CA IDMS™ DLI Transparency

DLI Transparency User Guide
Release 18.5.00

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for yourinformational purposes onlyandis subject to change or withdrawalby CAatanytime. This
Documentationis proprietaryinformation of CAand maynotbe copied, transferred, reproduced, disclosed, modified or
duplicated, inwhole orin part, without the prior written consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copiesof the Documentation forinternal use by you and your employeesin connection with
thatsoftware, provided that all CA copyright notices and legends are affixed to each re produced copy.

The rightto print or otherwise make available copiesof the Documentation is limited to the period during which the applicable
license for such software remains in fullforce and effect. Should the license te rminate foranyreason, itis your responsibility to
certifyin writing to CAthatall copies and partial copies of the Documentation have beenreturnedto CA ordestroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CAPROVIDES THISDOCUMENTATION “AS IS” WITHOUTWARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FORA PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILLCABE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THISDOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IFCA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCHLOSS OR DAMAGE.

The use of anysoftware product referencedinthe Documentationis governed bythe applicable license agreement and such
license agreementis not modified inanywaybythe terms ofthis notice.

The manufacturer of this Documentationis CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Governmentis subject to the restrictions
setforth in FARSections 12.212,52.227-14,and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
theirsuccessors.

Copyright © 2013 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belongto
theirrespective companies.

CA Technologies Product References

This document references the following CA product:

m CAIDMS™/DB Database

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one sitewhere you canaccess the
information that you need for your Home Office, Small Business,and Enterprise CA
Technologies products. At http://ca.com/support, you canaccess the following
resources:

m Onlineandtelephone contactinformation for technical assistanceand customer
services

m Informationabout user communities and forums
m Product and documentation downloads
m CA Support policies and guidelines

m Other helpful resources appropriate for your product
Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
cansend a message to techpubs@ca.com.

To providefeedback about CA Technologies product documentation, complete our
shortcustomer survey which is availableonthe CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Contents

Chapter 1: Introduction 11
OV B VI BW ..ttt ettt ettt b et et s b et e b et e e e b et eat s e et eae e s eae e e et ea e s e e e e ae e R e e e ae et eat e e et eat e s e e eae e b et eaeeb et e b et ent et enteaens et ene s b et ebe e enensens 11
INtroduction t0 CA IDMS DLI TranSPar@NCY e icereeerieerierieeriesteersetesessesessesessessesessessessssessesessessssessesessensessssessssessesessessesessens 11
CAIDMS DLI Transparency Concepts and FACHitiesccueieeirinieiccsee et ettt sbe e nes 12
The CAIDMS DLI Transparency Syntax Generator ...13
THE IPSB COMPI LN ittt ettt ettt e ettt e e e b e e ee e ese st e st et esseseseaseese s essesessaseesensasessansesensans 14
RUN-TIME INTEITACE ittt et sttt skt s s st s e et et e b et s s e se et et enese ke sene s ebese et esasnneee 15
The CAIDMS DLI TransparenCy LOAd ULtycoeieerieiricieieieeseisertees sttt sae e se s e s se et esessesaesesnans 16
USQEE REQUITEIMENTS ..cutivitictietietet ettt ettt e st e st e st st e et e st et et e st e s besbesseeseessesee st esseeaeeaeassansansansassesbeeseess e eesbeseeeseeseeneensansensansenses

Syntax Diagram Conventions

Chapter 2: DL/I and CA IDMS/DB 21
ADOUL TS CRAPTEE ..ottt sttt s et s b et ae b et e st s b et e s e e e st e b et e se s s e st esesaentesessenesaentesessensssessans 21
THE DL/I ENVITONMENT ettt ettt eteste st e testesessestssesaestssessesessentesessentasentonsssestosessensasessesessentoressessestasenssssssesessessesessens 22
Segments - The Basic Unit Of Data .23
Hierarchies - Physical Relationships BEtWEEN SEEMENTScceirieireriiirieirerierer sttt st sae e sse s sesse e ssessens 24
Root Segments and Databhas@ RECOTUS.......cuiuiiiieiieiieieeteerteee et e ettt e sa e e st b et ebesbe s esesbassesestesessansesensans 24
HIErarChiCal ACCESS PAthc.cicieiiieeeiieecere et ettt sttt a et e e s e s e et st ese e se et e sase st esesessesesenessesasensres 25
DEFINTNE SEEMENTS ..vcvicieiitiieeeeeeis ettt ee et et e st e e s e st e s e e s st e e e b et ese st esae b et eneasesseseesestas e st assesessase et e sasessansesesasensensesessensesensans

SEGM Statement
FIELD Statement

Logical Relationships BEIWEEN SEEMENTSc.cccuiieeeieieieeeete ettt be e sestesesbe e e bestesesbansebe st anbeseebassesessesessansesesans 29
UNidirectional Relati ONSiP....cc ittt a et e s e s ae e e b e ssenesse s enessensenesans 32
Bidirectional Virtual ReIatioNSiP.....cccciiiiieeicceee ettt ettt ettt e st e s be b ebesaannereetans 33
Bidirectional Physical Relationship.... .35

PRYSICAl DATADASEScvicieeeeiiieeicieeeti ettt e et e sa e st e e et et e se et esa e b et eseese st eseesessese st anse s et eseetebeseebensereabeneeteseresteneereetans 36

PRHYSiCAl ACCESS IMETNOMTS ..ottt ettt sttt et e et e se et et ebe et e s esenesa et e st saebesenessesasenensesanens 38
HSAM ACCESS ...ttt ettt ettt ettt et e s e et b e e e b e s e e b et e st e e e e e Rt s e ea e e b et e Rt s s et e R e e en e st s e st s et e e st nsenene et eseneennentnens 38
HISAIM ACCESS....miiiiieiteiestet ettt sttt ettt e b e b s b s bt s ae et e b e b e s b e s b e e ae e R e e b e b et e b e b e s b e s b e s bt e b e b e sb e e bt ene e bt e st et e b e b ebesaeant 39
HDAM Access ...40
HIDAIM ACCESS ...ttt ettt sb sttt b e b s be s bt et et et e b e b e s b e e s e et et e b e b e b e s b e s b e sb e e aeea b e b e ab e e bt ent e b e e bt st e b e b e b esaeant 40

Secondary INAeXing (INAEX DAtabasSES) ...c.cceeueuiuiueueuiieieieieetee ettt ettt sttt sttt a st sa st et 42
DEfiNiNG SECONUATY INUEXES ...ocviiieiieieieieis ettt ettt et e e e e e s te b e s e st ese st et ese st e e ebesbessesetasessensesessasessessenessensasensans 43
RESTIUCTUIING @ HIEIAICRY ..ttt ettt sttt ebe st e b e se st e s s ebe st esessensebesteseebesbensesansesetans 44

Full and Sparse Indexing....

LOZICAl DATADASES ...cuvivieteiiitiieiieteteti ettt et et et e st et s te st e se st e e ebe st e se et ese et et et ebe st ens et e s s e s e st ene et et eReesebeseebentetebens et esetestentennetans 46

Contents 5

Defining @ LOZICAl DAtabasecccicicieieicieieieecee ettt ettt sttt et ae s be e be s bassebe st esesbensebestensesensensesanseneatans 46

Intersection and Concatenated Segments .47
SAMPIE LOGICAl DATADASE ..ttt ettt s b e R et e e b et e et e e ae b e reebeebeneebeeenentenes 48
Program CommuNiCation BIOCKSc.ccou ittt ettt nnene e 49
Data Sensitivity and the PROCOPT OPtiONS....ciiiiicirieiseeserieieerteesteste e ste e et sesse e ssessssessesessessesessessssessasessensesessans 50
DEFINING @ PCB....oueieeieiieieeeisteteiee sttt ettt et e e st s et sae b et e bese st st e beseseebese st st e s ese e et ebase st ssese e seebene st et eseae e etesenensesenensns 51
Program Specification Block .52
PaTAll € PrOCESSI NG . cuiiuieieiitieteieteietee ettt te et e e et et e st esesbe e e be b eseetassebesbessebesbessesansese st ess et assesesbetesesbassesebessssansesentans 52
DI NI ON SUMIMAIY ettt et et e b e st e s b et e b et ese e b e s e e st ssessesesaeseese s esesbeneasesaentesessenessensesessensssensans 52
(DY AT oY 1210 4 T=Y 4 Lo K3 TRT TSR 53
BaSiC OPEIATIONS.eiiieiiiietieeette et ste sttt ettt et et sa e st e et et e e e s b e ss e s s e st et e s et e b e s b e s h e s Rt e Rt e Rt e e e s Rt e Rt e Rt e Rt e Rt et et etentenrenas

Call Formatccccceveeenerereecrerennne
Segment Search Arguments

Program COMMUNTCAtiON...icuiiiiiiieiesteserese ettt st sr e st s st s ae et s st et e b e b e s ae s st et e b e ae s essesaeeseessensensansansassanes 55
DAtAbASE POSITONINE...ciiietiieicieietieee ettt et et e et e e et et e se st e e et et ese et e st essesesese st ansesessesessanseseebansesesbensesansesentans 56
The CAIDMS/DB ENVIFONMENToeveveeeeieeeeteeieeeteteeeeteteeesese e eesesesessesesesessesesessssesesessnsesesesssesensssesesessnsesesessasesessasasessnsssesesenssns 56
Schema: The Top-Level Definition...... .57
Subschema: The SECONd-LeVEl DEfiNitiON. ..ot ettt ettt ss e e ssesanens 57
DefiNing CA IDMS/DB DatabaS@s.....c.ceeuiuiueueieiereieeieeeeesesesssssssssssssesesssssssssssssesssssesesesesesesesesesesesesesesesesesesasesesens 57
EXeCUting CA IDIMS /DB APPIICAtIONS...c.cieiiritieieteteee ettt ettt ettt et st s et e et ebese st esese st ebensesebessasesesesensesesessasans 58
Basic CA IDMS/DB COMPONENTScucuiveueeeuerereietetetesesisssssessesssesesesesesesesesesesesesesesesesesesens 58
DL/l and CA IDMS/DB Correspondences ..59
SEEMENTS ANT RECONT TYPES uvieiiiieiiriiirierieirie ettt sttt st s e be e e be e s be st e et e st sse st e st sse st enesbeneesesenessansenessessenessenes 61
Sequenced and Unsequenced Child SEEMENTS ..ottt ettt a et be s ebesaenn s nes 61
DElELADIE SEEMENTS ...cvevieeieieteeireetee ettt e e et et s et e e e s e ebe et et e s ese st esese e et esese s s s esene st ebesenseteseae s esesenesesasnnsees 62
HIErArChI@S N0 SEES ...ttt et sttt sttt b et b et et b et s b e b et st ek e st e b e sttt et ene et esenenees
Logical Relationships and Sets
DL/l Access Methods in CA IDMS/DB
DL/1 Secondary INAeXes in CAIDMS/DB........ocoieiieieeeeietee ettt ettt s et et te st ebese st ebeseasebess s bebesnssebesassasene 68
Parallel Processing SUPPOItin CAIDIVIS/DBcouiiveiieeiisesssessssssssssssssssssssssssssssesesesesesesesssesesesesesesesesssasesesesasesesans 70
DL/1 CallS 1N CATDIMS/DBoveeiieteteieietetctete et e v et et ebe et et te et be s s e b ebass s et essas st ebese s b ebans b ebassas st ebessasebesaseabesasnssebesesnasane 71
US@EE CONSTABIATIONS c..veueriieeeiiirieteiteiet sttt sttt es et s et e e st e sese st seebese e et esese e et ese e et esese s sseseneseetesaae st esenesesesenessesasensres 72
UNSUPPOITEA DL/I FEATUIES ..vvvevereteietctetetetete ettt sse s s ss s s s s s s s s sas s s s s s s s s s s st ebesesesebesesesesesesesesebebesesatesesesesesesne 73
Chapter 3: CA IDMS DLI Transparency Syntax Generator 75
ADOUL TS CRAPTEN ..ottt sttt et b e st et et et e se s et e se s e et e s e e ene e s et esessensesessensesessenesannsesessenessensans 75

The CAIDMS DLI Transparency Syntax Generator

SYNTAX GENEIATON INPUL ...ttt e st b s b s st s at et e et e e be s b e e b e e st e st e st et e besbesseeatentensansansensanes 75
SYNTAX GENErATOr QULPUL .ouviiietieiieiititestestest ettt st e st e sbe s e st e s et e st e stesaessesae e e et e e e aesbeebessa e st e st estetesbessessesnsansansansensanses 76
SYNTAX GENErATOr OPEIatiON ..cuiiuiiiiieieteer ettt st ettt et sb e b e s b e bt s ae et et et e sbesbesaesaesatent e bassensennes 77
Preparing SYNTax GENErator INPUL ..ottt et sb e s st e a b et e st e s e et et et e sbesaesaessesnaensensansassasses 77

6 DLI Transparency User Guide

DBD CONTIOI BIOCKS ...vivititictictectectctcite sttt ettt ettt e s becta b et et e s b e sbssbsebeebeess et asbasbesbeessessersensensensesseessessessensansesantessees 78
PSB Control Block

Coding SYNTaxX GENErator STATEMENTScccciciiiiieiricieertete ettt et e e et et e e st e e e se st ese et asseseebe s esesseraebestenestaneesesrenes 79
CONTIOL STATEMENTS ..ottt ettt s b et et e e s s et et e b e s e e st ek et e se st e se b et ene e b et ene st eneebe st enesbeneesesaenes 79
GENERATE STatemMENt.. .ottt bbb bbb bbb et s bbbt st st st e b e b esbe et 81
GENERATE SCHEMA Stat@MENTcueiiiieiieierteeetete sttt ettt sttt ettt ettt s a et e e b et et e b et eae et et e be st et ene s enessenes 83
GENERATE DMCL Statement
GENERATE SUBSCHEM A STatemMENT ...ttt ettt ettt b et ettt ae st et s e et e b et eae s b et e be st et nbe s eneneenes 84
GENERATE IPSB STat@MENt.. ..ottt ettt e et e s e et n e e e nne s 85
MOIfICATON STALEMENTS ..ottt sttt b etk b st ebe et ebebe e st ke st st e ke se e et ebenenentebenens 86
ADD AREA STAtEMENT ..ttt ettt s st s e et s et a e s r e st st n e nenene 87
MODIFY AREA Statement88
MODIFY RECORD STAt@MENT ...ttt sttt ettt ettt s be e s a et b et ae b et b e b et e s et e st s b et ebe st eaesb et ebeenetenessans 89
MODIFY SET STATEMENT ..ottt et s e e e s s e et b e e e e st s et smeanenenens 90
Executing the CA IDMS DLI Transparency SYNTaX GENEIATONccccievieeriereeierieeeteseesseseeesaeessessesessessessssassssessesessessesessens 90
Chapter 4: IPSB Compiler 93
ADOUTL TS CRAPTEN ..ottt ettt ettt et e e b st e e et e e ese b et esesbe st e s e s ess et assese st entesesbansesestasessensesessanessessans 93
Considerations For Preparing IPSB COMPIlEr INPUL..c.cccieiiiririeeiririeestsieecree ettt st a st se st se e st sanensns 94
COMPIlEr-DireCtiVe STATEMENTS ..cvecvieeiiieerteereter ettt et e s b e e e s et ese e s e st ese e b e s ese et eseeseseneesessensesessanensenes 98
IPSB SECTION ...ttt ettt ettt ettt ettt s a et b e e et e b et e aeee e st e b et e se b em e e ae e b et e b e b eaeeb et e he s eneeb e b eat e b et ebesbenteb et enesee e enteaenteneaes 100
AREA SECTION ...ttt ettt ettt ettt et et et e h e et s b e et e e e e R e e et e R e e e R e s e e e Rt s e et e b e e e ne s R e e e neneene st nennentane 103
RECORD SECTION ..ttt ettt ettt ettt ae sttt ae b et et s b et e b e e e st et et e b e e et e besEea e e b et e he e e ene e b et ebe e se b eaeseeateee st enesee e ebeseenteneaee 104
RECORD STat@mMENTt ...ttt sttt ettt sttt st e st e st e sbesaesae st et et e sbesbe e st e st e st et et e s e sbesbe s st ent et ensansansansensenas 106
FIELD STaT@IMENT ...ttt b bbb e b e b e b e bt et et et e b et e b e b e sbesnis 112
INDEX SECTION ..ttt sttt ettt et sttt e et e b et e s st et e b et e s st e e e b e s b et ebe s eatebeneebe e eueeb et e st ebe b e st s b enteae st eaesae st ebesaetenenes 126
PCB SECTION ...ttt ettt ettt ettt et a et et e h e e et b et e st s e et e b et e st s e e e Rt s e et e b e e e m e e e e e R e e ene b e s eae s e et ebe s enenbe e enenaenseneesensennane 135
PCB STAtEIMENT ...ttt b e b bt s a b e b e b e b e e b e e b e e Rt e Rt et et et e sbesaeeaeeat et et et e b e beebeeaes 136
SEGMENT STatEMENT ..ttt ettt et a e et e et s e et s et e ne see e esesae e nreeeneeen 139
EXECULING Th @ IPSB COMIPIIEN ..ttt ettt ettt ae bbb e s e be st ese et e nsebe st ansebensesaeaebesessanseranes 154
Chapter 5: CA IDMS DLI Transparency Run-Time Environment 155
P o YoYU Ll I TR @ o= o TSRS

DL/l and CAIDMS DLI Transparency Run-Time Environments
Modifying System GENEration PAramMELEISccvieiirieirerieerieeerte ettt ettt a e saese s s e e s e senessessesesaessssessensssnnes
Maximum Number of CAIDMS DL TranSParEnCy USEISccucevieeriereeerieeeresteessessesesseessessesessessesessessesessessssensesenes
PrOSram POOI SIZE ..ottt ettt b e st e e ket e st s be e e st se e st e b et e se s s e st et e s et esessenesaentenensensesnnes
Reentrant Pool Size
SEOTAEE P OO SIZ...eieieeet ettt ettt s et R et e et e e bR ne e e ne e
Additional PROGRAM SEAatEMENTS ...ceeveueuiierieieiirieieeteie ettt ettt ettt sttt b et s b b e s s a b et bebe e et enesessnsenen
BatTCh CONSIABIAt ONS..c.eiiieiiiiciecieeiec ettt ettt et b e st e b e et e s e s e se e et ese et eaes et e s ebene s ebeseneseesenenensens

Contents 7

Link EAiting BatCh DL/ APPIiCAtIONS ..cucuiuieietceeieteteteteiet ettt ettt ettt sttt et essas s ebebess s ebe st ebeseasssebesssssesasan
Executing the CA IDMS DLI Transparency Region Controller
Modifying EXiSTNG DL/I BATCN JCLu.uciiiiiiuiiieicieieieietete ettt ettt st ettt st se st ebe st ebessssesese s s ebesasnasesenen
CICS CONSIABIATIONS ...eueeiieieieietetete ettt ettt sttt et et s et et s b et e s e s e s e sae s b e st e b e s e st b aneese s ene b e st e st sbe st ese st e e sbentesesseneesansan
DL/I CICS ENVIFONMENT wvvtetiteietetetieteetereetssterestesessestesessestssestesessessesessessssessesessensssentessssessesessensssestesessensasessessessasensssessessans
CAIDMS DL Transparency CICS ENVIFONMENT ...c..oouiiiiiiieieieeteneneete ettt ettt sttt s et
Establishing the CAIDMS DLI Transparency CICS Environment
TEStING the DL/l APPIICAION ..vieieictetee ettt ettt ettt ettt et ebe et et eseas b ebsas et et ebess s esetess et ebeseasebessasesetansasesans

Chapter 6: CA IDMS DLI Transparency Load Utility 171
P o YoYUl N A TR @ o T= o= TSRS 171
Using the CAIDMS DLI Transparency LOAd ULty ...cocovcerrrerirrieeieeseicssie ettt sestee e ssas e s e eessssesessssssesensens 171
The Database LOAT PrOCESScccivirieiiererieietste ettt ettt bttt s b ettt bbb b et e sa e bt b sttt e sttt st enene s ene 172
Preparing TO RUN the LOAT ULy ..ottt ettt sttt sttt e e b et e se et e naesesbensssa e ebesaenseneans 173
Preparation Of DL/ Data ... cceeeieeeeieeteete e se e te e se ettt be st s s ss e be e s ts s e s e s ssssasssssasasasasasasssasasas s sasasanssssanaes 173
CAIDMS DLI Transparency INdex MaiNTENANCEc.ceoeieuieieirieciee ettt sttt sa et be e e s te e sbesae e bessennenan 173
Using the CAIDMS DLI Transparency SYyNtaxX GENEIrator ... eerreeirerenrireresreeseseeseseseseereeesseseessssesesessesesssssenes 174
Preparation of the IPSB and CA IDMS/DB LOAd MOTUIEScccueuieeieiereeieieteesteteeste et sa et ss e s b as s sesan 174
SPECIAI LOAU IPSBS ...ttt ettt ettt ettt e et s s e s e e st e bese e e e b e s e st et ese st s esesane st esesentssebentnsesenereetesnasnsnsesanens 175
PROCOPT fOr SPECIAl LOQU IPSBS ...c.viueeviieiieeetiieestestecsteee et e e st ste e s saa e se st esesta e ssesassessassasessensssessasesssnsesessasessenns 175
Availability Of the IPSB LOAA IMOQUI@......ccuieceiieieeeee ettt ettt st ettt et s st be et e seebeaesesbensesenes 175
CA IDMS/DB SChEMa REQUITEMENTSueveveecterereeeieteieseiereeesssssesssssssssssssssssssssssssss s ssssssssssssssssesesesessssseseseseseseseseses 176
Multi-Database Logical RelatiONShis.......cccciieicicieieieietecteestes ettt sttt st st bbb ne st e s renes 176
WOTKFII € SPACE AIIOCATI ON..cuuvitiiiteieieieteietetet ettt ettt sttt sttt ettt sttt sttt nas 177
Workfile Usage for HISAM LOZIiCal PAr@NtS.......cccvoiieiieieiicieieestece ettt et sa e te st e te e esae e te e esesse e ssesaensssansesenean 178
=TT T= Yo Yo 1o V-SRI RRSRR 178
DiagNOSTIC ANU ErTOr IMIESSAEES. .ucuiieuieriierieieeetistesterestesestessesestesestestesestesesessesessessesessesessesaesessessasessensesessassssansasessensesenne 178
Sample Source Code FOr Database LOAttt ettt st et ae st et aeae e besaeseebe e ebesseneetaneesesnan 178
SAMPIE DL/1 PSB QN0 DBDS ...vviveveeeteieieteteteteteteteesssssesasssss s sss s s ssssssssssssssssssssssssssssasssssssasssssssnsssssssssesssssssssssesesasesesass 179
SAMPIE LOGT IPSB ...ttt ettt ettt e et et ese et eseebesesaebe st eseebeseese et ene et assese et estensesensebestensetenseserean 181
Sample CAIDMS/DB SChEMa MOTUIE ...ttt s s s s s st s bbb s esesesesesesesesnas 186

Step 1:Preload CALC Processing

[o X1 = £ o o TSRS

[o X1 = £ Ko o FH OO TTRSSSRRRP
Step 4: Prefix (Concatenated Key) RESOIULION ...cccieiceieereecie ettt s s ss e s se e e s enann s sanan 197

8 DLI Transparency User Guide

P AT DN, ittt et b e s b st e b s b s b s st e st e st e st et et e s he s Rt e At e a e e e e e e A e A e eR e e Rt et et e benbenReshenRe e Rt et et e neeaeeneeneen
Step 6: Prefix Update
[o X1 = £ Ko o FH OO TTRSSSRRRP

Chapter 7: Using CA IDMS DLI Transparency Within CA IDMS/DB Programs 203

ADOUL TS CRAPTEN ..ottt ettt st s b e sttt e s e b et e s e s e et e b e s s e st s e e st e b e ss e st ese s esessensesesaenessersenensenss
Data COMMUNICATIONS ...ttt ettt ettt bt b et b et b b et b et et eb et e st s b em e e b e e eaenbeneeben s et ese b et sae e ebesseneseenes
LANEUAEE INTEITACE. ittt t et a et et e s e st e et e s et et e b e et e s e s ene et esese et eaese e et esane st etesane e nsesanessns
SCHEAUIE (PCB) Call PrOCESSING....cueieirieteirieieeeeesieteestsseseessssesesstesesssessessassesesesessssesasssetesessssesesssesasasssasasensssesensssnsenssnsesanen
The CAIDMS DLI Transparency Program Definition Table
Operational Considerations.......ccecvveveeenienerienineeneeseseeseeen

System Definitionand Initialization

SYSTEM EXECULTON ..ttt ettt e et bt et e et b e s et n e e et et e s e sn et er et enenen
Appendix A: CA IDMS DLI Transparency Messades and Codes 211
WHhat This APPENUIX IS ADOUL......cuicieieiiieteiteietetete ettt et ae st et e e te st e et et ebesbeseebessese b e sese st ensesessesseteneeseseneesessassesensasesan 211
RUN-TIiME MESSAEES ANU COUEBSevviertiieiieteeritee sttt et e st et esa e s st e st e e e s e st eseebe s ese s s e s esessessesesseneesesaesesaassasessansesenss 211

RUN-TIME ADENA COUESouiiieiiiieieeerieice sttt ettt ettt sttt ettt b b st e etk se et st e ke et st e seae st e se e st et esenesesanan 212

DL/I Status Codes and Equivalent CAIDMS/DB COUEScouurrimereeererereeesesssaes 213
NON-RUN-TIiME MESSAEES ANU COUES ...cveuieriirriieieietete ettt e et e et st e et e e e et ese st e s ebe st enbesesbansesesesestensesessannaseass 220
Appendix B: CA IDMS DLI Transparency Software Components 241
ADOUL TS APPENTIX.veuiiviteeiitiieiiitee et ese et st ee et s te st e et e e st esae e s e e ebe st ese st eseesesseseesessessesessese st eseas et eseeseabensesentasessensesesansasenes 241
THE SYNTAX GENEIATON ittt ettt ettt ettt ae s e et e b ese e st ebe s seebese et e s ese et ebese e seebe st st ebane et eseneeesenanensns 241
LTI 2 o T 0T T =T TSROSO 242
RUNTIME INTEITACE ottt b e ettt b etk et stk e b e be e e be s et et ek ene e st e bene st et ebeneetens 243

SPECTal-PUIPOSE COMPONENTSeoviiiiiriiiririeereiee sttt sttt et a e et te e s b et et et sae s e st esassenesbe e enessesessensenesenseseren 244

CAIDMS DL TransparenCy FrONT ENG.......cccciiirieinicinesiesieiseeetessesesesee e se e ste e tesae e sesessassssessesssssssessssessesessansesesen 249

CAIDMS DLI TransparenCy BACK ENG......cccceirerieuiirieieeieieeesisieteesesesse e tesesessesesessesssasessssesessssesensssssenssssessssssssesanens 250
QLTI e e U 14 1 1 Y2 TP STRRRRRRRR 251
Appendix C: Index Suppression Exit Support 253
ADOUL TS APPENAIX.vuiieiieiirieiiiirietriet ettt ettt e et st s te e st et e be st ese st eneesesessesesaessssessese st ensesesseneesessessesensenessensesersensssenss 253
INAEX SUPPTIESSION EXIT SUPPOIT...cuiiiiiciiiciceietitee ettt et e et esa et st e et e st ese st e e e be s eseebesbessebensesesbensesensesestesteseesensesenss 253
RUN TIME O P @IatiON.cniiiiieieeeeee ettt ettt ettt ettt e s b e s b e s b e s st e st e st e s s et e b e sbesbesae e st e at et e b e s e ese e st e st eatent et ensasassassanns 254

Contents 9

(1] (=Y =Y oL YOO OO POR RO 254

Appendix D: CA IDMS DLI Transparency JCL

P o YoYUl I AT R @ o F= o T TSRS
SYNTAX GENEIATON JCL...uiiiiiiiieieeeeeete ettt sttt ettt e st et e sbe s b e s et s at e a b e b e b e e b e ebe e Rt e Rt e at e st et e b e e st eatentenee s ansansessensennes
ASSEMDIE @ PSBi..uiiieieirieieertrie ettt sttt ettt bt b etk b e s ek R et b ket heRe b ket e ke Rt e b e et ene et et nn
ASSEMDIE DBDSueiviueeeieieieirieeestetees e te et stete et s tess e ssese e e ssesesessssesese e sese st eseseaesseseseneetesesensasetanessesenensssesenesenteseannsesenen
EXECULE th € SYNTAX GENEIATON ..cueeeiieieeieieee ettt ettt et a et e e s b e s e e e b e e e s e e se st esessesseseseseseensesesansesnnss
IPSB COMPITEE JCL.inieiieietiee ettt ettt et e et st et e s b e et et e se et e e e be st eseebe st ens et eseese st ensebe st ebesenbeseebansesebeneetansesessentesnase
RUN-TIME INTEITACE JCL vttt ettt ettt e e nen
Link Edit Batch Call-Level DL/1 APPliCAtIONS.......ccueieiieeteeiee ettt ettt sa et a et s et s s s s be s saebessasesesasan
Link Edit Batch Command-Level DL/l (EXEC DLI) APPliCatioNScccceeeueeeeeieeereeeessssesssssssssssssssssssssssnes
Execute DL/I BatCh ApPliCation PrOSIam ... et ss s s s s s s sssssssasasssssasanans
Assemble IDMSDL1C For CICS Call-Level DL/1 USAEE (Z/OS) vttt ettt vess st s et nesenenn
Assemble IDMSDL1V For CICS Call-Level DL/l USAZE (Z/VSE) wouieeeeeerereteretetere e ss s sssssssssssssasans
Assemble Language Interfaces For Command-Level DL/I (EXEC DLI) Usage
LOAD ULHITY JCL ittt ettt s et a Rt s e b et s e Rt s s e e s et e s e st e se b ene e srene e s ene
Preload CALC ProCeSSiNG (STEP 1) ..iccceiereririereeirieesieseesesteaesestesesessesesseseesessessssessesessensesessesessensassssensesessessssensesessansssenns
DAtabase LOAM (STEP 2) ueevieeeueiirieieierieirestete ettt et te st a e st ae e e st b et s s e s et se et e et et esese e ssebese s esesaneseesenesaetesanesesnsen
Workfile Sort/Merge (Step 3)
Prefix (Concatenated Key) Resolution (Step 4)
WOrkfile HierarchiCal SOIt (STEP 5)..ccciirreeiresierrerieteeresterssessssssesesss e sssesassssesassesesessesssasessesasessesasessssesenssnsessssssnsesanens
PrefixX UPAte (STEP B) ittt ettt st e e be st e et st et st e et et e se et e e e seebe st ebe st eseebensebestensebenbansesenseseesansesenes
IPSB Decompiler JCL

Appendix E: CA IDMS DLI Transparency IPSB Decompiler 295
ADOUL TNTS APPENUIX.tiuiirieiiirieieirisieieeseeeest st esestsse et st e teseseetesesessesesasessssesasessesesesseseseaeasssesesessesesensssenensssesanessesessnsssssesenensns 295
USTING the IPSB DECOMPIIEN .ttt ettt ettt e sttt a e s st et e e e se st ese e e s b ass e b et esestensesessane et esbeneesessesessensesanes 295
IPSB Decompiler RUN-TIME OPEratioNs......coccicieieieieteieteeeeete e et e te e teste e teste s ebeste s sbassebesaessstanseseebenseseetensesensesessansesenes 296
IPSB Decompiler RUN-TimMeE CONSTAEIAtIONSccvueeeirieirieieirieteeste et ste s te st et e see e ssasessesaesessessesessenessessesesssssesessensssanes 296
Index 299

10 DLI Transparency User Guide

Chapter 1: Introduction

Overview

This section contains the following topics:

Overview (see page 11)

Introduction to CA IDMS DLI Transparency (see page 11)

CA IDMS DLI Transparency Concepts and Facilities (seepage 12)
Usage Requirements (see page 18)

Syntax Diagram Conventions (see page 18)

CA IDMS DLI Transparency allows DL/l application programs to perform processing
againstCAIDMS/DB databases. DL/l applicationscanruninthe IMS-DB batch or DL/I
batch environment or the DL/I CICS environment.

Note: DL/I refers to the DBMS in the z/OS or z/VSE environment.

This chapter presents an overview of the components you useto set up your CA IDMS
DLl Transparency environment to access a CA IDMS/DB database. CA IDMS Database
Transparency Option for DLI permits application programs to execute againsta CA
IDMS/DB Database. This guide explains howto use CA IDMS Transparency for DLl and
includes all phases from designingand loadingthe CA IDMS/DB database(s) to executing
the DL/l application programs.

This guide is intended to serve as a comprehensive reference for CA IDMS DLI
Transparency.

This document is intended for the person responsiblefor setting up the CAIDMS
Transparency for DLI environment who has a working knowledge of DL/I.

Introduction to CA IDMS DLI Transparency

What is CA IDMS DLI Transparency
CA IDMS DU Transparency provides the basis for a gradual and orderly migration from
DL/l to CA IDMS/DB. Specifically,itlets you:

m Convert existing DL/I databasedefinitions to equivalent CA IDMS/DB database
definitions

m load the existingdata from the DL/I databases to the new CA IDMS/DB database

m Produce arun-time interface module to translate DL/| databaserequests in existing
applications to equivalent CA IDMS/DB databaserequests

Chapter 1: Introduction 11

CA IDMS DLI Transparency Concepts and Facilities

CA IDMS DU Transparency allows you to move from the DL/l environment to the CA
IDMS/DB environment without havingto sacrificetheinvestment inyour existing DL/I
applications.

Once you have used CA IDMS DLI Transparency to make the transition to CA IDMS/DB,
you can convert your DL/l applicationsto native CA IDMS/DB applicationsatyour own
pace andinkeeping with your site's manpower and machineresources.

CA IDMS DLI Transparency is Transparent to Applications

Because CA IDMS DLI Transparencyis generally transparentto DL/l applications, you
have to perform little program alteration. Recompilation of DL/l programs is required
onlyifthey contain nonsupported features such as loggingcalls. Batch and CICS
programs must be relinked with the CA IDMS DLI Transparency languageinterface.

DL/1 Application Conversion Not Required

Sinceyour DL/I applicationswill continueto run as expected, you do not have to convert
them. However, you may want to convert them to take advantage of CAIDMS/DB's
advanced features, includingits relational capabilities. Additionally, you may want to
develop your own native CA IDMS/DB applicationstorun againstthe migrated DL/I
databases.

Note: You cannotuse CA IDMS/DB facilities to redesign a migrated DL/I database.The
CA IDMS DL Transparency data structures must be maintained to ensure that your DL/I
applicationswill continueto work as expected.

The remainder of this section discusses thefollowing topics:
m CAIDMS DU Transparency concepts and facilities

m Usagerequirements

CA IDMS DLI Transparency Concepts and Facilities

CA IDMS DU Transparencyis anInterfaceto CA IDMS/DB

CA IDMS DU Transparency serves as an interface between DL/I application programs
and CA IDMS/DB databases. The DL/l applications can bewritten in COBOL, Assembler,
or PL/I.

What CA IDMS DLI Transparency Does at Run Time

At program run time, CA IDMS DLI Transparency intercepts DL/I retrieval and update
requests and translates them into CA IDMS/DB requests. The CA IDMS/DB requests are
then processed by the CA IDMS/DB database management system (DBMS) for retrieval
or databaseupdate.

12 DLI Transparency User Guide

CA IDMS DLI Transparency Concepts and Facilities

For data retrieval, CA IDMS/DB returns requested data and/or status information,
including updated program control block (PCB) information, to CA IDMS DLI
Transparency.CAIDMS DLI Transparency places thedata ina DL/l segment format
expected by the application. For updates, CA IDMS DLI Transparency places theupdates
in CA IDMS/DB record format and transmits them to CA IDMS/DB to apply to the
database.CA IDMS/DB, inturn, sends the resulting status information to CA IDMS DLI
Transparency for communication to the application.

CA IDMS DLI Transparency Components

CA IDMS DLI Transparency consists of the following major components:
m The CA IDMS DLI Transparency syntax generator

m The interface programspecification block (IPSB) compiler

m The CA IDMS DU Transparency run-time interface

m The CA IDMS DU Transparency load utility

Each component is described briefly belowand in detail in Appendix B, 'CA IDMS DLI
Transparency Software Components.'

The CA IDMS DLI Transparency Syntax Generator
What is the CA IDMS DLI Transparency Syntax Generator

The CA IDMS DL Transparency syntax generator helps to automate the conversion
process onthe databasedefinition level.ltaccepts as inputcontrol blocks (load
modules) for the programspecification blocks (PSBs) and database definitions (DBDs).
These are used by the DL/l application againsttheexisting DL/I database(s).

The Syntax Generator Produces Source Statements

For output, the syntax generator produces the source statements necessary to create
the interface programspecification block (IPSB). It also produces sourcedefinitions
needed to create anappropriateschema, DMCL, and subschema. Collectively, the
schema, DMCL, and subschema definitions representthe databasedefinitions for the
new CA IDMS/DB database.

Chapter 1: Introduction 13

CA IDMS DLI Transparency Concepts and Facilities

After producingthe sets of sourcestatements, you can check them and modify them
(particularly the DMCL), to address capacity planningand performanceand tuning
concerns.You can then inputthe sourcestatements to the CA IDMS/DB compilers and
the IPSB compiler, respectively.

IPSB
source
jAssembled
Schema
PSB / source
‘__/\\ CA-IDMS/DLI
syntax
generator
Subschema
source
Assembled
DBDs
DMCL
e source

Figure 1. CA IDMS DLI Transparency syntax generator

The IPSB Compiler
What is the IPSB Compiler

The interface programspecification block (IPSB) compiler establishes the
correspondences between the CA IDMS/DB databaseandthe DL/I databases, as
expected by the DL/l application.

The IPSB Compiler Accepts Source Statements

The compiler accepts as inputthe sourcestatements produced by the CA IDMS DLI
Transparency syntax generator, after you have verified and modified these statements
as necessary. The compileralso uses theassociated subschema load module.

The IPSB Compiler Produces IPSB Load Module

For output, the compiler produces IPSB load modules used by the CA IDMS DLI
Transparency run-time interface. The IPSB load modules providethe information
required to convert the application's DL/l databaserequests to CA IDMS/DB database
requests. They also providethe control information required to update the application's
DL/I program communication blocks (PCBs). The updated PCBs are used at run time to
pass status information to the application program.

14 DLI Transparency User Guide

CA IDMS DLI Transparency Concepts and Facilities

IPSB CA-IDMS/DLI [Subschema
source CJ;SB load
piler module

|

From CA-IDMS/DLI
syntax generator

IPSB

load
module

f

CA-IDMS/DLI
DL/l program > run-time

interface

» CA-IDMS/DB

A

A-IDMS/DB
database

Figure 2. Role ofthe IPSB compiler in CA IDMS DLI Transparency

Run-Time Interface

What the Run-Time Interface Does

The CA IDMS DLI Transparency run-time interface accepts databasecalls froma DL/I
application program,issues corresponding CAIDMS/DB calls, and returns data and/or
status information to the DL/l application program. Note that a single DL/l call canresult
inseveral CA IDMS/DB requests. More specifically, CAIDMS DLI Transparency
processingis divided between the interface's front-end and back-end processors.

Front-End Processor

The front-end processor intercepts DL/I requests from the application program,
reformats the requests, and passes them to the back-end processor. When the back-end
processor finishes with a request, itpasses the results (data retrieved from the database
and/or status information) back to the front-end processor. It also passes back PCB
status information. The front-end processor then returns the status information to the
DL/l application program.

Chapter 1: Introduction 15

CA IDMS DLI Transparency Concepts and Facilities

Back-End Processor

Upon receivinga DL/I request from the front-end processor, the back-end processor
accesses the IPSBload module to formulate the corresponding CAIDMS/DB requests.
The back-end processor then passes the request to CA IDMS/DB. When CA IDMS/DB
performs the requested operation(s), the back-end processor accepts the results from
CA IDMS/DB and passes them, alongwith the PCB status information, to the front-end

processor.
DL/I Data and/or
Information PCB
Information
Front-end
Processor
3
DL/ Request
Request Results
DL/I
Application
Program

Back-end
Processor

CA-IDMS/DB
Correspondences IPSB

Load

CA-IDMS/DB
Requests
and/or
CA-IDMS/DB
Updates

Module

CA-IDMS/DB

Retrieved
Data and/or
Error status

Figure 3. CA IDMS DLI Transparency runtime environment

The CA IDMS DLI Transparency Load Utility

What the Load Utility Does

Retrieved
Data

Database

The CA IDMS DLI Transparency load utility populates a CAIDMS/DB databasewith data
unloaded from the existing DL/I database(s) used by the DL/I application.

16 DLI Transparency User Guide

CA IDMS DLI Transparency Concepts and Facilities

Before You Run the Load Utility

Before you canrun the load utility, you must have:

m An alreadycreated and initialized CAIDMS/DB databasein which to receive the DL/I
data. To do this, you must have created subschema and DMCL load modules for the
database.These load modules are created by the appropriate CA IDMS/DB
compilers when you input the schema, subschema, and DMCL sourcedefinitions
produced by the CA IDMS DLI Transparency syntax generator.

m An IPSBload module for the CA IDMS/DB database.This load moduleis created by
the IPSB compiler usingthe source statements produced by the CA IDMS DLI
Transparency syntax generator.

m The unloaded DL/I databasedata,as formatted by the DL/I HD unload utility.

For output, the load utility stores the DL/I data inthe CA IDMS/DB databasein
accordancewith the supplied schema, subschema, DMCL, and IPSB load modules.

IPSB
Unlcaded Load

DL/I Data Module

CA-IDMS/DLI
Load Utility

y

CA-IDMS/DLI CA-IDMS/DB
Run-time -
Interface

CA-IDMS/DB
Database

Figure 4. CA IDMS DLI Transparency load utility

Chapter 1: Introduction 17

Usage Requirements

Usadge Requirements

Use of CAIDMS DLI Transparencyinvolves thefollowingsix basic steps:

1. Assemble the source for your DL/I program specification block and database
definitions usingthe CA-supplied macros. Input the assembled PSB and DBDs to the
CA IDMS DL Transparency syntax generator. The syntax generator produces IPSB
sourcestatements and the appropriate CAIDMS/DB schema, subschema, and
DMCL source definitions. The use of the syntax generator is describedin CA IDMS
DLl Transparency Syntax Generator (see page 75).

2. Check the generated schema, subschema, and DMCL sourcedefinitions for
compatibility with the DL/I definitions. Makeany necessary changes and inputthe
schema, subschema, and DMCL source definitions to the CA IDMS/DB compilers to
produce the required load modules.DL/I, CA IDMS/DB and their correspondences
aredescribedin DL/l and CA IDMS/DB (see page 21).

3. Check the generated IPSB sourcestatements for compatibility with the DL/I
definitions. Make any necessary changes and input the IPSBsource statements to
the IPSB compiler to produce the IPSB load module, as described in IPSB Compiler
(see page 93).

4. Create andinitializethe new CA IDMS/DB databaseusingthe schema, subschema,
and DMCL load modules from Step 2.

5. Load the DL/I data from the original database(s) intothenew CAIDMS/DB
database. Instructions for usingthe CA IDMS DLI Transparencyload utilityare
providedin CAIDMS DLI Transparency Load Utility (see page 171).

6. Execute your DL/l applicationagainstthe CA IDMS/DB databaseusingthe CA IDMS
DLl Transparency run-time interface. The use of the run-time interfaceis described
in CA IDMS DLI Transparency Run-Time Environment (see page 155).

Syntax Diagram Conventions

The syntax diagrams presented in this guide use the following notation conventions:
UPPERCASE OR SPECIAL CHARACTERS

Represents arequired keyword, partial keyword, character, or symbol that must be
entered completely as shown.

lowercase

Represents an optional keyword or partial keyword that, if used, must be entered
completely as shown.

italicized lowercase

Represents avaluethat you supply.

lowercase bold

18 DLI Transparency User Guide

Syntax Diagram Conventions

Represents a portion of the syntaxshownin greater detail atthe end of the syntax
or elsewhere inthe document.

Points to the defaultina listof choices.

Indicates the beginning of a complete piece of syntax.

Indicates the end of a complete piece of syntax.

Indicates thatthe syntax continues on the next line.

Indicates thatthe syntax continues on this line.

Indicates thatthe parameter continues on the next line.

Indicates thata parameter continues on this line.

P
>

><

>

>

>
>
»— parameter —»

Indicates a required parameter.

»—E arameter :l—>
garameter

Indicates a choiceof required parameters. You must select one.

»

v

»

L parameter -

Indicates an optional parameter.

v

>
parameter :I
parameter

Indicates a choice of optional parameters. Select one or none.

>~ parameter ———»

Indicates thatyou canrepeat the parameter or specify more than one parameter.

Lameter — 1 »
»—V— parameter

Indicates thatyou must enter a comma between repetitions of the parameter.

Chapter 1: Introduction 19

Syntax Diagram Conventions

Sample Syntax Diagram

The following sample explains howthe notation conventions are used:

Required portion of parameter
Beginning of Required .)
the syntax er Optional portion of parameter
Usersupplied value

Syntax continues
on the next line

Syntax continues on this line Comma required between repetition

Required parameter Repetition allowed
Select one

varrable

I .
y— KEWDI\Q\D—{aHaﬂIe

wariabfle
varrable

Optional keyword

Select one or none

Portion of syntax
Default expanded elsewhere

End of the syntax

t KEYWORD variable
KEYWORD

20 DLI Transparency User Guide

Chapter 2: DL/I and CA IDMS/DB

This section contains the following topics:

About This Chapter (see page 21)

The DL/I Environment (see page 22)

Segments - The Basic Unit Of Data (see page 23)
Hierarchies - Physical Relationships Between Segments (see page 24)
Defining Segments (see page 27)

Logical Relationships Between Segments (see page 29)
Physical Databases (see page 36)

Physical Access Methods (see page 38)

Secondary Indexing (Index Databases) (see page 42)
Logical Databases (see page 46)

Program Communication Blocks (see page 49)
Program Specification Block (see page 52)

Definition Summary (see page 52)

DL/l Commands (see page 53)

The CA IDMS/DB Environment (see page 56)

DL/l and CA IDMS/DB Correspondences (see page 59)
Unsupported DL/I Features (see page 73)

About This Chapter

As a DL/I databaseadministrator (DBA) or application programmer,and CA IDMS/DB
Correspondences/ you arealready familiar with DL/I.

DL/l and CA IDMS/DB are similarin many ways.As database management systems, they
both separatethe logical definitions of data from the actual data as stored on disk. They
both providetop-level definitions of the data and the relationships supported for the
data. Inaddition, they providesecond-level definitions thatserve as application-specific
views of the top-level definition.

This section describes DL/I, CA IDMS/DB and the correspondences between them.

Chapter 2: DL/T and CAIDMS/DB 21

The DL/I Environment

The DL/I Environment

The Parent/Child Hierarchy

In DL/I, the basicstructureis the parent/child hierarchy. A parent segment canown one
or more child segments. (Segments aresimilartorecordsinconventional file-oriented,
versus database-oriented, processing.) A child segment, however, can have only one
parent segment. Using the basic parent/child structure, you can extend the hierarchyto
deeper levels (thatis,a child segment canalso be a parent and have child segments of
its own).

Database Description (DBD)

The top-level definition of the segments and their relationshipsisknown as the
Database description (DBD). A DBD defines all of the segments, the fields for each
segment, and all of the possiblesegment relationships for a given database.

Program Specification Block (PSB)

The second-level definitionis known as the program specification block (PSB). The PSB
defines the run-time databaseinterface foran application.

Program Communication Blocks

Each PSB contains oneor more program communication blocks (PCBs). Each PCB
defines a subset of the segments and possiblerelationships foundin a specific DBD.
Different PCBs withinthe same PSB can reference different DBDs or multipleviews of
the same DBD, thereby allowingan applicationtoaccess several physical databases.

Each PCB also maintainsstatus information so thatthe application can check onthe
results ofits function calls againsta particulardatabase.

Taken collectively, the PCBs within a given PSB define an application's view of the
availabledata.

Defining DL/I Databases

The databaseadministrator defines DBDs and PSBs (including PCBs) using special source
statements. The DBA then compiles the prepared sourcefiles usingthe DBDGEN and
PSBGEN utilities. Finally,the compiled DBDs and PSBs are input to another utility that
merges and expands them to produce an object-form control tablefor each PCB and
DBD that it references.

22 DLI Transparency User Guide

Segments - The Basic Unit Of Data

Executing DL/I Applications

When DL/l is invoked, it loads the application's DBD and PCB control tables and passes
control backto the application. Theapplicationis then ready to startissuing DL/I
function calls for database operations.

All Segments
Application | and Struclures DBC-1 DBD-2
Available PCB-1
Segments PSB
and Structures \

Physical
Da’?a Database-1 Database-2 Database-3

Figure 5. Basic DL/I components

Segments - The Basic Unit Of Data

What is a Segment

Segments are the basic units of data thatanapplication canaccessin DL/I.Segments
consistofone or more fields, which are the basic pieces of data thatanapplicationcan
use. For example, the EMPLOYEE segment might consistof the employee name, id,and
address fields.

Segments can be either fixed length or variablelength. Within a segment, individual
fields can occur either once or multipletimes.

What is a Segment Occurrence
A specificinstance of a segment thatis stored inthe databaseis knownasan

occurrence. For example, the data for employee Bob Jones would be anoccurrence of
the EMPLOYEE segment. There can be any number of occurrences for a given segment.

Chapter 2: DL/Tand CAIDMS/DB 23

Hierarchies - Physical Relationships Between Segments

Hierarchies - Physical Relationships Between Segments

What Hierarchical Relationships Do

In DL/I, segments are related physicallyinterms of parent/child hierarchies. These
hierarchical relationships determine the physical organization of a database.They
control how segments arestored inrelationto each other. They also define the access
paths for getting from one segment to another. In a hierarchical (physical) relationship,
the parent segment is referred to as the physical parent, andthe childsegment is
referred to as the physical child.

Parent and Child Segments

A parent segment can have zero, one, or more child segments, but a child segment can
have only one parent. Each occurrence of a parent segment can have any number of
occurrences of a dependent child segment. For example, if employee Bob Jones has two
skills, therewill be two occurrences of the SKILL child segment for the one occurrence of
the EMPLOYEE parent segment.

Parent and Child Occurrences

A child occurrencerequires an existing parentoccurrence, but a parent occurrence does
not requirea child occurrence. Two or more child segment occurrences that have the
same parentoccurrenceina hierarchyarereferred to as physical twins. Such
occurrences aretwins onlyinthe sense that they have the same parent occurrence—
not that they containduplicatedata.

Root Segments and Database Records
What is a Root Segment

Ina DL/I hierarchical structure, the top-level parent segment is known as the root
segment. There canbe only one root segment inany hierarchy.

What is a Database Record

Collectively, all the parent/child occurrences thatdepend on a given root segment form
a DL/I database record. Sincethere canbe only one occurrence of a root segment, the
addition of a new root segment occurrence (for example, a new employee) creates a
new databaserecord. Databaserecords arevariablein size becausethe number of
occurrences for dependent child segments may vary (for example, new skillscan be
added for a given employee).

24 DLI Transparency User Guide

Hierarchies - Physical Relationships Between Segments

A DL/I Physical Database

All of the databaserecords for a particular parent/child hierarchy forma DL/I physical
database. Since each child segment can have only one parent segment, the resulting
structure resembles aninverted tree, with the root segment atthe top. The maximum
number of segments ina DL/l structureis 255:0ne root and up to 254 dependent child
segments.

Hierarchical Access Path

A DL/1 Hierarchy

The basic parent/child structureis hierarchicalinthatitrequires traversing higher levels
to reach a specific lower level.In other words, to reach a given child segment
occurrence, you must go from the root segment occurrence through all the
intermediate parent segment occurrences. This path is known as a hierarchical access
path. Hierarchical paths requirethat you traversea structure in a top-to-bottom,
|eft-to-right manner. There is a maximum of 15 levels (thatis, 14 parent segments,
includingtheroot) ina DL/I hierarchical path.

The illustrations on the next few pages show different representations of the same DL/I
hierarchy.

Physical Parent/Child Relationships

The illustration belowillustrates the physical parent/child relationships amongthe
segments. Itis these physicalrelationshipsthatdefine the hierarchy. The names of the
segments are SEGA, SEGB, SEGC, and SEGD.

Chapter 2: DL/T and CAIDMS/DB 25

Hierarchies - Physical Relationships Between Segments

Top Level
Root Segment SEGA Parent
Y
SEGH Child
Parent
L
SEGC SEGD Child

Bottom Level
Figure 6. Physical segment relationships
DBD Source Statements For the Hierarchy

The samplebelow shows the Database Description (DBD) sourcestatements used to
define the hierarchy andthe parent/child relationshipsamongthe segments.

DBD NAME=DBD1, ACCESS=HDAM,RMNAME=(DLZHDC20, 2, 13000, 4500)
DATASET DD1=DBD1HDAM,DEVICE=3350,BLOCK=4096,SCAN=3
SEGM NAME=SEGA, BYTES=31, PTR=H, PARENT=0

FIELD NAME=(FIELDA,SEQ,U) ,BYTES=21, START=1

FIELD NAME=FIELDB,BYTES=10, START=22

SEGM NAME=SEGB, BYTES=30, PTR=H, PARENT=SEGA

FIELD NAME=(FIELDC, SEQ,U),BYTES=30, START=1

SEGM NAME=SEGC, BYTES=30, PTR=H, PARENT=SEGB

FIELD NAME=(FIELDD, SEQ,U),BYTES=10,START=1

FIELD NAME=FIELDE,BYTES=20, START=11

SEGM NAME=SEGD, BYTES=60, PTR=H, PARENT=SEGB

FIELD NAME=(FIELDF,SEQ,U),BYTES=10,START=1

FIELD NAME=FIELDG,BYTES=50, START=11

DBDGEN

FINISH

END

Figure 7. DBD source statements for sample hierarchy

26 DLI Transparency User Guide

Defining Segments

Hierarchy with Database Records
The illustration below shows a hierarchy with databaserecords
Note thatinthe Al record, segment SEGC has three occurrences.In the A2 record,

segment SEGD has two occurrences. The hierarchical path to the D2b occurrenceis by
way of the following occurrences:A2, B2, C2, D2a (from top to bottom and left to right).

Hierarchical Path
Al A2

B1 B2

Cla

D1

Cib

Cilc

C2 D2a

D2b

Figure 8. Hierarchy with database records

Defining Segments

SEGM Statement

A segment in DL/l is defined usinga single SEGM statement and one or more FIELD
statements.

The SEGM statement names and defines segments. For each child segment, the PARENT
parameter specifies the name of the related parent segment. Note that the SEGM
statement for SEGA (in Figure7) specifies O (zero) for PARENT, indicatingthatthis
segment is the root (thatis,ithas no parent). The BYTES parameter specifies the length
of each segment.

Chapter 2: DL/ and CAIDMS/DB 27

Defining Segments

FIELD Statement

Each SEGM statement is followed immediately by one or more FIELD statements, which
name and define the fields for the segment. An applicationcanaccess thedesired
databaserecords by specifyingselection criteria for the segment fields. The application
specifies the selection criteria in a segment search argument (SSA) on the appropriate
function call.Only thoserecords whose segment occurrences match the searchcriteria
will bereturned to the application.

Sequence Fields

Ifthe NAME parameter on the FIELD statement contains the value SEQ, the fieldis a
sequence field. Asequence field can have different functions depending on whether itis
specified for a root segment or a dependent child segment. The differences are as
follows:

m Ifspecified for a root segment, a sequence field controls the physical placement of
each root segment occurrenceand provides directaccess to the associated
databaserecord.

m |fspecifiedfor a child segment, a sequence field causes occurrences of the segment
to be stored inascendingorder, based on the actual values in the sequence field.

A sequence field for a child segment assumes that the segment can have more than
one occurrence within a given parent occurrence (for example, Cla, Clb,andClcin
Figure 8). As the hierarchical pathis traversed from rightto left within the parent
occurrence, the child occurrence with the lowest value will befound first,and the
child occurrencewith the highestvaluewill be found last.

Unique or Duplicate Values in Sequence Fields

When defining child segments with sequence fields, you must also specify the valueU or
M in the NAME parameter. U declares that each occurrence's sequence field value must
be uniqueunder the same parent occurrence. M declares that multipleoccurrences can
have the same sequence field valueunder the same parent occurrence (that s,
duplicatesequence field values areallowed).

Storage Sequence for Duplicate Values

If sequence fields haveduplicatevalues, the RULES parameter for the SEGM statement
lets you control how new occurrences of the child segment will bestored relativeto
existing occurrences under the same parent occurrence. The possible RULES values are:

m FIRST—Stores a new occurrence before all existingoccurrences with the same value
m LAST—Stores a new occurrence after the existingoccurrences

m HERE—Stores a new occurrenceimmediately before the current occurrence

28 DLI Transparency User Guide

Logical Relationships Between Segments

Concatenated Keys

Concatenated keys providean efficientway to access specific segment occurrences.
Such a key is constructed by concatenatingthe valuein an occurrence's sequence field
with the values inthe sequence fields fromeach higher level segment occurrencein the
hierarchical path.

For example, usingthe hierarchical structuredefined in Figure 7, the concatenated key
for SEGC is made up of its own sequence field (FIELDD), the sequence field (FIELDC) for
SEGB, andthe sequence field (FIELDA) for SEGA. The key for a given SEGC occurrence
would be determined by the actual values contained in the sequence fields.

Logical Relationships Between Segments

What Logical Relationships Do

Logical relationships providea way of extending the basic hierarchical relationships.
They have no effect on how segments are physically stored, but they do let you define
multipleaccess paths to the same physical data. The segments defined ina logical
relationship can beonthe samehierarchical path or on different hierarchical paths.

Logical Parent and Logical Child

Ina logicalrelationship, the parent segment is referred to as the logical parent, and the
child segment is referred to as the logical child.

Ina given logicalrelationship, a child segmentcan have only one physical parentand
onlyone logical parent. Note that a parent segment can be both physicaland logical
parent to the same child segment. Also, the same child segment can have more than
one logical parent, but in different logical relationships.

Iftwo or more logical child segment occurrences have the same logical parent
occurrence, they are referred to as logical twins. As with physical twins, they are twins
onlyinthe sense that they have the same parent occurrence.

Hierarchical (physical) relationships always occur within thesame database. Logical
relationships can occur withinthesame databaseor caninvolvesegments from
different databases.

Chapter 2: DL/T and CAIDMS/DB 29

Logical Relationships Between Segments

DBD Source Statements for Two Databases

The example below shows sample DBD source statements for definingtwo databases
(PHYSDB1 and PHYSDB2). Note that the DBD definitions defineboth hierarchicaland
logical relationships.

Each hierarchical relationship involves only segments that are inthe same database. A
logical relationship, though, caninvolvesegments fromits own databasedefinitionand
segments from another databasedefinition.

30 DLI Transparency User Guide

Logical Relationships Between Segments

DBD NAME=PHYSDBD1 , ACCESS=HDAM

DATASET DD1=HDAM1,DEVICE=3350,BLOCK=2048,SCAN=3

SEGM NAME=SEG1, PTR=TWINBWD ,RULES=LLV

FIELD NAME=(FIELD1,SEQ,U),BYTES=60,START=1

FIELD NAME=FIELD2,BYTES=15, START=61

FIELD NAME=FIELD3,BYTES=75, START=76

LCHILD NAME=(SEG6,PHYSDB2) , PAIR=SEG2,PTR=DBLE

SEGM NAME=SEG2, PARENT=SEG1,PTR=PAIRED
SOURCE=(SEG6,DATA, PHYSDB2)

FIELD NAME=(FIELD4,SEQ,U),BYTES=21, START=1

FIELD NAME=FIELD5,BYTES=20, START=22

SEGM NAME=SEG3, BYTES=200, PARENT=SEG1

FIELD NAME=(FIELD6,SEQ,U) ,BYTES=99, START=1

FIELD NAME=FIELD7,BYTES=101,START=100

SEGM NAME=SEG4,BYTES=100, PARENT=SEG1

FIELD NAME=(FIELDS,SEQ,U) ,BYTES=15, START=1

FIELD NAME=FIELD9,BYTES=15, START=51

DBDGEN

FINISH

END

DBD NAME=PHYSDBD2 , ACCESS=HDAM,
RMNAME=(DLZHDC20,7,700,250)
DATASET DD1=HDAM2,DEVICE=3350,BLOCK=2048,SCAN=3
SEGM NAME=SEG5, BYTES=31, PTR=TWINBWD ,RULES=(VLV)
FIELD NAME=(FIELD9,SEQ,U),BYTES=21, START, TYPE=P
FIELD NAME=FIELD10, BYTES=10,START=22
SEGM NAME=SEG6,
PARENT=((SEG5,DBLE) , (SEG1,P,PHYSDB1)),
BYTES=80, PTR=(LPARNT, TWINBAD) , RULES=VWV
FIELD NAME=(FIELD11,SEQ,U),START=1, BYTES=60
FIELD NAME=FIELD12,BYTES=20,START=61
SEGM NAME=SEG7,BYTES=20, PTR=T,
PARENT=(SEG6 , SNGL)
FIELD NAME=FIELD13,BYTES=9, START=1
FIELD NAME=FIELD14,BYTES=11,START=10
SEGM NAME=SEG8,BYTES=75, PTR=T,
PARENT=(SEG6 , SNGL)
FIELD NAME=FIELD16,BYTES=50,START=1
FIELD NAME=FIELD17,BYTES=25,START=51
DBDGEN
FINISH
END

Figure 9. DBD source statements for two databases

Chapter 2: DL/Tand CAIDMS/DB 31

Logical Relationships Between Segments

Three Types of Logical Relationships

DL/ supports three types of logicalrelationships:
m Unidirectional
m Bidirectionalvirtual

m Bidirectional physical

Unidirectional Relationship
Access Data in One Direction

Ina unidirectionalrelationship, access cangoinonlyone direction:from a logical child
segment to its logical parentsegment. A logical child segment cannot be accessed from
its logical parent.

