

User Guide
Release 18.5.00

CA IDMS™ DBOMP

Transparency

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at a ny time. This

Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or
duplicated, in whole or in part, without the prior wri tten consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable

l i cense for such software remains in full force and effect. Should the license terminate for any reason, i t is your responsibility to
certi fy in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOU T WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,

DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such

l icense agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions

set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2013 CA. Al l rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA product:

■ CA IDMS/DB

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the

information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you

can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at

http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Contents 5

Contents

Chapter 1: Introduction 9

Syntax Diagram Conventions ... 9

Chapter 2: Introduction to the CA IDMS DBOMP Transparency 13

Overview .. 13

Functions and Modules ... 14

Functions ... 14

Modules ... 15

Data Description Guidelines... 17

Programming Requirements .. 17

Installation... 18

Chapter 3: The Transparency Environment 21

Overview .. 21

DBOMP Macros Supported .. 21

Macros Supported Unconditionall y .. 22

Macros That Require Program Modification and Reassembly... 22

Macros Not Supported .. 23

Macros Processed Independently of the Transparency.. 24

DBOMP Process Indicators Supported ... 24

Process Indicators Fully Supported ... 24

Process Indicators Supported with Exceptions ... 25

Process Indicators Not Supported ... 25

DBOMP Routines Supported .. 26

CA IDMS DML Statements Supported in Bridged Programs... 26

How to Include CA IDMS DML Statements .. 27

Chapter 4: Transparency Programs and Macros 29

Overview .. 29

IMBS Customizing Macro .. 30

Control Statement.. 31
Set Identification Statement .. 33

File/Record Type Description Statement ... 33

Pointer/Set Relationship Statement ... 35

Delimiter Statement .. 35

6 User Guide

Output From IMBS Macro— IMBSTAB ... 36

IMBSTAB Error Messages.. 39

Sample IMBS and IMBSTAB .. 40

IMBSPROC Database Procedure .. 46

IMBSBRDG program module .. 48

Converting DBOMP Calls to CA IDMS/DB Statements ... 49

Converting Records Retrieved from CA IDMS/DB .. 51

IMBSEQ macro .. 55

Chapter 5: Converting DBOMP to CA IDMS/DB 59

Overview .. 59

Converting Data.. 60
Converting DBOMP Load and Maintenance Programs ... 62

DBOMP Process Indicators and Corresponding DML .. 64

DBOMP Commands and Corresponding DML... 69

Sequenc e of Logic in Converted Programs .. 71

Converting DBOMP Retrieval and Update Programs... 72

DBOMP Error Codes With CA IDMS/DB Equivalents ... 72

Chapter 6: Using the Transparency as a Bridge to CA IDMS/DB 75

Overview .. 75

Preparing DBOMP Assembler Programs .. 75

Executing DBOMP Assembler Programs .. 76

Assembling and Executing Under z/OS .. 76

Assembling and Executing Under Z/VSE .. 79

Diagnosing Errors ... 81

What to Look For When Errors Occur During Program Processing... 81

What to Look For When Inaccurate Data is Returned ... 83

Where to Find Values During Debugging ... 83

Appendix A: PL/I Considerations 85

Overview .. 85

Transparency Support For DBOMP PL/I Commands .. 85

IMBSPL1 Interface Macro ... 87

DBOMP PL/I Program Preparation and Execution ... 88

Appendix B: COBOL Considerations 91

Overview .. 91

Transparency Support For DBOMP COBOL Commands .. 91

Contents 7

IMBSCOBL Interface Macro .. 93

DBOMP COBOL Program Preparation and Execution.. 94

Appendix C: Sample Application and Procedures 97

Overview .. 97

IMBSBILL Sample Application... 97

IMBSMJ01 Sample JCL for z/OS ... 99

IMBSMJ02 Sample JCL for z/OS ...100

Appendix D: Setting Up CA IDMS/DBOMP Transparency Under z/OS 101

Overview ..101
Customizing and Executing IMBSMJ01 and IMBSMJ02...102

Explanation of EXEC Statements in IMBSMJ01 Procedure ...103

Customizing IMBSMJ01...103

IMBSMJ01 (z/OS) ..104

Explanation of EXEC Statements in IMBSMJ02 Procedure ...105

Customizing IMBSMJ02...106

Executing IMBSMJ01 and IMBSMJ02 ...107

Appendix E: Setting Up CA IDMS DBOMP Transparency under Z/VSE 109

Customizing and Executing IMBSVJ01 and IMBSVJ02 ...109

Explanation of EXEC Statements in IMBSVJ01 Procedure ..109

Explanation of EXEC Statements in IMBSVJ02 Procedure ..110

Running IMBSVJ01 ...111

Running IMBSVJ02 ...111

Index 113

Chapter 1: Introduction 9

Chapter 1: Introduction

This manual is intended for:

■ Database administrators who are converting DBOMP databases to CA IDMS/DB
databases

■ Application programmers who are using existing DBOMP application programs to

access CA IDMS/DB databases

This section contains the following topics:

Syntax Diagram Conventions (see page 9)

Syntax Diagram Conventions

The syntax diagrams presented in this guide use the following notation conventions:

UPPERCASE OR SPECIAL CHARACTERS

Represents a required keyword, partial keyword, character, or symbol that must be
entered completely as shown.

lowercase

Represents an optional keyword or partial keyword that, if used, must be entered
completely as shown.

italicized lowercase

Represents a value that you supply.

lowercase bold

Represents a portion of the syntax shown in greater detail at the end of the syntax

or elsewhere in the document.

◄─

Points to the default in a l ist of choices.

►►────────────────────

Indicates the beginning of a complete piece of syntax.

────────────────────►◄

Indicates the end of a complete piece of syntax.

─────────────────────►

Indicates that the syntax continues on the next l ine.

►─────────────────────

Indicates that the syntax continues on this l ine.

Syntax Diagram Conventions

10 User Guide

────────────────────►─

Indicates that the parameter continues on the next l ine.

─►────────────────────

Indicates that a parameter continues on this l ine.

►── parameter ─────────►

Indicates a required parameter.

►──┬─ parameter ─┬─────►
 └─ parameter ─┘

Indicates a choice of required parameters. You must select one.

►──┬─────────────┬─────►
 └─ parameter ─┘

Indicates an optional parameter.

►──┬─────────────┬─────►
 ├─ parameter ─┤
 └─ parameter ─┘

Indicates a choice of optional parameters. Select one or none.

 ┌─────────────┐
►─▼─ parameter ─┴──────►

Indicates that you can repeat the parameter or specify more than one parameter.

 ┌─── , ─────────┐
►─▼─ parameter ───┴──────►

Indicates that you must enter a comma between repetitions of the parameter.

Syntax Diagram Conventions

Chapter 1: Introduction 11

Sample Syntax Diagram

The following sample explains how the notation conventions are used:

Chapter 2: Introduction to the CA IDMS DBOMP Transparency 13

Chapter 2: Introduction to the CA IDMS
DBOMP Transparency

This section contains the following topics:

Overview (see page 13)
Functions and Modules (see page 14)

Data Description Guidelines (see page 17)
Programming Requirements (see page 17)
Installation (see page 18)

Overview

The CA IDMS DBOMP Transparency facilitates conversion from DBOMP or its Z/OS

equivalent, CFMS, to CA IDMS/DB. By simulating the DBOMP environment, the
transparency allows you to run existing DBOMP application programs after the DBOMP
files have been converted to CA IDMS/DB database fi les. This allows for a gradual

conversion from DBOMP to CA IDMS/DB.

Minimal User Involvement

The CA IDMS DBOMP Transparency is usually transparent to the DBOMP retrieval and
update programs that it bridges, requiring l ittle or no program alteration and usually no
reassembly.

Conversion Tool

To aid you in converting DBOMP load and maintenance programs, the transparency

package includes a prototype CA IDMS/DB bill -of-materials application program. This
program shows the logic required to add records to and delete records from a CA
IDMS/DB database.

This program is in Sample Application and Procedures (see page 97).

System Requirements

The transparency requires no operating system facil ities other than those necessary for
CA IDMS/DB.

Two of the CA IDMS DBOMP Transparency modules, IMBSBRDG and IMBSTAB, require

5Kb memory in addition to that needed for standard CA IDMS/DB processing. Disk
storage and all other memory requirements are the same as for CA IDMS/DB. The
transparency operates under the CA IDMS/DB central version or in local mode.

Functions and Modules

14 User Guide

The remainder of this chapter discusses the following topics:

■ CA IDMS DBOMP Transparency functions and modules

■ Data description guidelines

■ Programming restrictions

Functions and Modules

This section describes what the CA IDMS DBOMP Transparency does and the modules it
uses to do it.

Functions

The transparency acts as a bridge between the DBOMP application program and CA
IDMS/DB, as follows:

■ Accepts data and processing requests from the call ing program

■ Converts the data to CA IDMS/DB record formats

■ Converts the processing requests to CA IDMS/DB commands

■ Passes the converted information to the CA IDMS/DB database management

system

Conversely, the transparency also:

■ Retrieves data from the CA IDMS/DB database

■ Converts the data to DBOMP record formats

■ Returns the converted data, along with CA IDMS/DB control information, to the

call ing program

All communication occurs between the DBOMP program and the transparency or
between transparency and CA IDMS/DB. The transparency does not interface directly
with the operating system.

Functions and Modules

Chapter 2: Introduction to the CA IDMS DBOMP Transparency 15

The following figure il lustrates the CA IDMS DBOMP Transparency processing sequence.

Modules

The two central transparency modules are IMBSBRDG and IMBSTAB:

■ IMBSBRDG—handles all application program requests for database services

■ IMBSTAB (user-customized bridge module)—supplies IMBSBRDG with the CA

IDMS/DB and DBOMP record descriptions necessary to simulate DBOMP processing

IMBSBRDG and IMBSTAB are discussed briefly below. These and other transparency
components are described in detail in Transparency Programs and Macros (see

page 29).

IMBSBRDG

The IMBSBRDG module replaces the DBOMP modules:

■ BM$PIO

■ AP$SEQ

Functions and Modules

16 User Guide

IMBSBRDG simulates DBOMP retrieval processing and update processing at the
BM$PIO and AP$SEQ entry points, as shown in the following table.

Simulation of: Description

Retrieval processing ■ Accepts a DBOMP call to entry point BM$PIO or

AP$SEQ

■ Validates the DBOMP file name and process
indicator

■ Converts the process indicator to a CA IDMS/DB call

■ Retrieves the requested record from the CA
IDMS/DB database

■ Converts the retrieved CA IDMS/DB record to a
DBOMP record

■ Returns the converted record to the call ing
program

■ Converts the CA IDMS/DB error status to the

appropriate DBOMP error code

■ Updates the work area prefix

■ Returns control to the call ing program

Update processing ■ Accepts a DBOMP call to entry point BM$PIO or

AP$SEQ

■ Validates the DBOMP file name and process
indicator

■ Converts the process indicator to a CA IDMS/DB call

■ Reconstructs a CA IDMS/DB record from the
updated DBOMP record

■ Returns the reconstructed record to the CA

IDMS/DB database

■ Converts the CA IDMS/DB error status to the
appropriate DBOMP error code

■ Updates the work area prefix

■ Returns control to the call ing program

Data Description Guidelines

Chapter 2: Introduction to the CA IDMS DBOMP Transparency 17

IMBSTAB

The IMBSTAB customized bridge module is generated by the user-coded customizing

macro, IMBS. IMBSTAB consists entirely of buffers and tables that describe the DBOMP
files and their equivalent CA IDMS/DB record types and set relationships. IMBSTAB
provides IMBSBRDG with the environmental information necessary to build DBOMP

records to be returned to the call ing program and to reconstruct CA IDMS/DB r ecords to
be returned to the CA IDMS/DB database.

Data Description Guidelines

Adhere to the data description guidelines presented below when you describe the parts
of the CA IDMS/DB database that will be accessed by bridged DBOMP programs:

■ Make sure there is one CA IDMS/DB record type for every DBOMP fi le to be
simulated.

■ Check the schema description of the CA IDMS/DB record types. Make sure the

description allows the generation of a subschema view that represents the data
exactly as it appears on the DBOMP files, with the exception of disk addresses,
which are not part of the schema description.

■ Define record types that are members of more than one set in the schema with
next, prior, and owner pointers, so that an end-of-set condition can be detected by

the transparency and communicated to the call ing program.

■ Store DBOMP master fi les as CALC or DIRECT (for sequential processing) record
types on the CA IDMS/DB database.

■ Store DBOMP chain fi les as VIA record types on the CA IDMS/DB database;

however, these member records can also be described as owners of other sets.

Programming Requirements

You must do the following for any DBOMP application program you want to bridge with
the transparency:

■ Make all database service requests using the following Assembler macros:

– CA$LL

– CHA$E

– GE$T

Installation

18 User Guide

– PU$T

– ST$KY

– ST$DA

For PL/I equivalents of these macros, see PL/I Considerations (see page 85). For
COBOL equivalents of these macros, see COBOL Considerations.

■ Remove MF$SQ and FI$LE macros from the application program; replace them with
the transparency macro IMBSEQ.

For more information on IMBSEQ, see Transparency Programs and Macros (see
page 29).

■ COBOL Considerations (see page 91)Use an index for the logical sequential ordering
of master records.

Note: For more information on indexing, see the CA IDMS Database Administration

Guide.

■ Make sure that the application program does not combine DBOMP calls with CA
IDMS/DB calls.

For more information on using CA IDMS/DB verbs in a bridged DBOMP program,

see How to Include CA IDMS DML Statements (see page 27).

■ Convert any application program that performs structural maintenance functions to

CA IDMS/DB.

For more information on converting maintenance programs, see Converting
DBOMP Load and Maintenance Programs (see page 62).

Installation

Use the CA IDMS installation media to install the CA IDMS DBOMP Transparency
software.

Note: For more information about installation, see the CA IDMS Installation Guide for
your operating system.

The following three tables l ist the object, source, and load modules placed in CA IDMS

DBOMP Transparency or CA IDMS/DB libraries at the time of installation.

Object and Load Modules Placed During Installation

Items listed in the following table exist as both object and load modules.

Module Description

IMBSBRDG Bridge program

Installation

Chapter 2: Introduction to the CA IDMS DBOMP Transparency 19

Module Description

IMBSPROC Database procedure

Source Modules Placed During Installation

Modules l isted in the following table exist as source only.

Module Description

BRDGSAMP Z/OS JCL for BRDGSAMP procedure

(for more information, see Sample Application and Procedures (see
page 97))

IMBS Customizing macro

IMBSBILL Sample CA IDMS/DB COBOL manufacturing application program

IMBSBRDG Assembler source code for IMBSBRDG object module

IMBSCOBL IMBS COBOL interface macro

IMBSDBMP Sample COBOL DBOMP program (to be bridged)

IMBSDMCL Sample DMCL description module

IMBSINP1 Sample input to IMBSBILL

IMBSINP2 Sample input to IMBSDBMP

IMBSPL1 CA IDMS DBOMP Transparency PL/I interface macro

IMBSPROC Source code for database procedure object module

IMBSSAMP Z/OS JCL for IMBSSAMP procedure

(for more information, see Sample Application and Procedures (see
page 97))

IMBSSCHM Sample CA IDMS/DB schema description

IMBSSUBS Sample CA IDMS/DB subschema description

IMBSTAB Sample input to IMBS customizing macro

Chapter 3: The Transparency Environment 21

Chapter 3: The Transparency Environment

This section contains the following topics:

Overview (see page 21)
DBOMP Macros Supported (see page 21)
DBOMP Process Indicators Supported (see page 24)

DBOMP Routines Supported (see page 26)
CA IDMS DML Statements Supported in Bridged Programs (see page 26)
How to Include CA IDMS DML Statements (see page 27)

Overview

CA IDMS DBOMP Transparency for DBOMP Transparency functions include:

■ Simulation of the logic generated by DBOMP retrieval and update macros and
process indicators

■ Limited maintenance of the Run Activity Control Number (RACN)

■ Support of a l imited number of CA IDMS verbs issued from bridged programs

This chapter discusses support for the following entities in the transparency
environment:

■ DBOMP macros

■ DBOMP process indicators

■ Special DBOMP routines

■ CA IDMS DML statements

DBOMP Macros Supported

The transparency supports, to varying degrees, DBOMP programs that issue retrieval

and update macros. Support of DBOMP programs that issue macros to entry point
BM$PIO is unconditional and requires no program modification; Support of DBOMP
programs that issue macros to AP$SEQ requires that the programs be modified and
reassembled. To modify these programs, you replace DBOMP macros that provide logic

routines for sequential and consecutive processing with the transparency's macros.

DBOMP Macros Supported

22 User Guide

This section describes the following categories of DBOMP Assembler macros in the
transparency environment:

■ Macros supported unconditionally by the transparency

■ Macros requiring program modification and reassembly

■ Macros not supported by the transparency

■ Macros processed independently of the transparency

For more information on PL/I equivalent macros, see PL/I Considerations (see page 85).
For more information on COBOL equivalent macros, see COBOL Considerations (see
page 91).

Macros Supported Unconditionally

The transparency simulates unconditionally the processing generated by macros issued
to entry point BM$PIO. Programs that issue macros only to this entry point need not be
altered or reassembled. The transparency interprets these macros as follows:

■ CA$LL (issued directly or as part of the CHA$E macro expansion)— Establishes
l inkage with the transparency by passing the work area prefix to the bridge program

■ CHA$E— Walks a set

Macros That Require Program Modification and Reassembly

The transparency requires that programs issuing macros to entry point AP$SEQ be
altered and subsequently reassembled before interfacing with the bridge. The
transparency can simulate the following macros only if you remove the prerequisite
MF$SQ and FI$LE macros from the issuing program a nd replace them with the

transparency macro IMBSEQ (see Transparency Programs and Macros (see page 29)):

■ GE$T— Sequential retrieval

■ PU$T— Sequential update

■ ST$KY— Skip-sequential retrieval using logical key

■ ST$DA— Skip-sequential retrieval using disk address

Transparency support of the sequential processing logic generated by the ST$KY and
ST$DA macros assumes the use of indexing. Indexing allows the transparency to support
logical sequential dependencies in DBOMP programs. If indexing hasn't been defined for

the database, all programs using ST$KY and ST$DA must be altered to remove logical
sequential dependencies before interfacing with the bridge.

