
 

 

DLI Transparency User Guide 
Release 18.5.00 

CA IDMS™ DLI Transparency 

 

 

 

 



 

 

 

This  Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to 
as  the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time. This 

Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or 
duplicated, in whole or in part, without the prior wri tten consent of CA.   

If you are a  licensed user of the software  product(s) addressed in the Documentation, you may print or otherwise make 
available a  reasonable number of copies of the Documentation for internal use by you and your employees in connection with 
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.  

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable 

l i cense for such software remains in full force and effect. Should the license te rminate for any reason, i t is your responsibility to 
certi fy in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.  

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY 
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, 

DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST 
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE 
POSSIBILITY OF SUCH LOSS OR DAMAGE.  

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such 

l icense agreement is not modified in any way by the terms of this notice.  

The manufacturer of this Documentation is CA.  

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions 

set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or 
their successors.  

Copyright © 2013 CA. Al l  rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to 
their respective companies.  

 



 

 

CA Technologies Product References 

This document references the following CA product: 

■ CA IDMS™/DB Database 
 

Contact CA Technologies 

Contact CA Support 

For your convenience, CA Technologies provides one site where you can access the 

information that you need for your Home Office, Small Business, and Enterprise CA 
Technologies products. At http://ca.com/support, you can access the following 
resources: 

■ Online and telephone contact information for technical assistance and customer 
services 

■ Information about user communities and forums 

■ Product and documentation downloads  

■ CA Support policies and guidelines  

■ Other helpful resources appropriate for your product 

Providing Feedback About Product Documentation 

If you have comments or questions about CA Technologies product documentation, you 

can send a message to techpubs@ca.com. 

To provide feedback about CA Technologies product documentation, complete our 
short customer survey which is available on the CA Support website at 

http://ca.com/docs.  
 

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs




 

Contents  5  

 

Contents 
 

Chapter 1: Introduction 11 

Overview ........................................................................................................................................................................................ 11 

Introduction to CA IDMS DLI Transparency............................................................................................................................. 11 

CA IDMS DLI Transparency Concepts and Facilities ............................................................................................................... 12 

The CA IDMS DLI Transparency Syntax Generator ......................................................................................................... 13 

The IPSB Compiler ................................................................................................................................................................ 14 

Run-Time Interface .............................................................................................................................................................. 15 

The CA IDMS DLI Transparency Load Utility .................................................................................................................... 16 

Usage Requirements.................................................................................................................................................................... 18 

Syntax Diagram Conventions ..................................................................................................................................................... 18 

Chapter 2: DL/I and CA IDMS/DB 21 

About This Chapter ...................................................................................................................................................................... 21 
The DL/I Environment ................................................................................................................................................................. 22 

Segments - The Basic Unit Of Data............................................................................................................................................ 23 

Hierarchies - Physical Relationships Between Segments  ...................................................................................................... 24 

Root Segments and Database Records............................................................................................................................. 24 

Hierarchical Access Path ..................................................................................................................................................... 25 

Defining Segments ....................................................................................................................................................................... 27 

SEGM Statement .................................................................................................................................................................. 27 

FIELD Statement ................................................................................................................................................................... 28 

Logical Relationships Between Segments ................................................................................................................................ 29 

Unidirectional Relationship ................................................................................................................................................ 32 

Bidirectional Virtual Relationship...................................................................................................................................... 33 

Bidirectional Physical Relationship ................................................................................................................................... 35 

Physical Databases ....................................................................................................................................................................... 36 

Physical Access Methods ............................................................................................................................................................ 38 

HSAM Access......................................................................................................................................................................... 38 

HISAM Access........................................................................................................................................................................ 39 

HDAM Access ........................................................................................................................................................................ 40 

HIDAM Access ....................................................................................................................................................................... 40 

Secondary Indexing (Index Databases) .................................................................................................................................... 42 
Defining Secondary Indexes ............................................................................................................................................... 43 

Restructuring a Hierarchy ................................................................................................................................................... 44 

Full and Sparse Indexing ..................................................................................................................................................... 45 

Logical Databases ......................................................................................................................................................................... 46 



 

 

6  DLI Transparency User Guide 

 

Defining a Logical Database ............................................................................................................................................... 46 

Intersection and Concatenated Segments ....................................................................................................................... 47 

Sample Logical Database .................................................................................................................................................... 48 

Program Communication Blocks ............................................................................................................................................... 49 

Data Sensitivity and the PROCOPT Options..................................................................................................................... 50 

Defining a PCB....................................................................................................................................................................... 51 

Program Specification Block....................................................................................................................................................... 52 

Parallel Processing ............................................................................................................................................................... 52 

Definition Summary ..................................................................................................................................................................... 52 

DL/I Commands ............................................................................................................................................................................ 53 

Basic Operations................................................................................................................................................................... 53 

Call Format ............................................................................................................................................................................ 53 
Segment Search Arguments ............................................................................................................................................... 54 

Program Communication.................................................................................................................................................... 55 

Database Positioning ........................................................................................................................................................... 56 

The CA IDMS/DB Environment .................................................................................................................................................. 56 

Schema: The Top-Level Definition..................................................................................................................................... 57 

Subschema: The Second-Level Definition........................................................................................................................ 57 

Defining CA IDMS/DB Databases....................................................................................................................................... 57 

Executing CA IDMS/DB Applications................................................................................................................................. 58 

Basic CA IDMS/DB Components  ........................................................................................................................................ 58 

DL/I and CA IDMS/DB Correspondenc es.................................................................................................................................. 59 

Segments and Record Types  .............................................................................................................................................. 61 

Sequenc ed and Unsequenc ed Child Segments ............................................................................................................... 61 

Deletable Segments ............................................................................................................................................................. 62 

Hierarchies and Sets ............................................................................................................................................................ 62 

Logical Relationships and Sets ........................................................................................................................................... 63 

DL/I Access Methods in CA IDMS/DB ............................................................................................................................... 65 

DL/I Secondary Indexes in CA IDMS/DB ........................................................................................................................... 68 

Parallel Processing Support in CA IDMS/DB  .................................................................................................................... 70 

DL/I Calls in CA IDMS/DB .................................................................................................................................................... 71 
Usage Considerations .......................................................................................................................................................... 72 

Unsupported DL/I Features  ........................................................................................................................................................ 73 

Chapter 3: CA IDMS DLI Transparency Syntax Generator 75 

About This Chapter ...................................................................................................................................................................... 75 

The CA IDMS DLI Transparency Syntax Generator ................................................................................................................. 75 

Syntax Generator Input....................................................................................................................................................... 75 

Syntax Generator Output ................................................................................................................................................... 76 

Syntax Generator Operation .............................................................................................................................................. 77 

Preparing Syntax Generator Input ............................................................................................................................................ 77 



 

 

Contents  7  

 

DBD Control Blocks .............................................................................................................................................................. 78 

PSB Control Block ................................................................................................................................................................. 78 

Coding Syntax Generator Statements  ...................................................................................................................................... 79 

Control Statements ...................................................................................................................................................................... 79 

GENERATE Statement.................................................................................................................................................................. 81 

GENERATE SCHEMA Statement ................................................................................................................................................. 83 

GENERATE DMCL Statement ...................................................................................................................................................... 84 

GENERATE SUBSCHEMA Statement.......................................................................................................................................... 84 

GENERATE IPSB Statement......................................................................................................................................................... 85 

Modification Statements  ............................................................................................................................................................ 86 

ADD AREA Statement .......................................................................................................................................................... 87 

MODIFY AREA Statement ................................................................................................................................................... 88 
MODIFY RECORD Statement .............................................................................................................................................. 89 

MODIFY SET Statement ....................................................................................................................................................... 90 

Executing the CA IDMS DLI Transparency Syntax Generator  ............................................................................................... 90 

Chapter 4: IPSB Compiler 93 

About This Chapter ...................................................................................................................................................................... 93 

Considerations For Preparing IPSB Compiler Input................................................................................................................ 94 

Compiler-Directive Statements ................................................................................................................................................. 98 

IPSB SECTION ..............................................................................................................................................................................100 

AREA SECTION.............................................................................................................................................................................103 

RECORD SECTION .......................................................................................................................................................................104 

RECORD Statement ............................................................................................................................................................106 

FIELD Statement .................................................................................................................................................................112 

INDEX SECTION ...........................................................................................................................................................................126 

PCB SECTION ...............................................................................................................................................................................135 

PCB Statement ....................................................................................................................................................................136 

SEGMENT Statement .........................................................................................................................................................139 

Executing the IPSB Compiler ....................................................................................................................................................154 

Chapter 5: CA IDMS DLI Transparency Run-Time Environment 155 

About This Chapter ....................................................................................................................................................................155 

DL/I and CA IDMS DLI Transparency Run-Time Environments  ..........................................................................................156 

Modifying System Generation Parameters  ...........................................................................................................................157 

Maximum Number of CA IDMS DLI Transparency Users ............................................................................................158 

Program Pool Size ..............................................................................................................................................................158 

Reentrant Pool Size............................................................................................................................................................158 

Storage Pool Size ................................................................................................................................................................159 

Additional PROGRAM Statements  ..................................................................................................................................159 

Batch Considerations.................................................................................................................................................................160 



 

 

8  DLI Transparency User Guide 

 

Link Editing Batch DL/I Applications ...............................................................................................................................161 

Executing the CA IDMS DLI Transparency Region Controller .....................................................................................162 

Modifying Existing DL/I Batch JCL....................................................................................................................................163 

CICS Considerations ...................................................................................................................................................................163 

DL/I CICS Environment ......................................................................................................................................................164 

CA IDMS DLI Transparency CICS Environment ..............................................................................................................166 

Establishing the CA IDMS DLI Transparency CICS Environment  ................................................................................167 

Testing the DL/I Application .....................................................................................................................................................169 

Chapter 6: CA IDMS DLI Transparency Load Utility 171 

About This Chapter ....................................................................................................................................................................171 

Using the CA IDMS DLI Transparency Load Utility................................................................................................................171 
The Database Load Process ......................................................................................................................................................172 

Preparing To Run the Load Utility ...........................................................................................................................................173 

Preparation of DL/I Data ...................................................................................................................................................173 

CA IDMS DLI Transparency Index Maintenance ...........................................................................................................173 

Using the CA IDMS DLI Transparency Syntax Generator.............................................................................................174 

Preparation of the IPSB and CA IDMS/DB Load Modules ...........................................................................................174 

Special Load IPSBs ..............................................................................................................................................................175 

PROCOPT for Special Load IPSBs .....................................................................................................................................175 

Availability of the IPSB Load Module ..............................................................................................................................175 

CA IDMS/DB Schema Requirements  ...............................................................................................................................176 

Multi-Database Logical Relationships.............................................................................................................................176 

Workfile Space Allocation.................................................................................................................................................177 

Workfile Usage for HISAM Logical Parents ....................................................................................................................178 

Preload Sorting ...................................................................................................................................................................178 

Diagnostic and Error Messages........................................................................................................................................178 

Sample Source Code For Database Load................................................................................................................................178 

Sample DL/I PSB and DBDs ...............................................................................................................................................179 

Sample Load IPSB ...............................................................................................................................................................181 

Sample CA IDMS/DB Schema Module ............................................................................................................................186 
Step 1 : Preload CALC Processing .............................................................................................................................................191 

Operation.............................................................................................................................................................................191 

Report...................................................................................................................................................................................192 

Preload Sorting (step 1, part 2)........................................................................................................................................193 

Step 2 : Database Load ...............................................................................................................................................................194 

Operation.............................................................................................................................................................................194 

Report...................................................................................................................................................................................195 

Step 3 : Workfile Sort/Merge ....................................................................................................................................................196 

Operation.............................................................................................................................................................................197 

Step 4 : Prefix (Concatenated Key) Resolution ......................................................................................................................197 



 

 

Contents  9  

 

Operation.............................................................................................................................................................................198 

Report...................................................................................................................................................................................198 

Step 5 : Workfile Hierarchical Sort ...........................................................................................................................................199 

Operation.............................................................................................................................................................................199 

Step 6 : Prefix Update.................................................................................................................................................................200 

Operation.............................................................................................................................................................................200 

Report...................................................................................................................................................................................201 

Chapter 7: Using CA IDMS DLI Transparency Within CA IDMS/DB Programs 203 

About This Chapter ....................................................................................................................................................................203 

Data Communications ...............................................................................................................................................................203 

Language Interface.....................................................................................................................................................................204 
Schedule (PCB) Call  Processing ................................................................................................................................................204 

The CA IDMS DLI Transparency Program Definition Table .................................................................................................204 

Operational Considerations......................................................................................................................................................207 

System Definition and Initialization ................................................................................................................................207 

System Execution ...............................................................................................................................................................208 

Appendix A: CA IDMS DLI Transparency Messages and Codes 211 

What This Appendix is About ...................................................................................................................................................211 

Run-Time Messages and Codes ...............................................................................................................................................211 

Run-Time Abend Codes .....................................................................................................................................................212 

DL/I Status Codes and Equivalent CA IDMS/DB Codes  ................................................................................................213 

Non-Run-Time Messages and Codes ......................................................................................................................................220 

Appendix B: CA IDMS DLI Transparency Software Components 241 

About This Appendix..................................................................................................................................................................241 

The Syntax Generator................................................................................................................................................................241 

The IPSB Compiler ......................................................................................................................................................................242 

Runtime Interface ......................................................................................................................................................................243 
Special-Purpose Components  ..........................................................................................................................................244 

CA IDMS DLI Transparency Front End.............................................................................................................................249 

CA IDMS DLI Transparency Back End ..............................................................................................................................250 

The Load Utility...........................................................................................................................................................................251 

Appendix C: Index Suppression Exit Support 253 

About This Appendix..................................................................................................................................................................253 

Index Suppression Exit Support ...............................................................................................................................................253 

Run Time Operation...................................................................................................................................................................254 



 

 

10  DLI Transparency User Guide 

 

Interface.......................................................................................................................................................................................254 

Appendix D: CA IDMS DLI Transparency JCL 257 

About This Chapter ....................................................................................................................................................................257 

Syntax Generator JCL.................................................................................................................................................................258 

Assemble a PSB...................................................................................................................................................................258 

Assemble DBDs ...................................................................................................................................................................259 

Execute the Syntax Generator  .........................................................................................................................................260 

IPSB Compiler JCL .......................................................................................................................................................................262 

Run-Time Interface JCL..............................................................................................................................................................266 

Link Edit Batch Call -Level DL/I Applications...................................................................................................................266 

Link Edit Batch Command-Level DL/I (EXEC DLI) Applications ...................................................................................268 
Execute DL/I Batch Application Program .......................................................................................................................269 

Assemble IDMSDL1C For CICS Call -Level DL/I Usage (z/OS)  .......................................................................................273 

Assemble IDMSDL1V For CICS Call -Level DL/I Usage (z/VSE)  .....................................................................................274 

Assemble Language Interfaces For Command-Level DL/I (EXEC DLI) Usage ...........................................................275 

Load Utility JCL............................................................................................................................................................................277 

Preload CALC Processing (Step 1)....................................................................................................................................277 

Database Load (Step 2)  .....................................................................................................................................................281 

Workfile Sort/Merge (Step 3)  ..........................................................................................................................................285 

Prefix (Concatenated Key) Resolution (Step 4) .............................................................................................................286 

Workfile Hierarchical Sort (Step 5)..................................................................................................................................288 

Prefix Update (Step 6) .......................................................................................................................................................290 

IPSB Decompiler JCL...................................................................................................................................................................293 

Appendix E: CA IDMS DLI Transparency IPSB Decompiler 295 

About This Appendix..................................................................................................................................................................295 

Using the IPSB Decompiler .......................................................................................................................................................295 

IPSB Decompiler Run-Time Operations..................................................................................................................................296 

IPSB Decompiler Run-Time Considerations ...........................................................................................................................296 

Index 299 

  



 

Chapter 1: Introduction  11  

 

Chapter 1: Introduction 
 

This section contains the following topics: 

Overview (see page 11) 
Introduction to CA IDMS DLI Transparency (see page 11) 
CA IDMS DLI Transparency Concepts and Facil ities  (see page 12) 

Usage Requirements (see page 18) 
Syntax Diagram Conventions  (see page 18) 

 

Overview 

CA IDMS DLI Transparency allows DL/I application programs to perform processing 

against CA IDMS/DB databases. DL/I applications can run in the IMS-DB batch or DL/I 
batch environment or the DL/I CICS environment. 

Note: DL/I refers to the DBMS in the z/OS or z/VSE environment. 
 

This chapter presents an overview of the components you use to set up your CA IDMS 
DLI Transparency environment to access a CA IDMS/DB database. CA IDMS Database 

Transparency Option for DLI permits application programs to execute against a CA 
IDMS/DB Database. This guide explains how to use CA IDMS Transparency for DLI and 
includes all phases from designing and loading the CA IDMS/DB database(s) to executing 
the DL/I application programs. 

 

This guide is intended to serve as a comprehensive reference for CA IDMS DLI 

Transparency. 

This document is intended for the person responsible for setting up the CA IDMS 
Transparency for DLI environment who has a working knowledge of DL/I. 

 

Introduction to CA IDMS DLI Transparency 

What is CA IDMS DLI Transparency 

CA IDMS DLI Transparency provides the basis for a gradual and orderly migration from 
DL/I to CA IDMS/DB.  Specifically, it lets you: 

■ Convert existing DL/I database definitions to equivalent CA IDMS/DB database 

definitions 

■ Load the existing data from the DL/I databases to the new CA IDMS/DB database 

■ Produce a run-time interface module to translate DL/I database requests in existing 
applications to equivalent CA IDMS/DB database requests  

 



CA IDMS DLI Transparency Concepts and Facilities  

 

12  DLI Transparency User Guide 

 

CA IDMS DLI Transparency allows you to move from the DL/I environment to the CA 
IDMS/DB environment without having to sacrifice the investment in your existing DL/I 

applications. 

Once you have used CA IDMS DLI Transparency to make the transition to CA IDMS/DB, 
you can convert your DL/I appli cations to native CA IDMS/DB applications at your own 

pace and in keeping with your site's manpower and machine resources. 
 

CA IDMS DLI Transparency is Transparent to Applications 

Because CA IDMS DLI Transparency is generally transparent to DL/I applications, you 
have to perform little program alteration. Recompilation of DL/I programs is required 
only if they contain nonsupported features such as logging calls. Batch and CICS 

programs must be relinked with the CA IDMS DLI Transparency language interface. 
 

DL/I Application Conversion Not Required 

Since your DL/I applications will continue to run as expected, you do not have to convert 
them. However, you may want to convert them to take advantage of CA IDMS/DB's 
advanced features, including its relational capabilities. Additionally, you may want to 

develop your own native CA IDMS/DB applications to run against the migrated DL/I 
databases. 

Note: You cannot use CA IDMS/DB facil ities to redesign a migrated DL/I database. The 
CA IDMS DLI Transparency data structures must be maintained to ensure that your DL/I 

applications will continue to work as expected.  
 

The remainder of this section discusses the following topics: 

■ CA IDMS DLI Transparency concepts and facil ities 

■ Usage requirements 
 

CA IDMS DLI Transparency Concepts and Facilities 

CA IDMS DLI Transparency is an Interface to CA IDMS/DB 

CA IDMS DLI Transparency serves as an interface between DL/I application programs 
and CA IDMS/DB databases. The DL/I applications can be written in COBOL, Assembler, 
or PL/I. 

 

What CA IDMS DLI Transparency Does at Run Time 

At program run time, CA IDMS DLI Transparency intercepts DL/I retrieval and update 
requests and translates them into CA IDMS/DB requests. The CA IDMS/DB requests are 
then processed by the CA IDMS/DB database management system (DBMS) for retrieval 
or database update. 

 



CA IDMS DLI Transparency Concepts and Facilities 

 

Chapter 1: Introduction  13  

 

For data retrieval, CA IDMS/DB returns requested data and/or status information, 
including updated program control block (PCB) information, to CA IDMS DLI 

Transparency. CA IDMS DLI Transparency pl aces the data in a DL/I segment format 
expected by the application. For updates, CA IDMS DLI Transparency places the updates 
in CA IDMS/DB record format and transmits them to CA IDMS/DB to apply to the 

database. CA IDMS/DB, in turn, sends the resulting status information to CA IDMS DLI 
Transparency for communication to the application. 

 

CA IDMS DLI Transparency Components 

CA IDMS DLI Transparency consists of the following major components: 

■ The CA IDMS DLI Transparency syntax generator 

■ The interface program specification block (IPSB) compiler  
 

■ The CA IDMS DLI Transparency run-time interface 

■ The CA IDMS DLI Transparency load util ity 

Each component is described briefly below and in detail  in Appendix B, 'CA IDMS DLI 
Transparency Software Components.' 

 

The CA IDMS DLI Transparency Syntax Generator 

What is the CA IDMS DLI Transparency Syntax Generator 

The CA IDMS DLI Transparency syntax generator helps to automate the conversion 
process on the database definition level. It accepts as input control blocks (load 

modules) for the program specification blocks (PSBs) and database definitions (DBDs). 
These are used by the DL/I application against the existing DL/I database(s). 

 

The Syntax Generator Produces Source Statements 

For output, the syntax generator produces the source statements necessary to create 
the interface program specification block (IPSB). It also produces source definitions 

needed to create an appropriate schema, DMCL, and subschema. Collectively, the 
schema, DMCL, and subschema definitions represent the database definitions for the 
new CA IDMS/DB database. 

 



CA IDMS DLI Transparency Concepts and Facilities  

 

14  DLI Transparency User Guide 

 

After producing the sets of source statements, you can check them and modify them 
(particularly the DMCL), to address capacity planning and performance a nd tuning 

concerns.You can then input the source statements to the CA IDMS/DB compilers and 
the IPSB compiler, respectively. 

 

 

Figure 1. CA IDMS DLI Transparency syntax generator 
 

The IPSB Compiler 

What is the IPSB Compiler 

The interface program specification block (IPSB) compiler establishes the 
correspondences between the CA IDMS/DB database and the DL/I databases, as 
expected by the DL/I application. 

 

The IPSB Compiler Accepts Source Statements 

The compiler accepts as input the source statements produced by the CA IDMS DLI 

Transparency syntax generator, after you have verified and modified these statements 
as necessary. The compiler also uses the associated subschema load module. 

 

The IPSB Compiler Produces IPSB Load Module 

For output, the compiler produces IPSB load modules used by the CA IDMS DLI 
Transparency run-time interface. The IPSB load modules provide the information 

required to convert the application's DL/I database requests to CA IDMS/DB database 
requests. They also provide the control information required to update the application's 
DL/I program communication blocks (PCBs). The updated PCBs are used at run time to 

pass status information to the application program. 
 



CA IDMS DLI Transparency Concepts and Facilities  

 

Chapter 1: Introduction  15  

 

 

 

Figure 2. Role of the IPSB compiler in CA IDMS DLI Transparency  
 

Run-Time Interface 

What the Run-Time Interface Does 

The CA IDMS DLI Transparency run-time interface accepts database calls from a DL/I 
application program, issues corresponding CA IDMS/DB calls, and returns data and/or 
status information to the DL/I application program. Note that a single DL/I call  can result 

in several CA IDMS/DB requests. More specifically, CA IDMS DLI Transparency 
processing is divided between the interface's front-end and back-end processors. 

 

Front-End Processor 

The front-end processor intercepts DL/I requests from the application program, 

reformats the requests, and passes them to the back-end processor. When the back-end 
processor finishes with a request, it passes the results (data retrieved from the database 
and/or status information) back to the front-end processor. It also passes back PCB 
status information. The front-end processor then returns the status information to the 

DL/I application program. 
 



CA IDMS DLI Transparency Concepts and Facilities  

 

16  DLI Transparency User Guide 

 

Back-End Processor 

Upon receiving a DL/I request from the front-end processor, the back-end processor 

accesses the IPSB load module to formulate the corresponding CA IDMS/DB requests. 
The back-end processor then passes the request to CA IDMS/DB. When CA IDMS/DB 
performs the requested operation(s), the back-end processor accepts the results from 

CA IDMS/DB and passes them, along with the PCB status information, to the front-end 
processor. 

 

 

Figure 3. CA IDMS DLI Transparency runtime environment 
 

The CA IDMS DLI Transparency Load Utility 

What the Load Utility Does 

The CA IDMS DLI Transparency load util ity populates a CA IDMS/DB database with data 

unloaded from the existing DL/I database(s) used by the DL/I application. 
 



CA IDMS DLI Transparency Concepts and Facilities  

 

Chapter 1: Introduction  17  

 

Before You Run the Load Utility 

Before you can run the load util ity, you must have: 

■ An already created and initialized CA IDMS/DB database in which to receive the DL/I 
data. To do this, you must have created subschema and DMCL load modules for the 
database. These load modules are created by the appropriate CA IDMS/DB 

compilers when you input the schema, subschema, and DMCL source definitions 
produced by the CA IDMS DLI Transparency syntax generator. 

 

■ An IPSB load module for the CA IDMS/DB database. This load module is created by 
the IPSB compiler using the source statements produced by the CA IDMS DLI 
Transparency syntax generator. 

■ The unloaded DL/I database data, as formatted by the DL/I HD unload util ity. 

For output, the load util ity stores the DL/I data in the CA IDMS/DB database in 
accordance with the supplied schema, subschema, DMCL, and IPSB load modules. 

 

 

 

Figure 4. CA IDMS DLI Transparency load utility 
 



Usage Requirements 

 

18  DLI Transparency User Guide 

 

Usage Requirements 

Use of CA IDMS DLI Transparency involves the following six basic steps: 

1. Assemble the source for your DL/I program specification block and database 
definitions using the CA-supplied macros. Input the assembled PSB and DBDs to the 
CA IDMS DLI Transparency syntax generator.  The synta x generator produces IPSB 

source statements and the appropriate CA IDMS/DB schema, subschema, and 
DMCL source definitions. The use of the syntax generator is described in CA IDMS 
DLI Transparency Syntax Generator (see page 75). 

2. Check the generated schema, subschema, and DMCL source definitions for 

compatibil ity with the DL/I definitions. Make any necessary changes and input the 
schema, subschema, and DMCL source definitions to the CA IDMS/DB compilers to 
produce the required load modules. DL/I, CA IDMS/DB and their correspondences 

are described in DL/I and CA IDMS/DB (see page 21). 
 

3. Check the generated IPSB source statements for compatibil ity with the DL/I 
definitions. Make any necessary changes and input the IPSB source statements to 
the IPSB compiler to produce the IPSB load module, as described in IPSB Compiler 
(see page 93). 

4. Create and initialize the new CA IDMS/DB database using the schema, subschema, 
and DMCL load modules from Step 2. 

 

5. Load the DL/I data from the original database(s) into the new CA IDMS/DB 
database. Instructions for using the CA IDMS DLI Transparency load util ity are 
provided in CA IDMS DLI Transparency Load Util ity (see page 171). 

6. Execute your DL/I application against the CA IDMS/DB database using the CA IDMS 
DLI Transparency run-time interface. The use of the run-time interface is described 
in CA IDMS DLI Transparency Run-Time Environment (see page 155). 

 

Syntax Diagram Conventions 

The syntax diagrams presented in this guide use the following notation conventions: 

UPPERCASE OR SPECIAL CHARACTERS 

Represents a required keyword, partial keyword, character, or symbol that must be 
entered completely as shown. 

lowercase 

Represents an optional keyword or partial keyword that, if used, must be entered 
completely as shown. 

italicized lowercase 

Represents a value that you supply. 
 
 

lowercase bold 



Syntax Diagram Conventions 

 

Chapter 1: Introduction  19  

 

Represents a portion of the syntax shown in greater detail  at the end of the syntax 
or elsewhere in the document. 

 

◄─ 

Points to the default in a l ist of choices. 
 

►►──────────────────── 

Indicates the beginning of a complete piece of syntax. 
 

────────────────────►◄ 

Indicates the end of a complete piece of syntax. 
 

─────────────────────► 

Indicates that the syntax continues on the next l ine. 
 

►───────────────────── 

Indicates that the syntax continues on this l ine. 
 

────────────────────►─ 

Indicates that the parameter continues on the next l ine. 
 

─►──────────────────── 

Indicates that a parameter continues on this l ine. 
 

►── parameter ─────────► 

Indicates a required parameter. 
 

►──┬─ parameter ─┬─────► 
   └─ parameter ─┘ 

Indicates a choice of required parameters. You must select one. 
 

►──┬─────────────┬─────► 
   └─ parameter ─┘ 

Indicates an optional parameter. 
 

►──┬─────────────┬─────► 
   ├─ parameter ─┤ 
   └─ parameter ─┘ 

Indicates a choice of optional parameters. Select one or none. 
 

  ┌─────────────┐ 
►─▼─ parameter ─┴──────► 

Indicates that you can repeat the parameter or specify more than one parameter. 
 

  ┌─── , ─────────┐ 
►─▼─ parameter ───┴──────► 

Indicates that you must enter a comma between repetitions of the parameter. 
 



Syntax Diagram Conventions 

 

20  DLI Transparency User Guide 

 

Sample Syntax Diagram 

The following sample explains how the notation conventions are used: 

 
 



 

Chapter 2: DL/I and CA IDMS/DB  21  

 

Chapter 2: DL/I and CA IDMS/DB 
 

This section contains the following topics: 

About This Chapter (see page 21) 
The DL/I Environment (see page 22) 
Segments - The Basic Unit Of Data (see page 23) 

Hierarchies - Physical Relationships Between Segments  (see page 24) 
Defining Segments (see page 27) 
Logical Relationships Between Segments  (see page 29) 

Physical Databases (see page 36) 
Physical Access Methods (see page 38) 
Secondary Indexing (Index Databases) (see page 42) 
Logical Databases (see page 46) 

Program Communication Blocks  (see page 49) 
Program Specification Block (see page 52) 
Definition Summary (see page 52) 

DL/I Commands (see page 53) 
The CA IDMS/DB Environment (see page 56) 
DL/I and CA IDMS/DB Correspondences (see page 59) 
Unsupported DL/I Features  (see page 73) 

 

About This Chapter 

As a DL/I database administrator (DBA) or application programmer, and CA IDMS/DB 
Correspondences/ you are already familiar with DL/I. 

DL/I and CA IDMS/DB are similar in many ways. As database management systems, they 

both separate the logical definitions of data from the actual data as stored on disk. They 
both provide top-level definitions of the data and the relationships supported for  the 
data. In addition, they provide second-level definitions that serve as application-specific 
views of the top-level definition. 

This section describes DL/I, CA IDMS/DB and the correspondences between them. 
 



The DL/I Environment 

 

22  DLI Transparency User Guide 

 

The DL/I Environment 

The Parent/Child Hierarchy 

In DL/I, the basic structure is the parent/child hierarchy. A parent segment  can own one 
or more child segments. (Segments are similar to records in conventional fi le-oriented, 
versus database-oriented, processing.) A child segment, however, can have only one 

parent segment. Using the basic parent/child structure, you can extend the hierarchy to 
deeper levels (that is, a child segment can also be a parent and have child segments of 
its own). 

 

Database Description (DBD) 

The top-level definition of the segments and their relationships is known as the 

Database description (DBD). A DBD defines all  of the segments, the fields for each 
segment, and all  of the possible segment relationships for a given database. 

 

Program Specification Block (PSB) 

The second-level definition is known as the program specification block (PSB). The PSB 
defines the run-time database interface for an application. 

 

Program Communication Blocks 

Each PSB contains one or more program communication blocks (PCBs). Each PCB 
defines a subset of the segments and possible relationships found in a specific DBD. 
Different PCBs within the same PSB can reference different DBDs or multiple views of 
the same DBD, thereby allowing an application to access several physical databases. 

 

Each PCB also maintains status information so that the application can check on the 

results of its function cal ls against a particular database. 

Taken collectively, the PCBs within a given PSB define an application's view of the 
available data. 

 

Defining DL/I Databases 

The database administrator defines DBDs and PSBs (including PCBs) using special source 

statements. The DBA then compiles the prepared source fi les using the DBDGEN and 
PSBGEN util ities. Finally, the compiled DBDs and PSBs are input to another util ity that 
merges and expands them to produce an object-form control table for each PCB and 

DBD that it references. 
 



Segments - The Basic Unit Of Data 

 

Chapter 2: DL/I and CA IDMS/DB  23  

 

Executing DL/I Applications 

When DL/I is invoked, it loads the application's DBD and PCB control tables and passes 

control back to the application. The application is then ready to start issuing DL/I 
function calls for database operations. 

 

 

Figure 5. Basic DL/I components 
 

Segments - The Basic Unit Of Data 

What is a Segment 

Segments are the basic units of data that an application can access in DL/I. Segments 
consist of one or more fields, which are the basic pieces of data that an application c an 

use. For example, the EMPLOYEE segment might consist of the employee name, id, and 
address fields. 

Segments can be either fixed length or variable length. Within a segment, individual 
fields can occur either once or multiple times. 

 

What is a Segment Occurrence 

A specific instance of a segment that is stored in the database is known as an 
occurrence. For example, the data for employee Bob Jones would be an occurrence of 
the EMPLOYEE segment. There can be any number of occurrences for a given segment. 

 



Hierarchies - Physical Relationships Between Segments  

 

24  DLI Transparency User Guide 

 

Hierarchies - Physical Relationships Between Segments 

What Hierarchical Relationships Do 

In DL/I, segments are related physically in terms of parent/child hierarchies. These 
hierarchical relationships determine the physical organization of a database. They 
control how segments are stored in relation to each other. They also define the access 

paths for getting from one segment to another. In a hierarchical (physical) relationship, 
the parent segment is referred to as the physical parent, and the child segment is 
referred to as the physical child. 

 

Parent and Child Segments 

A parent segment can have zero, one, or more child segments, but a child segment can 

have only one parent. Each occurrence of a parent segment can have any number of 
occurrences of a dependent child segment. For example, if employee Bob Jones has two 
skil ls, there will  be two occurrences of the SKILL child segment for the one occurrence of 

the EMPLOYEE parent segment. 
 

Parent and Child Occurrences 

A child occurrence requires an existing parent occurrence, but a parent occurrence does 
not require a child occurrence. Two or more child segment occurrences that have the 
same parent occurrence in a hierarchy are referred to as physical twins. Such 

occurrences are twins only in the sense that they have the same parent occurrence ── 
not that they contain duplicate data. 

 

Root Segments and Database Records 

What is a Root Segment 

In a DL/I hierarchical structure, the top-level parent segment is known as the root 
segment. There can be only one root segment in any hierarchy. 

 

What is a Database Record 

Collectively, all  the parent/child occurrences that depend on a given root segment form 
a DL/I database record. Since there can be only one occurrence of a root segment, the 

addition of a new root segment occurrence (for example, a new employee) creates a 
new database record. Database records are variable in size because the number of 
occurrences for dependent child segments may vary (for example, new skil ls can be 
added for a given employee). 

 



Hierarchies - Physical Relationships Between Segments  

 

Chapter 2: DL/I and CA IDMS/DB  25  

 

A DL/I Physical Database 

All of the database records for a particular parent/child hierarchy form a DL/I physical 

database. Since each child segment can have only one parent segment, the resulting 
structure resembles an inverted tree, with the root segment at the top. The maximum 
number of segments in a DL/I structure is 255: one root and up to 254 dependent child 

segments. 
 

Hierarchical Access Path 

A DL/I Hierarchy 

The basic parent/child structure is hierarchical in that it requires traversing higher levels 

to reach a specific lower level. In other words, to reach a given child segment 
occurrence, you must go from the root segment occurrence through all  the 
intermediate parent segment occurrences. This path is known as a hierarchical access 
path. Hierarchical paths require that you traverse a structure in a top-to-bottom, 

left-to-right manner. There is a maximum of 15 levels (that is, 14 parent segments, 
including the root) in a DL/I hierarchical path. 

The il lustrations on the next few pages show different representations of the same DL/I 
hierarchy. 

 

Physical Parent/Child Relationships 

The il lustration below il lustrates the physical parent/child relationships among the 
segments. It is these physical relationships that define the hierarchy. The names of the 
segments are SEGA, SEGB, SEGC, and SEGD. 



Hierarchies - Physical Relationships Between Segments  

 

26  DLI Transparency User Guide 

 

 

 

Figure 6. Physical segment relationships 
 

DBD Source Statements For the Hierarchy 

The sample below shows the Database Description (DBD) source statements used to 
define the hierarchy and the parent/child relationships among the segments. 

 

 DBD      NAME=DBD1,ACCESS=HDAM,RMNAME=(DLZHDC20,2,13000,4500) 

 DATASET  DD1=DBD1HDAM,DEVICE=3350,BLOCK=4096,SCAN=3 

 SEGM     NAME=SEGA,BYTES=31,PTR=H,PARENT=0 

 FIELD    NAME=(FIELDA,SEQ,U),BYTES=21,START=1 

 FIELD    NAME=FIELDB,BYTES=10,START=22 

 SEGM     NAME=SEGB,BYTES=30,PTR=H,PARENT=SEGA 

 FIELD    NAME=(FIELDC,SEQ,U),BYTES=30,START=1 

 SEGM     NAME=SEGC,BYTES=30,PTR=H,PARENT=SEGB 

 FIELD    NAME=(FIELDD,SEQ,U),BYTES=10,START=1 

 FIELD    NAME=FIELDE,BYTES=20,START=11 

 SEGM     NAME=SEGD,BYTES=60,PTR=H,PARENT=SEGB 

 FIELD    NAME=(FIELDF,SEQ,U),BYTES=10,START=1 

 FIELD    NAME=FIELDG,BYTES=50,START=11 

 DBDGEN 

 FINISH 

 END 

Figure 7. DBD source statements for sample hierarchy 
 



Defining Segments 

 

Chapter 2: DL/I and CA IDMS/DB  27  

 

Hierarchy with Database Records 

The il lustration below shows a hierarchy with database records  

Note that in the A1 record, segment SEGC has three occurrences. In the A2 record, 
segment SEGD has two occurrences. The hierarchical path to the D2b occurrence is by 
way of the following occurrences: A2, B2, C2, D2a (from top to bottom and left to right).  

 

 

Figure 8. Hierarchy with database records 
 

Defining Segments 

A segment in DL/I is defined using a single SEGM statement and one or more FIELD 
statements. 

 

SEGM Statement 

The SEGM statement names and defines segments. For each child segment, the PARENT 
parameter specifies the name of the related parent segment. Note that the SEGM 
statement for SEGA (in Figure 7) specifies 0 (zero) for PARENT, indicating that this 

segment is the root (that is, it has no parent). The BYTES parameter specifies the length 
of each segment. 

 



Defining Segments 

 

28  DLI Transparency User Guide 

 

FIELD Statement 

Each SEGM statement is followed immediately by one or more FIELD statements, which 
name and define the fields for the segment. An application can access the desired 
database records by specifying selection criteria for the segment fields. The application 

specifies the selection criteria in a segment search argument (SSA) on the appropriate 
function call. Only those records whose segment occurrences match the search criteria 
will  be returned to the application. 

 

Sequence Fields 

If the NAME parameter on the FIELD statement contains the value SEQ, the field is a 

sequence field. A sequence field can have different functions depending on whether it is 
specified for a root segment or a dependent child segment. The differences a re as 
follows: 

■ If specified for a root segment, a sequence field controls the physical placement of 

each root segment occurrence and provides direct access to the associated 
database record. 

■ If specified for a child segment, a sequence field causes occurrences of the segment 
to be stored in ascending order, based on the actual values in the sequence field. 

 

A sequence field for a child segment assumes that the segment can have more than 

one occurrence within a given parent occurrence (for example, C1a, C1b, and C1c in 
Figure 8). As the hierarchical path is traversed from right to left within the parent 
occurrence, the child occurrence with the lowest value will  be found first, and the 

child occurrence with the highest value will  be found last. 
 

Unique or Duplicate Values in Sequence Fields 

When defining child segments with sequence fields, you must also specify the value U or 
M in the NAME parameter. U declares that each occurrence's sequence field value must 
be unique under the same parent occurrence. M declares that multiple occurrences can 

have the same sequence field value under the same parent occurrence (that is, 
duplicate sequence field values are allowed). 

 

Storage Sequence for Duplicate Values 

If sequence fields have duplicate values, the RULES parameter for the SEGM statement 
lets you control how new occurrences of the child segment will  be stored relative to 

existing occurrences under the same parent occurrence. The possible RULES values are: 

■ FIRST—Stores a new occurrence before all  existing occurrences with the same value 

■ LAST—Stores a new occurrence after the existing occurrences  

■ HERE—Stores a new occurrence immediately before the current occurrence 
 



Logical Relationships Between Segments 

 

Chapter 2: DL/I and CA IDMS/DB  29  

 

Concatenated Keys 

Concatenated keys provide an efficient way to access specific segment occurrences. 

Such a key is constructed by concatenating the value in an occurrence's sequence field 
with the values in the sequence fields from each higher level segment occurrence in the 
hierarchical path. 

 

For example, using the hierarchical structure defined in Figure 7, the concatenated key 
for SEGC is made up of its own sequence field (FIELDD), the sequence field (FIELDC) for 

SEGB, and the sequence field (FIELDA) for SEGA. The key for a given SEGC occurrence 
would be determined by the actual values contained in the sequence fields. 

 

Logical Relationships Between Segments 

What Logical Relationships Do 

Logical relationships provide a way of extending the basic hierarchical relationships. 
They have no effect on how segments are physically stored, but they do let you define 
multiple access paths to the same physical data. The segments defined in a logical 
relationship can be on the same hierarchical path or on different hierarchical paths. 

 

Logical Parent and Logical Child 

In a logical relationship, the parent segment is referred to as the logical parent, and the 
child segment is referred to as the logical child. 

In a given logical relationship, a child segment can have only one physical parent and 
only one logical parent. Note that a parent segment can be both physical and logical 

parent to the same child segment. Also, the same child segment can have more than 
one logical parent, but in different logical relationships. 

 

If two or more logical child segment occurrences have the same logical parent 
occurrence, they are referred to as logical twins. As with physical twins, they are twins 
only in the sense that they have the same parent occurrence. 

Hierarchical (physical) relationships always occur within the same database. Logical 
relationships can occur within the same database or can involve segments from 
different databases. 

 



Logical Relationships Between Segments  

 

30  DLI Transparency User Guide 

 

DBD Source Statements for Two Databases 

The example below shows sample DBD source statements for defining two databases 

(PHYSDB1 and PHYSDB2). Note that the DBD definitions define both hierarchical and 
logical relationships. 

Each hierarchical relationship involves only segments that are in the same database. A 

logical relationship, though, can involve segments from its own database definition and 
segments from another database definition. 

 



Logical Relationships Between Segments  

 

Chapter 2: DL/I and CA IDMS/DB  31  

 

 DBD      NAME=PHYSDBD1,ACCESS=HDAM 

 DATASET  DD1=HDAM1,DEVICE=3350,BLOCK=2048,SCAN=3 

 SEGM     NAME=SEG1,PTR=TWINBWD,RULES=LLV 

 FIELD    NAME=(FIELD1,SEQ,U),BYTES=60,START=1 

 FIELD    NAME=FIELD2,BYTES=15,START=61 

 FIELD    NAME=FIELD3,BYTES=75,START=76 

 LCHILD   NAME=(SEG6,PHYSDB2),PAIR=SEG2,PTR=DBLE 

 SEGM     NAME=SEG2,PARENT=SEG1,PTR=PAIRED 

               SOURCE=(SEG6,DATA,PHYSDB2) 

 FIELD    NAME=(FIELD4,SEQ,U),BYTES=21,START=1 

 FIELD    NAME=FIELD5,BYTES=20,START=22 

 SEGM     NAME=SEG3,BYTES=200,PARENT=SEG1 

 FIELD    NAME=(FIELD6,SEQ,U),BYTES=99,START=1 

 FIELD    NAME=FIELD7,BYTES=101,START=100 

 SEGM     NAME=SEG4,BYTES=100,PARENT=SEG1 

 FIELD    NAME=(FIELD8,SEQ,U),BYTES=15,START=1 

 FIELD    NAME=FIELD9,BYTES=15,START=51 

 DBDGEN 

 FINISH 

 END 

 

 

 DBD      NAME=PHYSDBD2,ACCESS=HDAM, 

               RMNAME=(DLZHDC20,7,700,250) 

 DATASET  DD1=HDAM2,DEVICE=3350,BLOCK=2048,SCAN=3 

 SEGM     NAME=SEG5,BYTES=31,PTR=TWINBWD,RULES=(VLV) 

 FIELD    NAME=(FIELD9,SEQ,U),BYTES=21,START,TYPE=P 

 FIELD    NAME=FIELD10,BYTES=10,START=22 

 SEGM     NAME=SEG6, 

               PARENT=((SEG5,DBLE),(SEG1,P,PHYSDB1)), 

               BYTES=80,PTR=(LPARNT,TWINBWD),RULES=VVV 

 FIELD    NAME=(FIELD11,SEQ,U),START=1,BYTES=60 

 FIELD    NAME=FIELD12,BYTES=20,START=61 

 SEGM     NAME=SEG7,BYTES=20,PTR=T, 

               PARENT=(SEG6,SNGL) 

 FIELD    NAME=FIELD13,BYTES=9,START=1 

 FIELD    NAME=FIELD14,BYTES=11,START=10 

 SEGM     NAME=SEG8,BYTES=75,PTR=T, 

               PARENT=(SEG6,SNGL) 

 FIELD    NAME=FIELD16,BYTES=50,START=1 

 FIELD    NAME=FIELD17,BYTES=25,START=51 

 DBDGEN 

 FINISH 

 END 

Figure 9. DBD source statements for two databases 
 



Logical Relationships Between Segments  

 

32  DLI Transparency User Guide 

 

Three Types of Logical Relationships 

DL/I supports three types of logical relationships: 

■ Unidirectional  

■ Bidirectional virtual 

■ Bidirectional physical 
 

Unidirectional Relationship 

Access Data in One Direction 

In a unidirectional relationship, access can go in only one direction: from a logical child 
segment to its logical  parent segment. A logical child segment cannot be accessed from 

its logical parent. 
 

Unidirectional Structure 

The il lustration below il lustrates the unidirectional logical structure. The structure 
shown involves segments from both of the physical hi erarchies (PHYSDB1 and PHYSDB2) 
defined in earlier in this section. The logical child is SEG6 (in PHYSDB2), the physical 

parent is SEG5 (also in PHYSDB2), and the logical parent is SEG1 (in PHYSDB1). 

 

Figure 10. Unidirectional structure 
 

Defining a Unidirectional Structure 

You define a unidirectional structure in the logical child's SEGM statement.  The SEGM 

statement names the logical child segment and identifies both the physical parent and 
the logical parent. 

The PARENT parameter on the logical child's SEGM statement takes the following form: 

Syntax 

  



Logical Relationships Between Segments  

 

Chapter 2: DL/I and CA IDMS/DB  33  

 

Parameters 

ppsegname 

Identifies the name of a physical parent segment and must match a name specified 
for the NAME parameter in a preceding SEGM statement. 

 

lpsegname 

Identifies the name of a logical parent segment and must match the name specified 
for the NAME parameter on the logical parent's SEGM statement.  Note that this 

SEGM statement can be in the same DBD or a different DBD (see Dbname below). 
 

VIRTUAL/PHYSICAL 

Specifies whether the concatenated key of the logical parent is stored with the logical 
child (PHYSICAL) or is built at run time (VIRTUAL). For more details, see IPSB Compiler 
(see page 93). 

dbname 

Dbname is the name of the DBD that contains the logical parent's SEGM statement. 
 

Bidirectional Virtual Relationship 

Access Data in Two Directions 

In a bidirectional virtual relationship, access can go in both directions:  from a logical 
child segment to its logical parent segment, and from the logical parent segment to its 
logical child segment. 

A bidirectional virtual relationship requires that you define a virtual logical child 
segment, as well as a real logical child segment. The virtual logical child is a pointer to 
the real logical child. (Compare to the bidirectional physical relationship, described 
below, in which the virtual logical child is a physical duplicate of the real logical child.) 

Unidirectional relationships involve three segments; bidirectional relationships always 
involve four segments. 

 



Logical Relationships Between Segments  

 

34  DLI Transparency User Guide 

 

Bidirectional Virtual Structure 

The example below shows the bidirectional virtual relationship defined by the DBD 

source statements shown in Figure 9 earlier in this section. In this relationship, SEG6 is 
the real logical child, SEG5 is the physical parent, SEG1 is the logical parent, and SEG2 is 
the virtual logical child. Note that SEG5 and SEG6 a re in DBD PHYSDB2, and SEG1 and 

SEG2 are in DBD PHYSDB1. 
 

 

Figure 12. Bidirectional virtual structure 
 

Defining the Virtual Logical Child 

The physical parent, the physical child, the logical parent, and the real logical child are 
defined the same as for a unidirectional relationship (see Unidirectional Relationship 
(see page 32)). You define the virtual logical child in two places: 

■ In the logical parent's LCHILD statement. This statement follows the logical parent's 

SEGM and FIELD statements. It supplies the name of the real logical child segment 
and identifies the DBD in which it is defined. It also supplies the name of the 
segment in the logical parent's DBD that is to serve as the virtual logical child. 

■ In the virtual logical child's SEGM statement. The virtual logical child must be 
defined in the same DBD as the logical parent. 

 

SEGM Statement for the Virtual Logical Child 

The virtual logical child's SEGM statement must include the SOURCE parameter, which 
sets up a pointer to the real logical child and takes the following form: 

Syntax 

SOURCE=((segname,DATA,dbname)) 
 



Logical Relationships Between Segments  

 

Chapter 2: DL/I and CA IDMS/DB  35  

 

Parameters 

segname 

Identifies the name of the real logical child segment, as specified for the NAME 
parameter in the real logical child's SEGM statement. 

dbname 

Dbname is the name of the DBD that contains the real logical child's SEGM 
statement. 

 

Bidirectional Physical Relationship 

What is a Bidirectional Physical Relationship 

Bidirectional physical relationships provide access in both directions between a logical 
parent segment and a logical child segment. In this respect, they are the same as 
bidirectional virtual relationships. The difference between the two types of relationships 
is that bidirectional physical employs a physical duplicate of the real logical child, while 

bidirectional virtual employs a poi nter to the real logical child, with no duplication of 
data. 

 

Using Physical or Logical Virtual Bidirectional Relationships 

The decision to use one type of bidirectional relationship instead of another depends on 
whether you want to optimize performance or space usage. Bidirectional physical 

relationships provide faster access times, but incur more space overhead because of the 
duplicate logical child data. They also require more maintenance overhead since 
updates made to one logical child must be duplicated in the other. Bidirectional virtual 

relationships conserve on space, but provide slower access times. 
 

Bidirectional Physical Structure 

The il lustration below shows the bidirectional physical relationship defined by the DBD 
source statements in Figure 7. In this relationship, SEG6 is a physical child for SEG5 and a 
logical child for SEG1, SEG4 is a physical child for SEG1 and a logical child for SEG5. Note 

that SEG6 and SEG5 are in DBD PHYSDB2, and SEG4 and SEG1 are in DBD PHYSDB1. 
 



Physical Databases 

 

36  DLI Transparency User Guide 

 

 

 

Figure 12. Bidirectional physical structure 
 

Defining a Bidirectional Physical Relationship 

To create a bidirectional physical relationship, you must define a child segment as both 
physical child and logical child for each parent, in each parent's physical hierarchy. In 
effect, you define the same unidirectional structure for each parent. The two logical 
child segments contain duplicate data and together are referred to as physically paired 

logical child segments. Note that the logical child SEGM statements cannot include the 
SOURCE parameter. 

 

Physical Databases 

A Physical Database is a DBD Definition 

In DL/I, a physical database is a DBD definition that specifies the allowable segments, 
segment fields, and segment relationships for an actual database as stored on disk. Such 
a definition is known as a physical DBD. The term "physical" in this context is somewhat 
misleading because the DBD serves as the top-level logical definition (or template) for 

the database. All  of the DBD definitions examined thus far are examples of physical 
databases, even though they define logical as well as hierarchical relationships. 

 

What is a Physical DBD 

A physical DBD maps the definition of segments and their hierarchical relationships to 
physical storage. The sequence in which the segments are defined in the DBD 

determines how their occurrences will  be stored on disk.  The hierarchical relationships 
determine the access path that must be navigated to reach a specific segment 
occurrence. 

 



Physical Databases 

 

Chapter 2: DL/I and CA IDMS/DB  37  

 

A Physical DBD Specifies an Access Method 

In addition to defining segments and their relationships, a physical DBD specifies the 

physical data organization to be used and the corresponding access method. DL/I 
provides four physical access methods: HDAM, HISAM, HIDAM, and HSAM. The choice 
of access method is the responsibility of the database designer and depends on the 

contents of the database and the transaction load requirements. The choice of access 
method is described in more detail  under Physical Access Methods (see page 38). 

 

Sample DBD Statement 

Physical DBDs can be easily identified because they specify one of the four access 
methods for the ACCESS parameter in the DBD statement. For example, the DBD for 

PHYSDB1 in Figure 9 is a physical DBD. The DBD statement is as follows: 
 

                DBD NAME = PHYSDB1,ACCESS=HDAM 

The diagram below shows the physical database (hierarchy) derived from the DBD 
source statements in Figure 7. 

 

 

Figure 13. Sample physical databases 
 



Physical Access Methods 

 

38  DLI Transparency User Guide 

 

Physical Access Methods 

What Physical Access Methods Do 

Physical access methods determine the physical organization and available access paths 
for DL/I databases. Each physical DBD must be assigned an access method, which is 
specified for the ACCESS parameter in the DBD statement. 

 

Sequential and Direct Access Methods 

DL/I provides two general access methods: sequential and direct. The sequential 
method lays out the segment occurrences as physically contiguous, l ike records in a tape 
fi le. The direct method provides random access via pointers to segment occurrences, 
l ike records on a direct access storage device (disk). Each method is further qualified on 

the basis of whether or not it supports indexing. 
 

DL/I Supports Four Access Methods 

The combination of sequential/direct and i ndexing/no indexing yields the following four 
access methods for DL/I: 

■ HSAM──Hierarchical sequential access method 

■ HISAM──Hierarchical indexed sequential access method 

■ HDAM──Hierarchical direct access method 

■ HIDAM──Hierarchical indexed direct access method 

Note that all  four access methods are hierarchical (H). This reflects the fact that an 
application always views a database as hierarchical, regardless of the access method 
used or the physical location of the data. 

 

HSAM Access 

What HSAM Provides 

The HSAM access method provides sequential access to root segments and child 
segments. The top-to-bottom, left-to-right hierarchical sequence is reflected in the 
physical contiguity of the database records. 

 



Physical Access Methods 

 

Chapter 2: DL/I and CA IDMS/DB  39  

 

Use HSAM for Sequential File Processing 

The HSAM organization requires fixed-length records and is intended exclusively for 

conventional sequential fi le processing. There is no provision for making updates in 
place, without copying the database. Also, HSAM supports only hierarchical 
relationships, not logical relationships. 

For more information about HSAM access method, see DL/I Access Methods in CA 
IDMS/DB (see page 65). 

 

HISAM Access 

What HISAM Provides 

The HISAM access method provides indexed access to root segments and sequential 
access to child segments. The index contains the root segment sequence field values 
and is maintained in ascending order as part of the physical database. 

 

As with the HSAM method, the hierarchical relationships are reflected in the physical 
contiguity of the database records. 

HISAM uses two data sets: the primary data set and the overflow data set.  Both data 
sets are defined with fixed-length physical records. 

 

Primary Data Set 

The primary data set contains the root segment occurrences and as many of their 
dependent segment occurrences as will  fit. The primary data set supports indexing via 

the root segment sequence field values. 
 

Overflow Data Set 

The overflow data set contains the dependent occurrences that will  not fit in the 
primary data set. Chains between the primary and overflow data sets maintain 
relationships and sequencing. 

HISAM supports hierarchical relationships and unidirectional and bidirecti onal logical 
relationships with physical pairing. HISAM does not support bidirectional virtual 
relationships. 

 



Physical Access Methods 

 

40  DLI Transparency User Guide 

 

HDAM Access 

What HDAM Provides 

The HDAM access method provides hashed access to root segments and pointer access 
to child segments. The hashing algorithm calculates the physical address of a root 

segment occurrence based on the value in its sequence field. 
 

HDAM Uses a Radomizing Routine 

When a database record is first loaded, the HDAM method randomizes the root key 
value to a physical location, which consists of a block number and an offset into the 
block. The root segment occurrence and all  dependent segment occurrences that will  fit 

are loaded into the block. Dependent segment occurrences that will  not fit are loaded 
into an overflow area. Physical child and physical twin pointers are created to establish 
the appropriate connections. 

 

Fast and Direct Access to Root Segments 

HDAM provides fast, direct access to a root segment occurrence. With, at most, one 

additional I/O, it is possible to access the first occurrence of the dependent segment at 
the next level by following the appropriate physical child pointer. 

The HDAM method supports all  of the DL/I hierarchical and logical relationships. 
 

HIDAM Access 

What HIDAM Provides 

The HIDAM access method provides indexed access to root segments, via the root 
sequence field, and pointer access to child segments. The index contains the root 
segment sequence field values and is maintained in ascending order. 

A HIDAM database is made up of two separate databases. One database contains all of 
the data. The other database is the index and contains the sequence field values for the 
root segment occurrences. 

 

Index Database 

The index database is never visible to an application, but it must be defined in its own 

set of DBD statements. A HIDAM index database requires the value INDEX for the 
ACCESS parameter in the DBD statement. The il lustration below shows the DBD source 
statements for a HIDAM physical database (DB1) and its associated index database 

(DBINDEX). 
 



Physical Access Methods 

 

Chapter 2: DL/I and CA IDMS/DB  41  

 

 DBD      NAME=DB1,ACCESS=HIDAM 

 DATASET  DD1=DBHIDAM,DEVICE=3350,BLOCK=42,RECORD=48,SCAN=1 

  

 SEGM     NAME=SEG1,BYTES=31,PTR=H,PARENT=0 

  

 FIELD    NAME=(FIELD1,SEQ,U),BYTES=21,START=1 

 FIELD    NAME=FIELD2,BYTES=10,START=22 

 LCHILD   NAME=(SEG2,DBINDEX),PTR=INDX 

 DBDGEN 

 FINISH 

 END 

 

 

 

 DBD      NAME=DBINDEX,ACCESS=INDEX 

 DATASET  DD1=DBINDEX,DEVICE=3350,BLOCK=44,RECORD=46,SCAN=1 

 SEGM     NAME=SEG2,BYTES=21 

  

 LCHILD   NAME=(SEG1,DB1),INDEX=FIELD1 

  

 FIELD    NAME=(FIELD3,SEQ,U),BYTES=21,START=1 

 DBDGEN 

 FINISH 

 END 

 

Figure 14. DBD definitions for a HIDAM database and its index database 
 

Index Pointer Segments 

An index database can contain only one segment, which is referred to as the index 

pointer segment. The single SEGM statement in the index DBD names this segment. The 
index pointer segment points to the root segment in the physical DBD. The root 
segment is referred to as the source segment because it is the source of the data 
needed to construct the index pointer segment. The root segment is also the target 

segment because it is the segment that will  be accessed by the index pointer. The index 
pointer segment contains one field, which will  carry the sequence field values for the 
root segment occurrences. This field must also be defined a s a sequence field. 

 



Secondary Indexing (Index Databases) 

 

42  DLI Transparency User Guide 

 

LCHILD Statement Associates Databases 

The physical (HIDAM) DBD and the index DBD both contain an LCHILD statement. 

Together, the two LCHILD statements establish the association between the databases. 
The NAME parameter in the physical  DBD's LCHILD statement specifies the index pointer 
segment and the index DBD in which it is defined. The NAME parameter in the index 

DBD's LCHILD statement specifies the root segment and the physical DBD in which it is 
defined. The INDEX parameter in the index DBD's LCHILD statement specifies the 
sequence field in the named root segment. 

The HIDAM method supports all  of the DL/I hierarchical and logical relationships. 
 

Secondary Indexing (Index Databases) 

What is a Secondary Index 

A secondary index defines an alternative (or secondary) access path that overrides the 
underlying hierarchical access path. DL/I supports the following types of secondary 

indexes: 

■ An index to a root or dependent segment on the basis of any field in the segment 

■ An index to a root or dependent segment on the basis of any field in a physically 
dependent segment 

 

The key field for an index can be a single field or up to five fields in the same segment 

concatenated in any order. A physical database can have multiple secondary indexes. 
 

Define Secondary Index as a Separate Database 

Secondary indexes must be defined as separate databases. The segment occurrences in 
a secondary index database contain the values of the specified key field(s) and the 
pointers to the associated segment occurrences in the physical database. The secondary 

index segment is known as the pointer segment. The segment containing the key 
field(s) is known as the source segment and the segment to be accessed is known as the 
target segment. The source and target segments can be the same or different. 

 

Secondary indexes differ from HIDAM indexes in that they allow you to index segments 
other than root segments. In a secondary index, the pointer segment can contain up to 

five concatenated fields, rather than just one field. Also, the source and target segments 
do not have to be the same. 

 



Secondary Indexing (Index Databases) 

 

Chapter 2: DL/I and CA IDMS/DB  43  

 

Defining Secondary Indexes 

Secondary indexes are defined in a manner similar to HIDAM index databases.  Related 
statements must be included in both the index DBD and the associated physical DBD. 

Sample DBD Definitions 

The sample below shows the DBD definitions for a physical HDAM database (DB2) and 
an associated secondary index database (DBINDX2). 

 

 DBD      NAME=DB2,ACCESS=HDAM, 

               RMNAME=(GLDHDC20,5,660,850) 

 DATASET  DD1=DBHDAM,DEVICE=3350,BLOCK=2048,SCAN=1 

  

 SEGM     NAME=SEG1,PARENT=0,BYTES=15 

  

 FIELD    NAME=(FIELD1,SEQ,U),BYTES=5,START=1 

 LCHILD   NAME=(SEG6,DBINDX2),PTR=INDX 

 XDFLD    NAME=XDFLD1,SEGMENT=SEG2, 

               SRCH=FIELD2,DDATA=FIELD3 

  

 SEGM     NAME=SEG2,PARENT=SEG1,BYTES=25 

  

 FIELD    NAME=(FIELD2,SEQ,U),BYTES=5,START=1 

 FIELD    NAME=(FIELD3),BYTES=10,START=6 

 SEGM     NAME=SEG3,PARENT=SEG2,BYTES=15 

 FIELD    NAME=(FIELD4,SEQ,U),BYTES=10,START=1 

 SEGM     NAME=SEG4,PARENT=SEG2,BYTES=30 

 FIELD    NAME=(FIELD5,SEQ,U),BYTES=20,START=1 

 DBDGEN 

 FINISH 

 END 

 

 

 

 DBD      NAME=DBINDX2,ACCESS=INDEX 

 DATASET  DD1=INDX2,DEVICE=3350,BLOCK=23, 

               RECORD=88,SCAN=1 

  

 SEGM     NAME=SEG6,PARENT=0,BYTES=15 

  

 FIELD    NAME=(FIELD6,SEQ,U),START=1,BYTES=15 

 LCHILD   NAME=(SEG1,DB2),POINTER=SINGL,INDEX=XDFLD1 

 DBDGEN 

 FINISH 

 END 

Figure 15. DBD definitions for a physical and secondary database 
 



Secondary Indexing (Index Databases) 

 

44  DLI Transparency User Guide 

 

Index DBD Statements 

The index DBD must contain the following statements: 

■ DBD statement ── ACCESS parameter must specify INDEX. 

