date • 175, 177

obtaining • 285
dictionary • 300, 303, 378

message area • 378
queue area • 300
scratch area • 303

DML coding considerations • 399
coding user-supplied operands • 399

DML precompiler • 21
how to execute • 427

DML precompiler-directive statements • 73, 406,
409, 411, 419, 420, 421

#MAPBIND • 420, 421

Index 553

#MRB • 419, 420
@COPY IDMS • 411

@INVOKE • 409, 411
@MODE • 406, 409
@SSCTRL • 421

@SSLRCTL • 73, 421
DMLmacros • 497
DMS precompiler-directive statements • 421

@SSCTRL • 421

E

error handling • 521
in SNA programming • 530

I

IDMS database communications block • 34

ERRSTAT field and codes • 41, 52
field descriptions • 36, 41
testing for DML Error-Status codes • 52

IDMS DB/DC assembler DML coding considerations •

401, 403
coding parameters • 401
coding user supplied operands • 401

synonym processing • 401, 403
IDMSDMLA • 427

how to execute • 427
integrated indexing • 311

@RETURN • 311

J

JCL • 429, 436, 447, 450

z/OS • 429, 436
z/VSE • 436, 447

journal fi le • 297, 300

#PUTJRNL • 297

K

kept storage • 172, 174, 175, 190, 197, 200

#FREESTG • 172
#GETSTG • 190
obtaining • 285

L

l ine mode • 214
#LINEEND • 208

#LINEIN • 208
#LINEOUT • 214

list #TREQ • 367, 369
syntax and syntax rules • 367, 369

location modes • 332, 338
CALC • 332, 338
DIRECT • 332, 338

VIA • 332, 338
locationmodes DIRECT • 338
logical record clauses • 388

ON clause • 395

logicalrecordclauses.LRF • 388
selection criteria for • 388, 395
WHERE • 388

logical records • 146, 148, 259, 282, 285, 340

deleting • 146
modifying • 259
obtaining • 285

retrieving • 282
logical-record request control (LRC) block • 55, 58

logical-record path status • 55, 58
LogicalRecordFacility LRF • 22

logicalunit LU • 515

M

map request block • 139, 260, 340, 343, 411, 419,
420

#ENDPAG • 139
#MAPBIND • 420, 421

#MRB • 419, 420
#MREQ • 261, 282
#STRTPAG • 340

@COPY IDMS,MAPS • 411
messages • 319, 323, 378, 386

message queue • 319
sending • 319, 378

severity code for • 378
symbolic parameters in • 378

O

Online program • 423, 424, 425, 426
making reentrant • 424
methods of call ing • 425

standard IBM calling conventions • 426
SVC instructions in an • 423

operating environments • 21
batch • 21

CA IDMS/DB • 21
DC/UCF systems • 21

554 DML Reference Guide for Assembler

P

program pool • 224, 229
loading a module into • 224

Q

queue record area • 121, 125, 300, 303, 317, 319
deleting • 146
restoring • 317

storing • 303
queue records • 177, 184

retrieving • 282

R

record • 84, 85, 87, 90, 92, 93, 104, 106, 141, 146,
200, 202, 208

bind address • 84
db-key • 332, 338
disconnecting from a set • 141
establishing addressability for • 104

placing a lock on • 200, 202
record locks • 202
records • 148, 149, 151, 155, 158, 255, 259, 332, 338

accessing • 148

db-key • 332, 338
modifying • 259

run unit • 106, 110, 111, 112, 113, 118, 121, 315,

317
database for • 106
node for • 106
recovery of • 315

signing on to DBMS • 106
subschema for • 106

runtime • 93, 96, 98

statistics • 93

S

scratch record area • 125, 129, 132, 139, 184, 190,

303, 308, 317, 423
deleting • 146
restoring • 317

retrieving • 282
storing • 303

see=testingforidenticaldata #MAPINQ • 237
Sequential Processing Facility • 311

@RETURN • 311
SequentialProcessingFacility SPF • 314, 315
sessions (SNA) • 515, 525, 539

