CA IDMS™

Callable Services Guide
Release 18.5.00, 2nd Edition

Ga

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time. This
Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or
duplicated, in whole or in part, without the prior written consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2014 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA Technologies products:
= CAADSTM

= CAIDMSTM

m CAIDMSTM/DC (DC)

m CAIDMSTM/DC or CA IDMSTM UCF (DC/UCF)

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

m Online and telephone contact information for technical assistance and customer
services

m Information about user communities and forums
® Product and documentation downloads
m CA Support policies and guidelines

m Other helpful resources appropriate for your product
Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Documentation Changes

The following documentation updates were made for the 18.5.00, 2nd Edition release of
this documentation:

m Mandatory Parameters (see page 137), Optional Parameter (see page 138), INREC
Format (see page 140), OUTREC Format (see page 140)—Moved these sections to
the correct locations in the Invoking System Tasks from Programs chapter.

m RHDCSNON parameters (see page 149)—Added information on PassTickets to the
description of parameter 2.

Contents

Chapter 1: Introduction 9
SYNTAX DIAGram CONVENTIONSuuuuuuuuuuureuuuutiiuuuueuurereueueueuererereaereae.e—e—.———————.—.—.—e—.—e—.—e—eaasstesesetesesesssesesssssesssssssssssssssssssnns 9
Chapter 2: IDMSCALC 13
Calling the IDIMISCALC ROULINE ..eiiuiieeeiiiieeeeiiee ettt e st e e ettt e e ettt e e e s ta e e e e ataeeeeasaaeesasbaeaaasteeeeansaaeesssaaeeassseeeanssaeesssenas 13
THE IDIMISCALC ATZUMENT...eeiietiieiiiteeeeiteeeeeitteeesetteeeessteeesssseeeesaseeeeesssaeesasseeesasseeeessseeessnssesesssseeessseeessssseessnssnees 14
Chapter 3: IDMSINO1 15
OVEIVIBW ..ttt ettt e ettt et e e s sttt e e e e e e s aba bt eeeeesses s aabaeeeeeesesaaa bbb e eaeeee s asbabaaeeeessaassbbaaeeeesesansbaaaeaessesannranaaeeens 15
Calling IDMSINOL from an ASSEMDBIEr PrOZIram........cueiiiiiiiuieriieeeiee ettt esite sttt e st stte st esseesbeessbeesbeesnneesbeeenneenane 16
IDMSINOT MACIO SYNTAX weeiiiiiiiiiiiiiieiiiiii ettt e e s r et e e e s e s b aa et e e e s e sesraa et e e e s e snnnnnaee 17
e 10 =L =] U ST PPPPPUTTRPIOt 18
Assembler Program Calling IDMSINOLueiiiiiieieiiieeeeieee e sttt e e et e e eetae e e staeeeestteeeseasaeeesatseeessssasesansaeeessrenanns 24
Calling IDMSINOL from @ CA ADS DIalOg ..ceeeuiiieiiiieeeiiieeeeiiee e eeitee sttt e e et e e esaee e e staeeeesstaeesensaeeesnseeeesssaeessnseeesnsseens 33
Calling IDMSINOL from @ COBOL PrOSIramucieicuieeeiiieeeeiieeesetteeesitteessssseeessseesessseesessseeessssseessssssesesssseesasseeessseens 33
COBOL Program Calling IDMSINOL.......uuiiiieeeieiiiiiieeee e eeceiitre e e e e e sttt e e e e e e e seattaeeeeeesesssntaaeeeessesnstasseeessesssssnnaeeens 33
Calling IDMSINOL from @ PL/I PPOZIEM ..eeciiiiiieetieeeiee ettt eeteeeeteeeeteeeteeeeteeebeeeeseeeteseesaeenbesesesentesenseesbesenseesnseesnseesnss 43
Chapter 4: TCP/IP API Support 57
USING TCP/IP WIth CA IDIMSeiveeeee ettt ettt ettt sttt e ettt e st e e e tae e s abeeetteesabeeesbeesabeeesseesabeesaseessbeensseesasaeasseessseenteeensseensres 57
TCP/IP Programming Support for Onling APPliCatioNS........eecueiiiiieiiii ettt e et etaeeetr e e eareestreesaaeeanes 58
Socket Macro Interface for ASSEMDBIEr PrOZIramSccccuuiiiiciieeeiiieeceiiee e ssreeeesie e e s seee e e sbaeeesssteeessaneeeesnsaeeesnseeesnnneeas 59
[N\ =SSP OOPPPPPTT PRI 60
Assembler StrUCTUIE DESCIIPLION ..uiiii e e e s tre et e e e s e saeta e e e eeesesnstaaeaeeeeesasrasreeseessansnnens 61
LG Y Do 1ol 4=y [1 =T - [PP 61
Comparing IDMSOCKI @Nd SOCKETccciiiieeeitieeeeiieeesrteeeesteeesesteesessnseesesstaeesassesesssseasesssseesanssnsesasseesessseennnne 63
[N Lo =PSSO PPTPPTT RPN 63
CA ADS STrUCTUIE DESCIIPTION woveiiiiiiiiiiiiiiiee ettt e e e ettt e e s e e ssbar e e e e e s ssabataeeeeessssssntaneeesssasssraneeesssessnssenneenens 64
Socket Call INtErfAace fOr COBOLiiiiiiiiieiiierie ettt eete st e st e st e sae e st teesaaeesateesateesabeesaseessbeessseesaseassseesnseasssessnseesssnesn 64
[\ Lo (=L ST T PO UP PSS PUPPPPPTRPPOt 65
COBOL StrUCTUIe DeSCIIPTION wuvviiiieiieiiiiiietee s eesiit et e e e e ettt e e e s e ssabar et e e eessssbaraeeeeessasssstaneeesssassssraneeesssessnssenneesens 67
Yo Yol G O Y TR N =T i Tol=I oYl o 1Y A R 67
[N Lo =PSSO PPPPPPT PPt 68
PL/I SErUCTUIE DESCHIPTION cuveevveeeereeciee et e ettt e ereecteeeteeebeeeeteeebeeesteeeteeeeseeebeseasesenteseasseeteseasaeentssensseensseensseesres 70
(CT=T =TS Toll W A= T (=T Y= AV ol SO PUPPP ORI 70

Contents 5

IMPIEMENTATION L.eeieiiiieee ettt et s e e b e s bt e s bt e s bt e e bt e e b et e bee s bt e essbeenneeesaneenees 71

Application DesigN CONSIAEIATIONS.cciiiiiiiietie ittt ettt s bt e st e st eeab e e st e e sabeesabeesateesabeesnseesaneennneens 72
USING SErEAM SOCKEES ...eiiiiiiie ettt e et e e e e tae e e st e e e e s ata e e eessaeeesatseeeanstaeesansaeeesasseeeanssaeennnsnens 72
TCP/IP COQING SAMPIES ..eceveeeiriecieeectee et etee e et e et e et e e et e e beeesbae e bae e teeebeeesaeenbseessseeseeessseesssessaeeseeensseesnes 73

MiSCEIANEOUS TCP/IP CONSIAEIATIONS .evvveiiiireiieriieeeeeieiireteeeeesessireeeeesssesesreeeeeessasssssasseesssesassssstessssssssrssseeeessssmsrnrens 74
USING the TCP/IP Trace FACHlity...e.eeeeieiertieteiieeieeieete ettt ettt sttt eae et et e e st e be s et eseene e e enseseesbesaeeseeneenean 74
USING MUIEIPIE TCP/IP SEACKS ...vevieuieiieiestietesie ettt ettt ettt st be et eae et e st e e sbesbesaeeseeneensensesaesbesaeeseeneenean 74
ASSOCIAtING TIME-0ULS 1O SOCKETS....ceiiiiiiieiiiiie it ettt e e rtee e et e e e etre e e st e e e esttaeessasseeesasseeeessaeesnnsseeesnsaeaaans 77

(0] aToru o] T DL=TYo] gT o] o] o I PP TTTT 78
Y O 1 = = PSP 78
2 1 U PPPPPR 79
(0] 1] =SSR 80
(60 V] Y] = OO PRRUPPPRRUPRN 81
FONTL ettt ettt st ste sttt e st sa e e st e e st b e e s ab e e s e beesaseesabeesabeesabeesaseesabeeeaseesabeeeabaeeabeeeabaeeabeeeasbeeabeesabaeenbeeesbeenbeeenteenres 82
o T O P PUPPPR 84
LD I N = IO O TP PP PP PP PPPUPPPPPPPPPIRt 85
L] = L P PP TP PP PP PPPUPPPPPPPPPIRt 86
FD_ZEROD ... itiiteeiiieeeiee sttt e et e st e st e st e s ateesabe e sateesabeesabeesabeesabeesabeeeabeesabe e e beeeabe e e beeeabe e e b te e be e e b ae e be e e ateebaeenaaeebas 87
FREEADDRINFO ...ceiiteiititeeite st ste e st e st e st e steesabeesateesabaessbaesabaesaseesabeesasaesabeesabaesabeessbeenbeessaeenbaeensseensseesaseensns 88
GETADDRINFO ... ittt tree e e et ettt e s e e e e e e e taa e e e eeeeeetaaa e eaeeeastasanneeeeaesssnnnsseeeesesssnnnsseeeseessnnnnsseeenens 89
GETHOSTBYADDR ...cutttitttette ettt et e ettt et te st e e sbte sttt e sbee sttt s bt e sabeesabeesabeesaseesabeesabeesabeeeaseesabeeenseesabaeenseeenbaeenneesane 92
GETHOSTBYNAME .. utteetteitteeteeeteestesestteeteeesteessbaesseesstessaseesabessnseessbessaseesssesensaesasaessaesabaesseesnsesensessnsesensenanes 93
GETHOSTID .ttt itteetet ettt etee st e ettt e stt e e te e e bt eebe e e baeeabe e s beesabeesabeesabeesasaeeabeesasaesabeesabaesabeeaaseesabaeenseesasaeenseesnbeeenseennss 94
GETHOSTNAIMEuvtiitteetee ettt et et eete e e sttesbeeestaessbaesbeesabeesaseesabeesaseeesbeesaseessbeeeasaesabaeensaesabaesnseesabeeenseeensanensenanss 95
GETNAMEINFO ...ttt ettt ettt ettt stte st e e sbte sttt esbee sttt e bt e sabeesabeesabeesaseesabeeebeesabeesabeesabeeenseesabaesnseesabeeeseesane 96
GETPEERNAIME ... ettt ettt ettt ettt ettt ettt sttt et e sttt s bt e s ab et s bt e sabe e s st e sabeeeabeesabeeeabeesabeeenseesabaesaseesabeesneenane 99
GETSERVBYNAMEccutttitteiittesiteeesteesteeesteesteesseesabeessseesabeessseesateesaseessseessseesssessssessssessssessssessnseesssessssessssessnsesn 100
GETSERVBYPORT ...ttiiuttiitieiteesteesteesteeesteesateesseesabeessseesabeesnseesataesnseesaseeasseesabeesnsessateesnseesaseesnseessteesssessnsassnsensn 101
GETSOCKNAMEvtiiiieetieeitee et et e et e ste e s be e s bee s beesateesabeesabeesabeesabeesateesaseesabeeenseesabeesnseesabeesnseessbeesnsessnsansnsensn 103
GETSOCKOPT ...ttt ettt ettt te et e et e et e sttt e bt e s bt e e bt e sab e e sabeesab e e saseesabeesaseesabeeeaseesabeeeabeesabeeeaseesabeeenseesabeennseesabaennneens 104
GETSTACKS ..ttt ettt ettt e ettt e e et s bt e s bt e sabe e sabeesab e e saseesabeesabeesabeeeaseesabeesaseesabeeeaseesabeesaseesabeennseesabaesnneens 105
[O PRSPPIt 107
HTONS ettt ettt e e e e sttt e st e e st teesateesateesaseesateeaaseesateeaaseesabeeaaseesabeeasbeesabeeenseeaabeeenseesabeeenneesabeeenseennte 107
INET_ADDR ... tteitttisiteette ettt e et sa e st e s a bt e sate e s s bt e subeesab e e sabeesabeesaseesabeesaseesabeesabeesabeesaseesabeeeaseesabeesnneesabeesnseenare 108
INET _NTOA ettt ettt ettt sat e st e s at e s a bt e e a bt e sab e e sabeesa b e e sabee s et e e saseesabeeeabeesabeesaseesabeesaseesabeesnneesabeesnseenare 109
INET _NTOP ..ttt ettt ettt s e e s it e s et esa e sa b e e sateesabeesabee s et e e sabeesabeesabeesabeesaseesabeesabeesabeesnneesabeesnseenare 110
1 = B O PPNt 111
1@ T I PP PPRRN 112
LISTEN ettt ttte ettt ettt ettt ettt et st e ettt e sh e e s at e e s abeesateesabeesab e e sab e e sabeesa b e e sasee s e ke e e aseesabaeeabeesabeesaseesabeeeabeesabeeeneesabeeebeenare 114
NTOHL «e ettt ettt st e st e e s a bt e sateesabeeeabeesab e e sabeesabeesaseesabeesaseesabeesabeesabeesaseesabeeeabeesabeeenneesabeesseenate 115
NTOHS ettt ettt st e st e e s h bt e s at e e s a bt e e ab e e sa b e e saseesateesaseesabeesaseesabeesabeesabeesaseesabeeeabeesabeeenneesabeesseenare 115
2= AN B PP PPPPPPPPR 116

6 Callable Services Guide

RECVFROM ...ttt eee e e e e e e e e e e e e eeeeee e e e e e e et et et et e e e e e s e e e e et et eeaeetetaeeae s et et eeaeeraeetereretetetetererereeerererererererens 119

SELECT @N SELECTX . cuuttiiteitieeiieeitteestte ettt site e st e siteesbeeesbeeesbe e e sateesbaeesbteenbaeesbbeenbaeesateenbeeessaeeseeensbeenseeesaseenns 121

1] =111 PSPPSR 125

1] =111 O L T PP OP PP 127

1] 2 1Y 0 1 @] = SRS 128

) S 1 7 PP PPNt 130

SHUTDOWN .eiiniitiiieesite ettt et ettt e sttt si e stte e sateesbteesbteebeeesbeeebeeesbeeebaeeasteenseeesabeesteessbeeabeeenaaeeseeessteebeeenateenseas 131

1Y@ L6 I PP P PP 132

KA1 2 1 PP 134
Chapter 5: Invoking System Tasks from Programs 137
Invoking Command List MOdUIES from Programsceecueeiiieeiieerieeeieesiee ettt et e st e et e st e st e sabeesseesabeesneesane 137

LINKING TO RHDCCLST ..eiitiieeiiieeeetiee e sttt e e sttt e e st e e saaeeeesateeessaseeeesssaeeeesseeesasseeeeansaeeeassseessnsseeessnssnesannseeesnnsnes 137

e T 1AL =] PP PO PTPUPPPPPPPPPPPPPPPPPRt 137

[T [4] o L= USRS 139

[oY a =l [} e o o =14 T o NP OO PP PROPPRTRO 139
Invoking DCMT and DCUF Commands from Programsc.c.eeecueerieeeiieerieeeiieesieeeieeesieeeseeesbeessreesabeesneesareesnneesane 139

Linking to RHDCMTOO and RHDCUFOOcc.uuttiriuiireiiiieeesieeeeeiteeestteeeesateeessaseeesssaeessssseeesnsseessssssessssseesssssnes 139

T 10 L= =] OO P PP PP PUPTRTN 140

[0 LT (TSRS 142

1YY o] LTSS UURTN 143

MOTE INFOIMATION .eeeiiiieee ettt st s e st e st esa bt e e abeesabeesabeesabeesabeesabeesneesabeesneenane 146
Invoking SDEL ComMMANd frOm PrOZIamS.cccuiieiiiieeieiieeeseteeeesiteeeesiteeeseaeeeeessteeeessaseeesssseeessnsaeesanssaeesesssnessnsseeeans 146

LINKING 1O RHDCSDEL.....uuiiiiiiiiiiiiiiietee e eesiitte e e e e e e sttt e e e e e e seatateeeeeeeeeasastaaseeeesesanssassaaeeeesanssstsnaeaessansstennaesesanes 146

T 10 L= =] U PP PPPPPUPTRTN 146

Y21 o] LSS UUPTN 148

MOTE INFOIMATION .eeeiiiiieee ettt ettt e st s bt e s bt esa b e e e abeesabe e s bt e sabeesnbeesabeesneesabeeeneenane 148
Invoking the SIGNON Task frOmM PrOZramiS......c.uuieiiiieeieiiireseeeeeesiteeeesieeeseeeeeseseteeeessaseeessaseeessseeesssssaeesessseessnsseeeans 148

LINKING 1O RHDCSNONeiutiiieiieiieesiieesteesteesteesreesseesebeessseesateessseessbesssseesssesssseesnsessnsessnsessnsesssessssessnsessnsessnne 148

Parameters

Example..........