■ SEGM statement ── Defines the index pointer segment as the root for the index 
database.  Only one SEGM statement is allowed. 

 

■ FIELD statement ── Defines the sequence field for the pointer segment.  Only one 
FIELD statement is allowed. 

■ LCHILD statement ── Identifies the target segment and the physical DBD in which it 
is defined. The INDEX parameter specifies the name of the indexed field (XDFLD) in 
the associated physical DBD. Only one LCHILD statement is allowed. 

 

Physical DBD Statements 

The physical DBD must contain the following statements: 

■ DBD statement ── ACCESS parameter must specify HISAM, HDAM, or HIDAM.  
While it is possible to set up a secondary index for a logical database 
(ACCESS=LOGICAL), it is not recommended for reasons of performance and data 

independence. HSAM databases are restricted to sequential access. 
 

■ LCHILD statement ── Identifies the pointer segment and the index DBD in which it 

is defined. The PTR (pointer) parameter must specify INDX (for index). The LCHILD 
statement must be included under the SEGM statement for the target segment. 

 

■ XDFLD statement ── Identifies a source segment and its index field. The value for 
the NAME parameter is referenced in the LCHILD statement in the index DBD. The 

SEGMENT parameter specifies the source segment. The SRCH parameter specifies 
the sequence field in the source segment to be used for indexing. The DDATA 
parameter specifies a data field in the source segment to be used for indexing. 

Note that the values for the SRCH and DDATA fields will  be concatenated to 

produce the actual index-key field values. The XDFLD statement must be included 
under the SEGM statement for the target segment. 

 

Restructuring a Hierarchy 

If a secondary index points to a dependent segment, the effect is to restructure the 

hierarchy so that the dependent segment appears as the root. In the new hierarchy, the 
higher level segments in the original hierarchy become dependents of the new root. 
They appear as leftmost dependents in reverse hierarchical order. A secondary index is 
similar to a logical relationship in that they both restructure an underlying hierarchy. 

However, a secondary index is different from a logical relationship in that it can deal 
only with a single physical database.  Logical relationships can combine segments from 
one or more physical databases. 

 



Secondary Indexing (Index Databases) 

 

Chapter 2: DL/I and CA IDMS/DB  45  

 

The diagram below il lustrates an original, underlying hierarchy and the new hierarchy 
that results from indexing a dependent segment (SEG2). 

 

 

Figure 16. Hierarchical restructuring via a secondary index  
 

Full and Sparse Indexing 

A secondary index can be either full  or sparse. 

Full Index 

A full index maintains an entry for each source segment occurrence in which the search 
field has a value. 

 

Sparse Index 

A sparse index maintains entries only for selected values in the search field. Because 

sparse indexing is more selective than full  indexing, it provides faster search times for 
the desired target segments. 

 



Logical Databases 

 

46  DLI Transparency User Guide 

 

Logical Databases 

What is a Logical Database 

A logical database is a DBD definition that references structures already defined in one 
or more physical databases (physical DBDs). Such a definition is known as a logical DBD. 

To an application, a logical DBD always appears as a s ingle hierarchical physical DBD. 

However, a logical DBD is derived from the relationships (especially the logical 
relationships) defined in the associated physical DBDs. 

 

Logical Databases Provide Flexibility 

Logical databases provide flexibility for appl ications by allowing them to view the same 
physical data in many different ways. It is important to remember that each logical DBD 

is stil l hierarchical in nature for all  of the DL/I calls that use it. 
 

Defining a Logical Database 

Specify LOGICAL for ACCESS Parameter 

To define a logical DBD, you must specify LOGICAL for the ACCESS parameter in the DBD 

statement. The bulk of a logical DBD consists of SEGM statements that reference 
segments defined in one or more physical DBDs. (Segment fields can be defined only on 
the physical DBD level.) 

 

SEGM Statement 

The SEGM statement specifies a NAME for the segment and must contain a SOURCE 

clause to identify the segment as defined in a physical DBD. Similar to physical DBDs, the 
PARENT parameter specifies the parent segment within the logical structure. For 
example, the statement below declares that segment SEG7 is based on the segment of 

the same name in the PHYSDB2 physical DBD, and is a child of the LSEGB segment in this 
logical database: 

Syntax 

SEGM NAME=SEG7,SOURCE=((SEG7,PHYSDB2)),PARENT=LSEGB 
 



Logical Databases 

 

Chapter 2: DL/I and CA IDMS/DB  47  

 

Intersection and Concatenated Segments 

Pointer and Target Segments 

As mentioned above, logical databases are defined by referencing segments already 
defined in one or more physical DBDs. In particular, logical databases rely on the logical 

relationships defined in the physical DBDs. Logical relationships allow you to l ink a 
segment (logical  child) in one physical DBD with a segment (logical parent) in another 
(or the same) physical DBD. In such a relationship, the logical child segment is referred 
to as the pointer segment, and the logical parent is referred to as the target segment. 

 

Intersection and Concatenated Segments 

In practice, the link between pointer and target segments is established via a pointer 
field in the pointer (logical child) segment. If the pointer segment contains data fields in 
addition to the pointer field, such fields  are said to carry intersection data and the 
segment itself is referred to as an intersection segment. The intersection data is unique 

to the relationship between a pointer segment occurrence and its associated target 
segment occurrence. An application can retrieve and modify the data portions of the 
pointer and target segments separately, or it can retrieve and modify the pointer and 
target segments as one concatenated segment. 

 

Defining a Concatenated Segment 

The definition of individual pointer (logical child) and target (logical parent) segments 
occurs at the physical DBD level. The definition of concatenated segments occurs at the 
logical DBD level and is specified via the SOURCE parameter in the SEGM statement. The 

SOURCE parameter determines the contents of a concatenated segment, which can be: 

■ The concatenated key of the destination parent, the pointer segment's intersection 
data, and the destination parent's data  

■ The concatenated key of the destination parent and the pointer segment's 

intersection data 

■ The destination parent's data only 
 

The Destination Parent 

The destination parent can be either the physical or logical parent of the pointer (logical 
child) segment. The choice depends on the direction in which you want the access to 

proceed: from logical parent to physical parent via the logical child, or from physical 
parent to logical parent via the logical child. 

 

Syntax 

The SOURCE parameter in the logical DBD SEGM statement takes the following form: 

  



Logical Databases 

 

48  DLI Transparency User Guide 

 

Parameters 

psegname 

Identifies the name of the pointer (logical child) segment as defined in the physical 
DBD dbname1. This segment can be either a virtual l ogical child or a real logical 
child. (See "Bidirectional Virtual Relationship" and "Bidirectional Physical 

Relationship" earlier in this section.) 
 

KEY/DATA 

KEY/DATA specifies whether an application will have access to only the key 
(sequence field) of the named segment, or will  have access to the segment's data 
portion as well as the key. KEY is the default. 

 

dsegname 

Dsegname is the name of the destination parent as defined in the physical DBD 

dbname2. The destination parent can be either the physical or logical parent for the 
pointer (logical child) segment named in psegname. 

 

Sample Logical Database 

DBD Definition for a Logical Database 

The sample below shows the DBD source statements for a logical database. The DBD 
definitions for the underlying physical databases are those shown in Figure 9. In the 
logical DBD shown below, LSEGB is the concatenated segment that combi nes the SEG6 

and SEG1 segments from PHYSDB1 and PHYSDB2, respectively. 
 

 

 DBD      NAME=LOGDB,ACCESS=LOGICAL 

 

 DATASET  LOGICAL 

 SEGM     NAME=LSEGA,SOURCE=((SEG5,PHYSDB2)) 

 SEGM     NAME=LSEGB,PARENT=LSEGA, 

               SOURCE=((SEG6,DATA,PHYSDB2),(SEG1,DATA,PHYSDB1)) 

 SEGM     NAME=SEG3,PARENT=(LSEGB,((SEG3,PHYSDB1))) 

 SEGM     NAME=SEG4,PARENT=LSEGB,SOURCE=((SEG4,PHYSDB1)) 

 SEGM     NAME=SEG7,SOURCE=((SEG7,PHYSDB2)),PARENT=LSEGB 

 SEGM     NAME=SEG8,SOURCE=((SEG8,PHYSDB2)),PARENT=LSEGB 

 DBDGEN 

 FINISH 

 END 
 



Program Communication Blocks 

 

Chapter 2: DL/I and CA IDMS/DB  49  

 

Logical Database Structure 

The il lustration below shows the logical database produced by the logical DBD definition 

in the source statements shown above. Compare the resulting logical structure with the 
hierarchical structures for the underlying physical databases. 

 

 

Figure 17. Logical database structure 
 

Program Communication Blocks 

What the Program Communication Block (PCB) Does 

A program communication block (PCB) selects segments from a specific physical or 
logical DBD. An application using the PCB will  have access to only those segments that 
are selected. Usually, a PCB selects only a subset (or subhierarchy) of the segments 

defined in a DBD, but it can select all  of the segments. 
 



Program Communication Blocks 

 

50  DLI Transparency User Guide 

 

Multiple PCBs 

Multiple PCBs can be defined for the same DBD, each selecting a different subset of the 

defined segments. PCBs can overlap so that the same segment(s) can appear in different 
PCBs. Multiple applications can share the same PCB, but via different program 
specification blocks (described later in this section). 

 

Data Sensitivity and the PROCOPT Options 

What is Data Sensitivity 

In DL/I, an application's data sensitivity refers to those segments that are available to 
the application via the PCBs it uses. In terms of data sensitivity, the basic purpose of a 

PCB is to effectively mask out segments from an application. 
 

PROCOPT Processing Options 

The PROCOPT processing options provide a number of access controls in addition to the 
basic access control based on including or excluding a segment. PROCOPT options let 
you further qualify access to specified segments. For example, PROCOPT=G permits the 

program to GET (that is, read) a segment. Some PROCOPT options can also be specified 
for the entire DBD, thereby restricting access on the database level itself. 

 

The PROCOPT options include: 

■ G ── Get (retrieve) access 

■ R ── Replace (update) access  

■ I ── Insert access (to store new segments) 

■ D ── Delete access 

■ P ── Path calls  

■ O ── Get calls only (no hold) 

■ A ── Any or all  of the access options above 

■ L ── Load access (for database loading) 

■ xS ── Ascending sequence only for the option indicated by x (G, R, etc.) 

■ K ── Key access only 

Multiple options can be specified in the same PROCOPT parameter. 
 



Program Communication Blocks 

 

Chapter 2: DL/I and CA IDMS/DB  51  

 

The K Option 

The K option allows a PCB to restrict an application to only the key portion of a segment, 

while masking out the data portion. The K option is important because it removes 
access to a segment but stil l  retains the hierarchical access path to the segment's 
dependents. By default, when a PCB masks out a segment, it also masks out the 

segment's dependent segments. The K option provides a way around this restriction. 
 

Defining a PCB 

Sample PCB  

The example below shows the source statements for a sample PCB 

 PCB     TYPE=DB,DBDNAME=DBDNEW,PROCOPT=G, 

              KEYLEN=45,PROCSEQ=INDEX1 

 SENSEG  NAME=SEGRT1,PARENT=0 

 SENSEG  NAME=SEG3,PARENT=SEGRT1 

 SENSEG  NAME=SEG4,PARENT=SEG3 

 SENSEG  NAME=SEG2,PARENT=SEGRT1 

 PSBGEN  LANG=COBOL,PSBNAME=PSB1 

 END 

Figure 18. Sample PCB definition 
 

The PCB Statement 

To define a PCB, you must first specify the PCB statement. On the PCB statement, the 
DBDNAME parameter identifies a physical or logical DBD from which to select segments. 
The PROCOPT parameter specifies a PROCOPT option for the entire database. 

 

The KEYLEN Parameter 

The KEYLEN parameter specifies the maximum key length to be used when the key 

(sequence field value) of a segment is concatenated with the keys of the higher -level 
segments in its hierarchical access path. The KEYLEN value is determined by adding up 
the lengths of the sequence fields necessary to reach the lowest-level segment in the 

hierarchy of available segments. 
 

Sensitive Segment (SENSEG) Statements 

The bulk of a PCB definition consists of SENSEG (sensitive segment) statements.  Each 
SENSEG statement specifies a segment to be included from the named DBD. The 
SENSEG statement can also include a PROCOPT option for the segment. 

 



Program Specification Block 

 

52  DLI Transparency User Guide 

 

Program Specification Block 

The program specification block (PSB) defines all  of the database views that are 
available to an application. A PSB consists of one or more PCB definitions similar to the 
one shown in Figure 18. One PSB can contain up to 255 separate PCBs. 

For each PCB you define, you must include the PSBGEN statement. The PSBGEN 

statement names the PSB and specifies the language in which the current applications 
are written. 

 

Parallel Processing 

If a PSB contains multiple PCBs, an application using the PSB can engage in parallel 

processing. Since each PCB can reference a separate DBD, the application, by way of 
multitasking, can perform parallel processing on different databases or on different 
views of the same database. DL/I maintains a separate PCB control block for each 
database in use. 

 

Definition Summary 

The DL/I process of defining databases and application views of these databases 
involves the following steps: 

1. Define one or more physical databases using DBD source statements. The physical 

DBDs specify segments, fields within segments, and the hierarchical relationships 
among segments. Logical relationships can also be defined to relate segments from 
one or more physical databases. Each physical DBD must also be assigned one of 
the four physical access methods. If using HIDAM access, the associated index 

database must also be defined. 

2. If desired, define one or more secondary index databases for individual physical 
databases. 

 

3. Define one or more logical databases using DBD statements that reference 

segments in already defined physical databases. Logical DBDs typically make explicit 
the logical relationships defined in the underlying physical DBDs. Concatenated 
segments can also be defined to specify run-time access regarding the physical 
parent, the logical parent, and the common (physical/logical) child. 

 

4. Define one or more program communication blocks  to define the application 

sensitivity for segments in a physical or logical database. Run-time access options 
for segments and the entire database can also be specified via the PROCOPT 
parameter. 

5. Define a program specification block to collect all  of the PCBs that can be used by 

an application. 
 



DL/I Commands 

 

Chapter 2: DL/I and CA IDMS/DB  53  

 

DL/I Commands 

The DL/I commands constitute the run-time database interface for an application. 
Collectively, the DL/I commands are a procedural language for data access, data 
retrieval, and data manipulation. They are implemented as a set of subroutine calls or 
preprocessed commands with various parameters. An application requests desired 

database operations by embedding the appropriate calls at specific points in the source 
code. Separate DL/I compilers are provided for a number of application programming 
languages. 

The DL/I commands are both navigation- and access-path-oriented. 
 

Basic Operations 

The basic DL/I commands are: 

■ GET UNIQUE (GU) ── Retrieves a named segment occurrence (direct retrieval) 

■ GET NEXT (GN) ── Retrieves the next segment occurrence in the hierarchical access 

path 

■ GET NEXT WITHIN PARENT (GNP) ── Retrieves the next segment occurrence under 
the current parent occurrence 

 

■ GET HOLD UNIQUE (GHU) ── Same as GU, but permits a subsequent DELETE or 

REPLACE 

■ GET HOLD NEXT (GHN) ── Same as GN, but permits a subsequent DELETE or 
REPLACE 

■ GET HOLD NEXT WITHIN PARENT (GHNP) ── Same as GNP, but permits a 

subsequent DELETE or REPLACE 
 

■ REPLACE (REPL) ── Updates an existing segment occurrence in the database 

■ INSERT (ISRT) ── Inserts a new segment occurrence in the database 

■ DELETE (DLET) ── Deletes an existing segment occurrence and all  of its dependents  
 

Call Format 

Syntax 

Call-level DL/I has the following format: 

CALL langDLI((#PARMS,)function,pcb-name,user-io-area,(ssa...)) 
 



DL/I Commands 

 

54  DLI Transparency User Guide 

 

Parameters 

langDLI 

Specifies the language of the call ing program (for example, PLITDLI for a PL/I 
program). 

#PARMS 

Specifies the number of parameters for the call, not including the #parms 
parameter itself. 

 

function 

Specifies one of the DL/I command codes (GU, GN, REPL, etc.). 

pcb-name 

Specifies the PCB to be used with the call. 
 

user-io-area 

Identifies the name of the I/O area. See Program Communication (see page 55). 

ssa 

Specifies one or more optional segment search arguments (SSAs).  There can be 

from 0 to 15 SSAs. 
 

Segment Search Arguments 

A segment search argument (SSA) specifies criteria for selecting a segment occurrence 
along the hierarchical access path. SSAs take the following form: 

Syntax 

segment-name(field-name  operator  field-value) 
 

Parameters 

segment-name 

Identifies the name of the desired segment. 

field-name 

Identifies the name of a field in the segment. 
 

operator 

Specifies a standard relational operator (=, >=, <= , etc.). 

field-value 

Specifies an actual value for field-name. 
 



DL/I Commands 

 

Chapter 2: DL/I and CA IDMS/DB  55  

 

Call-level DL/I Example 

The example below selects the EMPLOYEE segment occurrence whose ID field has the 

value 123456: 

GU, EMP-PCB, IO-A, EMPLOYEE (ID = 123456) 

DL/I searches the EMPLOYEE segment occurrences within the database identified by 
EMP-PCB (the PCB name) and returns the contents of the found occurrence to IO -A (the 

user I/O area). If duplicate values are allowed for the search field, DL/I returns the fir st 
qualifying occurrence into the I/O area. 

You can construct more complex selection criteria by combining SSAs with logical 
operators (AND, OR, etc.). By combining SSAs, you can direct the search to any level in 

the hierarchy. 
 

Command-level DL/I (EXEC DLI) Example 

DL/I database access is also possible using EXEC DLI commands.  These commands allow 
similar functionality and content as call -level DL/I.  The example below selects the 
EMPLOYEE segment occurrence whose ID field has the value 123456 (assuming EMP-ID 

contains ‘123456’), and is equivalent to the call -level example above: 

EXEC DLI GU USING PCB(EMP-PCB) SEGMENT(EMPLOYEE) WHERE(ID=EMPID) INTO(IO-A); 

You can construct more complex selection criteria by combining multiple SEGMENT 
statements.  By combining SEGMENT statements, you can direct the search to any level 

in the hierarchy. 
 

Program Communication 

The Program Communication Block (PCB) 

When an application performs operations against a database, it always does so through 

a program communication block (PCB). The PCB restricts the application's access to 
specific segments selected from the definition of an underlying database. 

 

Regardless of whether the definition is for a physical or a logical database, the database 
always appears to the application as hierarchical. This is an important point because the 
flow of the application's processing must always conform to a specific hierarchical path. 

In other words, application access to a database always starts at a root segment 
occurrence and proceeds downward through the hierarchy, movi ng from left to right 
among segment occurrences on the same level. 

 



The CA IDMS/DB Environment 

 

56  DLI Transparency User Guide 

 

PCB Provides for Transfer and Control of Information 

At program run time, DL/I maintains an I/O area for each PCB defined in the PSB. The 

PCB area provides for the transfer of data and control information between the 
application and DL/I. The PCB I/O area contains a control block with a number of fields. 
DL/I updates the control fields after each DL/I call. An application's access to these fields 

is established by declaring the fields as program variables. It is the application's 
responsibility to check the control fields, as appropriate, after each DL/I call. 

 

Basic DL/I Control Fields 

The basic DL/I control fields (with sample names) are: 

■ DBD-NAME ── Name of the DBD referenced by the PCB. This DBD determines the 

access path available to the application. 

■ SEG-LEVEL ── The current segment level in the hierarchy. 

■ STATUS-CODE ── DL/I result status code. 
 

■ PROCOPTS ── Processing options in effect, as specified in the PCB definition. 

■ SEG-NAME ── Segment name for the segment occurrence last accessed. 

■ KEY-LENGTH ── Length of the concatenated key for the segment occurrence last 
accessed. 

 

■ SEN-SEGS ── Number of segments available to the application, as specified in 
SENSEG statements in the PCB. 

■ KEY-AREA ── Key feedback area for the concatenated key of the segment 

occurrence last accessed. 
 

Database Positioning 

The SEG-LEVEL, SEG-NAME, and KEY-AREA fields in the PCB help the application to keep 
track of its current position in the database. The application can use the current 

contents of these fields to direct subsequent database navigation a nd/or retrieval 
operations. 

 

The CA IDMS/DB Environment 

Set is the Basic Structure 

In CA IDMS/DB, the basic structure is the set. A set consists of record types that are 

related as owner and member. Individual record types can participate in more than one 
relationship (set) either as owner or member (that is, a member record type can have 
more than one owner record type). 

 



The CA IDMS/DB Environment 

 

Chapter 2: DL/I and CA IDMS/DB  57  

 

Multiple Ownership Support 

Support for multiple ownership is the most basic difference between DL/I and CA 

IDMS/DB. In DL/I, a child segment (equivalent to a member record type) can have one 
and only one parent segment (equivalent to an owner record type). 

Note: DL/I's support for bidirectional logical relationships provides the functi onal 

equivalent of multiple ownership. 
 

Schema: The Top-Level Definition 

In CA IDMS/DB, the top-level definition is known as the schema. The schema names all  
of the allowable record types and defines the elements (fields) that can appear in each 

record type. The schema also names and defines the possible relationships among the 
record types; these defined relationships are the sets. 

 

Subschema: The Second-Level Definition 

The second-level definition in CA IDMS/DB is known as the subschema. As its name 

indicates, the subschema defines a subset of the top-level schema definition. (While a 
subschema is usually a subset of a schema, it can also duplicate a schema in its entirety.) 
Any number of subschemas can be defined for a given schema. 

 

Defining CA IDMS/DB Databases 

Use Data Description Language (DDL) 

The database administrator prepares the schema definition using source statements 
provided in the schema data description language (Schema DDL). The database 
administrator codes the subschema definitions using similar source statements provided 

in the subschema data description language (Subschema DDL). 
 

You use CA IDMS physical data definition language statements to create a DMCL module 
that maps the schema areas to physical fi les and defines buffers for database 
operations. 

Note: For more information about defining a DMCL, see the CA IDMS Database 

Administration Guide. 
 

DDL Compilers Process Source Statements 

Separate schema and subschema DDL compilers process the source statements. The CA 
IDMS Command Facil ity is used to produce assembler source for the DMCL module. The 
DMCL assembler source must then be assembled to produce object modules that map 

the logical areas into physical fi les and set up the necessary buffers. 
 



The CA IDMS/DB Environment 

 

58  DLI Transparency User Guide 

 

Executing CA IDMS/DB Applications 

At application run time, CA IDMS/DB loads the object-form subschemas and DMCL 
modules. The application is then ready to start issuing data manipulation language 
(DML) calls for database operations. The object-form subschemas serve as control tables 

for the application. These subschemas maintain status information so the application 
can check the results of database requests. 

 

Basic CA IDMS/DB Components 

CA IDMS/DB Components 

The diagram below il lustrates the basic components in the CA IDMS/DB environment. 

Note: For more information about complete descriptions of all  of the CA IDMS/DB 
components, see the CA IDMS Database Design Guide and CA IDMS Database 
Administration Guide. 

 

 

Figure 19. CA IDMS/DB components 
 



DL/I and CA IDMS/DB Correspondences  

 

Chapter 2: DL/I and CA IDMS/DB  59  

 

DL/I and CA IDMS/DB Correspondences 

CA IDMS DLI Transparency allows a DL/I application program to access a CA IDMS/DB 
database. To support this access, you must define a CA IDMS/DB schema and 
subschema that correspond to the specific DBD and PSB definitions expected by the 
application. For example, for each DL/I segment, hierarchy, and logical relationship, you 

must make sure that there is a corresponding CA IDMS/DB record type and set 
structure. 

Note: For more information about the rules for defining schemas and subschemas, see 
the CA IDMS Database Administration Guide. 

 

The following table summarizes the required correspondences between DL/I and CA 

IDMS/DB. 

 

DL/I structure CA IDMS/DB equivalence 

Segment Record 

Parent segment Owner record 

Child segment Member record 

Parent/child relationship Set relationship where parent is the 

owner and the child is the member 

Child segment with a sequence field Member record of a sorted set 

Sequence field for a dependent segment Sort key 

Unsequenced child segments with insert rules 

as follows: 

■ HERE 

■ FIRST 

■ LAST 

Member record of a set with an order 

option as follows: 

■ PRIOR 

■ FIRST 

■ LAST 

Child segments with nonunique sequence 
fields with an insert rule as follows: 

■ FIRST 

■ LAST 

Member record of a sorted set with 
the following duplicates option: 

■ FIRST 

■ LAST 

Child segments with nonunique sequence 
fields with an insert rule of HERE* 

Member record of a set with a set 
order option of PRIOR 

Logical relationship 

■ Physical parent segment 

■ Logical parent segment 

■ Logical child segment 

Many to many relationship 

■ Owner record 

■ Owner record 

■ Junction record 



DL/I and CA IDMS/DB Correspondences  

 

60  DLI Transparency User Guide 

 

DL/I structure CA IDMS/DB equivalence 

Dependent segments in a physical access 

database 

Members of a CA IDMS/DB set 

Root segment in an ACCESS=HDAM database CALC record 

Root segment in an ACCESS=HISAM database DIRECT record in a SYSTEM-owned 

indexed set; ascending or descending 
sort order on the record's symbolic key 
(equivalent to the sequence field of 
the HISAM root segment) 

Root segment in an ACCESS=INDEX database 
(pointer segment) 

Member record in a SYSTEM-owned 
indexed set; ascending sort order on 
the record's symbolic key (equivalent 
to the sequence field of the index 

pointer segment); also, VIA member in 
a set owned by the target record 

Pointer segment (root segment in the 

corresponding ACCESS=INDEX database) 

Member record in a SYSTEM-owned 

indexed set; ascending sort order on 
the record's symbolic key (equivalent 
to the sequence field of the index 
pointer segment); also, VIA member in 

a set owned by the target record 

Target segment (root segment) CALC record that owns the pointer 
record in the target-pointer set 

Secondary index target segment Owner record of a target-pointer set 

Pointer segment (root segment of the 
corresponding ACCESS=INDEX database) 

Record that is a member of an indexed 
set sorted in ascending order on the 
value of the sort key (i.e. the sequence 

field for the equivalent segment); 
record is also a VIA member of a set 
owned by the target record 

ACCESS=HIDAM database: 

■ Root segment (target segment) 

Record equivalents for ACCESS-HIDAM 
database: 

■ CALC record that owns a pointer 
record through the target-pointer 

set 

Note: *Special considerations apply to insert rules (see Sequenced and Unsequenced 
Child Segments (see page 61)). 

 



DL/I and CA IDMS/DB Correspondences  

 

Chapter 2: DL/I and CA IDMS/DB  61  

 

Segments and Record Types 

For each segment defined in a physical DBD, there must be a corres ponding record type 
in a CA IDMS/DB schema. Segments from logical DBDs are exceptions and must not 
appear in the schema. Logical segments are redefinitions of segments already defined in 

physical DBDs. 

Note: The CA IDMS DLI Transparency syntax generator creates the necessary 
correspondences in the resulting schema, subschema, and DMCL source. You do not 
have to code the CA IDMS/DB definitions manually. 

 

Sequenced and Unsequenced Child Segments 

CA IDMS/DB requires different definitions for child segments, depending on whether 
they are sequenced or unsequenced. 

 

Sequenced Child Segments 

Sequenced child segments correspond to member record types in sorted sets. The child 

segment's sequence field is used for the sort key in the CA IDMS/DB sorted set. 
 

■ If the child segment is defined for U (unique) sequence field values, duplicates are 

not allowed for the set (DUPLICATES NOT ALLOWED). 

■ If the child segment is defined for M (multiple or duplicate) sequence field values, 
the value for the insert RULES parameter determines where duplicate fields are 

stored within the set sequence: 

– FIRST ── the set is ordered DUPLICATES FIRST. 

– LAST ── the set is ordered DUPLICATES LAST. 

– HERE ── the corresponding record type is a member in an unsorted set with a 

set order option of PRIOR. 
 

Unsequenced Child Segments 

Unsequenced child segments correspond to member record types in unsorted sets. The 
set ORDER option is determined by the value for the RULES parameter on the child's 
SEGM statement: 

■ HERE ── Corresponds to an order option of PRIOR. 

■ FIRST ── Corresponds to an order option of FIRST. 

■ LAST ── Corresponds to an order option of LAST. Note that LAST is the DL/I default 

for unsequenced segments. If a child segment does not have RULES specified, LAST 
is used for the order option in the corresponding unsorted set. 

 



DL/I and CA IDMS/DB Correspondences  

 

62  DLI Transparency User Guide 

 

Deletable Segments 

If a DL/I segment can be deleted, the corresponding record type must have prior 
pointers. As a rule, all sets should have prior pointers.  

 

Hierarchies and Sets 

Parent/Child Relationships Correspond to Sets 

DL/I parent/child relationships (hierarchies) correspond to CA IDMS/DB sets. There must 
be a CA IDMS/DB set for each physical parent/child relationship. In a CA IDMS/DB set, 
the owner record type corresponds to the parent segment, and the member record type 

corresponds to the child segment. 

With CA IDMS DLI Transparency, CA IDMS/DB sets can have only one member record 
type. Multi-member sets are not allowed. 

 

DL/I Hierarchies and CA IDMS/DB Sets 

The diagram below shows a sample DL/I hierarchy converted to a series of CA IDMS/DB 

sets. 

 

Figure 20. DL/I hierarchies and CA IDMS/DB sets 
 



DL/I and CA IDMS/DB Correspondences 

 

Chapter 2: DL/I and CA IDMS/DB  63  

 

Logical Relationships and Sets 

In CA IDMS DLI Transparency, each segment in a logical relationship corresponds to one 
of three CA IDMS/DB record types. 

Junction Record 

The logical child segment is defined as a junction record that is a member of two sets. 
The owner of one set corresponds to the physical parent segment; the owner of the 
other set corresponds to the logical parent segment. 

 

Owner and Member Records 

If the DL/I physical and logical parents are the same segment, one record type is used to 

represent both parents. In this case, the record type is the owner of the two sets of 
which the junction record (equivalent to the logical child) is the member. 

 

The junction record must always have a location mode of VIA. The VIA set is the set of 
which the record type for the physical parent is the owner. Note that database load 
procedures can override this consideration. 

 

CA IDMS DLI Transparency requires that all  logical relationships (that is , unidirectional, 
bidirectional virtual, and bidirectional physical) be implemented as bidirectional virtual 

relationships. The conversion to bidirectional virtual is transparent to an application. 
However, the conversion of bidirectional physical relationships requires special 
consideration. 

 

Implementing a Bidirectional Physical Relationship 

To implement a bidirectional physical relationship as a bidirectional virtual relationship 

in CA IDMS/DB, a record type is defined for each of the parent segments. Additionally, a 
single record type is used to represent the physically paired child segments. This record 
type is defined as a VIA junction record in the set owned by each of the parent record 

types. In bidirectional virtual terms, the junction record type becomes the equivalent of 
the real logical child and the virtual logical child. 

 



DL/I and CA IDMS/DB Correspondences  

 

64  DLI Transparency User Guide 

 

DL/I Logical Relationship and CA IDMS/DB Sets 

The following diagram il lustrates a DL/I bidirectional virtual relationship and the CA 

IDMS/DB set structures used to implement it. 

 

Figure 21. DL/I logical relationship and corresponding CA IDMS/DB sets 
 



DL/I and CA IDMS/DB Correspondences  

 

Chapter 2: DL/I and CA IDMS/DB  65  

 

DL/I Access Methods in CA IDMS/DB 

Each of the four access methods allowed for physical DBDs requires a different 
implementation in CA IDMS/DB. The HSAM, HISAM, HDAM, and HIDAM access methods 
are discussed below. 

HSAM 

CA IDMS DLI Transparency does not implement HSAM databases directly. However, the 
indirect implementation is transparent to any DL/I application using an HSAM database. 
The CA IDMS DLI Transparency implementation depends on whether the HSAM 

database is sequenced or unsequenced: 

■ A sequenced HSAM database has a root segment that is sorted on the basis of its 
sequence field. A sequenced HSAM database is defined in the same way as a HISAM 
database (see "HISAM" below). In the schema, the root segment of the HSAM 

database is treated as the root segment of a HISAM database. Once the HSAM 
database is defined as a HISAM database, the appropriate structures are defined in 
the corresponding CA IDMS/DB schema. 

■ An unsequenced HSAM database is defined as a separate area in the CA IDMS/DB 
schema. This area contains only the record types and sets needed to reflect the 
HSAM segments and their hierarchies. All  record types are defined with a location 
mode of DIRECT. 

 

HISAM 

CA IDMS DLI Transparency relates the root segment in the HISAM database to the 
member record type in a system-owned indexed set. The member record has a location 
mode of DIRECT; its symbolic key corresponds to the root segment's sequence field. If it 
is necessary to keep the member record (the root segment equivalent) in physical 

sequential order, ascending or descending order is defined for its symbolic key. 

Note: For more information about indexed sets, see the CA IDMS Database 
Administration Guide. 

 



DL/I and CA IDMS/DB Correspondences  

 

66  DLI Transparency User Guide 

 

Sample HISAM Database and CA IDMS/DB Sets 

The diagram below, shows a sample HISAM database and the CA IDMS/DB sets used to 

implement it. 

 

Figure 22. Sample HISAM database and corresponding CA IDMS/DB sets  
 

HDAM 

In CA IDMS DLI Transparency, the root segment in an HDAM database corresponds to an 

owner record type with a location mode of CALC. The root segment's sequence field is 
defined as the CALC key. 

 



DL/I and CA IDMS/DB Correspondences  

 

Chapter 2: DL/I and CA IDMS/DB  67  

 

Sample HDAM Hierarchy and CA IDMS/DB Sets 

The diagram below shows a sample HDAM hierarchy and the corresponding CA 

IDMS/DB set structures. 

 

Figure 23. Sample HDAM hierarchy and corresponding CA IDMS/DB sets 
 

HIDAM 

As with an HDAM database, the HIDAM root segment is defined as an owner record 
with a location mode of CALC. The root segment's sequence field becomes the CALC 

key. 

In a HIDAM database, the root segment is also the source and target segment for the 
associated index database. To account for the index pointer segment, a member record 

type is defined with a location mode of VIA within an indexed set owned by the CALC 
owner record type. The index record contains a single element to match the root 
segment's sequence field (CALC key in the owner record type). The index record also 
contains any data fields defined in the index. During processing, CA IDMS/DB maintains 

matching occurrences between the index (member) record and the owner of the set. 
 



DL/I and CA IDMS/DB Correspondences  

 

68  DLI Transparency User Guide 

 

Sample HIDAM Hierarchy and CA IDMS/DB Sets 

The diagram below shows a sample HIDAM hierarchy and the corresponding CA 

IDMS/DB set structures. 

 

Figure 24. Sample HIDAM hierarchy and corresponding CA IDMS/DB sets  
 

DL/I Secondary Indexes in CA IDMS/DB 

A DL/I secondary index involves a primary database and an index database. The primary 
database contains a source and a target segment. The index database contains an index 

pointer segment, which is also the root segment. 
 



DL/I and CA IDMS/DB Correspondences  

 

Chapter 2: DL/I and CA IDMS/DB  69  

 

Define Index Pointer Segment as Member Record 

In CA IDMS DLI Transparency, the index pointer segment is defined as a member record 

type with a location mode of VIA in a set owned by the target record. The pointer 
segment is also defined as a member record in a system-owned indexed set. This set is 
sorted in ascending order on the pointer record's symbolic key, which is equivalent to 

the sequence field in the pointer segment. 

CA IDMS/DB does not require a separate set to reflect the source segment and pointer 
segment relationship. 

 

Implementing Pointer and Target Relationships in CA IDMS/DB 

The il lustration below il lustrates the CA IDMS/DB set structure that relates the pointer 

and target segments. Note that this relationship is the same for a secondary index and a 
HIDAM index database. 

 

Figure 25. CA IDMS/DB implementation of pointer and target relationship  
 



DL/I and CA IDMS/DB Correspondences  

 

70  DLI Transparency User Guide 

 

DL/I Secondary Index and CA IDMS/DB Sets  

The following diagram shows a secondary index for an HDAM primary database and the 

corresponding CA IDMS/DB set structures. Note that the primary database is an HDAM 
database and the pointer segment is in the index (secondary) database. 

 

Figure 26. DL/I secondary index and corresponding CA IDMS/DB sets 
 

Parallel Processing Support in CA IDMS/DB 

CA IDMS DLI Transparency supports DL/I parallel processing in two ways: 

■ Multiple PCBs ── A CA IDMS/DB subschema can include definitions to reflect any 
number of PCBs in a corresponding PSB, with no limitation on the DL/I structures 

contained in the PCBs. For example, when two PCBs that define the same hierarchy 
are both used by a DL/I application, CA IDMS DLI Transparency will ma intain 
database positioning (currency) independently for each PCB. 

■ Multiple positioning ── The DL/I PCB statement allows you to optionally specify 
separate positioning for each hierarchical path in a database definition. CA IDMS 
DLI Transparency will  maintain separate currency for each CA IDMS/DB structure 
that corresponds to one of the DL/I hierarchies. 

 



DL/I and CA IDMS/DB Correspondences  

 

Chapter 2: DL/I and CA IDMS/DB  71  

 

DL/I Calls in CA IDMS/DB 

DL/I Database Calls 

CA IDMS DLI Transparency supports all of the DL/I database calls and all of the DL/I 
command codes shown in the tables below. 

 

Call Function Meaning 

GU GET UNIQUE 

GN GET NEXT 

GNP GET NEXT WITHIN PARENT 

GHU GET HOLD UNIQUE 

GHN GET HOLD NEXT 

GHNP GET HOLD NEXT WITHIN PARENT 

ISRT INSERT 

DLET DELETE 

REPL REPLACE 

DL/I Command Codes 

 

Code Purpose 

C Allows use of concatenated keys in SSAs  

D Specifies path calls (that is, allows retrieval, modification, 
or insertion of several segments with one call) 

F Permits search for a segment to start at the first 

occurrence under its parent, regardless of positions. 

L Causes the last occurrence of a segment type to be used 
in satisfying a call 

N Prevents the replacement of the specified segment(s) 

following a path retrieval call  

P Establishes parentage at the specified level when used 
with a retrieval call  

U Maintains current positioning at the specified level  

V Maintains current positioning at all  levels higher than the 
specified level  

- (null command code) Causes no special processing to occur 



DL/I and CA IDMS/DB Correspondences  

 

72  DLI Transparency User Guide 

 

Extensions to Basic Calls 

As extensions to the basic calls shown in the DL/I command codes table above, CA IDMS 

DLI Transparency also supports: 

■ Path calls ── Calls used to retrieve, modify, or insert multiple segments in a 
hierarchical path. 

■ Qualified and unqualified calls ── Calls specified with or without segment search 
arguments (SSAs). 

■ Qualified and unqualified SSAs ── SSAs with qualification statements or qualified 
by segment type only. 

 

DL/I System Service Calls 

The following DL/I system service calls are also supported under CA IDMS DLI 
Transparency: 

■ PCB ── Schedules a PSB call  (used only with CICS) 

■ TERM ── Terminates a PSB call  (used only with CICS) 

■ ROLL and ROLB ── Treated as a DML ROLLBACK request 

■ CHKP (CHECKPOINT) ── Treated as a DML COMMIT request 
 

Usage Considerations 

When defining the CA IDMS/DB equivalents for your DL/I structures, keep in mind the 

following usage considerations: 

■ CA IDMS DLI Transparency does not support multiple noncontiguous sequence 
fields for a virtual logical segment. A single sequence field, however, is supported. 

■ CA IDMS DLI Transparency always uses the following delete rules: physical, virtual, 
logical, for the physical parent, logical child, and logical parent, respectively. Refer 
to the appropriate DL/I documentation for a description of the delete rules. 

 

■ CA IDMS DLI Transparency supports sparse indexing through null -value 
specifications or index suppression exits. If you use index suppression exits, you 

must convert the exits to CA IDMS/DB database procedures. 

For more information about a detailed description of index suppression exits, see 
Index Suppression Exit Support (see page 253). 

■ You must convert segment edit/compression exits to CA IDMS/DB database 

procedures. 
 



Unsupported DL/I Features 

 

Chapter 2: DL/I and CA IDMS/DB  73  

 

■ CA IDMS DLI Transparency supports PROCOPT E on the PCB statement. To reflect 
this processing option, you must specify EXCLUSIVE for the CA IDMS/DB area ready 

option. 

■ CA IDMS DLI Transparency automatically supports PROCOPT O and requires no 
additional specification for it. 

 

Unsupported DL/I Features 

CA IDMS DLI Transparency does not support the following DL/I features: 

 

Feature Comment 

GSAM databases, which are 

sequential fi les. 

You must modify DL/I application programs that 

issue calls to GSAM databases by removing the 
GSAM calls. Alternatively, you can replace the 
GSAM calls with standard sequential fi le 

processing requests. 

The PCB PROCOPTs of L and LS. You can obtain the same results by changing the L 
or LS to an I. This substitution is invalid when the 
application program is used in conjunction with 

the DL/I calls load util ities. 

The PCB PROCOPT of GS. You can obtain the same results by changing the 
GS to a G. 

Field-level sensitivity in PCBs. You can reflect field-level sensitivity by excluding 

the corresponding elements from their record 
type definitions in the subschema. 

DL/I util ities. CA IDMS/DB provides a complete set of util ities 

that perform all  the necessary functions. 

DL/I logging. Remove calls for logging in the DL/I application / 
programs. CA IDMS/DB journaling is used in place 
of DL/I logging. 

The CHECKPOINT/RESTART 
function. 

However, CA IDMS DLI Transparency does support 
the checkpoint call  when used alone.  CA IDMS DLI 
Transparency honors the checkpoint call  by 

issuing a CA IDMS/DB COMMIT. Therefore, 
remove all  restart calls from the DL/I application 
program, and consider removing the checkpoint 
part of the call  as well. 



Unsupported DL/I Features 

 

74  DLI Transparency User Guide 

 

Feature Comment 

The DL/I calls: 

PURG        GSCD 

CHGN        XRS 

CMD         DEQ 

GCMD        LOG 

SNAP        STAT 

 

The Q command code. CA IDMS DLI Transparency bypasses this 
command code and returns a blank status. If a 

DL/I program contains Q codes, you don't have to 
remove them. 

Use of the L command code to 
override a DL/I ISRT call. 

CA IDMS DLI Transparency does support the L 
command code when used with a DL/I GET call. 

Use of MPS Batch EXEC DLI usage does not support MPS Batch 

The EXEC DLI LOAD function CA IDMS DLI Transparency supports call-level DL/I 

load programs using ISRT calls, and provides an 
independent load util ity. An ‘AD’ status will  be 
returned for this call. 

 



 

Chapter 3: CA IDMS DLI Transparency Syntax Generator  75  

 

Chapter 3: CA IDMS DLI Transparency 
Syntax Generator 
 

This section contains the following topics: 

About This Chapter (see page 75) 
The CA IDMS DLI Transparency Syntax Generator (see page 75) 

Preparing Syntax Generator Input (see page 77) 
Coding Syntax Generator Statements  (see page 79) 
Control Statements (see page 79) 
GENERATE Statement (see page 81) 

GENERATE SCHEMA Statement (see page 83) 
GENERATE DMCL Statement (see page 84) 
GENERATE SUBSCHEMA Statement (see page 84) 

GENERATE IPSB Statement (see page 85) 
Modification Statements (see page 86) 
Executing the CA IDMS DLI Transparency Syntax Generator (see page 90) 

 

About This Chapter 

The CA IDMS DLI Transparency syntax generator translates DL/I database definitions 

into syntax statements for a CA IDMS DLI Transparency interface program specification 
block (IPSB) and corresponding CA IDMS/DB schema, DMCL, and subschema defi nitions. 
This chapter describes how to use the CA IDMS DLI Transparency syntax generator. 

 

The CA IDMS DLI Transparency Syntax Generator 

Syntax Generator Input 

Input to the syntax generator consists of the following control blocks created by the 
CA-supplied macros: 

■ Database definition (DBD) control blocks—Define the segment types, the physical 
hierarchical structure, and other characteristics of each database for which a view is 
defined in the PSB. The DBD control blocks are used to produce the CA IDMS/DB 
schema, DMCL, and subschema source statements. 

■ Program specification block (PSB)—Defines the views of all  physical and/or logical 
databases available to a DL/I application that uses the PSB. The PSB control block is 
used to produce the IPSB source statements. 

 



The CA IDMS DLI Transparency Syntax Generator 

 

76  DLI Transparency User Guide 

 

Syntax Generator Output 

The syntax generator produces source statements for a CA IDMS/DB schema, DMCL, 
and subschema and a CA IDMS DLI Transparency IPSB. 

Schema, DMCL, and Subschema Source 

The schema source statements produced by the syntax generator define CA IDMS/DB 
areas, record types, and set types corresponding to the databases, segments, and 
parent/child (hierarchical) relationships defined in the DL/I DBD control blocks. 

 

The DMCL source statements define how the CA IDMS/DB areas are to be mapped to 
the physical database fi les. They are derived from information in the DL/I DBD control 

blocks. 

The subschema source statements define the CA IDMS/DB logical views that correspond 
to the views defined in the DL/I DBD control blocks. 

 

You can input the generated source definitions to the appropriate CA IDMS/DB 
compilers to create load modules for use with the IPSB compiler, the CA IDMS DLI 

Transparency load util ity, and the CA IDMS DLI Transparency run-time interface. 
 

IPSB Source 

The IPSB source statements define the correspondences between the DL/I database 
referenced by the DL/I application and the CA IDMS/DB database accessed by the CA 
IDMS DLI Transparency run-time interface. 

 

The resulting IPSB source statements are organized as follows: 

■ IPSB SECTION—Relates the IPSB being defined to the corresponding DL/I program 

specification block (PSB) 

■ AREA SECTION—Identifies the CA IDMS/DB database areas that are to be readied 
by the CA IDMS DLI Transparency run-time interface in any usage mode other than 

shared retrieval (the default) 

■ RECORD SECTION—Names the CA IDMS/DB record types needed to service DL/I 
calls and defines the DL/I fields to be referenced by the DL/I calls  

 

■ INDEX SECTION—Provides the information necessary to relate CA IDMS/DB records 
and sets to DL/I secondary index structures and HIDAM index structures that are 

used and/or maintained by the CA IDMS DLI Transparency run-time interface 

■ PCB SECTION—Replaces the program communication blocks (PCBs) defined for the 
PSB 

After reviewing the IPSB source statements, you can input them to the IPSB compiler to 

create an IPSB load module for use with the CA IDMS DLI Transparency run-time 
interface. 

 



Preparing Syntax Generator Input 

 

Chapter 3: CA IDMS DLI Transparency Syntax Generator  77  

 

Special IPSB Load Module 

To execute the CA IDMS DLI Transparency load util ity, you need a special IPSB load 

module. You produce a load IPSB by specifying the LOAD option in the GENERATE IPSB 
statement. 

For specific considerations that apply only to the load IPSB, see CA IDMS DLI 

Transparency Load Util ity (see page 171). 
 

Syntax Generator Operation 

Operation of the CA IDMS DLI Transparency syntax generator involves the following 
steps: 

1. Select, assemble, and link edit all  of the DBDs, including logical DBDs, associated 
with the PSB you want to use. Select, assemble, and link edit the PSB. The PSB 
represents an application's view of the DL/I database(s) defined in the DBDs. 

Note: The DBDs and PSB must be assembled using the CA-supplied macros. 

2. Code the appropriate syntax generator statements. 

3. Execute the syntax generator. 
 

Preparing Syntax Generator Input 

The syntax generator analyzes the DBD control blocks to produce schema, DMCL, and 

subschema source statements. It analyzes one PSB control block to produce a set of 
IPSB source statements. 

You must assemble the DBDs and the PSB using the macros supplied with CA IDMS DLI 
Transparency. You must then link edit the resulting assemblies to populate a new load 

library that contains a load module for each DBD and a load module for the PSB. The 
load library must be available to the syntax generator when you run it. Be sure to keep 
your DL/I and CA IDMS DLI Transparency load libraries separate. 

 

When you execute the syntax generator, it will  attempt to load the PSB and all  
referenced DBDs. Since it can be difficult to keep track of all  the DBD dependencies, you 

may find that the easiest course is simply to assemble and link edit all  of your DBDs. 
 



Preparing Syntax Generator Input 

 

78  DLI Transparency User Guide 

 

DBD Control Blocks 

Each database definition (DBD) control block defines the segment types, hierarchical 
structure, and other characteristics of a database referenced in the PSB. 

Note: Any given PSB can reference many DBDs, thus providing access to many 

databases. 

You must create a CA IDMS DLI Transparency DBD control block for each physical or 
logical DBD associated with the PSB. You must also create a DBD control block for each 
physical DBD that is referenced in a logical DBD. 

 

Creating the DBD Control Block 

To create the DBD control blocks, perform the following steps for each DBD: 

1. Select the DL/I source code for the DBD. 

2. Assemble and link edit the source code for the DBD. You must use the CA IDMS DLI 
Transparency-supplied macros when assembling the DBD source. 

 

Assembly and Link Edit of a DBD 

To assemble and link edit a DBD, use the DBD JCL shown in CA IDMS DLI Transparency 
JCL (see page 257). 

Note: A resulting load module has the same name as the DL/I DBD, but it can be used 
only with CA IDMS DLI Transparency. Do not attempt to use a DBD load module in your 

native DL/I environment. 
 

PSB Control Block 

Creating a PSB Control Block 

To create a PSB control block for use with the syntax generator, perform the following 

steps: 

1. Select the DL/I source code for the PSB you want to use. 

2. Assemble and link edit the source code for the PSB. You must use the CA IDMS DLI 

Transparency-supplied macros when assembling the PSB source. 
 



Coding Syntax Generator Statements  

 

Chapter 3: CA IDMS DLI Transparency Syntax Generator  79  

 

Assembly and Link Edit of a PSB 

To assemble and link edit the PSB, use the PSB JCL shown in CA IDMS DLI Transparency 

JCL (see page 257). 

Note: The resulting load module has the same name as the DL/I PSB, but it can be used 
only with CA IDMS DLI Transparency. Do not attempt to use the PSB load module in your 

native DL/I environment. 
 

Coding Syntax Generator Statements 

The syntax generator statements fall  into three groups: 

■ Control statements -- Specify input formatting and checking controls and output 
formatting for the syntax generator's report l isting 

■ GENERATE statement -- Names the input DBD and PSB control blocks; also specifies 
the names for the output CA IDMS/DB schema, DMCL, and subschema source and 
the output IPSB source 

■ Modification statements -- Specify names for the output areas, records, and sets; 
also redefine the output areas, including the area usage modes  

 

Control Statements 

The control statements allow you to specify: 

■ The amount of storage to be used by the syntax generator  

■ The range of input columns for syntax generator statements  

■ Sequence checking for input statements  

■ Formatting for the syntax generator report l isting 
 



Control Statements 

 

80  DLI Transparency User Guide 

 

Syntax 

►►─┬────────────────────────────────────────────┬────────────────────────────► 
   └── CORe size = ─┬── (48) ◄────┬─────── k ───┘ 
                    └── (nnnnnn) ─┘ 
 
 ►─┬────────────────────────────────────────────────────────────┬────────────► 
   └─ ICTL = ──┬── (1,80) ◄───────────────────────────────────┬─┘ 
               └─  (start-column-number,end-column-number) ───┘ 
 
 ►─┬───────────────────────────────┬─────────────────────────────────────────► 
   └─ OCTL = ─┬── (60) ◄────────┬──┘ 
              └── (line-count) ─┘ 
 
 ►─┬─────────────────────────────────────────────────────────┬───────────────► 
   └─ ISEQ = ──── (start-column-number,end-column-number) ───┘ 
 
 ►─┬───────────────────────────────┬─────────────────────────────────────────► 
   │ ┌───────────────────────┐     │ 
   └─▼-- SPACE space-count ──┴─────┘ 
 
 ►─┬─────────────────────┬───────────────────────────────────────────────────► 
   │ ┌────────────┐      │ 
   └─▼-- EJECT ───┴──────┘ 
 
 ►─┬───────────────┬─────────────────────────────────────────────────────────►◄ 
   └─ *comments* ──┘ 

 

Parameters 

CORe size=(nnnnnn) k 

Specifies the amount of storage that the syntax generator will  acquire to process 
the PSB and DBD control blocks. Storage acquisition is performed by a GETMAIN 
under OS or a GETVIS or COMREG under z/VSE. 

Nnnnnn is a 1- to 6-digit numeric value. If the K option is included, it specifies an 
nnnnnn multiple of 1,024 (1K) bytes. If K is omitted, nnnnnn specifies the number of 
storage bytes desired (which the syntax generator rounds up to the next 

doubleword). 

The CORE SIZE default is 48K bytes. 
 

ICTL=(start-column-number,end-column-number) 

Specifies a range of columns for coding input generator statements. The default and 
valid range of input columns is 1 through 80. If specified, ICTL must precede all  

noncontrol statements. 
 

OCTL=(line-count) 

Specifies the page length (number of l ines) for the printed syntax generator report. 

The OCTL default is 60 lines per page. Valid values are from 1 to 66. If specified, 
OCTL must precede all  noncontrol statements. 

 



GENERATE Statement 

 

Chapter 3: CA IDMS DLI Transparency Syntax Generator  81  

 

ISEQ=(start-column-number,end-column-number) 

Specifies sequence checking for input syntax generator statements. The start 

column and end column values identify the column range in which sequence 
numbers will  appear. Valid values for the column start and end are 1 and 80, 
respectively. The column range cannot be more than 10 column positions wide. 

The default is no sequence checking. If specified, ISEQ must precede all  noncontrol 
statements. 

 

SPACE space-count 

Specifies l ine spacing for the printed syntax generator report. Valid values are 1 
through 9. Note that only one blank is allowed between SPACE and space-count. 

You can specify any number of SPACE statements and include them anywhere in 
the syntax generator input statements. 

 

EJECT 

Specifies a page break for the printed syntax generator report. You can specify any 
number of EJECT statements and include them anywhere in the syntax generator 

input statements. The EJECT statement must appear on its own line. 
 

*comments* 

Designates comment text. You can embed comment text anywhere in the syntax 
generator input statements. Comment text is automatically terminated at the end 
of a l ine. To include comment text within a l ine, begin and end the text with 

asterisks (be sure to keep track of the number of asterisks). An odd number turns 
on comment text; an even number turns comment text off. 

 

Example 

 ICTL=(1,72) 

 OCTL=(45) 

 ISEQ=3,72 

 EJECT 

 SPACE 2 

 *Begin comments with an asterisk 

Figure 27. Sample control statements 
 

GENERATE Statement 

The GENERATE statement identifies the DL/I DBD and PSB control blocks to be input to 

the syntax generator. 

The syntax generator uses the DBD control blocks to produce the CA IDMS/DB schema, 
DMCL, and subschema source definitions. It uses the PSB control block to produce the 

source statements for the IPSB compiler. 
 



GENERATE Statement 

 

82  DLI Transparency User Guide 

 

Deriving Record, Set, and Area Names 

The syntax generator derives the record, set, and area names for the output source 

statements from the DL/I control blocks, as follows: 

■ Record names -- Derived from DL/I segment names. 

■ Set names -- Derived from the parent segment name and the child segment name 

in each DL/I hierarchy. The syntax generator concatenates the names with the 
literal "-". 

The resulting set names have a maximum length of 16 characters. If both names are 
8 characters long, the syntax generator truncates the last character in the child 

name. Note that the truncation may cause duplicate set names. 

■ Area name -- Derived from the DL/I DBD name. The syntax generator appends the 
literal "-REGION" to the resulting area name. 

You can override the generated names and specify different names using the 

modification statements (described later in this section). 
 

Four Forms of the GENERATE Statement 

The syntax generator provides four forms of the GENERATE statement: 

■ GENERATE SCHEMA 

■ GENERATE DMCL 

■ GENERATE SUBSCHEMA 

■ GENERATE IPSB 

Specify the GENERATE statement appropriate for the type of output you want. 
 

Process One GENERATE Statement at a Time 

Include only one GENERATE statement for each execution of the syntax generator. The 
syntax generator places its output in a single SYSPCH fi le. The syntax generator can 
process multiple GENERATE statements, but all  the output fi les would go to the same 
fi le, and you would have to separate the output yourself. 

The GENERATE statement must be coded immediately after the control statements and 
before any modification statements. 

 



GENERATE SCHEMA Statement 

 

Chapter 3: CA IDMS DLI Transparency Syntax Generator  83  

 

GENERATE SCHEMA Statement 

Syntax 

►►─┬── GENerate ──┬────────┬───────── SCHema name is schema-name ──┬─────────► 
   │              └─ LOAD ─┘                                       │ 
   │            ┌──── , ──────┐                                    │ 
   └── FOR dbd -▼- dbd-name. ─┴────────────────────────────────────┘ 
 
 ►── DICTionary name is dictionary-name. ────────────────────────────────────►◄ 

 

Parameters 

GENerate SCHema name is schema-name 

Specifies that you want the syntax generator to produce a schema source 
definition. 

Schema-name is the 1- to 8-character name of the output source definition. This is 

the name that you will  supply as input to the CA IDMS/DB schema compiler. 
 

LOAD 

Produces a schema definition suitable for use with the CA IDMS DLI Transparency 
load util ity. Specifically, it creates a schema in which the sets are defined as 
OPTIONAL MANUAL. Alternatively, you can use an already generated schema 

definition and change its sets to OPTIONAL MANUAL. If you do this, be sure to 
change the set definitions back to their original state after the load. 

 

FOR DBD dbd-name 

Specifies the DBD control block(s) from which to derive the schema source. You can 
specify multiple DBDs, separated by commas, to match the DBDs referenced in the 

associated PSB. Each dbd-name must be a 1- to 8-character name. 

Be sure to specify all  the DBDs associated with the PSB you will  be using; this 
includes all physical, index, and logical DBDs. 

 

DICTionary name is dictionary-name 

Optionally identifies a dictionary name to be used in the SIGNON statement in the 

generated schema syntax. 

If you omit the DICTIONARY NAME statement, the syntax generator will  omit the 
DICTIONARY NAME IS clause in the SIGNON statement. As a result, the generated 
schema source will  be placed in the default dictionary. 

 

Example 

GENERATE SCHEMA NAME IS SCHEMA1 FOR DBD PHYSDB1, PHYSDB2, INDXDBD. 

DICTIONARY NAME IS PRODDIC. 

Figure 28. Sample Schema GENERATE and NAME statements 
 



GENERATE DMCL Statement 

 

84  DLI Transparency User Guide 

 

GENERATE DMCL Statement 

Syntax 

►►─┬─── GENerate DMCL name is dmcl-name ────┬────────────────────────────────► 
   │                                        │ 
   │              ┌───── , ───────┐         │ 
   └─── FOR dbd ──▼-- dbd-name. ──┴─────────┘ 
 
 ►─┬───────────────────────────────────┬─────────────────────────────────────►◄ 
   └─ SEGMENT name is segment-name . ──┘ 

 

Parameters 

GENerate DMCL name is dmcl-name 

Specifies that you want the syntax generator to produce a DMCL source definition. 

Dmcl-name is the 1- to 8-character name of the output source definition. This is the 
name that you will  supply as input to the CA IDMS Command Facil ity. 

 

FOR DBD dbd-name 

Specifies the DBD control block(s) from which to derive the DMCL source. You can 
specify multiple DBDs, separated by commas, to match the DBDs referenced in the 

associated PSB. Each dbd-name must be a 1- to 8-character name. 

Be sure to specify all  the DBDs associated with the PSB you will  be using; this 
includes all physical, index, and logical DBDs. 

 

SEGment name is segment-name 

Optionally supplies the name of a designated segment. 

If you omit the SEGMENT NAME statement, the syntax generator will  supply a 
default name for the segment. You will  then have to edit the output source 
definition to reflect your CA IDMS/DB naming conventions. 

 

Example 

GENERATE DMCL NAME IS DMCL1 FOR DBD PHYSDB1, PHYSDB2, INDXDBD. 

SEGMENT NAME IS ESCAPE. 

Figure 29. Sample DMCL GENERATE and NAME statements 
 

GENERATE SUBSCHEMA Statement 

Syntax 

►►─┬─── GENerate SUBschema name is subschema name ─────┬─────────────────────► 
   │             ┌───── , ───────┐                     │ 
   └─── FOR dbd -▼- dbd-name. ───┴─────────────────────┘ 
 
 ►─┬───────────────────────────────────────────────────────────┬─────────────►◄ 
   ├─ SCHema ─────┬── name is ─┬─ schema-name ─────┬── . ──────┘ 
   └─ DICTionary ─┘            └─ dictionary-name ─┘ 

 



GENERATE IPSB Statement 

 

Chapter 3: CA IDMS DLI Transparency Syntax Generator  85  

 

Parameters 

GENerate SUBschema name is subschema-name 

Specifies that you want the syntax generator to produce a subschema source 
definition. 

Subschema-name is the 1- to 8-character name of the output source definition. This 

is the name that you will  supply as input to the CA IDMS/DB subschema compiler. 
 

FOR DBD dbd-name 

Specifies the DBD control block(s) from which to derive the subschema source.  You 
can specify multiple DBDs, separated by commas, to match the DBDs referenced in 
the associated PSB. Each dbd-name must be a 1- to 8-character name. 

Be sure to specify all  the DBDs associated with the PSB you will  be using; this 
includes all physical, index, and logical DBDs. 

 

SCHema name is schema-name 

Optionally supplies the name of the associated schema. If you omit the 
schema-name, the syntax generator will  supply a default schema name. You can 

only include one SCHEMA NAME statement. 
 

DICTionary name is dictionary-name 

Optionally identifies the name of the dictionary to be used in the SIGNON 
statement in the generated subschema syntax. 

If you omit the DICTIONARY NAME statement, the syntax generator will  omit the 

DICTIONARY NAME IS clause in the SIGNON statement. As a result, the generated 
subschema source will  be placed in the default dictionary. 

You can only include one DICTIONARY NAME statement. 
 

Example 

GENERATE SUBSCHEMA NAME IS SUBSCHA FOR DBD PHYSDB1, PHYSDB2, INDXDBD. 

SCHEMA NAME IS SCHEMA1. 

DICTIONARY NAME IS PRODDIC. 