how to establish • 525
LU-LU sessions • 515, 525

terminating • 539
set • 332, 338

connecting a record to • 332, 338

sets • 158, 161, 164, 170, 171, 172
ownership • 158

storage management • 172, 190
#FREESTG • 172

#GETSTG • 190
synchronous processing • 208, 214, 260, 343, 530

basic mode • 344
in SNA programming • 530

line mode • 214
mapping mode • 261

systemsnetworkarchitecture SNA • 515

T

task • 98, 103, 104
attaching a task • 98

time • 323, 328
setting a time interval • 323

U

usage mode • 308
DML • 411
LR • 411

MIXED • 411

V

variable storage • 172, 190

acquiring • 190
freeing • 172

W

WHEREclause path in subschema • 393

	CA IDMS DML Reference Guide for Assembler
	CA Technologies Product References
	Contact CA Technologies
	Documentation Changes
	Contents
	1: Introduction
	Syntax Diagram Conventions

	2: Introduction to CA IDMS Data Manipulation Language
	Operating Environments
	Accessing the Database
	Programming in the DC/UCF Environment

	Assembling and Executing Programs
	Callable Services and Common Facilities
	Callable Services
	Common Facilities

	3: DML Precompiler Options
	Dictionary Usage Mode
	Comment Generation
	List Generation
	Log Suppression

	4: Communications Blocks and Error Detection
	IDMS Communications Block
	Field Descriptions

	ERRSTAT Field and Codes
	DB Status Codes
	Major DB Status Codes
	Minor DB Status Codes

	DC Status Codes
	Major DC Status Codes
	Minor DC Status Codes

	Testing for DML Error-Status Codes
	Logical-Record Request Control (LRC) Block
	Field Descriptions
	Testing for the Logical-Record Path Status

	DC/UCF General Registers
	DC/UCF Status Codes
	Testing for DC/UCF Return Codes

	5: Data Manipulation Language Statements
	Functions of DML Statements
	#ABEND--terminates the issuing task abnormally
	#ABEND Syntax
	#ABEND Parameters
	#ABEND Example
	#ABEND Status Codes

	@ACCEPT BIND--moves the bind address
	@ACCEPT BIND Syntax
	@ACCEPT BIND Parameters
	@ACCEPT BIND Status Codes
	@ACCEPT BIND Example

	@ACCEPT DBKEY FROM CURRENCY--moves the db-key of the current record
	@ACCEPT DBKEY FROM CURRENCY Syntax
	@ACCEPT DBKEY FROM CURRENCY Parameters
	@ACCEPT DBKEY FROM CURRENCY Status Codes
	@ACCEPT DBKEY FROM CURRENCY Example

	@ACCEPT DBKEY RELATIVE TO CURRENCY--moves the db-key
	@ACCEPT DBKEY RELATIVE TO CURRENCY Syntax
	@ACCEPT DBKEY RELATIVE TO CURRENCY Parameters
	@ACCEPT DBKEY RELATIVE TO CURRENCY Example
	@ACCEPT DBKEY RELATIVE TO CURRENCY Status Codes

	@ACCEPT PGINFO--moves the page information
	@ACCEPT PGINFO Syntax
	@ACCEPT PGINFO Parameters
	@ACCEPT PGINFO Example
	@ACCEPT PGINFO Status Codes

	@ACCEPT PROC--moves the information block
	@ACCEPT PROC Syntax
	@ACCEPT PROC Parameters
	@ACCEPT PROC Example
	@ACCEPT PROC Status Codes

	@ACCEPT STATS--moves system runtime statistics
	@ACCEPT STATS Syntax
	@ACCEPT STATS Parameters
	@ACCEPT STATS Status Codes
	@ACCEPT STATS Example

	#ACCEPT--retrieves system task-related information
	#ACCEPT Syntax
	#ACCEPT Parameters
	#ACCEPT Status Codes
	#ACCEPT Example

	#ATTACH--instructs the system to initiate a new task
	#ATTACH Syntax
	#ATTACH Parameters
	#ATTACH Status Codes
	#ATTACH Example