MOTE INFOIMATION .neiiiiieeee ettt st s e st e s bt e st e e st e e sabeessbeesabeesabeesabeesneesabaesseesane 150
Chapter 6: Two-Phase Commit Support with RRS 151
OVEIVIBW ..ttt tee ettt sttt ettt e e ettt e et e e s b bt e s ae et e e s abe e e e e s b et e s mse e e e sa b et e e e st et e s mnn e e e saseeeeennseeesnneeessnranesennreeesnnneas 151
RRS SUppOrt for BatCh APPIICATIONSeiieeiiriciiee e cieecetee et e et e e et e e st e e e st e e e s ate e e ssnsaaeesataeaeanssaeesansneesssseenans 152

T Y221 o] LTSS UURURN 152

Enabling RRS for BatCh APPliCAtiONScc.eeiiiiiiee ettt e e e e s e e e e e s bbb e e e e e e e seeantbaneaaeeeenns 153

Batch RRS Transaction Boundaries and Application Design Considerations..........ccccceeecveveveceerercieeeeceeee s, 153

Example of @ COBOL BatCh PrOgrami........ccccuiieieiiie e ettt e stee e et e e s eaete e e s taee e eata e e sennaaeesnnaaeeenntaeesnnnnnas 154

Contents 7

RRS SUpport for ONliNe APPlICAtiONS.....c..uiiiiieiiieeie ettt ettt e s e e bt e sab e e bt e sabeesneenane 156

EXAIMIPIE ettt ettt e e bt bt e e b e s bt e e bt e s bt e e bt e s b e e e bee s bt e e nee s beeeneenane 157
Programming INTEITACEoiiiiiiie ettt e e e ettt e e e e e e e st e e e e sate e e eeasaeeestaeeeastaeesansseeesnssaeeasteeesnnneens 158
Application Design CONSIAEIATIONSviiieiiiieiiiiee et e eerteeeereeeeestreeestreeesstaeeeesstaeeeasseeessseseesnsseeeessseeesnssnens 158
Appendix A: TCP/IP Error Codes 159
Return, Errno, anNd REASON COUESuuvveiiiiiiiiiiiieiieeeieiiiteeeeeeeeeietbeeeeeeeeesetbareeeeeeesessbasseeeeeesessbassesseeesasssrsessesssenssnrens 159
ERRNO Numbers Set by the Socket Program INterfacecoceeeveeiiiiiiiiiiieecceecee e 160
HOSTENT SEEUCTUIE e s s s s s s s e s s s s s s s s e s s e s nnsnsasasnss 165
SERVENT SETUCTUIE ..ttt st st ssbsbnssbnnnen 165
SOCKEL STrUCTUIE DESCIIPTIONS ...vviiiiiiieeeitiie e ettt e ettt e e ettt e eebeeeestbeeeeetbeeeseasaaeesatseeeanssaeesssseeaantseeeanssseesassaeessssanenanses 166
ADDRINFO SEIUCTUIE ...eeieeeeeeiietee ettt ettt e e e sttt et e e e s e ae bttt eeeeae s nnbe e e e eeesesannbeneeeeeeesannnnneneeesesannnnnee 166
SOCKADDR SEFUCTUIE ittt ettt ettt et et et et et et et et et et et et et e e et et et et e e et aeeeaeatatasasasararenanens 166
TIMEVAL SEFUCTUIE .ttt sttt s sttt st s st s sttt s s s bsbsb s basasasnsnnn 167
Appendix B: TCP/IP Programming Examples 169
I 37T o Yo =TSP 169
PL/ITCP/IP ClIENT PrOZIamMi..cccuvieceeeiieeeieeiteeeteesiteeeteesbeesteesbeesseesbeeaseessbasasseesbeseseesatessseesntesensesstesensessnts 169
PL/I TCP/IP Generic LIStENEr SEIVEI PrOGIamMcccviecieeiieeereeeiteeeireeeiteeeeteeeteeeeteesetesenseesbeseseesteseseesbessseesnes 177
(o(0 110 T I =T 3 Y] [T SRR 181
COBOL TCP/IP CHENT PrOGIAM .. .ccuviiueeiteeiteeiteeteeeeeteeeteesteeteesesaaesseesseesseeseessesssesssesssessessesssesssesssesseesseensessenns 182
COBOL TCP/IP Generic LiStener SEIVEr PrOZIAMceciueeiuieiueieeiteeiteeeteeiseereeveeseesseesseesseesesssesseesseesseessessenns 189
F Y=Y g1] o] (=T T T Y o] LTS PURPNE 194
AsSEMDIEr TCP/IP CHENT PrOZIaMiiiuiieeiieeitie ettt e ctte ettt eetveeeteeestteeetteestseestseesabeeesseesabeeesseessseessseessseensseessseesnes 194
Assembler TCP/IP Generic LiStener SErVEr PrOZIamMccueeeeieiieeeiieeeireeeireesreeeteeesveestreessseessseessseessseessseensnes 204
(07N Y DY 3T [4T o L= S 212
CA ADS TCP/IP CHENT PrOBIam ..ccuveiueeiteeiteeiteeteeeeeteeeteesteeteesestaesteesseesseeseessesssesssesssessessesssesasesssesseesseensessenns 212
CA ADS TCP/IP Generic LiStENEr SEIVEr PrOZIamcccceeiivieeiieeeteeecteeeteeeiteeeeteeeteesteeeseesbeesseesabeesasessreesnseeas 218
Index 223

8 Callable Services Guide

Chapter 1: Introduction

This section contains the following topics:

Syntax Diagram Conventions (see page 9)

Syntax Diagram Conventions

The syntax diagrams presented in this guide use the following notation conventions:
UPPERCASE OR SPECIAL CHARACTERS

Represents a required keyword, partial keyword, character, or symbol that must be
entered completely as shown.

lowercase

Represents an optional keyword or partial keyword that, if used, must be entered
completely as shown.

italicized lowercase

Represents a value that you supply.

lowercase bold

Represents a portion of the syntax shown in greater detail at the end of the syntax
or elsewhere in the document.

Points to the default in a list of choices.

Indicates the beginning of a complete piece of syntax.

>
>4

Indicates the end of a complete piece of syntax.

I
»

Indicates that the syntax continues on the next line.

v

Indicates that the syntax continues on this line.

»

Indicates that the parameter continues on the next line.

v

Indicates that a parameter continues on this line.

»— parameter ——»

Chapter 1: Introduction 9

Syntax Diagram Conventions

Indicates a required parameter.
V—E parameter j—V
parameter
Indicates a choice of required parameters. You must select one.

o
»

|— parameter J

Indicates an optional parameter.

> >
parameter :I
parameter

Indicates a choice of optional parameters. Select one or none.

>—v— parameter |——»

Indicates that you can repeat the parameter or specify more than one parameter.

T
»>—v— parameter

Indicates that you must enter a comma between repetitions of the parameter.

10 Callable Services Guide

Syntax Diagram Conventions

Sample Syntax Diagram

The following sample explains how the notation conventions are used:

Required portion of parameter
Beginning of Required .)
the syntax parameter Optional portion of er Syntax continues
User-supplied value on the next line
S
Syntax continues on this line Comma required between repetition
Required parameter Repetition allowed
Select one
varrable 4—— KEYWD&D;?;rfaﬁIE -
variable
varrable
Optional keyword
Select one or none .
Portion of syntax End of the syntax
Default expanded elsewhere
\ -

KEYWORD
KEYWORD

¥ariable

Chapter 1: Introduction 11

Chapter 2: IDMSCALC

The IDMSCALC utility is a subroutine which can be called from a user-written program to
determine the target page of a record, based on a user-supplied CALC key.

It is typically used to optimize the loading of data by allowing you to sort input in target
page sequence.

IDMSCALC is implemented as a called subroutine. The utility returns to a user-written
program a target page number for storage of a CALC record, based on a page range and
CALC key value supplied by the program. The user program, which can be written in any
language supporting a call statement, must build a single five-field fullword-aligned
argument as outlined in the following table, then call IDMSCALC, passing the argument.
IDMSCALC must be link edited with the calling program.

This section contains the following topics:

Calling the IDMSCALC Routine (see page 13)

Calling the IDMSCALC Routine

The following example shows how to call the IDMSCALC routine from a user-written
program.

01 CALC-PARMS.

05 CALC-PAGE-TARGET PIC S9(9) COMP
05 CALC-PAGE-RANGE-HIGH PIC S9(9) COMP.
05 CALC-PAGE-RANGE-LOW PIC S9(9) COMP.
05 CALC-KEY-LENGTH PIC S9(4) COMP
05 CALC-KEY PIC X(16).

MOVE 75001 TO CALC-PAGE-RANGE-LOW.

MOVE 75101 TO CALC-PAGE-RANGE-HIGH.

MOVE 16 TO CALC-KEY-LENGTH.

MOVE 'SMITH' TO CALC-KEY.

CALL 'IDMSCALC' USING CALC-PARMS.

DISPLAY 'TARGET PAGE IS ' CALC-PAGE-TARGET.

Chapter 2: IDMSCALC 13

Calling the IDMSCALC Routine

The IDMSCALC Argument
The following table outlines the five-field argument that a calling program must pass to
IDMSCALC.
Field Usage Size (bytes) COBOL Picture Field Description
1 (Output) Binary 4 PIC S9(9) COMP Specifies the target page number for storage
of the record.
2 (Input) Binary 4 PIC S9(9) COMP Specifies the number of the highest page on
which the record can be stored.
3 (Input) Binary 4 PIC S9(9) COMP Specifies the number of the lowest page on
which the record can be stored.
4 (Input) Binary 2 PIC S9(4) COMP Specifies the length, in bytes, of the CALC key
value.
5 (Input) Character 1-256 PIC X(nnn) Specifies the value of the CALC key.

Note: The information in fields 2 and 3 of IDMSCALC must match the database definition for the record type as
specified in the schema.

Input

Input to the IDMSCALC utility consists of the IDMSCALC argument with fields 2-5
initialized by the calling program.

Output

The IDMSCALC utility returns a target page number for storage of a CALC record.
More Information:

For more information about how the CALC location mode works, see the Database
Administration Guide.

14 Callable Services Guide

Chapter 3: IDMSINO1

This section contains the following topics:

Overview (see page 15)

Calling IDMSINO1 from an Assembler Program (see page 16)
Calling IDMSINO1 from a CA ADS Dialog (see page 33)
Calling IDMSINO1 from a COBOL Program (see page 33)
Calling IDMSINO1 from a PL/I Program (see page 43)

Overview

The IDMS module contains an IDMSINO1 entry point which provides miscellaneous CA
IDMS functions to user programs. The parameters passed depend on what service is
being called.

The following service functions are available by calling IDMSINO1:

m Activate/deactivate the DML or SQL trace.

m Establish/retrieve user profile information.

m Retrieve SQL error messages into a user buffer.

m Translate an internal 8-byte DATETIME stamp to a displayable format.

m Return current DATE and TIME in a displayable format.

® Translate an external 26-character DATE to an 8-byte DATETIME stamp.

m Translate an internal 8-byte TIME stamp to an 8-character display format.

m Translate an external 8-character TIME to an 8-byte TIME stamp.

m Translate an internal 8-byte DATE stamp to a 10-character display format.

m Translate an external 10-character DATE to an 8-byte DATE stamp.

m Retrieve the current USERID that is signed on.

m Establish the SYSCTL DDNAME to use for batch/CV processing.

m Turn transaction sharing on or off for the current task.

m Extract or set a private RRS context (CV only).

m Convert strings to and from EBCDIC and ASCII.

m Format dbkey as character string 'page number:line index'.

Chapter 3: IDMSINO1 15

Calling IDMSINO1 from an Assembler Program

IDMSINO1 enables you to programmatically override many SYSIDMS parameters,
which are as follows:

— Activating or de-activating a DML or SQL trace.
- DBNAME.

Return a block of runtime environment information (described in the following
COBOL layout format)

01 EVBLOCK.
02 EV$SIZE PIC S9(4) COMP VALUE +31. -- length of amount of data
to be returned

02 EV$MODE PIC X. -- runtime mode
88 LOCAL-MODE VALUE 'L'. -- batch local
88 BATCH-TO-CV-MODE VALUE 'B'. -- batch to CV
88 ONLINE-DC-MODE VALUE 'D'. -- DC online
88 (CICS-MODE VALUE 'C'. -- CICS
02 EV$TAPE# PIC X(6). -- CA IDMS tape volser
02 EV$REL# PIC X(6). -- CA IDMS release number
02 EV$SPACK PIC X(2). -- CA IDMS service pack number
02 EV$DMCL PIC X(8). -- DMCL name (blank for batch to CV mode)
02 EV$NODE PIC X(8). -- System node name (CICS and DC online,

blank for batch local and batch to
CV jobs)

Calling IDMSINO1 from an Assembler Program

Assembler programs can call for IDMSINO1 services by using the IDMSINO1 macro.

An Assembler program can gain access to the IDMSINO1 functions by using the
IDMSINO1 macro.

Notes:

Ensure that R13 points to a standard register save area when calling IDMSINO1 from
an Assembler program.

A return code is returned in R15. You should check errors with the ERROR=
parameter of the IDMSINO1 macro.

16 Callable Services Guide

Calling IDMSINO1 from an Assembler Program

m The syntax does not show Assembler column conventions (label starts in column 1;
statement in column 10; continuation line in column 16; continuation character in
column 72).

m Data field or register notation can be used for all function-specific parameters,
except those requiring a keyword value.

If using data field notation, the program specifies the name of a variable field
containing the parameter value.

When using register notation, the program specifies a register containing the
address of the variable field that contains the parameter value. General registers 2
through 15 can be used and the register reference must be enclosed in
parentheses.

IDMSINO1 Macro Syntax

»p»—— IDMSINO1 —— GETDATE date-parms
GETMSG msg-parms
GETPROF profile-parms —
GETUSER user-parms
NOTRACE

RRSCTX rrs-parms
SETPROF profile-parms —
STRCONV string-parms —j
SYSCTL sysctl-parms —
TRACE
TXNSOFF
TXNSON
— ENVINFO envinfo-parms —
— FRMTDBK frmtdbk-parms —

v

7Tl

I

I

v

L ,PLIST= T SYSPLIST «]
parameter-1ist-pointer

L ,RPB= —E SQLRPB 4—_|—|
rpb-area-pointer

L ,ERROR=error-1label J

v
v

v

M

Expansion of date-parms

> , FORMAT= DATEEXT
L ,DATEIN=7ndate JL ,DATEOUT=0utdate i DATEINT
DISPLAY

EXTERNAL

INTERNAL

TIMEEXT

TIMEINT

Expansion of msg-parms

»— ,SQLCA=sql-comm-area — ,SQLMSGB=sql-msg-block

v

Expansion of profile-parms

v

»— ,PVALUE=attribute-ptr — ,PRESULT=attribute-value

Chapter 3: IDMSINO1 17

Calling IDMSINO1 from an Assembler Program

Parameters

Expansion of user-parms

»— ,USERID=user-id-addr

v

Expansion of rrs-parms

»— ,RRSCTXA=context-addr — ,RRSFUNA=function-addr

v

Expansion of string-parms

»— ,CONVFUN=convert-func — ,BUFFER=buffer-addr — ,BUFFERL=buffer-len-addr —»

Expansion of sysctl-parms

»— ,DDNAME=ddname-addr

v

Expansion of envinfo-parms

»— ,EVBLOCK=environment-return-area

v

Expansion of frmtdbk-parms

»— ,DBKEY=dbkey-addr — ,DBKFMT=dbk-format-addr — ,DBKOUT=dbk-output-addr —»

IDMSINO1 Indicates a request for the IDMSINO1 function specified by the keyword that
follows. The following are the valid functions for IDMSINO1:

m GETDATE
m GETMSG
m GETPROF
m GETUSER
= NOTRACE
m RRSCTX

= SETPROF
m STRCONV
= SYSCTL

m TRACE

m TXNSOFF
m TXNSON
® ENVINFO
m FRMTDBK

18 Callable Services Guide

Calling IDMSINO1 from an Assembler Program

GETDATE
Returns date and time in a display format.
,DATEIN=indate
Specifies the address of the 8-byte internal DATETIME stamp.
,DATEOUT=outdate

Specifies the 26-byte output field into which the display format of the
DATETIME value is returned. This parameter is required for GETDATE
processing. This parameter is optional.

,FORMAT=
Specifies the type of GETDATE function being requested.
DATEEXT

Specifies that a 10-byte external DATE display is returned as an 8-byte DATE
stamp.

DATEINT

Specifies that an 8-byte internal DATE stamp is returned as a displayable
10-character DATE display.

DISPLAY

Specifies that the current date and time are returned as a 26-character
date-time display.

EXTERNAL

Specifies that a 26-byte external DATETIME display is returned as an 8-byte
DATETIME stamp.

INTERNAL

Specifies that the internal format of the DATETIME value specified by DATEIN=
is returned.

TIMEEXT

Specifies that an 8-byte external time display is returned as an 8-byte TIME
stamp.

TIMEINT

Specifies that an 8-byte internal TIME stamp is returned as a displayable
8-character TIME display.

Chapter 3: IDMSINO1 19

Calling IDMSINO1 from an Assembler Program

GETMSG

Retrieves SQL error messages and places them in a user buffer that is displayed to
the user.

,SQLCA=sql-comm-area
Specifies the address of the SQL communications area.
,SQLMSGB=sql-msg-block
Specifies the address of the SQL message control block.
GETPROF
Returns session profile information.
,PVALUE=attribute-ptr

Supplies the attribute keyword for the GETPROF function. attribute-ptr must
identify an 8-byte character field.

,PRESULT=attribute-value
Contains the attribute value for the GETPROF function.
attribute-value must identify a 32-byte character field.
GETUSER

Requests the current user-id established by the executed JCL information when
running batch, or by the SIGNON USER xxxxxxxx when running under CV.

,USERID=user-id-addr
Specifies the address of the 32-byte USERID returned value.
NOTRACE
Turns navigational DML or SQL DML tracing off.
RRSCTX
Extracts or sets a private RRS context (CV only).
,RRSCTXA=context-addr

Specifies the address of a 16-byte field for the RRS context token. Depending
upon the function, this field is input, output, or both.

20 Callable Services Guide

Calling IDMSINO1 from an Assembler Program

,RRSFUNA=function-addr

Specifies the address of a 1-byte field that contains the function to execute.
The following are the valid function codes and their return codes:

x'o1'

Get RRS context. The following are the valid return codes:

X'02'

00—An RRS context exists; the field pointed to by RRSCTXA contains the
current RRS context.

04—No RRS context exists; the field pointed to by RRSCTXA is cleared.
12—Invalid parameter list passed to IDMSINO1.

Set RRS context. If the field pointed to by RRSCTXA contains binary zeros, a new
RRS context is created and returned; if the field is not binary zeros, it must
contain an RRS context token which is saved by the CA IDMS transaction
manager. No attempt is made to validate the RRS context token. The following
are the valid return codes:

X'o3'

00—The RRS context token was successfully saved by the CA IDMS
transaction manager.

08—An active RRS context already exists or there has been an internal
error.

12—Invalid parameter list passed to IDMSINO1.

Any other return codes—An error has occurred. Return codes 103-107,
301, 701, 756, FOO, and FFF are from context services. Their descriptions
can be found in the IBM guide MVS Programming Resource Recovery in the
topic "Begin_Context."

End RRS context. The field pointed to by RRSCTXA must contain the token of
the RRS context to be ended. The following are the valid return codes:

00—The RRS context was successfully terminated. The field pointed to by
RRSCTXA is set to binary zeroes.

12—Invalid parameter list passed to IDMSINO1.

Any other return codes—An error has occurred. Return codes 103-107,
301, 701, 756, FOO, and FFF are from context services. Their descriptions
can be found in the IBM guide MVS Programming: Resource Recovery in
the topic "End_Context."

Chapter 3: IDMSINO1 21

Calling IDMSINO1 from an Assembler Program

SETPROF
Changes session profile information.
,PVALUE=attribute-ptr

Supplies the attribute keyword for the SETPROF function. attribute-ptr must
identify an 8-byte character field.

,PRESULT=attribute-value
Contains the attribute value for the SETPROF function.
attribute-value must identify a 32-byte character field.
STRCONV
Converts strings to and from EBCDIC and ASCII.
,CONVFUN=convert-func

Specifies the function to execute. To convert a string from ASCII to EBCDIC,
specify 'ATOE'. To convert a string from EBCDIC to ASCII, specify 'ETOA'.

,BUFFER=buffer-addr
Specifies the name of the area that contains the string to convert.
,BUFFERL=buffer-len-addr

Specifies the name of a fullword field that contains the length in bytes of the
string.

Converts strings to and from EBCDIC and ASCII.
SYSCTL
Establishes the SYSCTL's DDname for running CV jobs in batch.
,DDNAME=ddname-addr
Specifies the address of the 8-byte SYSCTL that is passed.
TRACE
Turns navigational DML or SQL DML tracing on.
TXNSOFF
Turns transaction sharing OFF for the current task.
TXNSON

Turns transaction sharing ON for the current task.

22 Callable Services Guide

Calling IDMSINO1 from an Assembler Program

ENVINFO
Returns runtime environment information.
,EVBLOCK=returned-environment-information-area

Specifies the address where the environment information is returned. The first
halfword contains the maximum length of the data to be returned, followed by

the return area.
FRMTDBK

Formats the dbkey as character string 'page number:line index'. Leading zeros are
removed from both numbers. If the dbkey has a value of zero, then the output field
displays the character '0'". If the dbkey has a value of null, then the output field
displays the character string '<NULL>'. If the database-key format is invalid, then the
output field displays blanks and the return code is set to 8.