Unidirectional Structure

The illustration belowillustrates the unidirectional logical structure. The structure
shown involves segments from both of the physical hierarchies (PHYSDB1 and PHYSDB2)
defined in earlierinthis section. The logical child is SEG6 (in PHYSDB2), the physical
parentis SEG5 (alsoin PHYSDB2), and the logical parentis SEG1 (in PHYSDB1).

Physical Parent SEG5 SEG1 Logical Parent
Physical Child
Logical Child SEGE

Figure 10. Unidirectional structure

Defining a Unidirectional Structure

You define a unidirectional structurein the logical child's SEGM statement. The SEGM
statement names the logical child segment and identifies both the physical parentand
the logical parent.

The PARENT parameter on the logical child's SEGM statement takes the following form:
Syntax

VIRTUAL,
PARENT = (ppsegname?2), (Ipsegname, { PHYSICAL } dbrname)

32 DLI Transparency User Guide

Logical Relationships Between Segments

Parameters
ppsegname

Identifies the name of a physical parentsegment and must match a name specified
for the NAME parameter ina preceding SEGM statement.

Ipsegname

Identifies the name of a logical parentsegment and must match the name specified
for the NAME parameter on the logical parent's SEGM statement. Note that this
SEGM statement canbe inthe same DBD or a different DBD (see Dbname below).

VIRTUAL/PHYSICAL
Specifies whether the concatenated key of the logical parentis stored with the logical

child (PHYSICAL) oris builtatrun time (VIRTUAL). For more details,see |PSB Compiler
(see page 93).

dbname

Dbname is the name of the DBD that contains the logical parent's SEGM statement.

Bidirectional Virtual Relationship
Access Data in Two Directions

Ina bidirectionalvirtualrelationship, accesscan goin both directions: from a logical
child segment to its logical parentsegment, and from the logical parentsegment to its
logical child segment.

A bidirectionalvirtual relationship requires thatyou define a virtual logical child
segment, as well as a real logical child segment. The virtual logicalchildisa pointer to
the real logical child. (Compareto the bidirectional physical relationship, described
below, inwhich the virtual logical childis a physical duplicate of the real logical child.)

Unidirectional relationships involve three segments; bidirectionalrelationships always
involve four segments.

Chapter 2: DL/T and CAIDMS/DB 33

Logical Relationships Between Segments

Bidirectional Virtual Structure

The example below shows the bidirectional virtual relationship defined by the DBD
sourcestatements shown in Figure 9 earlierin this section.Inthis relationship,SEG6 is
the real logical child, SEG5 is the physical parent, SEG1 is the logical parent,and SEG2 is
the virtual logical child. Note that SEG5 and SEG6 arein DBD PHYSDB2, and SEG1 and
SEG2 arein DBD PHYSDB1.

Logical Parent

Physical Parent SEG5 SEG1 Physical Parent
Physical Child SEG6 -~ — - SEG2 Physical Child
Painter

Real Virtual
Lagical Child Logical Child

Figure 12. Bidirectional virtual structure
Defining the Virtual Logical Child
The physical parent, the physical child, the logical parent,andthe real logical child are

defined the sameas for a unidirectional relationship (see Unidirectional Relationship
(see page 32)). You define the virtual logical child in two places:

m Inthe logical parent's LCHILD statement. This statement follows the logical parent's
SEGM and FIELD statements. It supplies thename of the real logical child segment
andidentifies the DBD in whichitis defined. It also supplies the name of the
segment inthe logical parent's DBD that is to serve as the virtual logical child.

m Inthe virtual logical child's SEGM statement. The virtual logical child mustbe
defined in the same DBD as the logical parent.

SEGM Statement for the Virtual Logical Child

The virtual logical child's SEGM statement must includethe SOURCE parameter, which
sets up a pointer to the real logical child and takes the following form:

Syntax

SOURCE=((segname ,DATA ,dbname))

34 DLI Transparency User Guide

Logical Relationships Between Segments

Parameters
segname

Identifies the name of the real logical child segment, as specified for the NAME
parameter inthe real logical child's SEGM statement.

dbname

Dbname is the name of the DBD that contains the real logical child's SEGM
statement.

Bidirectional Physical Relationship
What is a Bidirectional Physical Relationship

Bidirectional physicalrelationships provideaccess in both directions between a logical
parent segment and a logical child segment. Inthis respect, they arethe same as
bidirectionalvirtualrelationships. The difference between the two types of relationships
is that bidirectional physical employs a physical duplicate of the real logical child, while
bidirectional virtual employs a pointer to the real logical child, with no duplication of
data.

Using Physical or Logical Virtual Bidirectional Relationships

The decision to use one type of bidirectionalrelationship instead of another depends on
whether you want to optimize performance or spaceusage. Bidirectional physical
relationships providefaster access times, butincur more spaceoverhead because of the
duplicatelogical child data. Theyalso require more maintenance overhead since
updates made to one logical child mustbe duplicated in the other. Bidirectional virtual
relationshipsconserveon space, but provideslower access times.

Bidirectional Physical Structure

The illustration below shows the bidirectional physical relationship defined by the DBD
sourcestatements inFigure 7. In this relationship, SEG6 is a physical child for SEG5 and a
logical child for SEG1, SEG4 is a physical child for SEG1 and a logical child for SEG5. Note
that SEG6 and SEG5 arein DBD PHYSDB2, and SEG4 and SEG1 arein DBD PHYSDBI1.

Chapter 2: DL/T and CAIDMS/DB 35

Physical Databases

Logical Parent Logical Parent
Physical Parent SEGS SEG1 Physical Parent
Physical Child SEG6 SEG4 Physical Child
Logicat Child Lagidgal Child
\\ - d
?'E;ﬁ&fll;
Paired

Figure 12. Bidirectional physical structure
Defining a Bidirectional Physical Relationship

To create a bidirectional physical relationship, you mustdefine a child segment as both
physical child andlogical child for each parent, in each parent's physical hierarchy.In
effect, you define the sameunidirectional structurefor each parent. The two logical
child segments contain duplicatedata and together arereferred to as physically paired
logical child segments. Note that the logical child SEGM statements cannotincludethe
SOURCE parameter.

Physical Databases

A Physical Database is a DBD Definition

In DL/I, a physical database is a DBD definition that specifies the allowable segments,
segment fields, and segment relationships foranactual databaseas stored on disk.Such
a definitionis known as a physical DBD. The term "physical"inthis contextis somewhat
misleading becausethe DBD serves as the top-level logical definition (or template) for
the database. All of the DBD definitions examined thus far are examples of physical
databases, even though they define logicalas well as hierarchical relationships.

What is a Physical DBD

A physical DBD maps the definition of segments and their hierarchical relationshipsto
physical storage. The sequence in which the segments are defined inthe DBD
determines how their occurrences will be stored on disk. The hierarchical relationships
determine the access path that must be navigated to reach a specific segment
occurrence.

36 DLI Transparency User Guide

Physical Databases

A Physical DBD Specifies an Access Method

In addition to defining segments and their relationships, a physical DBD specifies the
physical data organization to be used and the corresponding access method. DL/I
provides four physical access methods: HDAM, HISAM, HIDAM, and HSAM. The choice
of access method is the responsibility of the databasedesigner and depends on the
contents of the databaseand the transactionload requirements. The choiceof access
method is described in more detail under Physical Access Methods (see page 38).

Sample DBD Statement

Physical DBDs can be easilyidentified becausethey specify one of the four access
methods for the ACCESS parameter inthe DBD statement. For example, the DBD for
PHYSDB1 inFigure 9 is a physical DBD. The DBD statement is as follows:

DBD NAME = PHYSDB1,ACCESS=HDAM

The diagrambelow shows the physical database (hierarchy) derived from the DBD
sourcestatements inFigure 7.

PHYSDB1
Root SEGT
Segment
SEG2 SEG3 SEG4
PHYSDB2
Root
Segment SEGS5
SEG6
SEG7
SEGS8

Figure 13. Sample physical databases

Chapter 2: DL/Tand CAIDMS/DB 37

Physical Access Methods

Physical Access Methods

What Physical Access Methods Do

Physicalaccess methods determine the physical organizationand availableaccess paths
for DL/I databases.Each physical DBD must be assigned an access method, whichis
specified for the ACCESS parameter inthe DBD statement.

Sequential and Direct Access Methods

DL/I provides two general access methods: sequential and direct. The sequential

method lays outthe segment occurrences as physically contiguous, likerecords in a tape
file. The direct method provides randomaccess via pointers to segment occurrences,
likerecords on a direct access storagedevice (disk). Each method is further qualified on
the basis of whether or notit supports indexing.

DL/1Supports Four Access Methods

The combination of sequential/directand indexing/noindexingyields thefollowing four
access methods for DL/I:

m HSAM—-Hierarchical sequential access method

m HISAM—-Hierarchicalindexed sequential access method

m HDAM-—-Hierarchical directaccess method

m HIDAM——Hierarchicalindexed directaccess method

Note that all four access methods are hierarchical (H). This reflects the fact thatan

applicationalwaysviews a databaseas hierarchical, regardless of the access method
used or the physicallocation of the data.

HSAM Access
What HSAM Provides
The HSAM access method provides sequential access to root segments and child

segments. The top-to-bottom, left-to-right hierarchical sequenceis reflected in the
physical contiguity of the databaserecords.

38 DLI Transparency User Guide

Physical Access Methods

HISAM Access

Use HSAM for Sequential File Processing

The HSAM organization requires fixed-length records andis intended exclusively for
conventional sequential file processing. There is no provision for making updates in
place, without copyingthe database. Also, HSAM supports only hierarchical
relationships, notlogical relationships.

For more information about HSAM access method, see DL/l Access Methods in CA
IDMS/DB (see page 65).

What HISAM Provides

The HISAM access method provides indexed access to root segments and sequential
access to child segments. The index contains the root segment sequence field values
andis maintainedinascendingorder as partof the physical database.

As with the HSAM method, the hierarchical relationshipsarereflected in the physical
contiguity of the databaserecords.

HISAM uses two data sets: the primary data set and the overflow data set. Both data
sets aredefined with fixed-length physicalrecords.

Primary Data Set

The primary data set contains theroot segment occurrences and as many of their
dependent segment occurrences as will fit. The primary data set supports indexingvia
the root segment sequence fieldvalues.

Overflow Data Set

The overflow data set contains the dependent occurrences that will notfitinthe
primary data set. Chains between the primaryand overflow data sets maintain
relationshipsand sequencing.

HISAM supports hierarchical relationships and unidirectional and bidirecti onallogical
relationships with physical pairing. HISAM does not supportbidirectional virtual
relationships.

Chapter 2: DL/T and CAIDMS/DB 39

Physical Access Methods

HDAM Access

What HDAM Provides

The HDAM access method provides hashed access to root segments and pointer access
to child segments. The hashingalgorithmcalculates the physical address of a root
segment occurrence based on the valueinits sequence field.

HDAM Uses a Radomizing Routine

When a databaserecordis firstloaded, the HDAM method randomizes the root key
valueto a physical location, which consists of a block number and an offset into the
block.The root segment occurrence and all dependent segment occurrences that will fit
are loadedinto the block. Dependent segment occurrences that will notfitare loaded
into an overflow area. Physical child and physical twin pointers arecreated to establish
the appropriateconnections.

Fast and Direct Access to Root Segments

HDAM provides fast, directaccess to a root segment occurrence. With, at most, one
additional 1/0, itis possibleto access the firstoccurrence of the dependent segment at
the next level by followingthe appropriate physical child pointer.

The HDAM method supports all of the DL/I hierarchicalandlogical relationships.

HIDAM Access

What HIDAM Provides

The HIDAM access method provides indexed access to root segments, via the root
sequence field,and pointer access to child segments. The index contains the root
segment sequence fieldvalues andis maintainedinascendingorder.

A HIDAM databaseis made up of two separate databases.Onedatabasecontains all of
the data. The other databaseis the index and contains the sequence field values for the
root segment occurrences.

Index Database

The index databaseis never visibletoan application, butit must be defined in its own
set of DBD statements. A HIDAM index databaserequires the value INDEX for the
ACCESS parameter inthe DBD statement. The illustration below shows the DBD source
statements for a HIDAM physical database(DB1)andits associated index database
(DBINDEX).

40 DLI Transparency User Guide

Physical Access Methods

DBD NAME=DB1, ACCESS=HIDAM
DATASET DD1=DBHIDAM,DEVICE=3350,BLOCK=42,RECORD=48,SCAN=1

SEGM NAME=SEG1,BYTES=31, PTR=H, PARENT=0

FIELD NAME=(FIELD1,SEQ,U),BYTES=21,START=1
FIELD NAME=FIELD2,BYTES=10, START=22

LCHILD NAME=(SEG2,DBINDEX) , PTR=INDX

DBDGEN

FINISH

END

DBD NAME=DBINDEX, ACCESS=INDEX
DATASET DD1=DBINDEX,DEVICE=3350,BL0OCK=44,RECORD=46,SCAN=1
SEGM NAME=SEG2,BYTES=21

LCHILD NAME=(SEG1,DB1),INDEX=FIELD1

FIELD NAME=(FIELD3,SEQ,U),BYTES=21, START=1
DBDGEN

FINISH

END

Figure 14. DBD definitions for a HIDAM database and its index database
Index Pointer Segments

An index databasecan containonly one segment, whichis referred to as the index
pointer segment. The single SEGM statement inthe index DBD names this segment. The
index pointer segment points to the root segment inthe physical DBD.The root
segment is referred to as the source segment becauseitis the source of the data
needed to construct the index pointer segment. The root segment is alsothetarget
segment becauseitis the segment that will beaccessed by the index pointer. The index
pointer segment contains onefield, which will carrythesequence field values for the
root segment occurrences. This field must also be defined as a sequence field.

Chapter 2: DL/T and CAIDMS/DB 41

Secondary Indexing (Index Databases)

LCHILD Statement Associates Databases

The physical (HIDAM) DBD and the index DBD both containan LCHILD statement.
Together, the two LCHILD statements establish theassociation between the databases.
The NAME parameter inthe physical DBD's LCHILD statement specifies theindex pointer
segment andthe index DBD inwhichitis defined. The NAME parameter inthe index
DBD's LCHILD statement specifies the root segment and the physical DBDinwhichitis
defined. The INDEX parameter inthe index DBD's LCHILD statement specifies the
sequence fieldinthe named root segment.

The HIDAM method supports all of the DL/I hierarchical and logical relationships.

Secondary Indexing (Index Databases)

What is a Secondary Index

A secondary index defines analternative (or secondary)access path thatoverrides the
underlying hierarchical access path. DL/l supports the followingtypes of secondary
indexes:

m Anindexto aroot or dependent segment on the basis ofanyfieldinthe segment

m Anindexto arootor dependent segment on the basis ofanyfieldina physically
dependent segment

The key field for anindex can be a singlefield or up to five fields inthe same segment
concatenated inany order. A physical database can have multiplesecondaryindexes.

Define Secondary Index as a Separate Database

Secondary indexes must be defined as separatedatabases. The segment occurrencesin
a secondaryindex databasecontain the values of the specified key field(s) and the
pointers to the associated segment occurrences in the physical database. The secondary
index segment is known as the pointer segment. The segment containingthe key
field(s)is known as the source segment and the segment to be accessedis known as the
target segment. The sourceand target segments canbe the same or different.

Secondary indexes differ from HIDAM indexes in that they allowyou to index segments
other than root segments. In a secondaryindex, the pointer segment cancontain up to
five concatenated fields, rather than justone field. Also, the sourceand target segments
do not have to be the same.

42 DLI Transparency User Guide

Secondary Indexing (Index Databases)

Defining Secondary Indexes

Secondary indexes are defined ina manner similar to HIDAM index databases. Related
statements must be included in both the index DBD and the associated physical DBD.

Sample DBD Definitions

The samplebelow shows the DBD definitions for a physical HDAM database (DB2) and
anassociated secondaryindex database (DBINDX2).

DBD NAME=DB2 , ACCESS=HDAM,
RMNAME=(GLDHDC20,5, 660, 850)
DATASET DD1=DBHDAM, DEVICE=3350, BLOCK=2048, SCAN=1

SEGM NAME=SEG1, PARENT=0, BYTES=15

FIELD NAME=(FIELD1,SEQ,U),BYTES=5,START=1

LCHILD NAME=(SEG6,DBINDX2), PTR=INDX

XDFLD NAME=XDFLD1,SEGMENT=SEG2,
SRCH=FIELD2, DDATA=FIELD3

SEGM NAME=SEG2, PARENT=SEG1,BYTES=25

FIELD NAME=(FIELD2,SEQ,U),BYTES=5,START=1
FIELD NAME=(FIELD3),BYTES=10, START=6

SEGM NAME=SEG3, PARENT=SEG2,BYTES=15

FIELD NAME=(FIELD4,SEQ,U),BYTES=10,START=1
SEGM NAME=SEG4, PARENT=SEG2,BYTES=30

FIELD NAME=(FIELDS5, SEQ,U) ,BYTES=20,START=1
DBDGEN

FINISH

END

DBD NAME=DBINDX2, ACCESS=INDEX
DATASET DD1=INDX2,DEVICE=3350,BLOCK=23,
RECORD=88, SCAN=1

SEGM NAME=SEG6 , PARENT=0, BYTES=15

FIELD NAME=(FIELD6,SEQ,U),START=1,BYTES=15
LCHILD NAME=(SEG1,DB2),POINTER=SINGL, INDEX=XDFLD1
DBDGEN

FINISH

END

Figure 15. DBD definitions for a physical and secondary database

Chapter 2: DL/Tand CAIDMS/DB 43

Secondary Indexing (Index Databases)

Index DBD Statements

The index DBD must contain the following statements:
m DBD statement — ACCESS parameter must specify INDEX.

m SEGM statement — Defines the index pointer segment as the root for the index
database. Onlyone SEGM statement is allowed.

m FIELD statement — Defines the sequence field for the pointer segment. Onlyone
FIELD statement is allowed.

m LCHILD statement — Identifies the target segment andthe physical DBDinwhichit
is defined. The INDEX parameter specifies the name of the indexed field (XDFLD) in
the associated physical DBD.Only one LCHILD statement is allowed.

Physical DBD Statements

The physical DBD must contain the following statements:

m DBD statement — ACCESS parameter must specify HISAM, HDAM, or HIDAM.
Whileitis possibletoset up asecondaryindex for a logical database
(ACCESS=LOGICAL), itis notrecommended for reasons of performance and data
independence. HSAM databases arerestricted to sequential access.

m LCHILD statement — Identifies the pointer segment andthe index DBD inwhichit
is defined. The PTR (pointer) parameter must specify INDX (for index). The LCHILD
statement must be included under the SEGM statement for the target segment.

m XDFLD statement — ldentifies a sourcesegment andits index field. The valuefor
the NAME parameter is referenced inthe LCHILD statement inthe index DBD. The
SEGMENT parameter specifies thesource segment. The SRCH parameter specifies
the sequence fieldinthe sourcesegment to be used for indexing. The DDATA
parameter specifies a data field in the sourcesegment to be used for indexing.

Note that the values for the SRCH and DDATA fields will be concatenated to
produce the actual index-key field values. The XDFLD statement must be included
under the SEGM statement for the target segment.

Restructuring a Hierarchy

Ifa secondaryindex points to a dependent segment, the effect is to restructure the
hierarchy sothat the dependent segment appears as the root. Inthe new hierarchy, the
higher level segments inthe original hierarchy become dependents of the new root.
They appear as leftmost dependents inreverse hierarchical order.Asecondaryindexis
similar toa logical relationship in thatthey both restructure an underlying hierarchy.
However, a secondaryindexis different from a logicalrelationshipinthatitcan deal
only with a single physical database. Logical relationships can combine segments from
one or more physical databases.

44 DLI Transparency User Guide

Secondary Indexing (Index Databases)

The diagrambelow illustrates an original, underlying hierarchy and the new hierarchy
that results from indexing a dependent segment (SEG2).

Physical Database Q
Index
Target Segment SEG1 \ Database
SEG6 Painter Segment

Source Segment SEG2 /'_—/

SEG3 SEG4

Restructured Database

SEG2

SEG1 SEG3 SEG4

Figure 16. Hierarchical restructuring via a secondary index

Full and Sparse Indexing
A secondaryindex can be either full or sparse.
Full Index

A full index maintains an entry for each sourcesegment occurrence in which the search
field has a value.

Sparse Index

A sparse index maintains entries only for selected values in the search field.Because
sparseindexingis moreselective than full indexing, it provides faster search times for
the desired target segments.

Chapter 2: DL/T and CAIDMS/DB 45

Logical Databases

Logical Databases

What is a Logical Database

A logical database is a DBD definition that references structures already defined in one
or more physical databases (physical DBDs).Such a definitionis known as a logical DBD.

To anapplication, alogical DBD always appears as a single hierarchical physical DBD.
However, a logical DBDis derived from the relationships (especially the logical
relationships) defined in the associated physical DBDs.

Logical Databases Provide Flexibility

Logical databases provideflexibility for applications by allowing them to view the same
physical data in many different ways. Itis importantto remember that each logical DBD
is still hierarchicalin naturefor all of the DL/I callsthatuseit.

Defining a Logical Database
Specify LOGICAL for ACCESS Parameter

To define a logical DBD, you must specify LOGICAL for the ACCESS parameter inthe DBD
statement. The bulk of a logical DBD consists of SEGM statements that reference
segments defined in one or more physical DBDs. (Segment fields can bedefined only on
the physical DBD level.)

SEGM Statement

The SEGM statement specifies a NAME for the segment and must containa SOURCE
clausetoidentify the segment as defined ina physical DBD. Similar to physical DBDs, the
PARENT parameter specifies the parent segment within the logical structure. For
example, the statement below declares that segment SEG7 is based on the segment of
the same name inthe PHYSDB2 physical DBD, andis a child of the LSEGB segment in this
logical database:

Syntax

SEGM NAME=SEG7, SOURCE=((SEG7,PHYSDB2)) , PARENT=LSEGB

46 DLI Transparency User Guide

Logical Databases

Intersection and Concatenated Segments

Pointer and Target Segments

As mentioned above, logical databases aredefined by referencing segments already
defined in one or more physical DBDs. In particular, logical databases rely on the logical
relationships defined inthe physical DBDs. Logical relationshipsallowyouto linka
segment (logical child)inonephysical DBD with a segment (logical parent)inanother
(or the same) physical DBD.In such a relationship, thelogical child segment is referred
to as the pointer segment, and the logical parentis referred to as the target segment.

Intersection and Concatenated Segments

In practice, the link between pointer and target segments is established via a pointer
field in the pointer (logical child) segment. If the pointer segment contains data fields in
addition to the pointer field,suchfields aresaidto carry intersection data and the
segment itselfis referred to as an intersection segment. The intersection data is unique
to the relationship between a pointer segment occurrence andits associated target
segment occurrence. An application can retrieve and modify the data portions of the
pointer and target segments separately, or itcan retrieve and modify the pointer and
target segments as one concatenated segment.

Defining a Concatenated Segment

The definition of individual pointer (logical child) and target (logical parent) segments
occurs atthe physical DBD level.The definition of concatenated segments occurs atthe
logical DBD level and is specified via the SOURCE parameter inthe SEGM statement. The
SOURCE parameter determines the contents of a concatenated segment, which can be:

m The concatenated key of the destination parent, the pointer segment's intersection
data, andthe destination parent's data

m The concatenated key of the destination parentandthe pointer segment's
intersection data

m The destination parent's data only

The Destination Parent

The destination parent can be either the physical orlogical parentof the pointer (logical
child) segment. The choicedepends on the directionin which you want the access to
proceed: from logical parentto physical parentvia the logical child, or from physical
parent to logical parentvia the logical child.

Syntax
The SOURCE parameter inthe logical DBD SEGM statement takes the followingform:

SOURCE = ((psegname), J KEY, KEY,
({pseg!) {DATA dbname1), (dsegname}, DATA { doname2))

Chapter 2: DL/T and CAIDMS/DB 47

Logical Databases

Parameters
psegname

Identifies the name of the pointer (logical child) segment as defined in the physical
DBD dbnamel. This segment can be either a virtual logical child or a real logical
child. (See "Bidirectional Virtual Relationship" and "Bidirectional Physical
Relationship" earlier in this section.)

KEY/DATA

KEY/DATA specifies whether anapplication willhaveaccess to only the key
(sequence field) of the named segment, or will haveaccess to the segment's data
portion as well as the key. KEY is the default.

dsegname

Dsegname is the name of the destination parentas defined inthe physical DBD
dbname2. The destination parentcan be either the physical orlogical parentfor the
pointer (logical child) segment named in psegname.

Sample Logical Database

DBD Definition for a Logical Database

The samplebelow shows the DBD sourcestatements for a logical database. The DBD
definitions for the underlying physical databases arethoseshownin Figure 9. In the
logical DBD shown below, LSEGB is the concatenated segment that combines the SEG6
and SEG1 segments from PHYSDB1 and PHYSDB2, respectively.

DBD NAME=LOGDB, ACCESS=LOGICAL

DATASET LOGICAL
SEGM NAME=LSEGA , SOURCE=((SEG5, PHYSDB2))
SEGM NAME=LSEGB, PARENT=LSEGA,

SOURCE=((SEG6,DATA, PHYSDB2) , (SEG1,DATA, PHYSDB1))
SEGM NAME=SEG3, PARENT=(LSEGB, ((SEG3,PHYSDB1)))
SEGM NAME=SEG4 , PARENT=LSEGB, SOURCE=((SEG4, PHYSDB1))
SEGM NAME=SEG7, SOURCE=((SEG7 , PHYSDB2)) , PARENT=LSEGB
SEGM NAME=SEG8, SOURCE=((SEG3, PHYSDB2)) , PARENT=LSEGB
DBDGEN
FINISH
END

48 DLI Transparency User Guide

Program Communication Blocks

Logical Database Structure

The illustration below shows the logical database produced by the logical DBD definition
inthe sourcestatements shownabove. Compare the resultinglogical structurewith the

hierarchical structures for the underlying physical databases.

Concatenated
Segment

PHYSDB1

SEG1

Physical Databases

SEG2

SEG3

SEG4

Logical Database

LOGDB

LSEGA
(SEGS5)

LSEGB

(SEGE)

(SEG1)

PHYSDB2

SEG5

:

SEG6

SEG7

SEGS

SEG2

SEG3

SEG4

SEG7

Figure 17. Logical database structure

Program Communication Blocks

SEGS8

What the Program Communication Block (PCB) Does

A program communication block (PCB) selects segments from a specific physical or
logical DBD.An application usingthe PCB will have access to only those segments that
are selected. Usually,a PCB selects only a subset (or subhierarchy) of the segments
defined in a DBD, butit can select all of the segments.

Chapter 2: DL/Tand CAIDMS/DB 49

Program Communication Blocks

Multiple PCBs

Multiple PCBs can be defined for the same DBD, each selecting a different subset of the
defined segments. PCBs can overlap so that the same segment(s) canappearindifferent
PCBs. Multipleapplications can sharethe same PCB, but via different program
specification blocks (described later in this section).

Data Sensitivity and the PROCOPT Options

What is Data Sensitivity

InDL/I, anapplication's datasensitivity refers to those segments that are availableto
the applicationvia thePCBs it uses.In terms of data sensitivity, the basic purposeofa
PCB is to effectively mask out segments from anapplication.

PROCOPT Processing Options

The PROCOPT processing options providea number of access controls in addition to the
basicaccess control based onincluding or excluding a segment. PROCOPT options let
you further qualify accessto specified segments. For example, PROCOPT=G permits the
program to GET (thatis, read)a segment. Some PROCOPT options canalso bespecified
for the entire DBD, thereby restrictingaccess on the databaselevel itself.

The PROCOPT options include:

m G — Get (retrieve) access

m R —Replace (update) access

m | —Insertaccess (to store new segments)

m D— Delete access

m P —Pathcalls

m O —Get callsonly(nohold)

m A—Any or all ofthe access options above

m L—Loadaccess (for databaseloading)

m xS— Ascending sequence only for the option indicated by x (G, R, etc.)

m K——Key access only

Multiple options can be specified in the same PROCOPT parameter.

50 DLI Transparency User Guide

Program Communication Blocks

Defining a PCB

The K Option

The K option allows a PCBto restrictanapplication to only the key portion of a segment,
while masking out the data portion. The K optionis importantbecause itremoves
access toa segment but still retainsthe hierarchical access path tothe segment's
dependents. By default, when a PCB masks out a segment, italsomasks outthe
segment's dependent segments. The K option provides a way around this restriction.

Sample PCB

The example below shows the sourcestatements for a sample PCB

PCB TYPE=DB, DBDNAME=DBDNEW, PROCOPT=G,
KEYLEN=45, PROCSEQ=INDEX1

SENSEG NAME=SEGRT1, PARENT=0

SENSEG NAME=SEG3, PARENT=SEGRT1

SENSEG NAME=SEG4, PARENT=SEG3

SENSEG NAME=SEG2, PARENT=SEGRT1

PSBGEN LANG=COBOL , PSBNAME=PSB1

END

Figure 18. Sample PCB definition
The PCB Statement

To define a PCB, you must firstspecify the PCB statement. On the PCB statement, the
DBDNAME parameter identifies a physical or logical DBD from which to select segments.
The PROCOPT parameter specifiesa PROCOPT option for the entire database.

The KEYLEN Parameter

The KEYLEN parameter specifies the maximum key length to be used when the key
(sequence field value) of a segment is concatenated with the keys of the higher-level
segments inits hierarchicalaccesspath.The KEYLEN valueis determined by addingup
the lengths of the sequence fields necessarytoreach the lowest-level segment inthe
hierarchy of availablesegments.

Sensitive Segment (SENSEG) Statements
The bulk of a PCB definition consists of SENSEG (sensitive segment) statements. Each

SENSEG statement specifies a segment to be included from the named DBD. The
SENSEG statement canalsoincludea PROCOPT option for the segment.

Chapter 2: DL/T and CAIDMS/DB 51

Program Specification Block

Program Specification Block

The program specification block (PSB) defines all of the databaseviews that are
availableto anapplication. APSB consists of one or more PCB definitions similar to the
one shownin Figure18. One PSB cancontain up to 255 separate PCBs.

For each PCB you define, you mustincludethe PSBGEN statement. The PSBGEN
statement names the PSB and specifies thelanguage in which the current applications
are written.

Parallel Processing

Ifa PSB contains multiple PCBs,an application usingthe PSB can engage in parallel
processing.Sinceeach PCB canreference a separate DBD, the application, by way of
multitasking, can perform parallel processing on different databases or on different
views of the same database. DL/I maintains a separate PCB control block for each
databaseinuse.

Definition Summary

The DL/I process of defining databases and application views of these databases
involves the following steps:

1. Define one or more physical databases using DBD sourcestatements. The physical
DBDs specify segments, fields within segments, and the hierarchicalrelationships
among segments. Logical relationshipscanalso bedefined to relate segments from
one or more physical databases. Each physical DBD must also beassigned one of
the four physicalaccess methods. If using HIDAM access, the associated index
databasemust also bedefined.

2. Ifdesired, define one or more secondary index databases for individual physical
databases.

3. Define one or more logical databases using DBD statements that reference
segments inalready defined physical databases. Logical DBDs typically make explicit
the logical relationships defined in the underlying physical DBDs. Concatenated
segments canalso be defined to specify run-time access regardingthe physical
parent, the logical parent,and the common (physical/logical) child.

4. Define one or more program communication blocks to define the application
sensitivity for segments ina physical orlogical database. Run-time access options
for segments andthe entire databasecanalso bespecified via the PROCOPT
parameter.

5. Define a program specification block to collectall of the PCBs that can be used by
anapplication.

52 DLI Transparency User Guide

DL/T Commands

DL/I Commands

Basic Operations

Call Format

The DL/I commands constitute the run-time databaseinterfacefor anapplication.
Collectively, the DL/I commands are a procedural languagefor data access, data
retrieval,and data manipulation. They are implemented as a set of subroutine callsor
preprocessed commands with various parameters. An application requests desired
databaseoperations by embedding the appropriatecallsatspecific pointsinthe source
code. Separate DL/l compilers are provided for a number of application programming
languages.

The DL/I commands are both navigation-and access-path-oriented.

The basic DL/l commands are:
m GET UNIQUE (GU) — Retrieves a named segment occurrence (direct retrieval)

m GET NEXT (GN) — Retrieves the next segment occurrence inthe hierarchical access
path

m GET NEXT WITHIN PARENT (GNP) — Retrieves the next segment occurrence under
the current parent occurrence

m GET HOLD UNIQUE (GHU) — Same as GU, but permits a subsequent DELETE or
REPLACE

m GET HOLD NEXT (GHN) — Same as GN, but permits a subsequent DELETE or
REPLACE

m GET HOLD NEXT WITHIN PARENT (GHNP) — Same as GNP, but permits a
subsequent DELETE or REPLACE

m REPLACE (REPL) — Updates an existing segment occurrence in the database
m INSERT (ISRT) — Inserts a new segment occurrence inthe database

m DELETE (DLET) — Deletes anexistingsegment occurrenceand all of its dependents

Syntax

Call-level DL/I has the following format:

CALL langDLI((#PARMS,)function, pcb-name,user-io-area, (ssa...))

Chapter 2: DL/Tand CAIDMS/DB 53

DL/T Commands

Parameters
langDLI

Specifies the language of the calling program (for example, PLITDLI for a PL/I
program).

#PARMS

Specifies the number of parameters for the call, notincludingthe #parms
parameter itself.

function

Specifies one of the DL/I command codes (GU, GN, REPL, etc.).
pchb-name

Specifies the PCB to be used with the call.
user-io-area

Identifies the name of the |/O area.See Program Communication (see page 55).

ssa

Specifies one or more optional segment search arguments (SSAs). There can be
from 0 to 15 SSAs.

Sedment Search Arguments

A segment search argument (SSA) specifies criteriafor selectinga segment occurrence
alongthe hierarchical access path. SSAs take the following form:

Syntax

segment-name(field-name operator field-value)

Parameters
segment-name
Identifies the name of the desired segment.
field-name
Identifies the name of a fieldinthe segment.
operator
Specifies a standard relational operator (=, >=, <=, etc.).
field-value

Specifies an actual valuefor field-name.

54 DLI Transparency User Guide

DL/T Commands

Call-level DL/1 Example

The example below selects the EMPLOYEE segment occurrence whose ID field has the
value123456:

GU, EMP-PCB, I0-A, EMPLOYEE (ID = 123456)

DL/ searches the EMPLOYEE segment occurrences withinthe databaseidentified by
EMP-PCB (the PCB name) and returns the contents of the found occurrence to 10-A (the
user I/O area).If duplicatevalues areallowed for the search field, DL/I returns the first
qualifying occurrenceinto the I/O area.

You can construct more complex selection criteria by combining SSAs with logical
operators (AND, OR, etc.). By combining SSAs, you candirectthe searchto any level in
the hierarchy.

Command-level DL/I (EXEC DLI) Example

DL/l databaseaccess is also possible using EXEC DLI commands. These commands allow
similar functionality and content as call-level DL/I. The example below selects the
EMPLOYEE segment occurrencewhose IDfield has the value123456 (assuming EMP-ID
contains “123456’),and is equivalentto the call-level exampleabove:

EXEC DLI GU USING PCB(EMP-PCB) SEGMENT(EMPLOYEE) WHERE(ID=BVPID) INTO(IO-A);

You can constructmore complex selection criteria by combining multiple SEGMENT
statements. By combining SEGMENT statements, you candirect the searchto any level
inthe hierarchy.

Program Communication

The Program Communication Block (PCB)

When anapplication performs operations againsta database,italways does so through
a program communication block (PCB). The PCB restricts the application'saccessto
specific segments selected from the definition of an underlying database.

Regardless of whether the definitionis for a physical or a logical database, the database
always appears to the applicationashierarchical. Thisisanimportantpointbecausethe
flow of the application's processing mustalways conformto a specific hierarchical path.
In other words, applicationaccesstoa databasealways startsata root segment
occurrence and proceeds downward through the hierarchy, movingfrom left to right
among segment occurrences on the same level.

Chapter 2: DL/Tand CAIDMS/DB 55

The CAIDMS/DB Environment

PCB Provides for Transfer and Control of Information

At program run time, DL/l maintains an1/O area for each PCB defined in the PSB. The
PCB area provides for the transfer of data and control information between the
application and DL/I. The PCB I/O area contains a control block with a number of fields.
DL/l updates the control fields after each DL/l call. An application's accessto these fields
is established by declaringthe fields as programvariables.Itis theapplication's
responsibility to check the control fields, as appropriate, after each DL/I call.

Basic DL/I Control Fields

The basic DL/I control fields (with samplenames) are:

m DBD-NAME — Name of the DBD referenced by the PCB. This DBD determines the
access path availableto the application.

m SEG-LEVEL — The current segment level inthe hierarchy.

m STATUS-CODE —DL/I resultstatus code.

m PROCOPTS — Processingoptions in effect, as specified in the PCB definition.
m SEG-NAME — Segment name for the segment occurrence lastaccessed.

m KEY-LENGTH — Length of the concatenated key for the segment occurrencelast
accessed.

m SEN-SEGS — Number of segments availabletothe application, as specifiedin
SENSEG statements inthe PCB.

m KEY-AREA — Key feedback area for the concatenated key of the segment
occurrence lastaccessed.

Database Positioning

The SEG-LEVEL, SEG-NAME, and KEY-AREA fields inthe PCB help the application to keep
track of its current positioninthe database.The application can usethe current
contents of these fields to direct subsequent databasenavigationand/or retrieval
operations.

The CA IDMS/DB Environment

Set is the Basic Structure

In CA IDMS/DB, the basic structureis the set. A set consists of record types that are
related as owner and member. Individual record types can participatein more than one
relationship (set) either as owner or member (thatis,a member recordtype canhave
more than one owner record type).

56 DLI Transparency User Guide

The CA IDMS/DB Environment

Multiple Ownership Support

Support for multiple ownershipis the most basic difference between DL/l and CA
IDMS/DB. InDL/I, a child segment (equivalent to a member record type) can have one
andonly one parent segment (equivalent to an owner record type).

Note: DL/I's support for bidirectionallogical relationships provides the functional
equivalent of multiple ownership.

Schema: The Top-Level Definition

In CA IDMS/DB, the top-level definitionis known as the schema. The schema names all
of the allowablerecord types and defines the elements (fields)that canappearineach
record type. The schema also names and defines the possiblerelationshipsamongthe

record types; these defined relationshipsarethe sets.

Subschema: The Second-Level Definition

The second-level definitionin CA IDMS/DB is known as the subschema. As its name
indicates, the subschema defines a subset of the top-level schema definition. (Whilea
subschemais usuallya subsetofaschema, it canalsoduplicatea schemainits entirety.)
Any number of subschemas can be defined for a given schema.

Defining CA IDMS/DB Databases

Use Data Description Language (DDL)

The databaseadministrator prepares theschema definition using source statements
providedin the schema data description language (Schema DDL). The database
administrator codes the subschema definitions using similar source statements provided
inthe subschema data description language (Subschema DDL).

You use CA IDMS physical data definition language statements to create a DMCL module
that maps the schema areas to physical files and defines buffers for database
operations.

Note: For more information aboutdefininga DMCL, see the CA IDMS Database
Administration Guide.

DDL Compilers Process Source Statements

Separate schema and subschema DDL compilers process the source statements. The CA
IDMS Command Facilityis used to produce assembler sourcefor the DMCL module. The
DMCL assembler sourcemust then be assembled to produce object modules that map
the logical areasinto physicalfiles and setup the necessary buffers.

Chapter 2: DL/T and CAIDMS/DB 57

The CAIDMS/DB Environment

Executing CAIDMS/DB Applications

At applicationruntime, CA IDMS/DB loads the object-form subschemas and DMCL
modules. The applicationis thenready to startissuing datamanipulation language
(DML) calls for database operations. The object-form subschemas serveas control tables
for the application. Thesesubschemas maintain status information so theapplication
can check the results of databaserequests.

Basic CA IDMS/DB Components
CA IDMS/DB Components
The diagrambelow illustrates the basic components inthe CAIDMS/DB environment.

Note: For more information aboutcomplete descriptions of all of the CA IDMS/DB
components, see the CA IDMS Database Design Guide and CA IDMS Database
Administration Guide.

All Record Types
and Sets

Schema-A -
Application-1 Application-2

Subschema-1 Subschema-2 Available
Record Types
and Sets

Logical Area to
DMCL Physical File
Mapping

Physical
Data
Database-A

Figure 19. CA IDMS/DB components

58 DLI Transparency User Guide

DL/T and CA IDMS/DB Correspondences

DL/I and CA IDMS/DB Correspondences

CA IDMS DLI Transparency allows a DL/l application programto access a CAIDMS/DB
database. To support this access, you must define a CA IDMS/DB schema and
subschema that correspond to the specific DBD and PSB definitions expected by the
application. For example, for each DL/I segment, hierarchy,andlogical relationship, you
must make sure that there is a corresponding CA IDMS/DB record type and set

structure.

Note: For more information aboutthe rules for definingschemas and subschemas, see

the CA IDMS Database Administration Guide.

The followingtablesummarizes the required correspondences between DL/I and CA

IDMS/DB.

DL/l structure

CA IDMS/DB equivalence

Segment

Record

Parent segment

Owner record

Child segment

Member record

Parent/child relationship

Set relationship where parent is the
owner andthe childis the member

Child segment with a sequence field

Member record of a sorted set

Sequence field for a dependent segment

Sort key

Unsequenced child segments with insertrules

as follows:
m HERE
m FIRST
m LAST

Member record of a set with anorder
option as follows:

m PRIOR
m FIRST
m LAST

Child segments with nonuniquesequence
fields withan insertruleas follows:

m FIRST

m LAST

Member record of a sorted set with
the following duplicates option:

m FIRST

m LAST

Child segments with nonuniquesequence
fields withan insertrule of HERE*

Member record of a set with a set
order option of PRIOR

Logical relationship
m Physical parentsegment
m Llogical parentsegment

m Llogical child segment

Many to many relationship
m Owner record
m Owner record

m Junctionrecord

Chapter 2: DL/T and CAIDMS/DB 59

DL/T and CA IDMS/DB Correspondences

DL/l structure

CA IDMS/DB equivalence

Dependent segments ina physical access
database

Members of a CA IDMS/DB set

Root segment inan ACCESS=HDAM database

CALC record

Root segment inan ACCESS=HISAM database

DIRECT record ina SYSTEM-owned
indexed set; ascendingor descending
sortorder on the record's symbolic key
(equivalentto the sequence field of
the HISAM root segment)

Root segment inan ACCESS=INDEX database
(pointer segment)

Member record ina SYSTEM-owned
indexed set; ascendingsortorder on
the record's symbolic key (equivalent
to the sequence field of the index
pointer segment); also, VIA member in
a set owned by the target record

Pointer segment (root segment inthe
corresponding ACCESS=INDEX database)

Member record ina SYSTEM-owned
indexed set; ascendingsortorder on
the record's symbolic key (equivalent
to the sequence field of the index
pointer segment); also, VIA member in
a set owned by the target record

Target segment (root segment)

CALC record that owns the pointer
record in the target-pointer set

Secondary index target segment

Owner record of a target-pointer set

Pointer segment (root segment of the
corresponding ACCESS=INDEX database)

Record that is a member of anindexed
set sorted inascendingorder on the
valueof the sort key (i.e. the sequence
field for the equivalentsegment);
record is alsoa VIAmember of a set
owned by the target record

ACCESS=HIDAM database:

m Root segment (target segment)

Record equivalents for ACCESS-HIDAM
database:

m CALC recordthat owns a pointer
record through the target-pointer
set

Note: *Special considerationsapplytoinsertrules (see Sequenced and Unsequenced

Child Segments (see page 61)).

60 DLI Transparency User Guide

DL/T and CA IDMS/DB Correspondences

Sedments and Record Types

For each segment defined ina physical DBD, there must be a corres pondingrecord type
ina CA IDMS/DB schema. Segments from logical DBDs are exceptions and must not
appearinthe schema. Logical segments are redefinitions of segments already defined in
physical DBDs.

Note: The CA IDMS DLI Transparency syntax generator creates the necessary
correspondences inthe resulting schema, subschema, and DMCL source. You do not
have to code the CA IDMS/DB definitions manually.

Sequenced and Unsequenced Child Segments

CA IDMS/DB requires different definitions for child segments, depending on whether
they are sequenced or unsequenced.

Sequenced Child Segments
Sequenced child segments correspond to member record types insorted sets. The child
segment's sequence fieldis used for the sortkey inthe CA IDMS/DB sorted set.

m |fthe childsegmentis defined for U (unique) sequence field values, duplicates are
not allowed for the set (DUPLICATES NOT ALLOWED).

m |fthe childsegmentis defined for M (multipleor duplicate) sequence field values,
the valuefor the insert RULES parameter determines where duplicatefields are
stored within the set sequence:

— FIRST —the setis ordered DUPLICATES FIRST.
— LAST —the setis ordered DUPLICATES LAST.

— HERE —the correspondingrecordtype is a member in anunsorted set with a
set order option of PRIOR.

Unsequenced Child Segments

Unsequenced child segments correspond to member record types inunsorted sets. The
set ORDER option is determined by the valuefor the RULES parameter on the child's
SEGM statement:

m HERE — Corresponds to an order option of PRIOR.
m FIRST — Corresponds to an order option of FIRST.

m LAST — Corresponds to an order option of LAST. Note that LAST is the DL/I default
for unsequenced segments. If a child segment does not have RULES specified, LAST
is used for the order option inthe corresponding unsorted set.

Chapter 2: DL/T and CAIDMS/DB 61

DL/T and CA IDMS/DB Correspondences

Deletable Segments

Ifa DL/l segment can be deleted, the correspondingrecord type must have prior
pointers. As a rule, all sets should have prior pointers.

Hierarchies and Sets
Parent/Child Relationships Correspond to Sets

DL/1 parent/child relationships (hierarchies) correspond to CA IDMS/DB sets. There must
be a CA IDMS/DB set for each physical parent/child relationship.Ina CA IDMS/DB set,
the owner record type corresponds to the parent segment, and the member record type
corresponds to the child segment.

With CA IDMS DLI Transparency, CAIDMS/DB sets can have only one member record
type. Multi-member sets are not allowed.

DL/1 Hierarchies and CA IDMS/DB Sets

The diagrambelow shows a sample DL/l hierarchy converted to a series of CA IDMS/DB
sets.
DL/l Hierarchy

SEGA

SEGB SEGC

SEGD

Carresponding Sets in CA-IDMS/DB Schema

RECB RECA RECC
[T 1 [T T []

RECD

Figure 20. DL/I hierarchies and CA IDMS/DB sets

62 DLI Transparency User Guide

DL/T and CA IDMS/DB Correspondences

Logical Relationships and Sets

In CA IDMS DLI Transparency, each segment in a logical relationship correspondsto one
of three CAIDMS/DB record types.

Junction Record

The logical child segment is defined as a junction record thatis a member of two sets.
The owner of one set corresponds to the physical parent segment; the owner of the
other set corresponds to the logical parent segment.

Owner and Member Records

Ifthe DL/I physicalandlogical parents arethe samesegment, one record type is used to
represent both parents. In this case, the record type is the owner of the two sets of
whichthe junction record (equivalent to the logical child) is the member.

The junction record must always havea location mode of VIA. The VIA set is the set of
which the record type for the physical parentis theowner. Note that databaseload
procedures canoverridethis consideration.

CA IDMS DLI Transparency requires that all logical relationships (thatis, unidirectional,
bidirectionalvirtual,and bidirectional physical) beimplemented as bidirectional virtual
relationships. Theconversion to bidirectional virtualistransparentto anapplication.
However, the conversion of bidirectional physical relationships requires special
consideration.

Implementing a Bidirectional Physical Relationship

To implement a bidirectional physical relationship as a bidirectional virtual relationship
in CA IDMS/DB, arecord type is defined for each of the parent segments. Additionally,a
singlerecord type is used to represent the physically paired child segments. This record
type is defined as a VIA junctionrecordin the set owned by each of the parent record
types. Inbidirectional virtual terms, the junction record type becomes the equivalent of
the real logical child and the virtual logical child.

Chapter 2: DL/T and CAIDMS/DB 63

DL/T and CA IDMS/DB Correspondences

DL/I Logical Relationship and CA IDMS/DB Sets

The followingdiagramillustrates a DL/I bidirectional virtual relationship and the CA
IDMS/DB set structures used to implement it.

DLA
SEG1 SEG3
(Physical (Logical
Parent Parent
Segment) Segment)
L 1
SEG2 | Virtual :
{Real Logical , Logical !
Child ' Child i
Segment) | Segment |
CA-IDMS/DB
RECH1 REC3
[] [T]
| I
REC2
[T]
I

Figure 21. DL/I logical relationship and corresponding CA IDMS/DB sets

64 DLI Transparency User Guide

DL/T and CA IDMS/DB Correspondences

DL/I Access Methods in CAIDMS/DB

Each of the four access methods allowed for physical DBDs requires a different
implementation in CA IDMS/DB. The HSAM, HISAM, HDAM, and HIDAM access methods
are discussed below.

HSAM

CA IDMS DLI Transparency does not implement HSAM databases directly. However, the
indirectimplementation is transparenttoany DL/ application usingan HSAM database.
The CA IDMS DL Transparency implementation depends on whether the HSAM
databaseis sequenced or unsequenced:

m Asequenced HSAM database has aroot segment thatis sorted on the basis ofits
sequence field. A sequenced HSAM databaseis defined in the same way as a HISAM
database(see "HISAM" below). In the schema, the root segment of the HSAM
databaseis treated as the root segment of a HISAM database. Once the HSAM
databaseis defined as a HISAM database, the appropriatestructures aredefined in
the corresponding CA IDMS/DB schema.

m An unsequenced HSAM database is defined as a separatearea inthe CAIDMS/DB
schema. This area contains only the record types and sets needed to reflect the
HSAM segments and their hierarchies. All record types are defined with a location
mode of DIRECT.

HISAM

CA IDMS DL Transparency relates the root segment inthe HISAM databaseto the
member record type ina system-owned indexed set. The member record has a location
mode of DIRECT; its symbolic key corresponds to the root segment's sequence field.If it
is necessaryto keep the member record (the root segment equivalent)in physical
sequential order, ascendingor descendingorder is defined for its symbolic key.

Note: For more information aboutindexed sets, see the CA IDMS Database
Administration Guide.

Chapter 2: DL/Tand CAIDMS/DB 65

DL/T and CA IDMS/DB Correspondences

Sample HISAM Database and CA IDMS/DB Sets

The diagrambelow, shows a sample HISAM databaseand the CA IDMS/DB sets used to

implement it.
(] W] | CA-IDMS/DB
HISAM
RECF
SEGF [1 [DIRlECT
RECG
SEGG [|""“|
RECH
SEGH [| |"'A|

Figure 22. Sample HISAM database and corresponding CA IDMS/DB sets
HDAM
In CA IDMS DLI Transparency, the root segment inan HDAM databasecorresponds to an

owner record type with a location mode of CALC. The root segment's sequence fieldis
defined as the CALC key.

66 DLI Transparency User Guide

DL/T and CA IDMS/DB Correspondences

Sample HDAM Hierarchy and CA IDMS/DB Sets

The diagrambelow shows a sample HDAM hierarchy and the corresponding CA
IDMS/DB set structures.

DL/ CA-IDMS/DB
HDAM
RECA
SEGA L1 1 C"‘Llc
RECB
[] [via
SEGB [
RECC
[T _[via
SEGC |
RECD
[T [via
SEGD I
RECE
[] [viA
SEGE [

Figure 23. Sample HDAM hierarchy and corresponding CA IDMS/DB sets
HIDAM

As with an HDAM database, the HIDAM root segment is defined as an owner record
with a location mode of CALC. The root segment's sequence field becomes the CALC
key.

Ina HIDAM database, the root segment is alsothesourceand target segment for the
associated index database.To accountfor the index pointer segment, a member record
type is defined with a location mode of VIA withinan indexed set owned by the CALC
owner record type. The index record contains a single element to match the root
segment's sequence field (CALC key inthe owner record type). The index record also
contains any data fields defined in the index. During processing, CA IDMS/DB maintains
matching occurrences between the index (member) record and the owner of the set.

Chapter 2: DL/Tand CAIDMS/DB 67

DL/T and CA IDMS/DB Correspondences

Sample HIDAM Hierarchy and CA IDMS/DB Sets

The diagrambelow shows a sample HIDAM hierarchy and the corresponding CA
IDMS/DB set structures.

Ind
DL/ (P:}m‘?’:lxry) HIDAM
SEGI SEGJ
(Pointer) [®-~-""""""""---- ™ (Target &
Scurce)
| |
SEGK SEGL SEGO
SEGM SEGN
CA-IDMS/DB A
RECI RECJ
[T [vIA [T [via
I
RECK RECL REGQO
[T T wa IIIVIiL\ |||V||A
HECN RECM
[T [wia [T [vA

Figure 24. Sample HIDAM hierarchy and corresponding CA IDMS/DB sets

DL/I Secondary Indexes in CA IDMS/DB

A DL/l secondaryindexinvolves a primarydatabaseand anindex database. The primary
databasecontains a sourceand a target segment. The index databasecontains anindex
pointer segment, whichis alsothe root segment.

68 DLI Transparency User Guide

DL/T and CA IDMS/DB Correspondences

Define Index Pointer Segment as Member Record

In CA IDMS DLI Transparency, the index pointer segment is defined as a member record
type with a location mode of VIA ina set owned by the target record. The pointer
segment is alsodefined as a member recordina system-owned indexed set. This setis
sorted inascendingorder on the pointer record's symbolic key, whichis equivalentto
the sequence field inthe pointer segment.

CA IDMS/DB does not require a separate set to reflect the sourcesegment and pointer
segment relationship.

Implementing Pointer and Target Relationships in CA IDMS/DB

The illustration belowillustrates the CA IDMS/DB set structure that relates the pointer

andtarget segments. Note that this relationshipis thesame fora secondaryindexanda
HIDAM index database.

Target Record

Pointer Record
{Root of HIDAM)

LT via], [T T cac

Figure 25. CA IDMS/DB implementation of pointer and target relationship

Chapter 2: DL/T and CAIDMS/DB 69

DL/T and CA IDMS/DB Correspondences

DL/1Secondary Index and CA IDMS/DB Sets

The followingdiagram shows a secondaryindex foran HDAM primary databaseand the
corresponding CA IDMS/DB set structures. Note that the primary databaseis an HDAM
databaseand the pointer segment isintheindex (secondary)database.

DLA CA-IDMS/DB
Index
HDAM (Secondary)
RECP
SEGP SEGU [T [CALC
{Painter) [
RECQ
SEGQ [T I V|IA
RECR
sean [T | V&
RECS RECU
SEGS [[VIA [[VA
(Target) [[
RECT
SEGT [] [VIA
(Source) [

Figure 26. DL/I secondary index and corresponding CA IDMS/DB sets

Parallel Processing Support in CAIDMS/DB

CA IDMS DU Transparency supports DL/l parallel processingintwo ways:

m Multiple PCBs — A CA IDMS/DB subschema canincludedefinitions to reflectany
number of PCBs ina corresponding PSB, with no limitation on the DL/l structures
containedinthe PCBs. For example, when two PCBs that define the same hierarchy
are both used by a DL/I application, CAIDMS DLI Transparency will maintain
databasepositioning (currency)independently for each PCB.

m Multiple positioning — The DL/I PCB statement allows you to optionally specify
separatepositioning for each hierarchical pathina databasedefinition. CAIDMS
DU Transparency will maintain separate currency for each CA IDMS/DB structure
that corresponds to one of the DL/I hierarchies.

70 DLI Transparency User Guide

DL/T and CA IDMS/DB Correspondences

DL/I Calls in CAIDMS/DB

DL/I Database Calls

CA IDMS DU Transparency supports all of the DL/I databasecallsand all of the DL/I
command codes shown inthe tables below.

Call Function Meaning

GU GET UNIQUE

GN GET NEXT

GNP GET NEXT WITHIN PARENT

GHU GET HOLD UNIQUE

GHN GET HOLD NEXT

GHNP GET HOLD NEXT WITHIN PARENT

ISRT INSERT

DLET DELETE

REPL REPLACE

DL/I Command Codes

Code Purpose

C Allows use of concatenated keys in SSAs

D Specifies path calls (thatis, allows retrieval, modification,
or insertion of several segments with one call)

F Permits search for a segment to startat the first
occurrence under its parent, regardless of positions.

L Causes the lastoccurrence of a segment type to be used
insatisfyinga call

N Prevents the replacement of the specified segment(s)
followinga pathretrieval call

P Establishes parentageatthe specified level when used
with a retrieval call

U Maintains currentpositioning atthe specified level

\Y Maintains currentpositioningatall levels higher than the

specified level

- (null command code)

Causes no special processingto occur

Chapter 2: DL/T and CAIDMS/DB 71

DL/T and CA IDMS/DB Correspondences

Extensions to Basic Calls
As extensions to the basic callsshowninthe DL/I command codes tableabove, CA IDMS
DLl Transparencyalsosupports:

m Path calls — Calls used toretrieve, modify, orinsertmultiplesegments in a
hierarchical path.

m Qualified and unqualified calls — Calls specified with or without segment search
arguments (SSAs).

m Qualified and unqualified SSAs — SSAs with qualification statements or qualified
by segment type only.

DL/1System Service Calls

The following DL/I system servicecallsarealso supported under CA IDMS DLI

Transparency:

m PCB —Schedules a PSB call (used only with CICS)

m TERM — Terminates a PSB call (used only with CICS)

m ROLL and ROLB — Treated as a DML ROLLBACK request

m CHKP (CHECKPOINT) — Treated as a DML COMMIT request

Usade Considerations

When definingthe CA IDMS/DB equivalents for your DL/I structures, keep in mind the
following usage considerations:

m CAIDMS DU Transparency does not support multiple noncontiguous sequence
fields for a virtual logical segment. A singlesequence field, however, is supported.

m CAIDMS DU Transparencyalways uses thefollowing delete rules: physical, virtual,
logical, for the physical parent,logicalchild,andlogical parent, respectively. Refer
to the appropriate DL/l documentation for a description of the delete rules.

m CA IDMS DU Transparency supports sparseindexingthrough null-value
specifications orindex suppression exits. If you use index suppression exits, you
must convert the exits to CA IDMS/DB database procedures.

For more information abouta detailed description of index suppression exits, see
Index Suppression ExitSupport (see page 253).

m You must convert segment edit/compression exits to CAIDMS/DB database
procedures.

72 DLI Transparency User Guide

Unsupported DL/I Features

m CAIDMS DU Transparency supports PROCOPTE on the PCB statement. To reflect
this processingoption, you must specify EXCLUSIVE for the CA IDMS/DB area ready
option.

m CA IDMS DU Transparency automatically supports PROCOPT O and requires no
additional specification for it.

Unsupported DL/I Features

CA IDMS DLI Transparency does not supportthe following DL/I features:

Feature Comment
GSAM databases, whichare You must modify DL/l application programs that
sequential files. issuecalls to GSAM databases by removing the

GSAM calls. Alternatively, you canreplacethe
GSAM callswith standard sequential file
processingrequests.

The PCB PROCOPTSs of L and LS. You canobtainthe same results by changingthe L
or LSto anl. This substitutionis invalid when the
application programis usedin conjunction with
the DL/I calls load utilities.

The PCB PROCOPT of GS. You canobtainthe same results by changingthe
GStoaG.
Field-level sensitivityin PCBs. You canreflect field-level sensitivity by excluding

the corresponding elements from their record
type definitions in the subschema.

DL/I utilities. CA IDMS/DB provides a complete set of utilities
that perform all the necessary functions.

DL/I logging. Remove calls for logginginthe DL/l application/
programs.CA IDMS/DB journalingis usedin place
of DL/I logging.

The CHECKPOINT/RESTART However, CA IDMS DLI Transparency does support

function. the checkpoint call when used alone. CAIDMS DLI

Transparency honors the checkpoint call by
issuinga CAIDMS/DB COMMIT. Therefore,
remove all restartcallsfromthe DL/l application
program, and consider removing the checkpoint
part of the call as well.

Chapter 2: DL/Tand CAIDMS/DB 73

Unsupported DL/I Features

Feature Comment
The DL/I calls:

PURG GSCD

CHGN XRS

CMD DEQ

GCMD LOG

SNAP STAT

The Q command code.

CA IDMS DLI Transparency bypasses this
command code andreturns a blankstatus.Ifa
DL/I program contains Q codes, you don't have to
remove them.

Use of the Lcommand code to
override a DL/I ISRT call.

CA IDMS DLI Transparency does support the L
command code when used with a DL/I GET call.

Use of MPS Batch

EXEC DLI usage does not support MPS Batch

The EXEC DLI LOAD function

CA IDMS DLI Transparency supports call-level DL/I
load programs usingISRT calls,and provides an
independent load utility. An ‘AD’ status will be
returned for this call.

74 DLI Transparency User Guide

Chapter 3: CAIDMS DLI Transparency
Syntax Generator

This section contains the followingtopics:

About This Chapter (see page 75)

The CA IDMS DLI Transparency Syntax Generator (see page 75)
Preparing Syntax Generator Input (see page 77)

Coding Syntax Generator Statements (see page 79)

Control Statements (see page 79)

GENERATE Statement (see page 81)

GENERATE SCHEMA Statement (see page 83)

GENERATE DMCL Statement (see page 84)

GENERATE SUBSCHEMA Statement (see page 84)

GENERATE |PSB Statement (see page 85)

Modification Statements (see page 86)

Executing the CA IDMS DLI Transparency Syntax Generator (see page 90)

About This Chapter

The CA IDMS DLI Transparency syntax generator translates DL/l databasedefinitions
into syntax statements fora CA IDMS DLI Transparency interface programspecification
block (IPSB) and corresponding CA IDMS/DB schema, DMCL, and subschema definitions.
This chapter describes howto use the CA IDMS DLI Transparency syntax generator.

