CA IDMS™ DBOMP
Transparency

User Guide
Release 18.5.00

technologies

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for yourinformational purposes onlyandis subject to change or withdrawalby CAata nytime. This
Documentationis proprietaryinformation of CAand maynotbe copied, transferred, reproduced, disclosed, modified or
duplicated, inwhole orin part, without the prior written consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copiesof the Documentation forinternal use by you and your employeesin connection with
thatsoftware, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The rightto print or otherwise make available copiesof the Documentation is limited to the period during which the applicable
license for such software remains in fullforce and effect. Should the license terminate foranyreason, itis your responsibility to
certifyin writing to CAthatall copies and partial copies of the Documentation have beenreturnedto CA ordestroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CAPROVIDES THISDOCUMENTATION “AS IS” WITHOU TWARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FORA PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILLCABE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THISDOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IFCA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCHLOSS OR DAMAGE.

The use of anysoftware product referencedinthe Documentationis governed by the applicable license agreement and such
license agreementis not modified inanywaybythe terms ofthis notice.

The manufacturer of this Documentationis CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Governmentis subject to the restrictions
setforth in FARSections 12.212,52.227-14,and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
theirsuccessors.

Copyright © 2013 CA. All rights reserved. All trademarks, trade names, service marks, and |l ogos referenced herein belongto
theirrespective companies.

CA Technologies Product References

This document references the following CA product:

= CAIDMS/DB

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one sitewhere you canaccess the
information that you need for your Home Office, Small Business,and Enterprise CA
Technologies products. At http://ca.com/support, you canaccess the following
resources:

m Onlineandtelephone contactinformation for technical assistanceand customer
services

m Informationabout user communities and forums
m Product and documentation downloads
m CA Support policies and guidelines

m Other helpful resources appropriate for your product
Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
cansend a message to techpubs@ca.com.

To providefeedback about CA Technologies product documentation, complete our
shortcustomer survey which is availableonthe CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Contents

Chapter 1: Introduction 9
SYNtAX DIaGram CONVENTIONS ...ccuiiiiiiciiriesereseste ettt et et e st e st s e s e et et et e s e e s b e s beese et e be b e e besbeesaesae st e s entesreeseenaensansansansan 9
Chapter 2: Introduction to the CA IDMS DBOMP Transparency 13
OVEIVIBW ..ttt ettt ettt b et s bbb et e b e b et et e st s et e st e e st s e e e e a e e R e e e ae b e ae e s et e ae e s et ea e e b et e st e s eme e b e e emt b eneese s et eaese et ebeneenensenes 13
FUNCLIONS @N0 IMOGUIES ...ttt ettt a et s s s ese et e e et esese s eaese st s esesene s e seneseetesenensesnsnnensesanens 14
FUNCEIONS ettt ettt ettt et et s e e e st s e e b et e Rt s e et e R e s e e ae s e et e st s e et e b e e enene et et snensentnens 14
IMIOQUIES ...ttt ettt a skt b et s e ket s s e s et s e ek e s et e b s eae e et e b et et ebese et e s eae e seebenene st eseae e et eae e ebesanentee 15
Data DESCHIPTON GUITEITNES....c.iciiieieiriieeeieee ettt ettt e s e e et e e e beseessesesaesesaensesessensssessentesesesessansesensans 17
Programming REQUITEMENTSccuiciciiiriiece ettt st et e st e st e st e st re et et e s b e s aesbesaeeaeeae et e b e s beeseesse st e s eeaeseesbesaeanaansansansansases 17
NS TAIIATT Ottt ettt h e R b e R R E R R R e R AR e Rt e R b et b e st R R e st ererenea 18
Chapter 3: The Transparency Environment 21
OVEIVIBW ..ttt sttt ettt ettt et e s b e st et et et e b e b e b e e b e e b e e bt et e b e b e saees e e R e e R e e R e e a b e b e eh e e b e e bt e Rt e s b et et e b e b e e b e nteab et et enbenbesreee 21
DBOMP MQaCrOS SUPPOITEAoouiiieiieietiieiisteeeiesteseeeseeesteseesasseestessesessessesessesessessssesseseesessessesessessssensesessensssensessesessesessensesessans 21
Macros SUPPOrted UNCONAITiONAllY.....coucieieieiieceeeeeee ettt et sa e s bt seebe e bt eseebasaesesbenesaansesentans 22
Macros That Require Program Modification and Reassembly.........ccccvveercernceneceesseeres e 22
MACTOS NOT SUPPOITEAecviieeiieieeiieestete et et e rae et e et et e e et e se st e e e b et ese et eseeseesensesessess et ensasessansesensansesenteneesansasentans 23
Macros Processed Independently of the TranSparEnCy ... ceccveeirneerseceres ettt ee 24
DBOMP Process INdiCators SUPPOITEUccevieirierieirieiseteesie et e et e et sts e tessesesbe e e e aesestessesessensesessassssansesessensesensans 24
Process INdicators FUIlY SUPPOITEA ..ottt te sttt e et saebe st ess et e e esaesesteseebessesesbenessansesesans 24
Process Indicators SUPPOrted With EXCEPLIONS ...cviiiiieecee ettt b e s s bens 25
Process INdicators NOT SUPPOITEAciiiiieieiieie ettt ettt ettt e et besbessebe e aseebetesesbassesesesessansasentans 25
DBOMP ROULINES SUPPOITEA ..ottt sttt te st e st s ettt e st e ste e s besaesesbesesse s essesessessssensasesasnsssensensssensenessensesensans 26
CAIDMS DML Statements Supported in Bridged Programs.......ccceeeieeinieeeenieeseseeesteeeessesessessessssesssssssesssessessssenes 26
How to INnclude CA IDMS DIML STatEMENTS ..c.ceuivieieiiieirieeeieste ettt ettt sa ettt sb et e s e sae e se st ssensesessensesessans 27
Chapter 4: Transparency Programs and Macros 29
OVEIVIBW ..ttt sttt ettt ettt et e s b e st et et et e b e b e b e e b e e b e e bt et e b e b e saees e e R e e R e e R e e a b e b e eh e e b e e bt e Rt e s b et et e b e b e e b e nteab et et enbenbesreee

IMBS Customizing Macro

CONTIOL STATEMENT ...ttt sttt b et ae bt s e ket stk e s et st ek e be et e b ese et ebe st st ek ese e st ebeneestebanens

Set [dentifiCation STAtEMENTc.cceiceee ettt ettt e et a e e e asb e e et esese e et ene s eaenanens 33
File/Record Type DesCription STAtEMENTc.cciceiiieeeceee sttt ss e b st s bbb e s bbb bebesesebebebebesebebesetatesesane 33
Pointer/Set RelatioNShip STAtEMENTcciceiieeeiceete ettt sa st ettt s st ettt s ettt esesetesesnsatesesane 35
DElTMILEr STAEMENT ..ottt ettt s bbbt e b e bt e b e st e b e st e e e b ebe st s esesenees 35

Contents 5

Output From MBS MacCro— [IMIBSTABcociiiiiientertert ettt ste st este st e e sae s steesae e st e e sbestesate et e satesstesatesasesatesseansaensasnseenseans 36

IMBSTAB Error Messages...39
SAMPIE IIMBS N IIMIBSTABcuoiieiiirieieesteee ettt e e e e e st e e sse s e e e be st e et e e e s et eseebassese st essesetasaesesseseetessesetensasesbansesessanesanes 40
IMBSPROC Databhas@ PrOCEUUIE ..ottt ettt ettt ettt st et e s e sa e e b e b e st s s et esesae st sbesesessensenessensenesans 46
IMBSBRDG Program MOUUIE.....cucieieeeiiieietetee ettt e e e st et st e ae e s tesae s st e e ebesaesestesaesessessesessessesensasessansesessassesensasessansasessans 48

Converting DBOMP Calls to CA IDMS/DB Stat@MENTSceuiuiueeiieeeerireeiereeseseesessssssessssssesssssesssssssssssssssssesssssesns 49

Converting Records Retrieved from CAIDMS/DB..... ...51
A1) O N 4 = o] f o OSSP P OO P OO 55
Chapter 5: Converting DBOMP to CA IDMS/DB 59
OV BT VI BW ..ttt ettt ettt s b et e s bt e b et e st e b e b e st e s et eae e b eae e e et e s e s e e e e a e e R e s e ae et eae e e et eae e b et eat e b et e aeebene e b et ent et entehe s et eaesb et ebeneeneneenes 59
CONVEITING DT ..ceiiiiiiiiiieteteteee ettt sttt ettt e b e b e s b e s b e e bt s h e st et et e e e e st e st e st e st e s b e s et e besbesbe et e bensessesaeestenee st ent et esbessesaent 60
Converting DBOMP Load and Maintenance PrOZramscccccieeeririresieeeisiesesesessessesessessesessessessesessessssessssessessssessassesenes 62

DBOMP Process Indicators and Corresponding DMLc.cucicuiiieicieciee ettt sttt e e ste e be s s sbe e s aesesbans 64

DBOMP Commands and CorreSPONAiNg DML......cccuvueieeriririeinerieesenteesteestestesessesessessessssessesesssssesessssessessensessnsessssens 69

Sequence Of LOgiC iN CONVEIrTE PrOZIramso cicieieieietieee et tee e te e e st e et esae s s te e eseste s e beaesesbeseesessensstessansssanes 71
Converting DBOMP Retrieval and Update Programs.........ccco et sesseseennes 72
DBOMP Error Codes With CAIDIMS/DB EQUIVAIENTScccucueuieeieieieieteetcete ettt s e st te e s s be s st asssese s sesesennns 72
Chapter 6: Using the Transparency as a Bridge to CA IDMS/DB 75
OVEIVIBW ..ttt ettt ettt et st e et s b et et e e st s e e s et e e s e s e e e e e e R e s e at s e e e st s e ae s e e ea e e R e e e Rt s et e R e e emt s et e st s e e enene et ere e eneneenes 75

Preparing DBOMP Assembler Programs

Executing DBOMP Assembler Programs

Assembling and EXECULING UNEI Z/OS ...ttt sttt b ettt s b ss s s bess s besaseasesesan 76
Assembling and EXECULING UNAEE Z/VSEcovreerereieeieirieeiees et esss e tsssessss st essssssssesssssessssessssssssssssssesenees 79
DI @ENOSING EFTOIS c.utitiitiitiiticteseet et et e stesteste st et et e st e st e ssesse st e ta st asbesbesbesseeseeseeneeseesseebeeRe e st ansansan s e s anbessee st e s eenbesbesseebeeseentansassansenses 81
What to Look For When Errors Occur DUring Program PrOCESSING......cocveerirerieurrererieenirieeessssssesessssessessssssessesesenens 81
What to Look For When Inaccurate Data is Returned..... .83
Where to Find Values DU NG DEDUGZINEcc.cieiiiieiiieieieiete ettt e st et s be e be st e e et e e ese b asaesesbansebesaennnsanes 83
Appendix A: PL/I Considerations 85
OVBIVIBW ..ttt ettt ettt b et st b et et e b e b et s et e st s et e st e e st s e e e e a e e R e e e ae b e st e s et e a e s e aeea e e b e e e st e s eme e b e e emtebeneese s et eneseenenbeneeneneenes 85
Transparency SUpport FOr DBOIVIP PL/I COMMANGSccueueieieieieieisieietetssesssstesesesesesesssesesesssssesesessssssssssssssssssssssssssssssnsnssssnsaes 85
IIMIBSPLL INTEIfACE IMACIO cueuiiiiiieieieeieeeeerte ettt ettt sttt b et b et b st sbebe et e b e s et se b e st senbenentebesenenensesenens 87
DBOMP PL/I Program Preparation @nd EXECULIONcccucueuiieieecieeeeteeeete ettt ettt te ettt ss et s be s s bese s bessanseseseanas 88
Appendix B: COBOL Considerations 91
OV B VI BW ..ttt ettt ettt b et et s b et e b et e e e b et eat s e et eae e s eae e e et ea e s e e e e ae e R e e e ae et eat e e et eat e s e e eae e b et eaeeb et e b et ent et enteaens et ene s b et ebe e enensens

Transparency Support For DBOMP COBOL Commands

6 User Guide

[IMBSCOBL INTEITACE IMIACTO ..veevieieiietectecre ettt eae et et e be s b eas e b e b esbesbesbsebeebeeasenbababesbesbeeasessessesbesbesseersensansensasensases 93

DBOMP COBOL Program Preparation and EXECULIONccucivieiierieieecee ettt e et sae s ss e sse s esessessenenans 94
Appendix C: Sample Application and Procedures 97
Overview
IMBSBILL SAMPIE APPIICATION...uiiitiieietiieeeteee ettt et e st et e et e s e e se st e e e s et essesesseseesensasesaansesassaseesensasessensasassans 97
IMBSMIOL SAMPIE JCLEOT Z/OS .ttt sttt ettt et et ea et et et et et et et es et et e b esetatasesasasasasns 99
IMBSMIO02 SAMPIE JCLEOE Z/OS .ottt ettt s bbb et se et e s as s asas s asasasasasasas et ssanasasasanaes 100
Appendix D: Setting Up CA IDMS/DBOMP Transparency Under z/0S 101
OVEIVIBW ..ttt ettt ettt h et et s e s et s e e e et R e e e Rt s e s e e Rt e e at s et e et e R et e R e e et R et e st s et s e s e e e b e nee st sreeeneneen 101
Customizing and Executing IMBSMIJOL and IMBSMIOZ.......ccooiriiieiiieineieiseeeeseeseseesessesessesaesessessesessesessessesessessasesses 102
Explanation of EXEC Statements in IMBSMIJOL PrOCEAUIEoueieueeeeieteieeeee ettt ettt b et ee 103
Customizing IMBSMJO1

IMBSIMIOL (Z/0S) cueteueieieirieieieieieieieieieisisisssssssssssssss s s essssesesesesessssssnenes
Explanation of EXEC Statements in IMBSMJ02 Procedure
CUSTOMIZING IIMBSIMIJO2.....ceiiiiecttetetctesie sttt et sa e st sttt e st e st e st e s besae s aa e st e e et e e e e beese e st et e st e bantesbesbessaentensessessessessean
Executing IMBSMIJOL1 @and IIMBSIMIO2 ..ottt ettt st st nnnenen

Appendix E: Setting Up CA IDMS DBOMP Transparency under Z/VSE 109

Customizing and Executing IMBSVIO1 and IMBSVIOZ2 ...ttt e st seere st testeseebe e be s e esesaennsnan
Explanation of EXEC Statements in IMBSVJO1 Procedure
Explanation of EXEC Statements in IMBSVJ02 Procedure

Running IMBSVJO1

Running IMBSVJ02

Index 113

Contents 7

Chapter 1: Introduction

This manual is intended for:

m Databaseadministrators who areconverting DBOMP databases to CA IDMS/DB
databases

m Application programmers who are using existing DBOMP application programs to
access CAIDMS/DB databases

This section contains the followingtopics:

Syntax Diagram Conventions (see page 9)

Syntax Diagram Conventions

The syntax diagrams presented in this guide use the following notation conventions:
UPPERCASE OR SPECIAL CHARACTERS

Represents arequired keyword, partial keyword, character, or symbol that must be
entered completely as shown.

lowercase

Represents an optional keyword or partial keyword that, if used, must be entered
completely as shown.

italicized lowercase
Represents avaluethat you supply.
lowercase bold

Represents a portion of the syntaxshownin greater detail atthe end of the syntax
or elsewhere inthe document.

Points to the defaultina listof choices.

Indicates the beginning of a complete piece of syntax.

> d
»<4

Indicates the end of a complete piece of syntax.

>

Indicates thatthe syntax continues on the next line.

v

Indicates thatthe syntax continues on this line.

Chapter 1: Introduction 9

Syntax Diagram Conventions

1

Indicates thatthe parameter continues on the next line.

Indicates thata parameter continues on this line.
»— parameter —»
Indicates a required parameter.
»—E parameter :I—>
parameter
Indicates a choiceof required parameters. You must select one.

»
>

v

L parameter -

Indicates an optional parameter.

v

>
parameter :'
parameter

Indicates a choice of optional parameters. Select one or none.

>~ parameter ———»

Indicates thatyou canrepeat the parameter or specify more than one parameter.

e
»—v— parameter

Indicates thatyou must enter a comma between repetitions of the parameter.

10 User Guide

Syntax Diagram Conventions

Sample Syntax Diagram

The following sample explains howthe notation conventions are used:

Required portion of parameter

Beginning of Required Optional portion of parameter

the syntax parameter Syntax continues

User-supplied value I on the next line
5

Syntax continues on this line Comma required between repetition

Required parameter Repetition allowed
Select one

I .
y— KEWDI\Q\D—{aHaﬂIe

varrable
wariabfle
varrable

Optional keyword
Select one or none
Portion of syntax End of the syntax
Default expanded elsewhere

» \ L]
t KEYWORD variable
KEYWORD

Chapter 1: Introduction 11

Chapter 2: Introduction to the CA IDMS
DBOMP Transparency

Overview

This section contains the followingtopics:

Overview (see page 13)

Functions and Modules (see page 14)
Data Description Guidelines (see page 17)
Programming Requirements (see page 17)
Installation (see page 18)

The CA IDMS DBOMP Transparency facilitates conversion from DBOMP or its Z/0S
equivalent, CFMS, to CA IDMS/DB. By simulatingthe DBOMP environment, the
transparency allows you to run existing DBOMP application programs after the DBOMP
files have been converted to CA IDMS/DB databasefiles. This allows for a gradual
conversion from DBOMP to CA IDMS/DB.

Minimal User Involvement

The CA IDMS DBOMP Transparencyis usually transparenttothe DBOMP retrieval and
update programs thatitbridges, requiringlittleor no program alterationand usually no
reassembly.

Conversion Tool

To aidyouin converting DBOMP load and maintenance programs, the transparency
packageincludes a prototype CA IDMS/DB bill-of-materials application program. This
program shows the logic required to add records to and delete records from a CA

IDMS/DB database.

This programisin Sample Applicationand Procedures (see page 97).

System Requirements

The transparency requires no operating system facilities other than those necessary for
CA IDMS/DB.

Two of the CA IDMS DBOMP Transparency modules, IMBSBRDG and IMBSTAB, require
5Kb memory in addition tothat needed for standard CA IDMS/DB processing. Disk
storage and all other memory requirements are the same as for CA IDMS/DB. The
transparency operates under the CAIDMS/DB central version orin local mode.

Chapter 2: Introduction to the CA IDMS DBOMP Transparency 13

Functions and Modules

The remainder of this chapter discusses thefollowingtopics:
m CA IDMS DBOMP Transparency functions and modules
m Datadescriptionguidelines

m Programming restrictions

Functions and Modules

This section describes whatthe CAIDMS DBOMP Transparency does and the modules it
usesto doit.

Functions
The transparencyacts as a bridge between the DBOMP application programand CA
IDMS/DB, as follows:
m Accepts data and processing requests from the calling program
m Converts the data to CA IDMS/DB record formats
m Converts the processingrequests to CA IDMS/DB commands
m Passes the converted information to the CA IDMS/DB database management
system
Conversely, the transparencyalso:
m Retrieves data from the CA IDMS/DB database
m Converts the data to DBOMP record formats
m Returns the converted data,alongwith CA IDMS/DB control information, to the

callingprogram

All communication occurs between the DBOMP program and the transparency or
between transparencyand CAIDMS/DB. The transparency does not interface directly
with the operating system.

14 User Guide

Functions and Modules

The followingfigureillustrates the CA IDMS DBOMP Transparency processingsequence.

DBOMP O
Program
e e . = . CA IDMS/DBOMP CA IDMS/DB CA IDMS/DB
Transparency
Work Area

Modules

The two central transparency modules are IMBSBRDG and IMBSTAB:
m IMBSBRDG—handles all application programrequests for databaseservices

m IMBSTAB (user-customized bridge module)—supplies IMBSBRDG with the CA
IDMS/DB and DBOMP record descriptions necessaryto simulate DBOMP processing

IMBSBRDG and IMBSTAB are discussed briefly below. These and other transparency
components aredescribedindetail in Transparency Programs and Macros (see
page 29).