DBOMP Macros Supported

Chapter 3: The Transparency Environment 23

The transparency handles GET, PUT, ST$KY, and ST$DA as follows:

■ GE$T—The transparency retrieves the first record in the logical or physical

sequence of the named fi le and returns it to the work area. Subsequent GE$T
macros issued for the same fi le cause the transparency to retrieve records in logical
sequential order from that point if the record type is indexed, or in physical

sequential order from that point if the record type is not indexed. Each retrieved
record becomes current of run unit and current of its record type.

■ PU$T—The transparency verifies that the named record is current of the
transaction, updates the record with the information in the user work area, and
returns the record to the CA IDMS/DB database. If the record is not current of run

unit when PU$T is issued, CA IDMS DBOMP Transparency performs a direct read to
establish currency.

■ ST$KY—The transparency retrieves a record by the key specified in the work area
prefix for the named fi le and returns the record to the work area. Currency for the
fi le (record type) is set at the retrieved record. Subsequent GE$T macros cause the

transparency to retrieve records in logical sequential order from that point if the
record type is indexed, or in physical sequential order from that point if the record
type is not indexed.

■ ST$DA—The transparency retrieves a record by the disk address specified in the
work area prefix for the named fi le and returns the record to the work area.

Currency for the fi le (record type) is set at the retrieved records in logical sequential
order from that point if the record type is indexed, or in physical sequential order
from that point if the record type is not indexed.

Macros Not Supported

The following list shows the DBOMP macros you should remove from your bridged
programs and what to replace them with.

Remove this macro: Replace it with:

MF$SQ IMBSEQ

FI$LE IMBSEQ

CF$RT IMBSEQ

CGE$T GE$T

CPU$T PU$T

DBOMP Process Indicators Supported

24 User Guide

Macros Processed Independently of the Transparency

The following macros are executed independently of the transparency. Do not alter
them or remove them from bridged programs:

■ BM$DS— Generates dummy sections

■ BM$WA— Generates the work area prefix

■ EQ$RG— Equates registers to a symbol

■ MO$VE— Moves a variable number of bytes from one field to another

■ MSG— Displays a message on the console

■ TY$PE— Displays data on the console

DBOMP Process Indicators Supported

The transparency supports most DBOMP process indicators that request retrieval and
update functions. That support is achieved when the transparency does the following:

1. Accepts DBOMP process indicators that are passed in the work area pr efix when a
CA$LL macro is issued.

2. Converts those process indicators to CA IDMS/DBB calls.

Note: The transparency does not support any DBOMP process indicators that request
structural maintenance functions.

Process Indicators Fully Supported

The following process indicators are supported by the transparency in the same manner
they are supported by DBOMP:

■ MRAN— Reads master fi le record by key and return data

■ MRKY— Reads master fi le record by key

(positioning only)

■ MDIR— Reads master fi le record by disk address and return data

■ MRDR— Reads master fi le record by disk address

(positioning only)

■ MUPD— Updates current master fi le record

■ CDIR— Reads chain fi le record by disk address and return data

DBOMP Process Indicators Supported

Chapter 3: The Transparency Environment 25

■ CRDR— Reads chain fi le record by disk address

(positioning only)

■ CUPD— Updates current chain fi le record

Process Indicators Supported with Exceptions

The following process indicators are supported by the transparency but are handled in a
manner that is different from DBOMP:

■ CMPR—The transparency moves the disk address from the work area prefix,
simulating compression. Since CA IDMS/DBB uses only 4-byte relative addresses,
actual compression is unnecessary. This operation is transparent to the call ing

program, and no program changes need be made.

■ EXPN—The transparency moves the disk address to the work area prefix, simulating
expansion. Since CA IDMS/DBB uses only 4-byte relative addresses, actual
expansion is unnecessary. This operation i s transparent to the call ing program, and

no program changes need be made.

■ OPEN—The first CA$LL issued by the DBOMP program moves an OPEN process
indicator to the work area prefix of each fi le. The first OPEN encountered by the
transparency opens the entire CA IDMS/DBB database: BINDs are issued for the run
unit and all record types, and database areas are READYed. In addition, the OPEN

process indicator for the first and all other fi les causes the transparency to
determine, for future processing purposes, how the corresponding record type is
stored on the CA IDMS/DB database (CALC or DIRECT for master fi les; VIA for chain

fi les). OPEN also causes the transparency to determine from information in
IMBSTAB whether the fi le named in the CA$LL is the one for which RACN processing
has been requested. If so, the transparency returns the fi le control record to the
work area for that record (for information about the transparency's support of

RACN, see DBOMP Routines Supported (see page 26).

■ CLOS—The first CLOS encountered by the transparency closes the entire CA
IDMS/DB database: the transparency updates the fi le control record if RACN
processing has been requested for a fi le, and then issues a FINISH command.

Process Indicators Not Supported

The following DBOMP retrieval and update process indicators are not supported by the
transparency. Remove them from bridged programs:

■ MWRT

■ CWRT

■ CCHG

■ CCSR

DBOMP Routines Supported

26 User Guide

DBOMP Routines Supported

The transparency provides the logic for l imited maintenance of the Run Activity Control
Number (RACN). If you want to retain RACN logic in bridged programs, modify RACN
processing within each program to accommodate the limited support provided by the
transparency.

Note: The transparency does not acknowledge low-level code logic or chain count logic.
The presence of low-level code or chain count fields in a DBOMP file does not
necessitate program modification. These fields are ignored.

The transparency supports RACN logic as follows:

■ RACN processing is maintained for only one DBOMP file

■ OPEN processing causes the transparency to return to the call ing DBOMP program
the fi le control record for the fi le for which RACN has been specified

■ CLOS processing causes the transparency to MODIFY the fi le control record, thereby

returning it to the database

Once the fi le control record has been made available to the program, the transparency

ignores it until a CLOS process indicator is issued. All RACN logic is executed
independently of the transparency so the contents of the fi le control record can be
manipulated by the executing program as you wish. When the transparency encounters

a CLOS process indicator, it modifies the fi le control record, whether or not the DBOMP
program has updated that record.

You are responsible for storing (in the CA IDMS/DB database) one occurrence of the
record for which RACN processing is specified. The database key for this record must be

initialized to binary zeros.

CA IDMS DML Statements Supported in Bridged Programs

The transparency supports certain CA IDMS DML statements issued from a DBOMP
program. These DML statements (for Assembler) are as follows:

■ @BIND PROC

■ @COMMIT(ALL)

■ @ROLLBAK(CONTINUE)

■ @ACCEPT(STATS/PROC)

How to Include CA IDMS DML Statements

Chapter 3: The Transparency Environment 27

How to Include CA IDMS DML Statements

For each CA IDMS DML statement you want to include in a bridge program, do the
following:

1. Build a three-field argument in the program variable storage of the bridged DBOMP
program.

2. Pass the arguments to the bridge program. The transparency converts the values in
the arguments to CA IDMS DML statements.

Step 1— Build the argument

Use the information in the following table to build the three-field argument for the DML
statement.

Field Usage Length Contents

1 Character 8 The literal value of the CA IDMS verb issued

by the bridged program. Acceptable values
are:

■ @BIND

■ @COMMIT

■ @ROLLBAK

■ @ACCEPT

PL/I or COBOL equivalents are also
acceptable.

2 Character 8 The literal value of the CA IDMS keyword
associated with the CA IDMS verb entered in
field 1. Acceptable values are as shown in the

list following this table.

3 Character 1-256 The variable data passed by :

■ @BIND PROC

■ @ACCEPT PROC

or

■ @ACCEPT STATS

This field is necessary only if one of these

DML statements is issued.

How to Include CA IDMS DML Statements

28 User Guide

The acceptable values for field 2 (shown in the preceding table) are:

■ Name of the database procedure, if @BINDing to or @ACCEPTing from a data

procedure

■ STATS, if @ACCEPTing database statistics

■ ALL, if issuing the @COMMIT verb and releasing locks on current records; enter

spaces if issuing an unqualified @COMMIT verb

■ CONTINUE, if issuing the @ROLLBAK verb and terminating the run unit; enter
spaces if issuing an unqualified @ROLLBAK verb

In the following example, the bridged DBOMP Assembler program builds the argument
IDMSREQ to issue the CA IDMS DML statement @ACCEPT STATS:

IDMSREQ DS OD

IDMSVERB DC CL8'@ACCEPT '

IDMSKEY DC CL8'STATS '

IDMSAREA DS CL256

Step 2— Pass the argument to the bridge program

Bridged DBOMP Assembler program

Include this statement in a bridged DBOMP Assembler program to pass the CA IDMS
DML statement argument to the bridge program:

CA$LL BMP$IO,argument-name

Bridged DBOMP PL/I program

Include this statement in a bridged DBOMP PL/I program to pass the CA IDMS DML
statement argument to the bridge program:

CALL CA$LL(argument_name,'END.')

Bridged DBOMP COBOL program

Include this statement in a bridged DBOMP COBOL program to pass the CA IDMS DML
statement argument to the bridge program:

CALL BMPCALL USING argument-name.

Chapter 4: Transparency Programs and Macros 29

Chapter 4: Transparency Programs and
Macros

This section contains the following topics:

Overview (see page 29)
IMBS Customizing Macro (see page 30)

Output From IMBS Macro— IMBSTAB (see page 36)
Sample IMBS and IMBSTAB (see page 40)
IMBSPROC Database Procedure (see page 46)
IMBSBRDG program module (see page 48)

IMBSEQ macro (see page 55)

Overview

This chapter provides information on the transparency components that are described
briefly in the following table.

Component Brief description

IMBS customizing
macro

Describes the DBOMP files and the equivalent CA IDMS/DB
database. The IMBS macro generates IMBSTAB.

IMBSTAB Contains (in tabular format) the data that the bridge program
uses to convert CA IDMS/DB records to DBOMP records.

IMBSPROC database

procedure

Moves pointers from the subschema table into a CA IDMS/DB

dummy record.

IMBSBRDG program
module

Simulates DBOMP records and processing using IMBSTAB,
IMBSPROC, IMBSEQ (or equivalent COBOL or PL/I macros), and
CA IDMS/DB.

IMBSEQ macro Supports the DBOMP GET, PUT, ST$KY, and ST$DA macros in
Assembler programs and replaces the MFSQ, FILE, and CF$RT
macros.

For more information on equivalent PL/I and COBOL macros,

see PL/I Considerations (see page 85) and see COBOL
Considerations (see page 91).

IMBS Customizing Macro

30 User Guide

IMBS Customizing Macro

IMBS is an Assembler macro that describes DBOMP files and the CA IDMS/DB database
that replaces them.

Input statements for IMBS are as follows:

■ Control

■ Set identification

■ File/record type description

■ Pointer/set relationship

■ Delimiter

These statements require set names, fi le names, record types, logical record length, and

pointer displacement in DBOMP records. To get this information, use the IDMSRPTS
util ity (see the CA IDMS Utilities Guide), running these reports:

Report name Gives information on:

RECDES Record types defined in a schema

SETDES Sets defined in a schema

DATDIR Record types copied into a subschema (general)

SUBREC Record types copied into a subschema (comprehensive)

SUBAREA Areas copied into a subschema

SUBSET Sets copied into a subschema

Syntax for the input statements is provided in the following sections.

IMBS Customizing Macro

Chapter 4: Transparency Programs and Macros 31

Control Statement

The control statement specifies control information for the run, including usage mode
and required names.

►►─── IMBS ──┬────────────────────────────┬─ SUBSCH=subschema-name ───────────►
 └─ SYSTEM= ─┬─ DBMP ◄ ─┬─ , ─┘
 └─ CFMS ───┘

 ►─┬──┬───────────────────────────────►
 └─ ,IMBSREC= ─┬─ IMBS-RECORD ◄ ──────────┬─┘
 └─ idms-dummy-record-name ─┘

 ►─┬─────────────────────────────────┬──►
 └─ ,RACN= ─┬─ ITEM-MASTER ◄ ────┬─┘
 └─ racn-record-name ─┘

 ►─┬──────────────────────┬───►
 └─ ,USAGE= ─┬─ PU ◄ ─┬─┘
 ├─ PR ───┤
 ├─ SU ───┤
 ├─ SR ───┤
 ├─ ER ───┤
 └─ EU ───┘

 ►─┬──────────────────────────┬───►
 └─ ,PGMNAME=program-name ──┘

 ►─┬───────────────────────────────┬──►
 └─ ,SETLMT= ─┬─ 16 ◄ ─────────┬─┘
 └─ limit-number ─┘

 ►─┬────────────────────────────────────┬─────────────────────────────────────►
 └─ ,DBPROC= ─┬─ IMBSPROC ◄ ────────┬─┘
 └─ db-procedure-name ─┘

 ►─┬──┬───────────────────────────────►◄
 └─ ,CATALR= ─┬─ NO ◄ ────────────────────┬─┘
 ├─ YES ─────────────────────┤
 └─ relocatable-module-name ─┘

IMBS

Constant; Code anywhere after column one.

SYSTEM=DBMP/CFMS

Specifies DBMP or CFMS, as appropriate. The default value is DBMP.

SUBSCH=subschema-name

Specifies the subschema name as it is known to CA IDMS/DB.

IMBSREC=IMBS-RECORD/idms-dummy-record-name

Specifies the name of the CA IDMS/DB dummy record as defined in the schema. The
default value is IMBS-RECORD.

IMBS Customizing Macro

32 User Guide

RACN=ITEM-MASTER/racn-record-name

Specifies the name of the record for which RACN processing is requested. The

default value is ITEM-MASTER.

USAGE=

Specifies the CA IDMS/DB usage mode in which all areas named in the subschema

are to be READYed.

PU

Protected update (the default)

PR

Protected retrieval

SU

Shared update

SR

Shared retrieval

ER

Exclusive retrieval

EU

Exclusive update

PGMNAME=program-name

Specifies the name of the program to be bridged. This parameter defaults to
IDMSDBMP if DBMP is indicated in the SYSTEM= parameter, or to IDMSCFMS if

CFMS is indicated in the SYSTEM= parameter.

SETLMT=limit-number

Sets the maximum number of sets that can be defined in a single IMBSTAB. The
default is 16. The largest allowed number is 255.

DBPROC=IMBSPROC/db-procedure-name

Specifies the name of a database procedure that passes pointers from the
subschema table to the CA IDMS/DB dummy record. The default value, IMBSPROC,
should be used unless a database procedure by that name already exists.

IMBS Customizing Macro

Chapter 4: Transparency Programs and Macros 33

CATALR=

Specifies the CATALR option (Z/VSE only).

NO

Specifies that a CATALR card is not to be provided at the front of the object
deck. NO is the default.

YES

Specifies that a CATALR card is to be provided at the front of the object deck,
naming IMBSTAB as the relocatable module.

relocatable-module-name

Specifies the relocatable module to be named on the CATALR card placed at

the front of the object deck.

Set Identification Statement

The set identification statement names a CA IDMS/DB set. One set identification
statement must exist for each set type to be accessed by the bridged program.

►►─── IMBS SET=(set-number,set-name) ───►◄

IMBS

Constant; Code anywhere after column one.

set-number

Specifies a 2-digit number indicating the set number. Set identification statements
must be entered in sequence by this number.

Set-number cannot exceed the value of the SETLMT parameter in the control
statement.

set-name

Specifies the name of the set as it appears in the subschema.

File/Record Type Description Statement

The fi le/record type description statement describes the characteristics of the DBOMP

file and names the CA IDMS/DB record type to which it corresponds. There must be one
fi le/record type description statement for each DBOMP file referenced by the bridged
program.

IMBS Customizing Macro

34 User Guide

This statement must be followed by a pointer/set relationship statement for each
pointer that is established for the record type and that is to be passed to the call ing

program by the database procedure.

►►─── IMBS RECNAME=(dbomp-file-name,idms-record-type-name) ───────────────────►

 ►─── ,TYPE= ─┬─ M ─┬─ ,KEYL=key-length ──────────────────────────────────────►
 ├─ C ─┤
 └─ S ─┘

 ►─── ,LRECL=record-length ───►◄

IMBS

Constant; Code anywhere after column one.

dbomp-file-name

Specifies the 7-character name of the DBOMP file.

idms-record-type-name

Specifies the name of the corresponding CA IDMS/DB record type as it appears in

the subschema.

TYPE=

Specifies the type of DBOMP file.

M

Master fi le

C

Chain fi le l inked to more than one master fi le; note that if C is specified, the
corresponding record type must have next, prior, and owner pointers.

S

Chain fi le l inked to only one master fi le; any fi le/record type description
statement specifying TYPE=S must be preceded by a fi le/record type
description statement for the master fi le to which it is l inked.

KEYL=key-length

Specifies the length of the record key as it is specified in the work area prefix of the
DBOMP file. Key-length must be between 0 and 256; specify 0 for all chain fi les
except those with product-structure characteristics where the master-record key
length is used.

LRECL=record-length

Specifies the length, in bytes, of the record as it appears on the DBOMP record
layout. The length of the work area prefix should not be included in this value.

IMBS Customizing Macro

Chapter 4: Transparency Programs and Macros 35

Pointer/Set Relationship Statement

Pointer/set relationship statements provide CA IDMS DML with information about the
pointers established for each record type that is to be passed from the database to the
user work area. One pointer/set relationship statement must exist for each pointer that

is to be passed for the record type described in the preceding fi le/record type
description statement.

►►─── IMBS POINTER=(pointer-number,pointer-type,pointer-displacement-number) ─►◄

IMBS

Constant; Code anywhere after column one.

pointer-number

Specifies the two-digit number corresponding to the sequential number in the set
identification statement (see above) for the set to which the pointer l inks the
record.

pointer-type

Specifies the type of pointer, as follows:

■ N— Next pointer

■ P— Prior pointer

■ O— Owner pointer

■ X— Dummy pointer; causes the constant END to be moved to the specified

pointer position in the simulated DBOMP record

pointer-displacement-number

Specifies the displacement of the pointer in the DBOMP logical record, where the
record begins at byte 1.