The CA IDMS DLI Transparency Syntax Generator

Syntax Generator Input

Input to the syntax generator consists of the following control blocks created by the
CA-supplied macros:

m Database definition (DBD) control blocks—Define the segment types, the physical
hierarchical structure, and other characteristics of each databasefor whicha view is
defined in the PSB. The DBD control blocks areused to produce the CA IDMS/DB
schema, DMCL, and subschema sourcestatements.

m Program specification block (PSB)—Defines the views of all physicaland/or logical
databases availableto a DL/I application thatuses the PSB. The PSB control blockis
used to produce the IPSBsourcestatements.

Chapter 3: CAIDMS DLI Transparency Syntax Generator 75

The CA IDMS DLI Transparency Syntax Generator

Syntax Generator Output

The syntax generator produces sourcestatements for a CAIDMS/DB schema, DMCL,
andsubschema and a CA IDMS DLI Transparency IPSB.

Schema, DMCL, and Subschema Source

The schema sourcestatements produced by the syntax generator define CA IDMS/DB
areas,record types, and set types correspondingto the databases, segments, and
parent/child (hierarchical) relationships defined in the DL/I DBD control blocks.

The DMCL source statements define how the CA IDMS/DB areas areto be mapped to
the physical databasefiles. They arederived from informationinthe DL/I DBD control
blocks.

The subschema source statements define the CA IDMS/DB logical views thatcorrespond
to the views defined inthe DL/I DBD control blocks.

You caninputthe generated source definitions to the appropriate CAIDMS/DB
compilers to create load modules for use with the IPSB compiler, the CA IDMS DLI
Transparency load utility,and the CA IDMS DLI Transparency run-time interface.

IPSB Source

The IPSB sourcestatements define the correspondences between the DL/I database
referenced by the DL/I applicationandthe CA IDMS/DB databaseaccessed by the CA
IDMS DLI Transparency run-time interface.

The resulting IPSBsource statements areorganized as follows:

m IPSB SECTION—Relates the IPSB being defined to the corresponding DL/l program
specification block (PSB)

m AREA SECTION—Identifies the CA IDMS/DB databaseareas thatareto bereadied
by the CA IDMS DLI Transparency run-time interface in any usage mode other than
shared retrieval (the default)

m RECORD SECTION—Names the CAIDMS/DB record types needed to service DL/I
callsand defines the DL/I fields to be referenced by the DL/I calls

m INDEX SECTION—Provides the information necessary to relate CA IDMS/DB records
and sets to DL/I secondaryindexstructures and HIDAM index structures that are
used and/or maintained by the CA IDMS DLI Transparency run-time interface

m PCB SECTION—Replaces the programcommunication blocks (PCBs) defined for the
PSB

After reviewing the IPSBsource statements, you caninput them to the IPSB compiler to
create an IPSB load modulefor use with the CA IDMS DLI Transparency run-time
interface.

76 DLI Transparency User Guide

Preparing Syntax Generator Input

Special IPSB Load Module

To execute the CAIDMS DLI Transparency load utility, you need a special IPSBload

module. You produce a load IPSB by specifyingthe LOAD optioninthe GENERATE IPSB
statement.

For specific considerations thatapply only tothe load IPSB, see CA IDMS DLI
Transparency Load Utility (see page 171).

Syntax Generator Operation

Operation of the CA IDMS DLI Transparency syntax generator involves the following
steps:

1. Select, assemble,and linkeditall of the DBDs, includinglogical DBDs, associated
with the PSB you want to use. Select, assemble,and link edit the PSB. The PSB
represents an application'sview of the DL/I database(s)defined inthe DBDs.

Note: The DBDs and PSB must be assembled using the CA-supplied macros.
2. Code the appropriatesyntax generator statements.

3. Execute the syntax generator.

Preparing Syntax Generator Input

The syntax generator analyzes the DBD control blocks to produce schema, DMCL, and
subschema sourcestatements. Itanalyzes one PSB control blockto produce a set of
IPSB source statements.

You must assemble the DBDs and the PSB using the macros supplied with CA IDMS DLI
Transparency. You must then link edit the resultingassembliesto populate a new load
library thatcontains aload modulefor each DBD and aload module for the PSB. The
load library mustbe availableto the syntax generator when you run it. Be sureto keep
your DL/I and CA IDMS DU Transparency load libraries separate.

When you execute the syntax generator, itwill attempt to load the PSB and all
referenced DBDs. Sinceit can be difficultto keep track of all the DBD dependencies, you
may find that the easiestcourseis simplytoassembleandlinkeditall of your DBDs.

Chapter 3: CAIDMS DLI Transparency Syntax Generator 77

Preparing Syntax Generator Input

DBD Control Blocks

PSB Control Block

Each databasedefinition (DBD) control block defines the segment types, hierarchical
structure, and other characteristics of a databasereferenced in the PSB.

Note: Any given PSB canreference many DBDs, thus providingaccess to many
databases.

You must create a CA IDMS DLI Transparency DBD control block for each physical or
logical DBD associated with the PSB. You must also createa DBD control block for each
physical DBD thatis referenced ina logical DBD.

Creating the DBD Control Block

To create the DBD control blocks, perform the following steps for each DBD:

1. Select the DL/l sourcecode for the DBD.

2. Assemble and linkeditthe sourcecode forthe DBD. You must usethe CA IDMS DLI
Transparency-supplied macros when assembling the DBD source.

Assembly and Link Edit of a DBD

To assembleandlink edita DBD, use the DBD JCL shown in CA IDMS DLI Transparency
ICL (see page 257).

Note: A resultingload module has the same name as the DL/l DBD, but it can be used
only with CA IDMS DLI Transparency. Do not attempt to use a DBD load module inyour
native DL/I environment.

Creating a PSB Control Block

To create a PSB control block for use with the syntax generator, perform the following
steps:

1. Select the DL/l sourcecode for the PSB you want to use.

2. Assembleand linkeditthe sourcecode forthe PSB. You must use the CA IDMS DLI
Transparency-supplied macros when assembling the PSB source.

78 DLI Transparency User Guide

Coding Syntax Generator Statements

Assembly and Link Edit of a PSB

To assemble and link edit the PSB, use the PSB JCL shownin CAIDMS DLI Transparency
JCL (see page 257).

Note: The resultingload module has the same name as the DL/I PSB, butitcan be used
only with CA IDMS DLI Transparency. Do not attempt to use the PSB load module inyour
native DL/l environment.

Coding Syntax Generator Statements

The syntax generator statements fall into three groups:

Control statements -- Specify inputformatting and checking controls and output
formatting for the syntax generator's report listing

GENERATE statement -- Names the input DBD and PSB control blocks; also specifies
the names for the output CA IDMS/DB schema, DMCL, and subschema sourceand
the output IPSB source

Modification statements -- Specify names for the output areas, records,and sets;
alsoredefinethe output areas, includingthe area usage modes

Control Statements

The control statements allowyou to specify:

The amount of storage to be used by the syntax generator
The range of input columns for syntax generator statements
Sequence checking for inputstatements

Formatting for the syntax generator report listing

Chapter 3: CAIDMS DLI Transparency Syntax Generator 79

ControlStatements

Syntax
T Core size - < — >
e size = (48) « k

L (nnnnnn) —I

CLorem - — (1.80) « | g
(start-column-number, end-column-number)

g L OCTL = (60) <—4|_' >

T (line-count)
L ISEQ = (start-column-number, end-column-number)]

A\ 4

I—#-- SPACE space-count—l—'
|—v—— EJECT

L *comments*]

v

M

Parameters
CORe size=(nnnnnn) k

Specifies the amount of storage that the syntax generator will acquireto process
the PSB and DBD control blocks.Storageacquisitionis performed by a GETMAIN
under OS or a GETVIS or COMREG under z/VSE.

Nnnnnn is a 1-to 6-digitnumericvalue. Ifthe K option isincluded, itspecifies an
nnnnnn multiple of 1,024 (1K) bytes. If K is omitted, nnnnnn specifies the number of
storage bytes desired (which the syntax generator rounds up to the next
doubleword).

The CORE SIZE defaultis 48K bytes.
ICTL=(start-column-number,end-column-number)

Specifies a range of columns for codinginput generator statements. The defaultand
valid rangeof inputcolumns is 1 through 80. If specified, ICTL must precede all
noncontrol statements.

OCTL=(line-count)
Specifies the page length (number of lines) for the printed syntax generator report.

The OCTL defaultis 60 lines per page. Validvalues arefrom1 to 66. If specified,
OCTL must precede all noncontrol statements.

80 DLI Transparency User Guide

GENERATE Statement

ISEQ=(start-column-number,end-column-number)

Specifies sequence checking for input syntax generator statements. The start
column and end column values identify the column range in which sequence
numbers will appear.Valid values for the columnstartand end are 1 and 80,
respectively. The column range cannot be more than 10 column positions wide.

The defaultis nosequence checking. If specified, ISEQ must precede all noncontrol
statements.

SPACE space-count

Specifies linespacingfor the printed syntax generator report. Validvalues arel
through 9. Note that only one blankis allowed between SPACE and space-count.
You canspecify any number of SPACE statements and includethem anywhere in
the syntax generator inputstatements.

EJECT

Specifies a page break for the printed syntax generator report. You canspecifyany
number of EJECT statements and includethem anywhere inthe syntax generator
input statements. The EJECT statement must appear on its own line.

comments

Designates comment text. You can embed comment text anywhere inthe syntax
generator inputstatements. Comment text is automatically terminated at the end
of a line.To includecomment text withina line, begin and end the text with
asterisks (besureto keep track of the number of asterisks). An odd number turns
on comment text; an even number turns comment text off.

Example

ICTL=(1,72)

0CTL=(45)

ISEQ=3,72

EJECT

SPACE 2

*Begin comments with an asterisk

Figure 27. Sample control statements

GENERATE Statement

The GENERATE statement identifies the DL/I DBD and PSB control blocks to be input to
the syntax generator.

The syntax generator uses the DBD control blocks to produce the CA IDMS/DB schema,
DMCL, and subschema sourcedefinitions.ltuses the PSB control blockto produce the
sourcestatements for the IPSB compiler.

Chapter 3: CAIDMS DLI Transparency Syntax Generator 81

GENERATE Statement

Deriving Record, Set, and Area Names

The syntax generator derives the record, set, and area names for the output source
statements from the DL/I control blocks, as follows:

m Record names -- Derived from DL/l segment names.

m Set names -- Derived from the parent segment name and the child segment name
ineach DL/I hierarchy. The syntax generator concatenates the names with the
literal "-".

The resulting set names have a maximum length of 16 characters. If both names are
8 characters long, the syntax generator truncates the lastcharacterinthe child
name. Note that the truncation may causeduplicateset names.

m Areaname -- Derived from the DL/I DBD name. The syntax generator appends the

literal "-REGION" to the resultingarea name.

You canoverridethe generated names and specify different names usingthe
modification statements (described later in this section).

Four Forms of the GENERATE Statement

The syntax generator provides four forms of the GENERATE statement:

m GENERATE SCHEMA

m GENERATE DMCL

m GENERATE SUBSCHEMA

m GENERATE IPSB

Specify the GENERATE statement appropriatefor the type of output you want.

Process One GENERATE Statement at a Time

Includeonly one GENERATE statement for each execution of the syntax generator. The
syntax generator places its outputin a single SYSPCH file. The syntax generator can
process multiple GENERATE statements, but all the output files would go to the same

file,and you would have to separatethe output yourself.

The GENERATE statement must be coded immediately after the control statements and
before any modification statements.

82 DLI Transparency User Guide

GENERATE SCHEMA Statement

GENERATE SCHEMA Statement

Syntax
GENerate T . SCHema name is schema-name ———»
LOAD
|
FOR dbd -v- dbd-name.

»— DICTionary name is dictionary-name.

M

Parameters
GENerate SCHema name is schema-name

Specifies that you want the syntax generator to produce a schema source
definition.

Schema-name is the 1- to 8-character name of the output sourcedefinition. This is
the name that you will supply as inputto the CA IDMS/DB schema compiler.

LOAD

Produces a schema definition suitable for use with the CA IDMS DLI Transparency
load utility. Specifically,itcreates a schema in which the sets are defined as
OPTIONAL MANUAL. Alternatively, you canuse analreadygenerated schema
definitionand change its sets to OPTIONAL MANUAL. Ifyou do this, be sureto
change the set definitions back to their original state after the load.

FOR DBD dbd-name

Specifies the DBD control block(s) from which to derive the schema source. You can
specify multiple DBDs, separated by commas, to match the DBDs referenced inthe
associated PSB. Each dbd-name must be a 1- to 8-character name.

Be sureto specifyall the DBDs associated with the PSB you will be using; this
includes all physical,index, and logical DBDs.

DICTionary name is dictionary-name

Optionallyidentifies a dictionary nameto be used inthe SIGNON statement inthe
generated schema syntax.

If you omit the DICTIONARY NAME statement, the syntax generator will omitthe
DICTIONARY NAME ISclauseinthe SIGNON statement. As aresult,the generated
schema sourcewill beplacedinthe default dictionary.

Example

GENERATE SCHEMA NAME IS SCHEMA1 FOR DBD PHYSDB1, PHYSDB2, INDXDBD.
DICTIONARY NAME IS PRODDIC.

Figure 28. Sample Schema GENERATE and NAME statements

Chapter 3: CAIDMS DLI Transparency Syntax Generator 83

GENERATE DMCL Statement

GENERATE DMCL Statement

Syntax
>>—|: GENerate DMCL name is amcil-name
FOR dbd —V-- dbd-name, ———

L SEGMENT name is segment-name . —

v

)4

Parameters
GENerate DMCL name is dmcl-name

Specifies that you want the syntax generator to produce a DMCL source definition.
Dmcl-name is the 1-to 8-character name of the output sourcedefinition. This is the
name that you will supply as inputto the CA IDMS Command Facility.

FOR DBD dbd-name

Specifies the DBD control block(s) from which to derive the DMCL source. You can
specify multiple DBDs, separated by commas, to match the DBDs referenced in the
associated PSB. Each dbd-name must be a 1- to 8-character name.

Be sureto specifyall the DBDs associated with the PSB you will be using; this
includes all physical,index, and logical DBDs.

SEGment name is segment-name
Optionally supplies thename of a designated segment.

If you omit the SEGMENT NAME statement, the syntax generator will supplya
default name for the segment. You will then have to edit the output source
definition to reflect your CA IDMS/DB naming conventions.

Example

GENERATE DMCL NAME IS DMCL1 FOR DBD PHYSDB1, PHYSDB2, INDXDBD.
SEGMENT NAME IS ESCAPE.

Figure 29. Sample DMCL GENERATE and NAME statements

GENERATE SUBSCHEMA Statement

Syntax

v

>>—|: GENerate SUBschema name is subschema name
)
FOR dbd -v- dbd-name.

)

SCHema — T name 1is schema-name
|: DICTionary L —|

dictionary-name

84 DLI Transparency User Guide

GENERATE IPSB Statement

Parameters
GENerate SUBschema name is subschema-name

Specifies that you want the syntax generator to produce a subschema source
definition.

Subschema-name is the 1- to 8-character name of the output sourcedefinition. This
is the name that you will supply asinputtothe CAIDMS/DB subschema compiler.

FOR DBD dbd-name

Specifies the DBD control block(s) from which to derive the subschema source. You
canspecify multiple DBDs, separated by commas, to match the DBDs referenced in
the associated PSB. Each dbd-name must be a 1- to 8-character name.

Be sureto specifyall the DBDs associated with the PSB you will be using; this
includes all physical,index, and logical DBDs.

SCHema name is schema-name

Optionally supplies the name of the associated schema. If you omit the
schema-name, the syntax generator will supply a defaultschema name. You can
onlyincludeone SCHEMA NAME statement.

DICTionary name is dictionary-name

Optionallyidentifies the name of the dictionaryto be used inthe SIGNON
statement inthe generated subschema syntax.

If you omit the DICTIONARY NAME statement, the syntax generator will omitthe
DICTIONARY NAME ISclauseinthe SIGNON statement. As a result, the generated
subschema sourcewill be placedinthe default dictionary.

You canonlyincludeone DICTIONARY NAME statement.

Example

GENERATE SUBSCHEMA NAME IS SUBSCHA FOR DBD PHYSDB1, PHYSDB2, INDXDBD.
SCHEMA NAME IS SCHEMAL.
DICTIONARY NAVE IS PRODDIC.

Figure 30. Sample Subschema GENERATE and NAME statements

GENERATE IPSB Statement

Syntax
7 L GeNerate 7 IPSB for PSB psb-nane | g
LOAD
L using SUBschema subschema-name — . — 1

Chapter 3: CAIDMS DLI Transparency Syntax Generator 85

Modification Statements

Parameters
GENerate IPSB FOR PSB psb-name

Specifies the PSB you want to use. Psb-name must specify the 1- to 8-character
name of the PSB control block.

LOAD

Optionally creates a special IPSB for use with the load utility. Specifically, the
resultingsets will be defined as OPTIONAL MANUAL for loading purposes. LOAD
alsoautomatically creates the load processing option required by the load utility.

using SUBschema subschema-name.

Specifies the 1-to 8-character name of the subschema that will be used by the CA
IDMS DLI Transparency run-time interface in conjunction with the IPSB load
module.

Example

GENERATE IPSB FOR PSB PSB1 USING SUBSCHEMA SUBSCHI.

Figure 31. Sample GENERATE IPSB statement

Modification Statements

The CA IDMS DLI Transparency syntax generator modification statements allow you to
override area, record, and set definitions in generated schema, DMCL, subschema,and
IPSB source. The modification statements can be used in conjunction with any of the
four GENERATE statements.

Note: Make surethatthe schema, subschema, and IPSB sourcedefinitions remain
consistent.That is, any modifications madeto a subschema must also be made to the
associated schema. Any modifications madeto anIPSB must also be made to its
associated schema and subschema. For example, ifyou add an area to the generated
IPSB source, you must alsoaddthe same area to both the associated schema and
subschema source.

86 DLI Transparency User Guide

Modification Statements

Different Types

The modification statements are as follows:

m ADD AREA statement -- Generates sourcestatements for defininga CA IDMS/DB
databasearea

m MODIFY AREA statement -- Overrides a generated area name or changes the usage
mode for a generated area

m MODIFY RECORD statement -- Overrides a generated record name

m MODIFY SET statement -- Overrides a generated set name

Each statement is described separately below.

ADD AREA Statement

The ADD AREA statement generates the sourcestatements needed to define a CA
IDMS/DB databasearea.

If you want to maintainindex records ina separate area,you must includeone ADD
AREA statement for each index area. Specify the ADD AREA statement with the
GENERATE statement for the IPSB and with the GENERATE statements for the
associated schema and subschema.

Syntax

v

L ADD AREA NAME 1is area-name 1

g L USAGE i -
-mode is PROTECTED RETRIEVAL .
EXCLUSIVE I L UPDATE —<_|_

Parameters
ADD AREA NAME IS area-name
Specifies the CAIDMS/DB databasearea to be added.
Area-name must be a 1- to 16-character name.
USAGE-mode is

Specifies the usagemode inwhichanapplicationcanreadythe area. The usage
mode specifies the run-time operations that an application can performagainstthe
CA IDMS/DB databasearea.

If neither PROTECTED nor EXCLUSIVE is specified, SHARED is the default. SHARED
specifies thatother concurrently executing applications canaccessthenamed area.

Chapter 3: CAIDMS DLI Transparency Syntax Generator 87

Modification Statements

PROTECTED

PROTECTED prohibits update of the area by another concurrently executing
application.

EXCLUSIVE

EXCLUSIVE prohibits accesstothe area by another concurrently executing
application.

RETRIEVAL
Permits onlyretrieval (read-only)access for the databasearea
UPDATE

Allows all DMLfunctions (STORE, ERASE, MODIFY, etc.) for the databasearea

MODIFY AREA Statement

The MODIFY AREA statement allows you to specify a name for a generated area. The
specified name overrides the name supplied by the syntax generator. Note that the
default area name consists of the DL/I DBD name concatenated with the literal
"-REGION".

Ifthe name of an area inthe associated schema is different from the syntax
generator-supplied name, you mustincludethe MODIFY AREA statement to supplythe
correct schema-specific area name.

Syntax

v

" L MoDify AREA NAME is area-name —

v

L NEW NAME is new-area-name]

|
1

; |_ R
USAGE-mode 1is T PROTECTED RETRIEVAL .
EXCLUSIVE I L UPDATE —<_|_

Parameters
MODify AREA NAME is area-name

Identifies the generated area for which you want to specify a new name.
Area-name must be a 1- to 16-character name.

NEW NAME is new-area-name

Specifies the new CA IDMS/DB databasearea name. New-area-name must be a
valid 1-to 16-character CA IDMS/DB area name.

88 DLI Transparency User Guide

Modification Statements

USAGE-mode is

Specifies the usagemode inwhich anapplication canreadythe area. The usage
mode specifies the run-time operations that anapplication can performagainstthe
CA IDMS/DB databasearea.

If neither PROTECTED nor EXCLUSIVE is specified, SHARED is the default. SHARED
specifies thatother concurrently executing applications canaccessthenamed area.

PROTECTED

PROTECTED prohibits update of the area by another concurrently executing
application.

EXCLUSIVE

EXCLUSIVE prohibits accesstothe area by another concurrently executing
application.

RETRIEVAL

Permits onlyretrieval (read-only)access for the databasearea

UPDATE

Allows all DMLfunctions (STORE, ERASE, MODIFY, etc.) for the databasearea

MODIFY RECORD Statement

The MODIFY RECORD statement allows you to specify a name for a generated record.
The specified name overrides the name supplied by the syntax generator. Note that the
default record names are derived from the corresponding DL/l segment names.

Ifthe name of a recordin the associated schema is differentfrom the syntax
generator-supplied name, you must includethe MODIFY RECORD statement to supply

the correct schema-specific record name.

Syntax

v

~ L mopify RECord NAME is record-name —

M

L NEW NAME is new-record-name — .]

Parameters
MODify RECord NAME is record-name

Identifies the record for which you want to specify a new name. Record-name must
be a 1- to 16-character name.

NEW NAME is new-record-name

Specifies the new CA IDMS/DB databaserecord name. New-record-name must be a
valid 1-to 16-character CA IDMS/DB record name.

Chapter 3: CAIDMS DLI Transparency Syntax Generator 89

Executing the CA IDMS DLI Transparency Syntax Generator

MODIFY SET Statement

The MODIFY SET statement allows you to specify a name for a generated set. The
specified name overrides the name supplied by the syntax generator. Note that the
default set names are derived from the DL/I parent segment names and their associated
child segment names. The syntax generator concatenates each parent/child name pair
with the literal "-".

Ifthe name of a setinthe associated schema is different from the syntax
generator-supplied name, you mustincludethe MODIFY SET statement to supply the

correct schema-specific setname.

Syntax

v

7 L mopify SET NAME is set-name —

M

L NEW NAME is new-set-name — . _

Parameters
MODify SET NAME is set-name

Identifies the set for which you want to specify a new name. Set-name must be a 1-
to 16-character name.

NEW NAME is new-set-name

Specifies the new CA IDMS/DB databaseset name. New-set-name must be avalid 1-
to 16-character CAIDMS/DB set name.

Executing the CA IDMS DLI Transparency Syntax Generator

Input

As described earlier in this section, syntax generator input consists of:
m The assembled DBD and PSB control blocks

m Control, GENERATE, and modification statements

90 DLI Transparency User Guide

Executing the CA IDMS DLI Transparency Syntax Generator

Output

Depending on the GENERATE statements coded, output from a single execution of the
syntax generator consists of:

m Source statements required to create a CA IDMS/DB schema in the data dictionary

m Source statements required to create a CA IDMS/DB DMCL and/or subschema load
module

m Source statements required to create one IPSBload module

m Areportlistingthe generated sourcestatements

You must execute the syntax generator once for each set of IPSBsource statements you
want to produce. To execute the syntax generator, use the JCL shown in CA IDMS DLI
Transparency JCL (see page 257).

Syntax Generator Execution

The diagrambelow illustrates theactivities involved in executing the syntax generator.

DBD and
PSB gyntax
Control enerator
Blacks Statements

CA-IDMS/DLI

Syntax

Generator

Generated
Saurce
Statements

Report

Figure 32. Syntax generator execution

Chapter 3: CAIDMS DLI Transparency Syntax Generator 91

Chapter 4: IPSB Compiler

This section contains the following topics:

About This Chapter (see page 93)

Considerations For Preparing IPSB Compiler Input (see page 94)
Compiler-Directive Statements (see page 98)

IPSB SECTION (see page 100)

AREA SECTION (see page 103)

RECORD SECTION (see page 104)

INDEX SECTION (see page 126)

PCB SECTION (see page 135)

Executing the IPSB Compiler (see page 154)

About This Chapter

The IPSB Compiler

The CA IDMS DLI Transparency interface program specification block (IPSB) compiler
converts user-supplied entries into assembler statements that areassembledinto load
modules, known as IPSBs. The IPSBs arelater used by the CAIDMS DLI Transparency
run-time interfaceas a sourceof control information for satisfying the database
requests issued by a DL/l application program.

DL/l and CA IDMS/DB Correspondences

The control informationinthe IPSBis,infact, a series of correspondences between DL/I
structures and CA IDMS/DB structures. These correspondences serve two general
purposes, as follows:

m To providethe run-time interfacewith the information needed to convert retrieval
and update requests issued by the DL/l application programinto CA IDMS/DB
requests.

m To providethe run-time interfacewith the information needed to update the DL/I
application's program communication blocks (PCBs). The updated PCBs are used to
deliver the requested data and/or status information to the DL/l application
program.

Chapter 4: IPSB Compiler 93

Considerations For Preparing IPSB Compiler Input

Topics

This section details the IPSB source statements that serve as input to the compiler.The
followingtopics arediscussed:

m Considerations for preparing IPSB compilerinput

m Compiler-directive statements

m |PSB SECTION

® AREA SECTION

m RECORD SECTION

= |[NDEX SECTION

= PCBSECTION

m |PSB compiler execution

Considerations For Preparing IPSB Compiler Input

Input to the IPSB Compiler

Input to the IPSB compiler consists of source statements that define the
correspondences between the DL/I databasereferenced by the applicationandtheCA
IDMS/DB databaseaccessed by the run-time interface. The CAIDMS DL Transparency
syntax generator produces these sourcestatements from the program specification
block (PSB) used by the DL/I application.

Review Statements Before Executing the IPSB Compiler

Before inputting the generated statements to the compiler, you should review them
usingthe material in this section.In particular, you should make surethat the generated
sourcestatements reflect the dependencies inthe DL/I definitions, especially with
regard to logical child/logical parentrelationships.

To review the IPSB statements, you will need the original sourcefor the DL/l PSB and
DBDs andthe generated CA IDMS/DB schema source. If you have to modify the IPSB
statements, usethe IPSBsyntax presented inthis section. When reviewing the IPSB

source, consultthe table below, for a listofthe IPSBand DL/I correspondences.

Note: Ifyou planto usethe resulting IPSB module with the load utility, there arespecial
load considerationsthatyoumust alsoincorporateinthe IPSB source. See CA IDMS DLI
Transparency Load Utility (see page 171) for a detailed description of the IPSBload
considerations.

94 DLI Transparency User Guide

Considerations For Preparing IPSB Compiler Input

IPSB Source Statements

In a single execution of the IPSB compiler, you can compileone IPSB. You must define
and compile one IPSB for each PSB expected by a DL/I application program.The IPSB
sourcestatements are organizedinto five sections and must appearinthe following
order:

m IPSB SECTION -- This sectionrelates the IPSBto the corresponding PSB.

m AREA SECTION -- This section identifies the CAIDMS/DB databaseareas,includedin
the subschema, that areto be readied by the CA IDMS DLI Transparency run-time
interface inany usage mode other than sharedretrieval (the default).

m RECORD SECTION -- This section names the CA IDMS/DB records to be used either
explicitly orimplicitly to satisfy DL/l calls and defines the DL/I fields to be
referenced in parameter lists usedinthe application program.

m INDEX SECTION -- This section provides the information necessary to relate CA
IDMS/DB records and sets to secondaryindex and HIDAM index structures to be
used and/or maintained by the CA IDMS DLI Transparency run-time interface.

m PCB SECTION -- This section corresponds to the associated DL/I PCBs withina PSB.
Section Titles and Statements

The syntax generator automatically produces section titles and appropriate statements
for each section. Each section must appearin every IPSB. Even ifthere are no
statements for a specific section, do not remove the sectiontitle. Inaddition to the
sections, you caninclude compiler-directive statements before any of the IPSB sections.
Note that the syntax generator does not produce the compiler-directive statements for
you.

Chapter 4: IPSB Compiler 95

Considerations For Preparing IPSB Compiler Input

Locating IPSB Entries Within PSB and DBDs

Although the IPSBinputis free form, you must locate specific information within the
PSB and DBDs. To simplify this task, the table below,

m ListseachIPSB clausebysection (see |IPSBSECTION (see page 100)).

m |dentifies the DL/I DBD or PSB statement and operand to which the clause
corresponds;andindicates thoseclauses thatspecifyinformation pertinent only to
CA IDMS/DB.

m The syntaxrules for each statement contain, where necessary, references to

pertinent DL/l parameters inthe PSB and DBDs.

For more information aboutlocating IPSB entries within the PSB and DBDs, see DL/l and
CA IDMS/DB (see page 21).

IPSB Input DBD or PSB Correspondence
Section Statement Clause Phase Statement Operand
IPSB IPSB NAME PSB PSBGEN PSBNAME=
OF SUBSCHEMA *
LANGUAGE PSB PSBGEN LANG=
I0AREA PSB PSBGEN IOASIZE=
SSA PSB PSBGEN SSASIZE
COMPATIBILITY PSB PSBGEN COMPAT=
AREA AREA *
RECORD RECORD NAME *
LENGTH DBD SEGM BYTES=
RECORD FIELD NAME DBD FIELD NAME=
fldnamel
STARTING DBD FIELD START=
LENGTH DBD FIELD BYTES=
USAGE DBD FIELD TYPE=
INDEX INDEX NAME DBD XDFLD NAME=

inindexed database (for secondaryindexes)

DBD DBD NAME=

in INDEX database (for HIDAM)

USING INDEXED-SET *

96 DLI Transparency User Guide

Considerations For Preparing IPSB Compiler Input

IPSB Input DBD or PSB Correspondence
Section Statement Clause Phase Statement Operand
TARGET DBD LCHILD NAME=

in INDEX database

POINTER DBD SEGM NAME=

in INDEX database

THRU SET *

SOURCE DBD XDFLD SEGMENT=

inindexed database (for secondaryindexes)

DBD SEGM NAME

in HIDAM database (for HIDAM)

CONSTANT DBD XDFLD CONST=

SEARCH DBD XDFLD SRCH=

inindexed database(for secondaryindexes)

DBD FIELD NAME=

in HIDAM database (for HIDAM database)

SUBSEQUENCE DBD XDFLD SUBSEQ=
DUPLICATE DBD XDFLD DDATA=
NULL VALUE DBD XDFLD NULLVAL=
EXIT ROUTINE DBD XDFLD EXTRTN=

PCB PCB ACCESS DBD DBD ACCESS=
DBDNAME DBD DBD NAME=
OPTIONS PSB PCB PROCOPT=
POSITIONING PSB PCB POS=
SEQUENCE *

PCB SEGMENT NAME DBDGEN SEGM NAME=
RECORD *
PARENT DBDGEN SEGM PARENT=

seghame?2

THRU SET *

Chapter 4: IPSB Compiler 97

Compiler-Directive Statements

IPSB Input DBD or PSB Correspondence

Section Statement Clause Phase Statement Operand
LOGICAL DEST DBDGEN SEGM PARENT=
PARENT Ipsegname
PHYSICAL DEST DBDGEN LCHILD NAME=
PARENT
INSERT/ REPLACE DBDGEN SEGM RULES=
RULES

(combined from alogical and physical database)

USE DBDGEN SEGM

SOURCE=

Note: *For CA IDMS/DB use only.

Compiler-Directive Statements

IPSB compiler-directive statements allowyou to:

m Specify the amount of storage required by the IPSB compiler to compilethe IPSB

m The range of input columns in which IPSB statements can be coded

m Sequence checkingof input to the ISPB compiler

m Formatting of reports output by the IPSB compiler

Syntax

™ T CoRe size - (48) 4——p—— K — g
—I—: (rmnnnn)

g I—ICTL=—I_—(1,80)<] | g

(start-column-number, end-colum-number)

L ocTL = (60) <—_|—J
—E (line-count)

v

L ISEQ = —— (start-column-number, end-column-number) 1

v

. o
Lv-- SPACE space-count

v

T T
L e — |

v

L *comments *]

98 DLI Transparency User Guide

Compiler-Directive Statements

Parameters
CORE size=nnnnnn k

Specifies the amount of storage the IPSB compileris toacquire (by a GETMAIN
under OS and a GETVIS or COMREG under z/VSE) for the IPSB being generated.

Nnnnnn is a 1-to 6-digitnumeric value.

Ifthe optional Kis included, the amount of storage acquiredis nnnnnn increments
of K (1,024 bytes). If Kis omitted, nnnnnn represents the actual number of bytes of
storage acquired, which the compiler rounds up to the next doubleword.

Ifthis statement is omitted, the IPSB compiler acquires 48K of storage.
ICTL=(start-column-n,end-column-n)

Specifies the columns within which IPSBinput statements can be coded. This
compiler-directive statement, if coded, must precede the input for the five IPSB
sections.

Valid values for both start-column and end-column are 1 through 80.
The default values for start-column and end-column arel and 80, respectively.
OCTL=(line-count-number)

Specifies the number of lines to print per page of printed output. If coded, this
compiler-directive statement must precede the inputfor the five IPSB sections.

The default valuefor line-count is 60:acceptablevalues are1 through 66.
ISEQ=(start-column-number,end-column-number)

Specifies that the compileris to perform sequence checkingon all inputand
specifies the startand end columns of the sequence number generated for each
input statement.

If coded, this statement must precede all IPSBinputstatements. Ifthis statement is
omitted, sequence checkingis not performed.

Valid values for start-column-number and end-column-number areinthe range 1
through 80. The minimum allowable difference between the entry for start-column
andthe entry for end-column is 10.

SPACE=space-count

Directs the compiler to skip the specified number of lines on the output report.
Onlyone blankis allowed between SPACE andthe valuespecified for space-count.

Acceptable values for space-count are 1through 9. Several SPACE statements can
appearinthe compilerinput.

EJECT

Directs the compiler to stop printingthe current page and begin printinga new
page. This statement must be on alineby itselfand can be interspersed among IPSB
input control statements (thatis, EJECT statements canappear throughout compiler
input).

Chapter 4: IPSB Compiler 99

IPSB SECTION

comments
Directs the compiler to interpret subsequent characters as comments.

Comments canbe embedded inIPSB statements and are terminated automatically
atthe end of the inputline, unless the compiler encounters a second asterisk (*)in
the input line, which causes explicittermination.

Be sureto keep track of the number of asterisks. An odd number turns on comment
text; aneven number turns it off.

Example

ICTL=(1,72)

0CTL=(45)

ISEQ=3,72

EJECT

SPACE 2

*Begin comments with an asterisk

Figure 33. Sample compiler-directive statements

IPSB SECTION

The IPSB SECTION relates the IPSB to a particular PSB expected by the DL/I application
program ina native DL/l environment. The IPSB section contains one statement--the
IPSB statement. This statement identifies the IPSB and specifies global information
related to the corresponding PSB.

The information suppliedin the IPSB SECTION corresponds to the information thatis
specified to DL/l by the PSBGEN statement inthe PSB phase.The PSBGEN statement is
located at the end of the PSB.

Syntax

»»— IPSB SECTION — . >

»—— IPSB name is 7psb-name of SUBSchema subschema-name —————— >

»

L LaNGuage is CObol « —] .
PL/1
ASsembler —

v

L MAXimum IOAREA size is maximum- 7’0—area-s7’ze—‘

v

L MAXimum SSA size is maximum-ssa-size]

X

L COMPATibility is T yes S]

no <«

100 DLI Transparency User Guide

IPSB SECTION

Parameters
IPSB SECTION

IPSB SECTION must be the firstentry inthe IPSB section, followed by one IPSB
statement.

IPSB name is ipsb-name
Identifies the IPSB being generated.

Ipsb-name is the 1- to 8-character PSB name used by the application programina
native DL/I environment. When the IPSB is link edited, the load module or phase
name is the same as the ipsb-name.

of SUBSchema subschema-name

Identifies the subschema to be used by the CA IDMS DLI Transparency run-time
interface.

Subschema-name is the 1- to 8-character name of the subschema used by CA IDMS
DLl Transparency to access the CA IDMS/DB database.

LANGuage IS CObol/ PL/i /ASsembler

Specifies the programminglanguage of the application programusingthis IPSB. The
languagespecifiedinthe LANGUAGE parameter of the PSBGEN statement must be
entered. The defaultis COBOL.

MAXimum IOAREA size is maximum-io-area-size

Specifies the amount of spaceto be allocated for the application program's 1/0
area.

Ifthis clauseis omitted, the compiler calculates this size as thetotal length of all
sensitivesegments inthe longestpossiblepath call issued by programs usingthis
IPSB. Includethis clauseifa valueis specified in the IOASIZE parameter of the
PSBGEN statement.

Ifthe parameter is missingfromthe PSBGEN statement, the compiler calculates the
spaceto be allotted for the application program's 1/O area. Refer to the appropriate
DL/I documentation for further details on1/O area allocation.

MAXimum SSA size is maximum-ssa-size

Specifies the maximum total length of all segment search argument (SSA) strings to
be used ina given DL/I call issued by programs using this IPSB.

Ifthis clauseis omitted, the compiler calculates the sizeas 280 times the maximum
number of levels associated with any PCB statement within this IPSB. Include this
clauseifavalueis specified inthe SSASIZE parameter of the PSBGEN statement.

Ifthis parameter is missing fromthe PSBGEN statement, the compiler calculates the
maximum SSA size. Refer to the appropriate DL/l documentation for further details
on SSA sizespecification.

Chapter 4: IPSB Compiler 101

IPSB SECTION

COMPATiIbility is yes/no
Specifies whether the application program expects to find an1/O PCB inthe PSB.
The defaultis NO.

If YES is specified, the CA IDMS DLI Transparency run-time interfacecreates a
dummy 1/0 PCB as the first PCB. Note that you do not define this dummy 1/O PCB,
nor isitto be used by the application program.You shouldincludethis clauseif
CMPAT=YES is specifiedinthe PSBGEN statement; otherwise, the compiler uses the
default.

Usage
The PSBGEN statement inthis example serves as the sourcefor the IPSB SECTION.

In this example, the IPSB has a name of PSB1 and relates to DL/l requests to structures
inthe CA IDMS/DB subschema SUBSCH1. As indicated inthe PSBGEN statement:

The application programis writtenin COBOL

10SIZE=2000

SSASIZE=1500

CMPAT=NO

The PSBGEN statement values abovecorrespondinthe IPSBSECTION to:
= |OAREA SIZE 1S2000

= MAX SSA SIZE IS 1500

= COMPATIBILITY IS NO

DL/I PSBGEN Statement

PSBGEN LANG=COBOL , PSBNAME=PSB1, MAXQ=0, (MPAT=NO, I0SIZE=2000,
SSASIZE=1500

CA IDMS DLI Transparency IPSB Section
IPSB SECTION.
IPSB NAME IS PSB1 OF SUBSCHEMA SUBSH1
LANG IS COBOL MAX IOAREA SIZE IS 2000
MAX SSA SIZE IS 1500 COMPATIBILITY IS NO.

Figure 34. Sample DL/I PSBGEN and IPSB SECTION

102 DLI Transparency User Guide

AREA SECTION

AREA SECTION

The AREA SECTION identifies the CA IDMS/DB databaseareas that areto be readied by
the CA IDMS DU Transparency run-time interface in any usage mode other than shared
retrieval (the default). Specify one AREA SECTION statement for each databasearea that
is not to be readied inshared retrieval mode.

Note: Make surethat all databaseareas to be accessed by the run-time interface are
includedinthe subschema. The run-time interfaceautomaticallyreadies thoseareas
required by this IPSB. Areas included in the subschema but not required by the IPSBare
not readied.

Syntax

»»—— AREA SECTION — .

v

»

»—V- l_ - - _I
AREA name is 7dms-area-name

A 4

-p = . »><
USAGE-MODE is SHARED RETRIEVAI_4<—|—|
PROTECTED UPDATE
EXCLUSIVE
Parameters
AREA SECTION.

AREA SECTION must be the firstentry inthe section, followed by as many AREA
statements as required. You must includethe AREA SECTION clausewhether or not
the section contains any AREA statements.

AREA name is idms-area-name
Identifies the CA IDMS/DB databasearea to be readied.

Idms-area-name is the 1- to 16-character area name and includedin the subschema
named inthe IPSB SECTION.

USAGE-MODE is

Specifies the usagemode inwhich the run-time interfaceis to ready the named

area.The usagemode options specify the conditions for readyingand accessingthe
named area.

PROTECTED

Specifies that the named area, once readied by CA IDMS/DB, cannotbe readiedin
update usage mode by other concurrently executing run units.

EXCLUSIVE

Specifies that the named area, once readied by CA IDMS/DB, cannotbe accessed by
other concurrently executing run units.

Chapter 4: IPSB Compiler 103

RECORD SECTION

RETRIEVAL

Specifies that the named areais to be readied for retrieval only. Other concurrently
executing run units canready the areainany usagemode other than one thatis
qualified as EXCLUSIVE.

RETRIEVAL is the default.
UPDATE

Specifies that the named areais to be readied for both retrieval and update. Other
concurrently executing run units canready the area inany usage mode other than
one thatis qualified as EXCLUSIVE or PROTECTED.

Example

AREA SECTION.
AREA NAVE IS IDMSDB-1
USAGE-MODE IS EXCLUSIVE UPDATE.
AREA NAVME IS SPFAREAL.
AREA NAVME IS SPFAREA2
USAGE-MODE IS PROTECTED UPDATE.
AREA NAVME IS IDSMDB-2
USAGE-MODE IS RETRIEVAL.

Figure 35. Sample AREA SECTION

RECORD SECTION

The RECORD SECTION names the CA IDMS/DB records to be used either explicitly or
implicitly tosatisfy DL/l calls,and defines the DL/I fields to be referenced in SSA
parameter lists usedin DL/l databaserequests.

The RECORD SECTION consists of RECORD statements and FIELD statements.

The RECORD SECTION draws upon informationin the:
m CAIDMS/DB schema
m DL/I PSB

Sinceeach PSB requires a separate|PSB, the informationin one PSBGEN statement
is used to complete each RECORD SECTION.

= DL/I DBDs

The DBDs required arethose specifiedinthe PCBs. You should haveavailableall of
the DBDs specified in each PCB within the PSB.

104 DLI Transparency User Guide

RECORD SECTION

Ifa PCB calls foralogicaldatabaseor anindex database, you also need the DBDs for
the associated physical databases orindexed databases, respectively.

When a PCB calls for a HIDAM databaseor a databasewith a secondaryindex(es),

you should have availablethe DBD for the associated index database.

Syntax
»»—— RECORD SECTION.

v

»—— RECORD statements.

v

»—— FIELD statements.

)

Parameters
RECORD SECTION.

RECORD SECTION must be the firstentry inthe section followed by RECORD and
FIELD statements.

RECORD statements

Following the RECORD SECTION is one RECORD statement for each DL/l segment
specifiedin every PCB inthe application program's PSB. The RECORD statement
defines the CA IDMS/DB record that corresponds to the DL/l segment.

Inaddition to these explicit correspondences, you must make sure that there are
RECORD statements for those records whose corresponding segments are not
specifiedinthe PCBs but must be accessed by DL/I to process DL/I calls. These
implicit correspondences arerequired for the followingtypes of segments:

m Dependent segments of any segment specifiedinthe PCB ifthe specified
parent segment can be deleted (that is, PROCOPT=A or PROCOPT=D appearsin
the PCB or SENSEG statement)

m All dependent segments of the preceding dependent segments
m Pointer segments for all targetand sourcesegments specifiedinthe PCB
m Source segments for all targetsegments specifiedinthe PCB

m All segments inthe hierarchical path of the destination parentsegment inits
physical database

FIELD statements

There can be from 0to 255 FIELD statements followingeach RECORD statement.
The sources for these FIELD statements consistofthe appropriate FIELD statements
within the relevant DBDs.

The RECORD and FIELD statements arediscussedindetail below.

Chapter 4: IPSB Compiler 105

RECORD SECTION

RECORD Statement

A RECORD statement names a CA IDMS/DB record and optionally specifies either the
type of CA IDMS/DB ERASE command issued or that a DISCONNECT command was
issued. The CA IDMS/DB ERASE or DISCONNECT command isissuedinresponseto a DL/I
DLET call for the segment correspondingto the named record.

To determine the RECORD statements required for an IPSB:

1. Locate the PSB that corresponds to the IPSB being coded

2. Locate the PCBsin this PSB

3. Ifa PCB names a physical DBD (thatis, with ACCESS=HDAM, HSAM, HISAM, HIDAM,
or INDEX), use the following guidelines:

Locate the DBD named inthe PCB.

Prepare for each DBD a hierarchy diagramshowingeach segment defined in
the DBD.

Check off all thesegments specifiedin each PCB withinthe PSB. Each of these
segments will need a corresponding CA IDMS/DB record, which is to be
describedina RECORD statement.

Check off all thosesegments inthe hierarchy diagrams thatmeet one of the
following conditions:

- The segment is a dependent segment of any segment thatis both specified
inthe PCB and is subjectto deletion.

— The segment is a sourcesegment associated with a target segment that is
specifiedinthe PCB.

— The segment is a pointer segment associated with a target segment thatis
a segment specifiedinthe PCB or a dependent of a segment specifiedin
the PCB. The pointer segment for a target segment is locatedinthe
associated index DBD.

4. |fthe PCB names alogical DBD (thatis, with ACCESS=LOGICAL), use the following
guidelines:

Find both the logical DBD and the associated physical DBDs.

Note each SEGM statement inthe logical DBD with only one SOURCE
parameter. Ineach of these SEGM statements, the SOURCE parameter
identifies the segment inthe physical database. ldentify the corresponding CA
IDMS/DB record for each of these physical segments.

Locate each SEGM statement that defines a concatenated segment. Identify
the real logical child segment and the destination parentsegment and locate
the names of their corresponding CA IDMS/DB records.

106 DLI Transparency User Guide

RECORD SECTION

Syntax

»»—— RECORD SECTION — .
»—— RECORD name is 7dms-record-name

»—— LENGTH is T dll-segment-length]

Prepare hierarchy diagrams of the two associated physical databases. Usingthe
diagramcontainingthe destination parentsegment, check off all thesegments
inthe hierarchical path of the destination parentsegment. For each of the
checked off segments, identify the corresponding CA IDMS/DB record.

Note if any of the identified segments from the above guidelines can be
deleted. Ifthis is the case, note all of the dependents of this segment. (Do not
includevirtual logical child segments.) For each noted segment, identify the
corresponding CA IDMS/DB record.

Note ifany of the segments identified inthe above guidelines is a source
segment or a target segment of either a HIDAM databaseor a secondaryindex.
Ifthis is the case, locatethe associated index pointer segment, whichis defined
ina DBD with ACCESS=INDEX. Then, identifythe corresponding CAIDMS/DB
record for the index pointer segment.

Make surethere is a RECORD statement for each of the records identifiedin
the above guidelines.

v

v

v

dl1-max-segment-length dl1-min-segment-length

L DELete by ERASE ALL < . |
E ERASE PERManent —

M

ERASE SELective —
DISConnect

Parameters

RECORD name is idms-record-name

Identifies the CA IDMS/DB record to be accessed by the CA IDMS DLI Transparency
run-time interface.

Idms-record-name must be a 1- to 16-character name that corresponds toa DL/I
segment and must be defined inthe subschema named inthe IPSB SECTION.

LENGTH is

Specifies the length of the DL/I segment to which the idms-record-name
corresponds.

dl1-segment-length

Specifies the length of the DL/l segment ifitis a fixed-length segment.

dl1-max-segment-length dl1-min-segment-length

Specifies the maximum and minimum lengths of the DL/l segment ifitis a
variable-length segment. See "Determining values for variablelength segments"
under "Examples" later in this chapter.

Chapter 4: IPSB Compiler 107

RECORD SECTION

DELete by

Specifies the CAIDMS/DB DML command that the interface will issuein responseto
a DL/I DLET call for the segment correspondingto the named record.

ERASE ALL

Specifies that the named record and all mandatory and optional member record
occurrences itowns are to be erased.

All members that areowners of anyset occurrences are treated as if they were the
object of an ERASE ALL statement.

ERASE ALL is the default.

ERASE PERManent

Specifies that the named record and all mandatory member record occurrences it
owns are to be erased from the database. Optional member record occurrences are
disconnected.

All erased mandatory members that are owners of set occurrences are treated as if
they were the object of an ERASE PERMANENT statement.

Note: For more information about CA IDMS/DBset membership options,see the CA
IDMS Database Administration Guide

ERASE SELective

Specifies that the named record and all mandatory member record occurrences it
owns are to be erased from the database. Optional member record occurrences are
erased onlyifthey do not currently participateas members in other set
occurrences.

All erased members thatare owners of set occurrences aretreated as ifthey were
the object of an ERASE SELECTIVE statement.

DISConnect

Specifies that the membership of the named record is cancelled fromall setsin
whichit currently participates as an optional member. The record, however,
remains inthe database.

Usage

Determining the Value for a Fixed Length Segment

To locatethe dl1-segment-length, find the SEGM statement definingthe segment that
corresponds to the named record. Use the entry inthe SEGM statement's BYTES clause
for dl1-segment-length.

Note thatifthe DL/I segment is a logicalchild segment, the length of the physicaland/or

logical parentconcatenated key may be required along with the BYTES clauseentry
when determining the value of d/1-segment-length.

108 DLI Transparency User Guide

RECORD SECTION

Determining Values for Variable Length Segments

To located/1-max-segment-length and dl1-min-segment-length values, find the SEGM
statement definingthe segment that corresponds tothe named record. Use the first
entry inthe SEGM statement's BYTES clausefor d/1-max-segment-length; use the
second entry inthe SEGM statement's BYTES clausefor d/1-min-segment-length.

Note thatifthe DL/I segment is a logical child segment, the length of the physicaland/or

logical parentconcatenated key may be required along with the BYTES clauseentries
when determining the valuefor d/1-max-segment-length and d/1-min-segment-length.

Calculating the Length of a Concatenated Key

The length of a concatenated key equals the sum of the lengths of the sequence field,
from the sequence field of the named key through the root segment's sequence field.

Root Segment

Length of Sequence

Field(A)
SEG1 SEG2
Length of Sequence Length of Sequence
Field(B) Field(E)
Physical Parent Length of the
Segment Physical Parent
Length of Sequence Concatenated key = C+B+A
Field(C)
Logical Child
Segment

Length of Sequence
Field(D)

Figure 36. Finding the length of a concatenated key

Chapter 4: IPSB Compiler 109

RECORD SECTION

Determining Record Length for Logical Child Equivalent

The examples below show how you can determine the record length for the logical child
equivalent.

Refer to "LOGICAL PARENT FIELD Statement" later in this section for details on
determining whether the physical parentconcatenated key and the logical parent
concatenated key are stored virtually or physically.

Example 1

Assume the LPCK is stored virtually and the PPCK is stored physically.

LPCK Intersection = BYTES clause
data

1. Findthe LPCK's length. Subtract this key length from the entry(ies) in the logical
child's BYTES clause.

2. Findthe PPCK's length. Add this key length to the valuecalculatedinstep 1 above:
For fixed-length segments:
dl/i-segment-length = (BYTES entry - LPCK-length) + PPCK-length
For variable-length segments:
dl/1-max-segment-length = (FirstBYTES entry - LPCK-length) + PPCK-length
dl/1-min-segment-length =(Second BYTES entry - LPCK-length) + PPCK-length

Example 2

- - — -

PPCK LPCK Intersection
| data

Assume both the PPCK and the LPCK are stored virtually.

Intersection
PPCK LPCK data

Find the LPCK's length. Subtract this key length from the entry(ies) inthe logical child's
BYTES clause:

For fixed length segments:

dl/i-segment-length = BYTES entry - LPCK-length

110 DLI Transparency User Guide

RECORD SECTION

For variable length segments:
dl/1-max-segment-length = FirstBYTES entry - LPCK-length
dl/1-min-segment-length =Second BYTES entry - LPCK-length

Example 3

Assume that the logical parentconcatenated key (LPCK) is stored physically and the
physical parentconcatenated key (PPCK) is stored virtually.

- - — -

LPCK PPCK Intersection
| data

Use the BYTES parameter value(s)inthe logical child's SEGM statement as the value(s)
for the LENGTH parameter:

For fixed length segments:

di/i-segment-length =BYTES entry inlogical child's SEGM statement

For variable length segments:

dl/1-max-segment-length = FirstBYTES entry inlogical child's SEGM statement
dl/1-min-segment-length =Second BYTES entry inlogicalchild's SEGM statement
Example 4

Assume both the LPCK andthe PPCK are stored physically.
r— 1T — - = =

Intersection
| PPCK | LPCK Aata

Find the PPCK's length. Add this key length to the entry(ies)in the logical child's BYTES
clause:

For fixed length segments:

di/i-segment-length = PPCK-length + BYTES entry inlogical child's SEGM statement

Chapter 4: IPSB Compiler 111

RECORD SECTION

For variable length segments:

dl/1-max-segment-length = PPCK-length +firstBYTES entry inlogical child's SEGM
statement

dl/1-min-segment-length = PPCK-length + second BYTES entry inlogicalchild's SEGM
statement

FIELD Statement

A FIELD statement defines a DL/I field within the named record and corresponds to the
FIELD statement inthe DBD. Followingeach RECORD statement, there must be a FIELD
statement for every field listed in the DBD for the segment correspondingto the named
record. Some records (that is, those correspondingto the logical child segments) will
need additional FIELD statements, as explained below. Up to 255 FIELD statements can
follow each RECORD statement. If, however, a named record corresponds to a segment
for which no fields aredefined inthe DBD, the RECORD statement stands alonewithout
any FIELD statements.

Five FIELD Statement Formats

There are five FIELD statement formats available:

m Sequence -- Defines DL/l sequence fields

m Field -- Defines DL/l search fields other than sequence fields

m Logical parent -- Defines logical parentconcatenated key fields

m Physical parent -- Defines physical parentconcatenated key fields

m Logical sequence -- Defines logical sequencefields (thatis, sequence fields for the
virtual logical child segments)

112 DLI Transparency User Guide

RECORD SECTION

How to Determine the Appropriate FIELD Statement Format

To determine which format of the FIELD statement is appropriateto define a particular
DL/ field, firstconsider the segment equivalent of the record being described in the
RECORD statement. Find the SEGM statement definingthe segment and determine
whether the segment is a root segment, a dependent segment (thatis, with onlyone
parent), or a logical child segment (thatis, with two parents). After making this
determination, applythe appropriateset of rules as follows:

m Root and dependent segments -- If the segment is either a root segment or a
dependent segment, note its sequence field (if any). Define this sequence field by
usingthe SEQUENCE FIELD statement. This FIELD statement must appear
immediately followingthe appropriate RECORD statement. Next, determine if the
segment has searchfields (thatis, fields defined without a SEQ inthe NAME clause
of the FIELD statement). If there are searchfields, each one must be defined by
usingthe FIELD statement. Each of these FIELD statements must appear under the
appropriate RECORD statement.

m Logical child segment -- If the segment is a logical child segment, the RECORD
statement must be followed by LOGICAL PARENT FIELD and PHYSICAL PARENT FIELD
statements to define the logical parentconcatenated key field and the physical
parent concatenated key field, respectively. Additionally, thelogical child segment
correspondingto the named record may have a sequence field. If so, define this
sequence field with a SEQUENCE FIELD statement followingthe RECORD statement.

Define Search Fields with Separate FIELD Statement

Define each of the segment's search fields tothe IPSB with a separate FIELD statement
followingthe LOGICAL PARENT FIELD and PHYSICAL PARENT FIELD statements that
define the logical parentconcatenated key and the physical parentconcatenated key,
respectively. Next, locate the SEGM statement that defines the associated virtual logical
child segment. This SEGM statement is generally not located inthe same DBD as the
SEGM statement that defines the logical child segment.

Ifthe virtual logical child segment has a sequence field, a LOGICAL SEQUENCE FIELD
statement is required to define the sequence field under the named record. For each of
the remainingsearchfields for the virtual logical child segment, there must be a FIELD
statement. Each of these FIELD statements must appear under the RECORD statement
that identifies the record correspondingto the logical child segment.

USAGE Clause

Each of the five formats of the FIELD statement canend with the optional USAGE clause.
As with DL/I, this clauseis for documentation purposes only. This clauseand the five
FIELD statement formats are described separately below.

Chapter 4: IPSB Compiler 113

RECORD SECTION

USAGE clause

The USAGE clausedefines the data type of the named field.Itis used at the end of each
of the five formats of the FIELD statement andis not repeated for the individual formats
of the FIELD statement.

Syntax
><
L usAGE is DISplay |
BINary H
PACKed
Parameters
USAGE is

Specifies the data type of the named field. To determine the appropriate option,
note the FIELD statement inthe DBD.

DiSplay

Specify if the FIELD statement inthe DBD specifies TYPE=C. DISPLAY is the default
value.

BINary
Specify ifthe FIELD statement inthe DBD specifies TYPE=F, TYPE=H, or TYPE=X.
PACKed

Specify if the FIELD statement inthe DBD specifies TYPE=P.
SEQUENCE FIELD statement

This format of the FIELD statement defines the sequence field for the named record. A
sequence field can be defined for:

m Eachrecordcorrespondingto a root segment

m A dependent segment ordered under its physical parent,includingthelogical child
segment

m A pointer segment
Sequence fields defined for pointer records must comprisethe concatenation of the
constant, search,and subsequence fields for the pointer segment. (Constant and

subsequence fields aredescribed below.)

A field defined as a sequence field can be used as a search fieldinan SSA.

114 DLI Transparency User Guide

RECORD SECTION

Syntax

»h

v

L SEQuence FIELD name is dlI-field-name —I

v
v

L STARTING POSition is starting-position —'

M

L LENgth is dlI-field-length —|

Parameters
SEQuence FIELD name is dl/1-field-name

Specifies the name of the sequence field. DI1-field-name is the entry inthe NAME
clauseofthe DL/I FIELD statement definingthe sequence field.

STARTING POSition is starting-position

Specifies the positioninthe recordinwhich the sequence field begins. Use the
START clausevalueinthe DL/I FIELD statement definingthe sequence field.

LENgth is dl/1-field-length

Specifies the length of the sequence field. Use the BYTES clauseentry inthe DL/I
FIELD statement definingthe sequence field.

FIELD statement

This format of the FIELD statement defines the named record's search fields (thatis, the
search fields other than the sequence fields).

There must be a separatestatement to define each searchfieldineachrecord that
corresponds to a segment with searchfields.

For arecord correspondingto a logical child segment, this format defines the search
fields for the logical child segment and for the virtual logical child segment.

DL/I fields whose names begin with /CK or /SX are treated likeany other searchfiel ds
and are defined with this format of the FIELD statement.

Syntax

[

v

L FIELD name is a’Z]—7’7’620’—/73/716—I

v

v

L STARTING POSition is starting-position |

M

© L Length is d11-freld-1ength =

Chapter 4: IPSB Compiler 115

RECORD SECTION

Parameters
FIELD name is dl1-field-name

Names the DL/I field being defined. Use the NAME clauseentryinthe DL/I FIELD
statement that defines the search field for the segment correspondingto the
named record.

Ensure that dl1-field-name is identical to the field name by which the DL/I
application will refer to the field.

STARTING POSition is starting-position

Specifies the positioninthe recordinwhich the search field begins. Use the START
parameter valueinthe DL/I FIELD statement that defines the search field. Omit this
fieldifthe name fieldis a /SX field.

LENgth is dl/1-field-length

Specifies the length of the search field. Use the BYTES parameter valueinthe DL/I
FIELD statement that defines the searchfield.

LOGICAL PARENT FIELD statement

This format of the FIELD statement defines the logical parentconcatenated key field for
arecord correspondingto a logical child segment. A logical parent concatenated key is a
symbolic pointer to the logical parent.

LOGICAL PARENT FIELD statements and PHYSICAL PARENT FIELD statements (for

definingthe physical parentconcatenated key field) are both required when the named
record corresponds to a logical child segment.

Syntax

[

v

L L0Gical PARENT CONCATenated KEY FIELD name is dll-field-name —

v

" T storep PHYSicall
y
T VIRTually

v

L STARTING POSition is starting-position i

M

L LENgth is dil1-field-length —|

Parameters
LOGical PARENT CONCATenated KEY FIELD name is d/1-field-name

Specifies the name by which the concatenated key to the logical parentsegment is
defined to DL/I. Any 1- to 8-character name can be used for the dl1-field-name,
sincethis name serves only as afiller.

Ensure that the name selected for d/1-field-name is not used to define any other
field for the named record.

116 DLI Transparency User Guide

RECORD SECTION

STORED PHYSically/VIRTually

Specifies whether the logical parentconcatenatecd key is stored with the record
corresponding to the logical child segment or is built by the CA IDMS DLI
Transparency run-time interface.