IMBSBRDG

The IMBSBRDG module replaces the DBOMP modules:
= BMSPIO
m APSSEQ

Chapter 2: Introduction to the CAIDMS DBOMP Transparency 15

Functions and Modules

IMBSBRDG simulates DBOMP retrieval processing and update processing at the
BMSPIO and APSSEQ entry points,as shown inthe followingtable.

Simulation of:

Description

Retrieval processing

Accepts a DBOMP call to entry pointBMSPIO or
APSSEQ

Validates the DBOMP filename and process
indicator

Converts the process indicator toa CA IDMS/DB call

Retrieves the requested record from the CA
IDMS/DB database

Converts the retrieved CA IDMS/DB recordto a
DBOMP record

Returns the converted recordto the calling
program

Converts the CA IDMS/DB error status to the
appropriate DBOMP error code

Updates the work area prefix

Returns control to the calling program

Update processing

Accepts a DBOMP call to entry pointBMSPIO or
APSSEQ

Validates the DBOMP filename and process
indicator

Converts the process indicator toa CA IDMS/DB call

Reconstructs a CA IDMS/DB record from the
updated DBOMP record

Returns the reconstructed record to the CA
IDMS/DB database

Converts the CA IDMS/DB error status to the
appropriate DBOMP error code

Updates the work area prefix

Returns control to the calling program

16 User Guide

Data Description Guidelines

IMBSTAB

The IMBSTAB customized bridge module is generated by the user-coded customizing
macro, IMBS. IMBSTAB consists entirely of buffers and tables that describethe DBOMP
files and their equivalent CA IDMS/DB record types and set relationships. IMBSTAB
provides IMBSBRDG with the environmental information necessary to build DBOMP
records to be returned to the calling programand to reconstruct CA IDMS/DB records to
be returned to the CA IDMS/DB database.

Data Description Guidelines

Adhere to the data description guidelines presented below when you describethe parts
of the CA IDMS/DB databasethat will beaccessed by bridged DBOMP programs:

m Make surethere is one CA IDMS/DB record type for every DBOMP fileto be
simulated.

m Check the schema description of the CA IDMS/DB record types. Make surethe
description allows the generation of a subschema view that represents the data
exactlyas itappears on the DBOMP files, with the exception of diskaddresses,
which are not part of the schema description.

m Define record types that are members of more than one setinthe schema with
next, prior,and owner pointers, sothat an end-of-set condition can be detected by
the transparency and communicated to the calling program.

m Store DBOMP master files as CALC or DIRECT (for sequential processing) record
types on the CAIDMS/DB database.

m Store DBOMP chainfiles asVIArecord types on the CA IDMS/DB database;
however, these member records canalsobedescribed as owners of other sets.

Programming Requirements

You must do the following for any DBOMP application programyou want to bridge with
the transparency:

m Make all databaseservicerequests usingthe following Assembler macros:
- CASLL
- CHASE
- GEST

Chapter 2: Introduction to the CA IDMS DBOMP Transparency 17

Installation

Installation

- PUST
— STS$KY
- STS$DA

For PL/I equivalents of these macros,see PL/I Considerations (see page 85). For
COBOL equivalents of these macros, see COBOL Considerations.

m Remove MFS$SQ and FISLE macros from the application program;replacethem with
the transparency macro IMBSEQ.

For more information on IMBSEQ, see Transparency Programs and Macros (see
page 29).

m COBOL Considerations (seepage91)Use an index for the logical sequential ordering
of master records.

Note: For more information onindexing, see the CA IDMS Database Administration
Guide.

m Make surethatthe application programdoes not combine DBOMP calls with CA
IDMS/DB calls.

For more information on using CA IDMS/DB verbs ina bridged DBOMP program,
see How to Include CA IDMS DML Statements (see page 27).

m Convert anyapplication programthatperforms structural maintenancefunctions to
CA IDMS/DB.

For more information on converting maintenance programs, see Converting
DBOMP Load and Maintenance Programs (see page 62).

Use the CAIDMS installation media toinstall the CA IDMS DBOMP Transparency
software.

Note: For more information aboutinstallation,seethe CA IDMS Installation Guide for
your operating system.

The followingthree tables listthe object, source,and load modules placed in CA IDMS
DBOMP Transparency or CAIDMS/DB libraries atthe time of installation.

Object and Load Modules Placed During Installation

Items listed in the followingtableexistas both object and load modules.

Module Description

IMBSBRDG Bridge program

18 User Guide

Installation

Module Description

IMBSPROC Databaseprocedure

Source Modules Placed During Installation

Modules listed in the followingtableexistas sourceonly.

Module Description

BRDGSAMP Z/0S JCL for BRDGSAMP procedure
(for more information, see Sample Applicationand Procedures (see
page 97))

IMBS Customizing macro

IMBSBILL Sample CA IDMS/DB COBOL manufacturingapplication program

IMBSBRDG Assembler sourcecode for IMBSBRDG object module

IMBSCOBL IMBS COBOL interfacemacro

IMBSDBMP Sample COBOL DBOMP program (to be bridged)

IMBSDMCL Sample DMCL description module

IMBSINP1 Sample inputto IMBSBILL

IMBSINP2 Sample inputto IMBSDBMP

IMBSPL1 CA IDMS DBOMP Transparency PL/l interfacemacro

IMBSPROC Source code for database procedure object module

IMBSSAMP Z/0S JCL for IMBSSAMP procedure
(for more information, see Sample Applicationand Procedures (see
page 97))

IMBSSCHM Sample CA IDMS/DB schema description

IMBSSUBS Sample CA IDMS/DB subschema description

IMBSTAB Sample inputto IMBS customizing macro

Chapter 2: Introduction to the CA IDMS DBOMP Transparency 19

Chapter 3: The Transparency Environment

This section contains the following topics:

Overview (see page 21)

DBOMP Macros Supported (see page 21)

DBOMP Process Indicators Supported (see page 24)

DBOMP Routines Supported (see page 26)

CA IDMS DML Statements Supported in Bridged Programs (see page 26)
How to Include CA IDMS DML Statements (see page 27)

Overview

CA IDMS DBOMP Transparency for DBOMP Transparency functions include:

m Simulation of the logic generated by DBOMP retrieval and update macros and
process indicators

m Limited maintenanceof the Run Activity Control Number (RACN)

m Support of a limited number of CA IDMS verbs issued from bridged programs
This chapter discusses supportfor the followingentities inthe transparency
environment:

m DBOMP macros

m DBOMP process indicators

m Special DBOMP routines

m CA IDMS DML statements

DBOMP Macros Supported

The transparency supports, to varying degrees, DBOMP programs that issueretrieval
and update macros.Support of DBOMP programs that issue macros to entry point
BMSPIO is unconditional and requires no program modification; Support of DBOMP
programs thatissuemacros to APSSEQ requires that the programs be modified and
reassembled. To modify these programs,you replace DBOMP macros that providelogic
routines for sequential and consecutive processing with the transparency's macros.

Chapter 3: The Transparency Environment 21

DBOMP Macros Supported

This section describes the following categories of DBOMP Assembler macros in the
transparency environment:

m Macros supported unconditionally by the transparency

® Macros requiring program modification and reassembly

® Macros not supported by the transparency

m Macros processedindependently of the transparency

For more information on PL/I equivalent macros,see PL/| Considerations (seepage 85).

For more information on COBOL equivalentmacros,see COBOL Considerations (see
page 91).

Macros Supported Unconditionally

The transparency simulates unconditionally the processing generated by macros issued
to entry point BMSPIO. Programs that issue macros only to this entry point need not be
altered or reassembled. The transparency interprets these macros as follows:

m CASLL (issued directly or as part of the CHASE macro expansion)— Establishes
linkage with the transparency by passingthework area prefix to the bridge program

m CHASE— Walks aset

Macros That Require Program Modification and Reassembly

The transparency requires that programs issuing macros to entry point APSSEQ be
altered and subsequently reassembled before interfacing with the bridge. The
transparency cansimulatethe following macros onlyif you remove the prerequisite
MFS$SQ and FISLE macros from the issuing programand replacethem with the
transparency macro IMBSEQ (see Transparency Programs and Macros (see page 29)):

m GEST— Sequential retrieval
m PUST— Sequential update
m STSKY— Skip-sequential retrieval usinglogical key

m STSDA— Skip-sequential retrieval usingdiskaddress

Transparency supportof the sequential processinglogicgenerated by the STSKY and
STSDA macros assumes the use of indexing. Indexingallows the transparency to support
logical sequential dependencies in DBOMP programs. Ifindexing hasn'tbeen defined for
the database, all programs using STSKY and STSDA must be altered to remove logical
sequential dependencies before interfacing with the bridge.

22 User Guide

DBOMP Macros Supported

The transparency handles GEST, PUST, STSKY, and STSDA as follows:

m GEST—The transparencyretrieves the firstrecordinthe logical or physical
sequence of the named fileand returns itto the work area. Subsequent GEST
macros issued for the same filecausethe transparencyto retrieve records inlogical
sequential order from that pointif the record type is indexed, orin physical
sequential order from that pointifthe record type is not indexed. Each retrieved
record becomes current of run unit and current of its record type.

m PUST—The transparency verifies thatthe named record is current of the
transaction, updates the record with the informationinthe user work area,and
returns the record to the CA IDMS/DB database. Ifthe record is not current of run
unit when PUST is issued, CAIDMS DBOMP Transparency performs a direct read to
establish currency.

m STSKY—The transparencyretrieves a record by the key specifiedinthe work area
prefix for the named fileand returns the record to the work area. Currency for the
file(record type) is setat the retrieved record. Subsequent GEST macros causethe
transparencyto retrieve records inlogical sequential order from that point if the
record type is indexed, orin physical sequential order from that pointifthe record
type is notindexed.

m STSDA—The transparency retrieves a record by the disk address specifiedin the
work area prefix for the named fileand returns the record to the work area.
Currency for the file (record type) is set at the retrieved records inlogical sequential
order from that pointif the record type is indexed, or in physical sequential order
from that pointif the record type is notindexed.

Macros Not Supported

The followinglistshows the DBOMP macros you should remove from your bridged
programs and what to replacethem with.

Remove this macro: Replace it with:
MFS$SQ IMBSEQ

FISLE IMBSEQ

CFSRT IMBSEQ

CGEST GEST

CPUST PUST

Chapter 3: The Transparency Environment 23

DBOMP Process Indicators Supported

Macros Processed Independently of the Transparency

The following macros areexecuted independently of the transparency. Do not alter
them orremove them from bridged programs:

m BMS$SDS— Generates dummy sections

m BM$SWA— Generates the work area prefix

m EQSRG— Equates registers to a symbol

m MOSVE— Moves a variable number of bytes from one field to another
m MSG— Displaysa messageonthe console

m TYSPE— Displaysdata onthe console

DBOMP Process Indicators Supported

The transparency supports most DBOMP process indicators thatrequest retrieval and
update functions.That supportis achieved when the transparency does the following:

1. Accepts DBOMP process indicatorsthatarepassedinthe work area prefixwhen a
CASLL macroisissued.

2. Converts those process indicators to CA IDMS/DBB calls.

Note: The transparency does not supportany DBOMP process indicators thatrequest
structural maintenancefunctions.

Process Indicators Fully Supported

The following process indicatorsaresupported by the transparencyin the same manner
they are supported by DBOMP:

m MRAN— Reads master filerecord by key and return data
m MRKY— Reads master filerecord by key
(positioningonly)
m MDIR— Reads master filerecord by diskaddress and return data
m MRDR— Reads master filerecord by diskaddress
(positioningonly)
m MUPD— Updates current master filerecord

m CDIR— Reads chainfilerecord by diskaddress and return data

24 User Guide

DBOMP Process Indicators Supported

CRDR— Reads chainfilerecord by diskaddress
(positioningonly)

CUPD— Updates current chainfilerecord

Process Indicators Supported with Exceptions

The following process indicatorsaresupported by the transparency but are handledina
manner that is different from DBOMP:

CMPR—The transparency moves the diskaddress fromthe work area prefix,
simulatingcompression. Since CA IDMS/DBB uses only 4-byte relativeaddresses,
actual compressionisunnecessary. This operationis transparentto the calling
program, and no program changes need be made.

EXPN—The transparency moves the diskaddress to the work area prefix, simulating
expansion.Since CA IDMS/DBB uses only 4-byte relativeaddresses, actual
expansionis unnecessary.This operationis transparentto the calling program,and
no program changes need be made.

OPEN—The first CASLL issued by the DBOMP program moves an OPEN process
indicator to the work area prefix of eachfile. The first OPEN encountered by the
transparency opens the entire CA IDMS/DBB database: BINDs are issued for the run
unitandall recordtypes, and databaseareas are READYed. Inaddition,the OPEN
process indicator for the firstand all other files causes thetransparency to
determine, for future processingpurposes, howthe correspondingrecordtype is
stored on the CA IDMS/DB database (CALC or DIRECT for master files;VIA for chain
files). OPEN also causes thetransparency to determine from informationin
IMBSTAB whether the filenamed inthe CASLL is the one for which RACN processing
has been requested. If so, the transparency returns the filecontrol record to the
work area for that record (for information aboutthe transparency's support of
RACN, see DBOMP Routines Supported (see page 26).

CLOS—The first CLOS encountered by the transparency closes theentire CA
IDMS/DB database:the transparency updates the file control record if RACN
processing has been requested for afile,and then issues a FINISH command.

Process Indicators Not Supported

The following DBOMP retrieval and update process indicatorsare not supported by the
transparency.Remove them from bridged programs:

MWRT
CWRT
CCHG
CCSR

Chapter 3: The Transparency Environment 25

DBOMP Routines Supported

DBOMP Routines Supported

The transparency provides the logic for limited maintenance of the Run Activity Control
Number (RACN). If you want to retain RACN logicin bridged programs, modify RACN
processing within each programto accommodate the limited supportprovided by the
transparency.

Note: The transparency does not acknowledge low-level code logic or chain countlogic.
The presence of low-level code or chaincountfields ina DBOMP filedoes not
necessitate program modification. These fields areignored.

The transparency supports RACN logic as follows:
m RACN processingis maintained for only one DBOMP file

m OPEN processingcauses thetransparencyto return to the callingDBOMP program
the filecontrol record for the filefor which RACN has been specified

m CLOS processingcauses thetransparency to MODIFY the file control record, thereby
returning itto the database

Once the file control record has been made availableto the program, the transparency
ignores ituntil a CLOS process indicatorisissued. All RACN logicis executed
independently of the transparency so the contents of the filecontrol record canbe
manipulated by the executing program as you wish. When the transparency encounters
a CLOS process indicator, it modifies the file control record, whether or not the DBOMP
program has updated that record.

You areresponsiblefor storing (inthe CAIDMS/DB database) one occurrence of the
record for which RACN processingis specified. The databasekey for this record must be
initialized to binary zeros.

CA IDMS DML Statements Supported in Bridded Programs

The transparency supports certain CAIDMS DML statements issued from a DBOMP
program. These DML statements (for Assembler) are as follows:

= @BIND PROC

= @COMMIT(ALL)

= @ROLLBAK(CONTINUE)
= @ACCEPT(STATS/PROC)

26 User Guide

How to Include CA IDMS DML Statements

How to Include CA IDMS DML Statements

For each CAIDMS DML statement you want to includeina bridgeprogram, do the

following:

1. Buildathree-field argument inthe programvariablestorage of the bridged DBOMP
program.

2. Passthearguments to the bridge program. The transparency converts the valuesin
the arguments to CA IDMS DML statements.

Step 1— Build the argument

Use the informationinthe followingtableto buildthe three-field argument for the DML

statement.

Field Usage Length Contents

1 Character 8 The literal value of the CA IDMS verb issued
by the bridged program. Acceptable values
are:

m @BIND

m @COMMIT

m @ROLLBAK

m @ACCEPT

PL/l or COBOL equivalents are also
acceptable.

2 Character 8 The literal value of the CA IDMS keyword
associated with the CA IDMS verb entered in
field 1. Acceptable values areas shown in the
listfollowingthis table.

3 Character 1-256 The variabledata passed by:

m @BIND PROC
m @ACCEPT PROC
or

m @ACCEPT STATS

This fieldis necessaryonlyif oneof these
DML statements isissued.

Chapter 3: The Transparency Environment 27

How to Include CA IDMS DML Statements

The acceptablevalues for field 2 (shown in the preceding table) are:

m Name of the databaseprocedure, if @BINDing to or @ACCEPTing from a data
procedure

m STATS, if @ ACCEPTing databasestatistics

m ALL ifissuingthe @COMMIT verb and releasinglocks on currentrecords; enter
spaces ifissuingan unqualified @ COMMIT verb

m CONTINUE, if issuingthe @ROLLBAK verb and terminatingthe run unit; enter
spaces ifissuingan unqualified @ROLLBAK verb

Inthe following example, the bridged DBOMP Assembler program builds the argument
IDMSREQ to issuethe CAIDMS DML statement @ACCEPT STATS:

IDMSREQ DS 0D

IDMSVERB DC CL8'@ACCEPT
IDMSKEY DC CL8'STATS '
IDMSAREA DS CL256

Step 2— Pass the argument to the bridge program
Bridged DBOMP Assembler program

Includethis statement in a bridged DBOMP Assembler program to pass the CA IDMS
DML statement argument to the bridge program:

CA$LL BMP$I0,argument-name
Bridged DBOMP PL/I program

Includethis statement in a bridged DBOMP PL/I program to pass the CA IDMS DML
statement argument to the bridge program:

CALL CA$LL(argument name, 'END.')
Bridged DBOMP COBOL program

Includethis statement in a bridged DBOMP COBOL program to pass the CA IDMS DML
statement argument to the bridge program:

CALL BMPCALL USING argument-name.

28 User Guide

Chapter 4: Transparency Programs and

Macros

Overview

This section contains the followingtopics:

Overview (see page 29)
IIMBS Customizing Macro (see page 30)

Output From IMBS Macro— IMBSTAB (see page 36)

Sample IMBS and IMBSTAB (see page 40)
IMBSPROC DatabaseProcedure (see page 46)

IMBSBRDG program module (see page 48)

IMBSEQ macro (see page 55)

This chapter provides information on the transparency components that are described
brieflyinthe followingtable.

Component

Brief description

IMBS customizing
macro

Describes the DBOMP files and the equivalent CA IDMS/DB
database.The IMBS macro generates IMBSTAB.

IMBSTAB Contains (intabular format) the data that the bridge program

uses to convert CA IDMS/DB records to DBOMP records.
IMBSPROC database Moves pointers from the subschema tableinto a CA IDMS/DB
procedure dummy record.

IMBSBRDG program
module

Simulates DBOMP records and processingusing IMBSTAB,
IMBSPROC, IMBSEQ (or equivalent COBOL or PL/I macros),and
CA IDMS/DB.

IMBSEQ macro

Supports the DBOMP GEST, PUST, STSKY, and STSDA macros in
Assembler programs and replaces the MFSSQ, FISLE, and CFSRT
macros.

For more information on equivalent PL/I and COBOL macros,
see PL/I Considerations (see page 85) and see COBOL
Considerations (seepage 91).

Chapter 4: Transparency Programs and Macros 29

IMBS Customizing Macro

IMBS Customizing Macro

IMBS is an Assembler macro that describes DBOMP files and the CA IDMS/DB database
that replaces them.

Input statements for IMBS are as follows:

m Control

m Set identification

m File/recordtype description

m Pointer/setrelationship

m Delimiter

These statements require set names, filenames, record types, logical record length,and

pointer displacement in DBOMP records. To get this information, usethe IDMSRPTS
utility (see the CA IDMS Utilities Guide), runningthese reports:

Report name Gives information on:

RECDES Record types defined ina schema

SETDES Sets defined inaschema

DATDIR Record types copiedinto a subschema (general)
SUBREC Record types copiedinto a subschema (comprehensive)
SUBAREA Areas copiedinto a subschema

SUBSET Sets copied intoa subschema

Syntax for the inputstatements is provided inthe followingsections.