,DBKEY=dbkey-addr

Specifies the address of the dbkey to be formatted.

,DBKFMT=dbk-format-addr

Specifies the address of the halfword containing the database-key format
associated with the dbkey. If the value provided is invalid (out of the range 2
through 12), then the output field displays blanks and the return code is set to

8.
,DBKOUT=dbk-output-addr
Specifies the address of the output field where the formatted character string
will be stored. The field must have a length of 12 bytes.
PLIST=

Specifies the name of the parameter list to be used for the macro expansion. The
parameter list must be at least 12 fullwords in length. This parameter can be used

with all functions.
SYSPLIST

Specifies the default parameter. If PLIST= is not specified, the default value of
parameter-list-pointer is SYSPLIST.

parameter-list-pointer

Specifies the name of the parameter list to be used for the macro expansion.

Chapter 3: IDMSINO1 23

Calling IDMSINO1 from an Assembler Program

RPB=

Specifies the name of the parameter list to be used for the macro RPB= is required
for user-mode programs. If RPB=is not specified, the default value of
rpb-area-pointer is SQLRPB. This parameter can be used with all functions.

rpb-area-pointer

Specifies the name of a 36-byte work area that is modified during function
execution. The RPB work area must be fullword aligned.

ERROR=error-label

Specifies a program label to which control should be passed in the event an error is
detected during processing. This parameter can be used with all functions.

Assembler Program Calling IDMSINO1

Assembler programs can use standard calling conventions. The following are some
examples of calling IDMSINO1 from an Assembler program:

ko ok ok >k sk ok ok ok ok sk okok ok ok ok okok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok keok sk sk ok sk ok sk sk ok sk ok sk sk ok sk k sk sk ok sk sk sk ok ok skok skok sk sk k sk ok

Skookok ok >k ok okok ok ok sk okok ok ok skockok ok kk

#SQLCA CSECT

SYSPLIST DC
SQLRPB DC
*

SQLMSGB DS
SQLMMAX DC
SQLMSIZE DC
SQLMCNT DC
SQLMLINE DC

*

10F'0’
XL36'00'

oF
F'6'
F'80"
F'o'
6CL80"

Assembler work fields ¥ kxksokkskokskkskksforskokkskokkork

Standard PLIST
RPB used by IDMSINO1 macro

SQL error messages control block
Max. number of SQL error lines
Error line size

Act. number of messages returned
Allow for 6 error messages

24 Callable Services Guide

Calling IDMSINO1 from an Assembler Program

XTRAPKEY DS CL8 Key value for SETPROF + GETPROF

XTRAPVAL DS CL32 Variable for SETPROF + GETPROF

DATETIME DS XL8 Internal date/time stamp

DATEFLD DS CL26 Edited date/time used by GETDATE

TIMESTMP DS XL8 Internal TIME stamp

TIMESHOW DS CL8 External TIME display

DATESTMP DS XL8 Internal DATE stamp

DATESHOW DS CL10 External DATE display

USERID DS CL32 Current user id returned by USERID

DDSYSCTL DS CL8 DDNAME for SYSCTL

BLANKS DC CL133" ! Blanks for all

RRSCTX DC XL16'00' 16-byte context token

RRSFUNC DS X RRS context function:

RRSFNGET EQU X'01' - Get RRS context

RRSFNSET EQU X'02' - Set RRS context

CONVFUNC DS CL4 STRCONV function:

CONVFE2A EQU 'ETOA' - EBCDIC -> ASCII

CONVFA2E EQU 'ATOE' - ASCII -> EBCDIC

STRING DC C'String to convert' String to convert

STRINGL DC A(L'STRING) String length

SPACE
DS OF Align on a fullword boundary
EVBLOCK DS XL(EV$DSLEN) Runtime environment return area
COPY #ENVINFO Copy in runtime environment

return area dsect

DBKEYFLD DS F Dbkey to be formatted

DBKEYFMT DS H Associated database-key format

DBKCHAR DS CL12 Qutput field for formatted dbkey

Sk >k ok ok >k sk ok ok ok >k sk okok ok ok ok kok ok ok ok kok sk ok ok ok sk sk ok sk ok kosk ok sk ok sk sk ok sk sk ok skok sk skook kok sk skok ko kk

* (Call IDMSINO1 to deactivate the DML trace or SQL trace
* which was originally activated by the corresponding
* SYSIDMS parm (DMLTRACE=ON or SQLTRACE=O0N).

Sk >k ok ok >k sk ok ok ok >k sk okok ok ok ok kok ok ok sk kok sk ok sk ok sk sk ok sk ok sk sk ok sk ok sk sk ok sk sk sk kok sk skook kok sk skck ko kk

IDMSINO1 NOTRACE Deactivate the DML or SQL trace

Sk ok ok ok >k sk ok ok ok >k sk okok ok >k ok kok ok sk ok kok sk sk ok sk ok sk ok ok ok skosk sk sk ok sk sk ok sk sk sk sk ok sk skosk kok ksk sk ko kk

Call IDMSINO1 to request a 'GETPROF' to get the user
profile default DBNAME, which was established by the
SYSIDMS parm DBNAME=xxxxxxxX when running batch, or
by the DCUF SET DBNAME xxxxxxxx when running under CV.

PVALUE is the address of the 8 byte GETPROF keyword.
PRESULT is the address of the 32 byte GETPROF returned value.

Sk >k ok sk >k sk ok ok ok >k sk okok ok ok ok kok ok sk ok kook ok sk ok ok sk sk ok ok ok skosksk sk sk sk sk ok sk sk sk sk ko kskosk kok ksk sk kk kk

¥ X X X ¥ X X

Chapter 3: IDMSINO1 25

Calling IDMSINO1 from an Assembler Program

MvC

XTRAPKEY,=CL8 ' DBNAME '

IDMSINO1 GETPROF,

PVALUE=XTRAPKEY,
PRESULT=XTRAPVAL,
ERROR=ERROROUT

Establish GETPROF keyval

MVC WORKLINE, BLANKS Clear print work line

MVC WORKLINE+5(6),=C'DBNAME' Move out GETPROF keyval
MVC WORKLINE+11(17),=C' is set to BLANKS'

CLC XTRAPVAL,BLANKS Was variable set to blanks
BE *+4+6 Yes, all set

MVC WORKLINE+22(32),XTRAPVAL Move out variable

$PRNT WORKLINE Print the GETPROF results

koo ok ok >k ok ok ok ok >k ok okok ok ok ok okok ok ok ok okok sk ok ok ok sk ok ok ok ok sk ko ok sk ok sk k ok sk sk ok kok sk skook kok kskok ko kk

* Call IDMSINO1 to activate Transaction Sharing for this

* task.
Skesk >k 3kook ok sk ok sk sk ok sk sk >k >k Sk ok ok sk >k Sk ok ok sk sk sk Sk sk ok sk sk sk sk sk k sk >k sk ke ok sk >k sk skesk ok sk sk kosk ok sk sk kkoskock

IDMSINO1 TXNSON Activate Transaction Sharing

koo ok ok >k sk ok ok ok ok sk ok ok ok ok ok okok ok ok ok kok sk ok ok ok sk ok ok ok ok sk kook ok ok ok skok sk sk ok kok sk skook kok sk skck ko kk

* (Call IDMSINO1 to deactivate Transaction Sharing for this

* task.
Skesk >k skook ok sk sk sk sk ok sk ok >k >k Sk ok ok sk >k sk ok ok sk sk sk sk sk ok sk sk sk sk ke ok sk >k sk ke ok sk >k sk ko k ok sk sk kosk ok ok sk kk sk k

IDMSINO1 TXNSOFF Deactivate Transaction Sharing

Sk >k ok ok >k sk ok ok ok >k sk ok ok ok ok ok kok ok ok sk kook ok ok ok ok sk sk ok sk ok sk sk ok ok ok sk sk ok sk sk sk kok sk skook kok sk skok kk kk

Call IDMSINO1 to request a 'RRSCTX' to set a private
context.

*
*
*
* RRSFUNA

* Specifies the address of a 1l-byte field that contains
* the function to execute. Valid values are:

* X'01' Get RRS context.

* X'02' Set RRS context.

*

RRSCTXA
Specifies the address of a 16-byte field for the RRS
context token. Depending upon the function, this field is

input, output, or both.
Skeok >k 3k ok ok sk ok sk sk ok ok ok sk sk Sk ke ok sk >k sk ok ok ok sk sk Sk sk ok sk sk sk sk ke sk sk >k sk ok ok ok sk sk ko k ok sk sk kosk ok ok sk skoskskok

B S S

MVI ~ RRSFUNC,RRSFNGET

IDMSINO1 RRSCTX,
RRSFUNA=RRSFUNC,
RRSCTXA=RRSCTX,
ERROR=ERROROUT

Function: get RRS context

26 Callable Services Guide

Calling IDMSINO1 from an Assembler Program

koK ok ok >k ok okok ok ok ok kok ok ok ok kok ok ok ok kok ok ok ok ok sk ok ok ok ok sk ko ok ok ok ok sk ok ok ok ok ok ok skook kok sk sk sk kok kk

Call IDMSINO1 to request a 'STRCONV' to convert a string
from EBCDIC to ASCII
CONVFUN - specifies which conversion:
ETOA - EBCDIC to ASII
ATOE - ASCII to EBCDIC

BUFFER - SPECIFIES STRING TO CONVERT
BUFFERL- SPECIFIES LENGTH OF STRING
Sk ok ok sk ok ok Kok ok ok ok ok ok ok K >k 3k ok ok k sk koK K 3k ok sk k sk ok sk sk ok Kok sk ok ok sk k kK sk sk ok sk k ko kk sk sk sk sk k sk k
MVC CONVFUNC,=A(CONVFE2A) Convert EBCDIC to ASCII
IDMSINO1 STRCONV,
BUFFER=STRING,
BUFFERL=STRINGL,
ERROR=ERROROUT

*
*
*
*
*
*
*
*

koo ok ok >k ok ok ok ok >k sk okok ok ok ok okok ok ok ok kok sk ok ok ok sk sk ok ok ok sk ko ok sk ok sk sk ok sk ok ok kok sk skook kok sk skck ko kk

* Call IDMSINO1 to convert STRING (now in ASCII) back to EBCDIC

koo ok ok >k ok ok ok ok >k sk okok ok ok ok okok ok ok ok okok sk ok ok ok sk sk ok ok ok sk kook ok ok sk kok sk sk ok skok sk skook kok kskck ko kk

MVC CONVFUNC,=A(CONVFA2E) Convert ASCII to EBCDIC
IDMSINO1 STRCONV,

BUFFER=STRING,

BUFFERL=STRINGL,

ERROR=ERROROUT

koo ok ok >k sk ok ok ok >k sk okok ok ok ok kok sk ok sk kook ok ok ok ok sk sk ok sk ok kosk ok sk ok sk sk sk sk sk sk skok sk skook kok sk skok ko kk

Call IDMSINO1 to request a 'SETPROF' to set the user
profile default SCHEMA to the value 'SYSTEM'.

PVALUE is the address of the 8 byte SETPROF keyword.
PRESULT is the address of the 32 byte SETPROF value.

Sk >k ok ok >k sk ok ok ok >k sk okok ok ok ok kok ok ok sk kok sk ok sk ok sk sk ok sk ok sk sk ok sk ok sk sk ok sk sk sk kok sk skook kok sk skck ko kk

*
*
*
*
*

Chapter 3: IDMSINO1 27

Calling IDMSINO1 from an Assembler Program

MVC XTRAPKEY,=CL8'SCHEMA' Est. SETPROF keyval
MVC XTRAPVAL, BLANKS Init SETPROF variable
MVC XTRAPVAL(8),=CL8'SYSTEM' Save SETPROF variable

IDMSINO1 SETPROF,
PVALUE=XTRAPKEY,
PRESULT=XTRAPVAL,
ERROR=ERROROUT

koo ok ok >k ok ok ok ok >k ok okok ok ok ok okok ok ok ok kok ok ok ok ok sk ok sk ok ok sk keok ok ok ok kok ok ok ok kok sk skok kok sk skck ko kok

* (Call IDMSINO1 to request the current USERID established
* by the executed JCL information when running batch, or
* by the SIGNON USER xxxxxxxx when running under CV.
*
*

USERID is the address of the 32 byte USERID returned value.

koo ok ok >k ok ok ok ok >k sk ok ok ok ok ok okok ok ok ok kok sk ok ok ok sk ok ok ok ok sk ko ok sk ok ok sk ok sk sk ok kok sk skook kok kskck ko kk

IDMSINO1 GETUSER,
USERID=USERID,
ERROR=ERROROUT

MVC WORKLINE, BLANKS Clear print work line
MVC WORKLINE+10(17),=C'Current user --> '

MVC WORKLINE+27(32),USERID Display current user id
$PRNT WORKLINE Print the user id

koo ok ok >k sk ok ok ok >k sk okok ok ok ok kok sk ok sk kook ok ok ok ok sk sk ok sk ok sk sk ok sk ok sk sk ok sk sk sk kok ok skook skok skokskoskok sk ok

* (Call IDMSINO1 to establish the SYSCTL DDNAME to be used
* when running a Batch/CV job.
*

* DDNAME is the address of the 8 byte SYSCTL DDNAME passed.

Sk >k ok ok >k sk ok ok ok >k sk okok ok ok ok kok ok ok ok kok sk ok ok ok sk sk ok sk ok kosk ok sk ok sk sk ok sk sk ok skok sk skook kok sk skok ko kk

MvC DDSYSCTL,=C'SYSCTL73" Est. DDNAME for SYSCTL file
IDMSINO1 SYSCTL,

DDNAME=DDSYSCTL,

ERROR=ERROROUT

Sk ok ok ok >k sk ok ok ok >k sk okok ok >k ok kok ok sk ok kok sk sk ok sk ok sk ok ok ok skosk sk sk ok sk sk ok sk sk sk sk ok sk skosk kok ksk sk ko kk

Call IDMSINO1 to have an 8 byte internal DATETIME stamp
returned as a displayable 26 character DATE/TIME display.

DATEIN is the address of the 8 byte internal DATETIME stamp.
DATEOUT is the address of the 26 byte DATE/TIME returned.

Sk ok ok ok >k sk ok ok ok >k sk okok ok >k ok kok ok sk ok kook sk sk ook sk ok sk ok ok ok skosksk sk sk sk sk ok sk sk sk sk ok sk skosk kok ksk sk kk kk

*
*
*
*
*

28 Callable Services Guide

Calling IDMSINO1 from an Assembler Program

IDMSINO1 GETDATE,
DATEIN=DATETIME,
DATEOUT=DATEFLD,
FORMAT=INTERNAL,
ERROR=ERROROUT

MVC WORKLINE, BLANKS Clear print work line
MVC WORKLINE+10(14),=C'DATETIME ---> '

MVC WORKLINE+24(26),DATEFLD Displayable date/time
$PRNT WORKLINE Print the date/time

koK ok ok >k ok ok ok ok ok ok okok ok ok ok kok ok ok ok okok ok ok ok ok sk ok ok ok ok sk sk ok ok ok sk sk ok ok ok ok kok ok skook kok sk sk sk ko kk

* Call IDMSING1 to have the current DATE and TIME
* returned as a displayable 26 character DATE/TIME display.

*

* DATEOUT is the address of the 26 byte DATE/TIME returned.

koo ok ok >k ok ok ok ok >k sk okok ok ok ok okok sk ok ok sk ok ok ok sk ok ok sk ok sk ok sk sk ok sk ok ok sk ok sk ok ok kok sk sk ok kok kok sk kok kok

IDMSINO1 GETDATE,
DATEOUT=DATEFLD,
FORMAT=DISPLAY,
ERROR=ERROROUT

MVC WORKLINE, BLANKS Clear print work line

MVC WORKLINE+10(22),=C'Current DATETIME ---> '

MVC WORKLINE+32(26),DATEFLD Displayable date/time

$PRNT WORKLINE Print the current date/time

koo ok ok >k sk ok ok ok >k sk okok ok ok ok kok sk ok sk kook ok ok ok ok sk sk ok sk ok kosk ok sk ok sk sk sk sk sk sk skok sk skook kok sk skok ko kk

Call IDMSINO1 to have a 26 byte external DATE/TIME display
returned as an 8 byte DATETIME stamp.

DATEIN is the address of the 26 byte DATE/TIME.
DATEOUT is the address of the 8 byte DATETIME stamp returned.

ko ok ok >k sk ok ok ok >k sk ok ok ok ok ok kok ok ok sk kok ok ok sk ok sk sk ok sk ok sk sk ok sk ok sk sk sk sk ok ok kok sksk ok kok kok sk kok sk ok

*
*
*
*
*

MVC DATEFLD,=C'1994-07-18-12.01.18.458382'
IDMSINO1 GETDATE,

DATEIN=DATEFLD,

DATEOUT=DATETIME,

FORMAT=EXTERNAL,

ERROR=ERROROUT

Sk ok ok ok >k sk ok ok ok >k sk okok ok >k ok kok ok sk ok kook sk sk ook sk ok sk ok ok ok skosksk sk sk sk sk ok sk sk sk sk ok sk skosk kok ksk sk kk kk

Call IDMSINO1 to have a 8 byte external TIME display
returned as an 8 byte TIME stamp.

DATEIN is the address of the 8 byte external TIME.
DATEOUT is the address of the 8 byte TIME stamp returned.

Sk ok ok sk >k sk ok ok ok >k sk okok ok ok ok kok sk sk ok kook ok sk ok ok ok sk ok ok ok skoskok sk sk sk sk sk sk sk sk sk ko kskosk kok ksk sk ko kk

*
*
*
*
*

Chapter 3: IDMSINO1 29

Calling IDMSINO1 from an Assembler Program

MvC TIMESHOW,=C'13.58.11'

IDMSINO1 GETDATE,
DATEIN=TIMESHOW,
DATEOUT=TIMESTMP,
FORMAT=TIMEEXT,
ERROR=ERROROUT

koK ok ok ok ok okok ok ok ok kok ok ok ok kok ok ok ok okok ok ok ok ok sk ok ok ok ok kokok ok ok sk keok ok ok ok kok ok skok kok sk skck ko kk

Call IDMSINO1 to have an 8 byte internal TIME stamp
returned as a displayable 8 character TIME display.

DATEIN is the address of the 8 byte internal TIME stamp.
DATEOUT is the address of the 8 byte external TIME returned.

koo ok ok >k ok ok ok ok >k sk ok ok ok ok ok okok ok ok ok kok sk ok ok ok sk ok ok ok ok sk ko ok sk ok ok sk ok sk sk ok kok sk skook kok kskck ko kk

*
*
*
*
*

IDMSINO1 GETDATE,
DATEIN=TIMESTMP,
DATEOUT=TIMESHOW,
FORMAT=TIMEINT,
ERROR=ERROROUT

MVC WORKLINE, BLANKS Clear print work line
MVC WORKLINE+10(10),=C'TIME ---> '

MVC WORKLINE+20(8),TIMESHOW Displayable time
$PRNT WORKLINE Print the time

koo ok ok >k sk ok ok ok >k sk ok ok ok ok sk okok ok ok sk kook ok ok ok ok sk sk ok ok ok koskook sk ok sk sk ok sk sk sk kok sk skook kok sk skck ko kk

Call IDMSINO1 to have a 10 byte external DATE display
returned as an 8 byte DATE stamp.

