

User Modules Guide
Release 18.5.00, 2nd Edition

CA Culprit™ for CA IDMS™

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time. This

Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or
duplicated, in whole or in part, without the prior wri tten consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable

l i cense for such software remains in full force and effect. Should th e license terminate for any reason, i t is your responsibility to
certi fy in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,

DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such

l icense agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions

set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2014 CA. Al l rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA Product:

■ CA Culprit™ for CA IDMS™

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the

information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you

can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at

http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Documentation Changes

The following documentation updates were made for the 18.5.00, 2nd Edition release of
this documentation:

■ What You Can Do with CULLUS45 (see page 96)—Added a note about the hex value
of '¢¢¢¢'.

Contents 5

Contents

Chapter 1: Introduction 11

Overview .. 11

Types of CA Culprit User Modules... 12

Summary of CA-supplied User Modules .. 14

Syntax Diagram Conventions ... 15

Chapter 2: Input Modules 19

What Is an Input Module? .. 19

What You Can Do with an Input Module ... 19

How to Invoke an Input Module.. 20

Processing Spanned Records—z/VSE (CULSPAN)... 20

What You Can Do ... 20

How to Use CULSPAN .. 20
Helpful Hints.. 25

Selective Retrieval of VSAM files (CULLVSAM) ... 26

What You Can Do ... 26

How CULLVSAM Works ... 27

How to Use CULLVSAM ... 27

Performing a Sequential Read from a Pointed Start.. 28

Coding the KEY Control Statement for a Pointed Start ... 28

Coding the ADR Control Statement for a Pointed Start .. 29

Example—KSDS Pointed Start.. 31

Performing a Direct Read.. 32

Chapter 3: Procedure Modules 37

What Is a Procedure Module? ... 37

What You Can Do with a Procedure Module .. 38

What You Can Do with CA-supplied Procedure Modules ... 38

What a Procedure Module Does ... 39

How to Invoke a Procedure Module ... 39

Calling a Procedure Module ... 40
Branching to a Procedure Module .. 41

Helpful Hints.. 41

The Universal Interface (CULLUS00) ... 42

What You Can Do ... 42

How CULLUS00 Works... 42

6 User Modules Guide

How to Use CULLUS00 ... 43

Dynamic Sequential File Processing (CULLUS01).. 44

What You Can Do ... 44

How to Use CULLUS01 ... 44

Helpful hints .. 46

System Time and Date Retrieval (CULLUS10) ... 47

What You Can Do ... 47

How to Use CULLUS10 ... 48

Helpful Hints.. 49

Julian Date Conversion (CULLUS11) .. 53

What You Can Do ... 53

How to Use CULLUS11 ... 54
Helpful Hints.. 54

Century Date Conversion (CULLUS12) .. 55

What You Can Do ... 56

How to Use CULLUS12 ... 56

Helpful Hints.. 57

Gregorian Date Conversion (CULLUS14) .. 58

What You Can Do ... 58

How to Use CULLUS14 ... 59

Helpful Hint ... 60

Universal Date Conversion (CULLUS15) ... 62

What You Can Do ... 62

How to Use CULLUS15 ... 62

Helpful Hints.. 64

Random Access of ISAM Files (CULLUS22)... 65

What You Can Do ... 65

How CULLUS22 Works... 66

How to Use CULLUS22 ... 66

Helpful Hints.. 68

Source Code Modifications... 69
Random Access of VSAM Files (CULLUS25) ... 74

What You Can Do ... 74

How to Use CULLUS25 ... 75

Helpful Hints.. 77

Creating a Vertical Hexadecimal Dump (CULLUS29).. 78

What You Can Do ... 78

How to Use CULLUS29 ... 79

Helpful Hints.. 80

Obtaining Hexadecimal Representation (CULLUS31) .. 81

What You Can Do ... 81

How to Use CULLUS31 ... 81

Contents 7

Converting Packed Decimal to Binary (CULLUS33) .. 82

What You Can Do ... 82

How to Use CULLUS33 ... 83

Helpful Hints.. 84

Converting Packed Decimal to Zoned Decimal (CULLUS34) ... 84

What You Can Do ... 84

How to Use CULLUS34 ... 85

Interpreting Bit Settings (CULLUS35).. 86

What You Can Do ... 86

How to Use CULLUS35 ... 86

Helpful Hints.. 87

Converting Floating Point Values to Packed Decimal(CULLUS36) ... 88
What You Can Do ... 88

How to Use CULLUS36 ... 89

Helpful Hints.. 90

Converting Doubleword Binary to Packed Decimal (CULLUS37) ... 91

What You Can Do ... 91

How to Use CULLUS37 ... 92

Sending Messages (CULLUS40) .. 92

What You Can Do ... 92

How to Use CULLUS40 ... 93

Moving Fields to an Input Buffer Area (CULLUS43) ... 94

What You Can Do ... 94

How to Use CULLUS43 ... 94

Helpful Hint ... 95

Moving Variable-length Data (CULLUS45) ... 96

What You Can Do ... 96

How to Use CULLUS45 ... 96

Helpful Hints.. 97

String Search (CULLUS46) ...100

What You Can Do ...100
How to Use CULLUS46 ...101

Helpful Hints..102

Creating a Run-time Message (CULLUS48) ..104

What You Can Do ...104

How to Use CULLUS48 ...104

Converting Binary Strings (CULLUS50) ...105

What You Can Do ...105

How to Use CULLUS50 ...105

Concatenating Fields (CULLUS53) ...107

What You Can Do ...107

How to Use CULLUS53 ...107

8 User Modules Guide

Helpful Hints..108

Searching a Table (CULLUS62) ...110

What You Can Do ...110

How to Use CULLUS62 ...110

Helpful Hints..111

Processing Data Dictionary Reporter Tables (CULLUS64) ...113

What You Can Do ...113

How to Use CULLUS64 ...114

Helpful Hints..115

Memory Dump (CULLUS99) ...116

How to Use CULLUS99 ...117

Chapter 4: Output Modules 119

What Is an Output Module?...119

What You Can Do with an Output Module..119

How to Invoke an Output Module ..120

Formatting a Hexadecimal Buffer Dump (CULEDUMP) ...120

What You Can Do ...121

How to Use CULEDUMP ..121

Helpful Hints..122

Printing Labels (CULELABL) ...123

What You Can Do ...123

How to Use CULELABL ...124

Printing Multiple Lines (CULEMLIN) ..126

What You Can Do ...126

How It Works ..127

How to Use CULEMLIN ..128

Helpful Hints..130

Writing Formatted Records to a VSAM File (CULEVSAM) ...136

What You Can Do ...136

How to Use CULEVSAM ...136
Helpful Hints..137

Segmenting Reports in a VSE/POWER Run (CULEPOWR) ...138

What You Can Do ...138

How to Use CULEPOWR as a CA Culprit Output Module ..138

Helpful Hints..139

How to Use CULEPOWR as a Subroutine ...139

Helpful Hints..141

Chapter 5: Writing User Modules 145

What You Can Do ...145

Contents 9

General Considerations for User-written Modules..146

How to Link-edit User Modules ...146

Establishing Linkage to a COBOL Module ..147

Establishing Linkage to an Assembler Module..148

Establishing Linkage to a PL/I Module ..149

Establishing linkage to a FORTRAN module...150

How to Write Input Modules ...150

What You Can Do ...150

How Information Is Passed...150

Coding a COBOL Input Module ..154

Coding an Assembler Input Module ...158

Coding a PL/I Input Module..160
How to Write Procedure Modules ..161

What You Can Do ...161

How Information Is Passed...161

Coding a COBOL Procedure Module ...162

Coding an Assembler procedure module...163

Coding a PL/I Procedure Module...164

Coding a FORTRAN procedure module ..164

Helpful hints ..164

How to Write Output Modules ..165

What You Can Do ...165

How Information Is Passed...165

Coding a COBOL Output Module...168

Coding an Assembler Output Module ..170

Coding a PL/I Output Module ..171

Index 173

Chapter 1: Introduction 11

Chapter 1: Introduction

This section contains the following topics:

Overview (see page 11)
Types of CA Culprit User Modules (see page 12)
Summary of CA-supplied User Modules (see page 14)

Syntax Diagram Conventions (see page 15)

Overview

This manual provides information about:

■ CA-supplied user modules that can be invoked to perform tasks that fall beyond the

scope of standard CA Culprit report processing

■ Customized user modules that can be written to perform site-specific processing for
CA Culprit reports

A basic knowledge of CA Culprit coding techniques is assumed throughout this manual:

■ Users familiar with CA Culprit coding techniques can use this manual as a reference
for invoking CA-supplied user modules.

■ Experienced CA Culprit users with programming backgrounds in COBOL, FO RTRAN,

PL/I, or Assembler can use this manual as a guide for writing customized modules
not available on the CA Culprit installation media.

Types of CA Culprit User Modules

12 User Modules Guide

Types of CA Culprit User Modules

CA Culprit user modules are subroutines that perform tasks beyond the scope of
standard CA Culprit processing. The CA Culprit installation media includes a wide range
of user modules, which are summarized at the end of this section. Site-specific routines
can also be written, stored, and called from CA Culprit code. Instructions for developing

your own user modules can be found in "Writing User Modules" chapter.

Before invoking or writing user modules, you should be familiar with CA Culprit coding
techniques. Refer to the CA Culprit for CA IDMS User Guide and to the CA Culprit for CA
IDMS Reference Guide for detailed information on coding CA Culprit parameters.

A user module can be one of three types:

■ The input module, which reads an input fi le by using information supplied on an
INPUT parameter.

An input module is processed during the extract phase (CULL step, as shown in the
diagram below) of a CA Culprit job to read one or more fi les, manipulate input data,
and bui ld the CA Culprit input buffer.

■ The procedure module, which performs type 7 processing on user-supplied data

and returns the processing results to user-defined fields.

A procedure module is processed during the extract phase (CULL step) of a CA
Culprit job.

■ The output module, which creates an output fi le or report formatted to user
specifications.

An output module is processed during the output phase (CULE step) of a CA Culprit
job, as shown below.

CA-supplied and user-written input, procedure, and output modules are discussed in
detail in the following sections.

CA Culprit System Diagram

Input and procedure modules are processed only during the CULL step.

Output modules are processed only during the CULE step.

Types of CA Culprit User Modules

Chapter 1: Introduction 13

Summary of CA-supplied User Modules

14 User Modules Guide

Summary of CA-supplied User Modules

Input Modules

The module name What it does

CULSPAN Reads a spanned record input fi le (z/VSE)

CULLVSAM Performs direct reads of key- or entry-sequenced
VSAM files

Procedure Modules

The module name What it does

CULLUS00 Interfaces CA Culprit with user-written modules

CULLUS01 Processes sequential fi les (z/OS and z/VM)

CULLUS10 Retrieves the system time and date

CULLUS11 Converts a Julian date to Gregorian

CULLUS12 Converts any century date to a user-specified format.

CULLUS14 Converts a Gregorian date to Julian

CULLUS15 Converts a date in any format to a user-specified
format

CULLUS22 Retrieves ISAM files

CULLUS25 Retrieves a VSAM file

CULLUS29 Formats a vertical hexadecimal dump

CULLUS31 Displays fields in hexadecimal representation

CULLUS33 Converts packed decimal to binary

CULLUS34 Converts packed decimal to zoned decimal

CULLUS35 Represents bit settings in display format

CULLUS36 Converts floating point values to decimal integers

CULLUS37 Converts doubleword binary to packed decimal

CULLUS40 Sends messages to the console operator (z/VSE)

CULLUS43 Moves variable-length data

CULLUS45 Performs multiple move operations on data

CULLUS46 Performs a character search

Syntax Diagram Conventions

Chapter 1: Introduction 15

The module name What it does

CULLUS48 Writes a user-written message to the Run-Time

Messages Section of a CA Culprit job

CULLUS50 Converts a binary string to a string of characters or
work fields

CULLUS53 Concatenates fields

CULLUS62 Searches a CA Culprit table for specified fields

CULLUS64 Maintains a table of user-defined attributes for Data
Dictionary Reporter (DDR) reports external to CA

Culprit

CULLUS99 Causes a memory dump

Output Modules

The module name What it does

CULEDUMP Prints an output l ine in vertical or

horizontal dump format

CULELABL Creates labels

CULEMLIN Prints multiple output l ines and multiple
logical footer l ines

CULEVSAM Writes records to a user-defined VSAM file

CULEPOWR Segments reports in a CA Culprit job
through VSE/POWER

Syntax Diagram Conventions

The syntax diagrams presented in this guide use the following notation conventions:

UPPERCASE OR SPECIAL CHARACTERS

Represents a required keyword, partial keyword, character, or symbol that must be

entered completely as shown.

lowercase

Represents an optional keyword or partial keyword that, if used, must be entered
completely as shown.

italicized lowercase

Represents a value that you supply.

lowercase bold

Syntax Diagram Conventions

16 User Modules Guide

Represents a portion of the syntax shown in greater detail at the end of the syntax
or elsewhere in the document.

◄─

Points to the default in a l ist of choices.

►►────────────────────

Indicates the beginning of a complete piece of syntax.

────────────────────►◄

Indicates the end of a complete piece of syntax.

─────────────────────►

Indicates that the syntax continues on the next l ine.

►─────────────────────

Indicates that the syntax continues on this l ine.

────────────────────►─

Indicates that the parameter continues on the next l ine.

─►────────────────────

Indicates that a parameter continues on this l ine.

►── parameter ─────────►

Indicates a required parameter.

►──┬─ parameter ─┬─────►
 └─ parameter ─┘

Indicates a choice of required parameters. You must select one.

►──┬─────────────┬─────►
 └─ parameter ─┘

Indicates an optional parameter.

►──┬─────────────┬─────►
 ├─ parameter ─┤
 └─ parameter ─┘

Indicates a choice of optional parameters. Select one or none.

 ┌─────────────┐
►─▼─ parameter ─┴──────►

Indicates that you can repeat the parameter or specify more than one parameter.

 ┌─── , ─────────┐
►─▼─ parameter ───┴──────►

Indicates that you must enter a comma between repetitions of the parameter.

Syntax Diagram Conventions

Chapter 1: Introduction 17

Sample Syntax Diagram

The following sample explains how the notation conventions are used:

Chapter 2: Input Modules 19

Chapter 2: Input Modules

This section contains the following topics:

What Is an Input Module? (see page 19)
What You Can Do with an Input Module (see page 19)
How to Invoke an Input Module (see page 20)

Processing Spanned Records—z/VSE (CULSPAN) (see page 20)
Selective Retrieval of VSAM files (CULLVSAM) (see page 26)

What Is an Input Module?

An input module is a subroutine called from a CA Culprit INPUT parameter to read fi les

not normally available to a standard CA Culprit run.

Two input modules, CULSPAN and CULLVSAM, are supplied on CA Culprit installation
media and described in this section.

What You Can Do with an Input Module

The tasks you can perform with CA-supplied input modules are l isted as follows.

To... Use...

Read an input fi le containing spanned records

(z/VSE only)

CULSPAN

Read key-sequenced (KSDS) or
entry-sequenced (ESDS) VSAM files
sequentially from a pointed start

Read KSDS or ESDS VSAM files directly by key
or relative byte address (RBA)

CULLVSAM

How to Invoke an Input Module

20 User Modules Guide

How to Invoke an Input Module

You can invoke an input module by naming the module on the UM option of the INPUT
parameter:

Processing Spanned Records—z/VSE (CULSPAN)

What You Can Do

If you are working in a z/VSE environment, you can use CULSPAN to read an input fi le

containing records that span one or more blocks. CULSPAN delivers the records to the
CA Culprit input buffer and allows you to use standard CA Culprit code for further
processing.

How to Use CULSPAN

To invoke CULSPAN:

1. Define the z/VSE input file in the FILE SECTION of the CULSPAN source code.

The source code for CULSPAN is written in COBOL, as shown in the following figure.
Instructions for defining the input fi le in the source code follow the COBOL listing.

2. Compile and link edit the CULSPAN code.

3. Code an INPUT parameter with:

■ The size of the largest input record

■ V, for variable-length records

■ The block size of the input fi le

■ The module name

Col

2

▼

INPUT maximum-record-size-n V block-size-n UM (CULSPAN)

Processing Spanned Records—z/VSE (CULSPAN)

Chapter 2: Input Modules 21

CULSPAN Source Code Listing

CULSPAN is supplied in source form only. Each site must adapt CULSPAN for its use by
changing the COBOL statements that describe the input fi le.

Processing Spanned Records—z/VSE (CULSPAN)

22 User Modules Guide

001000 IDENTIFICATION DIVISION.

002500* CONTAINS PTF # 83-01-0076 TJG 15:20:19 07/28/83

003000 PROGRAM-ID. CULSPAN.

005000 AUTHOR. CA, Inc.

009000 REMARKS. THIS PROGRAM IS AN INPUT MODULE WHICH

010000 READS AN INPUT REC INTO CULPRIT'S INPUT BUFFER.

012000 DATE-WRITTEN. mm/dd/yy

013000 DATE-COMPILED. mm/dd/yy

045000 ENVIRONMENT DIVISION.

047000 CONFIGURATION SECTION.

048000 SOURCE-COMPUTER. IBM-370.
049000 OBJECT-COMPUTER. IBM-370.

051000 INPUT-OUTPUT SECTION.
052000 FILE-CONTROL.

070000 DATA DIVISION.

072000 FILE SECTION.

073000 FD SPANNED-FILE
074000 BLOCK CONTAINS 2000 CHARACTERS

075000 LABEL RECORD IS LABEL-RECORD

076000 RECORD CONTAINS 187 TO 339 CHARACTERS
077000 RECORDING MODE IS S

078000 DATA RECORD IS SPANNED-RECORD.

079000 01 LABEL-RECORD PICTURE X(80).
080000 01 SPANNED-RECORD PICTURE X(339).

082000 WORKING-STORAGE SECTION.

084000 01 SELECT-SWITCH PICTURE X(1) VALUE ' '.

085000 01 SWITCH-VALUES.
086000 02 FILE-CLOSE-STATUS PICTURE X(1) VALUE '_'.

087000 02 FILE-OPEN-STATUS PICTURE X(1) VALUE '_'.

088000 02 FILE-STOP-STATUS PICTURE X(1) VALUE '_'.
089000* ***

090000* *

091000* NOTE: INFORMATIONAL *
092000* *

093000* THE ABOVE THREE SWITCH VALUES ARE MULTIPUNCHED CODES. *

094000* THEY ARE AS FOLLOWES: *

095000* CLOSE IS HEX'FF' MULTI=12,11,0,7,8,9 *

096000* OPEN IS HEX'00' MULTI=12,0,1,8,9 *

097000* STOP IS HEX'0F' MULTI=12,7,8,9 *

098000* ***

099000 01 ERROR-MESSAGES.

100000 02 ERROR-MSG1 PICTURE X(37)

101000 VALUE 'CULSPAN ERROR - INVALID CULARG SWITCH'.

102000 02 ERROR-MSG2 PICTURE X(31)

103000 VALUE 'CULSPAN ERROR - CULARG SWITCH= '.

105000 LINKAGE SECTION.

106000 01 CULARG-INPUT PICTURE X(80).
107000 01 CULARG-DEVICE-CODE PICTURE X(1).

108000 01 CULARG-SWITCH PICTURE X(1).

109000 01 CULARG-FORMAT-CODES PICTURE X(2).
110000 01 CULARG-RECORD-SIZE PICTURE 9(2) USAGE COMP.

111000 01 CULARG-BLOCK-SIZE PICTURE 9(2) USAGE COMP.

112000 01 CULARG-FILE-NAME PICTURE X(8).
113000 01 CULARG-DO-NOT-USE PICTURE X(1).

114000 01 CULARG-PRINT-ROUTINE PICTURE X(1).

116000 PROCEDURE DIVISION
118000 USING CULARG-INPUT

119000 CULARG-DEVICE-CODE

120000 CULARG-SWITCH
121000 CULARG-FORMAT-CODES

122000 CULARG-RECORD-SIZE

Processing Spanned Records—z/VSE (CULSPAN)

Chapter 2: Input Modules 23

123000 CULARG-BLOCK-SIZE

124000 CULARG-FILE-NAME

125000 CULARG-DO-NOT-USE

126000 CULARG-PRINT-ROUTINE.

127000
129000 PARA01-CULSPAN-CONTROL.

130000 MOVE ' ' TO SELECT-SWITCH.

131000 IF CULARG-SWITCH = FILE-CLOSE-STATUS
132000 PERFORM PARA02-OPEN THRU PARA02-EXIT

133000 ELSE

134000 IF CULARG-SWITCH = FILE-OPEN-STATUS
135000 PERFORM PARA03-READ THRU PARA03-EXIT

136000 UNTIL SELECT-SWITCH = 'Y'

137000 ELSE
138000 IF CULARG-SWITCH = FILE-STOP-STATUS

139000 PERFORM PARA05-CLOSE THRU PARA05-EXIT

140000 ELSE
141000 PERFORM PARA06-SWITCH-ERROR

142000 THRU PARA06-EXIT.

143000
144000 GOBACK.

146000 PARA02-OPEN.
147000 OPEN INPUT SPANNED-FILE.

148000 MOVE FILE-OPEN-STATUS TO CULARG-SWITCH.

149000 PERFORM PARA03-READ THRU PARA03-EXIT
150000 UNTIL SELECT-SWITCH = 'Y'.

151000 PARA02-EXIT.

152000 EXIT.

154000 PARA03-READ.

155000 READ SPANNED-FILE INTO CULARG-INPUT
156000 AT END

157000 PERFORM PARA04-CLOSE THRU PARA05-EXIT

158000 MOVE 'Y' TO SELECT-SWITCH

159000 GO TO PARA03-EXIT.

160000 PARA03-SELECT.

161000 CALL 'CULLCBSL' USING CULARG-INPUT SELECT-SWITCH.

162000 PARA03-EXIT.

163000 EXIT.

165000 PARA04-CLOSE.

166000 MOVE FILE-CLOSE-STATUS TO CULARG-SWITCH.

168000 PARA05-CLOSE.

169000 CLOSE SPANNED-FILE.

170000 PARA05-EXIT.
171000 EXIT.

173000 PARA06-SWITCH-ERROR.
174000 DISPLAY ERROR-MSG1.

175000 DISPLAY ERROR-MSG2 CULARG-SWITCH.

176000 PERFORM PARA04-CLOSE THRU PARA05-EXIT.
177000 PARA06-EXIT.

178000 EXIT.

Processing Spanned Records—z/VSE (CULSPAN)

24 User Modules Guide

CULSPAN Source Code Modifications

The z/VSE input fi le must be defined in the FILE SECTION of the CULSPAN source code,
as shown below:

 DATA DIVISION.

 FILE SECTION.

 FD SPANNED-FILE

 BLOCK CONTAINS number-of-characters CHARACTERS

 LABEL RECORD IS label-record-name

 RECORD CONTAINS minimum-record-size-n TO

 maximum-record-size-n CHARACTERS

 RECORDING MODE IS S

 DATA RECORD IS SPANNED-RECORD.

 01 LABEL-RECORD PIC X(80).

 01 SPANNED-RECORD PIC X(maximum-record-size-n).

■ Number-of-characters specifies the maximum number of characters contained in an

input fi le block.

■ Label-record-name identifies the label record on the input fi le:

– Nonstandard or user-supplied label records are coded on a 01 level.

– Standard or omitted label records are coded with an appropriate COBOL clause,

such as LABEL RECORDS ARE STANDARD or LABEL RECORDS ARE OMITTED.

■ Minimum-record-size-n TO maximum-record-size-n specifies minimum and
maximum record sizes on the input fi le. The maximum record size on the

SPANNED-RECORD description must match the record size entered in the RECORD
CONTAINS clause.

Processing Spanned Records—z/VSE (CULSPAN)

Chapter 2: Input Modules 25

Helpful Hints

■ z/OS users can read spanned records by specifying RECFM=VBS and BFTEK=A
subparameters in the JCL statement that defines the input fi le.

//SYS010 DD DSN=user.inputfil,UNIT=tape,DISP=SHR,

 VOL=SER=nnnnnn,

 DCB=(RECFM=VBS,BFTEK=A,LRECL=256,BLKSIZE=3156)

 user.inputfil = data set name for primary input file

 tape = symbolic device name for tape file

 nnnnnn = volume serial number

■ Spanned records are not supported for z/VM.

Example

This sample code shows the COBOL source code and the CA Culprit INPUT parameter
needed to read spanned input records in a z/VSE environment.

In the following code:

■ The spanned-fi le is assigned to SYS010 in the COBOL source code FILE-CONTROL
section.

■ SYS010 is a CA Culprit default and does not have to be specified in the CA Culprit
code.

■ Record size ranges from 187 to 339 characters.

■ Block size is 2000 characters.

Selective Retrieval of VSAM files (CULLVSAM)

26 User Modules Guide

The modified COBOL source code:

 .

 .

 .

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT SPANNED-FILE ASSIGN TO SYS010-UT-3420-S.

 DATA DIVISION.

 FILE SECTION.

 FD SPANNED-FILE

 BLOCK CONTAINS 2000 CHARACTERS

 LABEL RECORD IS LABEL-RECORD

 RECORD CONTAINS 187 to 339 CHARACTERS

 RECORDING MODE IS S

 DATA RECORD IS SPANNED-RECORD.

 01 LABEL-RECORD PIC X(80).

 01 SPANNED-RECORD PIC X(339).

 .

 .

 .

The CA Culprit code:

Col

2

▼

IN 339 V 2000 UM(CULSPAN)

Selective Retrieval of VSAM files (CULLVSAM)

What You Can Do

CULLVSAM retrieves selected records from a VSAM file that is used as input for a CA

Culprit run. You can use CULLVSAM to read selected variable- or fixed-length records
that are stored in key-sequenced (KSDS) or entry-sequenced (ESDS) VSAM files. The
VSAM records can be read:

■ Sequentially from a particular point in the VSAM file (pointed start)

■ Directly by key or relative byte address (RBA)

Selective Retrieval of VSAM files (CULLVSAM)

Chapter 2: Input Modules 27

How CULLVSAM Works

■ For sequential reads using a pointed start, CULLVSAM uses a key control statement
to target the first VSAM record for the read. The key control statement specifies:

– A relative byte address for entry-sequenced fi les

– A key for key-sequenced fi les

After CA Culprit finds the target record, records are delivered sequentially to the
input buffer until the end of the fi le is reached. If the starting record is not found,
the read starts at the record with the next highest key.

■ For direct reads, CULLVSAM requires three fi les:

– The VSAM source fi le

– A sequential fi le (key fi le) that contains records with either key values for a
KSDS fi le or relative byte addresses for an ESDS fi le

– A VSAM control fi le to define the key fi le

Upon execution of CULLVSAM, CA Culprit delivers the key fi le record to the
beginning of the input buffer, followed by the retrieved VSAM record and the RDW,
which is a binary field that overlay the last two bytes.

How to Use CULLVSAM

To invoke CULLVSAM, code:

1. An INPUT parameter specifying CULLVSAM on the UM option:

■ Record-size-n is a number in the range 1 through 32767 that specifies the size
of the input record.

■ Block-size-n is a number in the range 1 through 32767 that specifies the size of

a physical block of records.

2. One or more control statements, as needed, in the job control language for CA
Culprit's extract phase (CULL step). The necessary control statements are described

later in this section.

Selective Retrieval of VSAM files (CULLVSAM)

28 User Modules Guide

Performing a Sequential Read from a Pointed Start

To read records sequentially from a specific place in the input fi le, code:

■ An INPUT parameter using the UM(CULLVSAM) option

■ REC parameters describing the VSAM file

■ Control statements defining a password, if necessary, and the starting point for the
read:

– Use PW= as the first control statement if the fi le is password protected.

– Use the KEY control statement for key-sequenced fi les. See "Coding the KEY

control statement for a pointed start" in this section for the syntax.

– Use the ADR control statement for entry-sequenced fi les. See "ADR control
statement" in this section for the syntax.

Coding the KEY Control Statement for a Pointed Start

To access key-sequenced fi les at a specific place in the fi le, code the following control
statements.

Pointed Start for z/OS

For z/OS, assign the external fi le name VSAMCTRL for the control statements:

//VSAMCTRL DD *

 KEY key-field-format-a key-value-q

Key-field-format-a is a 1-character code in column 6 that specifies the key value format:

The code... Specifies...

C Character

H Hexadecimal

Key-value-q, coded in column 7 and enclosed in single quotation marks, specifies an

alphanumeric or hexadecimal value of the target key.

Selective Retrieval of VSAM files (CULLVSAM)

Chapter 2: Input Modules 29

Pointed Start for z/VSE

For z/VSE, read the control statement(s) in from SYSIPT:

5-step JCL:

// ASSGN SYSIPT,X'device'

// EXEC CULL,SIZE=300K

 KEY key-field-format-a key-value-q

1-step JCL:

// EXEC CULPRIT,SIZE=300K

 CULPRIT PARAMETERS

/*

 KEY key-field-format-a key-value-q

/*

The size specification must be small enough to allow space allocation for VSAM modules
in the GETVIS area.