30 User Guide

IMBS Customizing Macro

Control Statement

The control statement specifies control information for the run, including usage mode
andrequired names.

»—— IMBS a SUBSCH=subschema-name —————— »

L 1MBsREC= [IMBS-RECORD « —J—l
7dms -aummy - record-name

L ,RACN= T ITEM-MASTER « —J—J
racn-record-name

v

v

v

L UsAGE= —— PU «

v

L , PGMNAME=program-name]

" - —‘IJ
,SETLMT= 16 «
T 17m7t-number

~ L perroc= —[IMBSPROC « —_,—'
ab-procedure-name

L CATALR= —— NO <« I |
YES]
relocatable-moaule-name

v

v

)4

IMBS

Constant; Code anywhere after column one.
SYSTEM=DBMP/CFMS

Specifies DBMP or CFMS, as appropriate. The defaultvalueis DBMP.
SUBSCH=subschema-name

Specifies the subschema name as itis known to CA IDMS/DB.
IMBSREC=IMBS-RECORD/id ms-dummy-record-name

Specifies the name of the CAIDMS/DB dummy record as defined in the schema. The
default valueis IMBS-RECORD.

Chapter 4: Transparency Programs and Macros 31

IMBS Customizing Macro

RACN=ITEM-MASTER/racn-record-name

Specifies the name of the record for which RACN processingis requested. The
defaultvalueis ITEM-MASTER.

USAGE=

Specifies the CA IDMS/DB usage mode inwhich all areas namedin the subschema
are to be READYed.

PU

Protected update (the default)
PR

Protected retrieval
SU

Shared update
SR

Shared retrieval
ER

Exclusiveretrieval
EU

Exclusive update

PGMNAME=program-name

Specifies the name of the programto be bridged. This parameter defaults to
IDMSDBMP if DBMP is indicated inthe SYSTEM= parameter, or to IDMSCFMS if
CFMS is indicated in the SYSTEM= parameter.

SETLMT=limit-number

Sets the maximum number of sets that can be defined ina singleIMBSTAB. The
defaultis 16.The largestallowed number is 255.

DBPROC=IMBSPROC/db-procedure-name

Specifies the name of a database procedure that passes pointers fromthe
subschema tableto the CA IDMS/DB dummy record. The default value, IMBSPROC,
should be used unless a database procedureby that name already exists.

32 User Guide

IMBS Customizing Macro

CATALR=
Specifies the CATALR option (Z/VSE only).
NO

Specifies that a CATALR cardis not to be provided at the front of the object
deck. NO is the default.

YES

Specifies that a CATALR cardis to be provided at the front of the object deck,
naming IMBSTAB as the relocatable module.

relocatable-module-name

Specifies the relocatable moduleto be named on the CATALR card placed at
the front of the object deck.

Set Identification Statement

The set identification statement names a CA IDMS/DB set. One set identification
statement must exist for each set type to be accessed by the bridged program.

»»—— IMBS SET=(set-number, set-name)

M

IMBS
Constant; Code anywhere after column one.
set-number

Specifies a 2-digitnumber indicatingthe set number. Set identification statements
must be entered insequence by this number.

Set-number cannot exceed the value of the SETLMT parameter inthe control
statement.

set-name

Specifies the name of the setasitappearsinthe subschema.

File/Record Type Description Statement

The file/record type description statement describes the characteristics of the DBOMP
fileand names the CA IDMS/DB record type to whichit corresponds.There must be one
file/record type description statement for each DBOMP filereferenced by the bridged
program.

Chapter 4: Transparency Programs and Macros 33

IMBS Customizing Macro

This statement must be followed by a pointer/set relationship statement for each
pointer thatis established for the record type andthat is to be passed to the calling
program by the databaseprocedure.

v

»»—— IMBS RECNAME=(dbomp-file-name, idms-record-type-name)
»— ,TYPE= ‘E M ,KEYL=key-Ilength
=

S

»— ,LRECL=record-length

v

X

IMBS

Constant; Code anywhere after column one.
dbomp-file-name

Specifies the 7-character name of the DBOMP file.
idms-record-type-name

Specifies the name of the corresponding CAIDMS/DB record type asitappearsin
the subschema.

TYPE=

Specifies the type of DBOMP file.

M
Master file

Cc
Chainfilelinked to more than one master file; note thatif Cis specified, the
corresponding record type must have next, prior,and owner pointers.

S

Chainfilelinked to only one master file;any file/record type description
statement specifying TYPE=S must be preceded by a file/record type
description statement for the master fileto whichit is linked.

KEYL=key-length

Specifies the length of the record key as itis specifiedinthe work area prefix of the
DBOMP file. Key-length must be between 0and 256; specify O for all chainfiles
except those with product-structurecharacteristics wherethe master-record key
length is used.

LRECL=record-length

Specifies the length, in bytes, of the record as itappears on the DBOMP record
layout. The length of the work area prefix should notbe included in this value.

34 User Guide

IMBS Customizing Macro

Pointer/Set Relationship Statement

Pointer/set relationship statements provide CA IDMS DML with information aboutthe
pointers established for each record type thatis to be passed from the databaseto the
user work area.One pointer/set relationship statement must existfor each pointer that
is to be passed for the record type described inthe preceding file/record type
description statement.

»»—— IMBS POINTER=(pointer-number,pointer-type,pointer-displacement-number) —»<
IMBS

Constant; Code anywhere after column one.
pointer-number

Specifies the two-digit number correspondingto the sequential number in the set
identification statement (see above) for the set to which the pointer links the
record.

pointer-type
Specifies the type of pointer, as follows:
m N— Next pointer
m P— Priorpointer
m O— Owner pointer

m X— Dummy pointer; causes the constant END to be moved to the specified
pointer positioninthe simulated DBOMP record

pointer-displacement-number

Specifies the displacement of the pointer inthe DBOMP logical record, where the
record begins at byte 1.

Delimiter Statement

The delimiter statement indicates the end of the input statement entries. Code the
constantIMBS anywhere after columnone.

I

»»—— IMBS END

Chapter 4: Transparency Programs and Macros 35

Output From IMBS Macro— IMBSTAB

Output From IMBS Macro— IMBSTAB

IMBSTAB is an Assembler program module generated by the IMBS macro. It consists of
storage (DS) and storage constants (DC), in the form of tables and buffers. IMBSTAB:

m Supplies IMBSPROC with information needed to move pointers for current records
from the CAIDMS/DB subschema tableinto the dummy CAIDMS/DB record

m Provides IMBSBRDG with information needed to build DBOMP records from

retrieved CA IDMS/DB records

m Supplies IMBSBRDG with the information needed to return updated records from

the user work area to the CA IDMS/DB database

The IMBSTAB module contains the following four tables:

Table Contains:
Control table Control information
Set table An entry for each set described to the IMBS macro

Pointer table

Pointers for each set described to the IMBS macro; the groups of

pointers are inthe same order as the correspondingsets inthe set

table.

Filetable

A group of entries for each filedescribed to the IMBS macro

The control table, set table, pointer table, andfiletable layouts areshown inthe figures

on the following pages.

Control Table

lisplace- Field Contents Field
ment Length
a System name 1
1 Addresses of other tables and logical record buffer 16
28 Advantage CA-TDMS/DB dummy record name
36 [atabase procedure name a
1 Subschena name a
g2 Pragram name a
(] RACH record name 1b
76 Usage mode 1
& Advantage CA-TINS/DB ccmuni -I:;'Inloni d black - SSCTRL |

36 User Guide

Output From IMBS Macro— IMBSTAB

Set Table

The set table contains one entry for each set described to the IMBS macro.

[isplace- Field Contants Field
ment Length
] set-name-1 16
16 set-name-2 16
set-name-n 16

Pointer Table

The pointer table contains onegroup of pointers (owner, prior, current, and next) for
each set described to the IMBS macro, in the same order as the sets to which they
correspond are named inthe set table.

[isplace- Field Contants Field

ment Length
] set-name-1 pointars J [:L

T [ower pointar | T T T TR '
4 prior pointer 4
] current pointer 1
12 next pointar [
16 set-name-£ pointars 16
16 Efu';e; |-:-:|1Tn;et-__ ----------------------- [
bl pricr pointer i
24 current pointer [
28 naxt pointer i1

set-name-n paintars J 16

ownar painter i

prior pointer [

current pointer i1

naxt pointar [

Chapter 4: Transparency Programs and Macros 37

Output From IMBS Macro— IMBSTAB

File Table

The filetable contains onegroup of entries for each DBOMP fileand corresponding CA
IDMS/DB record type described to the IMBS macro.

lisplace- Field Contants Field
ment Length
a naxt-entry PTR | 1
1 DROHP file name 7
11 File type | 1
12 Advantage CA-TDHS/DE record type name : | 16 |
ki) + Switch 1
29 Kay length 1
39 Record length 2
iz Filler 1
36 Current of record type 1
10 Paintar J 2
aa #J;d;'e;s-o;' ;n;r'; A 1
in dummy record
14 Disp. in 2
DBOMP record
1k FTR type 1
a7 + Filler 1

1 pointer antry for each
« pointer established for

= the Advantage CA-IDMS/DB record type

and-of-pointer antries
indicator PTR type = FF (HEX) a

The IMBS macro generates a CA IDMS/DB logical record buffer from which the bridge
program constructs the DBOMP logical record. The size of this buffer is equivalentto the
size of the largest CA IDMS/DB record described in the filetable.

Assembling and Linking IMBSTAB

You canreassemble IMBSTAB as often as you like. This allows you to change control
information and accommodate the requirements of multiple DBOMP applications. The
information most likely tovaryis the program name, the usage mode, the name of the
record for which RACN is to be maintained,and the CATALR option (Z/VSE only).

Each time you changeany inputstatements, do the following:
1. Submitall ofthe IMBS input statements.
2. Llink edit IMBSTAB to the library containing IMBSBRDG.

For the JCL you use to assembleand link editthe IMBSTAB module, see Usingthe
Transparencyas a Bridgeto CAIDMS/DB (see page 75).

38 User Guide

Output From IMBS Macro— IMBSTAB

The following flowchartillustrates IMBSTAB assembly and linkage.

/—
IMB_S_
User input Custamizing Assembler
Statements Macro

Object and Source Listing

Assembler Diagnostics

J—
D -

cL“QEfnTQEd Linkage Transcfrarency
Program Editor cATDMS
Module Load Library

N N

IMBSTAB Error Messagdes

Error messages that are issued duringthe assembly of the IMBSTAB customized bridge
program arecalled MNOTES. An MNOTE appears inthe sourcecode listing directly
below the input statement to which itapplies.

Note: The linenumber of an MNOTE appears on the Assembler Diagnosticsand
Statistics page of the Assembler output listing.
MNOTEs (and their descriptions)areas follows:
m INCORRECT USAGE MODE SPECIFIED

There is aninvalid usage mode inthe USAGE= parameter of the control statement.
= SET SPECIFIED OUT OF SEQUENCE

A setidentification statement is notin numeric sequence by the set number
parameter.

Chapter 4: Transparency Programs and Macros 39

Sample IMBS and IMBSTAB

SUBSCHEMA NOT SPECIFIED

The SUBSCH= parameter is missing fromthe control statement.
SET TABLE LIMIT EXCEEDED

The number of sets defined inthe IMBS macro has been exceeded.
UNRECOGNIZED KEYWORD PARAMETER

The Assembly programhas encountered an unrecognizable keyword parameter.

You must correct inputstatements that areflagged by MNOTES, then resubmitthe
statements to the IMBS macro for assembly of IMBSTAB. Repeat the process until all
user inputstatements are free of errors.

The error-detection capabilities of the IMBS macro arelimited, anditis recommended
that you check all inputstatements for errors not covered by MNOTES. In particular,
check:

The subschema name
Fileandrecord type names
Filetypes

Linkage options

Pointer displacement

CA IDMS/DB set names

Iferrors exist inthe above values and arenot detected when you generate and
assemble IMBSTAB, the bridge programwill encounter discrepancies between
information requested by the calling programandinformation supplied by IMBSTAB.
The results areunpredictable.

Sample IMBS and IMBSTAB

Sample Input to IMBS

The followingis a sample of statements input to the IMBS macro.

IMBS SYSTEM=DBMP,SUBSCH=IMBSSUBS

IMBS SET=(01,ITEM-STRUCTURE)
IMBS SET=(02,ITEM-WHERE-USED)
IMBS SET=(03,WORK-ROUTING)
IMBS SET=(04,ITEM-ROUTING)

40 User Guide

Sample IMBS and IMBSTAB

IMBS
IMBS
IMBS
IMBS
IMBS
IMBS

IMBS
IMBS
IMBS
IMBS
IMBS
IMBS
IMBS
IMBS
IMBS
IMBS

IMBS
IMBS
IMBS
IMBS
IMBS
IMBS

IMBS
END

RECNAME= (ITEMFLE, ITEM-MASTER) , TYPE=M, KEYL=5, LRECL=68
POINTER=(01,X,1)
POINTER=(01,N,10)

POINTER=(02,N,14)

POINTER=(04,N,18)

POINTER=(04,P,22)
RECNAME=(PRODSTR, PROD - STRUCTURE) , TYPE=C, KEYL=5, LRECL=36
POINTER=(01,0,1)

POINTER=(01,N,5)

POINTER=(62,0,9)

POINTER=(02,N,13)

POINTER=(02,P,17)

RECNAME= (WORKCTR, WORK - CENTER) , TYPE=M, KEYL=5, LRECL=32
POINTER=(01,X,1)

POINTER=(03,N,10)

POINTER=(03,P,14)

RECNAME=(ROUTING, ROUTINGS) , TYPE=C, KEYL=0, LRECL=84
POINTER=(04,0,1)
POINTER=(04,N,5)
POINTER=(03,0,9)
POINTER=(03,N,13)
POINTER=(03,P,17)

END

Sample Output from IMBS

The followingis a sample I IMBSTAB sourcelisting, the output from the IMBS macro.

LoC

000000
000000
000004
000008

000020
000020
000024
000028

OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT

1 IMBS SYSTEM=DBMP, SUBSCH=IMBSSU
2+IMBSTAB CSECT

47F0 E000 00000 3+ BC 15,0(,14)

00000620 4+ DC A(IMBSCNTL)

5C5CCIDAC2E240E3 5+ DC C'**IMBS TABLE V12.0**
6+*
7+IMBSCNTL DS oD

C4C2D4D7 8+ DC CL4'DBMP'

00000298 9+ DC A(R1)

000003F0 10+ DC A(BUFFER)

Chapter 4: Transparency Programs and Macros 41

Sample IMBS and IMBSTAB

00002C 00000148 11+ DC A(SETABLE)
000030 00000190 12+ DC A(PTRTAB)
000034 C9D4C2E260D9C5C3 13+ DC CL16'IMBS-RECORD '
000044 C9D4C2E2D7DID6C3 14+ DC CL8'IMBSPROC"
00004C C9D4C2E2E2E4C2E2 15+ DC CL8'IMBSSUBS'
000054 C9C4D4E2C4C2D4D7 16+ DC CL8'IDMSDBMP'
00005C C9E3C5D460D4C1E2 17+ DC CL16'ITEM-MASTER'
00006C OOOOOOF5 18+ DC A(SSCIDBCM+38-1)
000070 19+ DS oD
000070 20+SSCTRL DS 0CL200
000070 4040404040404040 21+PGMNAME DC CL8" '
000078 F1FAFOFO 22+ERRSTAT DC C'1400'
00007C 00000000 23+DBKEY DC F'o'
000080 4040404040404040 24+RECNAME DC CL16' '
000090 4040404040404040 25+AREANAME DC CL16" '
0000A0 4040404040404040 26+ERRORSET DC CL16"
0000BO 4040404040404040 27+ERRORREC DC CL16" '
0000CO 4040404040404040 28+ERRAREA DC CL16" '
0006D0O 29+SSCIDBCM DS OF
0006DO ©600OEEEOOEOOCO 30+IDBMSCOM DC 25F'0'
000134 00000600 31+DIRDBKEY DC F'o'
000138 32+DBSTATUS DS oCL7
000138 4040 33+DBSTMTCD DC CcL2' !
00013A 404040404040 34+DBSTATCD DC CL5* ',CL1" !
000140 ©0000OC00 35+RECOCCUR DC F'o'
000144 00000000 36+DMLSEQ DC F'o'
000148 37+SETABLE DS oD
38 *
39 IMBS SET=(01,ITEM-STRUCTURE)
000148 C9E3C5D460E2E3D9 40+SET1 DC CL16'ITEM-STRUCTURE'
41 IMBS SET=(02,ITEM-WHERE-USED)
000158 C9E3C5D460E6C8CS 42+SET2 DC CL16'ITEM-WHERE-USED'
43 IMBS SET=(03,WORK-ROUTING)
000168 E6D6DID260DIDGEA 44+SET3 DC CL16'WORK-ROUTING'
45 IMBS SET=(04,ITEM-ROUTING)
000178 C9E3C5D460DID6E4 46+SET4 DC CL16'ITEM-ROUTING'
47 *
48 IMBS RECNAME=(ITEMFLE,ITEM-MAS

42 User Guide

Sample IMBS and IMBSTAB

000188

000190

000190

000290
000290
000294
000296
000298
000298
00029C
0002A3
0002A4
0002B4
0002B6
0002B8

0002CO
0002C4
0002C6
0002C7

0002C8
0002CC
0002CE
0002CF

0002D0
0002D4
0002D6
0002D7

0002D8
0002DC
0002DE
0002DF

0002E0
0002E4
0002E6

0002E7

0002E8
0002EC

FFFFFFFF

0000000000000000

FFFFFFFF
0000
FFFF

000002F0
C9E3(C5D4C6D3C5
D4
C9E3C5D460D4C1E2
0005

0044
0000000000000000

00000190
0000

E7

40

00000190
0009

D5

40

000001A0
000D

D5

40

000001CO
0011

D5

40

000001CO
0015
D7

40

FFFFFFFF
0044

49+
50+*
51+PTRTAB

52+
53+*
54+FTABLE
55+
56+
57+
58+R1
59+
60+
61+
62+
63+
64+
65+
66
67+
68+
69+
70+
71
72+
73+
74+
75+
76
77+
78+
79+
80+
8l
82+
83+
84+
85+
86
87+
88+
89+

90+
91 *
92

93+
94+

DS

I

BS

BS

BS

BS

BS

8B BEREREEESERRRERERRERREERRRERERRERERREREREEEARERA

MBS

S8

Fro1

oD

16XL16"'FF"

oD

F'-1'

H'O'

H'-1'

OF

A(R2)

CL7'ITEMFLE'

c'm
CL16'ITEM-MASTER'
H'5!

H'68'

2F'0'
POINTER=(01,X,1)
A(PTRTAB+16*(01-1))
AL2(1-1)

CL1'X'

CL1 !
POINTER=(01,N,10)
A(PTRTAB+16*(01-1))
AL2(10-1)

CL1'N'

CL1 !
POINTER=(02,N,14)
A(PTRTAB+16*(02-1))
AL2(14-1)

CL1'N'

CL1' '
POINTER=(04,N,18)
A(PTRTAB+16*(04-1))
AL2(18-1)

CL1'N'

CL1 !
POINTER=(04,P,22)
A(PTRTAB+16*(04-1))
AL2(22-1)

CL1'P'

CL1" !