PHYSically

Specifies that the logical parentconcatenated key is stored with the record
corresponding to the logical child segment. The use of this option for the segment
correspondingto the named record depends on the type of logical relationship
defined in the relevant DBDs as follows:

Relationship What to specify
Unidirectional and bidirectional virtual logical If PHYSICAL or P is specified onthe
relationships SEGM statement PARENT

parameter definingthe real logical
child segment, specify

PHYSICALLY.
For bidirectional physical logical relationships,the Ifthe entry inthe PARENT
relationship mustappear likea bidirectional parameter of the SEGM statement
virtual logical relationship. defining the segment assigned as
Choose one logical child segment to represent the the reallogical Ch”q segment s
real logical child segment and the other to PHYSICAL or P, specify

represent the logical virtual child segment. Hence, PHYSICALLY.
the parent of the assignedreal logical child

segment is considered the physical parent

segment; the parent of the assigned virtual logical

child segment is considered the logical parent

segment.

The default for this IPSB clauseis PHYSICALLY.

If either of the destination parent concatenated key fields is STORED PHYSICALLY,
that field must be the firstfieldinthe record.

If both destination parent concatenated key fields are STORED PHYSICALLY (see
note below), they must be the firsttwo fields inthe record. These however, can be
preceded by the halfword-length field ifthe record is a variable-length record. If
PHYSICALLY is specified, the STARTING POSITION clause(seebelow) must be
includedinthe FIELD statement.

Chapter 4: IPSB Compiler 117

RECORD SECTION

VIRTually

Specifies that the logical parentconcatenated key is absentfrom the record
correspondingto the logical child segment and is builtby the run-time interface.
The use of this option for the segment correspondingto the named record depends
on the type of logical relationship defined in the relevant DBDs, as follows:

Relationship What to specify

Unidirectional and bidirectional virtual ~ Specify VIRTUALLY if VIRTUAL or Vis

logical relationships specifiedinthe PARENT parameter of the
SEGM statement defining the real logical
child segment.

For bidirectional physical logical Ifthe entry inthe PARENT parameter of the
relationships, therelationship must SEGM statement defining the segment
appear as a bidirectionalvirtuallogical assignedasthereal logicalchild segmentis
relationship, as described under VIRTUAL orV, specify VIRTUALLY.
bidirectional physical logical If VIRTUALLY is specified, you must omit the
relationshipsabove. STARTING POSITION clause.

Note: Although DL/I bidirectional virtual relationships permitonly the logical parent
concatenated key to be stored physicallyinthelogical child, CAIDMS DLI
Transparency allows either one or both of the concatenated keys to be stored
physically orvirtually.

STARTING POSition is starting-position

Specifies the positioninthe recordin which the concatenated key field begins,
where the record begins in position 1. Whatyou specify on this clause depends
upon what you specified onthe STORED VIRTUALLY/PHYSICALLY clause:

STORED VIRTUALLY/PHYSICALLY STARTING POSITION clause
clause

If STORED VIRTUALLY is specified Don't includeitforthe named field.
for the named field

If STORED PHYSICALLY is specified START POSITION IS1.
only for the named field (thatis,

only for the LOGICAL PARENT

CONCATENATED KEY field)

118 DLI Transparency User Guide

RECORD SECTION

STORED VIRTUALLY/PHYSICALLY STARTING POSITION clause
clause

If both the named field and the One of the two fields will havea START POSITION

PHYSICAL PARENT CONCATENATED of 1. The other field will begininthe next

KEY field (PHYSICAL PARENT FIELD availablebyte after its complement

statement) are STORED PHYSICALLY concatenated key fieldis stored. For example,
assumethat the length of the concatenated key
for the physical parentis 15 and the STARTING
POSITION entered inthe IPSB for the PHYSICAL
PARENT is 1. Therefore, the LOGICAL PARENT
KEY field has a START POSITION of 16.

When both concatenated keys are Perform the above calculationsand add 2 to the
stored physicallyandtherecordisa startpositionto allowforthe halfword
variablelengthrecord containingthe length of the record.

LENgth is dl1-field-length
Specifies the length of the concatenated key for the logical parent.

To determine the entry for this clause, firstfind the DL/I FIELD statements that
define the sequence fields of the logical parentsegment and of those segments in
the logical parent's hierarchical path to the root segment. Add the BYTES clause
entries inthese FIELD statements.

Usage
The Length of the Concatenated Key for the Logical Parent

To calculatethe length of the concatenated key for the logical parent,assumethe DBD
has the followingentries from the root segment through the sequence field of the
logical parentsegment:

SEGM NAME=SEGRT, PARENT=0, BYTES=31, PTR=TWINBWD
FIELD NAME=(FIELD1,SEQ,U),BYTES=21,START=, TYPE=C
FIELD NAME=FIELD2,BYTES=10, START=22

SEGM NAME=LPSEG, PARENT=SEGRT, BYTES=20, PTR=TWINBWD
FIELD NAME=(FIELD3,SEQ,U),BYTES=60, START=1, TYPE=C

In this example, the sum of the sequence fields (FIELD1 and FIELD3) is 81, whichiis the
valueentered inthe LENGTH clauseofthe IPSBFIELD statement. For more details, see
Figure 36.

Chapter 4: IPSB Compiler 119

RECORD SECTION

PHYSICAL PARENT FIELD statement

This format of the FIELD statement defines the physical parentconcatenated key field
for the record correspondingto the logical child segment. A physical parent
concatenated key is a symbolic pointer to the logical parent. LOGICAL PARENT FIELD and
PHYSICAL PARENT FIELD statements (used to define the logical parentconcatenated key
field) are both required when the named record corresponds to a logical child segment.

Syntax

[

v

L PHYSical PARENT CONCATenated KEY FIELD name is dl1-field-name -

v

" T s7ore PHYSicall
y
T VIRTually

v

L STARTING POSition is starting-position i

M

L LENgth is dlI-field-length ——‘

Parameters
PHYSical PARENT CONCATenated KEY FIELD name is dl/1-field-name

Specifies the name by which the concatenated key to the physical parentis defined
to CAIDMS/DB. Any 1-to 8-character name can be used for the dl1-field-name,
sincethis name serves only as a filler.

Make surethat the name selected for dl/1-field-name is not used to define any other
field for the named record.

STORED PHYSically/VIRTually

Specifies whether the physical parentconcatenated key is stored with the record
correspondingto the logical child segment or is builtby the CA IDMS DLI
Transparency run-time interface.

120 DLI Transparency User Guide

RECORD SECTION

PHYSically

Specifies that the physical parentconcatenated key is stored with the record
equivalentof the logical child segment.

The defaultis PHYSICALLY. The followingconsiderationsapply to the use of this

option:
Relationship What to specify
When the named record correspondingto the logical STORED PHYSICALLY.

child segment is participatingin a bidirectional physical
logical relationship.

Insuch cases, CA IDMS DLI Transparency requires that
the logical relationship be made to appearasa
bidirectionalvirtuallogical relationship. As described
above (inthe STORED PHYSICALLY syntaxrules under
LOGICAL PARENT FIELD Statement (see page 116)), one
of the logical child segments must be treated as the real
logical child segment, and the other segment must be
assigned as the virtual logical child segment. If PHYSICAL
or P is entered in this parameter, specify PHYSICAL in the
IPSB clause.

If either of the destination parent concatenated key fields is stored physically, make
that field the firstphysicalfield intherecord.

If both destination parent concatenated key fields arestored physically (seethe
discussion of STORED PHYSICALLY/VIRTUALLY under "LOGICAL PARENT FIELD
Statement"), they must be the firsttwo physical fieldsintherecord. These fields,
however, canbe preceded by the halfword-lengthfieldifthe recordis a
variable-length record. If PHYSICALLY is specified, the STARTING POSITION clause
(see below) must be included in the FIELD statement.

VIRTually

Specifies that the physical parentconcatenated key is absentfrom the record
correspondingto the logical child segment and is builtby the CA IDMS DLI
Transparency run-time interface. The use of this option for the segment
correspondingto the named record depends on the type of logical relationship
defined in the relevant DBDs, as follows:

Relationship What to specify

For unidirectionallogical relationships and bidirectional VIRTUALLY
virtual logical relationships

Chapter 4: IPSB Compiler 121

RECORD SECTION

Relationship What to specify

For bidirectional physical logical relationships, CAIDMS DLI VIRTUALLY

Transparency requires thatone logical child segment be If VIRTUALLY is specified,
treated as the real logical child segment, and the other the STARTING POSITION

logical child segment be treated as the virtual logical child |3use mustbe omitted.
segment. (See the discussion of STORED PHYSICALLY under

LOGICAL PARENT FIELD Statement (see page 116).)

Ifthe entry inthe PARENT parameter of the SEGM

statement definingthe segment that is beingtreated as

the virtual logical child segment specifies VIRTUAL or V

STARTING POSition is starting-position

Specifies the positioninthe recordin which the concatenated key field begins,
where the record begins in position 1.Omit this clauseif STORED VIRTUALLY is
specified for the named field.

Relationship What to specify

IfSTORED PHYSICALLY is Specify START POSITIONIS 1.

S_F’edﬁed gnlyforthe named Ifboth the named field and the LOGICAL PARENT
field (thatis, onlyfor the CONCATENATED KEY field arestored physically, one
LOGICAL PARENT of the fields will havea START POSITION of 1. The
CONCATENATED KEY field) other field will begininthe next available byte after

its complement concatenated key fieldis stored.

When both concatenated key fields arestored
physicallyandtherecord is a variable-length record,
add 2 to the START POSITIONto allowfor the
halfword containing the length of the record.

LENGTH IS di1-field-length
Specifies the length of the concatenated key to the physical parent.

To determine the entry for this clause, firstfind the DL/I FIELD statements that
define the sequence fields of the physical parentsegment and of those segments in
the physical parent's hierarchical path to the root segment. Add the BYTES clause
entries inthese FIELD statements. The resultis the entry for d/1-field-length.

LOGICAL SEQUENCE FIELD statement

This format of the FIELD statement defines the logical sequencefield and its attributes.
A logical sequencefield must be defined for the named record correspondingtoa
logical child segment whenever the associated virtuallogical child hasa sequence field.
A field defined as a logical sequencefield canbe used as asearchfieldinan SSA.

122 DLI Transparency User Guide

RECORD SECTION

Syntax

»h

L LOGical SEQuence FIELD name is dl1-field-name I

v

v

L STARTING POSition is starting-position —'

v

Parameters

LOGical SEQuence FIELD name is dl/1-field-name

L LENgth is dlI-field-length —|

M

Identifies the sequence field of the virtual logical child segment. Use the NAME
clauseentry inthe DL/I FIELD statement definingthe sequence field for the virtual
logical child segment.

STARTING POSition is starting-position

Specifies the positioninthe recordinwhich the sequence field begins. Use the
START clauseentry inthe DL/I FIELD statement definingthe sequence field for the
virtual logical child segment.

LENgth IS dl1-field-length

Specifies the length of the sequence field. Use the BYTES clauseentry inthe DL/I
FIELD statement definingthe sequence field for the virtual logical child segment.

Usage

Sample PSB

This sample PSB callsfor DBD1, whichis showninthe hierarchydiagraminFigure38.
The DBD that defines DBD1 is shownin Figure 39. Figure 40 shows the resulting RECORD
SECTION thatis developed.

PCB

SENSEG
SENSEG
SENSEG
SENSEG
PSBGEN
END

TYPE=DB, DBDNAME=DBD1 , PROCOPT=G, KEYLEN=45, PROCSEQ=INDEX1

NAME=SEGRT1, PARENT=0
NAME=SEG3, PARENT=SEGRT1
NAME=SEG4, PARENT=SEG3
NAME=SEG2, PARENT=SEGRT1
LANG=COBOL , PSBNAME=PSB1

Figure 37. Sample PSB

Chapter 4: IPSB Compiler 123

RECORD SECTION

Hierarchy Diagram of DBD1

This hierarchy diagramcorrespondsto database DBD1. SEGRT1, SEG2, SEG3, and SEG4
are specifiedinthe PSB showninFigure 37 and, therefore, require RECORD statements
to define their equivalentrecords.SEG5 is indicated by broken lines becauseitis a
virtual logical child segment, which is nota real segment.

SEGRT1

SEG2
(Logical child SEG3
segment)

SEG5
(Virtual logical
child segment)

Figure 38. Hierarchy diagram of DBD1
Sample DBDs

DBD1 is the databasecalled for by the PCB shown in Figure 37 DBD2 is the databasethat
contains the logical parentsegment of logical child SEG2 and the virtual logical child
segment paired with SEG2. Information from the DBDs for both databasesis required to
complete the RECORD SECTION shownin Figure 40.

124 DLI Transparency User Guide

RECORD SECTION

DBD NAME=DBD1, ACCESS=HDAM, RMNAME=(DLZHDC30, 3, 1800, 3000)
DATASET DD1=HDAM1,DEVICE=3350,BLOCK=2048,SCAN=3
SEGM NAME=SEGRT1, PARENT=0, BYTES=115, POINTER=TWINBWD , RULES=PPV
FIELD NAME=RTIKEY, SEQ,U, BYTES=11, START=1
FIELD NAME=FIELD2,BYTES=5, START=1
FIELD NAME=FIELD3,BYTES=6, START=6
SEGM NAME=SEG2, PARENT=((SEGRT1) , (LPSEGRT,P,DBD2)),
BYTES=120, POINTER=TWINGWD) ,RULES=(PLV)
FIELD NAME=(KEY2,SEQ,U) ,BYTES=6, START=1
SEGM NAME=SEG3, PARENT=SEGRT1,BYTES=10,POINTER=TWIN
FIELD NAME=(KEY3,SEQ,U) ,BYTES=3, START=1
FIELD NAME=FIELD5, BYTES=4, START=4
SEGM NAME=SEG4, PARENT=SEG3,BYTES=6, POINTER=TWIN
FIELD NAME=(KEY4,SEQ,U) ,BYTES=6, START=1
SEGM NAME=SEG5, PARENT=SEG4, PTR=PAIRED,
SOURCE=((LCSEG, DATA,DBD3))
FIELD NAME=(KEY5, SEQ,U) ,BYTES=21, START=1, TYPE=F
FIELD NAME=FIELD-5,BYTES=20,START=22, TYPE=F
DBDGEN
FINISH
END

DBD NAME=DBD2 , ACCESS=HDAM

DATASET DD1=HDAM2,DEVICE=3350,BLOCK=2048,SCAN=3

SEGM NAME=SEGRT2, PTR=TWINBWD ,RULES=LLV

FIELD NAME=(KEY6,SEQ,U) ,BYTES=60, START=1

FIELD NAME=FIELDG6,BYTES=15, START=61

FIELD NAME=FIELD-7,BYTES=75,START=76

LCHILD NAME=(SEG2,DBD1),PAIR=SEG6,PTR=DBLE

SEGM NAME=SEG6 , PARENT=SEGRT?2,PTR=PAIRED
SOURCE=(SEG2,DATA, DBD1)

FIELD NAME=(KEY7,SEQ,U) ,BYTES=21, START=61

FIELD NAME=FIELDS, BYTES=20, START=22

SEGM NAME=SEG7 BYTES=200, PARENT=SEG1

FIELD NAME=(KEY8, SEQ,U) BYTES=99, START=1

FIELD NAME=FIELD9,BYTES=101, START=100

SEGM NAME=SEGS8, BYTES=100, PARENT=SEG1

FIELD NAME=(KEY9, SEQ,U) ,BYTES=15, START=1

FIELD NAME=FIELD10,BYTES=15, START=51

DBDGEN

FINISH

END

Figure 39. Sample DBDs

Chapter 4: IPSB Compiler 125

INDEX SECTION

Sample RECORD SECTION

The information used to define this RECORD SECTION example is based oninformation
inFigure 37 through Figure 39.

SEGS5, defined inthe first DBD shown in Figure 39, is omitted from this RECORD SECTION
example because SEGS5 is a virtual logical child segment. However, the fields of a virtual
logical child segment are entered under the record correspondingto the logical child
when the PSB calls for the associated logical child segment.

Thus, under REC2, which corresponds to SEG2 in DBD1, a logical sequencefieldanda
searchfield aredefined.

These two fields come from the virtual logical child segment (SEG6) locatedin DBD2,
whichis defined inthe second DBD in Figure 39.

RECORD SECTION.
RECORD NAME IS RECRT1 LENGTH IS 115.

SEQ FIELD NAME IS RTIKEY START POS 1 LENGTH 11.
FIELD NAME IS FIELD2 START POS 1 LENGTH 5.
FIELD NAME IS FIELD3 START POS 6 LENGTH 6.

RECORD NAME IS REC2 LENGTH IS 120
LOGICAL PARENT CONCAT KEY FIELD NAME IS FILFLD1
STORED PHYSICALLY START POS 1 LENGTH 60.
PHYSICAL PARENT CONCAT KEY FIELD NAME IS FILFLD2
STORED VIRTUALLY LENGTH 11.
SEQ FIELD NAME IS KEY2 START POS 1 LENGTH 6.
LOGICAL SEQUENCE FIELD NAME IS KEY7
START POS 61 LENGTH 21.
FIELD NAME IS FIELD8 START POS 22 LENGTH 20.
RECORD NAME IS REC3 LENGTH IS 10.

SEQ FIELD NAME IS KEY3 START POS 1 LENGTH 3.

FIELD NAME IS FIELD5 START POS 4 LENGTH 4.
RECORD NAME IS REC4 LENGTH IS 6.
SEQ FIELD NAME IS KEY4 START POS 1 LENGTH 6.

Figure 40. Sample RECORD SECTION

INDEX SECTION

The INDEX SECTION provides the information required to relate CA IDMS/DB records
andsets to secondaryindex and HIDAM index structures to be used and/or maintained
by the CA IDMS DLI Transparency run-time interface.

126 DLI Transparency User Guide

INDEXSECTION

The only statement inthe INDEX SECTION is the INDEX statement. Each INDEX
statement does the following:

m |dentifies a HIDAM databaseora secondaryindex

m |dentifies the CA IDMS/DB records and sets that correspond to the DL/l segments
andsegment relationshipsinthatindex

m Names the DL/I fields used to build the index

m Names anindexsuppressionexitroutineto handle DL/l sparseindexing

Reviewing the INDEX SECTION requires that you identify the HIDAM databases and the
secondaryindexes that the run-time interface will either use explicitly or maintain
implicitly when processing DL/l databaserequests with this IPSB. An index is used
explicitly when one of the followingoccurs:

m A PCBrefers to a DBD with ACCESS=HIDAM.

m A PCB contains a PROCSEQ parameter, whichindicates the use of a secondaryindex
to access theroot segment.

m One of the SENSEG statements inthe PCB has an INDICES parameter.

An indexis used implicitly by a PCBwhen the PCB allows theindex target segment or
the index sourcesegment to be updated (that is, the PROCOPT parameter has a value of
I, R, or D). Ifindoubt, includethe indexes; extra indexes will notaffect CA IDMS DLI
Transparency processing.

Syntax

»»—— INDEX SECTION — .

v

»

v

L INDEX name is 7ndexed-field-name -

A\ 4

L using indexed-set 7ndexed-set-name -

v

L TARGET record 1is 7dms-record-name |

v

L POINTER record 1is 7dms-record-name i

v

L thru SET 7dms-set-name -

Chapter 4: IPSB Compiler 127

INDEX SECTION

v

L SOURCE record is 7dms-record-name —-|

v

L CONSTANT 1is constant —J

L SEARCH FIELDS are(is) — (dl1-Field-name) —
L sussEQuence FIELDS are(is) — (dlI-Field-name) —
L puPLicate data FIELDS are(is) — (gli-Field-name) —
I— NULL VALue 1is null-value

—E BLANK

ZERO
L EXIT routine is dlIl-exit-routine-name —— .]
Parameters

INDEX SECTION

INDEX SECTION must be the firstentry in this section followed by as many INDEX
statements as required. The INDEX SECTION sentence must be present even if no
INDEX statements are included.

INDEX name is indexed-field-name

Names the indexed field by which the index is known. Indexed-field-name must be a
1- to 8-character name.

For a HIDAM database, indexed-field-name should be the name of the index DBD.

For a secondaryindex, indexed-field-name is the NAME parameter valueinthe
XDFLD statement, which isinthe DBD definingthe indexed database. For more
information aboutfindingthe index field names for HIDAM databases and
secondaryindexes,see DL/l and CA IDMS/DB (see page 21).

using indexed-set index-set-name

Identifies the CA IDMS/DB index set through which the DL/l secondaryindexor
HIDAM index structureis implemented.

Index-set-name must be a 1-to 16-character name and must be includedin the
subschema named inthe IPSB SECTION.

128 DLI Transparency User Guide

INDEXSECTION

TARGET record is idms-record-name

Identifies the CA IDMS/DB record that corresponds to the DL/l index target segment
inthis index.

ldms-record-name must be a 1- to 16-character record name includedinthe
subschema named inthe IPSBSECTION and named inthe RECORD SECTION.

To identify the target record, firstlocateinthe DBD the SEGM statement that
defines the target segment. After identifyingthe name of the target segment,
locatethe name of the correspondingrecord as defined inthe CAIDMS/DB
subschema in use. For more information aboutlocatingthe SEGM statement that
defines the target segment, see DL/l and CA IDMS/DB (see page 21).

POINTER record is idms-record-name

Identifies the CA IDMS/DB record that corresponds to the DL/l index pointer
segment in this index.

ldms-record-name must be a 1- to 16-character record name includedinthe
subschema named inthe IPSBSECTION and named inthe RECORD SECTION.

To identify the pointer record, firstlocateinthe DBD the SEGM statement that
defines the pointer segment. After identifyingthe name of the pointer segment,
find the name of the correspondingrecord as defined inthe CA IDMS/DB
subschema in use. For more information aboutlocatingthe SEGM statement that
defines the pointer segment, see DL/I and CA IDMS/DB (see page 21).

thru SET idms-set-name

Identifies the target pointer set of which the target record is the owner and the
pointer record is the member.

ldms-set-name must be a 1- to 16-character namein the subschema andnamed in
the IPSB SECTION. For more information abouttarget pointer sets, see DL/l and CA
IDMS/DB (see page 21).

SOURCE record is idms-record-name

Identifies the CA IDMS/DB record that corresponds to the DL/l index source
segment in this index.

Idms-record-name must be a 1- to 16-character record name inthe subschema
named inthe IPSB SECTION and named inthe RECORD SECTION.

The run-time interfaceuses fields from this record to build the key by which the
target record is indexed. To locatethe source record, first locatein the DBD the
SEGM statement that defines the sourcesegment. After identifyingthe name of the
sourcesegment, locate the name of the correspondingrecord as defined inthe CA
IDMS/DB subschema in use. For further information on locating the SEGM
statement that defines the sourcesegment, see DL/l and CA IDMS/DB (see

page 21).

Chapter 4: IPSB Compiler 129

INDEX SECTION

CONSTANT is constant

Specifies a 1-byte field used to identify the indexifitis a sharedindex.The byte
valuemust be enclosed in double quotation marks. (Shared indexes are also known
as sparseindexes.)

Constant must be a 1- to 11-character Assembler constant that represents a 1-byte
field (typicallyin character, hexadecimal, or binary format). The following examples
illustrate possiblevalues for constant:

CONSTANT IS "C'A'"
CONSTANT IS "X'@2'"
CONSTANT IS "B'00000001"

The CONSTANT clauses abovespecify a 1-byte constantin character, hexadecimal,
and binaryformat. For constant, enter the CONST parameter valuelocatedinthe
DL/I XDFLD statement. (This XDFLD statement is foundinthe DBD definingthe
indexed database.)

SEARCH FIELDS are (is) dl/1-field-name

Identifies the DL/l search fields to be taken from the designated sourcerecord to
build the index key for the target record.

This mandatory clausemust name atleastone searchfield and canspecify up to
five searchfields.

Make surethat the searchfields identifiedin this clausearedefined in RECORD
SECTION FIELD statements.

These FIELD statements are associated with the RECORD statement that names the
record designated as the sourcerecord. The run-time interface concatenates these
fields, uses them to build anindex key, and places the key in the designated pointer
record. Each dl1-field-name must be a 1- to 8-character field name. When entering
more than one field name, separate each name by a comma and encloseall the
names in parentheses. Enclosing parentheses are optional if only one field name is
included.

Ina HIDAM database, the sequence field of the root segment is the search field.
Therefore, dl1-field-name is the NAME parameter valuein the DL/I FIELD statement
that defines the root segment's sequence field.

For a secondaryindex, each dl1-field-name entry can be found inthe SRCH
parameter of a XDFLD statement. Each entry corresponds tothe name of a DL/I
FIELD statement followingthe SEGM statement that defines the source segment.

SUBSEQuence data FIELDS are (is) d/1-field-name

For secondaryindexes only, optionally identifies the DL/I subsequence fields to be
taken from the designated sourcerecord to extend the index key. If specified, you
must name atleastone subsequence field and can name up to five subsequence
fields.The run-time interface concatenates these fields and uses them to extend
the index key builtfrom search fields. The subsequence fields identified in this
clausemustbe defined in the RECORD SECTION FIELD statements associated with
the RECORD statement that names the record designated as the sourcerecord.

130 DLI Transparency User Guide

INDEXSECTION

Make surethat each of the d/-field-names is a 1-to 8-character name. If more than
one field name is included, separatethe field names with commas and enclose
them in parentheses. The enclosing parentheses are optional if only one field name
is specified.

To determine an entry for dl/1-field-name, note the SUBSEQ parameter inthe DL/I
XDFLD statement. The valueinthis parameter specifies which of the fields for the
index sourcesegment arethe subsequence fields. Therefore, although a
subsequence fieldis specified in a SUBSEQ parameter, itis defined ina FIELD
statement followingthe definition of the source segment.

A subsequence field can be a system-related field, in which caseits name must
begin with /CK or /SX.

DUPLicate data FIELDS are (is) d/1-field-name

For secondaryindexes only, identifies the DL/I duplicate-data fields to be copied
from the designated sourcerecord to the pointer record. If specified, this optional
clausemustname at leastone duplicate-data field and can name up to five
duplicate-data fields.If named, these fields are concatenated and copied from the
sourcerecord to the pointer record to permit access to the duplicatedata when
processingthe pointer record independently of the defined index structure.
Therefore, data placedinthe pointer record has no impacton the key used to
create the index.The duplicate-data fieldsidentified in this clause mustbe defined
in RECORD SECTION FIELD statements associated with the RECORD statement that
names the record designated as the sourcerecord.

Make surethat d/1-field-name is a 1- to 8-character name. If more than one field
name isincluded, separatethe field names with commas and enclose them in
parentheses. The enclosing parentheses are optional if only one field name is
included.

To determine an entry for dl/1-field-name, note the DDATA parameter inthe DL/I
XDFLD statement. An entry inthis parameter specifies which of the fields for the
index sourcesegment arethe secondaryindex's duplicate-data fields. Therefore,
although a duplicate-data field is specified in a DDATA parameter, itis definedina
FIELD statement followingthe definition of the sourcesegment.

A duplicatedata field can be a system-related field, in which caseits name must
begin with /CK.

NULL VALue is

Identifies a 1-byte Assembler constantused to suppress the creation of a pointer
record duringindex suppression. The byte valuemust be enclosed in double
quotation marks. Each byte inthe named searchfields iscompared with the NULL
VALUE constant.

null-value

Specify a 1- to 8-character Assembler constantthat represents a 1-byte field
(typicallyin character, hexadecimal, or binary format). If each byte inthe search
field equals null-value, no pointer record is stored for the associated target record.

Chapter 4: IPSB Compiler 131

INDEX SECTION

BLANK

Specify BLANK for a null value of blanks.

ZERO

Specify ZERO for a null value of binary zeros (low value). The examples below
illustrate possiblevalues for null-value:

NULL VALUE IS "C'A'"
NULL VALUE IS "X'FF'*"
NULL VALUE IS "B'00006000'"

The NULL VALUE clauses abovespecifya 1-byte term in character, hexadecimal,and
binaryformat.

To complete this clause, specify the valueinthe NULLVAL parameter of the XDFLD
statement (thatis,the XDFLD statement inthe DBD that defines the indexed
database).

EXIT routine is d/1-exit-routine-name

Specifies a user-written exit routine for controlling the creation of selected DL/I
secondaryindex entries.

DI1-exit-routine-name must match the name specified for the EXTRTN parameter of
the XDFLD statement inthe indexed DBD. Make sure that you placethe named exit
routine inan operating-system partitioned data set and that you provideaccess to
it via a CDMSLIB JCL statement.

The CA IDMS DLI Transparency run-time interface loads (invokes) the exit routine
when the DL/I applicationissues anISRTor REPL call for a CAIDMS/DB record
correspondingindex source/to a DL/l index sourcesegment inone or more index
relationships.

Usage

Examples of INDEX SECTIONs are shown inthe illustrations below along with the
resources used to develop these INDEX SECTIONSs.

132 DLI Transparency User Guide

INDEXSECTION

Sample DBDs for a HIDAM Database and Associated Index

The example below shows sample DBDs for a HIDAM databaseand its associated index
database.

As with all HIDAM databases, the target and the sourcesegments arethe same segment
(the root segment inthe HIDAM database), whichinthis caseis SEG1. The pointer
segment, SEG2, is the only segment inthe index database.Sinceina HIDAM database
the searchfieldis always theroot segment sequence field, the searchfieldin this
sampleis FIELD1.

DBD NAME=DB1, ACCESS=HIDAM

DATASET DD1=DBHIDAM,DEVICE=3350,BLOCK=42,RECORD=48 , SCAN=1
SEGM NAME=SEG1, BYTES-31, PTR=H, PARENT=0

FIELD NAME=(FIELD1,SEQ,U),BYTES=21, START=1

FIELD NAME=FIELD2,BYTES=10,START=22

LCHILD NAME=(SEG2,DBINDEX) , PTR=INDX

DBDGEN

FINISH

END

DBD NAME=DBINDEX, ACCESS=INDEX

DATASET DD1=DBXINDX,DEVICE 3350,BLOCK=44,RECORD=46,SCAN=1
SEGM NAME=SEG2,BYTES=21

LCHILD NAME=(SEG1,DB1) , INDEX=FIELD1

FIELD NAME=(FIELD3,SEQ,U),BYTES=21, START=1

DBDGEN

FINISH

END

Figure 41. Sample DBDs for a HIDAM database and associated index database
Sample INDEX SECTION Based on a HIDAM Database

The samplebelow is based on information suppliedinthe DBDs in Figure 41.The index
set IX-SET1 indexes the index pointer segment.

INDEX SECTION.
INDEX NAME IS DBINDEX
USING INDEXED-SET IX-SET1
TARGET RECORD IS REC1
POINTER RECORD IS REC2
THRU SET REC1-REC2
SOURCE RECORD IS REC1
SEARCH FIELD IS FIELD1.

Figure 42. Sample INDEX SECTION based on a HIDAM database

Chapter 4: IPSB Compiler 133

INDEX SECTION

DBDs for a Secondary Index and its Associated Index Database

The example below shows the DBDs for a secondaryindex andits associated index
database.

The target segment SEGS is referenced inthe LCHILD statement inthe index DBD, while
the sourcesegment is referenced inthe SEGMENT parameter of the XDFLD statement in
the indexed DBD.

The pointer segment, asinall secondaryand HIDAM databases, is theonly segment in
the index database.Inthis sample, the pointer segment is SEG6.

The searchfield for the secondaryindex is referenced inthe SRCH parameter of the
XDFLD statement inthe indexed DBD; the duplicate-data field is referenced in the
DDATA parameter of the same XDFLD statement. Both the search field and the DDATA
field, however, appear under the SEGM statement defining SEG7.

DBD NAME=DB2 , ACCESS=HDAM,RMNAME= (GLDHDC20, 5, 660, 850)

DATASET DD1=DBHDAM, DEVICE 3350, BLOCK=2048,SCAN=1

SEGM NAME=SEG5, PARENT=0, BYTES=15

FIELD NAME=(FIELD5,SEQ,U) ,BYTES=5, START=1

LCHILD NAME=(SEG6 , DBINDX2) , PTR=INDX

XDFLD NAME=XDFLD1,SEGMENT=SEG7,
SRCH=FIELD7,DDATA=FIELDG

SEGM NAME=SEG7 , PARENT=SEG5, BYTES=25

FIELD NAME=(FIELD6,SEQ,U) ,BYTES=5, START=1

FIELD NAME=FIELD7,BYTES=20,START=5

DBDGEN

FINISH

END

DBD NAME=DBINDX2, ACCESS=INDEX

DATASET DD1=INDX2,DEVICE=3350, BLOCK=23,RECORD=88, SCAN=1

SEGM NAME=SEG6 , PARENT=0, BYTES=25

FIELD NAME=(FIELD8, SEQ,U) ,START=1, BYTES=6

LCHILD NAME=(SEG5,DB2) , POINTER=SNGL , INDEX=XDFLD1

DBDGEN

FINISH

END

Figure 43. Sample DBDs for a secondary index and associated index database

134 DLI Transparency User Guide

PCBSECTION

PCB SECTION

Sample INDEX SECTION Based on a Secondary Index

This sampleis based oninformation suppliedinthe DBDs in Figure 43. The CA IDMS/DB
records inthe sample INDEX SECTION have been assigned the prefix REC, and the
segment prefix SEG has been eliminated.
INDEX SECTION.

INDEX NAME IS XDFLD1

USING INDEXED-SET IS-SET2

TARGET RECORD IS REC5

POINTER RECORD IS REC6

THRU SET REC5-REC6

SOURCE RECORD IS REC7

SEARCH FIELD IS FIELD5

DUPLICATE DATA FIELD IS FIELD6.

Figure 44. Sample INDEX SECTION based on a secondary index

The PCB SECTION performs the following:

m |dentifies the DL/I segments participatinginthe hierarchies viewed by a DL/I
application

m Names the CA IDMS/DB records that represent these segments

m Defines paths that the DL/I application canfollowby namingrelevant segments and
by definingtheir relationshipsto other segments

m Provides alimited amount of DBD information (thatis, the DBD names and the
access method)

The informationincluded in the PCB SECTION corresponds to the associated DL/I PCBs
withina PSB.

The PCB SECTION consists of PCB statements and SEGMENT statements andis
formatted as follows:

PCB SECTION.
PCB statement.
SEGMENT statements.

PCB statement.

SEGMENT statements.

The syntax for the PCB statement and the SEGMENT statement are presented
separately below.

Chapter 4: IPSB Compiler 135

PCB SECTION

PCB Statement

A PCB statement is composed of entries from DL/I DBD and PCB statements. The DBD
statement is located inthe DBD, whilethe PCB statement is located in the PSB.

Syntax

»»— PCB SECTION — .

v

»
»

v

L PCB ACCESS METHOD is HDAM
HIDAM
HISAM
INDEX ——————
SECONDary index —
HSAM ————

v

L DBDNAME is a’bo’-nav'/ﬂeJ

v

L PROCessing OPTions are(is) — dll-option]
L POSitioning is T SINGLE <j—|
MULTIPLE
- L PROCessing SEQuence T SET is 7ndexed-set-name — 71 - —J o
INDEX is 7indexed-field-name
Parameters
PCB SECTION.

PCB SECTION must be the firstentry inthis section, followed by as many PCB
statements as required to define all hierarchical views referenced by the DL/I
application.

Each PCB statement must be followed by SEGMENT statements to identify the
segments that participateinthe hierarchical view.

A PCB statement, in conjunction with subsequent SEGMENT statements, represents
one DL/I hierarchical view. In addition to presenting the hierarchical view, the
SEGMENT statement defines the relationships between the named segment and
other DL/l segments, as represented by the corresponding CA IDMS/DB records and
set relationships.

PCB ACCESS METHOD is

Specifies the DL/l access method by which the root segment inthis databaseis
accessed.

To determine the appropriateentry for this clause:

m Firstdecideif ACCESS METHOD IS SECONDARY INDEX is appropriate(see
below). Ifthis entry is inappropriate,locatethe DBD specified in the DBDNAME
parameter of the DL/I PCB statement.

m Next, locatethe DBD statement and use the valuein the ACCESS parameter for
the PCB ACCESS METHOD clause.

136 DLI Transparency User Guide

PCBSECTION

Ifthe PCB specifies a logical databaseand ifthe SECONDARY INDEX entry is
inappropriate:

m Locate the SEGM statement defining the root segment of the logical database.
The SOURCE parameter inthis SEGM statement references the source segment
(firstentry) and the physical database containing thesource segment (second
entry).

m Locate the DBD that defines this physical database.

m Usethe ACCESS parameter valueinits DBD statement.

Specific guidelines for the options of the PCB ACCESS METHOD clausefollow:
HDAM

Specifies an HDAM access method. If this entry is specified, omitthe PROCESSING
SEQUENCE clause(seebelow).

HIDAM

Specifies a HIDAM access method. If this entry is specified,a PROCESSING
SEQUENCE INDEX clause(seebelow) must be included.

HISAM

Specifies a HISAM access method. Ifthis option is specified,a PROCESSING
SEQUENCE SET clause(see below) must be included to name the relevantindexed
set.

INDEX

Specifies anindex access method. If this optionis specified,a PROCESSING
SEQUENCE SET clausemustbe included to name the relevant indexed set.

SECONDary index

Specifies a secondaryindex access method. If this option is specified,a PROCESSING
SEQUENCE INDEX clause mustbe included to name the relevant indexed field.

PCB TYPE=DB,DBDNAME=DBA, PROCOPT=A, KEYLEN=46, PROCSEQ=INDEX1
HSAM

Specifies an HSAM access method. If the root segment of the HSAM databaseis
sequenced (thatis, a sequenced HSAM), a PROCESSING SEQUENCE SET clausemust
be included. Ifthe root segment of the HSAM databaseis unsequenced, omit the
PROCESSING SEQUENCE clause. Although the HSAM access method is supported,
consider each sequenced HSAM as a HISAM databasewhen defining DL/l databases
inthe schema (see DL/l and CA IDMS/DB (see page 21)).

DBDNAME IS dbd-name

Specifies the name of the DL/I DBD associated with the databaseview being
defined. This name corresponds to the DBD name found inthe PCB maskin the
application program. Use the name specified inthe DBDNAME parameter of the
PCB statement.

Chapter 4: IPSB Compiler 137

PCB SECTION

PROCessing OPTions are (is)
Specifies the DL/ processing options selected for this databaseview.

Processing options specify whether the DL/I application programcanonly read the
segments inthe databaseview or can both read and update the segments. |f
updatingis allowed, the processingoptions also specify whatkind of updating is
permissible.Youshouldincludethe processing options specified in the associated
PROCOPT parameters of the DL/I PCB statement and its associated SENSEG
statements.

di1-option

Acceptable values for dl1-option are as follows:

Value Explanation

G The application program can read the segments.

I The application program can insert segments.

R The application program can read and replace
segments.

D The application program can read and delete
segments.

A The application program can read, insert, replace,

and delete segments.

P The application program can issue path calls.

A maximum of four options can be specified for each PCB statement. If more than
one processing optionis specified, do not separatethe option by commas or blanks.
See the appropriate DL/l documentation for details on DL/l processingoptions.

CA IDMS DLI Transparency requires that all processingoptions bespecified for the
PCB and does not permit any overrides of global options for anindividual segment.
To accommodate this requirement, you must enter inthe PROCESSING OPTIONS
clausethe mostinclusive DL/l processing option entered inthe PSB's PCB statement
andits SENSEG statements. If, for example, a PCB statement has PROCOPT=G, and
three of the subsequent SENSEG statements have PROCOPT values of I, R, and A,
respectively, you would enter the following:

PROCESSING OPTION IS A

By usingthe CA IDMS/DB access restrictions, you canrestrictthe type of access
overrides/ for specific records and duplicate DL/l overrides of global processing
options.

Note: For more information about CA IDMS/DB access restrictions, seethe CA IDMS
Database Administration Guide.

138 DLI Transparency User Guide

PCBSECTION

POSitioning is SINGLE/MULTIPLE

Specifies whether the interfaceis to maintainsingle or multiple positioning for this
PCB. (Refer to the appropriate DL/l documentation for details onsingleand multiple
positioning.) The defaultis SINGLE. The entry for the POSITIONIS clauseis foundin
the POS parameter of the DL/I PCB statement.

PROCessing SEQuence

The format of the PROCESSING SEQUENCE clauseand whether itisincludedis
determined by the access method specifiedinthe PCB ACCESS METHOD clause
above.

Omit the PROCESSING SEQUENCE clauseifan HDAM access method is specified or if
the databaseis an unsequenced HSAM.

SET is indexed-set-name

Includea PROCESSING SEQUENCE clauseand specify the SET optionifa HISAM or
INDEX access method is specified orifthe databaseis an HSAM databasewitha
sequenced root segment. Then, includean indexed-set-name parameter.

Indexed-set-name is the 1- to 16-character name of the indexed set havingas its
member the record equivalentof the root segment of the HISAM, index, or
sequenced HSAM database.

INDEX is indexed-field-name

Indexed-field-name identifies the index through which the root segment for this
hierarchyviewcanbe accessed.

Include the PROCESSING SEQUENCE clauseand specify the INDEX option if a HIDAM
or SECONDARY INDEX access method is specified.Then, includean
indexed-field-name parameter.

Indexed-field-name is the 1- to 8-character name of the index. Make sure that the
entry inthis parameter is defined inthe INDEX SECTION.

SEGMENT Statement

Each PCB statement must be followed by a SEGMENT statement for each DL/I segment
participatinginthe DL/I hierarchy. Each SEGMENT statement relates a DL/I segment to a
CA IDMS/DB segment to an/ record; the run-time interface uses the CA IDMS/DB record
name to represent the segment. The SEGMENT statement also defines relati onships
between the named segment and other DL/l segments, as represented by the
corresponding CA IDMS/DB records and set relationships.

Chapter 4: IPSB Compiler 139

PCB SECTION

To review SEGMENT statements, you need to locatethe relevant PSB and the DBD
specifiedinthe DL/I PCB that corresponds to this PCB. Ifthe specified DBD defines a
logical DBD, you must also find the accompanying DBDs that define the physical
databases andthe index databases.Similarly,if the PCB calls for a HIDAM databaseor
for a databasewith a secondaryindex, you must locatethe DBDs that define the
associated index databases. Additionally, you musthave a copy of the relevant CA
IDMS/DB schema.

There must be a SEGMENT statement for each segment specifiedina SENSEG statement
inthe DL/l PCB. If the processing options Aor D have been entered in the PROCESSING
OPTION clauseofthe PCB statement, you may have to enter more SEGMENT

statements to identify the dependent segments. The decision on whether additional
segments must be identifiedina separate SEGMENT statement can be made only after
lookingatthe accompanying DBD and, optionally, a hierarchy diagram of the DBD. Note
ifany segment defined inthe accompanying DBD is a dependent of a segment thatis
specifiedina SENSEG statement. You must define each of these dependent segments
with a separate SEGMENT statement if the segment identifiedinthe SEGM statement
can be deleted.

SEGMENT statements must appearinhierarchical order. The first SEGMENT statement
under a given PCB statement must identify the root segment for the hierarchy. All
subsequent SEGMENT statements must be included inthe order in which the segments
appearinthe hierarchy.Similarly, if the DBD specified in the PCB defines a logical
database, the SEGMENT statements must appearinthe same order as the segments
appearinthe logical hierarchy.Alogical DBD can create inversions froma secondary
index and/or from a logicalrelationship. Insuch cases, consider thefollowing:

m Asecondaryindex causes aninversion when the target segment of the indexis the
root segment of the logical database butnot of the physical database.Inthis case,
the inversion of the segments is explicitly codedinthe logical DBD. By includingthe
SEGMENT statements inthe same order as the segments are defined in the logical
DBD, you automatically record the inversion. No additional SEGMENT statements
are needed other than those coded for the SENSEG statements in the PCB.

m Alogicalrelationship causes aninversion when the PCB references a logical
databaseandyou include SEGMENT statements to define the hierarchical path of
the destination parent segment inits physical database. In this case, you enter
SEGMENT statements to define segments from the destination parent's physical
database.The segments being defined inthe inversion, however, do notincludethe
dependent segments of the destination parentsegment. Even though these
dependent segments canrequire SEGMENT statement entries ifthey are included
inthe logical database, they do not participatein the inversion.

140 DLI Transparency User Guide

PCBSECTION

The SEGMENT statements must be included to define the segments participatingin
the logical relationshipinversioninreversehierarchical order. Therefore, the
SEGMENT statement definingthe destination parent segment must be the first
SEGMENT statement inthe inversion,and the SEGMENT statement definingthe
root segment inthe destination parent segment's physical databasemustbe the
lastsegment statement inthe inversion. Always includethe SEGMENT statements
for the segments inthe logical relationshipinversion even ifthe segments are
neither identified inthe PCB nor defined inthe logical DBD.Insuch cases,you can
assignthesegments a status of NOT SENSITIVE. (See the discussion of the USE
clausebelow.)

You must alsoinclude SEGMENT statements for each of these segments even if
some of them are defined in other SEGMENT statements for the named DBD. If the
same segment isincludedinthe logicalinversionandis specifiedinthenamed DBD,
make surethat the segment's name is different each time itis specifiedina
SEGMENT statement for the named PCB. If the name is the same in both the logical
and physical DBD, change the segment name inthe SEGMENT statement thatis part
of the logical inversion.Useinstead any name you choose.

Syntax

»»—— SEGMent name is dl11-segment-name

»—— RECORD name is 7dms-record-name

»

v

v

A\ 4

L PARENT is dl1-segment-name i

v

L thru SET 7dms-set-name -

v

|: PARENT L is owner -
CHILD

v

I: PHYSicalﬁ L DESTination PARENT is 7dms-record-name 1
LOGical

v

L thru SET 7dms-set-name -

" L INSERT RULES are —— Logical ,— Logical ,—— Logical
PhysicalH PhysicalH Physical
Virtual Virtual Virtual

v

L REPLACE RULES are Logical s Logical , Logical
‘E Physicalg ‘E PhysicalH E Physical
Virtual Virtual Virtual

L ACCESS METHOD is — HDAM

A 4

Chapter 4: IPSB Compiler 141

PCB SECTION

HIDAM PROCessing SEQuence INDEX is 7ndexed-field-name :‘
HISAM PROCessing SEQuence SET is 7ndgexed-set-name

v

L SEQuence is by LOGical sequence field —I

i
!

L USE is NOT SENsitive
VIRTual LOGical CHILD (VLC) —j
KEY
DATA «
KEY,KEY
KEY, DATA
DATA,KEY
DATA, DATA

Parameters
SEGment name is dl1-segment-name

Identifies a DL/l segment that participates inthe hierarchy being defined.
DI1-segment-name must be a 1- to 8-character name. Make sure that each
dl1-segment-name is used only once withinthe named DBD.

RECORD name is idms-record-name

Identifies the CA IDMS/DB record correspondingto the segment named in the
SEGMENT NAME clause. ldms-record-name must be the 1- to 16-character name of
arecord includedin the subschema named in the IPSB SECTION and inthe RECORD
SECTION. For all segments but those inlogical databases, the record named here
corresponds directly to the segment named inthe SEGMENT NAME clause.

When a segment participatingina logical databaseis named, use the record
correspondingto the segment named inthe firstentry of the SEGM statement's
SOURCE parameter. For concatenated segments, which are found onlyinlogical
databases, usethe record correspondingto the real logical child segment. If the
logical child specified in the concatenated segment is the virtual logical child
segment, you must firstlocatethe SEGM statement definingthe virtual logical child
segment to identify the name of the real logical child segment. (For more
information, see DL/I and CA IDMS/DB (see page 21).)

PARENT is dl1-segment-name

Identifies the parent of the segment named inthe SEGMENT NAME clause.The
PARENT ISclausemustbe included for all child segments (thatis, segments other
than root segments). DI1-segment-name must be a 1-to 8-character segment
name and must be the name of a DL/l segment specified inthe SEGMENT NAME
clauseofa preceding SEGMENT statement inthe hierarchy.

142 DLI Transparency User Guide

PCBSECTION

When entering segments from the databasereferred to by the PCB, the entry for
the PARENT ISclauseisthe firstvalueinthe PARENT parameter of the SEGM
statement definingthe child segment. Omit this entry, however, when the
SEGMENT statement defines a root segment. When entering the SEGMENT
statements that define the segments ina logicalrelationship inversion, theentry for
the PARENT ISclauseis the name of the SEGMENT defined inthe preceding
SEGMENT statement. For example, if the destination parent segment is SEGA, and
the next segment inthe hierarchical path of the destination parent segment inits
physical databaseis SEGB, SEGA is the entry inthe SEGMENT statement for SEGB.
This entry is correcteven though the SEGM statement defining SEGA inits physical
DBD shows SEGB as the parent of SEGA.

thru SET idms-set-name

Identifies the CA IDMS/DB set that relates the child and parent segments named in
the SEGMENT NAME and PARENT IS clauses.The THRU SET clause must be included
when the PARENT NAME clauseis present. /[dms-set-name must be a 1-to
16-character setname and must be includedinthe subschema named inthe IPSB
SECTION.

PARENT/CHILD is OWNER
Identifies the owner of the parent/child set. The defaultis PARENT.

PHYSical/LOGical DESTination PARENT is idms-record-name

Identifies the CA IDMS/DB record representing the destination parentina
concatenated segment structure. Includethis clauseonlyifthe record identifiedin
the RECORD NAME clausecorresponds toalogicalchild segmentinalogical
database.

LOGICAL DESTINATION PARENT must be specifiedif the logical child named inthe
DL/I SOURCE parameter of the SEGM statement definingthe concatenated segment
is the real logical child segment. PHYSICAL DESTINATION PARENT must be specified
ifthe logical child named inthe DL/I SOURCE parameter of the SEGM statement
definingthe concatenated segment is the virtual logical child segment.

Idms-record-name is the CA IDMS/DB record correspondingto the logical child
entry inthe concatenated segment. This operand must be a 1-to 16-character
name, must be includedin the subschema named inthe IPSB SECTION, and must be
named inthe RECORD SECTION.

Note: When naminga destination parent, includesubsequent SEGMENT
statements to define the path backto the root segment inthe physical databasein
which the destination parent participates. All SEGMENT statements included to
define this path back to the root segment must specify CHILD ISOWNER for the set
that relates the child and parentsegments.

Chapter 4: IPSB Compiler 143

PCB SECTION

thru SET idms-set-name

Identifies the CA IDMS/DB set that relates the record equivalents of the logical child
segment and destination parent segment. Includethis clauseonlyifthe
DESTINATION PARENT clauseis present. [dms-set-name name must be a 1- to
16-character setname and must be included in the subschema named inthe IPSB
SECTION. Always identify the record representing the destination parent segment
as the owner of this set.

INSERT RULES are (IS)

Specifies the insertrules to be applied to the physical parent,logical child,and
logical parentsegments ina concatenated segment structure. This clausecan be
included onlyifthe SEGMENT NAME clauseidentifies a concatenated segment.
PHYSICAL, LOGICAL, or VIRTUAL must be specified for the physical parentsegment,
real logical child segment, and logical parentsegment, respectively.

Regardless of which parentis used as the destination parentsegment, always
specify the insertrulefor the physical parentfirst, the insertrulefor the logical
childsecond, andthe insertrule for the logical parentlast. The defaultinsertrule
for all three segment types is LOGICAL.

To determine the entry for the INSERT RULES clause, firstidentify the logical childin
the concatenated segment. Trace the logicalchild backtothe DBD that defines its
physical database. Locate the SEGM statement that defines the logical child and
determine ifthe segment is the real logical child. Ifthis isthe case,locatethe RULES
parameter inthis SEGM statement. The valuein the firstcolumn of the RULES
parameter identifies theinsertrule. Usingthe valueinthe firstcolumn of the RULES
parameter, choosethe appropriateoption for the INSERT RULES clause, as follows:

Physical

Is specifiedif Pis the value in the firstcolumn of the RULES parameter.

Logical

Is specifiedifLis the valueinthe firstcolumn of the RULES parameter.

Virtual

Is specifiedifVis the valueinthe firstcolumn of the RULES parameter.

Ifthe logicalchild traced backtothe DBD definingthe physical databaseis found to
be avirtual logical child segment:

1. Locate the SEGM statement defining the associated real logical child segment
(see DL/l and CA IDMS/DB (see page 21)).

2. Then, interpret the RULES parameter inthis SEGM statement as described
above.

3. Next, locatethe RULES parameter inthe SEGM statement defining the physical
parent segment and inthe SEGM statement definingthe logical parent
segment, and make the appropriateentries inthe INSERT RULES clause. Refer
to the appropriate DL/l documentation for a description of the insertrules.

144 DLI Transparency User Guide

PCBSECTION

REPLACE RULES are (is)

Specifies the replacerules to be applied to the physical parent, logical child,and
logical parentsegments ina concatenated segment structure. This clausecan be
included onlyifthe SEGMENT NAME clausenames a concatenated segment. Specify
the PHYSICAL, LOGICAL, or VIRTUAL option for the physical parentsegment, logical
child segment, and logical parentsegment, respectively.

Regardless of which parentis used as the destination parentsegment, always
specify the replacerulefor the physical parentsegment first, for the logical child
segment second, and for the logical parentsegment last. The default replacerule
for all three segment types is LOGICAL.

The lastcolumninthe SEGM statement's RULES parameter identifies the
replacement rules for the segment. Refer to the appropriate DL/I documentation
for a description of the replacerules.

Physical

Is specifiedif Pis the value inthe firstcolumn of the RULES parameter.
Logical

Is specifiedifLis the valueinthe firstcolumn of the RULES parameter.
Virtual

Is specifiedifVis the valueinthe firstcolumn of the RULES parameter.

Note: The run-time interfaceassumes that the delete rules for the physical parent,
logical child,and logical parentare PHYSICAL, VIRTUAL, and LOGICAL, respectively.
Refer to the appropriate DL/l documentation for a description of the delete rules.

ACCESS METHOD is

Specifies information aboutthe root segment of the hierarchythat contains the
destination parent segment in its physical database, as follows:

m Specifies the root segment's access method in the databasecontainingthe
destination parent segment.

m Specifies,ifapplicable, the index through which the root segment is accessedin
the databasecontainingthe destination parent. This specificationis omitted if
the root segment isinan HDAM database (see HDAM below).

HDAM

Specifies that the destination parentisina physicaldatabasein which the root
segment is accessed through HDAM. Includethis option onlyif the SEGMENT
statement identifies the root segment in an HDAM databasecontainingthe
destination parent.

Chapter 4: IPSB Compiler 145

PCB SECTION

To determine ifthis option is appropriate, trace the destination parent, as
referenced inthe concatenated segment (inthe logical database), backtoits
definitioninthe physical DBD. If this DBD defines an HDAM database, ACCESS
METHOD ISHDAM becomes the appropriateentry when the SEGMENT statement
specifyingthe root segment is entered. Ifthe destination parentinthe physical
databaseis the root segment inan HDAM database, include ACCESS METHOD IS
HDAM inthe SEGMENT statement identifyingthe concatenated segment andits
destination parent. A separate SEGMENT statement is unnecessary for the root
segment ifthe destination parentis the root segment. Omitthe PROCESSING
SEQUENCE clausewith an HDAM specification.

HIDAM PROCessing SEQuence INDEX is indexed-field-name

Specifies that the destination parentisina physical databasein which the root
segment is accessed through HIDAM. Indexed-field-name specifies the field name
by which the root segment is indexed. Includethe ACCESS METHOD IS HIDAM
option onlyifthe SEGMENT statement identifies the root segment ina HIDAM
databasecontainingthe destination parent.

To determine ifthis option is appropriate, trace the destination parent, as
referenced inthe concatenated segment (inthe logical database), backtoits
definitioninthe physical DBD. If this physical DBD defines a HIDAM database,
ACCESS METHOD IS HIDAM becomes the appropriateentry when the SEGMENT
statement specifyingthe root segment is entered. Indexed-field-name is the NAME
parameter valueinthe SEQUENCE FIELD statement definingthe sequence field of
the root segment. This parameter must be a 1- to 8-character name and must be
defined in an INDEX statement inthe INDEX SECTION.

Ifthe destination parentidentifiedis alsotheroot segment, includethis clausein
the SEGMENT statement identifyingthe concatenated segment and its destination
parent. Aseparate SEGMENT statement is unnecessary for the root segment ifthe
destination parent is the root segment.

HISAM PROCessing SEQuence SET is indexed-set-name

Specifies that the destination parentis locatedina databaseinwhichthe root
segment is accessed through HISAM. Indexed-set-name specifies the name of the
indexed set that has the record equivalent of the root segment as a member.
Includethe ACCESS METHOD IS HISAM option only if the SEGMENT statement
identifies the root segment ina HISAM databasecontainingthe destination parent.

To determine ifthis option is appropriate, trace the destination parent, as
referenced inthe concatenated segment (inthe logical database), backtoits
definitioninthe physical DBD.If this physical DBD defines a HISAM database,
ACCESS METHOD IS HISAM becomes the appropriateentry when the SEGMENT
statement specifyingthe root segment is entered. Indexed-set-name must bea 1-
to 16-character nameand must be includedin the CA IDMS/DB subschema
specifiedinthe IPSB SECTION.

146 DLI Transparency User Guide

PCBSECTION

Ifthe destination parentis alsotheroot segment ina HISAM database,includethis
option inthe SEGMENT statement identifyingthe concatenated segment andits
destination parent. A separate SEGMENT statement is unnecessary for the root
segment ifthe destination parentis the root segment.

SEQuence is by LOGical sequence field

Specifies that the logical child,as seenina concatenated segment, is sequenced
under its logical parentsegment. If this clauseis specified, both of the following
conditions mustbe met:

m The concatenated segment defined inthe SEGMENT statement must refer to a
physical parentsegment as the destination parent.

m The concatenated segment defined inthe SEGMENT statement refers to a
sequenced virtual logical child segment (that s, the virtual logical child segment
inits physical databaseincludes a sequence field). Make sure that the
sequence field for the virtual logical childis defined in the RECORD SECTION
with a LOGICAL SEQUENCE FIELD statement. (See LOGICAL SEQUENCE FIELD
Statement (see page 122).)

USE is

Defines the sensitivity of the segment identified in the SEGMENT NAME clause. The
options must be specified as described below. When defining segments other than
concatenated segments, select the appropriate option from the firstfour detailed
below. When defining concatenated segments, however, select from the lastfour
options. Note that for concatenated segments, each of the optionsis a double
option, requiringyou to specify two options (for example, KEY,KEY or DATA,KEY).
For all other segments, one entry must be specified (for example, KEY or DATA).

NOT SENsitive

The named segment is required for CAIDMS DLI Transparency processing butis not
to be viewed by the DL/I application. When this optionis specified, CAIDMS DLI
Transparency allows the segment's correspondingrecord to be deleted when a DL/I
application programcallsfor deleting any segment inthe named segment's
hierarchical path. For example, assumethat the DL/I application programcallsfor
deleting occurrence B1 from SEGB. Alsoassumethat Bl is the parent of C1 and C2
in SEGC. If SEGC is specifiedinthe SEGMENT statement as USE IS NOT SENSITIVE,
CA IDMS DLI Transparency responds to the DL/I deletion call by allowing the
deletion of the record equivalents of B1, C1, and C2. USE ISNOT SENSITIVE is
appropriatefor the named segment if the segment's name is missingfromthe list
of SENSEG statements inthe PCB.

Chapter 4: IPSB Compiler 147

PCB SECTION

VIRTual LOGical CHILD (VLC)

The named segment is availableto CA IDMS DLI Transparency processing butis not
to be viewed by the DL/I application program. When this option is specified,a DL/I
call for deleting this segment's parent (or any segment inits hierarchical path)is
honored only if there are no occurrences of this segment under its parent.

For example, assumethat SEGC is specifiedinits SEGMENT statement as USE IS
VIRTUAL LOGICAL CHILD, and that SEGB is its parent. The DL/l application program
callsfor deleting occurrence B1 of segment type SEGB. The record correspondingto
Bl is deleted onlyif B1 has no dependent segments of type SEGC. If B1 has a
dependent segment of type SEGC, CA IDMS DLI Transparency notifies the DL/I
applicationthatthe deletion is notbeing performed. Normal coding of SEGMENT
statements does not require USE ISVIRTUAL LOGICAL CHILD; this option is provided

for flexibility.
KEY
The DL/I application views only the key of the named segment. Use this optionif
either of the followingconditions exists:
m The named segment is defined inalogical DBD with a SEGM statement that
contains a SOURCE parameter value of KEY or K.
m The SENSEG statement identifyingthe segment inthe PCB has a PROCOPT
valueof K.
DATA

The named segment is to be viewed inits entirety by the DL/I application. Usethis
default optionif either of the following conditions exists:

m The named segment is defined inalogical DBD with a SEGM statement that
contains a SOURCE parameter value of DATA or that uses the DL/I default value
of DATA for the SOURCE parameter.

m The SENSEG statement identifyingthe segment inthe PCB either has no
PROCOPT valueor has any PROCOPT valueother thanK.

KEY,KEY

For concatenated segments only, the DL/l application programviews the
concatenated segment. This view is only of the keys of the logical child segment and
of the destination parent segment. This option is applicableif KEY is specifiedin
both the logical child portion and the destination parent portion of the SOURCE
parameter inthe SEGM statement definingthe concatenated segment.

KEY,DATA

For concatenated segments only, the DL/l application programviews the
concatenated segment. This view is of the key of the logical child segment and of
the entire destination parentsegment. This option is applicableifthe SOURCE
parameter of the SEGM statement definingthe concatenated segment contains KEY
inthe logical child portionand DATA in the destination parentportion.

148 DLI Transparency User Guide

PCBSECTION

DATA,KEY

For concatenated segments only, The DL/l application programviews the
concatenated segment. This view is of the entire logical child segment and of only
the key of the destination parent segment. This optionis applicableifthe SOURCE
parameter of the SEGM statement definingthe concatenated segment contains
DATA inthe logical child portionand KEYinthe destination parentportion.