Figure 30. Sample Subschema GENERATE and NAME statements 
 

GENERATE IPSB Statement 

Syntax 

►►─┬─────────────────────────────────────────────────┬───────────────────────► 
   └─ GENerate ─┬────────┬─── IPSB for PSB psb-name ─┘ 
                └─ LOAD ─┘ 
 
 ►─┬─────────────────────────────────────────────┬───────────────────────────►◄ 
   └─ using SUBschema subschema-name ─── . ──────┘ 

 



Modification Statements 

 

86  DLI Transparency User Guide 

 

Parameters 

GENerate IPSB FOR PSB psb-name 

Specifies the PSB you want to use. Psb-name must specify the 1- to 8-character 
name of the PSB control block. 

 

LOAD 

Optional ly creates a special IPSB for use with the load util ity. Specifically, the 
resulting sets will  be defined as OPTIONAL MANUAL for loading purposes. LOAD 

also automatically creates the load processing option required by the load util ity. 
 

using SUBschema subschema-name. 

Specifies the 1- to 8-character name of the subschema that will  be used by the CA 
IDMS DLI Transparency run-time interface in conjunction with the IPSB load 
module. 

 

Example 

GENERATE IPSB FOR PSB PSB1 USING SUBSCHEMA SUBSCH1. 

Figure 31. Sample GENERATE IPSB statement 
 

Modification Statements 

The CA IDMS DLI Transparency syntax generator modification statements allow you to 
override area, record, and set definitions in generated schema, DMCL, subschema, and 

IPSB source. The modification statements can be used in conjunction with any of the 
four GENERATE statements. 

Note:  Make sure that the schema, subschema, and IPSB source definitions remain 
consistent. That is, any modifications made to a subschema must also be made to the 

associated schema. Any modifications made to an IPSB must also be made to its 
associated schema and subschema. For example, if you add an area to the generated 
IPSB source, you must also add the same area to both the associated schema and 
subschema source. 

 



Modification Statements 

 

Chapter 3: CA IDMS DLI Transparency Syntax Generator  87  

 

Different Types 

The modification statements are as follows: 

■ ADD AREA statement -- Generates source statements for defining a CA IDMS/DB 
database area 

■ MODIFY AREA statement -- Overrides a generated area name or changes the usage 

mode for a generated area 

■ MODIFY RECORD statement -- Overrides a generated record name 

■ MODIFY SET statement -- Overrides a generated set name 

Each statement is described separately below. 
 

ADD AREA Statement 

The ADD AREA statement generates the source statements needed to define a CA 
IDMS/DB database area. 

If you want to maintain index records in a separate area, you must include one ADD 

AREA statement for each index area. Specify the ADD AREA statement with the 
GENERATE statement for the IPSB and with the GENERATE statements for the 
associated schema and subschema. 

 

Syntax 

►►─┬────────────────────────────────┬────────────────────────────────────────► 
   └─ ADD AREA NAME is area-name ───┘ 
 
 ►─┬──────────────────────────────────────────────────────────────┬──────────►◄ 
   └─ USAGE-mode is ──┬─ PROTECTED ──┬──┬─ RETRIEVAL ◄──┬─── . ───┘ 
                      └─ EXCLUSIVE ──┘  └─ UPDATE ──────┘ 

 

Parameters 

ADD AREA NAME IS area-name 

Specifies the CA IDMS/DB database area to be added. 

Area-name must be a 1- to 16-character name. 
 

USAGE-mode is 

Specifies the usage mode in which an application can ready the area. The usage 
mode specifies the run-time operations that an application can perform against the 
CA IDMS/DB database area. 

If neither PROTECTED nor EXCLUSIVE is specified, SHARED is the default. SHARED 
specifies that other concurrently executing applications can access the named area . 

 



Modification Statements 

 

88  DLI Transparency User Guide 

 

PROTECTED 

PROTECTED prohibits update of the area by another concurrently executing 

application. 

EXCLUSIVE 

EXCLUSIVE prohibits access to the area by another concurrently executing 

application. 
 

RETRIEVAL 

Permits only retrieval (read-only) access for the database area 

UPDATE 

Allows all  DML functions (STORE, ERASE, MODIFY, etc.) for the database area  
 

MODIFY AREA Statement 

The MODIFY AREA statement allows you to specify a name for a generated area. The 
specified name overrides the name supplied by the syntax generator. Note that the 
default area name consists of the DL/I DBD name concatenated with the literal 

"-REGION". 

If the name of an area in the associated schema is different from the syntax 
generator-supplied name, you must include the MODIFY AREA statement to supply the 
correct schema-specific area name. 

 

Syntax 

►►─┬───────────────────────────────────┬─────────────────────────────────────► 
   └─ MODify AREA NAME is area-name ───┘ 
 
 ►─┬──────────────────────────────┬──────────────────────────────────────────► 
   └─ NEW NAME is new-area-name ──┘ 
 
 ►─┬──────────────────────────────────────────────────────────────┬──────────►◄ 
   └─ USAGE-mode is ──┬─ PROTECTED ──┬──┬─ RETRIEVAL ◄──┬─── . ───┘ 
                      └─ EXCLUSIVE ──┘  └─ UPDATE ──────┘ 

 

Parameters 

MODify AREA NAME is area-name 

Identifies the generated area for which you want to specify a new name. 

Area-name must be a 1- to 16-character name. 
 

NEW NAME is new-area-name 

Specifies the new CA IDMS/DB database area name. New-area-name must be a 
valid 1- to 16-character CA IDMS/DB area name. 

 



Modification Statements 

 

Chapter 3: CA IDMS DLI Transparency Syntax Generator  89  

 

USAGE-mode is 

Specifies the usage mode in which an application can ready the area. The usage 

mode specifies the run-time operations that an application can perform against the 
CA IDMS/DB database area. 

If neither PROTECTED nor EXCLUSIVE is specified, SHARED is the defa ult. SHARED 

specifies that other concurrently executing applications can access the named area. 
 

PROTECTED 

PROTECTED prohibits update of the area by another concurrently executing 
application. 

EXCLUSIVE 

EXCLUSIVE prohibits access to the area by another concurrently executing 
application. 

 

RETRIEVAL 

Permits only retrieval (read-only) access for the database area 

UPDATE 

Allows all  DML functions (STORE, ERASE, MODIFY, etc.) for the database area  
 

MODIFY RECORD Statement 

The MODIFY RECORD statement allows you to specify a name for a generated record. 
The specified name overrides the name supplied by the syntax generator. Note that the 

default record names are derived from the corresponding DL/I segment names. 

If the name of a record in the associated schema is different from the syntax 
generator-supplied name, you must include the MODIFY RECORD statement to supply 
the correct schema-specific record name. 

 

Syntax 

►►─┬──────────────────────────────────────┬──────────────────────────────────► 
   └─ MODify RECord NAME is record-name ──┘ 
 
 ►─┬──────────────────────────────────────┬──────────────────────────────────►◄ 
   └─ NEW NAME is new-record-name ─── . ──┘ 

 

Parameters 

MODify RECord NAME is record-name 

Identifies the record for which you want to specify a new name. Record-name  must 
be a 1- to 16-character name. 

NEW NAME is new-record-name 

Specifies the new CA IDMS/DB database record name. New-record-name must be a 
valid 1- to 16-character CA IDMS/DB record name. 

 



Executing the CA IDMS DLI Transparency Syntax Generator 

 

90  DLI Transparency User Guide 

 

MODIFY SET Statement 

The MODIFY SET statement allows you to specify a name for a generated set. The 
specified name overrides the name supplied by the syntax generator. Note that the 
default set names are derived from the DL/I parent segment names and their associated 

child segment names. The syntax generator concatenates each parent/child name pair 
with the literal "-". 

If the name of a set in the associated schema is different from the syntax 
generator-supplied name, you must include the MODIFY SET statement to supply the 

correct schema-specific set name. 
 

Syntax 

►►─┬────────────────────────────────┬────────────────────────────────────────► 
   └─ MODify SET NAME is set-name ──┘ 
 
 ►─┬───────────────────────────────────┬─────────────────────────────────────►◄ 
   └─ NEW NAME is new-set-name ─── . ──┘ 

 

Parameters 

MODify SET NAME is set-name 

Identifies the set for which you want to specify a new name. Set-name must be a 1- 
to 16-character name. 

NEW NAME is new-set-name 

Specifies the new CA IDMS/DB database set name. New-set-name must be a valid 1- 
to 16-character CA IDMS/DB set name. 

 

Executing the CA IDMS DLI Transparency Syntax Generator 

Input 

As described earlier in this section, syntax generator input consists of: 

■ The assembled DBD and PSB control blocks  

■ Control, GENERATE, and modification statements  
 



Executing the CA IDMS DLI Transparency Syntax Generator 

 

Chapter 3: CA IDMS DLI Transparency Syntax Generator  91  

 

Output 

Depending on the GENERATE statements coded, output from a single execution of the 

syntax generator consists of: 

■ Source statements required to create a CA IDMS/DB schema in the data dictionary 

■ Source statements required to create a CA IDMS/DB DMCL and/or subschema load 

module 

■ Source statements required to create one IPSB load module 

■ A report l isting the generated source statements  

You must execute the syntax generator once for each set of IPSB source statements you 

want to produce. To execute the syntax generator, use the JCL shown in CA IDMS DLI 
Transparency JCL (see page 257). 

 

Syntax Generator Execution 

The diagram below il lustrates the activities involved in executing the syntax generator. 

 

Figure 32. Syntax generator execution 
 

 





 

Chapter 4: IPSB Compiler  93  

 

Chapter 4: IPSB Compiler 
 

This section contains the following topics: 

About This Chapter (see page 93) 
Considerations For Preparing IPSB Compiler Input (see page 94) 
Compiler-Directive Statements (see page 98) 

IPSB SECTION (see page 100) 
AREA SECTION (see page 103) 
RECORD SECTION (see page 104) 

INDEX SECTION (see page 126) 
PCB SECTION (see page 135) 
Executing the IPSB Compiler (see page 154) 

 

About This Chapter 

The IPSB Compiler 

The CA IDMS DLI Transparency interface program specification block (IPSB) compiler 
converts user-supplied entries into assembler statements that are assembled into load 
modules, known as IPSBs. The IPSBs are later used by the CA IDMS DLI Transparency 

run-time interface as a source of control information for satisfying the database 
requests issued by a DL/I application program. 

 

DL/I and CA IDMS/DB Correspondences 

The control information in the IPSB is, in fact, a series of correspondences between DL/I 
structures and CA IDMS/DB structures. These correspondences serve two general 

purposes, as follows: 

■ To provide the run-time interface with the information needed to convert retrieval 
and update requests issued by the DL/I application program into CA IDMS/DB 
requests. 

■ To provide the run-time interface with the information needed to update the DL/I 
application's program communication blocks (PCBs). The updated PCBs are used to 
deliver the requested data and/or status information to the DL/I application 

program. 
 



Considerations For Preparing IPSB Compiler Input 

 

94  DLI Transparency User Guide 

 

Topics 

This section details the IPSB source statements that serve as input to the compiler. The 

following topics are discussed: 

■ Considerations for preparing IPSB compiler input 

■ Compiler-directive statements 

■ IPSB SECTION 

■ AREA SECTION 
 

■ RECORD SECTION 

■ INDEX SECTION 

■ PCB SECTION 

■ IPSB compiler execution 
 

Considerations For Preparing IPSB Compiler Input 

Input to the IPSB Compiler 

Input to the IPSB compiler consists of source statements that define the 
correspondences between the DL/I database referenced by the application and the CA 

IDMS/DB database accessed by the run-time interface. The CA IDMS DLI Transparency 
syntax generator produces these source statements from the program specification 
block (PSB) used by the DL/I application. 

 

Review Statements Before Executing the IPSB Compiler 

Before inputting the generated statements to the compiler, you should review them 

using the material in this section. In particular, you should make sure that the generated 
source statements reflect the dependencies in the DL/I definitions, especially with 
regard to logical child/logical parent relationships. 

 

To review the IPSB statements, you will  need the original source for the DL/I PSB and 
DBDs and the generated CA IDMS/DB schema source. If you have to modify the IPSB 

statements, use the IPSB syntax presented in this section.  When reviewing the IPSB 
source, consult the table below, for a l ist of the IPSB and DL/I correspondences. 

Note: If you plan to use the resulting IPSB module with the load util ity, there are special 

load considerations that you must also incorporate in the IPSB source. See CA IDMS DLI 
Transparency Load Util ity (see page 171) for a detailed description of the IPSB load 
considerations. 

 



Considerations For Preparing IPSB Compiler Input 

 

Chapter 4: IPSB Compiler  95  

 

IPSB Source Statements 

In a single execution of the IPSB compiler, you can compile one IPSB. You must define 

and compile one IPSB for each PSB expected by a DL/I application program. The IPSB 
source statements are organized into five sections and must appear in the following 
order: 

■ IPSB SECTION -- This section relates the IPSB to the corresponding PSB. 

■ AREA SECTION -- This section identifies the CA IDMS/DB database areas, included in 
the subschema, that are to be readied by the CA IDMS DLI Transparency run-time 
interface in any usage mode other than shared retrieval (the default). 

 

■ RECORD SECTION -- This section names the CA IDMS/DB records to be us ed either 

explicitly or implicitly to satisfy DL/I calls and defines the DL/I fields to be 
referenced in parameter l ists used in the application program. 

■ INDEX SECTION -- This section provides the information necessary to relate CA 
IDMS/DB records and sets  to secondary index and HIDAM index structures to be 

used and/or maintained by the CA IDMS DLI Transparency run-time interface. 

■ PCB SECTION -- This section corresponds to the associated DL/I PCBs within a PSB. 
 

Section Titles and Statements 

The syntax generator automatically produces section titles and appropriate statements 
for each section. Each section must appear in every IPSB. Even if there are no 

statements for a specific section, do not remove the section title. In addition to the 
sections, you can include compiler-directive statements before any of the IPSB sections. 
Note that the syntax generator does not produce the compiler -directive statements for 

you. 
 



Considerations For Preparing IPSB Compiler Input 

 

96  DLI Transparency User Guide 

 

Locating IPSB Entries Within PSB and DBDs 

Although the IPSB input is free form, you must locate specific information within the 

PSB and DBDs. To simplify this task, the table below, 

■ Lists each IPSB clause by section (see IPSB SECTION (see page 100)). 

■ Identifies the DL/I DBD or PSB statement and operand to which the clause 

corresponds; and indicates those clauses that specify information pertinent only to 
CA IDMS/DB. 

■ The syntax rules for each statement contain, where necessary, references to 
pertinent DL/I parameters in the PSB and DBDs. 

For more information about locating IPSB entries within the PSB and DBDs, see  DL/I and 
CA IDMS/DB (see page 21). 

 

IPSB Input DBD or PSB Correspondence 

Section Statement Clause Phase Statement Operand 

IPSB IPSB NAME PSB PSBGEN PSBNAME= 

  OF SUBSCHEMA *   

  LANGUAGE PSB PSBGEN LANG= 

  IOAREA PSB PSBGEN IOASIZE= 

  SSA PSB PSBGEN SSASIZE 

  COMPATIBILITY PSB PSBGEN COMPAT= 

AREA AREA  *   

RECORD RECORD NAME *   

  LENGTH DBD SEGM BYTES= 

RECORD FIELD NAME DBD FIELD NAME= 

fldname1 

  STARTING DBD FIELD START= 

  LENGTH DBD FIELD BYTES= 

  USAGE DBD FIELD TYPE= 

INDEX INDEX NAME DBD XDFLD NAME= 

   in indexed database (for secondary indexes) 

   DBD DBD NAME= 

   in INDEX database (for HIDAM) 

  USING INDEXED-SET *   



Considerations For Preparing IPSB Compiler Input 

 

Chapter 4: IPSB Compiler  97  

 

IPSB Input DBD or PSB Correspondence 

Section Statement Clause Phase Statement Operand 

  TARGET DBD LCHILD NAME= 

   in INDEX database 

  POINTER DBD SEGM NAME= 

   in INDEX database 

  THRU SET *   

  SOURCE DBD XDFLD SEGMENT= 

   in indexed database (for secondary indexes) 

   DBD SEGM NAME 

   in HIDAM database (for HIDAM) 

  CONSTANT DBD XDFLD CONST= 

  SEARCH DBD XDFLD SRCH= 

   in indexed database (for secondary indexes) 

   DBD FIELD NAME= 

   in HIDAM database (for HIDAM database) 

  SUBSEQUENCE DBD XDFLD SUBSEQ= 

  DUPLICATE DBD XDFLD DDATA= 

  NULL VALUE DBD XDFLD NULLVAL= 

  EXIT ROUTINE DBD XDFLD EXTRTN= 

PCB PCB ACCESS DBD DBD ACCESS= 

  DBDNAME DBD DBD NAME= 

  OPTIONS PSB PCB PROCOPT= 

  POSITIONING PSB PCB POS= 

  SEQUENCE *   

PCB SEGMENT NAME DBDGEN SEGM NAME= 

  RECORD *   

  PARENT DBDGEN SEGM PARENT= 

segname2 

  THRU SET *   



Compiler-Directive Statements 

 

98  DLI Transparency User Guide 

 

IPSB Input DBD or PSB Correspondence 

Section Statement Clause Phase Statement Operand 

  LOGICAL DEST 
PARENT 

DBDGEN SEGM PARENT= 

lpsegname 

  PHYSICAL DEST 

PARENT 

DBDGEN LCHILD NAME= 

  INSERT/ REPLACE 
RULES 

DBDGEN SEGM RULES= 

   (combined from a logical and physical database) 

  USE DBDGEN SEGM SOURCE= 

Note: *For CA IDMS/DB use only. 
 

Compiler-Directive Statements 

IPSB compiler-directive statements allow you to: 

■ Specify the amount of storage required by the IPSB compiler to compile the IPSB 

■ The range of input columns in which IPSB statements can be coded 

■ Sequence checking of input to the ISPB compiler 

■ Formatting of reports output by the IPSB compiler  
 

Syntax 

►►─┬────────────────────────────────────────────┬────────────────────────────► 
   └── CORe size = ─┬── (48) ◄────┬─────── k ───┘ 
                    └── (nnnnnn) ─┘ 
 
 ►─┬────────────────────────────────────────────────────────────┬────────────► 
   └─ ICTL = ──┬── (1,80) ◄───────────────────────────────────┬─┘ 
               └─  (start-column-number,end-column-number) ───┘ 
 
 ►─┬───────────────────────────────┬─────────────────────────────────────────► 
   └─ OCTL = ─┬── (60) ◄────────┬──┘ 
              └── (line-count) ─┘ 
 
 ►─┬─────────────────────────────────────────────────────────┬───────────────► 
   └─ ISEQ = ──── (start-column-number,end-column-number) ───┘ 
 
 ►─┬───────────────────────────────┬─────────────────────────────────────────► 
   │ ┌───────────────────────┐     │ 
   └─▼-- SPACE space-count ──┴─────┘ 
 
 ►─┬─────────────────────┬───────────────────────────────────────────────────► 
   | ┌────────────┐      | 
   └─▼-- EJECT ───┴──────┘ 
 
 ►─┬───────────────┬─────────────────────────────────────────────────────────►◄ 
   └─ *comments* ──┘ 

 



Compiler-Directive Statements 

 

Chapter 4: IPSB Compiler  99  

 

Parameters 

CORE size=nnnnnn k 

Specifies the amount of storage the IPSB compiler is to acquire (by a GETMAIN 
under OS and a GETVIS or COMREG under z/VSE) for the IPSB being generated. 

Nnnnnn is a 1- to 6-digit numeric value. 

If the optional K is included, the amount of storage acquired is nnnnnn  increments 
of K (1,024 bytes). If K is omitted, nnnnnn represents the actual number of bytes of 
storage acquired, which the compiler rounds up to the next doubleword. 

If this statement is omitted, the IPSB compiler acquires 48K of storage. 
  

ICTL=(start-column-n,end-column-n) 

Specifies the columns within which IPSB input statements can be coded. This 
compiler-directive statement, if coded, must precede the input for the five IPSB 
sections. 

Valid values for both start-column and end-column  are 1 through 80. 

The default values for start-column and end-column are 1 and 80, respectively. 
 

OCTL=(line-count-number) 

Specifies the number of l ines to print per page of printed output. If coded, this 
compiler-directive statement must precede the input for the five IPSB sections. 

The default value for line-count is 60: acceptable values are 1 through 66. 
 

ISEQ=(start-column-number,end-column-number) 

Specifies that the compiler is to perform sequence checking on all  input and 
specifies the start and end columns of the sequence number generated for each 
input statement. 

If coded, this statement must precede all  IPSB input statements. If this statement is 

omitted, sequence checking is not performed. 

Valid values for start-column-number and end-column-number are in the range 1 
through 80. The minimum allowable difference between the entry for start-column 

and the entry for end-column is 10. 
 

SPACE=space-count 

Directs the compiler to skip the specified number of l ines on the output report. 
Only one blank is allowed between SPACE and the value specified for space-count. 

Acceptable values for space-count  are 1 through 9. Several SPACE statements can 

appear in the compiler input. 
 

EJECT 

Directs the compiler to stop printing the current page and begin printing a new 
page. This statement must be on a l ine by itself and can be interspersed among IPSB 
input control statements (that is, EJECT statements can appear throughout compiler 

input). 
 



IPSB SECTION 

 

100  DLI Transparency User Guide 

 

*comments* 

Directs the compiler to interpret subsequent characters as comments. 

Comments can be embedded in IPSB statements and are terminated automatically 
at the end of the input l ine, unless the compiler encounters a second asterisk (*) in 
the input l ine, which causes explicit termination. 

Be sure to keep track of the number of asterisks. An odd number turns on comment 
text; an even number turns it off. 

 

Example 

 ICTL=(1,72) 

 OCTL=(45) 

 ISEQ=3,72 

 EJECT 

 SPACE 2 

 *Begin comments with an asterisk 

Figure 33. Sample compiler-directive statements 
 

IPSB SECTION 

The IPSB SECTION relates the IPSB to a particular PSB expected by the DL/I application 

program in a native DL/I environment. The IPSB section contains one statement--the 
IPSB statement. This statement identifies the IPSB and specifies global information 
related to the corresponding PSB. 

The information supplied in the IPSB SECTION corresponds to the information that is 

specified to DL/I by the PSBGEN statement in the PSB phase. The PSBGEN statement is 
located at the end of the PSB. 

 

Syntax 

►►─── IPSB SECTION ── . ─────────────────────────────────────────────────────► 
 
 ►─── IPSB name is ipsb-name ────── of SUBSchema subschema-name ─────────────► 
 
 ►─┬──────────────────────────────┬──────────────────────────────────────────► 
   └─ LANGuage is ──┬─ CObol ◄ ───┤ 
                    ├─ PL/i ──────┤ 
                    └─ ASsembler ─┘ 
 
 ►─┬───────────────────────────────────────────────┬─────────────────────────► 
   └─ MAXimum IOAREA size is maximum-io-area-size ─┘ 
 
 ►─┬────────────────────────────────────────┬────────────────────────────────► 
   └─ MAXimum SSA size is maximum-ssa-size ─┘ 
 
 ►─┬─────────────────────────────────────┬───────────────────────────────────►◄ 
   └─ COMPATibility is ─┬─ yes ──┬─── . ─┘ 
                        └─ no ◄ ─┘ 

 



IPSB SECTION 

 

Chapter 4: IPSB Compiler  101  

 

Parameters 

IPSB SECTION 

IPSB SECTION must be the first entry in the IPSB section, followed by one IPSB 
statement. 

 

IPSB name is ipsb-name 

Identifies the IPSB being generated. 

Ipsb-name is the 1- to 8-character PSB name used by the application program in a 

native DL/I environment. When the IPSB is l ink edited, the load module or phase 
name is the same as the ipsb-name. 

 

of SUBSchema subschema-name 

Identifies the subschema to be used by the CA IDMS DLI Transparency run-time 
interface. 

Subschema-name is the 1- to 8-character name of the subschema used by CA IDMS 
DLI Transparency to access the CA IDMS/DB database. 

 

LANGuage IS CObol/ PL/i /ASsembler 

Specifies the programming language of the application program using this IPSB. The 
language specified in the LANGUAGE parameter of the PSBGEN statement must be 

entered. The default is COBOL. 
 

MAXimum IOAREA size is maximum-io-area-size 

Specifies the amount of space to be allocated for the application program's I/O 
area. 

If this clause is omitted, the compiler calculates this size as the total length of all  
sensitive segments in the longest possible path call  issued by programs using this 
IPSB. Include this clause if a value is specified in the IOASIZE parameter of the 
PSBGEN statement. 

If the parameter is missing from the PSBGEN statement, the compiler calculates the 
space to be allotted for the application program's I/O area. Refer to the appropriate 
DL/I documentation for further details on I/O area allocation. 

 

MAXimum SSA size is maximum-ssa-size 

Specifies the maximum total length of all  segment search argument (SSA) strings to 

be used in a given DL/I call  issued by programs using this IPSB. 

If this clause is omitted, the compiler calculates the size as 280 times the maximum 
number of levels associated with any PCB statement within this IPSB. Include this 

clause if a value is specified in the SSASIZE parameter of the PSBGEN statement. 

If this parameter is missing from the PSBGEN statement, the compiler calculates the 
maximum SSA size. Refer to the appropriate DL/I documentation for further details 
on SSA size specification. 

 



IPSB SECTION 

 

102  DLI Transparency User Guide 

 

COMPATibility is yes/no 

Specifies whether the application program expects to find an I/O PCB in the PSB. 

The default is NO. 

If YES is specified, the CA IDMS DLI Transparency run-time interface creates a 
dummy I/O PCB as the first PCB. Note that you do not define this dummy I/O PCB, 

nor is it to be used by the application program. You should include this clause if 
CMPAT=YES is specified in the PSBGEN statement; otherwise, the compiler uses the 
default. 

 

Usage 

The PSBGEN statement in this example serves as the source for the IPSB SECTION. 

In this example, the IPSB has a name of PSB1 and relates to DL/I requests to structures 
in the CA IDMS/DB subschema SUBSCH1. As indicated in the PSBGEN statement: 

■ The application program is written in COBOL 

■ I0SIZE=2000 

■ SSASIZE=1500 

■ CMPAT=NO 
 

The PSBGEN statement values above correspond in the IPSB SECTION to: 

■ IOAREA SIZE IS 2000 

■ MAX SSA SIZE IS 1500 

■ COMPATIBILITY IS NO 
 

               DL/I PSBGEN Statement 

 

 PSBGEN  LANG=COBOL,PSBNAME=PSB1,MAXQ=0,CMPAT=NO,IOSIZE=2000, 

             SSASIZE=1500 

 

               CA IDMS DLI Transparency IPSB Section 

 

 IPSB SECTION. 

     IPSB NAME IS PSB1 OF SUBSCHEMA SUBSCH1 

     LANG IS COBOL MAX IOAREA SIZE IS 2000 

     MAX SSA SIZE IS 1500 COMPATIBILITY IS NO. 

Figure 34. Sample DL/I PSBGEN and IPSB SECTION 
 



AREA SECTION 

 

Chapter 4: IPSB Compiler  103  

 

AREA SECTION 

The AREA SECTION identifies the CA IDMS/DB database areas that are to be readied by 
the CA IDMS DLI Transparency run-time interface in any usage mode other than shared 
retrieval (the default). Specify one AREA SECTION statement for each database area that 
is not to be readied in shared retrieval mode. 

Note: Make sure that all  database areas to be accessed by the run-time interface are 
included in the subschema. The run-time interface automatically readies those areas 
required by this IPSB. Areas included in the subschema but not required by the IPSB are 
not readied. 

 

Syntax 

►►─── AREA SECTION ── . ─────────────────────────────────────────────────────► 
 
   ┌───────────────────────────────────────────────────────────────────────── 
 ►─▼─┬────────────────────────────────┬──────────────────────────────────────►─ 
     └─ AREA name is idms-area-name ──┘ 
 
  ──────────────────────────────────────────────────────────────┐ 
-►─┬──────────────────────────────────────────────────────┬─ . ─┴────────────►◄ 
   └─ USAGE-MODE is ──┬─ SHARED ◄───┬──┬─ RETRIEVAL ◄───┬─┘ 
                      ├─ PROTECTED ─┤  └─ UPDATE ───────┘ 
                      └─ EXCLUSIVE ─┘ 

 

Parameters 

AREA SECTION. 

AREA SECTION must be the first entry in the section, followed by as many AREA 
statements as required. You must include the AREA SECTION clause whether or not 
the section contains any AREA statements. 

 

AREA name is idms-area-name 

Identifies the CA IDMS/DB database area to be readied. 

Idms-area-name is the 1- to 16-character area name and included in the subschema 
named in the IPSB SECTION. 

 

USAGE-MODE is 

Specifies the usage mode in which the run-time interface is to ready the named 

area. The usage mode options specify the conditions for readying and accessing the 
named area. 

 

PROTECTED 

Specifies that the named area, once readied by CA IDMS/DB, cannot be readied in 
update usage mode by other concurrently executing run units. 

 

EXCLUSIVE 

Specifies that the named area, once readied by CA IDMS/DB, cannot be accessed by 
other concurrently executing run units. 

 



RECORD SECTION 

 

104  DLI Transparency User Guide 

 

RETRIEVAL 

Specifies that the named area is to be readied for retrieval only. Other concurrently 

executing run units can ready the area in any usage mode other than one that is 
qualified as EXCLUSIVE. 

RETRIEVAL is the default. 
 

UPDATE 

Specifies that the named area is to be readied for both retrieval and update. Other 

concurrently executing run units can ready the area in any usage mode other than 
one that is qualified as EXCLUSIVE or PROTECTED. 

 

Example 

 AREA SECTION. 

      AREA NAME IS IDMSDB-1 

           USAGE-MODE IS EXCLUSIVE UPDATE. 

      AREA NAME IS SPFAREA1. 

      AREA NAME IS SPFAREA2 

           USAGE-MODE IS PROTECTED UPDATE. 

      AREA NAME IS IDSMDB-2 

           USAGE-MODE IS RETRIEVAL. 

Figure 35. Sample AREA SECTION 
 

RECORD SECTION 

The RECORD SECTION names the CA IDMS/DB records to be used either explicitly or 

implicitly to satisfy DL/I calls, and defines the DL/I fields to be referenced in SSA 
parameter l ists used in DL/I database requests. 

The RECORD SECTION consists of RECORD statements and FIELD statements. 
 

The RECORD SECTION draws upon information in the: 

■ CA IDMS/DB schema 

■ DL/I PSB 

Since each PSB requires a separate IPSB, the information in one PSBGEN statement 
is used to complete each RECORD SECTION. 

■ DL/I DBDs 

The DBDs required are those specified in the PCBs. You should have available all of 
the DBDs specified in each PCB within the PSB. 

 



RECORD SECTION 

 

Chapter 4: IPSB Compiler  105  

 

If a PCB calls for a logical database or an index database, you also need the DBDs for 
the associated physical databases or indexed databases, respectively. 

When a PCB calls for a HIDAM database or a database with a secondary index(es), 
you should have available the DBD for the associated index database. 

 

Syntax 

►►─── RECORD SECTION. ────────────────────────────────────────────────────────► 
 
 ►─── RECORD statements. ─────────────────────────────────────────────────────► 
 
 ►─── FIELD statements. ──────────────────────────────────────────────────────►◄ 

 

Parameters 

RECORD SECTION. 

RECORD SECTION must be the first entry in the section followed by RECORD and 

FIELD statements. 
 

RECORD statements 

Following the RECORD SECTION is one RECORD statement for each DL/I segment 
specified in every PCB in the application program's PSB. The RECORD statement 
defines the CA IDMS/DB record that corresponds to the DL/I segment. 

 

In addition to these explicit correspondences, you must make sure that there are 

RECORD statements for those records whose corresponding segments are not 
specified in the PCBs but must be accessed by DL/I to process DL/I calls. These 
implicit correspondences  are required for the following types of segments: 

■ Dependent segments of any segment specified in the PCB if the specified 

parent segment can be deleted (that is, PROCOPT=A or PROCOPT=D appears in 
the PCB or SENSEG statement) 

■ All dependent segments of the preceding dependent segments  

■ Pointer segments for all  target and source segments specified in the PCB 

■ Source segments for all  target segments specified in the PCB 

■ All segments in the hierarchical path of the destination parent segment in its 
physical database 

 

FIELD statements 

There can be from 0 to 255 FIELD statements following each RECORD statement. 
The sources for these FIELD statements consist of the appropriate FIELD statements 
within the relevant DBDs. 

The RECORD and FIELD statements are discussed in detail  below. 
 



RECORD SECTION 

 

106  DLI Transparency User Guide 

 

RECORD Statement 

A RECORD statement names a CA IDMS/DB record and optionally specifies either the 
type of CA IDMS/DB ERASE command issued or that a DISCONNECT command was 
issued. The CA IDMS/DB ERASE or DISCONNECT command is issued in response to a DL/I 

DLET call  for the segment corresponding to the named record. 
 

To determine the RECORD statements required for an IPSB: 

1. Locate the PSB that corresponds to the IPSB being coded 

2. Locate the PCBs in this PSB 
 

3. If a PCB names a physical DBD (that is, with ACCESS=HDAM, HSAM, HISAM, HIDAM, 
or INDEX), use the following guidelines: 

■ Locate the DBD named in the PCB. 

■ Prepare for each DBD a hierarchy diagram showing each segment defined in 
the DBD. 

■ Check off all  the segments specified in each PCB within the PSB. Each of these 

segments will  need a corresponding CA IDMS/DB record, which is to be 
described in a RECORD statement. 

 

■ Check off all  those segments in the hierarchy diagrams that meet one of the 
following conditions: 

– The segment is a dependent segment of any segment that is both specified 

in the PCB and is subject to deletion. 

– The segment is a source segment associated with a target segment that is 
specified in the PCB. 

– The segment is a pointer segment associated with a target segment that is 

a segment specified in the PCB or a dependent of a segment specified in 
the PCB. The pointer segment for a target segment is located in the 
associated index DBD. 

 

4. If the PCB names a logical DBD (that is, with ACCESS=LOGICAL), use the following 
guidelines: 

■ Find both the logical DBD and the associated physical DBDs. 

■ Note each SEGM statement in the logical DBD with only one SOURCE 
parameter. In each of these SEGM statements, the SOURCE parameter 

identifies the segment in the physical database. Identify the corresponding CA 
IDMS/DB record for each of these physical segments. 

■ Locate each SEGM statement that defines a concatenated segment. Identify 
the real logical child segment and the destination parent segment and locate 

the names of their corresponding CA IDMS/DB records. 
 



RECORD SECTION 

 

Chapter 4: IPSB Compiler  107  

 

■ Prepare hierarchy diagrams of the two associ ated physical databases. Using the 
diagram containing the destination parent segment, check off all  the segments 

in the hierarchical path of the destination parent segment. For each of the 
checked off segments, identify the corresponding CA IDMS/DB record. 

■ Note if any of the identified segments from the above guidelines can be 

deleted. If this is the case, note all  of the dependents of this segment. (Do not 
include virtual logical child segments.) For each noted segment, identify the 
corresponding CA IDMS/DB record. 

 

■ Note if any of the segments identified in the above guidelines is a source 
segment or a target segment of either a HIDAM database or a secondary index. 

If this is the case, locate the associated index pointer segment, which is defined 
in a DBD with ACCESS=INDEX. Then, identify the corresponding CA IDMS/DB 
record for the index pointer segment. 

■ Make sure there is a RECORD statement for each of the records identified in 

the above guidelines. 
 

Syntax 

►►─── RECORD SECTION ── . ───────────────────────────────────────────────────► 
 
 ►─── RECORD name is idms-record-name ───────────────────────────────────────► 
 
 ►─── LENGTH is ─┬─ dl1-segment-length ────────────────────────────┬─────────► 
                 └─ dl1-max-segment-length dl1-min-segment-length ─┘ 
 
 ►─┬───────────────────────────────────────────────┬─────────────────────────►◄ 
   └─ DELete by ──┬── ERASE ALL ◄──────┬─── . ─────┘ 
                  ├── ERASE PERManent ─┤ 
                  ├── ERASE SELective ─┤ 
                  └── DISConnect ──────┘ 

 

Parameters 

RECORD name is idms-record-name 

Identifies the CA IDMS/DB record to be accessed by the CA IDMS DLI Transparency 
run-time interface. 

Idms-record-name must be a 1- to 16-character name that corresponds to a DL/I 

segment and must be defined in the subschema named in the IPSB SECTION. 
 

LENGTH is 

Specifies the length of the DL/I segment to which the idms-record-name 
corresponds. 

 

dl1-segment-length 

Specifies the length of the DL/I segment if it is a fixed-length segment. 
 

dl1-max-segment-length dl1-min-segment-length 

Specifies the maximum and minimum lengths of the DL/I segment if it is a 

variable-length segment. See "Determining values for variable length segments" 
under "Examples" later in this chapter. 

 



RECORD SECTION 

 

108  DLI Transparency User Guide 

 

DELete by 

Specifies the CA IDMS/DB DML command that the interface will  issue in response to 

a DL/I DLET call  for the segment corresponding to the named record. 
 

ERASE ALL 

Specifies that the named record and all  mandatory and optional member record 
occurrences it owns are to be erased. 

All  members that are owners of any set occurrences are treated as if they were the 

object of an ERASE ALL statement. 

ERASE ALL is the default. 
 

ERASE PERManent 

Specifies that the named record and all  mandatory member record occurrences it 
owns are to be erased from the database. Optional member record occurrences are 

disconnected. 

All  erased mandatory members that are owners of set occurrences are treated as if 
they were the object of an ERASE PERMANENT statement. 

Note: For more information about CA IDMS/DBset membership options, see the CA 
IDMS Database Administration Guide 

 

ERASE SELective 

Specifies that the named record and all  mandatory member record occurrences it 
owns are to be erased from the database. Optional member record occurrences are 

erased only if they do not currently participate as members in other set 
occurrences. 

All  erased members that are owners of set occurrences are treated as if they were 
the object of an ERASE SELECTIVE statement. 

 

DISConnect 

Specifies that the membership of the named record is cancelled from all  sets in 
which it currently participates as an optional member. The record, however, 
remains in the database. 

 

Usage 

Determining the Value for a Fixed Length Segment  

To locate the dl1-segment-length, find the SEGM statement defining the segment that 
corresponds to the named record. Use the entry in the SEGM statement's BYTES clause 
for dl1-segment-length. 

Note that if the DL/I segment is a logical child segment, the length of the physical and/or 
logical parent concatenated key may be required along with the BYTES clause entry 
when determining the value of dl1-segment-length. 

 



RECORD SECTION 

 

Chapter 4: IPSB Compiler  109  

 

Determining Values for Variable Length Segments 

To locate dl1-max-segment-length and dl1-min-segment-length values, find the SEGM 

statement defining the segment that corresponds to the named record. Use the first 
entry in the SEGM statement's BYTES clause for dl1-max-segment-length; use the 
second entry in the SEGM statement's BYTES clause for dl1-min-segment-length. 

Note that if the DL/I segment is a logical child segment, the length of the physical and/or 
logical parent concatenated key may be required along with the BYTES clause entries 
when determining the value for dl1-max-segment-length and dl1-min-segment-length. 

 

Calculating the Length of a Concatenated Key 

The length of a concatenated key equals the sum of the lengths of the sequence field, 

from the sequence field of the named key through the root segment's sequence field. 
 

 

Figure 36. Finding the length of a concatenated key  
 



RECORD SECTION 

 

110  DLI Transparency User Guide 

 

Determining Record Length for Logical Child Equivalent  

The examples below show how you can determine the record length for the logical child 

equivalent. 

Refer to "LOGICAL PARENT FIELD Statement" later in this section for details on 
determining whether the physical parent concatenated key and the logical parent 

concatenated key are stored virtually or physically. 
 

Example 1 

Assume the LPCK is stored virtually and the PPCK is stored physically. 

 

1. Find the LPCK's length. Subtract this key length from the entry(ies) in the logical 
child's BYTES clause. 

2. Find the PPCK's length. Add this key length to the value calculated in step 1 above: 

For fixed-length segments: 

dl/i-segment-length = (BYTES entry - LPCK-length) + PPCK-length 

For variable-length segments: 

dl/1-max-segment-length = (First BYTES entry - LPCK-length) + PPCK-length 
dl/1-min-segment-length = (Second BYTES entry - LPCK-length) + PPCK-length 

 

Example 2 

 

Assume both the PPCK and the LPCK are stored virtually. 

  

Find the LPCK's length. Subtract this key length from the entry(ies) in the logical child's 
BYTES clause: 

For fixed length segments: 

dl/i-segment-length = BYTES entry - LPCK-length 
 



RECORD SECTION 

 

Chapter 4: IPSB Compiler  111  

 

For variable length segments: 

dl/1-max-segment-length = First BYTES entry - LPCK-length 

dl/1-min-segment-length = Second BYTES entry - LPCK-length 
 

Example 3 

Assume that the logical parent concatenated key (LPCK) is stored physically and the 
physical parent concatenated key (PPCK) is stored virtually. 

 

Use the BYTES parameter value(s) in the logical child's SEGM statement as the value(s) 

for the LENGTH parameter: 

For fixed length segments: 

dl/i-segment-length = BYTES entry in logical child's SEGM statement 
 

For variable length segments: 

dl/1-max-segment-length = First BYTES entry in logical child's SEGM statement 

dl/1-min-segment-length = Second BYTES entry in logical child's SEGM statement 
 

Example 4 

Assume both the LPCK and the PPCK are stored physically. 

 

Find the PPCK's length.  Add this key length to the entry(ies) in the logical child's BYTES 

clause: 

For fixed length segments: 

dl/i-segment-length = PPCK-length + BYTES entry in logical child's SEGM statement 
 



RECORD SECTION 

 

112  DLI Transparency User Guide 

 

For variable length segments: 

dl/1-max-segment-length = PPCK-length + first BYTES entry in logical child's SEGM 

statement 

dl/1-min-segment-length = PPCK-length + second BYTES entry in logical child's SEGM 
statement 

 

FIELD Statement 

A FIELD statement defines a DL/I field within the named record and corresponds to the 
FIELD statement in the DBD. Following each RECORD statement, there must be a FIELD 
statement for every field l isted in the DBD for the segment corresponding to the named 

record. Some records (that is, those corresponding to the logical child segments) will  
need additional FIELD statements, as explained below. Up to 255 FIELD statements can 
follow each RECORD statement. If, however, a named record corresponds to a segment 
for which no fields are defined in the DBD, the RECORD statement stands alone without 

any FIELD statements. 
 

Five FIELD Statement Formats 

There are five FIELD statement formats available: 

■ Sequence -- Defines DL/I sequence fields  

■ Field -- Defines DL/I search fields other than sequence fields  

■ Logical parent -- Defines logical parent concatenated key fields  

■ Physical parent -- Defines physical parent concatenated key fields  

■ Logical sequence -- Defines logical sequence fields (that is, sequence fields for the 

virtual logical child segments) 
 



RECORD SECTION 

 

Chapter 4: IPSB Compiler  113  

 

How to Determine the Appropriate FIELD Statement Format 

To determine which format of the FIELD statement is appropriate to define a particular 

DL/I field, first consider the segment equivalent of the record being described in the 
RECORD statement. Find the SEGM statement defining the segment and determine 
whether the segment is a root segment, a dependent segment (that is, with only one 

parent), or a logical child segment (that is, with two parents). After making this 
determination, apply the appropriate set of rules as follows: 

■ Root and dependent segments -- If the segment is either a root segment or a 
dependent segment, note its sequence field (if any). Define this sequence field by 

using the SEQUENCE FIELD statement. This FIELD statement must appear 
immediately following the appropriate RECORD statement. Next, determine if the 
segment has search fields (that is, fields defined without a SEQ in the NAME clause 
of the FIELD statement). If there are search fields, each one must be defined by 

using the FIELD statement. Each of these FIELD statements must appear under the 
appropriate RECORD statement. 

 

■ Logical child segment -- If the segment is a logical child segment, the RECORD 
statement must be followed by LOGICAL PARENT FIELD and PHYSICAL PARENT FIELD 

statements to define the logical parent concatenated key field and the physical 
parent concatenated key field, respectively. Additionally, the logical child segment 
corresponding to the named record may have a sequence field. If so, define this 
sequence field with a SEQUENCE FIELD statement following the RECORD statement. 

 

Define Search Fields with Separate FIELD Statement 

Define each of the segment's search fields to the IPSB with a separate FIELD statement 
following the LOGICAL PARENT FIELD and PHYSICAL PARENT FIELD statements that 
define the logical parent concatenated key and the physical parent concatenated key, 
respectively. Next, locate the SEGM statement that defines the associated virtual logical 

child segment. This SEGM statement is generally not located in the same DBD as the 
SEGM statement that defines the logical child segment. 

 

If the virtual logical child segment has a sequence field, a LOGICAL SEQUENCE FIELD 
statement is required to define the sequence field under the named record. For each of 
the remaining search fields for the virtual logical child segment, there must be a FIELD 

statement. Each of these FIELD statements must appear under the RECORD statement 
that identifies the record corresponding to the logical child segment. 

 

USAGE Clause 

Each of the five formats of the FIELD statement can end with the optional USAGE clause. 
As with DL/I, this clause is for documentation purposes only. This clause and the five 

FIELD statement formats are described separately below. 
 



RECORD SECTION 

 

114  DLI Transparency User Guide 

 

USAGE clause 

The USAGE clause defines the data type of the named field. It is used at the end of each 
of the five formats of the FIELD statement and is not repeated for the individual formats 
of the FIELD statement. 

 

Syntax 

>─┬──────────────────────────────────┬──────────────────────────────────────>< 
  └─ USAGE is ──┬── DISplay ◄──┬─ . ─┘ 
                ├── BINary ────┤ 
                └── PACKed ────┘ 

 

Parameters 

USAGE is 

Specifies the data type of the named field. To determine the appropriate option, 
note the FIELD statement in the DBD. 

DISplay 

Specify if the FIELD statement in the DBD specifies TYPE=C. DISPLAY is the default 
value. 

 

BINary 

Specify if the FIELD statement in the DBD specifies TYPE=F, TYPE=H, or TYPE=X. 

PACKed 

Specify if the FIELD statement in the DBD specifies TYPE=P. 
 

SEQUENCE FIELD statement 

This format of the FIELD statement defines the sequence field for the named record. A 

sequence field can be defined for: 

■ Each record corresponding to a root segment 

■ A dependent segment ordered under its physical parent, including the logical child 
segment 

■ A pointer segment 
 

Sequence fields defined for pointer records must comprise the concatenation of the 
constant, search, and subsequence fields for the pointer segment. (Constant and 
subsequence fields are described below.) 

A field defined as a sequence field can be used as a search field in an SSA. 
 



RECORD SECTION 

 

Chapter 4: IPSB Compiler  115  

 

Syntax 

►►─┬─────────────────────────────────────────┬───────────────────────────────► 
   └─ SEQuence FIELD name is dl1-field-name ─┘ 
 
 ►─┬──────────────────────────────────────────┬──────────────────────────────► 
   └─ STARTING POSition is starting-position ─┘ 
 
 ►─┬──────────────────────────────┬──────────────────────────────────────────►◄ 
   └─ LENgth is dl1-field-length ─┘ 

 

Parameters 

SEQuence FIELD name is dl1-field-name 

Specifies the name of the sequence field. Dl1-field-name  is the entry in the NAME 
clause of the DL/I FIELD statement defining the sequence field. 

 

STARTING POSition is starting-position 

Specifies the position in the record in which the sequence field begins. Use the 
START clause value in the DL/I FIELD statement defining the sequence field. 

 

LENgth is dl1-field-length 

Specifies the length of the sequence field. Use the BYTES clause entry in the DL/I 
FIELD statement defining the sequence field. 

 

FIELD statement 

This format of the FIELD statement defines the named record's search fields (that is, the 

search fields other than the sequence fields). 

There must be a separate statement to define each search field in each record that 
corresponds to a segment with search fiel ds. 

 

For a record corresponding to a logical child segment, this format defines the search 
fields for the logical child segment and for the virtual logical child segment. 

DL/I fields whose names begin with /CK or /SX are treated like any other search fiel ds 
and are defined with this format of the FIELD statement. 

 

Syntax 

►►─┬────────────────────────────────┬────────────────────────────────────────► 
   └─ FIELD name is dl1-field-name ─┘ 
 
 ►─┬──────────────────────────────────────────┬──────────────────────────────► 
   └─ STARTING POSition is starting-position ─┘ 
 
 ►─┬──────────────────────────────┬──────────────────────────────────────────►◄ 
   └─ LENgth is dl1-field-length ─┘ 

 



RECORD SECTION 

 

116  DLI Transparency User Guide 

 

Parameters 

FIELD name is dl1-field-name 

Names the DL/I field being defined. Use the NAME clause entry in the DL/I FIELD 
statement that defines the search field for the segment corresponding to the 
named record. 

Ensure that dl1-field-name  is identical to the field name by which the DL/I 
application will refer to the field. 

 

STARTING POSition is starting-position 

Specifies the position in the record in which the search field begins. Use the START 
parameter value in the DL/I FIELD statement that defines the search field. Omit this 

field if the name field is a /SX field. 
 

LENgth is dl1-field-length 

Specifies the length of the search field. Use the BYTES parameter value in the DL/I 
FIELD statement that defines the search field. 

 

LOGICAL PARENT FIELD statement 

This format of the FIELD statement defines the logical parent concatenated key field for 
a record corresponding to a logical child segment. A logical parent concatenated key is a 
symbolic pointer to the logical parent. 

LOGICAL PARENT FIELD statements  and PHYSICAL PARENT FIELD statements (for 

defining the physical parent concatenated key field) are both required when the named 
record corresponds to a logical child segment. 

 

Syntax 

►►─┬────────────────────────────────────────────────────────────────┬────────► 
   └─ LOGical PARENT CONCATenated KEY FIELD name is dl1-field-name ─┘ 
 
 ►─┬─────────────────────────────┬───────────────────────────────────────────► 
   └─ STORED ─┬── PHYSically ◄───┤ 
              └── VIRTually ─────┘ 
 
 ►─┬──────────────────────────────────────────┬──────────────────────────────► 
   └─ STARTING POSition is starting-position ─┘ 
 
 ►─┬──────────────────────────────┬──────────────────────────────────────────►◄ 
   └─ LENgth is dl1-field-length ─┘ 

 

Parameters 

LOGical PARENT CONCATenated KEY FIELD name is dl1-field-name 

Specifies the name by which the concatenated key to the logical parent segment is 
defined to DL/I. Any 1- to 8-character name can be used for the dl1-field-name, 

since this name serves only as a fi l ler. 

Ensure that the name selected for dl1-field-name  is not used to define any other 
field for the named record. 

 



RECORD SECTION 

 

Chapter 4: IPSB Compiler  117  

 

STORED PHYSically/VIRTually 

Specifies whether the logical parent concatenatecd key is stored with the record 

corresponding to the logical child segment or is built by the CA IDMS DLI 
Transparency run-time interface. 

 

PHYSically 

Specifies that the logical parent concatenated key is stored with the record 
corresponding to the logical child segment. The use of this option for the segment 

corresponding to the named record depends on the type of logical relationship 
defined in the relevant DBDs as follows: 

 

Relationship What to specify 

Unidirectional and bidirectional virtual logical 
relationships 

If PHYSICAL or P is specified on the 
SEGM statement PARENT 
parameter defining the real logical 

child segment, specify 
PHYSICALLY. 

For bidirectional physical logical relationships, the 

relationship must appear l ike a bidirectional 
virtual logical relationship. 

Choose one logical child segment to represent the 
real logical child segment and the other to 

represent the logical virtual child segment. Hence, 
the parent of the assigned real logical child 
segment is considered the physical parent 
segment; the parent of the assigned virtual logical 

child segment is considered the logical parent 
segment. 

If the entry in the PARENT 

parameter of the SEGM statement 
defining the segment assigned as 
the real logical child segment is 
PHYSICAL or P, specify 

PHYSICALLY. 

The default for this IPSB clause is PHYSICALLY. 

If either of the destination parent concatenated key fields is STORED PHYSICALLY, 
that field must be the first field in the record. 

 

If both destination parent concatenated key fields are STORED PHYSICALLY (see 
note below), they must be the first two fields in the record. These however, can be 
preceded by the halfword-length field if the record is a variable-length record. If 

PHYSICALLY is specified, the STARTING POSITION clause (see below) must be 
included in the FIELD statement. 

 



RECORD SECTION 

 

118  DLI Transparency User Guide 

 

VIRTually 

Specifies that the logical parent concatenated key is absent from the record 

corresponding to the logical child segment and is built by the run-time interface. 
The use of this option for the segment corresponding to the named record depends 
on the type of logical relationship defined in the relevant DBDs, as follows: 

 

Relationship What to specify 

Unidirectional and bidirectional virtual 
logical relationships 

Specify VIRTUALLY if VIRTUAL or V is 
specified in the PARENT parameter of the 

SEGM statement defining the real logical 
child segment. 

For bidirectional physical logical 
relationships, the relationship must 

appear as a bidirectional virtual logical 
relationship, as described under 
bidirectional physical logical 

relationships above. 

If the entry in the PARENT parameter of the 
SEGM statement defining the segment 

assigned as the real logical child segment is 
VIRTUAL or V, specify VIRTUALLY. 

If VIRTUALLY is specified, you must omit the 

STARTING POSITION clause. 

Note: Although DL/I bidirectional virtual relationships permit only the logical parent 
concatenated key to be stored physically in the logical child, CA IDMS DLI 
Transparency allows either one or both of the concatenated keys to be stored 

physically or virtually. 
 

STARTING POSition is starting-position 

Specifies the position in the record in which the concatenated key field begins, 
where the record begins in position 1. What you specify on this clause depends 
upon what you specified on the STORED VIRTUALLY/PHYSICALLY clause: 

 

STORED VIRTUALLY/PHYSICALLY 
clause 

STARTING POSITION clause 

If STORED VIRTUALLY is specified 
for the named field 

Don't include it for the named field. 

If STORED PHYSICALLY is specified 
only for the named field (that is, 

only for the LOGICAL PARENT 
CONCATENATED KEY field) 

START POSITION IS 1. 



RECORD SECTION 

 

Chapter 4: IPSB Compiler  119  

 

STORED VIRTUALLY/PHYSICALLY 
clause 

STARTING POSITION clause 

If both the named field and the 
PHYSICAL PARENT CONCATENATED 
KEY field (PHYSICAL PARENT FIELD 

statement) are STORED PHYSICALLY 

One of the two fields will  have a START POSITION 
of 1. The other field will  begin in the next 
available byte after its complement 

concatenated key field is stored. For example, 
assume that the length of the concatenated key 
for the physical parent is 15 and the STARTING 
POSITION entered in the IPSB for the PHYSICAL 

PARENT is 1. Therefore, the LOGICAL PARENT 
KEY field has a START POSITION of 16. 

When both concatenated keys are 
stored physically and the record is a 

variable length record 

Perform the above calculations and add 2 to the 
start position to allow for the halfword 

containing the length of the record. 

LENgth is dl1-field-length 

Specifies the length of the concatenated key for the logical parent. 

To determine the entry for this clause, first find the DL/I FIELD statements that 
define the sequence fields of the logical parent segment and of those segments in 
the logical parent's hierarchical path to the root segment. Add the BYTES clause 
entries in these FIELD statements. 

 

Usage 

The Length of the Concatenated Key for the Logical Parent  

To calculate the length of the concatenated key for the logical parent, assume the DBD 
has the following entries from the root segment through the sequence field of the 
logical parent segment: 

SEGM     NAME=SEGRT,PARENT=0,BYTES=31,PTR=TWINBWD 

FIELD    NAME=(FIELD1,SEQ,U),BYTES=21,START=,TYPE=C 

FIELD    NAME=FIELD2,BYTES=10,START=22 

SEGM     NAME=LPSEG,PARENT=SEGRT,BYTES=20,PTR=TWINBWD 

FIELD    NAME=(FIELD3,SEQ,U),BYTES=60,START=1,TYPE=C 

In this example, the sum of the sequence fields (FIELD1 and FIELD3) is 81, which is the 
value entered in the LENGTH clause of the IPSB FIELD statement. For more details, see 
Figure 36. 

 



RECORD SECTION 

 

120  DLI Transparency User Guide 

 

PHYSICAL PARENT FIELD statement 

This format of the FIELD statement defines the physical parent concatenated key field 
for the record corresponding to the logical child segment. A physical parent 
concatenated key is a symbolic pointer to the logical parent. LOGICAL PARENT FIELD and 

PHYSICAL PARENT FIELD statements (used to define the logical parent concatenated key 
field) are both required when the named record corresponds to a logical child segment. 

 

Syntax 

►►─┬─────────────────────────────────────────────────────────────────┬───────► 
   └─ PHYSical PARENT CONCATenated KEY FIELD name is dl1-field-name ─┘ 
 
 ►─┬─────────────────────────────┬───────────────────────────────────────────► 
   └─ STORED ─┬── PHYSically ◄───┤ 
              └── VIRTually ─────┘ 
 
 ►─┬──────────────────────────────────────────┬──────────────────────────────► 
   └─ STARTING POSition is starting-position ─┘ 
 
 ►─┬──────────────────────────────┬──────────────────────────────────────────►◄ 
   └─ LENgth is dl1-field-length ─┘ 

 

Parameters 

PHYSical PARENT CONCATenated KEY FIELD name is dl1-field-name 

Specifies the name by which the concatenated key to the physical parent is defined 
to CA IDMS/DB. Any 1- to 8-character name can be used for the dl1-field-name, 
since this name serves only as a  fi l ler. 

Make sure that the name selected for dl1-field-name is not used to define any other 
field for the named record. 

 

STORED PHYSically/VIRTually 

Specifies whether the physical parent concatenated key is stored with the record 
corresponding to the logical child segment or is built by the CA IDMS DLI 

Transparency run-time interface. 
 



RECORD SECTION 

 

Chapter 4: IPSB Compiler  121  

 

PHYSically 

Specifies that the physical parent concatenated key is stored with the record 

equivalent of the logical child segment. 

The default is PHYSICALLY. The following considerations apply to the use of this 
option: 

 

Relationship What to specify 

When the named record corresponding to the logical 
child segment is participating in a bidirectional physical 

logical relationship. 

In such cases, CA IDMS DLI Transparency requires that 
the logical relationship be made to appear as a 
bidirectional virtual logical relationship. As described 

above (in the STORED PHYSICALLY syntax rules under 
LOGICAL PARENT FIELD Statement (see page 116)), one 
of the logical child segments must be treated as the real 

logical child segment, and the other segment must be 
assigned as the virtual logical child segment. If PHYSICAL 
or P is entered in this parameter, specify PHYSICAL in the 
IPSB clause. 

STORED PHYSICALLY. 

If either of the destination parent concatenated key fields is stored physically, make 
that field the first physical field in the record. 

If both destination parent concatenated key fields are stored physically (see the 

discussion of STORED PHYSICALLY/VIRTUALLY under "LOGICAL PARENT FIELD 
Statement"), they must be the first two physical fields in the record. These fields, 
however, can be preceded by the halfword-length field if the record is a 
variable-length record. If PHYSICALLY is specified, the STARTING POSITION clause 

(see below) must be included in the FIELD statement. 
 

VIRTually 

Specifies that the physical parent concatenated key is absent from the record 
corresponding to the logical child segment and is built by the CA IDMS DLI 
Transparency run-time interface. The use of this option for the segment 

corresponding to the named record depends on the type of logical relationship 
defined in the relevant DBDs, as follows: 

 

Relationship What to specify 

For unidirectional logical relationships and bidirectional 
virtual logical relationships 

VIRTUALLY 



RECORD SECTION 

 

122  DLI Transparency User Guide 

 

Relationship What to specify 

For bidirectional physical logical relationships, CA IDMS DLI 

Transparency requires that one logical child segment be 
treated as the real logical child segment, and the other 
logical child segment be treated as the virtual logical child 

segment. (See the discussion of STORED PHYSICALLY under 
LOGICAL PARENT FIELD Statement (see page 116).) 

If the entry in the PARENT parameter of the SEGM 
statement defining the segment that is being treated as 

the virtual logical child segment specifies VIRTUAL or V 

VIRTUALLY 

If VIRTUALLY is specified, 
the STARTING POSITION 
clause must be omitted. 

STARTING POSition is starting-position 

Specifies the position in the record in which the concatenated key field begins, 
where the record begins in position 1. Omit this clause if STORED VIRTUALLY is 

specified for the named field. 

 

Relationship What to specify 

If STORED PHYSICALLY is 
specified only for the named 
field (that is, only for the 
LOGICAL PARENT 

CONCATENATED KEY field) 

Specify START POSITION IS 1. 

If both the named field and the LOGICAL PARENT 
CONCATENATED KEY field are stored physically, one 
of the fields will  have a START POSITION of 1. The 

other field will  begin in the next available byte after 
its complement concatenated key field is stored. 

When both concatenated key fields are stored 

physically and the record is a variable-length record, 
add 2 to the START POSITION to allow for the 
halfword containing the length of the record. 

LENGTH IS dl1-field-length 

Specifies the length of the concatenated key to the physical parent. 

To determine the entry for this clause, first find the DL/I FIELD statements that 
define the sequence fields of the physical parent segment and of those segments in 

the physical parent's hierarchical path to the root segment. Add the BYTES clause 
entries in these FIELD statements. The result is the entry for dl1-field-length. 

 

LOGICAL SEQUENCE FIELD statement 

This format of the FIELD statement defines the logical sequence field and its attributes. 

A logical sequence field must be defined for the named record corresponding to a 
logical child segment whenever the associated virtual logical child has a sequence field. 
A field defined as a logical sequence field can be used as a search field in an SSA. 

 



RECORD SECTION 

 

Chapter 4: IPSB Compiler  123  

 

Syntax 

►►─┬─────────────────────────────────────────────────┬───────────────────────► 
   └─ LOGical SEQuence FIELD name is dl1-field-name ─┘ 
 
 ►─┬──────────────────────────────────────────┬──────────────────────────────► 
   └─ STARTING POSition is starting-position ─┘ 
 
 ►─┬──────────────────────────────┬──────────────────────────────────────────►◄ 
   └─ LENgth is dl1-field-length ─┘ 

 

Parameters 

LOGical SEQuence FIELD name is dl1-field-name 

Identifies the sequence field of the virtual logical child segment. Use the NAME 
clause entry in the DL/I FIELD statement defining the sequence field for the virtual 
logical child segment. 

 

STARTING POSition is starting-position 

Specifies the position in the record in which the sequence field begins. Use the 

START clause entry in the DL/I FIELD statement defining the sequence field for the 
virtual logical child segment. 

 

LENgth IS dl1-field-length 

Specifies the length of the sequence field. Use the BYTES clause entry in the DL/I 
FIELD statement defining the sequence field for the virtual logical child segment. 

 

Usage 

Sample PSB 

This sample PSB calls for DBD1, which is shown in the hierarchy diagram in Figure 38. 
The DBD that defines DBD1 is shown in Figure 39. Figure 40 shows the resulting RECORD 
SECTION that is developed. 