Delimiter Statement

The delimiter statement indicates the end of the input statement entries. Code the
constant IMBS anywhere after column one.

►►─── IMBS END ───►◄

Output From IMBS Macro— IMBSTAB

36 User Guide

Output From IMBS Macro— IMBSTAB

IMBSTAB is an Assembler program module generated by the IMBS macro. It consists of
storage (DS) and storage constants (DC), in the form of tables and buffers. IMBSTAB:

■ Supplies IMBSPROC with information needed to move pointers for current records
from the CA IDMS/DB subschema table into the dummy CA IDMS/DB record

■ Provides IMBSBRDG with information needed to build DBOMP records from
retrieved CA IDMS/DB records

■ Supplies IMBSBRDG with the information needed to return updated records from
the user work area to the CA IDMS/DB database

The IMBSTAB module contains the following four tables:

Table Contains:

Control table Control information

Set table An entry for each set described to the IMBS macro

Pointer table Pointers for each set described to the IMBS macro; the groups of
pointers are in the same order as the corresponding sets in the set
table.

File table A group of entries for each fi le described to the IMBS macro

The control table, set table, pointer table, and fi le table layouts are shown in the figures
on the following pages.

Control Table

Output From IMBS Macro— IMBSTAB

Chapter 4: Transparency Programs and Macros 37

Set Table

The set table contains one entry for each set described to the IMBS macro.

Pointer Table

The pointer table contains one group of pointers (owner, prior, current, and next) for
each set described to the IMBS macro, in the same order as the sets to which they
correspond are named in the set table.

Output From IMBS Macro— IMBSTAB

38 User Guide

File Table

The fi le table contains one group of entries for each DBOMP file and corresponding CA

IDMS/DB record type described to the IMBS macro.

The IMBS macro generates a CA IDMS/DB logical record buffer from which the bridge

program constructs the DBOMP logical record. The size of this buffer is equivalent to the
size of the largest CA IDMS/DB record described in the fi le table.

Assembling and Linking IMBSTAB

You can reassemble IMBSTAB as often as you like. This allows you to change control
information and accommodate the requirements of multiple DBOMP applications. The

information most l ikely to vary is the program name, the usage mode, the name of the
record for which RACN is to be maintained, and the CATALR option (Z/VSE only).

Each time you change any input statements, do the following:

1. Submit all of the IMBS input statements.

2. Link edit IMBSTAB to the library containing IMBSBRDG.

For the JCL you use to assemble and link edit the IMBSTAB module, see Using the
Transparency as a Bridge to CA IDMS/DB (see page 75).

Output From IMBS Macro— IMBSTAB

Chapter 4: Transparency Programs and Macros 39

The following flowchart i l lustrates IMBSTAB assembly and linkage.

IMBSTAB Error Messages

Error messages that are issued during the assembly of the IMBSTAB customized bridge
program are called MNOTES. An MNOTE appears in the source code listing directly

below the input statement to which it applies.

Note: The line number of an MNOTE appears on the Assembler Diagnostics and
Statistics page of the Assembler output l isting.

MNOTEs (and their descriptions) are as follows:

■ INCORRECT USAGE MODE SPECIFIED

There is an invalid usage mode in the USAGE= parameter of the control statement.

■ SET SPECIFIED OUT OF SEQUENCE

A set identification statement is not in numeric sequence by the set number
parameter.

Sample IMBS and IMBSTAB

40 User Guide

■ SUBSCHEMA NOT SPECIFIED

The SUBSCH= parameter is missing from the control statement.

■ SET TABLE LIMIT EXCEEDED

The number of sets defined in the IMBS macro has been exceeded.

■ UNRECOGNIZED KEYWORD PARAMETER

The Assembly program has encountered an unrecognizable keyword parameter.

You must correct input statements that are flagged by MNOTES, then resubmit the

statements to the IMBS macro for assembly of IMBSTAB. Repeat the process until all
user input statements are free of errors.

The error-detection capabilities of the IMBS macro are l imited, and it is recommended
that you check all input statements for errors not covered by MNOTES. In particular,
check:

■ The subschema name

■ File and record type names

■ File types

■ Linkage options

■ Pointer displacement

■ CA IDMS/DB set names

If errors exist in the above values and are not detected when you generate and
assemble IMBSTAB, the bridge program will encounter discrepancies between
information requested by the call ing program and information supplied by IMBSTAB.

The results are unpredictable.

Sample IMBS and IMBSTAB

Sample Input to IMBS

The following is a sample of statements input to the IMBS macro.

 IMBS SYSTEM=DBMP,SUBSCH=IMBSSUBS

 IMBS SET=(01,ITEM-STRUCTURE)

 IMBS SET=(02,ITEM-WHERE-USED)

 IMBS SET=(03,WORK-ROUTING)

 IMBS SET=(04,ITEM-ROUTING)

Sample IMBS and IMBSTAB

Chapter 4: Transparency Programs and Macros 41

 IMBS RECNAME=(ITEMFLE,ITEM-MASTER),TYPE=M,KEYL=5,LRECL=68

 IMBS POINTER=(01,X,1)

 IMBS POINTER=(01,N,10)

 IMBS POINTER=(02,N,14)

 IMBS POINTER=(04,N,18)

 IMBS POINTER=(04,P,22)

 IMBS RECNAME=(PRODSTR,PROD-STRUCTURE),TYPE=C,KEYL=5,LRECL=36

 IMBS POINTER=(01,O,1)

 IMBS POINTER=(01,N,5)

 IMBS POINTER=(02,O,9)

 IMBS POINTER=(02,N,13)

 IMBS POINTER=(02,P,17)

 IMBS RECNAME=(WORKCTR,WORK-CENTER),TYPE=M,KEYL=5,LRECL=32

 IMBS POINTER=(01,X,1)

 IMBS POINTER=(03,N,10)

 IMBS POINTER=(03,P,14)

 IMBS RECNAME=(ROUTING,ROUTINGS),TYPE=C,KEYL=0,LRECL=84

 IMBS POINTER=(04,O,1)

 IMBS POINTER=(04,N,5)

 IMBS POINTER=(03,O,9)

 IMBS POINTER=(03,N,13)

 IMBS POINTER=(03,P,17)

 IMBS END

 END

Sample Output from IMBS

The following is a sample IMBSTAB source listing, the output from the IMBS macro.

 LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT

 1 IMBS SYSTEM=DBMP,SUBSCH=IMBSSU

000000 2+IMBSTAB CSECT

000000 47F0 E000 00000 3+ BC 15,0(,14)

000004 00000020 4+ DC A(IMBSCNTL)

000008 5C5CC9D4C2E240E3 5+ DC C'**IMBS TABLE V12.0**'

 6+*

000020 7+IMBSCNTL DS 0D

000020 C4C2D4D7 8+ DC CL4'DBMP'

000024 00000298 9+ DC A(R1)

000028 000003F0 10+ DC A(BUFFER)

Sample IMBS and IMBSTAB

42 User Guide

00002C 00000148 11+ DC A(SETABLE)

000030 00000190 12+ DC A(PTRTAB)

000034 C9D4C2E260D9C5C3 13+ DC CL16'IMBS-RECORD'

000044 C9D4C2E2D7D9D6C3 14+ DC CL8'IMBSPROC'

00004C C9D4C2E2E2E4C2E2 15+ DC CL8'IMBSSUBS'

000054 C9C4D4E2C4C2D4D7 16+ DC CL8'IDMSDBMP'

00005C C9E3C5D460D4C1E2 17+ DC CL16'ITEM-MASTER'

00006C 000000F5 18+ DC A(SSCIDBCM+38-1)

000070 19+ DS 0D

000070 20+SSCTRL DS 0CL200

000070 4040404040404040 21+PGMNAME DC CL8' '

000078 F1F4F0F0 22+ERRSTAT DC C'1400'

00007C 00000000 23+DBKEY DC F'0'

000080 4040404040404040 24+RECNAME DC CL16' '

000090 4040404040404040 25+AREANAME DC CL16' '

0000A0 4040404040404040 26+ERRORSET DC CL16' '

0000B0 4040404040404040 27+ERRORREC DC CL16' '

0000C0 4040404040404040 28+ERRAREA DC CL16' '

0000D0 29+SSCIDBCM DS 0F

0000D0 0000000000000000 30+IDBMSCOM DC 25F'0'

000134 00000000 31+DIRDBKEY DC F'0'

000138 32+DBSTATUS DS 0CL7

000138 4040 33+DBSTMTCD DC CL2' '

00013A 404040404040 34+DBSTATCD DC CL5' ',CL1' '

000140 00000000 35+RECOCCUR DC F'0'

000144 00000000 36+DMLSEQ DC F'0'

000148 37+SETABLE DS 0D

 38 *

 39 IMBS SET=(01,ITEM-STRUCTURE)

000148 C9E3C5D460E2E3D9 40+SET1 DC CL16'ITEM-STRUCTURE'

 41 IMBS SET=(02,ITEM-WHERE-USED)

000158 C9E3C5D460E6C8C5 42+SET2 DC CL16'ITEM-WHERE-USED'

 43 IMBS SET=(03,WORK-ROUTING)

000168 E6D6D9D260D9D6E4 44+SET3 DC CL16'WORK-ROUTING'

 45 IMBS SET=(04,ITEM-ROUTING)

000178 C9E3C5D460D9D6E4 46+SET4 DC CL16'ITEM-ROUTING'

 47 *

 48 IMBS RECNAME=(ITEMFLE,ITEM-MAS

Sample IMBS and IMBSTAB

Chapter 4: Transparency Programs and Macros 43

000188 FFFFFFFF 49+ DC F'-1'

 50+*

000190 51+PTRTAB DS 0D

000190 0000000000000000 52+ DC 16XL16'FF'

 53+*

000290 54+FTABLE DS 0D

000290 FFFFFFFF 55+ DC F'-1'

000294 0000 56+ DC H'0'

000296 FFFF 57+ DC H'-1'

000298 58+R1 DS 0F

000298 000002F0 59+ DC A(R2)

00029C C9E3C5D4C6D3C5 60+ DC CL7'ITEMFLE'

0002A3 D4 61+ DC C'M'

0002A4 C9E3C5D460D4C1E2 62+ DC CL16'ITEM-MASTER'

0002B4 0005 63+ DC H'5'

0002B6 0044 64+ DC H'68'

0002B8 0000000000000000 65+ DC 2F'0'

 66 IMBS POINTER=(01,X,1)

0002C0 00000190 67+ DC A(PTRTAB+16*(01-1))

0002C4 0000 68+ DC AL2(1-1)

0002C6 E7 69+ DC CL1'X'

0002C7 40 70+ DC CL1' '

 71 IMBS POINTER=(01,N,10)

0002C8 00000190 72+ DC A(PTRTAB+16*(01-1))

0002CC 0009 73+ DC AL2(10-1)

0002CE D5 74+ DC CL1'N'

0002CF 40 75+ DC CL1' '

 76 IMBS POINTER=(02,N,14)

0002D0 000001A0 77+ DC A(PTRTAB+16*(02-1))

0002D4 000D 78+ DC AL2(14-1)

0002D6 D5 79+ DC CL1'N'

0002D7 40 80+ DC CL1' '

 81 IMBS POINTER=(04,N,18)

0002D8 000001C0 82+ DC A(PTRTAB+16*(04-1))

0002DC 0011 83+ DC AL2(18-1)

0002DE D5 84+ DC CL1'N'

0002DF 40 85+ DC CL1' '

 86 IMBS POINTER=(04,P,22)

0002E0 000001C0 87+ DC A(PTRTAB+16*(04-1))

0002E4 0015 88+ DC AL2(22-1)

0002E6 D7 89+ DC CL1'P'

0002E7 40 90+ DC CL1' '

 91 *

 92 IMBS RECNAME=(PRODSTR,PROD-STR

0002E8 FFFFFFFF 93+ DC F'-1'

0002EC 0044 94+ DC H'68'

Sample IMBS and IMBSTAB

44 User Guide

0002EE FFFF 95+ DC H'-1'

0002F0 96+R2 DS 0F

0002F0 00000348 97+ DC A(R3)

0002F4 D7D9D6C4E2E3D9 98+ DC CL7'PRODSTR'

0002FB C3 99+ DC C'C'

0002FC D7D9D6C460E2E3D9 100+ DC CL16'PROD-STRUCTURE'

00030C 0005 101+ DC H'5'

00030E 0024 102+ DC H'36'

000310 0000000000000000 103+ DC 2F'0'

 104 IMBS POINTER=(01,O,1)

000318 00000190 105+ DC A(PTRTAB+16*(01-1))

00031C 0000 106+ DC AL2(1-1)

00031E D6 107+ DC CL1'O'

00031F 40 108+ DC CL1' '

 109 IMBS POINTER=(01,N,5)

000320 00000190 110+ DC A(PTRTAB+16*(01-1))

000324 0004 111+ DC AL2(5-1)

000326 D5 112+ DC CL1'N'

000327 40 113+ DC CL1' '

 114 IMBS POINTER=(02,O,9)

000328 000001A0 115+ DC A(PTRTAB+16*(02-1))

00032C 0008 116+ DC AL2(9-1)

00032E D6 117+ DC CL1'O'

00032F 40 118+ DC CL1' '

 119 IMBS POINTER=(02,N,13)

000330 000001A0 120+ DC A(PTRTAB+16*(02-1))

000334 000C 121+ DC AL2(13-1)

000336 D5 122+ DC CL1'N'

000337 40 123+ DC CL1' '

 124 IMBS POINTER=(02,P,17)

000338 000001A0 125+ DC A(PTRTAB+16*(02-1))

00033C 0010 126+ DC AL2(17-1)

00033E D7 127+ DC CL1'P'

00033F 40 128+ DC CL1' '

 129 *

 130 IMBS RECNAME=(WORKCTR,WORK-CEN

000340 FFFFFFFF 131+ DC F'-1'

000344 0024 132+ DC H'36'

Sample IMBS and IMBSTAB

Chapter 4: Transparency Programs and Macros 45

000346 FFFF 133+ DC H'-1'

000348 134+R3 DS 0F

000348 00000390 135+ DC A(R4)

00034C E6D6D9D2C3E3D9 136+ DC CL7'WORKCTR'

000353 D4 137+ DC C'M'

000354 E6D6D9D260C3C5D5 138+ DC CL16'WORK-CENTER'

000364 0005 139+ DC H'5'

000366 0020 140+ DC H'32'

000368 0000000000000000 141+ DC 2F'0'

 142 IMBS POINTER=(01,X,1)

000370 00000190 143+ DC A(PTRTAB+16*(01-1))

000374 0000 144+ DC AL2(1-1)

000376 E7 145+ DC CL1'X'

000377 40 146+ DC CL1' '

 147 IMBS POINTER=(03,N,10)

000378 000001B0 148+ DC A(PTRTAB+16*(03-1))

00037C 0009 149+ DC AL2(10-1)

00037E D5 150+ DC CL1'N'

00037F 40 151+ DC CL1' '

 152 IMBS POINTER=(03,P,14)

000380 000001B0 153+ DC A(PTRTAB+16*(03-1))

000384 000D 154+ DC AL2(14-1)

000386 D7 155+ DC CL1'P'

000387 40 156+ DC CL1' '

 157 *

 158 IMBS RECNAME=(ROUTING,ROUTINGS

000388 FFFFFFFF 159+ DC F'-1'

00038C 0020 160+ DC H'32'

00038E FFFF 161+ DC H'-1'

000390 162+R4 DS 0F

000390 000003E8 163+ DC A(R5)

000394 D9D6E4E3C9D5C7 164+ DC CL7'ROUTING'

00039B C3 165+ DC C'C'

00039C D9D6E4E3C9D5C7E2 166+ DC CL16'ROUTINGS'

0003AC 0000 167+ DC H'0'

0003AE 0054 168+ DC H'84'

0003B0 0000000000000000 169+ DC 2F'0'

 170 IMBS POINTER=(04,O,1)

0003B8 000001C0 171+ DC A(PTRTAB+16*(04-1))

0003BC 0000 172+ DC AL2(1-1)

0003BE D6 173+ DC CL1'O'

0003BF 40 174+ DC CL1' '

 175 IMBS POINTER=(04,N,5)

0003C0 000001C0 176+ DC A(PTRTAB+16*(04-1))

IMBSPROC Database Procedure

46 User Guide

0003C4 0004 177+ DC AL2(5-1)

0003C6 D5 178+ DC CL1'N'

0003C7 40 179+ DC CL1' '

 180 IMBS POINTER=(03,O,9)

0003C8 000001B0 181+ DC A(PTRTAB+16*(03-1))

0003CC 0008 182+ DC AL2(9-1)

0003CE D6 183+ DC CL1'O'

0003CF 40 184+ DC CL1' '

 185 IMBS POINTER=(03,N,13)

0003D0 000001B0 186+ DC A(PTRTAB+16*(03-1))

0003D4 000C 187+ DC AL2(13-1)

0003D6 D5 188+ DC CL1'N'

0003D7 40 189+ DC CL1' '

 190 IMBS POINTER=(03,P,17)

0003D8 000001B0 191+ DC A(PTRTAB+16*(03-1))

0003DC 0010 192+ DC AL2(17-1)

0003DE D7 193+ DC CL1'P'

0003DF 40 194+ DC CL1' '

 195 *

 196 IMBS END

0003E0 FFFFFFFF 197+ DC F'-1'

0003E4 0054 198+ DC H'84'

0003E6 FFFF 199+ DC H'-1'

0003E8 200+R5 DS 0F

0003E8 C5D5C44B 201+ DC CL4'END.'

0003F0 202+BUFFER DS 0D

0003F0 0000000000000000 203+ DC XL148'0'

000484 C5D5C44B 204+ DC CL4'END.'

 205 END

IMBSPROC Database Procedure

IMBSPROC, supplied in source and object form on the CA IDMS DML installation media,

is a database procedure. This procedure moves pointers of current records (that
participate in the sets described in IMBSTAB) from the subschema table to a CA
IDMS/DB dummy record. The bridge program BINDs the dummy record to the IMBSTAB

pointer table.