DATEIN is the address of the 10 byte external DATE.
DATEOUT is the address of the 8 byte DATE stamp returned.

koo ok ok >k sk ok ok ok >k sk okok ok ok ok kok ok ok sk kok ok ok ok ok ok sk ok sk ok sk sk ok sk ok sk sk ok sk sk sk skok sk skook kok sk skok ko kk

*
*
*
*
*

MvVC DATESHOW,=C'2003-03-10'

IDMSINO1 GETDATE,
DATEIN=DATESHOW,
DATEOUT=DATESTMP,
FORMAT=DATEEXT,
ERROR=ERROROUT

Sk ok ok sk >k sk ok ok ok >k sk okok ok ok ok kok sk sk ok kook ok sk ok ok ok sk ok ok ok skoskok sk sk sk sk sk sk sk sk sk ko kskosk kok ksk sk ko kk

Call IDMSINO1 to have an 8 byte internal DATE stamp
returned as a displayable 10 character DATE display.

DATEIN is the address of the 8 byte internal DATE stamp.
DATEOUT is the address of the 10 byte external DATE returned.

Sk ok ok sk >k sk ok ok ok >k ok ok ok sk ok ok kok sk sk ok kook ok sk ok ok ok sk sk ok ok koksk sk sk skosk ok sk sk sk sk k sk skosk kok ksk sk ko kk

*
*
*
*
*

30 Callable Services Guide

Calling IDMSINO1 from an Assembler Program

IDMSING1 GETDATE,

DATEIN=DATESTMP,

DATEOUT=DATESHOW,

FORMAT=DATEINT,

ERROR=ERROROUT
MVC WORKLINE, BLANKS Clear print work line
MVC WORKLINE+10(10),=C'DATE ---> '
MVC WORKLINE+20(10),DATESHOW Displayable date
$PRNT WORKLINE Print the date

Skook ok ok >k ok ok ok ok ok ok kok ok ok ok kok ok ok ok okok ok ok ok ok sk ok ok ok ok sk ko ok ok ok sk sk ok ok ok ok kok ok skok kok sk sk ok k ok kk

Call IDMSINO1 to retrieve SQL error messages into a user
buffer that will then be displayed back to the user.
Whats passed is the SQLCA block and a message control
block consisting of the following fields:

- Maximum number of lines in user buffer.

- The size (width) of one line in the user buffer.

- The actual number of lines returned from IDMSINO1.

- The user buffer where the message lines are returned

¥ X X X X X ¥ X X *

A return code of 4 means that there were no SQL error messages.
A return code of 8 means that there were more SQL error lines
in the SQLCA than could fit into the user buffer, meaning
truncation has occurred.

SQLCA is the address of the SQLCA block.
SQLMSGB is the address of the message control block.

Sk >k ok ok >k sk ok ok ok >k sk okok ok ok sk kok ok ok sk kok sk ok ok ok ok sk ok sk ok kosk ok ok ok sk sk ok sk sk sk skok sk skook kok sk skck ko kk

¥ X X X ¥ X X

IDMSINO1 GETMSG,
SQLCA=SQLCA,
SQLMSGB=SQLMSGB

CH R15,=H'4"' Were there any SQL errors returned
BE NOMSGS No, well thats okay with me
MVC WORKLINE,BLANKS Clear print work line
MVC WORKLINE+11(27),=C'Buffer returned from XTRA
$PRNT WORKLINE Print the heading
$PRNT BLANKS Print 1 blank line
L R3, SQLMCNT Get number of message lines returned
LA R5, SQLMLINE Point at first message line
MVC WORKLINE, BLANKS Clear print work line
MSGLOOP MVC WORKLINE+3(80),0(R5) Move SQL error message to print line
$PRNT WORKLINE Print SQL error message
LA R5,80(R5) Bump to next SQL error message
BCT R3,MSGLOOP Print all SQL error messages

Chapter 3: IDMSINO1 31

Calling IDMSINO1 from an Assembler Program

koK ok ok >k ok okok ok ok ok kok ok ok ok kok ok ok ok kok ok ok ok ok sk ok ok ok ok sk ko ok ok ok ok sk ok ok ok ok ok ok skook kok sk sk sk kok kk

* Call IDMSINO1 to reactivate the DML trace or SQL trace
* which was originally activated by the corresponding
* SYSIDMS parm (DMLTRACE=ON or SQLTRACE=ON), that has

* been previously deactivated earlier on in this job.
Sk ok ok sk ok ok >k ok ok ok ok ok ok 5k K >k 3k ok ok ok sk koK >k 5k ok sk k sk ok sk sk ok Kok sk ok sk sk k kK sk sk ok sk k ko k ok sk sk sk sk k sk k

IDMSINO1 TRACE Reactivate the DML or SQL trace

koK ok ok ok ok ok ok ok >k ok okok ok ok ok kok ok ok ok kok ok ok ok ok k ok ok ok ok sk ok ok ok ok sk ko ok ok ok ok ke ok ok sk ok skok sk sk ok sk ok sk skook sk k skok sk kosk skokskok ok k

Call IDMSINO1 to request that it return runtime environment
information. The layout of the information returned is described
in #ENVINFO dsect.

EVBLOCK is the address of where to return the information. The

first halfword contains the length of the data you want returned.
Sk 3k sk sk ok sk >k ok sk ok ok ok ok ok >k >k sk ok sk ok sk sk ok K sk ok sk ok sk sk sk sk sk sk ok ok ok ok sk k sk sk sk sk ok sk sk sk sk k sk sk ok sk ok sk sk sk sk sk skoskoko ko k kk sk kk ok

¥ X X X % ¥

LA R5, EVBLOCK Get address of return area

USING EV$INFO,R5 —» EV$INFO

MVC EV$SIZE,=AL2(EV$MAXL) Return all environment information
IDMSINO1 ENVINFO,

EVBLOCK= EV$INFO,
ERROR=ERROROUT

MVC WORKLINE,BLANKS Clear print work line

MVC WORKLINE+5(5),=C'Mode="'

MVC WORKLINE+10(1), EV$MODE Show runtime mode

MVC WORKLINE+13(5),=C'Tape="

MVC WORKLINE+18(6), EV$TAPE# Show CA IDMS tape volser

MVC WORKLINE+26(8),=C'Release="

MVC WORKLINE+34(6), EV$REL# Show CA IDMS release number

MVC WORKLINE+42(13),=C'Service Pack='

MVC WORKLINE+55(2), EV$SPACK Show CA IDMS tape service pack number
MVC WORKLINE+59(5),=C'DMCL="

MVC WORKLINE+64(8), EV$DMCL Show DMCL name

MVC WORKLINE+74(5),=C'Node="

MVC WORKLINE+79(8), EV$NODE Show system node name

$PRNT WORKLINE Print the ENVINFO results

Sk ok ok ok >k sk ok ok ok >k sk okok ok >k ok kok ok sk ok kook sk sk ook sk ok sk ok ok ok skosksk sk sk sk sk ok sk sk sk sk ok sk skosk kok ksk sk kk kk

* Call IDMSINO1 to format dbkey
Sk sk sk sk sk sk skok ok ok Sk ke sk sk sk sk ok ok Sk ok sk sk sk sk ok ok sk k sk sk sk sk sk koko ok ok sk sk sk sk k sk sk ok sk sk sk skok sk sk sk sk sk sk k
IDMSING1 FRMTDBK,
DBKEY=DBKEYFLD,
DBKFMT=DBKEYFMT,
DBKOUT=DBKCHAR

32 Callable Services Guide

Calling IDMSINO1 from a CA ADS Dialog

Calling IDMSINO1 from a CA ADS Dialog

When you are using CA ADS, issue calls to IDMSINO1 using this CA ADS convention:

LINK TO 'IDMSINO1' USING (RPB, REQ-WK, parm-3, ... parm-n)

Calling IDMSINO1 from a COBOL Program

When calling IDMSINO1 from a COBOL program, the first two parameters passed are
always the address of an RPB block and the address of the function REQUEST-CODE and
RETURN-CODE fields. The rest of the parameters depend on what service is being called.

COBOL Program Calling IDMSINO1

COBOL programs can use standard calling conventions. The following is an example of
calling all IDMSINO1 functions from a COBOL program.

ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.

>k 3k ok ok 3k ok ok ok ok ok ok ok ok ok ok Sk >k ok Sk >k ok Sk ok ok ok >k Sk ok ok ok ok ok ok K ok ok >k Sk ok ok sk ok ok ok ok ok ok >k sk ok >k sk ok ok sk Kk sk k sk ok k

* The following is the 1st parameter on all IDMSINO1 calls
>k 3k ok ok 3k >k ok ok ok ok ok ok ok ok ok Sk >k ok Sk ok ok Sk ok ok ok >k Sk ok ok ok ok ok Sk Kk ok >k Sk ok ok Sk ok ok Sk ok ok ok >k sk ok >k sk ok ok sk Kk sk >k sk ok k
01 RPB.

02 FILLER PIC X(36).

>k 3k ok ok 3k ok ok ok >k ok ok ok ok ok ok Sk >k ok Sk ok ok Sk ok ok Sk >k Sk ok ok ok ok ok Sk Kk ok >k Sk ok ok Sk ok ok ok ok ok ok >k sk ok >k sk ok ok sk Kk sk >k sk ok k

* The following is the 2nd parameter on all IDMSINO1 calls
k3K ok ok 3k ok ok ok >k ok ok ok ok ok ok Sk >k ok Sk ok ok Sk ok ok Sk >k Sk ok ok ok ok ok ok Kk ok >k Sk ok ok sk ok ok sk ok ok ok >k sk ok >k sk ok ok sk Kk sk k sk ok k

01 REQ-WK.
02 REQUEST-CODE PIC S9(8) COMP.
88 INO1-FN-TRACE VALUE 00.
88 INO1-FN-NOTRACE VALUE 01.
88 INO1-FN-GETPROF VALUE 02.
88 INO1-FN-SETPROF VALUE 03.
88 INO1-FN-GETMSG VALUE 04.
88 INO1-FN-GETDATE VALUE 05.
88 INO1-FN-GETUSER VALUE 08.

Chapter 3: IDMSINO1 33

Calling IDMSINO1 from a COBOL Program

88 INO1-FN-SYSCTL VALUE 10.
88 INO1-FN-TRINFO VALUE 16.
88 INO1-FN-TXNSON VALUE 28.
88 INO1-FN-TXNSOFF VALUE 29.
88 INO1-FN-RRSCTX VALUE 30.
88 INO1-FN-STRCONV VALUE 34.
88 INO1-FN-ENVINFO VALUE 36.
88 INO1-FN-FRMTDBK VALUE 40.

02 REQUEST-RETURN PIC S9(8) COMP.

>kokook ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ke ok sk ok ok ok sk kok ok ok ok ok ok ok ok ok ok ok ok k ok ok k ok sk ok ok ok ok sk ok sk ok kck kosk sk kok

* The following work fields are used by a variety of
* IDMSING1 calls

>kokook ok ok ok ok ok >k ok ok ok ok ok ok ok >k ok ok ok ok ko sk ok Sk ok sk kook ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk sk k skook kok sk sk sk kok

01 WORK-FIELDS.

02 WK-DTS-FORMAT PIC S9(8) COMP VALUE 0.

02 LINE-CNT PIC S9(4) COMP.

02 WK-DTS PIC X(8).

02 WK-CDTS PIC X(26).

02 WK-KEYWD PIC X(8).

02 WK-VALUE PIC X(32).

02 WK-DBNAME PIC X(8).

02 WK-USERID PIC X(32).

02 WK-SYSCTL PIC X(8).

02 WK-TIME-INTERNAL PIC X(8).

02 WK-TIME-EXTERNAL PIC X(8).

02 WK-DATE-INTERNAL PIC X(8).

02 WK-DATE-EXTERNAL PIC X(10).

02 WK-RRS-FAKE-FUNCTION PIC S9(4) COMP.
88 INO1-FN-RRSCTX-GET VALUE 01.
88 INO1-FN-RRSCTX-SET VALUE 02.

02 WK-RRS-FUNCTION-REDEF REDEFINES WK-RRS-FAKE-FUNCTION.
03 WK-RRS-FAKE-FILLER PIC X.
03 WK-RRS-FUNCTION PIC X.
02 WK-RRS-CONTEXT PIC X(16).
02 WK-STRING-FUNCTION PIC X(4).
88 CONVERT-EBCDIC-TO-ASCII VALUE 'ETOA'.
88 CONVERT-ASCII-TO-EBCDIC VALUE 'ATOE'.

02 WK-STRING PIC X(17)

VALUE 'String to convert'.
02 WK-STRING-LENGTH PIC S9(8) COMP VALUE 17.
02 WK-DBKEY-OUTPUT PIC X(12).

34 Callable Services Guide

Calling IDMSINO1 from a COBOL Program

>kokook >k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok sk ok ok ok ok ok sk sk sk ok sk ok sk skok kok kok sk kok

* The following group item is only used by the call that

* returns runtime environment information.
Skookeok sk >k 3k ok ok ok >k >k sk ok ok ok >k sk sk Skook sk skosk kook ok sk skookosk ok sk sk sk sk skook sk skosk skooke sk skok skokook skok sk koskosk sk koskoskoksk kk
01 EVBLOCK.

02 EV$SIZE PIC S9(4) COMP VALUE +31.

02 EV$MODE PIC X.

02 EV$TAPE# PIC X(6).

02 EV$REL# PIC X(6).

02 EV$SPACK PIC X(2).

02 EV$DMCL PIC X(8).

02 EV$NODE PIC X(8).

>kokook ok ok ok ok ok >k ok ok ok ok ok ok ok >k ok ok ok ok ko sk ok Sk ok sk kook ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk sk k skook kok sk sk sk kok

* The following group item is only used by the call that

* retrieves SQL error messages
Skookeok sk >k Sk Sk ok ok >k >k Sk sk ke sk >k sk sk kok sk skosk Skook sk sk skoskosk sk sk sk skosk kok sk skosk skook sk skosk skokosk skosk koskoksk sk skoskoskok sk kk
01 SQLMSGB.

02 SQLMMAX PIC S9(8) COMP VALUE +6.

02 SQLMSIZE PIC S9(8) COMP VALUE +80.

02 SQLMCNT PIC S9(8) COMP.

02 SQLMLINE OCCURS 6 TIMES PIC X(80).

>kokok >k ok ok ok ok >k ok ok ok ok ok ok ok ok ok ok ok ok ke k sk ok ok ok sk okook sk ok ok ok ok sk ok sk ok ok sk ok ok ok ok ok sk sk sk ok sk ok sk skok kok ks sk kk

* The following SQL include statement is needed only for
* the call that retrieves SQL error messages, and is only
* required if the program contains no other SQL statements.
Skoskook >k ok ok ok ok sk ok sk koK ok ok ok ok sk sk ok sk sk ok ok ok Sk sk sk skosk ok sk ok skesk sk sk sk kok ok ok sk sk sk sk sk sk skok sk sk sk skosk skok sk sk sk k
EXEC SQL

INCLUDE SQLCA
END - EXEC.

>kokok >k ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok k sk sk ok ok sk ok ok sk ok sk ok ok sk ok sk ok ok sk sk ok skook sk sk sk skokskok sk sk sk kok

PROCEDURE DIVISION.

>kokok >k ok ok ok ok ok ok ok ok ok ok ok ok ko sk ok sk ok k sk sk sk ok sk ok ok sk ok sk ok ok sk ok sk ok ok sk ok ok sk ok sk ok sk skook sk ok sk sk sk kok

Skokook >k ok ok ok ok >k ok ok sk ok sk ok ok >k ok sk ok ok sk k sk ok ok sk ok sk ok sk ok sk ok ok sk ok sk ok ok sk sk sk sk ok sk sk sk skosk sk sk ksk sk kk

Call IDMSINO1 to deactivate the DML trace or SQL trace
which was originally activated by the corresponding
SYSIDMS parm (DMLTRACE=ON or SQLTRACE=ON).

Parm 1 is the address of the RPB.
Parm 2 is the address of the REQUEST-CODE and RETURN-CODE.

Skokok >k ok ok ok ok >k ok ok sk ok sk ok ok >k sk sk ok ok ok k sk ok sk sk ok sk ok sk ok sk ok sk sk ok sk ok ok sk sk sk sk ok sk sk sk skosk sk sk ksk sk kk

*
*
*
*
*
*

Chapter 3: IDMSINO1 35

Calling IDMSINO1 from a COBOL Program

SET INO1-FN-NOTRACE TO TRUE.
CALL 'IDMSINO1' USING RPB REQ-WK.

>kokok sk ok ok ok ok ok k sk ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok sk ok skock ok ck sk sk sk kok

Call IDMSINO1 to request a 'GETPROF' to get the user
profile default DBNAME, which was established by the
SYSIDMS parm DBNAME=xxxxxxxXx when running batch, or
by the DCUF SET DBNAME xxxxxxxx when running under CV.

Parm 1 is the address of the RPB.

Parm 2 is the address of the REQUEST-CODE and RETURN-CODE.
Parm 3 is the address of the 8 byte GETPROF keyword.

Parm 4 is the address of the 32 byte GETPROF returned value.

>kokook >k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok sk kok sk ok ko ok sk sk ok sk ok ok sk ok sk skook sk sk sk skoskoskk sk sk sk kok

I SRR R R R S

SET INO1-FN-GETPROF TO TRUE.
MOVE 'DBNAME' TO WK-KEYWD
CALL 'IDMSINO1' USING RPB REQ-WK WK-KEYWD
WK-VALUE.
MOVE WK-VALUE TO WK-DBNAME.
IF WK-DBNAME = SPACES
DISPLAY 'DBNAME is set to BLANKS'
ELSE
DISPLAY 'DBNAME is set to ' WK-DBNAME.

>kokok >k ok ok ok ok ok ok ok ok ok ok ok ok ko ok ok sk ok k sk sk sk ok sk ok ok sk ok sk ok ok sk ok sk ok ok sk sk ok sk ok sk sk sk skooksk ok k sk sk kok

Call IDMSINO1 to activate Transaction Sharing for this
task.

Parm 1 is the address of the RPB.
Parm 2 is the address of the REQUEST-CODE and RETURN-CODE.

>kokok >k ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok k sk sk ok ok sk ok ok sk ok sk ok ok sk ok sk ok ok sk sk ok sk ok sk ok sk skookskok sk skok kok

*
*
*
*
*

SET INO1-FN-TXNSON TO TRUE.
CALL 'IDMSINO1' USING RPB REQ-WK.

Skokook >k ok ok ok ok >k ok ok sk ok sk ok ok >k ok sk ok ok sk k sk ok ok sk ok sk ok sk ok sk ok ok sk ok sk ok ok sk sk sk sk ok sk sk sk skosk sk sk ksk sk kk

Call IDMSINO1 to deactivate Transaction Sharing for this
task.