Coding the ADR Control Statement for a Pointed Start

To access entry-sequenced fi les at a specific place in the fi le, code the following control

statements:

Pointed Start for z/VSE

For z/VSE, assign the external fi le name VSAMCTRL for the control statements:

//VSAMCTRL DD *

 ADR H hexadecimal-position-qx

■ H is a 1-character keyword, coded in column 6, that formats the key field.

■ Hexadecimal-position-qx specifies a fullword hexadecimal value (8 digits) that
identifies the starting byte of the targeted record within the fi le. The first byte of

the fi le is always '00000000'. Hexadecimal-position-qx starts in column 7 and is
enclosed in single quotation marks.

Selective Retrieval of VSAM files (CULLVSAM)

30 User Modules Guide

Pointed Start for z/OS

For z/OS, read the control statement(s) in from SYSIPT:

5-step JCL:

 // ASSGN SYSIPT,X'device'

 // EXEC CULL,SIZE=300K

 ADR H hexadecimal-position-qx

1-step JCL:

 // EXEC CULPRIT,SIZE=300K

 CULPRIT PARAMETERS

 /*

 ADR H hexadecimal-position-qx

 /*

The size specification must be small enough to allow space allocation for VSAM modules
in the GETVIS area.

Notes

■ The input buffer size should include two additional bytes for the RDW to avoid any

loss of data.

■ To read a VSAM file from the beginning, use the VS option of the INPUT parameter.
VS allows retrieval from all types of VSAM files.

■ Valid control statements must be used in CA Culprit JCL. If CULLVSAM encounters a
blank card (z/VSE) or if VSAMCTRL is DUMMY (z/OS) the read will start at the
beginning of the fi le.

■ If a fi le is password protected and the PW= control statement is omitted, the

console operator must supply the password for the fi le to be opened.

■ Partial keys, starting with the leftmost character, can be used for accessing
key-sequenced fi les.

Selective Retrieval of VSAM files (CULLVSAM)

Chapter 2: Input Modules 31

Example—KSDS Pointed Start

This example performs a sequential read of a KSDS fi le, starting with account 7778888.

The following code:

■ Specifies CULLVSAM on the UM option of the INPUT parameter

■ Instructs CULLVSAM, through the key control statement, to start reading the fi le
with the record that contains 7778888 in the first position of the key field

 IN 80 F 80 UM(CULLVSAM)

 REC NAME 1 20

 REC BALANCE 21 6 2 DP=2

 REC ACCOUNT 33 4 3

 013EXAMPLE OF CULLVSAM

 01410038 'SEQUENTIAL READ FROM A POINTED START OF'

 01410078 'KEY-SEQUENCED FILE'

 01420001 ' '

 0151*001 NAME HH 'NAME'

 0151*002 BALANCE HH 'BALANCE'

 0151*003 ACCOUNT FN HH 'ACCOUNT'

 01OUT D

//CULPRIT.VSAMCTRL DD *

 KEY C'7778888'

Example—ESDS Pointed Start

This example does a sequential read of records in an ESDS fi le, starting with the second

record.

The following code:

■ Specifies CULLVSAM on the UM option of the INPUT parameter

■ Uses the key control statement, coded in the JCL CULL step, to instruct CULLVSAM

to start a sequential read from the relative byte address of the second record in the
fi le

Selective Retrieval of VSAM files (CULLVSAM)

32 User Modules Guide

 IN 80 F 80 UM(CULLVSAM)

 REC NAME 1 20

 REC BALANCE 21 6 2 DP=2

 REC ACCOUNT 33 4 3

 013EXAMPLE OF CULLVSAM

 01410040 'SEQUENTIAL READ FROM A POINTED START OF'

 01410080 'ENTRY-SEQUENCED FILE'

 01420001 ' '

 0151*001 NAME HH 'NAME'

 0151*002 BALANCE HH 'BALANCE'

 0151*003 ACCOUNT FN HH 'ACCOUNT'

 01OUT D

// ASSGN SYSIPT,X'device'

// EXEC CULL,SIZE=300K

 ADR H'00000050'

Performing a Direct Read

To perform a direct read, code the following:

1. The INPUT parameter using the UM(CULLVSAM) option

2. REC parameters describing the VSAM file

The start position of the VSAM record is relative to the beginning of the input
buffer. The input buffer contains the entire key-fi le record followed by the VSAM

record.

3. Type 7 logic (for key-sequenced fi les) to compare key fi le values to the key value of
the retrieved VSAM record

4. The VSAM and key file assignment in the CA Culprit job control language:

■ The VSAM file is assigned to SYS010 in the CA Culprit JCL.

If an alternate input fi le is required, it can be assigned with the DD= option on
the INPUT parameter.

■ The sequential fi le containing key values (a key fi le) is assigned to SYS002.

5. A KEY control statement in the CULL step of the CA Culprit job control language.
See the following "Coding the KEY control statement" for syntax.

Selective Retrieval of VSAM files (CULLVSAM)

Chapter 2: Input Modules 33

Coding the KEY Control Statement for Direct Reads

To directly access specific records in the fi le, code the KEY control statement as shown
below:

■ Record-size-n, coded in columns 5 through 8, is a 4-digit number, that indicates the

size of the key fi le record.

■ F/V/U, coded in column 9, identifies the record type:

The code... Identifies...

F (default) Fixed-length records

V Variable-length records

U Undefined length records

■ Records-per-block-n, coded in columns 10 through 12, is a 3-digit number that
indicates the number of records in each block on the key fi le.

■ File-type-a, coded in column 13, is a 1-character code that defines the structure of

the key fi le:

The code... Identifies a...

Blank (default) Sequential fi le (z/VSE)

Tape fi le (z/VSE)

4 Punched card (z/VSE)

8 VSAM file (z/OS)

Selective Retrieval of VSAM files (CULLVSAM)

34 User Modules Guide

■ Label-type-a, coded in column 14, is a 1-character code that specifies the label type
of the key fi le:

The code... Identifies...

Blank (default) Standard labels

S Standard labels

N No labels

A Standard labels

User-defined labels

■ K/A is a 1-character keyword, coded in column 17, that identifies the VSAM file
type:

The keyword... Identifies...

K KSDS

A ESDS

■ Start-position-n, coded in columns 22 through 25, is a 4-digit number that indicates

the starting position of the key value on the key fi le record.

■ Field-size-n, coded in columns 26 and 27, is a 2-digit number that indicates the
length of the key field. When the key field size on the key fi le is less than the length
of the VSAM key, the key fi le value is padded with binary zeros on the right.

Notes

■ If the fi le is password protected, it cannot be opened without a valid password. Use
PW= as the first control statement or omit the PW= statement and allow the
console operator to supply the password.

■ If a match between keys on the VSAM file and the key fi le cannot be made,

CULLVSAM will return the record with the next higher key.

■ If a record with the next higher key does not exist, CULLVSAM will return two
asterisks (**) to the first two positions of the VSAM area in the CA Culprit input

buffer.

Selective Retrieval of VSAM files (CULLVSAM)

Chapter 2: Input Modules 35

Example

This example retrieves selected records directly from a variable-length KSDS fi le.

The following code uses:

■ An INPUT parameter that specifies:

– Variable-length records

– A record size of 162 bytes, consisting of:

– The key fi le record size (80 bytes)

– The VSAM record size (80 bytes)

– The record descriptor word (RDW) (2 bytes)

■ A key control statement that describes the key fi le as:

– A KSDS fi le having standard labels, 80-character fixed-length records, and a
block size of one record

– Having a key that is 4-bytes long and starts in position 1 of the key fi le

■ Type 7 logic checks the key values of the key fi le and the VSAM record.

 IN 162 V 80 UM(CULLVSAM)

 REC KEYFILE-KEY 1 4 3

 REC NAME 81 16

 REC BALANCE 97 6 2 DP=2

 REC ACCOUNT 109 4 3

 013EXAMPLE OF CULLVSAM

 01410040 'DIRECT READ OF A VARIABLE LENGTH KEY-SEQUENCED FILE'

 0142*001 ' '

 0151*001 NAME HH 'NAME'

 0151*002 BALANCE HH 'BALANCE'

 0151*003 ACCOUNT FN HH 'ACCOUNT'

 0151*004 KEYFILE-KEY FN HH 'KEY FROM' 'KEYFILE'

 017 IF NAME EQ '**' DROP

 017 IF KEYFILE-KEY EQ ACCOUNT TAKE

 017 DROP

 01OUT D

//CULPRIT.VSAMCTRL DD *

 KEY0080F001 K 000104

Chapter 3: Procedure Modules 37

Chapter 3: Procedure Modules

This section contains the following topics:

What Is a Procedure Module? (see page 37)
What You Can Do with a Procedure Module (see page 38)
What a Procedure Module Does (see page 39)

How to Invoke a Procedure Module (see page 39)
The Universal Interface (CULLUS00) (see page 42)
Dynamic Sequential File Processing (CULLUS01) (see page 44)

System Time and Date Retrieval (CULLUS10) (see page 47)
Julian Date Conversion (CULLUS11) (see page 53)
Century Date Conversion (CULLUS12) (see page 55)
Gregorian Date Conversion (CULLUS14) (see page 58)

Universal Date Conversion (CULLUS15) (see page 62)
Random Access of ISAM Files (CULLUS22) (see page 65)
Random Access of VSAM Files (CULLUS25) (see page 74)

Creating a Vertical Hexadecimal Dump (CULLUS29) (see page 78)
Obtaining Hexadecimal Representation (CULLUS31) (see page 81)
Converting Packed Decimal to Binary (CULLUS33) (see page 82)
Converting Packed Decimal to Zoned Decimal (CULLUS34) (see page 84)

Interpreting Bit Settings (CULLUS35) (see page 86)
Converting Floating Point Values to Packed Decimal(CULLUS36) (see page 88)
Converting Doubleword Binary to Packed Decimal (CULLUS37) (see page 91)
Sending Messages (CULLUS40) (see page 92)

Moving Fields to an Input Buffer Area (CULLUS43) (see page 94)
Moving Variable-length Data (CULLUS45) (see page 96)
String Search (CULLUS46) (see page 100)

Creating a Run-time Message (CULLUS48) (see page 104)
Converting Binary Strings (CULLUS50) (see page 105)
Concatenating Fields (CULLUS53) (see page 107)
Searching a Table (CULLUS62) (see page 110)

Processing Data Dictionary Reporter Tables (CULLUS64) (see page 113)
Memory Dump (CULLUS99) (see page 116)

What Is a Procedure Module?

A procedure module is an Assembler, PL/I, COBOL, or FORTRAN subroutine that is called

during type 7 processing logic to facil itate special processing tasks performed by CA
Culprit.

This section presents a general discussion of procedure modules, followed by a
discussion of each CA-supplied module and an example.

What You Can Do with a Procedure Module

38 User Modules Guide

What You Can Do with a Procedure Module

The tasks you can perform with CA-supplied procedure modules are l isted in the
following table.

What You Can Do with CA-supplied Procedure Modules

To... Use...

Use your own user-written module with CA Culprit CULLUS00

Retrieve sequential fi le records during the execution of a CA
Culprit run (z/OS)

CULLUS01

Retrieve system time and date CULLUS10

Convert a Julian date to Gregorian CULLUS11

Convert century dates to a user-specified format CULLUS12

Convert a Gregorian date to Julian CULLUS14

Convert any date format to a user-specified format CULLUS15

Retrieve ISAM files (direct access) CULLUS22

Retrieve VSAM files (direct access) CULLUS25

Format a vertical hexadecimal dump CULLUS29

Display in hexadecimal CULLUS31

Convert a packed decimal field to binary CULLUS33

Convert a packed decimal field to zoned decimal CULLUS34

Display bit settings CULLUS35

Convert a floating point value to decimal CULLUS36

Convert double-word binary to packed decimal CULLUS37

Send messages to the console operator (z/VSE) CULLUS40

Move variable-length data from one field to another CULLUS43

Move variable-length fields to fixed-length locations CULLUS45

Search a character string CULLUS46

Generate a run-time message CULLUS48

Convert a binary string to alphanumeric or numeric values CULLUS50

Concatenate fields CULLUS53

What a Procedure Module Does

Chapter 3: Procedure Modules 39

To... Use...

Search a CA Culprit table CULLUS62

Create and read a table of attributes from the Integrated Data
Dictionary

CULLUS64

Cause a memory dump CULLUS99

What a Procedure Module Does

When a procedure module is called from type 7 logic, CA Culprit:

1. Loads a single copy of the module.

2. Constructs an argument table, which contains:

a. The starting address of the CA Culprit input buffer

b. Pointers to a maximum of nine user-supplied arguments

3. Passes control to the procedure module. The module then processes the data

received through coded module arguments and returns the results to receiving
fields defined in the CA Culprit program.

4. Resumes processing control. Processing begins with the statement in type 7 logic
immediately following the CALL to the procedure module.

How to Invoke a Procedure Module

You can invoke procedure modules by either:

■ Issuing a CALL statement from a type 7 parameter

■ Moving data into reserve words (ARG1 through ARG9) and then branching to the

module

The CALL statement is the most convenient method and is used throughout this manual.
Each method is described as follows.

How to Invoke a Procedure Module

40 User Modules Guide

Calling a Procedure Module

First—Define input or work fields to hold argument values that are sent to the
procedure module.

Second—Define input or work fields to receive values returned from the procedure

module.

Usually, type 0 work fields are initialized to spaces (for alphanumeric fields) or zeros (for
numeric fields).

Third—Issue a CALL statement from a type 7 parameter to the module being invoked:

■ Rpt-nn, coded in columns 2 and 3, specifies a 2-digit number in the range 00
through 99 that identifies the CA Culprit report.

■ Sss, coded in columns 5 through 7, speci fies a 3-digit number indicating the

sequence number of the type 7 parameter.

■ Nn specifies a 2-digit number in the range 00 through 99 that identifies the
procedure module.

■ Module-argument specifies one or more values to be passed to and from the
module.

All values must be specified in sequence. To omit an alphanumeric argument,
specify a blank enclosed in single quotation marks. To omit a numeric value, specify

a zero.

Fourth—Reset argument values before reissuing a CALL to the same module.

How to Invoke a Procedure Module

Chapter 3: Procedure Modules 41

Branching to a Procedure Module

1. Move values individually to the reserved field names (ARG1 through ARG9).

2. Follow the MOVE statements by a branch (B) to the procedure module.

The following example moves values to arguments (ARG) 1 through 4 before

branching to US33:

Col

2

▼

 .

 .

 .

017010 MOVE PACKED-NUMBER TO ARG1

017020 MOVE 8 TO ARG2

017030 MOVE BINARY-RESULT TO ARG3

017040 MOVE 4 TO ARG4

017050 B US33

Helpful Hints

■ Arguments must be coded in the sequence shown in the syntax. A zero (numeric) or
a space, enclosed in single quotation marks, (alphanumeric) are used as place

holders for unused arguments.

■ Numeric arguments should be 8-byte packed decimal. Decimal positions and more
than 15 digits are not allowed. When using values from work fields:

– Omit DP= specifications

– Omit initial values that contain decimals

■ You can use up to 100 procedure modules in a single CA Culprit job.

■ You can invoke the same procedure module in more than one report in a si ngle CA
Culprit run.

The Universal Interface (CULLUS00)

42 User Modules Guide

The Universal Interface (CULLUS00)

What You Can Do

CULLUS00 acts as an interface between a user-written subroutine that is not written
specifically for CA Culprit and a CA Culprit run. You can use CULLUS00 to invoke up to 25

processing subroutines that you have written, providing your routines:

■ Omit pointing to the address of the input buffer in the first argument

■ Use CULF as a prefix to the name if the module being called is written in FORTRAN.

■ Are compiled and link edited

For details on writing and link editing your own modules, see the chapter "Writing User
Modules."

How CULLUS00 Works

CULLUS00:

■ Dynamically loads the user-written module to make it accessible to CA Culprit.

■ Automatically passes up to eight arguments specified immediately after the module
name on the CALL statement to the user-written module.

Contrary to CA-supplied modules that do not require the CULLUS00 interface, the
address of CA Culprit's input buffer is not passed in the first argument (ARG1).

■ Automatically converts CA Culprit numeric work fields to FORTRAN data formats
when a FORTRAN subroutine with a CULF name prefix is called:

CULPRIT field... FORTRAN format...

8-byte packed decimal 4-byte binary field

16-byte packed decimal (8 decimal places
assumed)

Double-precision floating point

Conversion to single-precision floating point is not supported by CULLUS00.

The Universal Interface (CULLUS00)

Chapter 3: Procedure Modules 43

How to Use CULLUS00

To invoke CULLUS00:

1. Define the sending and receiving fields (arguments) within the CA Culprit program.

2. Issue a CALL statement from type 7 logic:

■ Rpt-nn, coded in columns 2 and 3, specifies a 2-digit number in the range 00
through 99 that identifies the CA Culprit report.

■ Sss, coded in columns 5 through 7, specifies a 3-digit number indicating the

sequence number of the type 7 parameter.

■ Module-name-q (ARG1) requires an 8-character user-written module name,
enclosed in single quotation marks. If the name is less than 8 characters, pad the
right with blanks.

■ Argument-v (ARG2 through ARG9) requires 1 to 8 values, separated by a space or
comma, that correspond to the arguments expected by the called module.

Example

This sample code shows the CA Culprit parameters required to call the user -written

module MYPROG, which converts Fahrenheit temperatures to centigrade.

The following code:

■ Defines work fields for the sending field (FAHREN) and the receiving field (CENT)

■ Issues a CALL to CULLUS00 from a type 7 parameter to convert 820 Fahrenheit to

centigrade.

IN 80 F 2960

REC FIELD1 1 80

010 FAHREN 82

010 CENT 0

013 TEMPERATURE CONVERSION USING CULLUS00

 .

 .

 .

017010 CALL US00 ('MYPROG ' FAHREN CENT)

Dynamic Sequential File Processing (CULLUS01)

44 User Modules Guide

Dynamic Sequential File Processing (CULLUS01)

What You Can Do

CULLUS01 allows z/OS users to dynamically access a sequential data set during a CA
Culprit run. Using CULLUS01, you can:

■ Open a sequential input fi le during processing

■ Read records from the sequential fi le into fields defined in the CA Culprit code

■ Close the sequential input fi le before end-of-fi le has been reached by CULLUS01

How to Use CULLUS01

To invoke CULLUS01:

First—Define a dummy buffer area equal to the length of the retrieved record.

■ For non-database runs, use the MB= option on an additional INPUT parameter or
specify an alphanumeric work field that has the length of the retrieved record.

■ For database runs, use one INPUT parameter that includes the extra storage
requirement in the record size specification.

Second—Define fields in the dummy buffer area by using REC parameters.

Third—Define a 1-character alphanumeric work field to contain user instructions and
CULLUS01 return values. Valid contents of this field are l isted as follows under task-v.

Fourth—Issue a CALL to CULLUS01 in type 7 logic:

Col

2

▼

RPT-nn7sss CALL US01 (result-v task-v)

■ Rpt-nn, coded in columns 2 and 3, specifies a 2-digit number in the range 00

through 99 that identifies the CA Culprit report.

■ Sss, coded in columns 5 through 7, specifies a 3-digit number indicating the
sequence number of the type 7 parameter.

■ Result-v (ARG1) requires the name of the field that receives the retrieved
record.

■ Task-v (ARG2) requires the name of a 1-character alphanumeric work field to
hold user instructions and CULLUS01 return values:

Dynamic Sequential File Processing (CULLUS01)

Chapter 3: Procedure Modules 45

The value... Set by... Means...

B The user Open the input fi le, access the first
record, and return it to the receiving field.

S The user Close the input fi le.

E CULLUS01 End-of-fi le and CULLUS01 has closed the
fi le.

Blank CULLUS01 Records were retrieved.

Fifth—Test return values in type 7 logic.

Sixth—Define the external sequential file in the CULP2 step of the CA Culprit job
control language (JCL):

System JCL statement

z/OS //US01 DD DSN=user.inputfi l ,UNIT=tape,DISP=OLD,
VOL=SER=nnnnnn

z/VM Tape input: FILEDEF US01 TAP01 SL (OPTIONS

Disk input: FILEDEF US01 DISK fn ft fm (OPTIONS

■ fn = fi le name of the external fi le

■ ft = fi le type of the external fi le

■ fm = fi le mode of the external fi le

Dynamic Sequential File Processing (CULLUS01)

46 User Modules Guide

Helpful hints

■ If you use the CULLUSnn naming convention, you can prevent confusion by using
numbers that are not found in the CA-supplied modules.

■ An I/O error results in an abend. Check the system completion code that

accompanies the abend to diagnose this error.

■ The 1-character alphanumeric work field (task-v) first holds user instructions, which
are later overwritten by CULLUS01 return values.

■ When the return value is E, CULLUS01 has closed the fi le. An abend results if

CULLUS01 is called again to close the fi le with a user-set value of S.

Example

This example uses CULLUS01 to retrieve customer account numbers from a sequential
fi le during a database run.

The following code:

■ Defines a database run

■ Allows 1000 bytes (default) for the input buffer

■ Uses a REC parameter (FIELD1) to define 5 bytes in the input buffer for the
customer account number returned by US01

■ Initializes work field EOFS to B, which directs CULLUS01 to open the input fi le and
get the first record

■ Issues a CALL to CULLUS01 from type 7 logic for record retrieval during the CA
Culprit run

■ Tests for end-of-fi le

System Time and Date Retrieval (CULLUS10)

Chapter 3: Procedure Modules 47

 DATABASE DICTNAME=DOCUDICT

 INPUT DB SS=EMPSS01

 PATHAA EMPLOYEE

 REC FIELD1 95 5 $READ IN ACCOUNT NUMBER USING //US01 DD

 010 EOFS 'B'

 010 TEST ' '

 013CULLUS01

 0151*010 EMP-NAME-0415 HH 'NAME'

 0151*020 FIELD1 HH 'ACCOUNT'

 0151*040 TEST HH 'RETRIEVAL'

 017010 CALL US01 (FIELD1,EOFS)

 017 IF EOFS = ' ' 200

 017 IF EOFS = 'E' STOP

 017200 MOVE 'OK' TO TEST

REPORT NO. 01 CULLUS01 mm/dd/yy PAGE 1

 NAME ACCOUNT RETRIEVAL

 KATHERINE O'HEARN 15060 OK

 PHINEAS FINN 21056 OK

 NANCY TERNER 29557 OK

 BETH CLOUD 30115 OK

 JAMES JACOBI 33470 OK

 TOM FITZHUGH 69876 OK

 DOUGLAS KAHALLY 99083 OK

System Time and Date Retrieval (CULLUS10)

What You Can Do

CULLUS10 retrieves the system time and date. You can use CULLUS10 to retrieve the:

■ Date in mmddyy format

■ Year in yy format

■ Month

■ Day

■ Day and time

■ Time in hhmmss format

■ Date in mmddccyy format

■ Year in ccyy format

System Time and Date Retrieval (CULLUS10)

48 User Modules Guide

How to Use CULLUS10

To invoke CULLUS10:

First—Define a 1-character alphanumeric work field, initialized with a return format
code (see below under format-v) or a blank, as the sending field.

Second—Define an 8-byte numeric work field, initialized to zero, for each receiving
field.

Third—Issue a CALL to CULLUS10 in type 7 logic:

Col

2

▼

RPT-nn7sssCALLUSnn(format-v date-mdcy-v date-ccyy-v date-mm-v date-dd-v time-v)

■ Rpt-nn, coded in columns 2 and 3, specifies a 2-digit number in the range 00

through 99 that identifies the CA Culprit report.

■ Sss, coded in columns 5 through 7, specifies a 3-digit number indicating the
sequence number of the type 7 parameter.

■ Format-v (ARG1) requires the name of the 1-character alphanumeric work field

containing the return format code:

Format code... Specifies... And returns the...

'2' mmddyy System date

'3' yy System year

'4' mm System month

'5' dd System day

'6' mmddyy/hhmmss System date and time

'7' hhmmss System time

'8' mmddccyy System date with century

'9' ccyy System year with century

'0' mmddccyy/hhmmss System date and time with
century

System Time and Date Retrieval (CULLUS10)

Chapter 3: Procedure Modules 49

■ Date-mdcy-v (ARG2) requires the name of the 8-byte numeric work field that
receives the system date in mmddyy or mmddccyy format.

■ Date-ccyy-v (ARG3) requires the name of the 8-byte numeric work field that
receives the system year in yy or ccyy format.

■ Date-mm-v (ARG4) requires the name of the 8-byte numeric work field that

receives the system month.

■ Date-dd-v (ARG5) requires the name of an 8-byte numeric work field that receives
the system day.

■ Time-v (ARG6) requires the address of an 8-byte numeric work field that receives

the system time.

Fourth—Test the value of the sending work field in type 7 logic. If the value is 'E', an
invalid field specification exists.

Helpful Hints

■ To improve run-time efficiency, code your logic so that CULLUS10 is invoked only
once.

■ Instead of using CULLUS10 to print the system date on report headings, code the CA
Culprit reserved word DATE on a type 4 parameter. The system date will print in the

mm/dd/yy format.

■ Use global work fields (GW0) when more than one report in the run requir es
system time or date output rather than call ing CULLUS10 in each report.

■ When testing for the value of the sending work field, branch to a type 7 statement
that causes a dump (ZERO / ZERO ZERO) or calls CULLUS48 to issue a run-time
message.

■ Canadian users can specify DS=C on the PROFILE parameter and retrieve the system

date in yy/mm/dd format on report titles.

System Time and Date Retrieval (CULLUS10)

50 User Modules Guide

Example 1

This example is a daily balance report that has the system date and time printed as

subtitles.

The following code:

■ Defines these work fields:

– FORMAT, an alphanumeric work field, is assigned 6 as a format code.

– WK-MDY, by default an 8-byte numeric work field, receives the system date
retrieved by CULLUS10.

– WK-TIME, by default an 8-byte numeric work field, receives the system time

retrieved by CULLUS10.

■ Uses a SORT/NOSORT parameter to make the current value of WK-MDY and
WK-TIME available to the type 4 parameter references.

■ Issues a CALL to CULLUS10 in type 7 logic to retrieve the date and time. Since ARG3

through ARG5 are not used, zeros act as position holders.

System Time and Date Retrieval (CULLUS10)

Chapter 3: Procedure Modules 51

IN 80 F 80

REC NAME 5 25

REC BALANCE 160 7 3 DP=2

010 FORMAT '6'

010 WK-MDY

010 WK-TIME

013 CULLUS10

01OUT 60 D

01SORT WK-MDY WK-TIME NOSORT

01410001 ' '

01420001 'DATE:'

01420007 WK-MDY FD

01430001 'TIME'

01430007 WK-TIME FM '99.99.99'

01440001 ' '

01510001 NAME HH 'NAME'

01510022 BALANCE HH 'BALANCE'

017 CALL US10 (FORMAT WK-MDY 0 0 0 WK-TIME)

REPORT NO. 01 CULLUS10 mm/dd/yy PAGE 1

DATE: mm/dd/yy

TIME 17.32.56

 NAME BALANCE

TERRY JANENS E 38,000.00
JOE NGUYA 31,000.00

MARK TIME 33,000.00

ROGER WILCO 80,000.00
ALBERT BREEZE 38,000.00

CAROLYN CROW 37,500.00

BURT LANCHESTER 54,500.00
RENE MAKER 85,000.00

MARYLOU JOHNSON 12.00

System Time and Date Retrieval (CULLUS10)

52 User Modules Guide

Example 2

This example is a daily balance report that has the system date and time printed as

subtitles. It is similar to Example 1, except the date is retrieved with the century.

The following code:

■ Defines these work fields:

– FORMAT, an alphanumeric work field, is assigned 0 as a format code.

– WK-MDC, by default an 8-byte numeric work field, receives the system date
retrieved by CULLUS10.

– WK-TIME, by default an 8-byte numeric work field, receives the system time

retrieved by CULLUS10.

■ Uses a SORT/NOSORT parameter to make the current value of WK-MDC and
WK-TIME available to the type 4 parameter references.

■ Issues a CALL to CULLUS10 in type 7 logic to retrieve the date and time. Since ARG3

through ARG5 are not used, zeros act as position holders.