IMBSPROC Database Procedure

Chapter 4: Transparency Programs and Macros 47

Integration of IMBSPROC into the Bridge Program

Integration of IMBSPROC into the bridge program is as follows:

■ When a DBOMP program issues a retrieval or update request, the bridge program
issues a GET of the dummy record before:

– Moving the CA IDMS/DB record to the CA IDMS/DB logical record buffer

or

– Returning the DBOMP record to the database

■ When the bridge program issues a GET of the dummy record, CA IDMS/DB calls
IMBSPROC. IMBSPROC places currency information (pointers) in the dummy record.

■ IMBSPROC moves pointers for the sets identified in the IMBSTAB set table from the

subschema table to the dummy record and cancels the GET command issued to CA
IDMS/DB.

■ IMBSPROC returns the updated dummy record to the bridge program.

■ The bridge program proceeds to move the pointers for the requested record from
the dummy record into the DBOMP file work area, placing them as specified in

IMBSTAB.

Note: To protect the integrity of the CA IDMS/DB database, pointers are not
returned with record data to the database when a write function has been
requested.

What You Need To Do

The bridge program and IMBSPROC logic is transparent to the call ing program. You
must, however:

■ Define the dummy record in the schema

■ Include the dummy record in any subschema as that bridged programs use, thereby

making it available to IMBSPROC and IMBSBRDG

In the schema RECORD description that describes the dummy record, include a CALL
statement that directs CA IDMS/DB to call IMBSPROC before GETting the dummy
record.

For example, see this sample COBOL RECORD description:

 record name is imbs-record.

 record id is 799.

 location mode is direct.

 within bill-of-matrl area.

 call imbsproc before get.

 05 imbs-pointers occurs n times.

 10 imbs-pointer pic x(4) occurs 4 times.

IMBSBRDG program module

48 User Guide

Code the RECORD description paragraph as shown in the sample, changing the values
for RECORD NAME, RECORD ID, and AREA name as necessary. Supply a value for n (in

the 05-level OCCURS statement) that is less than or equal to the value specified in the
SETLMT clause of the IMBS macro control statement.

IMBSBRDG program module

IMBSBRDG is the CA IDMS DML Assembler program module that replaces the DBOMP

runtime executable code. Specifically, it replaces:

■ The BM$PIO root module

■ The AP$SEQ module

■ All FILEORG modules

■ The routines generated by the MFSQ, FILE, and CF$RT macros

IMBSBRDG Interface Between Applications and CA IDMS/DB

IMBSBRDG is an interface between application programs and CA IDMS/DB, and
simulates IBM bill -of-materials systems (BOMP, DBOMP, CFMS). IMBSBRDG is l inked at
runtime with IMBSTAB, IDMS, and the DBOMP application program, and appears to CA

IDMS/DB as an application program.

Note: CA IDMS DML does not include operating system and input/output interfaces, and
does not issue any messages to the console.

IMBSBRDG simulates the DBOMP environment by:

■ Converting DBOMP retrieval or update macros and process indicators to CA

IDMS/DB commands

■ Converting CA IDMS/DB records to DBOMP records, using information supplied by
IMBSTAB.

After converting the DBOMP command and the object record, IMBSBRDG returns the
requested data and processing information to the call ing program.

IMBSBRDG program module

Chapter 4: Transparency Programs and Macros 49

Converting DBOMP Calls to CA IDMS/DB Statements

The IMBSBRDG program module simulates DBOMP processing by converting DBOMP
calls to CA IDMS/DB statements. IMBSBRDG uses its process indicator table to make the
conversion. The executing program:

■ Examines the process indicator (found in the work area prefix of the object record)

■ Searches the process indicator table for the name of the IMBSBRDG routine that
issues the equivalent CA IDMS statement

■ Passes control to the appropriate IMBSBRDG routine, which performs the

requested retrieval or update function

IMBSBRDG Routines

The following table describes the IMBSBRDG routines.

The IMBSBRDG module supplied on the installation media includes comments for each
of these routines as well as for the routines that move pointers and data to and from

the DBOMP file work area.

IMBSBRDG program module

50 User Guide

Name of routine What it does

HOUSEKEEPING

(performed on each entry to
BM$PIO and AP$SEQ)

■ Saves registers

■ Establishes addressability

■ Sets sequential flag for entry to AP$SEQ

MAINLINE Routes all calls to IMBSBRDG:

■ On first call, passes control to INITIALIZATION

routine

■ For all subsequent calls, passes control to
PROCESS INDICATOR routine and to FILENAME

VERIFICATION routine

INITIALIZATION

(performed on initial entry to
IMBSBRDG)

■ Establishes location of IMBSTAB tables and loads
their addresses

■ Signs on to CA IDMS/DB

■ BINDs CA IDMS/DB dummy record to pointer table
in IMBSTAB

■ BINDs all record types to CA IDMS/DB logical

record buffer in IMBSTAB

■ READYs the CA IDMS/DB database areas in the
specified usage mode

■ Initializes the general CA IDMS/DB call

■ Initializes registers

FILENAME VERIFICATION Equates the DBOMP file name to a CA IDMS/DB record
type name

PROCESS INDICATOR Equates the DBOMP process indicator to a CA

IDMS/DB function

MOVE RECORD ■ For retrieval functions, builds the expected
DBOMP record from the CA IDMS/DB logical

record buffer and passes the record to the named
DBOMP file work area

■ For update functions, extracts the data from the
DBOMP file work area and passes the data to the

CA IDMS/DB logical record buffer (pointers are not
moved from the work area to the CA IDMS/DB
logical record buffer)

MRAN MRKY Performs random record retrieval

DIRECT READ Performs direct record retrieval

IMBSBRDG program module

Chapter 4: Transparency Programs and Macros 51

Name of routine What it does

MODIFY RECORD Updates in place master and chain fi le records

SEQUENTIAL READ Performs processing requested by GE$T

START KEY Performs processing requested by ST$KY

START DA Performs processing requested by ST$DA

OPEN ■ Determines location mode of CA IDMS/DB record
type that corresponds to named DBOMP file

■ Determines, for future MGET processing, whether
CA IDMS/DB record type belongs to an indexed

set

■ Determines if RACN function is permitted for
named DBOMP file and if so returns fi le control
record to named DBOMP file work area

CLOSE Returns fi le control record to CA IDMS/DB database
and closes database

EXPAND Moves disk address to named work area prefix from

indicated sending field

COMPRESS Moves disk address from named work area prefix to
indicated receiving field

Converting Records Retrieved from CA IDMS/DB

The IMBSBRDG program converts retrieved CA IDMS/DB records to DBOMP records,
reconstructs CA IDMS/DB records from updated DBOMP records, and returns the

updated records to the database.

Converting Records

To convert records retrieved from the CA IDMS/DB database, IMBSBRDG performs the
following tasks:

■ Reads the CA IDMS/DB record into the CA IDMS/DB logical record buffer

■ Retrieves the CA IDMS/DB dummy record updated by IMBSPROC

■ Moves the pointers for the requested record from the CA IDMS/DB dummy record

to the DBOMP file work area (using displacement information in IMBSTAB to
determine where to place each pointer)

■ Moves segments of data from the CA IDMS/DB logical record buffer to the DBOMP

file work area, accounting for the pointers already in place

IMBSBRDG program module

52 User Guide

Pointer displacement information is used in determining the size of each data
segment moved:

– The size of the first data segment moved equals the number of bytes between
the beginning of the DBOMP logical record and the first pointer

– The size of the second segment moved equals the number of bytes between

the first and second pointers

– This process continues until all of the data in the CA IDMS/DB logical record
buffer has been moved into the fi le work area, where the simulated DBOMP
record is available for processing by the call ing program

Reconstructing and Returning Records

To reconstruct updated DBOMP records and return them to the CA IDMS/DB database,
CA IDMS DML performs the following tasks:

■ Moves segments of data from the updated DBOMP logical record in the fi le work
area to the CA IDMS/DB logical record buffer.

Pointer displacement information is used in determining the size of each data
segment:

– The size of the first segment moved equals the number of bytes between the

beginning of the DBOMP record and the first pointer

– The size of the second segment moved equals the number of bytes between

first and second pointers

– This process continues until all data in the DBOMP logical record (except
pointers) has been moved to the CA IDMS/DB logical record buffer.

■ Issues a MODIFY command to CA IDMS/DB, returning the updated record in the
buffer to the database.

The following two figures i l lustrate how IMBSBRDG moves data between the CA IDMS
logical record buffer and the work area of the DBOMP file.

IMBSBRDG program module

Chapter 4: Transparency Programs and Macros 53

Transfer from IDMS to DBOMP

The following figure shows the transfer of data from the CA IDMS/DB logical record

buffer to the work area of the DBOMP file. Note that when the transfer of data takes
place, the pointers already have been moved from the CA IDMS/DB dummy record to
the DBOMP file work area.

IMBSBRDG program module

54 User Guide

Transfer from DBOMP to IDMS

This figure shows the transfer of data from the work area of the DBOMP file to the CA

IDMS/DB logical record buffer. Note that pointers are not returned with record data to
the CA IDMS/DB logical record buffer.

IMBSEQ macro

Chapter 4: Transparency Programs and Macros 55

Values Returned to the Calling Program

IMBSBRDG returns values to the call ing program, as shown in the following table.

Values returned to: Description of values returned

Work area prefix ■ A hexadecimal value in the error-byte field, returned

after a DBOMP request:

■ 0000— Requested function performed successfully

■ 0400— File name not found in IMBSTAB

■ 0004— Process indicator not found in process

indicator table

■ 0008— Invalid record at disk address (MDIR and CDIR
process indicators)

■ FFFF— Failure in IMBSBRDG program

■ Current disk address, returned when a successful
random read (MRAN or MRKY) has been performed

■ Current record key, returned when a successful

direct read (MDIR, MRDR, CDIR, or CRDR) has been
performed

Work area of the DBOMP
file

A DBOMP logical record; after successful execution of a
retrieval request

Currency field in IMBSEQ
tables

Current address of a record retrieved by a successful
execution of the ST$DA or ST$KY macro

IMBSEQ macro

IMBSEQ is the Assembler macro that replaces:

■ The MF$SQ macro

■ All FI$LE macros

■ The CR$RT macro in DBOMP Assembler application programs

IMBSEQ generates tables containing information to support the sequential processing

requested by GET, PUT ST$DA, and ST$KY macros in bridged programs. You can place
this macro anywhere in the application program, however, it must appear only once.

►►─── IMBSEQ (file-name,set-name,end-of-data-address) ────────────────────────►◄

IMBSEQ macro

56 User Guide

IMBSEQ

A required constant that identifies the macro; you can code it anywhere after

column 1.

file-name

Specifies the seven-character name of the DBOMP file. One file-name entry must

exist for every master fi le referenced in the bridged program.

set-name

Specifies the name of the set as it appears in the subschema.

end-of-data-address

Specifies the end-of-data address for the accompanying file-name. One

end-of-data-address entry must exist for every file-name.

IMBSEQ builds one sequential table for each fi le named in the macro. Each table

contains the following values:

■ The DBOMP file name

■ A last-fi le flag

■ The name of the area for which an area sweep is performed or the name of the
index used for sequential access

■ The address of the end-of-fi le routine to which program control is to branch when
the end of the fi le is reached

■ The currency field updated after each sequential retrieval

Sequential File Table Layout

The following figure il lustrates the layout of the sequential fi le table.

IMBSEQ macro

Chapter 4: Transparency Programs and Macros 57

The IMBSEQ macro requires entries for only those fi les that are processed sequentially
by the DBOMP program. In IMBSTAB, you must describe all fi les entered in this macro

and referenced in the program.

The macros that generate the PL/I and COBOL interfaces include the logic necessary to
generate the tables required for sequential processing. The layout for these tables is the

same as for those generated by the IMBSEQ macro.

For more information on the PL/I interface, see PL/I Considerations (see page 85). For
more information on the COBOL interface, see COBOL Considerations (see page 91).

Chapter 5: Converting DBOMP to CA IDMS/DB 59

Chapter 5: Converting DBOMP to CA
IDMS/DB

This section contains the following topics:

Overview (see page 59)
Converting Data (see page 60)

Converting DBOMP Load and Maintenance Programs (see page 62)
Converting DBOMP Retrieval and Update Programs (see page 72)
DBOMP Error Codes With CA IDMS/DB Equivalents (see page 72)

Overview

This chapter provides detailed instructions for converting DBOMP data and programs to

CA IDMS/DB.

Conversion Steps

To convert a DBOMP system to CA IDMS/DB, you must:

1. Design the CA IDMS/DB database. Use DBOMP file organization modules, I/O
modules, and fi le description modules as design aids and then discard them; these
modules are not integrated into a CA IDMS/DB runtime system.

Note: The Mixed Page Group Binds Allowed feature may not be used with CD

IDMS/DBOMP Transparency. For more information on this step, see the CA IDMS
Database Design Guide.

2. Convert and transfer existing data from the DBOMP database to the CA IDMS/DB

database.

3. Convert DBOMP load, maintenance, and retrieval/update programs to CA IDMS/DB.

Cautions on the Duplication of Logic

Because of the basic differences between CA IDMS/DB processing and DBOMP
processing, don't expect CA IDMS/DB to duplicate DBOMP logic in all applications. This

applies particularly to RACN and chain count routines. Since CA IDMS/DB handles these
functions internally, it is usually not necessary to maintain the routines in converted
programs.

However, should these routines be required, you must integrate the necessary logic into

converted programs. For example, if RACN is implemented in the converted program,
you must establish a fi le control record for each applicable master fi le and insert the
program logic to update it.

Converting Data

60 User Guide

Converting Data

To convert and transfer data from a DBOMP database to a CA IDMS/DB database, you
write a conversion program that issues calls to DBOMP and to IDMSDBLU.

Note: For more information on IDMSDBLU, see the FASTLOAD section in the CA IDMS
Utilities Guide.

What the Conversion Program Does

A conversion program does the following:

■ Describes each DBOMP master fi le and equivalent CA IDMS/DB record type (see the
information on occurrence descriptors in the FASTLOAD section in the CA IDMS
Utilities Guide)

■ Describes sets, set owners, and record keys to be established on the CA IDMS/DB
database (see the information on owner descriptors in the FASTLOAD section in the
CA IDMS Utilities Guide)

■ Issues a DBOMP call to retrieve a record from the parent master fi le

■ Reformats the retrieved DBOMP parent master record into a CA IDMS/DB record

■ Issues a call to IDMSDBLU to store the reformatted record on the CA IDMS/DB
database

■ Establishes set names and record keys

■ Issues a DBOMP command for a primary chain chase of the product-structure
(internal) chain fi le anchored in the retrieved parent master record

■ Reformats each subordinate master record, as it is retrieved, into a CA IDMS/DB
record

■ Issues a call to IDMSDBLU for each reformatted subordinate master record to store
the record on the CA IDMS/DB database and to connect the record to the
appropriate set(s)

■ Uses the record key for the parent master record to return it to the user work area;
this occurs when the end of the internal chain fi le is reached

■ Issues a DBOMP command for a primary chain chase to retrieve the subordinate
master records associated with the parent master record in external relationships

■ Reformats each subordinate master record as it is retrieved

Converting Data

Chapter 5: Converting DBOMP to CA IDMS/DB 61

■ Issues a call to IDMSDBLU to store each reformatted subordinate master record on
the CA IDMS/DB database and to connect the record to the appropriate set(s)

■ Repeats all of the preceding tasks until the entire parent master fi le has been read;
this occurs when the end of the external chain fi le is reached

Note: It is recommended that you retain low-level codes when you transfer DBOMP

data to a CA IDMS/DB database. If you want to retain sequential dependencies, convert
and transfer the DBOMP data as outlined above and describe the record as being stored
via its owner, as described under the clause via set-name set of the record statement of
Schema statements in the Database Administration manual. To keep all occurrences of a

given record type in physical sequence, they must be stored via a system owned index.

COBOL Example of Conversion Program

The following is an example of a COBOL program that converts DBOMP data to CA
IDMS/DB records and loads them into the CA IDMS/DB database.

data division.

working-storage section.

01 dbomp-item.

 03 item-pi.

 03 item-key.

01 CA IDMS/db-item Refer to CA IDMS Utilities Guide

 03 part-no. for information on occurrence descriptors.

01 dbomp-prodstr.

01 idms-prodstr.

01 dbomp-workctr.

01 idms-workctr.

 03 work-no.

01 dbomp-routing.

01 idms-routing.

01 owner-1. Refer to CA IDMS Utilities Guide

 03 set-1. for information on owner descriptors.

 03 key-1.

Converting DBOMP Load and Maintenance Programs

62 User Guide

01 owner-2.

 03 set-2.

 03 key-2.

procedure division.

 call 'bmpeof' using dbomp-item end-job.

next-item.

 call 'bmpget' using dbomp-item.

 reformat dbomp-item, giving idms-item

 call 'idmsdblu' using idms-item.

 move part-no to key-1.

 move 'item-struct' to set-1.

 move 'where-used' to set-2.

next-structure.

 end-of-chain go to first-route.

 call 'chase' using anlnk nxlnk addnf dbomp-prodstr dbomp-item.

 reformat dbomp-prodstr, giving idms-prodstr

 move part-no to key-2.

 call 'idmsdblu' using idms-prodstr owner-1 owner-2.

 go to next-structure.

first-route.

 move key-1 to item-key.

 move 'mran' to item-pi.

 call 'bmpcall' using dbomp-item.

 move 'item-routing' to set-1.

 move 'work-routing' to set-2.

next-route.

 end-of-chain go to next-item.

 call 'chase' using anlnk nxlnk addnf dbomp-routing dbomp-workctr.

 reformat dbomp-routing, giving idms-routing

 call 'idmsdblu' using idms-routing owner-1 owner-2.

 reformat dbomp-workctr, giving idms-workctr

 call 'idmsdblu' using idms-workctr.

 go to next-route.