DATA,DATA

For concatenated segments onlythe DL/l application programviews the
concatenated segment. This view is of the entire logical child segment and of the
entire destination parent segment. This option is applicableifthe SOURCE
parameter of the SEGM statement definingthe concatenated segment contains
DATA in both the logical child portion and the destination parent portion.

Usage

An example of a PCB SECTION is showninthe illustrations below, along with the
resources that are required to develop this PCB SECTION. The PCB in this PSB calls for a
logical database. This logical databaseand its associated physical databases are
diagrammed in the hierarchies showninFigure46.

Hierarchy diagrams are often helpful aids in determining which segments areto be
specifiedinthe PCB SECTION. To complete a PCB SECTION, however, you must have the
applicable DBDs. In this example,

The applicable DBDs areshown in Figure 46 and Figure48.
Figure 47 shows the DBD that defines the logical database
Figure 48 shows the two DBDs that define the associated physical databases

Figure 49 shows the data structure diagramfor the corresponding CA IDMS/DB
database

The informationin Figure45 through Figure 49 is used to define the sample PCB
SECTION shown in Figure 50.

Chapter 4: IPSB Compiler 149

PCB SECTION

Sample PSB

Figure 45 below shows a sample PSB. Although a PSB can have several PCBs, the PSB
shown inthis illustration has only one PCB.

PCB TYPE=DB, DBNAME=LOGDB ,PROCOPT=G, POS=SINGLE, KEYLEN=12
SENSEG NAME=LSEGA, PARENT=0, PROCOPT=A

SENSEG NAME=LSEGB, PARENT=LSEGA , PROCOPT=A

SENSEG NAME=SEG3, PARENT=LSEGB, PROCOPT=A

SENSEG NAME=SEG4 , PARENT=LSEGB

SENSEG NAME=SEG8 , PARENT=LSEGB

PSBGEN LANG=COBOL , PSBNAME=PSB1

END

Figure 45. Sample PSB
Hierarchies of Sample Databases

These hierarchies correspondtothe DBDs in Figure47 and 4-17. Although SEG7 is not
used directly by the application program,itcan be affected if SEG6 is deleted.

PHYSDB1 PHYSDB2
SEG1
SEGS
A J """ a0 SEG6
! SEG2 ! SEG3 SEG4
L ; I
[I
SEG7 SEGS

LOGDB

LSEGA

LSEGB

(SEGE) (SEG1)
SEG3 SEG4 SEG7 SEG8

Figure 46. Hierarchies of sample databases

150 DLI Transparency User Guide

PCBSECTION

Sample DBD for a Logical Database

LSEGB is the concatenated segment in this example. The SEGM statement for the
concatenated segment indicates that SEG6 in PHYSDB?2 is the logical childand SEG1in
PHYSDBL1 is the destination parent. The DBDs shown in Figure 48 indicatethatSEG6 is
the real logical child.

DBD NAME=LOGDB , ACCESS=LOGICAL
DATASET LOGICAL
SEGM NAME=LSEGA , SOURCE=((SEG5, PHSDB2))
SEGM NAME=LSEGB, PARENT=LSEGA,

SOURCE=((SEG6,DATA, PHYSDB2) , (SEG1,DATA, PHYSDB1))
SEGM NAME=SEG3, PARENT=LSEGB, ((SEG3,PHYSDB1))
SEGM NAME=SEG4 , PARENT=LSEGB, SOURCE=((SEG4, PHYSDB1))
SEGM NAME=SEG7, SOURCE=((SEG7,PHYSDB2)) , PARENT=LSEGB
SEGM NAME=SEG8, SOURCE=((SEG8, PHYSDB2)) , PARENT=LSEGB
DBDGEN
FINISH
END

Figure 47. Sample DBD for a logical database

Chapter 4: IPSB Compiler 151

PCB SECTION

Sample DBDs for Two Physical Databases

Accordingto these DBDs, SEG2 in PHYSDB1 is the virtual logical child segment, and SEG6
in PHYSDB?2 is the real logical child segment.

DBD NAME=PHYSDB1, ACCESS=HDAM

DATASET DD1=HDAM1,DEVICE=3350, BLOCK=2048 , SCAN=3

SEGM NAME=SEG1, PTR=TWINBWD, RULES=LLV

FIELD NAME=(FIELD1,SEQ,U),BYTES=60, START=1

FIELD NAME=FIELD2,BYTES=15,START=61

FIELD NAME=FIELD3,BYTES=75,START=76

LCHILD NAME=(SEG6 , PHYSDB2) , PATIR=SEG2,PTR=DBLE

SEGM NAME=SEG2 , PARENT=SEG1, PTR=PAIRED
SOURCE=(SEG6, DATA, PHYSDB2)

FIELD NAME=(FIELD4,SEQ,U) ,BYTES=21, START=1

FIELD NAME=FIELD5,BYTES=20,START=22

SEGM NAME=SEG3, BYTES=200, PARENT=SEG1

FIELD NAME=(FIELD6, SEQ,U) ,BYTES=99, START=1

FIELD NAME=FIELD7,BYTES=101, START=100

SEGM NAME=SEG4, BYTES=100, PARENT=SEGL

FIELD NAME=(FIELDS, SEQ,U) ,BYTES=15, START=1

FIELD NAME=FIELD9,BYTES=15,START=51

DBDGEN

FINISH

END

DBD NAME=PHYSDB2, ACCESS=HDAM, RMNAME=DLZHDC20, 7,700, 250

DATASET DDI=HDAM2,DEVICE=3350, BLOCK=2048, SCAN=3

SEGM NAME=SEG5, BYTES=31, PTR=TWINBWD, RULES=(VLV)

FIELD NAME=(FIELD9,SEQ,U) ,BYTES=21, START, TYPE=P

FIELD NAME=FIELD10, BYTES=10, START=22

SEGM NAME=SEG6,

PARENT=(((SEG5,DBLE) , (SEG1,P,PHYSDB1)),
BYTES=80, PTR=(LPARNT, TWINBWD) , RULES=VVV

FIELD NAME=(FIELD11,SEQ,U) ,START=1,BYTES=60

FIELD NAME=FIELD12,BYTES=20, START=61

SEGM NAME=SEG7,BYTES=20, ,PTR=T
PARENT=((SEG6,SNGL))

FIELD NAME=FIELD13,BYTES=9,START=1

FIELD NAME=FIELD14,BYTES=11, START=10

SEGM NAME=SEG8,BYTES=75, PTR=T
PARENT=(SEG6, SNGL)

FIELD NAME=FIELD16, BYTES=50, START=1

FIELD NAME=FIELD17,BYTES=25,START=51

DBDGEN

FINISH

END

Figure 48. Sample DBDs for two physical databases

152 DLI Transparency User Guide

PCBSECTION

Sample CA IDMS/DB Data Structure Diagram

The data structure diagramshown in this illustration depicts the CA IDMS/DB schema
for the databasecorrespondingtothe DBDs shown in Figure 48.

Figure 49. Sample CA IDMS/DB data structure diagram

SEGS8

PHYSDB1 PHYSDB2
SEG1
SEGS
1 SEG6
! SEG3 SEG4
i I
[I
SEG7
LOGDB
LSEGA
LSEGB
(SEG6) (SEG1)
SEG3 SEG4 SEG7 SEG8

Chapter 4: IPSB Compiler 153

Executing the IPSB Compiler

Sample PCB Section

Figure 45 through Figure 49 are the sources for this sample PCB SECTION.

PCB SECTION.
PCB ACCESS METHOD IS HDAM

DBDNAME IS LOGDB

PROCESSING OPTIONS ARE A

POSITIONING IS SINGLE.

SEGQVENT NAME IS LSEGA RECORD NAME IS RECS
SEGQVENT NAME IS LSEGB RECORD NAME IS REC6

PARENT IS LSEGA THRU SET REC5-REC6

LOGICAL DESTINATION PARENT IS REC1

THRU SET REC1-REC6

INSERT RULES ARE VIRTUAL,VIRTUAL,LOGICAL

REPLACE RULES ARE VIRTUAL,VIRTUAL,VIRTUAL

ACCESS METHOD IS HDAM

USE IS DATA,DATA.

SEGMENT NAME IS SEG3 RECORD NAME IS REC3
PARENT IS LSEGB THRU SET REC1-REC3
USE IS DATA.

SEGMENT NAME IS SEG4 RECORD NAME IS REC4
PARENT IS LSEGB THRU SET REC1-REC4
USE IS DATA.

SEGMENT NAME IS SEG7 RECORD NAME IS REC7
PARENT IS LSEGB THRU SET RC6-REC7
USE IS NOT SENSITIVE.

SEGMENT NAME IS SEG8 RECORD NAME IS REC8
PARENT IS LSEGB THRU SET REC6-REC8
PARENT IS OWNER USE IS DATA.

Figure 50. Sample PCB SECTION

Executing the IPSB Compiler

To execute the IPSB compiler and assembleand link editthe output, use the JCL shown
in CA IDMS DLI Transparency JCL (see page 257). The compiler requires as inputthe IPSB
sourcestatements that you have produced via the CAIDMS DLI Transparency Syntax
Generator.

154 DLI Transparency User Guide

Chapter 5: CA IDMS DLI Transparency
Run-Time Environment

This section contains the followingtopics:

About This Chapter (see page 155)

DL/l and CA IDMS DLI Transparency Run-Time Environments (see page 156)
Modifying System Generation Parameters (see page 157)

Batch Considerations (see page 160)

CICS Considerations (see page 163)

Testing the DL/I Application (seepage 169)

About This Chapter

CA IDMS DLI Transparency can run under z/OS or z/VSE in either a batch or CICS
environment. CA IDMS supports z/0S V1R10 as well as z/0S 1.1 and above. However,
we will always refer to z/0S in this document.

This chapter describes:

m The DL/I run-time environment and the CA IDMS DLI Transparency run-time
environment

m The modifications you must make to your system generation parameters for central
version (CV) execution in either a batch or CICS environment

m The steps required to run CAIDMS DLI Transparencyin either a local modeor CV
batch environment

m The steps required to run CAIDMS DLI Transparencyina CICS environment
m Testing the DL/I applicationintherun-time environment

Note that batch jobs arerunin either local mode or under the central version. A CICS
environment always operates with the central version.

Chapter 5: CAIDMS DLI Transparency Run-Time Environment 155

DL/T and CA IDMS DLI Transparency Run-Time Environments

DL/I and CA IDMS DLI Transparency Run-Time Environments

The DL/1 Run-Time Environment

Inthe DL/I run-time environment:
m ADL/I applicationissues a callagainsta DL/I database.

m DL/l controls the program's access tothe databasebyusing program specification
blocks (PSBs) and Database Definitions (DBDs) that are stored ina run-time library.

m Each PSB contains program communication blocks (PCBs), which define the
program's databaseviews.

m After servicingthecall, DL/l returns the status information and requested data to
the program by way of the appropriate PCB. Note thatina CICS environment, DL/I
alsouses a userinterfaceblock (UIB) to communicate with the program.

Native DL/I Batch and CICS Environments

The diagrambelow shows the basic DL/l environments for both batch and CICS.

Batch Environment CICS Environment

PSB and

DBD Control cics

Blocks Transaction
Application DLA DL/ PSB, PCB,
e

Blocks
DL/ DL/
Database Database

Figure 51. Native DL/I batch and CICS environments

The CA IDMS DLI Transparency Environment

In CA IDMS DLI Transparency, the DL/I databaseis replaced by a CA IDMS/DB database.
DL/l itselfis replaced by CA IDMS DLI Transparency and CA IDMS/DB. The DL/I
applicationsremain unchanged.

156 DLI Transparency User Guide

Modifying System Generation Parameters

When a DL/l applicationissues a callthatis addressed to the CA IDMS/DB databasethat
contains the converted DL/I data:

m CA IDMS DU Transparency converts the call to the corresponding CA IDMS/DB DML
call and passes itto CA IDMS/DB, which accesses thedatabase.

m CA IDMS/DB returns the status information and data backto CA IDMS DLI
Transparency.

m InCA IDMS DL Transparency, the PSBs, PCBs, and DBDs are replaced by interface
program specification blocks (IPSBs) and subschemas.

m Each IPSBserves as a control block that maps the definition and structure of the
DL/I databaseto the CA IDMS/DB database. Like the PCBs, the subschemas define
the program's databaseviews.

CA IDMS DLI Transparency Runtime Components
The diagrambelow shows the basic CAIDMS DLI Transparency run-time components.

The remainder of this section describes how to set up the required CA IDMS DLI
Transparency run-time environment for both batch and CICS.

Application
Program
/
CA-IDMS/DLI
IPSB and CA-IDMS/DB A-IDMS/DB
Database

Figure 52. CA IDMS DLI Transparency basic runtime components

Modifying System Generation Parameters

Before generating a CA IDMS system definition, you must set the following system
generation parameters on the SYSTEM statement:

® Maximum number of CA IDMS DLI Transparency users
m Program poolsize
m Reentrant poolsize

m Storage poolsize

Chapter 5: CAIDMS DLI Transparency Run-Time Environment 157

Modifying System Generation Parameters

You must alsoadd certain systemgeneration PROGRAM statements.

Note: For more information aboutsystem generation parameters, see the CA IDMS
System Generation Guide.

These modifications arerequired only for a batch CV and CICS environment.

Important! Do not make these modifications if youarerunning CA IDMS DLI
Transparencyinalocal modeenvironment.

Maximum Number of CA IDMS DLI Transparency Users

On the SYSTEM statement, change the MAXIMUM ERUS parameter to allow for the
maximum number of concurrent CA IDMS DLI Transparency users. Note that the
MAXIMUM ERUS value must reflect both the number of CA IDMS DLI Transparency
users and the maximum number of CA IDMS/DB users, for both batch and CICS.

Program Pool Size

Adjust the program pool sizeas specified for the PROGRAM POOL parameter on the
SYSTEM statement. Use the followingformula to calculatethe required number of
bytes:

(ipsb-size * max-num-ipsb) + back-end-size

m |psb-size is the average sizefor an IPSB. For calculation purposes,you canuse4K as
anaverage IPSB size. Ifyou have large |PSBs, you should adjusttheaverage size
accordingly. To determine the actual IPSBsizes, refer to the link maps for the IPSBs.

® Max-num-ipsb is the maximum number of nonresident IPSBs.

Reentrant Pool Size

Adjust the reentrant pool sizeas specified for the REENTRANT POOL parameter on the
SYSTEM statement. Use the same formula as for program pool sizeabove.

158 DLI Transparency User Guide

Modifying System Generation Parameters

Storage Pool Size

Adjust the storagepool sizeas specified for the STORAGE POOL parameter on the
SYSTEM statement. Use the followingformula to calculatethe required number of
bytes:

4K * maximum erus

Maximum erus is the maximum number of concurrent CAIDMS DLI Transparency users.
Use the samevalue calculated for MAXIMUM ERUS above.

Additional PROGRAM Statements

You mustincludeadditional system generation PROGRAM statements to define:
m The IDMSDLVC databaseprocedure
m The IDMSDLVD databaseprocedure

You canoptionallyinclude PROGRAM statements for IPSBs and subschemas.

IDMSDLVC Database Procedure

Add the following systemgeneration PROGRAM statement to define the IDMSDLVC
databaseprocedure. IDMSDLVC is a databaseprocedurefor modifyingvariable-length
records.

ADD PROGRAM IDMSDLVC
LANGUAGE IS ASSEMBLER
REENTRANT
REUSABLE.

IDMSDLVD Database Procedure

Add the following PROGRAM statement to define the IDMSDLVD databaseprocedure.
IDMSDLVD is a databaseprocedurefor retrieving variable-length records.

ADD PROGRAM IDMSDLVD
LANGUAGE IS ASSEMBLER
REENTRANT
REUSABLE.

Chapter 5: CA IDMS DLI Transparency Run-Time Environment 159

Batch Considerations

IPSBs and Subschemas

PROGRAM statements can be added for IPSBs and subschemas, but arenot required.
The PROGRAM statement for an IPSB takes the following formwhere ipsb-name is the

name of the IPSB:

ADD PROGRAM ipsb-name
LANGUAGE IS SUBSCHEMA.

More information:

CA IDMS DLI Transparency Software Components (see page 241)

Batch Considerations

CA IDMS DLI Transparency batch canrun ineither a local modeor CV environment.

The diagrambelow shows the local mode environment.

IDMSDLRC
Module

';\‘I’J": d c[;'t-i’gn IDMSDLFE
Module

(Front End}

BINL

FINI$H

IDMS

RUN-UNIT

DL/I call

DL/
Application
Program

Language
Interface

DL/

call

DL

Figure 53. CA IDMS DLI Transparency in a local mode environment

| call

RHDCDLBE
Module
{Back End)

Subschemas

IPSB

CA-IDMS/DB

160 DLI Transparency User Guide

Batch Considerations

The diagram below shows the batch CV environment.

Application Address Space

IDMSDLRC
Module

Logd DL/
Application IDMSDLFE

Module
(Front End)

BIND RUN-UNIT
| FINI§H

IDMS

DL/

CA-IDMS/DB

Central Version

RHDCDLBE

Tall

DL/
Application
Program

DLA

Language
Interface

DL/l|call

call

Figure 54. CA IDMS DLI Transparency in a batch CV environment

Steps to Set up Batch Environment

Module
{Back End)

Subschemas

IPSB

The steps for setting up the CA IDMS DLI Transparency batch environment (local mode

or CV) are as follows:

1. Linkeditthe DL/l applications with the CA IDMS DU Transparency language

interface.

2. Execute the CA IDMS DLI Transparency region controller.

Link Editing Batch DL/I Applications

To prepare your DL/I applicationstoruninthe CA IDMS DLI Transparency batch
environment, you must link editthem with the correct CA IDMS DLI Transparency
languageinterface.Module IDMSDLLI should be link edited to call-level DL/l applications,
and module IDMSDLHI should be link edited to batch command-level DL/l applications

(containing EXEC DLI commands).

To link edita DL/I application programwith the languageinterface, use the JCL for z/0OS

and z/VSE provided in Appendix D.

Chapter 5: CAIDMS DLI Transparency Run-Time Environment 161

Batch Considerations

Executing the CA IDMS DLI Transparency Redion Controller

The Basic Execute Statement

To run CA IDMS DU Transparencyina batch environment, you must execute the CA
IDMS DLI Transparency region controller (IDMSDLRC). Use the JCL provided in Appendix

D.

The basic execute statement (shown for z/0S) is as follows:

EXEC PGM=IDMSDLRC,PARM='DLI,userpgm, ipsb, parms'

Parameter List

Inthe PARM list:

m Userpgm is the name of the DL/I batch application.

m Jpsb is the name of the IPSBthat the application uses when accessingthe CA
IDMS/DB database.

m Parms are additional optional parameters, as follows:

TRACE -- Traces the call sequence, the I/O areas, the PCBs, and the SSAs. Ina
central version environment, the trace results arewritten to the CA IDMS/DB
log. Ina local modeenvironment, the traceresults areplacedina special
dataset called ESCDUMP. If you use TRACE when runninginlocal mode, make
sure that you includea DD statement for ESCDUMP. Generally, TRACE is used
only for debugging internal problems.

NOSPIE/NOSTAE/NOSTXIT -- Prevents recursiveabends inthe caseof CA IDMS
DLl Transparency abend exit failures.The back-end module (RHDCDLBE)
maintains a tracetableof activity. Ifa DL/l applicationaborts,anabend exitis
invoked to format and output the trace information to the CA IDMS/DB login
central version, or to the ESCDUMP DD in local mode. This informationis
valuableand used by supportfor diagnostic purposes. Under the central
version, ifthe abend exit also abends, this recursiveabend will bring the central
versiondown. These parameters are availablein casethis situationshould ever
occur. This parameter should not be routinely specified.

When runningunder the central version, only specify one of these options.
NOSPIE and NOSTAE are for z/OS only. They turn off SPIES and STAES,
respectively. NOSTXIT is for z/VSE only.

DYN -- Allocates dynamic buffers to the front-end module for use by PL/I
programs.In order to use this parameter in a central version environment, you
must make sure that the IPSB is availableto both the region controller
(IDMSDLRC) and the front-end module (IDMSDLFE), as well as to the back-end
module (RHDCDLBE).

162 DLI Transparency User Guide

CICS Considerations

Modifying Existing DL/I Batch JCL

You

canconstructthe JCL to execute the region controller by modifying the existing JCL

for a DL/I batch application.fyoudo this, make sure you observe the following
constraints.

Central Version Environment

Change the programname to IDMSDLRC.

Remove any statements that point to DL/I databases. Makesure that you point only
to CAIDMS/DB load libraries, and not to IMS or DL/I load libraries.

Inserta SYSCTL statement.

Remove all DL/l databasedefinitions.

Local Mode Environment
Change the programname to IDMSDLRC.

Remove any statements that point to DL/I databases. Makesure that you point only
to CAIDMS/DB load libraries and notto IMS or DL/I load libraries.

Do not includea SYSCTL statement.
Replace all DL/I file definitions with CA IDMS/DB file definition cards.

Add journal definition cards. Remember thatlocal mode needs a larger address
spacethan ajobaccessingthe central version. This is becausethe local address
spacealsoincludes CAIDMS/DB.

Using Dynamic File Allocation

There are a number of advantages to utilizing FILE statements inthe CA IDMS DMCL
to have databases accessed using Dynamic Allocation.

For more information aboututilizing dynamic allocation, refer to the CA IDMS
Database Administration Guide Volume 1, Chapter 3, Defining Segments, Files,and
Areas.

CICS Considerations

You

canaccess CAIDMS/DB from a CICSDL/I applicationatcalllevel orcommand-level

depending on how your DL/l applications are coded.

If call-level DL/I statements areutilized, DL/l applicationscan berelinked using the CA
IDMS DLI Transparency CICSapplication interface (IDMSDL1C for z/OS, IDMSDL1V for
z/VSE).

Chapter 5: CAIDMS DLI Transparency Run-Time Environment 163

CICS Considerations

If command-level DL/I statements are utilized (EXEC DLI), DL/ applications can be
relinked usinga CA IDMS DLI Transparency CICS applicationinterfacespecificto the
application programminglanguageand operating system.

For a description of IDMSDL1C, IDMSDL1V, and command-level DL/I application
interfaces,see CA IDMS DLI Transparency Software Components (see page 241).

More information:

CA IDMS DLl Transparency Software Components (see page 241)

DL/I CICS Environment
CICS DL/1 Environment (z/0S)

As shown in the diagrambelow, the native DL/l application runs as a CICS
transaction.Thetransactionis linked with the DL/l languageinterface (DFHDLIAI inz/OS
or DLZLIOOO in z/VSE) sothatit can make DL/I calls. When the transactionstarts:

m The languageinterface loads the address for DFHDLI (or DLZDLI for z/VSE) inthe
CICS Common Storage Area (CSA)

m DFHDLI (or DLZDLI for z/VSE), inturn, points to the address of the run-time DL/I

m When the transactionissuesa DL/l call,the call ispassed, via DFHDLIAI and DFHDLI,
to DL/I, which services the databaserequest and passes status informationand/or
data backto the transaction

164 DLI Transparency User Guide

CICS Considerations

The diagrambelow shows the CICS environment for native DL/l under z/0S.

Supervisor

CICS

PCT

PPT

“l CICS
Transaction

CICS CSA A(DFHDLI)
Language /
Interface

(DFHDLIAI) N
DFHDLI
Abend/
F‘etl“r“ | A(DLII)
PCP
DL

Figure 55. z/0S CICS DL/l environment

Chapter 5: CAIDMS DLI Transparency Run-Time Environment 165

CICS Considerations

CA IDMS DLI Transparency CICS Environment

z/0S CICS Environment (Using Command-Level CICS services)

The diagrambelow shows the z/0S CICS environment for CA IDMS DL Transparency
usingcommand-level CICSservices.

IDMSINTC

RHDCDLBE

m The CA IDMS DL Transparency applicationinterface(also referenced as the
languageinterface), intercepts DL/I calls.
m The applicationinterfacegets the entry point address of IDMSDLFC (in IDMSINTC)
from the CWA and passes control to IDMSDLFC for DL/I parameter processing
m |IDMSINTC passes control tothe CA IDMS DLI Transparency back-end module,
RHDCDLBE, for DL/I call translationinto processingagainstthe CA IDMS/DB
database
Supervisor .
cics | CA-IDMS/DB
CICS ! CWA i
Transaction » CICS CSA | A(IDMSDLFG) !
:-nigf-]f:?:ge - - i Central Version

Abend/
Return

PCP

Expanded

IDMSDLFC

B

IDMSDLFE

IDMSPDIR

Module
{Back End)

[

Subschemas

IPSB

Figure 57. CAIDMS DLI Transparency z/0S CICS environment (command-level only)

166 DLI Transparency User Guide

CICS Considerations

Establishing the CA IDMS DLI Transparency CICS Environment

Assemble CICSOPTS

How to Set Up a CA IDMS DLI Transparency CICS Environment

To set up a CICS environment for CA IDMS DLI Transparency, perform the following
steps, which are explainedin detail in the section directly after this:

1. Assemblethe CICSOPTS module with parameter ESCDLI=YES. .

2. Ifapplicationsutilize EXEC DLI calls, changethe HLPI= parameter to YES.

3. Assemblethe appropriatelanguageinterface module.

4. Link the DL/I application to the languageinterface module.

Use Appropriate CICS Language Interface

CICS DL/I applications mustbe re-linked with a CA IDMS DLI Transparency
application/languageinterface module. For call-level DL/l usage, IDMSDL1C (z/OS) and
IDMSDL1V (Z/VSE) resolvethe external references to CBLTDLI, ASMTDLI, or PLITDLI.For
EXEC DLI usages, the interface modules arelanguageand operating system specific.For
information on assemblinglanguageinterface modules, see CA IDMS DLI Transparency
JCL (see page 257). Note that the interface modules must be assembled with a CWADISP
value matching the corresponding CICSOPTS CWADISP value.

Initial Installation

A site-specific CICSOPTS modulewill beassembled and link edited as partof the
installation process. All parameters for CICSOPTS that are required for the DL/I
Transparency will beautomatically generated by the CAISAG (z/0S) or CAIIJMP (z/VSE)
installation utility when you indicatethe product to be installed. The site-independent
IDMSINTC module will includeall modules specifically required to run the
DLI/Transparency.

Modifying CICSOPTS

You may need to reassemble CICSOPTS to change some of the original installation
options.

z/0S can find the CICSOPTS sourcein CUSTOM.SRCLIB(CICSOPTS) andthe link
statements in CUSTOM.LNKLIB(IDMSINTC).

z/VSE clients should editthe CICSOPTS module and relink IDMSINTC. Job control to do
this should be taken from the job control that was generated by CAIIJMP for your initial
basetape installation.

Note: For more information aboutthe CICSOPTS macro and its parameters, see the CA
IDMS System Operations Guide.

Chapter 5: CAIDMS DLI Transparency Run-Time Environment 167

CICS Considerations

IDMSINTC is the standard CA IDMS/DB module for running CA IDMS/DB transactions
under CICS.CICSOPT parameter ESCDLI=YES specifies thatyou want to run not only
standard CA IDMS/DB, but also CAIDMS DLI Transparency, under CICS. The result of
ESCDLI=YES is to expand CICSOPTS, sothatitcanalsoserveas the CAIDMS DLI
Transparency frontend. If applications utilize EXEC DLI statements, HLPI=YES enables
supportfor this DL/l usage. Note thatitis possibletolink IDMSCINT with a transaction
to allowthe transaction to make both CA IDMS/DB and DL/I calls.

Prepare to run IDMSINTC in CICS

IDMSINTC itselfruns as a transaction under CICS. For a detailed description of how to
prepare for this,see the CA IDMS System Operations Guide.

Note that IDMSINTC can be executed either automaticallyatCICS start-up or manually
after CICS start-up.

Assemble the languagde interface
Initial Installation
Language interfaces areautomatically generated atinstallation. Theappropriate
languageinterface must be linked with each CICS DL/I application thatwill access CA

IDMS/DB. The valuefor CWADISP will be set to the same valuethat was specifiedinthe
CICSOPTS assembly by the CAISAG (z/OS) or CAIIIMP (z/VSE) utility.

Modifying Language Interfaces

Ifyou change the CWADISP value used by IDMSINTC, you will need to make the same
change to the languageinterfaces being utilized.

For a description of the languageinterfaces, see CA IDMS DLI Transparency Software
Components (see page 241). For information on assembling CICSlanguageinterface
modules, see CA IDMS DLI Transparency JCL (see page 257).

z/0S can find the IDMSDL1C sourcein CUSTOM.SRCLIB and the IDMSSCL1C link
statements inthe CUSTOM.LNKLIB.

z/VSE clients should makethe necessary changeto the z/VSE DL/ languageinterfaces,
usingthe job control that was generated by CAIIJMP as partof yourinitial basetape
installation.

Note: You will need to relinkany DL/l applicationthatincluded thelanguage interfaces.

168 DLI Transparency User Guide

Testing the DL/I Application

Testing the DL/I Application

After setting up your CAIDMS DLI Transparency run-timeenvironment, perform the
following steps to test a DL/l application:

1. Establisha pilotprojectusinga subsetof the DL/I database.

2. Usethe CAIDMS DLI Transparency Load Utility (see CA IDMS DLI Transparency Load
Utility (see page 171)) to convert databaseto/ a subsetof the DL/I databaseto a CA
IDMS/DB database.

3. Link the DL/I application programwith the appropriatelanguageinterface.
4. Execute the application againstthe converted DL/I database.

5. Compare the results of the application's CAIDMS/DB and DL/I executions.

Chapter 5: CAIDMS DLI Transparency Run-Time Environment 169

Chapter 6: CA IDMS DLI Transparency Load
Utility

This section contains the followingtopics:

About This Chapter (see page 171)

Usingthe CA IDMS DLI Transparency Load Utility (see page 171)
The Databaseload Process (see page 172)

Preparing To Run the Load Utility (see page 173)

Sample Source Code For Databaseload (see page 178)

Step 1: Preload CALC Processing (seepage 191)

Step 2: Databaseload (see page 194)

Step 3: Workfile Sort/Merge (see page 196)

Step 4: Prefix (Concatenated Key) Resolution (see page 197)
Step 5: Workfile Hierarchical Sort (see page 199)

Step 6: Prefix Update (see page 200)

About This Chapter

The CA IDMS DLI Transparency load utility populates an existing CAIDMS/DB database
with data unloaded from a DL/I database.This section presents:

m The initialrequirements and preparations you need to make
m Adescription of the process of loading data with the DLI load utility
m Samplecode

m A detailed explanation of each step

Using the CA IDMS DLI Transparency Load Utility

The CA IDMS DLl Transparency load utility requires:

m Aninitialized CAIDMS/DB databaseand all supporting softwarenecessary to access
the database. The supporting software includes usable CA IDMS/DB schema,
subschema, and DMCL modules.

m The CA IDMS DU Transparency run-time interface. The load utility runs under the
control of the CA IDMS DLI Transparency region controller. Also, the back-end
processor performs special handling of the DL/I data duringthe load.

Chapter 6: CAIDMS DLI Transparency Load Utility 171

The Database Load Process

m A CAIDMS DLI Transparencyinterface programspecification block (IPSB) load
module that accurately describes the DL/I hierarchies involved.

m Unloaded DL/I dataina format compatible with that produced by the IBM DL/l HD
unload utility. The load utility accepts data onlyifitis inthis format.

m A workingknowledge of CA IDMS/DB, DL/I, and CA IDMS DLI Transparency.
Knowledge of CA IDMS DLI Transparency includes familiarity with the CA IDMS DLI
Transparency syntax generator, the IPSB compiler,and the run-time interface.

The Database Load Process

The process of loading data with the CA IDMS DLI Transparency load utility caninvolve

up to sixsteps,as follows:

Step

Process

1. Preload CALC
processing

Calculates database pages for CALC records (DL/I root
segments). The actual databaseload (Step 2) canalso
perform this operation, but ittakes longer to do so.
Pre-load CALC processingis optionalandis provided only
to improve loading performance.

If preload CALC processingis performed, the resultingdata
should then be sorted to produce the optimum database
loading sequence.

2. Databaseload

Stores the DL/I datainthe prepared CA IDMS/DB database.
Ifthe DL/I hierarchies involved do not contain logical
relationships, thisistheonly step required to complete the
load process.

Iflogical relationships do exist, you must perform Steps 3
through 6 to resolvethe logical child/logical parent
relationships. Logical relationships require special
treatment for the followingreasons:

m The hierarchical nature of the DL/I data does not
ensure that a logical parentwill bestored before its
logical child.

m The logical parentconcatenated keys are not always
present inalogical childinputrecord.

Ifthe load utility encounters a logical relationship during

the load, it creates logical parentand logical child workfile

records and writes them to a separateworkfile.

3. Workfilesort/merge

Sorts the workfile produced by Step 2 sothat the logical
childrecords appearin proper sequence under their
associated logical parentrecords.

172 DLI Transparency User Guide

Preparing To Run the Load Utility

Step Process

4. Prefix (concatenated Uses the sorted workfilefrom Step 3 asinput. For each

key) resolution logical parentrecordinthe workfile, it generates a correct
prefix (concatenated key) for each associated logical child
record.

5. Workfile hierarchical Accepts the prefix-resolved workfilefrom Step 4 as input
sort andsorts the logical child records backinto the original
hierarchical sequence.

6. Prefix update Retrieves logicalchild records already stored in the CA
IDMS/DB database (by Step 2 processing).Usingthe
hierarchically sorted workfilefrom Step 5, it adds the
correct prefix (concatenated key) to each logical child
databaserecordand connects it to its logical parent
record. This step completes the processingfor DL/I data
that contains logical relationships.

Each of the stepsinthe databaseload processisdescribed separately laterin this
section.

Preparing To Run the Load Utility

Before attempting to execute the load utility, take the following considerations into
account.

Preparation of DL/I Data

Unload all DL/I data, includingall access methods, by usingthe DL/I HD unload utility.
The CA IDMS DU Transparency load utility expects the data to be inthe format
produced by the HD unload utility.

Unload all DL/I HDAM, HIDAM, secondaryindex, HISAM, and index databases.Index
databases haveto be unloaded onlyifthe index entries are not created by other record
occurrences inthe index relationship. See "CA IDMS DLI Transparency Index
Maintenance" below.

CA IDMS DLI Transparency Index Maintenance

CA IDMS DLI Transparency creates and updates DL/l index entries for the index
relationships defined in the CAIDMS/DB database.In other words, when a source
record is inserted, replaced, or deleted ina CA IDMS/DB index relationship, CAIDMS DLI
Transparency makes sure that the index relationship'srequirements can be met for the
insert, replace, or delete call.

Chapter 6: CAIDMS DLI Transparency Load Utility 173

Preparing To Run the Load Utility

You should notinput to the load utility any DL/l index entries that would be created by
CA IDMS DU Transparency's index maintenanceroutines. For example, assumethat you
have a DL/l index databasethatis populated whenever a particular rootsegment is
inserted intoan associated HDAM database.Since loading of the HDAM databasewill
alsopopulatethe index database, there is no need to load the entries inthe DL/l index
databaseintothe CA IDMS/DB index relationships. CAIDMS DLI Transparency will do
this for you.

You canuseindex suppression exits or null value criteria specifications to support DL/I
sparseindexingduringthe load process. See Index Suppression ExitSupport (see
page 253) for a discussion ofindex suppression exits.

Using the CA IDMS DLI Transparency Syntax Generator

Itis strongly recommended that you use the syntax generator to produce the source
statements for the IPSB load module and the CA IDMS/DB schema, subschema, and
DMCL modules. See CA IDMS DLI Transparency Syntax Generator (see page 75) for
instructions on creatingthe special load IPSBand usingthe GENERATE LOAD IPSB and
GENERATE LOAD SCHEMA statements. Whileyou can hand-code the IPSB, use of the
syntax generator is more efficient and less time consuming.

Preparation of the IPSB and CA IDMS/DB Load Modules

To produce the CA IDMS/DB modules, input the generated sourcestatements to the
appropriatecompilers. Ifyouare runningthe databaseload inlocal mode, the
subschema and DMCL modules must resideina librarythatis accessiblebya STEPLIB
JCL statement.

To produce the IPSBload module, inputthe generated IPSB sourcestatements to the
IPSB compiler (see |IPSB Compiler (see page 93)). Note that the subschema module must
be availableto compilethe IPSB.

The IPSB(s) produced by the syntax generator may not be appropriate for the database
load.Inthis case, you will haveto edit the IPSB sourceto create special load IPSBs (see
"Special Load IPSBs" below).

174 DLI Transparency User Guide

Preparing To Run the Load Utility

Special Load IPSBs

The IPSB Load Module

The IPSB load module provides the CAIDMS DLI Transparency run-timeinterface with a
description of the DL/I databasehierarchies thatarereferenced inthe PCBs (database
views) defined for the DL/l application.The IPSB also defines thoselogical relationships
thatinvolve other DL/I databases. Make sure that these logical relationshipsare
correctly defined so that the load utility can find the logical parentrecords necessary to
populate the logical workfile.

Review the IPSB

Specifically, makesurethat the IPSB defines:
m Eachlogicallyrelated database
m The physical segments in each database

m The physical path underlyingthelogical path

Note that logically related databases aredefined by way of multiple PCBs within the
IPSB. The multiple PCBs arethe equivalents of multiplelogical DBD descriptions, with
full hierarchical definitions, included within the same PSB. Eachlogicallyrelated
databaseis represented by at leastone PCB. If the logical relationships do not cross
databaseboundaries, only one PCB that defines the logical relationships isrequiredin
the IPSB load module.

Inthe caseof multipleDL/I databases,itis recommended, but not required, that you
use one IPSBload module with multiple PCBs.

PROCOPT for Special Load IPSBs

Each PCBincludedinthe IPSBload module must have a PROCOPT of LOAD sothe CA
IDMS DLI Transparency run-time interface canrecognize that the load utilityis active.
Failureto specify the LOAD PROCOPT canresultinload processingerrors.Ifyou use the
CA IDMS DLI Transparency syntax generator, it will generate this PROCOPT for you
automatically.See CA IDMS DLI Transparency Syntax Generator (see page 75) for a
description of the GENERATE LOAD IPSB statement.

Availability of the IPSB Load Module

You must make surethat the IPSBload moduleis availableto both the load utilityand
the CA IDMS DLl Transparency run-time interface. For central version execution, the
IPSB load module must be availableto the central version and the batch LOAD region.

Chapter 6: CAIDMS DLI Transparency Load Utility 175

Preparing To Run the Load Utility

CA IDMS/DB Schema Requirements

Junction Record Represents Logical Child Segment

For each logicalrelationship thatexists in the DL/l database, the logical child segment
must be represented by a CA IDMS/DB junction record. For the junction to exist, there
must be two CA IDMS/DB sets. Sincethere is no assurancethatthe load process has
stored the two set owners (parent records) before itstores the junction (logical child)
record, the set with the logical parentas owner must have a set connection option of
OPTIONAL MANUAL.

After completingthe load process, you canchange the set's connection option to
MANDATORY AUTOMATIC, ifdesired.

Bill-of-Materials Relationship Exception

The only exception is the bill-of-materials type of relationship, which requires the
junctionrecord to be owned by two different occurrences of the same record type. In
this case, the set connection option must remain OPTIONAL MANUAL.

Use the Syntax Generator

Itis recommended that you use the CA IDMS DLI Transparency syntax generator to
produce a basicload schema with proper set connection options for logical
relationships.See CA IDMS DLI Transparency Syntax Generator (see page 75)for a
description of the GENERATE LOAD SCHEMA statement.

Multi-Database Logical Relationships
Load Databases Separately

If logical relationshipsinvolve more than one database, you must load each database
separately (Step 2, under "The Databaseload Process", earlierin this section).

Separate Logical Workfiles are Created

Each databaseload thatyou perform creates a separatelogical workfile. You must make
sure that the workfilefrom eachloadis availablefor the workfilesort/merge processing
(Step 3). If arequired workfileis not available, the prefix resolution processing (Step 4)
encounters unresolved logicalrelationships,and you have to perform the database
loads again.

176 DLI Transparency User Guide

Preparing To Run the Load Utility

Workfile Space Allocation

Load Utility Generates Separate Workfiles

The load utility generates four separate workfiles:

The workfile produced by Step 2 (under "The Databaseload Process", earlierinthis
section)

The sorted workfile produced by Step 3
The prefix-resolved workfile produced by Step 4
The hierarchically sorted workfile produced by Step 5

General Considerations for Workfiles

Here are some general considerations for workfiles:

The workfiles can be allocated to either disk or tape.

Each workfileis a sequential fixed-block data setwith a logical record size of 288
anda blocksizeof 5760.

If you areusing DASD space, you can use the followingformula to calculatethe
number of bytes required for the firstworkfile produced by Step 2:

((# of logical children) + (# of logical parents)) X 288

Be sureto includeall potential logical parents as well as all existing logical children.
(Refer to "Workfile Usage for HISAM Logical Parents," below.) If you do not know
the numbers for logical childrenand logical parents, you can usethe preload CALC
processing (Step 1) to get a count of all record occurrences that will appearinthe
logical workfile.

Remember that there will bea separateworkfilegenerated for each DL/l database
that you load. (See "Multi-Database Logical Relationships," above).

Space requirements for the second (sorted workfile) are equal to the sum of the
spacerequirements for all the workfiles resulting fromthe load.

To calculatethe spacerequirements for the third (prefix-resolved) workfile, use the
formula shown above for the firstworkfile, but specify 0 (zero) for # of logical
parents. This workfile contains only the logical child records, but with adjusted
prefixes (concatenated keys).

Space requirements for the fourth (hierarchically sorted) workfilearethe same as
for the third workfile.

Chapter 6: CAIDMS DLI Transparency Load Utility 177

Sample Source Code For Database Load

Workfile Usage for HISAM Logical Parents

Preload Sorting

Duringthe databaseload, the load utility writes logical parentrecords thatappearin
HDAM, HIDAM, and secondaryindex databases outto the logical workfile. However, the
load utility does not write out logical parentrecords for HISAM databases. Because
logical parents from HISAM databases do not appear inthe logical workfile, youcan
reduce its spacerequirements accordingly. If you use the DASD spacerequirement
formula shown above, you should adjustitsothatit does not includeany HISAM logical
parents.

Preload sortingsorts the DL/I inputdata into database page sequence for more efficient
loading.You can preload sortonly DL/l data that has been successfully preload CALC
processed (Step 1, under "The Databaseload Process", earlierin this section).

Diagnostic and Error Messades

The diagnostic and error messages that may be returned by the various steps inthe load
process arelistedin CA IDMS DLI Transparency Messages and Codes (see page 211).

Sample Source Code For Database Load

This section presents samplesourcecode for:
m A DL/I PSB and its associated DBDs

m An IPSBload module

m A CAIDMS/DB schema module

The samples illustratethe process of preparingthe necessary modules for use with the
CA IDMS DLI Transparency load utility.

The IPSB source code and the CA IDMS/DB source code both derive from the DL/I PSB
and DBDs.

The sourcecode examples are alsoreflectedinthe samplereports that appear for the
various steps inthe databaseload process (described later in the section).

178 DLI Transparency User Guide

Sample Source Code For Database Load

Sample DL/I PSB and DBDs

Figure 58 shows the source for two logically related DL/l databases and a PSB. The DBD
descriptions define:

m Two HIDAM physical databases (ITEMDBDP and PARTDBDP)
m Two logical databases (ITEMDBDL and PARTDBDL)
m Two index databases (ITEMDBDI and PARTDBDI)

The PSB references the two logical databases.

The physical databases haveroot segments named ITEM and PART, respectively. They
are logically related using the DETAIL segment.

Chapter 6: CAIDMS DLI Transparency Load Utility 179

Sample Source Code For Database Load

Source statementsfor DL/I PSB and DBDs:

DL/I ITEM DATABASE PHYSICAL DBD EXAMPLE

DBD NAME=ITEMDBDP ,ACCESS=HIDAM

DATASET DD1=ITEMDB,DEVICE=FBA

SEGM NAME=ITEM, PARENT=0, BYTES=150, POINTER=TB, RULES=PPV

LCHILD NAME=(ITEMNDX,ITEMDBDI), POINTER=INDX

FIELD NAME=(ITEMNO, SEQ) ,BYTES=7,START=1

SEGM NAME=DETAIL, PARENT=((ITEM,SNGL),
(PART, VIRTUAL, PARTDBDP)) , BYTES=150,
RULES=PVV, POINTER=(TB,LTB)

FIELD NAME=(ITMDTAIL, SEQ) , BYTES=3, START=19

DBDGEN

FINISH

END

DL/I PARTS DATABASE PHYSICAL DBD EXAMPLE

DBD NAME=PARTDBDP ,ACCESS=HIDAM
DATASET DD1=PARTDB,DEVICE=FBA
SEGM NAME=PART , PARENT=0, BYTES=150, POINTER=TB, RULES=PPV
LCHILD NAME=(PARTNDX,PARTDBDI), POINTER=INDX
LCHILD NAME=(DETAIL, ITEMDBDP) ,POINTER=SNGL , PAIR=DETAILV
FIELD NAME=(PARTNO, SEQ) , BYTES=18, START=1
SEGM NAME=DETAILV, PARENT=PART, POINTER=PAIRED,
SOURCE=((DETAIL, ,ITEMDBDP))
FIELD NAME=(ITMDTAIL, SEQ,M) ,BYTES=3, START=8
DBDGEN
FINISH
END

DL/I ITEM INDEX DBD EXAMPLE

DBD NAME=ITEMDBDI ,ACCESS=INDEX

DATASET DD1=ITEMIX,DEVICE=FBA

SEGM NAME=ITEMNDX, PARENT=0, BYTES=7

LCHILD NAME=(ITEM, ITEMDBDP),POINTER=SNGL, INDEX=(ITEMNO)
FIELD NAME=(ITEMNO, SEQ,U) ,BYTES=7, START=1

DBDGEN

FINISH

END

Figure 58 (Part 1 of 2). Source statements for DL/I PSB and DBDs

180 DLI Transparency User Guide

Sample Source Code For Database Load

DL/I PARTS INDEX DBD EXAMPLE

DBD NAME=PARTDBDI ,ACCESS=INDEX

DATASET

DD1=PARTIX, DEVICE=FBA

SEGM NAME=PARTNDX, PARENT=0, BYTES=18

LCHILD
FIELD
DBDGEN
FINISH
END

NAME=(PART , PARTDBDP) , POINTER=SNGL , INDEX=(PARTNO)
NAME=(PARTNO, SEQ, U) , BYTES=18, START=1

DL/I ITEM DATABASE LOGICAL DBD EXAMPLE

DBD NAME=ITEMDBDL ,ACCESS=LOGICAL

DATASET LOGICAL

SEGM NAME=ITEM, PARENT=0, SOURCE=((ITEM, , ITEMDBDP))
SEGM NAME=DETAIL, PARENT=ITEM, X
SOURCE=((DETAIL, ,ITEMDBDP), (PART, ,PARTDBDP))

DBDGEN
FINISH
END

DL/I PARTS DATABASE LOGICAL DBD EXAMPLE

DBD NAME=PARTDBDL ,ACCESS=LOGICAL

DATASET LOGICAL

SEGM NAME=PART , PARENT=0, SOURCE=((PART, , PARTDBDP))

SEGM NAME=DETAIL , PARENT=PART, X
SOURCE=((DETAIL, ,ITEMDBDP), (ITEM, ,ITEMDBDP))

DBDGEN

FINISH

END

Figure 58 (Part 2 of 2). Source statements for DL/I PSB and DBDs

Sample Load IPSB

GENERATE IPSB Statement

Assumingthe DL/I PSB and DBD definitions inillustration6-1 areassembled and are
availableto the syntax generator usinga CDMSLIB JCL statement, the following
GENERATE statement will producethe appropriate|PSBsourcecode for use with the

load process:

GENERATE LOAD IPSB FOR PSB ITEMPART USING SUBSCHEMA PRODSUBS.

Chapter 6: CAIDMS DLI Transparency Load Utility 181

Sample Source Code For Database Load

This statement instructs the generator to produce an IPSB named ITEMPART and submit
it to validity checkingfor usewith the load process.

Figure 59 shows the IPSB sourcecode as itmight be produced by the syntax generator
usingthe DL/I DBD and PSB definitions in Figure58.

Considerations

Here are some points to note about the IPSB source code:
m Each PCBinthe DL/I PSB appears as a separateentry inthe IPSB's PCB section

m Each PCB entry describes both the physical segments involved and how the physical
segments extend into the logical path

m Oncethe IPSB sourceis compiled, the resulting IPSBload module can be used to
load both of the logically related databases (ITEMDBDL and PARTDBDL). A PCB for
each of these DBDs must be includedinthe IPSB for a successful load.

GENERATE IPSB Statement LOAD Parameter

The use of the LOAD parameter inthe GENERATE statement ensures that the resulting
IPSB includes all of the DL/I dependencies necessary fora successful load.fa PCB does
not identify the physical segment that corresponds to a referenced logical parent, the
syntax generator will returnanerror message and not create the IPSBsource.

An example

For example, if the PARTDBDL PCB were not present inthe assembled DL/I ITEMPART
PSB, the syntax generator would return anerror message statingthatitcould not find
the DBD for the logical parentinany PCB. In this case, the missing DBD would be the
physical DBD, as referenced by the logical DBDs, ITEMDBDL and PARTDBDL. Providing
the PCB for the logical DBD PARTDBDL would satisfy theload process requirements and
produce the correct IPSB source.

182 DLI Transparency User Guide

Sample Source Code For Database Load

Generated IPSB source statements:

DL/I ITEM DATABASE LOGICAL DBD EXAMPLE

DBD NAME=ITEMDBDL , ACCESS=LOGICAL
DATASET LOGICAL
SEGM NAME=ITEM, PARENT=0, SOURCE=((ITEM, ,ITEMDBDP))
SEGM NAME=DETAIL,PARENT=ITHM,
SOURCE=((DETAIL, ,ITEMDBD), (PART, ,PARTDBDP))
DBDGEN
FINISH
END

DL/I PARTS DATABASE LOGICAL DBD EXAMPLE

DBD NAME=PARTDBDL , ACCESS=LOGICAL
DATASET LOGICAL
SEGM NAME=PART , PARENT=0, SOURCE=((PART, , PARTDBDP))
SEGM NAME=DETAIL ,PARENT=PART,
SOURCE=((DETAIL, ,ITEMDBDP), (ITEM, ,ITEMDBDP))
DBDGEN
FINISH
END

DL/I PSB DESCRIBING ITEM AND PARTS LOGICAL DBDS

PCB TYPE=DB, DBDNAME=ITEMDBDL , PROCOPT=AP, KEYLEN=28 , P0S=S
SENSEG ~ NAME=ITEM, PARENT=0
SENSEG ~ NAME=DETAIL,PARENT=ITEM
PCB TYPE=DB, DBDNAME=PARTDEDL , PROCOPT=AP,
KEYLEN=28, POS=S
SENSEG ~ NAME=PART, PARENT=0
SENSEG ~ NAME=DETAIL ,PARENT=PART
PSBGEN LANG=ASM, PSBNAME=ITEMPART
END

IPSB SECTION.
IPSB NAME IS ITEMPART
OF SUBSCHEMA PRODSUBS
LANGUAGE IS ASM.

Figure 59 (Part 1 of 4). Generated IPSB source statements

Chapter 6: CAIDMS DLI Transparency Load Utility 183

Sample Source Code For Database Load

AREA SECTION.

AREA NAME IS ITEMDBDP-REGION
USAGE-MODE IS EXCLUSIVE UPDATE.

AREA NAME IS PARTDBDP-REGION
USAGE-MODE IS EXCLUSIVE UPDATE.

RECORD SECTION.

RECORD NAME IS ITEM
LENGTH IS 150.

SEQUENCE

FIELD NAME IS ITEMNO
START POS 1
LENGTH IS 7.

RECORD NAME IS DETAIL
LENGTH IS 157.
SEQUENCE
FIELD NAME IS ITMDTAIL
START POS 26
LENGTH IS 3.
LOGICAL PARENT CONCAT KEY
FIELD NAME IS DETALPCK
START POS 1
LENGTH IS 18.
PHYSICAL PARENT CONCAT KEY
FIELD NAME IS DETAPPCK
START POS 19
LENGTH IS 7.

RECORD NAME IS PART
LENGTH IS 150

SEQUENCE

FIELD NAME IS PARTNO
START POS 1
LENGTH IS 18.

RECORD NAME IS ITEMNDX
LENGTH IS 7.

SEQUENCE

FIELD NAME IS ITEMNO
START POS 1
LENGTH IS 7.

Figure 59 (Part 2 of 4). Generated IPSB source statements

184 DLI Transparency User Guide

Sample Source Code For Database Load

RECORD NAME IS PARTNDX
LENGTH IS 18.

SEQUENCE

FIELD NAME IS PARTNO
START POS 1
LENGTH IS 18.

INDEX SECTION

INDEX NAME IS ITEMDBDT
USING INDEXED-SET IX-ITEMNDX
TARGET RECORD IS ITEM
POINTER RECORD IS ITEMNDX
THRU SET ITEM-ITEMNDX
SOURCE RECORD IS ITEM
SEARCH FIELD (ITEMNO).

INDEX NAME IS PARTDBDI
USING INDEXED-SET IX-PARTNDX
TARGET RECORD IS PART
POINTER RECORD IS PARTNDX
THRU SET PART-PARTNDX
SOURCE RECORD IS PART
SEARCH FIELD (PARTNO).

PCB SECTION.

PCB ACCESS METHOD IS HIDAM
DBDNAME IS ITEMDBDL
PROCESSING OPTIONS LOAD
PROC SEQ INDEX IS ITEMDBDI.

SEGM NAME IS ITEM
RECORD NAME IS ITEM.

SEGM NAME IS DETAIL
RECORD NAME IS DETAIL
PARENT IS ITEM
THRU SET ITEM-DETAIL
LOGICAL DEST PARENT IS PART
THRU SET PART-DETAIL
INSERT RULES P,P,P
REPLACE RULES V,V,V
ACCESS METHOD IS HIDAM
PROC SEQ INDEX IS PARTDBDI.

Figure 59 (Part 3 of 4). Generated IPSB source statements

Chapter 6: CAIDMS DLI Transparency Load Utility 185

Sample Source Code For Database Load

PCB ACCESS METHOD IS HIDAM
DBDMANE IS PARTDBDL
PROCESSING OPTIONS LOAD
PROC SEQ INDEX IS PARTDBDI.

SEGM NAME IS PART
RECORD NAME IS PART.

SEGM NAME IS DETAIL
RECORD NAME IS DETAIL
PARENT IS PART
THRU SET PART-DETAIL
PHYSICAL DEST PARENT IS ITEM
THRU SET ITEM-DETAIL
INSERT RULES P,L,P
REPLACE RULES V,L,V
ACCESS METHOD IS HIDAM
PROC SEQ INDEX IS ITEMDBDI
SEQUENCE BY LOGICAL SEQ FIELD.

Figure 59 (Part 4 of 4). Generated IPSB source statements

Sample CA IDMS/DB Schema Module

GENERATE Schema Statement

Just as with the IPSBsource code, you can use the syntax generator to make sure that
you have a CAIDMS/DB schema module that will supporta successful databaseload.
The GENERATE statement inthis casetakes the followingform:

GENERATE LOAD SCHEMA NAME IS LOADSCHM FOR DBD ITEMDBDP, PARTDBDP.
Note that physical DBD names are all thatyou need to produce the schema source.

Figure 60 shows the schema sourcecode as itmight be produced by the syntax
generator usingthe DL/I physical DBD definitions in Figure58.

186 DLI Transparency User Guide

Sample Source Code For Database Load

Considerations

Here are some general considerations aboutthe schema sourcecode produced by the
syntax generator:

The generated schema has OPTIONAL MANUAL set connection options for each
logical child/logical parentset.

Generated schema source by itselfis notsufficientfor a databaseload. ltmust be
edited to includesite-specific standards, optimized database pageranges, andso
on.

Ifyou already havea suitable CAIDMS/DB schema, you can modify this schema
without havingto create a new load schema. Specifically, you must make surethat
the logical child/logical parentset description has OPTIONAL MANUAL connection
options.These options are required only duringthe load process and can be
changed to MANDATORY AUTOMATIC after the load.The only exception isinthe
caseof bill-of-materials relationships.

In this type of relationship thelogical parentand physical parentofthe child record
are different occurrences of the same record type. Bill of materials sets must have
OPTIONAL MANUAL connection options.

The page ranges specified for the CA IDMS/DB databaseinthe schema/subschema
must be consistentthroughout the load process. A change inthe page ranges will
invalidatethe database pages calculated by the preload CALC processing(Step 1). In
this case, you will haveto repeat both the CALC and load steps so the logical
workfile produced by the load can give correct results for the prefix update step.

Chapter 6: CAIDMS DLI Transparency Load Utility 187

Sample Source Code For Database Load

Generated Schema source statements:

SIGNON

USAGE MODE IS UPDATE .
SET OPTIONS FOR SESSION

INPUT 1 THRU 72.

ADD SCHEMA NAME IS LOADSCHM VERSION 1
MEMO DATE IS 12/22/86
ASSIGN RECORD IDS FROM 101
PUBLIC ACCESS IS ALLOWED FOR ALL.

ADD AREA NAME IS PARTDBDP-REGION.

ADD AREA NAME IS ITEMDBDP-REGION.

ADD RECORD NAME IS PART

RECORD ID IS AUTO

LOCATION MODE IS CALC

USING PARTNO

DUPLICATES ARE NOT ALLOWED

WITHIN AREA PARTDBDP-REGION.
02 PARTNO PIC X (18).
02 FILLER PIC X (132).

ADD RECORD NAME IS ITEM

RECORD ID IS AUTO

LOCATION MODE IS CALC

USING ITEMNO

DUPLICATES ARE NOT ALLOWED

WITHIN AREA ITEMDBDP-REGION.
02 ITEMNO PIC X (7).
02 FILLER PIC X (143).

ADD RECORD NAME IS DETAIL
RECORD ID IS AUTO
LOCATION MODE IS VIA ITEM-DETAIL
WITHIN AREA ITEMDBDP-REGION.

02 FILLER PIC X (25).
02 ITMDTAIL PIC X (3).
02 FILLER PIC X (129).

Figure 60 (Part 1 of 4). Generated Schema source statements

188 DLI Transparency User Guide

Sample Source Code For Database Load

ADD RECORD NAME IS PARTNDX
RECORD ID IS AUTO
LOCATION MODE IS VIA PART-PARTNDX
WITHIN AREA PARTDBDP-REGION.

02 PARTNO PIC X (18).

ADD RECORD NAME IS ITEMNDX
RECORD ID IS AUTO
LOCATION MODE IS VIA ITEM-ITEMNDX
WITHIN AREA ITEMDBDP-REGION.

02 ITEMNO PIC X (7).

ADD SET NAME IS ITEM-DETAIL
ORDER IS SORTED
MODE IS CHAIN LINKED TO PRIOR
OWNER IS ITEM
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
MEMBER IS DETAIL
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
LINKED TO OWNER
OWNER DBKEY POSITION IS AUTO
MANDATORY AUTOMATIC
ASCENDING KEY IS ITMDTAIL
DUPLICATES ARE NOT ALLOWED.

ADD SET NAME IS PART-DETAIL
ORDER IS SORTED
MODE IS CHAIN LINKED TO PRIOR
OWNER IS PART
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
MEMBER IS DETAIL
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
LINKED TO OWNER
OWNER DBKEY POSITION IS AUTO
OPTIONAL MANUAL
ASCENDING KEY IS ITMDTAIL
DUPLICATES ARE LAST.

Figure 60 (Part 2 of 4). Generated Schema source statements

Chapter 6: CAIDMS DLI Transparency Load Utility 189

Sample Source Code For Database Load

ADD SET NAME IS PART-PARTNDX
ORDER IS SORTED
MODE IS CHAIN LINKED TO PRIOR
OWNER IS PART
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
MEMBER IS PARTNDX
NEXT DBKEY POSITION IS AUTO
LINKED TO OWNER
OWNER DBKEY POSITION IS AUTO
MANDATORY AUTOMATIC
ASCENDING KEY IS PARTNO
DUPLICATES ARE NOT ALLOWED.

ADD SET NAME IS ITEM-ITEMNDX
ORDER IS SORTED
MODE IS CHAIN LINKED TO PRIOR
OWNER IS ITEM
NEXT DBKEY POSITION IS AUTO
PRIOR DBKEY POSITION IS AUTO
MEMBER IS ITEMNDX
NEXT DBKEY POSITION IS AUTO
LINKED TO OWNER
OWNER DBKEY POSITION IS AUTO
MANDATORY AUTOMATIC
ASCENDING KEY IS ITEMNO
DUPLICATES ARE NOT ALLOWED.

ADD SET NAME IS IX-PARTNDX
ORDER IS SORTED
MODE IS INDEX
BLOCK CONTAINS 50 KEYS
OWNER IS SYSTEM
MEMBER IS PARTNDX
INDEX DBKEY POSITION IS AUTO
MANDATORY AUTOMATIC
ASCENDING KEY IS PARTNO
DUPLICATES ARE NOT ALLOWED.

Figure 60 (Part 3 of 4). Generated Schema source statements

190 DLI Transparency User Guide

Step 1: Preload CALC Processing

ADD SET NAME IS IX-ITEMNDX

ORDER IS SORTED
MODE IS INDEX

BLOCK CONTAINS 50 KEYS
OWNER IS SYSTEM
MEMBER IS ITEMNDX

INDEX DBKEY POSITION IS AUTO
MANDORY AUTOMATIC
ASCENDING KEY IS ITEMNO
DUPLICATES ARE NOT ALLOWED.

VALIDATE.
SIGNOFF.

Figure 60 (Part 4 of 4). Generated Schema source statements

Step 1: Preload CALC Processing

Operation

Preload CALC processingis anoptional step that precedes the actual databaseload.Its
intent is toimprove the performance of load processingandis especially recommended

if:
n

There are largeamounts of DL/I data.
There are logical relationships inthe DL/l database.