Julian Date Conversion (CULLUS11)

Chapter 3: Procedure Modules 53

IN 80 F 80

REC NAME 5 25

REC BALANCE 160 7 3 DP=2

020 FORMAT '0'

020 WK-MDC

020 WK-TIME

023 CULLUS10

02OUT 60 D

02SORT WK-MDC WK-TIME NOSORT

02410001 ' '

02420001 'DATE:'

02420007 WK-MDC FM '99/99/9999'

02430001 'TIME'

02430007 WK-TIME FM '99.99.99'

01440001 ' '

01510001 NAME HH 'NAME'

01510022 BALANCE HH 'BALANCE'

017 CALL US10 (FORMAT WK-MDC 0 0 0 WK-TIME)

REPORT NO. 02 CULLUS10 mm/dd/yy PAGE 1

DATE: mm/dd/yyyy

TIME 19.26.21

 NAME BALANCE

TERRY JANENS E 38,000.00
JOE NGUYA 31,000.00

MARK TIME 33,000.00

ROGER WILCO 80,000.00
ALBERT BREEZE 38,000.00

CAROLYN CROW 37,500.00

BURT LANCHESTER 54,500.00
RENE MAKER 85,000.00

MARYLOU JOHNSON 12.00

Julian Date Conversion (CULLUS11)

What You Can Do

You can use CULLUS11 to convert a Julian date (yyddd), stored as a zoned or packed

decimal, to a packed decimal Gregorian date (mmddyy).

Julian Date Conversion (CULLUS11)

54 User Modules Guide

How to Use CULLUS11

To invoke CULLUS11:

1. Define an 8-byte packed decimal numeric input field or a work field to contain the
Julian date if the input date is stored in zoned decimal forma t.

If the input field is stored as a zoned decimal:

■ Move the input field to a numeric work field

■ Use this work field as the sending field for the Julian date

2. Define a numeric work field to receive the Gregorian date.

3. Test for invalid dates in type 7 logic.

4. Issue a CALL to CULLUS11 in type 7 logic:

Col

2

▼

RPT-nn7sss CALL US11 (jul-date-v greg-date-v)

■ Rpt-nn, coded in columns 2 and 3, specifies a 2-digit number in the range 00
through 99 that identifies the CA Culprit report.

■ Sss, coded in columns 5 through 7, specifies a 3-digit number indicating the

sequence number of the type 7 parameter.

■ Jul-date-v (ARG1) requires the name of the 8-byte packed decimal field
containing the Julian date.

■ Greg-date-v (ARG2) requires the name the numeric work field that receives the

Gregorian date.

Helpful Hints

■ Include error checking for invalid dates in the CA Culprit code. CULLUS11 does not
issue an error message if the Julian day is less than 001 or greater than 366.

■ CULLUS11 interprets a 00 year as a leap year. Dates in 1900 and 2100 will be
interpreted incorrectly.

Century Date Conversion (CULLUS12)

Chapter 3: Procedure Modules 55

Example

This example uses CULLUS11 to convert an input date in Julian format (yyddd) to an

output date in Gregorian format (mmddyy).

The following code:

■ Defines numeric work fields for the Julian input date and the Gregorian date

■ Checks for invalid dates

■ Moves the input Julian date to the numeric work field JUL-DATE

■ Issues a CALL to CULLUS11

IN 80 F 400

REC JUL-IN-DATE 1 5 2

REC JUL-IN-DAY 3 3 2

990 JUL-DATE 0

990 GREG-DATE 0

993CULLUS11

9951*010 JUL-DATE FM '99.999' HH 'JULIAN DATE'

9951*020 GREG-DATE FD HH 'GREGORIAN DATE'

997100 JUL-IN-DAY LT 001 DROP

997150 JUL-IN-DAY GT 366 DROP

997200 MOVE JUL-IN-DATE JUL-DATE

997250 CALL US11 (JUL-DATE GREG-DATE)

REPORT NO. 99 CULLUS11 mm/dd/yy PAGE 1

 JULIAN DATE GREGORIAN DATE

 96.299 10/25/96

 92.365 12/30/92
 90.100 04/10/90

 88.005 01/05/88

 94.050 02/19/94

 95.333 11/29/95

 91.083 03/24/91

Century Date Conversion (CULLUS12)

CULLUS12 converts any century date to a user-specified format.

Century Date Conversion (CULLUS12)

56 User Modules Guide

What You Can Do

You can use CULLUS12 to convert any date to any specified format. For example, you
can:

■ Convert Julian, Gregorian, European, and Canadian dates into any other specified

format

■ Use input dates that are stored as 8-byte alphanumeric or zoned decimal fields

■ Use input dates that are stored as 8-byte packed decimal fields

How to Use CULLUS12

To invoke CULLUS12:

■ First—Define the input date:

– On a REC parameter, if the date is part of an input record

– On a work field, if the value is supplied during the CULPRIT run

■ Second—Issue one or more calls to CULLUS12 in type 7 logic:

Col

2

▼

RPT-nn7sss CALL (input-field-v date-type-qv input-format-code-qv

 output-format-code-qv output-field-v)

■ Rpt-nn, coded in columns 2 and 3, specifies a 2-digit number in the range 00
through 99 that identifies the CULPRIT report.

■ Sss, coded in columns 5 through 7, specifies a 3-digit number indicating the
sequence number of the type 7 parameter.

■ Input-field-v (ARG1) requires the name of the field containing the date.

■ Date-type-qv (ARG2), enclosed in single quotation marks, requires an alphanumeric
l iteral to define the data type of the input field (ARG1):

The literal... The data type...

'Z' 8-byte alphanumeric or zoned decimal

'P' 8-byte packed decimal

Century Date Conversion (CULLUS12)

Chapter 3: Procedure Modules 57

■ Input-format-code-qv (ARG3), enclosed in single quotation marks, requires the
name of a 3-character alphanumeric work field or alphanumeric l iteral that defines

the format of input-field-v (ARG1):

Format code Input date format

'MDC' mmddccyy

'MCD' mmccyydd

'DMC' ddmmccyy

'DCM' ddccyymm

'CMD' ccyymmdd

'CDM' ccyyddmm

'CDD' ccyyddd

■ Output-format-code-qv (ARG4), enclosed in single quotation marks, requires the

name of a 3-character alphanumeric work field or alphanumeric l iteral that specifies
the date format for output-field-v (ARG5). Valid format codes appear above.

■ Output-field-v (ARG5) requires the name of an 8-byte packed decimal work field

that receives the converted date.

Helpful Hints

■ You can issue one or more calls to CULLUS12 from type 7 logic.

■ CULLUS12 checks for invalid dates and values:

– If an invalid date is encountered, the return date is converted to zero.

– If an invalid data type or format code is encountered, the input date is
converted to 999999.

■ When using an output format code which requires a century (ccyy) and the input

date does not include one, century will default to:

– 20 if yy <= 40

– 19 if yy > 40

■ The year which determines the default century (40) can be overridden with the
US12YR profile option when customizing the Culprit profile.

Note: For more information about this option, see the CA Culprit for CA IDMS Reference
Guide.

Gregorian Date Conversion (CULLUS14)

58 User Modules Guide

Example

This example uses CULLUS12 to:

■ Convert a zoned decimal input date in Canadian (ccyymmdd) format to Gregorian
format (mmddyycc)

■ Convert a work field date in Canadian format (ccyymmdd) to Julian format (ccyyddd)

The following code issues two calls to CULLUS12:

■ The first CALL reads in a Canadian format zoned decimal input field, converts the
date to a mmddccyy format, and stores the conversion in the work field
WK-IN-DATE.

■ The second CALL converts the work field WK-IN-DATE, converts the date to a
ccyyddd format, and stores the conversion in the work field WK-JUL-DATE.

 IN 80 F 400

 REC IN-DATE 1 2

 990 WK-IN-DATE

 990 WK-JUL-DATE

 993CULLUS12

 99410001 ' '

 9951*010 IN-DATE FM '9999/99/99' HH 'INPUT DATE'

 9951*020 WK-IN-DATE FM '99/99/9999' HH 'CONVERTED' 'INPUT DATE'

 9951*040 WK-JUL-DATE FM '9999.99' HH 'CONVERTED' 'JULIAN DATE'

 997100 CALL US12 (IN-DATE 'Z' 'CDY' 'MDC' WK-IN-DATE)

 997200 CALL US12 (WK-IN-DATE 'P' 'MDC' 'CDD' WK-JUL-DATE)

REPORT NO. 99 CULLUS12 mm/dd/yy PAGE 1

 CONVERTED CONVERTED

 INPUT DATE INPUT DATE JULIAN DATE

 1994/02/09 02/09/1994 1994.040

 0093/12/25 12/25/1993 1993.359

 0001/12/25 12/25/2001 2001.359
 8888/88/88 00/00/0000 0000.000

Gregorian Date Conversion (CULLUS14)

What You Can Do

You can use CULLUS14 to convert a Gregorian date (mmddyy), stored as a zoned or

packed decimal, to a packed decimal Julian date (yyddd).

Gregorian Date Conversion (CULLUS14)

Chapter 3: Procedure Modules 59

How to Use CULLUS14

To invoke CULLUS14:

1. Define an 8-byte packed decimal numeric input field or a work fi eld to contain

the Gregorian date if the input date is stored in zoned decimal format.

If the input date is stored as a zoned decimal:

■ Move the input field to a numeric work field

■ Use the work field as the sending field for the Julian date

2. Define a numeric work field to receive the Julian date.

3. Issue a CALL to CULLUS14 in type 7 logic:

Col

2

▼

RPT-nn7sss CALL US14 (greg-date-v jul-date-v)

■ Rpt-nn, coded in columns 2 and 3, specifies a 2-digit number in the range 00
through 99 that identifies the Advantage CA-Culprit report.

■ Sss, coded in columns 5 through 7, specifies a 3-digit number indicating the

sequence number of the type 7 parameter.

■ Greg-date-v (ARG1) requires the name of an 8-byte packed decimal field
containing the Gregorian date.

■ Jul-date-v (ARG2) requires the name of a numeric work field that receives the
Julian date.

Gregorian Date Conversion (CULLUS14)

60 User Modules Guide

Helpful Hint

CULLUS14 checks for month values in the range 01-12, day values in the range 01-31,
and year values in the range 00-99.

Example 1—Gregorian to Julian format

This example shows the CA Culprit parameters required to convert a Gregorian
(mmddyy) date to a Julian (yyddd) date.

The following code:

■ Defines numeric work fields for Gregorian input date and the Julian date

■ Moves the Gregorian input date to the numeric work field GREG-DATE

■ Issues a CALL to CULLUS14
 IN 80 F 400

 REC GREG-IN-DATE 1 6 2

 990 JUL-DATE 0

 990 GREG-DATE 0

 993CULLUS14

 9951*010 GREG-DATE FD HH 'GREGORIAN DATE'

 9951*020 JUL-DATE FM '99.999' HH 'JULIAN DATE'

 997300 MOVE GREG-IN-DATE GREG-DATE

 997350 CALL US14 (GREG-DATE JUL-DATE)

REPORT NO. 99 CULLUS14 mm/dd/yy PAGE 1

 GREGORIAN DATE JULIAN DATE

 01/10/90 90.010

 10/21/56 56.295

 12/25/87 87.359
 03/01/85 85.060

 03/17/94 94.076

 09/17/86 86.260
 09/08/93 93.251

Gregorian Date Conversion (CULLUS14)

Chapter 3: Procedure Modules 61

Example 2—System to Julian format

This example shows the CA Culprit parameters required to retrieve the system date and

convert it to a Julian date.

The following code uses two user modules:

■ CULLUS10 to retrieve the system date

■ CULLUS14 to convert the system date (mmddyy) to Julian format (yyddd)

Three work fields are required:

■ CURR-DATE to receive code that specifies the format for the system date

■ WORK-DATE to receive the system date from CULLUS10 and then send the date to

CULLUS14

■ JUL-DATE to receive the converted date

 IN 200 F 4000

 REC NAME 5 25

 REC BALANCE 160 7 3 DP=2

 013CULLUS10 AND CULLUS14

 010 CURR-DATE '2'

 010 WORK-DATE

 010 JUL-DATE

 010 ZERO

 01SORT JUL-DATE NOSORT

 01OUT 80 D

 01410001 ' '

 01420001 'DATE:'

 01420007 JUL-DATE FM '99.999'

 01510001 NAME HH 'NAME'

 01510032 BALANCE HH 'BALANCE'

 017010 CALL US10 (CURR-DATE WORK-DATE 0 0 0 0)

 017020 IF CURR-DATE EQ 'E' 120

 017100 CALL US14 (WORK-DATE JUL-DATE)

 017120 ZERO / ZERO ZERO

 017150 STOP

REPORT NO. 01 CULLUS10 AND CULLUS14 mm/dd/yy PAGE 1

DATE: 99.278

 NAME BALANCE

TERRY JANENS E 38,000.00

JOE NGUYA 31,000.00

MARK TIME 33,000.00
ROGER WILCO 80,000.00

ALBERT BREEZE 38,000.00

CAROLYN CROW 37,500.00
BURT LANCHESTER 54,500.00

RENE MAKER 85,000.00

Universal Date Conversion (CULLUS15)

62 User Modules Guide

Universal Date Conversion (CULLUS15)

CULLUS15 converts any date to a user-specified format.

What You Can Do

You can use CULLUS15 to convert any date to any specified format. For example, you
can:

■ Convert Julian, Gregorian, European, and Canadian dates into any other specified
format

■ Use input dates that are stored as 6-byte alphanumeric or zoned decimal fields

■ Use input dates that are stored as 8-byte packed decimal fields

How to Use CULLUS15

To invoke CULLUS15:

First—Define the input date:

■ On a REC parameter, if the date is part of an input record

■ On a work field, if the value is supplied during the CA Culprit run

Second—Issue one or more calls to CULLUS15 in type 7 logic:

Col

2

▼

RPT-nn7sss CALL US15 (input-field-v date-type-qv input-format-code-qv

 output-format-code-qv output-field-v)

■ Rpt-nn, coded in columns 2 and 3, specifies a 2-digit number in the range 00
through 99 that identifies the CA Culprit report.

■ Sss, coded in columns 5 through 7, specifies a 3-digit number indicating the

sequence number of the type 7 parameter.

■ Input-field-v (ARG1) requires the name of the field containing the date.

■ Date-type-qv (ARG2), enclosed in single quotation marks, requires an

alphanumeric l iteral to define the data type of the input field (ARG1):

The literal... The data type...

'Z' 6-byte alphanumeric or zoned decimal

'P' 8-byte packed decimal

Universal Date Conversion (CULLUS15)

Chapter 3: Procedure Modules 63

Format code Input date format

'MDY' mmddyy

'MYD' mmyydd

'DMY' ddmmyy

'DYM' ddyymm

'YMD' yymmdd

'YDM' yyddmm

'YDD' yyddd

■ Input-format-code-qv (ARG3), enclosed in single quotation marks, requires the
name of a 3-character alphanumeric work field or alphanumeric l iteral that defines
the format of input-field-v (ARG1):

■ Output-format-code-qv (ARG4), enclosed in single quotation marks, requires the

name of a 3-character alphanumeric work field or alphanumeric l iteral that specifies
the date format for output-field-v (ARG5). Valid format codes appear above.

■ Output-field-v (ARG5) requires the name of an 8-byte packed decimal work field

that receives the converted date.

Universal Date Conversion (CULLUS15)

64 User Modules Guide

Helpful Hints

■ You can issue one or more calls to CULLUS15 from type 7 logic.

■ CULLUS15 checks for invalid dates and values:

– If an invalid date is encountered, the return date is converted to zero.

– If an invalid data type or format code is encountered, the input date is
converted to 999999.

Example

This example uses CULLUS15 to:

■ Convert a zoned decimal input date in Gregorian format (mmddyy) to Canadian
(yymmdd) format

■ Convert a work field date in Julian format (yyddd) to Canadian format (yymmdd)

The following code issues two calls to CULLUS15:

■ The first CALL reads in a Gregorian format zoned decimal input field, converts the
date to a yymmdd format, and stores the conversion in the work field WK-IN-DATE.

■ The second CALL reads the Julian date 86228 from the work field JUL-DATE,

converts the date to a yymmdd format, and stores the conversion in the work field
WK-JUL-DATE.

Random Access of ISAM Files (CULLUS22)

Chapter 3: Procedure Modules 65

 IN 80 F 400

 REC IN-DATE 1 6 2

 990 WK-IN-DATE

 990 JUL-DATE.7 86228 86100 85030 83234 86341 85233 84078

 990 WK-JUL-DATE

 990 INDEX

 993CULLUS15

 99410001 ' '

 9951*010 IN-DATE FD HH 'INPUT DATE'

 9951*020 WK-IN-DATE FD HH 'CONVERTED' 'INPUT DATE'

 9951*030 JUL-DATE.INDEX FM '99.999' HH 'JULIAN DATE'

 9951*040 WK-JUL-DATE FD HH 'CONVERTED' 'JULIAN DATE'

 997050 INDEX + 1 INDEX

 997 INDEX GT 7 STOP

 997100 CALL US15 (IN-DATE 'Z' 'MDY' 'YMD' WK-IN-DATE)

 997200 CALL US15 (JUL-DATE.INDEX 'P' 'YDD' 'YMD' WK-JUL-DATE)

REPORT NO. 99 CULLUS15 mm/dd/yy PAGE 1

 CONVERTED CONVERTED

 INPUT DATE INPUT DATE JULIAN DATE JULIAN DATE

 01/10/90 90/01/10 86.228 86/08/16

 10/21/56 56/10/21 90.100 90/04/10

 12/25/87 87/12/25 89.030 89/01/30

 03/01/85 85/03/01 93.234 93/08/22

 03/17/94 94/03/17 86.341 86/12/07

 09/17/86 86/09/17 95.233 95/08/21
 09/08/93 93/09/08 94.078 94/03/19

Random Access of ISAM Files (CULLUS22)

What You Can Do

CULLUS22 retrieves specified ISAM file records during a standard CA Culprit run.

You can use CULLUS22 to:

■ Retrieve records from an ISAM file by key

■ Use more than one ISAM file in a single CA Culprit run

■ Write all or part of the data from retrieved ISAM records to specific addresses

Random Access of ISAM Files (CULLUS22)

66 User Modules Guide

How CULLUS22 Works

CULLUS22:

1. Uses a specified field from the input fi le as a retrieval key

2. Allows the retrieved ISAM records to be moved to an input field or a work field, as

specified in the CA Culprit parameters

3. Uses a communication switch to:

■ Receive instructions to open or close the ISAM file

■ Return processing status information

4. Requires separately compiled and linked versions of CULLUS22 for each ISAM file
accessed during a single CA Culprit run

How to Use CULLUS22

Preparing to Use CULLUS22

Define the ISAM data set in the execution JCL:

System Step JCL statements *

z/OS CULL Define the ISAM file on the US22 DD statement:

//US22 DD DSN=user.fi le,UNIT=disk,

 DISP=shr,VOL=SER=nnnnnn

z/VSE CULL // ASSGN SYS004,DISK,VOL=nnnnnn

// DLBL fi lename,'fi le-id',ISE

// EXTENT SYS004,nnnnnn,4,1,rt,nt

// EXTENT SYS004,nnnnnn,1,2,rt,nt

// EXTENT SYS004,nnnnnn,2,3,rt,nt

 rt = relative track where the

 data extent begins

 nt = number of tracks allocated

 to this fi le

z/VM ISAM is not supported.

Random Access of ISAM Files (CULLUS22)

Chapter 3: Procedure Modules 67

Note: * See the CA Culprit for CA IDMS Reference Guide for a full explanation of the
syntax.

If accessing more than one ISAM file:

First—Modify the CULLUS22 Assembler source code:

System Modification

z/OS Change the DDNAME keyword in the DCB macro

z/VSE Use unique fi lenames in the DTF macro for each copy of CULLUS22

z/VM ISAM is not supported.

Second—Reassemble and link edit each modification of CULLUS22 using unique names.

Using CULLUS22

To invoke CULLUS22:

First—Define a field that contains the key required to retrieve records from the ISAM

file. The format of the key field depends on the operating system:

System... The key format...

z/OS The same as the ISAM key

z/VSE 8-byte packed decimal

Second—Define a dummy buffer area equal to the length of the retrieved record.

■ For non-database runs, use the MB= option on an additional INPUT parameter.

■ For database runs, use one INPUT parameter that includes the extra storage
requirement in the record size specification.

Third—Define a 1-byte alphanumeric work field to act as a communications switch.

Fourth—Issue a CALL to CULLUS22 from type 7 logic:

Col

2

▼

RPT-nn7sss CALLL US22 (return-position-v field-v key-v)

■ Rpt-nn, coded in columns 2 and 3, specifies a 2-digit number in the range 00

through 99 that identifies the CA Culprit report.

■ Sss, coded in columns 5 through 7, specifies a 3-digit number indicating the
sequence number of the type 7 parameter.

Random Access of ISAM Files (CULLUS22)

68 User Modules Guide

■ Return-position-v (ARG1) requires the name of an input or work field to which
the retrieved ISAM record is moved.

■ Field-v (ARG2) requires the name of a 1-byte work field that acts as a
communications switch for passing information between type 7 code and
CULLUS22. The work field can contain the following values:

The value... Set by... Means...

Any but C* User OPEN fi le and READ.

C User CLOSE fi le.

Y CULLUS22 Record found.

N CULLUS22 Record not found.

E CULLUS22 Error on READ.

Z (z/OS ONLY) CULLUS22 OPEN fi le. Zero key length in the DCB.

(probable JCL error)

Note: * CULLUS22 accepts any value other than C as a READ instruction.

■ Key-v (ARG3) requires the name of the ISAM key field used for retrieval. This

argument can be set to an input or a work field. If set to a work field, the value will
be stored in packed decimal format.

Fifth—Test the value of the communications switch (ARG2) in type 7 logic.

Helpful Hints

■ The key field is usually coded as an input field. If key values are to be altered during
program execution, move values into a work field and use the work field as the key.

If the generated key must be in a format other than packed decimal, a conversion
can be performed by type 7 logic, a user-written module, or a CA-supplied

procedure module.

■ If multiple key fields are used, perform one of the following:

– Combine keys into one field on the CALL US22 statement.

– Modify CULLUS22 source code to accept additional arguments.

Random Access of ISAM Files (CULLUS22)

Chapter 3: Procedure Modules 69

■ If more than one ISAM file is used during a CA Culprit run, a separate version of
CULLUS22 must be available for each fi le. In this case, assemble and link edit the

module multiple times with different names.

■ When multiple reports in a CA Culprit job use different records from a single ISAM
file, invoke CULLUS22 for each report.

■ When multiple reports in a CA Culprit job use the same record from a single ISAM
file, invoke CULLUS22 once and pass a global work field to subsequent reports to
indicate that the record was read successfully.

Source Code Modifications

The CULLUS22 source code, shown below, must be modified when:

■ Accessing multiple ISAM files in a z/OS environment

■ Defining one or more ISAM files in a z/VSE environment

z/OS Identifications

When more than one ISAM is to be accessed by CULLUS22:

1. Define the first ISAM file on the DD statement for US22 in CA Culprit JCL.

2. Define all other ISAM files by changing the DDNAME parameter in the DCB macro in
CULLUS22 source code.

3. Reassemble and link edit the module, using a unique name such as CULLUSnn

where nn is a 2-digit number not used by any CA-supplied module.

z/VSE Modifications

z/VSE users must modify CULLUS22 source code to define one or more ISAM files:

1. If the ISAM file key is not packed, change the CP instruction to CLC and modify the
length of the move to match the length of the ISAM key.

2. If the length of the ISAM record is greater than 256 bytes, code additional MOVE
statements, as appropriate.

3. If the ISAM key is not packed, change the ZAP instruction to MVC and modify the

length of the instruction to match the ISAM key length.

4. Change the length and data type of LKEY to match the length of the ISAM key.

Random Access of ISAM Files (CULLUS22)

70 User Modules Guide

5. Change the length of the ISREC field to match the length of the ISAM file.

6. Modify the following parameters in the DTFIS macro:

■ DEVICE—Disk device for the ISAM file

■ DSKXTNT—EXTENTS specified at fi le creation time

■ HINDEX—Unit containing the highest index

■ KEYLEN—Number of bytes in the key

■ KEYLOC—Starting position of key on ISAM record

■ NRECDS—Number of records in a block

■ RECFORM—FIXUNB or FIXBLK

■ RECSIZE—ISAM record size

7. Modify the length of IOA1 to match the length of one ISAM block.

8. Assemble and link edit the module.

CULLUS22 Source Code

Source code modifications are required to define the ISAM files. In z/OS systems,

modifications are required only when using multiple ISAM files. z/VSE requires
modification to define all ISAM files used in the run.

CULLUS22 START 0

 USING CULLUS22,15

 B @START BRANCH AROUND HEAD MACRO

 CULHEAD NOCODE=YES,PATCH=NO

@START DS 0H

 STM 14,12,12(13) SAVE REGISTERS

 LR 12,15 LOAD BASE REGISTER

 DROP 15

 USING CULLUS22,R12 TELL THE ASSEMBLER ABOUT IT

 ST 13,SAVE+4 DO

 LR 10,13 STANDARD

 LA 13,SAVE SAVE AREA

 ST 13,8(10) LINKAGE

 LM 4,6,4(1) PICK UP ARGS 1 TO 3

 CLI 0(5),C'C' IS USER CALLING FOR CLOSE?

 BE CLOSEIT YES

Random Access of ISAM Files (CULLUS22)

Chapter 3: Procedure Modules 71

RESET NOP GETIT ACTIVE BRANCH ON ALL BUT 1ST

 MVI *-3,X'F0' SET BRANCH ON

 OPEN ISFILE OPEN IS FILE

GETIT CLI LCODE,0 IS IT 1ST TIME THRU?

 BE GETKEY YES - SKIP CLC W/LAST KEY

 CLI LCODE,C'E' WAS THERE I/O ERROR ON LAST GET

 BE GETKEY YES - GO READ IT AGAIN

*** CHANGE THE FOLLOWING INST AS REQUIRED

*** (IF NOT PACKED DEC DO CLC ETC.)

 CP LKEY,0(8,6) LAST KEY VS. CURRENT REQUEST

 BE READOK SAME KEY -PROCESS AGAIN

*** THE FOLLOWING CONVERTS P.DEC TO BINARY

*** REPLACE AS REQUIRED

GETKEY MVC DBLWD,0(6) MOVE KEY TO DOUBLE WORD

 CVB 7,DBLWD CONVERT TO BINARY (KEY FORMAT)

 ST 7,SKEY PUT IN KEY LOCATION

 READ ISFILE,KEY READ RECORD CALLED FOR BY KEY

 WAITF ISFILE WAIT FOR I/O COMPLETION

 TM ISFILEC,X'CE'

 BZ READOK NO I/O ERROR

 MVI 0(5),C'E' SIGNAL I/O ERROR

 B NORECORD GO BLANK I/O AREA

Random Access of ISAM Files (CULLUS22)

72 User Modules Guide

READOK MVI 0(5),C'N' SET CODE TO NO RECORD

 TM ISFILEC,X'10'

 BO NORECORD NO

 MVI 0(5),C'Y' SET CODE TO RECORD FOUND

*** IF RECORD LENGTH EXCEEDS 256 BYTES 2 OR MORE

*** MVC STATEMENTS WOULD BE NEEDED

 MVC 0(L'ISREC,4),ISREC MOVE RECORD INTO USER AREA

 B RETURN GO BACK TO USER

NORECORD MVI 0(4),C' ' START BLANKING USER AREA

*** IF RECORD LENGTH EXCEEDS 256 BYTES 2 OR MORE

*** MVC STATEMENTS WOULD BE NEEDED

 MVC 1(L'ISREC-1,4),0(4) PROPAGATE BLANKS

 B RETURN GO BACK TO USER

CLOSEIT CLI LCODE,C'C' WAS LAST CALL TO CLOSE?

 BE RETURN GO BACK TO USER- ALREADY CLOSE

 CLOSE ISFILE CLOSE IS FILE AS REQUESTED

 MVI RESET+1,X'00' RESET SO IT WILL OPEN ON NXCALL

RETURN MVC LCODE,0(5) SAVE RETURN CODE

*** CHANGE TO MVC OR AS REQUIRED

 ZAP LKEY,0(8,6) SAVE KEY

 L 13,SAVE+4 RESTORE REG 13

 LM 14,12,12(13) RESTORE REGS 14 TO 12

 SR 15,15 CLEAR REG 15

 BR 14 RETURN TO USER

LCODE DC X'0' SAVE LAST RETURN CODE

DBLWD DS D DOUBLE WORD WORK AREA

*** SET LKEY TO LENGTH (& TYPE) OF INPUT KEY

*** SET SKEY TO LENGTH (& TYPE) OF ON FILE

*** SET ISREC TO LENGTH OF ONE RECORD (INCLUDING KEY)

LKEY DC PL8'0' SAVE LAST KEY HERE

SKEY DC F'0' CURRENT KEY REQUESTED

Random Access of ISAM Files (CULLUS22)

Chapter 3: Procedure Modules 73

ISREC DS CL174 I/O WORK AREA (1 RECORD)

SAVE DS 18F LINKAGE SAVE AREA

*** SET DTFIS PARAMETERS AS REQUIRED

ISFILE DTFIS X

 DEVICE=2314, X

 DSKXTNT=6, X

 HINDEX=2314, X

 IOAREAR=IOA1, X

 IOROUT=RETRVE, X

 KEYARG=SKEY, X

 KEYLEN=4, X

 KEYLOC=1, X

 MSTIND=YES, X

 NRECDS=4, X

 RECFORM=FIXBLK, X

 RECSIZE=174, X

 TYPEFLE=RANDOM, X

 WORKR=ISREC

*** SET IOA1 TO SIZE OF ONE BLOCK

IOA1 DS CL696 I/O AREA FOR DTFIS

 END

Example

This sample code shows the CA Culprit parameters required to retrieve an ISAM record.