	@BIND PROC--establishes communication
	@BIND PROC Syntax
	IDMSDB--@BIND PROC Parameters
	@BIND PROC Status Codes
	@BIND PROC Example

	@BIND REC--establishes addressability for a record
	@BIND REC Syntax
	@BIND REC Parameters
	@BIND REC Status Codes
	@BIND REC Example

	@BIND SUBSCH--helps the run unit
	@BIND SUBSCH Syntax
	@BIND SUBSCH Parameters
	@BIND SUBSCH Status Codes
	@BIND SUBSCH Example

	#BIND TASK--initiates a DC/UCF task
	#BIND TASK Syntax
	#BIND TASK Parameters
	#BIND TASK Status Codes
	#BIND TASK Example

	#CHAP--changes the dispatching priority
	#CHAP Syntax
	#CHAP Parameters
	#CHAP Status Codes
	#CHAP Example

	@COMMIT--commits changes made to the database
	@COMMIT Syntax
	@COMMIT Parameters
	@COMMIT Status Codes

	#COMMIT--commits changes made to the database
	#COMMIT Syntax
	#COMMIT Parameters
	#COMMIT Status Codes

	@CONNECT--establishes a record occurrence
	@CONNECT Syntax
	@CONNECT Parameters
	@CONNECT Status Codes
	@CONNECT Example

	#DELETE--notifies the DC/UCF system
	#DELETE Syntax
	#DELETE Parameters
	#DELETE Status Codes
	#DELETE Example

	#DELQUE--deletes all or part of a queue
	#DELQUE Syntax
	#DELQUE Parameters
	#DELQUE Status Codes
	#DELQUE Example

	#DELSCR--deletes scratch records
	#DELSCR Syntax
	#DELSCR Parameters
	#DELSCR Status Codes
	#DELSCR Example

	#DEQ--releases resources acquired by the issuing task
	#DEQ Syntax
	#DEQ Parameters
	#DEQ Status Codes
	#DEQ Example

	@DISCON--cancels the current membership of a specified record
	@DISCON Syntax
	@DISCON Parameters
	@DISCON Status Codes
	@DISCON Example

	#ENQ--acquires resources or tests for availability
	#ENQ Syntax
	#ENQ Parameters
	#ENQ Status Codes
	#ENQ Example

	#ENDPAG--terminates a map paging session
	#ENDPAG Syntax
	#ENDPAG Parameters
	#ENDPAG Status Codes
	#ENDPAG Example

	@ERASE--disconnects or erases records
	@ERASE Syntax
	@ERASE Parameters
	@ERASE Status Codes
	@ERASE Example

	@ERASE (LRF)--deletes logical record occurrences
	@ERASE (LRF) Syntax
	@ERASE (LRF) Parameters
	@ERASE (LRF) Status Codes
	@ERASE (LRF) Example

	@FIND/@OBTAIN Statements--accesses database records
	@FIND/@OBTAIN CALC/DUPLICATE
	@FIND/@OBTAIN CURRENT
	@FIND/@OBTAIN DBKEY
	@FIND/@OBTAIN OWNER
	@FIND/@OBTAIN USING SORT KEY
	@FIND/@OBTAIN WITHIN SET/AREA

	@FINISH--commits changes to database and terminates run unit
	@FINISH Syntax
	@FINISH Status Codes

	#FINISH--commits changes to the database
	#FINISH Syntax
	#FINISH Parameters
	#FINISH Status Codes

	#FREESTG--requests that the system release variable storage
	IDMSDB--#FREESTG
	#FREESTG Parameters
	#FREESTG Status Codes
	#FREESTG Example

	@GET--transfers the contents of an accessed record occurrence
	@GET Syntax
	@GET Parameters
	@GET Status Codes
	@GET Example

	#GETIME--gets time and date from the operating system
	#GETIME Syntax
	#GETIME Parameters
	#GETIME Status Codes
	#GETIME Example