Converting DBOMP Load and Maintenance Programs

You must convert all DBOMP load and maintenance programs to CA IDMS/DB before
you can run them against the CA IDMS/DB database. Converting these programs

involves:

■ Inserting the necessary CA IDMS/DB DML control statements to prepare the
database for processing

■ Replacing all DBOMP calls, process indicators, and associated logic with CA

IDMS/DB DML statements and associated logic

Converting DBOMP Load and Maintenance Programs

Chapter 5: Converting DBOMP to CA IDMS/DB 63

Steps for Converting Load and Maintenance Programs

Follow the eight steps presented below to convert DBOMP Assembler, PL/I, and COBOL

load and maintenance programs. To obtain the proper record names and descriptions,
set names, area names, and subschema names, consult the dictionary reports produced
by the IDMSRPTS util ity (see the CA IDMS Utilities Guide).

1. Remove all program references to work areas and work area prefixes.

2. Provide a CA IDMS/DB Communications Block for the program, as shown in the
figure following this procedure.

3. Allocate space in program variable storage for each CA IDMS/DB record type to be
referenced in the converted program. The structure of each record type is

described in the data dictionary Subschema Record Description Listing, the SUBREC
report generated by the IDMSRPTS util ity (see the CA IDMS Utilities Guide).

4. Issue an @MODE macro (Assembler only).

5. BIND the subschema and all record types to be referenced in the program.

6. READY those database areas that will be accessed by the program; one READY

statement can be issued for all areas, or each area can be READYed explicitly.

7. Replace each DBOMP CA$LL or BMPCALL with an CA IDMS DML statement

equivalent to the function requested by the process indicator in the DBOMP work
area prefix. Alter the associated logic as necessary to conform with CA IDMS/DB
programming requirements. The section following this l ist of guidelines shows the

DBOMP process indicators (and commands) and their equivalent CA IDMS DML
statements and associated logic.

8. Check the CA IDMS/DB error status after every call to CA IDMS/DB (see DBOMP
Error Codes With CA IDMS/DB Equivalents (see page 72)).

Note: Maintain low-level codes in converted structural maintenance programs. You
can incorporate this logic into user programs as a subroutine that is invoked
following routines that add records to the CA IDMS/DB database. For an example of

this low-level code logic, Sample Application and Procedures (see page 97); you can
apply this example to user maintenance programs.

Converting DBOMP Load and Maintenance Programs

64 User Guide

Communications Block from Step 2 of Conversion

DBOMP Process Indicators and Corresponding DML

Replacing DBOMP process indicators with equivalent CA IDMS DML statements is part of
program conversion (see the steps for converting programs). On the following pages,
DBOMP process indicators are shown with their equivalent DML statements (and
associated logic, where appropriate). DML statements are shown in this order:

■ Assembler

■ COBOL

■ PL/I

OPEN

►►─── @READY ─┬─ ALL ───┬───►◄
 └─ AREA= ─┘
►►─── READY ──►◄
►►─── READY ─┬─────────┬─ ; ──►◄
 └─ AREA= ─┘

Converting DBOMP Load and Maintenance Programs

Chapter 5: Converting DBOMP to CA IDMS/DB 65

CLOS

►►─── @FINISH ──►◄
►►─── FINISH ───►◄
►►─── FINISH; ──►◄

MADD and MCRT

►►─── @STORE REC= ──►◄
►►─── STORE ──►◄
►►─── STORE RECORD; ──►◄

Associated Logic

Build record in user work area and move key to required field before STORE.

MDEL and MTAG

►►─── @ERASE ─┬─ REC ───────┬─ ,REC= ───►◄
 ├─ PERMANENT ─┤
 ├─ SELECTIVE ─┤
 └─ ALL ───────┘
►►─── ERASE ──┬────────────────────────────┬──────────────────────────────────►◄
 └─┬─ PERMANENT ─┬─ MEMBERS ──┘
 ├─ SELECTIVE ─┤
 └─ ALL ───────┘
►►─── ERASE RECORD ─┬─────────────┬─ ; ───────────────────────────────────────►◄
 ├─ PERMANENT ─┤
 ├─ SELECTIVE ─┤
 └─ ALL ───────┘

Associated Logic

For MTAG, insert user logic to accomplish tagging.

CADD

►►─── @STORE REC= ──►◄
►►─── STORE ──►◄
►►─── STORE RECORD; ──►◄

Associated Logic

Move parent master record key to program variable storage; FIND CALC parent master
record; build 'chain' record; move subordinate master key to program variable storage;

FIND CALC subordinate master record; CONNECT subordinate master record to
appropriate set; perform low-level code routine; set membership for product-structure
relationship is MM.

CADD (Subordinate Master)

►►─── @STORE REC= ──►◄
►►─── STORE ──►◄
►►─── STORE RECORD; ──►◄

Converting DBOMP Load and Maintenance Programs

66 User Guide

Associated Logic

Move parent master record key to program variable storage; move subordinate master

record key to program variable storage; build 'chain' record in program variable storage;
FIND CALC parent master record; FIND CALC subordinate master record; STORE 'chain'
record; NOTE: set membership for subordinate master record is assumed MA.

CADD (No Subordinate Master)

►►─── @STORE REC= ──►◄
►►─── STORE ──►◄
►►─── STORE RECORD; ──►◄

Associated Logic

Move master record key to program variable storage; build 'chain' record; FIND CALC

master record; STORE 'chain' record.

CDLS

►►─── @ERASE ─┬─ REC ───────┬─ ,REC= ───►◄
 ├─ PERMANENT ─┤
 ├─ SELECTIVE ─┤
 └─ ALL ───────┘
►►─── ERASE ──┬────────────────────────────┬──────────────────────────────────►◄
 └─┬─ PERMANENT ─┬─ MEMBERS ──┘
 ├─ SELECTIVE ─┤
 └─ ALL ───────┘
►►─── ERASE RECORD ─┬─────────────┬─ ; ───────────────────────────────────────►◄
 ├─ PERMANENT ─┤
 ├─ SELECTIVE ─┤
 └─ ALL ───────┘

Associated Logic

Move master record key to program variable storage; FIND CALC master record; OBTAIN
NEXT record within set; check error status; loop until record is found or end of set
reached; delete found record.

CDLM

►►─── @ERASE ─┬─ REC ───────┬─ ,REC= ───►◄
 ├─ PERMANENT ─┤
 ├─ SELECTIVE ─┤
 └─ ALL ───────┘
►►─── ERASE ──┬────────────────────────────┬──────────────────────────────────►◄
 └─┬─ PERMANENT ─┬─ MEMBERS ──┘
 ├─ SELECTIVE ─┤
 └─ ALL ───────┘
►►─── ERASE RECORD ─┬─────────────┬─ ; ───────────────────────────────────────►◄
 ├─ PERMANENT ─┤
 ├─ SELECTIVE ─┤
 └─ ALL ───────┘

Associated Logic

Move master record to program variable storage; FIND CALC master record; OBTAIN

NEXT record within set; delete 'chain' record; check error status; loop until end of set.

Converting DBOMP Load and Maintenance Programs

Chapter 5: Converting DBOMP to CA IDMS/DB 67

CCSR

►►─── @MODIFY REC= ───►◄
►►─── MODIFY ───►◄
►►─── MODIFY RECORD; ───►◄

Associated Logic

Move subordinate master record key to program variable storage; OBTAIN CALC

subordinate master record; change subordinate master record key to desired value;
MODIFY subordinate master record.

CEQL

►►─── @STORE REC= ──►◄
►►─── STORE ──►◄
►►─── STORE RECORD; ──►◄

Associated Logic

Move parent master record key to program variable storage; FIND CALC parent master
record; OBTAIN NEXT record within set; move key of obtained record to program

variable storage for parent master record; FIND CALC record; STORE retrieved ('chain')
record.

CCHG

►►─── @MODIFY REC= ───►◄
►►─── MODIFY ───►◄
►►─── MODIFY RECORD; ───►◄

Associated Logic

Move master record key to program variable storage; FIND CALC master record;
MODIFY record as required.

CFIN and CEND

Have no IDMS equivalents

Associated Logic

If end of set is desire, FIND OWNER within set.

SADD

►►─── @CONNECT REC=,SET= ───►◄
►►─── CONNECT TO ───►◄
►►─── CONNECT RECORD SET; ──►◄

Converting DBOMP Load and Maintenance Programs

68 User Guide

Associated Logic

Move master record key to program variable storage; FIND CALC master record; OBTAIN

NEXT record within set; move subordinate record key to master record key in program
variable storage; FIND CALC master record; CONNECT found master record to
appropriate set.

SDEL

►►─── @DISCON REC=,SET= ──►◄
►►─── DISCONNECT FROM ──►◄
►►─── DISCONNECT RECORD SET; ───►◄

Associated Logic

FIND CALC record; OBTAIN NEXT record within set; DISCONNECT retrieved record.

CCRT

See information for CADD

MRKY

►►─── @FIND CALC,REC= ──►◄
►►─── FIND CALC ──►◄
►►─── FIND CALC RECORD; ──►◄

MRAN

►►─── @OBTAIN CALC,REC= ──►◄
►►─── OBTAIN CALC ──►◄
►►─── OBTAIN CALC RECORD; ──►◄

MDIR

►►─── @OBTAIN DBKEY= ───►◄
►►─── OBTAIN DB-KEY IS ───►◄
►►─── OBTAIN DBKEY; ──►◄

MRDR

►►─── @FIND DBKEY= ───►◄
►►─── FIND DB-KEY IS ───►◄
►►─── FIND DBKEY; ──►◄

MUPD

►►─── @MODIFY REC= ───►◄
►►─── MODIFY ───►◄
►►─── MODIFY RECORD; ───►◄

MWRT

Has no CA IDMS/DB equivalent

Converting DBOMP Load and Maintenance Programs

Chapter 5: Converting DBOMP to CA IDMS/DB 69

CDIR

►►─── @OBTAIN DBKEY= ───►◄
►►─── OBTAIN DB-KEY IS ───►◄
►►─── OBTAIN DBKEY ───►◄

CUPD

►►─── @MODIFY REC= ───►◄
►►─── MODIFY ───►◄
►►─── MODIFY RECORD; ───►◄

Associated Logic

OBTAIN record before issuing MODIFY.

CWRT

Has no CA IDMS/DB equivalent

CMPR and EXPN

Have no CA IDMS/DB equivalents; addresses are not compressed in CA IDMS/DB

DBOMP Commands and Corresponding DML

Replacing DBOMP commands with equivalent CA IDMS DML statements is part of
program conversion (see the previous l ist of guidelines for conversion). On the following

pages DBOMP commands are shown with their equivalent DML statements (and
associated logic, where appropriate). DML statements are shown in this order:

■ Assembler

■ COBOL

■ PL/I

CHA$E BMPCHASE

See associated logic

Associated Logic

FIND CALC set owner record; OBTAIN NEXT record (member) within set; check for the
end of the set; repeat OBTAIN NEXT and check error status until the end of the set.

GE$T BMPGET

►►─── @OBTAIN NEXT, ─┬─ SET= ──┬──►◄
 └─ AREA= ─┘
►►─── OBTAIN NEXT WITHIN ───►◄
►►─── OBTAIN NEXT ─┬─ SET ──┬─ ; ───►◄
 └─ AREA ─┘

Converting DBOMP Load and Maintenance Programs

70 User Guide

PU$T BMPPUT

►►─── @MODIFY REC= ───►◄
►►─── MODIFY ───►◄
►►─── MODIFY RECORD; ───►◄

ST$KY BMPSTKY

►►─── @OBTAIN,REC=,SET=,USING= ───►◄
►►─── OBTAIN WITHIN USING ──►◄
►►─── OBTAIN RECORD SET USING; ───►◄

Associated Logic

Obtains a record in an indexed set using a symbolic key.

ST$DA BMPSTDA

►►─── @OBTAIN DBKEY=DIRCTKY,REC= ───►◄
►►─── OBTAIN DB-KEY IS DIRECTKY ──►◄
►►─── OBTAIN DBKEY DIRCTKY; ──►◄

Associated Logic

Record retrieved in physical sequential order by symbolic key. (DIRCTKY)

CA$LL BMPCALL

See process indicator equivalents

Commands having no equivalents

These DBOMP commands have no CA IDMS/DB equivalents:

■ BM$WA

■ MSG

■ TY$PE

■ MO$VE

■ EQ$RG

■ BM$DS

■ MF$SQ

■ CF$RT

■ FI$LE

■ CGE$T

■ CPU$T

■ BM$FO

Converting DBOMP Load and Maintenance Programs

Chapter 5: Converting DBOMP to CA IDMS/DB 71

■ BMPFO

■ EO$F

■ BMPEOF

■ BM$RACN

■ BMPRACN

■ BM$OFAD

■ BMPOFFAD

Sequence of Logic in Converted Programs

The general sequence of logic in the converted load and maintenance programs should
be as follows:

1. Read input data or transaction record.

2. Format the input data into the CA IDMS/DB record work area. (The COBOL code to
accomplish this is generated automatically.)

3. Establish necessary currencies.

4. Issue the appropriate DML Assembler macro:

■ @STORE— Add a record occurrence to the database.

■ @ERASE— Delete a record occurrence from the database.

■ @MODIFY— Alter a record key or sequence field.

■ @CONNECT— Add a record occurrence to a set occurrence.

■ @DISCONNECT— Remove a record occurrence from a set occurrence.

5. Check the status code returned by CA IDMS/DB (see DBOMP Error Codes With CA
IDMS/DB Equivalents (see page 72)).

Note: Check the CA IDMS/DB status after every call to CA IDMS/DB to determine

whether the requested function was performed. The status codes returned to the
program may indicate program errors, or they may be tested by program logic to
determine subsequent program action. For more information on status codes and their

meanings, see the CA IDMS DML Reference Guide for COBOL and the CA IDMS DML
Reference Guide for PL/I.

Converting DBOMP Retrieval and Update Programs

72 User Guide

Converting DBOMP Retrieval and Update Programs

The final task in conversion to CA IDMS/DB is converting DBOMP retrieval and update
programs.

Steps for Converting Retrieval and Update Programs

Follow the eight steps presented below to convert DBOMP Assembler, PL/I, and COBOL

load and maintenance programs to CA IDMS/DB. To obtain the proper record names
and descriptions, set names, area names, and subschema names, consult the data
dictionary reports produced by the IDMSRPTS util ity (see the CA IDMS Utilities Guide).

1. Remove all program references to DBOMP file work areas and work area prefixes.

2. Provide a CA IDMS/DB Communications Block for the program (see the same step

under Converting DBOMP Load and Maintenance Programs (see page 62), in this
chapter).

3. Allocate space in the CA IDMS/DB program variable storage for each CA IDMS/DB
record type to be referenced in the converted program. The structure of each
record type is described in the dictionary Subschema Record Description Listing, or

SUBREC report.

Note: For more information on SUBREC, see IDMSRPTS in the CA IDMS Utilities
Guide.

4. Issue an @MODE macro (Assembler only).

5. BIND the subschema and all record types to be referenced in the program.

6. READY those database areas that will be accessed by the program; one READY
statement can be issued for all areas, or each area can be READYed explicitly.

7. Convert each DBOMP command and accompanying process indicator to an
equivalent DML command. Alter the program logic associated with the DBOMP
command as necessary to conform with CA IDMS/DB programming requirements.

Refer to the syntax shown under Converting DBOMP Load and Maintenance
Programs (see page 62) for the CA IDMS/DB statements that are equi valent to
DBOMP commands save process indicators.

8. Check the status code returned by CA IDMS/DB after every call to CA IDMS/DB (see
the table under DBOMP Error Codes With CA IDMS/DB Equivalents (see page 72)).

DBOMP Error Codes With CA IDMS/DB Equivalents

DBOMP

Code

DBOMP P.I. IDMS

Status

IDMS Macro Meaning

0400 Any 0308 Any Invalid record type

DBOMP Error Codes With CA IDMS/DB Equivalents

Chapter 5: Converting DBOMP to CA IDMS/DB 73

DBOMP
Code

DBOMP P.I. IDMS
Status

IDMS Macro Meaning

0200 Addition 1211 @STORE No space in area

0008 File read 0326 @FIND/@OBTAIN Record not found

0008 File read 0302 @FIND/@OBTAIN Db-key not within

page range for
specified record

0004 Any xx63 — Invalid function

0001 Addition 1205 @STORE Duplicate record

0001 Deletion 0230 @ERASE Record occurrence is
owner of nonempty
set

END CHA$E 0307 @OBTAIN NEXT,

SET=

AREA=

End of set or area

Chapter 6: Using the Transparency as a Bridge to CA IDMS/DB 75

Chapter 6: Using the Transparency as a
Bridge to CA IDMS/DB

This section contains the following topics:

Overview (see page 75)
Preparing DBOMP Assembler Programs (see page 75)

Executing DBOMP Assembler Programs (see page 76)
Diagnosing Errors (see page 81)

Overview

You can use the CA IDMS DBOMP Transparency as a bridge between your existing
unconverted DBOMP application program and a database that has been converted from

DBOMP to CA IDMS/DB Using the transparency involves these activities:

■ Preparing DBOMP programs for processing

■ Executing the programs

■ Locating and diagnosing program errors that occur during processing

This chapter explains the procedures you use to prepare and execute Assembler

programs and for diagnosing errors in bridged Assembler, PL/I, and COBOL programs.

For more information on preparing and executing PL/I programs, see PL/I
Considerations (see page 85). For more information on preparing and executing COBOL

programs, see COBOL Considerations (see page 91).

Preparing DBOMP Assembler Programs

The amount of preparation necessary to make a DBOMP Assembler program acceptable
to the transparency varies based on the functions performed by the program. Before
submitting a DBOMP Assembler application program via the transparency, make the

following changes:

■ Remove any MFSQ, FILE, or CF$RT macros from the program. Replace the
macros with the IMBSEQ macro.

Note: The IMBSEQ macro must appear only once in the program.

■ Remove any program logic that depends on RACN support for more than one fi le
(record type). IMBSBRDG ignores program reference to fi le control records for fi les
other than the one designated in IMBSTAB as using RACN.

Executing DBOMP Assembler Programs

76 User Guide

■ If the program issues any allowable CA IDMS/DB verbs, insert the proper calls to
IMBSBRDG (see The Transparency Environment (see page 21)). Use IDMS-REQUEST

as the work area fi le name.