The following code:

■ Defines the input fi le that contains a key field

■ Defines a dummy buffer area, using the MB=D option of the INPUT parameter

■ Defines fields for the retrieved ISAM records

■ Defines the key field of the input fi le (KEY-FIELD) and the ISAM record (REC1) in the

dummy buffer

■ Defines a 1-byte work field (COMM-SW) to pass OPEN and CLOSE fi le instructions to
CULLUS22 and return fi le status codes.

■ Calls CULLUS22 to first open the ISAM file and then to close the fi le when no further
records are found or when an error occurs

■ Tests the fi le status codes of COMM-SW and continues processing, stops
processing, or closes the fi le, depending on the value found

Random Access of VSAM Files (CULLUS25)

74 User Modules Guide

 IN 80 F 400

 REC KEY-FIELD 1 15 3

 IN 80 F 80 MB=D

 REC REC1 1 80 $START OF DUMMY BUFFER

 REC FLD1 1 15 $FIELD 1 OF THE ISAM RECORD

 REC FLD2 16 30 $FIELD 2 OF THE ISAM RECORD

 010 COMM-SW 'Z'

 0151*010 KEY-FIELD

 017005 IF EOF EQ 200

 017010 CALL US22 (REC1 COMM-SW KEY-FIELD)

 017020 IF COMM-SW EQ 'Y' TAKE

 017030 IF COMM-SW EQ 'E' 300

 017200 MOVE 'C' TO COMM-SW

 017010 CALL US22 (REC1 COMM-SW KEY-FIELD)

 017 STOP

 017300 $ERROR ROUTINE HERE

Random Access of VSAM Files (CULLUS25)

What You Can Do

CULLUS25 retrieves data from VSAM files during a standard CA Culprit run.

You can use CULLUS25 to:

■ Access one or more key or entry-sequenced VSAM files during a CA Culprit run

■ Retrieve all or part of a VSAM record by:

– A full or partial key value

– An exact or comparative (equal to or greater than) key value

■ Write retrieved VSAM records to a work field or a dummy area in the CA Culprit

input buffer

Random Access of VSAM Files (CULLUS25)

Chapter 3: Procedure Modules 75

How to Use CULLUS25

To invoke CULLUS25:

First—Define the input file containing the retrieval key on the INPUT parameter and in
the CULL step of the CA Culprit JCL.

Second—Define the VSAM file on an INPUT parameter and in the CA Culprit JCL:

■ For non-database runs, use the MB= DUMMY option on an additi onal INPUT
parameter.

■ For database runs, use one INPUT parameter that includes the extra storage

requirement in the record size specification.

■ Use the external fi le name SYS020 in CA Culprit JCL.

Third—Define the key fields in each file on REC parameters.

Fourth—Issue a CALL to CULLUS25 in type 7 logic:

Col

2

▼

RPT-nn7sss CALL US25 (conversion-qv search-v key-v length-vn return-v

 external-file-name-v var-length-field-v)

■ Rpt-nn, coded in columns 2 and 3, specifies a 2-digit number in the range 00

through 99 that identifies the CA Culprit report.

■ Sss, coded in columns 5 through 7, specifies a 3-digit number indicating the
sequence number of the type 7 parameter.

■ Conversion-qv (ARG1) requires a 1-byte alphanumeric code, enclosed in single

quotation marks, to specify the conversion of the unsigned bit string in the
VSAM key field:

The code... Converts to...

Blank None

'1' Binary

'2' Zoned decimal without changing the sign bit value

'3' Packed decimal without changing the sign bit value

'P' Packed decimal with the sign X'F'

'U' Zoned decimal with the sign X'F'

'9' None. Closes the VSAM file

Random Access of VSAM Files (CULLUS25)

76 User Modules Guide

■ Search-v (ARG2) requires a numeric l iteral or the name of an optional 8-byte
numeric field. Values of this field control the type of search and compare method

used to access the VSAM file:

Search value Search type Compare method Record retrieved

Zero Full key (FKS) Key equal (KEQ) The record with an
identical key

Less than the
VSAM key field

size

Generic (GEN) Key greater than or
equal to (KGE)

The first having n
positions greater

than or equal to n
positions of the
search key

Greater than or

equal to the
VSAM key field
size

Full key (FKS) Key greater than or

equal to (KGE)

The first having a full

key value greater
than or equal to the
search key

■ Key-v (ARG3) requires the name of the key field used for retrieving records from
the VSAM file. If conversion-qv is nonblank, this field must be a work field
containing the key value.

■ Length-vn (ARG4) requires a numeric l iteral or the name of an 8-byte numeric field

that contains the length of the receiving field (return-v).

■ Return-v (ARG5) requires the name of a work field or a dummy buffer area field to
receive the retrieved VSAM record.

When a NO RECORD FOUND condition occurs, CULLUS25 returns two asterisks (**)
followed by blank spaces to return-v.

■ External-file-name-v (ARG6) requires an alphanumeric l iteral or the name of an
8-byte alphanumeric field that specifies the ddname, fi lename, or fi ledef of the

VSAM file accessed. Ddname (z/OS) must be eight characters and blank fi l led to the
right.

If external-file-name-v is blank or not used, CULLUS25 assumes an external fi le

name of SYS020 for the fi le.

■ Var-length-field-v (ARG7) requires the name of an 8-byte packed decimal work field
that holds the current record length contained in a variable-length VSAM file.

Fifth—Test for a NO RECORD FOUND condition in type 7 logic.

Random Access of VSAM Files (CULLUS25)

Chapter 3: Procedure Modules 77

Helpful Hints

■ To avoid overwriting external-file-name-v by another user module, specify the
external fi le name (ARG6) each time the call to CULLUS25 is issued. Reset the value
before the CALL is issued.

■ Failure to close a VSAM file may result in the loss of the fi le.

■ More than one VSAM file can be accessed in a single CA Culprit run by creating a
copy of CULLUS25 for each fi le and changing the name to be unique (CULLUS26,
CULLUS27,...). Either copy the module and rename it or l ink edit the new version

using the CULLUS25 load module.

■ VSAM treats all key fields as unsigned binary strings. When testing a key field, use
logical rather than arithmetic tests.

■ If a key field is a not a binary string, specify a data conversion in the first argument
(conversion-qv) of the CALL.

■ If the retrieved VSAM record exceeds the defined receiving field length, the record
is truncated to the length of the receiving field (ARG5) when read into the input
buffer.

■ If the length of the receiving field is longer than the retrieved record, the unused

portion of the field is not initialized to blanks. The contents are unpredictable.

Example

This example shows the CA Culprit parameters required to retrieve VSAM records that
have key fields corresponding to keys contained in an input fi le.

The following code:

■ Uses INPUT parameters to define an input fi le containing a key field and a dummy
input buffer area to receive the VSAM record.

The INPUT parameter allocates 400 bytes for the dummy buffer. Since the receiving

area is defined on the CALL statement as 400 bytes, only the first 400 bytes of the
VSAM record is read into the input buffer.

■ Uses REC parameters to define the key field of the input record and the key field of
the VSAM record.

■ Tests for an end-of-fi le condition. When end-of-fi le is reached, the logic branches to

statement 200, which issues a CALL to CULLUS22 to close the fi le (ARG1).

■ Issues a CALL to CULLUS25.

■ Tests for a NO RECORD FOUND condition by looking for asterisks (**) in the first

two positions of KEY-FIELD2.

■ Tests key field values. If the values are not equal, the VSAM record is dropped.

Creating a Vertical Hexadecimal Dump (CULLUS29)

78 User Modules Guide

 INPUT 80 F 4000

 REC KEY-FIELD 1 2

 INPUT 400 F 400 MB=D

 REC KEY-FIELD2 1 2

 .

 .

 .

 017005 EOF EQ 200

 017010 CALL US25 (' ' 0 KEY-FIELD 400 KEY-FIELD2)

 017060 IF KEY-FIELD2 EQ '**' DROP

 017070 IF KEY-FIELD NE KEY-FIELD2 DROP

 017080 TAKE

 017200 CALL US25 ('9')

 017205 DROP

Creating a Vertical Hexadecimal Dump (CULLUS29)

What You Can Do

CULLUS29 creates a hexadecimal dump of a record, a portion of a record or field, or a
work field without dumping the entire buffer area.

The vertical dump format consists of four printed lines:

Line 1 -- Character representation

Line 2 -- Zone representation

Line 3 -- Digit representation

Line 4 -- Scale

Creating a Vertical Hexadecimal Dump (CULLUS29)

Chapter 3: Procedure Modules 79

How to Use CULLUS29

To invoke CULLUS29:

First—Define the input or work field that holds the data to be dumped.

Second—Define a subscripted work field of 528 bytes as the receiving field for the data

to be dumped.

Third—Divide the subscripted work field into 4 elements of 132 bytes to represent the
printed lines of the dump.

Fourth—Define a 1-byte alphanumeric work field to hold the status flag for the dump.

Fifth—Issue a CALL to CULLUS29 in type 7 logic:

Col

2

▼

RPT-nn7sss CALL US29 (dump-field-name length-vn result-v status-v)

■ Rpt-nn, coded in columns 2 and 3, specifies a 2-digit number in the range 00
through 99 that identifies the CA Culprit report.

■ Sss, coded in columns 5 through 7, specifies a 3-digit number indicating the

sequence number of the type 7 parameter.

■ Dump-field-name (ARG1) requires the name of the dumped input or work field. The
field can be in any format.

■ Length-vn (ARG2) requires a numeric l iteral or an 8-byte packed decimal field to
specify the length of the dumped record or field.

■ Result-v (ARG3) requires the name of the subscripted work field receiving the
dumped field.

■ Status-v (ARG4) requires the name of a 1-byte alphanumeric work field that holds a
status code for the dump:

Code... Means...

'F' Initializes the field.

 ' ' The routine has not finished dumping the requested area.

'E' The routine has completed generating the dump. No further l ines

should be released.

Sixth—Test the value of the status flag work field immediately after the CALL to
CULLUS29. If the status equals ' ', release the print l ines and branch back to the CALL

statement. Continue branching back until the value of the status flag equals 'E'.

Creating a Vertical Hexadecimal Dump (CULLUS29)

80 User Modules Guide

Helpful Hints

■ The receiving field for the dump is a 528-byte subscripted work field. Although each
type 5 l ine requires 132 characters, only 100 bytes of the dump prints.

■ Reset the status flag (ARG4) to 'F' to reinvoke CULLUS29 after a previous dump in

the same CA Culprit program has been completed.

■ Always test the value of the status flag (ARG4) when control returns from CULLUS29
to the CA Culprit code.

Example

This example uses CULLUS29 to create a dump of the first 50 bytes of a record.

The following code:

■ Defines IN-FLD as the input field where the dump will start

■ Defines work fields to receive:

– The length of the input record to be dumped

– The status code for the dump

– The formatted dump lines

■ Calls CULLUS29 from type 7 logic

■ Tests the value of FLAG to determine if the dump is completed

■ Repeats processing until CULLUS29 sets the value of FLAG to 'E', which indicates
that the dump is completed

 INPUT 200 F 200

 REC IN-FLD 1 200

 130 FLAG ' '

 130 LENGTH 50

 130 OUTO.528 ' '

 133 CULLUS29

 135100010 OUTO.1 SZ=132

 13520001 OUTO.133 SZ=132

 13530001 OUTO.265 SZ=132

 13540001 OUTO.397 SZ=132

 137600 MOVE 'F' TO FLAG

 137620 CALL US29 (IN-FLD LENGTH OUTO.1 FLAG)

 137 IF FLAG NE ' ' DROP

 137 RELS (1 2 3 4)

 137625 B 620

REPORT NO. 13 CULLUS29 mm/dd/yy PAGE 1

 CHAR 047ITERRY JANENS E SESE-SEKO E

 ZONE FFFCECDDE44444DCDCDE4C4444444ECEC6ECDD44444444444C

 NUMR 04793599800000115552050000000252502526000000000005

 01...5...10....5...20....5...30....5...40....5...50

Obtaining Hexadecimal Representation (CULLUS31)

Chapter 3: Procedure Modules 81

Obtaining Hexadecimal Representation (CULLUS31)

What You Can Do

You can use CULLUS31 to translate an input or work field into the hexadecimal
representation of a 1- to 25-byte field that is stored in any format.

How to Use CULLUS31

To invoke CULLUS31:

1. Define the field to be translated on a REC parameter or a work field parameter.

2. Define an alphanumeric work field to receive the translated value.

3. Issue a CALL to CULLUS31 from type 7 logic:

Col

2

▼

RPT-nn7sss CALL US31 (field-name length-vn result-v)

■ Rpt-nn, coded in columns 2 and 3, specifies a 2-digit number in the range 00
through 99 that identifies the CA Culprit report.

■ Sss, coded in columns 5 through 7, specifies a 3-digit number indicating the

sequence number of the type 7 parameter.

■ Field-name (ARG1) requires the name of the input or work field passed to
CULLUS31 for translation.

■ Length-vn (ARG2) requires a numeric l iteral or the name of an 8-byte packed
decimal field whose value specifies the length of the field being translated
(field-name).

■ Result-v (ARG3) requires the name of the receiving field for the hexadecimal

representation of field-name. The length of this field must be twice as long as
the field being translated.

Converting Packed Decimal to Binary (CULLUS33)

82 User Modules Guide

Example

This example shows the CA Culprit parameters required to translate the contents of an

input field into a hexadecimal representation.

The following code:

■ Uses a REC parameter to define an input field (IN-FLD) as a 4-character

alphanumeric input field

■ Uses a work field parameter to define the output field (OUT-FLD) as a 12-byte
receiving field for the hexadecimal translation

■ Issues a CALL to CULLUS31 using a numeric l iteral (4) to specify the length of the

input field

 INPUT 200 F 200

 REC IN-FLD 1 4

 130 OUT-FLD '12345678'

 133 CULLUS31

 1351*001 IN-FLD

 1351*005 OUT-FLD

 137100 CALL US31 (IN-FLD 4 OUT-FLD)

REPORT NO. 13 CULLUS31 mm/dd/yy PAGE 1

 INPUT HEX REPRESENTATION

 047I F0F4F7C9

 046I F0F4F6C9

 035E F0F3F5C5

 034I F0F3F4C9
 046G F0F4F6C7

 033D F0F3F3C4

 030A F0F3F0C1
 001E F0F0F1C5

 045H F0F4F5C8

 006I F0F0F6C9

Converting Packed Decimal to Binary (CULLUS33)

What You Can Do

You can use CULLUS33 to translate packed decimal values in the range of -2,147,483,647
to +2,147,483,647 (231 - 1) into a binary format.

CULLUS33 is particularly useful in creating a record descriptor word (RDW) that is used

in the first four bytes of variable-length records.

Converting Packed Decimal to Binary (CULLUS33)

Chapter 3: Procedure Modules 83

How to Use CULLUS33

To invoke CULLUS33:

1. Define the packed field that contains the value to be converted.

2. Define a dummy buffer area or alphanumeric work field to receive the binary

conversion.

■ For non-database runs, use the MB= option on an additional INPUT parameter.

■ For database runs, use one INPUT parameter that includes the extra storage
requirement in the record size specification.

3. Issue a CALL to CULLUS33 from type 7 logic:

Col

2

▼

RPT-nn7sss CALL US33 (field-name input-length-vn result-v result-length-vn)

■ Rpt-nn, coded in columns 2 and 3, specifies a 2-digit number in the range 00
through 99 that identifies the CA Culprit report.

■ Sss, coded in columns 5 through 7, specifies a 3-digit number indicating the
sequence number of the type 7 parameter.

■ Field-name (ARG1) requires the name of the packed decimal input or work field
to be converted.

■ Input-length-vn (ARG2) requires a numeric l iteral or an 8-byte packed decimal
work field specifying the length of the field to be converted.

■ Result-v (ARG3) requires the name of the field receiving the binary conversion.

■ Result-length-vn (ARG4) requires a numeric l iteral or 8-byte packed decimal
work field specifying the length of the receiving field result-v. The size of the

result field must be large enough to accommodate the value of the field being
converted:

The decimal value... Results in the field size...

0 - 127 1 byte

-32,767 to +32,767 2 bytes

0 to +8,388,607 3 bytes

-2,147,483,647 to +2,147,483,647 4 bytes

Converting Packed Decimal to Zoned Decimal (CULLUS34)

84 User Modules Guide

Helpful Hints

■ A binary output field can also be created with the FB format code placed on a type 5
parameter.

■ Inaccurate specification of the input field length produces unpredictable binary

results.

■ High order bytes are truncated if the size of the receiving field is too small.

■ If CULLUS33 is invoked to create the RDW for variable-length output records, the
receiving field should be defined as alphanumeric. If the result is placed in a binary

field, CA Culprit attempts to output the number in zoned decimal format.

Example

This example shows the CA Culprit parameters required to convert a packed decimal
input field to binary output.

The following code:

■ Defines the input fi le containing the field to be converted (PACKED-NUMBER)

■ Defines a dummy input buffer area (BINARY-RESULT) to receive the conversion

■ Issues a CALL to CULLUS33 from type 7 logic

 INPUT 80 F 4000

 REC PACKED-NUMBER 1 8 3

 INPUT 80 F 80 MB=D

 REC BINARY-RESULT 1 4

 .

 .

 .

 997110 CALL US33 (PACKED-NUMBER 8 BINARY-RESULT 4)

Converting Packed Decimal to Zoned Decimal (CULLUS34)

What You Can Do

You can use CULLUS34 to convert a packed decimal field to zoned decimal or
alphanumeric format.

Converting Packed Decimal to Zoned Decimal (CULLUS34)

Chapter 3: Procedure Modules 85

How to Use CULLUS34

To invoke CULLUS34:

1. Define the input file or work field that contains the packed decimal field to be
converted.

2. Define a dummy area that allocates space for the receiving field.

3. Issue a CALL to CULLUS34 from type 7 logic:

Col

2

▼

RPT-nn7sss CALL US34 (field-name result-v input-length-vn)

■ Rpt-nn, coded in columns 2 and 3, specifies a 2-digit number in the range 00
through 99 that identifies the CA Culprit report.

■ Sss, coded in columns 5 through 7, specifies a 3-digit number indicating the
sequence number of the type 7 parameter.

■ Field-name (ARG1) requires the name of the 1- to 16-byte packed decimal
input or work field.

■ Result-v (ARG2) requires the name of an alphanumeric result field that is one

byte less than twice the length of the input field (field-name).

The hexadecimal representation of each digit is in the range X'F0' through X'F9'.
Negative values contain the negative sign in the zoned position of the last byte.
Positive values contain an F in the zoned position of the last byte.

■ Input-length-vn (ARG3) requires a numeric l iteral or the name of an 8-byte
packed decimal work field that specifies the length of the packed decimal input
field (field-name). The range is 1 through 16.

If the length of the input field exceeds 16, no conversion occurs.

Example

This example converts numbers that are stored in packed decimal format to zoned
decimals. Receiving fields hold the first five, next three, and last five digits.

The following code:

■ Defines the input fi le containing the packed decimal field PKD-NUM

■ Defines a dummy input buffer area to receive the conversion

■ Issues a CALL to CULLUS34 from type 7 logic to perform the conversion

Interpreting Bit Settings (CULLUS35)

86 User Modules Guide

 IN 200 F 400

 REC PKD-NUM 160 7 3

 IN 13 MB=DUMMY

 REC NUMBER 1 13

 REC FIRST-FIVE 1 5

 REC NEXT-THREE 6 3

 REC LAST-FIVE 9 5

 01OUT 80 D

 013CULLUS34

 01410001 ' '

 0151*002 NUMBER FN HH 'THE NUMBER'

 0151*003 NEXT-THREE HH 'MIDDLE THREE' 'DIGITS'

 017001 CALL US34 (PKD-NUM NUMBER 7)

REPORT NO. 01 CULLUS34 mm/dd/yy PAGE 1

 MIDDLE THREE

 THE NUMBER DIGITS

 0000003800000 038

 0000003100000 031

 0000003300000 033
 0000008000000 080

 0000003800000 038

 0000003750000 037
 0000005450000 054

Interpreting Bit Settings (CULLUS35)

What You Can Do

You can use CULLUS35 to interpret the bit settings for a string of bytes.

How to Use CULLUS35

To invoke CULLUS35:

First—Define the input or work field to be interpreted.

Second—Issue a CALL to CULLUS35 from type 7 logic:

Col

2

▼

RPT-nn7sss CALL US35 (field-name length-vn result-v

 representation-length-n start-position-a bit-count-n)

Interpreting Bit Settings (CULLUS35)

Chapter 3: Procedure Modules 87

■ Rpt-nn, coded in columns 2 and 3, specifies a 2-digit number in the range 00
through 99 that identifies the CA Culprit report.

■ Sss, coded in columns 5 through 7, specifies a 3-digit number indicating the
sequence number of the type 7 parameter.

■ Field-name (ARG1) requires the name of the input or work field to be interpreted.

■ Length-vn (ARG2) requires a numeric l iteral or the name of an 8-byte packed
decimal work field specifying the length of the field being interpreted (field-name).

■ Result-v (ARG3) requires the name of a receiving field large enough to
accommodate the bit settings for the entire input field. The length of result-v

depends on whether 2 or 3 positions are used for bit representation, as described
below in representation-length-n.

■ Representation-length-n (ARG4) requires the name of a field containing a value
that specifies whether 2 or 3 positions are used for each bit representation:

Bit representation Result field size

2-positions (00,01) 23 X length-vn

3-positions (000,001) 31 X length-vn

■ Start-position-a (ARG5) requires the name of a field that specifi es the byte position
where bit conversion begins. Start-position-a applies only to fields having multiple
bytes. The default is 0.

■ Bit-count-n (ARG6) is an optional argument using 0 or 1 as a numeric l iteral or the
name of an 8-byte packed decimal field containing a 0 or 1 to specify the manner in
which bits are counted. The default is 0.

0 counts bits as 00 01 02 03 04 05 06 07.

1 counts bits as 01 02 03 04 05 06 07 08.

Helpful Hints

CULLUS35 displays bit settings by l isting the positions of the ON bits.

For example, the bit settings shown below are represented by the display 01,03,04,05.

1st Bit 2nd Bit 3rd Bit 4th Bit 5th Bit 6th Bit 7th Bit 8th Bit

(00) (01) (02) (03) (04) (05) (06) (07)

OFF ON OFF ON ON ON OFF OFF

Converting Floating Point Values to Packed Decimal(CULLUS36)

88 User Modules Guide

Example

This example interprets the bit settings of an asterisk (*).

The following code:

■ Defines 23-byte alphanumeric work fields (RESULT0, RESULT1) to receive the bit
settings

■ Defines a work field (FIELD) to contain the hexadecimal value X'F8'

■ Issues calls to CULLUS35 from type 7 logic to interpret the bit settings in each
bit-count format

 IN 80 F 80

 REC ASTERISK 1 1

 020 RESULT0 ' '

 020 RESULT1 ' '

 020 FIELD X'F8'

 023CULLUS35

 0251*005 FIELD HH 'FIELD'

 0251*010 RESULT0 HH 'BINARY REPRESENTATION' 'USING BINARY COUNT 0'

 0251*015 RESULT1 HH 'BINARY REPRESENTATION' 'USING BINARY COUNT 1'

 027010 CALL US35 (FIELD 1 RESULT0 2 0)

 027020 CALL US35 (FIELD 1 RESULT1 2 0 1)

REPORT NO. 02 CULLUS35 mm/dd/yy PAGE 1

 BINARY REPRESENTATION BINARY REPRESENTATION

 FIELD USING BINARY COUNT 0 USING BINARY COUNT 1

 8 00,01,02,03,04 01,02,03,04,05

Converting Floating Point Values to Packed
Decimal(CULLUS36)

What You Can Do

You can use CULLUS36 to convert a single or double floating point value to a 16-byte
packed decimal format.

Converting Floating Point Values to Packed Decimal(CULLUS36)

Chapter 3: Procedure Modules 89

How to Use CULLUS36

To invoke CULLUS36:

First—Define the input file and the field containing the floating point values.

Second—Define work fields to receive the converted value (16-byte numeric field) and

hold the precision indicator (1-byte alphanumeric field) if an alphanumeric l iteral is not
used.

Third—Issue a CALL to CULLUS36 in type 7 logic:

Col

2

▼

RPT-nn7sss CALL US36 (field-name indicator-qv result-v

decimal-place-vn end-code-v)

■ Rpt-nn, coded in columns 2 and 3, specifies a 2-digit number in the range 00
through 99 that identifies the CA Culprit report.

■ Sss, coded in columns 5 through 7, specifies a 3-digit number indicating the
sequence number of the type 7 parameter.

■ Field-name (ARG1) requires the name of the input field that contains the single
or double precision floating point value.

■ Indicator-qv (ARG2) is a 1-byte l iteral, enclosed in single quotation marks, or
the name of an alphanumeric work field that contains the precision indicator:

Precision... Is indicated by...

Single 'S'

Double 'D'

■ Result-v (ARG3) requires the name of a 16-byte packed decimal work field to

receive the converted value.

■ Decimal-place-vn (ARG4) requires an integer or the name of an 8-byte packed
decimal work field that specifies the number of decimal places returned in the
output. The range is 0 through 14.

■ End-code-v (ARG5) requires the name of a 4-byte alphanumeric work field whose
value specifies whether the conversion is successful:

The value... Indicates the conversion is...

Blank Successful

ARGn Unsuccessful in the argument indicated

Converting Floating Point Values to Packed Decimal(CULLUS36)

90 User Modules Guide

Fourth—Test the value of the error indicator work field (end-code-v) immediately after
the US36 call.

Helpful Hints

■ The COBOL equivalents for floating point values and the corresponding field lengths
are:

Precision COBOL equivalent Field length

Single COMP-1 4 bytes

Double COMP-2 8 bytes

■ The number of decimal places specified for output (decimal-place-vn) should agree
with the DP= specification of the work field that receives the converted value
(result-v).

■ If the result overflows the space allocated:

– The rightmost digits are truncated to the right of the decimal point.

– The leftmost digits are truncated to the left of the decimal point.

Example

This example shows the CA Culprit parameters required to convert single- and
double-precision values to packed decimal format.

The following code:

■ Defines the single- (FIELD1) and double- (FIELD2) precision fields on REC parameters

■ Defines work fields for the result fields (PACKED-SINGLE and PACKED-DOUBLE) and

an error code field for each conversion (CODE-1 and CODE-2)

■ Issues separate calls to CULLUS36 to convert the single-precision field and then the
double-precision field

■ Tests for successful conversion after each call. If the conversion is not successful, an

error handling routine executes.

Converting Doubleword Binary to Packed Decimal (CULLUS37)

Chapter 3: Procedure Modules 91

 INPUT 80 F 2960

 REC FIELD1 1 4

 REC FIELD2 5 8

 990 PACKED-SINGLE DP=2

 990 PACKED-DOUBLE DP=3

 990 CODE-1 '1234'

 990 CODE-2 ' '

 .

 .

 .

 997010 CALL US36 (FIELD1 'S' PACKED-SINGLE 2 CODE-1)

 997015 CODE-1 NE ' ' 200

 997020 CALL US36 (FIELD2 'D' PACKED-DOUBLE 3 CODE-2)

 997025 CODE-2 NE ' ' 200

 997100 TAKE

 997200 $ERROR HANDLING ROUTINE IS CODED HERE

Converting Doubleword Binary to Packed Decimal (CULLUS37)

What You Can Do

You can use CULLUS37 to convert a doubleword binary field into an 8-byte packed
decimal format. This conversion is particularly useful in converting binary input that
exceeds the REC parameter's l imit (4 bytes) to an 8-byte packed decimal work field.

Sending Messages (CULLUS40)

92 User Modules Guide

How to Use CULLUS37

To invoke CULLUS37:

1. Define the binary input field as alphanumeric on a REC parameter.

2. Define an 8-byte numeric work field.

3. Issue a CALL to CULLUS37 in type 7 logic:

Col

2

▼

RPT-nn7sss CALL US37 (input-field-v result-field-v)

■ Rpt-nn, coded in columns 2 and 3, specifies a 2-digit number in the range 00
through 99 that identifies the CA Culprit report.

■ Sss, coded in columns 5 through 7, specifies a 3-digit number indicating the

sequence number of the type 7 parameter.

■ Input-field-v (ARG1) requires the name of the 8-byte binary input field.

■ Result-field-v (ARG2) requires the name of the work field receiving the packed
decimal conversion.

Example

This example shows the CA Culprit parameters required to convert an 8 -byte binary
input field to packed decimal format.