RECNAME=(PRODSTR, PROD-STR
Fl_ll
H'68'

Chapter 4: Transparency Programs and Macros 43

Sample IMBS and IMBSTAB

0002EE FFFF 95+ DC H'-1'
0002F0 96+R2 DS OF
0002F0 00000348 97+ DC A(R3)
0002F4 D7D9D6C4E2E3D9 98+ DC CL7'PRODSTR'
0002FB C3 99+ DC c'c
0002FC D7D9D6C460E2E3D9 100+ DC CL16'PROD-STRUCTURE'
00030C 0005 101+ DC H'5'
00030E 0024 102+ DC H'36'
000310 ©060EOEEEEOEEOOCO 103+ DC 2F'0'

104 IMBS POINTER=(01,0,1)
000318 00000190 105+ DC A(PTRTAB+16*(01-1))
00031C 0000 106+ DC AL2(1-1)
00031E D6 107+ DC CL1'0'
00031F 40 108+ DC CL1 !

109 IMBS POINTER=(01,N,5)
000320 00000190 110+ DC A(PTRTAB+16*(01-1))
000324 0004 111+ DC AL2(5-1)
000326 D5 112+ DC CL1'N'
000327 40 113+ DC CL1 !

114 IMBS POINTER=(02,0,9)
000328 000001A0 115+ DC A(PTRTAB+16*(02-1))
00032C 0008 116+ DC AL2(9-1)
00032E D6 117+ DC CL1'0'
00032F 40 118+ DC cL1 !

119 IMBS POINTER=(02,N,13)
000330 000001A0 120+ DC A(PTRTAB+16*(02-1))
000334 000C 121+ DC AL2(13-1)
000336 D5 122+ DC CL1'N'
000337 40 123+ DC CL1" '

124 IMBS POINTER=(02,P,17)
000338 000001A0 125+ DC A(PTRTAB+16*(02-1))
00033C 0010 126+ DC AL2(17-1)
00033E D7 127+ DC CL1'P!
00033F 40 128+ DC CL1 !

129 *

130 IMBS RECNAME=(WORKCTR,WORK-CEN
000340 FFFFFFFF 131+ DC F'-1'
000344 0024 132+ DC H'36'

44 User Guide

Sample IMBS and IMBSTAB

000346 FFFF 133+ DC H'-1'

000348 134+R3 DS OF

000348 00000390 135+ DC A(R4)

00034C E6D6DID2C3E3D9 136+ DC CL7 'WORKCTR'
000353 D4 137+ DC c'm

000354 E6D6DID260C3C5D5 138+ DC CL16'WORK-CENTER"
000364 0005 139+ DC H'5'

000366 0020 140+ DC H'32'

000368 ©00000600OO0COOCO 141+ DC 2F'0'

142 IMBS POINTER=(01,X,1)
000370 00000190 143+ DC A(PTRTAB+16*(01-1))
000374 0000 144+ DC AL2(1-1)

000376 E7 145+ DC CL1'X'
000377 40 146+ DC CL1 !

147 IMBS POINTER=(03,N,10)
000378 000001BO 148+ DC A(PTRTAB+16*(03-1))
00037C 0009 149+ DC AL2(10-1)
00037E D5 150+ DC CL1'N'
00037F 40 151+ DC CL1 !

152 IMBS POINTER=(03,P,14)
000380 ©000001BO 153+ DC A(PTRTAB+16*(03-1))
000384 006D 154+ DC AL2(14-1)

000386 D7 155+ DC CL1'P!
000387 40 156+ DC CL1 !

157 *

158 IMBS RECNAME=(ROUTING, ROUTINGS
000388 FFFFFFFF 159+ DC F'-1'
00038C 0020 160+ DC H'32'
00038E FFFF 161+ DC H'-1'

000390 162+R4 DS OF

000390 OOOOO3E8 163+ DC A(R5)

000394 DOD6E4E3COD5C7 164+ DC CL7'ROUTING'
00039B C3 165+ DC cc

00039C D9D6E4E3CID5C7E2 166+ DC CL16'ROUTINGS'
0003AC 0000 167+ DC H'O'

0003AE 0054 168+ DC H'84'

0003B0 0000OCEEOOCEOOCO 169+ DC 2F'0'

170 IMBS POINTER=(04,0,1)
0003B8 000001CO 171+ DC A(PTRTAB+16*(04-1))
0003BC 0000 172+ DC AL2(1-1)
0003BE D6 173+ DC CL1'0'
0003BF 40 174+ DC CL1 !

175 IMBS POINTER=(04,N,5)
0003CO 000001CO 176+ DC A(PTRTAB+16*(04-1))

Chapter 4: Transparency Programs and Macros 45

IMBSPROC Database Procedure

0003C4 0004 177+ DC AL2(5-1)
0003C6 D5 178+ DC CL1'N'
0003C7 40 179+ DC CL1" !

180 IMBS POINTER=(03,0,9)
0003C8 000001BO 181+ DC A(PTRTAB+16*(03-1))
0003CC 0008 182+ DC AL2(9-1)
0003CE D6 183+ DC CL1'0'
0003CF 40 184+ DC cLr !

185 IMBS POINTER=(03,N,13)
0003D0 000001BO 186+ DC A(PTRTAB+16*(03-1))
0003D4 000C 187+ DC AL2(13-1)
0003D6 D5 188+ DC CL1'N'
0003D7 40 189+ DC CL1 !

190 IMBS POINTER=(03,P,17)
0003D8 000001BO 191+ DC A(PTRTAB+16*(03-1))
0003DC 0010 192+ DC AL2(17-1)
0003DE D7 193+ DC CL1'P'
0003DF 40 194+ DC CL1 !

195 *

196 IMBS END
0003EO FFFFFFFF 197+ DC F'-1'
0003E4 0054 198+ DC H'84'
0003E6 FFFF 199+ DC H'-1'
0003E8 200+R5 DS OF
0003E8 C5D5C44B 201+ DC CL4'END. '
0003F0 202+BUFFER DS oD
0003FO0 0000060000000060 203+ DC XL148'0"

000484 C5D5C44B 204+ DC CLA'END. '

205 END

IMBSPROC Database Procedure

IMBSPROC, suppliedinsourceand objectform on the CA IDMS DML installation media,
is a databaseprocedure. This procedure moves pointers of current records (that
participateinthe sets described in IMBSTAB) from the subschema tableto a CA
IDMS/DB dummy record. The bridge program BINDs the dummy record to the IMBSTAB
pointer table.

46 User Guide

IMBSPROC Database Procedure

Integration of IMBSPROC into the Bridge Program

Integration of IMBSPROC into the bridge programiis as follows:

m When a DBOMP programissues a retrieval or update request, the bridge program
issues a GET of the dummy record before:

- Moving the CA IDMS/DB record to the CA IDMS/DB logical record buffer
or
— Returning the DBOMP record to the database

m When the bridgeprogramissues a GET of the dummy record, CA IDMS/DB calls
IMBSPROC. IMBSPROC places currency information (pointers) inthe dummy record.

m |MBSPROC moves pointers for the sets identified in the IMBSTAB set tablefrom the

subschema tableto the dummy record and cancels the GET command issued to CA
IDMS/DB.

m IMBSPROC returns the updated dummy record to the bridge program.

m The bridge program proceeds to move the pointers for the requested record from
the dummy record into the DBOMP filework area, placingthem as specifiedin
IMBSTAB.

Note: To protect the integrity of the CAIDMS/DB database, pointers are not
returned with record data to the databasewhen a write function has been
requested.

What You Need To Do

The bridge program and IMBSPROC logicis transparentto the calling program. You
must, however:

m Define the dummy record inthe schema

m Includethe dummy record inanysubschema as that bridged programs use, thereby
makingitavailableto IMBSPROC and IMBSBRDG

Inthe schema RECORD descriptionthatdescribes the dummy record, includea CALL
statement that directs CA IDMS/DB to call IMBSPROC before GETting the dummy
record.

For example, see this sample COBOL RECORD description:

record name is imbs-record.
record id is 799.

location mode is direct.
within bill-of-matrl area.
call imbsproc before get.

05 imbs-pointers occurs n times.
10 imbs-pointer pic x(4) occurs 4 times.

Chapter 4: Transparency Programs and Macros 47

IMBSBRDG program module

Code the RECORD description paragraph asshowninthe sample, changingthe values
for RECORD NAME, RECORD ID, and AREA name as necessary.Supplyavaluefor n (in
the 05-level OCCURS statement) that is less than or equal to the value specified in the
SETLMT clauseof the IMBS macro control statement.

IMBSBRDG program module

IMBSBRDG is the CA IDMS DML Assembler programmodule that replaces the DBOMP
runtime executable code. Specifically,itreplaces:

m The BMSPIO root module
m The APSSEQ module
m All FILEORG modules

m The routines generated by the MFSSQ, FISLE, and CFSRT macros

IMBSBRDG Interface Between Applications and CA IDMS/DB

IMBSBRDG is aninterface between application programs and CAIDMS/DB, and
simulates IBM bill-of-materials systems (BOMP, DBOMP, CFMS). IMBSBRDG is linked at
runtime with IMBSTAB, IDMS, and the DBOMP application program,and appears to CA
IDMS/DB as an application program.

Note: CA IDMS DML does not include operating system and input/output interfaces,and
does notissueany messages to the console.
IMBSBRDG simulates the DBOMP environment by:

m Converting DBOMP retrieval or update macros and process indicators to CA
IDMS/DB commands

m Converting CA IDMS/DB records to DBOMP records, usinginformation supplied by
IMBSTAB.

After convertingthe DBOMP command and the object record, IMBSBRDG returns the
requested data and processinginformation tothe calling program.

48 User Guide

IMBSBRDG program module

Converting DBOMP Calls to CA IDMS/DB Statements

The IMBSBRDG program module simulates DBOMP processing by converting DBOMP
callsto CA IDMS/DB statements. IMBSBRDG uses its process indicator tableto make the
conversion. The executing program:

m Examines the process indicator (foundinthe work area prefix of the object record)

m Searches the processindicator tablefor the name of the IMBSBRDG routine that
issues the equivalent CA IDMS statement

m Passes control tothe appropriate IMBSBRDG routine, which performs the
requested retrieval or update function

IMBSBRDG Routines
The followingtabledescribes the IMBSBRDG routines.
The IMBSBRDG module supplied on the installation media includes comments for each

of these routines as well as for the routines that move pointers and data to and from
the DBOMP filework area.

Chapter 4: Transparency Programs and Macros 49

IMBSBRDG program module

Name of routine

What it does

HOUSEKEEPING

(performed on each entry to
BMSPIO and APSSEQ)

m Savesregisters
m Establishes addressability

m Sets sequential flagfor entry to APSSEQ

MAINLINE Routes all calls to IMBSBRDG:
m Onfirstcall,passes controlto INITIALIZATION
routine
m For all subsequentcalls, passes control to
PROCESS INDICATOR routine and to FILENAME
VERIFICATION routine
INITIALIZATION m Establishes location of IMBSTAB tables and loads
(performed on initial entry to their addresses
IMBSBRDG)

m Signsonto CA IDMS/DB

m BINDs CA IDMS/DB dummy record to pointer table
in IMBSTAB

m BINDs all record types to CA IDMS/DB logical
record buffer in IMBSTAB

m READYs the CAIDMS/DB databaseareas inthe
specified usage mode

m Initializes the general CA IDMS/DB call

m Initializes registers

FILENAME VERIFICATION

Equates the DBOMP filename to a CA IDMS/DB record
type name

PROCESS INDICATOR

Equates the DBOMP process indicator toa CA
IDMS/DB function

MOVE RECORD

m For retrieval functions, builds the expected
DBOMP record from the CA IDMS/DB logical
record buffer and passes therecord to the named
DBOMP filework area

m For update functions, extracts the data from the
DBOMP filework area and passes the data to the
CA IDMS/DB logical record buffer (pointers are not
moved from the work area to the CA IDMS/DB
logical record buffer)

MRAN MRKY

Performs random record retrieval

DIRECT READ

Performs directrecord retrieval

50 User Guide

IMBSBRDG program module

Name of routine What it does

MODIFY RECORD Updates in placemaster and chainfilerecords
SEQUENTIAL READ Performs processing requested by GEST
START KEY Performs processing requested by STSKY
START DA Performs processingrequested by STSDA
OPEN

m Determines location mode of CA IDMS/DB record
type that corresponds to named DBOMP file

m Determines, for future MGET processing, whether
CA IDMS/DB record type belongs to an indexed
set

m Determines if RACN functionis permitted for
named DBOMP fileand ifsoreturns filecontrol
record to named DBOMP filework area

CLOSE Returns file control record to CA IDMS/DB database
andcloses database

EXPAND Moves diskaddress to named work area prefix from
indicated sendingfield

COMPRESS Moves diskaddress fromnamed work area prefix to
indicated receivingfield

Converting Records Retrieved from CA IDMS/DB

The IMBSBRDG program converts retrieved CA IDMS/DB records to DBOMP records,
reconstructs CA IDMS/DB records from updated DBOMP records, and returns the
updated records to the database.

Converting Records

To convert records retrieved from the CA IDMS/DB database, IMBSBRDG performs the
followingtasks:

m Reads the CAIDMS/DB record intothe CAIDMS/DB logical record buffer

m Retrieves the CA IDMS/DB dummy record updated by IMBSPROC

m Moves the pointers for the requested record from the CA IDMS/DB dummy record
to the DBOMP filework area (using displacementinformationin IMBSTAB to
determine where to placeeach pointer)

m Moves segments of data from the CA IDMS/DB logical record buffer to the DBOMP
filework area, accounting for the pointers alreadyinplace

Chapter 4: Transparency Programs and Macros 51

IMBSBRDG program module

Pointer displacement informationis usedin determining the size of each data
segment moved:

- The sizeof the firstdata segment moved equals the number of bytes between
the beginning of the DBOMP logical record and the first pointer

— The sizeof the second segment moved equals the number of bytes between
the firstand second pointers

- This process continues until all of the data inthe CA IDMS/DB logical record
buffer has been moved intothe filework area, where the simulated DBOMP
record is available for processing by the calling program

Reconstructing and Returning Records
To reconstructupdated DBOMP records and return them to the CA IDMS/DB database,

CA IDMS DML performs the followingtasks:

m Moves segments of data from the updated DBOMP logicalrecordin the file work
areato the CA IDMS/DB logical record buffer.

Pointer displacement informationis usedin determining the size of each data
segment:

— The sizeof the firstsegment moved equals the number of bytes between the
beginning of the DBOMP record and the first pointer

— The sizeof the second segment moved equals the number of bytes between
firstand second pointers

- This process continues until alldata inthe DBOMP logicalrecord (except
pointers) has been moved to the CA IDMS/DB logical record buffer.

m |ssuesa MODIFY command to CA IDMS/DB, returning the updated recordin the
buffer to the database.

The followingtwo figures illustrate how IMBSBRDG moves data between the CA IDMS
logical record buffer and the work area of the DBOMP file.

52 User Guide

IMBSBRDG program module

Transfer from IDMS to DBOMP

The following figure shows the transfer of data from the CA IDMS/DB logical record
buffer to the work area of the DBOMP file. Note that when the transfer of data takes
place, the pointers already have been moved from the CA IDMS/DB dummy record to
the DBOMP filework area.

CA IDMS/DB Logical Record Buftfer

D i ?

CA IDMS/DB . 1
Database - |

Segment 1 1 Segment 2

N~ VAN AN

Segment n

mTm-eEzZ2—"QD™
Dm=-2Z 00T

DBOMP File Work Area (Simulated DBOMP Record)

Chapter 4: Transparency Programs and Macros 53

IMBSBRDG program module

Transfer from DBOMP to IDMS

This figure shows the transfer of data from the work area of the DBOMP fileto the CA
IDMS/DB logical record buffer. Note that pointers are not returned with record data to
the CA IDMS/DB logical record buffer.

CA IDMS/DB Logical Record Buftfer

D i ?

CA IDMS/DB . 1
Database - |

N~ VAN AN

mTm-eEzZ2—"QD™
Dm=-2Z 00T

Segment 1 Segment 2 Segment n

DBOMP File Work Area (Simulated DBOMP Record)

54 User Guide

IMBSEQ macro

Values Returned to the Calling Program

IMBSBRDG returns values to the calling program, as showninthe followingtable.

Values returnedto: Description of values returned

Work area prefix m A hexadecimal value inthe error-byte field, returned

after a DBOMP request:
m 0000— Requested function performed successfully

m 0400— Filename not found in IMBSTAB

m 0004— Process indicator notfoundin process
indicator table

m 0008— Invalidrecord atdiskaddress (MDIRand CDIR
process indicators)

m FFFF— Failurein IMBSBRDG program

m Currentdisk address, returned when a successful
random read (MRAN or MRKY) has been performed

m Currentrecord key, returned when a successful
directread (MDIR, MRDR, CDIR, or CRDR) has been
performed

Work area of the DBOMP A DBOMP logical record;after successful execution of a
file retrieval request

Currency field in IMBSEQ Current address of a record retrieved by a successful
tables execution of the STSDA or STSKY macro

IMBSEQ macro

IMBSEQ is the Assembler macrothat replaces:

m The MF$SQ macro

m All FISLE macros

m The CRSRT macroin DBOMP Assembler application programs

IMBSEQ generates tables containinginformation to supportthe sequential processing

requested by GEST, PUST STSDA, and STSKY macros in bridged programs. You canplace
this macroanywhere inthe application program, however, it must appear only once.

»»—— IMBSEQ (77le-name, set-name, end-of-data-address) >«

Chapter 4: Transparency Programs and Macros 55

IMBSEQ macro

IMBSEQ

A required constant that identifies the macro; you can code itanywhere after
column 1.

file-name

Specifies the seven-character name of the DBOMP file. One file-name entry must
existfor every master filereferenced inthe bridged program.

set-name
Specifies the name of the setasitappearsinthe subschema.
end-of-data-address
Specifies the end-of-data address for the accompanying file-name. One
end-of-data-address entry must exist for every file-name.
IMBSEQ builds onesequential tablefor each filenamed inthe macro. Eachtable
contains the followingvalues:
m The DBOMP filename
m Alastfileflag

m The name of the area for which an area sweep is performed or the name of the
index used for sequential access

m The address of the end-of-fileroutine to which program control is to branch when
the end of the fileis reached

m The currencyfield updated after each sequential retrieval

Sequential File Table Layout

The followingfigureillustrates the layoutof the sequential filetable.

[Hsplaca- Field Contants Fiald

ment Langth
B DECMP file nane 7
7 + Flag 1
8 Area name or indax nane | 16
2 Address of EOF routine [
28 Current db-key 4

56 User Guide

IMBSEQ macro

The IMBSEQ macro requires entries for only those files that are processed sequentially
by the DBOMP program. In IMBSTAB, you must describeall files entered in this macro
and referenced inthe program.

The macros that generate the PL/I and COBOL interfaces includethe logic necessaryto
generate the tables required for sequential processing. The layoutfor these tables is the
same as for those generated by the IMBSEQ macro.

For more information on the PL/I interface, see PL/I Considerations (seepage 85). For
more information on the COBOL interface, see COBOL Considerations (seepage 91).

Chapter 4: Transparency Programs and Macros 57

Chapter 5: Converting DBOMP to CA

IDMS/DB

Overview

This section contains the followingtopics:

Overview (see page 59)

Converting Data (see page 60)

Converting DBOMP Load and Maintenance Programs (see page 62)
Converting DBOMP Retrieval and Update Programs (see page 72)
DBOMP Error Codes With CAIDMS/DB Equivalents (see page 72)

This chapter provides detailed instructions for converting DBOMP data and programs to
CA IDMS/DB.

Conversion Steps

To convert a DBOMP system to CA IDMS/DB, you must:

1. Designthe CAIDMS/DB database.Use DBOMP file organization modules, /0
modules, and filedescription modules as design aids and then discard them; these
modules arenot integrated into a CA IDMS/DB runtime system.

Note: The Mixed Page Group Binds Allowed feature may not be used with CD
IDMS/DBOMP Transparency. For more information on this step, see the CA IDMS
Database Design Guide.