■ If any retrieval or update process indicators other than those supported by the
transparency are used in the program, replace them with process indicators that

are supported (see The Transparency Environment (see page 21)).

Executing DBOMP Assembler Programs

Perform these steps to execute a DBOMP Assembler program using the transparency:

1. Assemble IMBSTAB by submitting the user customizing parameters to the IMBS
macro. (Omit this step and the next step if an existing version of IMBSTAB is

compatible with the application program.) The third and fourth steps are required
only for sequential processing of DBOMP files.

2. Link edit IMBSTAB.

3. Assemble the IMBSEQ macro with the IMBSASMB interface macro, specifying the
user-defined parameters for the IMBSEQ macro.

4. Link edit the IMBSEQ macro.

5. Reassemble and link edit the DBOMP application program, including IMBSBRDG,
IMBSTAB, IMBSEQ, and IDMS.

Note 1: IDMS 16.0 supports Z/OS V2R10 as well as z/OS 1.1 and above. However,
we will always refer to z/OS in this document.

Note 2: Programs running under z/OS need only be reassembled if any of the
changes detailed above have been made; programs running under Z/VSE must be
reassembled whether or not any of these changes have been made, unless the

programs exist in the relocatable l ibrary.

6. Execute the DBOMP application program. The program is now bridged to CA
IDMS/DB.

The JCL you use to execute each of these tasks is provided on the following pages.

Assembling and Executing Under z/OS

z/OS/Central Version

The following is the JCL for assembling and executing DBOMP Assembler programs using
the transparency, in a z/OS operating system, under the central version.

Executing DBOMP Assembler Programs

Chapter 6: Using the Transparency as a Bridge to CA IDMS/DB 77

Assemble/Execute DBOMP Assembler Program Using the Transparency (IMBSBRDG) (z/OS)

//ASMTABLE EXEC ASMA90

//ASM.SYSLIB DD DISP=SHR,DSN=yourHLQ.CAGJSRC

// DD DISP=SHR,DSN=imbs.srclib

//ASM.SYSIN DD DISP=SHR,DSN-yourHLQ.CAGJSRC(imbstab)

//LKED.SYSLMOD DD DISP=SHR,DSN=imbs.loadlib(imbstab)

//*

//ASMPROG EXEC ASMA90

//ASM.SYSLIB DD DISP=SHR,DNS=cfms.srclib

//ASM.SYSIN DD *

 DBOMP program statements

 END

/*

//LKED.SYSLMOD DD DISP=SHR,DSN=user.loadlib(pgmname)

//LKED.IDMSLIB DD DISP=SHR,DSN=idms.loadlib

//LKED.IMBSLIB DD DISP=SHR,DSN=imbs.loadlib

 INCLUDE IDMSLIB(IDMS)

 INCLUDE IMBSLIB(IMBSBRDG

 INCLUDE IMBSLIB(imbstab)

 INCLUDE IMBSLIB(IMBSEQ)

/*

//RUNPROG EXEC PGM=pgmname

//STEPLIB DD DSN=user.loadlib,DISP=SHR

 DD DSN=idms.dba.loadlib,DISP=SHR

 DD DSN=idms.loadlib,DISP=SHR

additional JCL for application program, as required

//SYSOUT DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SYSCTL DD DSN=idms.sysctl,DISP=SHR

//SYSIDMS DD *

DMCL=dmcl-name

Other SYSIDMS parameters, as appropriate

/*

program input, as required

Include as many STEPLIB DD statements as there are l ibraries containing program, CA

IDMS DBOMP Transparency Transparency, and CA IDMS/DB load modules.

Note: If you are going to use the transparency frequently under the central version,
consider making IMBSPROC and any applicable subschemas resident. Assemble and link
IMBSEQ as described previously and include it on the link edit of the application. For

more information on optional SYSIDMS runtime parameters, see the CA IDMS Common
Facilities Guide.

Executing DBOMP Assembler Programs

78 User Guide

z/OS/Local Mode

To run the same job in local mode, substitute the following statements after the

//STEPLIB statement:

//STEPLIB DD DSN=user.loadlib,DISP=SHR

// DD DSN=imbs.loadlib,DISP=SHR

// DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.loadlib,DISP=SHR

//sysjrnl DD DSN=idms.tapejrnl,DISP=(NEW,PASS),

// UNIT=tape

//userdd DD DSN=database,DISP=(OLD,PASS)

//SYSIDMS DD *

DMCL=dmcl-name

additional SYSIDMS parameters, as appropriate

/*

additional database file assignments, as required

additional JCL for application program, as required

//SYSOUT DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

program input, as required

Explanation of Variables

yourHLQ.CAGJMAC Dataset name for CA IDMS/DB macro library

imbs.srclib Dataset name for the transparency or CA IDMS/DB source
library containing IMBS customizing macro

disk Symbolic device name for disk unit

&.&object. Temporary dataset name for IMBSTAB object module

imbs.srclib(imbstab) Dataset name for user parameters input to IMBS
customizing macro

idms.dba.loadlib Dataset name for the load library containing the DMCL and
database name table load modules

idms.loadlib Dataset name for the load library containing CA IDMS

executable modules

imbs.loadlib Dataset name for the transparency or CA IDMS/DB load
library containing transparency modules

imbstab Dataset name for l ink edited output from IMBS macro

cfms.maclib Dataset name for user macro library

user.loadlib Dataset name for load library containing DBOMP
application program

pgmname Name of DBOMP application program

Executing DBOMP Assembler Programs

Chapter 6: Using the Transparency as a Bridge to CA IDMS/DB 79

dmcl-name Name of the CA IDMS DMCL describing the CA IDMS fi les
used by the transparency

sysjrnl DD name for CA IDMS/DB journal fi le

idms.tapejrnl Dataset name for CA IDMS/DB journal fi le

tape Symbolic device name for CA IDMS/DB journal fi le

userdb DD name for CA IDMS/DB database fi le

user.userdb Dataset name for CA IDMS/DB database fi le

sysctl Dataset name for the SYSCTL fi le

CA IDMS DBOMP Transparency database procedure

Assembling and Executing Under Z/VSE

Z/VSE/Central Version

The following is the JCL for assembling and executing DBOMP Assembler programs using
the transparency, in a Z/VSE operating system, under the central version. Note that you

can use either an UPSI statement or a SYSCTL statement to indicate central version.

Assemble/Execute DBOMP Assembler Program Using the Transparency (IMBSBRDG) (Z/VSE)

// ASSGN SYSPCH,X'281'

// OPTION DECK

 CATALR imbstab

// EXEC ASMA90

user input parameters for IMBS customizing macro

 END

/*

// MTC REW,X'281'

// ASSGN SYSIPT,X'281'

// EXEC MAINT

/*

// OPTION CATAL

 PHASE pgmname

// EXEC ASMA90

program statements

 END

Executing DBOMP Assembler Programs

80 User Guide

/*

 INCLUDE IMBSBRDG

 INCLUDE imbstab

 INCLUDE IDMS

// EXEC LNKEDT

/&

// JOB EXECPGM

// UPSI 1

// DLBL SYSIDMS,'#SYSIPT',0,SD

DMCL=dmcl-name

Other SYSIDMS runtime parameters, as appropriate

/*

additional JCL for application program, as required

// EXEC pgmname

program input, as required

/*

Note: If you are going to use the transparency frequently under the central version,
consider making IMBSPROC and any applicable subschemas resident.

Z/VSE/Local Mode

To run the same job in local mode, substitute the following JCL after the // JOB

EXECPGM statement:

// ASSGN sys009,X'281'

// ASSGN sys010,X'137'

// DLBL sys010,'database',,DA

// EXTENT sys010,444444,1,76,1776

additional database assignments, as required

additional JCL for application program, as required

// EXEC pgmname

// DLBL SYSIDMS,'#SYSIPT',0,SD

DMCL=dmcl-name

Other SYSIDMS runtime parameters, as appropriate

program input, as required

/*

Explanation of Variables

pgmname Name of DBOMP application program

imbstab Dataset name for l ink edited output from IMBS customizing macro

sys009 Logical unit assignment for CA IDMS/DB journal fi le

281 Physical device assignment for CA IDMS/DB journal fi le

sys010 Logical unit assignment for CA IDMS/DB database fi le

Diagnosing Errors

Chapter 6: Using the Transparency as a Bridge to CA IDMS/DB 81

137 Physical device assignment for CA IDMS/DB database fi le

database Dataset name for CA IDMS/DB database fi le

444444 Serial number of disk containing CA IDMS/DB database fi le

76 Relative track where CA IDMS/DB database fi le begins

1776 Number of tracks used by CA IDMS/DB database fi le

dmcl-name Name of the CA IDMS DMCL describing the CA IDMS fi les used by
the transparency

Diagnosing Errors

Since the CA IDMS DBOMP Transparency does not issue diagnostic messages, you must

locate and diagnose errors that occur during the execution of a bridged DBOMP
program.

Note: If the bridge system aborts:

■ z/OS issues an S0C2 program check message

■ Z/VSE issues a PRIVILEGED OPERATION EXCEPTION message

What to Look For When Errors Occur During Program Processing

Error-byte Field

Check the error-byte field in the work area prefix of each fi le processed by the program.
The contents of the error-byte field indicate:

■ Whether the error occurred during IMBSBRDG processing

■ Which fi le was being handled at the time the error occurred

If the error-byte field of a work area prefix contains a value other than '0000', the error

occurred while that fi le was being handled by IMBSBRDG.

For more information on error-byte values, see IMBSBRDG program module (see
page 48).

Diagnosing Errors

82 User Guide

CA IDMS/DB Communications Block

Check the CA IDMS/DB communications block (SSCTRL) in IMBSTAB. If an error occurred

during CA IDMS/DB processing, the IDMS Communications Block will contain an error
status code other than '0000' and the name of the record last involved in the operation
that resulted in the error.

Note: For more information on the complete l isting of CA IDMS/DB error codes, see the
CA IDMS Messages and Codes Guide.

Process Indicators

Check which process indicator in the work area prefix was being handled at the time
that the error occurred.

IMBSBRDG generates this process indicator: In response to:

MGET GE$T

MPUT PU$T

STKY ST$KY

STDA ST$DA

Table Generation and Accuracy

Verify that the IMBSEQ, IMBSCOBL, or IMBSPL1 table has been generated and is
accurate if any sequential processing functions are requested by the program.

Subschema and DMCL Module

Verify that the subschema name known to CA IDMS/DB is available, and that the DMCL
module is available.

IMBS Parameters

Verify the accuracy of the parameters input to the IMBS customizing macro.

Diagnosing Errors

Chapter 6: Using the Transparency as a Bridge to CA IDMS/DB 83

What to Look For When Inaccurate Data is Returned

If your program runs successfull y but returns inaccurate data to the work area, make
sure:

■ The CA IDMS/DB subschema record descriptions agree with the DBOMP file

descriptions

■ The fi le table in IMBSTAB contains correct fi le types and pointer displacements

■ The CA IDMS/DB fi les are loaded properly

Where to Find Values During Debugging

The following table l ists the registers that point to the location of transparency
components containing values pertinent to the debugging process.

Register Points to:

R5 IMBSTAB

R6 Active work area prefix

R7 Active fi le and fi le table in IMBSTAB

R8 Active record name

R11 CA IDMS/DB logical record buffer in IMBSTAB

R12 Beginning of active IMBSBRDG routine

R14 Instruction following a branch to FORCEDMP; important only when the

message program check S0C2 (z/OS) or PRIVILEGED OPERATION
EXCEPTION (Z/VSE) has been issued

Appendix A: PL/I Considerations 85

Appendix A: PL/I Considerations

This section contains the following topics:

Overview (see page 85)
Transparency Support For DBOMP PL/I Commands (see page 85)
IMBSPL1 Interface Macro (see page 87)

DBOMP PL/I Program Preparation and Execution (see page 88)

Overview

This appendix provides you with additional information necessary to use DBOMP PL/I
programs with CA IDMS DBOMP Transparency.

Except as noted here, CA IDMS DBOMP Transparency bridges DBOMP PL/I programs in
the same manner it bridges DBOMP Assembler programs.

The topics covered in this appendix are:

■ CA IDMS DBOMP Transparency support of DBOMP PL/I commands

■ IMBSPL1 interface macro

■ DBOMP PL/I program preparation and execution

Transparency Support For DBOMP PL/I Commands

The transparency's support of DBOMP PL/I commands parallels that of DBOMP
Assembler macros. The following table shows DBOMP PL/I commands and their
interpretation by the CA IDMS DBOMP Transparency.

Note: See IBM DBOMP documentation for the syntax for these commands.

DBOMP PL/I

command

CA IDMS DBOMP Transparency interpretation of command

OP$EN The first call to OP$EN causes IMBSBRDG to open the entire CA
IDMS/DB database and prepare it for processing: BINDs are
issued for the run unit and all record types described in the

subschema, and database areas are READYed. The
transparency returns the fi le control record for the fi le for
which RACN has been specified in IMBSTAB. Subsequent calls

to OP$EN are ignored once the database has been opened.

Transparency Support For DBOMP PL/I Commands

86 User Guide

DBOMP PL/I
command

CA IDMS DBOMP Transparency interpretation of command

CLO$E The first call to CLO$E causes IMBSBRDG to close all areas in
the CA IDMS/DB database by issuing a FINISH command.
Subsequent calls to CLO$E are ignored once the database has

been closed. If any command other than CLO$E is issued after
the first CLO$E, the transparency automatically reopens the CA
IDMS/DB database and processes the command; a subsequent
CLOSE causes the transparency to close the database again.

CA$LL The work area prefix for the named fi le is passed to IMBSBRDG,
which interprets the process indicator contained in the work
area prefix and performs the requested function. See Chapter
3, "The Transparency Environment" for those process

indicators supported by the transparency.

GE$T IMBSBRDG retrieves the first record in the named fi le and
returns it to the work area. Subsequent calls to GE$T using the

same fi le cause IMBSBRDG to retrieve records in logical
sequential order from that point if the record type is not
indexed. When an end-of-fi le condition is detected, control is
passed to the routine specified for the fi le in the EO$F

command (discussed below).

EO$F IMBSBRDG handles EO$F in the same manner as does DBOMP,
but obtains the necessary fi le information from the module

generated by the IMBSPL1 interface macro (see below) rather
than from the module generated by the DBOMP PL$BM macro.
A call to EO$F must specify the end-of-fi le routines in the same
sequence as the corresponding fi les are entered in the IMBSPL1

macro.

ST$KY IMBSBRDG retrieves a record by the key specified in the work
area prefix for the named fi le and returns the record to the

work area. The currency for the fi le is set at the retrieved
record. Subsequent GE$T commands for the fi le retrieve
records in logical sequential order from that point if the record
type is not indexed. Note that the transparency support of

logical sequential processing assumes the use of an index.

ST$DA IMBSBRDG retrieves a record by the disk address specified in
the work area prefix for the named fi le and returns the record
to the work area. The currency for the fi le is set at the retrieved

record. Subsequent GE$T commands for the fi le retrieve
records in logical sequential order from that point if the record
type is indexed, or in physical sequential order from that point

if the record type is not indexed. Note that the transparency's
support of logical sequential processing assumes the use of
indexing.

IMBSPL1 Interface Macro

Appendix A: PL/I Considerations 87

DBOMP PL/I
command

CA IDMS DBOMP Transparency interpretation of command

PU$T IMBSBRDG writes back to the CA IDMS/DB database the last
record retrieved by a GE$T command. Chain address fields
(pointers) are not updated or written back to the database.

CHASE The transparency supports this command unconditionally.
Programs that request only the CHASE function need not be
modified before interfacing with the bridge, and should be
linked with the PL$CH macro as indicated in IBM DBOMP

documentation.

BM$OFAD The transparency does not support this command. If a call to
BM$OFAD is encountered by the bridge, no action takes place
and control returns to the call ing program.

BM$FO The transparency does not support this command. If a BM$FO
command is encountered, an unresolved external reference
results in the link edit map.

BM$RACN The transparency does not support this command. If a
BM$RACN command is encountered, no action takes place and
control returns to the call ing program. The transparency's
maintenance of RACN in PL/I programs is the same as for

Assembler programs.

IMBSPL1 Interface Macro

The IMBSPL1 interface macro replaces the DBOMP PL$BM macro. This Assembler macro

generates tables containing the information necessary to establish communication
between the DBOMP PL/I program and IMBSBRDG. Also incorporated in these tables is
the information required to support the sequential processing requested by calls to

GET, PUT, ST$KY, and ST$DA.

Syntax

IMBSPL1 macro

►►─── IMBSPL1 (file-name, ─┬─ index-set-name ─┬─), ─┬─ YES ─┬─ ; ────────────►◄
 └─ NOTSEQ ─────────┘ └─ NO ──┘

DBOMP PL/I Program Preparation and Execution

88 User Guide

Parameters

IMBSPL1

A required constant that identifies the macro; you can code it anywhere after
column 1.

file-name

The seven-character name of the DBOMP master fi le as specified in the program
work area. You must enter the routines named in the EO$F command in the same
order as you enter the corresponding fi le names in the IMBSPL1 macro. This
ensures that the address of the proper routine is passed to IMBSBRDG when the

end of a fi le named in a GE$T command is reached. One file-name entry must be
present for each DBOMP file that is processed.

index-set-name/NOTSEQ

The name of the index set to be used for logical sequential processing; specify
NOTSEQ if the fi le is not to be processed in logical sequential order. One

index-set-name/NOTSEQ entry must be present for each file-name entry.

YES/NO

The compiler option indicator; specified as follows:

■ YES if the optimizing compiler is used and IMBSPL1 is not i dentified as an
assembler entry

■ NO if the D- or F-level compiler is used

Note: It is recommended that you name every fi le on the DBOMP database in one

execution of the IMBSPL1 macro so that this macro does not need to be assembled and
link edited more than once.

Assembling and Linking IMBSPL1

To assemble and link-edit IMBSPL1, you must use SMP/E (Z/OS) or MSHP (Z/VSE).

Note: For more information on using SMP/E and MSHP, see the CA IDMS Installation—

Z/OS or the CA IDMS Installation— Z/VSE.