	#GETQUE--retrieves a queue record
	#GETQUE Syntax
	#GETQUE Parameters
	#GETQUE Status Codes
	#GETQUE Example

	#GETSCR--retrieves a scratch record
	#GETSCR Syntax
	#GETSCR Parameters
	#GETSCR Status Codes
	#GETSCR Example

	#GETSTG--acquires variable storage from a storage pool
	#GETSTG Syntax
	#GETSTG Parameters
	#GETSTG Status Codes
	#GETSTG Example

	@IF--tests for the presence of member record occurrences
	@IF Syntax
	@IF Parameters
	@IF Status Codes
	@IF Example

	@KEEP--places an explicit shared or exclusive lock on a record
	@KEEP Syntax
	@KEEP Parameters
	@KEEP Status Codes
	@KEEP Example

	#KEEP--establishes long-term record locks
	#KEEP Syntax
	#KEEP Parameters
	#KEEP Status Codes
	#KEEP Example

	#LINEEND--requests termination of the current line I/O session
	#LINEEND Syntax
	#LINEEND Parameters
	#LINEEND Status Codes

	#LINEIN--requests a synchronous transfer of data
	#LINEIN Syntax
	#LINEIN Parameters
	#LINEIN Status Codes
	#LINEIN Example

	#LINEOUT--requests a transfer of data
	#LINEOUT Syntax
	#LINEOUT Parameters
	#LINEOUT Status Codes
	#LINEOUT Example

	#LINK--establishes linkage with a program
	#LINK Syntax
	#LINK Parameters
	#LINK Status Codes
	#LINK Example

	#LOAD--loads a module into the program pool
	#LOAD Syntax
	#LOAD Parameters
	#LOAD Status Codes
	#LOAD Example

	#MAPINQ
	Moving Map-Related Data
	Testing for Global Map Input Conditions
	Testing Cursor Position
	Testing for Identical Data
	Testing for Input Conditions

	#MAPMOD--requests that the system modify options in the map request block
	#MAPMOD Syntax
	#MAPMOD Parameters
	#MAPMOD Status Codes
	#MAPMOD Example

	@MODIFY--replaces element values of the database record
	@MODIFY Syntax
	@MODIFY Parameters
	@MODIFY Status Codes
	@MODIFY Example

	@MODIFY (LRF)--changes field values of an existing logical-record occurrence
	@MODIFY (LRF) Syntax
	@MODIFY (LRF) Parameters
	@MODIFY (LRF) Status Codes
	@MODIFY (LRF) Example

	#MREQ--determines how data is transferred
	#MREQ Syntax
	#MREQ Parameters
	#MREQ Status Codes
	#MREQ Example

	@OBTAIN (LRF)--retrieves the named logical record
	@OBTAIN (LRF) Syntax
	@OBTAIN (LRF) Parameters
	@OBTAIN (LRF) Status Codes
	@OBTAIN (LRF) Example

	#POST--modifies an event control block
	#POST Syntax
	#POST Parameters
	#POST Status Codes
	#POST Example

	#PRINT--requests that the system transmit data
	#PRINT Syntax
	#PRINT Parameters
	#PRINT Status Codes
	#PRINT Example

	#PUTJRNL--writes a task-defined record to the journal file
	#PUTJRNL Syntax
	#PUTJRNL Parameters
	#PUTJRNL Status Codes
	#PUTJRNL Example

	#PUTQUE--stores a queue record in the queue
	#PUTQUE Syntax
	#PUTQUE Parameters
	#PUTQUE Status Codes
	#PUTQUE Example

	#PUTSCR--stores or replaces a scratch record
	#PUTSCR Syntax
	#PUTSCR Parameters
	#PUTSCR Status Codes
	#PUTSCR Example

	@READY--prepares a database area for access by DML functions
	@READY Syntax
	@READY Parameters
	@READY Status Codes
	@READY Example

	@RETURN
	@RETURN Syntax
	@RETURN Parameters
	@RETURN Status Codes
	@RETURN Example