2. Convert andtransfer existing data from the DBOMP databaseto the CAIDMS/DB
database.

3. Convert DBOMP load, maintenance, and retrieval/update programs to CA IDMS/DB.

Cautions on the Duplication of Logic

Because of the basic differences between CA IDMS/DB processingand DBOMP
processing, don't expect CA IDMS/DB to duplicate DBOMP logicinallapplications. This
applies particularly to RACN and chain countroutines. Since CA IDMS/DB handles these
functions internally,itis usually notnecessary to maintain the routines in converted
programs.

However, should these routines be required, you must integrate the necessarylogicinto
converted programs. For example, if RACN is implemented inthe converted program,
you must establish a file control record for each applicable master fileand insert the
program logic to update it.

Chapter 5: Converting DBOMP to CAIDMS/DB 59

Converting Data

Converting Data

To convert andtransfer data from a DBOMP databaseto a CA IDMS/DB database, you
write a conversion programthatissues callsto DBOMP and to IDMSDBLU.

Note: For more information on IDMSDBLU, see the FASTLOAD sectioninthe CA IDMS
Utilities Guide.

What the Conversion Program Does

A conversion programdoes the following:

m Describes each DBOMP master fileand equivalent CA IDMS/DB record type (see the
information on occurrencedescriptors inthe FASTLOAD sectioninthe CA IDMS
Utilities Guide)

m Describes sets, set owners, and record keys to be established on the CA IDMS/DB
database(see the information on owner descriptors inthe FASTLOAD sectioninthe
CA IDMS Utilities Guide)

m |ssuesa DBOMP call toretrieve a record from the parent master file
m Reformats the retrieved DBOMP parent master record intoa CA IDMS/DB record

m |ssuesacalltoIDMSDBLU to store the reformatted record on the CA IDMS/DB
database

m Establishes setnames andrecord keys

m Issues a DBOMP command for a primary chain chase of the product-structure
(internal) chainfileanchoredinthe retrieved parent master record

m Reformats each subordinate master record, as itis retrieved, into a CA IDMS/DB
record

m |[ssues acalltoIDMSDBLU for each reformatted subordinate master record to store
the record on the CA IDMS/DB databaseand to connect the record to the
appropriateset(s)

m Uses the record key for the parent master record to return itto the user work area;
this occurs when the end of the internal chainfileis reached

m Issues a DBOMP command for a primary chainchasetoretrieve the subordinate
master records associated with the parent master record in external relationships

m Reformats each subordinate master recordas itis retrieved

60 User Guide

Converting Data

m |ssuesacalltoIDMSDBLU to store each reformatted subordinate master record on
the CA IDMS/DB databaseandto connect the record to the appropriateset(s)

m Repeats all of the preceding tasks until the entire parent master file has been read;
this occurs when the end of the external chainfileis reached

Note: Itis recommended that you retainlow-level codes when you transfer DBOMP
datato a CA IDMS/DB database. Ifyou want to retain sequential dependencies, convert
andtransfer the DBOMP data as outlined above and describethe record as beingstored
via its owner, as described under the clause via set-name set of the record statement of
Schema statements inthe Database Administration manual.To keep all occurrences of a
given record type in physical sequence, they must be stored via a system owned index.

COBOL Example of Conversion Program

The followingis an example of a COBOL program that converts DBOMP data to CA
IDMS/DB records and loads them into the CA IDMS/DB database.

data division.

working-storage section.
01 dbomp-item.

03 item-pi.
03 item-key.
01 CA IDMS/db-item Refer to CA IDMS Utilities Guide
03 part-no. for information on occurrence descriptors.

01 dbomp-prodstr.
01 idms-prodstr.
01 dbomp-workctr.

01 idms-workctr.
03 work-no.

01 dbomp-routing.

01 idms-routing.

01 owner-1. Refer to CA IDMS Utilities Guide
03 set-1. for information on owner descriptors.
03 key-1.

Chapter 5: Converting DBOMP to CAIDMS/DB 61

Converting DBOMP Load and Maintenance Programs

01 owner-2.

03 set-2.
03 key-2.

procedure division.

call 'bmpeof' using dbomp-item end-job.

next-item.

call 'bmpget' using dbomp-item.
reformat dbomp-item, giving idms-item
call 'idmsdblu' using idms-item.
move part-no to key-1.

move 'item-struct' to set-1.

move 'where-used' to set-2.

next-structure.

end-of-chain go to first-route.

call 'chase' using anlnk nxlnk addnf dbomp-prodstr dbomp-item.
reformat dbomp-prodstr, giving idms-prodstr

move part-no to key-2.

call 'idmsdblu' using idms-prodstr owner-1 owner-2.

go to next-structure.

first-route.

move key-1 to item-key.

move 'mran' to item-pi.

call 'bmpcall' using dbomp-item.
move 'item-routing' to set-1.
move 'work-routing' to set-2.

next-route.

end-of-chain go to next-item.

call 'chase' using anlnk nxlnk addnf dbomp-routing dbomp-workctr.
reformat dbomp-routing, giving idms-routing

call 'idmsdblu' using idms-routing owner-1 owner-2.

reformat dbomp-workctr, giving idms-workctr

call 'idmsdblu' using idms-workctr.

go to next-route.

Converting DBOMP Load and Maintenance Prodgrams

You must convert all DBOMP load and maintenance programs to CA IDMS/DB before
you canrun them againstthe CAIDMS/DB database. Converting these programs
involves:

Inserting the necessary CAIDMS/DB DML control statements to prepare the
databasefor processing

Replacingall DBOMP calls, process indicators, and associated logic with CA
IDMS/DB DML statements and associated logic

62 User Guide

Converting DBOMP Load and Maintenance Programs

Steps for Converting Load and Maintenance Programs

Followthe eight steps presented below to convert DBOMP Assembler, PL/I, and COBOL
load and maintenance programs.To obtainthe proper record names and descriptions,

set names, area names, and subschema names, consultthe dictionary reports produced
by the IDMSRPTS utility (see the CA IDMS Utilities Guide).

1.
2.

Remove all programreferences to work areas and work area prefixes.

Providea CA IDMS/DB Communications Block for the program, as showninthe
figure following this procedure.

Allocatespacein program variablestoragefor each CA IDMS/DB record type to be
referenced inthe converted program. The structure of each record type is
describedinthe data dictionary Subschema Record Description Listing, the SUBREC
report generated by the IDMSRPTS utility (see the CA IDMS Utilities Guide).

Issuean @MODE macro (Assembler only).

BIND the subschema andall record types to be referenced inthe program.

READY those databaseareas thatwill beaccessed by the program; one READY
statement canbe issued forall areas, or each area can be READYed explicitly.

Replace each DBOMP CASLL or BMPCALL with an CAIDMS DML statement
equivalentto the functionrequested by the process indicator inthe DBOMP work
area prefix. Alter the associated logic as necessary to conformwith CA IDMS/DB
programming requirements. The section followingthis listof guidelines shows the
DBOMP process indicators (and commands) and their equivalent CA IDMS DML
statements and associated logic.

Check the CAIDMS/DB error status after every call to CA IDMS/DB (see DBOMP
Error Codes With CA IDMS/DB Equivalents (see page 72)).

Note: Maintain low-level codes in converted structural maintenance programs.You
canincorporatethis logicinto user programs as a subroutinethatis invoked
followingroutines that add records to the CA IDMS/DB database. For an example of
this low-level code logic, Sample Application and Procedures (see page 97); you can
apply this exampleto user maintenance programs.

Chapter 5: Converting DBOMP to CAIDMS/DB 63

Converting DBOMP Load and Maintenance Programs

Communications Block from Step 2 of Conversion

Length Suggested
Field Type (in bytes) Initial Yalue
+£ 1 & } Pragram name Alpharumeric a Pragran name
] 12 Error-status indicator Alphanumeric 1 ldee!
: 13 16 : Db-key Binary 4 {fullword)]
17 a2 % Record name Alpharumeric 1a Spaces
él 13 18 él Area name Alpharumeric 1a Spaces
19 a4 % Error set nane Alpharumeric 1a Spaces
él E5 i1 ‘% Error record nama Alpharumeric 1a Spaces
él a1 96 él Error area name Alpharumeric 1a Spaces
il a7 |J|J 196 f: TDBHSCON array Alphanumeric 168
3197 ze6 s Direct db-kay Binary A (fullword) G906
a1 287 Reservad for system Al pharumeric T Spaces

Filler - 1 -
Record accurrenca Binary 4 {fullword) ERAE

a8
i 289 212 }
i 213 216 i ML sequenca Binary 4 {fullword)]
 — |

* word aligned

DBOMP Process Indicators and Corresponding DML

Replacing DBOMP process indicators with equivalent CAIDMS DML statements is partof
program conversion (see the steps for converting programs). On the following pages,
DBOMP process indicators areshown with their equivalent DML statements (and
associated logic, where appropriate). DML statements are shown inthis order:

m Assembler

= COBOL

= Pl

OPEN

»»>—— @READY ALL ><
AL T

»»—— READY ><

»— READY
L area=

64 User Guide

Converting DBOMP Load and Maintenance Programs

CLOS
»»— @FINISH >«
»»—— FINISH >«
»»—— FINISH; >«
MADD and MCRT
»»—— @STORE REC= >«
»»—— STORE »
»»—— STORE RECORD; >«
Associated Logic
Build recordin user work area and move key to required field before STORE.
MDEL and MTAG
»»—— @ERASE REC ,REC= >
PERMANENT —
SELECTIVE —
ALL ——
»»—— ERASE] >«
PERMANENT MEMBERS
SELECTIVE
ALL
»»—— ERASE RECORD »<
PERMANENT —
SELECTIVE —
ALL
Associated Logic
For MTAG, insertuser logictoaccomplish tagging.
CADD
»»—— @STORE REC= >«
»»—— STORE »><
»»—— STORE RECORD; »<

Associated Logic

Move parent master record key to program variablestorage; FIND CALC parent master
record; build 'chain' record; move subordinate master key to program variablestorage;
FIND CALC subordinatemaster record; CONNECT subordinate master record to
appropriateset; perform low-level code routine; set membership for product-structure
relationshipis MM.

CADD (Subordinate Master)

y
A

»»—— @STORE REC= >«
»»— STORE >«
»»—— STORE RECORD; >«

Chapter 5: Converting DBOMP to CAIDMS/DB 65

Converting DBOMP Load and Maintenance Programs

Associated Logic

Move parent master record key to program variable storage; move subordinate master
record key to program variablestorage;build ‘chain'recordin programvariablestorage;
FIND CALC parent master record; FIND CALC subordinate master record; STORE 'chain’
record; NOTE: set membership for subordinate master record is assumed MA.

CADD (No Subordinate Master)
»»—— @STORE REC=

y
A

»»—— STORE >«
»»—— STORE RECORD; >«

Associated Logic

Move master record key to program variablestorage; build 'chain'record; FIND CALC
master record; STORE 'chain'record.

CDLS

)

PERMANENT —
SELECTIVE —
ALL ——

»»—— ERASE]
l—E PERMANENT MEMBERS

SELECTIVE
ALL

»»—— ERASE RECORD E

»»—— @ERASE E REC ,REC=

M

M

PERMANENT —
SELECTIVE —
ALL

Associated Logic
Move master record key to program variablestorage; FIND CALC master record; OBTAIN
NEXT record within set; check error status;loop until record is found or end of set

reached; delete found record.

CDLM

M

PERMANENT —
SELECTIVE —
ALL ———

»»—— ERASE]
PERMANENT MEMBERS
SELECTIVE

ALL
»»—— ERASE RECORD E

»»—— @ERASE E REC ,REC=

M

M

PERMANENT —
SELECTIVE —
ALL

Associated Logic

Move master record to program variablestorage; FIND CALC master record; OBTAIN
NEXT record within set; delete 'chain'record;check error status;loop until end of set.

66 User Guide

Converting DBOMP Load and Maintenance Programs

CCSR

»»—— @MODIFY REC= >«
»»—— MODIFY >«
»»—— MODIFY RECORD; >«
Associated Logic

Move subordinate master record key to programvariablestorage; OBTAIN CALC
subordinate master record; change subordinate master record key to desired value;
MODIFY subordinate master record.

CEQL

»»—— @STORE REC= >«
»»—— STORE >
»»—— STORE RECORD; »<

Associated Logic

Move parent master record key to program variablestorage; FIND CALC parent master
record; OBTAIN NEXT record within set; move key of obtained record to program
variablestoragefor parent master record; FIND CALC record; STORE retrieved ('chain')
record.

CCHG

y
A

»»—— @MODIFY REC=
»»— MODIFY
»»—— MODIFY RECORD;

(]

[]

)

Associated Logic

Move master record key to program variablestorage; FIND CALC master record;
MODIFY record as required.

CFIN and CEND

Have no IDMS equivalents
Associated Logic

Ifend of set is desire, FIND OWNER within set.
SADD

»»—— @CONNECT REC=,SET=

»»— CONNECT TO
»»—— CONNECT RECORD SET;

y
A

Il

y
A

)

Chapter 5: Converting DBOMP to CAIDMS/DB 67

Converting DBOMP Load and Maintenance Programs

Associated Logic

Move master record key to program variablestorage; FIND CALC master record; OBTAIN
NEXT record within set; move subordinaterecord key to master record key in program
variablestorage; FIND CALC master record; CONNECT found master record to
appropriateset.

SDEL

y
A

»»—— @DISCON REC=,SET=
»»—— DISCONNECT FROM
»»—— DISCONNECT RECORD SET;

(]

]

)

Associated Logic

FIND CALC record; OBTAIN NEXT record within set; DISCONNECT retrieved record.
CCRT

See information for CADD

MRKY

y
A

»»— @FIND CALC,REC=
»»— FIND CALC
»»—— FIND CALC RECORD;

]

1]

MRAN

y
A

»»—— @OBTAIN CALC,REC=
»»—— OBTAIN CALC
»»—— OBTAIN CALC RECORD;

]

(]

)

MDIR

y
A

»»—— @OBTAIN DBKEY=
»»—— OBTAIN DB-KEY IS
»»—— OBTAIN DBKEY;

(]

Xl

MRDR

y
A

»»—— @FIND DBKEY=
»»—— FIND DB-KEY IS
»»—— FIND DBKEY;

(]

[]

)

MUPD

»»— @MODIFY REC=
»»—— MODIFY
»»—— MODIFY RECORD;

y
A

(]

(]

)

MWRT

Has no CA IDMS/DB equivalent

68 User Guide

Converting DBOMP Load and Maintenance Programs

CDIR

y
A

»»—— @OBTAIN DBKEY= >«
»»—— OBTAIN DB-KEY IS >«
»»—— OBTAIN DBKEY >«
CUPD

»»—— @MODIFY REC= >«
»»— MODIFY >«
»»—— MODIFY RECORD; >«

Associated Logic

OBTAIN record before issuing MODIFY.
CWRT

Has no CA IDMS/DB equivalent

CMPR and EXPN

Have no CA IDMS/DB equivalents; addresses are not compressed in CA IDMS/DB

DBOMP Commands and Corresponding DML

Replacing DBOMP commands with equivalent CA IDMS DML statements is part of
program conversion (see the previous listof guidelines for conversion). On the following
pages DBOMP commands areshown with their equivalent DML statements (and
associated logic, where appropriate). DML statements are shown inthis order:

m Assembler
m COBOL
= PL/I

CHASE BMPCHASE
See associated logic
Associated Logic

FIND CALC set owner record; OBTAIN NEXT record (member) within set; check for the
end of the set; repeat OBTAIN NEXT and check error status until the end of the set.

GEST BMPGET

y
A

)

»»—— @OBTAIN NEXT, T E\EIIE-; n

y
A

»»—— OBTAIN NEXT WITHIN
»—— OBTAIN NEXT —— SET ;
L ARea

Il

Chapter 5: Converting DBOMP to CAIDMS/DB 69

Converting DBOMP Load and Maintenance Programs

PUST BMPPUT
»»— @MODIFY REC=

y
A

»»—— MODIFY

[]

»»—— MODIFY RECORD;

(]

STSKY BMPSTKY
»»—— @OBTAIN,REC=,SET=,USING=

)

y
A

»»— OBTAIN WITHIN USING

1]

»»—— OBTAIN RECORD SET USING;

y
A

Associated Logic

Obtains arecordinan indexed set usinga symbolic key.

STSDA BMPSTDA

)

y
A

»»—— @OBTAIN DBKEY=DIRCTKY,REC=

(]

»»—— OBTAIN DB-KEY IS DIRECTKY

(]

»»—— OBTAIN DBKEY DIRCTKY;
Associated Logic

Record retrieved in physical sequential order by symbolic key. (DIRCTKY)
CASLL BMPCALL

See process indicator equivalents

Commands having no equivalents

These DBOMP commands have no CA IDMS/DB equivalents:

= BMSWA
m MSG

m TYSPE
m MOSVE
m EQSRG
m BMSDS
® MFSSQ
m CFSRT
m FISLE

m CGEST
m CPUST
m BMSFO

)

70 User Guide

Converting DBOMP Load and Maintenance Programs

BMPFO

EOSF

BMPEOF

BMSRACN

BMPRACN

BMSOFAD

BMPOFFAD

Sequence of Logic in Converted Programs

The general sequence of logicinthe converted load and maintenance programs should
be as follows:

1.
2.

Read input data or transactionrecord.

Format the input data into the CA IDMS/DB record work area.(The COBOL code to
accomplish this isgenerated automatically.)

Establish necessarycurrencies.

Issuethe appropriate DML Assembler macro:

@STORE— Add arecord occurrenceto the database.
@ERASE— Delete arecord occurrencefrom the database.
@MODIFY— Alter a record key or sequence field.
@CONNECT— Add arecord occurrenceto a set occurrence.

@DISCONNECT— Remove a record occurrence from a set occurrence.

Check the status code returned by CA IDMS/DB (see DBOMP Error Codes With CA
IDMS/DB Equivalents (see page 72)).

Note: Check the CAIDMS/DB status after every call to CA IDMS/DB to determine
whether the requested function was performed. The status codes returned to the
program may indicate programerrors, or they may be tested by program logic to
determine subsequent program action. For more information on status codes and their
meanings, see the CA IDMS DML Reference Guide for COBOL and the CA IDMS DML
Reference Guide for PL/I.

Chapter 5: Converting DBOMP to CAIDMS/DB 71

Converting DBOMP Retrieval and Update Programs

Converting DBOMP Retrieval and Update Programs

The final taskin conversion to CA IDMS/DB is converting DBOMP retrieval and update
programs.

Steps for Converting Retrieval and Update Programs

Followthe eight steps presented below to convert DBOMP Assembler, PL/I, and COBOL
load and maintenance programs to CA IDMS/DB. To obtain the proper record names
anddescriptions, setnames, area names, and subschema names, consultthe data
dictionaryreports produced by the IDMSRPTS utility (see the CA IDMS Utilities Guide).

1.
2.

Remove all programreferences to DBOMP filework areas and work area prefixes.

Providea CA IDMS/DB Communications Block for the program (see the same step
under Converting DBOMP Load and Maintenance Programs (see page 62), inthis
chapter).

Allocatespaceinthe CA IDMS/DB programvariablestoragefor each CA IDMS/DB
record type to be referenced inthe converted program. The structure of each
record type is describedin the dictionary Subschema Record Description Listing, or
SUBREC report.

Note: For more information on SUBREC, see IDMSRPTS inthe CA IDMS Utilities
Guide.

Issuean @MODE macro (Assembler only).
BIND the subschema andall record types to be referenced inthe program.

READY those databaseareas thatwill beaccessed by the program; one READY
statement canbe issuedforall areas, or each area can be READYed explicitly.

Convert each DBOMP command and accompanying process indicatortoan
equivalent DML command. Alter the program logic associated with the DBOMP
command as necessary to conform with CA IDMS/DB programming requirements.
Refer to the syntaxshown under Converting DBOMP Load and Maintenance
Programs (see page 62)for the CA IDMS/DB statements that are equivalentto
DBOMP commands save process indicators.