Parm 1 is the address of the RPB.
Parm 2 is the address of the REQUEST-CODE and RETURN-CODE.

Skokook >k ok sk ok ok >k ok ok sk ok sk ok ok >k ok sk ok ok sk k sk ok sk sk ok sk ok sk ok ok ok ok sk ok sk ok ok sk sk sk sk ok sk sk sk skosk sk sk sk sk sk kk

*
*
*
*
*

SET INO1-FN-TXNSOFF TO TRUE.
CALL 'IDMSINO1' USING RPB REQ-WK.

36 Callable Services Guide

Calling IDMSINO1 from a COBOL Program

>kokok k sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok sk ok skock ok ok ks ck kok

Call IDMSINO1 to request a 'SETPROF' to set the user
profile default SCHEMA to the value 'SYSTEM'.

Parm 2 is the address of the REQUEST-CODE and RETURN-CODE.
Parm 3 is the address of the 8 byte SETPROF keyword.
Parm 4 is the address of the 32 byte SETPROF value.

>kokook k sk ok ok ok ok kok sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok sk sk skockoskok sk sk sk kok

*
*
*
* Parm 1 is the address of the RPB.
*
*
*

SET INO1-FN-SETPROF TO TRUE.

MOVE 'SCHEMA' TO WK-KEYWD

MOVE 'SYSTEM' TO WK-VALUE

CALL 'IDMSINO1' USING RPB REQ-WK WK-KEYWD
WK-VALUE.

IF REQUEST-RETURN NOT = 0
DISPLAY 'SETPROF returned error ' REQUEST-RETURN.

>kokook >k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok sk ok ok sk ok sk ok sk ok ok sk ok ok sk ok sk skook sk sk sk skookosk sk k sk ok kok

Call IDMSINO1 to request the current USERID established
by the executed JCL information when running batch, or
by the SIGNON USER xxxxxxxx when running under CV.

Parm 1 is the address of the RPB.
Parm 2 is the address of the REQUEST-CODE and RETURN-CODE.
Parm 3 is the address of the 32 byte USERID returned value.

>kokook >k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok k ok ok sk ok sk ok ok sk ok sk ok ok sk ok sk ok ok sk sk sk sk ok sk sk sk skoskskok sk sk ok kok

*
*
*
*
*
*
*

SET INO1-FN-GETUSER TO TRUE.
CALL 'IDMSINO1' USING RPB REQ-WK WK-USERID.
IF WK-USERID = SPACES
DISPLAY 'USERID is set to BLANKS'
ELSE
DISPLAY 'USERID is set to ' WK-USERID.

>kokok >k ok ok ok ok ok ok ok sk ok ok ok ok >k ok ok ok sk ok k sk sk sk ok sk ok ok sk ok sk ok ok sk ok sk ok ok sk sk ok skook sk sk sk skoksk ok sk sk sk kok

Call IDMSINO1 to establish the SYSCTL DDNAME to be used
when running a Batch/CV job.

Parm 1 is the address of the RPB.
Parm 2 is the address of the REQUEST-CODE and RETURN-CODE.
Parm 3 is the address of the 8 byte SYSCTL DDNAME passed.

Skokook >k ok sk ok ok >k ok ok sk ok sk ok ok >k ok sk ok ok sk k sk ok sk sk ok sk ok sk ok ok ok ok sk ok sk ok ok sk sk sk sk ok sk sk sk skosk sk sk sk sk sk kk

*
*
*
*
*
*

Chapter 3: IDMSINO1 37

Calling IDMSINO1 from a COBOL Program

SET INO1-FN-SYSCTL TO TRUE.
MOVE 'SYSCTL73' TO WK-SYSCTL.
CALL 'IDMSINO1' USING RPB REQ-WK WK-SYSCTL.

koK ok ok ok ok ok ok ok ok ok ok ok ok ok ok >k ok ok ok ok ok ok Sk ok ok ok ook sk ok ok sk ok sk ok ok sk ok sk ok ok sk ok ok sk ok ok ok ok ok sk ok sk ok ok sk ok sk sk sk sk k sk ok

* Call IDMSINO1 to retrieve the current RRS context token.
* Uses an alternate method to set the function by using the

* SET statement, which allows exploiting the LEVEL 88 definitions.
Skook ok ok 5k Kok ok ok ok ok ok 5k K 3k 5k ok k ok sk sk ok 5k 5k 5k ok ok ok >k 5k K >k 3k ok ok k sk ok >k >k ok ok sk k sk ok ok skok ok sk sk ok sk sk sk Rk sk skok sk k sk kok

SET INO1-FN-RRSCTX TO TRUE.

SET INO1-FN-RRSCTX-GET TO TRUE.

CALL 'IDMSINO1' USING RPB,
REQ-WK,
WK-RRS-FUNCTION,
WK-RRS-CONTEXT .

koK ok ok ok ok ok ok ok ok ok ok ok ok ok ok >k sk ok ok ok ok ok ok ok ok ok ko ok ok ok sk k sk sk ok sk k sk ok sk sk ok ok >k sk sk ok ok sk sk sk ok sk sk sk sk sk skok sk ko k sk k

* Call IDMSINO1 to request string conversion from EBCDIC to ASCII.

koK ok ok ok ok ok ok ok ok ok ok ok ok ok ok >k sk ok ok ok ok ok ok ok ok ok ke ok ok ok ok ok k sk ok ok ok ok sk sk ok sk k ok sk ok sk ok ok ko ok sk ok sk ok ok ko sk sk sk sk k sk ok

SET INO1-FN-STRCONV TO TRUE.
SET CONVERT-EBCDIC-TO-ASCII TO TRUE.
CALL 'IDMSINO1' USING RPB,
REQ-WK,
WK-STRING-FUNCTION,
WK-STRING,
WK-STRING-LENGTH.

koK ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok sk ok ok ok ok ke ok sk ok ok sk k sk sk ok sk ok sk sk ok sk k sk sk sk sk ok ok sk k sk ok sk ok sk ko skok sk sk k sk ok

* Call IDMSINO1 to request string conversion from ASCII to EBCDIC.

koK ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok sk ok ok ok ok ke ok sk ok ok sk k sk sk ok sk ok sk sk ok sk k sk sk sk sk ok ok sk k sk ok sk ok sk ko skok sk sk k sk ok

SET INO1-FN-STRCONV TO TRUE.
SET CONVERT-ASCII-TO-EBCDIC TO TRUE.
CALL 'IDMSINO1' USING RPB,
REQ-WK,
WK-STRING-FUNCTION,
WK-STRING,
WK-STRING-LENGTH.

38 Callable Services Guide

Calling IDMSINO1 from a COBOL Program

>kokok k sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok sk ok skock ok ok ks ck kok

Call IDMSINO1 to have an 8 byte internal DATETIME stamp
returned as a displayable 26 character DATE/TIME display.

is the address of the RPB.

is the address of the REQUEST-CODE and RETURN-CODE.
Parm 3 is the address of the 4 byte format indicator (0).
Parm 4 is the address of the 8 byte internal DATETIME stamp.
Parm 5 is the address of the 26 byte DATE/TIME returned.

>kokok sk ok ok ok ok ok k sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok sk ok skockoskok sk sk ok kok

Parm
Parm

A W N

*
*
*
*
*
*
*
*

SET INO1-FN-GETDATE TO TRUE.
MOVE @ TO WK-DTS-FORMAT
MOVE 'UNKNOWN' TO WK-CDTS
CALL 'IDMSINO1' USING RPB REQ-WK
WK-DTS-FORMAT WK-DTS WK-CDTS.
DISPLAY 'THE DATE AND TIME IS --> ' WK-CDTS.

>kokook >k ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok k sk sk ok ok sk ok k sk ok sk ok sk ok ok sk sk ok skosk sk skeok skok skokok kok skok sk kok

Call IDMSINO1 to have the current DATE and TIME
returned as a displayable 26 character DATE/TIME display.

Parm 2 is the address of the REQUEST-CODE and RETURN-CODE.
Parm 3 is the address of the 4 byte format indicator (1).
Parm 4 is the address of the 26 byte DATE/TIME returned.

>kokok >k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok k sk sk ok ok sk ok ok sk ok sk ok ok sk ok sk ok ok sk sk sk skook sk ok skokok kok ok sk kk

*
*
*
* Parm 1 is the address of the RPB.
*
*
*

SET INO1-FN-GETDATE TO TRUE.
MOVE 1 TO WK-DTS-FORMAT
CALL 'IDMSINO1' USING RPB REQ-WK
WK-DTS-FORMAT WK-CDTS.
DISPLAY 'THE DATE AND TIME IS --> ' WK-CDTS.

>kokok >k ok ok ok ok ok ok ok ok ok ok ok ok ko sk ok sk ok k sk sk sk ok sk ok ok sk ok sk ok ok sk ok sk ok ok sk ok ok sk ok sk ok sk skook sk ok sk sk sk kok

Call IDMSINO1 to have a 26 byte external DATE/TIME display
returned as an 8 byte DATETIME stamp.

is the address of the RPB.

is the address of the REQUEST-CODE and RETURN-CODE.
Parm 3 is the address of the 4 byte format indicator (2).
Parm 4 is the address of the 26 byte DATE/TIME.

Parm 5 is the address of the 8 byte DATETIME stamp returned.

Skokok >k ok ok ok ok >k ok ok >k ok sk ok ok sk ok ok ok ok sk ok ok ok Sk ok ok sk ok sk ok sk ok sk sk ok sk sk ok sk sk sk sk sk sk sk skskskosk ok ks k kk

Parm
Parm

~ W N =

*
*
*
*
*
*
*
*

Chapter 3: IDMSINO1 39

Calling IDMSINO1 from a COBOL Program

SET INO1-FN-GETDATE TO TRUE.

MOVE 2 TO WK-DTS-FORMAT

MOVE '1994-07-18-12.01.18.458382' TO WK-CDTS
CALL 'IDMSINO1' USING RPB REQ-WK
WK-DTS-FORMAT WK-CDTS WK-DTS.

>kokok sk ok ok ok ok kok sk ok ok ok ok ok sk ok ok ok ok sk ok sk ok ok sk sk skockoskck ks sk kok

Parm
Parm
Parm
Parm

*
*
*
*
*
*
*
* Parm

~ W N

5

is the
is the
is the
is the
is the

address
address
address
address
address

Call IDMSINO1 to have a 8 byte external TIME display
returned as an 8 byte TIME stamp.

of the RPB.

of the REQUEST-CODE and RETURN-CODE.
of the 4 byte format indicator (4).
of the 8 byte external TIME.

of the 8 byte TIME stamp returned.

>kokok >k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok ok sk ok ok sk ok sk ok sk ok ok sk ok ok sk ok ok sk ok sk sk k skockosk sk k sk sk kok

SET INO1-FN-GETDATE TO TRUE.

MOVE 4 TO WK-DTS-FORMAT

MOVE '13.58.11' TO WK-TIME-EXTERNAL
CALL 'IDMSINO1' USING RPB REQ-WK WK-DTS-FORMAT
WK-TIME-EXTERNAL WK-TIME-INTERNAL.

>kokok >k ok ok ok ok ok ok ok ok ok ok ok ok ok k ok ok ok ok k sk sk ok ok sk ok ok sk ok sk ok ok sk ok sk ok ok sk sk ok skook sk sk sk skook sk ok sk sk sk kok

Parm
Parm
Parm
Parm

*
*
*
*
*
*
*
* Parm

~ W N -

5

is the
is the
is the
is the
is the

address
address
address
address
address

Call IDMSINO1 to have an 8 byte internal TIME stamp
returned as a displayable 8 character TIME display.

of the RPB.

of the REQUEST-CODE and RETURN-CODE.
of the 4 byte format indicator (3).
of the 8 byte internal TIME stamp.

of the 8 byte external TIME returned.

>kokok >k ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok k sk sk ok ok sk ok ok sk ok sk ok ok sk ok sk ok ok sk sk ok skook sk sk sk skokskok sk sk sk kok

SET INO1-FN-GETDATE TO TRUE.
MOVE 3 TO WK-DTS-FORMAT
CALL 'IDMSINO1' USING RPB REQ-WK WK-DTS-FORMAT
WK-TIME-INTERNAL WK-TIME-EXTERNAL.
DISPLAY 'THE EXTERNAL TIME IS --> ' WK-TIME-EXTERNAL.

40 Callable Services Guide

Calling IDMSINO1 from a COBOL Program

>kokok k sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok sk ok skock ok ok ks ck kok

Call IDMSINO1 to have a 10 byte external DATE display
returned as an 8 byte DATE stamp.

is the address of the RPB.

is the address of the REQUEST-CODE and RETURN-CODE.
Parm 3 is the address of the 4 byte format indicator (6).
Parm 4 is the address of the 10 byte external DATE.

Parm 5 is the address of the 8 byte DATE stamp returned.
3k koK 3K 5K 3k ok ok ok ok ok 5k ok ok ok ok ok ok ok >k K Kok sk ok ok k sk ok ok K 5k ok sk ok sk ok sk sk ok sk ok sk ok ok sk ok sk ks sk sk k sk sk k

Parm
Parm

A W N

*
*
*
*
*
*
*
*

SET INO1-FN-GETDATE TO TRUE.
MOVE 6 TO WK-DTS-FORMAT
MOVE '2003-03-10' TO WK-DATE-EXTERNAL
CALL 'IDMSINO1' USING RPB REQ-WK WK-DTS-FORMAT
WK-DATE-EXTERNAL WK-DATE-INTERNAL.

>kokook >k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok ok sk ok ok sk ok sk ok sk ok ok sk ok ok sk ok ok sk ok sk sk k skockosk sk k sk sk kok

Call IDMSINO1 to have an 8 byte internal DATE stamp
returned as a displayable 10 character DATE display.

is the address of the RPB.

is the address of the REQUEST-CODE and RETURN-CODE.
Parm 3 is the address of the 4 byte format indicator (5).
Parm 4 is the address of the 8 byte internal DATE stamp.

Parm 5 is the address of the 10 byte external DATE returned.
Skoskook 3k ok ok ok ok sk ok sk sk ok ok ok ok ok sk sk sk sk sk ok ok ok Sk sk sk skosk sk sk ok ok sk sk sk sk skiok sk ok k ko sk sk sk k kokok ko sk sk sk kok

Parm
Parm

~ W N

*
*
*
*
*
*
*
*

SET INO1-FN-GETDATE TO TRUE.
MOVE 5 TO WK-DTS-FORMAT
CALL 'IDMSINO1' USING RPB REQ-WK WK-DTS-FORMAT
WK-DATE-INTERNAL WK-DATE-EXTERNAL.
DISPLAY 'THE EXTERNAL DATE IS --> ' WK-DATE-EXTERNAL.

>k3kok ok 3k ok ok ok ok ok ok kK ok ok ok ok ok ok ok ok Sk ok ok Sk >k sk ok ok sk ok ok Sk ok ok Sk ok ok ok ok ok ok k sk ok >k sk ok sk k k sk sk k sk k >k

Call IDMSINO1 to retrieve SQL error messages into a user
buffer that will then be displayed back to the user.
Whats passed is the SQLCA block and a message control
block consisting of the following fields:

- Maximum number of lines in user buffer.

- The size (width) of one line in the user buffer.

- The actual number of lines returned from IDMSINO1.

- The user buffer where the message lines are returned.

¥ X X X X X X X ¥ X

Chapter 3: IDMSINO1 41

Calling IDMSINO1 from a COBOL Program

A return code of 4 means that there were no SQL error messages.
A return code of 8 means that there were more SQL error lines
in the SQLCA than could fit into the user buffer, meaning
truncation has occurred.

Parm 1 is the address of the RPB.
Parm 2 is the address of the REQUEST-CODE and RETURN-CODE.
Parm 3 is the address of the SQLCA block.

Parm 4 is the address of the message control block.
3k koK 3K 5K 3k ok ok ok ok ok K ok ok ok ok ok ok ok ok >k Kok sk ok ok ok k ok K >k 3k ok sk k sk ok sk sk sk sk ok sk ok ok sk ok sk ks skok sk sk sk sk k-

*
*
*
*
*
*
*
*
*

SET INO1-FN-GETMSG TO TRUE.
CALL 'IDMSINO1' USING RPB, REQ-WK,
SQLCA, SQLMSGB.
IF REQUEST-RETURN NOT = 4
MOVE 1 TO LINE-CNT
PERFORM DISP-MSG UNTIL LINE-CNT > SQLMCNT.

DISP-MSG SECTION.
DISPLAY SQLMLINE (LINE-CNT).
ADD 1 TO LINE-CNT.

>kokook >k ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok sk sk ok ok sk ok ok sk ok sk ok sk ok ok sk ok ok sk ok sk skook sk sk sk skockosk sk k sk sk kok

Call IDMSINO1 to reactivate the DML trace or SQL trace
which was originally activated by the corresponding
SYSIDMS parm (DMLTRACE=ON or SQLTRACE=ON), that has
been previously deactivated earlier on in this job.

Parm 1 is the address of the RPB.
Parm 2 is the address of the REQUEST-CODE and RETURN-CODE.

>kokok >k ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok k sk sk ok ok sk ok ok sk ok sk ok ok sk ok sk ok ok sk sk ok skook sk sk sk skokskok sk sk sk kok

L SR R N

SET INO1-FN-TRACE TO TRUE.
CALL 'IDMSINO1' USING RPB REQ-WK.

>k 3Kk >k 3k ok ok ok ok ok Sk Kk Sk ok ok ok ok ok ok ok Sk ok ok Sk >k 3k sk ok 3k ok ok ok 5k 5k Sk >k Sk ok ok ok ok k sk ok ok sk >k sk k k sk sk ok sk k >k

Call IDMSINO1 to request that it return runtime
environment information.

Parm 1 is the address of the RPB.
Parm 2 is the address of the REQUEST-CODE and RETURN-CODE.

Parm 3 is the address of the ENVINFO return area.
Sk skok ok ok sk ke ok Sk ok sk sk ok sk ok sk ok sk sk sk sk skok sk ok Sk sk sk sk sk sk sk ke sk sk sk sk kok ok ok sk ok sk sk sk sk skok sk ok sk sk sk kok

EE I S

42 Callable Services Guide

Calling IDMSINO1 from a PL/I Program

SET INO1-FN-ENVINFO TO TRUE.

CALL 'IDMSINO1' USING RPB REQ-WK EVBLOCK.

DISPLAY 'Runtime mode is ' EV$MODE.

DISPLAY 'CA IDMS tape volser is ' EV$TAPE#.
DISPLAY 'CA IDMS release number is ' EV$REL#.
DISPLAY 'CA IDMS service pack number is ' EV$SPACK.
DISPLAY 'DMCL name is ' EV$DMCL.

DISPLAY 'System node name is ' EV$NODE.

>kokok sk ok ok ok ok ok k sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok sk ok skockoskok sk sk ok kok

* (Call IDMSINO1 to format dbkey stored in SUBSCHEMA-CTRL

>kokook >k ok ok ok ok ok ok ok ok ok ok ok ok ok k ok ok ok ok k sk sk ok ok sk kok sk ok sk ok sk sk ok sk ok ok sk ok sk skook sk sk k skockosk sk k sk sk kok

SET INO1-FN-FRMTDBK TO TRUE.
CALL 'IDMSINO1' USING RPB,
REQ-WK,
DBKEY,
PAGE - INFO-DBK-FORMAT,
WK-DBKEY -OUTPUT.
DISPLAY ‘DBKEY = ‘ WK-DBKEY-OUTPUT.