DBOMP PL/I Program Preparation and Execution

The guidelines for preparing a DBOMP PL/I program and executing it using the
transparency parallel those detailed for DBOMP Assembler programs in Using the

Transparency as a Bridge to CA IDMS/DB (see page 75).

DBOMP PL/I Program Preparation and Execution

Appendix A: PL/I Considerations 89

Preparing the PL/I Program

■ Remove the PL$BM macro.

■ Remove those DBOMP PL/I commands that are not supported by CA IDMS DBOMP
Transparency and modify associated program logic as necessary.

■ Modify the PL/I logic as necessary to conform with CA IDMS DBOMP Transparency

specifications for sequential processing and RACN processing.

■ If the program issues any of the allowable CA IDMS DML statements, insert the

following call to IMBSBRDG, making sure that the CA IDMS DML statement
argument is available in program variable storage (see The Transparency
Environment (see page 21)):

call ca$ll (argument_name,'end.')

■ If any retrieval or update process indicators except for those supported by CA IDMS
DBOMP Transparency (see The Transparency Environment (see page 21)) are used
in the program, replace them with those that are supported.

Executing the Program

■ Assemble and link edits IMBSTAB if a version compatible with the application does

not exist in the load library.

■ Recompile and link edit the DBOMP PL/I program, including IMBSBRDG, IMBSTAB,
IMBSPL1, and CA IDMS/DB. This step assumes that IMBSPL1 has been assembled
and link edited as discussed above.

Note: You do not need to recompile programs that run under Z/OS unl ess any of
the changes l isted above have been made; you must, however, recompile programs
that run under Z/VSE whether or not any of these changes have been made, unless

the programs exist in the relocatable l ibrary.

■ Submit the DBOMP PL/I program for execution.

Appendix B: COBOL Considerations 91

Appendix B: COBOL Considerations

This section contains the following topics:

Overview (see page 91)
Transparency Support For DBOMP COBOL Commands (see page 91)
IMBSCOBL Interface Macro (see page 93)

DBOMP COBOL Program Preparation and Execution (see page 94)

Overview

This appendix provides you with additional information necessary to interface DBOMP
COBOL programs with CA IDMS DBOMP Transparency.

Except as noted in this appendix, CA IDMS DBOMP Transparency bridges DBOMP COBOL
programs in the same manner as it bridges DBOMP Assembler programs.

The topics covered in this appendix are:

■ CA IDMS DBOMP Transparency support of DBOMP COBOL commands

■ IMBSCOBL interface macro

■ DBOMP COBOL program preparation and execution

Transparency Support For DBOMP COBOL Commands

The transparency's support for DBOMP COBOL commands parallels its support for
DBOMP Assembler macros. The following table s hows DBOMP COBOL commands and
their interpretation by the transparency.

Note: See IBM DBOMP documentation for the syntax for these commands.

DBOMP PL/I

command

CA IDMS DBOMP Transparency interpretation of command

BMPOPEN The first call to BMPOPEN causes IMBSBRDG to open the entire
CA IDMS/DB database and prepare it for processing: BINDs are
issued for the run unit and all record types described in the

subschema, and database areas are READYed. The
transparency returns the fi le control record for the fi le for
which RACN has been specified in IMBSTAB. Subsequent calls

to BMPOPEN are ignored once the database has been opened.

Transparency Support For DBOMP COBOL Commands

92 User Guide

DBOMP PL/I
command

CA IDMS DBOMP Transparency interpretation of command

BMPCLOSE The first call to BMPCLOSE causes IMBSBRDG to close all areas
in the CA IDMS/DB database by issuing a FINISH command.
Subsequent calls to BMPCLOSE are ignored once the database

has been closed. If any command other than BMPCLOSE is
issued after the first BMPCLOSE, the transparency
automatically reopens the CA IDMS/DB database and processes
the command; a subsequent BMPCLOSE causes the

transparency to close the database again.

BMPCALL The work area prefix for the named fi le is passed to IMBSBRDG,
which interprets the process indicator contained in the work
area prefix and performs the requested function. For

information on process indicators that are supported by the
transparency, see Chapter 3, "The Transparency Environment".

BMPGET IMBSBRDG retrieves the first record in the named fi le and

returns it to the work area. Subsequent calls to BMPGET using
the same fi le cause IMBSBRDG to retrieve records in logical
sequential order from that point if the record type is indexed,
or in physical sequential order from that point if the record

type is not indexed. When an end-of-fi le condition is detected,
control passes to the routine specified for the fi le in the
BMPEOF command (discussed below).

BMPEOF IMBSBRDG handles BMPEOF in the same manner as does
DBOMP, but obtains the necessary fi le information from the
module generated by the DBOMP CB$BM macro. A call to
BMPEOF must specify the end-of-fi le routines in the same

sequence as the corresponding fi les are entered in the
IMBSCOBL macro.

BMPSTKY IMBSBRDG retrieves a record by the key specified in the work

area prefix for the named fi le and returns the record to the
work area. The currency for the fi le is set at the retrieved
record. Subsequent BMPGET commands for the fi le retrieve
records in logical sequential order from that point if the record

type is indexed, or in physical sequential order from that point
if the record type is not indexed. Note that the transparency's
support of logical sequential processing assumes the use of
indexing.

IMBSCOBL Interface Macro

Appendix B: COBOL Considerations 93

DBOMP PL/I
command

CA IDMS DBOMP Transparency interpretation of command

BMPSTDA IMBSBRDG retrieves a record by the disk address specified in
the work area prefix for the named fi le and returns the record
to the work area. The currency for the fi le is set at the retrieved

record. Subsequent BMPGET commands for the fi le retrieve
records in logical sequential order from that point if the record
type is indexed, or in physical sequential order from that point
if the record type is not indexed. Note that the transparency's

support of logical sequential processing assumes the use of
indexing.

BMPPUT IMBSBRDG writes back to the CA IDMS/DB database the last
record retrieved by a BMPGET command. Chain address fields

(pointers) are not updated or written back to the database.

CHASE The transparency supports this command unconditionally.
Programs that request only the CHASE function need not be

modified before interfacing with the bridge, and should be
linked with the CB$CH macro as indicated in IBM DBOMP
documentation.

BMPOFFAD The transparency does not support this command. If a call to

BMPOFFAD is encountered by the bridge, no action takes place
and control returns to the call ing program.

BMPFO The transparency does not support this command. If a BMPFO

statement is encountered, an unresolved external reference
results in the link edit map.

BMPRACN The transparency does not support this command. If a
BMPRACN command is encountered, no action takes place and

control returns to the call ing program. The transparency's
maintenance of RACN in COBOL programs is the same as for
Assembler programs.

IMBSCOBL Interface Macro

The IMBSCOBL interface macro replaces the DBOMP CB$BM macro. This Assembler
macro generates tables containing the information necessary to establish
communication between the DBOMP COBOL program and IMBSBRDG. Also

incorporated in these tables is the information required to support sequential
processing requested by calls to BMPGET, BMPPUT, BMPSTKY, and BMPSTDA.

DBOMP COBOL Program Preparation and Execution

94 User Guide

Syntax

IMBSCOBL macro

►►─── IMBSCOBL (file-name, ─┬─ index-set-name ─┬─) ──────────────────────────►◄
 └─ NOTSEQ ─────────┘

Parameters

IMBSCOBL

A required constant that identifies the macro; it can be coded anywhere after
column 1.

file-name

The seven-character name of the DBOMP master fi le as specified in the program

work area. You must enter the routines named in the BMPEOF command in the
same order as you enter the corresponding fi le names in the IMBSCOBL macro. This
ensures that the address of the proper routine is passed to IMBSBRDG when the
end of a fi le named in a BMPGET command is reached. One file-name entry must be

present for every DBOMP file that is processed.

index-set-name/NOTSEQ

The name of the index set to be used for logical sequential processing; specify
NOTSEQ if the fi le is not to be processed in logical sequential order. One
index-set-name/NOTSEQ entry must be present for each file-name entry.

Note: It is recommended that you name every fi le on the DBOMP database in one
execution of the IMBSCOBL macro so that thi s macro does not need to be assembled
and link edited more than once.

Assembling and Linking IMBSCOBL

To assemble and link-edit IMBSCOBL, you must use SMP/E (Z/OS) or MSHP (Z/VSE).

Note: For more information on using SMP/E and MSHP, see the CA IDMS Installation—
Z/OS or the CA IDMS Installation—Z/VSE.

DBOMP COBOL Program Preparation and Execution

The guidelines for preparing and executing a DBOMP COBOL program using the

transparency parallel those detailed for DBOMP Assembler programs in Using the
Transparency as a Bridge to CA IDMS/DB (see page 75).

DBOMP COBOL Program Preparation and Execution

Appendix B: COBOL Considerations 95

Preparing the COBOL Program

■ Remove the CB$BM macro.

■ Remove DBOMP COBOL commands that are not supported by CA IDMS DBOMP
Transparency, and modify associated program logic as necessary.

■ Modify the COBOL logic as necessary to conform with CA IDMS DBOMP

Transparency specifications for sequential processing and RACN processing.

■ If the program issues any of the allowable CA IDMS DML statements, insert the

following call to IMBSBRDG, making sure that the CA IDMS DML statement
argument is available in working storage (see The Transparency Environment (see
page 21)):

call 'bmpcall' using argument-name.

■ If any retrieval or update process indicators except for those supported by CA IDMS
DBOMP Transparency (see The Transparency Environment (see page 21)) are used
in the program, replace them with those that are supported.

Executing the Program

■ Assemble and link edit IMBSTAB if a version compatible with the application does

not exist in the load library.

■ Recompile and link edit the DBOMP COBOL program, including IMBSBRDG,
IMBSTAB, IMBSCOBL, and CA IDMS/DB. This step assumes that IMBSCOBL has been
assembled and link edited as discussed above.

Note: You do not need to recompile programs that run under Z/OS unless any of
the changes l isted above have been made; you must, however, recompile programs
that run under Z/VSE whether or not any of these changes have been made, unless

the programs exist in the relocatable l ibrary.

■ Submit the DBOMP COBOL program for execution.

Appendix C: Sample Application and Procedures 97

Appendix C: Sample Application and
Procedures

This section contains the following topics:

Overview (see page 97)
IMBSBILL Sample Application (see page 97)

IMBSMJ01 Sample JCL for z/OS (see page 99)
IMBSMJ02 Sample JCL for z/OS (see page 100)

Overview

This appendix contains the following sample applicati on and JCL for z/OS:

■ IMBSBILL sample application—Illustrates the sequence and structure of database

access procedures necessary to perform standard bil l-of-materials functions against
a CA IDMS/DB manufacturing database. IMBSBILL is written in ANS COBOL a nd
issues CA IDMS/DB COBOL Data Manipulation Language statements requesting

database services.

■ IMBSMJ01 sample JCL for z/OS—IMBSMJ01 is a collection of EXEC statements

which you can use as a reference when you convert a DBOMP database to a CA
IDMS/DB database.

■ IMBSMJ02 sample JCL for z/OS—IMBSMJ02 is a collection of EXEC statements

which you can use as a reference when you execute DBOMP applications using the
transparency.

IMBSBILL Sample Application

IMBSBILL Functions

IMBSBILL serves two purposes:

■ To aid in the conversion of DBOMP load, maintenance, and retrieval/update
programs to CA IDMS/DB

■ To serve as a prototype for the development of systems oriented to the

manufacturing environment

IMBSBILL Sample Application

98 User Guide

Record Types Referenced by IMBSBILL

IMBSBILL references these CA IDMS/DB record types:

■ ITEM-MASTER

■ PROD-STRUCTURE

■ WORK-CENTER

■ ROUTINGS

IMBSBILL retrieves, modifies, adds, and deletes occurrences of each of these record

types. It demonstrates single-level, indented, and summarized explosion and implosion,
and performs a serial retrieval of occurrences of the ITEM-MASTER record type.
IMBSBILL also contains the CA IDMS/DB logic necessary to implement RACN, low-level

coding, and chain counts.

Database Accessed by IMBSBILL

The design for the sample database accessed by IMBSBILL is shown in the following
figure.

IMBSMJ01 Sample JCL for z/OS

Appendix C: Sample Application and Procedures 99

IMBSBILL Flow of Logic

The general flow of logic in IMBSBILL is as follows:

1. BIND the run unit and all record types

2. Read a transaction

3. Branch to the routine indicated by the transaction code

4. Access the CA IDMS/DB database using the appropriate DML commands

5. Display the results of the transaction on the printer

6. Repeat the above steps until all transactions have been processed

IMBSBILL Code

The following is the code for IMBSBILL.

■ IMBSBILL - The program described here

■ IMBSCHM - The schema IMBSBILL uses

■ IMBDMCL - The DMC IMBSBILL uses

■ IMBSUBS - The subschema IMBSBILL uses

IMBSMJ01 Sample JCL for z/OS

Explanation of Statements in IMBSMJ01

Each EXEC statement in IMBSMJ01 is a job step. The steps are described in the following
table.

EXEC statement What happens

IDMSCHEM Compiles the sample schema, IMBSSCHM

IDMSDMCL Processes the sample DMCL module, IMBSDMCL

LINKDMCL Link edits the assembled output from the DMCL

processor

SUBSCHEM Compiles the sample subschema, IMBSSUBS, and
punches load module

LINKSUB Link edits IMBSSUBS

DMLC Submits the sample COBOL source program, IMBSBILL,
to the CA IDMS DML compiler

COB Compiles the output from DMLC

IMBSMJ02 Sample JCL for z/OS

100 User Guide

EXEC statement What happens

LINKCOB Link edits the compiled COBOL program

IDMSRPTS Prints reports from the data dictionary

INITSAMP Initializes the sample database

EXECPGM Executes the sample CA IDMS/DB application program,

IMBSBILL

Note: Be sure to modify the parameters in the EXECPGM step to suit your installation
requirements.

IMBSMJ02 Sample JCL for z/OS

Explanation of Statements in IMBSMJ02

Each EXEC statement in IMBSMJ02 is a job step. The steps are described in the following
table.

EXEC statement What happens

ASMCBDG Assembles IMBSTAB

LINKCBDG Link edits IMBSTAB

ASMCOBL Assembles IMBSCOBL interface

LINKCOBL Link edits IMBSCOBL module

DMLC Submits sample COBOL DBOMP source program,
IMBSDBMP, to the CA IDMS DML compiler

COB Compiles output from DMLC

LINKCOB Link edits IMBSDBMP

EXECPGM Executes the sample DBOMP application program,
IMBSDBMP, using the CA IDMS/DBOMP Transparency

bridge program IMBSBRDG

Note: Be sure to modify the parameters in the EXECPGM step to suit your installation
requirements.

Appendix D: Setting Up CA IDMS/DBOMP Transparency Under z/OS 101

Appendix D: Setting Up CA IDMS/DBOMP
Transparency Under z/OS

This section contains the following topics:

Overview (see page 101)
Customizing and Executing IMBSMJ01 and IMBSMJ02 (see page 102)

Overview

Object Modules

The following table l ists the object modules placed into the CA IDMS/DB object l ibrary
during the install.

Module Description

IMBSPROC Database procedure

IMBSBRDG Bridge program

Source Modules

The following table l ists the source modules placed into the CA IDMS/DB source library
during the install.

Module Description

IMBSMJ02 JCL for IMBSMJ02 procedure

IMBS Customizing macro

IMBSASMB IMBS Assembler interface macro

IMBSBILL Sample CA IDMS/DB COBOL manufacturing application
program

IMBSBRDG Assembler source code for IMBSBRDG object module

IMBSCOBL CA IDMS/DBOMP Transparency COBOL interface
macro

IMBSDBMP Sample COBOL DBOMP program (to be bridged)

IMBSDMCL Sample DMCL description module

Customizing and Executing IMBSMJ01 and IMBSMJ02

102 User Guide

Module Description

IMBSEQ CA IDMS/DBOMP Transparency Assembler interface

macro

IMBSINP1 Sample input to IMBSBILL

IMBSINP2 Sample input to IMBSDBMP

IMBSPL1 CA IDMS/DBOMP Transparency PL/I interface macro

IMBSPROC Source code for database procedure object module

IMBSMJ01 JCL for IMBSMJ01 procedure

IMBSSCHM Sample CA IDMS/DB schema description

IMBSSUBS Sample CA IDMS/DB subschema description

IMBSTAB Sample input to IMBS customizing macro

Load Modules

The following table l ists the load modules placed in the CA IDMS/DB load library during

the install.

Module Description

IMBSBRDG Bridge program

IMBSPROC Database procedure

Customizing and Executing IMBSMJ01 and IMBSMJ02

The JCL is shown in the IMBSMJ01 and IMBSMJ02 procedures as they exist in the source
library.

Source library member IMBSMJ01 contains a procedure that compiles the schema,
DMCL, and subschema for the sample database. It then initializes the database and runs

the sample DML program, IMBSBILL.

Member IMBSMJ02 compiles a sample DBOMP program, IMBSDBMP, and CA
IDMS/DBOMP Transparency, which uses the same database as was set up by IMBSMJ01.

Customizing and Executing IMBSMJ01 and IMBSMJ02

Appendix D: Setting Up CA IDMS/DBOMP Transparency Under z/OS 103

Explanation of EXEC Statements in IMBSMJ01 Procedure

The IMBSMJ01 procedure uses the 15 EXEC statements described in the following table.

EXEC statement What happens

IDMSCHEM Compiles the sample schema, IMBSSCHM

IDMSDMCL Processes the sample DMCL module, IMBSDMCL and
punches the load module

LINKDMCL Link edits the assembled output from the DMCL

processor

SUBSCHEM Compiles the sample subschema, IMBSSUBS

LINKSUB Link edits IMBSSUBS

DMLC Submits the sample COBOL source program, IMBSBILL,

to the CA IDMS DML compiler

COB Compiles the output from DMLC

LINKCOB Link edits the compiled COBOL program

IDMSRPTS Prints reports from the data dictionary

INITSAMP Initializes the sample database

EXECPGM Executes the sample CA IDMS/DB application program,
IMBSBILL

Note: You must modify the parameters in the EXEC IMBSMJ01 statement (the last EXEC
statement in the procedure) to suit your installation requirements. For more
information, see Customizing IMBSMJ01 (see page 103).