■ The binary field DOUBLE-BIN is defined as alphanumeric on the REC parameter.

■ The work field that receives the converted value is defined.

■ A CALL to CULLUS37 is issued in type 7 logic.

 INPUT 80 F 4000

 REC DOUBLE-BIN 1 8

 010 WORK-FIELD

 .

 .

 .

 017001 CALL US37 (DOUBLE-BIN WORK-FIELD)

Sending Messages (CULLUS40)

What You Can Do

z/VSE users can use CULLUS40 to send messages to and receive messages from the
console operator.

Sending Messages (CULLUS40)

Chapter 3: Procedure Modules 93

How to Use CULLUS40

To invoke CULLUS40:

1. Define a 25-byte alphanumeric work field to hold the message sent.

2. Define another 25-byte alphanumeric work field to receive the message returned.

3. Issue a CALL to CULLUS40 from type 7 logic:

Col

2

▼

RPT-nn7sss CALL US40 (message-qv response-v)

■ Rpt-nn, coded in columns 2 and 3, specifies a 2-digit number in the range 00
through 99 that identifies the CA Culprit report.

■ Sss, coded in columns 5 through 7, specifies a 3-digit number indicating the

sequence number of the type 7 parameter.

■ Message-qv (ARG1) requires the name of a 25-byte work field or an
alphanumeric l iteral, enclosed in single quotation marks, for the message to be
sent.

■ Response-v (ARG2) requires the name of a 25-byte alphanumeric work field
that receives the console operator's response.

Example

This example shows the CA Culprit parameters required to send a message to the
console operator and receive a response.

The following code:

■ Defines work fields (MSGTO and MSGFROM) as the message areas

■ Issues a CALL to CULLUS40 to send and receive messages

■ Tests the response and specifies an action to take based upon the response

 INPUT 80 F 4000

 REC FLD1 1 50

 010 MSGTO 'TYPE STOP TO DISCONTINUE'

 010 MSGFROM ' '

 .

 .

 .

 017001 CALL US40 (MSGTO MSGFROM)

 017010 IF MSGFROM EQ 'STOP' STOP

Moving Fields to an Input Buffer Area (CULLUS43)

94 User Modules Guide

Moving Fields to an Input Buffer Area (CULLUS43)

What You Can Do

You can use CULLUS43 to move data to and from any field known to CA Culprit,
including input buffer fields. CULLUS43 is particularly useful in building a table in a

dummy input buffer area.

How to Use CULLUS43

To invoke CULLUS43:

1. Define the field to be moved by using a REC parameter (input field) or a work field

parameter.

2. Define a dummy buffer area to receive the data.

■ For non-database runs, use the MB= option on an additional INPUT parameter.

■ For database runs, use one INPUT parameter that includes the extra storage

requirement in the record size specification.

To build a table, code REC parameters that define multiply-occurring data
groups.

3. Issue a CALL to CULLUS43 from type 7 logic:

width=80

Col

2

▼

RPT-nn7sss CALL US43 (field-name resutl-v length-vn)

■ Rpt-nn, coded in columns 2 and 3, specifies a 2-digit number in the range 00

through 99 that identifies the CA Culprit report.

■ Sss, coded in columns 5 through 7, specifies a 3-digit number indicating the
sequence number of the type 7 parameter.

■ Field-name (ARG1) requires the name of the input or work field that is to be
moved.

■ Result-v (ARG2) requires the name of the receiving field.

■ Length-vn (ARG3) requires a numeric l iteral or the name of an 8-byte packed

decimal work field whose value equals the number of characters moved.

Moving Fields to an Input Buffer Area (CULLUS43)

Chapter 3: Procedure Modules 95

Helpful Hint

To avoid overwriting input data when moving fields to the input buffer, the receiving
field should be a dummy area whenever possible.

Example

This example shows the CA Culprit parameters required to move data from a work field
to a table in the dummy input buffer.

The following code:

■ Defines the field to be moved (NAME) as an input field on a REC parameter

■ Defines a dummy input buffer area to receive the data

■ Defines a repeating group (TABLE) and the element (CHAR) as the receiving field in
the dummy input buffer area

■ Issues a CALL to CULLUS43, which uses a numeric l iteral (25) to specify the length of

the data to move

■ Prints the first and eleventh characters of the name

 INPUT 200 F 200

 REC NAME 5 25

 INPUT 25 F 25 MB=D

 REC TABLE 1 GROUP DD 1.25

 REC CHAR 1 1 ELMNT DD

 093CULLUS43

 0951*005 NAME

 0951*010 CHAR.1

 0951*020 CHAR.11

 097025 CALL US43 (NAME CHAR.1 25)

REPORT NO. 09 CULLUS43 mm/dd/yy PAGE 1

 TERRY JANENS T J

 JOE NGUYA J N
 MARK TIME M T

 ROGER WILCO R W

 ALBERT BREEZE A B
 CAROLYN CROW C C

 BURT LANCHESTER B L

 RENE MAKER R M

Moving Variable-length Data (CULLUS45)

96 User Modules Guide

Moving Variable-length Data (CULLUS45)

What You Can Do

You can use CULLUS45 to move variable-length data, such as input record trailers, from
one location to another. You can move incoming variable-length data to a series of

fixed-length work fields or to a fixed part of a dummy input buffer area.

CULLUS45 has the following special features:

■ It can send data to a receiving field that is larger than the sending field by using a fi ll
character to occupy the unused portion.

■ It can manipulate the sending and receiving fields without repeatedly specifying
explicit data locations. CULLUS45 can keep its place across repeated fields after the
location of the initial sending and receiving field is established.

■ It will access previous values of an argument if four cent signs enclosed in single
quotation marks ('¢¢¢¢') are coded in the argument l ist. This is particularly useful if
the argument value has been changed to accommodate some other procedure
module.

Note: The hex value of '¢¢¢¢' must be x'4A4A4A4A'. Some non-U.S. character sets
default the cent sign to an alternate hex value.

How to Use CULLUS45

To invoke CULLUS45:

1. Code INPUT, REC, and work field parameters.

2. Issue a CALL to CULLUS45 from type 7 logic:

■ Rpt-nn, coded in columns 2 and 3, specifies a 2-digit number in the range 00

through 99 that identifies the CA Culprit report.

■ Sss, coded in columns 5 through 7, specifies a 3-digit number indicating the
sequence number of the type 7 parameter.

Moving Variable-length Data (CULLUS45)

Chapter 3: Procedure Modules 97

■ Send-field-qv (ARG1) requires the name of the field to be moved. The end of
the previous location, if a call to CULLUS45 has occurred, is retrieved by using

'¢¢¢¢'.

■ Receive-field-qv (ARG2) requires the name of the receiving field. The previous
value, if a value change has occurred, can be retrieved by using '¢¢¢¢'.

■ Send-length-qvn (ARG3) requires a numeric l iteral or the name of an 8-byte
packed decimal work field that specifies the length of the sending field. '¢¢¢¢'
can be used to retrieve the previous value if a value change has occurred.

■ Receive-length-vn (ARG4)is an optional argument that requires a numeric

l iteral or the name of an 8-byte packed decimal work field that specifies the
length of the receiving field.

If receive-length-vn is omitted and the internal value is 0, the value of
send-length-qvn is used.

■ Fill-character-q (ARG5) is an optional argument that requires a 1-byte
alphanumeric character, enclosed in single quotation marks, as a fi l ler for
empty spaces in receiving fields. The default is a blank.

Helpful Hints

■ To avoid overwriting input data, use a dummy area if you move fields to the input
buffer.

■ If the sending field is longer than the receiving field, transfer of data stops when the

receiving field is fi l led.

■ If the receiving field length is 0, no data is moved.

■ Arguments can be omitted. CULLUS45 substitutes a default value or the results of a
prior CALL when an argument is missing.

Example 1—Moving Data from a Field to a Buffer

Moving data from a work field to a dummy input buffer:

The following code:

■ Defines the input fi le and a dummy input buffer area on INPUT parameters

■ Defines the receiving field in the dummy input buffer area

■ Issues a CALL to CULLUS45 to move the contents of the work field (SEND) to the
input buffer dummy area

Moving Variable-length Data (CULLUS45)

98 User Modules Guide

 INPUT 200 F 200

 REC NAME 5 25

 INPUT 20 F 20 MB=D

 REC RECEIVE 1 20

 09OUT 60

 093CULLUS45

 090 SEND 'WORK FIELD DATA'

 0951*010 NAME

 0951*020 RECEIVE

 097030 CALL US45 (SEND RECEIVE 15 20 ' ')

REPORT NO. 09 CULLUS45 mm/dd/yy PAGE 1

 TERRY JANENS WORK FIELD DATA

 JOE NGUYA WORK FIELD DATA

 MARK TIME WORK FIELD DATA

 ROGER WILCO WORK FIELD DATA

 ALBERT BREEZE WORK FIELD DATA

 CAROLYN CROW WORK FIELD DATA

 BURT LANCHESTER WORK FIELD DATA

Example 2—Multiple Moves with Trailers

This example moves a variable portion of an input record into a series of work fields and
a dummy input buffer area.

The following code:

■ Defines the following input fields:

– The total length (TLEN) of all trailers on the record

– Three 1-byte binary fields (L1, L2, L3) that specify the lengths (not exceeding

25-bytes) of each name and address trailer

– Variable fields, beginning in position 100, that consist of up to 3 name and
address trailers followed by 1 to 10 other trailers (not exceeding 100 bytes).

Trailers following the names and addresses are identified by one of ten possible
1-byte codes located in the first byte of the trailer.

■ Defines a dummy buffer area containing:

– 100 bytes to receive the deblocked trailers

– The trailer identification

Moving Variable-length Data (CULLUS45)

Chapter 3: Procedure Modules 99

■ Defines work fields to contain:

– A table of trailer codes

– A table of trailer lengths

– An index for a table search (IX)

– The maximum number of entries for the table (IXLIM)

– A counter for deblocking trailers (BYTES-MVD)

– Work areas for name and address segments

■ Issues CALLs to CULLUS45 in type 7 logic to:

– Move name and address fields into a series of work areas (NAWORK)

– Move trailers following the name and address fields into a fixed portion of the

input buffer where the data can be processed

■ Checks for errors. If an error is found, an abend and a dump are forced by call ing
CULLUS99.

 INPUT 400 F 800

 REC TLEN 10 2 1 $Trailer length

 REC L1 12 1 1 $Length of name and address trailer 1

 REC L2 13 1 1 $Length of name and address trailer 2

 REC L3 14 1 1 $Length of name and address trailer 3

 REC TSTART 100 1 $Trailers start here

 INPUT 100 MB=D

 REC TRAILER 1 100 $Trailers are deblocked to this location

 REC TRAILER-ID 1 1 $Reference for trailer-id

 GW0 NULL '¢¢¢¢' $Tells CULLUS 45 to use saved internal value

 GW0 IX $Used as the index for the table search

 GW0 IXLIM 10 $10 table entries

 GW0 BYTES-MVD 0 $Keeps track of the number of bytes moved

 GW0 WORK 0 $Sending length

 GW0 NAWORK1 ' ' $5

 GW0 NAWORK2 ' ' $ work areas

 GW0 NAWORK3 ' ' $ for

String Search (CULLUS46)

100 User Modules Guide

 GW0 KEY.10 '0' '1' '2' '3' '4' '5' '6' '7' '8' '9' $Trailer-ids

 GW0 VAL.10 23 20 28 19 32 99 17 6 12 14 $Trailer lengths

 017002 M O BYTES-MVD $Initialize

 017030 M L1 WORK $Amount to send

 017050 CALL US45 (TSTART NAWORK1 WORK 25 ' ') $Move

 017070 M L2 WORK $Amount to send

 017090 CALL US45 (NULL NULL WORK 25 ' ') $Move

 017100 M L3 WORK $Amount to send

 017130 CALL US45 (NULL NULL WORK 25 ' ') $Move

 017220 COMPUTE L1 + L2 + L3 BYTES-MVD $ Set 'BYTES-MVD'

 017325 CALL US45 (NULL TRAILER 1 1) $Move

 017333 COMPUTE BYTES-MVD + 1 BYTES-MVD $ Adjust 'BYTES-MVD'

 017345 M 1 IX $Initialize 'IX'

 017350 IF KEY.IX = TRAILER-ID 375 $Branch on a hit

 017355 IF IX = IXLIM 901 $Go abend

 017360 COMPUTE IX + 1 IX $Increment 'IX'

 017365 B 350 $Loop

 017375 COMPUTE BYTES-MVD + VAL.IX BYTES-MVD $Set post-move value

 017380 IF BYTES-MVD GT TLEN 901 $Error

 017400 CALL US45 (NULL NULL VAL.IX 99 ' ') $Move

 017412 $PROCESSING FOR THIS DEBLOCKED TRAILER GOES HERE

 017415 IF BYTES-MVD LT TLEN 325 $Loop if not done

 017420 IF BYTES-MVD = TLEN DROP $Drop if done

 017901 CALL US99 $Abend

String Search (CULLUS46)

What You Can Do

CULLUS46 allows you to count the number of bytes contained in a string. The result is

returned to a work field, which can be used for further processing.

Typically, CULLUS46 is used in conjunction with CULLUS45 to determine the length of
the sending field (ARG3 of CULLUS45).

String Search (CULLUS46)

Chapter 3: Procedure Modules 101

How to Use CULLUS46

To invoke CULLUS46:

1. Define the field containing the string to be searched on a REC parameter or work
field, as appropriate.

2. Define a work field to receive the number of bytes counted.

3. Issue a CALL to CULLUS46 in type 7 logic:

Col

2

▼

RPT-nn7sss CALL US46

(search-field-name search-character-qv range-name

search-length-vn)

■ Rpt-nn, coded in columns 2 and 3, specifies a 2-digit number in the range 00
through 99 that identifies the CA Culprit report.

■ Sss, coded in columns 5 through 7, specifies a 3-digit number indicating the

sequence number of the type 7 parameter.

■ Search-field-name (ARG1) requires the name of the input or work field that
contains the field to be searched.

■ Search-character-qv (ARG2) requires an alphanumeric l iteral, enclosed in single

quotation marks, that specifies the target character for the search.

■ Range-name (ARG3) requires the name of an 8-byte numeric work field that
receives the number of characters searched. A value of -1 indicates that no
search character is found.

■ Search-length-vn (ARG4) requires a numeric l iteral or the name of an 8-byte
numeric work field that specifies the number of bytes to search before
encountering the target character (search-character-qv).

String Search (CULLUS46)

102 User Modules Guide

Helpful Hints

CULLUS46 counts from the first character in the string up to, but not including, the
delimiter. If a delimiter is not found, the search fails and a value of -1 is returned to the
designated work field.

Example 1—Using CULLUS46 Only

This example searches a 25-character input name field for the last name. The number of
characters found in the last name is returned to a work field.

The following code:

■ Defines the input field to be searched (NAME-LAST-FIRST) on a REC parameter

■ Defines a work field (W-LEN) to receive the number of characters searched before
the delimiting character is found

■ Issues a CALL to CULLUS46 to search the 25-character field for a blank, which

separates the last and first name in the input record and to return the number of
characters searched to the work field W-LEN

 INPUT 80 F 80

 REC NAME-LAST-FIRST 1 25

 52OUT 60 D

 520 W-LEN 0

 523CULLUS46

 5251*010 NAME-LAST-FIRST HH 'NAME'

 5251*020 W-LEN HH 'LENGTH OF LAST NAME'

 527010 CALL US46 (NAME-LAST-FIRST ' ' W-LEN 25)

 527020 IF W-LEN EQ -1 100

 527100 $ERROR ROUTINE

REPORT NO. 52 CULLUS46 mm/dd/yy PAGE 1

 NAME LENGTH OF LAST NAME

 JONES MARY 5

 SMITH PETER 5

 BROWN JACK 5

 MACINTOSH JUNE 9

 RICHARDS MICHAEL 8

String Search (CULLUS46)

Chapter 3: Procedure Modules 103

Example 2—Using CULLUS46 Output for CULLUS45 Input

This example shows the CA Culprit parameters used to search for first and last names on

input records by invoking CULLUS46 to supply the sending string length to CULLUS45
(variable-length move). CULLUS45 then moves the string to a work field.

The following code:

■ Defines a 40-character input name field (NAME-LAST-FIRST)

■ Defines work fields to receive:

– The first and last name (FIRST-NAME and LAST-NAME)

– The number of characters searched (RANGE-LTH)

– The length of the searched area (SEARCH-LTH)

■ Sets the initial value of the search area to 40 characters

■ Issues CALLs to CULLUS46 to search for the number of characters in the last name
and then to search for the number of characters in the first name

■ Adjusts the size of RANGE-LTH to include the delimiting space

■ Issues calls to CULLUS45, using CULLUS46 results, to move the last name and then
the first name to work fields

CULLUS45 sets the value of the sending field (ARG1) internally so that CULLUS46

can resume the character search immediately after the last character moved.

 INPUT 400 F 4000

 REC NAME-LAST-FIRST 225 40

 530 FIRST-NAME ' ' $ LENGTH = 20

 530 LAST-NAME ' ' $ LENGTH = 20

 530 RANGE-LTH 0 $ RANGE LENGTH

 530 SEARCH-LTH 40 $ SEARCH LENGTH

 .

 .

 .

 537105 CALL US46 (NAME-LAST-FIRST ' ' RANGE-LTH SEARCH-LTH)

 537110 IF RANGE-LTH NE -1 115

 537 MOVE 19 TO RANGE-LTH

 537115 RANGE-LTH A 1 RANGE-LTH

 537120 CALL US45 (NAME-LAST-FIRST LAST-NAME RANGE-LTH 20 ' ')

 537125 $ RESUME SEARCH AFTER MOVE OF LAST NAME

 537 40 S RANGE-LTH SEARCH-LTH

 537 CALL US46 (NAME-LAST-FIRST ' ' RANGE-LTH SEARCH-LTH)

 537135 IF RANGE-LTH NE -1 140

 537 MOVE 19 TO RANGE-LTH

 537140 RANGE-LTH A 1 RANGE-LTH

 537145 CALL US45 ('¢¢¢¢' FIRST-NAME RANGE-LTH 20 ' ')

Creating a Run-time Message (CULLUS48)

104 User Modules Guide

Creating a Run-time Message (CULLUS48)

What You Can Do

You can use CULLUS48 to add your own message to the Run-Time Message Section of
CA Culprit output. The addition of status or diagnostic messages can be used to track

processing flow and facil itate debugging.

How to Use CULLUS48

To invoke CULLUS48:

1. Code INPUT and REC parameters, as needed.

2. Issue a CALL to CULLUS48:

Col

2

▼

RPT-nn7sss CALL US48 (message-qv)

■ Rpt-nn, coded in columns 2 and 3, specifies a 2-digit number in the range 00
through 99 that identifies the CA Culprit report.

■ Sss, coded in columns 5 through 7, specifies a 3-digit number indicating the

sequence number of the type 7 parameter.

■ Message-qv (ARG1) requires the name of an alphanumeric work field that
contains the message enclosed in single quotation marks. The message must:

– Begin with a carriage control character.

– End with two percent signs (%%). Use %% exclusively to terminate
messages.

– Not exceed 132 characters.

Example

The following example shows the CA Culprit parameters required to add a message to
the Run-Time Message Section of a CA Culprit job.

The following code:

■ Tests for the value of the field (SAMPLE) that triggers the message

■ Issues a CALL to US48 if the test fails:

– 0 is the carriage control character that precedes the message.

– %% signals the completion of the message.

Converting Binary Strings (CULLUS50)

Chapter 3: Procedure Modules 105

 IN 80 F 80

 REC SAMPLE 1 2 2

 52OUT 60 D

 523CULLUS48

 5251*010 SAMPLE HH 'SAMPLE COUNT'

 527010 IF SAMPLE NE 0 020

 527 CALL US48 ('0US48 -- NO SAMPLE: RUN STOPS%%')

 527015 STOP

 527020 TAKE

mm/dd/yy RUN TIME MESSAGES volser PAGE 1

US48 -- NO SAMPLE: RUN STOPS

*********** END OF FILE **

 3 INPUT RECORDS READ

Converting Binary Strings (CULLUS50)

What You Can Do

You can use CULLUS50 to convert a binary string to an alphanumeric string or a series of

8-byte packed decimal numeric values. This is especially useful when bit flags need to be
converted into a format suitable for testing in CA Culprit code.

How to Use CULLUS50

To invoke CULLUS50:

1. Define the binary input field on a REC parameter.

2. Define a work field to receive the result of the conversion.

■ A non-subscripted work field must be equal in length to the number of bits
targeted for conversion.

■ A subscripted work field must occur the same number of times as the number
of bits targeted for conversion.

3. Define a work field to hold the number of bits targeted for conversion unless you

use a numeric l iteral.

4. Issue a CALL to CULLUS50:

Col

2

▼

RPT-nn7sss CALL US50 (start-bit-field target-field-name bit-count-vn)

Converting Binary Strings (CULLUS50)

106 User Modules Guide

■ Rpt-nn, coded in columns 2 and 3, specifies a 2-digit number in the range 00
through 99 that identifies the CA Culprit report.

■ Sss, coded in columns 5 through 7, specifies a 3-digit number indicating the
sequence number of the type 7 parameter.

■ Start-bit-field (ARG1) requires the name of the input or work field to be

converted.

■ Target-field-name (ARG2) requires the name of the field receiving the
conversion.

■ Bit-count-vn (ARG3) can be a numeric l iteral or the name of an 8-byte numeric

work field that specifies the number of bits targeted for conversion.

Example

This example shows the CA Culprit parameters required to convert a binary input field
to alphanumeric and packed decimal format.

The following code:

■ Defines the binary field (RDW) on a REC parameter

■ Defines a 16-byte alphanumeric work field to receive the binary number

■ Defines a subscripted work field to receive the binary values and store them in a

numeric table

■ Issues a CALL to CULLUS50 to perform each conversion. A numeric l iteral (16)
specifies the number of bits converted

 INPUT 280 V 280

 REC RDW 1 4 1

 010 ALPHA '1234567890123456'

 010 NUMER.16 2

 013CULLUS50

 0151*001 ALPHA HH 'ALPHA'

 0151*010 NUMER.1 FM '9' HH 'DIGIT 1'

 0151*020 NUMER.12 FM '9' HH 'DIGIT 12'

 0151*030 NUMER.13 FM '9' HH 'DIGIT 13'

 0151*040 NUMER.14 FM '9' HH 'DIGIT 14'

 017010 CALL US50 (RDW ALPHA 16)

 017020 CALL US50 (RDW NUMER.1 16)

REPORT NO. 01 CULLUS50 mm/dd/yy PAGE 1

 ALPHA DIGIT 1 DIGIT 12 DIGIT 13 DIGIT 14

 0000000100010100 0 1 0 1

Concatenating Fields (CULLUS53)

Chapter 3: Procedure Modules 107

Concatenating Fields (CULLUS53)

What You Can Do

You can use CULLUS53 to concatenate up to three input fields and store them in one
work field for processing. For example, you can concatenate name and address fields for

printing labels.

How to Use CULLUS53

To invoke CULLUS53:

1. Define the Input Fields to be concatenated.

2. Define numeric work fields that contain the length of the sending and receiving
fields if numeric l iterals are not used.

3. Define an alphanumeric work field to receive the concatenation.

4. Issue a CALL to CULLUS53 from type 7 logic:

Col

2

▼

RPT-nn7sss CALL US53 (first-field-v first-field-length-vn second-field-v

 second-field-length-vn third-field-v third-field-vn

 comb-field-v comb-field-length-vn)

Concatenating Fields (CULLUS53)

108 User Modules Guide

■ Rpt-nn, coded in columns 2 and 3, specifies a 2-digit number in the range 00
through 99 that identifies the CA Culprit report.

■ Sss, coded in columns 5 through 7, specifies a 3-digit number indicating the
sequence number of the type 7 parameter.

■ First-field-v (ARG1) requires the name of the first alphanumeric field for

concatenation.

■ First-field-len-vn (ARG2) requires a numeric l iteral or the name of a numeric
work field that specifies the length of the first field to be concatenated
(first-field-v).

■ Second-field-v (ARG3) requires the name of the second alphanumeric field for
concatenation.

■ Second-field-len-vn (ARG4) requires a numeric l iteral or the name of a numeric
work field that specifies the length of the second field to be concatenated

(second-field-v).

■ Third-field-v (ARG5) requires the name of the third alphanumeric field for
concatenation.

■ Third-field-len-vn (ARG6) requires a numeric l iteral or the name of a numeric
work field that specifies the length of the third field to be concatena ted
(third-field-v).

■ Comb-field-v (ARG7) requires the name of the alphanumeric field receiving the

concatenation.

■ Comb-field-len-vn (ARG8) requires a numeric l iteral or a numeric work field
that specifies the length of the field receiving the concatenated value

(comb-field-v).

Helpful Hints

■ CULLUS53 automatically eliminates trailing blanks attached to individual data
segments.

■ Blank fields and fields with zero length are ignored.

■ Data returned to the receiving field is compressed. Data segments are separated by
a blank.

■ The receiving field is padded with blanks to the right of the last significant

character. If you don't want the field padded with blanks, make the length of the
receiving field equal to the sum of the length of the data segments plus one space
between each field, but not more than 132.

Concatenating Fields (CULLUS53)

Chapter 3: Procedure Modules 109

Example

This example concatenates name and address fields to produce a mailing l ist.

The following code:

■ Defines input data fields

■ Defines work fields to receive the name (FULL-NAME) and the address

(CITY-STATE-ZIP)

■ Issues a CALL to CULLUS53 to concatenate the elements of the name and another
CALL to concatenate the elements of the address

 INPUT 80 F 400

 REC NAME 6 26

 REC FIRST-NAME 6 10

 REC LAST-NAME 16 10

 REC STREET 26 20

 REC CITY 46 15

 REC STATE 61 2

 REC ZIP 63 5

 093CULLUS53

 090 FULL-NAME ' '

 090 CITY-STATE-ZIP ' '

 090 BLANK ' '

 09510001 FULL-NAME

 09520001 STREET

 09530001 CITY-STATE-ZIP

 09540001 BLANK

 097010 CALL US53 (FIRST-NAME,10,LAST-NAME,10,BLANK,1,

*FULL-NAME,23)

 097025 CALL US53 (CITY 15 STATE 2 ZIP 5

* CITY-STATE-ZIP 24)

REPORT NO. 09 CULLUS53 mm/dd/yy PAGE 1

AMOS JOHNSON
22651 MASS AVENUE

SAN FRANCISCO CA 09801

BRUCE THORPE

11002 PEACHTREE LA

ATLANTA GA 76543

Searching a Table (CULLUS62)

110 User Modules Guide

Searching a Table (CULLUS62)

What You Can Do

You can use CULLUS62 to search an alphanumeric or numeric table for specific values
without coding a series of tests, moves, and computations in type 7 logic.

How to Use CULLUS62

To invoke CULLUS62:

First—Define input fields on REC parameters.

Second—Define required fields that are not input fields or specified by literals on work

field parameters. For example:

■ The table, which is a multiply-occurring field

■ The table type code

■ The number of bytes in each entry of the table

■ The total number of the table entries

■ The type of search code

■ The numeric work field that will receive the occurrence number of the key value in

the table

Third—Issue a CALL to CULLUS62 in type 7 logic:

Col

2

RPT-nn7sss CALL US62 (table-field-name table-type-qv entry-length-vn

entry-count-vn search-type-qv key-vn index-v)

■ Rpt-nn, coded in columns 2 and 3, specifies a 2-digit number in the range 00
through 99 that identifies the CA Culprit report.

■ Sss, coded in columns 5 through 7, specifies a 3-digit number indicating the

sequence number of the type 7 parameter.

■ Table-field-name (ARG1) requires the name of the table to be searched.

■ Table-type-qv (ARG2) requires the name of a work field or a 1-character
alphanumeric code, enclosed in single quotation marks, that specifies the type

of table searched. Valid codes are shown below:

Searching a Table (CULLUS62)

Chapter 3: Procedure Modules 111

Table type... Code... Table entry length...

Alphanumeric 'A' 1 through 64

Numeric 'N' 8 or 16

■ Entry-length-vn (ARG3) requires a numeric l iteral or the name of an 8-byte numeric

work field that indicates the length of each table entry (see above).

■ Entry-count-vn (ARG4) requires a numeric l iteral or the name of an 8-byte numeric
work field that indicates the total number of entries in the table. The maximum is
32,767.

■ Search-type-qv (ARG5) requires the name of a work field or a 1-character
alphanumeric l iteral, enclosed in single quotation marks, that specifies the type of
search:

Search type... Code... Table entry order...

Binary 'B' Ascending

Sequential 'S' Any order

■ Key-vn (ARG6) requires a numeric l iteral, alphanumeric l iteral, or the name of a

field that contains the search value.

■ Index-v (ARG7) requires the name of a numeric work field that receives the number
of the entry in the table that matches the key value (key-vn).