     PCB     TYPE=DB,DBDNAME=DBD1,PROCOPT=G,KEYLEN=45,PROCSEQ=INDEX1 

     SENSEG  NAME=SEGRT1,PARENT=0 

     SENSEG  NAME=SEG3,PARENT=SEGRT1 

     SENSEG  NAME=SEG4,PARENT=SEG3 

     SENSEG  NAME=SEG2,PARENT=SEGRT1 

     PSBGEN  LANG=COBOL,PSBNAME=PSB1 

     END 

Figure 37. Sample PSB 
 



RECORD SECTION 

 

124  DLI Transparency User Guide 

 

Hierarchy Diagram of DBD1 

This hierarchy diagram corresponds to database DBD1. SEGRT1, SEG2, SEG3, and SEG4 

are specified in the PSB shown in Figure 37 and, therefore, require RECORD statements 
to define their equivalent records. SEG5 is indicated by broken lines because it is a 
virtual logical child segment, which is not a real segment. 

 

Figure 38. Hierarchy diagram of DBD1  
 

Sample DBDs 

DBD1 is the database called for by the PCB shown in Figure 37 DBD2 is the database that 
contains the logical parent segment of logical child SEG2 and the virtual logical child 

segment paired with SEG2. Information from the DBDs for both databases is required to 
complete the RECORD SECTION shown in Figure 40. 

 



RECORD SECTION 

 

Chapter 4: IPSB Compiler  125  

 

        DBD      NAME=DBD1,ACCESS=HDAM,RMNAME=(DLZHDC30,3,1800,3000) 

        DATASET  DD1=HDAM1,DEVICE=3350,BLOCK=2048,SCAN=3 

        SEGM     NAME=SEGRT1,PARENT=0,BYTES=115,POINTER=TWINBWD,RULES=PPV 

        FIELD    NAME=RT1KEY,SEQ,U,BYTES=11,START=1 

        FIELD    NAME=FIELD2,BYTES=5,START=1 

        FIELD    NAME=FIELD3,BYTES=6,START=6 

        SEGM     NAME=SEG2,PARENT=((SEGRT1),(LPSEGRT,P,DBD2)), 

                  BYTES=120,POINTER=TWIN6WD),RULES=(PLV) 

        FIELD    NAME=(KEY2,SEQ,U),BYTES=6,START=1 

        SEGM     NAME=SEG3,PARENT=SEGRT1,BYTES=10,POINTER=TWIN 

        FIELD    NAME=(KEY3,SEQ,U),BYTES=3,START=1 

        FIELD    NAME=FIELD5,BYTES=4,START=4 

        SEGM     NAME=SEG4,PARENT=SEG3,BYTES=6,POINTER=TWIN 

        FIELD    NAME=(KEY4,SEQ,U),BYTES=6,START=1 

        SEGM     NAME=SEG5,PARENT=SEG4,PTR=PAIRED, 

                  SOURCE=((LCSEG,DATA,DBD3)) 

        FIELD    NAME=(KEY5,SEQ,U),BYTES=21,START=1,TYPE=F 

        FIELD    NAME=FIELD-5,BYTES=20,START=22,TYPE=F 

        DBDGEN 

        FINISH 

        END 

 

 

        DBD      NAME=DBD2,ACCESS=HDAM 

        DATASET  DD1=HDAM2,DEVICE=3350,BLOCK=2048,SCAN=3 

        SEGM     NAME=SEGRT2,PTR=TWINBWD,RULES=LLV 

        FIELD    NAME=(KEY6,SEQ,U),BYTES=60,START=1 

        FIELD    NAME=FIELD6,BYTES=15,START=61 

        FIELD    NAME=FIELD-7,BYTES=75,START=76 

        LCHILD   NAME=(SEG2,DBD1),PAIR=SEG6,PTR=DBLE 

        SEGM     NAME=SEG6,PARENT=SEGRT2,PTR=PAIRED 

                      SOURCE=(SEG2,DATA,DBD1) 

        FIELD    NAME=(KEY7,SEQ,U),BYTES=21,START=61 

        FIELD    NAME=FIELD8,BYTES=20,START=22 

        SEGM     NAME=SEG7 BYTES=200,PARENT=SEG1 

        FIELD    NAME=(KEY8,SEQ,U)BYTES=99,START=1 

        FIELD    NAME=FIELD9,BYTES=101,START=100 

        SEGM     NAME=SEG8,BYTES=100,PARENT=SEG1 

        FIELD    NAME=(KEY9,SEQ,U),BYTES=15,START=1 

        FIELD    NAME=FIELD10,BYTES=15,START=51 

        DBDGEN 

        FINISH 

        END 

Figure 39. Sample DBDs 
 



INDEX SECTION 

 

126  DLI Transparency User Guide 

 

Sample RECORD SECTION 

The information used to define this RECORD SECTION example is based on information 

in Figure 37 through Figure 39. 

SEG5, defined in the first DBD shown in Figure 39, is omitted from this RECORD SECTION 
example because SEG5 is a virtual logical child segment. However, the fields of a virtual 

logical child segment are entered under the record corresponding to the logical child 
when the PSB calls for the associated logical child segment. 

 

Thus, under REC2, which corresponds to SEG2 in DBD1, a logical sequence field and a 
search field are defined. 

These two fields come from the virtual logical child segment (SEG6) located in DBD2, 

which is defined in the second DBD in Figure 39. 

        RECORD SECTION. 

        RECORD NAME IS RECRT1 LENGTH IS 115. 

          SEQ FIELD NAME IS RT1KEY START POS 1 LENGTH 11. 

              FIELD NAME IS FIELD2 START POS 1 LENGTH 5. 

              FIELD NAME IS FIELD3 START POS 6 LENGTH 6. 

        RECORD NAME IS REC2 LENGTH IS 120 

        LOGICAL PARENT CONCAT KEY FIELD NAME IS FILFLD1 

                     STORED PHYSICALLY START POS 1 LENGTH 60. 

        PHYSICAL PARENT CONCAT KEY FIELD NAME IS FILFLD2 

                    STORED VIRTUALLY LENGTH 11. 

          SEQ FIELD NAME IS KEY2 START POS 1 LENGTH 6. 

          LOGICAL SEQUENCE FIELD NAME IS KEY7 

                    START POS 61 LENGTH 21. 

              FIELD NAME IS FIELD8 START POS 22 LENGTH 20. 

        RECORD NAME IS REC3 LENGTH IS 10. 

          SEQ FIELD NAME IS KEY3 START POS 1 LENGTH 3. 

              FIELD NAME IS FIELD5 START POS 4 LENGTH 4. 

        RECORD NAME IS REC4 LENGTH IS 6. 

          SEQ FIELD NAME IS KEY4 START POS 1 LENGTH 6. 

Figure 40. Sample RECORD SECTION 
 

INDEX SECTION 

The INDEX SECTION provides the information required to relate CA IDMS/DB records 
and sets to secondary index and HIDAM index structures to be used and/or maintained 

by the CA IDMS DLI Transparency run-time interface. 
 



INDEX SECTION 

 

Chapter 4: IPSB Compiler  127  

 

The only statement in the INDEX SECTION is the INDEX statement. Each INDEX 
statement does the following: 

■ Identifies a HIDAM database or a secondary index 

■ Identifies the CA IDMS/DB records and sets that correspond to the DL/I segments 
and segment relationships in that index 

■ Names the DL/I fields used to build the index 

■ Names an index suppression exit routine to handle DL/I sparse indexing 
 

Reviewing the INDEX SECTION requires that you identify the HIDAM databases and the 
secondary indexes that the run-time interface will  either use explicitly or maintain 
implicitly when processing DL/I database requests with this IPSB. An index is used 

explicitly when one of the following occurs: 

■ A PCB refers to a DBD with ACCESS=HIDAM. 

■ A PCB contains a PROCSEQ parameter, which indicates the use of a secondary index 
to access the root segment. 

■ One of the SENSEG statements in the PCB has an INDICES parameter. 
 

An index is used implicitly by a PCB when the PCB allows the index tar get segment or 
the index source segment to be updated (that is, the PROCOPT parameter has a value of 
I, R, or D). If in doubt, include the indexes; extra indexes will  not affect CA IDMS DLI 
Transparency processing. 

 

Syntax 

►►─── INDEX SECTION ── . ────────────────────────────────────────────────────► 
 
 ►─┬────────────────────────────────────┬────────────────────────────────────► 
   └─ INDEX name is indexed-field-name ─┘ 
 
 ►─┬──────────────────────────────────────┬──────────────────────────────────► 
   └─ using indexed-set indexed-set-name ─┘ 
 
 ►─┬─────────────────────────────────────┬───────────────────────────────────► 
   └─ TARGET record is idms-record-name ─┘ 
 
 ►─┬──────────────────────────────────────┬──────────────────────────────────► 
   └─ POINTER record is idms-record-name ─┘ 
 
 ►─┬──────────────────────────┬──────────────────────────────────────────────► 
   └─ thru SET idms-set-name ─┘ 

 



INDEX SECTION 

 

128  DLI Transparency User Guide 

 

 ►─┬─────────────────────────────────────┬───────────────────────────────────► 
   └─ SOURCE record is idms-record-name ─┘ 
 
 ►─┬────────────────────────┬────────────────────────────────────────────────► 
   └─ CONSTANT is constant ─┘ 
 
 ►─┬──────────────────────────────────────────────┬──────────────────────────► 
   └─ SEARCH FIELDS are(is) ─── (dl1-field-name) ─┘ 
 
 ►─┬───────────────────────────────────────────────────┬─────────────────────► 
   └─ SUBSEQuence FIELDS are(is) ─── (dl1-field-name) ─┘ 
 
 ►─┬──────────────────────────────────────────────────────┬──────────────────► 
   └─ DUPLicate data FIELDS are(is) ─── (dl1-field-name) ─┘ 
 
 ►─┬────────────────────────────────────┬────────────────────────────────────► 
   └─ NULL VALue is ─┬─ null-value ─┬───┘ 
                     ├─ BLANK ──────┤ 
                     └─ ZERO ───────┘ 
 
 ►─┬─────────────────────────────────────────────────┬───────────────────────►◄ 
   └─ EXIT routine is dl1-exit-routine-name ──── . ──┘ 

 

Parameters 

INDEX SECTION 

INDEX SECTION must be the first entry in this section followed by as many INDEX 
statements as required. The INDEX SECTION sentence must be present even if no 

INDEX statements are included. 
 

INDEX name is indexed-field-name 

Names the indexed field by which the index is known. Indexed-field-name must be a 
1- to 8-character name. 

For a HIDAM database, indexed-field-name should be the name of the index DBD. 

For a secondary index, indexed-field-name is the NAME parameter value in the 
XDFLD statement, which is in the DBD defining the indexed database. For more 
information about finding the index field names for HIDAM databases and 
secondary indexes, see DL/I and CA IDMS/DB (see page 21). 

 

using indexed-set index-set-name 

Identifies the CA IDMS/DB index set through which the DL/I secondary index or 
HIDAM index structure is implemented. 

Index-set-name must be a 1- to 16-character name and must be included in the 
subschema named in the IPSB SECTION. 

 



INDEX SECTION 

 

Chapter 4: IPSB Compiler  129  

 

TARGET record is idms-record-name 

Identifies the CA IDMS/DB record that corresponds to the DL/I index target segment 

in this index. 

Idms-record-name must be a 1- to 16-character record name included in the 
subschema named in the IPSB SECTION and named in the RECORD SECTION. 

To identify the target record, first locate in the DBD the SEGM statement that 
defines the target segment. After identifying the name of the target segment, 
locate the name of the corresponding record as defined in the CA IDMS/DB 
subschema in use. For more information about locating the SEGM statement that 

defines the target segment, see DL/I and CA IDMS/DB (see page 21). 
 

POINTER record is idms-record-name 

Identifies the CA IDMS/DB record that corresponds to the DL/I index pointer 
segment in this index. 

Idms-record-name must be a 1- to 16-character record name included in the 

subschema named in the IPSB SECTION and named in the RECORD SECTION. 

To identify the pointer record, first locate in the DBD the SEGM statement that 
defines the pointer segment. After identifying the name of the pointer segment, 

find the name of the corresponding record as defined in the CA IDMS/DB 
subschema in use. For more information about locating the SEGM statement that 
defines the pointer segment, see DL/I and CA IDMS/DB (see page 21). 

 

thru SET idms-set-name 

Identifies the target pointer set of which the target record is the owner and the 

pointer record is the member. 

Idms-set-name must be a 1- to 16-character name in the subschema and named in 
the IPSB SECTION. For more information about target pointer sets, see DL/I and CA 
IDMS/DB (see page 21). 

 

SOURCE record is idms-record-name 

Identifies the CA IDMS/DB record that corresponds to the DL/I index source 
segment in this index. 

Idms-record-name must be a 1- to 16-character record name in the subschema 
named in the IPSB SECTION and named in the RECORD SECTION. 

 

The run-time interface uses fields from this record to build the key by which the 

target record is indexed. To locate the source record, first locate in the DBD the 
SEGM statement that defines the source segment. After identifying the name of the 
source segment, locate the name of the corresponding record as defined in the CA 
IDMS/DB subschema in use. For further information on locating the SEGM 

statement that defines the source segment, see DL/I and CA IDMS/DB (see 
page 21). 

 



INDEX SECTION 

 

130  DLI Transparency User Guide 

 

CONSTANT is constant 

Specifies a 1-byte field used to identify the index if it is a shared index. The byte 

value must be enclosed in doubl e quotation marks. (Shared indexes are also known 
as sparse indexes.) 

Constant must be a 1- to 11-character Assembler constant that represents a 1-byte 

field (typically in character, hexadecimal, or binary format). The following examples 
i l lustrate possible values for constant: 

CONSTANT IS "C'A'" 

CONSTANT IS "X'02'" 

CONSTANT IS "B'00000001" 
 

The CONSTANT clauses above specify a 1-byte constant in character, hexadecimal, 
and binary format. For constant, enter the CONST parameter value located in the 
DL/I XDFLD statement. (This XDFLD statement is found in the DBD defining the 

indexed database.) 
 

SEARCH FIELDS are (is) dl1-field-name 

Identifies the DL/I search fields to be taken from the designated source record to 
build the index key for the target record. 

This mandatory clause must name at least one search field and can specify up to 

five search fields. 

Make sure that the search fields identified in this clause are defined in RECORD 
SECTION FIELD statements. 

 

These FIELD statements are associated with the RECORD statement that names the 
record designated as the source record. The run-time interface concatenates these 

fields, uses them to build an index key, and places the key in the designated pointer 
record. Each dl1-field-name must be a 1- to 8-character field name. When entering 
more than one field name, separate each name by a comma and enclose all  the 
names in parentheses. Enclosing parentheses are optional if only one field name is 

included. 
 

In a HIDAM database, the sequence field of the root segment is the search field. 
Therefore, dl1-field-name is the NAME parameter value in the DL/I FIELD statement 
that defines the root segment's sequence field. 

For a secondary index, each dl1-field-name entry can be found in the SRCH 

parameter of a XDFLD statement. Each entry corresponds to the name of a DL/I 
FIELD statement following the SEGM statement that defines the source segment. 

 

SUBSEQuence data FIELDS are (is) dl1-field-name 

For secondary indexes only, opti onally identifies the DL/I subsequence fields to be 

taken from the designated source record to extend the index key. If specified, you 
must name at least one subsequence field and can name up to five subsequence 
fields. The run-time interface concatenates these fields and uses them to extend 
the index key built from search fields. The subsequence fields identified in this 

clause must be defined in the RECORD SECTION FIELD statements associated with 
the RECORD statement that names the record designated as the source record. 

 



INDEX SECTION 

 

Chapter 4: IPSB Compiler  131  

 

Make sure that each of the dl-field-names is a 1- to 8-character name. If more than 
one field name is included, separate the field names with commas and enclose 

them in parentheses. The enclosing parentheses are optional if only one field name 
is specified. 

 

To determine an entry for dl1-field-name, note the SUBSEQ parameter in the DL/I 
XDFLD statement. The value in this parameter specifies which of the fields for the 
index source segment are the subsequence fields. Therefore, although a 

subsequence field is specified in a SUBSEQ parameter, it is defined in a FIELD 
statement following the definition of the source segment. 

A subsequence field can be a system-related field, in which case its name must 

begin with /CK or /SX. 
 

DUPLicate data FIELDS are (is) dl1-field-name 

For secondary indexes only, identifies the DL/I duplicate-data fields to be copied 
from the designated source record to the pointer record. If specified, this optional 
clause must name at least one duplicate-data field and can name up to five 

duplicate-data fields. If named, these fields are concatenated and copied from the 
source record to the pointer record to permit access to the duplicate data when 
processing the pointer record independently of the defined index structure. 
Therefore, data placed in the pointer record has no impact on the key used to 

create the index. The duplicate-data fields identified in this clause must be defined 
in RECORD SECTION FIELD statements associated with the RECORD statement that 
names the record designated as the source record. 

 

Make sure that dl1-field-name is a 1- to 8-character name. If more than one field 
name is included, separate the field names with commas and enclose them in 

parentheses. The enclosing parentheses are optional if only one field name is 
included. 

 

To determine an entry for dl1-field-name, note the DDATA parameter in the DL/I 
XDFLD statement. An entry in this parameter specifies which of the fields for the 
index source segment are the secondary index's duplicate-data fields. Therefore, 

although a duplicate-data field is specified in a DDATA parameter, it is defined in a 
FIELD statement following the definition of the source segment. 

A duplicate data field can be a system-related field, in which case its name must 

begin with /CK. 
 

NULL VALue is 

Identifies a 1-byte Assembler constant used to suppress the creation of a pointer 
record during index suppression. The byte value must be enclosed in double 
quotation marks. Each byte in the named search fields is compared with the NULL 

VALUE constant. 
 

null-value 

Specify a 1- to 8-character Assembler constant that represents a 1-byte field 
(typically in character, hexadecimal, or binary format). If each byte in the search 
field equals null-value, no pointer record is stored for the associated target record. 

 



INDEX SECTION 

 

132  DLI Transparency User Guide 

 

BLANK 

Specify BLANK for a null value of blanks. 
 

ZERO 

Specify ZERO for a null value of binary zeros (low value). The examples below 
il lustrate possible values for null-value: 

NULL VALUE IS "C'A'" 

NULL VALUE IS "X'FF'" 

NULL VALUE IS "B'00000000'" 

The NULL VALUE clauses above specify a 1-byte term in character, hexadecimal, and 
binary format. 

To complete this clause, specify the value in the NULLVAL parameter of the XDFLD 
statement (that is, the XDFLD statement in the DBD that defines the indexed 
database). 

 

EXIT routine is dl1-exit-routine-name 

Specifies a user-written exit routine for controlling the creation of selected DL/I 

secondary index entries. 

Dl1-exit-routine-name must match the name specified for the EXTRTN parameter of 
the XDFLD statement in the indexed DBD. Make sure that you place the named exit 

routine in an operating-system partitioned data set and that you provide access to 
it via a CDMSLIB JCL statement. 

The CA IDMS DLI Transparency run-time interface loads (invokes) the exit routine 
when the DL/I application issues an ISRT or REPL call  for a CA IDMS/DB record 

corresponding index source/ to a DL/I index source segment in one or more index 
relationships. 

 

Usage 

Examples of INDEX SECTIONs are shown in the il lustrations below along with the 
resources used to develop these INDEX SECTIONs. 

 



INDEX SECTION 

 

Chapter 4: IPSB Compiler  133  

 

Sample DBDs for a HIDAM Database and Associated Index 

The example below shows sample DBDs for a HIDAM database and its associated index 

database. 

As with all  HIDAM databases, the target and the source segments are the same segment 
(the root segment in the HIDAM database), which in this case is SEG1. The pointer 

segment, SEG2, is the only segment in the index database. Since in a HIDAM database 
the search field is always the root segment sequence field, the search field in this 
sample is FIELD1. 

        DBD         NAME=DB1,ACCESS=HIDAM 

        DATASET     DD1=DBHIDAM,DEVICE=3350,BLOCK=42,RECORD=48,SCAN=1 

        SEGM        NAME=SEG1,BYTES-31,PTR=H,PARENT=0 

        FIELD       NAME=(FIELD1,SEQ,U),BYTES=21,START=1 

        FIELD       NAME=FIELD2,BYTES=10,START=22 

        LCHILD      NAME=(SEG2,DBINDEX),PTR=INDX 

        DBDGEN 

        FINISH 

        END 

 

        DBD         NAME=DBINDEX,ACCESS=INDEX 

        DATASET     DD1=DBXINDX,DEVICE 3350,BLOCK=44,RECORD=46,SCAN=1 

        SEGM        NAME=SEG2,BYTES=21 

        LCHILD      NAME=(SEG1,DB1),INDEX=FIELD1 

        FIELD       NAME=(FIELD3,SEQ,U),BYTES=21,START=1 

        DBDGEN 

        FINISH 

        END 

Figure 41. Sample DBDs for a HIDAM database and associated index database  
 

Sample INDEX SECTION Based on a HIDAM Database  

The sample below is based on information supplied in the DBDs in Figure 41. The index 
set IX-SET1 indexes the index pointer segment. 

 INDEX SECTION. 

    INDEX NAME IS DBINDEX 

    USING INDEXED-SET IX-SET1 

    TARGET RECORD IS REC1 

    POINTER RECORD IS REC2 

    THRU SET REC1-REC2 

    SOURCE RECORD IS REC1 

    SEARCH FIELD IS FIELD1. 

Figure 42. Sample INDEX SECTION based on a HIDAM database 
 



INDEX SECTION 

 

134  DLI Transparency User Guide 

 

DBDs for a Secondary Index and its Associated Index Database  

The example below shows the DBDs for a secondary index and its associated index 

database. 

The target segment SEG5 is referenced in the LCHILD statement in the index DBD, while 
the source segment is referenced in the SEGMENT parameter of the XDFLD statement in 

the indexed DBD. 

The pointer segment, as in all  secondary and HIDAM databases, is the only segment in 
the index database. In this sample, the pointer segment is SEG6. 

 

The search field for the secondary index is referenced in the SRCH parameter of the 
XDFLD statement in the indexed DBD; the duplicate-data field is referenced in the 

DDATA parameter of the same XDFLD statement. Both the search field and the DDATA 
field, however, appear under the SEGM statement defining SEG7. 

        DBD         NAME=DB2,ACCESS=HDAM,RMNAME=(GLDHDC20,5,660,850) 

        DATASET     DD1=DBHDAM,DEVICE 3350,BLOCK=2048,SCAN=1 

        SEGM        NAME=SEG5,PARENT=0,BYTES=15 

        FIELD       NAME=(FIELD5,SEQ,U),BYTES=5,START=1 

        LCHILD      NAME=(SEG6,DBINDX2),PTR=INDX 

        XDFLD       NAME=XDFLD1,SEGMENT=SEG7, 

                     SRCH=FIELD7,DDATA=FIELD6 

        SEGM        NAME=SEG7,PARENT=SEG5,BYTES=25 

        FIELD       NAME=(FIELD6,SEQ,U),BYTES=5,START=1 

        FIELD       NAME=FIELD7,BYTES=20,START=5 

        DBDGEN 

        FINISH 

        END 

 

        DBD         NAME=DBINDX2,ACCESS=INDEX 

        DATASET     DD1=INDX2,DEVICE=3350,BLOCK=23,RECORD=88,SCAN=1 

        SEGM        NAME=SEG6,PARENT=0,BYTES=25 

        FIELD       NAME=(FIELD8,SEQ,U),START=1,BYTES=6 

        LCHILD      NAME=(SEG5,DB2),POINTER=SNGL,INDEX=XDFLD1 

        DBDGEN 

        FINISH 

        END 

Figure 43. Sample DBDs for a secondary index and associated index database  
 



PCB SECTION 

 

Chapter 4: IPSB Compiler  135  

 

Sample INDEX SECTION Based on a Secondary Index 

This sample is based on information supplied in the DBDs in Figure 43. The CA IDMS/DB 

records in the sample INDEX SECTION have been assigned the prefix REC, and the 
segment prefix SEG has been eliminated. 
 INDEX SECTION. 

    INDEX NAME IS XDFLD1 

    USING INDEXED-SET IS-SET2 

    TARGET RECORD IS REC5 

    POINTER RECORD IS REC6 

    THRU SET REC5-REC6 

    SOURCE RECORD IS REC7 

    SEARCH FIELD IS FIELD5 

    DUPLICATE DATA FIELD IS FIELD6. 

Figure 44. Sample INDEX SECTION based on a secondary index  
 

PCB SECTION 

The PCB SECTION performs the following: 

■ Identifies the DL/I segments participating in the hierarchies viewed by a DL/I 
application 

■ Names the CA IDMS/DB records that represent these segments  

■ Defines paths that the DL/I application can follow by naming relevant segments and 
by defining their relationships to other segments  

■ Provides a l imited amount of DBD information (that is, the DBD names and the 

access method) 

The information included in the PCB SECTION corresponds to the associated DL/I PCBs 
within a PSB. 

 

The PCB SECTION consists of PCB statements and SEGMENT statements and is 
formatted as follows: 

PCB SECTION. 

 PCB statement. 

 SEGMENT statements. 

  ... 

PCB statement. 

 SEGMENT statements. 

  ... 

The syntax for the PCB statement and the SEGMENT statement are presented 
separately below. 

 



PCB SECTION 

 

136  DLI Transparency User Guide 

 

PCB Statement 

A PCB statement is composed of entries from DL/I DBD and PCB statements. The DBD 
statement is located in the DBD, while the PCB statement is located in the PSB. 

 

Syntax 

►►─── PCB SECTION ─── . ─────────────────────────────────────────────────────► 
 
 ►─┬────────────────────────────────────────────────┬────────────────────────► 
   └─ PCB ACCESS METHOD is ──┬─ HDAM ────────────┬──┘ 
                             ├─ HIDAM ───────────┤ 
                             ├─ HISAM ───────────┤ 
                             ├─ INDEX ───────────┤ 
                             ├─ SECONDary index ─┤ 
                             └─ HSAM ────────────┘ 
 
 ►─┬───────────────────────┬─────────────────────────────────────────────────► 
   └─ DBDNAME is dbd-name ─┘ 
 
 ►─┬──────────────────────────────────────────────┬──────────────────────────► 
   └─ PROCessing OPTions are(is) ─── dl1-option ──┘ 
 
 ►─┬───────────────────────────────────┬─────────────────────────────────────► 
   └─ POSitioning is ─┬─ SINGLE ◄──┬───┘ 
                      └─ MULTIPLE ─┘ 
 
 ►─┬─────────────────────────────────────────────────────────────────┬───────►◄ 
   └─ PROCessing SEQuence ──┬─ SET is indexed-set-name ──────┬─── . ─┘ 
                            └─ INDEX is indexed-field-name ──┘ 

 

Parameters 

PCB SECTION. 

PCB SECTION must be the first entry in this section, followed by as many PCB 

statements as required to define all  hierarchical views referenced by the DL/I 
application. 

Each PCB statement must be followed by SEGMENT statements to identify the 
segments that participate in the hierarchical view. 

 

A PCB statement, in conjunction with subsequent SEGMENT statements, represents 

one DL/I hierarchical view. In addition to presenting the hierarchical view, the 
SEGMENT statement defines the relationships between the named segment and 
other DL/I segments, as represented by the corresponding CA IDMS/DB records and 
set relationships. 

 

PCB ACCESS METHOD is 

Specifies the DL/I access method by which the root segment in this database is 
accessed. 

To determine the appropriate entry for this clause: 

■ First decide if ACCESS METHOD IS SECONDARY INDEX is appropriate (see 

below). If this entry is inappropriate, locate the DBD specified in the DBDNAME 
parameter of the DL/I PCB statement. 

■ Next, locate the DBD statement and use the value in the ACCESS parameter for 

the PCB ACCESS METHOD clause. 
 



PCB SECTION 

 

Chapter 4: IPSB Compiler  137  

 

If the PCB specifies a logical database and if the SECONDARY INDEX entry is 
inappropriate: 

■ Locate the SEGM statement defining the root segment of the logical database. 
The SOURCE parameter in this SEGM statement references the source segment 
(first entry) and the physical database containing the source segment (second 

entry). 

■ Locate the DBD that defines this physical database. 

■ Use the ACCESS parameter value in its DBD statement. 
 

Specific guidelines for the options of the PCB ACCESS METHOD clause follow: 

HDAM 

Specifies an HDAM access method. If this entry is specified, omit the PROCESSING 
SEQUENCE clause (see below). 

HIDAM 

Specifies a HIDAM access method. If this entry is specified, a PROCESSING 

SEQUENCE INDEX clause (see below) must be included. 
 

HISAM 

Specifies a HISAM access method. If this option is specified, a PROCESSING 
SEQUENCE SET clause (see below) must be included to name the relevant indexed 
set. 

INDEX 

Specifies an index access method. If this option is specified, a PROCESSING 
SEQUENCE SET clause must be included to name the relevant indexed set. 

 

SECONDary index 

Specifies a secondary index access method. If this option is specified, a PROCESSING 

SEQUENCE INDEX clause must be included to name the relevant indexed field. 

PCB  TYPE=DB,DBDNAME=DBA,PROCOPT=A,KEYLEN=46,PROCSEQ=INDEX1 
 

HSAM 

Specifies an HSAM access method. If the root segment of the HSAM database is 
sequenced (that is, a sequenced HSAM), a PROCESSING SEQUENCE SET clause must 
be included. If the root segment of the HSAM database is unsequenced, omit the 

PROCESSING SEQUENCE clause. Although the HSAM access method is supported, 
consider each sequenced HSAM as a HISAM database when defining DL/I databases 
in the schema (see DL/I and CA IDMS/DB (see page 21)). 

 

DBDNAME IS dbd-name 

Specifies the name of the DL/I DBD associated with the database view being 
defined. This name corresponds to the DBD name found in the PCB mask in the 
application program. Use the name specified in the DBDNAME parameter of the 
PCB statement. 

 



PCB SECTION 

 

138  DLI Transparency User Guide 

 

PROCessing OPTions are (is) 

Specifies the DL/I processing options selected for this database view. 

Processing options specify whether the DL/I application program can only read the 
segments in the database view or can both read and update the segments. I f 
updating is allowed, the processing options also specify what kind of updating is 

permissible. You should include the processing options specified in the associated 
PROCOPT parameters of the DL/I PCB statement and its associated SENSEG 
statements. 

 

dl1-option 

Acceptable values for dl1-option are as follows: 

 Value            Explanation 

 

  G               The application program can read the segments. 

 

  I               The application program can insert segments. 

 

  R               The application program can read and replace 

                  segments. 

 

  D               The application program can read and delete 

                  segments. 

 

  A               The application program can read, insert, replace, 

                  and delete segments. 

 

  P               The application program can issue path calls. 
 

A maximum of four options can be specified for each PCB statement. If more than 
one processing option is specified, do not separate the option by commas or blanks. 

See the appropriate DL/I documentation for details on DL/I processing options. 
 

CA IDMS DLI Transparency requires that all  processing options be specified for the 
PCB and does not permit any overrides of global options for an individual segment. 
To accommodate this requirement, you must enter in the PROCESSING OPTIONS 
clause the most inclusive DL/I processing option entered in the PSB's PCB statement 

and its SENSEG statements. If, for example, a PCB statement has PROCOPT=G, and 
three of the subsequent SENSEG statements have PROCOPT values of I, R, and A, 
respectively, you would enter the following: 

PROCESSING OPTION IS A 
 

By using the CA IDMS/DB access restrictions, you can restrict the type of access 

overrides/ for specific records and duplicate DL/I overrides of global processing 
options.  

Note: For more information about CA IDMS/DB access restrictions, see the CA IDMS 
Database Administration Guide. 

 



PCB SECTION 

 

Chapter 4: IPSB Compiler  139  

 

POSitioning is SINGLE/MULTIPLE 

Specifies whether the interface is to maintain single or multiple positioning for this 

PCB. (Refer to the appropriate DL/I documentation for details on single and multiple 
positioning.) The default is SINGLE. The entry for the POSITION IS clause is found in 
the POS parameter of the DL/I PCB statement. 

 

PROCessing SEQuence 

The format of the PROCESSING SEQUENCE clause and whether it is included is 

determined by the access method specified in the PCB ACCESS METHOD clause 
above. 

Omit the PROCESSING SEQUENCE clause if an HDAM access method is specified or if 

the database is an unsequenced HSAM. 
 

SET is indexed-set-name 

Include a PROCESSING SEQUENCE clause and specify the SET option if a HISAM or 
INDEX access method is specified or if the database is an HSAM database with a 
sequenced root segment. Then, include an indexed-set-name  parameter. 

Indexed-set-name is the 1- to 16-character name of the indexed set having as its 
member the record equivalent of the root segment of the HISAM, index, or 
sequenced HSAM database. 

 

INDEX is indexed-field-name 

Indexed-field-name identifies the index through which the root segment for this 

hierarchy view can be accessed. 

Include the PROCESSING SEQUENCE clause and specify the INDEX option if a HIDAM 
or SECONDARY INDEX access method is specified. Then, include an 
indexed-field-name  parameter. 

Indexed-field-name is the 1- to 8-character name of the index. Make sure that the 
entry in this parameter is defined in the INDEX SECTION. 

 

SEGMENT Statement 

Each PCB statement must be followed by a SEGMENT statement for each DL/I segment 

participating in the DL/I hierarchy. Each SEGMENT statement relates a DL/I segment to a 
CA IDMS/DB segment to an/ record; the run-time interface uses the CA IDMS/DB record 
name to represent the segment. The SEGMENT statement also defines relati onships 

between the named segment and other DL/I segments, as represented by the 
corresponding CA IDMS/DB records and set relationships. 

 



PCB SECTION 

 

140  DLI Transparency User Guide 

 

To review SEGMENT statements, you need to locate the relevant PSB and the DBD 
specified in the DL/I PCB that corresponds to this PCB. If the specified DBD defines a 

logical DBD, you must also find the accompanying DBDs that define the physical 
databases and the index databases. Similarly, if the PCB calls for a HIDAM database or 
for a database with a secondary index, you must locate the DBDs that define the 

associated index databases. Additionally, you must have a copy of the relevant CA 
IDMS/DB schema. 

 

There must be a SEGMENT statement for each segment specified in a SENSEG statement 
in the DL/I PCB. If the processing options A or D have been entered in the PROCESSING 
OPTION clause of the PCB statement, you may have to enter more SEGMENT 

statements to identify the dependent segments. The decision on whether additional 
segments must be identified in a separate SEGMENT statement can be made only after 
looking at the accompanying DBD and, optionally, a hierarchy diagram of the DBD. Note 
if any segment defined in the accompanying DBD is a dependent of a segment that is 

specified in a SENSEG statement. You must define each of these dependent segments 
with a separate SEGMENT statement if the segment identified in the SEGM statement 
can be deleted. 

 

SEGMENT statements must appear in hierarchical order. The first SEGMENT statement 
under a given PCB statement must identify the root segment for the hierarchy. All  

subsequent SEGMENT statements must be included in the order in which the segments 
appear in the hierarchy. Similarly, if the DBD specified in the PCB defines a logical 
database, the SEGMENT statements must appear in the sa me order as the segments 

appear in the logical hierarchy. A logical DBD can create inversions from a secondary 
index and/or from a logical relationship. In such cases, consider the following: 

■ A secondary index causes an inversion when the target segment of the index is the 
root segment of the logical database but not of the physical database. In this case, 

the inversion of the segments is explicitly coded in the logical DBD. By including the 
SEGMENT statements in the same order as the segments are defined in the logical 
DBD, you automatically record the inversion. No additional SEGMENT statements 

are needed other than those coded for the SENSEG statements in the PCB. 
 

■ A logical relationship causes an inversion when the PCB references a logical 

database and you include SEGMENT statements to define the hierarchical path of 
the destination parent segment in its physical database. In this case, you enter 
SEGMENT statements to define segments from the destination parent's physical 

database. The segments being defined in the inversion, however, do not include the 
dependent segments of the destination parent segment. Even though these 
dependent segments can require SEGMENT statement entries if they are included 
in the logical database, they do not participate in the inversion. 

 



PCB SECTION 

 

Chapter 4: IPSB Compiler  141  

 

The SEGMENT statements must be included to define the segments participating in 
the logical relationship inversion in reverse hierarchical order. Therefore, the 

SEGMENT statement defining the destination parent segment must be the first 
SEGMENT statement in the inversion, and the SEGMENT statement defining the 
root segment in the destination parent segment's physical database must be the 

last segment statement in the inversion. Always include the SEGMENT statements 
for the segments in the logical relationship inversion even if the segments are 
neither identified in the PCB nor defined in the logical DBD. In such cases, you can 
assign the segments a status of NOT SENSITIVE. (See the discussion of the USE 

clause below.) 
 

You must also include SEGMENT statements for each of these segments even if 
some of them are defined in other SEGMENT statements for the named DBD. If the 
same segment is included in the logical inversion and is specified in the named DBD, 
make sure that the segment's name is different each time it is specified in a 

SEGMENT statement for the named PCB. If the name is the same in both the logical 
and physical DBD, change the segment name in the SEGMENT statement that is part 
of the logical inversion. Use instead any name you choose. 

 

Syntax 

►►─── SEGMent name is dl1-segment-name ──────────────────────────────────────► 
 
 ►─── RECORD name is idms-record-name ───────────────────────────────────────► 
 
 ►─┬──────────────────────────────┬──────────────────────────────────────────► 
   └─ PARENT is dl1-segment-name ─┘ 
 
 ►─┬──────────────────────────┬──────────────────────────────────────────────► 
   └─ thru SET idms-set-name ─┘ 
 
 ►─┬─────────────┬───┬────────────┬──────────────────────────────────────────► 
   ├─ PARENT ◄───┤   └─ is OWNER ─┘ 
   └─ CHILD ─────┘ 
 
 ►─┬──────────────┬───┬──────────────────────────────────────────┬───────────► 
   ├─ PHYSical ◄──┤   └─ DESTination PARENT is idms-record-name ─┘ 
   └─ LOGical ────┘ 

 

 ►─┬──────────────────────────┬──────────────────────────────────────────────► 
   └─ thru SET idms-set-name ─┘ 
 
 ►─┬──────────────────────────────────────────────────────────────────────┬──► 
   └─ INSERT RULES are ─┬─ Logical ◄──┬─,─┬ Logical ◄──┬─,─┬─ Logical ◄─┬─┘ 
                        ├─ Physical ──┤   ├ Physical ──┤   ├─ Physical ─┤ 
                        └─ Virtual ───┘   └ Virtual ───┘   └─ Virtual ──┘ 
 
 ►─┬───────────────────────────────────────────────────────────────────────┬─► 
   └─ REPLACE RULES are ─┬─ Logical ◄──┬─,─┬ Logical ◄──┬─,─┬─ Logical ◄──┬┘ 
                         ├─ Physical ──┤   ├ Physical ──┤   ├─ Physical ──┤ 
                         └─ Virtual ───┘   └ Virtual ───┘   └─ Virtual ───┘ 
 
 ►─┬─────────────────────────────────────────────────────────────────────────►─ 
   └─ ACCESS METHOD is ─── HDAM ───────────────────────────────────────────── 

 



PCB SECTION 

 

142  DLI Transparency User Guide 

 

─►───────────────────────────────────────────────────────────────┬───────────► 
  ─┬───────────────────────────────────────────────────────────┬─┘ 
   ├─ HIDAM PROCessing SEQuence INDEX is indexed-field-name ───┤ 
   └─ HISAM PROCessing SEQuence SET is indexed-set-name ───────┘ 
 
 ►─┬─────────────────────────────────────────┬───────────────────────────────► 
   └─ SEQuence is by LOGical sequence field ─┘ 
 
 ►─┬───────────────────────────────────────────────────┬─────────────────────►◄ 
   └─ USE is ─┬─ NOT SENsitive ───────────────┬── . ───┘ 
              ├─ VIRTual LOGical CHILD (VLC) ─┤ 
              ├─ KEY ─────────────────────────┤ 
              ├─ DATA ◄───────────────────────┤ 
              ├─ KEY,KEY ─────────────────────┤ 
              ├─ KEY,DATA ────────────────────┤ 
              ├─ DATA,KEY ────────────────────┤ 
              └─ DATA,DATA ───────────────────┘ 

 

Parameters 

SEGment name is dl1-segment-name 

Identifies a DL/I segment that participates in the hierarchy being defined. 
Dl1-segment-name must be a 1- to 8-character name. Make sure that each 
dl1-segment-name  is used only once within the named DBD. 

 

RECORD name is idms-record-name 

Identifies the CA IDMS/DB record corresponding to the segment named in the 

SEGMENT NAME clause. Idms-record-name must be the 1- to 16-character name of 
a record included in the subschema named in the IPSB SECTION and in the RECORD 
SECTION. For all  segments but those in logical databases, the record named here 

corresponds directly to the segment named in the SEGMENT NAME clause. 
 

When a segment participating in a logical database is named, use the record 

corresponding to the segment named in the first entry of the SEGM statement's 
SOURCE parameter. For concatenated segments, which are found only in logical 
databases, use the record corresponding to the real logical child segment. If the 

logical child specified in the concatenated segment is the virtual logical child 
segment, you must first locate the SEGM statement defining the virtual logical child 
segment to identify the name of the real logical child segment. (For more 
information, see DL/I and CA IDMS/DB (see page 21).) 

 

PARENT is dl1-segment-name 

Identifies the parent of the segment named in the SEGMENT NAME clause. The 
PARENT IS clause must be included for all  child segments (that is, segments other 
than root segments). Dl1-segment-name  must be a 1- to 8-character segment 
name and must be the name of a DL/I segment specified in the SEGMENT NAME 

clause of a preceding SEGMENT statement in the hierarchy. 
 



PCB SECTION 

 

Chapter 4: IPSB Compiler  143  

 

When entering segments from the database referred to by the PCB, the entry for 
the PARENT IS clause is the first value in the PARENT parameter of the SEGM 

statement defining the child segment. Omit this entry, however, when the 
SEGMENT statement defines a root segment. When entering the SEGMENT 
statements that define the segments in a logical relationship inversion, the entry for 

the PARENT IS clause is the name of the SEGMENT defined in the preceding 
SEGMENT statement. For example, if the destination parent segment is SEGA, and 
the next segment in the hierarchical path of the destination parent segment in its 
physical database is SEGB, SEGA is the entry in the SEGMENT statement for SEGB. 

This entry is correct even though the SEGM statement defining SEGA in its physical 
DBD shows SEGB as the parent of SEGA. 

 

thru SET idms-set-name 

Identifies the CA IDMS/DB set that relates the child and parent segments named in 
the SEGMENT NAME and PARENT IS clauses. The THRU SET clause must be included 

when the PARENT NAME clause is present. Idms-set-name must be a 1- to 
16-character set name and must be included in the subschema named in the IPSB 
SECTION. 

 

PARENT/CHILD is OWNER 

Identifies the owner of the parent/child set. The default is PARENT. 
 

PHYSical/LOGical DESTination PARENT is idms-record-name 

Identifies the CA IDMS/DB record representing the destination parent in a 
concatenated segment structure. Include this clause only if the record identified in 
the RECORD NAME clause corresponds to a logical child segment in a logical 
database. 

 

LOGICAL DESTINATION PARENT must be specified if the logical child named in the 

DL/I SOURCE parameter of the SEGM statement defining the concatenated segment 
is the real logical child segment. PHYSICAL DESTINATION PARENT must be specified 
if the logical chi ld named in the DL/I SOURCE parameter of the SEGM statement 
defining the concatenated segment is the virtual logical child segment. 

 

Idms-record-name is the CA IDMS/DB record corresponding to the logical child 

entry in the concatenated segment. This operand must be a 1- to 16-character 
name, must be included in the subschema named in the IPSB SECTION, and must be 
named in the RECORD SECTION. 

Note: When naming a destination parent, include subsequent SEGMENT 
statements to define the path back to the root segment in the physical database in 
which the destination parent participates. All  SEGMENT statements included to 
define this path back to the root segment must specify CHILD IS OWNER for the set 

that relates the child and parent segments. 
 



PCB SECTION 

 

144  DLI Transparency User Guide 

 

thru SET idms-set-name 

Identifies the CA IDMS/DB set that relates the record equivalents of the logical child 

segment and destination parent segment. Include this clause only if the 
DESTINATION PARENT clause is present. Idms-set-name name must be a 1- to 
16-character set name and must be included in the subschema named in the IPSB 

SECTION. Always identify the record representing the destination parent segment 
as the owner of this set. 

 

INSERT RULES are (IS) 

Specifies the insert rules to be applied to the physical parent, logical child, and 
logical parent segments in a concatenated segment structure. This clause can be 

included only if the SEGMENT NAME clause identifies a concatenated segment. 
PHYSICAL, LOGICAL, or VIRTUAL must be specified for the physical parent segment, 
real logical child segment, and logical parent segment, respectively. 

 

Regardless of which parent is used as the destination parent segment, always 
specify the insert rule for the physical parent first, the insert rule for the logical 

child second, and the insert rule for the logical parent last. The default insert rule 
for all  three segment types is LOGICAL. 

 

To determine the entry for the INSERT RULES clause, first identify the logical child in 
the concatenated segment. Trace the logical child back to the DBD that defines its 
physical database. Locate the SEGM statement that defines the logical child and 

determine if the segment is the real logical child. If this is the case, locate the RULES 
parameter in this SEGM statement. The value in the first column of the RULES 
parameter identifies the insert rule. Using the value in the first column of the RULES 
parameter, choose the appropriate option for the INSERT RULES clause, as follows: 

Physical 

Is specified if P is the value in the first column of the RULES parameter. 
 

Logical 

Is specified if L is the value in the first column of the RULES parameter. 

Virtual 

Is specified if V is the value in the first column of the RULES parameter. 
 

If the logical child traced back to the DBD defining the physical database is found to 
be a virtual logical child segment: 

1. Locate the SEGM statement defining the associated real logical child segment 

(see DL/I and CA IDMS/DB (see page 21)). 

2. Then, interpret the RULES parameter in this SEGM statement as described 
above. 

3. Next, locate the RULES parameter in the SEGM statement defining the physical 

parent segment and in the SEGM statement defining the logical parent 
segment, and make the appropriate entries in the INSERT RULES clause. Refer 
to the appropriate DL/I documentation for a description of the insert rules. 

 



PCB SECTION 

 

Chapter 4: IPSB Compiler  145  

 

REPLACE RULES are (is) 

Specifies the replace rules to be applied to the physical parent, logical child, and 

logical parent segments in a concatenated segment structure. This clause can be 
included only if the SEGMENT NAME clause names a concatenated segment. Specify 
the PHYSICAL, LOGICAL, or VIRTUAL option for the physical parent segment, logical 

child segment, and logical parent segment, respectively. 
 

Regardless of which parent is used as the destination parent segment, always 

specify the replace rule for the physical parent segment first, for the logical child 
segment second, and for the logical parent segment last. The default replace rule 
for all  three segment types is LOGICAL. 

The last column in the SEGM statement's RULES parameter identifies the 
replacement rules for the segment. Refer to the appropriate DL/I documentation 
for a description of the replace rules. 

 

Physical 

Is specified if P is the value in the first column of the RULES parameter. 

Logical 

Is specified if L is the value in the first column of the RULES parameter. 
 

Virtual 

Is specified if V is the value in the first column of the RULES parameter. 

Note: The run-time interface assumes that the delete rules for the physical parent, 

logical child, and logical parent are PHYSICAL, VIRTUAL, and LOGICAL, respectively. 
Refer to the appropriate DL/I documentation for a description of the delete rules. 

 

ACCESS METHOD is 

Specifies information about the root segment of the hierarchy that contains the 
destination parent segment in its physical database, as follows: 

■ Specifies the root segment's access method in the database containing the 
destination parent segment. 

■ Specifies, if applicable, the index through which the root segment is accessed in 
the database containing the destination parent. This specification is omitted if 

the root segment is in an HDAM database (see HDAM below). 
 

HDAM 

Specifies that the destination parent is in a physical database in which the root 
segment is accessed through HDAM. Include this option only if the SEGMENT 

statement identifies the root segment in an HDAM database containing the 
destination parent. 

 



PCB SECTION 

 

146  DLI Transparency User Guide 

 

To determine if this option is appropriate, trace the destination parent, as 
referenced in the concatenated segment (in the logical database), back to its 

definition in the physical DBD. If this DBD defines an HDAM database, ACCESS 
METHOD IS HDAM becomes the appropriate entry when the SEGMENT statement 
specifying the root segment is entered. If the destination parent in the physical 

database is the root segment in an HDAM database, include ACCESS METHOD IS 
HDAM in the SEGMENT statement identifying the concatenated segment and its 
destination parent. A separate SEGMENT statement is unnecessary for the root 
segment if the destination parent is the root segment. Omit the PROCESSING 

SEQUENCE clause with an HDAM specification. 
 

HIDAM PROCessing SEQuence INDEX is indexed-field-name 

Specifies that the destination parent is in a physical database in which the root 
segment is accessed through HIDAM. Indexed-field-name specifies the field name 
by which the root segment is indexed. Include the ACCESS METHOD IS HIDAM 

option only if the SEGMENT statement identifies the root segment in a HIDAM 
database containing the destination parent. 

 

To determine if this option is appropriate, trace the destination parent, as 
referenced in the concatenated segment (in the logical database), back to its 
definition in the physical DBD. If this physical DBD defines a HIDAM database, 

ACCESS METHOD IS HIDAM becomes the appropriate entry when the SEGMENT 
statement specifying the root segment is entered. Indexed-field-name is the NAME 
parameter value in the SEQUENCE FIELD statement defining the sequence field of 

the root segment. This parameter must be a 1- to 8-character name and must be 
defined in an INDEX statement in the INDEX SECTION. 

 

If the destination parent identified is also the root segment, include this clause in 
the SEGMENT statement identifying the concatenated segment and its destination 
parent. A separate SEGMENT statement is unnecessary for the root segment if the 

destination parent is the root segment. 
 

HISAM PROCessing SEQuence SET is indexed-set-name 

Specifies that the destination parent is located in a database in which the root 
segment is accessed through HISAM. Indexed-set-name specifies the name of the 
indexed set that has the record equivalent of the root segment as a member. 

Include the ACCESS METHOD IS HISAM option only if the SEGMENT statement 
identifies the root segment in a HISAM database containing the destination parent. 

 

To determine if this option is appropriate, trace the destination parent, as 
referenced in the concatenated segment (in the logical database), back to its 
definition in the physical DBD. If this physical DBD defines a HISAM database, 

ACCESS METHOD IS HISAM becomes the appropriate entry when the SEGMENT 
statement specifying the root segment is  entered. Indexed-set-name must be a 1- 
to 16-character name and must be included in the CA IDMS/DB subschema 
specified in the IPSB SECTION. 

 



PCB SECTION 

 

Chapter 4: IPSB Compiler  147  

 

If the destination parent is also the root segment in a HISAM database, include this 
option in the SEGMENT statement identifying the concatenated segment and its 

destination parent. A separate SEGMENT statement is unnecessary for the root 
segment if the destination parent is the root segment. 

 

SEQuence is by LOGical sequence field 

Specifies that the logical child, as seen in a concatenated segment, is sequenced 
under its logical parent segment. If this clause is specified, both of the following 

conditions must be met: 

■ The concatenated segment defined in the SEGMENT statement must refer to a 
physical parent segment as the destination parent. 

■ The concatenated segment defined in the SEGMENT statement refers to a 
sequenced virtual logical child segment (that is, the virtual logical child segment 
in its physical database includes a sequence field). Make sure that the 
sequence field for the virtual logical child is defined in the RECORD SECTION 

with a LOGICAL SEQUENCE FIELD statement. (See LOGICAL SEQUENCE FIELD 
Statement (see page 122).) 

 

USE is 

Defines the sensitivity of the segment identified in the SEGMENT NAME clause. The 
options must be specified as described below. When defining segments other than 

concatenated segments, select the appropriate option from the first four detailed 
below. When defining concatenated segments, however, select from the last four 
options. Note that for concatenated segments, each of the options is a double 

option, requiring you to specify two options (for example, KEY,KEY or DATA,KEY). 
For all  other segments, one entry must be specified (for example, KEY or DATA). 

 

NOT SENsitive 

The named segment is required for CA IDMS DLI Transparency processing but is not 
to be viewed by the DL/I application. When this option is specified, CA IDMS DLI 

Transparency allows the segment's corresponding record to be deleted when a DL/I 
application program calls for deleti ng any segment in the named segment's 
hierarchical path. For example, assume that the DL/I application program calls for 
deleting occurrence B1 from SEGB. Also assume that B1 is the parent of C1 and C2 

in SEGC. If SEGC is specified in the SEGMENT statement as USE IS NOT SENSITIVE, 
CA IDMS DLI Transparency responds to the DL/I deletion call  by allowing the 
deletion of the record equivalents of B1, C1, and C2. USE IS NOT SENSITIVE is 

appropriate for the named segment if the segment's name is missing from the list 
of SENSEG statements in the PCB. 

 



PCB SECTION 

 

148  DLI Transparency User Guide 

 

VIRTual LOGical CHILD (VLC) 

The named segment is available to CA IDMS DLI Transparency processing but is not 

to be viewed by the DL/I application program. When this option is specified, a DL/I 
call  for deleting this segment's parent (or any segment in its hierarchical path) is 
honored only if there are no occurrences of this segment under its parent. 

For example, assume that SEGC is specified in its SEGMENT statement as USE IS 
VIRTUAL LOGICAL CHILD, and that SEGB is its parent. The DL/I application program 
calls for deleting occurrence B1 of segment type SEGB. The record corresponding to 
B1 is deleted only if B1 has no dependent segments of type SEGC. If B1 has a 

dependent segment of type SEGC, CA IDMS DLI Transparency notifies the DL/I 
application that the deletion is not being performed. Normal coding of SEGMENT 
statements does not require USE IS VIRTUAL LOGICAL CHILD; this option is provided 
for flexibil ity. 

 

KEY 

The DL/I application views only the key of the named segment. Use this option if 
either of the following conditions exists: 

■ The named segment is defined in a logical DBD with a SEGM statement that 

contains a SOURCE parameter value of KEY or K. 

■ The SENSEG statement identifying the segment in the PCB has a PROCOPT 
value of K. 

 

DATA 

The named segment is to be viewed in its entirety by the DL/I application. Use this 

default option if either of the following conditions exists: 

■ The named segment is defined in a logical DBD with a SEGM statement that 
contains a SOURCE parameter value of DATA or that uses the DL/I default value 
of DATA for the SOURCE parameter. 

■ The SENSEG statement identifying the segment in the PCB either has no 
PROCOPT value or has any PROCOPT value other than K. 

 

KEY,KEY 

For concatenated segments only, the DL/I application program views the 
concatenated segment. This view is only of the keys of the logical child segment and 

of the destination parent segment. This option is applicable if KEY is specified in 
both the logical child portion and the destination parent portion of the SOURCE 
parameter in the SEGM statement defining the concatenated segment. 

 

KEY,DATA 

For concatenated segments only, the DL/I application program views the 

concatenated segment. This view is of the key of the logical child segment and of 
the entire destination parent segment. This option is applicable if the SOURCE 
parameter of the SEGM statement defining the concatenated segment contains KEY 

in the logical child portion and DATA in the destination parent portion. 
 



PCB SECTION 

 

Chapter 4: IPSB Compiler  149  

 

DATA,KEY 

For concatenated segments only, The DL/I application program views the 

concatenated segment. This view is of the entire logical child segment a nd of only 
the key of the destination parent segment. This option is applicable if the SOURCE 
parameter of the SEGM statement defining the concatenated segment contains 

DATA in the logical child portion and KEY in the destination parent portion. 
 

DATA,DATA 

For concatenated segments only the DL/I application program views the 
concatenated segment. This view is of the entire logical child segment and of the 
entire destination parent segment. This option is applicable if the SOURCE 

parameter of the SEGM statement defining the concatenated segment contains 
DATA in both the logical child portion and the destination parent portion. 

 

Usage 

An example of a PCB SECTION is shown in the il lustrations below, along with the 
resources that are required to develop this PCB SECTION. The PCB in this PSB calls for a 

logical database. This logical database and its associated physical databases are 
diagrammed in the hierarchies shown in Figure 46. 

 

Hierarchy diagrams are often helpful aids in determining which segments are to be 
specified in the PCB SECTION. To complete a PCB SECTION, however, you must have the 
applicable DBDs. In this example, 

■ The applicable DBDs are shown in Figure 46 and Figure 48. 

■  Figure 47 shows the DBD that defines the logical database 

■  Figure 48 shows the two DBDs that define the associated physical databases  

■  Figure 49 shows the data structure diagram for the corresponding CA IDMS/DB 

database 

■ The information in Figure 45 through Figure 49 is used to define the sample PCB 
SECTION shown in Figure 50. 

 



PCB SECTION 

 

150  DLI Transparency User Guide 

 

Sample PSB  

Figure 45 below shows a sample PSB. Although a PSB can have several PCBs, the PSB 

shown in this i l lustration has only one PCB. 

        PCB         TYPE=DB,DBNAME=LOGDB,PROCOPT=G,POS=SINGLE,KEYLEN=12 

        SENSEG      NAME=LSEGA,PARENT=0,PROCOPT=A 

        SENSEG      NAME=LSEGB,PARENT=LSEGA,PROCOPT=A 

        SENSEG      NAME=SEG3,PARENT=LSEGB,PROCOPT=A 

        SENSEG      NAME=SEG4,PARENT=LSEGB 

        SENSEG      NAME=SEG8,PARENT=LSEGB 

        PSBGEN      LANG=COBOL,PSBNAME=PSB1 

        END 

Figure 45. Sample PSB 
 

Hierarchies of Sample Databases 

These hierarchies correspond to the DBDs in Figure 47 and 4-17. Although SEG7 is not 
used directly by the application program, it can be affected if SEG6 is deleted. 

 

Figure 46. Hierarchies of sample databases 
 



PCB SECTION 

 

Chapter 4: IPSB Compiler  151  

 

Sample DBD for a Logical Database 

LSEGB is the concatenated segment in this example. The SEGM statement for the 

concatenated segment indicates that SEG6 in PHYSDB2 is the logical child and SEG1 in 
PHYSDB1 is the destination parent. The DBDs shown in Figure 48 indicate that SEG6 is 
the real logical child. 

        DBD         NAME=LOGDB,ACCESS=LOGICAL 

        DATASET     LOGICAL 

        SEGM        NAME=LSEGA,SOURCE=((SEG5,PHSDB2)) 

        SEGM        NAME=LSEGB,PARENT=LSEGA, 

                         SOURCE=((SEG6,DATA,PHYSDB2),(SEG1,DATA,PHYSDB1)) 

        SEGM        NAME=SEG3,PARENT=LSEGB,((SEG3,PHYSDB1)) 

        SEGM        NAME=SEG4,PARENT=LSEGB,SOURCE=((SEG4,PHYSDB1)) 

        SEGM        NAME=SEG7,SOURCE=((SEG7,PHYSDB2)),PARENT=LSEGB 

        SEGM        NAME=SEG8,SOURCE=((SEG8,PHYSDB2)),PARENT=LSEGB 

        DBDGEN 

        FINISH 

        END 

Figure 47. Sample DBD for a logical database 
 



PCB SECTION 

 

152  DLI Transparency User Guide 

 

Sample DBDs for Two Physical Databases 

According to these DBDs, SEG2 in PHYSDB1 is the virtual logical child segment, and SEG6 

in PHYSDB2 is the real logical child segment. 

        DBD         NAME=PHYSDB1,ACCESS=HDAM 

        DATASET     DD1=HDAM1,DEVICE=3350,BLOCK=2048,SCAN=3 

        SEGM        NAME=SEG1,PTR=TWINBWD,RULES=LLV 

        FIELD       NAME=(FIELD1,SEQ,U),BYTES=60,START=1 

        FIELD       NAME=FIELD2,BYTES=15,START=61 

        FIELD       NAME=FIELD3,BYTES=75,START=76 

        LCHILD      NAME=(SEG6,PHYSDB2),PAIR=SEG2,PTR=DBLE 

        SEGM        NAME=SEG2,PARENT=SEG1,PTR=PAIRED 

                         SOURCE=(SEG6,DATA,PHYSDB2) 

        FIELD       NAME=(FIELD4,SEQ,U),BYTES=21,START=1 

        FIELD       NAME=FIELD5,BYTES=20,START=22 

        SEGM        NAME=SEG3,BYTES=200,PARENT=SEG1 

        FIELD       NAME=(FIELD6,SEQ,U),BYTES=99,START=1 

        FIELD       NAME=FIELD7,BYTES=101,START=100 

        SEGM        NAME=SEG4,BYTES=100,PARENT=SEG1 

        FIELD       NAME=(FIELD8,SEQ,U),BYTES=15,START=1 

        FIELD       NAME=FIELD9,BYTES=15,START=51 

        DBDGEN 

        FINISH 

        END 

 

 

        DBD         NAME=PHYSDB2,ACCESS=HDAM,RMNAME=DLZHDC20,7,700,250 

        DATASET     DDI=HDAM2,DEVICE=3350,BLOCK=2048,SCAN=3 

        SEGM        NAME=SEG5,BYTES=31,PTR=TWINBWD,RULES=(VLV) 

        FIELD       NAME=(FIELD9,SEQ,U),BYTES=21,START,TYPE=P 

        FIELD       NAME=FIELD10,BYTES=10,START=22 

        SEGM        NAME=SEG6, 

                         PARENT=(((SEG5,DBLE),(SEG1,P,PHYSDB1)), 

                         BYTES=80,PTR=(LPARNT,TWINBWD),RULES=VVV 

        FIELD       NAME=(FIELD11,SEQ,U),START=1,BYTES=60 

        FIELD       NAME=FIELD12,BYTES=20,START=61 

        SEGM        NAME=SEG7,BYTES=20,,PTR=T 

                         PARENT=((SEG6,SNGL)) 

        FIELD       NAME=FIELD13,BYTES=9,START=1 

        FIELD       NAME=FIELD14,BYTES=11,START=10 

        SEGM        NAME=SEG8,BYTES=75,PTR=T 

                         PARENT=(SEG6,SNGL) 

        FIELD       NAME=FIELD16,BYTES=50,START=1 

        FIELD       NAME=FIELD17,BYTES=25,START=51 

        DBDGEN 

        FINISH 

        END 

Figure 48. Sample DBDs for two physical databases 
 



PCB SECTION 

 

Chapter 4: IPSB Compiler  153  

 

Sample CA IDMS/DB Data Structure Diagram  

The data structure diagram shown in this i l lustration depicts the CA IDMS/DB schema 

for the database corresponding to the DBDs shown in Figure 48. 

 

Figure 49. Sample CA IDMS/DB data structure diagram 
 



Executing the IPSB Compiler 

 

154  DLI Transparency User Guide 

 

Sample PCB Section 

Figure 45 through Figure 49 are the sources for this sample PCB SECTION. 

       PCB SECTION. 