Calling IDMSINO1 from a PL/I Program

The following is an example of calling IDMSINO1 functions from a PL/I program:

/* Declare IDMSINO1 entry */
DCL IDMSINO1 ENTRY OPTIONS(INTER,ASSEMBLER);
/* Definition of IDMSINO1 variables: */
DCL 1 REQ WK,
2 REQUEST CODE FIXED BINARY(31),
2 REQUEST RETURN FIXED BINARY(31);

Chapter 3: IDMSINO1 43

alling IDMSINO1 from a PL/I Program

/* Definition of IDMSINO1

DCL IN®1 FN TRACE FIXED
DCL IN®1 FN NOTRACE FIXED
DCL IN®1 FN GETPROF FIXED
DCL IN®1 FN SETPROF FIXED
DCL IN®1 FN GETMSG FIXED
DCL IN®1 FN GETDATE FIXED
DCL IN®1 FN GETUSER FIXED
DCL IN®1 FN SYSCTL FIXED
DCL IN®1 FN TRINFO FIXED
DCL IN®@1 FN TXNSON FIXED
DCL IN®1 FN_TXNSOFF FIXED
DCL IN®1 FN RRSCTX FIXED
DCL IN®1 FN STRCONV FIXED
DCL IN®1 FN_ENVINFO FIXED
DCL IN®1 FN_FRMTDBK FIXED

/* The following work fiel
/* IDMSINOL calls */
DCL 1 WORK FIELDS,

WK DTS_FORMAT
LINE CNT

WK DTS

WK _CDTS

WK_KEYWD
WK_VALUE

WK _DBNAME
WK_SYSCTL

WK TIME INTERNAL
WK _TIME EXTERNAL
WK _DATE_INTERNAL
WK _DATE_EXTERNAL
WK _USERID

WK _DBKEY OUTPUT

N NDNNNNNNNNNNDNNDN

DCL 1 WK RRS_FUNCTION
/* Definition of WK RRS FU

DCL INO1 FN RRSCTX GET
DCL INO1 FN RRSCTX SET

*/
VALUE(00) ;
VALUE(01);
VALUE(02) ;
VALUE(03) ;
VALUE(04) ;
VALUE(05) ;
VALUE(08) ;
VALUE(1
(
(
(
(
(
(
(

functions:
BINARY(31)
BINARY(31)
BINARY(31)
BINARY(31)
BINARY(31)
BINARY(31)
BINARY(31)
BINARY(31)
BINARY(31)
(
(
(
(
(
(

0);
VALUE(16);
BINARY(31) VALUE
BINARY
BINARY
BINARY (3
BINARY(31)

BINARY(31)

)

)
1 28);
1) VALUE(29);
1) VALUE(30);
1) VALUE(34);
VALUE(36) ;
)

VALUE(40) ;

ds are used

FIXED BINARY(31) INIT(O),
FIXED BINARY(31),
CHAR(8),

CHAR
CHAR(8
CHAR(32),
CHAR(8),
CHAR(8),

(26),
(8),
(32
(8)
(8)
CHAR(8),
(8)
(8)
(10
(
(

X

CHAR(8),
CHAR(8

X

CHAR(10)
CHAR(32);
CHAR(12);

’

FIXED BINARY (7);
NCTION functions: */

FIXED BINARY (7)
FIXED BINARY (7)

VALUE (1);
VALUE (2);

44 Callable Services Guide

by a variety of */

Calling IDMSI

NO1 from a PL/I Program

DCL 1 WK_RRS_CONTEXT BIT (128);
DCL 1 WK _STRING FUNCTION CHAR (4);

/*

Definition of WK STRING FUNCTION functions: */

DCL CONVERT_EBCDIC_TO ASCII CHAR (4) VALUE ('ETOA');
DCL CONVERT_ASCII_TO EBCDIC CHAR (4) VALUE ('ATOE');

DCL 1 WK_STRING

DCL 1 WK_STRING_LENGTH FIXED BINARY(31) INIT(17);

DCL 1 SNAP_TITLE,

/*
/*
/*
/*

3 SNAP_TITLE_TEXT CHAR (14) INIT (' PLIINO1 snap '),
3 SNAP_TITLE_END CHAR (1) INIT (' ');

CHAR (17) INIT('String to convert');

koo ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok sk sk ok ok ok ok sk ok kok ok ke k kok ok sk sk skok ok sk ok kok sk sk sk kok ok skok ok kskoskosk sk kok sk ok */

The following group item is only used by the call that
retrieves runtime environment information.

*/
*/

koo ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok sk ok ok sk ok ok ok ok sk ok sk ok ok ke ok kok ok sk ok kok ok sk ok kok sk sk sk okok sk skok ok koskokosk sk kok sk ok */

DCL 1 EVBLOCK,

/*
/*
/*
/*

EV$SIZE FIXED BINARY(15) INIT(31),
EV$MODE CHAR(1),

EVSTAPE# CHAR(6),
EV$REL# CHAR(6),
EV$SPACK CHAR(2),
EV$DMCL CHAR(8),
EVSNODE ~ CHAR(8)

’

N NDNDNNNN

koK ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok sk ok sk sk ok ok ok sk sk sk sk ok ok >k sk kok ok sk sk skok sk ksk kok sk sksk kok sk skok ok kskskok sk kok sk ok */

The following group item is only used by the call that
retrieves SQL error messages.

*/
*/

koK ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok sk ok sk sk ok ok ok ok sk ok sk ok ok >k k kok ok sk sk skok ok kok kok sk sksk kok sk skok ok kskskok sk kok sk ok */

DCL 1 SQLMSGB,

/*
/*
/*
/*
/*

2 SQLMMAX FIXED BINARY(31) INIT(6),
2 SQLMSIZE FIXED BINARY(31) INIT(80),
2 SQLMCNT FIXED BINARY(31),

2 SQLMLINE (6) CHAR(80);

Sk sk skosk sk ok ok ok ok sk sk sk koo ok ok ok ok sk sk sk sk ok ok ok ok sk sk sk skook sk ok ok Sk sk sk sk sk kok ok ok sk sk sk sk sk ok sk sk sk sk sk sk sk kokokosk sk sk sk k */
The following SQL include statement is needed only for */
the call that retrieves SQL error messages, and is only */
required if the program contains no other SQL statements. */

Sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok sk sk ok sk ok sk sk ok sk ok sk sk sk sk ok ok >k sk kok sk sk sk skok sk ksk skok sk sksk kok sk skok sk ko skok sk kok sk ok */

Chapter 3: IDMSINO1 45

Calling IDMSINO1 from a PL/I Program

/*
/*
/*

/*

*/

/*

*/

/*

EXEC SQL INCLUDE SQLCA ;

Skook sk ok ok ok ok ok sk ok sk ok ok >k ok kok ok sk ok kok ok sk ok kok sk ok kok ok skook kok kok sk ksk sk k sk k */

BEGIN MAINLINE ... */

koK ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok skook ok ok ok ke ok ok ok ok sk ok sk ok ok sk ok kok ok sk ok skok sk skok kok ok sk ok okok ok skok ok kokokok ok kok sk ok */

Sk ok ok ok ok ok ok ok >k ok ok ok ok ok ok ok Sk ok >k ok ok ok ok ok ok ok ke ok ok ok ok ok ok sk ok sk ok sk sk ok sk ok sk sk ok sk k ok ko ok sk ok ok k ok kok sk sk k kok

Call IDMSINO1 to deactivate the DML trace or SQL trace
which was originally activated by the corresponding
SYSIDMS parm (DMLTRACE=ON or SQLTRACE=ON).

Parm 1 is the address of the RPB.
Parm 2 is the address of the REQUEST CODE and RETURN CODE.

koK ok ok ok ok ok ok ok >k ok ok ok ok ok ok >k Sk ok sk ok ok sk ok ok ok ok ke ok ok sk ok ok sk sk ok ok ok sk sk ok sk ok sk sk ok sk ok ok sk ok ok sk sk kk ko skok sk sk ok

*
*
*
*
*
*

REQUEST CODE = IN®1 FN NOTRACE;
CALL IDMSINO1 (RPB,
REQ_VWK) ;
IF (REQUEST RETURN —= 0) THEN GO TO ING1 ERROR;

Sk ok ok ok ok ok ok ok >k ok ok ok ok ok ok >k Sk ok ok ok ok sk ok ok ok ok ke ok ok sk ok ok sk sk ok ok ok sk sk ok sk ok sk sk sk sk ok ok sk ok ok ok sk ok k ko skok sk kok

Call IDMSINO1 to request a 'GETPROF' to get the user
profile default DBNAME, which was established by the
SYSIDMS parm DBNAME=xxxxxxxXx when running batch, or
by the DCUF SET DBNAME xxxxxxxx when running under CV.

Parm 1 is the address of the RPB.

Parm 2 is the address of the REQUEST CODE and RETURN CODE.
Parm 3 is the address of the 8 byte GETPROF keyword.

Parm 4 is the address of the 32 byte GETPROF returned value.

Sk ok ok ok ok ok ok ok ok ok ok ok ok >k ok >k Sk ok sk ok >k sk ok ok ok ok ke ok sk ok ok kok sk sk ok sk ok sk sk sk sk ok sk sk sk kok ok ke k sk ok ok sk sk ko skok sk sk ok

¥ X X X X X X X ¥

REQUEST CODE = IN@1 FN GETPROF;
WK_KEYWD = 'DBNAME';
CALL IDMSINO1 (RPB,

REQ WK,

WK_KEYWD,

WK_VALUE) ;
IF (REQUEST RETURN -= 0) THEN GO TO INO1 ERROR;
WK_DBNAME = SUBSTR(WK VALUE,1,8);

koK ok ok ok ok ok ok ok ok ok ok sk ok >k ok >k Sk ok sk ok ok ok ok ok ok ok sk ok sk ok ok sk ok sk sk sk sk k sk sk sk skok sk ok sk skok sk sk sk ko ko k sk kok sk k sk k ok

* Call IDMSINO1 to activate Transaction Sharing for this task.
*

46 Callable Services Guide

Calling IDMSINO1 from a PL/I Program

* Parm 1 is the address of the RPB.
* Parm 2 is the address of the REQUEST CODE and RETURN CODE.
Skook ok ok K Kok ok ok ok ok ok K K 3k 5k ok ok ok sk ok ok 5k ok ok ok ok ok ok ok K K Kok ok ok k ok >k K >k 5k sk ok k ok sk sk ok ok sk sk ok ok sk kR Rk kk sk k ok
*/
REQUEST CODE = INO1 FN TXNSON;
CALL IDMSINO1 (RPB,
REQ_WK) ;
IF (REQUEST RETURN —= @) THEN GO TO IN©1 ERROR;
/*
Skook ok ok K Kk ok ok ok ok >k >k 5k 5k 3k ok ok ok ok sk ok 5k ok ok ok Sk k >k >k K 3k sk ok ok ok sk sk ok sk sk sk ok ok sk sk k sk sk sk sk ok sk ko k ok sk sk sk sk k sk sk k
* Call IDMSINO1 to deactivate Transaction Sharing for this task.
*
* Parm 1 is the address of the RPB.
* Parm 2 is the address of the REQUEST CODE and RETURN CODE.
Skook sk ok 5k >k ok ok ok ok sk ok 5k 3k >k sk ok Sk ok sk ok ok ok ok ok ok ok ok sk ok sk sk sk ok ok ok sk sk ok k ok sk sk ok sk sk sk kosk sk sk ok sk ok sk k sk sk sk sk k sk sk ok
*/
REQUEST CODE = INO1 FN TXNSOFF;
CALL IDMSINO1 (RPB,
REQ_WK) ;
IF (REQUEST RETURN —= @) THEN GO TO IN©1 ERROR;
/*
Skook ok >k >k 3Kk ok ok ok sk >k >k ok ok ok ok sk sk sk sk ok ok ok ok ok Sk sk sk >k >k ok sk ok sk sk sk skook sk sk ok ok sk sk sk sk sksk sk ok sk sk sk skok sk sksk sk k sk sk k
Call IDMSINO1 to request a 'SETPROF' to set the user
profile default SCHEMA to the value 'SYSTEM'.

Parm 2 is the address of the REQUEST CODE and RETURN CODE.
Parm 3 is the address of the 8 byte SETPROF keyword.
Parm 4 is the address of the 32 byte SETPROF value.

koK ok ok ok ok ok ok ok ok ok ok ok ok >k ok ok Sk ok sk ok ok ok ok ok ok ok ke ok sk ok ok kok sk sk ok sk ok sk sk sk kok sk sk sk kok sk ko ok sk ok sk sk sk ko sk k sk sk ok

*
*
*
* Parm 1 is the address of the RPB.
*
*
*

*/
REQUEST CODE = IN@1 FN SETPROF;
WK_KEYWD = 'SCHEMA';
WK_VALUE = 'SYSTEM';
CALL IDMSINO1 (RPB,
REQ WK,
WK_KEYWD,
WK_VALUE) ;
IF (REQUEST RETURN -= 0) THEN GO TO INO1 ERROR;
/*

Chapter 3: IDMSINO1 47

Calling IDMSINO1 from a PL/I Program

koK ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok Sk ok >k ok ok ok ok ok ok ok sk ok sk ok ok sk ok sk ok ok sk ok sk sk ok sk ok sk sk ok sk ok ok ko ok sk k ko kok kok sk k ok sk ok

Call IDMSINO1 to request the current USERID established
by the executed JCL information when running batch, or
by the SIGNON USER xxxxxxxx when running under CV.

Parm 1 is the address of the RPB.
Parm 2 is the address of the REQUEST CODE and RETURN CODE.
Parm 3 is the address of the 32 byte USERID returned value.

koK ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok Sk ok >k ok ok ok ok ok ok ok ke ok sk ok ok sk ok sk ok ok sk ok sk sk ok sk ok ok sk ok sk ok ok ko ok sk k ok kk kok sk k ok sk ok

*
*
*
*
*
*
*

*/
REQUEST_CODE = INO1 FN_GETUSER;
CALL IDMSINOl1 (RPB,

REQ WK,
WK _USERID) ;
IF (REQUEST RETURN —= @) THEN GO TO IN©1 ERROR;
DISPLAY ('USERID is set to ' || WK USERID);
/*
Skook ok ok 5k 3Kk ok ok ok sk >k >k ok ok ok ok sk ok sk sk ok ok ok ok ok Sk k kK >k ok sk ok sk sk sk skook sk sk sk ko sk sk sk sk skok sk ok sk sk sk skok sk sk sk sk k ko k >k
* Call IDMSINO1 to establish the SYSCTL DDNAME to be used
* when running a Batch/CV job.
*
* Parm 1 is the address of the RPB.
* Parm 2 is the address of the REQUEST CODE and RETURN CODE.
* Parm 3 is the address of the 8 byte SYSCTL DDNAME passed.
Skosk sk ok >k ok ok ok ok ok sk ok sk ok ok sk ok sk sk sk koo sk ok ok ok Sk sk sk sk >k sk skeok Sk sk sk skook sk sk ok ke sk sk sk sk skok ok ok sk sk sk skok sk sksk sk sk sk sk k
*/

REQUEST_CODE = INO1 FN_SYSCTL;
WK_SYSCTL = 'SYSCTL73';
CALL IDMSINO1 (RPB,

REQ WK,
WK SYSCTL) ;
/*
Skosk sk ok >k oKk ok ok ok sk ok sk ok ok ok ok sk sk sk koo sk ok ok ok Sk sk sk sk sk sk skeok Sk sk sk skook sk sk ok ke sk sk sk sk skokok ok sk sk skoskok sk sksk sk sk sk sk k
* Call IDMSINO1 to retrieve the current RRS context token.
* Note: this call requires an operating mode of IDMS DC
* Note: use of SNAP requires an operating mode of IDMS DC
Skosk sk sk >k ok ok ok ok Sk sk sk sk ok ok ok sk sk sk sk koo ok ok ok ok Sk sk sk sk sk sk sk ok sk sk sk skook sk sk sk ke sk sk sk sk skokok ok sk sk sk skok sk sk sk sk sk skk >k
*/

48 Callable Services Guide

Calling IDMSINO1 from a PL/I Program

REQUEST CODE = INO1 FN RRSCTX;
WK RRS_FUNCTION = INO1 FN RRSCTX GET;
CALL IDMSINO1 (RPB,
REQ WK,
WK RRS_FUNCTION,
WK RRS_CONTEXT) ;
IF (REQUEST RETURN = 0)
THEN
SNAP TITLE (SNAP TITLE)
FROM (WK RRS CONTEXT) LENGTH (16);
ELSE
IF (REQUEST RETURN = 4)
THEN
DISPLAY ('No RRS context active yet.');
ELSE GO TO INO1 ERROR;

/*
Skook ok ok 5k 3Kk ok ok ok sk >k >k ok ok ok ok sk sk sk sk ok ok ok ok ok Sk sk ok >k >k ok sk sk sk sk skook sk sk ok ko sk sk sk sk skski sk ok sk sk sk skok sk sk sk sk k sk sk k
* Call IDMSINO1 to convert WK STRING from EBCDIC to ASCII.
* Note: use of SNAP requires an operating mode of IDMS DC
Skook sk ok 5k 3Kk ok ok ok sk >k >k ok ok ok ok sk sk sk sk ok ok ok ok ok Sk sk ok k >k ok sk ok sk k sk skook sk sk ok ok sk sk sk sk skski sk ok sk sk sk kok sk sksk sk k sk sk k
*/

REQUEST CODE = IN@1 FN STRCONV;
WK_STRING FUNCTION = CONVERT EBCDIC TO ASCII;
CALL IDMSINO1 (RPB,

REQ WK,

WK_STRING_FUNCTION,

WK_STRING,

WK_STRING_LENGTH);
IF (REQUEST RETURN -= 0) THEN GO TO INO1 ERROR;
SNAP TITLE (SNAP TITLE)

FROM (WK STRING) LENGTH (WK STRING LENGTH);

/*
Skosk sk ok kKoK ok ok ok sk ok sk ok ok ok ok sk sk sk koo sk ok ok ok Sk sk sk sk sk sk skeok sk sk sk skook sk sk sk ke sk sk sk sk skoko sk ok sk sk sk kok sk sksk sk sk sk sk k
* Call IDMSINO1 to convert WK STRING from ASCII to EBCDIC.
Skosk sk >k kKoK ok ok ok sk ok sk ok ok sk ok sk sk sk koo sk ok ok ok Sk sk sk sk >k sk skeok sk sk sk skook sk sk sk ke sk sk sk sk skokok ok sk sk sk skok sk sksk sk ksk sk k
*/

REQUEST CODE = INO1 FN STRCONV;
WK_STRING FUNCTION = CONVERT ASCII TO EBCDIC;
CALL IDMSINO1 (RPB,

REQ WK,

WK_STRING_FUNCTION,

WK_STRING,

WK_STRING_LENGTH);
IF (REQUEST RETURN -= 0) THEN GO TO INO1 ERROR;

/*

Chapter 3: IDMSINO1

49

Calling IDMSINO1 from a PL/I Program

koK ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok Sk ok >k ok ok ok ok ok ok ok sk ok sk ok ok sk ok sk ok ok sk ok sk sk ok sk ok sk sk ok sk ok ok ko ok sk k ko kok kok sk k ok sk ok

Call IDMSINO1 to have an 8 byte internal DATETIME stamp
returned as a displayable 26 character DATE/TIME display.