Helpful Hints

■ CULLUS62 does not convert data or align decimals. If either procedure is desired,
move the field that has the key value to an appropriate work field.

■ If the key value is invalid or missing from the table, CULLUS62 automatically returns
a value of zero.

■ Use a key value that corresponds in data type and number of decimal places to the
table entries.

■ Use a sequential search when entries are not randomly distributed and where
entries are not widely diversified.

Searching a Table (CULLUS62)

112 User Modules Guide

Example

This example searches a table containing six occurrences of department numbers.

Department names that correspond to the department number are retrieved and
printed.

The following code:

■ Defines the input data fields, including the field that contains key value (IN-DEPT).

■ Defines work fields containing:

– 6 values for department number (DEPT-NUMBER)

– 7 department names (DEPARTMENT-NAME)

– The occurrence number of the key in the DEPT-NUMBER table (INDEX)

■ Issues a CALL to CULLUS62 to search the DEPT-NUMBER table and place the
occurrence number (INDEX) when a match occurs in INDEX.

The value of INDEX is tested for a return of zero (no key found). If true, a value

corresponding to the seventh occurrence of DEPARTMENT-NAME is moved to
INDEX and UNKNOWN is printed for department numbers not found in the
DEPT-NUMBER table.

■ Prints out specific occurrences of DEPARTMENT-NAME with type 5 l ines.

Processing Data Dictionary Reporter Tables (CULLUS64)

Chapter 3: Procedure Modules 113

 INPUT 80 F 80

 REC NAME 1 20

 REC ACCOUNT 33 4 3

 REC IN-DEPT 37 3

 013CULLUS62

 0141*001 ' '

 0151*001 NAME HH 'NAME'

 0151*002 ACCOUNT FN HH 'ACCOUNT'

 0151*003 DEPARTMENT-NAME.INDEX HH 'DEPARTMENT' 'NAME'

 010 DEPT-NUMBER.6 '111' '222' '333' '444' '555' '666'

 010 DEPARTMENT-NAME.7 'TECH SUPPORT ' 'SALES '

* 'MARKETING ' 'SYSTEM SUPPORT'

* 'ADMINISTRATION' 'EDUCATION '

* 'UNKNOWN '

 010 INDEX

 017001 CALL US62 (DEPT-NUMBER 'A' 3 6 'S' IN-DEPT INDEX)

 017 IF INDEX EQ 0 50

 017 TAKE

 017050 MOVE 7 TO INDEX

 017 TAKE

 01OUT D

REPORT NO. 01 CULLUS62 mm/dd/yy PAGE 1

 DEPARTMENT

 NAME ACCOUNT NAME

 JONES MARY 1112222 TECH SUPPORT

 SMITH PETER 3334444 MARKETING

 BROWN JACK 5556666 ADMINISTRATION
 MACINTOSH JUNE 7778888 UNKNOWN

 RICHARDS MICHAEL 9991111 UNKNOWN

 PAPPAS DICK 2223333 SALES
 BURNS FAY 4445555 SYSTEM SUPPORT

 C750009 RECORDS WRITTEN FOR REPORT 01 -- 12

Processing Data Dictionary Reporter Tables (CULLUS64)

What You Can Do

You can use CULLUS64 to create and read a table of user-defined attributes and

user-defined nested comments from the integrated Data Dictionary. CULLUS64 can be
used if you are writing your own data dictionary reports or are modifying CA-supplied
reports. See the CA IDMS Reports Guide for more information about CA-supplied
reports.

Processing Data Dictionary Reporter Tables (CULLUS64)

114 User Modules Guide

How to Use CULLUS64

To invoke CULLUS64:

First—Access the database and identify the subschema by using the DB and SS= options
of the INPUT parameter.

Second—Identify the route through the dictionary by using the PATH parameter.

Third—Define a numeric work field to hold the key to the user-defined attribute.

Fourth—Define a subscripted alphanumeric work field to hold the user-defined
attributes.

Fifth—If you do not use literals, code alphanumeric work fields for:

■ The action code

■ The entity type

■ The attribute type

Sixth—Issue a CALL to CULLUS64 from type 7 logic:

Col

2

▼

RPTnn7sss CALL US64 (action-code-qv entity-type-qv comment-next-key-qv

 comm-next-id-v table-value-v)

■ Rpt-nn, coded in columns 2 and 3, specifies a 2-digit number in the range 00
through 99 that identifies the CA Culprit report.

■ Sss, coded in columns 5 through 7, specifies a 3-digit number indicating the
sequence number of the type 7 parameter.

■ Action-code-qv (ARG1) requires an alphanumeric work field or 1-character
alphanumeric l iteral, enclosed in single quotation marks, to specify the action
to take:

Code... Action taken...

'0' Create the table

'1' Read the table

Processing Data Dictionary Reporter Tables (CULLUS64)

Chapter 3: Procedure Modules 115

■ Entity-type-qv (ARG2) requires an alphanumeric work field or 20-character
alphanumeric l iteral, enclosed in single quotation marks, to indicate the class

associated with the attribute and provide access to the entry. The valid classes are:

SYSTEM PROGRAM MODULE

FILE RECORD ELEMENT

USER ATTRIBUTE CLASS

MESSAGE TASK QUEUE

DESTINATION LOGICAL-TERMINAL PHYSICAL-TERMINAL

LINE PANEL MAP

■ Comment-nest-key-qv (ARG3) requires an alphanumeric work field or 1-character
alphanumeric l iteral, enclosed in single quotation marks, to indicate the type of

attribute. Valid attribute codes are l isted below under ARG4.

■ Comm-nest-id-v (ARG4) requires an 8-byte numeric work field to provide a key to
the user-defined attribute. Valid key formats are l isted below:

Attribute type... Attribute code... Key format...

Comment 'C' CMT-ID-nnn

Nest 'N' NEST-ID-nnn

■ Table-value-v (ARG5) requires a 40-character alphanumeric work field to send table

updates or receive table data.

Helpful Hints

■ CA Culprit dynamically creates a single external table that can be used by one or
more reports. The total number of table entries need not be known at run time.

■ Be sure to move CMT-ID-nnn or NEST-ID-nnn to a numeric work field and specify
that work field on the CALL statement.

■ Nnn must be positive integers.

■ CULLUS64 does not retrieve system-defined relationships.

Example

This example shows the parameters required to produce a Data Dictionary Report bas ed
on CLASS attributes identified by the key CMT-ID-086.

The following code:

■ Specifies a CA IDMS/DB database and subschemas IDMSNWKA of schema
IDMSNTWK on the INPUT parameter

■ Identifies the route through the data dictionary on the PATH parameter

■ Issues a CALL to CULLUS64 to retrieve user-defined comment entities

Memory Dump (CULLUS99)

116 User Modules Guide

 INPUT 10000 F 10000 DB(D) SS=IDMSNWKA,IDMSNTWK

 PATHA2 OOAK-012 CLASS-092 CLASSCMT-086

 GW0 ATTR-NAME.18 'SYSTEM '

* 'PROGRAM '

* 'MODULE '

* 'FILE '

* 'RECORD '

* 'ELEMENT '

* 'USER '

* 'ATTRIBUTE '

* 'CLASS '

* 'MESSAGE '

* 'TASK '

* 'QUEUE '

* 'DESTINATION '

* 'LOGICAL-TERMINAL '

* 'PHYSICAL-TERMINAL '

* 'LINE '

* 'PANEL '

* 'MAP '

 010 CMT-ID

 010 PRINT-40 ' '

 .

 .

 .

 017250 MOVE CMT-ID-086 TO CMT-ID

 017300 $ CALL MODULE TO RETRIEVE USER-DEFINED COMMENT TYPE

 017 CALL US64 ('1' ATTR-NAME.9 'C' CMT-ID PRINT-40)

Memory Dump (CULLUS99)

What You Can Do

You can use CULLUS99 to produce a region or partition dump.

Memory Dump (CULLUS99)

Chapter 3: Procedure Modules 117

How to Use CULLUS99

To invoke CULLUS99:

■ Issue a CALL to CULLUS99 from type 7 logic:

Col

2

▼

RPT-nn7sss CALLUS99

– Rpt-nn, coded in columns 2 and 3, specifies a 2-digit number in the range 00

through 99 that identifies the CA Culprit report.

– Sss, coded in columns 5 through 7, specifies a 3-digit number indicating the
sequence number of the type 7 parameter.

■ Code JCL statements to produce a dump:

System... Result... CULP3 JCL statement...

z/OS An OC1 abend code //SYSUDUMP DD SYSOUT=A

z/VSE A USER 999 abend code // OPTION DUMP

z/VM DMSABN155T

USER ABEND nnnn called from
addr

nnnn = abend type

(in this case, an

operation exception)

addr = virtual

address of the

abend

Enter the DEBUG mode and

issue the DUMP command

Chapter 4: Output Modules 119

Chapter 4: Output Modules

This section contains the following topics:

What Is an Output Module? (see page 119)
What You Can Do with an Output Module (see page 119)
How to Invoke an Output Module (see page 120)

Formatting a Hexadecimal Buffer Dump (CULEDUMP) (see page 120)
Printing Labels (CULELABL) (see page 123)
Printing Multiple Lines (CULEMLIN) (see page 126)

Writing Formatted Records to a VSAM File (CULEVSAM) (see page 136)
Segmenting Reports in a VSE/POWER Run (CULEPOWR) (see page 138)

What Is an Output Module?

An output module is a subroutine called during the CULE processing phase of a CA
Culprit job to facil itate special output formatting.

What You Can Do with an Output Module

The tasks you can perform with CA-supplied output modules are l isted in the following
table.

What You Can Do with CA-supplied Output Modules

To... Use...

Format a vertical or horizontal

hexadecimal buffer dump for fixed- or
variable-length records

CULEDUMP

Format sorted or unsorted 1- to 8-line

labels

CULELABL

Print more than eight heading, detail, and
footer l ines

CULEMLIN

Write formatted records to an existing

VSAM file

CULEVSAM

Produce printed or punched output for
specific CA Culprit reports through

VSE/POWER

CULEPOWR

How to Invoke an Output Module

120 User Modules Guide

How to Invoke an Output Module

Output modules are invoked by the UM option of the OUTPUT parameter:

■ Rpt-nn, coded in columns 2 and 3, specifies a 2-digit number in the range 00
through 99 that identifies the CA Culprit report.

■ Module-name requires an 8-character name of the output module invoked.

■ Special-value-a requires a 1- or 2-character code specific to some (not all) output
modules. If present, this value is preceded by a comma.

Formatting a Hexadecimal Buffer Dump (CULEDUMP)

CULEDUMP produces a hexadecimal dump of the CA Culprit output buffer in horizontal

or vertical format, as shown below.

Horizontal and Vertical Dump Formats

In horizontal (default) format, hexadecimal representation of data precedes EBCDIC
characters for the same data; both sets of data print on the same line. The f irst two

columns of the dump define the position of the first character of data shown on that
l ine in the output buffer and the address of that l ine in storage. In vertical format,
EBCDIC characters print immediately above their hexadecimal representation. The
bottom line of this dump indicates the position in the output buffer, but storage address

information is not available.

Horizontal Dump:

 1 INPUT RECORDS READ

 HEX DUMP OUTPUT

POSITION ADDRESS STORAGE

 00001 00AB28 40003200 00E3C8C9 E240C9E2 40F3F240 C2E8E3C5 E240D3D6 D5C74040 40404040 *THIS IS 32 BYTES LONG *

 00033 000020 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
 00065 000040 40404040 40404040 404040F1 F16BF0F0 F0404040 40404040 40404040 40404040 * 11,000 *

 00097 000060 40404040 40 * *

 C750009 RECORDS WRITTEN FOR REPORT 01 -- 1

Formatting a Hexadecimal Buffer Dump (CULEDUMP)

Chapter 4: Output Modules 121

Vertical Dump:

 1 INPUT RECORDS READ

 HEX DUMP OUTPUT

 CHAR THIS IS 32 BYTES LONG 11,000
 ZONE 40300ECCE4CE4FF4CEECE4DDDC444FF6FFF4444444444444444444

 DIGIT 0020038920920320283520365700011B0000000000000000000000

 01...5...10....5...20....5...30....5...40....5...50....5...60....5...70....5...80....5...90....5...00
 CHAR

 ZONE 4

 DIGIT 0
 101

 C750009 RECORDS WRITTEN FOR REPORT 01 -- 1

What You Can Do

You can use CULEDUMP to:

■ Produce a horizontal or vertical dump that can be used as an aid in debugging CA
Culprit code. This is especially helpful if you have written your own output module.

■ Obtain a dump, l imited to the length of each output record, for variable-length
records.

How to Use CULEDUMP

To invoke CULEDUMP:

First—Define the input file and input fields.

Second—Specify CULEDUMP on the OUTPUT parameter using the user module and
special value options:

■ Rpt-nn, coded in columns 2 and 3, requires a 2-digit report number in the range 00
through 99.

■ Dump-format requires a 1-character code, preceded by a comma, to specify the
printed format. The default is a horizontal dump.

Use... For this format...

H Horizontal

V Vertical

Formatting a Hexadecimal Buffer Dump (CULEDUMP)

122 User Modules Guide

■ Variable-length-indicator requires a V as a 1-character code to specify a
variable-length record dump. The default is a dump of the entire output buffer for

each record.

Helpful Hints

■ The dump format option for CULEDUMP is independent of the PROFILE parameter
HD= option. The HD= option applies only to dumps produced by the extended

error-handling facility. See CA Culprit for CA IDMS Messages and Codes Guide for
more information.

■ When the variable-length indicator is used, the length of the record (RDW) must be

contained in the first 4 bytes of the output buffer.

Example 1—Horizontal Dump of Fixed-length Records

This example produces a horizontal dump of fixed-length output buffer records.

The following code:

■ Defines an 80-byte input record as one field (FLD)

■ Uses the OUTPUT parameter to:

– Allocate 100 bytes for each output record

– Request a details only report

– Issue a CALL to CULEDUMP to create a horizontal (default) dump

■ Specifies the output (FLD) on a type 5 l ine using exact column placement.

 IN 80 F 80

 REC FLD 1 80

 01OUT 100 D UM(CULEDUMP)

 01510001 FLD

 1 INPUT RECORDS READ

 HEX DUMP OUTPUT

POSITION ADDRESS STORAGE

 00001 00AB28 40003200 00E3C8C9 E240C9E2 40F3F240 C2E8E3C5 E240D3D6 D5C74040 40404040 *THIS IS 32 BYTES LONG *

 00033 000020 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
 00065 000040 40404040 40404040 404040F1 F16BF0F0 F0404040 40404040 40404040 40404040 * 11,000 *

 00097 000060 40404040 40 * *

 C750009 RECORDS WRITTEN FOR REPORT 01 -- 1

Printing Labels (CULELABL)

Chapter 4: Output Modules 123

Example 2—Vertical Dump of Variable-length Records

This example produces a vertical dump of variable-length output buffer records.

The following code:

■ Defines the largest record length in the fi le as 80 bytes

■ Defines the fi le as one field (FLD)

■ Uses the OUTPUT parameter to:

– Allocate a maximum of 100 bytes for the output buffer

– Specify a details-only report

– Issue a CALL to CULEDUMP to create a vertical dump (V)

■ Uses a type 5 parameter with exact column placement to place the FLD in the
output buffer

IN 80 F 80

REC FLD 1 80

01OUT 100 D UM(CULEDUMP VV)

01510001 FLD

 1 INPUT RECORDS READ

 HEX DUMP OUTPUT

 CHAR THIS IS 32 BYTES LONG

 ZONE 0300ECCE4CE4FF4CEECE4DDDC4444444444444444444444444

 DIGIT 02003892092032028352036570000000000000000000000000

 01...5...10....5...20....5...30....5...40....5...50
 C750009 RECORDS WRITTEN FOR REPORT 01 -- 1

Printing Labels (CULELABL)

What You Can Do

You can use CULELABL to print 1- to 8-line labels, in sorted or unsorted sequence, on

regular or special forms.

Printing Labels (CULELABL)

124 User Modules Guide

How to Use CULELABL

Supply a carriage control tape or a function control block (FCB) to direct channel 1 to the
first l ine of each label.

To invoke CULELABL:

1. Use a SORT parameter if you want to print the labels in alphabetical order.

2. Code type 5 or type 6 edit parameters with:

■ The label information.

■ A carriage control character of 1 in column 10 for the first edit l ine.

■ The exact start position of each detail line, based on the record size defined on
the output parameter. See the following diagram for calculating the record and
block size.

3. Specify CULELABL on the OUTPUT parameter, using the UM option:

Col

2

▼

RPT-nnOUTPUT record-size-n block-size-nUM(CULELABL)

■ Rpt-nn, coded in columns 2 and 3, is a 2-digit report number in the range 00

through 99.

■ Record-size-n requires the number of print positions occupied by each label on
a page. Include blank spaces before and after printed information (see the
following diagram).

■ Block-size-n requires the number of print positions occupied by all labels across
the page. To determine block-size-n, multiply record-size-n by the number of
labels (see the following diagram). This specification should not exceed the

printer's output l ine size (usually 132 characters).

CULELABL Record Size and Block Size Calculation

The following diagram shows the CULELABL record size and block size calculation.

Printing Labels (CULELABL)

Chapter 4: Output Modules 125

Example

This example reads 80-character input records and prints name and address labels on a

form having two labels across the page and several labels down the page.

The following code:

■ Uses the OUT parameter to specify:

– A record size of 34 characters

– A block size of 68 characters to accommodate two labels across the page

– A CALL to CULELABL

■ Uses a carriage control character of 1 in column 10 for the first l ine of each new

label

 INPUT 80 F 80

 99OUT 34 68 D UM(CULELABL)

 REC NAME 1 25

 REC STREET-NAME 26 19

 REC STATE-CODE 45 2

 REC CITY-NAME 47 10

 REC ZIP-CODE 57 9

 995100011NAME

 99520001 STREET-NAME

 99530001 CITY-NAME

 99530012 STATE-CODE

 99530015 ZIP-CODE

Printing Multiple Lines (CULEMLIN)

126 User Modules Guide

An Example of Name and Address Labels

Printing Multiple Lines (CULEMLIN)

What You Can Do

You can use CULEMLIN to print out more than eight header, detail, total, or footer l ines.
Reports can contain heading and footer l ines on any page and correspondence, such as
confirmation letters, can include data read in from the input fi le.

Printing Multiple Lines (CULEMLIN)

Chapter 4: Output Modules 127

How It Works

CULEMLIN extends CA Culprit's ability to print more than eight output l ines by dividing
the output buffer contents into equal segments that correspond to the length of the
print l ine. More than one segment, not exceeding the specified length of the output

buffer, can be coded on the same detail l ine of a type 4, 5, or 6 edit parameter.

The process followed by CA Culprit and CULEMLIN is:

■ CA Culprit:

– Determines the size of the output buffer from the specification given on the

OUTPUT parameter

– Constructs the contents of the output buffer at output time from data entered
on type 4, 5, and 6 edit parameters

– Passes the contents of the output buffer to CULEMLIN

■ CULEMLIN:

– Divides the contents of the output buffer into equal segments. Each segment
equals 81 or 133 characters, depending on printer requirements.

– Prints each segment.

How CULEMLIN Works

The output buffer has a defined length of 324 characters, which is evenly divided into
segments of 81 bytes (80 text plus 1 carriage control character). The code specifies the

exact placement of the text of each line.

The following figure shows the output buffer format (CULEMLIN):

Printing Multiple Lines (CULEMLIN)

128 User Modules Guide

Shown below is the code specifying text placement:

10510001 '1'

10510056 'SEPTEMBER 27, 1999'

10510082 '-'

10510088 NAME

10510169 STREET

10510250 CITY

10510264 STATE

10510267 ZIP-CODE

Shown below is the printed output:

 SEPTEMBER 27, 1999

 AMOS JOHNSON

 22651 MASS AVENUE

 SAN FRANCISCO CA 09801

How to Use CULEMLIN

To invoke CULEMLIN:

First—Define the input file.

Second—Specify CULEMLIN on the OUTPUT parameter using the UM option:

Printing Multiple Lines (CULEMLIN)

Chapter 4: Output Modules 129

■ Rpt-nn, coded in columns 2 and 3, requires a 2-digit report number in the range 00
through 99.

■ Record-size-n requires the number of characters held in the output buffer. This
number must be a multiple of the length of the printed line plus a carriage control
character (81 or 133).

■ Special-value-nn can be:

– An optional 2-digit number in the range 00 to 99 that sets the lines -per-page
count and directs output to a fi le identified by the same number. The defaults
are 55 lines to a page and SYS004 as the output fi le.

– A 1-byte binary number followed by a space wi th a value between X'01' and
X'3F', inclusive. This value can be submitted only from a terminal with
hexadecimal input facil ities. When applied as a binary number, output is
directed to SYS004.

Third—Define one page heading, using the special character #, on a type 4 parameter.

Fourth—Define detail and total lines (type 5 and type 6 parameters) as required by the
report. Use absolute, rather than relative, column positions.

Fifth—Use a carriage control character in a column that is an even multiple of the

printer l ine size (81 or 133 characters) and less than the number of characters held in
the output buffer (record-size-n). Valid carriage control characters are l isted in the
following table.

ASA Control Characters

Character Description

(SPACE) One line is advanced before printing.

 0 Two lines are advanced before printing.

- Three lines are advanced before printing.

 + No lines are advanced before printing (causes overprint).

 1 Printer ejects to a new page before printing.

 2-9 Printer skips to channel 2-9 before printing.

 A-F Printer skips to channel 10-15 before printing.

 '#' Specifies heading lines on type 4 parameters.

 '@' Specifies footer l ines on type 5 parameters.

 '*' Suppresses blank lines.

Printing Multiple Lines (CULEMLIN)

130 User Modules Guide

CULEMLIN also provides these additional options:

■ Automatic page numbering, coded by using %PAGE, enclosed in single quotation

marks, on a heading or footer l ine.

■ Page control breaks, coded by using the:

– SORT parameter

– The carriage control character 1, enclosed in single quotation marks, on a type
4 heading line

Helpful Hints

■ A report layout form to calculate the position of the report fields is useful.

■ The number of characters, including spaces, defined for each edit l ine must not
exceed the size of the output buffer. The limit is 1330 bytes.

■ Type 3 (title) parameters and autoheaders should be avoided.

■ CULEMLIN holds heading and footer l ines until:

– The line-per-page count exceeds CULEMLIN's maximum (default is 55)

– The ASA control character '1' on a detail l ine signals a page eject

■ The default output fi le (SYS004) can be overridden by using the DD= clause on the
OUTPUT parameter or the special-value-nn UM(CULEMLIN) option described above

to direct the output.

Example 1—Printing a Letter Containing Variables

This example produces confirmation letters for customers having installment loans. The
account number, outstanding balance, late charges, and remaining payments vary in

each letter.

The following code:

■ Copies the input fi le definition into the code (=COPY)

■ Specifies 324 bytes for the output buffer, based on the requirements of the heading

(4 printed lines of 81 characters each)

■ Defines the heading by using '#' on a type 4 parameter

Printing Multiple Lines (CULEMLIN)

Chapter 4: Output Modules 131

■ Creates multiple detail l ines by using:

– Five logical divisions (new buffer contents), which are identified by control

characters '1' or '-' placed in the first position of the buffer l ine

– Two additional divisions created by using a third and fourth type 5 detail l ine

■ Uses control characters, not placed in the first position of the buffer l ine, to create

spacing

■ Uses blanks in the output buffer to print two spaces between the third and fourth
detail l ines

 IN 80

 REC ACCOUNT 1 5

 REC NAME 6 18

 REC STREET 24 19

 REC CITY 43 13

 REC STATE 56 2

 REC ZIP-CODE 58 5

 REC BALANCE 63 7 2 DP=2

 REC ODCHG 70 5 2 DP=2

 REC REMAIN 75 3 2

 10OUT 324 D UM(CULEMLIN) $Output buffer = 81 bytes x 4 print lines

 10410001 '#' $Identifies the heading

 10410033 'LAST NATIONAL BANK'

 10410115 '1234 MAIN STREET'

 10410197 'SOMEWHERE, USA'

 10410244 '0'

 10510001 '1' $New buffer contents 1

 10510056 'month dd, yyyy' $Print line 1

 10510082 '-' $Triple space

 10510088 NAME $Print line 2

 10510169 STREET $Print line 3

 10510250 CITY $Print

 10510264 STATE $ line

 10510267 ZIP-CODE $ 4

 10520001 '-' $New buffer contents 2

 10520007 'DEAR CUSTOMER:'

 10520082 '-'

Printing Multiple Lines (CULEMLIN)

132 User Modules Guide

 10520092 'FROM TIME TO TIME, AS PART OF OUR REGULAR AUDIT'

 10520140 'PROCEDURE, WE'

 10520169 'ASK OUR CUSTOMERS TO CONFIRM THAT'

 10520203 'THEIR RECORDS ARE IN AGREEMENT'

 10520250 'WITH OURS. THE INFORMATION SHOWN BELOW IS TAKEN'

 10520299 'FROM OUR RECORDS'

 10530007 'OF YOUR ***INSTALLMENT LOAN*** ACCOUNT AS OF'

 10530052 'THE AUDIT DATE ABOVE.'

 10530088 'THIS IS NOT A REQUEST FOR PAYMENT.'

* $Blanks in the output buffer create two blank lines

 10540016 'ACCOUNT NUMBER'

 10540054 ACCOUNT

 10540097 'OUTSTANDING BALANCE'

 10540131 BALANCE F2

 10540178 'LATE CHARGES DUE'

 10540215 ODCHG F2

 10540259 'REMAINING PAYMENTS'

 10540302 REMAIN F1

 10550001 '-' $New buffer contents 3

 10550011 'PLEASE SIGN AND RETURN THIS LETTER IN THE'

 10550053 'ENCLOSED POSTAGE'

 10550088 'PAID ENVELOPE. IF YOUR RECORDS DO NOT AGREE,'

 10550134 'ADDITIONALLY PLEASE'

 10550169 'WRITE IN THE CORRECT DATA. YOUR PROMPT REPLY'

 10550215 'WILL BE GREATLY'

 10550250 'APPRECIATED.'

 10560001 '-' $New buffer contents 4

 10560042 'VERY TRULY YOURS,'

 10560082 '-' $Triple space

 10560123 'INTERNAL AUDIT DEPARTMENT'

 10560163 '-' $Triple space

 10560169 '--'

 10560209 '---------------------------'

 10560250 ACCOUNT

 10560275 'PLEASE REPLY BELOW'

 10570001 '-' $New buffer contents 5

 10570088 '--------------------'

 10570113 '---'

 10570176 'DATE'

 10570208 'SIGNATURE'

 10570244 '-' $Triple space

 10570250 'COMMENTS -'

Printing Multiple Lines (CULEMLIN)

Chapter 4: Output Modules 133

Printed Letter

Shown below is a letter which is the result of the code given above.

 month dd, yyyy

 AMOS JOHNSON
 22651 MASS AVENUE

 SAN FRANCISCO CA 09801

 DEAR CUSTOMER:

 FROM TIME TO TIME, AS PART OF OUR REGULAR AUDIT PROCEDURE, WE

 ASK OUR CUSTOMERS TO CONFIRM THAT THEIR RECORDS ARE IN AGREEMENT
 WITH OURS. THE INFORMATION SHOWN BELOW IS TAKEN FROM OUR RECORDS

 OF YOUR ***INSTALLMENT LOAN*** ACCOUNT AS OF THE AUDIT DATE ABOVE.

 THIS IS NOT A REQUEST FOR PAYMENT.

 ACCOUNT NUMBER 21056
 OUTSTANDING BALANCE 11.23

 LATE CHARGES DUE 1.00

 REMAINING PAYMENTS 1

 PLEASE SIGN AND RETURN THIS LETTER IN THE ENCLOSED POSTAGE
 PAID ENVELOPE. IF YOUR RECORDS DO NOT AGREE, ADDITIONALLY PLEASE

 WRITE IN THE CORRECT DATA. YOUR PROMPT REPLY WILL BE GREATLY

 APPRECIATED.

 VERY TRULY YOURS,

 INTERNAL AUDIT DEPARTMENT

 21056 PLEASE REPLY BELOW

 -------------------- ---

 DATE SIGNATURE

 COMMENTS -

Printing Multiple Lines (CULEMLIN)

134 User Modules Guide

Printing a Report with Footers

This example produces an Account Gain or Loss report for individual branch offices. A

heading, footer, and totals information is printed on each page.