Check the status code returned by CA IDMS/DB after every call to CAIDMS/DB (see
the table under DBOMP Error Codes With CAIDMS/DB Equivalents (see page 72)).

DBOMP Error Codes With CA IDMS/DB Equivalents

DBOMP DBOMP P.. IDMS IDMS Macro Meaning
Code Status
0400 Any 0308 Any Invalid record type

72 User Guide

DBOMP Error Codes With CA IDMS/DB Equivalents

DBOMP DBOMP P.l. IDMS IDMS Macro Meaning

Code Status

0200 Addition 1211 @STORE No spaceinarea
0008 Fileread 0326 @FIND/@OBTAIN Record not found
0008 Fileread 0302 @FIND/@OBTAIN Db-key not within

page range for
specified record

0004 Any Xx63 - Invalid function
0001 Addition 1205 @STORE Duplicaterecord
0001 Deletion 0230 @ERASE Record occurrenceis
owner of nonempty
set
END CHASE 0307 @OBTAIN NEXT, End of setor area
SET=
AREA=

Chapter 5: Converting DBOMP to CAIDMS/DB 73

Chapter 6: Using the Transparency as a
Bridge to CA IDMS/DB

Overview

This section contains the followingtopics:

Overview (see page 75)

Preparing DBOMP Assembler Programs (see page 75)
Executing DBOMP Assembler Programs (see page 76)
DiagnosingErrors (seepage 81)

You canusethe CAIDMS DBOMP Transparency as a bridge between your existing
unconverted DBOMP application programand a databasethathas been converted from
DBOMP to CA IDMS/DB Usingthe transparencyinvolves theseactivities:

m Preparing DBOMP programs for processing
m Executing the programs

m locatinganddiagnosingprogramerrors thatoccur during processing

This chapter explains the procedures you useto prepare and execute Assembler
programs and for diagnosingerrors in bridged Assembler, PL/l, and COBOL programs.

For more information on preparing and executing PL/l programs,see PL/I
Considerations (see page 85). For more information on preparing and executing COBOL
programs,see COBOL Considerations (seepage 91).

Preparing DBOMP Assembler Programs

The amount of preparation necessary to make a DBOMP Assembler programacceptable
to the transparencyvaries based on the functions performed by the program. Before
submittinga DBOMP Assembler application programvia the transparency, make the
following changes:

m Remove any MFSSQ, FISLE, or CFSRT macros from the program. Replacethe
macros with the IMBSEQ macro.

Note: The IMBSEQ macro must appear only once inthe program.

m Remove any programlogicthat depends on RACN support for more than one file
(record type). IMBSBRDG ignores programreference to file control records for files
other than the one designated in IMBSTAB as using RACN.

Chapter 6: Using the Transparency as a Bridge to CA IDMS/DB 75

Executing DBOMP Assembler Programs

m |fthe programissues anyallowable CAIDMS/DB verbs, insertthe proper callsto
IMBSBRDG (see The Transparency Environment (see page 21)). Use IDMS-REQUEST
as the work area filename.

m Ifanyretrieval or update process indicators other than those supported by the
transparencyareused inthe program, replacethem with process indicators that
are supported (see The Transparency Environment (see page 21)).

Executing DBOMP Assembler Programs

Perform these steps to execute a DBOMP Assembler program usingthe transparency:

1. Assemble IMBSTAB by submittingthe user customizing parameters to the IMBS
macro. (Omit this step and the next step ifan existingversion of IMBSTAB is
compatiblewith the application program.) The third and fourth steps are required
only for sequential processing of DBOMP files.

2. Llink edit IMBSTAB.

3. Assemble the IMBSEQ macro with the IMBSASMB interface macro, specifyingthe
user-defined parameters for the IMBSEQ macro.

4. Llink editthe IMBSEQ macro.

5. Reassemble andlinkedit the DBOMP application program, including IMBSBRDG,
IMBSTAB, IMBSEQ, and IDMS.

Note 1: IDMS 16.0 supports Z/OS V2R10 as well as z/0S 1.1 and above. However,
we will always refer to z/OS in this document.

Note 2: Programs running under z/OS need only be reassembled if any of the
changes detailed above have been made; programs running under Z/VSE must be
reassembled whether or not any of these changes have been made, unless the
programs existinthe relocatablelibrary.

6. Execute the DBOMP application program.The programis now bridged to CA
IDMS/DB.

The JCL you use to execute each of these tasks is provided onthe followingpages.

Assembling and Executing Under z/0S
z/0S/Central Version

The followingis the JCL for assemblingand executing DBOMP Assembler programs using
the transparency, ina z/OS operating system, under the central version.

76 User Guide

Executing DBOMP Assembler Programs

Assemble/Execute DBOMP Assembler Program Using the Transparency (IMBSBRDG) (z/0S)

//ASMTABLE EXEC ASMA90
//ASM.SYSLIB DD DISP=SHR,DSN=yourHLQ.CAGISRC
// DD DISP=SHR,DSN=imbs.srclib
//ASM.SYSIN DD DISP=SHR,DSN-yourHLQ.CAGJSRC(imbstab)
//LKED.SYSLMOD DD DISP=SHR,DSN=imbs.loadlib(imbstab)
/7*
//ASMPROG EXEC ASMA90
//ASM.SYSLIB DD DISP=SHR,DNS=cfms.srclib
//ASM. SYSIN DD *

DBOMP program statements

END
/*
//LKED.SYSLMOD DD DISP=SHR,DSN=user.loadlib(pgmname)
//LKED.IDMSLIB DD DISP=SHR,DSN=idms.loadlib
//LKED.IMBSLIB DD DISP=SHR,DSN=imbs.loadlib

INCLUDE IDMSLIB(IDMS)

INCLUDE IMBSLIB(IMBSBRDG

INCLUDE IMBSLIB(imbstab)

INCLUDE IMBSLIB(IMBSEQ)

/ *
//RUNPROG EXEC PGM=pgmname
//STEPLIB DD DSN=user. loadlib,DISP=SHR

DD DSN=idms. dba. loadlib,DISP=SHR
DD DSN=idms. loadlib,DISP=SHR
additional JCL for application program, as required

//SYSOUT DD SYSOQUT=A

//SYSUDUMP DD SYSOQUT=A

//SYSCTL DD DSN=idms.sysctl,DISP=SHR
//SYSIDMS DD *

DMCL=dmc-name

Other SYSIDMS parameters, as appropriate
/*

program input, as required

Includeas many STEPLIB DD statements as there are libraries containing program, CA
IDMS DBOMP Transparency Transparency,and CA IDMS/DB load modules.

Note: Ifyou aregoing to use the transparency frequently under the central version,
consider makingIMBSPROC and any applicablesubschemas resident. Assembleand link
IMBSEQ as described previously andincludeitonthe link editof the application. For
more information on optional SYSIDMS runtime parameters, see the CA IDMS Common
Facilities Guide.

Chapter 6: Using the Transparency as a Bridge to CA IDMS/DB 77

Executing DBOMP Assembler Programs

z/0S/Local Mode

To runthe same job inlocal mode, substitute the following statements after the
//STEPLIB statement:

//STEPLIB DD DSN=user. loadlib,DISP=SHR

// DD DSN=imbs. loadlib,DISP=SHR

// DD DSN=idms.dba. loadlib,DISP=SHR
// DD DSN=idms. loadlib,DISP=SHR
//sysjrnl DD DSN=idms. tapejrnl ,DISP=(NEW, PASS),
// UNIT=tape

//userdd DD DSN=database,DISP=(0LD,PASS)
//SYSIDMS DD *

DMCL=dmc1- name

additional SYSIDMS parameters, as appropriate

/*

additional database file assignments, as required
additional JCL for application program, as required
//SYSOUT DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

program input, as required

Explanation of Variables

yourHLQ.CAGJMAC Dataset name for CA IDMS/DB macro library

imbs.srclib Dataset name for the transparency or CA IDMS/DB source
library containing IMBS customizing macro

disk Symbolic device name for disk unit
&.&object. Temporary datasetname for IMBSTAB object module
imbs.srclib(imbstab) Dataset name for user parameters inputto IMBS

customizing macro

idms.dba.loadlib Dataset name for the load library containingthe DMCL and
databasename table load modules

idms.loadlib Dataset name for the load library containing CA IDMS
executable modules

imbs.loadlib Dataset name for the transparency or CA IDMS/DB load
library containingtransparency modules

imbstab Dataset name for link edited output from IMBS macro

cfms.maclib Dataset name for user macrolibrary

user.loadlib Dataset name for loadlibrary containing DBOMP

application program

pgmname Name of DBOMP application program

78 User Guide

Executing DBOMP Assembler Programs

dmcl-name Name of the CAIDMS DMCL describing the CAIDMS files
used by the transparency

sysjrnl DD name for CA IDMS/DB journal file

idms.tapejrnl Dataset name for CA IDMS/DB journal file

tape Symbolic device name for CA IDMS/DB journal file

userdb DD name for CA IDMS/DB databasefile

user.userdb Dataset name for CA IDMS/DB databasefile

sysctl Dataset name for the SYSCTL file

CA IDMS DBOMP Transparency database procedure

Assembling and Executing Under Z/VSE
Z/VSE/Central Version

The followingis the JCL for assemblingand executing DBOMP Assembler programs using
the transparency,ina Z/VSE operatingsystem, under the central version. Note that you
canuse either an UPSI statement or a SYSCTL statement to indicatecentral version.

Assemble/Execute DBOMP Assembler Program Using the Transparency (IMBSBRDG) (Z/VSE)

// ASSGN SYSPCH,X'281"
// OPTION DEXK
CATALR imbstab
// EXEC ASMA99
user input parameters for IMBS customizing macro
END
/*
// MTC REW,X'281'
// ASSGN SYSIPT,X'281'
// EXEC MAINT
/*
// OPTION CATAL
PHASE pgmname
// EXEC ASMA90
program statements
END

Chapter 6: Using the Transparency as a Bridge to CA IDMS/DB 79

Executing DBOMP Assembler Programs

/*
INCLUDE IMBSBRDG
INCLUDE imbstab
INCLUDE IDMS

// EXEC LNKEDT

/&
// JOB EXECPQM
// UPSI 1

// DLBL SYSIDMS, '#SYSIPT',0,SD

DMCL=dmc1-name

Other SYSIDMS runtime parameters, as appropriate
/*

additional JCL for application program, as required
// EXEC pgmname

program input, as required

/*

Note: Ifyou aregoing to use the transparency frequently under the central version,
consider making IMBSPROC and any applicablesubschemas resident.

Z/VSE/Local Mode

To runthe same job inlocal mode, substitute the following JCL after the // JOB
EXECPGM statement:

// ASSGN sys009,X'281'

// ASSGN sys010,X'137'

// DLBL sys010, 'database’, ,DA

// EXTENT sys010,444444,1,76,1776

additional database assignments, as required
additional JCL for application program, as required
// EXEC pgmname

// DLBL SYSIDMS, '#SYSIPT',0,SD

DMCL=dmcl-name

Other SYSIDMS runtime parameters, as appropriate
program input, as required

/*

Explanation of Variables

pgmname Name of DBOMP application program

imbstab Dataset name for link edited output from IMBS customizing macro
sys009 Logical unitassignmentfor CA IDMS/DB journal file

281 Physical deviceassignment for CA IDMS/DB journal file

sys010 Logical unitassignmentfor CA IDMS/DB databasefile

80 User Guide

Diagnosing Errors

137 Physical deviceassignmentfor CA IDMS/DB databasefile
database Dataset name for CA IDMS/DB databasefile

444444 Serial number of disk containing CAIDMS/DB databasefile

76 Relative track where CA IDMS/DB databasefilebegins

1776 Number of tracks used by CA IDMS/DB databasefile

dmcl-name Name of the CA IDMS DMCL describingthe CAIDMS files used by

the transparency

Diagnosing Errors

Sincethe CAIDMS DBOMP Transparency does not issuediagnostic messages, you must
locateand diagnoseerrors that occur during the execution of a bridged DBOMP
program.

Note: Ifthe bridgesystem aborts:

m z/OSissues anSOC2 program check message

m 7/VSE issues a PRIVILEGED OPERATION EXCEPTION message

What to Look For When Errors Occur During Program Processing
Error-byte Field

Check the error-byte field inthe work area prefix of each file processed by the program.
The contents of the error-byte field indicate:

m Whether the error occurred during IMBSBRDG processing

m Whichfilewas being handled at the time the error occurred

Ifthe error-byte field of a work area prefix contains a value other than '0000', the error
occurred while that filewas being handled by IMBSBRDG.

For more information on error-byte values, see IMBSBRDG program module (see
page 48).

Chapter 6: Using the Transparency as a Bridge to CA IDMS/DB 81

Diagnosing Errors

CA IDMS/DB Communications Block

Check the CAIDMS/DB communications block (SSCTRL) in IMBSTAB. Ifan error occurred
during CA IDMS/DB processing, the IDMS Communications Block will containan error
status code other than '0000'and the name of the record lastinvolved in the operation
that resulted inthe error.

Note: For more information on the complete listing of CAIDMS/DB error codes, see the
CA IDMS Messages and Codes Guide.

Process Indicators

Check which process indicatorin the work area prefix was being handled at the time
that the error occurred.

IMBSBRDG generates this process indicator: In response to:
MGET GEST

MPUT PUST

STKY STSKY

STDA STSDA

Table Generation and Accuracy

Verify that the IMBSEQ, IMBSCOBL, or IMBSPL1 table has been generated and is
accurateifanysequential processingfunctions arerequested by the program.

Subschema and DMCL Module

Verify that the subschema name known to CA IDMS/DB is available,and that the DMCL
moduleis available.

IMBS Parameters

Verify the accuracy of the parameters inputto the IMBS customizing macro.

82 User Guide

Diagnosing Errors

What to Look For When Inaccurate Data is Returned

If your program runs successfully butreturns inaccuratedata to the work area, make
sure:

Where to Find Values

The CA IDMS/DB subschema record descriptions agree with the DBOMP file
descriptions

The filetable in IMBSTAB contains correctfiletypes and pointer displacements

The CA IDMS/DB files areloaded properly

During Debudgding

The followingtablelists theregisters that point to the location of transparency
components containingvalues pertinentto the debugging process.

Register Points to:

R5 IMBSTAB

R6 Active work area prefix

R7 Active fileandfiletablein IMBSTAB

R8 Active record name

R11 CA IDMS/DB logical record buffer in IMBSTAB

R12 Beginning of active IMBSBRDG routine

R14 Instruction following a branch to FORCEDMP; importantonly when the

message program check SOC2 (z/OS) or PRIVILEGED OPERATION
EXCEPTION (Z/VSE) has been issued

Chapter 6: Using the Transparency as a Bridge to CA IDMS/DB 83

Appendix A: PL/I Considerations

This section contains the following topics:

Overview (see page 85)

Transparency Support For DBOMP PL/I Commands (see page 85)
IMBSPL1 Interface Macro (see page 87)

DBOMP PL/I ProgramPreparation and Execution (see page 88)

Overview

This appendix provides you with additionalinformation necessary to use DBOMP PL/I
programs with CA IDMS DBOMP Transparency.

Except as noted here, CA IDMS DBOMP Transparency bridges DBOMP PL/I programs in
the same manner it bridges DBOMP Assembler programs.

The topics covered in this appendix are:
m CA IDMS DBOMP Transparency supportof DBOMP PL/I commands

m |MBSPL1 interface macro

m DBOMP PL/I programpreparation and execution

Transparency Support For DBOMP PL/I Commands

The transparency's supportof DBOMP PL/I commands parallels thatof DBOMP
Assembler macros. The followingtableshows DBOMP PL/I commands and their
interpretation by the CA IDMS DBOMP Transparency.

Note: See IBM DBOMP documentation for the syntax for these commands.

DBOMP PL/I CA IDMS DBOMP Transparency interpretation of command
command
OPSEN The firstcall to OPSEN causes IMBSBRDG to open the entire CA

IDMS/DB databaseand prepareitfor processing: BINDs are
issued for the run unitand all record types described in the
subschema, and databaseareas are READYed. The
transparency returns the file control record for the filefor
which RACN has been specified in IMBSTAB. Subsequent calls
to OPSEN areignored once the databasehas been opened.

Appendix A: PL/I Considerations 85

Transparency Support For DBOMP PL/I Commands

DBOMP PL/I
command

CA IDMS DBOMP Transparency interpretation of command

CLOSE

The firstcall to CLOSE causes IMBSBRDG to closeall areasin
the CA IDMS/DB databasebyissuing a FINISHcommand.
Subsequent calls to CLOSE are ignored once the databasehas
been closed. If any command other than CLOSE is issued after
the first CLOSE, the transparency automatically reopens the CA
IDMS/DB databaseand processes the command; a subsequent
CLOSE causes the transparency to closethe databaseagain.

CASLL

The work area prefix for the named fileis passed to IMBSBRDG,
which interprets the process indicator containedin the work
area prefix and performs the requested function. See Chapter
3, "The Transparency Environment" for those process
indicators supported by the transparency.

GEST

IMBSBRDG retrieves the firstrecord inthe named fileand
returns itto the work area. Subsequent callsto GEST usingthe
same filecause IMBSBRDG to retrieve records inlogical
sequential order from that pointif the record type is not
indexed. When an end-of-file conditionis detected, control is
passed to the routine specified for the fileinthe EOSF
command (discussed below).

EOSF

IMBSBRDG handles EOSF inthe same manner as does DBOMP,
but obtains the necessaryfileinformation fromthe module
generated by the IMBSPL1 interface macro (see below) rather
than from the module generated by the DBOMP PLSBM macro.
A call to EOSF must specify the end-of-file routines in the same
sequence as the correspondingfiles areentered inthe IMBSPL1
macro.

STSKY

IMBSBRDG retrieves a record by the key specifiedinthe work
area prefix for the named fileand returns the record to the
work area. The currency for the fileis set atthe retrieved
record. Subsequent GEST commands for the fileretrieve
records inlogical sequential order fromthat pointif the record
type is notindexed. Note that the transparency supportof
logical sequential processing assumes the use of an index.

STSDA

IMBSBRDG retrieves a record by the diskaddress specifiedin
the work area prefix for the named fileand returns the record
to the work area.The currency for the fileis setat the retrieved
record. Subsequent GEST commands for the fileretrieve
records inlogical sequential order fromthat pointif the record
type is indexed, or in physical sequential order fromthat point
ifthe record type is not indexed. Note that the transparency's
supportof logical sequential processingassumes the use of
indexing.

86 User Guide

IMBSPL1 Interface Macro

DBOMP PL/I
command

CA IDMS DBOMP Transparency interpretation of command

PUST

IMBSBRDG writes backto the CAIDMS/DB databasethe last
record retrieved by a GEST command. Chain address fields
(pointers) are not updated or written back to the database.

CHASE

The transparency supports this command unconditionally.
Programs that request only the CHASE function need not be
modified before interfacing with the bridge, and should be
linked with the PLSCH macro asindicatedin IBM DBOMP
documentation.

BMSOFAD

The transparency does not supportthis command. Ifacall to
BMSOFAD is encountered by the bridge, no action takes place
and control returns to the calling program.

BMSFO

The transparency does not supportthis command. Ifa BMSFO
command is encountered, an unresolved external reference
results inthe link editmap.

BMSRACN

The transparency does not supportthis command. Ifa
BMSRACN command is encountered, no action takes placeand
control returns to the calling program. The transparency's
maintenance of RACN in PL/I programs is the same as for
Assembler programs.

IMBSPL1 Interface Macro

The IMBSPL1 interface macro replaces the DBOMP PLSBM macro. This Assembler macro
generates tables containingthe information necessaryto establish communication
between the DBOMP PL/I programand IMBSBRDG. Also incorporatedinthese tablesis
the information required to supportthe sequential processingrequested by callsto
GEST, PUST, STSKY, and STSDA.