Parm 1 is the address of the RPB.

Parm 2 is the address of the REQUEST CODE and RETURN CODE.
Parm 3 is the address of the 4 byte format indicator (0).
Parm 4 is the address of the 8 byte internal DATETIME stamp.
Parm 5 is the address of the 26 byte DATE/TIME returned.

koK ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok Sk ok ok ok ok ok ok ok ok ok sk ok ok ok ok ke ok sk ok ok sk k sk ok ok sk ok ok sk ok sk ok ok ko ok sk k ok k ok kok sk kk sk ok

*
*
*
*
*
*
*
*

*/
REQUEST CODE = INO1 FN GETDATE;
WK DTS _FORMAT = 0;
WK_CDTS = 'UNKNOWN';
CALL IDMSINO1 (RPB,
REQ WK,
WK DTS _FORMAT,
WK DTS,
WK _CDTS);
IF (REQUEST RETURN —= @) THEN GO TO IN©1 ERROR;
DISPLAY ('THE DATE AND TIME IS --> ' || WK CDTS);
/*
Skeoke sk 3k Sk ok ok ok >k sk Sk sk ok sk >k sk sk Skeok sk sk sk Skook sk sk skookeok sk sk sk sk sk ok sk sk sk sk skook sk skosk sk ok sk kosk skoskook sk sk skoskook sk sk skoskoskock ok
Call IDMSINO1 to have the current DATE and TIME
returned as a displayable 26 character DATE/TIME display.

Parm 2 is the address of the REQUEST CODE and RETURN CODE.
Parm 3 is the address of the 4 byte format indicator (1).
Parm 4 is the address of the 26 byte DATE/TIME returned.

koK ok ok ok ok ok ok ok ok ok ok ok ok >k ok ok Sk ok sk ok ok ok ok ok ok ok ke ok sk ok ok kok sk sk ok sk ok sk sk sk kok sk sk sk kok sk ko ok sk ok sk sk sk ko sk k sk sk ok

*
*
*
* Parm 1 is the address of the RPB.
*
*
*

*/
REQUEST CODE = IN@1 FN GETDATE;
WK_DTS_FORMAT = 1;
CALL IDMSINO1 (RPB,

REQ WK,
WK_DTS_FORMAT,
WK_CDTS) ;
IF (REQUEST RETURN -= 0) THEN GO TO INO1 ERROR;
DISPLAY ('THE DATE AND TIME IS --> ' || WK_CDTS);

/*

50 Callable Services Guide

Calling IDMSINO1 from a PL/I Program

koK ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok Sk ok >k ok ok ok ok ok ok ok sk ok sk ok ok sk ok sk ok ok sk ok sk sk ok sk ok sk sk ok sk ok ok ko ok sk k ko kok kok sk k ok sk ok

Call IDMSINO1 to have a 26 byte external DATE/TIME display
returned as an 8 byte DATETIME stamp.

*
*
*
* Parm 1 is the address of the RPB.
* Parm 2 is the address of the REQUEST CODE and RETURN CODE.
* Parm 3 is the address of the 4 byte format indicator (2).
* Parm 4 is the address of the 26 byte DATE/TIME.
* Parm 5 is the address of the 8 byte DATETIME stamp returned.
Skook ok ok K Kok ok ok ok ok >k K 5k 5k 5k ok k ok ok sk ok 5k ok ok ok ok k >k K K 3k sk ok sk k sk sk ok ok sk sk ok ok sk sk k sk sk sk ok k ko k kk sk sk sk sk k sk sk k
*/
REQUEST CODE = INO1 FN GETDATE;
WK DTS _FORMAT = 2;
WK_CDTS = '1994-07-18-12.01.18.458382";
CALL IDMSINO1 (RPB,

REQ WK,
WK DTS _FORMAT,
WK_CDTS,
WK DTS) ;
IF (REQUEST RETURN —= @) THEN GO TO IN©1 ERROR;
/*
Skook ok >k >k 3Kk ok ok ok sk >k >k ok ok ok ok sk sk sk sk ok ok ok ok ok Sk sk sk >k >k ok sk ok sk sk sk skook sk sk ok ok sk sk sk sk sksk sk ok sk sk sk skok sk sksk sk k sk sk k
* Call IDMSINO1 to have a 8 byte external TIME display
* returned as an 8 byte TIME stamp.
*
* Parm 1 is the address of the RPB.
* Parm 2 is the address of the REQUEST CODE and RETURN CODE.
* Parm 3 is the address of the 4 byte format indicator (4).
* Parm 4 is the address of the 8 byte external TIME.
* Parm 5 is the address of the 8 byte TIME stamp returned.
Skosk sk ok sk ok ok ok ok Sk sk ok >k ok ok sk ok Sk sk sk sk ok ok ok ok ok sk ok sk sk sk sk sk ok sk ok sk sk sk sk sk sk sk ok sk sk sk skosk sk sk sk ke k kosk sk sk k sk sk skk ok
*/

REQUEST CODE = IN@1 FN GETDATE;
WK_DTS_FORMAT = 4;
WK_TIME EXTERNAL = '13.58.11';
CALL IDMSINO1 (RPB,
REQ WK,
WK_DTS_FORMAT,
WK_TIME_EXTERNAL,
WK_TIME_INTERNAL);
IF (REQUEST RETURN -= 0) THEN GO TO INO1 ERROR;
/*

Chapter 3: IDMSINO1 51

Calling IDMSINO1 from a PL/I Program

*/

koK ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok Sk ok >k ok ok ok ok ok ok ok sk ok sk ok ok sk ok sk ok ok sk ok sk sk ok sk ok sk sk ok sk ok ok ko ok sk k ko kok kok sk k ok sk ok

Call IDMSINO1 to have an 8 byte internal TIME stamp
returned as a displayable 8 character TIME display.

Parm 1 is the address of the RPB.

Parm 2 is the address of the REQUEST CODE and RETURN CODE.
Parm 3 is the address of the 4 byte format indicator (3).
Parm 4 is the address of the 8 byte internal TIME stamp.

Parm 5 is the address of the 8 byte external TIME returned.
Skook ok ok K Kok ok ok ok ok >k K 5k 5k 5k ok k ok ok sk ok 5k ok ok ok ok k >k K K 3k sk ok sk k sk sk ok ok sk sk ok ok sk sk k sk sk sk ok k ko k kk sk sk sk sk k sk sk k

*
*
*
*
*
*
*
*

REQUEST_CODE = INO1 FN_GETDATE;

WK DTS FORMAT = 3;

/*

*/

/*

CALL IDMSINO1 (RPB,
REQ WK,
WK_DTS_FORMAT,
WK_TIME_INTERNAL,
WK_TIME_EXTERNAL);
IF (REQUEST RETURN -= 0) THEN GO TO INO1 ERROR;
DISPLAY ('THE EXTERNAL TIME IS --> ' || WK TIME EXTERNAL);

koK ok ok ok ok ok ok ok ok ok ok ok ok ok ok >k Sk ok >k ok ok sk ok ok ok ok ke ok sk ok ok sk ok sk sk ok ok ok sk sk ok sk ok sk sk ok sk ok ok sk ok ok ok sk ok sk ko sk ok sk sk ok

Call IDMSINO1 to have a 10 byte external DATE display
returned as an 8 byte DATE stamp.

Parm 2 is the address of the REQUEST CODE and RETURN CODE.
Parm 3 is the address of the 4 byte format indicator (6).
Parm 4 is the address of the 10 byte external DATE.

Parm 5 is the address of the 8 byte DATE stamp returned.
Skosk sk ok koK ok ok ok ok sk ok sk ok ok sk ok sk sk sk koo sk ok ok ok Sk sk sk sk ok sk skeok sk sk sk skook sk sk sk sk sk sk sk sk skok ok sk sk sk sk skok sk sksk sk sk sk sk k

*
*
*
* Parm 1 is the address of the RPB.
*
*
*
*

REQUEST CODE = IN@1 FN GETDATE;
WK_DTS_FORMAT = 6;
WK_DATE_EXTERNAL = '2003-03-10";
CALL IDMSINO1 (RPB,
REQ WK,
WK_DTS_FORMAT,
WK_DATE_EXTERNAL,
WK_DATE_INTERNAL);
IF (REQUEST RETURN -= 0) THEN GO TO INO1 ERROR;

52 Callable Services Guide

Calling IDMSINO1 from a PL/I Program

koK ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok Sk ok >k ok ok ok ok ok ok ok sk ok sk ok ok sk ok sk ok ok sk ok sk sk ok sk ok sk sk ok sk ok ok ko ok sk k ko kok kok sk k ok sk ok

Call IDMSINO1 to have an 8 byte internal DATE stamp
returned as a displayable 10 character DATE display.

Parm 1 is the address of the RPB.

Parm 2 is the address of the REQUEST CODE and RETURN CODE.
Parm 3 is the address of the 4 byte format indicator (5).
Parm 4 is the address of the 8 byte internal DATE stamp.

Parm 5 is the address of the 10 byte external DATE returned.
Skook ok ok K Kok ok ok ok ok ok 5k K >k 5k ok k ok sk ok >k >k 5k ok ok ok ok ok ok 5k 5k Kok ok ok k koK K ok 5k sk k sk ok sk skok ok K >k ok sk sk ok sk k sk kk sk k

*
*
*
*
*
*
*
*

*/
REQUEST CODE = INO1 FN GETDATE;
WK DTS _FORMAT = 5;
CALL IDMSINO1 (RPB,
REQ WK,
WK DTS _FORMAT,
WK DATE_INTERNAL,
WK DATE_EXTERNAL) ;
IF (REQUEST RETURN —= @) THEN GO TO IN©1 ERROR;
DISPLAY ('THE EXTERNAL DATE IS --> ' || WK DATE_EXTERNAL);
/*
Skeoke sk 3k Sk ok ok ok >k sk Sk sk ok sk >k sk sk Skeok sk sk sk Skook sk sk skookeok sk sk sk sk sk ok sk sk sk sk skook sk skosk sk ok sk kosk skoskook sk sk skoskook sk sk skoskoskock ok
Call IDMSINO1 to retrieve SQL error messages into a user
buffer that will then be displayed back to the user.
Whats passed is the SQLCA block and a message control
block consisting of the following fields:

- Maximum number of lines in user buffer.

- The size (width) of one line in the user buffer.

- The actual number of lines returned from IDMSINO1.

- The user buffer where the message lines are returned.

¥ X X X X X X X X *

A return code of 4 means that there were no SQL error messages.
A return code of 8 means that there were more SQL error lines
in the SQLCA than could fit into the user buffer, meaning
truncation has occurred.

Parm 1 is the address of the RPB.
Parm 2 is the address of the REQUEST CODE and RETURN CODE.
Parm 3 is the address of the SQLCA block.

Parm 4 is the address of the message control block.
Skosk sk sk >k ok ok ok ok ok sk sk sk ok ok ok sk sk sk sk koo ok ok sk ok Sk sk sk sk sk sk sk ok sk sk sk skook sk sk sk sk sk sk sk sk skoko ok ok sk sk sk skok sk sk sk sk sk sk k >k

¥ X X X X X X X ¥

*/

Chapter 3: IDMSINO1 53

Calling IDMSINO1 from a PL/I Program

/*

*/

/*

*/

REQUEST_CODE = INO1 FN_GETMSG;
CALL IDMSINO1 (RPB,

REQ WK,
SQLCA,
SQLMSGB) ;
IF (REQUEST RETURN = 4)
THEN
DO;
DISPLAY ('No SQL error message');
END;
ELSE
IF ((REQUEST RETURN = 0) | (REQUEST RETURN = 8))
THEN

DO LINE CNT=1 TO SQLMCNT;
DISPLAY (SQLMLINE(LINE CNT));
END;
ELSE GO TO IN©1_ERROR;

Sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok >k ok ok sk ok ok ok ok ok ok ok ke ok sk sk ok sk ok sk sk ok ok ok sk sk ok sk ok sk ok ok sk ok ok sk ok ok ok sk kk ko skok sk sk ok

* Call IDMSINO1 to reactivate the DML trace or SQL trace
* which was originally activated by the corresponding

* SYSIDMS parm (DMLTRACE=ON or SQLTRACE=ON), that has

* been deactivated earlier on in this job.
*
*
*

Parm 1 is the address of the RPB.
Parm 2 is the address of the REQUEST CODE and RETURN CODE.

Sk ok ok ok ok ok ok ok >k ok ok ok ok >k ok >k Sk ok sk ok >k sk ok ok ok ok ke ok sk ok ok ke ok sk sk ok sk ok sk sk sk kok sk sk sk skok ok sk k sk ok sk sk sk ko skok sk sk ok

REQUEST CODE = INO1 FN TRACE;
CALL IDMSINO1 (RPB,
REQ_VWK) ;
IF (REQUEST RETURN —= Q) THEN GO TO ING1 ERROR;

koK ok ok ok ok ok ok ok ok ok ok ok ok ok ok >k Sk ok sk ok >k sk ok ok ok ok ke ok sk ok ok kok sk sk ok sk ok sk sk sk kok sk sk sk skok sk ko ok kok sk k sk ko skok sk sk ok

Call IDMSINO1 to retrieve the runtime environment information.

Parm 1 is the address of the RPB.
Parm 2 is the address of the REQUEST CODE and RETURN CODE.
Parm 3 is the address of the runtime environment returned

information.
Skeok sk >k Sk ok ok ok sk 3k Sk sk ke ok sk sk sk ke ok sk sk sk sk ok sk sk sk ok k sk sk sk sk sk ok ok sk sk sk Skook sk sk sk sk ok sk skosk sk ok sk sk sk skosk ok ok sk skoskoskok ok

*
*
*
*
*
*

54 Callable Services Guide

Calling IDMSINO1 from a PL/I Program

REQUEST_CODE = INO1 FN_ENVINFO;
CALL IDMSINO1 (RPB,

REQ WK,
EVBLOCK) ;

IF (REQUEST_RETURN -= 0) THEN GO TO INO1_ERROR;
DISPLAY ('Runtime mode is ' || EV$MODE);

DISPLAY
DISPLAY

DISPLAY
DISPLAY
/*

('CA IDMS tape volser is ' || EV$TAPE#);

('CA IDMS release number is ' || EV$REL#);
DISPLAY ('CA IDMS service pack number is ' || EV$SPACK);
('DMCL name is ' || EV$DMCL);

('System node name is ' || EV$NODE);

koK ok ok ok ok ok ok ok ok ok ok ok ok ok ok >k Sk ok ok ok ok sk ok ok ok ok ke ok ok ok ok sk ok ok ok ok kok sk ok ok sk sk sk ok sk kok ok ok sk ok ksk ok skock sk sk k sk sk k

Call IDMSINO1

*

*

* Parm 1
* Parm 2
* Parm 3
* Parm 4
* Parm 5

is
is
is
is
is

the address
the address
the address
the address
the address

to format dbkey stored in SUBSCHEMA CTRL.

of the RPB.

of the REQUEST CODE and RETURN CODE.
of the DBKEY.

of the database-key format.

of output field for formatted dbkey.

koK ok ok ok ok ok ok ok ok ok ok ok ok ok ok >k Sk ok sk ok ok ok ok ok ok ok ke ok ok sk ok sk ok sk sk ok ok ok sk sk ok sk ok ok sk sk skok ok ko k ok sk sk ok sk ko sk k sk sk ok

*/

REQUEST_CODE = INO1 FN_FRMTDBK;
CALL IDMSINO1 (RPB,

REQ WK,
DBKEY,

PAGE_INFO_DBK_FORMAT,
WK_DBKEY OUTPUT);

RETURN;
INO1_ERROR:
DISPLAY ('IDMSINO1 function' || REQUEST_CODE);
DISPLAY ('IDMSINO1 return code ' || REQUEST RETURN);
RETURN;

Chapter 3: IDMSINO1

55

Chapter 4: TCP/IP API Support

This section contains the following topics:

Using TCP/IP with CA IDMS (see page 57)

TCP/IP Programming Support for Online Applications (see page 58)
Socket Macro Interface for Assembler Programs (see page 59)

The CA ADS Socket Interface (see page 61)

Socket Call Interface for COBOL (see page 64)

Socket Call Interface for PL/I (see page 67)

Generic Listener Service (see page 70)

Application Design Considerations (see page 72)

Miscellaneous TCP/IP Considerations (see page 74)

Function Descriptions (see page 78)

Using TCP/IP with CA IDMS

TCP/IP is an industry standard communications protocol. In order to understand this
section, you should be familiar with the terminology and base concepts of TCP/IP.
Tutorials on TCP/IP can be found on the Internet by doing a search on a general search
web site with keywords "TCP/IP" and "tutorial."

CA IDMS exploits TCP/IP in the following ways:

®m Anonline application can use the TCP/IP socket program interface to communicate
with another TCP/IP application, possibly on another platform.

m Remote applications can directly access a central version and start an online task.

A "communication" consists of two socket programs exchanging messages. The program
that initiates a service request is the client. The program receiving incoming requests is
the server.

Typically, the client communicates with one server at a time. However, a server
processes requests from multiple clients. The server type depends on how the client
requests are processed:

m [terative server—Accepts a single client request, processes it and returns the result
to the client and waits for the next client request.

m Concurrent server—Accepts a client requests and spawns a "child" task to process
it.

Chapter 4: TCP/IP API Support 57

TCP/IP Programming Support for Online Applications

CA IDMS TCP/IP functionality is available for these operating systems:
m z/0S
= z/VSE
= z/VM

Note: The following limitations are associated with the z/VSE implementation of TCP/IP:
m Domains—Only AF_INET is supported.
m Protocol—Only TCP is supported.

m Sockets—Only streaming sockets are supported.

TCP/IP Programming Support for Online Applications

TCP/IP programming support within CA IDMS allows an application to communicate
through TCP/IP protocols with a second application. The second application can reside
on the same platform or another platform.

The socket program interface depends upon the programming language used to write

the application:

m Programs written in Assembler use the #SOCKET macro interface.

®m Programs written in COBOL or PL/I use a call interface to IDMSOCKI.

m Applications written in CA ADS can use the SOCKET built-in function or the call
interface to IDMSOCKI.

For sample TCP/IP programs written in these programming languages, see TCP/IP
Programming Examples.

More Information:

m A TCP/IP trace facility is available to assist you in debugging socket programs. It is
enabled using the DCMT VARY LTERM command. For more information, see the CA
IDMS System Tasks and Operator Commands Guide.

m |IDMSINO1 provides a string translation function to convert data from EBCDIC to
ASCIl format and from ASCII to EBCDIC format. For more information, see the
chapter IDMSINO1 (see page 15).