The following code:

■ Defines the length of the output buffer as 532 bytes, based on the heading that

consists of 4 l ines (two with information and two with blanks) and a print l ines of
133 characters

■ Uses a control break of 1 on the SORT parameter and a page-eject control character
('1') on a type 4 parameter to obtain a page ej ect when the branch changes

■ Suppresses the printing of unused segments of the output buffer by using '*'

■ Specifies 20 lines to a page on the CALL to CULEMLIN. SYS020 is added to the CULE
job control statements

■ Defines the footer on a type 5 l ine by using '@'

IN 80

REC BRANCH 1 2

REC ACCOUNT 3 3

REC NAME 6 18

REC CURR-BAL 63 7 2 DP=2

REC PREV-BAL 70 7 2 DP=2

140 GAIN-LOSS DP=2

14SORT BRANCH ACCOUNT

14OUT 532 UM(CULEMLIN,20) $20 detail lines per page

14410001 '#' $Heading lines

14410007 '* * CONFIDENTIAL * *'

14410038 'ACCOUNT GAIN OR LOSS'

14410072 '* * CONFIDENTIAL * *'

14410270 'BRANCH'

14410279 'ACCOUNT'

14410298 'NAME'

14410319 'BALANCE'

14410331 'PRIOR BALANCE'

14410349 'GAIN/LOSS'

14420001 '1' $Page eject

Printing Multiple Lines (CULEMLIN)

Chapter 4: Output Modules 135

14420134 '*' $Blank buffer nulled out

14420267 '*'

14420400 '*'

14510006 BRANCH

14510013 ACCOUNT

14510023 NAME

14510049 CURR-BAL F2

14510065 PREV-BAL F2

14510081 GAIN-LOSS SZ=11 F2

14510134 '*'

14510267 '*'

14510400 '*'

14520001 '@' $Footer

14520273 '* * CONFIDENTIAL * *'

14520338 '* * CONFIDENTIAL * *'

14520400 '*'

14610001 '-'

14610008 'TOTALS'

14610049 CURR-BAL F2

14610065 PREV-BAL F2

14610081 GAIN-LOSS SZ=11 F2

14610134 '*'

14610267 '*'

14610400 '*'

14620001 '0' $Spacing

14620008 'GRAND TOTALS'

14620049 CURR-BAL F2

14620065 PREV-BAL F2

14620081 GAIN-LOSS SZ=11 F2

14620134 '*'

14620267 '*'

14620400 '*'

147 CURR-BAL MINUS PREV-BAL GAIN-LOSS

148010 IF LEVL EQ 2 100

148 TAKE 1

148100 TAKE 2

140 GAIN-LOSS DP=2

Writing Formatted Records to a VSAM File (CULEVSAM)

136 User Modules Guide

 * * CONFIDENTIAL * * ACCOUNT GAIN OR LOSS * * CONFIDENTIAL * *

 BRANCH ACCOUNT NAME BALANCE PRIOR BALANCE GAIN/LOSS

 15 060 SHARON ARMSTRONG 10,000.00 9,100.54 899.46

 21 056 AMOS JOHNSON 11.23 1,000.01 988.78-

 29 557 IRWIN TRIMBLE 357.85 200.02 157.83

 30 115 IRMA DOONES 9,756.73 340.10 9,416.63

 33 470 VICTORIA DAY 50,432.00 560.05 49,871.95

 69 876 BRUCE THORPE 203.45 100.01 103.44

 99 083 HELEN SANTOVEC 2,857.43 3,450.20 592.77-

 TOTALS 73,618.69 14,750.93 58,867.76

 * * CONFIDENTIAL * * * * CONFIDENTIAL * *

Writing Formatted Records to a VSAM File (CULEVSAM)

What You Can Do

CULEVSAM writes entry-sequenced (ESDS), key-sequenced (KSDS), and
relative-sequenced (RSDS) VSAM records to an already existing VSAM data set.

You can use CULEVSAM to:

■ Add ESDS records to the end of the existing VSAM data set

■ Add KSDS records according to the ascending value of each key field

■ Add RSDS records to null VSAM data set created with the util ity IDCAMS expressly
for the CULEVSAM run or a previously existing nonblank data set

How to Use CULEVSAM

Define the VSAM file to which the records are written in the CULE step of the CA Culprit
JCL.

System JCL statement

z/OS //SYS020 DD DSN=cluster.name,DISP=SHR

cluster.name = VSAM file cluster name as defined

 in the IDCAMS jobs that created this fi le

Writing Formatted Records to a VSAM File (CULEVSAM)

Chapter 4: Output Modules 137

System JCL statement

z/VSE // ASSGN SYS020,DISK,VOL=nnnnnn,SHR

// DLBL SYS020,'cluster.name',,VSAM,CAT=IJSYSCT

// EXTENT SYS020,nnnnnn

 nnnnnn = volume serial name of disk containing

the VSAM data set

 cluster.name = name of the VSAM cluster as defined

 in the IDCAMS job that created this

 data set

z/VM VSAM files are not supported.

To invoke CULEVSAM:

First—Specify CULEVSAM on an OUTPUT parameter using the UM option:

Col

2

▼

RPT-nnOUTPUT UM(CULEVSAM ,sequence-type-a)

■ Rpt-nn, coded in columns 2 and 3, requires a 2-digit report number in the range
00 through 99.

■ Sequence-type-a, preceded by a comma, requires the output VSAM file type:

Use... For...

ES Output to an entry-sequenced VSAM file

KS Output to a key-sequenced VSAM file

RS Output to a relative-sequenced VSAM file

Second—Describe the output VSAM records on type 5 parameters.

Helpful Hints

■ When writing records to a KSDS VSAM file, the key field must be in the position
originally defined for the VSAM data set.

■ KSDS records must be added in ascending order by the key field.

Segmenting Reports in a VSE/POWER Run (CULEPOWR)

138 User Modules Guide

Segmenting Reports in a VSE/POWER Run (CULEPOWR)

What You Can Do

CULEPOWR allows specification of print or punch information for one or more reports in
CA Culprit run under VSE/POWER. You can use CULEPOWR as:

■ An output module to print or punch tasks through CA Culprit's print routines

■ A subroutine called by another output module written in code other than CA Culprit
(such as, Assembler or COBOL) that has the responsibility for printing or punching
tasks

How to Use CULEPOWR as a CA Culprit Output Module

To invoke CULEPOWR:

First—Specify CULEPOWR on an OUTPUT parameter using the UM option:

■ Rpt-nn, coded in columns 2 and 3, requires a 2-digit report number in the range 00

through 99.

■ Lines-per-page-nn requires a 2-digit number indicating the number of l ines to print
on a page. The default is 55 lines.

Second—Code VSE/POWER JECL statements after the CA Culprit JCL that executes the

CULE step:

Segmenting Reports in a VSE/POWER Run (CULEPOWR)

Chapter 4: Output Modules 139

■ Rpt-nn, coded in columns 1 and 2, is the number of the CA Culprit report specified
on the OUTPUT parameter that requested CULEPOWR.

■ Power-keyword-q, coded in columns 3 through 5 and enclosed in single quotation
marks, requires a LST or PUN keyword, as appropriate.

■ Column 6 is a space.

■ JECL-options, coded in columns 7 through 68, specifies VSE/POWER options
required for the run. (Refer to VSE/POWER publications.)

■ Comments, coded in columns 69 through 80, are optional.

Helpful Hints

■ If an optional RESTART parameter is specified at the end of the CA Culprit JCL,
follow RESTART with a /* parameter before the first VSE/POWER JECL card.

If no RESTART parameter is specified, precede the first VSE/POWER JECL card with a
/* parameter.

■ If CULEPOWR is invoked by more than one report, follow each report's JECL
information with a /* parameter and order the JECL cards by ascending report
number.

■ To print headings on each page, use the OUTPUT parameter LP= option. Otherwise,
the lines-per-page defaults to zero; title and heading lines print only on the first

page of the report.

■ Invoking CULEPOWR changes the current VSE/POWER JECL options. The new JECL
options set by CULEPOWR stay in effect until the end of the CA Culprit job or until

another report uses CULEPOWR.

How to Use CULEPOWR as a Subroutine

To use CULEPOWR as a subroutine, use the name CULEPWR and link it with each call ing
output module, as shown in the following sample job control language:

// JOB module-name

// OPTION CATAL

 PHASE module-name,*

 INCLUDE module-name

 INCLUDE CULEPOWR

 ENTRY module-name

// EXEC LNKEDT

/*

Segmenting Reports in a VSE/POWER Run (CULEPOWR)

140 User Modules Guide

Module-name is the name of the output module that is responsible for all printing or
punching.

To invoke CULEPWR from an output module:

First—Issue a CALL to CULEPWR from the module:

CALL CULEPWR

Second—Include a calling parameter list that points to the address of the control switch
and, if indicated, to the JECL information:

Use this code... To indicate that...

'C' JECL information is passed through the CALL. A second
address is expected in the call ing parameter l ist to point

to the JECL information area.

'R' The JECL information is read through the card reader.

Third—Test for the control switch return code value:

A return code of... Means...

'0' No errors. VSE/POWER segmentation performed.

'1' Invalid control switch value found. VSE/POWER

segmentation not attempted.

'2' No input card or more than one input card was found in
SYSRDR. VSE/POWER segmentation not performed.

'3' Internal error.

'4' Invalid JECL keyword. VSE/POWER segmentation not
performed.

'5' An unrecognizable error code returned after
VSE/POWER segmentation was attempted.

'6' A hex '04' error code returned after VSE/POWER
segmentation was attempted. See the Segmentation
Macro section of the VSE/POWER manual.

'7' A hex '08' error code returned after VSE/POWER
segmentation was attempted. See the Segmentation
Macro section of the VSE/POWER manual.

Segmenting Reports in a VSE/POWER Run (CULEPOWR)

Chapter 4: Output Modules 141

Helpful Hints

■ VSE/POWER JECL information is supplied through the CALL or through the card
reader.

■ CULEPOWR accesses JECL information through a control switch. The control switch

is pointed to by the first address in the call ing parameter l ist. The value of the
control switch determines if a second address should be expected in the parameter
l ist. If present, the second address points to the JECL information.

■ The JECL information area has the following format:

Col

1

▼

power-keyword power-JECL-options

– Power-keyword, coded in columns 1 through 3 and enclosed in single quotation
marks, requires a LST or PUN keyword, as appropriate.

– Column 4 is a space.

– Power-JECL-options, coded in columns 5 through 66, specifies VSE/POWER

options required for the run. (Refer to VSE/POWER publications.)

■ The VSE/POWER JECL information card, read through a CALL to CULEPOWR, has the
following format:

 Columns 1 and 2 are not used.

Segmenting Reports in a VSE/POWER Run (CULEPOWR)

142 User Modules Guide

Power-keyword, coded in columns 3 through 5, requires a LST or PUN keyword, as
appropriate.

Column 6 is a space.

Power-JECL-options, coded in columns 7 through 68, specifies VSE/POWER options
required for the run. (Refer to VSE/POWER publications.)

Comments, coded in columns 69 through 80, are optional.

■ When the JECL card is read through a CALL to CULEPOWR, the CA Culprit report
number is not available for verification against the card. The input job stream of
JECL cards must be in ascending numerical sequence of the reports that require

them as input.

■ Invoking CULEPOWR changes the current VSE/POWER JECL options. The new JECL
options set by CULEPOWR stay in effect until the end of the CA Culprit job or until
another report uses CULEPOWR.

Example 1—Calling CULEPWR from an Assembler Routine

Reading JECL Information from a Card

 .

 .

 .

 CALL CULEPWR,(CTLSW) CALL TO CULEPWR

 CLI CTLSW,X'F0' CHECK RETURN CODE

 BNE ERROR ERROR WAS NOTED

 .

 .

 .

CTLSW DS CLI'R' JECL VIA CARD

Passing JECL Information Via the Call

 .

 .

 .

 CALL CULEPWR,(CTLSW,JECL) CALL TO CULEPWR

 CLI CTLSW,X'F0' CHECK RETURN CODE

 BNE ERROR ERROR WAS NOTED

 .

 .

 .

CTLSW DS CLI'C' JECL VIA CALL

JECL DS CL66'LST FNO=ACB,DISP=H,PRI=1'

Segmenting Reports in a VSE/POWER Run (CULEPOWR)

Chapter 4: Output Modules 143

Example 2—Calling CULEPWR from a COBOL Module

Reading JECL Information from a Card

WORKING-STORAGE SECTION.

01 CULEPWR-CALL.

 05 CONTROL-SWR PIC X(1) VALUE 'R'.

 05 CONTROL-SWC PIC X(1) VALUE 'C'.

 05 JECL-INFO.

 10 JECL PIC X(24)

 VALUE 'LST FNO=ACB,DISP=H,PRI=1'.

 10 FILLER PIC X(42) VALUE SPACES.

PROCEDURE DIVISION.

 .

 .

 .

CULEPWR-READING-JECL-CARD.

 CALL CULEPWR USING CONTROL-SWR.

 IF CONTROL-SWR NOT EQUAL TO '0'

 GO TO CULEPWR-ERROR.

 .

 .

 .

CULEPWR-JECL-VIA-CALL.

 CALL CULEPWR USING CONTROL-SWC JECL INFOR.

 IF CONTROL-SWC NOT EQUAL TO '0'

 GO TO CULEPWR-ERROR.

Chapter 5: Writing User Modules 145

Chapter 5: Writing User Modules

This section contains the following topics:

What You Can Do (see page 145)
General Considerations for User-written Modules (see page 146)
How to Link-edit User Modules (see page 146)

How to Write Input Modules (see page 150)
How to Write Procedure Modules (see page 161)
How to Write Output Modules (see page 165)

What You Can Do

You can write your own user modules to facil itate processing CA Culprit reports. Before
writing your own module, be sure to check the CA-supplied modules to see if the
function you need is already available. The CA-supplied modules are l isted in
"Introduction" chapter.

Typical Uses for User-written User Modules

Input, procedure, and output modules perform specific processing tasks that have
practical applications. Some typical uses are l isted below:

Use... To...

An input module Decompress a fi le

Read a fi le type not supported by CA Culprit

Combine records from different fi les to form one input
buffer

A procedure module Perform a difficult computation

Incorporate a company-required routine

An output module Write a fi le or report in a format not available to CA
Culprit

Compress the output

General Considerations for User-written Modules

146 User Modules Guide

General Considerations for User-written Modules
■ User-written modules can be called at the same points during a CA Culprit run as

the CA-supplied modules discussed in this manual. These points occur during:

– Input file processing (the extract phase), called from the UM option of the
INPUT parameter:

INPUT 80 F 400 UM(module)

– Input record processing (the extract phase), called from type 7 logic:

017010 CALL module

– Output processing (the output phase), called from the OUTPUT parameter:

01OUT UM(module)

■ Modules are treated as subroutines by the main CA Culprit processing logic, as
follows:

– The module executes at a specified exit point.

– CA Culprit passes data, in the form of an argument l ist, to the module.

– Control is returned to the CA Culprit program when the module finishes
executing.

■ Modules must be written in a programming language that observes standard
linkage conventions, such as COBOL, Assembler, PL/I or FORTRAN.

■ All modules must be compiled and link edited.

If a module already exists in a load (core-image) l ibrary, no new link is required. You

can do one of the following:

– Concatenate the library containing the module with the CA Culprit load
(core-image) l ibrary.

– Copy the library member into the CA Culprit l oad (core-image) l ibrary.

■ When procedure modules are l ink edited with names in the CULLUSnn format, care
must be taken that the name does not duplicate a CA-supplied module.

How to Link-edit User Modules

Under all operating systems each module is l ink edited separately. The member name of

a user module within the load library must be the same name used in the CA Culprit
code to call the module.

Under z/VSE, the space between the end of PHASE CULLGEN and the beginning of
PHASE CULLWORK should be as large as the environment permits. Procedure modules

for all the reports in a single run must be stored together.

How to Link-edit User Modules

Chapter 5: Writing User Modules 147

Establishing Linkage to a COBOL Module

Because CA Culprit system programs are written in the Assembler, each invocation of a
COBOL program is normally treated as an entry into a main program. Special
procedures must be used in order for the COBOL program to act as a subroutine. This is

necessary, for example, if a fi le is opened on the first call to the COBOL program and
that fi le is accessed in subsequent calls.

Use either of two methods shown below to establish l inkage to a COBOL procedure
module. Use method 2 to establish l inkage to a COBOL input or output module.

METHOD 1: Call CULLUS00 as documented in The Universal Interface (CULLUS00).

CULLUS00 will automatically create the COBOL environment before call ing the target
procedure module. Since CULLUS00 is only used for call ing procedure modules, this
method will not work for input or output modules.

If this method is used, the target procedure module can be linked with any desired

AMODE or RMODE under z/OS, z/VM or z/VSE operating systems. If running under IBM
Language Environment, the procedure module must be linked AMODE(31).

METHOD 2: Calling the COBOL module directly. This method can be used with modules
compiled under VS COBOL, VS COBOL II, LE-compliant COBOL compilers (such as COBOL

for and z/VM or COBOL/VSE) COBOL. To implement this method, perform the following
steps:

1. Use the compile options l isted below (if they apply to your version of the COBOL

compiler):

■ NOENDJOB

■ NODYNAM

2. Code the verb GOBACK within the module code.

How to Link-edit User Modules

148 User Modules Guide

3. For LE-compliant COBOL compilers under VSE such as COBOL/VSE, add the following
statement to the linkage editor control statements:

■ INCLUDE CEEUOPT

where CEEUOPT names a fi le that contains a CEEUOPT module which was compiled
specifying RTEREUS=YES.

Note:

■ For more information on creating an application-specific version of CEEUOPT,
see the appropriate COBOL Application Programming Guide.

■ It is not necessary to l ink a CEEUOPT module specifying RTEREUSE=YES with

COBOL programs compiled with Enterprise COBOL for z/OS.

4. For COBOL II, compile and add the following statement to the linkage editor control
statements:

■ INCLUDE IGZEOPT

where IGZEOPT names a fi le which contains an IGZEOPT module which was
compiled specifying RTEREUS=YES. See the VS COBOL II Application Programming
Guide for information on creating an application-specific version of IGZEOPT.

5. Specify any desired AMODE, but specify RMODE(24).

Establishing Linkage to an Assembler Module

When a user module is written in Assembler, observe the following linking conventions:

■ Use an ENTRY statement if the entry point of the module is not the beginning of the

first control section.

■ Use standard register assignments:

Register... Assigns...

1 The address of the argument l ist

2-12 Must be saved and restored

13 The address of the SAVE area

14 The return address in CA Culprit

15 The entry address of the CALLed program

■ Assemble and link the module into a load (z/OS) or core-image (z/VSE) l ibrary.

How to Link-edit User Modules

Chapter 5: Writing User Modules 149

Establishing Linkage to a PL/I Module

Because the operating environment of a PL/I program is different from that of CA Culprit
(that is, Assembler), the following procedures must be observed when using PL/I
modules.

Note: PL/I user modules are only supported on the z/OS platform.

For programs compiled with an LE-compliant compiler:

■ Write the module without the MAIN option but the FETCHABLE option.

■ Use CULLEOPT, a CA-supplied module, to establish the PL/I environment.

■ Assemble and link the module into a load library.

■ Relink the module, including CULLEOPT in the link edit. The linkage editor control
statements for relinking CULLEOPT (in the load library) and an already compiled and
linked PL/I user module (plisub) in a z/OS system are shown below:

//SYSIN DD *

CHANGE CULSUB(plisub_proc) Procedure name within PL/I user module

INCLUDE SYSLMOD(plisub) Linked PL/I user module name

INCLUDE SYSLMOD(CULLEOPT)

ENTRY CULLEOPT

NAME CULLUSnn(R) Name called by CA Culprit

/*

For programs compiled with a non LE-compliant compiler:

■ Write the module without the MAIN option.

■ Use CULLPOPT, a CA-supplied module, to establish the PL/I environment.

■ Assemble and link the module into a load library.

■ Relink the module, including CULLPOPT in the link edit. The linkage editor control
statements for relinking CULLPOPT (in the load library) and an already compiled and

linked PL/I user module (plisub) in a z/OS system are shown below:

//SYSIN DD*

 CHANGE CULPLI(plisub_proc) Procedure name within PL/I user module

 INCLUDE SYSLMOD(plisub) Linked PL/I user module name

 INCLUDE SYSLMOD(CULLPOPT)

 ENTRY PLIOPT

 NAME CULLUSnn(R) Name called by CA Culprit

/*

How to Write Input Modules

150 User Modules Guide

Establishing linkage to a FORTRAN module

The differences between a FORTRAN module and the CA Culprit program (that is,
Assembler) require:

■ Using the naming convention CULFUSnn, where nn is a 2-digit number.

■ Using the CA-supplied module CULLUS00 to call the module from the type 7 logic in
the main CA Culprit program. CULLUS00 recognizes the CULFUSnn naming
convention and automatically converts the FORTRAN numeric fields. (See The
Universal Interface (CULLUS00) for more information about CULLUS00.)

How to Write Input Modules

What You Can Do

A standard CA Culprit module reads one record at a time from the input fi le and places
that record in the input buffer. When using an input module, you can:

■ Open and close an input fi le or set of fi les

■ Read an input fi le or a set of fi les into the CA Culprit input buffer

■ Check for errors on the input fi le

■ Perform computations and record formatting before the input buffer is built

■ Process selected records when SELECT/BYPASS parameters are encountered

How Information Is Passed

Information is passed between CA Culprit and an input module by means of an

argument list, which is set up by CA Culprit from system and user-supplied information.
The following considerations apply:

■ Most of the arguments are not accessed by the input module.

■ References to the arguments can occur only within the input module code.

■ Arguments 1 (input buffer address) and 3 (open/close switch) must always be
accessed within the input module code.

The input module arguments, their function, and address pointers are l isted in the

following table.

How to Write Input Modules

Chapter 5: Writing User Modules 151

Input Module Argument List and Address Pointers

Addresses are passed by the CULL step through Register 1 to all input modules called in

a CA Culprit run.

Argument name Function/comments Displacement from

Register 1

INPUT The address of the CA Culprit
input buffer accessed within
the input module code.

0

DEVINDS The address of type and DTF
codes used internally by CA
Culprit.

4

OPNCLS The address of a 1-byte

user-supplied open/close
switch accessed within the
input module code. The

following table l ists allowable
switch values.

8

FILSPEC The address for record and
label-type codes for the input

fi le being read.

12

RECSIZE The address for the record size
(halfword) of the input fi le

records.

16

BLKSIZE The address for the blocksize
(halfword) of the input fi le.

20

FILDESC The address for the external

fi le name (8-bytes
alphanumeric) and logical unit
(1-byte hexadecimal) for the

input fi le.

24

ISKEY The address of an internal CA
Culprit key field not accessible
by the user.

28

How to Write Input Modules

152 User Modules Guide

Argument name Function/comments Displacement from
Register 1

VPRINT The entry address for the CA
Culprit print routine used to
print user-defined diagnostic

and error message relating to
the input buffer.

VPRINT cannot be called by a
COBOL user module. For

Assembler modules, call the
VCON print routine address
and pass the address of the
line of data to be printed.

32

ASELTBL The address of the internal
select table used by input
module select routines

(CULLCBSL, CULSLCT, and
CULSINIT).

36

VSEL The VCON address for the
CULLSEL module used by input

module select routines.

40

VDBEXIT The address for the DBEXIT
module supplied by the input

module for the CULL step.
VDBEXIT is not accessible by
the user.

44

COMMONA A common area for internal CA

Culprit use. COMMONA is not
accessible by the user.

48

ALTDESC The address if the

fi lename/ddname and logical
unit for an alternate fi le
specified with the INPUT
parameter DD2 option.

52

PASSWD The address of an 8-byte
user-specified password, as
specified on the INPUT
parameter.

56

How to Write Input Modules

Chapter 5: Writing User Modules 153

Input Module Open/close Switch Values

If the open/close switch is not set to one of these values, CA Culprit outputs an error

message stating the contents of the switch.

Hexadecimal value File status Binary value

X'FF' The input fi le is closed and must be
opened by resetting the value to
X'00'.

255

X'00' The input fi le is open and can read

and deliver records to the CA
Culprit input buffer until an
end-of-fi le condition is
encountered. Close the fi le and

reset this value to X'FF' when
end-of-fi le is reached.

0

X'0F' The STOP action has been

encountered in procedure code.
The input module closes the input
fi le. Reset this value to X'FF'.

15

X'F0' The input module code can use this

value to indicate an I/O error. If
used and an I/O error is found,
reset this value to X'FF'.

240

How to Write Input Modules

154 User Modules Guide

Coding a COBOL Input Module

How to Implement SELECT/BYPASS Logic

CA supplies a COBOL subroutine (CULLCBSL) to select input records for processing.
When SELECT/BYPASS parameters are entered in CA Culprit code for any run that calls

the input module, the CA routines must be called from the module to implement the
selection logic.

To implement SELECT/BYPASS logic:

■ Include CULLCBSL in the link of the input module. You can find CULLCBSL in the

z/OS CAGJLOAD library that is created during installation or in the z/VSE IDMS
sublibrary. If the input module is compiled with an Enterprise COBOL compiler, l ink
the module with a CULLCBSL program (for CULPRIT releases 18.0 and higher).

■ Call CULLCBSL from the COBOL input module:

CALL 'CULLCBSL' USING input-buffer-addr select-switch-addr

– Input-buffer-addr, requires the name of a field that points to the starting
address of the CA Culprit input buffer.

– Select-switch-addr, requires the name of a 1-byte field to hold fi le
SELECT/BYPASS codes.

How to Write Input Modules

Chapter 5: Writing User Modules 155

Example

This is an example of a COBOL input module that reads an 80-byte record.

■ The fields referenced by the argument l ist that CA Culprit passes to the module are
defined in the LINKAGE SECTION of the DATA DIVISION.

■ The USING clause of the PROCEDURE DIVISION statement l ists the data names

assigned in the LINKAGE SECTION that are used by the subroutine. References to
the data names serve as direct substitutes for the storage addresses.

Input Module

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CULLUS98.

 INSTALLATION. COMPUTER ASSOCIATES

 DATE-WRITTEN. MONTH YYYY.

 REMARKS. THIS IS A TEST OF A COBOL USER INPUT MODULE

 FOR A CULPRIT JOB.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-370.

 OBJECT-COMPUTER. IBM-370.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT INPUT-FILE ASSIGN TO UT-S-SYS010.

*CHANGE FILE ASSIGNMENT FOR VSE/ESA TO: SYS010-UT-S.

How to Write Input Modules

156 User Modules Guide

DATA DIVISION.

 FILE SECTION.

 FD INPUT-FILE

 RECORDING MODE IS F

 LABEL RECORDS ARE STANDARD

 RECORD CONTAINS 80 CHARACTERS

 BLOCK CONTAINS 0 RECORDS

 DATA RECORD IS RECORD-IN.

 01 RECORD-IN PIC X(80).

 WORKING-STORAGE SECTION.

 77 SEL-BYP-SW PIC X.

 77 CLOSE-STATUS PIC X VALUE ' '.

 77 OPEN-STATUS PIC X VALUE ' '.

* CLOSE-STATUS = HEX 'FF' OPEN-STATUS = HEX '00'

 LINKAGE SECTION.

 01 CULARG-INPUT PIC X(80).

 01 CULARG-2 PIC X.

 01 CULARG-SW PIC X.

 01 CULARG-3 PIC XX.

 01 CULARG-4 COMP PIC 99.

 01 CULARG-5 COMP PIC 99.

 01 CULARG-6 PIC X(8).

 01 CULARG-7 PIC X.

 01 CULARG-8 PIC X.

How to Write Input Modules

Chapter 5: Writing User Modules 157

 PROCEDURE DIVISION USING CULARG-INPUT

 CULARG-2

 CULARG-SW

 CULARG-3

 CULARG-4

 CULARG-5

 CULARG-6

 CULARG-7

 CULARG-8.

0010-CONTROL.

 MOVE ' ' TO SEL-BYP-SW.

 IF CULARG-SW = CLOSE-STATUS

 PERFORM 0020-OPEN THRU 0020-EXIT

 ELSE

 IF CULARG-SW = OPEN-STATUS

 PERFORM 0030-READ THRU 0030-EXIT

 UNTIL SEL-BYP-SW = 'Y'

 ELSE

 PERFORM 0040-CLOSE THRU 0040-EXIT.

 GOBACK.

0020-OPEN.

 OPEN INPUT INPUT-FILE.

 MOVE OPEN-STATUS TO CULARG-SW.

 PERFORM 0030-READ THRU 0030-EXIT

 UNTIL SEL-BYP-SW = 'Y'.

0020-EXIT.

 EXIT.

0030-READ.

 READ INPUT-FILE INTO CULARG-INPUT

 AT END PERFORM 0040-CLOSE THRU 0040-EXIT

 MOVE CLOSE-STATUS TO CULARG-SW

 MOVE 'Y' TO SEL-BYP-SW

 GO TO 0030-EXIT.

 MOVE 'Y' TO SEL-BYP-SW.

 CALL 'CULLCBSL' USING CULARG-INPUT

 SEL-SYP-SW.

0030-EXIT.

 EXIT.

0040-CLOSE.

 CLOSE INPUT-FILE.

0040-EXIT.

 EXIT.

How to Write Input Modules

158 User Modules Guide

Coding an Assembler Input Module

How to Implement SELECT/BYPASS Logic

SELECT/BYPASS logic can be implemented in an Assembler input module by using the
CA-supplied CULSINIT and CULSLCT macros in the source library from the install.