Customizing IMBSMJ01

You must modify the defaults shown in the EXEC IMBSMJ01 statement (the last JCL
statement) in the IMBSMJ01 procedure. The following JCL shows the exec IMBSMJ01.
Change the items shown in italics to suit your installation requirements.

Customizing and Executing IMBSMJ01 and IMBSMJ02

104 User Guide

IMBSMJ01 (z/OS)

//SAMPLE EXEC IMBSMJ01

// PRT='SYSOUT=A',

// UNIT=disk,

// LIB='imbs.loadlib',

// IDMSLIB='idms.loadlib',

// COBLIB='coblib',

// COBSTEP='cob.steplib',

// PGSIZE=2496,

// DISP=CATLG,

// BASE='data.direct',

// IMBSBILL='imbs013',

// IMBSWORK='IMBSWORK',

// SRCLIB='imbs.srclib',

// IDMSSRC='yourHLQ.CAGJMAC',

// VOL='VOL=SER=nnnnnn,'

// SYSCTLDS='idms.sysctl',

// IDMSDMCL='cvdmcl',

// MSGDD='dcmsg',

// MSGDSN='idms.ddldcmsg',

// DDLDD='sysddl',

// DDLDSN='idms.sysddl',

// DICTNAME='appldict',

Parameter Description

disk Symbolic device name for data dictionary and database fi les

imbs.loadlib Dataset name of CA IDMS/DBOMP Transparency load library
if a load library was allocated in optional ALLOC step of

INSTALL procedure; or dataset name of CA IDMS load library
if CA IDMS DBOMP Transparency load library was not
allocated

idms.loadlib Dataset name of CA IDMS load library

coblib Dataset name of COBOL library

cob.steplib Dataset name of COBOL step library

data.direct Dataset name of data dictionary; may be a sample or user

directory

IMBSBILL Dataset name of sample CA IDMS database fi le

IMBSWORK Dataset name of sample CA IDMS database fi le

Customizing and Executing IMBSMJ01 and IMBSMJ02

Appendix D: Setting Up CA IDMS/DBOMP Transparency Under z/OS 105

Parameter Description

imbs.srclib Dataset name of CA IDMS DBOMP Transparency source

library if a source library was allocated in optional ALLOC step
of INSTALL procedure; or dataset name of CA IDMS source
library if CA IDMS DBOMP Transparency source library was

not allocated

yourHLQ.CAGJMAC Dataset name of CA IDMS macro library

nnnnnn Volume serial number of disk where data dictionary and
sample CA IDMS database fi les are stored

idms.sysctl Dataset name of IDMS SYSCTL fi le for running CV

cvdmcl Name of the DMCL that IDMS uses, for CV or local

dcmsg The ddname or IDMS message area

idms.ddldcmsg Dataset name of the IDMS message area, for CV and local

jobs

ddldd The ddname of the IDMS dictionary

idms.sysddl Dataset name of the IDMS dictionary

appldict Dictionary to be used

Explanation of EXEC Statements in IMBSMJ02 Procedure

The IMBSMJ02 procedure uses the eight EXEC statements described in the following

table.

EXEC statement What happens

ASMCBDG Assembles IMBSTAB

LINKCBDG Link edits IMBSTAB

ASMCOBL Assembles IMBSCOBL interface

LINKCOBL Link edits IMBSCOBL module

DMLC Submits sample COBOL DBOMP source program,
IMBSDBMP, to the CA IDMS DML compiler

COB Compiles output from DMLC

LINKCOB Link edits IMBSDBMP

EXECPGM Executes the sample DBOMP application program,
IMBSDBMP, using the CA IDMS/DBOMP Transparency
bridge program IMBSBRDG

Customizing and Executing IMBSMJ01 and IMBSMJ02

106 User Guide

Note: You must modify the parameters in the EXEC IMBSMJ02 statement (the last EXEC
statement in the procedure) to suit your installation requirements. For more

information, see Customizing IMBSMJ02 (see page 106).

Customizing IMBSMJ02

You must modify the defaults shown in the EXEC IMBSMJ02 statement (the last JCL
statement) in the IMBSMJ02 procedure. The following JCL shows the exec IMBSMJ02.

Change the items shown in italics to suit your installation requirements.

IMBSMJ02 (z/OS)

//SAMPLE EXEC IMBSMJ02

// PRT='SYSOUT=A',

// UNIT=disk,

// LIB='imbs.loadlib',

// IDMSLIB='idms.loadlib',

// IDMSSRC='yourHLQ.CAGJMAC',

// COBLIB='coblib',

// COBSTEP='cob.steplib',

// BASE='data.direct',

// IMBSBILL='imbs013',

// IMBSWORK='IMBSWORK',

// SRCLIB='imbs.srclib',

Parameter Description

disk Symbolic device name for data dictionary and database fi les

imbs.loadlib Dataset name of CA IDMS/DBOMP Transparency load library if a
load library was allocated in optional ALLOC step of INSTALL
procedure; or dataset name of CA IDMS load library if CA IDMS

DBOMP Transparency load library was not allocated

idms.loadlib Dataset name of CA IDMS load library

yourHLQ.CAGJM
AC

Dataset name of CA IDMS macro library

coblib Dataset name of COBOL library

cob.steplib Dataset name of COBOL step library

data.direct Dataset name of data dictionary; may be a sample or user directory

IMBSBILL Dataset name of sample CA IDMS database fi le

IMBSWORK Dataset name of sample CA IDMS database fi le

Customizing and Executing IMBSMJ01 and IMBSMJ02

Appendix D: Setting Up CA IDMS/DBOMP Transparency Under z/OS 107

Parameter Description

imbs.srclib Dataset name of CA IDMS DBOMP Transparency source library if a

source library was allocated in optional ALLOC step of INSTALL
procedure; or dataset name of CA IDMS source library if CA
IDMS/DB source library was not allocated

Executing IMBSMJ01 and IMBSMJ02

After you tailor the IMBSMJ01 and IMBSMJ02 procedures to your installation
requirements, you can submit them together as a job.

Appendix E: Setting Up CA IDMS DBOMP Transparency under Z/VSE 109

Appendix E: Setting Up CA IDMS DBOMP
Transparency under Z/VSE

This section contains the following topics:

Customizing and Executing IMBSVJ01 and IMBSVJ02 (see page 109)
Running IMBSVJ01 (see page 111)

Running IMBSVJ02 (see page 111)

Customizing and Executing IMBSVJ01 and IMBSVJ02

The JCL is shown in the IMBSVJ01 and IMBSVJ02 procedures as they exist in the source
library.

Source library member IMBSVJ01 contains a procedure that compiles the schema,

DMCL, and subschema for the sample database. It then initializes the database and runs
the sample DML program, IMBSBILL.

Member IMBSVJ02 compiles a sample DBOMP program, IMBSDBMP, and the

components needed to run it through CA IDMS DBOMP Transparency, which uses the
same database as was set up by IMBSVJ01.

Explanation of EXEC Statements in IMBSVJ01 Procedure

The IMBSVJ01 procedure uses the EXEC statements described in the following table.

EXEC statement What happens

IDMSCHEM Compiles the sample schema, IMBSSCHM

IDMSDMCL Compiles the sample and punches DMCL module, IMBSDMCL

LNKEDT Link edits sample DMCL module, IMBSDMCL

IDMSUBSC Compiles the sample and punches subschema, IMBSSUBS

ASSEMBLY Assembles IMBSSUBS

LNKEDT Link edits IMBSSUBS

IDMSDMLC Submits the sample COBOL program, IMBSBILL, to the CA IDMS
Data Manipulation Language compiler

FCOBOL Submits IMBSBILL to the COBOL compiler

Customizing and Executing IMBSVJ01 and IMBSVJ02

110 User Guide

EXEC statement What happens

LNKEDT Link edits IMBSBILL

IDMSRPTS Prints all dictionary/directory reports

IDMSBCF Initializes the sample database

IMBSBILL Executes the sample program, IMBSBILL

Explanation of EXEC Statements in IMBSVJ02 Procedure

The IMBSVJ02 procedure uses the eight EXEC statements described in the following
table.

EXEC statement What happens

ASSEMBLY Assembles the IMBS customizing macro

MAINT Catalogs IMBSTAB to relocatable l ibrary

ASSEMBLY Assembles the IMBSCOBL macro

MAINT Catalogs assembled IMBSCOBL to relocatable l ibrary

IDMSDMLC Submits the sample COBOL DBOMP program, IMBSDBMP, to

the Data Manipulation Language compiler

FCOBOL Submits IMBSDBMP to the COBOL compiler

LNKEDT Link edits IMBSDBMP

DEMOPROG Executes the sample DBOMP program, IMBSDBMP, against
CA IDMS DBOMP Transparency

Modules placed in the relocatable library

The following table l ists the modules placed in the relocatable l ibrary during installation.

Module Description

IMBSBRDG Bridge program

IMBSPROC Database procedure

Running IMBSVJ01

Appendix E: Setting Up CA IDMS DBOMP Transparency under Z/VSE 111

Modules placed in the source statement library

The following table l ists the modules placed in the source statement l ibrary during

installation.

Module Description

IMBS Customizing macro

IMBSASMB Interface module (Assembler)

IMBSBILL Sample CA IDMS/DB COBOL manufacturing application program

IMBSBRDG Assembler source code for IMBSBRDG object module

IMBSCOBL CA IDMS DBOMP Transparency COBOL interface macro (Assembler)

IMBSDBMP Sample COBOL DBOMP program to be bridged

IMBSDMCL Sample DMCL description module

IMBSEQ Interface module (Assembler)

IMBSINP1 Sample input to IMBSBILL

IMBSINP2 Sample input to IMBSDBMP

IMBSPL1 CA IDMS DBOMP Transparency interface macro (PL/I)

IMBSPROC Source code for database procedure object module

IMBSSCHM Sample CA IDMS/DB schema description

IMBSSUBS Sample CA IDMS/DB subschema description

IMBSTAB Sample input to IMBS customizing macro

Running IMBSVJ01

Run IMBSVJ01, which executes a CA IDMS/DB manufacturing application, using test data
provided on the installation media and cataloged in the source statement l ibrary.

Running IMBSVJ02

Run IMBSVJ02, which executes a DBOMP program with the CA IDMS DBOMP
Transparency bridge, using test data provided on the installation media and cataloged in
the source statement l ibrary.

The JCL in IMBSVJ01 and IMBSVJ02 must first be edited so that the dataset names are
correct for your site.

Index 113

Index

C

CA IDMS DBOMP Transparency Transparency, using,
• 83, 87

IMBSPL1 • 87
CA IDMS DBOMP Transparency, using, • 75, 76, 81,

83

DBOMP Assembler program, executing, • 76
DBOMP Assembler program, preparing, • 75
debugging process, values • 83
debugging techniques, • 81

errors, diagnosing in bridged programs, • 81
JCL, • 76

CA IDMS/DB, system conversion to, • 60, 62, 64, 69,
72

CA IDMS/DB Communications Block, • 62
data conversion • 60
DBOMP commands, with equivalent CA IDMS/DB

DML statements, • 69
DBOMP load and maintenance program

conversion, • 72
DBOMP process indicators, with equivalent CA

IDMS/DB DML statements • 64
retrieval and update program conversion, • 72

CA IDMS/DB., system conversion to, • 59

D

DBOMP macros, • 23, 24
BM$DS • 24

BM$WA • 24
EQ$RG • 24
MGS • 24

MO$VE • 24
not supported by the transparency • 23
processed independently of the transparency •

24

TY$PE • 24
DBOMP process indicators • 24, 25, 26, 27, 29

@ACCEPT • 26
@BIND PROC • 26

@COMMIT • 26
@ROLLBAK • 26
arguments, building • 27

arguments, table of • 27
CDIR • 24

CLOS • 25
CMPR • 24
CRDR • 24
CUPD • 24

EXPN • 25
MDIR • 24
MRAN • 24

MRDR • 24
MRKY • 24
MUPD • 24
not supported by the transparency • 25

OPEN • 25
supported by the transparency • 24, 25

I

IDMS, system conversion to • 59
IMBS, user-coded customizing macro, • 30, 31, 33,

35, 39, 40

control statement • 31
delimiter statement, • 35
fi le/record type description statement, • 33
IMBS input statements • 31

IMBSTAB, error messages • 39
MNOTES, IMBSTAB • 39
pointer/set relationship statement, • 35

set identification statement, • 33
IMBSBRDG program module, • 15, 17, 48, 49, 51, 55

CALC, • 17
command conversion, • 49

DIRECT, • 17
moving data, • 51
record conversion, • 51

retrieval processing, • 15
update processing, • 15
values, returned to the call ing program, • 51
VIA, • 17

IMBSEQ macro, • 55
sequential fi le table, • 55

IMBSTAB, customized bridge module • 36
assembly and linkage, • 36

IMBSTAB, customized bridge module, • 40, 46, 76,
81

dummy record, CA IDMS/DB, • 46

integration into bridge program, • 46
JCL, • 76

114 User Guide

INSTALL procedure • 102
introducing COBOL considerations, • 91, 93

IMBSCOBL • 93

P

programming restrictions • 17, 18
Assembler macros • 17

prototype bil l -of-materials application, • 97, 99
IMBSBILL, logic flow • 97

sample program, logic flow • 97

R

Run Activity Control Number • 21, 22

CA$LL • 22
CHA$E • 22
GE$T • 22

PU$T • 22
requiring program modification and reassembly,

• 22
ST$KY • 22

supported unconditionally by the transparency •
22

S

syntax, • 31, 33, 35, 55
IMBS macro control statement, • 31
IMBS macro delimiter statement, • 35

IMBS macro fi le/record type description
statement, • 33

IMBS macro pointer/set relationship statement,
• 35

IMBS macro set identification statement, • 33
IMBSEQ macro, • 55

V

VSE/ESA Setting Up, • 109, 111
IMBSVJ01, • 111
IMBSVJ02, • 111

Z

z/OS and OS/390 Setting Up • 101, 102, 103, 106,
107

IMBSMJ01 procedure • 102
IMBSMJ02 procedure • 102
load modules, in CA IDMS/DB load library • 101

modifications, in IMBSMJ01 procedure, • 103
modifications, in IMBSMJ02 procedure, • 106

object modules, in CA IDMS/DB or object l ibrary
• 101

Setting Up procedure, • 101
source modules, in CA IDMS/DB source li brary •

101

	CA IDMS DBOMP Transparency User Guide
	CA Technologies Product References
	Contact CA Technologies
	Contents
	1: Introduction
	Syntax Diagram Conventions

	2: Introduction to the CA IDMS DBOMP Transparency
	Overview
	Functions and Modules
	Functions
	Modules

	Data Description Guidelines
	Programming Requirements
	Installation

	3: The Transparency Environment
	Overview
	DBOMP Macros Supported
	Macros Supported Unconditionally
	Macros That Require Program Modification and Reassembly
	Macros Not Supported
	Macros Processed Independently of the Transparency

	DBOMP Process Indicators Supported
	Process Indicators Fully Supported
	Process Indicators Supported with Exceptions
	Process Indicators Not Supported

	DBOMP Routines Supported
	CA IDMS DML Statements Supported in Bridged Programs
	How to Include CA IDMS DML Statements

	4: Transparency Programs and Macros
	Overview
	IMBS Customizing Macro
	Control Statement
	Set Identification Statement
	File/Record Type Description Statement
	Pointer/Set Relationship Statement
	Delimiter Statement

	Output From IMBS Macro--IMBSTAB
	IMBSTAB Error Messages

	Sample IMBS and IMBSTAB
	IMBSPROC Database Procedure
	IMBSBRDG program module
	Converting DBOMP Calls to CA IDMS/DB Statements
	Converting Records Retrieved from CA IDMS/DB

	IMBSEQ macro

	5: Converting DBOMP to CA IDMS/DB
	Overview
	Converting Data
	Converting DBOMP Load and Maintenance Programs
	DBOMP Process Indicators and Corresponding DML
	DBOMP Commands and Corresponding DML
	Sequence of Logic in Converted Programs

	Converting DBOMP Retrieval and Update Programs
	DBOMP Error Codes With CA IDMS/DB Equivalents

	6: Using the Transparency as a Bridge to CA IDMS/DB
	Overview
	Preparing DBOMP Assembler Programs
	Executing DBOMP Assembler Programs
	Assembling and Executing Under z/OS
	Assemble/Execute DBOMP Assembler Program Using the Transparency (IMBSBRDG) (z/OS)

	Assembling and Executing Under Z/VSE
	Assemble/Execute DBOMP Assembler Program Using the Transparency (IMBSBRDG) (Z/VSE)

	Diagnosing Errors
	What to Look For When Errors Occur During Program Processing
	What to Look For When Inaccurate Data is Returned
	Where to Find Values During Debugging

	A: PL/I Considerations
	Overview
	Transparency Support For DBOMP PL/I Commands
	IMBSPL1 Interface Macro
	DBOMP PL/I Program Preparation and Execution

	B: COBOL Considerations
	Overview
	Transparency Support For DBOMP COBOL Commands
	IMBSCOBL Interface Macro
	DBOMP COBOL Program Preparation and Execution

	C: Sample Application and Procedures
	Overview
	IMBSBILL Sample Application
	IMBSMJ01 Sample JCL for z/OS
	IMBSMJ02 Sample JCL for z/OS

	D: Setting Up CA IDMS/DBOMP Transparency Under z/OS
	Overview
	Customizing and Executing IMBSMJ01 and IMBSMJ02
	Explanation of EXEC Statements in IMBSMJ01 Procedure
	Customizing IMBSMJ01
	IMBSMJ01 (z/OS)
	Explanation of EXEC Statements in IMBSMJ02 Procedure
	Customizing IMBSMJ02
	IMBSMJ02 (z/OS)

	Executing IMBSMJ01 and IMBSMJ02

	E: Setting Up CA IDMS DBOMP Transparency under Z/VSE
	Customizing and Executing IMBSVJ01 and IMBSVJ02
	Explanation of EXEC Statements in IMBSVJ01 Procedure
	Explanation of EXEC Statements in IMBSVJ02 Procedure

	Running IMBSVJ01
	Running IMBSVJ02

	Index