Space requirements need to be determined for the logical workfile(s) thatwill be
generated by the load (Step 2).

Preload CALC processing performs the followingoperations:

1.
2.
3.

Accessingthe IPSBload module

Accessingthe subschema module named inthe IPSB

Reading the DL/I input data

Generating database pagenumbers forthe DL/I root segments

Updating the DL/l data with the database page numbers and writingit out to the
DL/I output file

Printing a report on the updated DL/ data

Chapter 6: CAIDMS DLI Transparency Load Utility 191

Step 1: Preload CALC Processing

Figure 61 shows the operations performed by preload CALC processing.

Unloaded
DL/l Data

IPSB
Load
Module

Control
»| CA-IDMS/DLI Report
(Statements) Load Utility > P

DL/
CALC Data

Figure 61. Preload CALC processing

To execute the preload CALC processingstep, use the JCL in CA IDMS DLI Transparency
JCL (see page 257).

Report

The report produced by the preload CALC processingstep lists:

The DBDNAME for each DL/l databaseincludedinthe input DL/I data
The name and level for each DL/I segment, by database

An indicationifa segment is a logical child (LC) or logical parent(LP)
The number of segment occurrences (records) found, by database

The number of logical records found, by database

192 DLI Transparency User Guide

Step 1: Preload CALC Processing

**% CA IDMS/DLI TRANSPARENCY DATABASE LOAD

PROCESS=CALC, IPSB=ITEMPART

DBDNAME=ITEMDBDL

SEGMENT COUNT LEVEL RECORD

ITEM 1086 01 ITEM

LC DETAIL 3542 02 DETAIL

TOTAL: 4628 RECORDS READ

3542 LOGICAL RECORDS
0 LOGICAL RECORDS WRITTEN

*** CALC PROCESSING COMPLETE

**% CA IDMS/DLI TRANSPARENCY DATABASE LOAD

PROCESS=CALC, IPSB=ITEMPART

DBDNAME=PARTDBDL

SEGMENT COUNT LEVEL RECORD

LP PART 789 01 PART

TOTAL: 789 RECORDS READ

789 LOGICAL RECORDS
0 LOGICAL RECORDS WRITTEN

*** CALC PROCESSING COMPLETE

Figure 62. Sample CALC processing report

Preload Sorting (step 1, part 2)
Use Your Own Sort/Merge Utility

To further optimize the CALC-processed data for loading, you cansortitusingyour own
sort/merge facility. As inputto the sort/merge facility, supply the DL/l output file
produced by the preload CALC processing. The output filewill contain the
CALC-processed datainsorted form. You canthen usethe sorted output fileas inputto
the databaseload (Step 2).

The preloadsortis not strictly required, but it should be performed to produce the most
effective ordering of the CALC-processed data.

To perform the preload sort, you must use your own sort/merge facility.

Chapter 6: CAIDMS DLI Transparency Load Utility 193

Step 2: Database Load

What the Preload Sort Does

The preload sortperforms the followingoperations:

1. Accessingthe CALC DL/I data produced by the preload CALC processing(Step 1,
Partl)

2. Sorting the data sothat root segments (CALC records)areindescending database

page sequence (the optimum CA IDMS/DB databaseload order)

To execute the preloadsortprocessingstep, use the JCL (Step 1, Part2)in CA IDMS DLI
Transparency JCL (see page 257).

Step 2. Database Load

Operation

Usingthe unloaded DL/I data as input, databaseload processinginvokes the CA IDMS
DL Transparency region controller and populates the CA IDMS/DB database with the
unloaded DL/I data. If you have CALC processed and, optionally, sorted the DL/I data,
you must input the DL/I file produced as a resultof Step 1.

This step completes the databaseload for DL/I data that does not contain logical
relationships. Ifthe DL/I data involves logically related databases, you must continue
with Steps 3 through 6.

Databaseload processing performs the following operations:

1. Accessingthe IPSBload module

2. Readingthe DL/l input data

3. Storingall records inthe CA IDMS/DB database

4. Extractingall logical child records and writing them out to the logical workfile
5. Extractingall logical parentrecords and writingthem out to the logical workfile

6. Printingareportshowingthe results of the load

194 DLI Transparency User Guide

Step 2: Database Load

Report

To execute the databaseloadstep, use the JCL in CA IDMS DLI Transparency JCL (see
page 257).

Unloaded

Control
Statements

IPSB
Load
Module

Report CA-IDMS/DLI
Load Utility

\

] CA-IDMS/DLI
Log|c_al Run-Time
Workfile Interface

CA-IDMS/DB

Figure 63. Database load processing

The report produced by the databaseloadsteplists:

A-IDMS/DH
Database

The DBDNAME for each DL/l databaseincludedintheinput DL/I data

The name and level for each DL/l segment, by database

An indicationifa segment is a logical child (LC) or logical parent(LP)

The number of segment occurrences (records)loaded, by database

The number of logical records found, by database

The number of logical records, by database, written out to the logical workfile

Chapter 6: CAIDMS DLI Transparency Load Utility 195

Step 3: Workfile Sort/Merge

*%% CA IDMS/DLI TRANSPARENCY DATABASE LOAD

PROCESS=LOAD

DBDNAME=ITEMDBDL

SEGMENT COUNT LEVEL RECORD

ITEM 1086

LC DETAIL 3542

TOTAL: 4628

3542
3542

01 ITEM

02 DETAIL

RECORDS LOADED

LOGICAL RECORDS
LOGICAL RECORDS WRITTEN

**% LOAD PROCESSING COMPLETE

*** CA IDMS/DLI TRANSPARENCY DATABASE LOAD

PROCESS=LOAD

DBDNAME=PARTDBDL

SEGMENT COUNT LEVEL RECORD

LP PART 789

TOTAL: 789

789
789

01 PART

RECORDS LOADED

LOGICAL RECORDS
LOGICAL RECORDS WRITTEN

**% LOAD PROCESSING COMPLETE

Figure 64. Sample database load report

Step 3: Workfile Sort/Merge

The logical workfiles produced by the databaseload (Step 2) contain the logical child
andlogical parentrecords foundin the original DL/l data. The workfilesort/merge step
sorts the logical child records under their related parents.

Ifthe databaseload processed multiple DL/l databases, youwill havea separate
workfilefor each database. Ifthis is the case, you must first merge all of the generated

workfiles into one workfile.You canthen sortthis one workfile.

To perform the workfile sort/merge step, you must use your own sort/merge facility.

196 DLI Transparency User Guide

Step 4: Prefix (Concatenated Key) Resolution

Operation

The workfilesort/merge performs the followingoperations:

1. Accessingthe workfile(s) resulting fromthe databaseload

2. Merging multipleworkfiles (from multiple, logically related DL/I databases)

3. Sorting the workfilesothat logical child records aresequenced under their logical

parents

To execute the workfilesort/merge step, use the JCL in CA IDMS DLI Transparency JCL
(see page 257).

Logical
Workfile(s)

Control Sort/Merge
Statements Workfile

Sorted
Workfile

Figure 65. Workfile sort/merge

Step 4. Prefix (Concatenated Key) Resolution

The sorted logical workfile produced by Step 3 contains the logical child and logical
parent records from the DL/I logically related databases. The logical child records are
sorted correctly under their respective logical parents, buttheir prefix (nondata)
portions do not reflect the parents' concatenated keys. The prefixresolution step
updates the logical child records with their parents' concatenated keys so the logical
child records can beaccessed within their CA IDMS/DB sets.

Ifthe databaseload processed multiple DL/I databases, you will havea separate
workfilefor each database. If thisis the case, you must firstmerge all of the generated
workfiles into one workfile. You canthen sortthis one workfile.

Chapter 6: CAIDMS DLI Transparency Load Utility 197

Step 4: Prefix (Concatenated Key) Resolution

Operation
The prefixresolution step performs the followingoperations:
1. Accessingthe IPSBload module
2. Accessingthe sorted workfilefrom Step 3
3. Fromeach logical parentrecord, generating the correct prefix (concatenated key)
for its logical child record
4. Updating the logical child records with the correct prefixes and writing them out to
a new workfile
5. Producinga report of the records processed
To execute the prefixresolution step, usethe JCL in CA IDMS DLI Transparency JCL (see
page 257).
Sorted
Workfile
Control
Statements CA-IDMS/DLI Repart
Load Utility
Prefix-
Resalved
Warkfile
Figure 66. Prefix resolution
Report

The report produced by the prefixresolution step lists:
m The DBDNAME for the DL/l logical child database
m The name andlevel for each DL/I segment

m Anindicationifasegment is alogicalchild (LC) or logical parent(LP)

198 DLI Transparency User Guide

Step 5: Workfile Hierarchical Sort

m The number of logical parentrecords found
m The number of logical child records found
m The total number of records found in the sorted workfile

m The total number of logical child records updated and written out

*** CA IDMS/DLI TRANSPARENCY DATABASE LOAD

PROCESS=PFXR

DBDNAME=ITEMDBDL

SEGMENT COUNT LEVEL RECORD

LP PART 789 01 PART

LC DETAIL 3542 02 DETAIL

TOTAL: 4331 RECORDS READ

3542 LOGICAL RECORDS WRITTEN

**x PFXR PROCESSING COMPLETE

Figure 67. Sample prefix resolution report

Step 5: Workfile Hierarchical Sort

Operation

The workfile produced by the prefix resolution step (Step 4) contains the logical child
records with updated prefixes. The logical child records, though, still remain as sorted by
the workfilesort/merge (Step 3). In other words, they are sequenced as they were
under their logical parents (even though the logical parents do not appearinthe prefix
resolution workfile). Before the updated logical child records can bewritten out to
replacethe records originally stored inthe CA IDMS/DB database (by Step 2), they must
be resorted backinto the original DL/I hierarchical sequence. The workfile hierarchical
sortperforms this operation.

To perform the workfile hierarchical sort, you must use your own sort/merge facility.

The workfile hierarchical sort performs the followingoperations:
1. Accessingthe prefix-resolved workfilefrom Step 4

2. Sorting the workfileso that the logical child records aresequenced as in the original
DL/I hierarchy

Chapter 6: CAIDMS DLI Transparency Load Utility 199

Step 6: Prefix Update

To execute the workfile hierarchical sortstep, use the JCL in CA IDMS DLI Transparency

JCL (see page 257).

Prefix-

Resolved
Warkfile

\

Control Sort/Merge
Statements Facility

Hierarchically

Sorted
Workfile

Figure 68. Workfile hierarchical sort

Step 6: Prefix Update

The prefix update step updates the logical child records inthe CAIDMS/DB database
with the prefixes (concatenated keys) generated by the prefix resolution step (Step 4).
For input, ituses the hierarchically sorted workfilefromStep 5. After updating the
logical child databaserecords with the correct prefixes, it writes them backto the
databaseand connects them to their logical parents within the CA IDMS/DB sets.

This step completes the databaseloadforlogicallyrelated databases.

Operation

The prefix update step performs the followingoperations:

1. Accessingthe IPSBload module

2. Accessingthe hierarchically sorted workfile from Step 5

3. Obtainingthe alreadyloaded logical child records fromthe CA IDMS/DB database

4. Moving the prefix (logical parentconcatenated key) from each workfilerecord into
the corresponding databaserecord

200 DLI Transparency User Guide

Step 6: Prefix Update

5. Writingthe updated logical child records backto the database

6. Connecting each logical child databaserecord with its related logical parent
databaserecord (that is, establish correctset pointers)

7. Producingareport showing the results of the processing

To execute the prefix update step, use the JCL in CA IDMS DLI Transparency JCL (see

page 257).

Control
Statements

Report

Hierarchically

Sorted
Workfile

IPSB
Load Module

CA IDMS/DLI

Figure 69. Prefix update

Report

Load Utility

CA IDMS/DLI

Run-Time CA-IDMS/DB
Interface

CA-IDMS/DB

Database

The report produced by the prefix update step lists:

m The DBDNAME for the DL/l logical child database

m The name andlevel for each DL/I logical child segment

m The number of logical child recordsfound and processed

Chapter 6: CAIDMS DLI Transparency Load Utility 201

Step 6: Prefix Update

*%% CA IDMS/DLI TRANSPARENCY DATABASE LOAD

PROCESS=PFXU

DBDNAME=ITEMDBDL

SEGMENT COUNT LEVEL RECORD

LC DETAIL 3542 02 DETAIL

TOTAL: 3542 RECORDS READ

*** PFXU PROCESSING COMPLETE

Figure 70. Sample prefix update report

202 DLI Transparency User Guide

Chapter 7: Using CA IDMS DLI Transparency
Within CA IDMS/DB Programs

This section contains the followingtopics:

About This Chapter (see page 203)

Data Communications (see page 203)

Language Interface (see page 204)

Schedule (PCB) Call Processing (see page 204)

The CA IDMS DLI Transparency Program Definition Table (see page 204)
Operational Considerations (see page 207)

About This Chapter

CA IDMS DLI Transparency can be used inthe CA IDMS/DB environment. A program
written to use CA IDMS/DB must conform to CA IDMS/DB programming standards. All
CA IDMS DL Transparency functions availableto batch programs are availableto CA
IDMS/DB programs. No restrictions areimposed,and no additional or special
capabilities areadded.

Inaddition to the conversion considerations for batch programs, using CA IDMS DLI
Transparencyinthe CA IDMS/DB environment requires these considerations:

m Data communications

®m language interface

m Schedule (PCB) call processing

m The CA IDMS DU Transparency programdefinition table

m Operational considerations

This chapter discusses each of these issues.

Data Communications

When migrating programs from an IMS-DC environment to CA IDMS/DB, all IMS-DC data
communications callsinthe programs must be recoded as CA IDMS/DB mapping calls.
Any IMS message formatting services (MFS) maps must also be recoded using MAPC.

Note: Any IMS-DB (DL/1) databasecallsthatarenot supported by CA IDMS DLI
Transparencyinbatcharealsonot supported inthe CA IDMS/DB environment and must
be modified.

Chapter 7: Using CAIDMS DLI Transparency Within CA IDMS/DB Programs 203

Language Interface

Languade Interface

CA IDMS DLI Transparency provides a languageinterface module for use inthe CA
IDMS/DB environment. CA IDMS DLI Transparency provides a languageinterface
module, IDMSDLIF, for use onlyinthe CAIDMS/DB environment. Programs to be
executed under CA IDMS/DB must be link edited with the CA IDMS/DB environment
languageinterface (IDMSDLIF) and must not be link edited with IDMSDLLI, the batch
languageinterface.

Schedule (PCB) Call Processing

When using CA IDMS DLI Transparencyinthe CAIDMS/DB environment, the schedule
(PCB) call processingis performed on behalf of the application program.This is thesame
as inthe CA IDMS DU Transparency batch environment.

m In the batch environments, (either CA IDMS DLI Transparency or native DL/1), the
IPSB or PSB name is specified in the region controller's parameters.

® In the IMS-DC online environment, the PSB name is associated with a program
through the macro specifications used to create a tableat IMS system generation.

m In the CA IDMS/DB CA IDMS DLI Transparency environment, the method used to
associatean|PSBname with anapplication programis similar (butnotidentical) to
the IMS-DC environment. An application programandan|PSBare associated
through a tablecreated prior to the use of the application program, but not
necessarily atthe time of the CA IDMS/DB system generation. This tableis called
the CA IDMS DLI Transparency program definition table.

The CA IDMS DLI Transparency Program Definition Table

How the Program Definition Table is Created

The CA IDMS DU Transparency programdefinitiontableis created from user-supplied
input to the CA IDMS DLI Transparency programdefinition table compiler (IDMSDLTG).
This compiler produces assembler source output which is then assembled and link
edited intoa CDMSLIB load library (z/OS) or core-image library (z/VSE).

The CA IDMS DLI Transparency programdefinition tableload module (z/0OS) or phase
(z/VSE) must always havethe name DLPDTAB. Each application programthatis to have
anIPSB automatically scheduled musthave an entry inthe table. The informationin
each entry is the same asinaregion controller's parameter list, butthe format is
different.

204 DLI Transparency User Guide

The CA IDMS DLI Transparency Program Definition Table

The CA IDMS DL Transparency programdefinition table can be thought of as an
extension to the CAIDMS/DB program definition table. Before any program canbe
added to the CA IDMS DLI Transparency programdefinitiontable,it mustalreadybein
the CA IDMS/DB programdefinitiontable. (For this to be true, you must have defined
the program to the CA IDMS/DB system with a system generation ADD PROGRAM
statement.)

Syntax

»»—— MODify PROgram program-name O

v

version is(=) n/mn—I

»—— IPSB name is(=) 7psb-name

g |: TRACE
NOTRACE <

STAE « :l
NOSTAE

L NODENAME is(=) nodename]

v

v

v

v

v

L DBNAME 1is (=) o’bna/ﬂe—J

v

L DICTNODE is(=) dictnode]

M

L DICTNAME is(=) dictname]

Parameters
program-name

Identifies the name of the application program (already defined to the system
through a system generation ADD PROGRAM statement) to be modified to use CA
IDMS DLI Transparency.

nnnn

Identifies the 1- to 4-digitversion number that further qualifies the program.
ipsb-name

Identifies the name of the IPSBto be automatically scheduled for the program.
TRACE/NOTRACE

Indicates whether or not CA IDMS DLI Transparency will buildand maintainan
internal tracetable foraidin debugging. NOTRACE is the default.

STAE/NOSTAE

Indicates whether or not CA IDMS DLI Transparency will trap programabnormal
terminations and produce formatted information for aid in debugging. NOSTAE is
the default.

Chapter 7: Using CAIDMS DLI Transparency Within CA IDMS/DB Programs 205

The CA IDMS DLI Transparency Program Definition Table

NODENAME IS nodename

Specifies the nodename that will be used to bind the CA IDMS DLI Transparency run
unit.

DBNAME IS dbname

Specifies the dbname that will beused to bind the CA IDMS DLI Transparency run
unit.

DICTNODE IS nodename

Specifies the nodename for the dictionary thatwill beused to bind the CA IDMS DLI
Transparency run unit.

DICTNAME IS dictname

Specifies the dictname that will be used to bind the CA IDMS DLI Transparency run
unit.

The JCL necessary to execute the CA IDMS DLI Transparency programdefinitiontable
compiler (IDMSDLTG) andto assembleand link editthe DLPDTAB output is shown
below:

PROGRAM DEFINTION TABLE COMPILER

//DL EXEC PGM=IDMSDLTG

//STEPLIB DD DSN=idms. loadlib,DISP=SHR

//SYSLST DD SYSOUT=A,DCB=BLKSIZE=133

//SYSPCH DD DSN=&&SYSPCH, UNIT=disk, SPACE=(4000, (100,50))
// DCB=(RECFM=FB, LRECL=80, BLKSIZE=4000) ,DISP=(NEW, PASS)
//SYSIPT DD *

pdt input statements

/*

//ASM EXEC PGM=ASMA90

//SYSPRINT DD SYSOUT=A

//SYSLIB DD DSN=yourHLQ.CAGIMAC,DISP=SHR

//SYSUT1 DD UNIT=disk,SPACE=(cyl, (2,2))

//SYSUT2 DD UNIT=disk,SPACE=(cyl, (2,2))

//SYSUT3 DD WNIT=disk,SPACE=(cyl, (2,2))

//SYSPUNCH DD DSN=&&PDTB, UNIT=disk,DISP=(NEW,PASS),
// SPACE=(80, (400,40))

//SYSIN DD DSN=&&SYSPCH,DISP=(0LD,DELETE)

//LINK EXEC PGM=HEWL

//SYSPRINT SYSOUT=A

//SYSLIN DD DSN=&&PDTB,DISP=(0LD,DELETE)

//SYSUTL DD UNIT=disk,SPACE=(trk, (20,5))
//SYSLMOD DD DSN=idms. loadlib(DLPDTAB) ,DISP=SHR

idms.loadlib data set name of the CAIDMS/DB load library containing the
subschema description and IDMSDLTG

206 DLI Transparency User Guide

Operational Considerations

cyl,(2,2)

spaceto be allocated in bytes per cylinders

disk

symbolic devicetype for the diskfile

&&PDTB

temporary data set containingthe output from the assembly
step

yourHLQ.CAGIMAC

data set name of the macrolibrary

&&SYSPCH

temporary data set containing the output from program
definition table compiler (IDMSDLTG)

trk,(20,5)

spaceto be allocated in bytes per tracks

4000,(100,50)

spaceto be allocated in bytes per blocks

80,(400,40)

spaceto be allocated in bytes per blocks

DLPDTAB

required link editmodule name in the SYSLMOD statement.

Operational Considerations

System Definition and Initialization

IDMSDLTI

Before any CA IDMS/DB application programcan use CA IDMS DLI Transparency, the CA
IDMS DLI Transparency environment within CA IDMS/DB must be initialized. This is done
usingthe initialization programcalled IDMSDLTI.

System Generation Statements Defining IDMSDLTI

The system generation must containan ADD PROGRAM statement to define IDMSDLTI:

ADD PROGRAM IDMSDLTI LANGUAGE IS ASSEMBLER REENTRANT REUSABLE.

The system generation must alsocontainan ADD TASK statement to define a task code

that invokes IDMSDLTI:

ADD TASK IDMSDLTI INVOKES IDMSDLTI.

Chapter 7: Using CAIDMS DLI Transparency Within CA IDMS/DB Programs 207

Operational Considerations

System Execution

Linking to lower level

No CA IDMS/DB programs may use CA IDMS DLI Transparency before IDMSDLTI has
been run. Itis recommended that the system definition also containan ADD AUTOTASK
statement to automatically run IDMSDLTI immediately after CA IDMS/DB has come up.

ADD AUTOTASK IDMSDLTI INVOKED AT STARTUP PREEMPT.

Note that the PREEMPT option is included on the autotask definition. This is
recommended sothat no application programs thatuse CAIDMS DLI Transparencystart
before CA IDMS DL Transparency initializationis completed.

The automatic scheduling of an IPSB associated with anapplication program (as defined
inthe CA IDMS DU Transparency program definition table)is performed whenever the
application programis linked to, either by the CAIDMS/DB system itself or from another
application program.

m Ifanapplication programnamedinthe CAIDMS DLl Transparency program
definition table (DLPDTAB) is also associated with a CA IDMS/DB task code, then
entering that task code inresponseto an ENTER NEXT TASK CODE message causes
automatic scheduling of the IPSB before CA IDMS/DB passes control to the
application program.

m The automaticschedulingis doneduringthe linking process (thatis, after the
program issuingthe LINK command gives up control but before the target program
receives control)ifanapplication programthatis not named in the DLPDTAB links
to anapplication programthatis named inthe DLPDTAB.

All application programs receiving control froma region controller (following the
automatic scheduling) mustbe set up to receive the scheduled PCBs. This is the same as
for CA IDMS DLI Transparency batch, IMS-DC, and IMS-DB.

programs

An application programthatreceives control following the automatic scheduling may
link (DC LINK) to lower level programs.

m Ifone or more scheduled PCBs are passed as parameters to the lower level
program, the lower level programmay issueDL1 calls usingthe passed PCBs.

m Ifa programislinkedtoas alower level program, itmust not be named in the
DLPDTAB, sincenamingan application programinthe DLPDTAB causes automatic
schedulingto be performed. Automatic scheduling must not be performed on these
lower level programs.

208 DLI Transparency User Guide

Operational Considerations

Termination processing

Automatic termination (TERM call) processingis performed for all application programs
that have had anautomatic schedulingcall done. The termination processingis doneat
the time when the application programthathad the automatic schedulingissuesa DC
RETURN. Ifthe application programor anylower level programsitlinks toabnormally
terminates (that is, the task thread is interrupted), the CA IDMS DLI Transparency run
unitis abnormally terminated as well and any changes to the databasearerolled ba ck.

Chapter 7: Using CAIDMS DLI Transparency Within CA IDMS/DB Programs 209

Appendix A: CA IDMS DLI Transparency
Messades and Codes

This section contains the followingtopics:

What This Appendix is About (see page 211)
Run-Time Messages and Codes (see page 211)
Non-Run-Time Messages and Codes (see page 220)

What This Appendix is About

CA IDMS DLI Transparencyissues codes and messages to report errors encountered
during processing. This appendix contains codes and messages returned by:

m The run-time interface
m The Syntax Generator
m The IPSB compiler

m The Load Utility

m The IPSB decompiler

Run-Time Messades and Codes

At run time, errors can cause CA IDMS DLI Transparency to terminate processingor to
return specific DL/l status codes to the DL/l application program. When CA IDMS DLI
Transparency terminates processing,itissues abend codes that are unique to CA IDMS
DLI Transparency. When DL/I status codes are returned to the program, however, they
aredirectlyrelated to CA IDMS/DB error-status codes. Presented below are the
run-time abend codes, the DL/I status codes and their equivalent CA IDMS/DB run-time
error-status codes, and the DL/I status codes determined by the CAIDMS DLI
Transparency run-time interface.

Appendix A: CAIDMS DLI Transparency Messages and Codes 211

Run-Time Messages and Codes

Run-Time Abend Codes

At run time, specific conditions cause CA IDMS DLI Transparency to terminate
processing. |f CAIDMS DLI Transparency encounters one or more of these conditions,
the system returns anabend code number. The followingis alistofthese codes and
their meanings:

Abend Code Code

0063 Invalid request. The CA IDMS DLI Transparency run-time system
determined the request was not a BIND, FINISH, or SEND/RECEIVE
call.

2163 Loaded IPSB has invalid format.

2166 Unsuccessful ready of area during PCB call processing.

2463 Loaded IPSB has invalid format.

2466 Unsuccessful ready of area during PCB call processing.

2469 The request-unit PROGRAM-ID was found to beinvalid.

2472 Storage not availablefor CAIDMS DLI Transparency run-time work
area.

2474 Unsuccessful load of IPSB by CA IDMS DLI Transparency run-time
system.

2499 An error was detected during DLET processing. AROLLBACK has been

issued for this transaction.

3301 System internal error. A nonzero request unitstatus was returned
while attempting to process a DL/I servicecall.

3302 System internal error. IDMSDLFE has been called withaninvalid
parameter listorinvalid parameters.

3303 A nonzero request unit status was returned whileattempting to
process a DL/l databasecall.

3304 A nonzero return code resulted from an attempt to acquirestorage.

3305 A nonzero request unit status was returned after attempting a BIND
REQUEST UNIT.

3306 A nonzero request unit status code was returned after attempting a
DL/l PCB schedulecall.

3307 A DL/l databasecall was attempted with more than 15 segment
search arguments.

3308 System internal error. An error condition was detected whilebuilding
a buffer parameter list.

212 DLI Transparency User Guide

Run-Time Messages and Codes

Abend Code Code

3310 A nonzero request unit status was returned after attempting a DL/I
term call.

3311 A nonzero return code was returned while attempting to free
storage.

3312 System internal error.The PCB address listwas found to be invalid

after a PCB schedulecall.

3313 Load of DL/I application programfailed or BLDL failed (z/OS only).

DL/I Status Codes and Equivalent CA IDMS/DB Codes
CA IDMS/DB Error Codes

CA IDMS/DB error-status codes arerelatively specificin error condition descriptions
when compared to the somewhat general approach reflected by the DL/I error-status
codes. This difference causes a number of CA IDMS/DB error-status codes to be roughly
equivalentto asingleDL/I status code. Whilethis situation may hamper problem
determination, itis the result of an attempt to simulatethe DL/l system as closelyas
possible.

Some CA IDMS/DB Error Codes Have No DL/I Equivalent

Additionally, there aresome error situations thatcan occurin CA IDMS/DB, for which
there is no DL/I equivalent. In this case, a two-character DL/I-type error-status code has
been assigned andis documented inthe followingcross-reference. The CA IDMS/DB
conditions for which the DL/I-type codes have been assigned will mostlikely never
appear, unless the CA IDMS DLI Transparency run-time system has detected an
extremely unusual situation.

Appendix A: CAIDMS DLI Transparency Messages and Codes 213

Run-Time Messages and Codes

DL/1 Status Codes Table

The table below presents DL/I status codes. One or more of these codes is returned to a

DL/l application by the CA IDMS DLI Transparency run-time system should an error
condition be detected by CAIDMS/DB or the CA IDMS DLI Transparency run-time
interface.

The DL/I status-code tablealsoincludes theerror descriptions and, where applicable,
the corresponding CA IDMS/DB error-status codes, call types,and minor codes.

Note: For more information, see the CA IDMS Messages and Codes Guide.

DL/ Status

Error Description CA IDMS/DB Information

Error/Status Code Minor Call Type
Code

No error 0000

AO

Write error 76

AB

Segment I/O area was required for a
databasecommand, but was not
specified (EXEC DLI)

AC

Segment name insegment search
argument not in hierarchy

AD

Invalid function. Either a SCHEDULE or
TERM call wasissuedin BATCH, ora
LOAD command was issued (EXEC DLI)

AH

Segment selection required, but not
specified fora command that requires
atleastone segment name to be
specified (EXEC DLI)

Al

Area not readied or READY failed 0301 FIND/ OBTAIN

Area not readied or READY failed 1201 STORE

Areas other than area of objectrecord 0221 ERASE
occurrence must be readiedin correct
usage mode

Areas other than area of objectrecord 0721 CONNECT
occurrence must be readiedin correct
usage mode

Areas other than area of objectrecord 0821 MODIFY
occurrence must be readiedin correct
usage mode

214 DLI Transparency User Guide

Run-Time Messages and Codes

DL/ Status

Error Description

CA IDMS/DB Information

Minor
Code

Error/Status Code Call Type

Areas other than area of object record
occurrence must be readiedin correct
usage mode

1121 DISCONNECT

Areas other than area of object record
occurrence must be readiedin correct
usage mode

1221 STORE

Databaseorjournal filewill notready
properly

70

Databasepage read not requested

65

Dynamicload of module failed

74

Page range for area being readied or
page requested, not found in DMCL

0971 READY

Subschema invoked does not match
object tables

1467 BIND

Concatenated segment in path call, not

atlowest level

Invalid segment search argument

AK

Invalid segment search argument field
name

AM

Areas readied with incorrectusage
mode

0209 ERASE

Areas readied with incorrectusage
mode

0709 CONNECT

Areas readied with incorrectusage
mode

0809 MODIFY

Areas readied with incorrectusage
mode

1109 DISCONNECT

Areas readied with incorrectusage
mode

1209 STORE

No current record of run unit

0813 MODIFY

PCB not sensitiveto particular function
(see PROCOPTS)

Record name is defined as mandatory
automatic member of set name

0714 CONNECT

Appendix A: CAIDMS DLI Transparency Messages and Codes 215

Run-Time Messages and Codes

DL/1 Status Error Description CA IDMS/DB Information
Error/Status Code Minor Call Type
Code

Record name not defined as optional 1115 DISCONNECT
member of set name
Statement format conflicts with 0331 FIND/ OBTAIN
location mode

AO Read error 75

AT Not enough spaceinrun-time |/O area

B1 Run unit not bound to DBMS 69

B2 Run unit not bound or bound twice 77

B3 Area wait deadlock has occurred 78

BA Db-key inconsistentwith areainwhich 0302 FIND/ OBTAIN
specifiedrecordis stored

BB Db-key not inrange of db-keys defined 1202 STORE
for stored record

BC No currency established for record 0306 FIND/ OBTAIN
name, set name, or area name

BD No currency established for record 0706 CONNECT
name, set name, or area name

BE No currency established for record 0806 MODIFY
name, set name, or area name

BF No currency established for record 1106 DISCONNECT
name, set name, or area name

BG No db-key for record to be stored 1212 STORE

BH No current record of run unit 0313 FIND/ OBTAIN

BI Record name already member of set 0716 CONNECT
name

BJ Current record not same type as record 0220 ERASE
name

BK Current record not same type as record 0820 MODIFY
name

BL Record name not currently member of 1122 DISCONNECT
set name

BM Invalid area nameused 0323 FIND/ OBTAIN

BN No current of set name established 0725 CONNECT

216 DLI Transparency User Guide

Run-Time Messages and Codes

DL/ Status Error Description CA IDMS/DB Information
Error/Status Code Minor Call Type
Code
BO Areas includedinsubschema currently 0928 READY
ready
BP CALC valuesinuserwork area and 0332 FIND/ OBTAIN
current record not equal
BQ Record type inconsistentwithset name 0206 ERASE
Record type inconsistentwith set name 0306 FIND/ OBTAIN
BR No record with specified db-key 1261 STORE
BS Area not availablefor update 0966 READY
BT Page range for area being readied or 0371 FIND/ OBTAIN
page requested, not found in DMCL
BU Record not bound 18
BV Db-key KEEP deadlock 29
BW Record occurrence not correct type 62
BX Invalid parameter list 63
BY CALC dataitem not described properly 64
BZ CICS interface not requested 68
CA Unsupported command received by

run-time system

CcD Attempted privacybreach,orinvalid 0210 ERASE
use of ERASE
Attempted privacybreach,orinvalid 0310 FIND/ OBTAIN
use of ERASE
Attempted privacybreach,orinvalid 0710 CONNECT
use of ERASE
Attempted privacybreach,orinvalid 0810 MODIFY
use of ERASE
Attempted privacybreach, orinvalid 0910 READY
use of ERASE
Attempted privacybreach,orinvalid 1110 DISCONNECT
use of ERASE
Attempted privacybreach,orinvalid 1210 STORE
use of ERASE

Appendix A: CAIDMS DLI Transparency Messages and Codes 217

Run-Time Messages and Codes

DL/ Status Error Description CA IDMS/DB Information
Error/Status Code Minor Call Type
Code
DA Sensitivefield has been changed (REPL,
DLET)
DJ Invalid command sequence for DLET.
DLET call notpreceded by HOLD TYPE
call, or REPL call
DX No current of set name established 0225 ERASE
DX Record occurrence is owner of 0230 ERASE
nonempty set occurrence
DX Segment to be deleted has nondeleted,
dependent segments
DX Segment to be deleted participatesin
aninversion
GB End of databasecondition
GB End of set, area, index 0307 FIND/ OBTAIN
GD Segment search argument(s) required
for call
GE Not found condition
Record or index entry not found 0326 FIND/ OBTAIN
GP Error in parentage
I Operation would have violated 1205 STORE
DUPLICATES NOT ALLOWED
Segment already exists (DUPLICATES
NOT ALLOWED)
IX Insertrule violated
No current of set name established 1225 STORE
NI Operation would have violated 0705 CONNECT
DUPLICATES NOT ALLOWED
Operation would have violated 0805 MODIFY
DUPLICATES NOT ALLOWED
NX Error loadinguser-supplied index

suppression exit

218 DLI Transparency User Guide

Run-Time Messages and Codes

DL/ Status

Error Description CA IDMS/DB Information

Error/Status Code Minor Call Type
Code

RX

Invalid command sequence for REPL.
REPL call not preceded by HOLD TYPE
call, or REPL call

No current of set name established 0825 MODIFY

Violated REPLACE rule

Tl

Error in PATH INSERT data transfer
specification. Data transfer must be
specified for all segments between the
firstparent segment requesting data
transfer, and the object segment (EXEC
DLI)

TO

Error in PATH REPLACE. Segment usage
in path replacedoes not match those
segments retrieved inthe last GET
command (EXEC DLI)

TP

Invalid PCBINDEX. An invalid PCB
number has been specified. The
scheduled PSB has no PCB satisfyingthe
request (EXEC DLI)

V1

Invalid length for variable-length record 0855 MODIFY

Invalid length for variable-length record 1255 STORE

V2

SEGLENGTH is required but not
specified, oris zero or negative (EXEC
DLI)

V3

FIELDLENGTH is required but not
specified, oris zero or negative (EXEC
DLI)

\Z

Invalid SEGLENGTH specified for a
variablelength segment (EXEC DLI)

V5

OFFSET is greater than SEGLENGTH, or
is zero or negative. This applies to

segments havinga logical relationship
(EXEC DLI)

V6

No KEYLENGTH specified, butis
required (EXEC DLI)

X1

Invalid record nameor set name 0208 ERASE

Appendix A: CAIDMS DLI Transparency Messages and Codes 219

Non-Run-Time Messages and Codes

DL/ Status Error Description CA IDMS/DB Information
Error/Status Code Minor Call Type
Code

Invalid record nameor set name 0308 FIND/ OBTAIN
Invalid record nameor set name 0708 CONNECT
Invalid record nameor set name 1108 DISCONNECT
Invalid record nameor set name 1208 STORE
Invalid record nameor set name 1408 BIND

X2 No spaceinarea for recordto bestored 1211 STORE

X3 All required set type relationshipsnot 0233 ERASE
defined
All required set type relationshipsnot 0833 MODIFY
defined
All required set type relationshipsnot 1233 STORE
defined

X4 Insufficient memory for 56
COMPRESS/DECOMPRESS

XX Error inobtainingstorage
Insufficient memory for load or storage 1472 BIND
allocation
Insufficient memory for load or storage 72
allocation

Non-Run-Time Messages and Codes

This section lists themessages that can be returned by the CA IDMS DLI Transparency
non-run-time components:

m Syntax generator
m |PSB compiler

m Load utility

Message Format

The format of the non-run-time messages is as follows:

message-number message-severity-level message-text

220 DLI Transparency User Guide

Non-Run-Time Messages and Codes

The message items have the following meanings:

m Message-number indicates the message number.

m Message-severity-level canbe one of the following:
- W (Warning)— Alerts you to potential problems; processing continues.
- E (Error)— Indicates a nonfatal error; processing continues.

— F(Fatal)—Indicates a fatal error;the component terminates processing.

Note: Load utility and IPSB decompiler messages do not includea severity level.

m Message-text is the messageissuedinresponseto the error.

Messages Listed by Message Number

The messages are listed in numerical order by message number. For each message, an
explanationis provided as well as anindication of the component thatissues it.

m (Syntax generator)

m (IPSB compiler)

m (Load utility)

m (IPSB decompiler)

Error code Message

220001 'EJECT' NOT ALONE ON CARD. TOKEN ASSUMED.

EJECT must appear as the onlyentry on the cardunlessitis to
be used as other that a compiler directive.

Severity: W

220002 INVALID 'SPACE' COMMAND PARAMETER.

SPACE must be followed by a blankand, optionally,a 1-digit
number greater than Oindicatingthe number of lines to be
spaced.

Severity: W

220003 'SPACE' NOT ALONE ON CARD. TOKEN ASSUMED.

SPACE must appear as the onlyentry on the card unless itis to
be used as other than a compiler directive.

Severity: W

220004 SEQUENCE ERROR. RUN ABORTED.
Input was out of sequence.

Severity: F

Appendix A: CAIDMS DLI Transparency Messages and Codes 221

Non-Run-Time Messages and Codes

Error code

Message

220005

STRING EXCEEDS MAXIMUM OR AVAILABLE LENGTH.

The specified string exceeds the maximum allowablelength for
this parameter.

Severity: E

220006

HEX STRING EXCEEDS MAXIMUM OR AVAILABLE LENGTH.

The specified hex string exceeds the maximum allowablelength
for this parameter.

Severity: E

220007

HEX STRING CONTAINS INVALID CHARACTERS.

The specified hex string contains invalid hexadecimal
characters.

Severity: E

220008

Ictl-parameter INVALID ICTL PARAMETER SPECIFICATION.

The ICTL parameter was incorrectly specified. Check the syntax.
(IPSB compiler)

Severity: E

220009

Octl-parameter INVALID OCTL PARAMETER SPECIFICATION.

The OCTL parameter was incorrectly specified. Check the
syntax. (IPSB compiler)

Severity: E

220010

Iseq-parameter INVALID ISEQ PARAMETER SPECIFICATION.

The ISEQ parameter was incorrectly specified. Check the
syntax. (IPSB compiler)

Severity: E

220011

Core-size-parameter INVALID COMPILER TABLE SIZE
SPECIFICATION.

The core-size parameter must be a 1- to 6-digitnumber
optionally followed by a K. There must be at leastone space
between the number andthe K. (IPSB compiler)

Severity: F

220012

Parameter UNEXPECTED END OF FILE (PERIOD MISSING).

Invalid syntax has been encountered. Check for missing
periods. (IPSB compiler)

Severity: E

222 DLI Transparency User Guide

Non-Run-Time Messages and Codes

Error code Message

220013 Keyword UNKNOWN KEYWORD FOR STATEMENT TYPE.
The keyword encountered is not valid for the current
statement type. (IPSBcompiler)
Severity: E

220014 UNEXPECTED END OF FILE SEARCHING FOR STATEMENT.
End of fileoccurred before sufficientcontrol inputwas found.
Severity: E

220015 Keyword INVALID STATEMENT TYPE. SKIPPING TO NEXT
PERIOD.
The statement encountered is not valid for the current section.
(IPSB compiler)
Severity: E

220016 Ipsb-name MISSING OR INVALID IPSB NAME.
The IPSB name must be a 1-to 8-character alphanumeric string.
(IPSB compiler)
Severity: E

220017 Subschema-name MISSING OR INVALID SUBSCHEMA NAME.
The subschema name must be a 1- to 8-character alphanumeric
string. (IPSB compiler)
Severity: F

220018 Language-parameter INVALID PROGRAM LANGUAGE
SPECIFICATION.
Language must be COBOL, PL/I, or Assembler. (IPSB compiler)
Severity: E

220019 Subschema-name SUBSCHEMA NOT FOUND IN LOAD
LIBRARY.
The subschema named could not be found. (IPSB compiler)
Severity: F

220020 Subschema-name ERROR LOADING SUBSCHEMA MODULE.
The subschema named could not be loaded. (IPSB compiler)
Severity: F

220021 INSUFFICIENT STORAGE FOR COMPILATION.

The IPSB compiler has run out of aninternal work space.
Contact technical support. (IPSB compiler)

Severity: F

Appendix A: CAIDMS DLI Transparency Messages and Codes 223

Non-Run-Time Messages and Codes

Error code Message

220022 Subschema-name LOADED SUBSCHEMA MODULE INVALID.

The subschema named was used to load a module, but the
moduleis nota valid subschema. (IPSB compiler)

Severity: F

220023 Parameter-name DIAGNOSTIC TABLE SIZE EXCEEDED. TOO
MANY ERRORS.

Too many errors have occurred, causingan overflow of the
table. Correct the previous errors. (IPSB compiler)

Severity: F

220025 Keyword INVALID KEYWORD, SKIPPING TO NEXT PERIOD.

The keyword encountered is not valid. Compilation resumes
with the next statement. (IPSB compiler)

Severity: E

220026 MISSING KEYWORD, SKIPPING TO NEXT PERIOD.

A required keyword is missing. compilation resumes with the
next statement.

220027 Parameter INVALID, PARAMETER TOO LONG.

The character string specifiedis greater in length than the
maximum allowed for this parameter. (IPSB compiler)

Severity: E

220031 Area-name INVALID AREA NAME.

The character stringas specifiedis notavalid area name. (IPSB
compiler)

Severity: E

220032 Area-name AREA NOT DEFINED IN SUBSCHEMA.

All areas usedinan IPSBmust be defined inthe subschema
previously specified in the IPSB statement. (IPSB compiler)

Severity: E

220033 Usage-mode INVALID USAGE-MODE, SHARED RETRIEVAL
ASSUMED.

The usage mode as specifiedis incorrect. Check the syntax.
(IPSB compiler)

Severity: W
220034 Area-name AREA HAS BEEN PREVIOUSLY SPECIFIED.
An area name canbe used inonlyone AREA statement. (IPSB
compiler)
Severity: E

224 DLI Transparency User Guide

Non-Run-Time Messages and Codes

Error code Message

220035 Record-name INVALID RECORD NAME.
A record name must be a 1-to 16-character alphanumeric
string. (IPSB compiler)
Severity: E

220036 Option INVALID DELETE OPTION, ERASE ALL ASSUMED.
The DELETE option was specifiedincorrectly. Check the syntax.
(IPSB compiler)
Severity: W

220037 Field-name INVALID FIELD NAME.
A field name must be a 1- to 8-character alphanumeric string.
(IPSB compiler)
Severity: E

220038 Stored-option INVALID, STORED PHYSICALLY ASSUMED.
The stored option was specified incorrectly. Check the syntax.
(IPSB compiler)
Severity: W

220039 Position INVALID/MISSING STARTING POSITION.
The starting position mustbe a 1- to 5-digitnumber, greater
than 1, andless thanthe record-length - 1. (IPSB compiler)
Severity: E

220040 Length INVALID/MISSING LENGTH SPECIFICATION.
The length must be a 1- to 5-digitnumber that indicates the
length of the field. (IPSB compiler)
Severity: E

220041 Usage INVALID USAGE, DISPLAY ASSUMED.
The usage has been specified incorrectly. Check the syntax.
(IPSB compiler)
Severity: W

220042 Record-name RECORD HAS BEEN PREVIOUSLY SPECIFIED.
A record name canappearinonly one RECORD statement.
(IPSB comepiler)
Severity: E

220043 Record-name RECORD NOT DEFINED IN SUBSCHEMA.

The record named must be defined inthe subschema
previously specifiedin the IPSB statement. (IPSB compiler)

Severity: E

Appendix A: CAIDMS DLI Transparency Messages and Codes 225

Non-Run-Time Messages and Codes

Error code

Message

220044

Field-name FIELD HAS BEEN PREVIOUSLY SPECIFIED.

A field name must be unique within any one record definition.
(IPSB compiler)

Severity: E

220045

Start-position STARTING POSITION INVALID IF STORED
VIRTUALLY.

Starting position must not be specifiedifthe fieldis stored
virtually. This clauseis ignored. (IPSB compiler)

Severity: W

220046

Record-name PREVIOUS RECORD HAS ONLY ONE
CONCATENATED KEY.

The record preceding the current record has onlyone
destination parent concatenated key defined. This cancause
abnormal termination at runtime. (IPSB compiler)

Severity: E

220047

Key-name LOGICAL CONCATENATED KEY PREVIOUSLY
DEFINED.

Onlyone logical destination parentconcatenated key field can
be defined within any one record. (IPSB compiler)

Severity: E

220048

Key-name PHYSICAL CONCATENATED KEY PREVIOUSLY
DEFINED.

Only one physical destination parentconcatenated key field
can be defined withinany one record. (IPSB compiler)

Severity: E

220049

Parameter LENGTH OR STARTING POSITION INVALID FOR /SX.

Length and/or starting position mustnot be specified for /SX
fields. (IPSB compiler)

Severity: W

220050

Field-name INVALID INDEXED FIELD NAME.

An indexed field name must be a 1- to 8-character
alphanumericstring. (IPSB compiler)

Severity: E

220052

Record-name INVALID/MISSING TARGET RECORD.

If present, the target record as specifiedis nota validrecord
name. (IPSB compiler)

Severity: E

226 DLI Transparency User Guide

Non-Run-Time Messages and Codes

Error code Message

220053 Record-name INVALID/MISSING SOURCE RECORD.
If present, the sourcerecord as specifiedis nota validrecord
name. (IPSB compiler)
Severity: E

220054 Record-name INVALID/MISSING POINTER RECORD.
If present, the pointer record as specifiedis nota valid record
name. (IPSB compiler)
Severity: E

220055 Constant INVALID SHARED INDEX CONSTANT.
The sharedindex constantmust be a 1-byte, self-defining
Assembler constantenclosedindouble quotes. (IPSB compiler)
Severity: E

220056 Field-name MISSING SEARCH FIELD(S).
At leastone field must be specified as a searchfield. (IPSB
compiler)
Severity: E

220057 Field-name INVALID FIELD(S) SPECIFICATION.
A field name has been specified incorrectly. Check the syntax.
(IPSB compiler)
Severity: E

220058 Value INVALID NULL INDEX VALUE.
The null index valuemust be a 1-byte, self-defining Assembler
constantenclosed in double quotes, or BLANK or ZERO. (IPSB
compiler)
Severity: E

220059 Index-name INDEX HAS BEEN PREVIOUSLY SPECIFIED.
An index name canbe used inonly one INDEX statement. (IPSB
compiler)
Severity: E

220061 Record-name RECORD NOT DEFINED IN RECORD SECTION.
The record named must be defined by a RECORD statement in
the RECORD SECTION. (IPSBcompiler)
Severity: E

220062 Field-name FIELD NOT DEFINED IN SOURCE RECORD.

The field named must be defined within the source record
definitioninthe RECORD SECTION. (IPSB compiler)

Severity: E

Appendix A: CAIDMS DLI Transparency Messages and Codes 227

Non-Run-Time Messages and Codes

Error code Message
220063 Record-name NO SEQUENCE FIELD DEFINED FOR POINTER
RECORD.

All pointer records must have a sequence field defined
correspondingto the sort-key field of the indexed set of which
itis a member. (IPSB compiler)

Severity: E

220064 Length LENGTH SPECIFIED GREATER THAN SUBSCHEMA
LENGTH.

The record length specified must not be greater than the length
as defined inthe subschema. (IPSB compiler)

Severity: E

220065 Length LENGTH SPECIFIED LESS THAN CONTROL LENGTH.

The minimum record length specifiedis less than the control
length of the record. Itis rounded up to the control length.
(IPSB compiler)

Severity: W

220066 Length INVALID/MISSING LENGTH SPECIFICATION.

The length must be a 1- to 5-digitnumber that indicates the
length of the segment this record represents. (IPSBcompiler)

Severity: E

220067 Record-name RECORD IS NOT VARIABLE LENGTH IN SCHEMA.

A maximum and minimum length has been specified, but the
record is not of variablelength. (IPSB compiler)

Severity: E

220069 Clause MISSING PARENT CLAUSE.

A parent segment must be specified for all butroot segments.
(IPSB compiler)

Severity: E

220070 Access-method INVALID ACCESS METHOD.

The access method has been specified incorrectly. Check the
syntax. (IPSB compiler)

Severity: E

220071 Dbd-name INVALID/MISSING DBDNAME.

The DBD name must be a 1- to 8-character alphanumeric string.
(IPSB compiler)

Severity: E

228 DLI Transparency User Guide

Non-Run-Time Messages and Codes

Error code

Message

220072

Option INVALID/MISSING PROCESSING OPTIONS.

Processingoptions havebeen specifiedincorrectly. Check the
syntax. (IPSB compiler)

Severity: E

220073

INVALID KEY FEEDBACK LENGTH.

The valuespecified for the key feedback length must be
numeric. (IPSB compiler)

Severity: E

220074

Option INVALID POSITIONING.

Positioning has been specified incorrectly. Check the syntax.
(IPSB compiler)

Severity: E

220077

Segment-name INVALID SEGMENT NAME.

A segment name must be a 1- to 8-characteralphanumeric
string. (IPSB compiler)

Severity: E

220078

Set-name INVALID SET NAME.

A set name must be a 1- to 16-character alphanumericstring.
(IPSB compiler)

Severity: E

220079

Record-name INVALID RECORD NAME.

A record name must be a 1-to 16-character alphanumeric
string. (IPSB compiler)

Severity: E

220080

Use-option INVALID USE OPTION.

The USE option has been specified incorrectly. Check the
syntax. (IPSB compiler)

Severity: E

220082

Option PROCESSING SEQUENCE MUST BE SPECIFIED.

Processingsequencemust be specified for all access methods
except HDAM. (IPSB compiler)

Severity: E

220083

Option PROCESSING SEQUENCE MUST NOT BE SPECIFIED.

Processingsequencemust not be specified ifthe access
method is HDAM. (IPSB compiler)

Severity: E

Appendix A: CAIDMS DLI Transparency Messages and Codes 229

Non-Run-Time Messages and Codes

Error code

Message

220085

Index-name INDEX NOT DEFINED IN INDEX SECTION.

The indexed field named must be defined by an INDEX
statement inthe INDEX SECTION. (IPSB compiler)

Severity: E

220086

Segment-name SEGMENT HAS BEEN PREVIOUSLY DEFINED.

A segment name can be used only once within any one PCB.
(IPSB compiler)

Severity: E

220087

Record-name RECORD NOT DEFINED IN RECORD SECTION.

The record named must be defined by a RECORD statement in
the RECORD SECTION. (IPSBcompiler)

Severity: E

220088

Segment-name SEGMENT NOT PREVIOUSLY DEFINED.

The segment named must be previously defined by a SEGMENT
statement withinthe same PCB. (IPSB compiler)

Severity: E

220489

Parent-name PARENT MUST NOT BE SPECIFIED ON ROOT
SEGMENTS.

Remove the PARENT clausefromthis SEGMENT statement.
(IPSB compiler)

Severity: E

220090

Set-name SET NOT DEFINED IN SUBSCHEMA.

The set named must be defined inthe subschema previously
specifiedinthe IPSB statement. (IPSBcompiler)

Severity: E

220091

Set-name INVALID USE OF SET.

Processingsequenceset can be specified onlyifthe access
method is HISAM or INDEX. (IPSBcompiler)

Severity: E

220092

INVALID MEMBER OF SET.

The IDMS record is not a valid member of the set specified.
(IPSB comepiler)

Severity: E

220093

INVALID OWNER OF SET.

The IDMS record is not a valid owner of the set specified. (IPSB
compiler)

Severity: E

230 DLI Transparency User Guide

Non-Run-Time Messages and Codes

Error code Message

220094 Index-name INVALID USE OF INDEX.
Processingsequenceindex can be specified onlyifthe access
method is HIDAM or secondaryindex. (IPSB compiler)
Severity: E

220095 Segment-name INVALID INVERSION OF SEGMENTS.
A segment appearsintheinversionthatis notinthe hierarchic
path of the destination parentinits physical database. (IPSB
compiler)
Severity: E

220096 Rule INVALID RULE SPECIFIED.
An insertor replacerulehas been specifiedincorrectly. Check
the syntax. (IPSB compiler)
Severity: E

220097 Parent-name LOGICAL PARENT CONCATENATED KEY IS
UNDEFINED.
Ifa logicaldestination parentis specified, its concatenated key
must be defined within the record definition of the logical child.
(IPSB compiler)
Severity: E

220098 Parent-name PHYSICAL PARENT CONCATENATED KEY IS
UNDEFINED.
Ifa physical destination parentis specified, its concatenated
key must be defined withinthe record definition of the logical
child. (IPSB compiler)
Severity: E

220100 set-name INVALID INDEXED SET NAME.
The name specified for anindexed set must be a 1-to
16-character name. (IPSB compiler)
Severity: E

220101 set-name INDEXED SET NOT DEFINED IN SUBSCHEMA.
The specified indexed set must be defined in the subschema.
(IPSB compiler)
Severity: E

220102 subschema-name SUBSCHEMA DOES NOT CONTAIN INDEXED

SETS.

'INDEXED-SET" was specifiedinthe IPSB SECTION, but no
indexed sets were found inthe subschema. (IPSB compiler)

Severity: E

Appendix A: CAIDMS DLI Transparency Messages and Codes 231

Non-Run-Time Messages and Codes

Error code

Message

220103

INVALID EXIT ROUTINE NAME

The index suppression exitroutinename must bea 1- to
8-character name. (IPSB compiler)

Severity: E

221001

'EJECT' NOT ALONE ON CARD. TOKEN ASSUMED.

EJECT must appear as the only entry on the card unlessitis to
be used as other than a compiler directive. (Syntax Generator)

Severity: W

221002

INVALID 'SPACE' COMMAND PARAMETER.

SPACE must be followed by a blankand, optionally,a 1-digit
number greater than Oindicatingthe number of lines to be
spaced. (Syntax Generator)

Severity: W

221003

SPACE NOT ALONE ON CARD. TOKEN ASSUMED.

SPACE must appear as the only entry on the card unlessitis to
be used as other than a compiler directive. (IPSBcompiler)

Severity: W

221004

SEQUENCE ERROR. RUN ABORTED.
Input was out of sequence. (Syntax Generator)

Severity: F

221005

STRING EXCEEDS MAXIMUM OR AVAILABLE LENGTH.

The character string specified is greater inlength than the
maximum allowed for this parameter. (Syntax Generator)

Severity: E

221006

HEX STRING EXCEEDS MAXIMUM OR AVAILABLE LENGTH.

The hexadecimal string specifiedis greater in length than the
maximum allowed for this parameter. (Syntax Generator)

Severity: E

221007

HEX STRING CONTAINS INVALID CHARACTERS.

Other thanvalid characters appearinthe hexadecimal string
specified. (Syntax Generator)

Severity: E

221009

Dbd-name - DBD NOT FOUND IN LIBRARY.

The DBD name listed prior to this message was not in the
library designated by the STEPLIB JCL statement. (Syntax
Generator)

Severity: E

232 DLI Transparency User Guide

Non-Run-Time Messages and Codes

Error code Message

221010 Dbd-name - DBD NOT LOADED - ERROR.

An error has occurred duringload processing for the specified
DBD. (Syntax Generator)

Severity: E

221011 Dbd-name - DBD NOT LOCATED.

A DBD was not locatedinthe alreadyloaded chain.Thisisa
system internal error. (Syntax Generator)

Severity: E

221012 UNEXPECTED END OF FILE PROCESSING IPSB STATEMENT.

End of fileoccurred before sufficient control inputwas found.
(Syntax Generator)

Severity: F

221013 Keyword UNKNOWN KEYWORD FOR STATEMENT TYPE.

The keyword encountered is not valid for the current
statement type. (Syntax Generator)

Severity: E

221014 PRIMARY INDEX NOT FOUND.

The LCHILD statement for the named index was not found.
(Syntax Generator)

Severity: E

221015 Keyword INVALID STATEMENT TYPE. SKIPPING TO NEXT
PERIOD.

The statement encountered is not a valid statement type.
(Syntax Generator)

Severity: E

221016 Segment-name - SEGMENT NOT FOUND IN DBD.

The named segment was not found inthe appropriate DBD.
(Syntax Generator)

Severity: E

221017 Segment-name - SEGMENT PHYSICAL OWNER NOT FOUND.

An attempt to establish a path to the physical owner of a
destination parent segment was unsuccessful. (Syntax
Generator)

Severity: E

Appendix A: CA IDMS DLI Transparency Messages and Codes 233

Non-Run-Time Messages and Codes

Error code

Message

221018

Segment-name - SEGMENT HAS NO FIELDS - REQUIRED.

A logical child segment has been encountered that has no fields
defined for it. (Syntax Generator)

Severity: E

221019

Segment-name - SEGMENT PARENT NOT FOUND.

Whiledetermining the length of a logical child concatenated
key, the root segment could not be found. The probablecause
isanincorrectly defined path. (Syntax Generator)

Severity: E

221020

Segment-name - SEGMENT SEQUENCE FIELD REQUIRED.

The sequence field for anindex pointer record was not found.
(Syntax Generator)

Severity: E

221021

Psb-name - PSB NOT FOUND IN LIBRARY.

The named PSB was not found inanylibraryaccessiblethrough
a STEPLIB JCL statement. (Syntax Generator)

Severity: F

221022

Psb-name - PSB NOT LOADED - ERROR.

An error has occurred duringload processing for the specified
PSB. The PSB named could not be loaded. (Syntax Generator)

221023

GENERATION TERMINATED - TOO MANY ERRORS.

Too many errors have occurred for this processingrun. (Syntax
Generator)

Severity: F

221024

Dbd-name DBD NOT VALID FOR USE WITH CA IDMS DLI
Transparency.

A loaded DBD has been found to containaninvalid format. The
probablecauseis thatthe IBM version of the DBD was loaded.
Use the CAIDMS DLl Transparency assembled DBD. (Syntax
Generator)

Severity: F

221025

Psb-name PSB NOT VALID FOR USE WITH CA IDMS/DLI
Transparency.

A loaded PSB has been found to containaninvalid format. Use
the CA IDMS DLI Transparency assembled PSB. (Syntax
Generator)

Severity: F

234 DLI Transparency User Guide

Non-Run-Time Messages and Codes

Error code

Message

221026

Dbd-name DBD FOR LOGICAL PARENT NOT FOUND IN ANY
PCB.

Duringgeneration of aload IPSB,the named DBD was
referenced as alogical parentDBD, but no PCB inthe load PSB
defined the logical parentas a physical segment. (Syntax
Generator)

Severity: F

221500

DATABASE CAPACITY EXCEEDED.

Databasecapacityis notsufficientto load all necessary records.
Reallocatethe databasefiles with more space. Issued by Step 2.
(Load Utility)

221501

SEGMENT=segment-name NOTIN IPSB.

The named segment has been found inthe inputfile, or
workfile, but is not defined inany PCB within the IPSB. Issued
by Steps 1, 2,4, and 6. (Load Utility)

221503

NO LOGICAL RELATIONSHIPS.

Databaseload Processing (Step 2) encountered no logical
relationships. Steps 3 through 6 arenot required to complete
the databaseload. (Load Utility)

221506

IPSB=ipsb-name NOT FOUND.

The named IPSB could not be loaded. Make sure that the
correct IPSBresides in the data set(s) referenced by CDMSLIB.
Issued by Steps 1, 2,4, and 6. (Load Utility)

221508

INITIAL DATABASE LOAD COMPLETE.

Databaseload processing (Step 2) has been successfully
completed. (Load Utility)

221509

PREFIX RESOLUTION COMPLETE.

Prefix resolution processing (Step 4) has been successfully
completed. (Load Utility)

Severity: F

221510

PREFIX UDPDATE COMPLETE.

Prefix update processing (Step 6) has been successfully
completed. (Load Utility)

221511

PCB DBDNAME=dbdname NOT FOUND.

Prefix resolution or prefix update processingfailedtofind a
DBD inthe IPSB that matches the named DBD. The named DBD
was referenced inthe logical workfile produced by the
databaseload (Step 2). Issued by Steps 4 and 6. (Load Utility)

Appendix A: CAIDMS DLI Transparency Messages and Codes 235

Non-Run-Time Messages and Codes

Error code

Message

221512

INVALID INPUT CONTROL FORMAT.

Invalid processing control statements have been encountered.
Rerun the step in question with correctly formatted control
specifications. Issued by Steps 1, 2, 4, and 6. (Load Utility)

221513

PROCESSING TERMINATED-ERROR(S).