CULSINIT establishes an environment that allows CA Culprit SELECT/BYPASS logic to
function. CULSLCT implements the CA Culprit SELECT/BYPASS logic.

To implement SELECT/BYPASS logic:

1. Code CULSINIT immediately after the initial register and save area housekeeping

functions in the input module source code.

2. Code CULSLCT in the input module logic.

Register 1 points to the input record to which SELECT/BYPASS logic is applied. Use
these two positional operands:

■ The label of the location receiving control if the record passes the
SELECT/BYPASS logic. Absence of SELECT/BYPASS parameters in the CA Culprit
code causes control to be passed to this location after each use of the CULSLCT

macro.

■ The label of the location receiving control if the record fails the SELECT/BYPASS
logic.

Example

This is an example of an Assembler input module that reads an 80-byte record.

Input Module

 CULLUS95 CSECT

 R0 EQU 0

 R1 EQU 1

 R2 EQU 2

 R3 EQU 3

 R4 EQU 4

 R5 EQU 5

 R6 EQU 6

 R7 EQU 7

 R8 EQU 8

 R9 EQU 9

 R10 EQU 10

 R11 EQU 11

 R12 EQU 12

How to Write Input Modules

Chapter 5: Writing User Modules 159

 R13 EQU 13

 R14 EQU 14

 STM 14,12,12(13) SAVE CALLER'S REGISTERS

 BALR R3,0 ESTABLISH BASE REGISTER

 USING *,R3

 ST R13,SAVEAREA+4

 LA R13,SAVEAREA

 ST 13,SAVEAREA+8

 CULSINIT ESTABLISHES CULPRIT ENVIRONMENT

* FOR SELECT/BYPSS CALLS

 L R4,0(R1) R4 POINTS TO INPUT BUFFER

 L R5,8(R1) R5 POINTS TO OPEN/CLOSE SW

 CLI 0(R5),X'FF' IS FILE CLOSED?

 BE OPEN YES

 CLI 0(R5),X'00' IS FILE OPEN?

 BE READ YES

 B CLOSE

 RETURN EQU *

 L R13,SAVEAREA+4 RESTORE REGISTERS

 LM R14,R12,12(R13)

 BR R14

 SAVEAREA DS 18F SAVE REGISTER AREA

 OPEN EQU *

 OPEN (INPUTFI,INPUT) OPEN INPUT FILE

 MVI 0(R5),X'00' SET OPEN/CLOSE SW TO OPEN

 READ EQU *

 GET INPUTFI GET FIRST RECORD

 MVC 0(80,R4),0(R1) MOVE FIRST RECORD INTO BUFFER

 CULSLCT RETURN,READ SEL/BYP MACRO

 B RETURN

 EOF EQU *

 MVI 0(R5),X'FF' SET OPEN/CLOSE SW TO CLOSE

 CLOSE EQU *

 CLOSE INPUTFI CLOSE INPUT FILE

 B RETURN

 INPUTFI DCB DSORG=PS,MACRF=GL,DDNAME=SYS010,EODAD=EOF CHANGE FOR VSE/ESA

 END CULLUS95

How to Write Input Modules

160 User Modules Guide

Coding a PL/I Input Module

How to Implement SELECT/BYPASS Logic

Because the PL/I environment is different from CA Culprit (that is, Assembler),
SELECT/BYPASS logic must be done with the SELECT/BYPASS BUFFER statement within

the CA Culprit program.

Example

This is an example of a PL/I input module input that reads an 80-byte record.

Input Module

 PLIPROG:PROC(BUF,ARG1,ARG2,ARG3,ARG4,ARG5,ARG6,ARG7,ARG8);

 DCL (BUF, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7, ARG8) FIXED(1);

 DCL REC CHAR(80) BASED(P1);

 DCL FLAG CHAR(1) BASED(P3);

 DCL (P1, P2, P3, P4, P5, P6, P7, P8) POINTER;

 DCL ADDR BUILTIN;

 DCL SW1 CHAR(1) INITIAL(' '); /* HEX 00*/;

 DCL SW2 CHAR(1) INITIAL(' '); /* HEX FF*/;

 DCL SYS010 FILE INPUT RECORD;

 ON ENDFILE(SYS010) GO TO EOF;

 P1 = ADDR(BUF);

 P3 = ADDR(ARG2);

 IF FLAG = SW2 THEN DO;

 FLAG=SW1;

 OPEN FILE(SYS010);

 END;

 IF FLAG = SW1 THEN DO;

 READ FILE(SYS010) INTO (REC);

 GO TO GO_BACK;

 END;

 EOF:CLOSE FILE(SYS010);

 FLAG=SW2;

 GO_BACK:RETURN;

 END PLIPROG;

How to Write Procedure Modules

Chapter 5: Writing User Modules 161

How to Write Procedure Modules

What You Can Do

Up to 100 procedure modules can be called from type 7 logic for each report in a CA
Culprit run. When you use a procedure module, you can:

■ Open and close any fi le other than the CA Culprit input fi le

■ Read and write any fi le other than the input fi le

■ Perform customized or complicated procedural routines and return to the
statement in type 7 logic following the CALL to the procedure module

How Information Is Passed

Communication between CA Culprit and a procedure module is effected by an argument
l ist that is set up by CA Culprit and accessed by the module. Before call ing a procedure
module, CA Culprit supplies a l ist of one fixed argument and nine user -supplied

arguments that consist of system and user-supplied information:

■ The fixed argument is the starting address of the CA Culprit input buffer, which
makes it possible for any field in the input buffer to be accessed by the procedure

module.

■ The user-supplied arguments can point to numeric or alphanumeric work fields,
l iterals, numeric constants, or individual fields from the input record. Once the
address of a field is passed to the procedure module, the contents of the field can

then be processed or modified by the module.

How to Write Procedure Modules

162 User Modules Guide

Coding a COBOL Procedure Module

The following module adds two numbers and returns the result to the main CA Culprit
program.

Procedure Module

IDENTIFICATION DIVISION.

PROGRAM-ID. CULLUS97.

INSTALLATION. COMPUTER ASSOCIATES

DATE-WRITTEN. MONTH YYYY.

REMARKS. THIS IS A TEST OF A COBOL PROCEDURE MODULE

 FOR A CULPRIT JOB.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-370.

OBJECT-COMPUTER. IBM-370.

DATA DIVISION.

LINKAGE SECTION.

01 CULARG-INPUT PIC X.

01 CULARG-1 PIC S9(15) COMP-3.

01 CULARG-2 PIC S9(15) COMP-3.

01 CULARG-3 PIC S9(15) COMP-3.

PROCEDURE DIVISION USING CULARG-INPUT

 CULARG-1

 CULARG-2

 CULARG-3.

0010-CONTROL.

 ADD CULARG-1 CULARG-2 GIVING CULARG-3.

 GOBACK.

How to Write Procedure Modules

Chapter 5: Writing User Modules 163

Coding an Assembler procedure module

The following module adds two numbers and returns the result to the main CA Culprit
program.

Procedure Module

CULLUS94 CSECT

R0 EQU 0

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R10 EQU 10

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

 STM R14,R12,12(R13) SAVE CALLER'S REGISTERS

 BALR R3,0 ESTABLISH BASE REGISTER

 USING *,R3

 ST R13,SAVEAREA+4

 LA R13,SAVEAREA

 ST R13,SAVEAREA+8

PROCESS EQU *

 LM R4,R6,4(R1) R4 ─► R6 POINTS TO ARG1 ─► ARG3

 ZAP 0(8,R6),0(8,R4) ZERO ARG3, ADD ARG1

 AP 0(8,R6),0(8,R5) ADD ARG2

RETURN EQU *

 L R13,SAVEAREA+4 RESTORE REGISTERS

 LM R14,R12,12(R13)

 BR R14

SAVEAREA DS 18F SAVE REGISTER AREA

 B RETURN

 END CULLUS94

How to Write Procedure Modules

164 User Modules Guide

Coding a PL/I Procedure Module

The following module adds two numbers and returns the result to the main CA Culprit
program.

Procedure Module

 PLIPROG:PROC(BUF,ARG1,ARG2,ARG3);

 DCL (BUF, ARG1, ARG2, ARG3) FIXED(1);

 DCL REC CHAR(80) BASED(P1);

 DCL NUMERIC1 FIXED DEC(15) BASED (P2);

 DCL NUMERIC2 FIXED DEC(15) BASED (P3);

 DCL NUMERIC3 FIXED DEC(15) BASED (P4);

 DCL (P1, P2, P3, P4) POINTER;

 DCL ADDR BUILTIN;

 P1 = ADDR(BUF);

 P2 = ADDR(ARG1);

 P3 = ADDR(ARG2);

 P4 = ADDR(ARG3);

 NUMERIC3=NUMERIC1 + NUMERIC2;

 RETURN;

 END PLIPROG;

Coding a FORTRAN procedure module

The following module adds two numbers and returns the result to the main CA Culprit
program.

The procedure module

INTEGER*4 A,B,C

C=A+B

RETURN

END

Helpful hints

■ To call a FORTRAN module in a CA Culprit run, you must use CULLUS00. CULLUS00
converts the CA Culprit 8-byte and 16-byte packed decimal work fields, which are
not recognized by FORTRAN, to double precision floating point numeric values.

■ FORTRAN modules must use the CULFUSnn naming convention.

How to Write Output Modules

Chapter 5: Writing User Modules 165

How to Write Output Modules

What You Can Do

An output module serves as a bridge between the output record built by CA Culprit and
the actual output from the CA Culprit run. If you cannot find the format for a fi le or

report in the CA-supplied output modules, you can write your own output module.

How Information Is Passed

Communication between CA Culprit and an output module occurs through an argument
l ist that is set up by CA Culprit and accessed by the output module. Before call ing an

output module, CA Culprit supplies the argument l ist values from system and
user-supplied information. The following considerations apply:

■ Most of the arguments are not accessed by the output module.

■ References to the arguments can occur only within the output modul e code.

■ Arguments 1 (output record address) and 3 (open/close switch) must always be
accessed within the output module code.

The following table l ists the output module arguments, their function, and address

pointers.

Output Module Argument List and Address Pointers

Addresses are passed by the output phase through Register 1 to all output modules
called in a CA Culprit run.

Argument Name Function/Comments Displacement from
Register 1

OUTBUF The starting address of the CA Culprit
output record, containing records formatted
according to user specifications.

0

OUTCODS The address of a field containing 2 bytes of

internal CA Culprit code (device type and
DTF code) and 2 bytes for the output report
number. The report number is accessible

for output.

4

OUTOCLS The address of a 1-byte user-supplied
open/close switch accessed within the
output module code. The following table

l ists allowable switch values.

8

How to Write Output Modules

166 User Modules Guide

Argument Name Function/Comments Displacement from
Register 1

OUTSPEC The address of the record type code for the
output fi le being written (2 bytes) and
2-bytes unused space.

12

OUTREC The address for the size (4-bytes) of the
output fi le records.

16

OUTBLK The address for the output fi le blocksize (4
bytes).

20

OUTDESC The address for the external fi le name
(8-bytes alphanumeric) and logical unit
(1-byte hexadecimal) for the output fi le.

24

OUTISK The address of an internal CA Culprit key

field not accessible by the user.

28

OUTPRINT The entry address for the CA Culprit print
routine used to print user-defined

diagnostic and error message relating to the
output buffer.

VPRINT cannot be called by a COBOL user
module. For Assembler modules, call the

VCON print routine address and pass the
address of the line of data to be printed.

32

OUTFORM The address of a 10-byte field containing 2

bytes that contain the special value that is
coded on the OUTPUT parameter.

36

Output Module Open/close Switch Values

If the open/close switch is not set to one of these values, CA Culprit outputs an error

message stating the contents of the switch.

Hexadecimal Value Binary Value File Status

X'FF' The output fi le is closed and must be
opened by resetting the value to X'00'.

255

X'00' The output fi le is open and reads records
passed from CA Culprit and writes them

to an output device or fi le until an
end-of-fi le condition is encountered.

0

How to Write Output Modules

Chapter 5: Writing User Modules 167

Hexadecimal Value Binary Value File Status

X'0F' Indicates end-of-fi le after the last output

record is delivered to the output module.
The fi le is closed and the value is reset to
X'FF'.

15

How to Write Output Modules

168 User Modules Guide

Coding a COBOL Output Module

The following example writes an 80-byte record.

Output Module

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CULLUS96.

 INSTALLATION. COMPUTER ASSOCIATES

 DATE-WRITTEN. MONTH YYYY.

 REMARKS. THIS IS A TEST OF A COBOL OUTPUT MODULE

 FOR A CULPRIT JOB.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-370.

 OBJECT-COMPUTER. IBM-370.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT OUTPUT-FILE ASSIGN TO UT-S-SYS004.

* USE SYS004-UT-S FOR z/VSE

 DATA DIVISION.

 FILE SECTION.

 FD OUTPUT-FILE

 RECORDING MODE IS F

 LABEL RECORDS ARE STANDARD

 RECORD CONTAINS 80 CHARACTERS

 BLOCK CONTAINS 0 RECORDS

 DATA RECORD IS RECORD-OUT.

 01 RECORD-OUT PIC X(80).

 WORKING-STORAGE SECTION.

 77 CLOSE-STATUS PIC X VALUE ' '.

 77 OPEN-STATUS PIC X VALUE ' '.

* CLOSE-STATUS = HEX 'FF' OPEN-STATUS = HEX '00'

 LINKAGE SECTION.

 01 CULARG-INPUT PIC X(80).

 01 CULARG-2 PIC X.

 01 CULARG-SW PIC X.

 01 CULARG-3 PIC XX.

 01 CULARG-4 COMP PIC 99.

 01 CULARG-5 COMP PIC 99.

 01 CULARG-6 PIC X(8).

 01 CULARG-7 PIC X.

 01 CULARG-8 PIC X.

How to Write Output Modules

Chapter 5: Writing User Modules 169

 PROCEDURE DIVISION USING CULARG-INPUT

 CULARG-2

 CULARG-SW

 CULARG-3

 CULARG-4

 CULARG-5

 CULARG-6

 CULARG-7

 CULARG-8.

0010-CONTROL.

 IF CULARG-SW = CLOSE-STATUS

 PERFORM 0020-OPEN THRU 0020-EXIT

 ELSE

 IF CULARG-SW = OPEN-STATUS

 PERFORM 0030-WRITE THRU 0030-EXIT

 ELSE

 PERFORM 0040-CLOSE THRU 0040-EXIT.

 GOBACK.

0020-OPEN.

 OPEN OUTPUT OUTPUT-FILE.

 MOVE OPEN-STATUS TO CULARG-SW.

 PERFORM 0030-WRITE THRU 0030-EXIT

0020-EXIT.

 EXIT.

0030-WRITE.

 WRITE RECORD-OUT FROM CULARG-OUTPUT.

0030-EXIT.

 EXIT.

0040-CLOSE.

 CLOSE OUTPUT-FILE.

 MOVE CLOSE-STATUS TO CULARG-SW.

0040-EXIT.

 EXIT.

How to Write Output Modules

170 User Modules Guide

Coding an Assembler Output Module

The following example writes an 80-byte record.

Output Module

CULLUS93 CSECT

R0 EQU 0

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R10 EQU 10

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

 STM R14,R12,12(R13) SAVE CALLER'S REGISTERS

 BALR R3,0 ESTABLISH BASE REGISTER

 USING *,R3

 ST R13,SAVEAREA+4

 LA R13,SAVEAREA

 ST R13,SAVEAREA+8

 L R4,0(R1) R4 POINTS TO OUTPUT BUFFER

 L R5,8(R1) R5 POINTS TO OPEN/CLOSE SW

 CLI 0(R5),X'FF' IS FILE CLOSED?

 BE OPEN YES

 CLI 0(R5),X'00' IS FILE OPEN?

 BE WRITE YES

 B CLOSE

RETURN EQU *

 L R13,SAVEAREA+4 RESTORE REGISTERS

 LM R14,R12,12(R13)

 BR R14

How to Write Output Modules

Chapter 5: Writing User Modules 171

SAVEAREA DS 18F SAVE REGISTER AREA

OPEN EQU *

 OPEN (OUTPUTFI,OUTPUT) OPEN OUTPUT FILE

 MVI 0(R5),X'00' SET OPEN/CLOSE SW TO OPEN

WRITE EQU *

 MVC OUTAREA,0(R4) MOVE OUTPUT BUFFER TO OUTAREA

 PUT OUTPUTFI,OUTAREA WRITE RECORD

 B RETURN

CLOSE EQU *

 CLOSE OUTPUTFI CLOSE OUTPUT FILE

 MVI 0(R5),X'FF' SET OPEN/CLOSE SW TO CLOSE

 B RETURN

OUTAREA DS CL80 OUTPUT RECORD

OUTPUTFI DCB DSORG=PS,MACRF=PM,DDNAME=SYS004,RECFM=FBA,BLKSIZE=80, X

 LRECL=80

 END CULLUS93

Coding a PL/I Output Module

The following example writes an 80-byte record.

Output Module

 PLIPROG:PROC(BUF,ARG1,ARG2,ARG3,ARG4,ARG5,ARG6,ARG7,ARG8);

 DCL (BUF, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7, ARG8) FIXED(1);

 DCL REC CHAR(80) BASED(P1);

 DCL FLAG CHAR(1) BASED(P3);

 DCL (P1, P2, P3, P4, P5, P6, P7, P8) POINTER;

 DCL ADDR BUILTIN;

 DCL SW1 CHAR(1) INITIAL(' '); /* HEX 00*/;

 DCL SW2 CHAR(1) INITIAL(' '); /* HEX FF*/;

 P1 = ADDR(BUF);

 P3 = ADDR(ARG2);

 IF FLAG = SW2 THEN DO;

 FLAG=SW1;

 END;

 IF FLAG = SW1 THEN DO;

 PUT EDIT (REC) (COLUMN(2),A(80));

 GO TO GO_BACK;

 END;

 EOF:/* ALL OUTPUT WRITTEN */;

 GO_BACK:RETURN;

 END PLIPROG;

Index 173

Index

C

control statements • 28, 29, 32
ADR • 28

ADR, pointed start • 29
blank • 29
dummy • 29

KEY • 28
KEY, direct read • 32
KEY, pointed start • 28

conversion • 53, 55, 62

Julian date • 53
universal date • 55, 62

conversions • 82, 84, 88, 91, 105
binary to alphanumeric • 105

binary to pack decimal • 105
doubleword binary to packed decimal • 91
floating point to packed decimal • 88

packed decimal to binary • 82
packed to zoned decimal • 84

CULEMLIN • 128, 130, 136
page control • 128

page numbering, automatic • 128
CULLUS11 • 54

error checking • 54

leap year • 54
CULLUS11 procedure modules • 54

CULLUS11 • 54
CULLUS12 procedure modules • 56, 57

CULLUS12 • 56
error checking • 57
multiple calls • 57

CULLUS14 procedure modules • 58, 59
CULLUS14 • 59
Gregorian date • 58

CULLUS15 procedure modules • 62, 64, 65

CULLUS15 • 62
error checking • 64
multiple calls • 64

CULLUS22 • 66, 68, 69, 74

link edit • 66, 68
multiple ISAM files • 69
using multiple ISAM files • 68

z/VSE • 69
CULLUS25 • 77, 78

link edit • 77
manipulating key fields • 77
multiple VSAM files • 77

CULSPAN • 20, 25, 26

source code • 20
spanned records, z/VSE • 20

D

dump • 120, 122, 123
fixed-length records • 122
horizontal • 120

variable-length records • 122
vertical • 120

F

floating point values • 91
formatting • 120, 123, 126, 136

dump • 120

labels • 123
multiple l ines • 126
VSAM records • 136

I

input modules • 20, 26
CULLVSAM • 26

CULSPAN • 20

L

l ink edit • 42, 66, 68, 69, 77, 146, 148

CULLUS22 • 68
CULLUS22 • 66
CULLUS22 • 69
CULLUS25 • 77

user-written modules • 42, 146, 148

O

output modules • 119, 120
general discussion of • 120
summary of • 119
syntax • 120

P

password • 28, 29, 31, 32
password omission • 29, 32

174 User Modules Guide

PW= • 28
procedure modules • 41, 42

argument sequence • 41
general discussion • 42
multiple • 42

numeric arguments • 41

S

source code • 20, 69

CULLUS22 • 69
CULSPAN • 20

syntax • 20, 27, 40, 43, 44, 66, 75, 79, 81, 82, 83, 84,
85, 86, 88, 89, 92, 93, 94, 96, 100, 101, 104, 105,

107, 110, 113, 114, 116, 117, 119, 120, 121, 122,
124, 126, 128, 136, 138, 139, 141

CULEDUMP • 121

CULELABL • 124
CULEMLIN • 128
CULEPOWR • 138
CULEVSAM • 136

CULLUS00 • 43
CULLUS01 • 44
CULLUS22 • 66

CULLUS25 • 75
CULLUS29 • 79
CULLUS31 • 81
CULLUS33 • 83

CULLUS34 • 85
CULLUS35 • 86
CULLUS36 • 89

CULLUS37 • 92
CULLUS40 • 93
CULLUS43 • 94
CULLUS45 • 96

CULLUS46 • 101
CULLUS48 • 104
CULLUS50 • 105
CULLUS53 • 107

CULLUS62 • 110
CULLUS64 • 114
CULLUS99 • 117

CULLVSAM • 27
CULSPAN • 20
input modules, general • 20
output modules, general • 120

procedure modules, general • 40
system time and date • 47, 49, 53

Canadian format • 49

retrieval of • 47

U

user modules • 12, 14
summary of • 14

types of • 12
user modules, writing of • 146

general discussion • 146
user-written modules • 154, 158, 160, 162, 163, 164,

168, 170, 171
Assembler • 148
Assembler input module • 158
Assembler output module • 170

Assembler procedure module • 163
COBOL input module • 154
COBOL output module • 168

COBOL procedure module • 162
FORTRAN • 150
FORTRAN procedure module • 164
PL/I • 149

PL/I input module • 160
PL/I output module • 171
PL/I procedure module • 164

use-written modules • 42
link edit • 42

V

VSAM file • 26, 29, 74, 136
direct read • 26
pointed start • 26
random access of • 74

read from the beginning • 29
relative byte address (RBA) • 26
sequential read • 26

writing to • 136

Z

z/OS • 69

CULLUS22 • 69
z/VSE • 69

CULLUS22 • 69

	CA Culprit for CA IDMS User Modules Guide
	CA Technologies Product References
	Contact CA Technologies
	Documentation Changes
	Contents
	1: Introduction
	Overview
	Types of CA Culprit User Modules
	CA Culprit System Diagram

	Summary of CA-supplied User Modules
	Input Modules
	Procedure Modules
	Output Modules

	Syntax Diagram Conventions

	2: Input Modules
	What Is an Input Module?
	What You Can Do with an Input Module
	How to Invoke an Input Module
	Processing Spanned Records--z/VSE (CULSPAN)
	What You Can Do
	How to Use CULSPAN
	CULSPAN Source Code Listing
	CULSPAN Source Code Modifications

	Helpful Hints

	Selective Retrieval of VSAM files (CULLVSAM)
	What You Can Do
	How CULLVSAM Works
	How to Use CULLVSAM
	Performing a Sequential Read from a Pointed Start
	Coding the KEY Control Statement for a Pointed Start
	Pointed Start for z/OS
	Pointed Start for z/VSE

	Coding the ADR Control Statement for a Pointed Start
	Pointed Start for z/VSE
	Pointed Start for z/OS

	Example--KSDS Pointed Start
	Performing a Direct Read
	Coding the KEY Control Statement for Direct Reads

	3: Procedure Modules
	What Is a Procedure Module?
	What You Can Do with a Procedure Module
	What You Can Do with CA-supplied Procedure Modules

	What a Procedure Module Does
	How to Invoke a Procedure Module
	Calling a Procedure Module
	Branching to a Procedure Module
	Helpful Hints

	The Universal Interface (CULLUS00)
	What You Can Do
	How CULLUS00 Works
	How to Use CULLUS00

	Dynamic Sequential File Processing (CULLUS01)
	What You Can Do
	How to Use CULLUS01
	Helpful hints

	System Time and Date Retrieval (CULLUS10)
	What You Can Do
	How to Use CULLUS10
	Helpful Hints

	Julian Date Conversion (CULLUS11)
	What You Can Do
	How to Use CULLUS11
	Helpful Hints

	Century Date Conversion (CULLUS12)
	What You Can Do
	How to Use CULLUS12
	Helpful Hints

	Gregorian Date Conversion (CULLUS14)
	What You Can Do
	How to Use CULLUS14
	Helpful Hint

	Universal Date Conversion (CULLUS15)
	What You Can Do
	How to Use CULLUS15
	Helpful Hints

	Random Access of ISAM Files (CULLUS22)
	What You Can Do
	How CULLUS22 Works
	How to Use CULLUS22
	Helpful Hints
	Source Code Modifications

	Random Access of VSAM Files (CULLUS25)
	What You Can Do
	How to Use CULLUS25
	Helpful Hints

	Creating a Vertical Hexadecimal Dump (CULLUS29)
	What You Can Do
	How to Use CULLUS29
	Helpful Hints

	Obtaining Hexadecimal Representation (CULLUS31)
	What You Can Do
	How to Use CULLUS31

	Converting Packed Decimal to Binary (CULLUS33)
	What You Can Do
	How to Use CULLUS33
	Helpful Hints

	Converting Packed Decimal to Zoned Decimal (CULLUS34)
	What You Can Do
	How to Use CULLUS34

	Interpreting Bit Settings (CULLUS35)
	What You Can Do
	How to Use CULLUS35
	Helpful Hints

	Converting Floating Point Values to Packed Decimal(CULLUS36)
	What You Can Do
	How to Use CULLUS36
	Helpful Hints

	Converting Doubleword Binary to Packed Decimal (CULLUS37)
	What You Can Do
	How to Use CULLUS37

	Sending Messages (CULLUS40)
	What You Can Do
	How to Use CULLUS40

	Moving Fields to an Input Buffer Area (CULLUS43)
	What You Can Do
	How to Use CULLUS43
	Helpful Hint

	Moving Variable-length Data (CULLUS45)
	What You Can Do
	How to Use CULLUS45
	Helpful Hints

	String Search (CULLUS46)
	What You Can Do
	How to Use CULLUS46
	Helpful Hints

	Creating a Run-time Message (CULLUS48)
	What You Can Do
	How to Use CULLUS48

	Converting Binary Strings (CULLUS50)
	What You Can Do
	How to Use CULLUS50

	Concatenating Fields (CULLUS53)
	What You Can Do
	How to Use CULLUS53
	Helpful Hints

	Searching a Table (CULLUS62)
	What You Can Do
	How to Use CULLUS62
	Helpful Hints

	Processing Data Dictionary Reporter Tables (CULLUS64)
	What You Can Do
	How to Use CULLUS64
	Helpful Hints

	Memory Dump (CULLUS99)
	How to Use CULLUS99

	4: Output Modules
	What Is an Output Module?
	What You Can Do with an Output Module
	What You Can Do with CA-supplied Output Modules

	How to Invoke an Output Module
	Formatting a Hexadecimal Buffer Dump (CULEDUMP)
	What You Can Do
	How to Use CULEDUMP
	Helpful Hints

	Printing Labels (CULELABL)
	What You Can Do
	How to Use CULELABL
	CULELABL Record Size and Block Size Calculation

	Printing Multiple Lines (CULEMLIN)
	What You Can Do
	How It Works
	How CULEMLIN Works

	How to Use CULEMLIN
	ASA Control Characters

	Helpful Hints

	Writing Formatted Records to a VSAM File (CULEVSAM)
	What You Can Do
	How to Use CULEVSAM
	Helpful Hints

	Segmenting Reports in a VSE/POWER Run (CULEPOWR)
	What You Can Do
	How to Use CULEPOWR as a CA Culprit Output Module
	Helpful Hints
	How to Use CULEPOWR as a Subroutine
	Helpful Hints

	5: Writing User Modules
	What You Can Do
	General Considerations for User-written Modules
	How to Link-edit User Modules
	Establishing Linkage to a COBOL Module
	Establishing Linkage to an Assembler Module
	Establishing Linkage to a PL/I Module
	Establishing linkage to a FORTRAN module

	How to Write Input Modules
	What You Can Do
	How Information Is Passed
	Coding a COBOL Input Module
	Coding an Assembler Input Module
	Coding a PL/I Input Module

	How to Write Procedure Modules
	What You Can Do
	How Information Is Passed
	Coding a COBOL Procedure Module
	Coding an Assembler procedure module
	Coding a PL/I Procedure Module
	Coding a FORTRAN procedure module
	Helpful hints

	How to Write Output Modules
	What You Can Do
	How Information Is Passed
	Coding a COBOL Output Module
	Coding an Assembler Output Module
	Coding a PL/I Output Module

	Index