          PCB ACCESS METHOD IS HDAM 

            DBDNAME IS LOGDB 

            PROCESSING OPTIONS ARE A 

            POSITIONING IS SINGLE. 

          SEGMENT NAME IS LSEGA RECORD NAME IS REC5 

          SEGMENT NAME IS LSEGB RECORD NAME IS REC6 

            PARENT IS LSEGA THRU SET REC5-REC6 

            LOGICAL DESTINATION PARENT IS REC1 

            THRU SET REC1-REC6 

            INSERT RULES ARE VIRTUAL,VIRTUAL,LOGICAL 

            REPLACE RULES ARE VIRTUAL,VIRTUAL,VIRTUAL 

            ACCESS METHOD IS HDAM 

            USE IS DATA,DATA. 

            SEGMENT NAME IS SEG3 RECORD NAME IS REC3 

              PARENT IS LSEGB THRU SET REC1-REC3 

              USE IS DATA. 

            SEGMENT NAME IS SEG4 RECORD NAME IS REC4 

              PARENT IS LSEGB THRU SET REC1-REC4 

              USE IS DATA. 

           SEGMENT NAME IS SEG7 RECORD NAME IS REC7 

              PARENT IS LSEGB THRU SET RC6-REC7 

              USE IS NOT SENSITIVE. 

            SEGMENT NAME IS SEG8 RECORD NAME IS REC8 

              PARENT IS LSEGB THRU SET REC6-REC8 

              PARENT IS OWNER USE IS DATA. 

Figure 50. Sample PCB SECTION 
 

Executing the IPSB Compiler 

To execute the IPSB compiler and assemble and link edit the output, use the JCL shown 
in CA IDMS DLI Transparency JCL (see page 257). The compiler requires as input the IPSB 

source statements that you have produced via the CA IDMS DLI Transparency Syntax 
Generator. 

 

 



 

Chapter 5: CA IDMS DLI Transparency Run-Time Environment  155  

 

Chapter 5: CA IDMS DLI Transparency 
Run-Time Environment 
 

This section contains the following topics: 

About This Chapter (see page 155) 
DL/I and CA IDMS DLI Transparency Run-Time Environments (see page 156) 

Modifying System Generation Parameters  (see page 157) 
Batch Considerations  (see page 160) 
CICS Considerations (see page 163) 
Testing the DL/I Application (see page 169) 

 

About This Chapter 

CA IDMS DLI Transparency can run under z/OS or z/VSE in either a batch or CICS 
environment. CA IDMS supports z/OS  V1R10 as well as z/OS 1.1 and above. However, 
we will  always refer to z/OS in this document. 

This chapter describes: 

■ The DL/I run-time environment and the CA IDMS DLI Transparency run-time 
environment 

■ The modifications you must make to your system generation parameters for central 

version (CV) execution in either a batch or CICS environment 
 

■ The steps required to run CA IDMS DLI Transparency in either a local mode or CV 
batch environment 

■ The steps required to run CA IDMS DLI Transparency in a CICS environment 

■ Testing the DL/I application in the run-time environment 

Note that batch jobs are run in either local mode or under the central version. A CICS 
environment always operates with the central version. 

 



DL/I and CA IDMS DLI Transparency Run-Time Environments 

 

156  DLI Transparency User Guide 

 

DL/I and CA IDMS DLI Transparency Run-Time Environments 

The DL/I Run-Time Environment 

In the DL/I run-time environment: 

■ A DL/I application issues a call against a DL/I database. 

■ DL/I controls the program's access to the database by using program specification 

blocks (PSBs) and Database Definitions (DBDs) that are stored in a run-time library. 
 

■ Each PSB contains program communication blocks (PCBs), which define the 
program's database views. 

■ After servicing the call, DL/I returns the status information and requested data to 
the program by way of the appropriate PCB. Note that in a CICS environment, DL/I 

also uses a user interface block (UIB) to communicate with the program. 
 

Native DL/I Batch and CICS Environments 

The diagram below shows the basic DL/I environments for both batch and CICS. 

 

Figure 51. Native DL/I batch and CICS environments 
 

The CA IDMS DLI Transparency Environment 

In CA IDMS DLI Transparency, the DL/I database is replaced by a CA IDMS/DB database.  
DL/I itself is replaced by CA IDMS DLI Transparency and CA IDMS/DB. The DL/I 

applications remain unchanged. 
 



Modifying System Generation Parameters  

 

Chapter 5: CA IDMS DLI Transparency Run-Time Environment  157  

 

When a DL/I application issues a call that is addressed to the CA IDMS/DB database that 
contains the converted DL/I data: 

■ CA IDMS DLI Transparency converts the call  to the corresponding CA IDMS/DB DML 
call  and passes it to CA IDMS/DB, which accesses the database. 

■ CA IDMS/DB returns the status information and data back to CA IDMS DLI 

Transparency. 
 

■ In CA IDMS DLI Transparency, the PSBs, PCBs, and DBDs are replaced by interface 

program specification blocks (IPSBs) and subschemas. 

■ Each IPSB serves as a control block that maps the definition and structure of the 
DL/I database to the CA IDMS/DB database. Like the PCBs, the subschemas define 

the program's database views. 
 

CA IDMS DLI Transparency Runtime Components 

The diagram below shows the basic CA IDMS DLI Transparency run-time components. 
The remainder of this section describes how to set up the required CA IDMS DLI 
Transparency run-time environment for both batch and CICS. 

 

Figure 52. CA IDMS DLI Transparency basic runtime components 
 

Modifying System Generation Parameters 

Before generating a CA IDMS system definition, you must set the following system 

generation parameters on the SYSTEM statement: 

■ Maximum number of CA IDMS DLI Transparency users  

■ Program pool size 

■ Reentrant pool size 

■ Storage pool size 
 



Modifying System Generation Parameters  

 

158  DLI Transparency User Guide 

 

You must also add certain system generation PROGRAM statements. 

Note: For more information about system generation parameters, see the CA IDMS 

System Generation Guide. 

These modifications are required only for a batch CV and CICS environment. 

Important! Do not make these modifications if you are running CA IDMS DLI 

Transparency in a local mode environment. 
 

Maximum Number of CA IDMS DLI Transparency Users 

On the SYSTEM statement, change the MAXIMUM ERUS parameter to allow for the 
maximum number of concurrent CA IDMS DLI Transparency users.  Note that the 

MAXIMUM ERUS value must reflect both the number of CA IDMS DLI Transparency 
users and the maximum number of CA IDMS/DB users, for both batch and CICS. 

 

Program Pool Size 

Adjust the program pool size as specified for the PROGRAM POOL parameter on the 

SYSTEM statement.  Use the following formula to calculate the required number of 
bytes: 

(ipsb-size * max-num-ipsb) + back-end-size 

■ Ipsb-size is the average size for an IPSB. For calculation purposes, you can use 4K as 
an average IPSB size. If you have large IPSBs, you should adjust the average size 

accordingly. To determine the actual IPSB sizes, refer to the link maps for the IPSBs. 

■ Max-num-ipsb is the maximum number of nonresident IPSBs. 
 

Reentrant Pool Size 

Adjust the reentrant pool size as specified for the REENTRANT POOL parameter on the 

SYSTEM statement.  Use the same formula as for program pool size above. 
 



Modifying System Generation Parameters  

 

Chapter 5: CA IDMS DLI Transparency Run-Time Environment  159  

 

Storage Pool Size 

Adjust the storage pool s ize as specified for the STORAGE POOL parameter on the 
SYSTEM statement. Use the following formula to calculate the required number of 
bytes: 

4K * maximum erus 

Maximum erus is the maximum number of concurrent CA IDMS DLI Transparency users. 
Use the same value calculated for MAXIMUM ERUS above. 

 

Additional PROGRAM Statements 

You must include additional system generation PROGRAM statements to define: 

■ The IDMSDLVC database procedure 

■ The IDMSDLVD database procedure 

You can optionally include PROGRAM statements for IPSBs and subschemas. 
 

IDMSDLVC Database Procedure 

Add the following system generation PROGRAM statement to define the IDMSDLVC 

database procedure. IDMSDLVC is a database procedure for modifying variable-length 
records.   

ADD PROGRAM IDMSDLVC 

 LANGUAGE IS ASSEMBLER 

 REENTRANT 

 REUSABLE. 
 

IDMSDLVD Database Procedure 

Add the following PROGRAM statement to define the IDMSDLVD database procedure. 
IDMSDLVD is a database procedure for retrieving variable-length records.   

ADD PROGRAM IDMSDLVD 

 LANGUAGE IS ASSEMBLER 

 REENTRANT 

 REUSABLE. 
 



Batch Considerations 

 

160  DLI Transparency User Guide 

 

IPSBs and Subschemas 

PROGRAM statements can be added for IPSBs and subschemas, but are not required. 

The PROGRAM statement for an IPSB takes the following form where ipsb-name is the 
name of the IPSB: 

ADD PROGRAM ipsb-name  

  LANGUAGE IS SUBSCHEMA. 
 
 

More information: 

CA IDMS DLI Transparency Software Components  (see page 241) 
 

 

Batch Considerations 

CA IDMS DLI Transparency batch can run in either a local mode or CV environment. 

The diagram below shows the local mode environment. 

 

Figure 53. CA IDMS DLI Transparency in a local mode environment 
 



Batch Considerations 

 

Chapter 5: CA IDMS DLI Transparency Run-Time Environment  161  

 

The diagram below shows the batch CV environment. 

 

Figure 54. CA IDMS DLI Transparency in a batch CV environment 
 

Steps to Set up Batch Environment 

The steps for setting up the CA IDMS DLI Transparency batch environment (local mode 

or CV) are as follows: 

1. Link edit the DL/I applications with the CA IDMS DLI Transparency language 
interface. 

2. Execute the CA IDMS DLI Transparency region controller. 
 

Link Editing Batch DL/I Applications 

To prepare your DL/I applications to run in the CA IDMS DLI Transparency batch 
environment, you must l ink edit them with the correct CA IDMS DLI Transparency 

language interface.Module IDMSDLLI should be link edited to call -level DL/I applications, 
and module IDMSDLHI should be link edited to batch command–level DL/I applications 
(containing EXEC DLI commands). 

To link edit a DL/I application program with the language interface, use the JCL for z/OS 

and z/VSE provided in Appendix D. 
 



Batch Considerations 

 

162  DLI Transparency User Guide 

 

Executing the CA IDMS DLI Transparency Region Controller 

The Basic Execute Statement 

To run CA IDMS DLI Transparency in a batch environment, you must execute the CA 
IDMS DLI Transparency region controller (IDMSDLRC). Use the JCL provided in Appendix 

D. 

The basic execute statement (shown for z/OS) is as follows: 

EXEC  PGM=IDMSDLRC,PARM='DLI,userpgm,ipsb,parms' 
 

Parameter List 

In the PARM list: 

■ Userpgm is the name of the DL/I batch application. 

■ Ipsb is the name of the IPSB that the application uses when accessing the CA 
IDMS/DB database. 

■ Parms are additional optional parameters, as follows: 

– TRACE -- Traces the call  sequence, the I/O areas, the PCBs, and the SSAs. In a 

central version environment, the trace results are written to the CA IDMS/DB 
log. In a local mode environment, the trace results are placed in a special 
dataset called ESCDUMP. If you use TRACE when running in local mode, make 
sure that you include a DD statement for ESCDUMP. Generally, TRACE is used 

only for debugging internal problems. 
 

– NOSPIE/NOSTAE/NOSTXIT -- Prevents recursive abends in the case of CA IDMS 
DLI Transparency abend exit failures.The back-end module (RHDCDLBE) 
maintains a trace table of activity.  If a DL/I application aborts, an abend exit is 

invoked to format and output the trace information to the CA IDMS/DB log in 
central version, or to the ESCDUMP DD in local mode.  This information is 
valuable and used by support for diagnostic purposes.  Under the central 
version, if the abend exit also abends, this recursive abend will  bring the central 

version down.  These parameters are available in case this situation should ever 
occur.  This parameter should not be routinely specified. 

 

When running under the central version, only specify one of these options. 
NOSPIE and NOSTAE are for z/OS only. They turn off SPIES and STAES, 
respectively. NOSTXIT is for z/VSE only. 

– DYN -- Allocates dynamic buffers to the front-end module for use by PL/I 
programs. In order to use this parameter in a central version environment, you 
must make sure that the IPSB is available to both the region controller 

(IDMSDLRC) and the front-end module (IDMSDLFE), as well as to the back-end 
module (RHDCDLBE). 

 



CICS Considerations 

 

Chapter 5: CA IDMS DLI Transparency Run-Time Environment  163  

 

Modifying Existing DL/I Batch JCL 

You can construct the JCL to execute the region controller by modifying the existing JCL 
for a DL/I batch application. If you do this, make sure you observe the following 
constraints. 

Central Version Environment 

■ Change the program name to IDMSDLRC. 

■ Remove any statements that point to DL/I databases. Make sure that you point only 
to CA IDMS/DB load libraries, and not to IMS or DL/I load libraries. 

 

■ Insert a SYSCTL statement. 

■ Remove all  DL/I database definitions. 
 

In a Local Mode Environment 

■ Change the program name to IDMSDLRC. 

■ Remove any statements that point to DL/I databases. Make sure that you point only 
to CA IDMS/DB load libraries and not to IMS or DL/I load libraries. 

■ Do not include a SYSCTL statement. 
 

■ Replace all  DL/I fi le definitions with CA IDMS/DB fi le definition cards. 

■ Add journal definition cards. Remember that local mode needs a larger address 
space than a job accessing the central version. This is because the local address 
space also includes CA IDMS/DB. 

 

Using Dynamic File Allocation 

■ There are a number of advantages to util izing FILE statements in the CA IDMS DMCL 

to have databases accessed using Dynamic Allocation. 

For more information about util izing dynamic allocation, refer to the CA IDMS 
Database Administration Guide Volume 1 , Chapter 3, Defining Segments, Files, and 

Areas. 

 
 

CICS Considerations 

You can access CA IDMS/DB from a CICS DL/I application at call level or command-level 
depending on how your DL/I applications are coded. 

If call-level DL/I statements are util ized, DL/I applications can be relinked using the CA 
IDMS DLI Transparency CICS application interface (IDMSDL1C for z/OS, IDMSDL1V for 
z/VSE).  

 



CICS Considerations 

 

164  DLI Transparency User Guide 

 

If command-level DL/I statements are util ized (EXEC DLI), DL/I applications can be 
relinked using a CA IDMS DLI Transparency CICS application interface specific to the 

application programming language and operating system. 

For a description of IDMSDL1C, IDMSDL1V, and command-level DL/I application 
interfaces, see CA IDMS DLI Transparency Software Components  (see page 241). 

  

More information: 

CA IDMS DLI Transparency Software Components  (see page 241) 
 

 

DL/I CICS Environment 

CICS DL/I Environment (z/OS) 

As shown in the diagram below, the native DL/I application runs as a CICS 
transaction.The transaction is l inked with the DL/I language interface (DFHDLIAI in z/OS 

or DLZLI000 in z/VSE) so that it can make DL/I calls. When the transaction starts: 

■ The language interface loads the address for DFHDLI (or DLZDLI for z/VSE) in the 
CICS Common Storage Area (CSA) 

■ DFHDLI (or DLZDLI for z/VSE), in turn, points to the address of the run-time DL/I 

■ When the transaction issues a DL/I call, the call  is passed, via DFHDLIAI and DFHDLI, 
to DL/I, which services the database request and passes status information and/or 
data back to the transaction 

 



CICS Considerations 

 

Chapter 5: CA IDMS DLI Transparency Run-Time Environment  165  

 

The diagram below shows the CICS environment for native DL/I under z/OS. 

 

Figure 55. z/OS CICS DL/I environment 
 



CICS Considerations 

 

166  DLI Transparency User Guide 

 

CA IDMS DLI Transparency CICS Environment 

z/OS CICS Environment (Using Command-Level CICS services) 

The diagram below shows the z/OS CICS environment for CA IDMS DLI Transparency 
using command-level CICS services. 

■ The CA IDMS DLI Transparency application interface(also referenced as the 
language interface), intercepts DL/I calls. 

■ The application interface gets the entry point address of IDMSDLFC (in IDMSINTC) 
from the CWA and passes control to IDMSDLFC for DL/I parameter processing 

■ IDMSINTC  passes control to the CA IDMS DLI Transparency back-end module, 
RHDCDLBE, for DL/I call  translation into processing against the CA IDMS/DB 
database 

 

 

Figure 57. CA IDMS DLI Transparency z/OS CICS environment (command-level only) 
 



CICS Considerations 

 

Chapter 5: CA IDMS DLI Transparency Run-Time Environment  167  

 

Establishing the CA IDMS DLI Transparency CICS Environment 

How to Set Up a CA IDMS DLI Transparency CICS Environment 

To set up a CICS environment for CA IDMS DLI Transparency, perform the following 
steps, which are explained in detail  in the section directly after this: 

1. Assemble the CICSOPTS module with parameter ESCDLI=YES.  . 

2. If applications utilize EXEC DLI calls, change the HLPI= parameter to YES. 
 

3. Assemble the appropriate language interface  module.  

4. Link the DL/I application to the language interface module.  
 

Use Appropriate CICS Language Interface 

CICS DL/I applications must be  re-linked with a CA IDMS DLI Transparency 
application/language interface module. For call -level DL/I usage, IDMSDL1C (z/OS) and 

IDMSDL1V (Z/VSE) resolve the external references to CBLTDLI, ASMTDLI, or PLITDLI.For 
EXEC DLI usages, the interface modules are language and operating system specific.For 
information on assembling language interface modules, see CA IDMS DLI Transparency 

JCL (see page 257). Note that the interface modules must be assembled with a CWADISP 
value matching the corresponding CICSOPTS CWADISP value. 

 

Assemble CICSOPTS 

Initial Installation 

A site-specific CICSOPTS module wi ll  be assembled and link edited as part of the 
installation process. All  parameters for CICSOPTS that are required for the DL/I 
Transparency will  be automatically generated by the CAISAG (z/OS) or CAIIJMP (z/VSE) 
installation util ity when you indicate the product to be installed. The site-independent 

IDMSINTC module will  include all modules specifically required to run the 
DLI/Transparency. 

 

Modifying CICSOPTS 

You may need to reassemble CICSOPTS to change some of the original installation 
options. 

z/OS can find the CICSOPTS source in CUSTOM.SRCLIB(CICSOPTS) and the link 
statements in CUSTOM.LNKLIB(IDMSINTC). 

 

z/VSE clients should edit the CICSOPTS module and relink IDMSINTC. Job control to do 
this should be taken from the job control that was generated by CAIIJMP for your initial 

base tape installation. 

Note: For more information about the CICSOPTS macro and its parameters, see the CA 
IDMS System Operations Guide. 

 



CICS Considerations 

 

168  DLI Transparency User Guide 

 

IDMSINTC is the standard CA IDMS/DB module for running CA IDMS/DB transactions 
under CICS.CICSOPT parameter ESCDLI=YES specifies that you want to run not only 

standard CA IDMS/DB, but also CA IDMS DLI Transparency, under CICS. The result of 
ESCDLI=YES is to expand CICSOPTS, so that it can also serve as the CA IDMS DLI 
Transparency front end. If applications util ize EXEC DLI statements, HLPI=YES enables 

support for this DL/I usage. Note that it is possible to l ink IDMSCINT with a transaction 
to allow the transaction to make both CA IDMS/DB and DL/I calls. 

 
 

Prepare to run IDMSINTC in CICS 

IDMSINTC itself runs as a transaction under CICS. For a detailed description of how to 
prepare for this, see the CA IDMS System Operations Guide. 

Note that IDMSINTC can be executed either automatically at CICS start-up or manually 
after CICS start-up. 

 

Assemble the language interface 

Initial Installation 

Language interfaces are automatically generated at installation. The appropriate 
language interface must be linked with each CICS DL/I application that will  access CA 
IDMS/DB. The value for CWADISP will  be set to the same value that wa s specified in the 
CICSOPTS assembly by the CAISAG (z/OS) or CAIIJMP (z/VSE) util ity. 

 

Modifying Language Interfaces 

If you change the CWADISP value used by IDMSINTC, you will  need to make the same 
change to the language interfaces being util ized. 

For a description of the language interfaces, see CA IDMS DLI Transparency Software 
Components (see page 241). For information on assembling CICS language interface 

modules, see CA IDMS DLI Transparency JCL (see page 257) . 

z/OS can find the IDMSDL1C source in CUSTOM.SRCLIB and the IDMSSCL1C link 
statements in the CUSTOM.LNKLIB. 

 

z/VSE clients should make the necessary change to the z/VSE DL/I language interfaces, 
using the job control that was generated by CAIIJMP as part of your initial base tape 

installation.  

Note: You will  need to relink any DL/I application that included the language interfaces. 
 



Testing the DL/I Application 

 

Chapter 5: CA IDMS DLI Transparency Run-Time Environment  169  

 

Testing the DL/I Application 

After setting up your CA IDMS DLI Transparency run-time environment, perform the 
following steps to test a DL/I application: 

1. Establish a pilot project using a subset of the DL/I database. 

2. Use the CA IDMS DLI Transparency Load Util ity (see CA IDMS DLI Transparency Load 

Util ity (see page 171)) to convert database to/ a subset of the DL/I database to a CA 
IDMS/DB database. 

 

3. Link the DL/I application program with the appropriate language interface. 

4. Execute the application against the converted DL/I database. 

5. Compare the results of the application's CA IDMS/DB and DL/I executions. 
 

 





 

Chapter 6: CA IDMS DLI Transparency Load Utility  171  

 

Chapter 6: CA IDMS DLI Transparency Load 
Utility 
 

This section contains the following topics: 

About This Chapter (see page 171) 
Using the CA IDMS DLI Transparency Load Util ity (see page 171) 

The Database Load Process  (see page 172) 
Preparing To Run the Load Util ity (see page 173) 
Sample Source Code For Database Load (see page 178) 
Step 1: Preload CALC Processing (see page 191) 

Step 2: Database Load (see page 194) 
Step 3: Workfile Sort/Merge (see page 196) 
Step 4: Prefix (Concatenated Key) Resolution (see page 197) 

Step 5: Workfile Hierarchical Sort (see page 199) 
Step 6: Prefix Update (see page 200) 

 

About This Chapter 

The CA IDMS DLI Transparency load util ity populates an existing CA IDMS/DB database 
with data unloaded from a DL/I database. This section presents: 

■ The initial requirements and preparations you need to make 

■ A description of the process of loading data with the DLI load util ity 

■ Sample code 

■ A detailed explanation of each step 
 

Using the CA IDMS DLI Transparency Load Utility 

The CA IDMS DLI Transparency load util ity requires: 

■ An initialized CA IDMS/DB database and all  supporting software necessary to access 
the database. The supporting software includes usable CA IDMS/DB schema, 

subschema, and DMCL modules. 

■ The CA IDMS DLI Transparency run-time interface. The load util ity runs under the 
control of the CA IDMS DLI Transparency region controller. Also, the back-end 

processor performs special handling of the DL/I data during the load. 
 



The Database Load Process 

 

172  DLI Transparency User Guide 

 

■ A CA IDMS DLI Transparency interface program specification block (IPSB) load 
module that accurately describes the DL/I hierarchies involved. 

■ Unloaded DL/I data in a format compatible with that produced by the IBM DL/I HD 
unload util ity. The load util ity accepts data only if it is in this format. 

■ A working knowledge of CA IDMS/DB, DL/I, and CA IDMS DLI Transparency. 

Knowledge of CA IDMS DLI Transparency includes familiarity with the CA IDMS DLI 
Transparency syntax generator, the IPSB compiler, and the run-time interface. 

 

The Database Load Process 

The process of loading data with the CA IDMS DLI Transparency load util ity can involve 
up to six steps, as follows: 

 

Step Process 

1. Preload CALC 

processing 

Calculates database pages for CALC records (DL/I root 

segments). The actual database load (Step 2) can also 
perform this operation, but it takes longer to do so. 
Pre-load CALC processing is optional and is provided only 
to improve loading performance. 

If preload CALC processing is performed, the resulting data 
should then be sorted to produce the optimum database 
loading sequence. 

2. Database load Stores the DL/I data in the prepared CA IDMS/DB database.  

If the DL/I hierarchies involved do not contain logical 
relationships, this is the only step required to complete the 
load process. 

If logical relationships do exist, you must perform Steps 3 
through 6 to resolve the logical child/logical parent 
relationships. Logical relationships require special 
treatment for the following reasons: 

■ The hierarchical nature of the DL/I data does not 
ensure that a logical parent will  be stored before its 
logical child. 

■ The logical parent concatenated keys are not always 
present in a logical child input record. 

If the load util ity encounters a logical relationship during 
the load, it creates logical parent and logical child workfile 

records and writes them to a separate workfile. 
 

3. Workfile sort/merge Sorts the workfile produced by Step 2 so that the logical 
child records appear in proper sequence under their 
associated logical parent records. 



Preparing To Run the Load Utility 

 

Chapter 6: CA IDMS DLI Transparency Load Utility  173  

 

Step Process 

4. Prefix (concatenated 

key) resolution 

Uses the sorted workfile from Step 3 as input. For each 

logical parent record in the workfile, it generates a correct 
prefix (concatenated key) for each associated logical child 
record. 

5. Workfile hierarchical 
sort 

Accepts the prefix-resolved workfile from Step 4 as input 
and sorts the logical child records back into the original 
hierarchical sequence. 

6. Prefix update Retrieves logical child records already stored in the CA 

IDMS/DB database (by Step 2 process ing). Using the 
hierarchically sorted workfile from Step 5, it adds the 
correct prefix (concatenated key) to each logical child 
database record and connects it to its logical parent 

record. This step completes the processing for DL/I data 
that contains logical relationships. 

Each of the steps in the database load process is described separately later in this 

section. 
 

Preparing To Run the Load Utility 

Before attempting to execute the load util ity, take the following considerations into 
account. 

 

Preparation of DL/I Data 

Unload all  DL/I data, including all access methods, by using the DL/I HD unload util ity. 
The CA IDMS DLI Transparency load util ity expects the data to be in the format 
produced by the HD unload util ity. 

Unload all  DL/I HDAM, HIDAM, secondary index, HISAM, and index databases. Index 

databases have to be unloaded only if the index entries are not created by other record 
occurrences in the index relationship. See "CA IDMS DLI Transparency Index 
Maintenance" below. 

 

CA IDMS DLI Transparency Index Maintenance 

CA IDMS DLI Transparency creates and updates DL/I index entries for the index 
relationships defined in the CA IDMS/DB database. In other words, when a source 
record is inserted, replaced, or deleted in a CA IDMS/DB index relationship, CA IDMS DLI 

Transparency makes sure that the index relationship's requirements can be met for the 
insert, replace, or delete call. 

 



Preparing To Run the Load Utility 

 

174  DLI Transparency User Guide 

 

You should not input to the load util ity any DL/I index entries that would be created by 
CA IDMS DLI Transparency's index maintenance routines. For example, assume that you 

have a DL/I index database that is populated whenever a particular root segment is 
inserted into an associated HDAM database. Since loading of the HDAM database will  
also populate the index database, there is no need to load the entries in the DL/I index 

database into the CA IDMS/DB index relationships. CA IDMS DLI Transparency will  do 
this for you. 

You can use index suppression exits or null value criteria specifications to support DL/I 
sparse indexing during the load process. See Index Suppression Exit Support (see 

page 253) for a discussion of index suppression exits. 
 

Using the CA IDMS DLI Transparency Syntax Generator 

It is strongly recommended that you use the syntax generator to produce the source 
statements for the IPSB load module and the CA IDMS/DB schema, subschema, and 

DMCL modules. See CA IDMS DLI Transparency Syntax Generator (see page 75) for 
instructions on creating the special load IPSB and using the GENERATE LOAD IPSB and 
GENERATE LOAD SCHEMA statements. While you can hand-code the IPSB, use of the 
syntax generator is more efficient and less time consuming. 

 

Preparation of the IPSB and CA IDMS/DB Load Modules 

To produce the CA IDMS/DB modules, input the generated source statements to the 
appropriate compilers. If you are running the database load in local mode, the 
subschema and DMCL modules must reside in a l ibrary that is accessible by a STEPLIB 

JCL statement. 
 

To produce the IPSB load module, input the generated IPSB source statements to the 
IPSB compiler (see IPSB Compiler (see page 93)). Note that the subschema module must 
be available to compile the IPSB. 

The IPSB(s) produced by the syntax generator may not be appropriate for the database 
load. In this case, you will  have to edit the IPSB source to create special load IPSBs (see 
"Special Load IPSBs" below). 

 



Preparing To Run the Load Utility 

 

Chapter 6: CA IDMS DLI Transparency Load Utility  175  

 

Special Load IPSBs 

The IPSB Load Module 

The IPSB load module provides the CA IDMS DLI Transparency run-time interface with a 
description of the DL/I database hierarchies that are referenced in the PCBs (database 

views) defined for the DL/I application. The IPSB also defines those logical relationships 
that involve other DL/I databases. Make sure that these logical relationships are 
correctly defined so that the load util ity can find the logical parent records necessary to 
populate the logical workfile. 

 

Review the IPSB 

Specifically, make sure that the IPSB defines: 

■ Each logically related database 

■ The physical segments in each database 

■ The physical path underlying the logical path 
 

Note that logically related databases are defined by way of multiple PCBs within the 

IPSB. The multiple PCBs are the equivalents of multiple logical DBD descriptions, with 
full  hierarchical definitions, included within the same PSB. Each logically related 
database is represented by at least one PCB. If the logical relationships do not cross 
database boundaries, only one PCB that defines the logical relationships is required in 

the IPSB load module. 

In the case of multiple DL/I databases, it is recommended, but not required, that you 
use one IPSB load module with multiple PCBs. 

 

PROCOPT for Special Load IPSBs 

Each PCB included in the IPSB load module must have a PROCOPT of LOAD so the CA 
IDMS DLI Transparency run-time interface can recognize that the load util ity is active. 
Failure to specify the LOAD PROCOPT can result in load processing errors. If you use the 

CA IDMS DLI Transparency syntax generator, it will  generate this PROCOPT for you 
automatically. See CA IDMS DLI Transparency Syntax Generator (see page 75) for a 
description of the GENERATE LOAD IPSB statement. 

 

Availability of the IPSB Load Module 

You must make sure that the IPSB load module is available to both the load util ity and 
the CA IDMS DLI Transparency run-time interface. For central version execution, the 
IPSB load module must be available to the central version and the batch LOAD region. 

 



Preparing To Run the Load Utility 

 

176  DLI Transparency User Guide 

 

CA IDMS/DB Schema Requirements 

Junction Record Represents Logical Child Segment 

For each logical relationship that exists in the DL/I database, the logical child segment 
must be represented by a CA IDMS/DB junction record. For the junction to exist, there 

must be two CA IDMS/DB sets. Since there is no assurance that the load process has 
stored the two set owners (parent records) before it stores the junction (logical child) 
record, the set with the logical parent as owner must have a set connection option of 
OPTIONAL MANUAL. 

After completing the load process, you can change the set's connection option to 
MANDATORY AUTOMATIC, if desired. 

 

Bill-of-Materials Relationship Exception 

The only exception is the bil l -of-materials type of relationship, which requires the 
junction record to be owned by two different occurrences of the same record type.  In 

this case, the set connection option must remain OPTIONAL MANUAL. 
 

Use the Syntax Generator 

It is recommended that you use the CA IDMS DLI Transparency syntax generator to 
produce a basic load schema with proper set connection options for logical 
relationships. See CA IDMS DLI Transparency Syntax Generator (see page 75) for a 

description of the GENERATE LOAD SCHEMA statement. 
 

Multi-Database Logical Relationships 

Load Databases Separately 

If logical relationships involve more than one database, you must load each database 

separately (Step 2, under "The Database Load Process", earlier in this section). 
 

Separate Logical Workfiles are Created 

Each database load that you perform creates a separate logical workfile. You must make 
sure that the workfile from each load is available for the workfi le sort/merge processing 
(Step 3). If a required workfile is not available, the prefix resolution processing (Step 4) 

encounters unresolved logical relationships, and you have to perform the database 
loads again. 

 



Preparing To Run the Load Utility 

 

Chapter 6: CA IDMS DLI Transparency Load Utility  177  

 

Workfile Space Allocation 

Load Utility Generates Separate Workfiles 

The load util ity generates four separate workfiles: 

■ The workfile produced by Step 2 (under "The Databa se Load Process", earlier in this 

section) 

■ The sorted workfile produced by Step 3 
 

■ The prefix-resolved workfile produced by Step 4 

■ The hierarchically sorted workfile produced by Step 5 
 

General Considerations for Workfiles 

Here are some general considerations for workfiles: 

■ The workfiles can be allocated to either disk or tape. 

■ Each workfile is a sequential fixed-block data set with a logical record size of 288 
and a block size of 5760. 

■ If you are using DASD space, you can use the following formula to calculate the 

number of bytes required for the first workfile produced by Step 2: 

((# of logical children) + (# of logical parents)) X 288 
 

■ Be sure to include all  potential logical parents as well as all existing logical children. 

(Refer to "Workfile Usage for HISAM Logical Parents," below.) If you do not know 
the numbers for logical children and logical parents, you can use the preload CALC 
processing (Step 1) to get a count of all  record occurrences that will  appear in the 

logical workfile. 

■ Remember that there will  be a separate workfile generated for each DL/I database 
that you load. (See "Multi -Database Logical Relationships," above). 

 

■ Space requirements for the second (sorted workfile) are equal to the sum of the 
space requirements for all  the workfiles resulting from the load. 

■ To calculate the space requirements for the third (prefix-resolved) workfile, use the 
formula shown above for the first workfile, but specify 0 (zero) for # of logical 
parents. This workfile contains only the logical child records, but with adjusted 
prefixes (concatenated keys). 

■ Space requirements for the fourth (hierarchically sorted) workfile are the same as 
for the third workfile. 

 



Sample Source Code For Database Load 

 

178  DLI Transparency User Guide 

 

Workfile Usage for HISAM Logical Parents 

During the database load, the load util ity writes logical parent records that appear in 
HDAM, HIDAM, and secondary index databases out to the logical workfile. However, the 
load util ity does not write out logical parent records for HISAM databases. Because 

logical parents from HISAM databases do not appear in the logical workfile, you can 
reduce its space requirements accordingly. If you use the DASD space requirement 
formula shown above, you should adjust it so that it does not include any HISAM logical 
parents. 

 

Preload Sorting 

Preload sorting sorts the DL/I input data into database page sequence for more efficient 
loading. You can preload sort only DL/I data that has been successfully preload CALC 
processed (Step 1, under "The Database Load Process", earlier in this section). 

 

Diagnostic and Error Messages 

The diagnostic and error messages that may be returned by the various steps in the load 
process are l isted in CA IDMS DLI Transparency Messages and Codes  (see page 211). 

 

Sample Source Code For Database Load 

This section presents sample source code for: 

■ A DL/I PSB and its associated DBDs 

■ An IPSB load module 

■ A CA IDMS/DB schema module 

The samples i l lustrate the process of preparing the necessary modules for use with the 

CA IDMS DLI Transparency load util ity. 
 

The IPSB source code and the CA IDMS/DB source code both derive from the DL/I PSB 
and DBDs. 

The source code examples are also reflected in the sample reports that appear for the 

various steps in the database load proces s (described later in the section). 
 



Sample Source Code For Database Load 

 

Chapter 6: CA IDMS DLI Transparency Load Utility  179  

 

Sample DL/I PSB and DBDs 

Figure 58 shows the source for two logically related DL/I databases and a PSB.  The DBD 
descriptions define: 

■ Two HIDAM physical databases (ITEMDBDP and PARTDBDP) 

■ Two logical databases (ITEMDBDL and PARTDBDL) 

■ Two index databases (ITEMDBDI and PARTDBDI) 
 

The PSB references the two logical databases. 

The physical databases have root segments named ITEM and PART, respectively. They 
are logically related using the DETAIL segment. 

 



Sample Source Code For Database Load 

 

180  DLI Transparency User Guide 

 

Source statements for DL/I PSB and DBDs: 

 DL/I ITEM DATABASE PHYSICAL DBD EXAMPLE 

         DBD      NAME=ITEMDBDP,ACCESS=HIDAM 

         DATASET  DD1=ITEMDB,DEVICE=FBA 

         SEGM     NAME=ITEM,PARENT=0,BYTES=150,POINTER=TB,RULES=PPV 

         LCHILD   NAME=(ITEMNDX,ITEMDBDI),POINTER=INDX 

         FIELD    NAME=(ITEMNO,SEQ),BYTES=7,START=1 

         SEGM     NAME=DETAIL,PARENT=((ITEM,SNGL),                     X 

               (PART,VIRTUAL,PARTDBDP)),BYTES=150,                     X 

               RULES=PVV,POINTER=(TB,LTB) 

         FIELD    NAME=(ITMDTAIL,SEQ),BYTES=3,START=19 

         DBDGEN 

         FINISH 

         END 

 

 DL/I PARTS DATABASE PHYSICAL DBD EXAMPLE 

 

         DBD      NAME=PARTDBDP,ACCESS=HIDAM 

         DATASET  DD1=PARTDB,DEVICE=FBA 

         SEGM     NAME=PART,PARENT=0,BYTES=150,POINTER=TB,RULES=PPV 

         LCHILD   NAME=(PARTNDX,PARTDBDI),POINTER=INDX 

         LCHILD   NAME=(DETAIL,ITEMDBDP),POINTER=SNGL,PAIR=DETAILV 

         FIELD    NAME=(PARTNO,SEQ),BYTES=18,START=1 

         SEGM     NAME=DETAILV,PARENT=PART,POINTER=PAIRED,             X 

               SOURCE=((DETAIL,,ITEMDBDP)) 

         FIELD    NAME=(ITMDTAIL,SEQ,M),BYTES=3,START=8 

         DBDGEN 

         FINISH 

         END 

 

 DL/I ITEM INDEX DBD EXAMPLE 

 

         DBD      NAME=ITEMDBDI,ACCESS=INDEX 

         DATASET  DD1=ITEMIX,DEVICE=FBA 

         SEGM     NAME=ITEMNDX,PARENT=0,BYTES=7 

         LCHILD   NAME=(ITEM,ITEMDBDP),POINTER=SNGL,INDEX=(ITEMNO) 

         FIELD    NAME=(ITEMNO,SEQ,U),BYTES=7,START=1 

         DBDGEN 

         FINISH 

         END 

 

Figure 58 (Part 1 of 2). Source statements for DL/I PSB and DBDs 
 



Sample Source Code For Database Load 

 

Chapter 6: CA IDMS DLI Transparency Load Utility  181  

 

 DL/I PARTS INDEX DBD EXAMPLE 

 

         DBD      NAME=PARTDBDI,ACCESS=INDEX 

         DATASET  DD1=PARTIX,DEVICE=FBA 

         SEGM     NAME=PARTNDX,PARENT=0,BYTES=18 

         LCHILD   NAME=(PART,PARTDBDP),POINTER=SNGL,INDEX=(PARTNO) 

         FIELD    NAME=(PARTNO,SEQ,U),BYTES=18,START=1 

         DBDGEN 

         FINISH 

         END 

 DL/I ITEM DATABASE LOGICAL DBD EXAMPLE 

 

         DBD      NAME=ITEMDBDL,ACCESS=LOGICAL 

         DATASET  LOGICAL 

         SEGM     NAME=ITEM,PARENT=0,SOURCE=((ITEM,,ITEMDBDP)) 

         SEGM     NAME=DETAIL,PARENT=ITEM,                            X 

               SOURCE=((DETAIL,,ITEMDBDP),(PART,,PARTDBDP)) 

         DBDGEN 

         FINISH 

         END 

 

 DL/I PARTS DATABASE LOGICAL DBD EXAMPLE 

 

         DBD      NAME=PARTDBDL,ACCESS=LOGICAL 

         DATASET  LOGICAL 

         SEGM     NAME=PART,PARENT=0,SOURCE=((PART,,PARTDBDP)) 

         SEGM     NAME=DETAIL,PARENT=PART,                            X 

               SOURCE=((DETAIL,,ITEMDBDP),(ITEM,,ITEMDBDP)) 

         DBDGEN 

         FINISH 

         END 

Figure 58 (Part 2 of 2). Source statements for DL/I PSB and DBDs 
 

Sample Load IPSB 

GENERATE IPSB Statement 

Assuming the DL/I PSB and DBD definitions in i l lustration 6-1 are assembled and are 
available to the syntax generator using a CDMSLIB JCL statement, the following 
GENERATE statement will  produce the appropriate IPSB source code for use with the 

load process: 

GENERATE LOAD IPSB FOR PSB ITEMPART USING SUBSCHEMA PRODSUBS. 
 



Sample Source Code For Database Load 

 

182  DLI Transparency User Guide 

 

This statement instructs the generator to produce an IPSB named ITEMPART and submit 
it to validity checking for use with the load process. 

Figure 59 shows the IPSB source code as it might be produced by the syntax generator 
using the DL/I DBD and PSB definitions in Figure 58. 

 

Considerations 

Here are some points to note about the IPSB source code: 

■ Each PCB in the DL/I PSB appears as a separate entry in the IPSB's PCB section 

■ Each PCB entry describes both the physical segments involved and how the physical 
segments extend into the logical path 

■ Once the IPSB source is compiled, the resulting IPSB load module can be used to 

load both of the logically related databases (ITEMDBDL a nd PARTDBDL). A PCB for 
each of these DBDs must be included in the IPSB for a successful load. 

 

GENERATE IPSB Statement LOAD Parameter 

The use of the LOAD parameter in the GENERATE statement ensures that the resulting 
IPSB includes all of the DL/I dependencies necessary for a successful load. If a PCB does 

not identify the physical segment that corresponds to a referenced logical parent, the 
syntax generator will  return an error message and not create the IPSB source. 

 

An example 

For example, if the PARTDBDL PCB were not present in the assembled DL/I ITEMPART 
PSB, the syntax generator would return an error message stating that it could not find 

the DBD for the logical parent in any PCB. In this case, the missing DBD would be the 
physical DBD, as referenced by the logical DBDs, ITEMDBDL and PARTDBDL. Providing 
the PCB for the logical DBD PARTDBDL would satisfy the load process requirements and 
produce the correct IPSB source. 

 



Sample Source Code For Database Load 

 

Chapter 6: CA IDMS DLI Transparency Load Utility  183  

 

Generated IPSB source statements: 

 DL/I ITEM DATABASE LOGICAL DBD EXAMPLE 

 

 

 DBD      NAME=ITEMDBDL,ACCESS=LOGICAL 

 DATASET  LOGICAL 

 SEGM     NAME=ITEM,PARENT=0,SOURCE=((ITEM,,ITEMDBDP)) 

 SEGM     NAME=DETAIL,PARENT=ITEM, 

                      SOURCE=((DETAIL,,ITEMDBD),(PART,,PARTDBDP)) 

 DBDGEN 

 FINISH 

 END 

 

 

 DL/I PARTS DATABASE LOGICAL DBD EXAMPLE 

 

 

 DBD      NAME=PARTDBDL,ACCESS=LOGICAL 

 DATASET  LOGICAL 

 SEGM     NAME=PART,PARENT=0,SOURCE=((PART,,PARTDBDP)) 

 SEGM     NAME=DETAIL,PARENT=PART, 

                      SOURCE=((DETAIL,,ITEMDBDP),(ITEM,,ITEMDBDP)) 

 DBDGEN 

 FINISH 

 END 

 

 

 DL/I PSB DESCRIBING ITEM AND PARTS LOGICAL DBDS 

 

 

 PCB      TYPE=DB,DBDNAME=ITEMDBDL,PROCOPT=AP,KEYLEN=28,POS=S 

 SENSEG   NAME=ITEM,PARENT=0 

 SENSEG   NAME=DETAIL,PARENT=ITEM 

 PCB      TYPE=DB,DBDNAME=PARTDBDL,PROCOPT=AP, 

               KEYLEN=28,POS=S 

 SENSEG   NAME=PART,PARENT=0 

 SENSEG   NAME=DETAIL,PARENT=PART 

 PSBGEN   LANG=ASM,PSBNAME=ITEMPART 

 END 

 

 

 IPSB SECTION. 

          IPSB NAME IS ITEMPART 

          OF SUBSCHEMA PRODSUBS 

          LANGUAGE IS ASM. 

Figure 59 (Part 1 of 4). Generated IPSB source statements 
 



Sample Source Code For Database Load 

 

184  DLI Transparency User Guide 

 

 AREA SECTION. 

 

          AREA NAME IS ITEMDBDP-REGION 

               USAGE-MODE IS EXCLUSIVE UPDATE. 

          AREA NAME IS PARTDBDP-REGION 

               USAGE-MODE IS EXCLUSIVE UPDATE. 

 

 RECORD SECTION. 

 

          RECORD NAME IS ITEM 

               LENGTH IS  150. 

          SEQUENCE 

          FIELD NAME IS ITEMNO 

               START POS  1 

               LENGTH IS  7. 

 

          RECORD NAME IS DETAIL 

               LENGTH IS  157. 

          SEQUENCE 

          FIELD NAME IS ITMDTAIL 

               START POS  26 

               LENGTH IS  3. 

          LOGICAL PARENT CONCAT KEY 

          FIELD NAME IS DETALPCK 

               START POS  1 

               LENGTH IS  18. 

          PHYSICAL PARENT CONCAT KEY 

          FIELD NAME IS DETAPPCK 

                START POS  19 

                LENGTH IS  7. 

 

          RECORD NAME IS PART 

                LENGTH IS  150 

          SEQUENCE 

          FIELD NAME IS PARTNO 

                START POS  1 

                LENGTH IS  18. 

 

          RECORD NAME IS ITEMNDX 

                LENGTH IS  7. 

          SEQUENCE 

          FIELD NAME IS ITEMNO 

                START POS  1 

                LENGTH IS  7. 

Figure 59 (Part 2 of 4). Generated IPSB source statements 
 



Sample Source Code For Database Load 

 

Chapter 6: CA IDMS DLI Transparency Load Utility  185  

 

          RECORD NAME IS PARTNDX 

                LENGTH IS  18. 

          SEQUENCE 

          FIELD NAME IS PARTNO 

                START POS  1 

                LENGTH IS  18. 

 

 INDEX SECTION 

 

          INDEX NAME IS ITEMDBDT 

                USING INDEXED-SET IX-ITEMNDX 

                TARGET RECORD IS ITEM 

                POINTER RECORD IS ITEMNDX 

                      THRU SET ITEM-ITEMNDX 

                SOURCE RECORD IS ITEM 

                SEARCH FIELD (ITEMNO). 

 

          INDEX NAME IS PARTDBDI 

                USING INDEXED-SET IX-PARTNDX 

                TARGET RECORD IS PART 

                POINTER RECORD IS PARTNDX 

                      THRU SET PART-PARTNDX 

                SOURCE RECORD IS PART 

                SEARCH FIELD (PARTNO). 

 

 PCB SECTION. 

 

          PCB ACCESS METHOD IS HIDAM 

                DBDNAME IS ITEMDBDL 

                PROCESSING OPTIONS LOAD 

                PROC SEQ INDEX IS ITEMDBDI. 

 

          SEGM NAME IS ITEM 

          RECORD  NAME IS ITEM. 

 

          SEGM NAME IS DETAIL 

          RECORD  NAME IS DETAIL 

                PARENT IS ITEM 

                      THRU SET ITEM-DETAIL 

                LOGICAL DEST PARENT IS PART 

                      THRU SET PART-DETAIL 

                INSERT RULES P,P,P 

                REPLACE RULES V,V,V 

                ACCESS METHOD IS HIDAM 

                PROC SEQ INDEX IS PARTDBDI. 

 

Figure 59 (Part 3 of 4). Generated IPSB source statements 
 



Sample Source Code For Database Load 

 

186  DLI Transparency User Guide 

 

          PCB ACCESS METHOD IS HIDAM 

                DBDMANE IS PARTDBDL 

                PROCESSING OPTIONS LOAD 

                PROC SEQ INDEX IS PARTDBDI. 

 

          SEGM NAME IS PART 

          RECORD   NAME IS PART. 

 

          SEGM NAME IS DETAIL 

          RECORD   NAME IS DETAIL 

               PARENT  IS PART 

                     THRU SET PART-DETAIL 

               PHYSICAL DEST PARENT IS ITEM 

                     THRU SET ITEM-DETAIL 

               INSERT RULES P,L,P 

               REPLACE RULES V,L,V 

               ACCESS METHOD IS HIDAM 

               PROC SEQ INDEX IS ITEMDBDI 

               SEQUENCE BY LOGICAL SEQ FIELD. 

Figure 59 (Part 4 of 4). Generated IPSB source statements 
 

Sample CA IDMS/DB Schema Module 

GENERATE Schema Statement 

Just as with the IPSB source code, you can use the syntax generator to make sure that 
you have a CA IDMS/DB schema module that will  support a successful database load. 
The GENERATE statement in this case takes the following form: 

GENERATE LOAD SCHEMA NAME IS LOADSCHM FOR DBD ITEMDBDP, PARTDBDP. 

Note that physical DBD names are all  that you need to produce the schema source. 

Figure 60 shows the schema source code as it might be produced by the syntax 
generator using the DL/I physical DBD definitions in Figure 58. 

 



Sample Source Code For Database Load 

 

Chapter 6: CA IDMS DLI Transparency Load Utility  187  

 

Considerations 

Here are some general considerations about the schema source code produced by the 

syntax generator: 

■ The generated schema has OPTIONAL MANUAL set connection options for each 
logical child/logical parent set. 

■ Generated schema source by itself is not sufficient for a database load. It must be 
edited to include site-specific standards, optimized database page ranges, and so 
on. 

■ If you already have a suitable CA IDMS/DB schema, you can modify this schema 

without having to create a new load schema. Specifically, you must make sure that 
the logical child/logical parent set description has OPTIONAL MANUAL connection 
options. These options are required only during the load process and can be 
changed to MANDATORY AUTOMATIC after the load. The only exception is in the 

case of bil l -of-materials relationships. 
 

■ In this type of relationship the logical parent and phys ical parent of the child record 
are different occurrences of the same record type. Bil l  of materials sets must have 
OPTIONAL MANUAL connection options. 

■ The page ranges specified for the CA IDMS/DB database in the schema/subschema 
must be consistent throughout the load process. A change in the page ranges will  
invalidate the database pages calculated by the preload CALC processing (Step 1). In 
this case, you will  have to repeat both the CALC and load steps so the logical 

workfile produced by the load can give correct results for the prefix update step. 
 



Sample Source Code For Database Load 

 

188  DLI Transparency User Guide 

 

Generated Schema source statements: 

 SIGNON 

          USAGE MODE IS UPDATE . 

 SET OPTIONS FOR SESSION 

          INPUT     1 THRU     72. 

 

 

 ADD SCHEMA NAME IS LOADSCHM VERSION     1 

          MEMO DATE IS 12/22/86 

          ASSIGN RECORD IDS FROM     101 

          PUBLIC ACCESS IS ALLOWED FOR ALL. 

 

 

 ADD AREA NAME IS PARTDBDP-REGION. 

 

 

 ADD AREA NAME IS ITEMDBDP-REGION. 

 

 

 ADD RECORD NAME IS PART 

          RECORD ID IS AUTO 

          LOCATION MODE IS CALC 

          USING PARTNO 

          DUPLICATES ARE NOT ALLOWED 

          WITHIN AREA PARTDBDP-REGION. 

 02       PARTNO            PIC X (18). 

 02       FILLER            PIC X (132). 

 

 

 ADD RECORD NAME IS ITEM 

          RECORD ID IS AUTO 

          LOCATION MODE IS CALC 

          USING ITEMNO 

          DUPLICATES ARE NOT ALLOWED 

          WITHIN AREA ITEMDBDP-REGION. 

 02       ITEMNO            PIC X (7). 

 02       FILLER            PIC X (143). 

 

 

 ADD RECORD NAME IS DETAIL 

          RECORD ID IS AUTO 

          LOCATION MODE IS VIA ITEM-DETAIL 

          WITHIN AREA ITEMDBDP-REGION. 

 02       FILLER            PIC X (25). 

 02       ITMDTAIL          PIC X (3). 

 02       FILLER            PIC X (129). 

Figure 60 (Part 1 of 4). Generated Schema source statements 
 



Sample Source Code For Database Load 

 

Chapter 6: CA IDMS DLI Transparency Load Utility  189  

 

 ADD RECORD NAME IS PARTNDX 

          RECORD ID IS AUTO 

          LOCATION MODE IS VIA PART-PARTNDX 

          WITHIN AREA PARTDBDP-REGION. 

 02       PARTNO            PIC X (18). 

 

 

 ADD RECORD NAME IS ITEMNDX 

          RECORD ID IS AUTO 

          LOCATION MODE IS VIA ITEM-ITEMNDX 

          WITHIN AREA ITEMDBDP-REGION. 

 02       ITEMNO            PIC X (7). 

 

 

 ADD SET NAME IS ITEM-DETAIL 

          ORDER IS SORTED 

          MODE IS CHAIN LINKED TO PRIOR 

          OWNER IS ITEM 

               NEXT DBKEY POSITION IS AUTO 

               PRIOR DBKEY POSITION IS AUTO 

          MEMBER IS DETAIL 

               NEXT DBKEY POSITION IS AUTO 

               PRIOR DBKEY POSITION IS AUTO 

          LINKED TO OWNER 

               OWNER DBKEY POSITION IS AUTO 

          MANDATORY AUTOMATIC 

          ASCENDING KEY IS ITMDTAIL 

          DUPLICATES ARE NOT ALLOWED. 

 

 

 ADD SET NAME IS PART-DETAIL 

          ORDER IS SORTED 

          MODE IS CHAIN LINKED TO PRIOR 

          OWNER IS PART 

               NEXT DBKEY POSITION IS AUTO 

               PRIOR DBKEY POSITION IS AUTO 

          MEMBER IS DETAIL 

               NEXT DBKEY POSITION IS AUTO 

               PRIOR DBKEY POSITION IS AUTO 

          LINKED TO OWNER 

               OWNER DBKEY POSITION IS AUTO 

          OPTIONAL MANUAL 

          ASCENDING KEY IS ITMDTAIL 

          DUPLICATES ARE LAST. 

Figure 60 (Part 2 of 4). Generated Schema source statements 
 



Sample Source Code For Database Load 

 

190  DLI Transparency User Guide 

 

 ADD SET NAME IS PART-PARTNDX 

          ORDER IS SORTED 

          MODE IS CHAIN LINKED TO PRIOR 

          OWNER IS PART 

               NEXT DBKEY POSITION IS AUTO 

               PRIOR DBKEY POSITION IS AUTO 

          MEMBER IS PARTNDX 

               NEXT DBKEY POSITION IS AUTO 

          LINKED TO OWNER 

               OWNER DBKEY POSITION IS AUTO 

          MANDATORY AUTOMATIC 

          ASCENDING KEY IS PARTNO 

          DUPLICATES ARE NOT ALLOWED. 

 

 

 ADD SET NAME IS ITEM-ITEMNDX 

          ORDER IS SORTED 

          MODE IS CHAIN LINKED TO PRIOR 

          OWNER IS ITEM 

               NEXT DBKEY POSITION IS AUTO 

               PRIOR DBKEY POSITION IS AUTO 

          MEMBER IS ITEMNDX 

               NEXT DBKEY POSITION IS AUTO 

          LINKED TO OWNER 

               OWNER DBKEY POSITION IS AUTO 

          MANDATORY AUTOMATIC 

          ASCENDING KEY IS ITEMNO 

          DUPLICATES ARE NOT ALLOWED. 

 

 

 ADD SET NAME IS IX-PARTNDX 

          ORDER IS SORTED 

          MODE IS INDEX 

               BLOCK CONTAINS  50 KEYS 

          OWNER IS SYSTEM 

          MEMBER IS PARTNDX 

               INDEX DBKEY POSITION IS AUTO 

          MANDATORY AUTOMATIC 

          ASCENDING KEY IS PARTNO 

          DUPLICATES ARE NOT ALLOWED. 

Figure 60 (Part 3 of 4). Generated Schema source statements 
 



Step 1: Preload CALC Processing 

 

Chapter 6: CA IDMS DLI Transparency Load Utility  191  

 

 ADD SET NAME IS IX-ITEMNDX 

          ORDER IS SORTED 

          MODE IS INDEX 

               BLOCK CONTAINS  50 KEYS 

          OWNER IS SYSTEM 

          MEMBER IS ITEMNDX 

               INDEX DBKEY POSITION IS AUTO 

          MANDORY AUTOMATIC 

          ASCENDING KEY IS ITEMNO 

          DUPLICATES ARE NOT ALLOWED. 

 

 

 VALIDATE. 

 SIGNOFF. 

Figure 60 (Part 4 of 4). Generated Schema source statements 
 

Step 1: Preload CALC Processing 

Preload CALC processing is an optional step that precedes the actual database load. Its 

intent is to improve the performance of load processing and is especially recommended 
if: 

■ There are large amounts of DL/I data. 

■ There are logical relationships in the DL/I database. 

■ Space requirements need to be determined for the logical workfile(s) that will  be 
generated by the load (Step 2). 

 

Operation 

Preload CALC processing performs the following operations: 

1. Accessing the IPSB load module 

2. Accessing the subschema module named in the IPSB 

3. Reading the DL/I input data 
 

4. Generating database page numbers for the DL/I root segments  

5. Updating the DL/I data with the database page numbers and writing it out to the 
DL/I output fi le 

6. Printing a report on the updated DL/I data  
 



Step 1: Preload CALC Processing 

 

192  DLI Transparency User Guide 

 

Figure 61 shows the operations performed by preload CALC processing. 

 

 

Figure 61. Preload CALC processing 

To execute the preload CALC processing step, use the JCL in CA IDMS DLI Transparency 
JCL (see page 257). 

 

Report 

The report produced by the preload CALC processing step lists: 

■ The DBDNAME for each DL/I database included in the input DL/I data  

■ The name and level for each DL/I segment, by database 

■ An indication if a segment is a logical child (LC) or logical parent (LP) 

■ The number of segment occurrences (records) found, by database 

■ The number of logical records found, by database 
 



Step 1: Preload CALC Processing 

 

Chapter 6: CA IDMS DLI Transparency Load Utility  193  

 

     *** CA IDMS/DLI TRANSPARENCY DATABASE LOAD 

 
         PROCESS=CALC,IPSB=ITEMPART 

 

         DBDNAME=ITEMDBDL 

 

         SEGMENT COUNT LEVEL RECORD 

 

         ITEM    1086    01  ITEM 

 

     LC  DETAIL  3542    02  DETAIL 

 

         TOTAL:  4628  RECORDS READ 

 

                 3542  LOGICAL RECORDS 

                    0  LOGICAL RECORDS WRITTEN 

 
     *** CALC PROCESSING COMPLETE 

     ___________________________________________________________________ 

 
 

     *** CA IDMS/DLI TRANSPARENCY DATABASE LOAD 

 
         PROCESS=CALC,IPSB=ITEMPART 

 

         DBDNAME=PARTDBDL 
 

         SEGMENT COUNT LEVEL RECORD 

 
     LP  PART     789    01  PART 

 

         TOTAL:   789  RECORDS READ 
 

                  789  LOGICAL RECORDS 

                     0 LOGICAL RECORDS WRITTEN 
 

     *** CALC PROCESSING COMPLETE 

Figure 62. Sample CALC processing report 
 

Preload Sorting (step 1, part 2) 

Use Your Own Sort/Merge Utility 

To further optimize the CALC-processed data for loading, you can sort it using your own 
sort/merge facil ity. As input to the sort/merge facil ity, supply the DL/I output fi le 
produced by the preload CALC processing. The output fi le will  contain the 
CALC-processed data in sorted form. You can then use the sorted output fi le as input to 

the database load (Step 2). 
 

The preload sort is not strictly required, but it should be performed to produce the most 
effective ordering of the CALC-processed data. 

To perform the preload sort, you must use your own sort/merge facil ity. 
 



Step 2: Database Load 

 

194  DLI Transparency User Guide 

 

What the Preload Sort Does 

The preload sort performs the following operations: 

1. Accessing the CALC DL/I data produced by the preload CALC processing (Step 1, 
Part1) 

2. Sorting the data so that root segments (CALC records) are in descending database 

page sequence (the optimum CA IDMS/DB database load order) 

To execute the preload sort processing step, use the JCL (Step 1, Part 2) in CA IDMS DLI 
Transparency JCL (see page 257). 

 

Step 2: Database Load 

Using the unloaded DL/I data as input, database load processing invokes the CA IDMS 

DLI Transparency region controller and populates the CA IDMS/DB database with the 
unloaded DL/I data. If you have CALC processed and, optionally, sorted the DL/I data, 
you must input the DL/I fi le produced as a result of Step 1. 

This step completes the database load for DL/I data that does not contain logical 
relationships. If the DL/I data involves logically related databases, you must continue 
with Steps 3 through 6. 

 

Operation 

Database load processing performs the following operations: 

1. Accessing the IPSB load module 

2. Reading the DL/I input data 

3. Storing all  records in the CA IDMS/DB database 
 

4. Extracting all  logical child records and writing them out to the logical workfile 

5. Extracting all  logical parent records and writing them out to the logical workfile 

6. Printing a report showing the results of the load 
 



Step 2: Database Load 

 

Chapter 6: CA IDMS DLI Transparency Load Utility  195  

 

To execute the database load step, use the JCL in CA IDMS DLI Transparency JCL (see 
page 257). 

 

Figure 63. Database load processing 
 

Report 

The report produced by the database load step lists: 

■ The DBDNAME for each DL/I database included in the input DL/I data  

■ The name and level for each DL/I segment, by database 

■ An indication if a segment is a logical child (LC) or logical parent (LP) 

■ The number of segment occurrences (records) loaded, by database 

■ The number of logical records found, by database 

■ The number of logical records, by database, written out to the logic al workfile 
 



Step 3: Workfile Sort/Merge 

 

196  DLI Transparency User Guide 

 

 

     *** CA IDMS/DLI TRANSPARENCY DATABASE LOAD 
 

         PROCESS=LOAD 

 

         DBDNAME=ITEMDBDL 

 

         SEGMENT COUNT LEVEL RECORD 

 

         ITEM     1086  01   ITEM 

 

     LC  DETAIL   3542  02   DETAIL 

 

         TOTAL:   4628  RECORDS LOADED 

 

                  3542  LOGICAL RECORDS 

                  3542  LOGICAL RECORDS WRITTEN 
 

     *** LOAD PROCESSING COMPLETE 

     ___________________________________________________________________ 
 

 

     *** CA IDMS/DLI TRANSPARENCY DATABASE LOAD 
 

         PROCESS=LOAD 

 
         DBDNAME=PARTDBDL 

 

         SEGMENT COUNT LEVEL RECORD 
 

     LP  PART    789    01   PART 

 
         TOTAL:  789   RECORDS LOADED 

 

                 789   LOGICAL RECORDS 
                 789   LOGICAL RECORDS WRITTEN 

 

     *** LOAD PROCESSING COMPLETE 

Figure 64. Sample database load report 
 

Step 3: Workfile Sort/Merge 

The logical workfiles produced by the database load (Step 2) contain the logical child 
and logical parent records found in the original DL/I data. The workfile sort/merge step 
sorts the logical child records under their related parents. 