Syntax

IMBSPL1 macro

»»—— IMBSPL1 (f7le-name, T index-set-name T), T mgs_—l— ; — >«

NOTSEQ

Appendix A: PL/I Considerations 87

DBOMP PL/I Program Preparation and Execution

Parameters
IMBSPL1

A required constant that identifies the macro; you can code itanywhere after
column1l.

file-name

The seven-character name of the DBOMP master fileas specified inthe program
work area. You must enter the routines named inthe EOSF command inthe same
order as you enter the correspondingfilenames inthe IMBSPL1 macro. This
ensures that the address of the proper routine is passed to IMBSBRDG when the
end of afilenamed ina GEST command is reached. One file-name entry must be
present for each DBOMP filethatis processed.

index-set-name/NOTSEQ

The name of the index set to be used for logical sequential processing; specify
NOTSEQ ifthe fileis not to be processedinlogical sequential order.One
index-set-name/NOTSEQ entry must be present for each file-name entry.

YES/NO
The compiler option indicator;specified as follows:

m VYES ifthe optimizingcompileris used and IMBSPL1 is notidentified as an
assembler entry

m NO if the D- or F-level compileris used
Note: Itis recommended that you name every fileon the DBOMP databaseinone

execution of the IMBSPL1 macro so that this macro does not need to be assembled and
link edited more than once.

Assembling and Linking IMBSPL1
To assembleand link-editIMBSPL1, you must use SMP/E (Z/OS) or MSHP (Z/VSE).

Note: For more information on using SMP/E and MSHP, see the CA IDMS Installation—
Z/0S or the CA IDMS Installation— Z/VSE.

DBOMP PL/I Program Preparation and Execution

The guidelines for preparinga DBOMP PL/I programand executing it using the
transparency parallel those detailed for DBOMP Assembler programs in Usingthe
Transparencyas a Bridgeto CAIDMS/DB (see page 75).

88 User Guide

DBOMP PL/T Program Preparation and Execution

Preparing the PL/I Program

Remove the PLSBM macro.

Remove those DBOMP PL/I commands that are not supported by CAIDMS DBOMP
Transparency and modify associated programlogic as necessary.

Modify the PL/I logic as necessary to conform with CA IDMS DBOMP Transparency
specifications for sequential processingand RACN processing.

Ifthe programissues any of the allowable CAIDMS DML statements, insertthe
following call to IMBSBRDG, making sure that the CA IDMS DML statement
argument is availablein programvariablestorage (see The Transparency
Environment (see page 21)):

call ca$ll (argument name, 'end.')

Ifany retrieval or update process indicators exceptfor those supported by CA IDMS
DBOMP Transparency (see The Transparency Environment (see page 21))are used
inthe program, replacethem with those thatare supported.

Executing the Program

Assemble and link edits IMBSTAB ifa version compatible with the application does
not existinthe loadlibrary.

Recompile and link edit the DBOMP PL/I program, including IMBSBRDG, IMBSTAB,
IMBSPL1, and CA IDMS/DB. This step assumes that IMBSPL1 has been assembled
andlink edited as discussed above.

Note: You do not need to recompile programs that run under Z/OS unless any of
the changes listed above have been made; you must, however, recompile programs
that run under Z/VSE whether or not any of these changes have been made, unless
the programs existinthe relocatablelibrary.

Submit the DBOMP PL/I program for execution.

Appendix A: PL/I Considerations 89

Appendix B: COBOL Considerations

This section contains the following topics:

Overview (see page 91)

Transparency Support For DBOMP COBOL Commands (see page 91)
IMBSCOBL Interface Macro (see page 93)

DBOMP COBOL Program Preparation and Execution (see page 94)

Overview

This appendix provides you with additionalinformation necessarytointerface DBOMP
COBOL programs with CAIDMS DBOMP Transparency.

Except as noted in this appendix, CA IDMS DBOMP Transparency bridges DBOMP COBOL
programs inthe same manner as it bridges DBOMP Assembler programs.

The topics covered in this appendix are:
m CA IDMS DBOMP Transparency supportof DBOMP COBOL commands
m |MBSCOBL interface macro

m DBOMP COBOL program preparation and execution

Transparency Support For DBOMP COBOL Commands

The transparency's supportfor DBOMP COBOL commands parallelsits supportfor
DBOMP Assembler macros. The followingtableshows DBOMP COBOL commands and
their interpretation by the transparency.

Note: See IBM DBOMP documentation for the syntax for these commands.

DBOMP PL/I CA IDMS DBOMP Transparency interpretation of command
command
BMPOPEN The firstcall to BMPOPEN causes IMBSBRDG to open the entire

CA IDMS/DB databaseand prepareitfor processing:BINDs are
issued for the run unitand all record types described in the
subschema, and databaseareas are READYed. The
transparency returns the file control record for the filefor
which RACN has been specified in IMBSTAB. Subsequent calls
to BMPOPEN areignored once the databasehas been opened.

Appendix B: COBOL Considerations 91

Transparency Support For DBOMP COBOL Commands

DBOMP PL/I
command

CA IDMS DBOMP Transparency interpretation of command

BMPCLOSE

The firstcall to BMPCLOSE causes IMBSBRDG to closeall areas
inthe CA IDMS/DB databasebyissuinga FINISHcommand.
Subsequent calls to BMPCLOSE areignored once the database
has been closed. Ifany command other than BMPCLOSE is
issued after the first BMPCLOSE, the transparency
automatically reopens the CA IDMS/DB databaseand processes
the command; a subsequent BMPCLOSE causes the
transparencyto closethe databaseagain.

BMPCALL

The work area prefix for the named fileis passed to IMBSBRDG,
which interprets the process indicator containedin the work
area prefix and performs the requested function. For
information on process indicators thatare supported by the
transparency, see Chapter 3, "The Transparency Environment".

BMPGET

IMBSBRDG retrieves the firstrecord inthe named fileand
returns itto the work area. Subsequent callsto BMPGET using
the same filecause IMBSBRDG to retrieve records inlogical
sequential order from that pointif the record type is indexed,
or inphysical sequential order fromthat pointifthe record
type is notindexed. When an end-of-file condition is detected,
control passes to the routine specified for the filein the
BMPEOF command (discussed below).

BMPEOF

IMBSBRDG handles BMPEOF inthe same manner as does
DBOMP, but obtains the necessary fileinformation fromthe
module generated by the DBOMP CB$SBM macro. Acall to
BMPEOF must specify the end-of-file routines inthe same
sequence as the correspondingfiles areentered inthe
IMBSCOBL macro.

BMPSTKY

IMBSBRDG retrieves a record by the key specifiedinthe work
area prefix for the named fileand returns the record to the
work area. The currency for the fileis set atthe retrieved
record. Subsequent BMPGET commands for the fileretrieve
records inlogical sequential order fromthat pointif the record
type isindexed, or in physical sequential order fromthat point
ifthe record type is not indexed. Note that the transparency's
supportof logical sequential processingassumes the use of
indexing.

92 User Guide

IMBSCOBL Interface Macro

DBOMP PL/I
command

CA IDMS DBOMP Transparency interpretation of command

BMPSTDA

IMBSBRDG retrieves a record by the disk address specifiedin
the work area prefix for the named fileand returns the record
to the work area.The currency for the fileis setat the retrieved
record. Subsequent BMPGET commands for the fileretrieve
records inlogical sequential order fromthat pointif the record
type isindexed, or in physical sequential order fromthat point
ifthe record type is not indexed. Note that the transparency's
supportof logical sequential processingassumes the use of
indexing.

BMPPUT

IMBSBRDG writes backto the CAIDMS/DB databasethe last
record retrieved by a BMPGET command. Chain address fields
(pointers) are not updated or written back to the database.

CHASE

The transparency supports this command unconditionally.
Programs that request onlythe CHASE function need not be
modified before interfacing with the bridge, and should be
linked with the CBSCH macroas indicatedin IBM DBOMP
documentation.

BMPOFFAD

The transparency does not supportthis command. Ifacall to
BMPOFFAD is encountered by the bridge, no action takes place
and control returns to the calling program.

BMPFO

The transparency does not supportthis command. Ifa BMPFO
statement is encountered, an unresolved external reference
results inthe link editmap.

BMPRACN

The transparency does not supportthis command. Ifa
BMPRACN command is encountered, no action takes placeand
control returns to the calling program. The transparency's
maintenance of RACN in COBOL programs is the same as for
Assembler programs.

IMBSCOBL Interface Macro

The IMBSCOBL interface macro replaces the DBOMP CBSBM macro. This Assembler
macro generates tables containingthe information necessaryto establish
communication between the DBOMP COBOL program and IMBSBRDG. Also
incorporatedinthese tables is the information required to supportsequential
processingrequested by calls to BMPGET, BMPPUT, BMPSTKY, and BMPSTDA.

Appendix B: COBOL Considerations 93

DBOMP COBOL Program Preparation and Execution

Syntax

IMBSCOBL macro

)

»»—— IMBSCOBL (77le-name, T index-set-name T)

NOTSEQ
Parameters
IMBSCOBL
A required constant that identifies the macro; it can be coded anywhere after
column 1.
file-name

The seven-character name of the DBOMP master fileas specifiedin the program
work area. You must enter the routines named inthe BMPEOF command inthe
same order as you enter the correspondingfilenames inthe IMBSCOBL macro. This
ensures that the address of the proper routine is passed to IMBSBRDG when the
end of afilenamed ina BMPGET command is reached. One file-name entry must be
present for every DBOMP filethatis processed.

index-set-name/NOTSEQ

The name of the index set to be used for logical sequential processing; specify
NOTSEQ ifthe fileis not to be processedinlogical sequential order.One
index-set-name/NOTSEQ entry must be present for each file-name entry.

Note: Itis recommended that you name every fileon the DBOMP databaseinone
execution of the IMBSCOBL macro so that this macro does not need to be assembled
andlink edited more than once.

Assembling and Linking IMBSCOBL

To assembleand link-editIMBSCOBL, you must use SMP/E (Z/OS) or MSHP (Z/VSE).

Note: For more information on using SMP/E and MSHP, see the CA IDMS Installation—
Z/0S or the CA IDMS Installation—Z/VSE.

DBOMP COBOL Program Preparation and Execution

The guidelines for preparing and executing a DBOMP COBOL program usingthe
transparency parallelthosedetailed for DBOMP Assembler programs in Usingthe
Transparencyas a Bridgeto CAIDMS/DB (see page 75).

94 User Guide

DBOMP COBOL Program Preparation and Execution

Preparing the COBOL Program

Remove the CBSBM macro.

Remove DBOMP COBOL commands that are not supported by CA IDMS DBOMP
Transparency,and modify associated programlogicas necessary.

Modify the COBOL logic as necessary to conform with CA IDMS DBOMP
Transparency specifications for sequential processingand RACN processing.

Ifthe programissues any of the allowable CAIDMS DML statements, insertthe
following callto IMBSBRDG, making sure that the CA IDMS DML statement
argument is availablein workingstorage(see The Transparency Environment (see
page 21)):

call 'bmpcall' using argument-name.

Ifany retrieval or update process indicators exceptfor those supported by CA IDMS
DBOMP Transparency (see The Transparency Environment (see page 21))are used
inthe program, replacethem with those thatare supported.

Executing the Program

Assemble and link edit IMBSTAB if a version compatiblewith the application does
not existinthe loadlibrary.

Recompile andlink edit the DBOMP COBOL program, including IMBSBRDG,
IMBSTAB, IMBSCOBL, and CA IDMS/DB. This step assumes that IMBSCOBL has been
assembled andlink edited as discussed above.

Note: You do not need to recompile programs that run under Z/OS unless any of
the changes listed above have been made; you must, however, recompile programs
that run under Z/VSE whether or not any of these changes have been made, unless
the programs existinthe relocatablelibrary.

Submit the DBOMP COBOL programfor execution.

Appendix B: COBOL Considerations 95

Appendix C: Sample Application and

Procedures

This section contains the followingtopics:

Overview (see page 97)
IMBSBILL Sample Application (see page 97)

IMBSMJO1 Sample JCL for z/OS (see page 99)

IIMBSMJ02 Sample JCL for z/OS (see page 100)

Overview

This appendix contains the followingsampleapplication and JCLfor z/OS:

IMBSBILL sample application—Illustrates the sequence andstructure of database
access procedures necessary to perform standard bill-of-materials functions against
a CA IDMS/DB manufacturingdatabase. IMBSBILL is written in ANS COBOL and
issues CAIDMS/DB COBOL Data Manipulation Language statements requesting
databaseservices.

IMBSMJO1 sample JCL for z/OS—IMBSMIJO1 is a collection of EXEC statements

whichyou canuse as a reference when you convert a DBOMP databaseto a CA
IDMS/DB database.

IMBSMJ02 sample JCL for z/0S—IMBSMJO02 is a collection of EXEC statements
whichyou canuse as a reference when you execute DBOMP applicationsusingthe
transparency.

IMBSBILL Sample Application

IMBSBILL Functions

IMBSBILL serves two purposes:

To aidinthe conversion of DBOMP load, maintenance, and retrieval/update
programs to CA IDMS/DB

To serve as a prototype for the development of systems oriented to the
manufacturing environment

Appendix C: Sample Application and Procedures 97

IMBSBILL Sample Application

Record Types Referenced by IMBSBILL

IMBSBILL references these CA IDMS/DB record types:

m |ITEM-MASTER

m PROD-STRUCTURE

m WORK-CENTER

®m ROUTINGS

IMBSBILL retrieves, modifies, adds,and deletes occurrences of each of these record
types. It demonstrates single-level,indented, and summarized explosionand implosion,
and performs a serial retrieval of occurrences of the ITEM-MASTER record type.

IMBSBILL also contains the CA IDMS/DB logic necessary toimplement RACN, low-level
coding,and chain counts.

Database Accessed by IMBSBILL

The design for the sampledatabaseaccessed by IMBSBILL is showninthe following

figure.
IX-PART-NO
oM
ASC PART-NUMBER DN o6 cOMPONENT-PART
ITEM-STRUCTURE
ITEM MASTER NFO MA DL PROD-STRUCTURE
701 |F | 113 | cAaLc 702 |F |21 [wia
ITEM-WHERE-USED
PART-NUMBER DN | NPO MA LAST ITEM-STRUCTURE
BILL-OF-MATRL BILL-OF-MATAL
ITEM-RQUTING
NPO OA
ASC ROUTING-SEQUENCE DL
ROUTINGS WORK-CENTER
WORK-ROUTING
704 |F |102 | via - 703 |F |90 |caLc
ITEM-ROUTING NPG OA L WORK-CTR-ID DN
WORK-ROUTINGS WORK-ROUTINGS

98 User Guide

IMBSMJO1 Sample JCL for z/0S

IMBSBILL Flow of Logic

The general flow of logicin IMBSBILL is as follows:

1.
2.
3.

BIND the rununitandall record types

Read a transaction

Branchto the routineindicated by the transaction code

Access the CA IDMS/DB databaseusingthe appropriate DML commands
Displaytheresults of the transaction on the printer

Repeat the above steps until all transactions have been processed

IMBSBILL Code

The followingis the code for IMBSBILL.

IMBSBILL - The program described here
IMBSCHM - The schema IMBSBILL uses
IMBDMCL - The DMC IMBSBILL uses
IMBSUBS - The subschema IMBSBILL uses

IMBSMJO1 Sample JCL for z/0S

Explanation of Statements in IMBSMJO1

Each EXEC statement in IMBSMJO1 is a job step. The steps are described in the following

table.

EXEC statement What happens

IDMSCHEM Compiles the sampleschema, IMBSSCHM

IDMSDMCL Processes the sample DMCL module, IMBSDMCL

LINKDMCL Link edits the assembled output from the DMCL
processor

SUBSCHEM Compiles the samplesubschema, IMBSSUBS, and
punches load module

LINKSUB Link edits IMBSSUBS

DMLC Submits the sample COBOL source program, IMBSBILL,
to the CAIDMS DML compiler

coB Compiles the output from DMLC

Appendix C: Sample Application and Procedures 99

IMBSMJ02 Sample JCL for z/0S

EXEC statement What happens

LINKCOB Link edits the compiled COBOL program

IDMSRPTS Prints reports from the data dictionary

INITSAMP Initializes the sampledatabase

EXECPGM Executes the sample CA IDMS/DB application program,
IMBSBILL

Note: Be sureto modify the parameters inthe EXECPGM step to suityourinstallation
requirements.

IMBSMJO2 Sample JCL for z/0S

Explanation of Statements in IMBSMJ02

Each EXEC statement in IMBSMJO02 is a job step. The steps are described in the following

table.

EXEC statement What happens

ASMCBDG Assembles IMBSTAB

LINKCBDG Link edits IMBSTAB

ASMCOBL Assembles IMBSCOBL interface

LINKCOBL Link edits IMBSCOBL module

DMLC Submits sample COBOL DBOMP source program,
IMBSDBMP, to the CA IDMS DML compiler

CcoB Compiles output from DMLC

LINKCOB Link edits IMBSDBMP

EXECPGM Executes the sample DBOMP application program,

IMBSDBMP, usingthe CA IDMS/DBOMP Transparency
bridge program IMBSBRDG

Note: Be sureto modify the parameters inthe EXECPGM step to suityourinstallation
requirements.

100 UserGuide

Appendix D: Setting Up CA IDMS/DBOMP
Transparency Under z/0S

Overview

This section contains the followingtopics:

Overview (see page 101)
Customizingand Executing IMBSMJO1 and IMBSMJ02 (see page 102)

Object Modules

The followingtablelists the object modules placedintothe CA IDMS/DB object library
duringthe install.

Module Description
IMBSPROC Databaseprocedure
IMBSBRDG Bridge program

Source Modules

The followingtablelists thesource modules placedintothe CA IDMS/DB sourcelibrary
duringthe install.

Module Description

IMBSMJ02 JCL for IMBSMJO02 procedure

IMBS Customizing macro

IMBSASMB IMBS Assembler interface macro

IMBSBILL Sample CA IDMS/DB COBOL manufacturingapplication
program

IMBSBRDG Assembler sourcecode for IMBSBRDG object module

IMBSCOBL CA IDMS/DBOMP Transparency COBOLinterface
macro

IMBSDBMP Sample COBOL DBOMP program (to be bridged)

IMBSDMCL Sample DMCL description module

Appendix D: Setting Up CA IDMS/DBOMP Transparency Underz/0S 101

Customizing and Executing IMBSMJO1 and IMBSMJ02

Module Description

IMBSEQ CA IDMS/DBOMP Transparency Assembler interface
macro

IMBSINP1 Sample inputto IMBSBILL

IMBSINP2 Sample inputto IMBSDBMP

IMBSPL1 CA IDMS/DBOMP Transparency PL/l interface macro

IMBSPROC Source code for database procedure object module

IMBSMJO1 JCL for IMBSMJO1 procedure

IMBSSCHM Sample CA IDMS/DB schema description

IMBSSUBS Sample CA IDMS/DB subschema description

IMBSTAB Sample inputto IMBS customizing macro

Load Modules

The followingtablelists theload modules placedinthe CA IDMS/DB load library during

the install.

Module Description
IMBSBRDG Bridge program
IMBSPROC Databaseprocedure

Customizing and Executing IMBSMJO1 and IMBSMJ02

The JCL is showninthe IMBSMJO1 and IMBSMJ02 procedures as they existinthe source
library.

Source library member IMBSMJO01 contains a procedurethat compiles the schema,
DMCL, and subschema for the sampledatabase. Itthen initializes the databaseandruns
the sample DML program, IMBSBILL.

Member IMBSMJ02 compiles a sample DBOMP program, IMBSDBMP, and CA
IDMS/DBOMP Transparency, which uses the same databaseas was setup by IMBSMJO1.

102 UserGuide

Customizing and Executing IMBSMJ01 and IMBSMJ02

Explanation of EXEC Statements in IMBSMJO1 Procedure

The IMBSMJO01 procedure uses the 15 EXEC statements describedinthe followingtable.