A fatal error condition was detected. This messageis usually
preceded by a message indicatingthe specific error condition.
Issued by Steps 1, 2,4, and 6. (Load Utility)

221514

SEGM=segment-name - NO LOGICAL PARENT.

A logicalchildrecordin the workfile has no corresponding
logical parentrecord inthe workfile. This message may be the
resultof an incomplete Step 3 sort, orit may indicatethat
multiplelogical workfiles from Step 2 were not merged prior to
the Step 3 sort. Issued by Steps 4 and 6. (Load Utility)

221516

PARAMETER 'IPSB' REQUIRED.

The control format for a processingstepisincomplete. Specify
the IPSB name required for processing. Issued by Steps 2, 4,
and6. (Load Utility)

221517

INVALID IPSB PROCOPTS - 'LOAD' REQUIRED.

Use of the Load Utility withinthe CA IDMS DLI Transparency
Run-Time Interface requires that each PCB inthe IPSB be
specified with PROCOPT=LOAD. Issued by Steps 2, 4, and 6.
(Load Utility)

221519

DBDNAME=dbdname NOTIN IPSB.

The named DBD was not found inthe IPSB. Use the same IPSB
asyou used in Step 2 processing.Issued by Steps 4 and 6.
(Load Utility)

221521

RELATED WORKFILES MISSING.

This message usually appears after messages 221514 and
221518, to indicatethe probableerror cause. Issued by Steps 4
and6. (Load Utility)

221522

NO FURTHER PROCESSING REQUIRED.

Databaseload Processing (Step 2) has been successfully
completed. No logical relationships werefound, and no
additional processingis necessary. (Load Utility)

221523

STATUS=code RETURNED-SEGMENT= segment-name.

An unexpected DL/I status code has been returned to the Load
Utility. This message usuallyindicates a fatal error.Issued by
Steps 2 and 6. (Load Utility)

236 DLI Transparency User Guide

Non-Run-Time Messages and Codes

Error code Message

221524 CHECK IPSB FOR PROBLEM(S).
An error has been detected that may be related to an IPSB
specification. Issued by Steps 2 and 6. (Load Utility)

221525 UNEXPECTED END OF FILE-SYSIPT.
End of filewas encountered before sufficientprocess control
information was found. Issued by Steps 1, 4, and 6. (Load
Utility)

221526 INVALID IPSB FORMAT.
The IPSB that was loaded does not have a valid format. Issued
by Steps 1, 4, and 6. (Load Utility)
Severity: F

221527 PARAMETER 'PROCESS=' REQUIRED.
The JCL for the step did not includethe PROCESS control
parameter. PROCESS= is required. Issued by Steps 1, 2,4, and 6.
(Load Utility)

221528 INSUFFICIENT STORAGE.
More mainstorage is required for successful processing.
Increasethe storagespecification,andrerunthe processing
step inquestion. Issued by Steps 1, 2,4, and 6. (Load Utility)

221530 CALC PROCESSING COMPLETE.
The Pre-Load CALC Processing(Step 1) has been successfully
completed. (Load Utility)
Severity: F

221531 I/0 ERROR ON FILE=SYS999.
An I/O error has been detected duringfileprocessing.
Determine the nature of the cause,andre-run the processing
step. IssuedbySteps 1,2,4,and6. (Load Utility)

221532 ERROR OPENING FILE=SYS999.
An attempt to open arequired filehas not been successful.
Check for missingfiledefinitions, or conflicts in file definitions.
Issued by Steps 1, 2,4, and 6. (Load Utility)

221542 LOAD OF SUBSCHEMA=subschema-name FAILED.

The subschema specified inthe IPSBwas not available for CALC
processing. Make surethat subschemais accessiblethrougha
STEPLIB JCL statement. Issued by Steps 1and 2. (Load Utility)

Appendix A: CAIDMS DLI Transparency Messages and Codes 237

Non-Run-Time Messages and Codes

Error code

Message

221543

AREA=area-name NOT IN SUBSCHEMA.

The specified area name was found inthe load IPSB, but was
not found inthe subschema. Make surethat the subschema
contains allrequired area names. Issued by Steps 1 and 2.
(Load Utility)

223902

ipsb-name COMPILE DATE: mm/dd/yy TIME: HHmmsshh
Issued during IPSBvalidation, this indicates the original IPSB
compilation date/time. Date is in month/day/year format.
Time is in hours/minutes/seconds/hundreth seconds. (IPSB
decompiler)

223902

subschema COMPILE DATE: mm/dd/yy TIME: HHmmsshh

Issued during IPSBvalidation, this indicates the corresponding
subschema compilation date/time. Date and time formats are
as indicated above. (IPSB decompiler)

223903

REQUESTED MODULE IS NOT AN IPSB.

IPSB validation has determined that the loaded module does
not contain a format similar to that of a CA IDMS DLI
Transparency IPSB. Due to the environment associated with CA
IDMS DLI Transparency, this module may be a native DL/I PSB.
(IPSB decompiler)

223904

REQUESTED IPSB RELEASE LEVEL NOT SUPPORTED.

IPSB validation has found thatthe requested IPSBloaded for
decompilationis for a releaselevel of CA IDMS DLI
Transparency thatis notsupported by the IPSB decompiler.
(IPSB decompiler)

223905

ERROR IN LOAD OF IPSB=ipsbname

Issued when anerror has occurred duringan attempt to access
the specified IPSBload module. (IPSB decompiler)

223906

ERROR OPENING FILE=SYSxxx

Produced when a request to open a specificfilehas been
unsuccessful, probably dueto missingor conflictingfile
definitions. SYSxxx canincludeSYSIPT, SYSLST, OR SYSPCH.
(IPSB decompiler)

238 DLI Transparency User Guide

Non-Run-Time Messages and Codes

Error code

Message

223907

ERROR ON FILE=SYSxxx FUNC=xxxx STAT=xxxx.

Produced when a request to close, or read/write to/from a
specificfilehas resultedinanerror condition. Here, SYSxxx can
be the filenames SYSIPT, SYSLST, or SYSPCH. The FUNC= and
STAT= operands of the message relate to the processing
functions andresulting statuses thatare common to the 1/0
utility module IDMSUTIO (IDMSUTIO is used forall I/O
functions for the Decompiler). (IPSB decompiler)

223908

UNEXPECTED END OF FILE - SYSIPT

If no valid IPSB-directive control statement is encountered
before end-of-file occurs whilereadingthe SYSIPT input file,
this messageisissued,and decompilation terminates. (IPSB
decompiler)

223909

CA IDMS DLI Transparency IPSB DECOMPILATION
TERMINATED-ERROR(S).

Ifan error occurs during SYSIPT processing, IPSB loading, IPSB
identity and releaselevel validation, or SYSLST or SYSPCH
processing, this messageisissued as anindication of the final
status of the current processingrun. (IPSB decompiler)

223910

CA IDMS DLI Transparency IPSB DECOMPILATION COMPLETE
Issued when IPSB decompilation process has completed
without encountering any problem situations. This isthefinal
message issued by the decompiler after a successful run. (IPSB
decompiler)

Appendix A: CAIDMS DLI Transparency Messages and Codes 239

Appendix B: CA IDMS DLI Transparency
Software Components

This section contains the followingtopics:

About This Appendix (see page 241)
The Syntax Generator (see page 241)
The IPSB Compiler (see page 242)
Runtime Interface (see page 243)
The Load Utility (see page 251)

About This Appendix

CA IDMS DLl Transparency has four major software components:
m The syntax generator

m The IPSB compiler

m The runtime interface

m The loadutility

Each component is described in this section.

The Syntax Generator

Input to the Syntax Generator

The syntax generator consists of the IDMSDLPG module. For input, itaccepts a DL/l PSB
andthe DBDs referenced by the PCBs included inthe PSB. The source code for the PSB
and DBDs must be assembled usingthe CA-supplied macros before inputting them to
the syntax generator.

Inaddition to the assembled PSB and DBDs, the syntax generator requires user-supplied
input statements. The input statements direct the generator to produce source
statements for an IPSB load module and any of the following CAIDMS/DB entities:

m Schema

= DMCL

m Subschema

Appendix B: CA IDMS DLI Transparency Software Components 241

The IPSB Compiler

Output from the Syntax Generator

When executed, the syntax generator reads inand extracts the DL/I definitions reflected
inthe assembled PSB and DBDs. Based on the DL/I definitions, the generator creates
corresponding sourcestatements for the IPSBload module and the requested CA
IDMS/DB modules.

Review the Source Statements

The user must review the IPSBand CA IDMS/DB source statements to make sure that
they reflect the dependencies that are present, either explicitly or implicitly, in the DL/I
definitions. For example, does every logical child segment have its physical parent
segment defined? IfanIPSB is to be used with the load utility, there are special load
utility considerations thatthe user mustincludeinthe IPSBsource.

After reviewing and,if necessary, modifyingthe sourcestatements, the user mustinput
them to the appropriate compiler to produce the required load module. Operation of
the IPSB compileris described below. Operation of the CA IDMS/DB schema and
subschema compilers and guidelines for creatinga DMCL module are described in the
CA IDMS Database Administration Guide.

The IPSB Compiler

What the IPSB Compiler Does

The IPSB compiler, consisting of the IDMSDLMG module, accepts user-supplied input
statements and subschema tables as input. Compiler output consists of the IPSBs and a
listing of any diagnostic messages. The resulting IPSBs are known as fixed IPSBs. At
runtime, when CA IDMS DLI Transparency processes a DL/l application, the back end of
the runtime interfaceloads the relevant fixed IPSB. The fixed IPSB then serves the back
end as the source for creating a variableIPSB. A variableIPSB keeps track of the DL/l and
CA IDMS/DB information during CA IDMS DLI Transparency processing.

IPSB Must Be in Load (Core-Image) Library at Runtime

The fixed IPSB must be availableinaload (core-image) library atruntime. Hence, the
user must run the IPSB compiler to create the appropriate IPSBs before usingthe
runtime interface.Once anIPSB is compiled, assembled, and link edited, however, itis
availablefor use duringall subsequent executions of the DL/I application program
(assumingno changes are made to the DL/I applications).

242 DLI Transparency User Guide

Runtime Interface

Runtime Interface

The runtime interface:

Accepts retrieval and update requests from the DL/ application programs

The interface then processes the requests into appropriate CAIDMS/DB requests
andsends them to CA IDMS/DB

After CAIDMS/DB processes the requests, the runtime interface accepts the
retrieved data and status information from CA IDMS/DB for placement in a format
acceptableto the DL/I application program

To accomplish thesefunctions, the runtime interface consists of special-purpose
components, a front end, anda backend.

The special-purpose components, the front end, and the backend arediscussedinthe
remainder of this appendix.

Appendix B: CA IDMS DLI Transparency Software Components 243

Runtime Interface

Special-Purpose Components

The CA IDMS DLI Transparency special-purpose components consistof the following
modules and databaseprocedures:

IDMSDLRC module — IDMSDLRC is the module used in placeof the DL/I region
controller.

IDMSDLLI module — IDMSDLLI (the CA IDMS/DLI Transparency languageinterface
used in place of native DL/l languageinterfaces)is for batch call-level DL/I
application programs only.

IDMSDLHI module — IDMSDLHI is the CA IDMS DLI Transparency language
interface used for batch command-level DL/I (EXEC DLI) applications.

IDMSDL1C module — IDMSDL1C is the languageinterface used with CICS call-level
DL/l applications inz/OS.

IDMSDL1V module — IDMSDL1V is the CA IDMS DLI Transparency language
interface used for CICS call-level DL/I applicationsin z/VSE.

IDMSDLHC module — IDMSDLHC is the languageinterface used for CICS COBOL
command-level DL/I (EXEC DLI) applicationsin z/OS.

IDMSDLCV module — IDMSDLCV is the languageinterfaceused for CICS COBOL
command-level DL/I (EXEC DLI) applicationsin z/VSE.

IDMSDLHP module — IDMSDLHP is the languageinterfaceused for CICS PL/I
command-level DL/I (EXEC DLI) applicationsin z/OS.

IDMSDLPV module — IDMSDLPV is the language interface used for CICS PL/I
command-level DL/I (EXEC DLI) applicationsin z/VSE.

IDMSDLHA module — IDMSDLHA is the languageinterfaceused for CICS Assembler
command-level DL/I (EXEC DLI) applicationsin z/OS.

IDMSDLAV module — IDMSDLAV is the CA IDMS DLI Transparency CICS Assembler
command-level DL/I (EXEC DLI) applicationsin z/VSE.

IDMSDLVC database procedure — IDMSDLVC is a system-provided database
procedure for modifyingvariable-length records.

IDMSDLVD database procedure — IDMSDLVD is a system-provided database
procedure for retrieving variable-length records.

Each of the above components is discussed below. Additionally, diagrams are provided
to illustratethe relationship amongthe components atruntime inboth a batchand CICS
environment.

244 DLI Transparency User Guide

Runtime Interface

Runtime Components in a Batch Environment

Ina batch environment, CA IDMS DLI Transparency processing of a DL/l application
program:
m Beginsin the IDMSDLRC module. The IDMSDLRC module's functions include
- Issuingacalltothe front-end (IDMSDLFE) module
- Loadingthe DL/l application programand passingcontrol to the DL/I
application program
m Fromthe DL/l application program, call-level DL/l calls are passed to the language
interface, IDMSDLLI. EXEC DLI type commands are passed to the command-level
languageinterface IDMSDLHI.
m The languageinterface transfers control to the IDMSDLFE module
m |IDMSDLFE issues, as appropriate, a BIND RUN-UNIT or a FINISH, or sends the DL/I
call to RHDCDLBE
m RHDCDLBE then converts the DL/I call to the appropriate CAIDMS/DB request
IDMSDLRC
Module
Load DL/I BIND RUN-UNIT
Application :V?"SSIDLFE FINISH ——] RHDCDLBE
odule DL/l call Module
(Frant End) {Back End)
IDMS Subschemas
IPSB
CA-IDMS/DB
DLl call
DL/
Application
Pragram DL/ |call
Language
Interface

Figure 71. CAIDMS DLI Transparency runtime components in a batch environment

Components in a CICS Runtime Environment

The DL/I application programissues a DL/l call through the languageinterface. The
languageinterface locates the address of the IDMSDLFC module inthe CICS
common workarea (CWA) and passes control to IDMSDLFC.

Appendix B: CAIDMS DLI Transparency Software Components 245

Runtime Interface

m IDMSDLFC is partof the IDMSINTC module created for CAIDMS DLI Transparency
(see Section 5, "CA IDMS DLI Transparency Runtime Environment") andis the CA
IDMS DLI Transparency's equivalent of native DL/I's online nucleus. At runtime,
IDMSDLFC validates the call and control is passed to the IDMSDLFE module (the
front end).
m IDMSDLFE issues a BIND RUN-UNIT or FINISH, or sends the DL/I call information to
RHDCDLBE (the backend).
m RHDCDLBE converts the DL/I call to the appropriate CA IDMS/DB request.
Execute Mode
Supervisor
CICS CA-IDMS/DB
CICS
Transaction
:‘,ﬁg?fﬁge Central Version
IDMSINTC \
- RHDCDLBE
CioS CVA | Exeanded fipmspLrc| ™| | Module
Abend/ ADMSINTOH| | (Back End)
Return IDMSDLFE
Subschemas
IPSB
PCP

Figure 72. CAIDMS DLI Transparency components in a CICS environment at runtime

246 DLI Transparency User Guide

Runtime Interface

IDMSDLRC module

IDMSDLLI module

The IDMSDLRC module is the replacement for the DL/I region controller.In DL/I, the
operating system executes a region controller and the region controller loads and
passes control to the DL/l application program.IDMSDLRC performs the following
functions:

m Accepts from the JCL the user-specified parameters.In z/OS ,these parameters are
specifiedinthe JCL inthe PARM clauseof the EXEC statement; in z/VSE, they are
specifiedinthe JCL inthe SYSIPT file. The parameters identify the DL/l application
program to be processed andthe IPSB thatis to be accessed atruntime.

m Issues acalltothe front end (IDMSDLFE), requesting the front end to issuea BIND
RUN-UNIT. Along with this call, IDMSDLRC provides the front end with the name of
the IPSB to be used at runtime.

m Receives the addresses ofthe PCBs used by the DL/l application program.

m Loads and passes control to the DL/l application program. As IDMSDLRC passes
control, it provides the DL/l application with the PCB parameter list.

®m |ssues atermination call to IDMSDLFE after the DL/l application hasexecuted. This
call requests the front end to issuea FINISH.

The IDMSDLLI module is used for batch DL/I application programs only. This module
replaces the following DL/l languageinterfaces:

m Native DL/I COBOLlanguageinterface (CBLTDLI)
m Native DL/I PL/I languageinterface (PLITDLI)
m Native DL/l Assembler languageinterface (ASMTDLI)

At runtime, the CA IDMS DLI Transparency user link edits IDMSDLLI to each DL/I
application programto be processed by CA IDMS DLI Transparency. When link edited to
the DL/l application, the IDMSDLLI performs the followingfunctions:

m Receives control on a DL/I call fromthe DL/l application program
m Reformats the call parameter listand sends the listto the front end

m Passes control to the front end, which establishes, controls,and terminates
communication with the back end

Note: In XA environments, ifthe COBOL DYNAMIC link-editoptionis used, and the
DL/I application programdoes not runin XA mode, relink module IDMSDLLI with
RMODE=24.

Appendix B: CA IDMS DLI Transparency Software Components 247

Runtime Interface

IDMSDL1C module

IDMSDL1V module

IDMSDLHI module

IDMSDLHC module

IDMSDLCV module

IDMSDLHP module

IDMSDLPV module

IDMSDLHA module

IDMSDLIC is for use only under z/OS CICS for call-level DL/l applications. This module
replaces the DL/I applicationinterfaceresolvingthe entry points CBLTDLI, ASMTDLI, and
PLITDLI.

IDMSDL1YV is for use only under z/VSE CICS for call-level DL/l applications. This module
replaces the DL/I applicationinterfaceresolvingthe entry points CBLTDLI, ASMTDLI, and
PLITDLI.

IDMSDLHI is for use with batch command-level (EXEC DLI) COBOL and PL/I programs in
z/0S. This module replaces modules DFSLICBL, DFSLIPLI. IDMSDLHI must be ordered
firstinthe link edit with the application program.

IDMSDLHC is for use with CICS command-level (EXEC DLI) COBOL programs in z/OS. This
module replaces module DFHECI. IDMSDLHC must be ordered firstinthe link edit with
the application program.

IDMSDLCV is for use with CICS command-level (EXEC DLI) COBOL programs in z/VSE.
This module replaces module DFHECI. IDMSDLCV must be ordered firstinthe link edit
with the application program.

IDMSDLHP is for use with CICS command-level (EXEC DLI) PL/l programs inz/OS. This
module replaces module DFHEPI. IDMSDLHP must be ordered firstinthe link edit with
the application program.

IDMSDLPV is for use with CICS command-level (EXEC DLI) PL/I programs inz/VSE. This
module replaces module DFHPL1I. IDMSDLPV must be ordered firstinthe link editwith
the application program.

IDMSDLHA is for use with CICS command-level (EXEC DLI) Assembler programs inz/OS.
This module replaces module DFHEAI. IDMSDLHA must be ordered firstinthe link edit
with the application program.

248 DLI Transparency User Guide

Runtime Interface

IDMSDLAV module

IDMSDLAV is for use with CICS command-level (EXEC DLI) Assembler programs in z/VSE.
This module replaces module DFHEAI. IDMSDLAV must be ordered firstinthe link edit
with the application program.

IDMSDLVC database procedure

IDMSDLVC is a databaseprocedure provided with CA IDMS DL Transparency for
modifyingvariable-length records that correspond to variable-length segments. Before a
variable-length recordis modified, IDMSDLVC is called to maintain the length of the CA
IDMS/DB variable-length record. IDMSDLVC is specified in a CALL sentence as partof the
RECORD DESCRIPTION inthe schema (see the CA IDMS Database Administration Guide).

IDMSDLVD database procedure

IDMSDLVD is a databaseprocedure provided with CA IDMS DLI Transparency for
retrieving variable-length records that correspond to variable-length segments. Before a
variable-lengthrecordis retrieved, IDMSDLVD is called to maintainthe length of the CA
IDMS/DB variable-length record. IDMSDLVD is specified in a CALL sentence as partof the
RECORD DESCRIPTION inthe schema (see the CA IDMS Database Administration Guide).

CA IDMS DLI Transparency Front End

The CA IDMS DU Transparency front-end components consistofthe IDMSDLFE module
and, if CA IDMS DLI Transparencyis used under CICS, the IDMSDLFC module.

IDMSDLFE module

The IDMSDLFE module establishes, controls, and terminates communication with the
backend (the RHDCDLBE module). When IDMSDLFE receives aninitialization call from
the IDMSDLRC module ina batch environment or from IDMSDLFC under CICS (see
below), itperforms the followingfunctions:

m Acquires work area
m Issues a BIND RUN-UNIT to the backend (RHDCDLBE)

m |[ssues acallto RHDCDLBE for PCB information

Appendix B: CAIDMS DLI Transparency Software Components 249

Runtime Interface

Once the initialization functions are complete, IDMSDLFE accepts DL/I calls fromthe
languageinterface and performs the followingfunctions:

m Sends the DL/I calls to the backend.
m Accepts the retrieved data and status information from the backend.

m Receives from the backend the updated PCB control blocks, which are used to
return retrieved data and status information to the DL/I application. When the DL/I
application finishes executing, the front end receives a termination call fromthe
region controller and performs the following:

— Issues a FINISH to the backend

— Frees storage
IDMSDLFC module

The IDMSDLFC module is a component inthe reassembled IDMSINTC macro (see CA_
IDMS DLI Transparency Run-Time Environment (see page 155)). Used only under CICS,

IDMSDLFC isinitialized by a special signon transaction and performs the following
functions:

m Linkinga CICSDL/I application with IDMSDL1C or any other CAIDMS DL/I
Transparency languageinterfaceestablishes theintent to use CA IDMS DLI

Transparency (see CA IDMS DLI Transparency Run-Time Environment (see
page 155)).

m Receives control on a DL/I call fromthe DL/l application program.
m Reformats the call parameter listand sends the listto the front end.

m Passes control to the front end, which establishes, controls,and terminates
communication with the back end.

CA IDMS DLI Transparency Back End

The backend consists of the RHDCDLBE module The backend processingis initiated by a
BIND RUN-UNIT issued by IDMSDLFE. The backend performs the foll owingfunctions
duringinitiation of the run unit:

®m Loads the appropriatefixed IPSB
m Acquires storage

m Acquires PCB information from the IPSB and then uses the information to build the
PCBs

250 DLI Transparency User Guide

The Load Utility

Once the run unitis initiated, the back end performs the following functions for it:
m |ssues appropriate CAIDMS/DB callstoservice DL/I requests
m Accepts from CA IDMS/DB retrieved data and/or status information

m Sends retrieved data and/or status information to the front end

After the DL/I application programhas executed, RHDCDLBE receives a FINISH from
either the frontend (inbatch processing) or IDMSINTC (in CICS processing) and
terminates processing.

The Load Utility

The load utility consists of the IDMSDLLD module. It accepts data unloaded from a DL/I
database(via IBM's HD unload utility) and stores itina CA IDMS/DB database.The CA
IDMS/DB database must be prepared and initialized before running the load utility.

To execute, the load utilityalsorequires:

m AnIPSB load module. The IPSB translates the DL/I segment and data structure
definitions to equivalent CA IDMS/DB record and set definitions. The load utility
uses the DL/I-to-CA IDMS/DB equivalencies when storing the data inthe CA
IDMS/DB database. The IPSB definition must reflect the special considerationsfor a
load IPSB (IPSB used with the load utility).

m CAIDMS/DB schema, subschema, and DMCL modules. The CAIDMS/DB modules
constitute the runtime environment for the CA IDMS/DB database.

The process of loadingthe DL/l data caninvolveup to sixsteps.Ifthe DL/I data does not
includelogicalrelationships, theonly step required is the actual databaseload (Step 2).
The steps inthe load process are:

1. Preload CALC processing — Calculates CA IDMS/DB preload database pages for
DL/I root segments to speed up the actual load (Step 2). Included inthis stepisa
sortof the preload CALC data.

2. Database load — Stores the DL/l data in the CA IDMS/DB database. If logical
relationshipsarefound, the load utility writes the logical child records and their
related logical parents to a workfilefor additional processing. If the DL/I data comes
from multipledatabases (DBDs), a separateworkfileis produced for each source
database.

3. Workfile sort/merge — Merges multiple workfiles from Step 2 and sorts the
resultingfileto arrangelogical child records under their logical parents.

4. Prefix (concatenated key) resolution — Processes the sorted workfileand
generates correct prefixes (concatenated keys) for the logical child records.

Appendix B: CA IDMS DLI Transparency Software Components 251

The Load Utility

5. Workfile hierarchical sort — Sorts the workfile with resolved prefixes so that the
logical child records areintheir original DBD hierarchical sequences.

6. Prefix update — Updates the logical child records in the CA IDMS/DB databasewith
the generated prefixes. The prefixes areneeded to establish the CA IDMS/DB set
pointers for the logical child (member) sets and their logical parent (owner) sets.

OnlySteps 1, 2,4, and 6 invoke the IDMSDLLD module. Steps 3 and 5 (the sorts) take
placeoutside of the load utilityand CA IDMS DLI Transparency. They require use of the
user's nativesort/merge facility.

The IDMSDLLD Steps 1, 2, 4, and 6 produce reports that show the results of the
processingand a count of the records involved.

252 DLI Transparency User Guide

Appendix C: Index Suppression Exit Support

This section contains the following topics:

About This Appendix (see page 253)

Index Suppression ExitSupport (see page 253)
Run Time Operation (see page 254)

Interface (see page 254)

About This Appendix

This appendix describes howto use the index suppression exit.

Index Suppression Exit Support

Use Your Own Index Suppression Exit Routine

CA IDMS DLI Transparency allows you to write your own index suppression exitroutines

for use with DL/I sparseindexes. If you have a DL/I secondaryindex, you canspecify the

exit routine sothatit receives control immediately before the pointer records are stored
inthe secondaryindex. The exit routine canthen indicateto CA IDMS DLI Transparency

whether to process or ignorethe store request.

How to Define and Exit Routine

To define anexit routine to CA IDMS DL Transparency, specify the name of the routine
for the EXIT ROUTINE parameter on the INDEX statement inthe IPSB INDEX SECTION
(described in |IPSB Compiler (see page 93)). The name of the routine must match the
name specified for the EXTRTN parameter on the XDFLD statement inthe DL/I DBD
definition. Note that the syntax generator will generate a corresponding EXITROUTINE
inthe IPSB sourcefor each EXTRTN parameter it finds inthe DL/I DBD definitions.

Appendix C: Index Suppression ExitSupport 253

Run Time Operation

Run Time Operation

Interface

When the Exit Routine is Invoked

At program run time, the exit routine comes into play when the DL/l applicationissues
anISRT (insert) or REPL (replace)call for a CAIDMS/DB record that has been defined as
anindex sourcerecord inthe INDEX SECTION of the activeIPSB. When CA IDMS DLI
Transparency encounters the ISRT or REPL call, itattempts to load the exit routine. To
make surethe exit routine is availableto CA IDMS DLI Transparency, you must placeitin
anoperating system partitioned data set that can be accessed via a CDMSLIB JCL
statement. An unsuccessful load of the routinewill resultina PCB error status of NX.

ISRT Call

For anISRT call, CAIDMS DLI Transparency determines whether the record to be stored
participatesinanindexrelationship astheindex sourcerecord. If CAIDMS DLI
Transparency finds such a relationship, itbuilds a suitableindex pointer record. After
checking for null valuecriteria, CAIDMS DLI Transparency callstheexit routine specified
inthe IPSB and passes control toit. Itis the responsibility of the routine to determine
whether the index pointer record should be stored or suppressed. The routine indicates
its decisionvia a return code inregister 15.

REPL Call

For a REPL call, the same process occurs as for an ISRT. The only difference is thatprior
to storingor suppressinganindex pointer record CA IDMS DLI Transparency removes all
existingindex pointer records from the secondaryindex.

CA IDMS DLI Transparency expects anindex exit routineto perform standardassembler
linkageand provides a savearea inregister 13 for this purpose. Upon entry, the exit
routine must save the contents of register 13. Upon return, it must restore the contents
of registers 1 through 14. Under no circumstances should theroutine alter data
addressed by the registers at entry.

254 DLI Transparency User Guide

Interface

CA IDMS DL Transparency initializes the registers to the followingvalues:

Register 2 - Address of the index pointer record

Register 3 - Address of the index exit PARMS DSECT (describedinfigure 73 available
further below)

Register 4 - Address of the index source record
Register 13 - Address of the savearea
Register 14 - Return address in CAIDMS DLI Transparency

Register 15 - Address of the index exit entry point

The exit routine controls CA IDMS DLI Transparency's action by the return code it places
inregister 15, as follows:

4 — Suppresses the index pointer record

0 — Stores the index pointer record as part of the secondaryindexrelationship

Figure 73 shows the format of the index exit PARMS DSECT (NDXXITDS DSECT), as
passedto the exit routine.

NDXXITDS DSECT

Offset Field Name Type/ Description
Length
0 NDXRECNM DS L8 Index pointer record name
8 NDXFLDNM DS as Index definition field name
16 NDXXITNM DS CL8 Index exit name
24 NDXXITEP DS A Index exit entry point

Figure 73. Index Exit PARMS DSECT

Appendix C: Index Suppression ExitSupport 255

Appendix D: CA IDMS DLI Transparency JCL

This section contains the following topics:

About This Chapter (see page 257)
Syntax Generator JCL (see page 258)
IPSB Compiler JCL (see page 262)
Run-Time Interface JCL (see page 266)

Load Utility JCL (see page 277)
IPSB Decompiler JCL (see page 293)

About This Chapter

This appendix presents all of the JCL required for:
m The syntax generator

m The IPSB compiler

m The run-time interface

m The loadutility

Note: z/VSE JCL is presented using UPSI. z/VSE users can optionallyusea SYSCTL
statement or utilizea SYSIDMS parameter at runtime. In some cases, having SYSIDMS
parameters ininlineJCL (SYSIPT) may produce undesirableresults dueto application
parameter usage. In such cases, SYSIDMS should be implemented as a DATASET.
Otherwise, SYSIDMS parameters should be placed before the DL/l SYSIPT parameter
information. For more information aboutall SYSIDMS parameters, see the CA IDMS
Common Facilities Guide.

Appendix D: CA IDMS DLI Transparency JCL 257

Syntax Generator JCL

Syntax Generator JCL

Assemble a PSB

The JCL to assemblea PSB for use when generating IPSB sourcestatements is shown
below:

PSB (2/0S)

//30B

//ASM EXEC PGM=ASMA90

//SYSPRINT DD SYSOUT=A

//SYSLIB DD DSN=yourHLQ.CAGISRC ,DISP=SHR

//SYSUT1 DD DSN=&SSYSUT1,UNIT=disk,SPACE=(1700, (660,100))

//SYSUT2 DD DSN=&&SYSUT2,UNIT=disk,SPACE=(1700, (300,50))

//SYSUT3 DD DSN=&SSYSUT3,UNIT=disk,SPACE=(1700, (30,50))

//SYSPUNCH DD DUMMY

//SYSGO DD DSN=&&OBJSET,UNIT=SYSDA,SPACE=(80, (200,50)),
DISP=(MOD, PASS)

//SYSIN DD *

Insert PSB source code here.

/*

//SYSIN DD *

//LINK EXEC PGM=HEWL

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSN=&&SYSUT1,UNIT=disk,SPACE=(1024, (50,20))

//SYSLMOD DD DISP=SHR,DSN=user. loadlib(psbname)

//SYSLIN DD DSN=&&OBJSET,DISP=(OLD,DELETE)

// DD DDNAME=SYSIN

//

yourHLQ.CAGJSRC data set name of the CAIDMS/DB sourcelibrary

disk symbolic devicetype for a diskfile

psbname member name of the PSB

user.loadlib data set name of the load librarythatis to contain the

resultingassembled PSB

258 DLI Transparency User Guide

Syntax GeneratorJCL

PSB (z/VSE)

// J0B
// LIBDEF *, SEARCH=idns.library
// LIBDEF *, CATALOG=user.library
// OPTION CATAL
PHASE psbname , *
// EXEC ASSEMBLY
insert PSB source code here
/*
// EXEC LNKEDT

idms.library name of the CA IDMS/DB sourcelibrary

user.library name of the librarythatis to contain the resultingassembled
PSB

psbname name of the PSB source statements

Assemble DBDs
The JCL to assemble DBDs for use when generating IPSB source statements is shown
below:
DBD (z/0S)
//30B
//ASM EXEC PGM=ASMA90
//SYSPRINT DD SYSOUT=A
//SYSLIB DD DSN=yourHLQ.CAGIMAC ,DISP=SHR
//SYSUT1 DD DSN=&&SYSUT1,UNIT=disk,SPACE=(1700,(600,100))
//SYSUT2 DD DSN=&&SYSUT2,UNIT=disk,SPACE=(1700,(300,50))
//SYSUT3 DD DSN=&&SYSUT3, UNIT=disk,SPACE=(1700,(30,50))
//SYSPUNCH DD DUMMY
DD

//SYSGO DSN=8&0BJSET, UNIT=SYSDA, SPACE=(80, (200,50)) ,DISP=(MOD, PASS)
//SYSIN Db *

DBD source code

/*

//LINK EXEC PGM=HEWL

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSN=&&SYSUT1,UNIT=disk,SPACE=(1024, (50,20))

//SYSLMOD DD DISP=SHR,DSN=user. loadlib(dbdname)

//SYSLIN DD DSN=&SOBJSET,DISP=(0OLD,DELETE)

//

yourHLQ.CAGJMAC data set name of the CAIDMS/DB macro library

Appendix D: CAIDMS DLI Transparency JCL 259

Syntax Generator JCL

dbdname member name of the DBD
disk symbolic devicetype for a diskfile
user.loadlib data set name of the loadlibrarythatis to contain the

resultingassembled DBD

DBD (z/VSE)

// J0B
// LIBDEF *,SEARCH=idms. library'
// LIBDEF *,CATALOG=user. library
// OPTION CATAL
PHASE dbdname, *
// EXEC ASSEMBLY
insert DBD source code here
/*
// EXEC LNKEDT

idms.library name of the CA IDMS/DB sourcelibrary

user.library name of the librarythatis to contain the resultingassembled
DBD

dbdname name of the DBD source statements

Execute the Syntax Generator

The JCL to execute the syntax generator is shown below:

SYNTAX GENERATOR (z/0S)

//30B

//IPSBGEN EXEC PGM=IDMSDLPG

//STEPLIB DD DISP=SHR,DSN=idms. loadlib

// DD DISP=SHR,DSN=user. loadlib

//SYSLST DD SYSOUT=A

//SYSPCH DD DSN=user. syntax,DISP=(NEW, CATLG) ,SPACE=(TRK,5),
DCB=(LRECL=80, BLKSIZE=4000,RECFM=FB)

//SYSIPT DD *

compiler-directive statements

generator statements

/*
idms.loadlib data set name of the CAIDMS/DB loadlibrary
user.loadlib data set name of the loadlibrary thatcontains theassembled

PSB and DBDs

260 DLI Transparency User Guide

Syntax GeneratorJCL

user.syntax data set name for the filethatis to contain the resulting
sourcestatements

SYNTAX GENERATOR (z/VSE)

// J0B

// DLBL IDMSPCH, 'idms.user.syntax'
// EXTENT SYS0Q16,nnnnnn

// LIBDEF *,SEARCH=user.library
// EXEC IDMSDLPG
compiler-directive statements
generator statements

/*

/&

idms.user.syntax name of the sourcelibrarythatis to contain the generated
SCHEMA, SUBSCHEMA, DMCL or ISPSB sourcestatements

nnnnnn volume serial identifier

user.library name of the library thatcontains theassembled DBDs/PSBs

Appendix D: CAIDMS DLI Transparency JCL 261

IPSB Compiler JCL

IPSB Compiler JCL

The JCL necessary to execute the IPSB compiler to assembleand link edit the output is
shown below:

IPSB COMPILER (z/0S)

//DLMG EXEC PGM=IDMSDLMG

//STEPLIB DD DSN=idms. loadlib,DISP=SHR

//SYSLST DD SYSOUT=A,DCB=BLKSIZE=133

//SYSPCH DD DSN=&&SYSPCH, UNIT=disk, SPACE=(4000, (100,50))
// DCB=(RECFM=FB, LRECL=80, BLKSIZE=4000) ,DISP=(NEW, PASS)
//SYSIPT DD *

ipsb input statements

/*

//ASM EXEC PGM=ASMA90

//SYSPRINT DD SYSOUT=A

//SYSLIB DD DSN=yourHLQ.CAGIMAC,DISP=SHR

//SYSUT1 DD UNIT=disk,SPACE=(cyl, (2,2))

//SYSUT2 DD UNIT=disk,SPACE=(cyl, (2,2))

//SYSUT3 DD UNIT=disk,SPACE=(cyl,(2,2))

//SYSPUNCH DD DSN=&&IPSB,UNIT=disk,DISP=(NEW,PASS),
// SPACE=(80, (400,40))

//SYSIN DD DSN=&&SYSPCH,DISP=(0LD,DELETE)

//LINK EXEC PGM=HEWL

//SYSPRINT SYSOUT=A

//SYSLIN DD DSN=&&IPSB,DISP=(0LD,DELETE)

//SYSUTL DD UNIT=disk,SPACE=(trk, (20,5))
//SYSLMOD DD DSN=idms. loadlib(ipsb),DISP=SHR

idms.loadlib data set name of the CAIDMS/DB load library containing the
subschema description and IDMSDLMG

cyl,(2,2) spaceto be allocated in bytes per cylinders

disk symbolic devicetype for the diskfile

&&IPSB temporary data set containingthe output from the assembly
step

yourHLQ.CAGJMAC data set name of the macrolibrary

&&SYSPCH temporary data set containing the output from IPSB compiler
(IDMSDLMG)

trk,(20,5) spaceto be allocated in bytes per tracks

4000,(100,50) spaceto be allocated in bytes per blocks

80,(400,40) spaceto be allocated in bytes per blocks

262 DLI Transparency User Guide

IPSB CompilerJCL

IPSB COMPILER (z/VSE)

// J0B

// LIBDEF *,SEARCH=idms. library

// LIBDEF *,CATALOG=ipsb.library

// DLBL IJSYSPH, '===.compiler.output',0

// EXTENT SYSPCH,nnnnmn,1,,ssss,1111

// ASSGN SYSPCH,DISK,\VOL=nnnnnn,SHR

// EXEC IDMSDLMG

insert IPSB source statements here

/*

CLOSE SYSPCH,PUNCH

/*

// DLBL IJSYSIN, '===.compiler.output',®

// EXTENT SYSIPT,nnnnnn,1,,ssss,1111
ASSGN SYSIPT,DISK,PERM,VOL=TECHD1, SHR

// OPTION DE(K,NOEDECK,LIST,NORLD,NOXREF

// EXEC ASSEMBLY

/*

CLOSE SYSIPT,SYSRDR

CLOSE SYSPCH,00D

/*

DLBL IJSYSIN,'===.assambler.output',0:

// EXTENT SYSIPT,nnnnm,1,,ssss,l111
ASSGN SYSIPT,DISK,VOL=nnnnnn,SHR

// OPTION CATAL
PHASE ipsbname,*

INCLUDE
// EXEC LNKEDT
/*
CLOSE SYSIPT,SYSRDR
/*
idms.library name of the library
ipsb.library name of the librarythatis to contain the compiled IPSB
modules
ijsysin filename of the inputfileto the linkage editor
ijsyspch file name of the output file
[l number of tracks required for the diskfile
nnnnnn volume serial number of the diskunit
SSSS relativestartingtrack of the diskfile
sysipt logical-unitassignment of the input fileto the linkage editor
syspch logical-unitassignment of the output file

Appendix D: CAIDMS DLI Transparency JCL 263

IPSB Compiler JCL

ipsbname name of the IPSB runtime module

The JCL necessary to execute the CA IDMS DLI Transparency programdefinition table
compiler (IDMSDLTG) andto assembleand link editthe DLPDTAB output is shown
below:

PROGRAM DEFINITION TABLE COMPILER (z/0S)

//DLTG EXEC PGM=IDMSDLTG

//STEPLIB DD DSN=idms. loadlib,DISP=SHR

//SYSLST DD SYSOUT=A,DCB=BLKSIZE=133

//SYSPCH DD DSN=&&SYSPCH, UNIT=disk, SPACE=(4000, (100,50))
// DCB=(RECFM=FB, LRECL=80, BLKSIZE=4000) ,DISP=(NEW, PASS)
//SYSIPT DD *

pdt input statements

/*

//ASM EXEC PGM=ASMA90

//SYSPRINT DD SYSOUT=A

//SYSLIB DD DSN=yourHLQ.CAGIMAC,DISP=SHR

//SYSUTL DD UNIT=disk,SPACE=(cyl, (2,2))

//SYSUT2 DD UNIT=disk,SPACE=(cyl, (2,2))

//SYSUT3 DD WINIT=disk,SPACE=(cyl, (2,2))

//SYSPUNCH DD DSN=&&PDTB,UNIT=disk,DISP=(NEW,PASS),
// SPACE=(80, (400,40))

//SYSIN DD DSN=&&SYSPCH,DISP=(0LD,DELETE)

//LINK EXEC PGM=HEWL

//SYSPRINT SYSOUT=A

//SYSLIN DD DSN=&&PDTB,DISP=(0LD,DELETE)

//SYSUT1 DD UNIT=disk,SPACE=(trk, (20,5))
//SYSLMOD DD DSN=idms. loadlib(DLPDTAB) ,DISP=SHR

idms.loadlib data set name of the CAIDMS/DB load library containing the
subschema description and IDMSDLTG

cyl,(2,2) spaceto be allocated in bytes per cylinders

disk symbolic devicetype for the diskfile

&&PDTB temporary data set containingthe output from the assembly
step

yourHLQ.CAGJMAC data set name of the macrolibrary

&&SYSPCH temporary data set containingthe output from program
definition table compiler (IDMSDLTG)

trk,(20,5) spaceto be allocated in bytes per tracks

4000,(100,50) spaceto be allocatedin bytes per blocks

80,(400,40) spaceto be allocated in bytes per blocks

264 DLI Transparency User Guide

IPSB CompilerJCL

DLPDTAB

required link editmodule name in the SYSLMOD statement.

PROGRAM DEFINITION TABLE COMPILER (z/VSE)

// J0B

// LIBDEF *,SEARCH=idms. library

// LIBDEF *,CATALOG=pdtb.library

// DLBL IJSYSPH, '===.compiler.output',0

// EXTENT SYSPCH,nnnnnn,1,,ssss,1111

// ASSGN SYSPCH,DISK,\OL=nnnnnn,SHR

// EXEC IDMSDLTG

insert PDT source statements here

/*

CLOSE SYSPCH,PUNCH

/*

// DLBL IJSYSIN, '===.compiler.output',@

// EXTENT SYSIPT,nnnnmn,1,,ssss,l111
ASSGN SYSIPT,DISK,PERM,VOL=TECHD1,SHR

// OPTION DECK,NOEDECK, LIST,NORLD,NOXREF

// EXEC ASSEMBLY

/*

CLOSE SYSIPT,SYSRDR

CLOSE SYSPCH,00D

/*

DLBL IJSYSIN,'===.assembler.output',0:

// EXTENT SYSIPT,nnnnmn,1,,ssss,l111
ASSGN SYSIPT,DISK,VOL=nnnnnn,SHR

// OPTION CATAL
PHASE pdtbname,*

INCLUDE
// EXEC LNKEDT
/*
CLOSE SYSIPT,SYSRDR
/*
idms.library name of the library
pdtb.library name of the librarythatis to contain the compiled PDT
modules
ijsysin filename of the inputfileto the linkage editor
ijsyspch file name of the output file
I number of tracks required for the diskfile
nnnnnn volume serial number of the disk unit
SSSS relativestarting track of the diskfile
sysipt logical-unitassignmentof the input fileto the linkage editor

Appendix D: CAIDMS DLI Transparency JCL 265

Run-Time Interface JCL

syspch logical-unitassignment of the output file

pdtbname name of the PDT runtime module (DLPDTAB)

Run-Time Interface JCL

Link Edit Batch Call-Level DL/I Applications

To link editthe DL/I application programwith the language application programwith
the languageinterface/ interface, the JCL for z/0OS and for z/VSE is provided below:

IDMSDLLI (LINK EDIT) (z/0S)

//LINK EXEC PGM=HEWL

//SYSPRINT DD SYSOUT=A

//IDMSLIB DD DSN=idms. loadlib,DISP=SHR
//SYSLIB DD DSN=user. loadlib,DISP=SHR
//SYSUTL DD UNIT=SYSDA,SPACE=(trk, (20,5))
//SYSLMOD DD DSN=user.loadlib,DISP=SHR
//SYSLIN DD *

INCLUDE IDMSLIB(IDMSDLLI)

INCLUDE SYSLIB(userpgm)

ENTRY DLITCBL (or appropriate entry point name)
NAME userpgm(R)

/*

//

idms.loadlib data set name of the IDMS object library

trk,(20,5) spaceto be allocatedin bytes per track

user.loadlib data set name of the load librarythatis to contain the
resultinglinked user application program

userpgm name of the DL/l application programto be link edited to

IDMSDLLI

266 DLI Transparency User Guide

Run-Time Interface JCL

IDMSDLLI (LINK EDIT) (z/VSE)

//30B
//LIBDEF *,SEARCH=(idms.library, user.library)
//LIBDEF *,CATALOG=user. library
//0PTION CATAL
PHASE userpgm,*
INCLUDE IDMSDLLI
INCLUDE userpgm}

ENTRY userpgm } Assembler programs
//EXEC LNKEDT
/*
CLOSE SYSIPT,SYSRDR
/*
idms.library data set name of the CAIDMS DLI Transparency
user.library data set name of the library containingthe DL/l application

program object

user.library name of the librarythatis to contain the resultinglinked
user's application program

userpgm name of the DL/l application programinthe user's object
library

COBOL and PL/I Programs

COBOL and PL/I programs should add an INCLUDE statement and replacethe ENTRY
statement, as follows:

s COBOL:

INCLUDE IDMSDLBC
ENTRY CBLCALLA

m PL/I:

INCLUDE IDMSDLBP
ENTRY PLICALLB

Appendix D: CAIDMS DLI Transparency JCL 267

Run-Time Interface JCL

Link Edit Batch Command-Level DL/I (EXEC DLI) Applications

To link editthe DL/I application programusing EXEC DLI commands with the language
application programwith the languageinterface/ interface, the JCL for z/0OS and for
z/VSE is provided below:

IDMSDLHI (LINK EDIT) (z/0OS)

//LINK EXEC PGM=HEWL

//SYSPRINT DD SYSOUT=A

//IDMSLIB DD DSN=idms.loadlib,DISP=SHR
//SYSLIB DD DSN=user.loadlib,DISP=SHR
//SYSUTL DD UNIT=SYSDA,SPACE=(trk, (20,5))
//SYSLMOD DD DSN=user.loadlib,DISP=SHR
//SYSLIN DD *

INCLUDE IDMSLIB(IDMSDLHI)

INCLUDE SYSLIB(userpgm)

ENTRY DLITCBL (or appropriate entry point name)
NAME userpgm(R)

/*

//

idms.loadlib data set name of the IDMS object library

trk,(20,5) spaceto be allocated in bytes per track

user.loadlib data set name of the load librarythatis to containthe resulting
linked user application program

userpgm name of the DL/l application programto be link edited to

IDMSDLHI

IDMSDLHI (LINK EDIT) (z/VSE)

//30B

//LIBDEF * SEARCH=(idms.library, user.library)
//LIBDEF * CATALOG=user.library
//OPTION CATAL

PHASE userpgm,*

INCLUDE IDMSDLHI

INCLUDE userpgm}

ENTRY userpgm } Assembler programs
//EXEC LNKEDT
/*

CLOSE SYSIPT,SYSRDR
/*

268 DLI Transparency User Guide

Run-Time Interface JCL

idms.library data set name of the CAIDMS DLI Transparency

user.library data set name of the library containingthe DL/I application
program object

user.library name of the librarythatis to contain the resultinglinked user's
application program

userpgm name of the DL/l application programin the user's object library

Execute DL/I Batch Application Program

The JCL to execute a DL/I batch application programis shown below: batch application
program is shown below:

Central Version

EXECUTE BATCH APPLICATION (z/0S)

//DLI EXEC PGM=IDMSDLRC,PARM='DLI,userprog,ipsb'
//STEPLIB DD DSN=idms. loadlib,DISP=SHR

// DD DSN=user. loadlib,DISP=SHR

//sysctl DD DSN=idms.sysctl,DISP=SHR

//SYSLST DD SYSOUT=A

//SYSIDMS DD *

Put SYSIDMS parameters here

DBNAME=database name or segment name

DMCL=DMCL name if other than default of IDMSDMCL

/*

//SYSIN DD *

any additional statements required to run DL/I application
program

/*

Note: The user canspecify either DLI or DB inthe PARM parameter. Ifipsb and userprog
have the same names, ipsb can be omitted. For more information aboutall SYSIDMS
parameters, see the CA IDMS Common Facilities Guide.

idms.loadlib data set name of the CAIDMS DLI Transparency load library

idms.sysctl data set name of the SYSCTL file

Appendix D: CA IDMS DLI Transparency JCL 269

Run-Time Interface JCL

ipsb the name of the IPSB associated with the DL/l application
program

sysctl ddname of the SYSCTL file

user.loadlib data set name of the load library containingthe DL/I

application program

userprog the name of the DL/I application program

Local Mode

To execute the DL/l batch application programinlocal mode:
m Remove the SYSCTL statement.

m Replace the SYSCTL statement with the following:

//sysjrnl DD DSN=idms.tapejrnl,DISP=(NEW,KEEP) ,UNIT=tape
//userdb DD DSN=user.userdb,DISP=SHR

idms.tapejrnl data set name of the tape journal file

sysjrnl ddname of the tape journalfile

tape symbolic devicetype for the tape journal file
userdb ddname of the user database

user.userdb data set name of the user database

270 DLI Transparency User Guide

Run-Time Interface JCL

Central Version
EXECUTE BATCH APPLICATION (z/VSE)

Note: The followingJCLis for use ifIDMSDLRC includes IDMSDLPCin thelinkedit.

// J0B

// LIBDEF *,SEARCH=(idns.library,user.library)
// OPTION LOG

// DLBL SYSCTL, 'idms.sysctl',0,SD
// EXTENT SYS000,nnnnnn

// ASSGN SYS000,DISK,\VOL=nnnnnn,SHR
// DLBL SYSIDMS, '#SYSIPT',0,SD

// EXEC IDMSDLRC

sysidms parameter statements

/*

DLI,userprog,ipsbname

/*

additional JCL as required to run DL/I application program

Note: The user canspecify either DLI or DB. The usercanomit ipsbifithas the same
name as userprog.

idms.library data set name of the CAIDMS DLI Transparency library

user.library name of the librarythatcontains theuser's application
program

idms.sysctl name of the DL/l application programinthe user's library

ipsbname name of the IPSB (Interface PSB) that is used by the
application program

nnnnnn volume serial number

userprog the name of the DL/I application program

Note: The following Run-Time interfacelJCL is for use if IDMSDLPC is notincludedin
IDMSDLRC.

Appendix D: CAIDMS DLI Transparency JCL 271

Run-Time Interface JCL

// J0B

// LIBDEF *,SEARCH=(idns.library,user.library)
// OPTION LOG

// DLBL SYSCTL, 'idms.sysctl',0,5D

// EXTENT SYS000, nnnnnn

// ASSGN SYS000,DISK,VOL=nnnnnn,SHR

// DLBL SYSIDMS, '#SYSIPT',0,SD

// EXEC IDMSDLRC PARM='DLI,userprog, ipsbname'
sysidms parameter statements

/*

additional JCL as required to run DL/I application program

Note: The user canspecify either DLl or DB. The user canomit ipsbifithas the same
name as userprog.

idms.library data set name of the CAIDMS DLI Transparency library

user.library name of the library thatcontains theuser's application
program

idms.sysctl name of the DL/l application programinthe user's library

ipsbname name of the IPSB (Interface PSB) that is used by the
application program

nnnnnn volume serial number

userprog the name of the DL/I application program

Local Mode JCL

To execute the DL/l application programinlocal mode:
m Remove the UPSI statement.

m Insertthe followingafter the ASSGN statement:

// TLBL joumal, 'idms. tapejrnl'

// ASSGN sys@09,X'ttt'

// DLBL userdb, 'user.userdb’

// EXTENT sys018,nnnnnn,1,ssss, 1111
// ASSGN sys018,dddd, VOL=nnnnnn,SHR

idms.tape.jrnl file-id of the tape journal
dddd device assignmentfor the diskfile
journal filename of the tape journal

[l number of tracks required for the diskfile

272 DLI Transparency User Guide

Run-Time Interface JCL

nnnnnn volume serial identifier of the appropriatedisk volume
sys009 logical-unitassignment of the tape journal file

sys018 logical-unitassignmentof the user database

SSSS relativestartingtrack of the diskfile

ttt channel-unitassignmentof the journal file

userdb filename of the user database

user.userdb file-id of the user database

Assemble IDMSDL1C For CICS Call-Level DL/I Usade (z/0S)
Use the followingJCL to assemble IDMSDL1C:

IDMSDL1C (z/0S)

// EXEC HLASMCL
//C.SYSLIB DD DSN=cics.maclib,DISP=0LD
// DD DSN=yourHLQ.CAGJIMAC ,DISP=0LD
//C.SYSIN DD *

COPY # REDS

COPY #0OPIDS
IDMSDL1C CWADISP=nn

END

/*
//L.SYSLMOD DD DSN=idms. loadlib,DISP=0LD
//L.SYSIN DD *
ENTRY IDMSDL1C
MODE AMODE (31) ,RMODE(24)
NAME IDMSDLIC(R)

//

yourHLQ.CAGJMAC Data set name of the IDMS macro library

cics.maclib Data set name of the CICSmacro library

idmsdllc Name of the IDMSDL1C module

idms.loadlib Data set name of the CA IDMS load library
containing CA IDMS system modules

Syntax

»»— IDMSDL1C CWADISP=cwa-intc-address-displacement

M

Appendix D: CA IDMS DLI Transparency JCL 273

Run-Time Interface JCL

Parameters
CWADISP=

Identifies the displacement within the CICS CWA of a fullword that holds the
address of the IDMSINTC module.

cwa-intc-address-displacement

Specify the same valuegiven to the CWADISP parameter of the CICSOPTS macro.

Note: When IDMSDL1C is link edited to the CICS DL/I application program, DFHEAIO
must be includedinthe linkage editor input (if not alreadyincluded). Also ensure that
entry pointDFHEI1 has been resolved inthis application link edit. For command-level
programs entry point DFHEI1 is typically resolved in the language- dependent
command-level interface module already presentinthe link edit. IDMSDL1C requires
that entry points DFHEI1 and DFHEAIO be resolved for successful operation.

Assemble IDMSDL1V For CICS Call-Level DL/I Usagde (z/VSE)

The JCL to assembleIDMSDL1V in a z/VSE environment is shown below:

IDMSDL1V (z/VSE)

// J0B
// LIBDEF *,SEARCH=(idns.library, cics.library)
// OPTION CATAL,DECK
// EXEC ASSEMBLY
COPY #LREDS
COPY #OPIDS
END
/*

Note: IDMSDL1V and the IDMS macros and copy books must be accessiblefromthe
assigned source-statement library.

cics.library data set name of the IBM-supplied CICSlibrary

idms.library data set name of the CAIDMS DLI Transparency library

nn CWADISP specifications corresponding to the IDMSINTC
CWADISP

Syntax

X

»»— IDMSDL1V CWADISP=cwa-intc-address-displacement

274 DLI Transparency User Guide

Run-Time Interface JCL

Parameters
CWADISP=

Identifies the displacement within the CICS CWA of a fullword that holds the
address of the IDMSINTC module.

cwa-intc-address-displacement

Specify the same valuegiven to the CWADISP parameter of the CICSOPTS macro.

Assemble Languade Interfaces For Command-Level DL/I (EXEC DLI) Usage

Use the followingJCL to assembe the languageinterfaces:

IDMSDLHC/IDMSDLHP /IDMSDLHA (z/0S)

//ASM EXEC PGM=ASMA90

//SYSLIB DD DSN=cics.maclib,DISP=SHR

// DD DSN=yourHLQ.CAGIMAC,DISP=SHR

//SYSUT1 DD UNIT=disk,SPACE=(cyl, (2,2))

//SYSUT2 DD UNIT=disk,SPACE=(cyl, (2,2))

//SYSUT3 DD UINIT=disk,SPACE=(cyl, (2,2))

//SYSPUNCH DD DSN=&&syspch,UNIT=disk,DISP=(NEW,PASS),

// SPACE=(80, (400,40))

//SYSIN DD *
IDMSDLHC CWADISP=nn & for COBOL applications, use this line only
IDMSDLHP CWADISP=nn <« for PL/I applications, use this line only
IDMSDLHA CWADISP=nn <« for ASM applications, use this line only
END

/*

//LINK EXEC PGM=HEWL
//SYSLMOD DD DSN=idms.loadlib,DISP=SHR
//SYSLIN DD DSN=&&syspch,UNIT=disk,DISP=(0LD,DELETE),

ENTRY IDMSDLXX & change to the particular interface used
MODE AMODE (31) ,RMODE (ANY)
NAME IDMSDLXX(R) & change to the particular interface used
//
yourHLQ.CAGJMAC Data set name of the IDMS macrolibrary
cics.maclib Data set name of the CICSmacro library

Appendix D: CA IDMS DLI Transparency JCL 275

Run-Time Interface JCL

idmsdlxx:

IDMSDLHC Name of the COBOL interface module

IDMSDLHP Name of the PL/I interface module

IDMSDLHA Name of the Assembler interface module

idms.loadlib Data set name of the CA IDMS load library containing CA

IDMS system modul es

The JCL to assembleina z/VSE environment is shown below:

IDMSDLCV/IDMSDLPV/IDMSDLAV (z/VSE)

// JOB

// LIBDEF *,SEARCH=(idms.library)
// OPTION CATAL,DECK

// EXEC ASSEMBLY

IDMSDLCV CWADISP=nn & for COBOL applications, use this line only
IDMSDLPV CWADISP=nn & for PL/I applications, use this line only
IDMSDLAV CWADISP=nn & for ASM applications, use this line only
END

/*

Note: The IDMS macros and copy books must be accessiblefromthe assigned
source-statement library. Only oneof the interfaces listed above should be assembled
atatime. Eachinterfaceis specifictoa programming language.

idms.library data set name of the CAIDMS DLI Transparency library

nn CWADISP specifications corresponding to the IDMSINTC
CWADISP

Parameters

CWADISP=

Identifies the displacement within the CICS CWA of a fullword that holds the
address of the IDMSINTC module.

276 DLI Transparency User Guide

Load Utility JCL

Load Utility JCL

Preload CALC Processing (Step 1)

The JCL to perform CALC processingand preload sorting onthe unloaded DL/l data is
shown below:

Preload CALC Processing (Step 1, Part 1) (z/0S)

//CALC EXEC PGM=IDMSDLRC, PARM='CALC, IDMSDLLD, ipsbname'
//STEPLIB DD DSN=idms.loadlib,DISP=SHR

// DD DSN=ipsb.loadlib,DISP=SHR

//SYSOUT DD SYSOUT=A

//SYSLST DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

//5YS001 DD DSN=unloaded.dli.data,DISP=0LD

//5SYS002 DD DSN=unsorted.dli.calc.data,

// UNIT=TAPE,DISP=(NEW,KEEP)

//

//

idms.loadlib data set name of the CAIDMS DLI Transparency
loadlibrary

ipsb.loadlib data set name of the IPSBload library

ipsbname name of the IPSB load module

unloaded.dli.data data set name of the unloaded DL/I data

unsorted.dli.calc.data data set name of the unsorted DL/I CALC data

Appendix D: CA IDMS DLI Transparency JCL 277

Load Utility JCL

PreLoad CALC Processing (Step 1, Part 1) (z/VSE)

// J0B

// LIBDEF *,SEARCH=(idns. library, user. library)
// DLBL fileid, 'idms.database', DA

// EXTENT SYS018, nnnnnn

// ASSGN SYS018,DISK,\VOL=nnnnnn,SHR

// TLBL SYS001, 'unloaded.dli.data’

// ASSGN SYS001,nnn

// TLBL SYS002, 'unsorted.dli.data’'

// ASSGN SYS002,nnn

// EXEC IDMSDLRC

sysidms parameter statements

/*

CALC, IDMSDLLD, ipsbname

/ %
DMCL=dmc Lname
/ *

idms.library

data set name of the CAIDMS DLI Transparency library

user.library

name of the load library thatcontains the IPSBand
SUBSCEHEMA modules.

fileid

DCML databasefileassignment

idms.database

name of the CA IDMS databasefile

nnnnnn

volume serial number of the diskunit

unloaded.dli.data

name of the tape data set that contains the HD UNLOAD DLI
data

unsorted.dli.data

name of the tape data set that contains the CALC DLI data
output

nnn

cuu address of the tape unit

ibsbname

name of the LOAD IPSB (Interface PSB with processing
options of 'LOAD")

dmclname

name of the CA IDMS DMCL module

278 DLI Transparency User Guide

Load Utility JCL

// J0B

// LIBDEF *,SEARCH=(idns. library, user. library)
// DLBL fileid, 'idms.database', DA

// EXTENT SYS018, nnnnnn

// ASSGN SYS018,DISK,\VOL=nnnnnn,SHR

// TLBL SYS001, 'unloaded.dli.data’

// ASSGN SYS001,nnn

// TLBL SYS002, 'unsorted.dli.data’'

// ASSGN SYSQ02,nnn

// EXEC IDMSDLRC,PARM='CALC,IDMSDLLD, ipsbname'

sysidms parameter statements

/ *
DMCL=dmc Lname
/ %

idms.library data set name of the CAIDMS DU Transparency library

user.library name of the load library thatcontains the IPSBand
SUBSCEHEMA modules.

fileid DCML databasefileassignment

idms.database

name of the CA IDMS databasefile

nnnnnn

volume serial number of the diskunit

unloaded.dli.data

name of the tape data set that contains the HD UNLOAD DLI
data

unsorted.dli.data

name of the tape data set that contains the CALC DLl data
output

nnn cuu address of the tape unit

ibsbname name of the LOAD IPSB (Interface PSB with processing
options of 'LOAD')

dmclname name of the CA IDMS DMCL module

Appendix D: CAIDMS DLI Transparency JCL 279

Load Utility JCL

PreLoad CALC Sort (Step 1, Part 2) (z/OS)

//SORT EXEC SORT

//SORTIN DD DSN=unsorted.calc.dli.data,DISP=0LD,UNIT=TAPE
//SORTOUT DD DSN=sorted.calc.dli.data,DISP=0LD,UNIT=TAPE
//SORTWKO1 DD UNIT=DISK,SPACE=(CYL, (n),,CONTIG)
//SORTWKO2 DD UNIT=DISK,SPACE=(CYL, (n),,CONTIG)
//SORTWKO3 DD UNIT=DISK,SPACE=(CYL, (n),,CONTIG)

//SYSIN DD *

SORT FIELDS=(20,4,BI,D,24,4,BI,A)

/*

//

n number of cylinders for spaceallocation
sorted.calc.dli.data data set name of the sorted DL/I CALC data
unsorted.calc.dli.data data set name of the unloaded DL/I CALC data

(from Step 1, Part1)

Note: This step requires that you use your own sort/merge facility.