If the database load processed multiple DL/I databases, you will  have a separate 
workfile for each database. If this is the case, you must first merge all  of the generated 
workfiles into one workfile. You can then sort this one workfile. 

To perform the workfile sort/merge step, you must use your own sort/merge facil ity. 
 



Step 4: Prefix (Concatenated Key) Resolution 

 

Chapter 6: CA IDMS DLI Transparency Load Utility  197  

 

Operation 

The workfile sort/merge performs the following operations: 

1. Accessing the workfile(s) resulting from the database load 

2. Merging multiple workfiles (from multiple, logically related DL/I databases) 

3. Sorting the workfile so that logical child records are sequenced under their logical 
parents 

 

To execute the workfile sort/merge step, use the JCL in CA IDMS DLI Transparency JCL 
(see page 257). 

 

Figure 65. Workfile sort/merge 
 

Step 4: Prefix (Concatenated Key) Resolution 

The sorted logical workfile produced by Step 3 contains the logical child and logical 

parent records from the DL/I logically related databases. The logical child records are 
sorted correctly under their respective logical parents, but their prefix (nondata) 
portions do not reflect the parents' concatenated keys. The prefix resolution step 

updates the logical child records with their parents' concatenated keys so the logical 
child records can be accessed within their CA IDMS/DB sets. 

If the database load processed multiple DL/I databases, you will  have a separate 
workfile for each database. If this is the case, you must first merge all  of the generated 

workfiles into one workfile. You can then sort this one workfile. 
 



Step 4: Prefix (Concatenated Key) Resolution 

 

198  DLI Transparency User Guide 

 

Operation 

The prefix resolution step performs the following operations: 

1. Accessing the IPSB load module 

2. Accessing the sorted workfile from Step 3 

3. From each logical parent record, generating the correct prefix (concatenated key) 
for its logical child record 

4. Updating the logical child records with the correct prefixes and writing them out to 
a new workfile 

5. Producing a report of the records processed 
 

To execute the prefix resolution step, use the JCL in CA IDMS DLI Transparency JCL (see 
page 257). 

 

Figure 66. Prefix resolution 
 

Report 

The report produced by the prefix resolution step lists: 

■ The DBDNAME for the DL/I logical child database 

■ The name and level for each DL/I segment 

■ An indication if a segment is a logical child (LC) or logical parent (LP) 
 



Step 5: Workfile Hierarchical Sort 

 

Chapter 6: CA IDMS DLI Transparency Load Utility  199  

 

■ The number of logical parent records found 

■ The number of logical child records found 

■ The total number of records found in the sorted workfile 

■ The total number of logical child records updated and written out 
 

 

     *** CA IDMS/DLI TRANSPARENCY DATABASE LOAD 
 

         PROCESS=PFXR 

 
         DBDNAME=ITEMDBDL 

 

         SEGMENT COUNT LEVEL RECORD 

 

     LP  PART     789   01   PART 

 

     LC  DETAIL   3542  02   DETAIL 

 

         TOTAL:   4331  RECORDS READ 

 

                  3542  LOGICAL RECORDS WRITTEN 

 

     *** PFXR PROCESSING COMPLETE 

Figure 67. Sample prefix resolution report 
 

Step 5: Workfile Hierarchical Sort 

The workfile produced by the prefix resolution step (Step 4) contains the logical child 
records with updated prefixes. The logical child records, though, stil l  remain as sorted by 

the workfile sort/merge (Step 3). In other words, they are sequenced as they were 
under their logical parents (even though the logical parents do not appear in the prefix 
resolution workfile). Before the updated logical child records can be written out to 

replace the records originally stored in the CA IDMS/DB database (by Step 2), they must 
be resorted back into the original DL/I hierarchical sequence. The workfile hierarchical 
sort performs this operation. 

To perform the workfile hierarchical sort, you must use your own sort/merge facil ity. 
 

Operation 

The workfile hierarchical sort performs the following operations: 

1. Accessing the prefix-resolved workfile from Step 4 

2. Sorting the workfile so that the logical child records are sequenced as in the original 

DL/I hierarchy 
 



Step 6: Prefix Update 

 

200  DLI Transparency User Guide 

 

To execute the workfile hierarchical sort step, use the JCL in CA IDMS DLI Transparency 
JCL (see page 257). 

 

Figure 68. Workfile hierarchical sort 
 

Step 6: Prefix Update 

The prefix update step updates the logical child records in the CA IDMS/DB database 
with the prefixes (concatenated keys) generated by the prefix resolution step (Step 4). 
For input, it uses the hierarchically sorted workfile from Step 5. After updating the 

logical child database records with the correct prefixes, it writes them back to the 
database and connects them to their logical parents within the CA IDMS/DB sets. 

This step completes the database load for logically related databases. 
 

Operation 

The prefix update step performs the following operations: 

1. Accessing the IPSB load module 

2. Accessing the hierarchically sorted workfile from Step 5 

3. Obtaining the already loaded logical child records from the CA IDMS/DB database 

4. Moving the prefix (logical parent concatenated key) from each workfile record into 
the corresponding database record 

 



Step 6: Prefix Update 

 

Chapter 6: CA IDMS DLI Transparency Load Utility  201  

 

5. Writing the updated logical child records back to the database 

6. Connecting each logical child database record with its related logical parent 

database record (that is, establish correct set pointers) 

7. Producing a report showing the results of the processing 
 

To execute the prefix update step, use the JCL in CA IDMS DLI Transparency JCL (see 
page 257). 

 

Figure 69. Prefix update 
 

Report 

The report produced by the prefix update step lists: 

■ The DBDNAME for the DL/I logical child database 

■ The name and level for each DL/I logical child segment 

■ The number of logical child records found and processed 
 



Step 6: Prefix Update 

 

202  DLI Transparency User Guide 

 

 

     *** CA IDMS/DLI TRANSPARENCY DATABASE LOAD 
 

         PROCESS=PFXU 

 

         DBDNAME=ITEMDBDL 

 

         SEGMENT COUNT LEVEL RECORD 

 

     LC  DETAIL  3542   02   DETAIL 

 

         TOTAL:  3542  RECORDS READ 

 

     *** PFXU PROCESSING COMPLETE 

Figure 70. Sample prefix update report 
 

 



 

Chapter 7: Using CA IDMS DLI Transparency Within CA IDMS/DB Programs   203  

 

Chapter 7: Using CA IDMS DLI Transparency 
Within CA IDMS/DB Programs 
 

This section contains the following topics: 

About This Chapter (see page 203) 
Data Communications (see page 203) 

Language Interface (see page 204) 
Schedule (PCB) Call  Processing (see page 204) 
The CA IDMS DLI Transparency Program Definition Table (see page 204) 
Operational Considerations (see page 207) 

 

About This Chapter 

CA IDMS DLI Transparency can be used in the CA IDMS/DB environment. A program 
written to use CA IDMS/DB must conform to CA IDMS/DB programming standards. All  
CA IDMS DLI Transparency functions available to batch programs are available to CA 

IDMS/DB programs. No restrictions are imposed, and no additional or special 
capabilities are added. 

 

In addition to the conversion considerations for batch programs, using CA IDMS DLI 
Transparency in the CA IDMS/DB environment requires these considerations: 

■ Data communications 

■ Language interface 

■ Schedule (PCB) call  processing 

■ The CA IDMS DLI Transparency program definition table 

■ Operational considerations 

This chapter discusses each of these issues. 
 

Data Communications 

When migrating programs from an IMS-DC environment to CA IDMS/DB, all  IMS-DC data 
communications calls in the programs must be recoded as CA IDMS/DB mapping calls. 

Any IMS message formatting services (MFS) maps must also be recoded using MAPC. 

Note: Any IMS-DB (DL/1) database calls that are not supported by CA IDMS DLI 
Transparency in batch are also not supported in the CA IDMS/DB environment and must 
be modified. 

 



Language Interface 

 

204  DLI Transparency User Guide 

 

Language Interface 

CA IDMS DLI Transparency provides a language interface module for use in the CA 
IDMS/DB environment. CA IDMS DLI Transparency provides a language interface 
module, IDMSDLIF, for use only in the CA IDMS/DB environment. Programs to be 
executed under CA IDMS/DB must be link edited with the CA IDMS/DB environment 

language interface (IDMSDLIF) and must not be link edited with IDMSDLLI, the batch 
language interface. 

 

Schedule (PCB) Call Processing 

When using CA IDMS DLI Transparency in the CA IDMS/DB environment, the schedule 

(PCB) call  processing is performed on behalf of the application program. This is the same 
as in the CA IDMS DLI Transparency batch environment. 

■ In the batch environments, (either CA IDMS DLI Transparency or native DL/1), the 
IPSB or PSB name is specified in the region controller's parameters. 

 

■ In the IMS-DC online environment, the PSB name is associated with a program 

through the macro specifications used to create a table at IMS system generation. 
 

■ In the CA IDMS/DB CA IDMS DLI Transparency environment , the method used to 

associate an IPSB name with an application program is similar (but not identical) to 
the IMS-DC environment. An application program and an IPSB are associated 
through a table created prior to the use of the application program, but not 

necessarily at the time of the CA IDMS/DB system generation. This table is called 
the CA IDMS DLI Transparency program definition table. 

 

The CA IDMS DLI Transparency Program Definition Table 

How the Program Definition Table is Created 

The CA IDMS DLI Transparency program definition table is created from user -supplied 

input to the CA IDMS DLI Transparency program definition table compiler ( IDMSDLTG). 
This compiler produces assembler source output which is then assembled and link 
edited into a CDMSLIB load library (z/OS) or core-image library (z/VSE). 

 

The CA IDMS DLI Transparency program definition table load module (z/OS) or phase 
(z/VSE) must always have the name DLPDTAB. Each application program that is to have 

an IPSB automatically scheduled must have an entry in the table. The information in 
each entry is the same as in a region controller's parameter l ist, but the format is 
different. 

 



The CA IDMS DLI Transparency Program Definition Table 

 

Chapter 7: Using CA IDMS DLI Transparency Within CA IDMS/DB Programs   205  

 

The CA IDMS DLI Transparency program definition table can be thought of as an 
extension to the CA IDMS/DB program definition table. Before any program can be 

added to the CA IDMS DLI Transparency program definition table, it must already be in 
the CA IDMS/DB program definition table. (For this to be true, you must have defined 
the program to the CA IDMS/DB system with a system generation ADD PROGRAM 

statement.) 
 

Syntax 

►►─── MODify PROgram program-name ─┬─────────────────────────┬───────────────► 
                                   └─ version is(=) nnnn ────┘ 
 
 ►─── IPSB name is(=) ipsb-name ─────────────────────────────────────────────► 
 
 ►─┬─────────────┬───────────────────────────────────────────────────────────► 
   ├─ TRACE ─────┤ 
   └─ NOTRACE ◄ ─┘ 
 
 ►─┬─────────────┬───────────────────────────────────────────────────────────► 
   ├─ STAE ◄ ────┤ 
   └─ NOSTAE ────┘ 
 
 ►─┬────────────────────────────┬────────────────────────────────────────────► 
   └─ NODENAME is(=) nodename ──┘ 
 
 ►─┬────────────────────────┬────────────────────────────────────────────────► 
   └─ DBNAME is(=) dbname ──┘ 
 
 ►─┬────────────────────────────┬────────────────────────────────────────────► 
   └─ DICTNODE is(=) dictnode ──┘ 
 
 ►─┬────────────────────────────┬────────────────────────────────────────────►◄ 
   └─ DICTNAME is(=) dictname ──┘ 

 

Parameters 

program-name 

Identifies the name of the application program (already defined to the system 
through a system generation ADD PROGRAM statement) to be modified to use CA 
IDMS DLI Transparency. 

 

nnnn 

Identifies the 1- to 4-digit version number that further qualifies the program. 
 

ipsb-name 

Identifies the name of the IPSB to be automatically scheduled for the program. 
 

TRACE/NOTRACE 

Indicates whether or not CA IDMS DLI Transparency will  build and maintain an 
internal trace table for aid in debugging. NOTRACE is the default. 

 

STAE/NOSTAE 

Indicates whether or not CA IDMS DLI Transparency will  trap program abnormal 
terminations and produce formatted information for aid in debugging. NOSTAE is 

the default. 
 



The CA IDMS DLI Transparency Program Definition Table 

 

206  DLI Transparency User Guide 

 

NODENAME IS nodename 

Specifies the nodename that will  be used to bind the CA IDMS DLI Transparency run 

unit. 
 

DBNAME IS dbname 

Specifies the dbname that will  be used to bind the CA IDMS DLI Transparency run 
unit. 

 

DICTNODE IS nodename 

Specifies the nodename for the dictionary that will  be used to bind the CA IDMS DLI 

Transparency run unit. 
 

DICTNAME IS dictname 

Specifies the dictname that will  be used to bind the CA IDMS DLI Transparency run 
unit. 

 

The JCL necessary to execute the CA IDMS DLI Transparency program definition table 
compiler (IDMSDLTG) and to assemble and link edit the DLPDTAB output is shown 

below: 

PROGRAM DEFINTION TABLE COMPILER 

//DL  EXEC  PGM=IDMSDLTG 

//STEPLIB DD  DSN=idms.loadlib,DISP=SHR 

//SYSLST DD  SYSOUT=A,DCB=BLKSIZE=133 

//SYSPCH DD  DSN=&&SYSPCH,UNIT=disk,SPACE=(4000,(100,50)) 

//              DCB=(RECFM=FB,LRECL=80,BLKSIZE=4000),DISP=(NEW,PASS) 

//SYSIPT DD  * 

pdt input statements 

/* 

//ASM  EXEC  PGM=ASMA90 

//SYSPRINT DD  SYSOUT=A 

//SYSLIB DD  DSN=yourHLQ.CAGJMAC,DISP=SHR 

//SYSUT1 DD  UNIT=disk,SPACE=(cyl,(2,2)) 

//SYSUT2 DD  UNIT=disk,SPACE=(cyl,(2,2)) 

//SYSUT3 DD UNIT=disk,SPACE=(cyl,(2,2)) 

//SYSPUNCH DD DSN=&&PDTB,UNIT=disk,DISP=(NEW,PASS), 

//    SPACE=(80,(400,40)) 

//SYSIN  DD  DSN=&&SYSPCH,DISP=(OLD,DELETE) 

//LINK      EXEC  PGM=HEWL 

//SYSPRINT      SYSOUT=A 

//SYSLIN DD  DSN=&&PDTB,DISP=(OLD,DELETE) 

//SYSUT1 DD  UNIT=disk,SPACE=(trk,(20,5)) 

//SYSLMOD DD  DSN=idms.loadlib(DLPDTAB),DISP=SHR 
 

 

idms.loadlib data set name of the CA IDMS/DB load library containing the 
subschema description and IDMSDLTG 



Operational Considerations 

 

Chapter 7: Using CA IDMS DLI Transparency Within CA IDMS/DB Program s  207  

 

cyl,(2,2) space to be allocated in bytes per cylinders  

disk symbolic device type for the disk fi le 

&&PDTB temporary data set containing the output from the assembly 
step 

yourHLQ.CAGJMAC data set name of the macro library 

&&SYSPCH temporary data set containing the output from program 
definition table compiler (IDMSDLTG) 

trk,(20,5) space to be allocated in bytes per tracks  

4000,(100,50) space to be allocated in bytes per blocks  

80,(400,40) space to be allocated in bytes per blocks 

DLPDTAB required link edit module name in the SYSLMOD statement. 

Operational Considerations 

System Definition and Initialization 

IDMSDLTI 

Before any CA IDMS/DB application program can use CA IDMS DLI Transparency, the CA 

IDMS DLI Transparency environment within CA IDMS/DB must be initialized. This is done 
using the initialization program called IDMSDLTI. 

 

System Generation Statements Defining IDMSDLTI 

The system generation must contain an ADD PROGRAM statement to define IDMSDLTI: 

ADD PROGRAM IDMSDLTI LANGUAGE IS ASSEMBLER REENTRANT REUSABLE. 

The system generation must also contain an ADD TASK statement to define a task code 

that invokes IDMSDLTI: 

ADD TASK IDMSDLTI INVOKES IDMSDLTI. 
 



Operational Considerations 

 

208  DLI Transparency User Guide 

 

No CA IDMS/DB programs may use CA IDMS DLI Transparency before IDMSDLTI has 
been run. It is recommended that the system definition also contain an ADD AUTOTASK 

statement to automatically run IDMSDLTI immediately after CA IDMS/DB has come up. 

ADD AUTOTASK IDMSDLTI INVOKED AT STARTUP PREEMPT. 

Note that the PREEMPT option is included on the autotask definition. This is 
recommended so that no application programs that use CA IDMS DLI Transparency start 

before CA IDMS DLI Transparency initialization is completed. 
 

System Execution 

The automatic scheduling of an IPSB associated with an application program (as defined 
in the CA IDMS DLI Transparency program definition table) is performed whenever the 

application program is l inked to, either by the CA IDMS/DB system itself or from another 
application program. 

 

■ If an application program named in the CA IDMS DLI Transparency program 
definition table (DLPDTAB) is also associated with a CA IDMS/DB task code, then 
entering that task code in response to an ENTER NEXT TASK CODE message causes 

automatic scheduling of the IPSB before CA IDMS/DB passes control to the 
application program. 

 

■ The automatic scheduling is done during the linking process (that is, after the 
program issuing the LINK command gives up control but before the target program 
receives control) if an application program that is not named in the DLPDTAB links 

to an application program that is named in the DLPDTAB. 
 

All application programs receiving control from a region controller (following the 

automatic scheduling) must be set up to receive the scheduled PCBs. This is the same as 
for CA IDMS DLI Transparency batch, IMS-DC, and IMS-DB. 

 

Linking to lower level programs 

An application program that receives control following the automatic scheduling may 
link (DC LINK) to lower level programs. 

■ If one or more scheduled PCBs are passed as parameters to the lower level 
program, the lower level program may issue DL1 ca lls using the passed PCBs. 

■ If a program is l inked to as a lower level program, it must not be named in the 
DLPDTAB, since naming an application program in the DLPDTAB causes automatic 
scheduling to be performed. Automatic scheduling must not be performed on these 

lower level programs. 
 



Operational Considerations 

 

Chapter 7: Using CA IDMS DLI Transparency Within CA IDMS/DB Programs   209  

 

Termination processing 

Automatic termination (TERM call) processing is performed for all  application programs 
that have had an automatic scheduling call done. The termination processing is done at 
the time when the application program that had the automatic scheduling issues a DC 

RETURN. If the application program or any lower level programs it l inks to abnormally 
terminates (that is, the task thread is interrupted), the CA IDMS DLI Transparency run 
unit is abnormally terminated as well and any changes to the database are rolled ba ck. 

 

 





 

Appendix A: CA IDMS DLI Transparency Messages and Codes   211  

 

Appendix A: CA IDMS DLI Transparency 
Messages and Codes 
 

This section contains the following topics: 

What This Appendix is About (see page 211) 
Run-Time Messages and Codes (see page 211) 

Non-Run-Time Messages and Codes (see page 220) 
 

What This Appendix is About 

CA IDMS DLI Transparency issues codes and messages to report errors encountered 
during processing. This appendi x contains codes and messages returned by: 

■ The run-time interface 

■ The Syntax Generator 

■ The IPSB compiler 

■ The Load Util ity 

■ The IPSB decompiler 
 

Run-Time Messages and Codes 

At run time, errors can cause CA IDMS DLI Transparency to terminate processing or to 
return specific DL/I status codes to the DL/I application program. When CA IDMS DLI 
Transparency terminates processing, it issues abend codes that are unique to CA IDMS 

DLI Transparency. When DL/I status codes are returned to the program, however, they 
are directly related to CA IDMS/DB error-status codes. Presented below are the 
run-time abend codes, the DL/I status codes and their equivalent CA IDMS/DB run-time 

error-status codes, and the DL/I status codes determined by the CA IDMS DLI 
Transparency run-time interface. 

 



Run-Time Messages and Codes 

 

212  DLI Transparency User Guide 

 

Run-Time Abend Codes 

At run time, specific conditions cause CA IDMS DLI Transparency to terminate 
processing. If CA IDMS DLI Transparency encounters one or more of these conditions, 
the system returns an abend code number. The following is a l ist of these codes and 

their meanings: 

 

Abend Code Code 

0063 Invalid request. The CA IDMS DLI Transparency run-time system 

determined the request was not a BIND, FINISH, or SEND/RECEIVE 
call. 

2163 Loaded IPSB has invalid format. 

2166 Unsuccessful ready of area during PCB call  processing. 

2463 Loaded IPSB has invalid format. 

2466 Unsuccessful ready of area during PCB call  processing. 

2469 The request-unit PROGRAM-ID was found to be invalid. 

2472 Storage not available for CA IDMS DLI Transparency run-time work 
area. 

2474 Unsuccessful load of IPSB by CA IDMS DLI Transparency run-time 
system. 

2499 An error was detected during DLET processing. A ROLLBACK has been 
issued for this transaction. 

3301 System internal error. A nonzero request unit status was returned 

while attempting to process a DL/I service call. 

3302 System internal error. IDMSDLFE has been called with an invalid 
parameter l ist or invalid parameters. 

3303 A nonzero request unit status was returned while attempting to 

process a DL/I database call. 

3304 A nonzero return code resulted from an attempt to acquire storage. 

3305 A nonzero request unit status was returned after attempting a BIND 

REQUEST UNIT. 

3306 A nonzero request unit status code was returned after attempting a 
DL/I PCB schedule call. 

3307 A DL/I database call  was attempted with more than 15 segment 

search arguments. 

3308 System internal error. An error condition was detected while building 
a buffer parameter l ist. 



Run-Time Messages and Codes 

 

Appendix A: CA IDMS DLI Transparency Messages and Codes   213  

 

Abend Code Code 

3310 A nonzero request unit status was returned after attempting a DL/I 

term call. 

3311 A nonzero return code was returned while attempting to free 
storage. 

3312 System internal error. The PCB address l ist was found to be invalid 
after a PCB schedule call. 

3313 Load of DL/I application program failed or BLDL failed (z/OS  only).  

DL/I Status Codes and Equivalent CA IDMS/DB Codes 

CA IDMS/DB Error Codes 

CA IDMS/DB error-status codes are relatively specific in error condition descriptions 
when compared to the somewhat general approach reflected by the DL/I error -status 

codes. This difference causes a number of CA IDMS/DB error-status codes to be roughly 
equivalent to a single DL/I status code. While this situation may hamper problem 
determination, it is the result of an attempt to simulate the DL/I system as closely as 

possible. 
 

Some CA IDMS/DB Error Codes Have No DL/I Equivalent 

Additionally, there are some error situations that can occur in CA IDMS/DB, for which 
there is no DL/I equivalent. In this case, a two-character DL/I-type error-status code has 
been assigned and is documented in the following cross -reference. The CA IDMS/DB 

conditions for which the DL/I-type codes have been assigned will  most l ikely never 
appear, unless the CA IDMS DLI Transparency run-time system has detected an 
extremely unusual situation. 

 



Run-Time Messages and Codes 

 

214  DLI Transparency User Guide 

 

DL/I Status Codes Table 

The table below presents DL/I status codes. One or more of these codes is returned to a 

DL/I application by the CA IDMS DLI Transparency run-time system should an error 
condition be detected by CA IDMS/DB or the CA IDMS DLI Transparency run-time 
interface. 

The DL/I status-code table also includes the error descriptions and, where applicable, 
the corresponding CA IDMS/DB error-status codes, call  types, and minor codes. 

Note: For more information, see the CA IDMS Messages and Codes Guide. 

 

DL/I Status Error Description CA IDMS/DB Information 

  
Error/Status Code Minor 

Code 
Call Type 

 No error 0000   

A0 Write error  76  

AB Segment I/O area was required for a 
database command, but was not 

specified (EXEC DLI) 

   

AC Segment name in segment search 
argument not in hierarchy 

   

AD Invalid function.  Either a SCHEDULE or 

TERM call  was issued in BATCH, or a 
LOAD command was issued (EXEC DLI) 

   

AH Segment selection required, but not 

specified for a command that requires 
at least one segment name to be 
specified (EXEC DLI) 

   

AI Area not readied or READY failed 0301  FIND/ OBTAIN 

 Area not readied or READY failed 1201  STORE 

 Areas other than area of object record 
occurrence must be readied in correct 

usage mode 

0221  ERASE 

 Areas other than area of object record 
occurrence must be readied in correct 
usage mode 

0721  CONNECT 

 Areas other than area of object record 
occurrence must be readied in correct 
usage mode 

0821  MODIFY 



Run-Time Messages and Codes 

 

Appendix A: CA IDMS DLI Transparency Messages and Codes   215  

 

DL/I Status Error Description CA IDMS/DB Information 

  
Error/Status Code Minor 

Code 

Call Type 

 Areas other than area of object record 
occurrence must be readied in correct 

usage mode 

1121  DISCONNECT 

 Areas other than area of object record 
occurrence must be readied in correct 
usage mode 

1221  STORE 

 Database or journal fi le will not ready 
properly 

 70  

 Database page read not requested  65  

 Dynamic load of module failed  74  

 Page range for area being readied or 
page requested, not found in DMCL 

0971  READY 

 Subschema invoked does not match 

object tables 

1467  BIND 

AJ Concatenated segment in path call, not 
at lowest level  

   

 Invalid segment search argument    

AK Invalid segment search argument field 
name 

   

AM Areas readied with incorrect usage 

mode 

0209  ERASE 

 Areas readied with incorrect usage 
mode 

0709  CONNECT 

 Areas readied with incorrect usage 

mode 

0809  MODIFY 

 Areas readied with incorrect usage 
mode 

1109  DISCONNECT 

 Areas readied with incorrect usage 
mode 

1209  STORE 

 No current record of run unit 0813  MODIFY 

 PCB not sensitive to particular function 

(see PROCOPTS) 

   

 Record name is defined as mandatory 
automatic member of set name 

0714  CONNECT 



Run-Time Messages and Codes 

 

216  DLI Transparency User Guide 

 

DL/I Status Error Description CA IDMS/DB Information 

  
Error/Status Code Minor 

Code 

Call Type 

 Record name not defined as optional 
member of set name 

1115  DISCONNECT 

 Statement format conflicts with 
location mode 

0331  FIND/ OBTAIN 

AO Read error  75  

AT Not enough space in run-time I/O area    

B1 Run unit not bound to DBMS  69  

B2 Run unit not bound or bound twice  77  

B3 Area wait deadlock has occurred  78  

BA Db-key inconsistent with area in which 

specified record is stored 

0302  FIND/ OBTAIN 

BB Db-key not in range of db-keys defined 
for stored record 

1202  STORE 

BC No currency established for record 
name, set name, or area name 

0306  FIND/ OBTAIN 

BD No currency established for record 
name, set name, or area name 

0706  CONNECT 

BE No currency established for record 
name, set name, or area name 

0806  MODIFY 

BF No currency established for record 

name, set name, or area name 

1106  DISCONNECT 

BG No db-key for record to be stored 1212  STORE 

BH No current record of run unit 0313  FIND/ OBTAIN 

BI Record name already member of set 

name 

0716  CONNECT 

BJ Current record not same type as record 
name 

0220  ERASE 

BK Current record not same type as record 
name 

0820  MODIFY 

BL Record name not currently member of 
set name 

1122  DISCONNECT 

BM Invalid area name used 0323  FIND/ OBTAIN 

BN No current of set name established 0725  CONNECT 



Run-Time Messages and Codes 

 

Appendix A: CA IDMS DLI Transparency Messages and Codes   217  

 

DL/I Status Error Description CA IDMS/DB Information 

  
Error/Status Code Minor 

Code 

Call Type 

BO Areas included in subschema currently 
ready 

0928  READY 

BP CALC values in user work area and 
current record not equal  

0332  FIND/ OBTAIN 

BQ Record type inconsistent with set name 0206  ERASE 

 Record type inconsistent with set name 0306  FIND/ OBTAIN 

BR No record with specified db-key 1261  STORE 

BS Area not available for update 0966  READY 

BT Page range for area being readied or 
page requested, not found in DMCL 

0371  FIND/ OBTAIN 

BU Record not bound  18  

BV Db-key KEEP deadlock  29  

BW Record occurrence not correct type  62  

BX Invalid parameter l ist  63  

BY CALC data item not described properly  64  

BZ CICS interface not requested  68  

CA Unsupported command received by 

run-time system 

   

CD Attempted privacy breach, or invalid 
use of ERASE  

0210  ERASE 

 Attempted privacy breach, or invalid 
use of ERASE  

0310  FIND/ OBTAIN 

 Attempted privacy breach, or invalid 
use of ERASE  

0710  CONNECT 

 Attempted privacy breach, or invalid 
use of ERASE  

0810  MODIFY 

 Attempted privacy breach, or invalid 

use of ERASE  

0910  READY 

 Attempted privacy breach, or invalid 
use of ERASE  

1110  DISCONNECT 

 Attempted privacy breach, or invalid 

use of ERASE  

1210  STORE 



Run-Time Messages and Codes 

 

218  DLI Transparency User Guide 

 

DL/I Status Error Description CA IDMS/DB Information 

  
Error/Status Code Minor 

Code 

Call Type 

DA Sensitive field has been changed (REPL, 
DLET) 

   

DJ Invalid command sequence for DLET. 
DLET call  not preceded by HOLD TYPE 
call, or REPL call  

   

DX No current of set name established 0225  ERASE 

DX Record occurrence is owner of 
nonempty set occurrence 

0230  ERASE 

DX Segment to be deleted has nondeleted, 
dependent segments 

   

DX Segment to be deleted participates in 
an inversion 

   

GB End of database condition    

GB End of set, area, index 0307  FIND/ OBTAIN 

GD Segment search argument(s) required 
for call  

   

GE Not found condition    

 Record or index entry not found 0326  FIND/ OBTAIN 

GP Error in parentage    

II Operation would have violated 

DUPLICATES NOT ALLOWED 

1205  STORE 

 Segment already exists (DUPLICATES 
NOT ALLOWED) 

   

IX Insert rule violated    

 No current of set name established 1225  STORE 

NI Operation would have violated 
DUPLICATES NOT ALLOWED 

0705  CONNECT 

 Operation would have violated 
DUPLICATES NOT ALLOWED 

0805  MODIFY 

NX Error loading user-supplied index 
suppression exit 

   



Run-Time Messages and Codes 

 

Appendix A: CA IDMS DLI Transparency Messages and Codes   219  

 

DL/I Status Error Description CA IDMS/DB Information 

  
Error/Status Code Minor 

Code 

Call Type 

RX Invalid command sequence for REPL. 
REPL call  not preceded by HOLD TYPE 

call, or REPL call  

   

 No current of set name established 0825  MODIFY 

 Violated REPLACE rule    

TI Error in PATH INSERT data transfer 

specification.  Data transfer must be 
specified for all  segments between the 
first parent segment requesting data 
transfer, and the object segment (EXEC 

DLI) 

   

TO Error in PATH REPLACE.  Segment usage 
in path replace does not match those 

segments retrieved in the last GET 
command (EXEC DLI) 

   

TP Invalid PCB INDEX.  An invalid PCB 
number has been specified.  The 

scheduled PSB has no PCB satisfying the 
request (EXEC DLI) 

   

V1 Invalid length for variable-length record 0855  MODIFY 

 Invalid length for variable-length record 1255  STORE 

V2 SEGLENGTH is required but not 
specified, or is zero or negative (EXEC 
DLI) 

   

V3 FIELDLENGTH is required but not 
specified, or is zero or negative (EXEC 
DLI) 

   

V4 Invalid SEGLENGTH specified for a 
variable length segment (EXEC DLI) 

   

V5 OFFSET is greater than SEGLENGTH, or 
is zero or negative. This applies to 

segments having a logical relationship 
(EXEC DLI) 

   

V6 No KEYLENGTH specified, but is 
required (EXEC DLI) 

   

X1 Invalid record name or set name 0208  ERASE 



Non-Run-Time Messages and Codes 

 

220  DLI Transparency User Guide 

 

DL/I Status Error Description CA IDMS/DB Information 

  
Error/Status Code Minor 

Code 

Call Type 

 Invalid record name or set name 0308  FIND/ OBTAIN 

 Invalid record name or set name 0708  CONNECT 

 Invalid record name or set name 1108  DISCONNECT 

 Invalid record name or set name 1208  STORE 

 Invalid record name or set name 1408  BIND 

X2 No space in area for record to be stored 1211  STORE 

X3 All required set type relationships not 
defined 

0233  ERASE 

 All required set type relationships not 
defined 

0833  MODIFY 

 All required set type relationships not 
defined 

1233  STORE 

X4 Insufficient memory for 

COMPRESS/DECOMPRESS 

 56  

XX Error in obtaining storage    

 Insufficient memory for load or storage 
allocation 

1472  BIND 

 Insufficient memory for load or storage 
allocation 

 72  

Non-Run-Time Messages and Codes 

This section lists the messages that can be returned by the CA IDMS DLI Transparency 
non-run-time components: 

■ Syntax generator 

■ IPSB compiler 

■ Load util ity 
 

Message Format 

The format of the non-run-time messages is as follows: 

message-number message-severity-level message-text  
 



Non-Run-Time Messages and Codes 

 

Appendix A: CA IDMS DLI Transparency Messages and Codes   221  

 

The message items have the following meanings: 

■ Message-number indicates the message number. 

■ Message-severity-level can be one of the following: 

– W (Warning) ── Alerts you to potential problems; processing continues. 

– E (Error) ── Indicates a nonfatal error; processing continues. 

– F (Fatal) ── Indicates a fatal error; the component terminates processing. 

Note: Load util ity and IPSB decompiler messages do not include a severity level. 

■ Message-text is the message issued in response to the error. 
 

Messages Listed by Message Number 

The messages are l isted in numerical order by message number. For each message, an 

explanation is provided as well as an indication of the component that issues it. 

■ (Syntax generator) 

■ (IPSB compiler) 

■ (Load util ity) 

■ (IPSB decompiler) 
 

 

Error code Message 

220001 'EJECT' NOT ALONE ON CARD.  TOKEN ASSUMED.  

EJECT must appear as the only entry on the card unless it is to 

be used as other that a compiler directive. 

Severity: W 

220002 INVALID 'SPACE' COMMAND PARAMETER.  

SPACE must be followed by a blank and, optionally, a 1-digit 
number greater than 0 indicating the number of l ines to be 
spaced. 

Severity: W 

220003 'SPACE' NOT ALONE ON CARD.  TOKEN ASSUMED.  

SPACE must appear as the only entry on the card unless it is to 
be used as other than a compiler directive. 

Severity: W 

220004 SEQUENCE ERROR.  RUN ABORTED.  

Input was out of sequence. 

Severity: F 



Non-Run-Time Messages and Codes 

 

222  DLI Transparency User Guide 

 

Error code Message 

220005 STRING EXCEEDS MAXIMUM OR AVAILABLE LENGTH.  

The specified string exceeds the maximum allowable length for 
this parameter. 

Severity: E 

220006 HEX STRING EXCEEDS MAXIMUM OR AVAILABLE LENGTH.  

The specified hex string exceeds the maximum allowable length 
for this parameter. 

Severity: E 

220007 HEX STRING CONTAINS INVALID CHARACTERS.  

The specified hex string contains invalid hexadecimal 
characters. 

Severity: E 

220008 Ictl-parameter INVALID ICTL PARAMETER SPECIFICATION.  

The ICTL parameter was incorrectly specified. Check the syntax.  
(IPSB compiler) 

Severity: E 

220009 Octl-parameter INVALID OCTL PARAMETER SPECIFICATION.  

The OCTL parameter was incorrectly specified. Check the 
syntax.  (IPSB compiler) 

Severity: E 

220010 Iseq-parameter INVALID ISEQ PARAMETER SPECIFICATION.  

The ISEQ parameter was incorrectly specified. Check the 

syntax.  (IPSB compiler) 

Severity: E 

220011 Core-size-parameter INVALID COMPILER TABLE SIZE 
SPECIFICATION.  

The core-size parameter must be a 1- to 6-digit number 
optionally followed by a K. There must be at least one space 
between the number and the K.  (IPSB compiler) 

Severity: F 

220012 Parameter UNEXPECTED END OF FILE (PERIOD MISSING).  

Invalid syntax has been encountered. Check for missing 
periods.  (IPSB compiler) 

Severity: E 



Non-Run-Time Messages and Codes 

 

Appendix A: CA IDMS DLI Transparency Messages and Codes   223  

 

Error code Message 

220013 Keyword UNKNOWN KEYWORD FOR STATEMENT TYPE.  

The keyword encountered is not valid for the current 
statement type.  (IPSB compiler) 

Severity: E 

220014 UNEXPECTED END OF FILE SEARCHING FOR STATEMENT.  

End of fi le occurred before sufficient control input was found. 

Severity: E 

220015 Keyword INVALID STATEMENT TYPE. SKIPPING TO NEXT 

PERIOD.  

The statement encountered is not valid for the current section.  
(IPSB compiler) 

Severity: E 

220016 Ipsb-name MISSING OR INVALID IPSB NAME.  

The IPSB name must be a 1-to 8-character alphanumeric string.  
(IPSB compiler) 

Severity: E 

220017 Subschema-name MISSING OR INVALID SUBSCHEMA NAME.  

The subschema name must be a 1- to 8-character alphanumeric 
string.  (IPSB compiler) 

Severity: F 

220018 Language-parameter INVALID PROGRAM LANGUAGE 
SPECIFICATION.  

Language must be COBOL, PL/I, or Assembler.  (IPSB compiler) 

Severity: E 

220019 Subschema-name SUBSCHEMA NOT FOUND IN LOAD 
LIBRARY.  

The subschema named could not be found.  (IPSB compiler) 

Severity: F 

220020 Subschema-name ERROR LOADING SUBSCHEMA MODULE.  

The subschema named could not be loaded.  (IPSB compiler) 

Severity: F 

220021 INSUFFICIENT STORAGE FOR COMPILATION.  

The IPSB compiler has run out of an internal work space. 

Contact technical support.  (IPSB compiler) 

Severity: F 



Non-Run-Time Messages and Codes 

 

224  DLI Transparency User Guide 

 

Error code Message 

220022 Subschema-name LOADED SUBSCHEMA MODULE INVALID.  

The subschema named was used to load a module, but the 
module is not a valid subschema.  (IPSB compiler) 

Severity: F 

220023 Parameter-name DIAGNOSTIC TABLE SIZE EXCEEDED. TOO 
MANY ERRORS.  

Too many errors have occurred, causing an overflow of the 
table. Correct the previous errors.  (IPSB compiler) 

Severity: F 

220025 Keyword INVALID KEYWORD, SKIPPING TO NEXT PERIOD.  

The keyword encountered is not valid. Compilation resumes 
with the next statement.  (IPSB compiler) 

Severity: E 

220026 MISSING KEYWORD, SKIPPING TO NEXT PERIOD.  

A required keyword is missing.  compilation resumes with the 

next statement. 

220027 Parameter INVALID, PARAMETER TOO LONG.  

The character string specified is greater in length than the 
maximum allowed for this parameter.  (IPSB compiler) 

Severity: E 

220031 Area-name INVALID AREA NAME.  

The character string as specified is not a valid area name.  (IPSB 

compiler) 

Severity: E 

220032 Area-name AREA NOT DEFINED IN SUBSCHEMA.  

All  areas used in an IPSB must be defined in the subschema 

previously specified in the IPSB statement.  (IPSB compiler) 

Severity: E 

220033 Usage-mode INVALID USAGE-MODE, SHARED RETRIEVAL 

ASSUMED.  

The usage mode as specified is incorrect. Check the syntax.  
(IPSB compiler) 

Severity: W 

220034 Area-name AREA HAS BEEN PREVIOUSLY SPECIFIED.  

An area name can be used in only one AREA statement.  (IPSB 
compiler) 

Severity: E 



Non-Run-Time Messages and Codes 

 

Appendix A: CA IDMS DLI Transparency Messages and Codes   225  

 

Error code Message 

220035 Record-name INVALID RECORD NAME.  

A record name must be a 1- to 16-character alphanumeric 
string.  (IPSB compiler) 

Severity: E 

220036 Option INVALID DELETE OPTION, ERASE ALL ASSUMED.  

The DELETE option was specified incorrectly. Check the syntax.  
(IPSB compiler) 

Severity: W 

220037 Field-name INVALID FIELD NAME.  

A field name must be a 1- to 8-character alphanumeric string.  
(IPSB compiler) 

Severity: E 

220038 Stored-option INVALID, STORED PHYSICALLY ASSUMED.  

The stored option was specified incorrectly. Check the syntax.  
(IPSB compiler) 

Severity: W 

220039 Position INVALID/MISSING STARTING POSITION.  

The starting position must be a 1- to 5-digit number, greater 
than 1, and less than the record-length - 1.  (IPSB compiler) 

Severity: E 

220040 Length INVALID/MISSING LENGTH SPECIFICATION.  

The length must be a 1- to 5-digit number that indicates the 

length of the field.  (IPSB compiler) 

Severity: E 

220041 Usage INVALID USAGE, DISPLAY ASSUMED.  

The usage has been specified incorrectly. Check the syntax.  

(IPSB compiler) 

Severity: W 

220042 Record-name RECORD HAS BEEN PREVIOUSLY SPECIFIED.  

A record name can appear in only one RECORD statement.  
(IPSB compiler) 

Severity: E 

220043 Record-name RECORD NOT DEFINED IN SUBSCHEMA.  

The record named must be defined in the subschema 
previously specified in the IPSB statement.  (IPSB compiler) 

Severity: E 



Non-Run-Time Messages and Codes 

 

226  DLI Transparency User Guide 

 

Error code Message 

220044 Field-name FIELD HAS BEEN PREVIOUSLY SPECIFIED.  

A field name must be unique within any one record definition.  
(IPSB compiler) 

Severity: E 

220045 Start-position STARTING POSITION INVALID IF STORED 
VIRTUALLY.  

Starting position must not be speci fied if the field is stored 
virtually. This clause is ignored.  (IPSB compiler) 

Severity: W 

220046 Record-name PREVIOUS RECORD HAS ONLY ONE 
CONCATENATED KEY.  

The record preceding the current record has only one 

destination parent concatenated key defined. This can cause 
abnormal termination at run time.  (IPSB compiler) 

Severity: E 

220047 Key-name LOGICAL CONCATENATED KEY PREVIOUSLY 
DEFINED.  

Only one logical destination parent concatenated key field can 
be defined within any one record.  (IPSB compiler) 

Severity: E 

220048 Key-name PHYSICAL CONCATENATED KEY PREVIOUSLY 
DEFINED.  

Only one physical destination parent concatenated key field 
can be defined within any one record.  (IPSB compiler) 

Severity: E 

220049 Parameter LENGTH OR STARTING POSITION INVALID FOR /SX.  

Length and/or starting position must not be specified for /SX 
fields.  (IPSB compiler) 

Severity: W 

220050 Field-name INVALID INDEXED FIELD NAME.  

An indexed field name must be a 1- to 8-character 
alphanumeric string.  (IPSB compiler) 

Severity: E 

220052 Record-name INVALID/MISSING TARGET RECORD.  

If present, the target record as specified is not a valid record 
name.  (IPSB compiler) 

Severity: E 



Non-Run-Time Messages and Codes 

 

Appendix A: CA IDMS DLI Transparency Messages and Codes   227  

 

Error code Message 

220053 Record-name INVALID/MISSING SOURCE RECORD.  

If present, the source record as specified is not a valid record 
name.  (IPSB compiler) 

Severity: E 

220054 Record-name INVALID/MISSING POINTER RECORD.  

If present, the pointer record as specified is not a valid record 
name.  (IPSB compiler) 

Severity: E 

220055 Constant INVALID SHARED INDEX CONSTANT.  

The shared index constant must be a 1-byte, self- defining 
Assembler constant enclosed in double quotes.  (IPSB compiler) 

Severity: E 

220056 Field-name MISSING SEARCH FIELD(S).  

At least one field must be specified as a search field.  (IPSB 
compiler) 

Severity: E 

220057 Field-name INVALID FIELD(S) SPECIFICATION.  

A field name has been specified incorrectly. Check the syntax.  
(IPSB compiler) 

Severity: E 

220058 Value INVALID NULL INDEX VALUE.  

The null index value must be a 1-byte, self-defining Assembler 

constant enclosed in double quotes, or BLANK or ZERO.  (IPSB 
compiler) 

Severity: E 

220059 Index-name INDEX HAS BEEN PREVIOUSLY SPECIFIED.  

An index name can be used in only one INDEX statement.  (IPSB 
compiler) 

Severity: E 

220061 Record-name RECORD NOT DEFINED IN RECORD SECTION.  

The record named must be defined by a RECORD statement in 
the RECORD SECTION.  (IPSB compiler) 

Severity: E 

220062 Field-name FIELD NOT DEFINED IN SOURCE RECORD.  

The field named must be defined within the source record 
definition in the RECORD SECTION.  (IPSB compiler) 

Severity: E 



Non-Run-Time Messages and Codes 

 

228  DLI Transparency User Guide 

 

Error code Message 

220063 Record-name NO SEQUENCE FIELD DEFINED FOR POINTER 

RECORD.  

All  pointer records must have a sequence field defined 
corresponding to the sort-key field of the indexed set of which 

it is a member.  (IPSB compiler) 

Severity: E 

220064 Length LENGTH SPECIFIED GREATER THAN SUBSCHEMA 
LENGTH.  

The record length specified must not be greater than the length 
as defined in the subschema.  (IPSB compiler) 

Severity: E 

220065 Length LENGTH SPECIFIED LESS THAN CONTROL LENGTH.  

The minimum record length specified is less than the control 
length of the record. It is rounded up to the control length.  
(IPSB compiler) 

Severity: W 

220066 Length INVALID/MISSING LENGTH SPECIFICATION.  

The length must be a 1- to 5-digit number that indicates the 
length of the segment this record represents.  (IPSB compiler) 

Severity: E 

220067 Record-name RECORD IS NOT VARIABLE LENGTH IN SCHEMA.  

A maximum and minimum length has been specified, but the 

record is not of variable length.  (IPSB compiler) 

Severity: E 

220069 Clause MISSING PARENT CLAUSE.  

A parent segment must be specified for all  but root segments.  

(IPSB compiler) 

Severity: E 

220070 Access-method INVALID ACCESS METHOD.  

The access method has been specified incorrectly. Check the 
syntax.  (IPSB compiler) 

Severity: E 

220071 Dbd-name INVALID/MISSING DBDNAME.  

The DBD name must be a 1- to 8-character alphanumeric string.  
(IPSB compiler) 

Severity: E 



Non-Run-Time Messages and Codes 

 

Appendix A: CA IDMS DLI Transparency Messages and Codes   229  

 

Error code Message 

220072 Option INVALID/MISSING PROCESSING OPTIONS.  

Processing options have been specified incorrectly. Check the 
syntax.  (IPSB compiler) 

Severity: E 

220073 INVALID KEY FEEDBACK LENGTH.  

The value specified for the key feedback length must be 
numeric. (IPSB compiler) 

Severity: E 

220074 Option INVALID POSITIONING.  

Positioning has been specified incorrectly. Check the syntax.  
(IPSB compiler) 

Severity: E 

220077 Segment-name INVALID SEGMENT NAME.  

A segment name must be a 1- to 8-character alphanumeric 
string.  (IPSB compiler) 

Severity: E 

220078 Set-name INVALID SET NAME.  

A set name must be a 1- to 16-character alphanumeric string.  
(IPSB compiler) 

Severity: E 

220079 Record-name INVALID RECORD NAME.  

A record name must be a 1- to 16-character alphanumeric 

string.  (IPSB compiler) 

Severity: E 

220080 Use-option INVALID USE OPTION.  

The USE option has been specified incorrectly. Check the 

syntax.  (IPSB compiler) 

Severity: E 

220082 Option PROCESSING SEQUENCE MUST BE SPECIFIED.  

Processing sequence must be specified for all  access methods 
except HDAM.  (IPSB compiler) 

Severity: E 

220083 Option PROCESSING SEQUENCE MUST NOT BE SPECIFIED.  

Processing sequence must not be specified if the access 
method is HDAM.  (IPSB compiler) 

Severity: E 



Non-Run-Time Messages and Codes 

 

230  DLI Transparency User Guide 

 

Error code Message 

220085 Index-name INDEX NOT DEFINED IN INDEX SECTION.  

The indexed field named must be defined by an INDEX 
statement in the INDEX SECTION.  (IPSB compiler) 

Severity: E 

220086 Segment-name SEGMENT HAS BEEN PREVIOUSLY DEFINED.  

A segment name can be used only once within any one PCB.  
(IPSB compiler) 

Severity: E 

220087 Record-name RECORD NOT DEFINED IN RECORD SECTION.  

The record named must be defined by a RECORD statement in 
the RECORD SECTION.  (IPSB compiler) 

Severity: E 

220088 Segment-name SEGMENT NOT PREVIOUSLY DEFINED.  

The segment named must be previously defined by a SEGMENT 
statement within the same PCB.  (IPSB compiler) 

Severity: E 

220489 Parent-name PARENT MUST NOT BE SPECIFIED ON ROOT 
SEGMENTS.  

Remove the PARENT clause from this SEGMENT statement.  

(IPSB compiler) 

Severity: E 

220090 Set-name SET NOT DEFINED IN SUBSCHEMA.  

The set named must be defined in the subschema previously 
specified in the IPSB statement.  (IPSB compiler) 

Severity: E 

220091 Set-name INVALID USE OF SET.  

Processing sequence set can be specified only if the access 
method is HISAM or INDEX.  (IPSB compiler) 

Severity: E 

220092 INVALID MEMBER OF SET.  

The IDMS record is not a valid member of the set specified. 
(IPSB compiler) 

Severity: E 

220093 INVALID OWNER OF SET.  

The IDMS record is not a valid owner of the set specified. (IPSB 
compiler) 

Severity: E 



Non-Run-Time Messages and Codes 

 

Appendix A: CA IDMS DLI Transparency Messages and Codes   231  

 

Error code Message 

220094 Index-name INVALID USE OF INDEX.  

Processing sequence index can be specified only if the access 
method is HIDAM or secondary index.  (IPSB compiler) 

Severity: E 

220095 Segment-name INVALID INVERSION OF SEGMENTS.  

A segment appears in the inversion that is not in the hierarchic 
path of the destination parent in its physical database.  (IPSB 
compiler) 

Severity: E 

220096 Rule INVALID RULE SPECIFIED.  

An insert or replace rule has been specified incorrectly. Check 
the syntax.  (IPSB compiler) 

Severity: E 

220097 Parent-name LOGICAL PARENT CONCATENATED KEY IS 
UNDEFINED.  

If a logical destination parent is specified, its concatenated key 
must be defined within the record definition of the logical child.  
(IPSB compiler) 

Severity: E 

220098 Parent-name PHYSICAL PARENT CONCATENATED KEY IS 
UNDEFINED.  

If a physical destination parent is specified, its concatenated 

key must be defined within the record definition of the logical 
child.  (IPSB compiler) 

Severity: E 

220100 set-name INVALID INDEXED SET NAME.  

The name specified for an indexed set must be a 1- to 
16-character name.  (IPSB compiler) 

Severity: E 

220101 set-name INDEXED SET NOT DEFINED IN SUBSCHEMA.  

The specified indexed set must be defined in the subschema.  
(IPSB compiler) 

Severity: E 

220102 subschema-name SUBSCHEMA DOES NOT CONTAIN INDEXED 
SETS.  

'INDEXED-SET' was specified in the IPSB SECTION, but no 
indexed sets were found in the subschema.  (IPSB compiler) 

Severity: E 



Non-Run-Time Messages and Codes 

 

232  DLI Transparency User Guide 

 

Error code Message 

220103 INVALID EXIT ROUTINE NAME  

The index suppression exit routine name must be a 1- to 
8-character name.  (IPSB compiler) 

Severity: E 

221001 'EJECT' NOT ALONE ON CARD. TOKEN ASSUMED.  

EJECT must appear as the only entry on the card unless it is to 
be used as other than a compiler directive.  (Syntax Generator) 

Severity: W 

221002 INVALID 'SPACE' COMMAND PARAMETER.  

SPACE must be followed by a blank and, optionally, a 1-digit 
number greater than 0 indicating the number of l ines to be 
spaced. (Syntax Generator) 

Severity: W 

221003 SPACE NOT ALONE ON CARD. TOKEN ASSUMED.  

SPACE must appear as the only entry on the card unless it is to 

be used as other than a compiler directive.  (IPSB compiler) 

Severity: W 

221004 SEQUENCE ERROR. RUN ABORTED.  

Input was out of sequence.  (Syntax Generator) 

Severity: F 

221005 STRING EXCEEDS MAXIMUM OR AVAILABLE LENGTH.  

The character string specified is greater in length than the 

maximum allowed for this parameter.  (Syntax Generator) 

Severity: E 

221006 HEX STRING EXCEEDS MAXIMUM OR AVAILABLE LENGTH.  

The hexadecimal string specified is greater in length than the 

maximum allowed for this parameter.  (Syntax Generator) 

Severity: E 

221007 HEX STRING CONTAINS INVALID CHARACTERS.  

Other than valid characters appear in the hexadecimal string 
specified.  (Syntax Generator) 

Severity: E 

221009 Dbd-name - DBD NOT FOUND IN LIBRARY.  

The DBD name listed prior to this message was not in the 
library designated by the STEPLIB JCL statement.  (Syntax 
Generator) 

Severity: E 



Non-Run-Time Messages and Codes 

 

Appendix A: CA IDMS DLI Transparency Messages and Codes   233  

 

Error code Message 

221010 Dbd-name - DBD NOT LOADED - ERROR.  

An error has occurred during load processing for the specified 
DBD.  (Syntax Generator) 

Severity: E 

221011 Dbd-name - DBD NOT LOCATED.  

A DBD was not located in the already loaded chain. This is a 
system internal error.  (Syntax Generator) 

Severity: E 

221012 UNEXPECTED END OF FILE PROCESSING IPSB STATEMENT.  

End of fi le occurred before sufficient control input was found.  
(Syntax Generator) 

Severity: F 

221013 Keyword UNKNOWN KEYWORD FOR STATEMENT TYPE.  

The keyword encountered is not valid for the current 
statement type.  (Syntax Generator) 

Severity: E 

221014 PRIMARY INDEX NOT FOUND.  

The LCHILD statement for the named index was not found.  
(Syntax Generator) 

Severity: E 

221015 Keyword INVALID STATEMENT TYPE. SKIPPING TO NEXT 
PERIOD.  

The statement encountered is not a valid statement type.  
(Syntax Generator) 

Severity: E 

221016 Segment-name - SEGMENT NOT FOUND IN DBD.  

The named segment was not found in the appropriate DBD.  
(Syntax Generator) 

Severity: E 

221017 Segment-name - SEGMENT PHYSICAL OWNER NOT FOUND.  

An attempt to establish a path to the physical owner of a 
destination parent segment was unsuccessful.  (Syntax 
Generator) 

Severity: E 



Non-Run-Time Messages and Codes 

 

234  DLI Transparency User Guide 

 

Error code Message 

221018 Segment-name - SEGMENT HAS NO FIELDS - REQUIRED.  

A logical child segment has been encountered that has no fields 
defined for it.  (Syntax Generator) 

Severity: E 

221019 Segment-name - SEGMENT PARENT NOT FOUND.  

While determining the length of a logical child concatenated 
key, the root segment could not be found. The probable cause 
is an incorrectly defined path.  (Syntax Generator) 

Severity: E 

221020 Segment-name - SEGMENT SEQUENCE FIELD REQUIRED.  

The sequence field for an index pointer record was not found.  
(Syntax Generator) 

Severity: E 

221021 Psb-name - PSB NOT FOUND IN LIBRARY.  

The named PSB was not found in any library accessible through 

a STEPLIB JCL statement.  (Syntax Generator) 

Severity: F 

221022 Psb-name - PSB NOT LOADED - ERROR.  

An error has occurred during load processing for the specified 

PSB.  The PSB named could not be loaded.  (Syntax Generator) 

221023 GENERATION TERMINATED - TOO MANY ERRORS.  

Too many errors have occurred for this processing run.  (Syntax 

Generator) 

Severity: F 

221024 Dbd-name DBD NOT VALID FOR USE WITH CA IDMS DLI 
Transparency.  

A loaded DBD has been found to contain an invalid format. The 
probable cause is that the IBM version of the DBD was loaded.  
Use the CA IDMS DLI Transparency assembled DBD.  (Syntax 

Generator) 

Severity: F 

221025 Psb-name PSB NOT VALID FOR USE WITH CA IDMS/DLI 
Transparency. 

A loaded PSB has been found to contain an invalid format.  Use 
the CA IDMS DLI Transparency assembled PSB.  (Syntax 
Generator) 

Severity: F 



Non-Run-Time Messages and Codes 

 

Appendix A: CA IDMS DLI Transparency Messages and Codes   235  

 

Error code Message 

221026 Dbd-name DBD FOR LOGICAL PARENT NOT FOUND IN ANY 

PCB. 

During generation of a load IPSB, the named DBD was 
referenced as a logical parent DBD, but no PCB in the load PSB 

defined the logical parent as a physical segment.  (Syntax 
Generator) 

Severity: F 

221500 DATABASE CAPACITY EXCEEDED.  

Database capacity is not sufficient to load al l  necessary records.  
Reallocate the database fi les with more space. Issued by Step 2.  
(Load Util ity) 

221501 SEGMENT=segment-name NOT IN IPSB. 

The named segment has been found in the input fi le, or 
workfile, but is not defined in any PCB within the IPSB. Issued 
by Steps 1, 2, 4, and 6. (Load Util ity) 

221503 NO LOGICAL RELATIONSHIPS.  

Database load Processing (Step 2) encountered  no logical 
relationships.  Steps 3 through 6 are not required to complete 
the database load.  (Load Util ity) 

221506 IPSB=ipsb-name NOT FOUND. 

The named IPSB could not be loaded. Make sure that the 
correct IPSB resides in the data set(s) referenced by CDMSLIB. 

Issued by Steps 1, 2, 4, and 6.  (Load Util ity) 

221508 INITIAL DATABASE LOAD COMPLETE.  

Database load process ing (Step 2) has been successfully 
completed.  (Load Util ity) 

221509 PREFIX RESOLUTION COMPLETE.  

Prefix resolution processing (Step 4) has been successfully 
completed.  (Load Util ity) 

Severity: F 

221510 PREFIX UDPDATE COMPLETE.  

Prefix update processing (Step 6) has been successfully 
completed.  (Load Util ity) 

221511 PCB DBDNAME=dbdname NOT FOUND. 

Prefix resolution or prefix update processing failed to find a 
DBD in the IPSB that matches the named DBD. The named DBD 
was referenced in the logical workfile produced by the 

database load (Step 2). Issued by Steps 4 and 6.  (Load Util ity) 



Non-Run-Time Messages and Codes 

 

236  DLI Transparency User Guide 

 

Error code Message 

221512 INVALID INPUT CONTROL FORMAT.  

Invalid processing control statements have been encountered.  
Rerun the step in question with correctly formatted control 
specifications. Issued by Steps 1, 2, 4, and 6.  (Load Util ity) 

221513 PROCESSING TERMINATED-ERROR(S).  

A fatal error condition was detected. This message is usually 
preceded by a message indicating the specific error condition. 
Issued by Steps 1, 2, 4, and 6.  (Load Util ity) 

221514 SEGM=segment-name - NO LOGICAL PARENT. 

A logical child record in the workfile has no corresponding 
logical parent record in the workfile. This message may be the 
result of an incomplete Step 3 sort, or it may indicate that 

multiple logical workfiles from Step 2 were not merged prior to 
the Step 3 sort. Issued by Steps 4 and 6.  (Load Util ity) 

221516 PARAMETER 'IPSB' REQUIRED.  

The control format for a processing step is incomplete.  Specify 
the IPSB name required for processing. Issued by Steps 2, 4, 
and 6.  (Load Util ity) 

221517 INVALID IPSB PROCOPTS - 'LOAD' REQUIRED.  

Use of the Load Util ity within the CA IDMS DLI Transparency 
Run-Time Interface requires that each PCB in the IPSB be 
specified with PROCOPT=LOAD. Issued by Steps 2, 4, and 6.  

(Load Util ity) 

221519 DBDNAME=dbdname NOT IN IPSB. 

The named DBD was not found in the IPSB. Use the same IPSB 
as you used in Step 2 processing. Issued by Steps 4 and 6.  

(Load Util ity) 

221521 RELATED WORKFILES MISSING.  

This message usually appears after messages 221514 and 

221518, to indicate the probable error cause. Issued by Steps 4 
and 6.  (Load Util ity) 

221522 NO FURTHER PROCESSING REQUIRED.  

Database Load Processing (Step 2) has been successfully 

completed. No logical relationships were found, and no 
additional processing is necessary.  (Load Util ity) 

221523 STATUS=code RETURNED-SEGMENT=  segment-name. 

An unexpected DL/I status code has been returned to the Load 

Util ity.  This message usually indicates a fatal error. Issued by 
Steps 2 and 6.  (Load Util ity) 



Non-Run-Time Messages and Codes 

 

Appendix A: CA IDMS DLI Transparency Messages and Codes  237  

 

Error code Message 

221524 CHECK IPSB FOR PROBLEM(S).  

An error has been detected that may be related to an IPSB 
specification. Issued by Steps 2 and 6.  (Load Util ity) 

221525 UNEXPECTED END OF FILE-SYSIPT.  

End of fi le was encountered before sufficient process control 
information was found. Issued by Steps 1, 4, and 6.  (Load 
Util ity) 

221526 INVALID IPSB FORMAT.  

The IPSB that was loaded does not have a valid format. Issued 
by Steps 1, 4, and 6.  (Load Uti l ity) 

Severity: F 

221527 PARAMETER 'PROCESS=' REQUIRED.  

The JCL for the step did not include the PROCESS control 
parameter. PROCESS= is required. Issued by Steps 1, 2, 4, and 6.  
(Load Util ity) 

221528 INSUFFICIENT STORAGE.  

More main storage is required for successful processing.  
Increase the storage specification, and rerun the processing 
step in question.  Issued by Steps 1, 2, 4, and 6.  (Load Util ity) 

221530 CALC PROCESSING COMPLETE.  

The Pre-Load CALC Processing (Step 1) has been successfully 
completed.  (Load Util ity) 

Severity: F 

221531 I/O ERROR ON FILE=SYS999.  

An I/O error has been detected during fi le processing.  
Determine the nature of the cause, and re-run the processing 

step.  Issued by Steps 1, 2, 4, and 6.  (Load Util ity) 

221532 ERROR OPENING FILE=SYS999.  

An attempt to open a required fi le has not been successful.  