EXEC statement

What happens

IDMSCHEM

Compiles the sampleschema, IMBSSCHM

IDMSDMCL

Processes the sample DMCL module, IMBSDMCL and
punches the load module

LINKDMCL

Link edits the assembled output from the DMCL
processor

SUBSCHEM

Compiles the samplesubschema, IMBSSUBS

LINKSUB

Link edits IMBSSUBS

DMLC

Submits the sample COBOL source program, IMBSBILL,
to the CAIDMS DML compiler

coB

Compiles the output from DMLC

LINKCOB

Link edits the compiled COBOL program

IDMSRPTS

Prints reports from the data dictionary

INITSAMP

Initializes the sampledatabase

EXECPGM

Executes the sample CA IDMS/DB application program,
IMBSBILL

Note: You must modify the parameters inthe EXEC IMBSMJO1 statement (the last EXEC
statement inthe procedure) to suityour installation requirements. For more
information, see Customizing IMBSMJO1 (see page 103).

Customizing IMBSMJO1

You must modify the defaults shown inthe EXEC IMBSMJO1 statement (the lastJCL
statement) inthe IMBSMJO1 procedure. The followingJCL shows the exec IMBSMJO1.
Change the items shownin italicsto suityourinstallation requirements.

Appendix D: Setting Up CA IDMS/DBOMP Transparency Underz/0S 103

Customizing and Executing IMBSMJO1 and IMBSMJ02

IMBSMJO1 (z/0S)

//SAMPLE EXEC IMBSVMJO1

// PRT='SYSOUT=A",

// UNIT=disk,

// LIB='imbs. loadlib"',

// IDMSLIB="'1idms.loadlib"',

// COBLIB='coblib',

// COBSTEP="cob. steplib',

// PGSIZE=2496,

// DISP=CATLG,

// BASE='data.direct',

// IMBSBILL="'imbs013",

// IMBSWORK="IMBSWORK" ,

// SRCLIB="'imbs.srclib',

// IDMSSRC="yourHLQ.CAGIMAC',

// VOL="'VOL=SER=nnnnnn, '

// SYSCTLDS="idms. sysctl',

// IDMSDMCL="cvdmcl',

// MSGDD="dcmsg ',

// MSGDSN="1idms. ddldcmsg"',

// DDLDD="sysddl"',

// DDLDSN="1idms. sysddl"',

// DICTNAME="'appldict"',

Parameter Description

disk Symbolic device name for data dictionaryand databasefiles

imbs.loadlib Dataset name of CAIDMS/DBOMP Transparency load library
ifa loadlibrary was allocated in optional ALLOC step of
INSTALL procedure; or dataset name of CAIDMS load library
if CA IDMS DBOMP Transparencyload library was not
allocated

idms.loadlib Dataset name of CAIDMS load library

coblib Dataset name of COBOL library

cob.steplib Dataset name of COBOL step library

data.direct Dataset name of data dictionary; may be a sampleor user
directory

IMBSBILL Dataset name of sample CAIDMS databasefile

IMBSWORK Dataset name of sample CAIDMS databasefile

104 UserGuide

Customizing and Executing IMBSMJO01 and IMBSMJ02

Parameter

Description

imbs.srclib

Dataset name of CAIDMS DBOMP Transparency source
libraryifasourcelibrarywas allocated in optional ALLOC step
of INSTALL procedure; or dataset name of CAIDMS source
libraryif CAIDMS DBOMP Transparency sourcelibrary was
not allocated

yourHLQ.CAGJMAC

Dataset name of CAIDMS macrolibrary

nnnnnn

Volume serial number of disk where data dictionaryand
sampleCA IDMS databasefiles arestored

idms.sysctl

Dataset name of IDMS SYSCTL filefor running CV

cvdmcl

Name of the DMCL that IDMS uses, for CV or local

dcmsg

The ddname or IDMS message area

idms.ddldcmsg

Dataset name of the IDMS message area, for CV andlocal
jobs

ddldd

The ddname of the IDMS dictionary

idms.sysddl

Dataset name of the IDMS dictionary

appldict

Dictionarytobe used

Explanation of EXEC Statementsin IMBSMJ02 Procedure

The IMBSMJ02 procedure uses the eight EXEC statements described in the following

table.

EXEC statement

What happens

ASMCBDG

Assembles IMBSTAB

LINKCBDG

Link edits IMBSTAB

ASMCOBL

Assembles IMBSCOBL interface

LINKCOBL

Link edits IMBSCOBL module

DMLC

Submits sample COBOL DBOMP source program,
IMBSDBMP, to the CA IDMS DML compiler

COB

Compiles output from DMLC

LINKCOB

Link edits IMBSDBMP

EXECPGM

Executes the sample DBOMP application program,
IMBSDBMP, usingthe CA IDMS/DBOMP Transparency
bridge program IMBSBRDG

Appendix D: Setting Up CA IDMS/DBOMP Transparency Underz/0S 105

Customizing and Executing IMBSMJO1 and IMBSMJ02

Note: You must modify the parameters inthe EXEC IMBSMJ02 statement (the last EXEC
statement inthe procedure) to suityour installation requirements. For more
information, see Customizing IMBSMJO2 (see page 106).

Customizing IMBSMJO02

You must modify the defaults shown inthe EXEC IMBSMJ02 statement (the lastJCL
statement) inthe IMBSMJO02 procedure. The followingJCL shows the exec IMBSMJO02.
Change the items shownin italicsto suityourinstallation requirements.

IMBSMJO02 (z/0S)
//SAMPLE EXEC IMBSMJ02
// PRT='SYSOUT=A",
// UNIT=disk,
// LIB='imbs. loadlib',
// IDMSLIB='idms.loadlib',
// IDMSSRC="yourHL.Q.CAGIMAC",
// COBLIB="'coblib',
// COBSTEP='cob. steplib',
// BASE='data.direct',
// IMBSBILL="'imbs013",
// IMBSWORK="IMBSWORK" ,
// SRCLIB="'imbs.srclib',
Parameter Description
disk Symbolic device name for data dictionaryand databasefiles
imbs.loadlib Dataset name of CAIDMS/DBOMP Transparencyloadlibraryifa

load library was allocated in optional ALLOC step of INSTALL
procedure; or datasetname of CA IDMS load libraryif CAIDMS
DBOMP Transparencyload library was notallocated

idms.loadlib Dataset name of CAIDMS load library

yourHLQ.CAGJM Dataset name of CAIDMS macro library

AC

coblib Dataset name of COBOL library

cob.steplib Dataset name of COBOL step library

data.direct Dataset name of data dictionary; may be a sampleor user directory
IMBSBILL Dataset name of sample CAIDMS databasefile

IMBSWORK Dataset name of sample CAIDMS databasefile

106 UserGuide

Customizing and Executing IMBSMJO1 and IMBSMJ02

Parameter Description

imbs.srclib Dataset name of CA IDMS DBOMP Transparencysourcelibraryifa
sourcelibrarywas allocated in optional ALLOC step of INSTALL
procedure; or datasetname of CA IDMS sourcelibraryif CA
IDMS/DB sourcelibrary was notallocated

Executing IMBSMJ01 and IMBSMJO2

After you tailor theIMBSMJO1 and IMBSMJO02 procedures to yourinstallation
requirements, you can submit them together as ajob.

Appendix D: Setting Up CA IDMS/DBOMP Transparency Under z/0S 107

Appendix E: Setting Up CA IDMS DBOMP
Transparency under Z/VSE

This section contains the followingtopics:

Customizingand Executing IMBSVJ01 and IMBSVJ02 (see page 109)
Running IMBSVJO1 (see page 111)
Running IMBSVJ02 (see page 111)

Customizing and Executing IMBSVJO1 and IMBSVJ02

The JCL is showninthe IMBSVIO1 and IMBSVJ02 procedures as they existinthe source
library.

Source library member IMBSVJO1 contains a procedurethat compiles the schema,
DMCL, and subschema for the sampledatabase.ltthen initializes thedatabaseandruns
the sample DML program, IMBSBILL.

Member IMBSVJ02 compiles a sample DBOMP program, IMBSDBMP, and the

components needed to run itthrough CA IDMS DBOMP Transparency, which uses the
same databaseas was set up by IMBSVJO1.

Explanation of EXEC Statementsin IMBSVJO1 Procedure

The IMBSVJO1 procedure uses the EXEC statements describedinthe followingtable.

EXEC statement What happens

IDMSCHEM Compiles the sampleschema, IMBSSCHM

IDMSDMCL Compiles the sampleand punches DMCL module, IMBSDMCL
LNKEDT Link edits sample DMCL module, IMBSDMCL

IDMSUBSC Compiles the sampleand punches subschema, IMBSSUBS
ASSEMBLY Assembles IMBSSUBS

LNKEDT Link edits IMBSSUBS

IDMSDMLC Submits the sample COBOL program, IMBSBILL, to the CA IDMS

Data Manipulation Language compiler

FCOBOL Submits IMBSBILL to the COBOL compiler

Appendix E: Setting Up CA IDMS DBOMP Transparency under Z/VSE 109

Customizing and Executing IMBSVJ01 and IMBSVJ02

EXEC statement What happens

LNKEDT Link edits IMBSBILL

IDMSRPTS Prints all dictionary/directory reports
IDMSBCF Initializes the sampledatabase
IMBSBILL Executes the sampleprogram, IMBSBILL

Explanation of EXEC Statements in IMBSVJ02 Procedure

The IMBSVJ02 procedure uses the eight EXEC statements describedinthe following

table.

EXEC statement What happens

ASSEMBLY Assembles the IMBS customizingmacro

MAINT Catalogs IMBSTAB to relocatablelibrary

ASSEMBLY Assembles the IMBSCOBL macro

MAINT Catalogs assembled IMBSCOBL to relocatablelibrary

IDMSDMLC Submits the sample COBOL DBOMP program, IMBSDBMP, to
the Data Manipulation Language compiler

FCOBOL Submits IMBSDBMP to the COBOL compiler

LNKEDT Link edits IMBSDBMP

DEMOPROG Executes the sample DBOMP program, IMBSDBMP, against

CA IDMS DBOMP Transparency

Modules placed in the relocatable library

The followingtablelists the modules placedinthe relocatablelibrary duringinstallation.

Module Description
IMBSBRDG Bridge program
IMBSPROC Databaseprocedure

110 UserGuide

Running IMBSVJO1

Modules placed in the source statement library

The followingtablelists the modules placedinthe sourcestatement library during

installation.

Module Description

IMBS Customizing macro

IMBSASMB Interface module (Assembler)

IMBSBILL Sample CA IDMS/DB COBOL manufacturingapplication program
IMBSBRDG Assembler sourcecode for IMBSBRDG object module

IMBSCOBL CA IDMS DBOMP Transparency COBOLinterface macro (Assembler)
IMBSDBMP Sample COBOL DBOMP program to be bridged

IMBSDMCL Sample DMCL description module

IMBSEQ Interface module (Assembler)

IMBSINP1 Sample inputto IMBSBILL

IMBSINP2 Sample inputto IMBSDBMP

IMBSPL1 CA IDMS DBOMP Transparency interfacemacro (PL/1)
IMBSPROC Source code for database procedure object module

IMBSSCHM Sample CA IDMS/DB schema description

IMBSSUBS Sample CA IDMS/DB subschema description

IMBSTAB Sample inputto IMBS customizing macro

Running IMBSVJO1

Run IMBSVJO1, which executes a CA IDMS/DB manufacturingapplication, usingtestdata
provided on the installation media and cataloged in the sourcestatement library.

Running IMBSVJ02

Run IMBSVJ02, which executes a DBOMP program with the CA IDMS DBOMP
Transparency bridge, usingtest data provided on the installation media and cataloged in
the sourcestatement library.

The JCL inIMBSVJO1 and IMBSVJ02 must firstbe edited sothat the datasetnames are
correct for your site.

Appendix E: Setting Up CA IDMS DBOMP Transparency under Z/VSE 111

Index

CA IDMS DBOMP Transparency Transparency, using,

e 83,87
IMBSPL1 o 87

CA IDMS DBOMP Transparency, using,® 75, 76,81,

83
DBOMP Assembler program, executing, ® 76
DBOMP Assembler program, preparing, ¢ 75
debugging process,values ¢ 83
debugging techniques, ¢ 81
errors,diagnosingin bridged programs, e 81
JCL, ¢ 76

CA IDMS/DB, system conversionto, ® 60, 62, 64, 69,

72

CA IDMS/DB Communications Block, ® 62

data conversion ¢ 60

DBOMP commands, with equivalent CA IDMS/DB
DML statements, ¢ 69

DBOMP load and maintenance program
conversion,® 72

DBOMP process indicators, with equivalent CA
IDMS/DB DML statements ® 64

retrieval and update programconversion, e 72

CA IDMS/DB., system conversionto, ® 59

DBOMP macros, 23, 24

BMSDS e 24

BMSWA e 24

EQSRG « 24

MGS 24

MOSVE « 24

not supported by the transparency ¢ 23

processed independently of the transparency ¢
24

TYSPE » 24

DBOMP process indicators ¢ 24,25, 26, 27, 29

@ACCEPT » 26

@BIND PROC ¢ 26
@COMMIT 26
@ROLLBAK ¢ 26
arguments, building 27
arguments, tableof 27
CDIR ¢ 24

I

CLOS ¢ 25

CMPR ¢ 24

CRDR ¢ 24

CUPD 24

EXPN e 25

MDIR e 24

MRAN e 24

MRDR e 24

MRKY e 24

MUPD e 24

not supported by the transparency ¢ 25
OPEN e 25

supported by the transparency ¢ 24, 25

IDMS, system conversionto ¢ 59
IMBS, user-coded customizing macro, ¢ 30,31, 33,

35, 39,40
control statement ¢ 31
delimiter statement, 35
file/record type description statement, ¢ 33
IMBS input statements e 31
IMBSTAB, error messages ¢ 39
MNOTES, IMBSTAB e 39
pointer/set relationship statement, e 35
set identification statement, 33

IMBSBRDG program module, 15,17, 48, 49,51, 55

CALC, » 17

command conversion, ¢ 49

DIRECT, ® 17

moving data, ¢ 51

record conversion, ® 51

retrieval processing, ® 15

update processing,* 15

values, returned to the callingprogram, e 51
VIA, ¢ 17

IMBSEQ macro, ® 55

sequential filetable, ® 55

IMBSTAB, customized bridge module ¢ 36

assemblyandlinkage, ® 36

IMBSTAB, customized bridge module, * 40, 46, 76,

81
dummy record, CA IDMS/DB, * 46
integrationinto bridgeprogram, ¢ 46
JCL, » 76

Index 113

INSTALL procedure » 102
introducing COBOL considerations, ¢91, 93
IMBSCOBL ¢ 93

P

programming restrictions 17,18
Assembler macros 17

prototype bill-of-materialsapplication, 97,99
IMBSBILL, logic flow e 97
sampleprogram, logic flow ¢ 97

R

Run Activity Control Number 21, 22

CASLL »22

CHASE ¢ 22

GEST e 22

PUST e 22

requiring programmodificationandreassembly,
22

STSKY 22

supported unconditionally by the transparency
22

S

syntax,® 31, 33,35,55

IMBS macro control statement, ¢ 31

IMBS macro delimiter statement, 35

IMBS macro file/record type description
statement, ¢ 33

IMBS macro pointer/set relations hip statement,
e 35

IMBS macro set identification statement, ¢ 33

IMBSEQ macro, ® 55

Vv

VSE/ESA Setting Up, « 109, 111
IMBSVIO1, « 111
IMBSVI02, » 111

y4

z/0S and 0S/390 Setting Up » 101,102, 103, 106,
107
IMBSMJO1 procedure ¢ 102
IMBSMJO02 procedure ¢ 102
load modules,in CAIDMS/DB loadlibrary 101
modifications, in IMBSMJO1 procedure, e 103
modifications, in IMBSMJ02 procedure, ® 106

object modules, in CA IDMS/DB or object library
¢ 101

Setting Up procedure, ¢ 101

sourcemodules, in CA IDMS/DB sourcelibrary e
101

114 UserGuide

	CA IDMS DBOMP Transparency User Guide
	CA Technologies Product References
	Contact CA Technologies
	Contents
	1: Introduction
	Syntax Diagram Conventions

	2: Introduction to the CA IDMS DBOMP Transparency
	Overview
	Functions and Modules
	Functions
	Modules

	Data Description Guidelines
	Programming Requirements
	Installation

	3: The Transparency Environment
	Overview
	DBOMP Macros Supported
	Macros Supported Unconditionally
	Macros That Require Program Modification and Reassembly
	Macros Not Supported
	Macros Processed Independently of the Transparency

	DBOMP Process Indicators Supported
	Process Indicators Fully Supported
	Process Indicators Supported with Exceptions
	Process Indicators Not Supported

	DBOMP Routines Supported
	CA IDMS DML Statements Supported in Bridged Programs
	How to Include CA IDMS DML Statements

	4: Transparency Programs and Macros
	Overview
	IMBS Customizing Macro
	Control Statement
	Set Identification Statement
	File/Record Type Description Statement
	Pointer/Set Relationship Statement
	Delimiter Statement

	Output From IMBS Macro--IMBSTAB
	IMBSTAB Error Messages

	Sample IMBS and IMBSTAB
	IMBSPROC Database Procedure
	IMBSBRDG program module
	Converting DBOMP Calls to CA IDMS/DB Statements
	Converting Records Retrieved from CA IDMS/DB

	IMBSEQ macro

	5: Converting DBOMP to CA IDMS/DB
	Overview
	Converting Data
	Converting DBOMP Load and Maintenance Programs
	DBOMP Process Indicators and Corresponding DML
	DBOMP Commands and Corresponding DML
	Sequence of Logic in Converted Programs

	Converting DBOMP Retrieval and Update Programs
	DBOMP Error Codes With CA IDMS/DB Equivalents

	6: Using the Transparency as a Bridge to CA IDMS/DB
	Overview
	Preparing DBOMP Assembler Programs
	Executing DBOMP Assembler Programs
	Assembling and Executing Under z/OS
	Assemble/Execute DBOMP Assembler Program Using the Transparency (IMBSBRDG) (z/OS)

	Assembling and Executing Under Z/VSE
	Assemble/Execute DBOMP Assembler Program Using the Transparency (IMBSBRDG) (Z/VSE)

	Diagnosing Errors
	What to Look For When Errors Occur During Program Processing
	What to Look For When Inaccurate Data is Returned
	Where to Find Values During Debugging

	A: PL/I Considerations
	Overview
	Transparency Support For DBOMP PL/I Commands
	IMBSPL1 Interface Macro
	DBOMP PL/I Program Preparation and Execution

	B: COBOL Considerations
	Overview
	Transparency Support For DBOMP COBOL Commands
	IMBSCOBL Interface Macro
	DBOMP COBOL Program Preparation and Execution

	C: Sample Application and Procedures
	Overview
	IMBSBILL Sample Application
	IMBSMJ01 Sample JCL for z/OS
	IMBSMJ02 Sample JCL for z/OS

	D: Setting Up CA IDMS/DBOMP Transparency Under z/OS
	Overview
	Customizing and Executing IMBSMJ01 and IMBSMJ02
	Explanation of EXEC Statements in IMBSMJ01 Procedure
	Customizing IMBSMJ01
	IMBSMJ01 (z/OS)
	Explanation of EXEC Statements in IMBSMJ02 Procedure
	Customizing IMBSMJ02
	IMBSMJ02 (z/OS)

	Executing IMBSMJ01 and IMBSMJ02

	E: Setting Up CA IDMS DBOMP Transparency under Z/VSE
	Customizing and Executing IMBSVJ01 and IMBSVJ02
	Explanation of EXEC Statements in IMBSVJ01 Procedure
	Explanation of EXEC Statements in IMBSVJ02 Procedure

	Running IMBSVJ01
	Running IMBSVJ02

	Index