	#RETURN--returns control to a program
	@ROLLBAK--rolls back uncommitted changes made to the database
	@ROLLBACK Syntax
	@ROLLBACK Parameters
	@ROLLBACK Status Codes
	@ROLLBACK Example

	#ROLLBAK--rolls back uncommitted changes made to the database
	#ROLLBAK Syntax
	#ROLLBAK Parameters
	#ROLLBAK Status Codes
	#ROLLBAK Example

	#SENDMSG--sends a message to another terminal or user
	#SENDMSG Syntax
	#SENDMSG Parameters
	#SENDMSG Status Codes
	#SENDMSG Example

	#SETIME
	#SNAP
	#STAE
	@STORE
	@STORE (LRF)
	#STRTPAG
	#TREQ
	Regular and Execute #TREQ Description
	Regular and Execute #TREQ Syntax
	List #TREQ

	#TRNSTAT
	#WAIT
	#WTL
	#XCTL
	Logical Record Clauses
	WHERE Clause
	ON Clause
	Logical-Record Status Codes

	6: Assembler DML Coding Considerations
	Coding User-Supplied Operands
	Coding Parameters
	Synonym Processing
	Logical Record Facility Keywords

	7: DML Precompiler-Directive Statements
	@MODE--initializes global SET symbols
	@Mode Syntax
	@MODE Parameters

	@INVOKE
	@COPY IDMS
	#MRB
	#MAPBIND
	@SSCTRL
	@SSLRCTL

	8: Considerations for Assembler Programs in a DC/UCF Online System
	SVC Instructions in an Online Program
	Making Your Assembler Program Reentrant
	Methods of Calling an Online Assembler Subprogram
	TRANFER CONTROL, #LINK, or ADS LINK
	COBOL or PL/I CALL
	Assembler LINK macro

	Standard IBM calling conventions

	A: DML Precompile, Assembly, and Link-Edit JCL
	IDMSDMLA Under z/OS
	IDMSDMLA Under z/VSE
	IDMSDMLA Under CMS
	Link-Edit Considerations

	B: Sample CA IDMS/DB Batch Program
	Input to the Precompiler
	Output from the Precompiler
	Output from the Assembler

	C: Sample DC/UCF Online Program
	Input to the DML Precompiler
	Output from the DML Precompiler
	Output from the Assembler

	D: Assembler DML Macros and Error Messages
	DML Macros
	Error Messages

	E: STAE Exits
	Overview

	F: EMPLOYEE Data Structure Diagram
	Overview

	G: Systems Network Architecture Considerations (SNA)
	General Considerations
	SNA Terminology
	Program Communications in the SNA Environment
	Error Handling

	SNA Functions in a CA IDMS/DC Environment
	Allocating a Session
	Establishing Conversation Attributes
	Issuing the #TREQ ALLOC Statement
	Starting a Task on a Remote Logical Unit

	Starting a Task from a Remote System
	Synchronous and Asynchronous Processing
	Sending Data
	LU6.2 Considerations for Sending Data
	Non-LU6.2 Considerations for Sending Data

	Requesting a Confirmation
	Responding to a Confirmation Request
	Sending Error Information
	Changing Direction: Send to Receive
	Receiving Data
	Changing Direction: Receive to Send
	Terminating a Conversation
	Normal Termination
	Abnormal Termination
	Terminating a Session

	H: 18-Byte Communications Blocks
	Overview

	I: Online Debugger Syntax
	General Registers Symbols
	DC/UCF System Symbols
	Address Symbols and Markers
	User Symbols
	Program Symbols
	Syntax: Data Field Names
	Syntax: Line Numbers
	Syntax: Qualifying Program Symbols

	Expression Operators
	Delimiters
	Debugger Commands
	Syntax: AT
	Syntax: DEBUG
	Syntax: EXIT
	Syntax: IOUSER
	Syntax: LIST
	Syntax: MENU
	Syntax: PROMPT
	Syntax: QUALIFY
	Syntax: QUIT
	Syntax: RESUME
	Syntax: SET
	Syntax: SNAP
	Syntax: WHERE

	Index