Check for missing fi le definitions, or conflicts in fi le definitions.  
Issued by Steps 1, 2, 4, and 6.  (Load Util ity) 

221542 LOAD OF SUBSCHEMA=subschema-name FAILED. 

The subschema specified in the IPSB was not available for CALC 

processing. Make sure that subschema is accessible through a 
STEPLIB JCL statement. Issued by Steps 1 and 2.  (Load Util ity) 



Non-Run-Time Messages and Codes 

 

238  DLI Transparency User Guide 

 

Error code Message 

221543 AREA=area-name NOT IN SUBSCHEMA. 

The specified area name was found in the load IPSB, but was 
not found in the subschema. Make sure that the subschema 
contains all required area names.  Issued by Steps 1 and 2.  

(Load Util ity) 

223902 ipsb-name COMPILE DATE: mm/dd/yy  TIME: HHmmsshh 

Issued during IPSB validation, this indicates the original IPSB 
compilation date/time. Date is in month/day/year format.  

Time is in hours/minutes/seconds/hundreth seconds. (IPSB 
decompiler) 

223902 subschema COMPILE DATE: mm/dd/yy  TIME: HHmmsshh 

Issued during IPSB validation, this indicates the corresponding 

subschema compilation date/time. Date and time formats are 
as indicated above. (IPSB decompiler) 

223903 REQUESTED MODULE IS NOT AN IPSB.  

IPSB validation has determined that the loaded module does 
not contain a format similar to that of a CA IDMS DLI 
Transparency IPSB.  Due to the environment associated with CA 
IDMS DLI Transparency, this module may be a native DL/I PSB. 

(IPSB decompiler) 

223904 REQUESTED IPSB RELEASE LEVEL NOT SUPPORTED.  

IPSB validation has found that the requested IPSB loaded for 

decompilation is for a release level of CA IDMS DLI 
Transparency that is not supported by the IPSB decompiler. 
(IPSB decompiler) 

223905 ERROR IN LOAD OF IPSB=ipsbname  

Issued when an error has occurred during an attempt to access 
the specified IPSB load module. (IPSB decompiler) 

223906 ERROR OPENING FILE=SYSxxx  

Produced when a request to open a specific fi le has been 
unsuccessful, probably due to missing or conflicting fi le 
definitions.  SYSxxx can include SYSIPT, SYSLST, OR SYSPCH. 
(IPSB decompiler) 



Non-Run-Time Messages and Codes 

 

Appendix A: CA IDMS DLI Transparency Messages and Codes   239  

 

Error code Message 

223907 ERROR ON FILE=SYSxxx FUNC=xxxx  STAT=xxxx. 

Produced when a request to close, or read/write to/from a 
specific fi le has resulted in an error condition.  Here, SYSxxx can 
be the fi le names SYSIPT, SYSLST, or SYSPCH.  The FUNC= and 

STAT= operands of the message relate to the processing 
functions and resulting statuses that are common to the I/O 
util ity module IDMSUTIO (IDMSUTIO is used for all  I/O 
functions for the Decompiler). (IPSB decompiler) 

223908 UNEXPECTED END OF FILE - SYSIPT  

If no valid IPSB-directive control statement is encountered 
before end-of-fi le occurs while reading the SYSIPT input fi le, 
this message is issued, and decompilation terminates. (IPSB 

decompiler) 

223909 CA IDMS DLI Transparency IPSB DECOMPILATION 
TERMINATED-ERROR(S).  

If an error occurs during SYSIPT processing, IPSB loading, IPSB 
identity and release level validation,  or SYSLST or SYSPCH 
processing, this message is issued as an indication of the final 
status of the current processing run. (IPSB decompiler) 

223910 CA IDMS DLI Transparency IPSB DECOMPILATION COMPLETE  

Issued when IPSB decompilation process has completed 
without encountering any problem situations.  This is the final 

message issued by the decompiler after a successful run. (IPSB 
decompiler) 

 





 

Appendix B: CA IDMS DLI Transparency Software Components  241  

 

Appendix B: CA IDMS DLI Transparency 
Software Components 
 

This section contains the following topics: 

About This Appendix (see page 241) 
The Syntax Generator (see page 241) 

The IPSB Compiler (see page 242) 
Runtime Interface (see page 243) 
The Load Util ity (see page 251) 

 

About This Appendix 

CA IDMS DLI Transparency has four major software components: 

■ The syntax generator 

■ The IPSB compiler 

■ The runtime interface 

■ The load util ity 

Each component is described in this section. 
 

The Syntax Generator 

Input to the Syntax Generator 

The syntax generator consists of the IDMSDLPG module. For input, it accepts a DL/I PSB 

and the DBDs referenced by the PCBs included in the PSB. The source code for the PSB 
and DBDs must be assembled using the CA-supplied macros before inputting them to 
the syntax generator. 

 

In addition to the assembled PSB and DBDs, the syntax generator requires user -supplied 
input statements. The input statements direct the generator to produce source 

statements for an IPSB load module and any of the following CA IDMS/DB entities: 

■ Schema 

■ DMCL 

■ Subschema 
 



The IPSB Compiler 

 

242  DLI Transparency User Guide 

 

Output from the Syntax Generator 

When executed, the syntax generator reads in and extracts the DL/I definitions reflected 

in the assembled PSB and DBDs. Based on the DL/I definitions, the generator creates 
corresponding source statements for the IPSB load module and the requested CA 
IDMS/DB modules. 

 

Review the Source Statements 

The user must review the IPSB and CA IDMS/DB source statements to make sure that 

they reflect the dependencies that are present, either explicitly or implicitly, in the DL/I 
definitions. For example, does every logical child segment have its physical parent 
segment defined? If an IPSB is to be used with the load util ity, there are special load 

util ity considerations that the user must include in the IPSB source. 
 

After reviewing and, if necessary, modifying the source statements, the user must input 

them to the appropriate compiler to produce the required load module. Operation of 
the IPSB compiler is described below. Operation of the CA IDMS/DB schema and 
subschema compilers and guidelines for creating a DMCL module are described in the 

CA IDMS Database Administration Guide. 
 

The IPSB Compiler 

What the IPSB Compiler Does 

The IPSB compiler, consisting of the IDMSDLMG module, accepts user-supplied input 
statements and subschema tables as input. Compiler output consists of the IPSBs and a 

l isting of any diagnostic messages. The resulting IPSBs are known as fixed IPSBs. At 
runtime, when CA IDMS DLI Transparency processes a DL/I application, the back end of 
the runtime interface loads the relevant fixed IPSB. The fixed IPSB then serves the back 

end as the source for creating a variable IPSB. A variable IPSB keeps track of the DL/I and 
CA IDMS/DB information during CA IDMS DLI Transparency processing. 

 

IPSB Must Be in Load (Core-Image) Library at Runtime 

The fixed IPSB must be available in a load (core-image) l ibrary at runtime. Hence, the 
user must run the IPSB compiler to create the appropriate IPSBs before using the 

runtime interface. Once an IPSB is compiled, assembled, and link edited, however, it is 
available for use during all  subsequent executions of the DL/I application program 
(assuming no changes are made to the DL/I applications). 

 



Runtime Interface 

 

Appendix B: CA IDMS DLI Transparency Software Components   243  

 

Runtime Interface 

The runtime interface: 

■ Accepts retrieval and update requests from the DL/I application programs  

■ The interface then processes the requests into appropriate CA IDMS/DB requests 
and sends them to CA IDMS/DB 

 

■ After CA IDMS/DB processes the requests, the runtime interface accepts the 

retrieved data and status information from CA IDMS/DB for placement in a format 
acceptable to the DL/I application program 

■ To accomplish these functions, the runtime interface consi sts of special-purpose 
components, a front end, and a back end. 

The special-purpose components, the front end, and the back end are discussed in the 
remainder of this appendix. 

 



Runtime Interface 

 

244  DLI Transparency User Guide 

 

Special-Purpose Components 

The CA IDMS DLI Transparency special-purpose components consist of the following 
modules and database procedures: 

■ IDMSDLRC module ── IDMSDLRC is the module used in place of the DL/I region 

controller. 

■ IDMSDLLI module ── IDMSDLLI (the CA IDMS/DLI Transparency language interface 
used in place of native DL/I language interfaces) is for batch call -level DL/I 
application programs only. 

■ IDMSDLHI module ── IDMSDLHI is the CA IDMS DLI Transparency language 
interface used for batch command-level DL/I (EXEC DLI) applications.   

■ IDMSDL1C module ── IDMSDL1C is the language interface used with CICS call -level 
DL/I applications in z/OS. 

■ IDMSDL1V module ── IDMSDL1V is the CA IDMS DLI Transparency language 
interface used for CICS call -level DL/I applications in z/VSE.  

■ IDMSDLHC module ── IDMSDLHC is the language interface used for CICS COBOL 

command-level DL/I (EXEC DLI) applications in z/OS.  

■ IDMSDLCV module ── IDMSDLCV is the language interface used for CICS COBOL 
command-level DL/I (EXEC DLI) applications in z/VSE.  

■ IDMSDLHP module ── IDMSDLHP is the language interface used for CICS PL/I 

command-level DL/I (EXEC DLI) applications in z/OS.  

■ IDMSDLPV module ── IDMSDLPV is the language interface used for CICS PL/I 
command-level DL/I (EXEC DLI) applications in z/VSE.  

■ IDMSDLHA module ── IDMSDLHA is the language interface used for CICS Assembler 
command-level DL/I (EXEC DLI) applications in z/OS.  

■ IDMSDLAV module ── IDMSDLAV is the CA IDMS DLI Transparency CICS Assembler 
command-level DL/I (EXEC DLI) applications in z/VSE.  

■ IDMSDLVC database procedure ── IDMSDLVC is a system-provided database 
procedure for modifying variable-length records. 

■ IDMSDLVD database procedure ── IDMSDLVD is a system-provided database 

procedure for retrieving variable-length records. 

Each of the above components is discussed below. Additionally, diagrams are provided 
to i l lustrate the relationship among the components at runtime in both a batch and CICS 
environment. 

 



Runtime Interface 

 

Appendix B: CA IDMS DLI Transparency Software Components   245  

 

Runtime Components in a Batch Environment 

In a batch environment, CA IDMS DLI Transparency processing of a DL/I application 

program: 

■ Begins in the IDMSDLRC module. The IDMSDLRC module's functions include 

– Issuing a call to the front-end (IDMSDLFE) module 

– Loading the DL/I application program and passing control to the DL/I 
application program 

■ From the DL/I application program, call-level DL/I calls are passed to the language 
interface, IDMSDLLI. EXEC DLI type commands are passed to the command-level 

language interface IDMSDLHI. 
 

■ The language interface  transfers control to the IDMSDLFE module 

■ IDMSDLFE issues, as appropriate, a BIND RUN-UNIT or a FINISH, or sends the DL/I 
call  to RHDCDLBE 

■ RHDCDLBE then converts the DL/I call  to the appropriate CA IDMS/DB request 
 

 

Figure 71. CA IDMS DLI Transparency runtime components in a batch environment 
 

Components in a CICS Runtime Environment 

■ The DL/I application program issues a DL/I call  through the language interface. The 

language interface locates the address of the IDMSDLFC module in the CICS 
common workarea (CWA)  and passes control to IDMSDLFC. 

 



Runtime Interface 

 

246  DLI Transparency User Guide 

 

■ IDMSDLFC is part of the IDMSINTC module created for CA IDMS DLI Transparency 
(see Section 5, "CA IDMS DLI Transparency Runtime Environment") and is the CA 

IDMS DLI Transparency's equivalent of native DL/I's online nucleus. At runtime, 
IDMSDLFC validates the call  and control is passed to the IDMSDLFE module (the 
front end). 

 

■ IDMSDLFE issues a BIND RUN-UNIT or FINISH, or sends the DL/I call  information to 
RHDCDLBE (the back end). 

■ RHDCDLBE converts the DL/I call  to the appropriate CA IDMS/DB request. 
 

 

Figure 72. CA IDMS DLI Transparency components in a CICS environment at runtime  
 



Runtime Interface 

 

Appendix B: CA IDMS DLI Transparency Software Components   247  

 

IDMSDLRC module 

The IDMSDLRC module is the replacement for the DL/I region controller. In DL/I, the 
operating system executes a region controller and the region controller loads and 
passes control to the DL/I application program. IDMSDLRC performs the following 

functions: 

■ Accepts from the JCL the user-specified parameters. In z/OS ,these parameters are 
specified in the JCL in the PARM clause of the EXEC statement; in z/VSE, they are 
specified in the JCL in the SYSIPT fi le. The parameters identify the DL/I application 

program to be processed and the IPSB that is to be accessed at runtime. 

■ Issues a call to the front end (IDMSDLFE), requesting the front end to issue a BIND 
RUN-UNIT. Along with this call, IDMSDLRC provides the front end with the name of 

the IPSB to be used at run time. 
 

■ Receives the addresses of the PCBs used by the DL/I application program. 

■ Loads and passes control to the DL/I application program. As IDMSDLRC passes 
control, it provides the DL/I application with the PCB parameter l ist. 

■ Issues a termination call  to IDMSDLFE after the DL/I application has executed. This 

call  requests the front end to issue a FINISH. 
 

IDMSDLLI module 

The IDMSDLLI module is used for batch DL/I application programs only. This module 
replaces the following DL/I language interfaces: 

■ Native DL/I COBOL language interface (CBLTDLI) 

■ Native DL/I PL/I language interface (PLITDLI) 

■ Native DL/I Assembler language interface (ASMTDLI) 
 

At runtime, the CA IDMS DLI Transparency user l ink edits IDMSDLLI to each DL/I 
application program to be processed by CA IDMS DLI Transparency. When link edited to 

the DL/I application, the IDMSDLLI performs the following functions: 

■ Receives control on a DL/I call  from the DL/I application program 

■ Reformats the call  parameter l ist and sends the list to the front end 

■ Passes control to the front end, which establishes, controls, and terminates 

communication with the back end 

Note: In XA environments, if the COBOL DYNAMIC link-edit optionis used, and the 
DL/I application program does not run in XA mode, relink module IDMSDLLI with 

RMODE=24. 
 



Runtime Interface 

 

248  DLI Transparency User Guide 

 

IDMSDL1C module 

IDMSDL1C is for use only under z/OS CICS for call -level DL/I applications. This module 
replaces the DL/I application interface resolving the entry points CBLTDLI, ASMTDLI, and 
PLITDLI.  

 

IDMSDL1V module 

IDMSDL1V is for use only under z/VSE CICS for call -level DL/I applications. This module 
replaces the DL/I application interface resolving the entry points CBLTDLI, ASMTDLI, and 
PLITDLI.  

 

IDMSDLHI module 

IDMSDLHI is for use with batch command-level (EXEC DLI) COBOL and PL/I programs in 
z/OS.  This module replaces modules DFSLICBL, DFSLIPLI.  IDMSDLHI must be ordered 
first in the link edit with the application program. 

 

IDMSDLHC module 

IDMSDLHC is for use with CICS command-level (EXEC DLI) COBOL programs in z/OS.  This 
module replaces module DFHECI.  IDMSDLHC must be ordered first in the link edit with 
the application program. 

 

IDMSDLCV module 

IDMSDLCV is for use with CICS command-level (EXEC DLI) COBOL programs in z/VSE.  
This module replaces module DFHECI.  IDMSDLCV must be ordered first in the link edit 

with the application program. 
 

IDMSDLHP module 

IDMSDLHP is for use with CICS command-level (EXEC DLI) PL/I programs in z/OS.  This 
module replaces module DFHEPI.  IDMSDLHP must be ordered first in the link edit with 

the application program. 
 

IDMSDLPV module 

IDMSDLPV is for use with CICS command-level (EXEC DLI) PL/I programs in z/VSE.  This 
module replaces module DFHPL1I.  IDMSDLPV must be ordered first in the link edit with 

the application program. 
 

IDMSDLHA module 

IDMSDLHA is for use with CICS command-level (EXEC DLI) Assembler programs in z/OS.  
This module replaces module DFHEAI.  IDMSDLHA must be ordered first in the link edit 

with the application program. 
 



Runtime Interface 

 

Appendix B: CA IDMS DLI Transparency Software Components   249  

 

IDMSDLAV module 

IDMSDLAV is for use with CICS command-level (EXEC DLI) Assembler programs in z/VSE.  
This module replaces module DFHEAI.  IDMSDLAV must be ordered firs t in the link edit 
with the application program. 

 

IDMSDLVC database procedure 

IDMSDLVC is a database procedure provided with CA IDMS DLI Transparency for 
modifying variable-length records that correspond to variable-length segments. Before a 
variable-length record is modified, IDMSDLVC is called to maintain the length of the CA 

IDMS/DB variable-length record. IDMSDLVC is specified in a CALL sentence as part of the 
RECORD DESCRIPTION in the schema (see the CA IDMS Database Administration Guide). 

 

IDMSDLVD database procedure 

IDMSDLVD is a database procedure provided with CA IDMS DLI Transparency for 

retrieving variable-length records that correspond to variable-length segments. Before a 
variable-length record is retrieved, IDMSDLVD is called to maintain the length of the CA 
IDMS/DB variable-length record. IDMSDLVD is specified in a CALL sentence as part of the 

RECORD DESCRIPTION in the schema (see the CA IDMS Database Administration Guide). 
 

CA IDMS DLI Transparency Front End 

The CA IDMS DLI Transparency front-end components consist of the IDMSDLFE module 
and, if CA IDMS DLI Transparency is used under CICS, the IDMSDLFC module. 

 

IDMSDLFE module 

The IDMSDLFE module establishes, controls, and terminates communication with the 
back end (the RHDCDLBE module). When IDMSDLFE receives an initialization call from 
the IDMSDLRC module in a batch environment or from IDMSDLFC under CICS (see 

below), it performs the following functions: 

■ Acquires work area 

■ Issues a BIND RUN-UNIT to the back end (RHDCDLBE) 

■ Issues a call to RHDCDLBE for PCB information 
 



Runtime Interface 

 

250  DLI Transparency User Guide 

 

Once the initialization functions are complete, IDMSDLFE accepts DL/I calls from the 
language interface and performs the following functions: 

■ Sends the DL/I calls to the back end. 

■ Accepts the retrieved data and status information from the back end. 

■ Receives from the back end the updated PCB control blocks, which are used to 

return retrieved data and status information to the DL/I application. When the DL/I 
application finishes executing, the front end receives a termination call  from the 
region controller and performs the following: 

– Issues a FINISH to the back end 

– Frees storage 
 

IDMSDLFC module 

The IDMSDLFC module is a component in the reassembled IDMSINTC macro (see CA 
IDMS DLI Transparency Run-Time Environment (see page 155)). Used only under CICS, 

IDMSDLFC is initialized by a special signon transaction and performs the following 
functions: 

■ Linking a CICS DL/I application with  IDMSDL1C or any other CA IDMS DL/I 

Transparency language interface establishes the intent to use CA IDMS DLI 
Transparency (see CA IDMS DLI Transparency Run-Time Environment (see 
page 155)). 

 

■ Receives control on a DL/I call  from the DL/I application program. 

■ Reformats the call  parameter l ist and sends the list to the front end. 

■ Passes control to the front end, which establishes, controls, and terminates 
communication with the back end. 

 

CA IDMS DLI Transparency Back End 

The back end consists of the RHDCDLBE module The back end processing is initiated by a 

BIND RUN-UNIT issued by IDMSDLFE. The back end performs the foll owing functions 
during initiation of the run unit: 

■ Loads the appropriate fixed IPSB 

■ Acquires storage 

■ Acquires PCB information from the IPSB and then uses the information to build the 
PCBs 

 



The Load Utility 

 

Appendix B: CA IDMS DLI Transparency Software Components   251  

 

Once the run unit is initiated, the back end performs the following functions for it: 

■ Issues appropriate CA IDMS/DB calls to service DL/I requests  

■ Accepts from CA IDMS/DB retrieved data and/or status information 

■ Sends retrieved data and/or status information to the front end 

After the DL/I application program has executed, RHDCDLBE receives a FINISH from 

either the front end (in batch processing) or IDMSINTC (in CICS processing) and 
terminates processing. 

 

The Load Utility 

The load util ity consists of the IDMSDLLD module. It accepts data unloaded from a DL/I 
database (via IBM's HD unload util ity) and stores it in a CA IDMS/DB database. The CA 

IDMS/DB database must be prepared and initialized before running the load util ity. 
 

To execute, the load util ity also requires: 

■ An IPSB load module. The IPSB translates the DL/I segment and data structure 
definitions to equivalent CA IDMS/DB record and set definitions.  The load util ity 
uses the DL/I-to-CA IDMS/DB equivalencies when storing the data in the CA 

IDMS/DB database. The IPSB definition must reflect the special considerations for a 
load IPSB (IPSB used with the load util ity). 

■ CA IDMS/DB schema, subschema, and DMCL modules. The CA IDMS/DB modules 

constitute the runtime environment for the CA IDMS/DB database. 
 

The process of loading the DL/I data can involve up to six steps. If the DL/I data does not 

include logical relationships, the only step required is the actual database load (Step 2). 
The steps in the load process are: 

1. Preload CALC processing ── Calculates CA IDMS/DB preload database pages for 

DL/I root segments to speed up the actual load (Step 2). Included in this step is a 
sort of the preload CALC data. 

2. Database load ── Stores the DL/I data in the CA IDMS/DB database. If logical 
relationships are found, the load util ity writes the logical child records and their 

related logical parents to a workfile for additional processing. If the DL/I data comes 
from multiple databases (DBDs), a separate workfile is produced for each source 
database. 

 

3. Workfile sort/merge ── Merges multiple workfiles from Step 2 and sorts the 
resulting fi le to arrange logical child records under their logical parents. 

4. Prefix (concatenated key) resolution ── Processes the sorted workfile and 
generates correct prefixes (concatenated keys) for the logical child records. 

 



The Load Utility 

 

252  DLI Transparency User Guide 

 

5. Workfile hierarchical sort ── Sorts the workfile with resolved prefixes so that the 
logical child records are in their original DBD hierarchical sequences. 

6. Prefix update ── Updates the logical child records in the CA IDMS/DB database with 
the generated prefixes. The prefixes are needed to establish the CA IDMS/DB set 
pointers for the logical child (member) sets and their logical parent (owner) sets. 

 

Only Steps 1, 2, 4, and 6 invoke the IDMSDLLD module.  Steps 3 and 5 (the sorts) take 
place outside of the load util ity and CA IDMS DLI Transparency. They require use of the 

user's native sort/merge facil ity. 

The IDMSDLLD Steps 1, 2, 4, and 6 produce reports that show the results of the 
processing and a count of the records involved. 

 

 



 

Appendix C: Index Suppression Exit Support  253  

 

Appendix C: Index Suppression Exit Support 
 

This section contains the following topics: 

About This Appendix (see page 253) 
Index Suppression Exit Support (see page 253) 
Run Time Operation (see page 254) 

Interface (see page 254) 
 

About This Appendix 

This appendix describes how to use the index suppression exit. 
 

Index Suppression Exit Support 

Use Your Own Index Suppression Exit Routine 

CA IDMS DLI Transparency allows you to write your own index suppression exit routines 
for use with DL/I sparse indexes. If you have a DL/I secondary index, you can specify the 
exit routine so that it receives control immediately before the pointer records are stored 
in the secondary index. The exit routine can then indicate to CA IDMS DLI Transparency 

whether to process or ignore the store request. 
 

How to Define and Exit Routine 

To define an exit routine to CA IDMS DLI Transparency, specify the name of the routine 
for the EXIT ROUTINE parameter on the INDEX statement in the IPSB INDEX SECTION 
(described in IPSB Compiler (see page 93)). The name of the routine must match the 

name specified for the EXTRTN parameter on the XDFLD statement in the DL/I DBD 
definition. Note that the syntax generator will  generate a corresponding EXIT ROUTINE 
in the IPSB source for each EXTRTN parameter it finds in the DL/I DBD definitions. 

 



Run Time Operation 

 

254  DLI Transparency User Guide 

 

Run Time Operation 

When the Exit Routine is Invoked 

At program run time, the exit routine comes into play when the DL/I application issues 
an ISRT (insert) or REPL (replace) call  for a CA IDMS/DB record that has been defined as 
an index source record in the INDEX SECTION of the active IPSB. When CA IDMS DLI 

Transparency encounters the ISRT or REPL call, it attempts to load the exit routine. To 
make sure the exit routine is available to CA IDMS DLI Transparency, you must place it in 
an operating system partitioned data set that can be accessed via a CDMSLIB JCL 
statement. An unsuccessful load of the routine will  result in a PCB error status of NX. 

 

ISRT Call 

For an ISRT call, CA IDMS DLI Transparency determines whether the record to be stored 
participates in an index relationship as the index source record. If CA IDMS DLI 
Transparency finds such a relationship, it builds a suitable index pointer record. After 

checking for null value criteria, CA IDMS DLI Transparency calls the exit routine specified 
in the IPSB and passes control to it. It is the responsibil ity of the routine to determine 
whether the index pointer record should be stored or suppressed. The routine indicates 
its decision via a return code in register 15. 

 

REPL Call 

For a REPL call, the same process occurs as for an ISRT. The only difference is  that prior 
to storing or suppressing an index pointer record CA IDMS DLI Transparency removes all  
existing index pointer records from the secondary index. 

 

Interface 

CA IDMS DLI Transparency expects an index exit routine to perform standard assembler 

l inkage and provides a save area in register 13 for this purpose. Upon entry, the exit 
routine must save the contents of register 13. Upon return, it must restore the contents 
of registers 1 through 14. Under no circumstances should the routine alter data 

addressed by the registers at entry. 
 



Interface 

 

Appendix C: Index Suppression Exit Support  255  

 

CA IDMS DLI Transparency initializes the registers to the following values: 

■ Register 2 - Address of the index pointer record 

■ Register 3 - Address of the index exit PARMS DSECT (described in figure 73 available 
further below) 

■ Register 4 - Address of the index source record 

■ Register 13 - Address of the save area 

■ Register 14 - Return address in CA IDMS DLI Transparency 

■ Register 15 - Address of the index exit entry point 
 

The exit routine controls CA IDMS DLI Transparency's action by the return code it places 
in register 15, as follows: 

■ 4 ── Suppresses the index pointer record 

■ 0 ── Stores the index pointer record as part of the secondary index relationship 
 

Figure 73 shows the format of the index exit PARMS DSECT (NDXXITDS DSECT), as 
passed to the exit routine. 

                        NDXXITDS DSECT 

   Offset   Field Name        Type/             Description 

                                     Length 

       0    NDXRECNM     DS    CL8        Index pointer record name 

       8    NDXFLDNM     DS    CL8        Index definition field name 

      16    NDXXITNM     DS    CL8        Index exit name 

      24    NDXXITEP     DS    A           Index exit entry point 

Figure 73. Index Exit PARMS DSECT 
 

 





 

Appendix D: CA IDMS DLI Transparency JCL  257  

 

Appendix D: CA IDMS DLI Transparency JCL 
 

This section contains the following topics: 

About This Chapter (see page 257) 
Syntax Generator JCL (see page 258) 
IPSB Compiler JCL (see page 262) 

Run-Time Interface JCL (see page 266) 
Load Util ity JCL (see page 277) 
IPSB Decompiler JCL (see page 293) 

 

About This Chapter 

This appendix presents all  of the JCL required for: 

■ The syntax generator 

■ The IPSB compiler 

■ The run-time interface 

■ The load util ity 

Note:  z/VSE JCL is presented using UPSI.  z/VSE users can optionallyuse a SYSCTL 
statement or util ize a SYSIDMS parameter at runtime. In some cases, having SYSIDMS 

parameters in inline JCL (SYSIPT) may produce undesirable results due to application 
parameter usage.  In such cases, SYSIDMS should be implemented as a DATASET. 
Otherwise, SYSIDMS parameters should be placed before the DL/I SYSIPT parameter 
information. For more information about all  SYSIDMS parameters, see the CA IDMS 

Common Facilities Guide. 
 



Syntax Generator JCL 

 

258  DLI Transparency User Guide 

 

Syntax Generator JCL 

Assemble a PSB 

The JCL to assemble a PSB for use when generating IPSB source statements is shown 
below: 

PSB (z/OS) 

//JOB 

//ASM  EXEC PGM=ASMA90 

//SYSPRINT DD SYSOUT=A 

//SYSLIB DD DSN=yourHLQ.CAGJSRC,DISP=SHR 

//SYSUT1 DD DSN=&&SYSUT1,UNIT=disk,SPACE=(1700,(600,100)) 

//SYSUT2 DD DSN=&&SYSUT2,UNIT=disk,SPACE=(1700,(300,50)) 

//SYSUT3 DD DSN=&&SYSUT3,UNIT=disk,SPACE=(1700,(30,50)) 

//SYSPUNCH  DD DUMMY 

//SYSGO  DD DSN=&&OBJSET,UNIT=SYSDA,SPACE=(80,(200,50)), 

    DISP=(MOD,PASS) 

//SYSIN  DD  * 

Insert PSB source code here. 

/* 

//SYSIN  DD  * 

//LINK   EXEC PGM=HEWL 

//SYSPRINT  DD  SYSOUT=A 

//SYSUT1 DD DSN=&&SYSUT1,UNIT=disk,SPACE=(1024,(50,20)) 

//SYSLMOD   DD  DISP=SHR,DSN=user.loadlib(psbname)  

//SYSLIN DD DSN=&&OBJSET,DISP=(OLD,DELETE) 

//       DD  DDNAME=SYSIN 

// 
 

 

yourHLQ.CAGJSRC data set name of the CA IDMS/DB source library 

disk symbolic device type for a disk fi le 

psbname member name of the PSB 

user.loadlib data set name of the load library that is to contain the 
resulting assembled PSB 



Syntax Generator JCL 

 

Appendix D: CA IDMS DLI Transparency JCL  259  

 

PSB (z/VSE) 

// JOB 

// LIBDEF *, SEARCH=idms.library 

// LIBDEF *, CATALOG=user.library 

// OPTION CATAL 

   PHASE psbname,* 

// EXEC  ASSEMBLY 

insert PSB source code here 

/* 

// EXEC  LNKEDT 
 

 

idms.library name of the CA IDMS/DB source library 

user.l ibrary name of the library that is to contain the resulting assembled 
PSB 

psbname name of the PSB source statements  

Assemble DBDs 

The JCL to assemble DBDs for use when generating IPSB source statements is shown 
below: 

DBD (z/OS) 

//JOB 

//ASM       EXEC  PGM=ASMA90 

//SYSPRINT  DD  SYSOUT=A 

//SYSLIB    DD DSN=yourHLQ.CAGJMAC,DISP=SHR 

//SYSUT1    DD DSN=&&SYSUT1,UNIT=disk,SPACE=(1700,(600,100)) 

//SYSUT2    DD DSN=&&SYSUT2,UNIT=disk,SPACE=(1700,(300,50)) 

//SYSUT3    DD DSN=&&SYSUT3,UNIT=disk,SPACE=(1700,(30,50)) 

//SYSPUNCH  DD DUMMY 

//SYSGO     DD DSN=&&OBJSET,UNIT=SYSDA,SPACE=(80,(200,50)),DISP=(MOD,PASS) 

//SYSIN     DD  * 

DBD source code  

/* 

//LINK      EXEC  PGM=HEWL 

//SYSPRINT  DD  SYSOUT=A 

//SYSUT1 DD DSN=&&SYSUT1,UNIT=disk,SPACE=(1024,(50,20)) 

//SYSLMOD   DD  DISP=SHR,DSN=user.loadlib(dbdname)  

//SYSLIN DD DSN=&&OBJSET,DISP=(OLD,DELETE) 

// 
 

 

yourHLQ.CAGJMAC data set name of the CA IDMS/DB macro library 



Syntax Generator JCL 

 

260  DLI Transparency User Guide 

 

dbdname member name of the DBD 

disk symbolic device type for a disk fi le 

user.loadlib data set name of the load library that is to contain the 
resulting assembled DBD 

DBD (z/VSE) 

// JOB 

// LIBDEF *,SEARCH=idms.library' 

// LIBDEF *,CATALOG=user.library 

// OPTION CATAL 

   PHASE dbdname,* 

// EXEC  ASSEMBLY 

insert DBD source code here  

/* 

// EXEC  LNKEDT 
 

 

idms.library name of the CA IDMS/DB source library 

user.l ibrary name of the library that is to contain the resulting assembled 
DBD 

dbdname name of the DBD source statements  

Execute the Syntax Generator 

The JCL to execute the syntax generator is shown below: 

SYNTAX GENERATOR (z/OS) 

//JOB 

//IPSBGEN   EXEC  PGM=IDMSDLPG 

//STEPLIB   DD DISP=SHR,DSN=idms.loadlib  

//       DD DISP=SHR,DSN=user.loadlib  

//SYSLST DD  SYSOUT=A 

//SYSPCH DD DSN=user.syntax,DISP=(NEW,CATLG),SPACE=(TRK,5), 

    DCB=(LRECL=80,BLKSIZE=4000,RECFM=FB) 

//SYSIPT DD  * 

compiler-directive statements 

generator statements  

/* 
 

 

idms.loadlib data set name of the CA IDMS/DB load library 

user.loadlib data set name of the load library that contains the assembled 
PSB and DBDs 



Syntax Generator JCL 

 

Appendix D: CA IDMS DLI Transparency JCL  261  

 

user.syntax data set name for the fi le that is to contain the resulting 
source statements 

SYNTAX GENERATOR (z/VSE) 

// JOB 

// DLBL IDMSPCH,'idms.user.syntax' 

// EXTENT SYS016,nnnnnn 

// LIBDEF *,SEARCH=user.library 

// EXEC IDMSDLPG 

compiler-directive statements 

generator statements  

/* 

/& 
 

 

idms.user.syntax name of the source library that is to contain the generated 
SCHEMA, SUBSCHEMA, DMCL or ISPSB source statements 

nnnnnn volume serial identifier 

user.l ibrary name of the library that contains the assembled DBDs/PSBs  



IPSB Compiler JCL 

 

262  DLI Transparency User Guide 

 

IPSB Compiler JCL 

The JCL necessary to execute the IPSB compiler to assemble and link edit the output is 
shown below: 

IPSB COMPILER (z/OS) 

//DLMG  EXEC  PGM=IDMSDLMG 

//STEPLIB DD  DSN=idms.loadlib,DISP=SHR 

//SYSLST DD  SYSOUT=A,DCB=BLKSIZE=133 

//SYSPCH DD  DSN=&&SYSPCH,UNIT=disk,SPACE=(4000,(100,50)) 

//              DCB=(RECFM=FB,LRECL=80,BLKSIZE=4000),DISP=(NEW,PASS) 

//SYSIPT DD  * 

ipsb input statements 

/* 

//ASM  EXEC  PGM=ASMA90 

//SYSPRINT DD  SYSOUT=A 

//SYSLIB DD  DSN=yourHLQ.CAGJMAC,DISP=SHR 

//SYSUT1 DD  UNIT=disk,SPACE=(cyl,(2,2)) 

//SYSUT2 DD  UNIT=disk,SPACE=(cyl,(2,2)) 

//SYSUT3 DD UNIT=disk,SPACE=(cyl,(2,2)) 

//SYSPUNCH DD DSN=&&IPSB,UNIT=disk,DISP=(NEW,PASS), 

//    SPACE=(80,(400,40)) 

//SYSIN  DD  DSN=&&SYSPCH,DISP=(OLD,DELETE) 

//LINK      EXEC  PGM=HEWL 

//SYSPRINT      SYSOUT=A 

//SYSLIN DD  DSN=&&IPSB,DISP=(OLD,DELETE) 

//SYSUT1 DD  UNIT=disk,SPACE=(trk,(20,5)) 

//SYSLMOD DD  DSN=idms.loadlib(ipsb),DISP=SHR 
 

 

idms.loadlib data set name of the CA IDMS/DB load library containing the 

subschema description and IDMSDLMG 

cyl,(2,2) space to be allocated in bytes per cylinders  

disk symbolic device type for the disk fi le 

&&IPSB temporary data set containing the output from the assembly 

step 

yourHLQ.CAGJMAC data set name of the macro library 

&&SYSPCH temporary data set containing the output from IPSB compiler 

(IDMSDLMG) 

trk,(20,5) space to be allocated in bytes per tracks  

4000,(100,50) space to be allocated in bytes per blocks  

80,(400,40) space to be allocated in bytes per blocks  



IPSB Compiler JCL 

 

Appendix D: CA IDMS DLI Transparency JCL  263  

 

IPSB COMPILER (z/VSE) 

// JOB 

// LIBDEF *,SEARCH=idms.library 

// LIBDEF *,CATALOG=ipsb.library 

// DLBL IJSYSPH,'===.compiler.output',0 

// EXTENT SYSPCH,nnnnnn,1,,ssss,llll 

// ASSGN SYSPCH,DISK,VOL=nnnnnn,SHR 

// EXEC IDMSDLMG 

insert IPSB source statements here 

/* 

CLOSE SYSPCH,PUNCH 

/* 

// DLBL  IJSYSIN,'===.compiler.output',0 

// EXTENT SYSIPT,nnnnnn,1,,ssss,llll 

   ASSGN  SYSIPT,DISK,PERM,VOL=TECHD1,SHR 

// OPTION DECK,NOEDECK,LIST,NORLD,NOXREF 

// EXEC  ASSEMBLY 

/* 

CLOSE SYSIPT,SYSRDR 

CLOSE SYSPCH,OOD 

/* 

DLBL IJSYSIN,'===.assembler.output',0: 

// EXTENT SYSIPT,nnnnnn,1,,ssss,llll 

   ASSGN SYSIPT,DISK,VOL=nnnnnn,SHR 

// OPTION CATAL 

   PHASE ipsbname,* 

   INCLUDE 

// EXEC LNKEDT 

/* 

   CLOSE SYSIPT,SYSRDR 

/* 
 

 

idms.library name of the library 

ipsb.library name of the library that is to contain the compiled IPSB 
modules 

ijsysin fi le name of the input fi le to the linkage editor 

i jsyspch fi le name of the output fi le 

l l l l number of tracks required for the disk fi le 

nnnnnn volume serial number of the disk unit 

ssss relative starting track of the disk fi le 

sysipt logical-unit assignment of the input fi le to the linkage editor 

syspch logical-unit assignment of the output fi le 



IPSB Compiler JCL 

 

264  DLI Transparency User Guide 

 

ipsbname name of the IPSB runtime module 

The JCL necessary to execute the CA IDMS DLI Transparency program definition table 

compiler (IDMSDLTG) and to assemble and link edit the DLPDTAB output is shown 
below: 

PROGRAM DEFINITION TABLE COMPILER (z/OS) 

//DLTG  EXEC  PGM=IDMSDLTG 

//STEPLIB DD  DSN=idms.loadlib,DISP=SHR 

//SYSLST DD  SYSOUT=A,DCB=BLKSIZE=133 

//SYSPCH DD  DSN=&&SYSPCH,UNIT=disk,SPACE=(4000,(100,50)) 

//              DCB=(RECFM=FB,LRECL=80,BLKSIZE=4000),DISP=(NEW,PASS) 

//SYSIPT DD  * 

pdt input statements 

/* 

//ASM  EXEC  PGM=ASMA90 

//SYSPRINT DD  SYSOUT=A 

//SYSLIB DD  DSN=yourHLQ.CAGJMAC,DISP=SHR 

//SYSUT1 DD  UNIT=disk,SPACE=(cyl,(2,2)) 

//SYSUT2 DD  UNIT=disk,SPACE=(cyl,(2,2)) 

//SYSUT3 DD UNIT=disk,SPACE=(cyl,(2,2)) 

//SYSPUNCH DD DSN=&&PDTB,UNIT=disk,DISP=(NEW,PASS), 

//    SPACE=(80,(400,40)) 

//SYSIN  DD  DSN=&&SYSPCH,DISP=(OLD,DELETE) 

//LINK      EXEC  PGM=HEWL 

//SYSPRINT      SYSOUT=A 

//SYSLIN DD  DSN=&&PDTB,DISP=(OLD,DELETE) 

//SYSUT1 DD  UNIT=disk,SPACE=(trk,(20,5)) 

//SYSLMOD DD  DSN=idms.loadlib(DLPDTAB),DISP=SHR 
 

 

idms.loadlib data set name of the CA IDMS/DB load library containing the 

subschema description and IDMSDLTG 

cyl,(2,2) space to be allocated in bytes per cylinders  

disk symbolic device type for the disk fi le 

&&PDTB temporary data set containing the output from the assembly 
step 

yourHLQ.CAGJMAC data set name of the macro library 

&&SYSPCH temporary data set containing the output from program 

definition table compiler (IDMSDLTG) 

trk,(20,5) space to be allocated in bytes per tracks  

4000,(100,50) space to be allocated in bytes per blocks  

80,(400,40) space to be allocated in bytes per blocks  



IPSB Compiler JCL 

 

Appendix D: CA IDMS DLI Transparency JCL  265  

 

DLPDTAB required link edit module name in the SYSLMOD statement. 

PROGRAM DEFINITION TABLE COMPILER (z/VSE) 

// JOB 

// LIBDEF *,SEARCH=idms.library 

// LIBDEF *,CATALOG=pdtb.library 

// DLBL IJSYSPH,'===.compiler.output',0 

// EXTENT SYSPCH,nnnnnn,1,,ssss,llll 

// ASSGN SYSPCH,DISK,VOL=nnnnnn,SHR 

// EXEC IDMSDLTG 

insert PDT  source statements here 

/* 

CLOSE SYSPCH,PUNCH 

/* 

// DLBL  IJSYSIN,'===.compiler.output',0 

// EXTENT SYSIPT,nnnnnn,1,,ssss,llll 

   ASSGN  SYSIPT,DISK,PERM,VOL=TECHD1,SHR 

// OPTION DECK,NOEDECK,LIST,NORLD,NOXREF 

// EXEC  ASSEMBLY 

/* 

CLOSE SYSIPT,SYSRDR 

CLOSE SYSPCH,OOD 

/* 

DLBL IJSYSIN,'===.assembler.output',0: 

// EXTENT SYSIPT,nnnnnn,1,,ssss,llll 

   ASSGN SYSIPT,DISK,VOL=nnnnnn,SHR 

// OPTION CATAL 

   PHASE pdtbname,* 

   INCLUDE 

// EXEC LNKEDT 

/* 

   CLOSE SYSIPT,SYSRDR 

/* 
 

 

idms.library name of the library 

pdtb.library name of the library that is to contain the compiled PDT 
modules 

ijsysin fi le name of the input fi le to the linkage editor 

i jsyspch fi le name of the output fi le 

l l l l number of tracks required for the disk fi le 

nnnnnn volume serial number of the disk unit 

ssss relative starting track of the disk fi le 

sysipt logical-unit assignment of the input fi le to the linkage editor 



Run-Time Interface JCL 

 

266  DLI Transparency User Guide 

 

syspch logical-unit assignment of the output fi le 

pdtbname name of the PDT runtime module (DLPDTAB) 

Run-Time Interface JCL 

Link Edit Batch Call-Level DL/I Applications 

To link edit the DL/I application program with the language application program with 
the language interface/ interface, the JCL for z/OS and for z/VSE is provided below: 

IDMSDLLI (LINK EDIT) (z/OS) 

//LINK   EXEC  PGM=HEWL 

//SYSPRINT DD  SYSOUT=A 

//IDMSLIB  DD  DSN=idms.loadlib,DISP=SHR 

//SYSLIB  DD  DSN=user.loadlib,DISP=SHR 

//SYSUT1  DD  UNIT=SYSDA,SPACE=(trk,(20,5)) 

//SYSLMOD  DD  DSN=user.loadlib,DISP=SHR 

//SYSLIN  DD  * 

INCLUDE IDMSLIB(IDMSDLLI) 

INCLUDE SYSLIB(userpgm) 

ENTRY DLITCBL     (or appropriate entry point name)  

NAME userpgm(R) 

/* 

// 
 

 

idms.loadlib data set name of the IDMS object l ibrary 

trk,(20,5) space to be allocated in bytes per track 

user.loadlib data set name of the load library that is to contain the 
resulting l inked user application program 

userpgm name of the DL/I application program to be link edited to 

IDMSDLLI 



Run-Time Interface JCL 

 

Appendix D: CA IDMS DLI Transparency JCL  267  

 

IDMSDLLI (LINK EDIT) (z/VSE) 

//JOB 

//LIBDEF *,SEARCH=(idms.library, user.library) 

//LIBDEF *,CATALOG=user.library 

//OPTION CATAL 

  PHASE userpgm,* 

  INCLUDE IDMSDLLI 

  INCLUDE userpgm} 

  ENTRY userpgm  }      Assembler programs 

//EXEC  LNKEDT 

/* 

CLOSE SYSIPT,SYSRDR 

/* 
 

 

idms.library data set name of the CA IDMS DLI Transparency 

user.l ibrary data set name of the library containing the DL/I application 
program object 

user.l ibrary name of the library that is to contain the resulting l inked 
user's application program 

userpgm name of the DL/I application program in the user's object 
l ibrary 

COBOL and PL/I Programs 

COBOL and PL/I programs should add an INCLUDE statement and replace the ENTRY 
statement, as follows: 

■ COBOL: 

INCLUDE IDMSDLBC 

ENTRY CBLCALLA 

■ PL/I: 

INCLUDE IDMSDLBP 

ENTRY PLICALLB 
 



Run-Time Interface JCL 

 

268  DLI Transparency User Guide 

 

Link Edit Batch Command-Level DL/I (EXEC DLI) Applications 

To link edit the DL/I application program using EXEC DLI commands with the language 
application program with the language interface/ interface, the JCL for z/OS and for 
z/VSE is provided below: 

IDMSDLHI (LINK EDIT) (z/OS) 

 
//LINK   EXEC  PGM=HEWL 

//SYSPRINT DD  SYSOUT=A 

//IDMSLIB  DD  DSN=idms.loadlib,DISP=SHR 

//SYSLIB  DD  DSN=user.loadlib,DISP=SHR 

//SYSUT1  DD  UNIT=SYSDA,SPACE=(trk,(20,5)) 

//SYSLMOD  DD  DSN=user.loadlib,DISP=SHR 

//SYSLIN  DD  * 

INCLUDE IDMSLIB(IDMSDLHI) 

INCLUDE SYSLIB(userpgm) 

ENTRY DLITCBL     (or appropriate entry point name)  

NAME userpgm(R) 

/* 

// 

   

idms.loadlib data set name of the IDMS object l ibrary 

trk,(20,5) space to be allocated in bytes per track 

user.loadlib data set name of the load library that is to contain the resulting 
l inked user application program 

userpgm name of the DL/I application program to be link edited to 
IDMSDLHI 

 

IDMSDLHI (LINK EDIT) (z/VSE) 

 
//JOB 

//LIBDEF *,SEARCH=(idms.library, user.l ibrary) 
//LIBDEF *,CATALOG=user.l ibrary 
//OPTION CATAL 

  PHASE userpgm,* 
  INCLUDE IDMSDLHI 
  INCLUDE userpgm} 

  ENTRY userpgm  }      Assembler programs  
//EXEC  LNKEDT 
/* 
CLOSE SYSIPT,SYSRDR 

/* 
 



Run-Time Interface JCL 

 

Appendix D: CA IDMS DLI Transparency JCL  269  

 

 

idms.library data set name of the CA IDMS DLI Transparency 

user.l ibrary data set name of the library containing the DL/I application 
program object 

user.l ibrary name of the library that is to contain the resulting l inked user's 

application program 

userpgm name of the DL/I application program in the user's object l ibrary 

  
 

Execute DL/I Batch Application Program 

The JCL to execute a DL/I batch application program is shown below: batch application 
program is shown below: 

Central Version 

EXECUTE BATCH APPLICATION (z/OS) 

//DLI  EXEC  PGM=IDMSDLRC,PARM='DLI,userprog,ipsb' 

//STEPLIB DD  DSN=idms.loadlib,DISP=SHR 

//        DD  DSN=user.loadlib,DISP=SHR 

//sysctl  DD  DSN=idms.sysctl,DISP=SHR 

//SYSLST  DD  SYSOUT=A 

//SYSIDMS DD * 

 

Put SYSIDMS parameters here  

 

DBNAME=database name or segment name  

DMCL=DMCL name if other than default of IDMSDMCL  

/* 

//SYSIN  DD  * 

any additional statements required to run DL/I application 

program  

/* 

Note: The user can specify either DLI or DB in the PARM parameter. If ipsb and userprog 
have the same names, ipsb can be omitted. For more information about all  SYSIDMS 
parameters, see the CA IDMS Common Facilities Guide. 

 

 

idms.loadlib data set name of the CA IDMS DLI Transparency load library 

idms.sysctl  data set name of the SYSCTL fi le 



Run-Time Interface JCL 

 

270  DLI Transparency User Guide 

 

ipsb the name of the IPSB associated with the DL/I application 
program 

sysctl  ddname of the SYSCTL fi le 

user.loadlib data set name of the load library containing the DL/I 
application program 

userprog the name of the DL/I application program 

Local Mode 

To execute the DL/I batch application program in local mode: 

■ Remove the SYSCTL statement. 

■ Replace the SYSCTL statement with the following: 

//sysjrnl DD DSN=idms.tapejrnl,DISP=(NEW,KEEP),UNIT=tape 

//userdb  DD  DSN=user.userdb,DISP=SHR 
 

 

idms.tapejrnl  data set name of the tape journal fi le 

sysjrnl ddname of the tape journal fi le 

tape symbolic device type for the tape journal fi le 

userdb ddname of the user database 

user.userdb data set name of the user database 



Run-Time Interface JCL 

 

Appendix D: CA IDMS DLI Transparency JCL  271  

 

Central Version 

EXECUTE BATCH APPLICATION (z/VSE) 

Note:  The following JCL is for use if IDMSDLRC includes IDMSDLPC in thelinkedit. 

// JOB 

// LIBDEF *,SEARCH=(idms.library,user.library) 

// OPTION LOG 

// DLBL  SYSCTL,'idms.sysctl',0,SD 

// EXTENT SYS000,nnnnnn 

// ASSGN SYS000,DISK,VOL=nnnnnn,SHR 

// DLBL SYSIDMS,'#SYSIPT',0,SD 

// EXEC IDMSDLRC 

sysidms parameter statements 

/* 

DLI,userprog,ipsbname 

/* 

 

additional JCL as required to run DL/I application program 

Note: The user can specify either DLI or DB. The user can omit ipsb if it has the same 
name as userprog. 

 

idms.library data set name of the CA IDMS DLI Transparency library 

user.l ibrary name of the library that contains the user's application 
program 

idms.sysctl  name of the DL/I application program in the user's l ibrary 

ipsbname name of the IPSB (Interface PSB) that is used by the 
application program 

nnnnnn volume serial number 

userprog the name of the DL/I application program 

Note: The following Run-Time interface JCL is for use if IDMSDLPC is not included in 
IDMSDLRC. 

 



Run-Time Interface JCL 

 

272  DLI Transparency User Guide 

 

// JOB 

// LIBDEF *,SEARCH=(idms.library,user.library) 

// OPTION LOG 

// DLBL  SYSCTL,'idms.sysctl',0,SD 

// EXTENT SYS000,nnnnnn 

// ASSGN SYS000,DISK,VOL=nnnnnn,SHR 

// DLBL SYSIDMS,'#SYSIPT',0,SD 

// EXEC IDMSDLRC PARM='DLI,userprog,ipsbname' 

sysidms parameter statements 

/* 

 

additional JCL as required to run DL/I application program 

Note: The user can specify either DLI or DB. The user can omit ipsb if it has the same 
name as userprog. 

 

 

idms.library data set name of the CA IDMS DLI Transparency library 

user.l ibrary name of the library that contains the user's application 
program 

idms.sysctl  name of the DL/I application program in the user's l ibrary 

ipsbname name of the IPSB (Interface PSB) that is used by the 
application program 

nnnnnn volume serial number 

userprog the name of the DL/I application program 

Local Mode JCL 

To execute the DL/I application program in local mode: 

■ Remove the UPSI statement. 

■ Insert the following after the ASSGN statement: 

// TLBL  journal,'idms.tapejrnl' 

// ASSGN sys009,X'ttt' 

// DLBL  userdb,'user.userdb' 

// EXTENT sys018,nnnnnn,1,ssss,llll 

// ASSGN sys018,dddd,VOL=nnnnnn,SHR 
 

 

idms.tape.jrnl  fi le-id of the tape journal  

dddd device assignment for the disk fi le 

journal  fi lename of the tape journal  

l l l l number of tracks required for the disk fi le 



Run-Time Interface JCL 

 

Appendix D: CA IDMS DLI Transparency JCL  273  

 

nnnnnn volume serial identifier of the appropriate disk volume 

sys009 logical-unit assignment of the tape journal fi le 

sys018 logical-unit assignment of the user database 

ssss relative starting track of the disk fi le 

ttt channel-unit assignment of the journal fi le 

userdb fi lename of the user database 

user.userdb fi le-id of the user database 
 

Assemble IDMSDL1C For CICS Call-Level DL/I Usage (z/OS) 

Use the following JCL to assemble IDMSDL1C: 

IDMSDL1C (z/OS) 

//      EXEC HLASMCL 

//C.SYSLIB   DD DSN=cics.maclib,DISP=OLD 

//                  DD DSN=yourHLQ.CAGJMAC,DISP=OLD 

//C.SYSIN DD * 

               COPY  #LREDS 

               COPY  #OPIDS 

IDMSDL1C CWADISP=nn  

         END 

/* 

//L.SYSLMOD DD DSN=idms.loadlib,DISP=OLD 

//L.SYSIN DD * 

ENTRY IDMSDL1C 

MODE AMODE(31),RMODE(24) 

NAME  IDMSDL1C(R) 

// 
 

 

yourHLQ.CAGJMAC Data set name of the IDMS macro library 

cics.maclib Data set name of the CICS macro library 

idmsdl1c Name of the IDMSDL1C module 

idms.loadlib Data set name of the CA IDMS load library 
containing CA IDMS system modules  

Syntax 

►►── IDMSDL1C CWADISP=cwa-intc-address-displacement ─────────────────────────►◄ 



Run-Time Interface JCL 

 

274  DLI Transparency User Guide 

 

Parameters 

CWADISP= 

Identifies the displacement within the CICS CWA of a fullword that holds the 
address of the IDMSINTC module. 

cwa-intc-address-displacement 

Specify the same value given to the CWADISP parameter of the CICSOPTS macro. 

Note: When IDMSDL1C is l ink edited to the CICS DL/I application program, DFHEAI0 
must be included in the linkage editor input (if not already included).  Also ensure that 
entry point DFHEI1 has been resolved in this application link edit. For command-level 

programs entry point DFHEI1 is typical ly resolved in the language- dependent 
command-level interface module already present in the link edit.  IDMSDL1C requires 
that entry points DFHEI1 and DFHEAI0 be resolved for successful operation. 

 
 

Assemble IDMSDL1V For CICS Call-Level DL/I Usage (z/VSE) 

The JCL to assemble IDMSDL1V in a z/VSE environment is shown below: 

IDMSDL1V (z/VSE) 

// JOB 

// LIBDEF *,SEARCH=(idms.library, cics.library) 

// OPTION CATAL,DECK 

// EXEC ASSEMBLY 

         COPY  #LREDS 

         COPY  #OPIDS 

         END 

/* 

Note: IDMSDL1V and the IDMS macros and copy books must be accessible from the 
assigned source-statement l ibrary. 

 

cics.l ibrary data set name of the IBM-supplied CICS library 

idms.library data set name of the CA IDMS DLI Transparency library 

nn CWADISP specifications corresponding to the IDMSINTC 

CWADISP 

Syntax 

►►── IDMSDL1V CWADISP=cwa-intc-address-displacement ─────────────────────────►◄ 
 



Run-Time Interface JCL 

 

Appendix D: CA IDMS DLI Transparency JCL  275  

 

Parameters 

CWADISP= 

Identifies the displacement within the CICS CWA of a fullword that holds the 
address of the IDMSINTC module. 

 

cwa-intc-address-displacement 

Specify the same value given to the CWADISP parameter of the CICSOPTS macro. 

 
 

Assemble Language Interfaces For Command-Level DL/I (EXEC DLI) Usage 

Use the following JCL to assembe the language interfaces: 

IDMSDLHC/IDMSDLHP /IDMSDLHA (z/OS) 

 

//ASM   EXEC PGM=ASMA90 

//SYSLIB DD DSN=cics.maclib,DISP=SHR 

//       DD DSN=yourHLQ.CAGJMAC,DISP=SHR 

//SYSUT1 DD  UNIT=disk,SPACE=(cyl,(2,2)) 

//SYSUT2 DD  UNIT=disk,SPACE=(cyl,(2,2)) 

//SYSUT3 DD UNIT=disk,SPACE=(cyl,(2,2)) 

//SYSPUNCH DD DSN=&&syspch,UNIT=disk,DISP=(NEW,PASS), 

//       SPACE=(80,(400,40)) 

//SYSIN  DD * 

         IDMSDLHC CWADISP=nn       for COBOL applications, use this line only 

         IDMSDLHP CWADISP=nn       for PL/I applications, use this line only 

         IDMSDLHA CWADISP=nn       for ASM applications, use this line only 

         END 

/* 

//LINK   EXEC PGM=HEWL 

//SYSLMOD DD DSN=idms.loadlib,DISP=SHR 

//SYSLIN DD DSN=&&syspch,UNIT=disk,DISP=(OLD,DELETE), 

 ENTRY IDMSDLXX                    change to the particular interface used 

 MODE AMODE(31),RMODE(ANY) 

 NAME  IDMSDLXX(R)                 change to the particular interface used 

// 

  

yourHLQ.CAGJMAC Data set name of the IDMS macro library 

cics.maclib Data set name of the CICS macro library 



Run-Time Interface JCL 

 

276  DLI Transparency User Guide 

 

idmsdlxx: 

IDMSDLHC 

IDMSDLHP 

IDMSDLHA 

 

Name of the COBOL interface module 

Name of the PL/I interface module 

Name of the Assembler interface module 

idms.loadlib Data set name of the CA IDMS load library containing CA 

IDMS system modules 

The JCL to assemble in a z/VSE environment is shown below: 

IDMSDLCV/IDMSDLPV/IDMSDLAV (z/VSE) 

 

// JOB 

// LIBDEF *,SEARCH=(idms.library) 

// OPTION CATAL,DECK 

// EXEC ASSEMBLY 

         IDMSDLCV CWADISP=nn         for COBOL applications, use this line only 

         IDMSDLPV CWADISP=nn         for PL/I applications, use this line only    

         IDMSDLAV CWADISP=nn         for ASM applications, use this line only  

         END 

/* 
 

Note: The IDMS macros and copy books must be accessible from the assigned 

source-statement l ibrary.  Only one of the interfaces l isted above should be assembled 
at a time.  Each interface is specific to a programming language. 

  

idms.library data set name of the CA IDMS DLI Transparency library 

nn CWADISP specifications corresponding to the IDMSINTC 
CWADISP 

Parameters 

CWADISP= 

Identifies the displacement within the CICS CWA of a fullword that holds the 
address of the IDMSINTC module. 

 

 
 



Load Utility JCL 

 

Appendix D: CA IDMS DLI Transparency JCL  277  

 

Load Utility JCL 

Preload CALC Processing (Step 1) 

The JCL to perform CALC processing and preload sorting on the unloaded DL/I data is 
shown below: 

Preload CALC Processing (Step 1, Part 1) (z/OS) 

//CALC  EXEC PGM=IDMSDLRC,PARM='CALC,IDMSDLLD,ipsbname' 

//STEPLIB DD DSN=idms.loadlib,DISP=SHR 

//        DD DSN=ipsb.loadlib,DISP=SHR 

//SYSOUT DD SYSOUT=A 

//SYSLST DD SYSOUT=A 

//SYSPRINT  DD  SYSOUT=A 

//SYS001 DD DSN=unloaded.dli.data,DISP=OLD 

//SYS002 DD DSN=unsorted.dli.calc.data, 

//    UNIT=TAPE,DISP=(NEW,KEEP) 

// 

// 
 

 

idms.loadlib data set name of the CA IDMS DLI Transparency 
load library 

ipsb.loadlib data set name of the IPSB load library 

ipsbname name of the IPSB load module 

unloaded.dli.data data set name of the unloaded DL/I data  

unsorted.dli.calc.data data set name of the unsorted DL/I CALC data  



Load Utility JCL 

 

278  DLI Transparency User Guide 

 

PreLoad CALC Processing (Step 1, Part 1) (z/VSE) 

// JOB 

// LIBDEF *,SEARCH=(idms.library,user.library) 

// DLBL fileid,'idms.database',,DA 

// EXTENT SYS018,nnnnnn 

// ASSGN SYS018,DISK,VOL=nnnnnn,SHR 

// TLBL  SYS001,'unloaded.dli.data' 

// ASSGN SYS001,nnn 

// TLBL  SYS002,'unsorted.dli.data' 

// ASSGN SYS002,nnn 

// EXEC IDMSDLRC 

sysidms parameter statements 

/* 

CALC,IDMSDLLD,ipsbname 

/* 

DMCL=dmclname 

/* 
 

 

idms.library data set name of the CA IDMS DLI Transparency library 

user.l ibrary name of the load library that contains the IPSB and 
SUBSCEHEMA modules. 

fileid DCML database fi le assignment 

idms.database name of the CA IDMS database fi le 

nnnnnn volume serial number of the disk unit 

unloaded.dli.data name of the tape data set that contains the HD UNLOAD DLI 
data 

unsorted.dli.data name of the tape data set that contains the CALC DLI data 
output 

nnn cuu address of the tape unit 

ibsbname name of the LOAD IPSB (Interface PSB with processing 

options of 'LOAD') 

dmclname name of the CA IDMS DMCL module 



Load Utility JCL 

 

Appendix D: CA IDMS DLI Transparency JCL  279  

 

 

// JOB 

// LIBDEF *,SEARCH=(idms.library,user.library) 

// DLBL fileid,'idms.database',,DA 

// EXTENT SYS018,nnnnnn 

// ASSGN SYS018,DISK,VOL=nnnnnn,SHR 

// TLBL  SYS001,'unloaded.dli.data' 

// ASSGN SYS001,nnn 

// TLBL  SYS002,'unsorted.dli.data' 

// ASSGN SYS002,nnn 

// EXEC  IDMSDLRC,PARM='CALC,IDMSDLLD,ipsbname' 

sysidms parameter statements 

/* 

DMCL=dmclname 

/* 
 

 

idms.library data set name of the CA IDMS DLI Transparency library 

user.l ibrary name of the load library that contains the IPSB and 

SUBSCEHEMA modules. 

fileid DCML database fi le assignment 

idms.database name of the CA IDMS database fi le 

nnnnnn volume serial number of the disk unit 

unloaded.dli.data name of the tape data set that contains the HD UNLOAD DLI 
data 

unsorted.dli.data name of the tape data set that contains the CALC DLI data 

output 

nnn cuu address of the tape unit 

ibsbname name of the LOAD IPSB (Interface PSB with processing 
options of 'LOAD') 

dmclname name of the CA IDMS DMCL module 



Load Utility JCL 

 

280  DLI Transparency User Guide 

 

PreLoad CALC Sort (Step 1, Part 2) (z/OS) 

//SORT  EXEC  SORT 

//SORTIN DD DSN=unsorted.calc.dli.data,DISP=OLD,UNIT=TAPE 

//SORTOUT DD DSN=sorted.calc.dli.data,DISP=OLD,UNIT=TAPE 

//SORTWK01 DD UNIT=DISK,SPACE=(CYL,(n),,CONTIG) 

//SORTWKO2 DD UNIT=DISK,SPACE=(CYL,(n),,CONTIG) 

//SORTWK03 DD UNIT=DISK,SPACE=(CYL,(n),,CONTIG) 

//SYSIN  DD * 

SORT  FIELDS=(20,4,BI,D,24,4,BI,A) 

/* 

// 
 

 

n number of cylinders for space allocation 

sorted.calc.dli.data data set name of the sorted DL/I CALC data  

unsorted.calc.dli.data data set name of the unloaded DL/I CALC data 
(from Step 1, Part 1) 

Note: This step requires that you use your own sort/merge facil ity. 
 