PreLoad CALC Sort (Step1, Part 2) (z/VSE)

// TLB SORTIN1, 'unsorted.dli.data',,SD
// ASSGN SYS001,nnn
// TLBL SORTQUT, 'sorted.dli.data',,SD
// ASSGN SYS002,nnn
// DLBL SORTWK1, 'work.filel',,SD
// EXTENT SYS003,nnnnnn,1,0,ssss, 1111
// ASSGN SYS003,DISK,\VOL=nnnnnn,SHR
// DLBL SORTWK2, 'workfile2',,SD
// EXTENT SYS004,1,0,ssss, 1111
// ASSGN SYS004,DISK,\VOL=nnnnnn,SHR
// DLBL SORTWK3, 'work.file3',,SD
// EXTENT SYS005,ERES00,1,0,ssss, 1111
// ASSGN SYS005,DISK,\VOL=nnnnnn,SHR
// EXEC SORT
SORT FIELDS=(20,4,BI,D,24,4,BI,A),FILES=1,WORK=3
RECORD TYPE=V
INPFIL BLKSIZE=8000
OUTFIL BLKSIZE=8000

/*

//

unsorted.dli.data data set name of the filecreated by the CALC processingstep
sorted.dli.data data set name of the sorted workfile produced by this sort

step

280 DLI Transparency User Guide

Load Utility JCL

nnn cuu address of the tape unit

nnnnnn volume serial number of the diskunit
work.filel fileid of the 1st SORT work file
work.file2 fileid of the 2nd SORT work file
work.file3 fileid of the 3rd SORT work file

logical.workfile

name of the data set that will receivedata concerninglogical
relationships

SSSS

startingtrackin disk extent

number of tracks required for the diskfile

Database Load (Step 2)

The JCL to load the DL/I datainthe CA IDMS/DB databaseis shown below:

Central Version

Database Load (Step 2) (z/0S)

//LOAD EXEC PGM=IDMSDLRC, PARM='LOAD, IDMSDLLD, ipsbname'
//STEPLIB DD DSN=idms.loadlib,DISP=SHR

// DD DSN=ipsb.loadlib,DISP=SHR

//sysctl DD DSN=idms. sysctl,DISP=SHR

//SYSOUT DD SYSOUT=A
//SYSLST DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

//SYS001 DD DSN=unloaded.dli.data,

// UNIT=TAPE, VOL=SER=nnnnnn, DISP=0LD
//SYS003 DD DSN=step2.workfile,

// UNIT=TAPE,DISP=(NEW,KEEP),

// DCB=(RECFM=FB, LRECL=288 , BLKSIZE=5760)

//

idms.loadlib data set name of the CAIDMS DLI Transparency load library
ipsb.loadlib data set name of the IPSBload library

idms.sysctl data set name of the SYSCTL file

ipsbname name of the IPSB load module

nnnnnn volume serial identifier for the tape/disk volume

step2.workfile

logical workfile output by the load

sysctl

ddname of the SYSCTL file

Appendix D: CAIDMS DLI Transparency JCL 281

Load Utility JCL

unloaded.dli.data data set name of the unloaded DL/I data

Local Mode

To execute the load process inlocal mode, remove the SYSCTL statement and replace
with the following:

//dictdb DD DSN=idms.dictdb
//sysjrnl DD DSN=idms.tapejrnl,DISP=(NEW,KEEP) ,UNIT=tape
//userdb DD DSN=user.userdb,DISP=SHR

idms.dictdb data set name of the data dictionary
idms.tapejrnl data set name of the tape journal file

dictdb ddname of the data dictionary

sysjrnl ddname of the tape journalfile

tape symbolic devicetype for the tape journal file
user.userdb data set name of the user database

userdb ddname of the user database

Central Version
Database Load (Step 2) (z/VSE)

Note: Use this Load utility JCLif the IDMSDLPC is included in the IDMSDLRC linkedit.

// JOB

// LIBDEF *,SEARCH=(idns.library,user.library)
// DLBL fileid, 'idms.database', ,DA
// EXTENT SYS0Q18, nnnnnn

// ASSGN SYSO18,DISK,VOL=nnnnnn,SHR
// TLBL SYS001, 'sorted.dli.data’

// ASSGN SYS@01,nnn

// TLBL SYS@03, 'logical.workfile'
// ASSGN SYS003,nnn

// EXEC IDMSDLRC

sysidms parameter statements

/*

LOAD, IDMSDLLD, ipsbname

/*

/DMCL=1psbname

/*

idms.library data set name of the DLl Transparency library

282 DLI Transparency User Guide

Load Utility JCL

user.library name of the library thatcontains theIPSB and SUBSCHEMA
modules

fileid DMCL databasefileassignment

idms.database name of the CA IDMS databasefile

nnnnnn volume serial number of the disk unit

sorted.dli.data name of the tape data set that contains the sorted CALC DLI
data

logical.workfile name of the data set that will receivedata concerninglogical

relationships

nnn cuu address of the tape unit

ipsbname name of the LOAD IPSB (Interface PSB with processing
options of 'LOAD')

dmclname name of CA IDMS DMCL module

Note: This LOAD utility JCLis for use ifIDMSDLPC is not included in IDMSDLRC.

// J0B

// LIBDEF *,SEARCH=(idns. library, user. library)
// DLBL fileid, 'idms.database', DA

// EXTENT SYS018,nnnnnn

// ASSGN SYS018,DISK,\OL=nnnnnn,SHR

// TLBL SYS001, 'sorted.dli.data’

// ASSGN SYS001,nnn

// TLBL SYS003, 'logical.workfile'

// ASSGN SYSQ03,nnn

// EXEC IDMSDLRC,PARM='LOAD, IDMSDLLD, ipsbname
sysidms parameter statements

/*

LOAD, IDMSDLLD, ipsbname

/*

/DMCL=dmc Lname

/*

idms.library data set name of the DLl Transparency library

user.library name of the library thatcontains theIPSB and SUBSCHEMA
modules

fileid DMCL databasefileassignment

idms.database name of the CA IDMS databasefile

nnnnnn volume serial number of the disk unit

Appendix D: CAIDMS DLI Transparency JCL 283

Load Utility JCL

sorted.dli.data name of the tape data set that contains the sorted CALC DLI
data
logical.workfile name of the data set that will receivedata concerninglogical

relationships

nnn cuu address of the tape unit

ipsbname name of the LOAD IPSB (Interface PSB with processing
options of 'LOAD')

dmclname name of CA IDMS DMCL module

Local Mode JCL

To execute the load process inlocal mode, remove the UPSI statement and insertthe
following after the ASSGN statement:

// DLBL dictdb, 'idms.dictdb’

// EXTENT sys@15,nnnnnn,1,,SSSS,LLLL
// ASSGN sys0@15,dddd, VOL=nnnnnn,SHR
// TLBL joumal, 'idms.tapejrnl’

// ASSGN SYS009,X'ttt'

// DLBL userdb, 'user.userdb',,DA
// EXTENT sys018,nnnnnn,1,,SSSS,LLLL
// ASSGN sys018,dddd, VOL=nnnnnn,SHR

idms.dictdb file-id of the data dictionary

idms.tapejrnl data set name of the tape journal file

dddd device assignmentfor the diskfile

dictdb filename of the data dictionary

journal filename of the tape journal

nnnnnn volume serial number

sys018 logical-unitassignment of the user database
sys015 logical-unitassignment of the data dictionary
ttt channel-unitassignmentof the journal file
user.userdb file-id of the user database

userdb name of the user database

284 DLI Transparency User Guide

Load Utility JCL

Workfile Sort/Merde (Step 3)

The JCL to merge/sort the logical workfiles produced by the load step is shown below:

Workfile Sort/Merge (Step 3) (z/0S)

// SORT EXEC SORT

//SORTIN DD DSN=step2.workfile,DISP=0LD,UNIT=TAPE
//SORTOUT DD DSN=step3.workfile,DISP=0LD,UNIT=TAPE
//SORTWKO1 DD UNIT=DISK,SPACE=(CYL, (n),,CONTIG)
//SORTWKO2 DD UNIT=DISK,SPACE=(CYL, (n),,CONTIG)
//SORTWKO3 DD UNIT=DISK,SPACE=(CYL, (n),,CONTIG)
//SYSIN DD *

SORT FIELDS=(25,5,BI,A)

/*

//

n number of cylinders for spaceallocation
step2.workfile the workfile output from Step 2
step3.workfile the sorted workfile output by this step

Note: This step requires that you use your own sort/merge facility.

Workfile Sort/Merge (Step 3) (z/VSE)

// TLBL SORTIN1, 'logical.workfile'
// ASSGN SYSPO1,nnn
// TLBL SORTOUT, 'sorted.workfile'
// ASSGN SYS002,nnn
// DLBL SORTWK1, 'work.filel'
// EXTENT SYS003,1,0,ssss, 1111
// ASSGN SYS003,DISK,VOL=nnnnnn, SHR
// DLBL SORTWK2, 'work.file2'
// EXTENT SYS004,1,0,ssss, 1111
// ASSGN SYS004,DISK,VOL=nnnnnn, SHR
// DLBL SORTWK3, 'work. file3'
// EXTENT SYS005,ERES00,1,,ssss, 1111
// ASSGN SYS005,DISK,VOL=nnnnnn,SHR
// EXEC SORT
SORT FIELDS=(25,5,BI,A),FILES=1,WORK=3
RECORD TYPE=F, LENGTH=288
INPFIL BLKSIZE=32544
OUTFIL BLKSIZE=32544
/*

Appendix D: CAIDMS DLI Transparency JCL 285

Load Utility JCL

logical.workfile

data set name of the logical workfile produced by LOAD
processing

sorted.workfile

data set name of the sorted workfile produced by this SORT
set

nnn cuu address of the tape unit

nnnnnn volume serial number of the disk unit
work.filel file-id of the first SORT work file
work.file2 fileid of the second SORT work file
work.file3 fileid of the third SORT work file
SSSS startingtrackin disk extent

number of tracks in disk extent

Prefix (Concatenated Key) Resolution (Step 4)

The JCL to resolvethe prefixes (concatenated keys) for the logical records in the workfile
from Step 3is shown below:

Prefix (Concatenated Key) Resolution (Step 4) (z/0S)

//PFXR EXEC PGM=IDMSDLRC, PARM='PFXR,IDMSDLLD, ipsbname'
//STEPLIB DD DSN=idms.loadlib,DISP=SHR

// DD DSN=ipsb.loadlib,DISP=SHR

//SYSOUT DD SYSOUT=A

//SYSLST DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

//SYS004 DD DSN=step3.workfile,DISP=0LD,UNIT=TAPE
//SYS003 DD DSN=step4.workfile.DISP=0LD,UNIT=TAPE

//

idms.loadlib data set name of the CAIDMS DLI Transparency load library
ipsb.loadlib data set name of the IPSBload library

ipsbname name of the IPSB load module

step3.workfile

sorted output from Step 3

step4.workfile

the workfile output by this step

286 DLI Transparency User Guide

Load Utility JCL

Prefix (Concatenated Key) Resolution (Step 4) (z/VSE)

Note: For use if IDMSDLPC is includedin the IDMSDLRC linkedit.

// JOB

// LIBDEF *,SEARCH=(idnms.library,user.library)
// TLBL SYSOM4, 'sorted.workfile'

// ASSGN SYS004,nnn

// TLBL SYS003, 'hierarchic.workfile'

// ASSGN SYS003,nnn

// EXEC IDMSDLRC

sysidms parameter statements

PFXR, IDMSDLLD, ipsbname

/*

idms.library data set name of the CAIDMS DU Transparency library

user.library name of the library thatcontains theIPSB and SUBSCHEMA
modules

sorted.workfile name of the tape data set that contains the output of the
previous step's SORT

hierarchic.workfile name of the tape data set that contains the output of this
step's SORT

nnn cuu address of the tape unit

ipsbname name of the LOAD IPSB (Interface PSB with processing

options of 'LOAD')

Note: For use if IDMSDLRC does not include IDMSDLPC in the linkedit.

// JOB

// LIBDEF *,SEARCH=(idns.library,user.library)
// TLBL SYSO®™4, 'sorted.workfile'

// ASSGN SYS004,nnn

// TLBL SYS003, 'hierarchic.workfile'

// ASSGN SYS@03,nnn

// EXEC IDMSDLRC,PARM='PFXR,IDMSDLLD, ipsbname
sysidms parameter statements

/*

idms.library data set name of the CAIDMS DLI Transparency library

user.library name of the librarythatcontains thelPSB and SUBSCHEMA
modules

sorted.workfile name of the tape data set that contains the output of the

previous step's SORT

Appendix D: CAIDMS DLI Transparency JCL 287

Load Utility JCL

hierarchic.workfile name of the tape data set that contains the output of this
step's SORT

nnn cuu address of the tape unit

ipsbname name of the LOAD IPSB (Interface PSB with processing

options of 'LOAD')

Workfile Hierarchical Sort (Step 5)

The JCL to hierarchically sortthe workfile from Step 4 is shown below:

Workfile Hierarchical Sort (Step 5) (z/0S)

//SORT EXEC SORT

//SORTIN DD DSN=step4.workfile,DISP=0LD,UNIT=TAPE
//SORTOUT DD DSN=step5.workfile,DISP=0LD,UNIT=TAPE
//SORTWKO1 DD UNIT=DISK,SPACE=(CYL, (1), ,CONTIG)
//SORTWKO2 DD UNIT=DISK,SPACE=(CYL, (1), ,CONTIG)
//SORTWKO3 DD UNIT=DISK,SPACE=(CYL, (1),,CONTIG)
//SYSIN DD *

SORT FIELDS=(17,8,BI,A)

/*

//

Note: This step requires that you use your own sort/merge facility.

step4.workfile the workfile output from Step 4

step5.workfile hierarchically sorted workfile output by this step

288 DLI Transparency User Guide

Load Utility JCL

Workfile Hierarchical Sort (Step 5) (z/VSE)

//
//
//
//
//
//
//
//
//
//
//
//
//
/7

/*

TLBL SORTIN1, 'hierarchic.workfile',,SD
ASSGN SYS001,nnn

TLBL SORTOUT, 'final.workfile',,SD
ASSGN SYS002,nnn

DLBL SORTWK1, 'work.filel',,SD

EXTENT SYS003,1,0,ssss, 1111

ASSGN SYS003,DISK,VOL=nnnnnn, SHR

DLBL SORTWK2, 'work.file2',,SD

EXTENT SYS004,1,0,ssss, 1111

ASSGN SYSP04,DISK,VOL=nnnnnn, SHR

DLBL SORTWK3, 'work. file3'

EXTENT SYS005,ERES00,1,0,ssss, 1111
ASSGN SYS005,DISK,VOL=nnnnnn, SHR

EXEC SORT

SORT FIELDS=(17,8,BI,A),FILES=1,WORK=3
RECORD TYPE=F,LENGTH=288

INPFIL BLKSIZE=32544

OUTFIL BLKSIZE=32544

hierarchic.workfile data set name of the output from the PFXR step

final.workfile

data set name of the sorted workfile produced by this SORT

step
nnn cuu address of the tape unit
nnnnnn volume serial number of the disk unit
work.filel fileid of the third SORT work file
work.file2 fileid of the second SORT work file
work.file3 fileid of the third SORT work file
SSSS startingtrackin disk extent

number of tracks in disk extent

Appendix D: CAIDMS DLI Transparency JCL 289

Load Utility JCL

Prefix Update (Step 6)

The JCL to update the logical child databaserecords with the resolved prefixes is shown
below. This step uses the hierarchically sorted workfilefrom Step 5.

Central Version

Prefix Update (Step 6) (z/0S)

//PFXU EXEC PGM=IDMSDLRC, PARM='PFXU, IDMDLLD, ipsbname’
//STEPLIB DD DSN=idms.loadlib,DISP=SHR

// DD DSN=ipsb. loadlib,DISP=SHR

//sysctl DD DSN=idms. sysctl,DISP=SHR

//SYSOUT DD SYSOUT=A

//SYSLST DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

//5YS004 DD DSN=step5.workfile,DISP=0LD,UNIT=TAPE

//

idms.loadlib data set name of the CAIDMS DLI Transparencyload library
idms.sysctl data set name of the SYSCTL file

ipsb.loadlib data set name of the IPSBload library

ipsbname name of the IPSB load module

step5.workfile hierarchically sorted workfilefrom step 5

sysctl ddname of the SYSCTL file

Local Mode JCL

To execute the prefix update process inlocal mode, remove the SYSCTL statement and
replacewith the following:

//dictdb DD DSN=idms.dictdb
//sysjrnlDD DSN=idms. tapejrnl,DISP=(NEW,KEEP) ,UNIT=tape
//userdb DD DSN=user.userdb,DISP=SHR

idms.dictdb data set name of the data dictionary
idms.tapejrnl data set name of the tape journalfile

dictdb ddname of the data dictionary

sysjrnl ddname of the tape journalfile

tape symbolic devicetype for the tape journal file
user.userdb data set name of the user database

290 DLI Transparency User Guide

Load Utility JCL

userdb ddname of the user database

Central Version
Prefix Update (Step 6) (z/VSE)

Note: Use the following LOAD utility ifIDMSDLPC is included inthe IDMSDLRC linkedit.

// JOB

// LIBDEF *,SEARCH=(idns. library,user. library)
// DLBL fileid, 'idms.database', ,DA

// EXTENT SYS018,nnnnnn

// ASSGN SYS@18,DISK,\VOL,=nnnnnn,SHR

// TLBL SYS004, 'final.workfile'

// ASSGN SYS004,nnn

// EXEC IDMSDLRC

system parameter statements

/*

PFXU, IDMSDLLD, ipsbname

/*

/&

idms.library data set name of the CAIDMS DLI Transparency library

user.library name of the library thatcontains the IPSB and SUBSCHEMA
modules

fileid DMCL databasefileassignment

idms.database name of the CA IDMS databasefile

nnnnnn volume serial number of the disk unit

final.workfile name of the tape dataset that contains the previous step's
sorted output

ipsbname name of the LOAD IPSB (Interface PSB with processing

options of 'LOAD")

Note: The following LOAD utility JCLis for use if IDMSDLPC is not included in the
IDMSDLRC linkedit.

Appendix D: CAIDMS DLI Transparency JCL 291

Load Utility JCL

// J0B

// LIBDEF *,SEARCH=(idns.library,user.library)
// DLBL fileid, 'idms.database', ,DA

// EXTENT SYS018,nnnnnn

// ASSGN SYS018,DISK,\OL,=nnnnnn,SHR

// TLBL SYS004,'final.workfile'

// ASSGN SYS004,nnn

// EXEC IDMSDLRC,PARM='PFXU.IDMSDLLD, ipsbname
system parameter statements

/*

/&

idms.library data set name of the CAIDMS DLI Transparency library

user.library name of the librarythatcontains the|PSB and SUBSCHEMA
modules

fileid DMCL databasefileassignment

idms.database name of the CA IDMS databasefile

nnnnnn volume serial number of the disk unit

final.workfile name of the tape dataset that contains the previous step's
sorted output

ipsbname name of the LOAD IPSB (Interface PSB with processing

options of 'LOAD')

Local Mode JCL

To execute the prefix update process inlocal mode, remove the UPS| statement and
insertthe followingafter the ASSGN statement:

// DLBL dictdb, 'idms.dictdb’

// EXTENT sys015,nnnnnn,1,,SSSS,LLLL
// ASSGN sys015,dddd,\VOL=nnnnnn,SHR
// TLBL joumal,idms.tapejrnl’

// ASSGN SYS009,X'ttt'

// DLBL userdb, 'user.userdb',,DA
// EXTENT sys018,nnnnnn,1,,SSSS,LLLL
// ASSGN sys018,dddd, VOL=nnnnnn,SHR

idms.dictdb file-id of the data dictionary
idms.tapejrnl data set name of the tape journal file
dddd device assignmentfor the diskfile
dictdb filename of the data dictionary

292 DLI Transparency User Guide

IPSB Decompiler JCL

journal filename of the tape journal

nnnnnn volume serial number

sys015 logical-unitassignmentof the data dictionary
sys018 logical-unitassignment of the user database
ttt channel-unitassignmentof the journal file
user.userdb file-id of the user database

userdb filename of the user database

IPSB Decompiler JCL

The JCL necessary to execute the IPSB decompileris shown below:

IPSB Decompiler (z/0S)

//DECOMPIL EXEC PGM=IDMSDLID

//STEPLIB DD DSN=idms.loadlib,DISP=SHR

//SYSOUT DD SYSOUT=A

//SYSLST DD SYSOUT=A

//SYSPCH DD DSN=ipsb.source. library(ipsbname) ,DISP=0LD
//SYSPRINT DD SYSOUT=A

//SYSIPT DD *

IPSB=1ipsb-load-module-name

/*

//

idms.loadlib data set name of the CAIDMS DLI
Transparencyload library

ipsb.loadlib data set name of the IPSBloadlibrary

ipsb.source.library data set name of the IPSBsourcelibrary

IPSB=ipsb-load-module-name identifies the IPSB (required)

Appendix D: CAIDMS DLI Transparency JCL 293

IPSB Decompiler JCL

IPSB Decompiler (z/VSE)

// J0B

// LIBDEF *,SEARCH=(idns. library, ipsb. library)
// DLBL ijsyspch 'ipsb.source'

// EXTENT syspch,nnnnnn, 1,0, ssss, L111

// ASSGN syspch, x, 'ddd'

// ASSGN syslst,x'0QOE"

// EXEC IDMSDLID

sysidms parameter statements

/*

IPSB=ipsbname

/&

idms.library data set name of the CAIDMS DLI Transparency library
ipsb.library name of the library thatcontains the IPSB load modules
ipsbh.source data set name of the IPSBsourcestatements

ijsyspch filename of the output file

nnnnnn volume serial number of the disk unit

syspch logical unitassignmentof the output file

ddd device assignmentof the diskfile

[l number of tracks required for the diskfile

SSSS relativestarting track of the diskfile

ipbsname identifies the IPSB for decompiliation

294 DLI Transparency User Guide

Appendix E: CA IDMS DLI Transparency
IPSB Decompiler

This section contains the followingtopics:

About This Appendix (see page 295)

Usingthe IPSB Decompiler (see page 295)

IPSB Decompiler Run-Time Operations (see page 296)
IPSB Decompiler Run-Time Considerations (see page 296)

About This Appendix

CA IDMS DLI Transparencyincludes an IPSB decompiler that creates CA IDMS DLI
Transparency IPSB sourcestatements from CAIDMS DLI Transparency IPSBload
modules.

This appendix describes howto use the IPSB decompiler.

Using the IPSB Decompiler

Followthese steps when usingthe IPSB decompiler:

[any

Identify all IPSB load modules for decompilation.
2. Allocatea direct access data setto receive the newly created IPSB source.

3. Create appropriateJCL for IPSB decompilation (as describedin CAIDMS DLI
Transparency JCL (see page 257)).

4. Run the IPSB decompiler once for each IPSB load module to be decompiled.

5. Review SYSLST messages for each decompilationrunto be surethe jobwas
successful.

Note: Although the IPSB compiler requires the subschema load module, the decompiler
does not.

Appendix E: CAIDMS DLI Transparency IPSB Decompiler 295

IPSB Decompiler Run-Time Operations

IPSB Decompiler Run-Time Operations

IPSB Decompiler Functions

The IPSB decompiler performs the followingfunctions:
m Reads SYSIPT for IPSB-directive control statement

m Accesses the IPSB named in the control statement

Validates the identity of the IPSB
m Writes representative IPSB sourcestatements to SYSPCH

m Writes informative messages to SYSLST

IPSB-Directive IPSB
control statement oad modulg)
(SYSIPT) (STEPLIB)
CA-IDMS/DLI
IPSB decompiler
utility
(IDMSDLID)
i
IPSB source Utility
statements message(s)
(SYSPCH} (SYSLST)

Figure 74. Decompilation process

IPSB Decompiler Run-Time Considerations

To execute the decompiler:

m The IPSB load module to be decompiled must be availablethrough use of a STEPLIB
JCL statement.

m The utility control statement (IPSB-directive) must be supplied forinput usinga
SYSIPT JCL statement.

m [fthe IPSBsourcestatements areto be reviewed, the SYSPCH JCL statement should
be directed to an output device.

296 DLI Transparency User Guide

IPSB Decompiler Run-Time Considerations

m Ifthe IPSBsourcestatements areto be used for recompilation, The SYSPCH JCL
statement should be directed to a direct access library suitablefor containing IPSB
sourcestatements.

m The SYSLST JCL statement should be directed to an output device. Check the
messages issued by the decompiler for errors. Correct the errors and rerun until
there are no errors. Note that return codes are not used. The SYSLST messages are
the indicators of the actual results of the process.

For more information aboutfile usage with the decompiler, see CA IDMS DLI
Transparency JCL (see page 257).

Appendix E: CAIDMS DLI Transparency IPSB Decompiler 297

Index

A

abend codes ¢ 212
ACB ¢ 156
ACCESS METHOD IS clause® 136,139
access methods ¢ 36, 65

in CA IDMS/DB ¢ 65
ACCESS parameter » 136
ADD AREA statement e 87
application control block ¢ 156
area e 57
AREA NAME clause e 103
AREA SECTION ¢ 103

example ¢ 103

purpose ¢ 103

syntaxandrules e 103
ASMTDLI 167,247
automatic scheduling e 209

B

backend ¢ 250
back-end processor ¢ 15
purpose ¢ 15
batch CV environment ¢ 160, 161,162, 163
executing the region controller e 162
link editing DL/l applications 161
modifying DL/l batchJCL » 163
batch environment ¢ 244
IDMSDLFE module ¢ 244
IDMSDLHI module e 211
IDMSDLLI module » 244
IDMSDLRC module » 244
RHDCDLBE module ¢ 244
bidirectional physical relationships ¢ 35
bidirectionalvirtual relationships ¢33

C

CA IDMS DLI Transparency 11,12, 13, 14,15, 16,

72,211, 266,277
assembling IDMSDL1C e 266
concepts and facilities e 12
databaseload e 277
error messages ® 211
executing batch applications 266
IPSB compiler e 14

link editing batch applications ¢ 266
load utility ¢ 16

operatione 12

prefix (concatenated key) resolution 277
prefixupdate 277

pre-load CALC processinge 277
pre-loadsorte 277

run-time interfacee 15

syntax generator ¢ 13

usage considerations e 72

usese 11

workfile hierarchicalsorte277
workfilesort/merge ¢ 277

CA IDMS DLI Transparency within CAIDMS/DB

programs e 203

CA IDMS/DB ¢ 56,57, 58,59, 65,68,70,71, 73,203,

204
area e 57
CALC key * 65
components ¢ 58
correspondences with DL/l 59
definingdatabases ¢ 57
DL/I calls supported » 71
DML ¢ 58
elements ¢ 57
executing applications 58
HDAM access ¢ 65
HIDAM access ® 65
HISAM access ® 65
HSAM access ¢ 65
indexed set » 65, 68
indexed sets ¢ 65
mappingcalls 203
parallel processing supporte 70
program definitiontable e 204
programming standards ¢ 203
record type ¢ 56
schema ¢ 57
secondaryindexes ¢ 68
set e 56
subschema ¢ 57
unsupported DL/I features * 73

CA IDMS/DB load modules » 174, 251

preparationforload utility e 174

CALC key * 65

Index 299

CALC recorde 61 data sensitivity « 50

CA-supplied macros e 71 Databasedescription 22
CBLTDLI 167,247 databaseload e 194
CHECKPOINT/RESTART e 73 databaserecord e 24
CICS environment » 163,164, 166,167,168, 247 DBD 13, 22,36,43,46,76,78,156
assembling CICSOPTS » 167 assembling with CA-supplied macros ¢ 76, 78
Common Storage Area (CSA) » 166 index ¢ 43
for CA IDMS DLI Transparency ® 166 input to syntax generator ¢ 78
for DL/I » 164 logical e 46
IDMSDLFC module » 247 physical 36, 43
IDMSDLFE module » 247 DBD statement * 36, 38, 43, 46
IDMSINTC module » 247 ACCESS parameter » 36, 38,43
RHDCDLBE module * 247 for logical DBD ¢ 46
CICSOPTS module » 167 for secondaryindexes ¢ 43
assemblingin CICS environment ¢ 167 DBDGEN e 22
command codes ¢ 71 DBDNAME ISclausee® 136
comments ¢ 98 DELETE BY clause* 106
compiler ¢ 204 destination parent ¢ 47
program definition table compiler (IDMSDLTG) DFHDLI » 166
204 DFHDLIAI » 166
compiler-directive statements » 98 directentry databases ¢ 73
CA-supplied macros » 76 Direct entry databases (DEDBs). e 73
comments e 98 DL/l » 21,22,23,24,25,27,28,29,32,33,35, 36,
CORE « 98 38,39,40,42,43,44,45,46,47,49, 50,52, 53,
example ¢ 98 54,55,56,59,61,62,71,73,156,164,169, 212,
ICTL « 98 213
ISEQ * 98 abend codes ¢ 212
OCTL » 98 access methods ¢ 36
SPACE » 98 access path ¢ 36
concatanated keys ¢ 43 batch environment ¢ 156
concatenated key resolution ¢ 197 bidirectional physical relationships ® 35
concatenated keys ¢ 28 bidirectionalvirtualrelationships 33
concatenated segment ¢ 139 call formate 53
concatenated segments ® 47 callssupportedin CAIDMS/DB » 71
CONSTANT clausee® 126 child segment » 22
control statements ¢ 79 CICS environment o 156
comments e 79 CICS z/0S environment » 164
CORE SIZE ¢ 79 commands ¢ 53
EJECT 79 components ¢ 22
ICTL 79 concatanated keys ¢ 43
ISEQ ¢ 79 concatenated keys ¢ 28
OCTL e 79 concatenated segments ¢ 47
SPACE « 79 control fields ¢ 55
CORE 98 correspondences with CA IDMS/DB ¢ 59
CV ¢ 156 data sensitivity « 50
databasepositioning * 56
D databaserecord e 24
data communications ¢ 203 DBD 22,36

DBDGEN e 22

300 DLI Transparency User Guide

definingdatabases ¢ 22
defining segments ¢ 27
definition summary e 52
deletable segments ¢ 62
destination parent ¢ 47
environment ¢ 22

executing applications e 22
FIELD statement e 28

fields ¢ 23

full indexing 45

hashing with HDAM access ¢ 40
HDAM access ¢ 40

HIDAM access ¢ 40
hierarchicalaccess path e 25
hierarchy ¢ 24

HISAM access ¢ 39

HSAM access *38

/O area ® 55

index pointer segment ¢ 40
indexing with HIDAM access ¢ 40
indexing with HISAM access * 39
indexing with secondaryindexes ¢ 42
intersection data ¢ 47
intersection segments e 47
LCHILD statement e 33
logical child e 29

logical database 46

logical parente29

logical relationships 29
logical twins 29

occurrence ¢ 24

parallel processing ®52
parent segment e 22

PCB e 22

PCBs » 49

physicalaccess methods ¢ 38
physicalchild 24
physicaldatabase e 24,36
physical DBD ¢ 36

physical hierarchy 24
physical parente 24
physicalrelationships e 24
physicaltwins ¢ 24

pointer segment ¢ 42
PROCOPT options ® 50
program communication ¢ 55
PSB e 22,52

PSBGEN e 22

restructuringa hierarchy e 44

root segment e 24
samplehierarchy e 25
secondaryindexes ¢ 42
SEGM statement ¢ 27
segment ¢ 23
Segment Search Argument ¢ 28
sequence fields ¢ 28
sequenced child segments ¢ 61
similarities with CAIDMS/DB » 21
sourcesegment ¢ 42
sparseindexing e 45
SSA e 54
status codes 213
storage sequence for duplicatefields » 28
target segment ¢ 40,42
testing applications under CA IDMS DLI
Transparency e 169
unidirectional relationships ¢ 32
unique or duplicatefield values ¢ 28
unsequenced child segments ¢ 61
unsupported features in CA IDMS/DB ¢ 73
DL/l languageinterface » 167,247
ASMTDLI » 167,247
CBLTDLI » 167,247
IDMSDLLI module e 247
PLITDLI » 167,247
DL1 calls*208
DLZDLI » 166
DLZLIOOO » 166
DLZLIOOO module 167
DMCL ¢ 76
produced by syntax generator ¢ 76
DML e 58
DUPLICATE DATA FIELDS » 126

E

examples ¢ 154

examples ¢ 154
EXIT ROUTINE clausee® 126
EXIT ROUTINE parameter e 254
EXTRTN parameter ¢ 254

F

FIELD NAME clausee 114

FIELD statement » 28,43,114,122
for secondaryindexes ¢ 43
IPSB, syntaxandrules e 114,122
NAME parameter ¢ 28

Index 301

field-level sensitivity 73

frontend e 249

front-end processor e 15
purpose e 15

G

GENERATE DMCL statement ¢ 84
SEGMENT option ¢ 84

GENERATE |IPSB statement ¢ 85

GENERATE LOAD IPSB statement e 85

GENERATE LOAD SCHEMA statement e 83

GENERATE SCHEMA statement ¢ 83
DICTIONARY NAME option e 83

GENERATE statement e 81

GENERATE SUBSCHEMA statement ¢ 84
SCHEMA/DMCL/DICTIONARY NAME option e 84

GSAM databases *73

H

hashed access ¢ 40
HD unload utility 171,173
HDAM access *40, 65
in CA IDMS/DB e 65
HDAM databasee 136,139
determining entry for PROCESSING SEQUENCE
clause® 136
entry for ACCESS METHOD clause® 139
HIDAM access ¢40, 65
in CA IDMS/DB » 65
index database* 40
HIDAM databasee 136, 139
determining entry for PROCESSING SEQUENCE
clausee 136,139
entry for ACCESS METHOD clausee 139
hierarchy ¢ 24, 25, 44,62
access path e 25
and CA IDMS/DB sets ® 62
databaserecord e 24
physical hierarchy ¢ 24
restructuringwith secondaryindex e 44
rootsegment ¢ 24
HISAM access 39, 65
in CA IDMS/DB ¢ 65
HISAM databasee 136, 139
determining entry for PROCESSING SEQUENCE
clausee 136
determining the entry for PROCESSING
SEQUENCE clausee® 136

entry for ACCESS METHOD clause® 139

entry for PCB ACCESS METHOD clause* 136
HSAM access ® 38, 65

in CA IDMS/DB ¢ 65

sequenced and unsequenced ¢ 65
HSAM database® 136

determining the entry for PROCESSING

SEQUENCE clause® 136
entry for PCB ACCESS METHOD clause® 136

I

IDMS/R ¢ 56
IDMSDL1C module » 244,250,266
JCL to assemble e 266
IDMSDLFC module » 166, 247,249,250
in CICS environment ¢ 166
IDMSDLFE module » 163,244, 247,249
IDMSDLLD module e 251
IDMSDLLI module » 161,244,247
IDMSDLMG module ¢ 242
IDMSDLPG module ¢ 241
IDMSDLRC module » 162, 163, 244,247,249
DYN parameter ¢ 163
NOSPIE/NOSTAE/NOSTXIT parameter ¢ 162
TRACE parameter » 162
IDMSDLVC databaseproceduree 159, 244,249
IDMSDLVD databaseproceduree 159, 244,249
IDMSINTC module » 166,168, 247
in CICS environment » 166,168
IMS » 203
IMS/DC calls 203
IMS-DB (DL/1) databasecalls 203
message formatting services maps ¢ 203
index database* 40,42,104, 126,136
entry in PCB ACCESS METHOD clause*136
examples » 126
resource for RECORD SECTION e« 104
secondaryindex e 42
with HIDAM access ¢ 40
index DBD ¢ 43
INDEX NAME clausee® 126
INDEX SECTION 94,126
examples » 126
purpose 94,126
syntaxandrules ® 126
index suppressionexite253
Index suppressionexitroutinee 126
codingin|PSB ¢ 126

302 DLI Transparency User Guide

for DL/I sparseindexing e 126
indexed set e 61
indexing ¢ 39,40, 45
full e 45
sparsee 45
with HIDAM access ¢ 40
with HISAM access ¢ 39
INDICES parameter ¢ 126
INSERT RULES clausee® 139
intersection segments ¢ 47
inversion e 139
IPSB ¢ 76, 94
AREA SECTION 76
considerations for preparing ¢ 94
INDEX SECTION e 76
IPSB SECTION ¢ 76
produced by syntax generator ¢ 76
purpose ¢ 94
RECORD SECTION 76
special load 76
IPSB block » 204, 296
association with anapplication programe 204
validation 296
IPSB compiler e 14, 154,220,242, 262,295,296
as software component ¢ 242
error messages ® 220
executing ¢ 262
execution ¢ 154
fixed IPSB e 242
IDMSDLMG module ¢ 242
JCL ¢ 262
sourcestatements ¢ 295
subschema load module » 296
variable|PSB e 242
IPSB decompiler » 220,293, 295, 296
control statement ¢ 296
error messages ® 220
JCL » 293,295
load module ¢ 295
recompilation 296
run-time considerations ¢ 296
run-time operations ¢ 296
sourcestatements ¢ 295, 296
steps foruse ¢ 295
utility control statement ¢ 296
IPSB load module » 156, 251, 295
sourcestatements ¢ 295
IPSB NAME ISclause e 100
IPSB SECTION ¢ 94,100, 103

example ¢ 103
purpose ¢ 94
syntaxandrules ¢ 100
IPSB sourcestatements ¢ 295,296

ISEQ » 98
ISRT call 254
J

JCL » 257,258, 262, 266,277, 293
assemblinga DBD ¢ 258
assemblinga PSB e 258
assembling IDMSDL1Ce 266
databaseload e 277
executing batch applications 266
executing the IPSBcompiler e 262
executing the syntax generator ¢ 258
for IPSB Decompiler » 293
for load utility 277
for run-time interface » 266
for syntax generator ¢ 258
link editing batch applications ¢ 266
prefix (concatenated key) resolution 277
prefixupdate « 277
pre-load CALC processinge 277
pre-loadsorte 277
workfile hierarchicalsorte277
workfilesort/merge ¢ 277

L

languageinterface module ¢ 204
IDMSDLIF ¢ 204
IDMSDLLI ¢ 204
link editingunder CA IDMS/DB ¢ 204
LANGUAGE ISclause* 100
LCHILD statement ¢ 33, 40,43
for secondaryindexes ¢ 43
INDEX parameter ¢ 40, 43
NAME parameter ¢ 40
PTR parameter ¢ 43
LENGTH ISclausee® 106, 115,116, 122
in FIELD statement ¢ 115,116, 122
in RECORD statement ¢ 106
loadutilitye16,171,172,173,174, 175,176, 177,
178,181,186, 191, 193,194, 196,197, 199, 200,
220, 251,277
as software component ¢ 251
databaseload (Step 2) » 194
databaseload process ¢ 172

Index 303

error messages ® 220
HD formate 171,173
index maintenancee 173
IPSB and CA IDMS/DB load modules ¢ 174
JCL e 277
JCL for databaseload 277
JCL for prefix (concatenated key) resolution 277
JCL for prefixupdate » 277
JCL for pre-load CALC processinge 277
JCL for pre-loadsorte 277
JCL for workfile hierarchical sorte 277
JCL for workfilesort/merge * 277
modifying existing CA IDMS/DB schema ¢ 186
multi-databaselogical relationships ¢ 176
prefix (concatenated key) resolution (Step 4) o
197
prefix update (Step 6) ¢ 200
preload CALC processing (Step 1) » 191
preloadsortinge 178
preloadsorting (Step 1, Part2) e 193
preparatione 173
preparing DL/l data e 173
requirements ¢ 171
sample CA IDMS/DB schema module ¢ 186
sampleload IPSBe 181
samplesourcecode for databaseload e 178
schema requirements ¢ 176
special load IPSB 175
usingsyntax generator with ¢ 174
workfilefor HISAM logical Parents « 178
workfilehierarchical sort (Step 5) 199
workfilesort/merge (Step 3) » 196
workfilespaceallocation ¢177
local mode 156, 160,161, 162, 163
batch CV ¢ 160
executing the region controller ¢ 162
link editing DL/l applications e 161
modifying DL/l batchJCL » 163
logical child 29, 32, 33, 35, 36,47
physically paired 36
real 33,35
virtual ¢33
logical child segment » 104, 136
resource for PCB SECTION ¢ 136
resource for RECORD SECTION e 104
logical DBD » 46, 48
defining * 46
samplee 48
logical parente 29, 32,33,47

LOGICAL PARENT CONCATENATED KEY FIELD clause
e 116
logical parentconcatenated key FIELD statement e
106,116
logical relationships ® 29,47, 63,176
and CA IDMS/DB sets ¢ 63
in CA IDMS/DB * 63
inlogical DBDs #47
with load utility ¢ 176
logical sequencefield 122
LOGICAL SEQUENCE FIELD clausee® 122
logical twins 29
LOGICAL/PHYSICAL DESTINATION PARENT clausee
139
lower level programs ¢ 208
automatic scheduling e 208

M

main storage databases #73
Main storage databases (MSDBs).* 73
MAXIMUM ERUS parameter e 158
MAXIMUM |OAREA SIZE clause 100
MAXIMUM SSA SIZE clause® 100
modification statements ¢ 86
MODIFY AREA statement e 88
MODIFY RECORD statement ¢ 89
MODIFY SET statement ¢ 90
multiple positioning e 71

inCA IDMS/DB « 71

N
NULL VALUE clausee® 126

0]

OCTL » 98
OF SUBSCHEMA clausee 100
onlinemapping (OLM) e 203

P

parallel processing e 70
in CA IDMS/DB « 70
PARENT ISclausee® 139
parent segment e 22
child segment « 22
path callse71
PCB e 14,22,49,50,51,52,55, 156,208
data sensitivity 50
defininge 51

304 DLI Transparency User Guide

I/O area ® 55
passedto lower level program e 208
PCB statement ¢ 51
PROCOPT options e 50
SENSEG statement e 52
PCB ACCESS METHOD clause*136
PCB call processing ® 204
batch environment ¢ 204

CA IDMS DL Transparency programdefinition

table ¢ 204
CA IDMS/DB CA IDMS DLI Transparency
environment e 204
IMS-DC onlineenvironment « 204
scheduling e 204
PCB SECTION » 94, 135,136
purpose ¢ 94, 135
syntaxandrules ¢ 136
PCB statement ¢ 51, 136
KEYLEN parameter e 51
syntaxandrules for IPSBe 136
PCT » 168
physicalaccess methods ¢ 38, 39, 40
HDAM e 40
HIDAM e 40
HISAM e 39
HSAM e 38
random e 38
sequential ¢ 38
physical database* 36
physical DBD ¢ 40, 43
physicalhierarchy ¢ 24
physicaltwins ¢ 24
PLITDLI » 167,247
POINTER RECORD clause® 126
PPT e 168
prefix resolution 197
prefix update ¢ 200
preload CALC processing e 191,193
preloadsortinge 193
PROCOPT options e 50
Program Communication Block ¢ 22
program definitiontable e 204
addingprograms ¢ 204
automatic scheduling e 204
definition ¢ 204
entry ¢ 204
format e 204
load module ¢ 204

program definition table compiler (IDMSDLTG) ¢ 204

CDMSLIB load library(z/OS) » 204
core-image library (z/VSE) » 204
syntax e 204
program migration e 203
PROGRAM POOL parameter e 158
Program Specification Block 22
PROGRAM statements ¢ 159
PSB e 13,22,52,76,78,156

assembling with CA-supplied macros ¢ 76, 78

input to syntax generator ¢ 78
parallel processing e 52
PSBGEN statement 52
PSBGEN e 22
PSBGEN statement e 52

R

RECORD NAME clause* 106, 139
in RECORD statement ¢ 106
in SEGMENT statement ¢ 139
RECORD SECTION ¢ 94,104,122
example e 122
purpose ¢ 94
syntaxandrules e 104
RECORD statement » 106,122
examples e 122
syntaxandrules ¢ 106
record type ¢ 62
member as child segment ¢ 62
owner as parent segment ¢ 62
REENTRANT POOL parameter e 158
region controller e 162
relationships 24,29, 32,33, 35
bidirectional physical 35
bidirectionalvirtual ¢33
logical 29
unidirectional ¢ 32
REPL call 254
REPLACE RULES clausee®139
RHDCDLBE module ¢ 244,247,249,250
root segment e 24,39, 40,61, 136,139
CA IDMS/DB correspondences » 61

resource for PCB ACCESS method clausee 136,

139
resource for SEGMENT statement e 139
run unite 209
runtime environment e 243,244,247
as software component ¢ 243
batch environment ¢ 244

Index 305

CICS environment ¢ 247 see=physical access methods ¢ 38

IDMSDL1C module » 244 see=system definitionandinitialization IDMSDLTI
IDMSDLCI module ¢ 244 207
IDMSDLLI module » 244 SEGM statement » 27, 28, 32,33,43,47
IDMSDLRC module ¢ 244 BYTES parameter o 28
IDMSDLVC databaseproceduree 244 for secondaryindexes ¢ 43
IDMSDLVD databaseproceduree 244 PARENT parameter ¢ 28, 32
special-purposecomponents ¢ 244 RULES parameter » 28
run-time environment ¢ 155,157, 160,163, 169 SOURCE parameter ¢ 33,47
batch CV e 160 with logical DBD » 47
CICS e 163 segment ® 22,23,24,27,28,29,32,33,39,40,42,
command-level CICS » 163 47,61,62
local mode ¢ 160 and CA IDMS/DB record types » 61
modifying SYSGEN parameters e 157 child 22
testing DL/l applications ¢ 169 concatenated ¢ 47
run-time interfacee 15,211,266 concatenated keys ¢ 28
assembling IDMSDL1Ce 266 databaserecord e 24
back-end processor e 15 defining segments ¢ 27
error messages ® 211 deletable, in CA IDMS/DB e 62
executing batch applications 266 destination parent ¢ 47
front-end processor e 15 FIELD statement e 28
JCL » 266 fields 23
link editing batch applications ¢ 266 index pointer 40
intersection e 47
5 logical child « 29, 32, 33
schema ©57,76,176 Iogical parent°29, 32, 33
area s 57 logical twins 29
produced by syntax generator ¢ 76 occurrence ¢ 24
requirements for load utility e 176 parent e 22
Schema DDL ¢ 57 physical child e 24
searchfields 112,114 physical parente 24
FIELD statement for 112,114 physicaltwins ¢24
SEARCH FIELDS clause® 126 pointer 42
secondaryindex e 42,43, 44,45, 68, 139 pointer, inlogical DBD ¢ 47
defining e 43 root « 39,40
full and sparseindexing ¢ 45 rootsegment ¢ 24
inCA |DMS/DB * 68 SEGM statement o 27
pointer segment o 42 Segment Search Argument 28
restructuringa hierarchy ¢ 44 sequence fields * 28
sourcesegment o 42 sequenced and unsequenced child e 61
target segment o 42 source e 42
see=DML Data Manipulation Language ® 58 target ¢ 40,42
see=hierarchical directaccess method (HDAM) target, inlogical DBD * 47
HDAM databasee 136 SEGMENT NAME clausee 139
entry for PCB ACCESS METHOD clause ¢ 136 Segment Search Argument 28
see=hierarchicalindexed directaccess method SEGMENT STATEMENT e 139
(HIDAM) * 136 examples ¢ 139
entry for PCB ACCESS METHOD clause® 136 purpose ¢ 139

syntaxandrules e 139

306 DLI Transparency User Guide

SENSEG statement ¢ 52,126,136, 139 run-time, CA IDMS/DB » 213
SEQUENCE FIELD NAME clausee 114 run-time, DL/l » 213
sequence fields » 28,39, 40 STORAGE POOL parameter ® 159
concatenated keys ¢ 28 STORED PHYSICALLY/VIRTUALLY clausee 116
storage sequence for duplicatefields 28 subschema ¢ 57,76
unique or duplicatevalues ¢ 28 produced by syntax generator ¢ 76
SEQUENCE ISclausee 139 Subschema DDL ¢ 57
sequenced child segments ¢ 61 subschema load module * 296
set e 56,61,62,63, 65,68 SUBSEQUENCE FIELDS ¢ 126
and DL/l hierarchies ¢ 62 syntax generator * 13,75,76,77,78,79, 81,83, 84,

and DL/I logicalrelationships ® 63
andsequenced child segments ¢ 61
and unsequenced child segments ¢ 61
indexed ¢ 65, 68
junctionrecord, as logical child 63
location mode ¢ 63, 65
member ¢ 56
member as child segment ¢ 62
multipleownership e 56
owner ¢ 56
owner as parent segment ¢ 62
owner, as logicalparente 63
owner, as physical parente 63
sorted ¢ 61
unsorted * 61

sharedindex e 126

software components ¢ 241, 242,243,251
IPSB compiler e 242
load utility 251
runtime environment e 243
syntax generator ¢ 241

SOURCE parameter ¢ 136,139
inlogical database 139
inphysical database ® 136,139

SOURCE RECORD clause®126

SPACE » 98

sparseindex e 126

sparseindexinge 45,72,174, 253,254
CA IDMS DLI Transparency supporte 72
null valuecriteria ¢ 254
with load utility e 174

special loadIPSB 76,175,181
availability of ¢ 175
PROCOPT for e 175
samplee 181

SSA ¢ 28,54,71

qualified and unqualified,in CAIDMS/DB » 71

STARTING POSITION clause* 114,116
status codes ¢ 213

85, 86, 87, 88, 89,90, 174, 220, 241,258
ADD AREA statement e 87
areanames ¢ 81
area usage mode ¢ 88
as software component ¢ 241
assemblinga DBD ¢ 258
assemblinga PSB e 258
codingstatements ¢ 79
control statements ¢ 79
DBD control blocks ¢ 78
error messages ¢ 220
executing the syntax generator e 258
execution ¢ 90
GENERATE DMCL statement ¢ 84
GENERATE |IPSB statement ¢ 85
GENERATE LOAD IPSB statement e 85
GENERATE LOAD SCHEMA statement ¢ 83
GENERATE SCHEMA statement ¢ 83
GENERATE statement e 81
GENERATE statements ¢ 79
GENERATE SUBSCHEMA statement ¢ 84
IDMSDLPG module ¢ 241
index records inseparatearea ¢ 87
input e 75
JCL » 258
modification statements 79, 86
MODIFY AREA statement e 88
MODIFY RECORD statement e 89
MODIFY SET statement ¢ 90
operatione 77
output ¢ 76
preparationforloadutility e 174
preparinginpute 77
PSB control block e 78
record names ¢ 81
setnames ¢ 81

SYSGEN parameters ¢ 157,158, 159

MAXIMUM ERUS e 158
PROGRAM POOL ¢ 158

Index 307

PROGRAM statements e 159

REENTRANT POOL ¢ 158

STORAGE POOL ¢ 159
system definition and initialization (IDMSDLTI) e 207
system execution ¢ 208
system generation ¢ 204

ADD PROGRAM statement ¢ 204

CA IDMS/DB 204

T

TARGET RECORD clausee® 126
target segment » 126
TERM call 209
termination processing e 209
THRU SET clause*126, 139

in INDEX statement ¢ 126

in SEGMENT statement e 139

U

unidirectional relationships ® 32
unsequenced child segments ¢ 61
USAGE clausee 114
USAGE-MODE clause* 103

USE IS clause* 139

USING INDEXED-SET clause®126
utility control statement ¢ 296

Vv
virtual logical child segment 112,120, 122
w

workfilehierarchical sorte 199
workfilesort/merge ¢ 196

X

XDFLD statement e 43
DDATA parameter » 43
for secondaryindexes ¢ 43
NAME parameter ¢ 43
SEGMENT parameter ¢ 43
SRCH parameter ¢ 43

308 DLI Transparency User Guide

	CA IDMS DLI Transparency DLI Transparency User Guide
	CA Technologies Product References
	Contact CA Technologies
	Contents
	1: Introduction
	Overview
	Introduction to CA IDMS DLI Transparency
	CA IDMS DLI Transparency Concepts and Facilities
	The CA IDMS DLI Transparency Syntax Generator
	The IPSB Compiler
	Run-Time Interface
	The CA IDMS DLI Transparency Load Utility

	Usage Requirements
	Syntax Diagram Conventions

	2: DL/I and CA IDMS/DB
	About This Chapter
	The DL/I Environment
	Segments - The Basic Unit Of Data
	Hierarchies - Physical Relationships Between Segments
	Root Segments and Database Records
	Hierarchical Access Path

	Defining Segments
	SEGM Statement
	FIELD Statement

	Logical Relationships Between Segments
	Unidirectional Relationship
	Bidirectional Virtual Relationship
	Bidirectional Physical Relationship

	Physical Databases
	Physical Access Methods
	HSAM Access
	HISAM Access
	HDAM Access
	HIDAM Access

	Secondary Indexing (Index Databases)
	Defining Secondary Indexes
	Restructuring a Hierarchy
	Full and Sparse Indexing

	Logical Databases
	Defining a Logical Database
	Intersection and Concatenated Segments
	Sample Logical Database

	Program Communication Blocks
	Data Sensitivity and the PROCOPT Options
	Defining a PCB

	Program Specification Block
	Parallel Processing

	Definition Summary
	DL/I Commands
	Basic Operations
	Call Format
	Segment Search Arguments
	Program Communication
	Database Positioning

	The CA IDMS/DB Environment
	Schema: The Top-Level Definition
	Subschema: The Second-Level Definition
	Defining CA IDMS/DB Databases
	Executing CA IDMS/DB Applications
	Basic CA IDMS/DB Components

	DL/I and CA IDMS/DB Correspondences
	Segments and Record Types
	Sequenced and Unsequenced Child Segments
	Deletable Segments
	Hierarchies and Sets
	Logical Relationships and Sets
	DL/I Access Methods in CA IDMS/DB
	DL/I Secondary Indexes in CA IDMS/DB
	Parallel Processing Support in CA IDMS/DB
	DL/I Calls in CA IDMS/DB
	Usage Considerations

	Unsupported DL/I Features

	3: CA IDMS DLI Transparency Syntax Generator
	About This Chapter
	The CA IDMS DLI Transparency Syntax Generator
	Syntax Generator Input
	Syntax Generator Output
	Syntax Generator Operation

	Preparing Syntax Generator Input
	DBD Control Blocks
	PSB Control Block

	Coding Syntax Generator Statements
	Control Statements
	GENERATE Statement
	GENERATE SCHEMA Statement
	GENERATE DMCL Statement
	GENERATE SUBSCHEMA Statement
	GENERATE IPSB Statement
	Modification Statements
	ADD AREA Statement
	MODIFY AREA Statement
	MODIFY RECORD Statement
	MODIFY SET Statement

	Executing the CA IDMS DLI Transparency Syntax Generator

	4: IPSB Compiler
	About This Chapter
	Considerations For Preparing IPSB Compiler Input
	Compiler-Directive Statements
	IPSB SECTION
	AREA SECTION
	RECORD SECTION
	RECORD Statement
	FIELD Statement
	USAGE clause
	SEQUENCE FIELD statement
	FIELD statement
	LOGICAL PARENT FIELD statement
	PHYSICAL PARENT FIELD statement
	LOGICAL SEQUENCE FIELD statement

	INDEX SECTION
	PCB SECTION
	PCB Statement
	SEGMENT Statement

	Executing the IPSB Compiler

	5: CA IDMS DLI Transparency Run-Time Environment
	About This Chapter
	DL/I and CA IDMS DLI Transparency Run-Time Environments
	Modifying System Generation Parameters
	Maximum Number of CA IDMS DLI Transparency Users
	Program Pool Size
	Reentrant Pool Size
	Storage Pool Size
	Additional PROGRAM Statements

	Batch Considerations
	Link Editing Batch DL/I Applications
	Executing the CA IDMS DLI Transparency Region Controller
	Modifying Existing DL/I Batch JCL

	CICS Considerations
	DL/I CICS Environment
	CA IDMS DLI Transparency CICS Environment
	Establishing the CA IDMS DLI Transparency CICS Environment
	Assemble CICSOPTS
	Prepare to run IDMSINTC in CICS
	Assemble the language interface

	Testing the DL/I Application

	6: CA IDMS DLI Transparency Load Utility
	About This Chapter
	Using the CA IDMS DLI Transparency Load Utility
	The Database Load Process
	Preparing To Run the Load Utility
	Preparation of DL/I Data
	CA IDMS DLI Transparency Index Maintenance
	Using the CA IDMS DLI Transparency Syntax Generator
	Preparation of the IPSB and CA IDMS/DB Load Modules
	Special Load IPSBs
	PROCOPT for Special Load IPSBs
	Availability of the IPSB Load Module
	CA IDMS/DB Schema Requirements
	Multi-Database Logical Relationships
	Workfile Space Allocation
	Workfile Usage for HISAM Logical Parents
	Preload Sorting
	Diagnostic and Error Messages

	Sample Source Code For Database Load
	Sample DL/I PSB and DBDs
	Sample Load IPSB
	Sample CA IDMS/DB Schema Module

	Step 1: Preload CALC Processing
	Operation
	Report
	Preload Sorting (step 1, part 2)

	Step 2: Database Load
	Operation
	Report

	Step 3: Workfile Sort/Merge
	Operation

	Step 4: Prefix (Concatenated Key) Resolution
	Operation
	Report

	Step 5: Workfile Hierarchical Sort
	Operation

	Step 6: Prefix Update
	Operation
	Report

	7: Using CA IDMS DLI Transparency Within CA IDMS/DB Programs
	About This Chapter
	Data Communications
	Language Interface
	Schedule (PCB) Call Processing
	The CA IDMS DLI Transparency Program Definition Table
	Operational Considerations
	System Definition and Initialization
	System Execution
	Linking to lower level programs
	Termination processing

	A: CA IDMS DLI Transparency Messages and Codes
	What This Appendix is About
	Run-Time Messages and Codes
	Run-Time Abend Codes
	DL/I Status Codes and Equivalent CA IDMS/DB Codes

	Non-Run-Time Messages and Codes

	B: CA IDMS DLI Transparency Software Components
	About This Appendix
	The Syntax Generator
	The IPSB Compiler
	Runtime Interface
	Special-Purpose Components
	IDMSDLRC module
	IDMSDLLI module
	IDMSDL1C module
	IDMSDL1V module
	IDMSDLHI module
	IDMSDLHC module
	IDMSDLCV module
	IDMSDLHP module
	IDMSDLPV module
	IDMSDLHA module
	IDMSDLAV module
	IDMSDLVC database procedure
	IDMSDLVD database procedure

	CA IDMS DLI Transparency Front End
	IDMSDLFE module
	IDMSDLFC module

	CA IDMS DLI Transparency Back End

	The Load Utility

	C: Index Suppression Exit Support
	About This Appendix
	Index Suppression Exit Support
	Run Time Operation
	Interface

	D: CA IDMS DLI Transparency JCL
	About This Chapter
	Syntax Generator JCL
	Assemble a PSB
	Assemble DBDs
	Execute the Syntax Generator

	IPSB Compiler JCL
	Run-Time Interface JCL
	Link Edit Batch Call-Level DL/I Applications
	Link Edit Batch Command-Level DL/I (EXEC DLI) Applications
	Execute DL/I Batch Application Program
	Assemble IDMSDL1C For CICS Call-Level DL/I Usage (z/OS)
	Assemble IDMSDL1V For CICS Call-Level DL/I Usage (z/VSE)
	Assemble Language Interfaces For Command-Level DL/I (EXEC DLI) Usage

	Load Utility JCL
	Preload CALC Processing (Step 1)
	Database Load (Step 2)
	Workfile Sort/Merge (Step 3)
	Prefix (Concatenated Key) Resolution (Step 4)
	Workfile Hierarchical Sort (Step 5)
	Prefix Update (Step 6)

	IPSB Decompiler JCL

	E: CA IDMS DLI Transparency IPSB Decompiler
	About This Appendix
	Using the IPSB Decompiler
	IPSB Decompiler Run-Time Operations
	IPSB Decompiler Run-Time Considerations

	Index