PreLoad CALC Sort (Step1, Part 2) (z/VSE) 

// TLB  SORTIN1,'unsorted.dli.data',,SD 

// ASSGN SYS001,nnn 

// TLBL SORTOUT,'sorted.dli.data',,SD 

// ASSGN SYS002,nnn 

// DLBL SORTWK1,'work.file1',,SD 

// EXTENT SYS003,nnnnnn,1,0,ssss,llll 

// ASSGN SYS003,DISK,VOL=nnnnnn,SHR 

// DLBL SORTWK2,'workfile2',,SD 

// EXTENT SYS004,1,0,ssss,llll 

// ASSGN SYS004,DISK,VOL=nnnnnn,SHR 

// DLBL SORTWK3,'work.file3',,SD 

// EXTENT SYS005,ERES00,1,0,ssss,llll 

// ASSGN SYS005,DISK,VOL=nnnnnn,SHR 

// EXEC SORT 

   SORT FIELDS=(20,4,BI,D,24,4,BI,A),FILES=1,WORK=3 

   RECORD TYPE=V 

   INPFIL BLKSIZE=8000 

   OUTFIL BLKSIZE=8000 

/* 

// 
 

 

unsorted.dli.data data set name of the fi le created by the CALC processing step 

sorted.dli.data data set name of the sorted workfile produced by this sort 
step 



Load Utility JCL 

 

Appendix D: CA IDMS DLI Transparency JCL  281  

 

nnn cuu address of the tape unit 

nnnnnn volume serial number of the disk unit 

work.fi le1 fi le id of the 1st SORT work fi le 

work.fi le2 fi le id of the 2nd SORT work fi le 

work.fi le3 fi le id of the 3rd SORT work fi le 

logical.workfile name of the data set that will  receive data concerning logical 
relationships 

ssss starting track in disk extent 

l l l l number of tracks required for the disk fi le 

Database Load (Step 2) 

The JCL to load the DL/I data in the CA IDMS/DB database is shown below: 

Central Version 

Database Load (Step 2) (z/OS) 

//LOAD  EXEC PGM=IDMSDLRC,PARM='LOAD,IDMSDLLD,ipsbname' 

//STEPLIB DD DSN=idms.loadlib,DISP=SHR 

//        DD DSN=ipsb.loadlib,DISP=SHR 

//sysctl DD DSN=idms.sysctl,DISP=SHR 

//SYSOUT DD SYSOUT=A 

//SYSLST DD SYSOUT=A 

//SYSPRINT  DD SYSOUT=A 

//SYS001 DD DSN=unloaded.dli.data, 

//    UNIT=TAPE,VOL=SER=nnnnnn,DISP=OLD 

//SYS003 DD DSN=step2.workfile, 

//              UNIT=TAPE,DISP=(NEW,KEEP), 

//    DCB=(RECFM=FB,LRECL=288,BLKSIZE=5760) 

// 
 

 

idms.loadlib data set name of the CA IDMS DLI Transparency load library 

ipsb.loadlib data set name of the IPSB load library 

idms.sysctl  data set name of the SYSCTL fi le 

ipsbname name of the IPSB load module 

nnnnnn volume serial identifier for the tape/disk volume 

step2.workfile logical workfile output by the load 

sysctl  ddname of the SYSCTL fi le 



Load Utility JCL 

 

282  DLI Transparency User Guide 

 

unloaded.dli.data data set name of the unloaded DL/I data  

Local Mode 

To execute the load process in local mode, remove the SYSCTL statement and replace 
with the following: 

//dictdb DD DSN=idms.dictdb  

//sysjrnl DD DSN=idms.tapejrnl,DISP=(NEW,KEEP),UNIT=tape 

//userdb DD DSN=user.userdb,DISP=SHR 

 

idms.dictdb data set name of the data dictionary 

idms.tapejrnl  data set name of the tape journal fi le 

dictdb ddname of the data dictionary 

sysjrnl ddname of the tape journal fi le 

tape symbolic device type for the tape journal fi le 

user.userdb data set name of the user database 

userdb ddname of the user database 

Central Version 

Database Load (Step 2) (z/VSE) 

Note: Use this Load util ity JCL if the IDMSDLPC is included in the IDMSDLRC linkedit. 

// JOB 

// LIBDEF *,SEARCH=(idms.library,user.library) 

// DLBL fileid,'idms.database',,DA 

// EXTENT SYS018,nnnnnn 

// ASSGN SYS018,DISK,VOL=nnnnnn,SHR 

// TLBL SYS001,'sorted.dli.data' 

// ASSGN SYS001,nnn 

// TLBL  SYS003,'logical.workfile' 

// ASSGN SYS003,nnn 

// EXEC  IDMSDLRC 

sysidms parameter statements 

/* 

LOAD,IDMSDLLD,ipsbname 

/* 

/DMCL=ipsbname 

/* 
 

 

idms.library data set name of the DLI Transparency library 



Load Utility JCL 

 

Appendix D: CA IDMS DLI Transparency JCL  283  

 

user.l ibrary name of the library that contains the IPSB and SUBSCHEMA 
modules 

fi leid DMCL database fi le assignment 

idms.database name of the CA IDMS database fi le 

nnnnnn volume serial number of the disk unit 

sorted.dli.data name of the tape data set that contains the sorted CALC DLI 
data 

logical.workfile name of the data set that will  receive data concerning logical 
relationships 

nnn cuu address of the tape unit 

ipsbname name of the LOAD IPSB (Interface PSB with processing 
options of 'LOAD') 

dmclname name of CA IDMS DMCL module 

Note: This LOAD util ity JCL is for use if IDMSDLPC is not included in IDMSDLRC. 
 

// JOB 

// LIBDEF *,SEARCH=(idms.library,user.library) 

// DLBL fileid,'idms.database',,DA 

// EXTENT SYS018,nnnnnn 

// ASSGN SYS018,DISK,VOL=nnnnnn,SHR 

// TLBL SYS001,'sorted.dli.data' 

// ASSGN SYS001,nnn 

// TLBL  SYS003,'logical.workfile' 

// ASSGN SYS003,nnn 

// EXEC IDMSDLRC,PARM='LOAD,IDMSDLLD,ipsbname 

sysidms parameter statements 

/* 

LOAD,IDMSDLLD,ipsbname 

/* 

/DMCL=dmclname 

/* 
 

 

idms.library data set name of the DLI Transparency library 

user.l ibrary name of the library that contains the IPSB and SUBSCHEMA 
modules 

fi leid DMCL database fi le assignment 

idms.database name of the CA IDMS database fi le 

nnnnnn volume serial number of the disk unit 



Load Utility JCL 

 

284  DLI Transparency User Guide 

 

sorted.dli.data name of the tape data set that contains the sorted CALC DLI 
data 

logical.workfile name of the data set that will  receive data concerning logical 
relationships 

nnn cuu address of the tape unit 

ipsbname name of the LOAD IPSB (Interface PSB with processing 
options of 'LOAD') 

dmclname name of CA IDMS DMCL module 

Local Mode JCL 

To execute the load process in local mode, remove the UPSI statement and insert the 
following after the ASSGN statement: 

// DLBL  dictdb,'idms.dictdb' 

// EXTENT sys015,nnnnnn,1,,SSSS,LLLL 

// ASSGN sys015,dddd,VOL=nnnnnn,SHR 

// TLBL  journal,'idms.tapejrnl' 

// ASSGN SYS009,X'ttt' 

// DLBL  userdb,'user.userdb',,DA 

// EXTENT sys018,nnnnnn,1,,SSSS,LLLL 

// ASSGN sys018,dddd,VOL=nnnnnn,SHR 
 

 

idms.dictdb fi le-id of the data dictionary 

idms.tapejrnl  data set name of the tape journal fi le 

dddd device assignment for the disk fi le 

dictdb fi lename of the data dictionary 

journal  fi lename of the tape journal  

nnnnnn volume serial number 

sys018 logical-unit assignment of the user database 

sys015 logical-unit assignment of the data dictionary 

ttt channel-unit assignment of the journal fi le 

user.userdb fi le-id of the user database 

userdb name of the user database 



Load Utility JCL 

 

Appendix D: CA IDMS DLI Transparency JCL  285  

 

Workfile Sort/Merge (Step 3) 

The JCL to merge/sort the logical workfiles produced by the load step is shown below: 

Workfile Sort/Merge (Step 3) (z/OS) 

// SORT  EXEC  SORT 

//SORTIN DD DSN=step2.workfile,DISP=OLD,UNIT=TAPE 

//SORTOUT DD DSN=step3.workfile,DISP=OLD,UNIT=TAPE 

//SORTWK01 DD UNIT=DISK,SPACE=(CYL,(n),,CONTIG) 

//SORTWK02 DD UNIT=DISK,SPACE=(CYL,(n),,CONTIG) 

//SORTWK03 DD UNIT=DISK,SPACE=(CYL,(n),,CONTIG) 

//SYSIN  DD * 

SORT  FIELDS=(25,5,BI,A) 

/* 

// 
 

 

n number of cylinders for space allocation 

step2.workfile the workfile output from Step 2 

step3.workfile the sorted workfile output by this step 

Note: This step requires that you use your own sort/merge facil ity. 
 

Workfile Sort/Merge (Step 3) (z/VSE) 

// TLBL  SORTIN1,'logical.workfile' 

// ASSGN  SYS001,nnn 

// TLBL  SORTOUT,'sorted.workfile' 

// ASSGN  SYS002,nnn 

// DLBL  SORTWK1,'work.file1' 

// EXTENT  SYS003,1,0,ssss,llll 

// ASSGN  SYS003,DISK,VOL=nnnnnn,SHR 

// DLBL  SORTWK2,'work.file2' 

// EXTENT  SYS004,1,0,ssss,llll 

// ASSGN  SYS004,DISK,VOL=nnnnnn,SHR 

// DLBL  SORTWK3,'work.file3' 

// EXTENT  SYS005,ERES00,1,,ssss,llll 

// ASSGN  SYS005,DISK,VOL=nnnnnn,SHR 

// EXEC SORT 

   SORT FIELDS=(25,5,BI,A),FILES=1,WORK=3 

   RECORD TYPE=F,LENGTH=288 

   INPFIL BLKSIZE=32544 

   OUTFIL BLKSIZE=32544 

/* 
 



Load Utility JCL 

 

286  DLI Transparency User Guide 

 

 

logical.workfile data set name of the logical workfile produced by LOAD 

processing 

sorted.workfile data set name of the sorted workfile produced by this SORT 
set 

nnn cuu address of the tape unit 

nnnnnn volume serial number of the disk unit 

work.fi le1 fi le-id of the first SORT work fi le 

work.fi le2 fi le id of the second SORT work fi le 

work.fi le3 fi le id of the third SORT work fi le 

ssss starting track in disk extent 

l l l l number of tracks in disk extent 

Prefix (Concatenated Key) Resolution (Step 4) 

The JCL to resolve the prefixes (concatenated keys) for the logical records in the workfile 
from Step 3 is shown below: 

Prefix (Concatenated Key) Resolution (Step 4) (z/OS) 

//PFXR  EXEC   PGM=IDMSDLRC,PARM='PFXR,IDMSDLLD,ipsbname' 

//STEPLIB DD DSN=idms.loadlib,DISP=SHR 

//        DD DSN=ipsb.loadlib,DISP=SHR 

//SYSOUT DD SYSOUT=A 

//SYSLST DD SYSOUT=A 

//SYSPRINT DD SYSOUT=A 

//SYS004 DD DSN=step3.workfile,DISP=OLD,UNIT=TAPE 

//SYS003 DD DSN=step4.workfile.DISP=OLD,UNIT=TAPE 

// 
 

 

idms.loadlib data set name of the CA IDMS DLI Transparency load library 

ipsb.loadlib data set name of the IPSB load library 

ipsbname name of the IPSB load module 

step3.workfile sorted output from Step 3 

step4.workfile the workfile output by this step 



Load Utility JCL 

 

Appendix D: CA IDMS DLI Transparency JCL  287  

 

Prefix (Concatenated Key) Resolution (Step 4) (z/VSE) 

Note: For use if IDMSDLPC is included in the IDMSDLRC linkedit. 

// JOB 

// LIBDEF *,SEARCH=(idms.library,user.library) 

// TLBL SYS004,'sorted.workfile' 

// ASSGN SYS004,nnn 

// TLBL SYS003,'hierarchic.workfile' 

// ASSGN SYS003,nnn 

// EXEC  IDMSDLRC 

sysidms parameter statements 

PFXR,IDMSDLLD,ipsbname 

/* 
 

 

idms.library data set name of the CA IDMS DLI Transparency library 

user.l ibrary name of the library that contains the IPSB and SUBSCHEMA 
modules 

sorted.workfile name of the tape data set that contains the output of the 

previous step's SORT 

hierarchic.workfile name of the tape data set that contains the output of this 
step's SORT 

nnn cuu address of the tape unit 

ipsbname name of the LOAD IPSB (Interface PSB with processing 
options of 'LOAD' ) 

Note: For use if IDMSDLRC does not include IDMSDLPC in the linkedit. 
 

// JOB 

// LIBDEF *,SEARCH=(idms.library,user.library) 

// TLBL SYS004,'sorted.workfile' 

// ASSGN SYS004,nnn 

// TLBL SYS003,'hierarchic.workfile' 

// ASSGN SYS003,nnn 

// EXEC IDMSDLRC,PARM='PFXR,IDMSDLLD,ipsbname 

sysidms parameter statements 

/* 
 

 

idms.library data set name of the CA IDMS DLI Transparency library 

user.l ibrary name of the library that contains the IPSB and SUBSCHEMA 

modules 

sorted.workfile name of the tape data set that contains the output of the 
previous step's SORT 



Load Utility JCL 

 

288  DLI Transparency User Guide 

 

hierarchic.workfile name of the tape data set that contains the output of this 
step's SORT 

nnn cuu address of the tape unit 

ipsbname name of the LOAD IPSB (Interface PSB with processing 
options of 'LOAD' ) 

Workfile Hierarchical Sort (Step 5) 

The JCL to hierarchically sort the workfile from Step 4 is shown below: 

Workfile Hierarchical Sort (Step 5) (z/OS) 

//SORT  EXEC  SORT 

//SORTIN DD DSN=step4.workfile,DISP=OLD,UNIT=TAPE 

//SORTOUT DD DSN=step5.workfile,DISP=OLD,UNIT=TAPE 

//SORTWK01 DD UNIT=DISK,SPACE=(CYL,(1),,CONTIG) 

//SORTWKO2 DD UNIT=DISK,SPACE=(CYL,(1),,CONTIG) 

//SORTWK03 DD UNIT=DISK,SPACE=(CYL,(1),,CONTIG) 

//SYSIN  DD * 

SORT  FIELDS=(17,8,BI,A) 

/* 

// 

Note: This step requires that you use your own sort/merge facil ity. 

 

step4.workfile the workfile output from Step 4 

step5.workfile hierarchically sorted workfile output by this step 



Load Utility JCL 

 

Appendix D: CA IDMS DLI Transparency JCL  289  

 

Workfile Hierarchical Sort (Step 5) (z/VSE) 

// TLBL SORTIN1,'hierarchic.workfile',,SD 

// ASSGN  SYS001,nnn 

// TLBL  SORTOUT,'final.workfile',,SD 

// ASSGN  SYS002,nnn 

// DLBL  SORTWK1,'work.file1',,SD 

// EXTENT  SYS003,1,0,ssss,llll 

// ASSGN  SYS003,DISK,VOL=nnnnnn,SHR 

// DLBL  SORTWK2,'work.file2',,SD 

// EXTENT  SYS004,1,0,ssss,llll 

// ASSGN  SYS004,DISK,VOL=nnnnnn,SHR 

// DLBL  SORTWK3,'work.file3' 

// EXTENT  SYS005,ERES00,1,0,ssss,llll 

// ASSGN  SYS005,DISK,VOL=nnnnnn,SHR 

// EXEC SORT 

   SORT FIELDS=(17,8,BI,A),FILES=1,WORK=3 

   RECORD TYPE=F,LENGTH=288 

   INPFIL BLKSIZE=32544 

   OUTFIL BLKSIZE=32544 

/* 
 

 

hierarchic.workfile data set name of the output from the PFXR step 

final.workfile data set name of the sorted workfile produced by this SORT 
step 

nnn cuu address of the tape unit 

nnnnnn volume serial number of the disk unit 

work.fi le1 fi le id of the third SORT work fi le 

work.fi le2 fi le id of the second SORT work fi le 

work.fi le3 fi le id of the third SORT work fi le 

ssss starting track in disk extent 

l l l l number of tracks in disk extent 



Load Utility JCL 

 

290  DLI Transparency User Guide 

 

Prefix Update (Step 6) 

The JCL to update the logical child database records with the resolved prefixes is shown 
below. This step uses the hierarchically sorted workfile from Step 5. 

Central Version 

Prefix Update (Step 6) (z/OS) 

//PFXU  EXEC PGM=IDMSDLRC,PARM='PFXU,IDMSDLLD,ipsbname' 

//STEPLIB DD DSN=idms.loadlib,DISP=SHR 

//   DD DSN=ipsb.loadlib,DISP=SHR 

//sysctl DD DSN=idms.sysctl,DISP=SHR 

//SYSOUT DD SYSOUT=A 

//SYSLST DD SYSOUT=A 

//SYSPRINT DD SYSOUT=A 

//SYS004 DD DSN=step5.workfile,DISP=OLD,UNIT=TAPE 

// 
 

 

idms.loadlib data set name of the CA IDMS DLI Transparency load library 

idms.sysctl  data set name of the SYSCTL fi le 

ipsb.loadlib data set name of the IPSB load library 

ipsbname name of the IPSB load module 

step5.workfile hierarchically sorted workfile from step 5 

sysctl  ddname of the SYSCTL fi le 

Local Mode JCL 

To execute the prefix update process in local mode, remove the SYSCTL statement and 
replace with the following: 

//dictdb DD DSN=idms.dictdb  

//sysjrnlDD DSN=idms.tapejrnl,DISP=(NEW,KEEP),UNIT=tape 

//userdb DD DSN=user.userdb,DISP=SHR 
 

 

idms.dictdb data set name of the data dictionary 

idms.tapejrnl  data set name of the tape journal fi le 

dictdb ddname of the data dictionary 

sysjrnl ddname of the tape journal fi le 

tape symbolic device type for the tape journal fi le 

user.userdb data set name of the user database 



Load Utility JCL 

 

Appendix D: CA IDMS DLI Transparency JCL  291  

 

userdb ddname of the user database 

Central Version 

Prefix Update (Step 6) (z/VSE) 

Note: Use the following LOAD util ity if IDMSDLPC is included in the IDMSDLRC linkedit. 

// JOB 

// LIBDEF *,SEARCH=(idms.library,user.library) 

// DLBL fileid,'idms.database',,DA 

// EXTENT SYS018,nnnnnn 

// ASSGN SYS018,DISK,VOL,=nnnnnn,SHR 

// TLBL  SYS004,'final.workfile' 

// ASSGN SYS004,nnn 

// EXEC  IDMSDLRC 

system parameter statements 

/* 

PFXU,IDMSDLLD,ipsbname 

/* 

/& 
 

 

idms.library data set name of the CA IDMS DLI Transparency library 

user.l ibrary name of the library that contains the IPSB and SUBSCHEMA 

modules 

fi leid DMCL database fi le assignment 

idms.database name of the CA IDMS database fi le 

nnnnnn volume serial number of the disk unit 

final.workfile name of the tape dataset that contains the previous step's 
sorted output 

ipsbname name of the LOAD IPSB (Interface PSB with processing 

options of 'LOAD') 

Note: The following LOAD util ity JCL is for use if IDMSDLPC is not included in the 
IDMSDLRC linkedit. 

 



Load Utility JCL 

 

292  DLI Transparency User Guide 

 

// JOB 

// LIBDEF *,SEARCH=(idms.library,user.library) 

// DLBL fileid,'idms.database',,DA 

// EXTENT SYS018,nnnnnn 

// ASSGN SYS018,DISK,VOL,=nnnnnn,SHR 

// TLBL  SYS004,'final.workfile' 

// ASSGN SYS004,nnn 

// EXEC IDMSDLRC,PARM='PFXU.IDMSDLLD,ipsbname 

system parameter statements 

/* 

/& 
 

 

idms.library data set name of the CA IDMS DLI Transparency library 

user.l ibrary name of the library that contains the IPSB and SUBSCHEMA 

modules 

fi leid DMCL database fi le assignment 

idms.database name of the CA IDMS database fi le 

nnnnnn volume serial number of the disk unit 

final.workfile name of the tape dataset that contains the previous step's 
sorted output 

ipsbname name of the LOAD IPSB (Interface PSB with processing 

options of 'LOAD') 

Local Mode JCL 

To execute the prefix update process in local mode, remove the UPSI statement and 
insert the following after the ASSGN statement: 

// DLBL  dictdb,'idms.dictdb' 

// EXTENT sys015,nnnnnn,1,,SSSS,LLLL 

// ASSGN sys015,dddd,VOL=nnnnnn,SHR 

// TLBL  journal,idms.tapejrnl' 

// ASSGN SYS009,X'ttt' 

// DLBL  userdb,'user.userdb',,DA 

// EXTENT sys018,nnnnnn,1,,SSSS,LLLL 

// ASSGN sys018,dddd,VOL=nnnnnn,SHR 
 

 

idms.dictdb fi le-id of the data dictionary 

idms.tapejrnl  data set name of the tape journal fi le 

dddd device assignment for the disk fi le 

dictdb fi lename of the data dictionary 



IPSB Decompiler JCL 

 

Appendix D: CA IDMS DLI Transparency JCL  293  

 

journal  fi lename of the tape journal  

nnnnnn volume serial number 

sys015 logical-unit assignment of the data dictionary 

sys018 logical-unit assignment of the user database 

ttt channel-unit assignment of the journal fi le 

user.userdb fi le-id of the user database 

userdb fi lename of the user database 

IPSB Decompiler JCL 

The JCL necessary to execute the IPSB decompiler is shown below: 

IPSB Decompiler (z/OS) 

//DECOMPIL EXEC PGM=IDMSDLID 

//STEPLIB  DD  DSN=idms.loadlib,DISP=SHR 

//SYSOUT   DD  SYSOUT=A 

//SYSLST   DD  SYSOUT=A 

//SYSPCH   DD  DSN=ipsb.source.library(ipsbname),DISP=OLD 

//SYSPRINT DD  SYSOUT=A 

//SYSIPT   DD  * 

IPSB=ipsb-load-module-name 

/* 

// 
 

 

idms.loadlib data set name of the CA IDMS DLI 
Transparency load library 

ipsb.loadlib data set name of the IPSB load library 

ipsb.source.library data set name of the IPSB source library 

IPSB=ipsb-load-module-name identifies the IPSB (required) 



IPSB Decompiler JCL 

 

294  DLI Transparency User Guide 

 

IPSB Decompiler (z/VSE) 

// JOB 

// LIBDEF *,SEARCH=(idms.library,ipsb.library) 

// DLBL ijsyspch 'ipsb.source' 

// EXTENT syspch,nnnnnn,1,0,ssss,llll 

// ASSGN syspch,x,'ddd' 

// ASSGN syslst,x'00E' 

// EXEC IDMSDLID 

sysidms parameter statements 

/* 

IPSB=ipsbname 

/& 
 

 

idms.library data set name of the CA IDMS DLI Transparency library 

ipsb.library name of the library that contains the IPSB load modules  

ipsb.source data set name of the IPSB source statements  

ijsyspch fi lename of the output fi le 

nnnnnn volume serial number of the disk unit 

syspch logical unit assignment of the output fi le 

ddd device assignment of the disk fi le 

l l l l number of tracks required for the disk fi le 

ssss relative starting track of the disk fi le 

ipbsname identifies the IPSB for decompiliation 

 



 

Appendix E: CA IDMS DLI Transparency IPSB Decompiler  295  

 

Appendix E: CA IDMS DLI Transparency 
IPSB Decompiler 
 

This section contains the following topics: 

About This Appendix (see page 295) 
Using the IPSB Decompiler (see page 295) 

IPSB Decompiler Run-Time Operations (see page 296) 
IPSB Decompiler Run-Time Considerations (see page 296) 

 

About This Appendix 

CA IDMS DLI Transparency includes an IPSB decompiler that creates CA IDMS DLI 
Transparency IPSB source statements from CA IDMS DLI Transparency IPSB load 

modules. 

This appendix describes how to use the IPSB decompiler. 
 

Using the IPSB Decompiler 

Follow these steps when using the IPSB decompiler: 

1. Identify all  IPSB load modules for decompilation. 

2. Allocate a direct access data set to receive the newly created IPSB source. 

3. Create appropriate JCL for IPSB decompilation (as described in CA IDMS DLI 
Transparency JCL (see page 257)). 

 

4. Run the IPSB decompiler once for each IPSB load module to be decompiled. 

5. Review SYSLST messages for each decompilation run to be sure the job was 
successful. 

Note: Although the IPSB compiler requires the subschema load module, the decompiler 
does not. 

 



IPSB Decompiler Run-Time Operations 

 

296  DLI Transparency User Guide 

 

IPSB Decompiler Run-Time Operations 

IPSB Decompiler Functions 

The IPSB decompiler performs the following functions: 

■ Reads SYSIPT for IPSB-directive control statement 

■ Accesses the IPSB named in the control statement 

■ Validates the identity of the IPSB 

■ Writes representative IPSB source statements to SYSPCH 

■ Writes informative messages to SYSLST 
 

 

Figure 74. Decompilation process 
 

IPSB Decompiler Run-Time Considerations 

To execute the decompiler: 

■ The IPSB load module to be decompiled must be available through use of a STEPLIB 
JCL statement. 

■ The util ity control statement (IPSB-directive) must be supplied for input using a 

SYSIPT JCL statement. 

■ If the IPSB source statements are to be reviewed, the SYSPCH JCL statement should 
be directed to an output device. 

 



IPSB Decompiler Run-Time Considerations 

 

Appendix E: CA IDMS DLI Transparency IPSB Decompiler  297  

 

■ If the IPSB source statements are to be used for recompilation, The SYSPCH JCL 
statement should be directed to a direct access l ibrary suitable for containing IPSB 

source statements. 

■ The SYSLST JCL statement should be directed to an output device. Check the 
messages issued by the decompiler for errors. Correct the errors and rerun until  

there are no errors. Note that return codes are not used. The SYSLST messages are 
the indicators of the actual results of the process. 

For more information about fi le usage with the decompiler, see CA IDMS DLI 
Transparency JCL (see page 257). 

 

 





 

Index  299  

 

Index 
 

A 

abend codes • 212 
ACB • 156 

ACCESS METHOD IS clause • 136, 139 
access methods • 36, 65 

in CA IDMS/DB • 65 

ACCESS parameter • 136 
ADD AREA statement • 87 
application control block • 156 
area • 57 

AREA NAME clause • 103 
AREA SECTION • 103 

example • 103 
purpose • 103 

syntax and rules • 103 
ASMTDLI • 167, 247 
automatic scheduling • 209 

B 

back end • 250 
back-end processor • 15 

purpose • 15 
batch CV environment • 160, 161, 162, 163 

executing the region controller • 162 

link editing DL/I applications • 161 
modifying DL/I batch JCL • 163 

batch environment • 244 
IDMSDLFE module • 244 

IDMSDLHI module • 211 
IDMSDLLI module • 244 
IDMSDLRC module • 244 

RHDCDLBE module • 244 
bidirectional physical relationships • 35 
bidirectional virtual relationships • 33 

C 

CA IDMS DLI Transparency • 11, 12, 13, 14, 15, 16, 
72, 211, 266, 277 

assembling IDMSDL1C • 266 

concepts and facil ities • 12 
database load • 277 
error messages • 211 

executing batch applications • 266 
IPSB compiler • 14 

link editing batch applications • 266 
load util ity • 16 
operation • 12 
prefix (concatenated key) resolution • 277 

prefix update • 277 
pre-load CALC processing • 277 
pre-load sort • 277 

run-time interface • 15 
syntax generator • 13 
usage considerations • 72 
uses • 11 

workfile hierarchical sort • 277 
workfile sort/merge • 277 

CA IDMS DLI Transparency within CA IDMS/DB 

programs • 203 
CA IDMS/DB • 56, 57, 58, 59, 65, 68, 70, 71, 73, 203, 

204 
area • 57 

CALC key • 65 
components • 58 
correspondences with DL/I • 59 
defining databases • 57 

DL/I calls supported • 71 
DML • 58 
elements • 57 

executing applications • 58 
HDAM access • 65 
HIDAM access • 65 
HISAM access • 65 

HSAM access • 65 
indexed set • 65, 68 
indexed sets • 65 

mapping calls • 203 
parallel processing support • 70 
program definition table • 204 
programming standards  • 203 

record type • 56 
schema • 57 
secondary indexes • 68 

set • 56 
subschema • 57 
unsupported DL/I features • 73 

CA IDMS/DB load modules • 174, 251 

preparation for load util ity • 174 
CALC key • 65 



 

 

300  DLI Transparency User Guide 

 

CALC record • 61 
CA-supplied  macros • 71 

CBLTDLI • 167, 247 
CHECKPOINT/RESTART • 73 
CICS environment • 163, 164, 166, 167, 168, 247 

assembling CICSOPTS • 167 
Common Storage Area (CSA) • 166 
for CA IDMS DLI Transparency • 166 
for DL/I • 164 

IDMSDLFC module • 247 
IDMSDLFE module • 247 
IDMSINTC module • 247 
RHDCDLBE module • 247 

CICSOPTS module • 167 
assembling in CICS environment • 167 

command codes • 71 

comments • 98 
compiler • 204 

program definition table compiler (IDMSDLTG) • 
204 

compiler-directive statements • 98 
CA-supplied macros • 76 
comments • 98 

CORE • 98 
example • 98 
ICTL • 98 
ISEQ • 98 

OCTL • 98 
SPACE • 98 

concatanated keys • 43 

concatenated key resolution • 197 
concatenated keys • 28 
concatenated segment • 139 
concatenated segments • 47 

CONSTANT clause • 126 
control statements • 79 

comments • 79 
CORE SIZE • 79 

EJECT • 79 
ICTL • 79 
ISEQ • 79 

OCTL • 79 
SPACE • 79 

CORE • 98 
CV • 156 

D 

data communications • 203 

data sensitivity • 50 
Database description • 22 

database load • 194 
database record • 24 
DBD • 13, 22, 36, 43, 46, 76, 78, 156 

assembling with CA-supplied macros • 76, 78 
index • 43 
input to syntax generator • 78 
logical • 46 

physical • 36, 43 
DBD statement • 36, 38, 43, 46 

ACCESS parameter • 36, 38, 43 
for logical DBD • 46 

for secondary indexes • 43 
DBDGEN • 22 
DBDNAME IS clause • 136 

DELETE BY clause • 106 
destination parent • 47 
DFHDLI • 166 
DFHDLIAI • 166 

direct entry databases • 73 
Direct entry databases (DEDBs). • 73 
DL/I • 21, 22, 23, 24, 25, 27, 28, 29, 32, 33, 35, 36, 

38, 39, 40, 42, 43, 44, 45, 46, 47, 49, 50, 52, 53, 
54, 55, 56, 59, 61, 62, 71, 73, 156, 164, 169, 212, 
213 

abend codes • 212 

access methods • 36 
access path • 36 
batch environment • 156 

bidirectional physical relationships • 35 
bidirectional virtual relationships • 33 
call  format • 53 
calls supported in CA IDMS/DB • 71 

child segment • 22 
CICS environment • 156 
CICS z/OS environment • 164 
commands • 53 

components • 22 
concatanated keys • 43 
concatenated keys • 28 

concatenated segments • 47 
control fields • 55 
correspondences with CA IDMS/DB • 59 
data sensitivity • 50 

database positioning • 56 
database record • 24 
DBD • 22, 36 

DBDGEN • 22 



 

 

Index  301  

 

defining databases • 22 
defining segments • 27 

definition summary • 52 
deletable segments • 62 
destination parent • 47 

environment • 22 
executing applications • 22 
FIELD statement • 28 
fields • 23 

full  indexing • 45 
hashing with HDAM access • 40 
HDAM access • 40 
HIDAM access • 40 

hierarchical access path • 25 
hierarchy • 24 
HISAM access • 39 

HSAM access • 38 
I/O area • 55 
index pointer segment • 40 
indexing with HIDAM access • 40 

indexing with HISAM access • 39 
indexing with secondary indexes • 42 
intersection data • 47 

intersection segments • 47 
LCHILD statement • 33 
logical child • 29 
logical database • 46 

logical parent • 29 
logical relationships • 29 
logical twins • 29 

occurrence • 24 
parallel processing • 52 
parent segment • 22 
PCB • 22 

PCBs • 49 
physical access methods • 38 
physical child • 24 
physical database • 24, 36 

physical DBD • 36 
physical hierarchy • 24 
physical parent • 24 

physical relationships • 24 
physical twins • 24 
pointer segment • 42 
PROCOPT options • 50 

program communication • 55 
PSB • 22, 52 
PSBGEN • 22 

restructuring a hierarchy • 44 

root segment • 24 
sample hierarchy • 25 

secondary indexes • 42 
SEGM statement • 27 
segment • 23 

Segment Search Argument • 28 
sequence fields • 28 
sequenced child segments • 61 
similarities with CA IDMS/DB • 21 

source segment • 42 
sparse indexing • 45 
SSA • 54 
status codes • 213 

storage sequence for duplicate fields • 28 
target segment • 40, 42 
testing applications under CA IDMS DLI 

Transparency • 169 
unidirectional relationships • 32 
unique or duplicate field values • 28 
unsequenced child segments • 61 

unsupported features in CA IDMS/DB • 73 
DL/I language interface • 167, 247 

ASMTDLI • 167, 247 

CBLTDLI • 167, 247 
IDMSDLLI module • 247 
PLITDLI • 167, 247 

DL1 calls • 208 

DLZDLI • 166 
DLZLI000 • 166 
DLZLI000 module • 167 

DMCL • 76 
produced by syntax generator • 76 

DML • 58 
DUPLICATE DATA FIELDS • 126 

E 

examples • 154 
examples • 154 

EXIT ROUTINE clause • 126 
EXIT ROUTINE parameter • 254 
EXTRTN parameter • 254 

F 

FIELD NAME clause • 114 
FIELD statement • 28, 43, 114, 122 

for secondary indexes • 43 
IPSB, syntax and rules • 114, 122 
NAME parameter • 28 



 

 

302  DLI Transparency User Guide 

 

field-level sensitivity • 73 
front end • 249 

front-end processor • 15 
purpose • 15 

G 

GENERATE DMCL statement • 84 
SEGMENT option • 84 

GENERATE IPSB statement • 85 

GENERATE LOAD IPSB statement • 85 
GENERATE LOAD SCHEMA statement • 83 
GENERATE SCHEMA statement • 83 

DICTIONARY NAME option • 83 

GENERATE statement • 81 
GENERATE SUBSCHEMA statement • 84 

SCHEMA/DMCL/DICTIONARY NAME option • 84 

GSAM databases • 73 

H 

hashed access • 40 

HD unload util ity • 171, 173 
HDAM access • 40, 65 

in CA IDMS/DB • 65 

HDAM database • 136, 139 
determining entry for PROCESSING SEQUENCE 

clause • 136 
entry for ACCESS METHOD clause • 139 

HIDAM access • 40, 65 
in CA IDMS/DB • 65 
index database • 40 

HIDAM database • 136, 139 

determining entry for PROCESSING SEQUENCE 
clause • 136, 139 

entry for ACCESS METHOD clause • 139 

hierarchy • 24, 25, 44, 62 
access path • 25 
and CA IDMS/DB sets • 62 
database record • 24 

physical hierarchy • 24 
restructuring with secondary index • 44 
root segment • 24 

HISAM access • 39, 65 
in CA IDMS/DB • 65 

HISAM database • 136, 139 
determining entry for PROCESSING SEQUENCE 

clause • 136 
determining the entry for PROCESSING 

SEQUENCE clause • 136 

entry for ACCESS METHOD clause • 139 
entry for PCB ACCESS METHOD clause • 136 

HSAM access • 38, 65 
in CA IDMS/DB • 65 
sequenced and unsequenced • 65 

HSAM database • 136 
determining the entry for PROCESSING 

SEQUENCE clause • 136 
entry for PCB ACCESS METHOD clause • 136 

I 

IDMS/R • 56 
IDMSDL1C module • 244, 250, 266 

JCL to assemble • 266 
IDMSDLFC module • 166, 247, 249, 250 

in CICS environment • 166 

IDMSDLFE module • 163, 244, 247, 249 
IDMSDLLD module • 251 
IDMSDLLI module • 161, 244, 247 
IDMSDLMG module • 242 

IDMSDLPG module • 241 
IDMSDLRC module • 162, 163, 244, 247, 249 

DYN parameter • 163 

NOSPIE/NOSTAE/NOSTXIT parameter • 162 
TRACE parameter • 162 

IDMSDLVC database procedure • 159, 244, 249 
IDMSDLVD database procedure • 159, 244, 249 

IDMSINTC module • 166, 168, 247 
in CICS environment • 166, 168 

IMS • 203 

IMS/DC calls • 203 
IMS-DB (DL/1) database calls • 203 
message formatting services maps • 203 

index database • 40, 42, 104, 126, 136 

entry in PCB ACCESS METHOD clause • 136 
examples • 126 
resource for RECORD SECTION • 104 
secondary index • 42 

with HIDAM access • 40 
index DBD • 43 
INDEX NAME clause • 126 

INDEX SECTION • 94, 126 
examples • 126 
purpose • 94, 126 
syntax and rules • 126 

index suppression exit • 253 
Index suppression exit routine • 126 

coding in IPSB • 126 



 

 

Index  303  

 

for DL/I sparse indexing • 126 
indexed set • 61 

indexing • 39, 40, 45 
full  • 45 
sparse • 45 

with HIDAM access • 40 
with HISAM access • 39 

INDICES parameter • 126 
INSERT RULES clause • 139 

intersection segments • 47 
inversion • 139 
IPSB • 76, 94 

AREA SECTION • 76 

considerations for preparing • 94 
INDEX SECTION • 76 
IPSB SECTION • 76 

produced by syntax generator • 76 
purpose • 94 
RECORD SECTION • 76 
special load • 76 

IPSB block • 204, 296 
association with an application program • 204 
validation • 296 

IPSB compiler • 14, 154, 220, 242, 262, 295, 296 
as software component • 242 
error messages • 220 
executing • 262 

execution • 154 
fixed IPSB • 242 
IDMSDLMG module • 242 

JCL • 262 
source statements • 295 
subschema load module • 296 
variable IPSB • 242 

IPSB decompiler • 220, 293, 295, 296 
control statement • 296 
error messages • 220 
JCL • 293, 295 

load module • 295 
recompilation • 296 
run-time considerations • 296 

run-time operations • 296 
source statements • 295, 296 
steps for use • 295 
util ity control statement • 296 

IPSB load module • 156, 251, 295 
source statements • 295 

IPSB NAME IS clause • 100 

IPSB SECTION • 94, 100, 103 

example • 103 
purpose • 94 

syntax and rules • 100 
IPSB source statements • 295, 296 
ISEQ • 98 

ISRT call  • 254 

J 

JCL • 257, 258, 262, 266, 277, 293 

assembling a DBD • 258 
assembling a PSB • 258 
assembling IDMSDL1C • 266 
database load • 277 

executing batch applications • 266 
executing the IPSB compiler • 262 
executing the syntax generator • 258 

for IPSB Decompiler • 293 
for load util ity • 277 
for run-time interface • 266 
for syntax generator • 258 

link editing batch applications • 266 
prefix (concatenated key) resolution • 277 
prefix update • 277 

pre-load CALC processing • 277 
pre-load sort • 277 
workfile hierarchical sort • 277 
workfile sort/merge • 277 

L 

language interface module • 204 
IDMSDLIF • 204 

IDMSDLLI • 204 
link editing under CA IDMS/DB • 204 

LANGUAGE IS clause • 100 

LCHILD statement • 33, 40, 43 
for secondary indexes • 43 
INDEX parameter • 40, 43 
NAME parameter • 40 

PTR parameter • 43 
LENGTH IS clause • 106, 115, 116, 122 

in FIELD statement • 115, 116, 122 

in RECORD statement • 106 
load util ity • 16, 171, 172, 173, 174, 175, 176, 177, 

178, 181, 186, 191, 193, 194, 196, 197, 199, 200, 
220, 251, 277 

as software component • 251 
database load (Step 2) • 194 
database load process • 172 



 

 

304  DLI Transparency User Guide 

 

error messages • 220 
HD format • 171, 173 

index maintenance • 173 
IPSB and CA IDMS/DB load modules • 174 
JCL • 277 

JCL for database load • 277 
JCL for prefix (concatenated key) resolution • 277 
JCL for prefix update • 277 
JCL for pre-load CALC processing • 277 

JCL for pre-load sort • 277 
JCL for workfile hierarchical sort • 277 
JCL for workfile sort/merge • 277 
modifying existing CA IDMS/DB schema • 186 

multi-database logical relationships • 176 
prefix (concatenated key) resolution  (Step 4) • 

197 

prefix update  (Step 6) • 200 
preload CALC processing (Step 1) • 191 
preload sorting • 178 
preload sorting (Step 1, Part 2) • 193 

preparation • 173 
preparing DL/I data • 173 
requirements • 171 

sample CA IDMS/DB schema module • 186 
sample load IPSB • 181 
sample source code for database load • 178 
schema requirements • 176 

special load IPSB • 175 
using syntax generator with • 174 
workfile for HISAM logical Parents • 178 

workfile hierarchical sort  (Step 5) • 199 
workfile sort/merge  (Step 3) • 196 
workfile space allocation • 177 

local mode • 156, 160, 161, 162, 163 

batch CV • 160 
executing the region controller • 162 
link editing DL/I applications • 161 
modifying DL/I batch JCL • 163 

logical child • 29, 32, 33, 35, 36, 47 
physically paired • 36 
real • 33, 35 

virtual • 33 
logical child segment • 104, 136 

resource for PCB SECTION • 136 
resource for RECORD SECTION • 104 

logical DBD • 46, 48 
defining • 46 
sample • 48 

logical parent • 29, 32, 33, 47 

LOGICAL PARENT CONCATENATED KEY FIELD clause 
• 116 

logical parent concatenated key FIELD statement • 
106, 116 

logical relationships • 29, 47, 63, 176 

and CA IDMS/DB sets • 63 
in CA IDMS/DB • 63 
in logical DBDs • 47 
with load util ity • 176 

logical sequence field • 122 
LOGICAL SEQUENCE FIELD clause • 122 
logical twins • 29 
LOGICAL/PHYSICAL DESTINATION PARENT clause • 

139 
lower level programs • 208 

automatic scheduling • 208 

M 

main storage databases • 73 
Main storage databases (MSDBs). • 73 

MAXIMUM ERUS parameter • 158 
MAXIMUM IOAREA SIZE clause • 100 
MAXIMUM SSA SIZE clause • 100 

modification statements • 86 
MODIFY AREA statement • 88 
MODIFY RECORD statement • 89 
MODIFY SET statement • 90 

multiple positioning • 71 
in CA IDMS/DB • 71 

N 

NULL VALUE clause • 126 

O 

OCTL • 98 
OF SUBSCHEMA clause • 100 
online mapping (OLM) • 203 

P 

parallel processing • 70 
in CA IDMS/DB • 70 

PARENT IS clause • 139 
parent segment • 22 

child segment • 22 
path calls • 71 

PCB • 14, 22, 49, 50, 51, 52, 55, 156, 208 
data sensitivity • 50 
defining • 51 



 

 

Index  305  

 

I/O area • 55 
passed to lower level program • 208 

PCB statement • 51 
PROCOPT options • 50 
SENSEG statement • 52 

PCB ACCESS METHOD clause • 136 
PCB call  processing • 204 

batch environment • 204 
CA IDMS DLI Transparency program definition 

table • 204 
CA IDMS/DB CA IDMS DLI Transparency 

environment • 204 
IMS-DC online environment • 204 

scheduling • 204 
PCB SECTION • 94, 135, 136 

purpose • 94, 135 

syntax and rules • 136 
PCB statement • 51, 136 

KEYLEN parameter • 51 
syntax and rules for IPSB • 136 

PCT • 168 
physical access methods • 38, 39, 40 

HDAM • 40 

HIDAM • 40 
HISAM • 39 
HSAM • 38 
random • 38 

sequential  • 38 
physical database • 36 
physical DBD • 40, 43 

physical hierarchy • 24 
physical twins • 24 
PLITDLI • 167, 247 
POINTER RECORD clause • 126 

PPT • 168 
prefix resolution • 197 
prefix update • 200 
preload CALC processing • 191, 193 

preload sorting • 193 
PROCOPT options • 50 
Program Communication Block • 22 

program definition table • 204 
adding programs • 204 
automatic scheduling • 204 
definition • 204 

entry • 204 
format • 204 
load module • 204 

program definition table compiler (IDMSDLTG) • 204 

CDMSLIB load library(z/OS) • 204 
core-image library (z/VSE) • 204 

syntax • 204 
program migration • 203 
PROGRAM POOL parameter • 158 

Program Specification Block • 22 
PROGRAM statements • 159 
PSB • 13, 22, 52, 76, 78, 156 

assembling with CA-supplied macros • 76, 78 

input to syntax generator • 78 
parallel processing • 52 
PSBGEN statement • 52 

PSBGEN • 22 

PSBGEN statement • 52 

R 

RECORD NAME clause • 106, 139 
in RECORD statement • 106 
in SEGMENT statement • 139 

RECORD SECTION • 94, 104, 122 

example • 122 
purpose • 94 
syntax and rules • 104 

RECORD statement • 106, 122 
examples • 122 
syntax and rules • 106 

record type • 62 

member as child segment • 62 
owner as parent segment • 62 

REENTRANT POOL parameter • 158 

region controller • 162 
relationships • 24, 29, 32, 33, 35 

bidirectional physical • 35 
bidirectional virtual • 33 

logical • 29 
unidirectional • 32 

REPL call  • 254 
REPLACE RULES clause • 139 

RHDCDLBE module • 244, 247, 249, 250 
root segment • 24, 39, 40, 61, 136, 139 

CA IDMS/DB correspondences  • 61 

resource for PCB ACCESS method clause • 136, 
139 

resource for SEGMENT statement • 139 
run unit • 209 

runtime environment • 243, 244, 247 
as software component • 243 
batch environment • 244 



 

 

306  DLI Transparency User Guide 

 

CICS environment • 247 
IDMSDL1C module • 244 

IDMSDLCI module • 244 
IDMSDLLI module • 244 
IDMSDLRC module • 244 

IDMSDLVC database procedure • 244 
IDMSDLVD database procedure • 244 
special-purpose components • 244 

run-time environment • 155, 157, 160, 163, 169 

batch CV • 160 
CICS • 163 
command-level CICS • 163 
local mode • 160 

modifying SYSGEN parameters • 157 
testing DL/I applications • 169 

run-time interface • 15, 211, 266 

assembling IDMSDL1C • 266 
back-end processor • 15 
error messages • 211 
executing batch applications • 266 

front-end processor • 15 
JCL • 266 
link editing batch applications • 266 

S 

schema • 57, 76, 176 
area • 57 

produced by syntax generator • 76 
requirements for load util ity • 176 
Schema DDL • 57 

search fields • 112, 114 
FIELD statement for • 112, 114 

SEARCH FIELDS clause • 126 
secondary index • 42, 43, 44, 45, 68, 139 

defining • 43 
full  and sparse indexing • 45 
in CA IDMS/DB • 68 
pointer segment • 42 

restructuring a hierarchy • 44 
source segment • 42 
target segment • 42 

see=DML Data Manipulation Language • 58 
see=hierarchical direct access method (HDAM)  

HDAM database • 136 
entry for PCB ACCESS METHOD clause • 136 

see=hierarchical indexed direct access method 
(HIDAM) • 136 

entry for PCB ACCESS METHOD clause • 136 

see=physical access methods • 38 
see=system definition and initialization IDMSDLTI • 

207 
SEGM statement • 27, 28, 32, 33, 43, 47 

BYTES parameter • 28 

for secondary indexes • 43 
PARENT parameter • 28, 32 
RULES parameter • 28 
SOURCE parameter • 33, 47 

with logical DBD • 47 
segment • 22, 23, 24, 27, 28, 29, 32, 33, 39, 40, 42, 

47, 61, 62 
and CA IDMS/DB record types • 61 

child • 22 
concatenated • 47 
concatenated keys • 28 

database record • 24 
defining segments • 27 
deletable, in CA IDMS/DB • 62 
destination parent • 47 

FIELD statement • 28 
fields • 23 
index pointer • 40 

intersection • 47 
logical child • 29, 32, 33 
logical parent • 29, 32, 33 
logical twins • 29 

occurrence • 24 
parent • 22 
physical child • 24 

physical parent • 24 
physical twins • 24 
pointer • 42 
pointer, in logical DBD • 47 

root • 39, 40 
root segment • 24 
SEGM statement • 27 
Segment Search Argument • 28 

sequence fields • 28 
sequenced and unsequenced child • 61 
source • 42 

target • 40, 42 
target, in logical DBD • 47 

SEGMENT NAME clause • 139 
Segment Search Argument • 28 

SEGMENT STATEMENT • 139 
examples • 139 
purpose • 139 

syntax and rules • 139 



 

 

Index  307  

 

SENSEG statement • 52, 126, 136, 139 
SEQUENCE FIELD NAME clause • 114 

sequence fields • 28, 39, 40 
concatenated keys • 28 
storage sequence for duplicate fields • 28 

unique or duplicate values • 28 
SEQUENCE IS clause • 139 
sequenced child segments • 61 
set • 56, 61, 62, 63, 65, 68 

and DL/I hierarchies • 62 
and DL/I logical relationships • 63 
and sequenced child segments • 61 
and unsequenced child segments • 61 

indexed • 65, 68 
junction record, as logical child • 63 
location mode • 63, 65 

member • 56 
member as child segment • 62 
multiple ownership • 56 
owner • 56 

owner as parent segment • 62 
owner, as logical parent • 63 
owner, as physical parent • 63 

sorted • 61 
unsorted • 61 

shared index • 126 
software components • 241, 242, 243, 251 

IPSB compiler • 242 
load util ity • 251 
runtime environment • 243 

syntax generator • 241 
SOURCE parameter • 136, 139 

in logical database • 139 
in physical database • 136, 139 

SOURCE RECORD clause • 126 
SPACE • 98 
sparse index • 126 
sparse indexing • 45, 72, 174, 253, 254 

CA IDMS DLI Transparency support • 72 
null value criteria • 254 
with load util ity • 174 

special load IPSB • 76, 175, 181 
availability of • 175 
PROCOPT for • 175 
sample • 181 

SSA • 28, 54, 71 
qualified and unqualified, in CA IDMS/DB • 71 

STARTING POSITION clause • 114, 116 

status codes • 213 

run-time, CA IDMS/DB • 213 
run-time, DL/I • 213 

STORAGE POOL parameter • 159 
STORED PHYSICALLY/VIRTUALLY clause • 116 
subschema • 57, 76 

produced by syntax generator • 76 
Subschema DDL • 57 

subschema load module • 296 
SUBSEQUENCE FIELDS • 126 

syntax generator • 13, 75, 76, 77, 78, 79, 81, 83, 84, 
85, 86, 87, 88, 89, 90, 174, 220, 241, 258 

ADD AREA statement • 87 
area names • 81 

area usage mode • 88 
as software component • 241 
assembling a DBD • 258 

assembling a PSB • 258 
coding statements • 79 
control statements • 79 
DBD control blocks • 78 

error messages • 220 
executing the syntax generator • 258 
execution • 90 

GENERATE DMCL statement • 84 
GENERATE IPSB statement • 85 
GENERATE LOAD IPSB statement • 85 
GENERATE LOAD SCHEMA statement • 83 

GENERATE SCHEMA statement • 83 
GENERATE statement • 81 
GENERATE statements • 79 

GENERATE SUBSCHEMA statement • 84 
IDMSDLPG module • 241 
index records in separate area • 87 
input • 75 

JCL • 258 
modification statements • 79, 86 
MODIFY AREA statement • 88 
MODIFY RECORD statement • 89 

MODIFY SET statement • 90 
operation • 77 
output • 76 

preparation for load util ity • 174 
preparing input • 77 
PSB control block • 78 
record names • 81 

set names • 81 
SYSGEN parameters • 157, 158, 159 

MAXIMUM ERUS • 158 

PROGRAM POOL • 158 



 

 

308  DLI Transparency User Guide 

 

PROGRAM statements • 159 
REENTRANT POOL • 158 

STORAGE POOL • 159 
system definition and initialization (IDMSDLTI) • 207 
system execution • 208 

system generation • 204 
ADD PROGRAM statement • 204 
CA IDMS/DB • 204 

T 

TARGET RECORD clause • 126 
target segment • 126 
TERM call  • 209 

termination processing • 209 
THRU SET clause • 126, 139 

in INDEX statement • 126 

in SEGMENT statement • 139 

U 

unidirectional relationships • 32 

unsequenced child segments • 61 
USAGE clause • 114 
USAGE-MODE clause • 103 

USE IS clause • 139 
USING INDEXED-SET clause • 126 
util ity control statement • 296 

V 

virtual logical child segment • 112, 120, 122 

W 

workfile hierarchical sort • 199 
workfile sort/merge • 196 

X 

XDFLD statement • 43 
DDATA parameter • 43 
for secondary indexes • 43 

NAME parameter • 43 
SEGMENT parameter • 43 
SRCH parameter • 43 

 


	CA IDMS DLI Transparency DLI Transparency User Guide
	CA Technologies Product References
	Contact CA Technologies
	Contents
	1: Introduction
	Overview
	Introduction to CA IDMS DLI Transparency
	CA IDMS DLI Transparency Concepts and Facilities
	The CA IDMS DLI Transparency Syntax Generator
	The IPSB Compiler
	Run-Time Interface
	The CA IDMS DLI Transparency Load Utility

	Usage Requirements
	Syntax Diagram Conventions

	2: DL/I and CA IDMS/DB
	About This Chapter
	The DL/I Environment
	Segments - The Basic Unit Of Data
	Hierarchies - Physical Relationships Between Segments
	Root Segments and Database Records
	Hierarchical Access Path

	Defining Segments
	SEGM Statement
	FIELD Statement

	Logical Relationships Between Segments
	Unidirectional Relationship
	Bidirectional Virtual Relationship
	Bidirectional Physical Relationship

	Physical Databases
	Physical Access Methods
	HSAM Access
	HISAM Access
	HDAM Access
	HIDAM Access

	Secondary Indexing (Index Databases)
	Defining Secondary Indexes
	Restructuring a Hierarchy
	Full and Sparse Indexing

	Logical Databases
	Defining a Logical Database
	Intersection and Concatenated Segments
	Sample Logical Database

	Program Communication Blocks
	Data Sensitivity and the PROCOPT Options
	Defining a PCB

	Program Specification Block
	Parallel Processing

	Definition Summary
	DL/I Commands
	Basic Operations
	Call Format
	Segment Search Arguments
	Program Communication
	Database Positioning

	The CA IDMS/DB Environment
	Schema: The Top-Level Definition
	Subschema: The Second-Level Definition
	Defining CA IDMS/DB Databases
	Executing CA IDMS/DB Applications
	Basic CA IDMS/DB Components

	DL/I and CA IDMS/DB Correspondences
	Segments and Record Types
	Sequenced and Unsequenced Child Segments
	Deletable Segments
	Hierarchies and Sets
	Logical Relationships and Sets
	DL/I Access Methods in CA IDMS/DB
	DL/I Secondary Indexes in CA IDMS/DB
	Parallel Processing Support in CA IDMS/DB
	DL/I Calls in CA IDMS/DB
	Usage Considerations

	Unsupported DL/I Features

	3: CA IDMS DLI Transparency Syntax Generator
	About This Chapter
	The CA IDMS DLI Transparency Syntax Generator
	Syntax Generator Input
	Syntax Generator Output
	Syntax Generator Operation

	Preparing Syntax Generator Input
	DBD Control Blocks
	PSB Control Block

	Coding Syntax Generator Statements
	Control Statements
	GENERATE Statement
	GENERATE SCHEMA Statement
	GENERATE DMCL Statement
	GENERATE SUBSCHEMA Statement
	GENERATE IPSB Statement
	Modification Statements
	ADD AREA Statement
	MODIFY AREA Statement
	MODIFY RECORD Statement
	MODIFY SET Statement

	Executing the CA IDMS DLI Transparency Syntax Generator

	4: IPSB Compiler
	About This Chapter
	Considerations For Preparing IPSB Compiler Input
	Compiler-Directive Statements
	IPSB SECTION
	AREA SECTION
	RECORD SECTION
	RECORD Statement
	FIELD Statement
	USAGE clause
	SEQUENCE FIELD statement
	FIELD statement
	LOGICAL PARENT FIELD statement
	PHYSICAL PARENT FIELD statement
	LOGICAL SEQUENCE FIELD statement


	INDEX SECTION
	PCB SECTION
	PCB Statement
	SEGMENT Statement

	Executing the IPSB Compiler

	5: CA IDMS DLI Transparency Run-Time Environment
	About This Chapter
	DL/I and CA IDMS DLI Transparency Run-Time Environments
	Modifying System Generation Parameters
	Maximum Number of CA IDMS DLI Transparency Users
	Program Pool Size
	Reentrant Pool Size
	Storage Pool Size
	Additional PROGRAM Statements

	Batch Considerations
	Link Editing Batch DL/I Applications
	Executing the CA IDMS DLI Transparency Region Controller
	Modifying Existing DL/I Batch JCL

	CICS Considerations
	DL/I CICS Environment
	CA IDMS DLI Transparency CICS Environment
	Establishing the CA IDMS DLI Transparency CICS Environment
	Assemble CICSOPTS
	Prepare to run IDMSINTC in CICS
	Assemble the language interface


	Testing the DL/I Application

	6: CA IDMS DLI Transparency Load Utility
	About This Chapter
	Using the CA IDMS DLI Transparency Load Utility
	The Database Load Process
	Preparing To Run the Load Utility
	Preparation of DL/I Data
	CA IDMS DLI Transparency Index Maintenance
	Using the CA IDMS DLI Transparency Syntax Generator
	Preparation of the IPSB and CA IDMS/DB Load Modules
	Special Load IPSBs
	PROCOPT for Special Load IPSBs
	Availability of the IPSB Load Module
	CA IDMS/DB Schema Requirements
	Multi-Database Logical Relationships
	Workfile Space Allocation
	Workfile Usage for HISAM Logical Parents
	Preload Sorting
	Diagnostic and Error Messages

	Sample Source Code For Database Load
	Sample DL/I PSB and DBDs
	Sample Load IPSB
	Sample CA IDMS/DB Schema Module

	Step 1: Preload CALC Processing
	Operation
	Report
	Preload Sorting (step 1, part 2)

	Step 2: Database Load
	Operation
	Report

	Step 3: Workfile Sort/Merge
	Operation

	Step 4: Prefix (Concatenated Key) Resolution
	Operation
	Report

	Step 5: Workfile Hierarchical Sort
	Operation

	Step 6: Prefix Update
	Operation
	Report


	7: Using CA IDMS DLI Transparency Within CA IDMS/DB Programs
	About This Chapter
	Data Communications
	Language Interface
	Schedule (PCB) Call Processing
	The CA IDMS DLI Transparency Program Definition Table
	Operational Considerations
	System Definition and Initialization
	System Execution
	Linking to lower level programs
	Termination processing



	A: CA IDMS DLI Transparency Messages and Codes
	What This Appendix is About
	Run-Time Messages and Codes
	Run-Time Abend Codes
	DL/I Status Codes and Equivalent CA IDMS/DB Codes

	Non-Run-Time Messages and Codes

	B: CA IDMS DLI Transparency Software Components
	About This Appendix
	The Syntax Generator
	The IPSB Compiler
	Runtime Interface
	Special-Purpose Components
	IDMSDLRC module
	IDMSDLLI module
	IDMSDL1C module
	IDMSDL1V module
	IDMSDLHI module
	IDMSDLHC module
	IDMSDLCV module
	IDMSDLHP module
	IDMSDLPV module
	IDMSDLHA module
	IDMSDLAV module
	IDMSDLVC database procedure
	IDMSDLVD database procedure

	CA IDMS DLI Transparency Front End
	IDMSDLFE module
	IDMSDLFC module

	CA IDMS DLI Transparency Back End

	The Load Utility

	C: Index Suppression Exit Support
	About This Appendix
	Index Suppression Exit Support
	Run Time Operation
	Interface

	D: CA IDMS DLI Transparency JCL
	About This Chapter
	Syntax Generator JCL
	Assemble a PSB
	Assemble DBDs
	Execute the Syntax Generator

	IPSB Compiler JCL
	Run-Time Interface JCL
	Link Edit Batch Call-Level DL/I Applications
	Link Edit Batch Command-Level DL/I (EXEC DLI) Applications
	Execute DL/I Batch Application Program
	Assemble IDMSDL1C For CICS Call-Level DL/I Usage (z/OS)
	Assemble IDMSDL1V For CICS Call-Level DL/I Usage (z/VSE)
	Assemble Language Interfaces For Command-Level DL/I (EXEC DLI) Usage

	Load Utility JCL
	Preload CALC Processing (Step 1)
	Database Load (Step 2)
	Workfile Sort/Merge (Step 3)
	Prefix (Concatenated Key) Resolution (Step 4)
	Workfile Hierarchical Sort (Step 5)
	Prefix Update (Step 6)

	IPSB Decompiler JCL

	E: CA IDMS DLI Transparency IPSB Decompiler
	About This Appendix
	Using the IPSB Decompiler
	IPSB Decompiler Run-Time Operations
	IPSB Decompiler Run-Time Considerations

	Index