58 Callable Services Guide

Socket Macro Interface for Assembler Programs

Socket Macro Interface for Assembler Programs

Programs written in the Assembler language use the #SOCKET macro to exploit TCP/IP
sockets. The #SOCKET macro takes the following general form:

label

#SOCKET function,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason- code,
PLIST=parameter-list-area,
RGSV=(rgsv),
CALL=call-value,
function-specific-parameters

X X X X X X X

Parameter Description
label Specifies the optional Assembler label.
function Specifies the name of the function to execute. A detailed description of the

supported functions can be found in Function Descriptions (see page 78).

return-code

Specifies the name of a fullword that receives the outcome of the
operation. The following are the possible values:

m 0—No error occurred.

m -1—A socket error was encountered; the errno and reason-code fields
contain more detailed information about the error.

errno

Specifies the name of a fullword that receives the ERRNO value when
return-code is -1. For more information, see Return, Errno, and Reason
Codes (see page 159).

reason-code

Specifies the name of a fullword that receives the reason code value when
return-code is -1. For more information, see Return, Errno, and Reason
Codes (see page 159).

parameter-list-area

Specifies the name of an area or register pointing to the area that is used to
build the #SOCKET parameter list. The default is SYSPLIST. The length of the
parameter-list-area used by the macro depends on the #SOCKET function
that is called; the longest parameter-list currently needed for a #SOCKET
call is 16 fullwords.

rgsv

Specifies the registers to be saved. This parameter applies only to system
mode programs. The default is (R2-R8).

Chapter 4: TCP/IP API Support 59

Socket Macro Interface for Assembler Programs

Parameter Description
call-value Indicates whether to generate the parameter list and/or execute the
function. The following are the possible values:
m YES—Generates the parameter list and executes the function. This is
the default.
m NO—Generates the parameter list, but does not execute the function.
m ONLY—Executes the function for which a parameter list is pre-built.
Notes

The syntax does not show Assembler column conventions (label starts in column 1;
statement in column 10; continuation line in column 16; continuation character in
column 72).

On return from the #SOCKET call, R15 is always 0, except in cases of a
parameter-list error where the RETCODE field cannot be found; in this case R15 is
set to -1.

The parameter values assigned to the three return code parameters (RETCODE,
ERRNO and RSNCODE) and to all the function-specific-parameters can be specified
in data field notation or in register notation.

In data field notation, the program specifies the name of a variable field containing
the parameter value.

In register notation, the program specifies a register containing the address of the
variable field containing the parameter value (not the value itself). General registers
2 to 15 can be used in this notation; the register reference must be enclosed in
parentheses.

Some parameters also accept a value in the form of an absolute expression. Where
applicable, this is mentioned under the corresponding parameter's description.

Some parameters from the #SOCKET macro are optional. There are two ways to
address an optional parameter:

- Omit the parameter on the #SOCKET macro call.

- Assign a null value to the parameter. For example, HOSTNAME=NULL.

Both ways are equivalent.

The #SOCKET macro uses the following registers when building its parameter list:
- RO—A work register to build the parameter list.

- R1—Address the parameter list.

— R14 and R15—The branch and link register for the call sequence to socket
services.

60 Callable Services Guide

The CA ADS Socket Interface

#SOCKET TCPIPDEF generates DSECTs and EQUates needed to write a TCP/IP
program.

#SOCKET ERRNOS generates all EQUates for CA IDMS specific errno values.

Assembler Structure Description

In Assembler programs, the following DSECTs can be generated by coding a #SOCKET
TCPIPDEF statement:

SOCK@IN—Describes the SOCKADDR structure for IPv4.
SOCK@IN6—Describes the SOCKADDR structure for IPv6.
HOSTENTD—Describes the HOSTENT structure.
SERVENTD—Describes the SERVENT structure.
TIMEVAL—Describes the TIMEVAL structure.
ADDRINFO—Describes the ADDRINFO structure.

Each of these structures is described in Socket Structure Descriptions (see page 166).

The CA ADS Socket Interface

Applications written in CA ADS can use one of two methods to exploit TCP/IP sockets:

Using a CA ADS system-supplied built-in function, SOCKET. It follows the same
general rules as other CA ADS built-in functions. The following is an example of the
code required to invoke the SOCKET built-in function in your CA ADS dialog:

SOCKET (function,
return-code,
errno,
reason-code,
function-dependent-parameterl,

o)

Parameters can be records or record elements.

Chapter 4: TCP/IP API Support 61

The CA ADS Socket Interface

Using a CA ADS control statement to invoke the socket call interface, IDMSOCKI.
IDMSOCKI is the same socket call interface that can be used with COBOL programs.
In this scenario, the LINK control statement is used to invoke IDMSOCKI:

LINK TO PROGRAM 'IDMSOCKI' USING

(function,
return-code,
errno,
reason-code,
function-dependent-parameterl,
L)

Each parameter must be a separate record.

For both methods, the first four parameters are identical except that if linking to
IDMSOCKI, each parameter must be defined as a record whose first element is a field
described in the following table. If using the SOCKET built-in function the parameters
can be records or record elements.

Parameter

Description

function

Specifies a 4-byte, fullword-aligned integer field that the program sets to
the desired socket function. A detailed description of the supported
functions can be found in Function Descriptions (see page 78).

return-code

Specifies a 4-byte, fullword-aligned integer field that receives the outcome
of the operation. The following are the returned values:

m 0—No errors occurred.
m 20—A parameter list error was encountered.

m -1—A socket error was encountered; the errno and reason-code fields
contain more detailed information about the error.

errno

Specifies a 4-byte, fullword-aligned integer field that receives the ERRNO
value when return-code is -1. For more information, see Return, Errno, and
Reason Codes (see page 159).

reason-code

Specifies a 4-byte, fullword-aligned integer field that receives the reason
code value when return-code is -1. For more information, see Return
Errno, and Reason Codes (see page 159).

Depending on the function, zero or more parameters can follow.

62 Callable Services Guide

The CA ADS Socket Interface

Comparing IDMSOCKI and SOCKET

Notes

While either of these methods allows you to utilize the TCP/IP API functionality, there
are benefits to using the SOCKET built-in function:

m Parameters can be a record element. When IDMSOCKI is used, each parameter
must be defined as a separate record.

m |tis easier to use.

m |t provides optimum performance. Calling a system-defined built-in function is more
efficient than LINKing to another program type.

®m You can use the system-defined record SOCKET-CALL-INTERFACE, which contains
the definition of the first four parameters. To use this record, add it to the dialog as
a work record.

m SOCKET supports omitted parameters.

Because of these advantages, use of the SOCKET built-in function is recommended.

m To omit an optional parameter in the parameter list, replace the parameter with
the @ symbol.

m A CA ADS dialog associated with a server task (a task started by a generic listener):
- Must be a mapless dialog.
- Should include SOCKET-LISTENER-PARMS as a work record.

m The following pre-defined records are provided during installation and can be
attached to a dialog as work records:

— SOCKET-CALL-INTERFACE—Describes the socket functions, return codes, and
errno values used to issue all socket requests.

- SOCKET-MISC-DEFINITIONS—Describes options and flags specific to individual
functions.

— SOCKET-MISC-DEFINITIONS-2—Describes the flags specific to the IOCTL
function.

— SOCKET-SOCKADDR-IN, SOCKET-SOCKADDR-IN6, SOCKET-HOSTENT,
SOCKET-SERVENT, SOCKET-TIMEVAL, and SOCKET-ADDRINFO—Describe
structures that may be useful for certain socket applications.

Chapter 4: TCP/IP API Support 63

Socket Call Interface for COBOL

m The SOCKET-CALL-INTERFACE record contains fields that can be used for SOCKET
built-in function common parameters:

- function

- return-code
- errno

- reason-code

Each supported function is represented by a field, whose value is the function
number. The following example illustrates how to issue a READ socket request using
the SOCKET built-in function and fields within the SOCKET-CALL-INTERFACE record:

IF (SOCKET (SOCKET-FUNCTION-READ,
SOCKET-RETCD,
SOCKET-ERRNO,
SOCKET-RESNCD, . . .) = 0)

® For more information about CA ADS and built-in functions, see the CA ADS
Reference Guide.

CA ADS Structure Description

The following records are installed to describe structures related to SOCKET processing:
m SOCKET-SOCKADDR-IN—Describes the SOCKADDR structure for IPv4.

m SOCKET-SOCKADDR-IN6—Describes the SOCKADDR structure for IPv6.

m SOCKET-HOSTENT—Describes the HOSTENT structure.

m SOCKET-SERVENT—Describes the SERVENT structure.

m SOCKET-TIMEVAL—Describes the TIMEVAL structure.

m SOCKET-ADDRINFO—Describes the ADDRINFO structure.

Each of these structures is described in Socket Structure Descriptions (see page 166).

Socket Call Interface for COBOL

Programs written in COBOL use the CALL statement to exploit TCP/IP sockets:

CALL 'IDMSOCKI' USING
function,
return-code,
errno,
reason-code,
function-dependent-parameterl,

64 Callable Services Guide

Socket Call Interface for COBOL

A call to IDMSOCKI must pass the following four parameters:

Parameter Description

function Specifies a 4-byte, fullword-aligned, integer field that the program sets to
the desired socket function. The following is the sample definition of a
function field:

01 SOCKET-FUNCTION PIC S9(8) COMP.

A detailed description of the supported functions can be found in Function
Descriptions (see page 78).

return-code Specifies a 4-byte, fullword-aligned, integer field that receives the outcome
of the operation. The following are the returned values:

m 0—No errors occurred.
m 20—A parameter list error was encountered.

m -1—A socket error was encountered; the errno and reason-code fields
contain more detailed information about the error.

The following is the sample definition of a return-code field:

01 SOCKET-RETCD PIC S9(8) COMP.

errno Specifies a 4-byte, fullword-aligned, integer field that receives the ERRNO
value when return-code is -1. The following is the sample definition of an
errno field:

01 SOCKET-ERRNO PIC S9(8) COMP.

For more information, see Return, Errno, and Reason Codes (see page 159).

reason-code Specifies a 4-byte, fullword-aligned, integer field that receives the reason
code value when return-code is -1. The following is the example definition
of a reason-code field:

01 SOCKET-RSNCD PIC S9(8) COMP.

For more information, see Return, Errno, and Reason Codes (see page 159).

Depending on the function, zero or more parameters can follow.

Notes

m [f an optional parameter is not specified in the parameter list, it should be replaced
by a parameter that depends on the COBOL compiler:

- For COBOL for z/0S, specify reserved keyword OMITTED.

- For ANSI COBOLSS5, specify BY VALUE dummy-variable; dummy-variable should
be set to 0.

Chapter 4: TCP/IP API Support 65

Socket Call Interface for COBOL

The following pre-defined records are provided during installation to assist in
writing socket applications:

SOCKET-CALL-INTERFACE—Describes the socket functions, return codes, and
errno values used to issue all socket requests.

SOCKET-MISC-DEFINITIONS—Describes options and flags specific to individual
functions.

SOCKET-MISC-DEFINITIONS-2—Describes the flags specific to the IOCTL
function.

SOCKET-SOCKADDR-IN, SOCKET-SOCKADDR-IN6, SOCKET-HOSTENT,
SOCKET-SERVENT, SOCKET-TIMEVAL, and SOCKET-ADDRINFO—Describe
structures that may be useful for certain socket applications.

The SOCKET-CALL-INTERFACE record contains fields that can be used for the socket
call common parameters:

- function

return-code

- errno

- reason-code

Each supported function is represented by a field, whose value is the function
number. The following example illustrates how to issue a READ socket request using
the fields within the SOCKET-CALL-INTERFACE record:

CALL 'IDMSOCKI' USING SOCKET-FUNCTION-READ,
SOCKET-RETCD,
SOCKET-ERRNO,
SOCKET-RESNCD,

Note: The SOCKET-CALL-INT record is identical to theSOCKET-CALL-INTERFACE
record except that functions values are defined as condition names instead of
fields. Unless storage is critical, the SOCKET-CALL-INTERFACE record should be used.

The program associated with a server task (a task started by a generic listener) must
specify the information in the following sections:

- In the LINKAGE SECTION:
01 SOCKET-PARMS PIC X(80).
01 SOCKET-DESCRIPTOR PIC S9(8) COMP.
01 SOCKET-RESUME-COUNT PIC S9(8) COMP.

- Inthe PROCEDURE DIVISION:

PROCEDURE DIVISION USING
SOCKET-PARMS,
SOCKET-DESCRIPTOR,
SOCKET-RESUME-COUNT .

66 Callable Services Guide

Socket Call Interface for PL/I

COBOL Structure Description

The following records are installed to describe structures related to SOCKET processing:

SOCKET-SOCKADDR-IN—Describes the SOCKADDR structure for IPv4.
SOCKET-SOCKADDR-IN6—Describes the SOCKADDR structure for IPv6.
SOCKET-HOSTENT—Describes the HOSTENT structure.
SOCKET-SERVENT—Describes the SERVENT structure.
SOCKET-TIMEVAL—Describes the TIMEVAL structure.
SOCKET-ADDRINFO—Describes the ADDRINFO structure.

Each of these structures is described in Socket Structure Descriptions (see page 166).

Socket Call Interface for PL/I

Programs written in PL/I use the CALL statement to exploit TCP/IP sockets:

CALL IDMSOCKI

(function,

return_code,

errno,

reason_code,

function dependent parameterl,
)

A call to IDMSOCKI must pass the following first four parameters:

Parameter

Description

function

Specifies a 4-byte, fullword-aligned, integer field that the program sets to
the desired socket function. The following is the sample definition of a
function field:

DCL SOCKET_FUNCTION FIXED BINARY(31);

A detailed description of the supported functions can be found in Function
Descriptions (see page 78).

Chapter 4: TCP/IP API Support 67

Socket Call Interface for PL/I

Parameter

Description

return_code

Specifies a 4-byte, fullword-aligned, integer field that receives the outcome
of the operation. The following are the returned values:

m 0—No errors occurred.
m 20—A parameter list error was encountered.

m -1—A socket error was encountered; the errno and reason_code fields
contain more detailed information about the error.
The following is the sample definition of a return_code field:

DCL SOCKET_RETCD FIXED BINARY(31);

errno

Specifies a 4-byte, fullword-aligned, integer field that receives the ERRNO
value when return_code is -1. The following is the sample definition of an
errno field:

DCL SOCKET_ERRNO FIXED BINARY(31);

For more information, see Return, Errno, and Reason Codes (see page 159).

reason_code

Specifies a 4-byte, fullword-aligned, integer field that receives the reason
code value when return_code is -1. The following is the sample definition of
a reason_code field:

DCL SOCKET_RSNCD FIXED BINARY(31);

For more information, see Return, Errno, and Reason Codes (see page 159).

Depending on the function, zero or more parameters can follow.

Notes

Some PL/I compilers limit the length of an external name to 7 characters. Since
IDMSOCKI contains 8 characters, this can lead to errors at compile time. These
errors can be solved in the following ways:

- Use the compile option LIMITS(EXTNAME(8)).
- Use entry point IDMSOCK, which is defined as a synonym to IDMSOCKI.

If an optional parameter is not to be specified in the parameter list, replace it by an
asterisk (*).

The following pre-defined records are provided during installation to assist in
writing socket applications:

— SOCKET_CALL_INTERFACE—Describes the socket functions, return codes and
errno values used to issue all socket requests.

— SOCKET_MISC_DEFINITIONS—Describes options and flags specific to individual
functions.

68 Callable Services Guide

Socket Call Interface for PL/I

- SOCKET_MISC_DEFINITIONS_2—Describes the flags specific to the IOCTL
function.

— SOCKET_SOCKADDR_IN, SOCKET_SOCKADDR_IN6, SOCKET_HOSTENT,
SOCKET_SERVENT, SOCKET_TIMEVAL, and SOCKET_ADDRINFO—Describe
structures that may be useful for certain socket applications.

Note: Some of these records contain condition names. To generate the appropriate
declare statements, specify the following pre-compiler option:

EXPAND88=YES

The SOCKET_CALL_INTERFACE record contains fields that can be used for socket call
common parameters:

- function

return_code
- errno
- reason_code

Each supported function is represented by a field whose value is the function
number. The following example illustrates how to issue a READ socket request using
the fields within the SOCKET_CALL_INTERFACE record:

CALL 'IDMSOCKI' USING (SOCKET FUNCTION READ,
SOCKET _RETCD,
SOCKET_ERRNO,
SOCKET RESNCD,
B H

Note: The SOCKET_CALL_INT record is identical to the SOCKET_CALL_INTERFACE
record except that functions values are defined as condition names instead of
fields. Unless storage is critical, the SOCKET_CALL_INTERFACE record should be
used.

The program associated with a server task (a task started by a generic listener) must
specify the following:

PROCEDURE (P1, P2, P3)
OPTIONS (REENTRANT,FETCHABLE);

DCL (P1,P2,P3) POINTER;

DCL SOCKET PARMS CHAR(80) BASED (ADDR(P1));
DCL SOCKET DESCRIPTOR FIXED BINARY(31) BASED (ADDR(P2));
DCL SOCKET RESUME COUNT FIXED BINARY(31) BASED (ADDR(P3));

Chapter 4: TCP/IP API Support 69

Generic Listener Service

PL/I Structure Description

The following records are installed to describe structures related to SOCKET processing:
m SOCKET_SOCKADDR_IN—Describes the SOCKADDR structure for IPv4.

m SOCKET_SOCKADDR_IN6—Describes the SOCKADDR structure for IPv6.

m SOCKET_HOSTENT—Describes the HOSTENT structure.

m SOCKET_SERVENT—Describes the SERVENT structure.

m SOCKET_TIMEVAL—Describes the TIMEVAL structure.

m SOCKET_ADDRINFO—Describes the ADDRINFO structure.

Each of these structures is described in Socket Structure Descriptions (see page 166).

Generic Listener Service

The generic listener service facilitates the implementation of concurrent servers quickly
and easily. Generic listening performs the following tasks:

m Creates a stream socket on a given port, optionally on a specific TCP/IP stack.

m Listens on the socket.

m Accepts connection requests, acquires a PTERM/LTERM pair and attaches a server
task on it. This continues until the service is stopped.

m Waits for input on the socket if a server task ends normally without closing its
socket. This allows implementation of suspend/resume processing, which is useful
when a client application wants to keep the connection alive without tying up a CA
IDMS/DC task. Whenever the client application is ready to proceed, it sends
another message over the connection. When the generic listener service receives
this message it attaches a new server task on the same PTERM/LTERM pair. The
task code that is invoked on a resume can be specified in the prior task by using the
NEXT TASK clause of the DC RETURN statement. If the next task code is not set, the
task code specified in the listener PTERM definition is invoked.

70 Callable Services Guide

Generic Listener Service

Implementation

Generic listening is a service provided by the SOCKET line driver. The parameters that
control the listener service are defined using the following methods:

A listener PTERM: it defines the port on which to listen, the backlog, the task code
to invoke when a connection is established and the mode in which to invoke the
task. Optionally, if running on a multi-homed host, the TCP/IP stack can be selected.
Also optionally, a character string can be defined to pass to the attached task.

A task and associated program definition.

Note: The task and program should be defined to the security system so that
anyone can execute them.

The program associated with the server task receives control with a parameter list
containing the following addresses:

m The address of an 80-byte character string set to the value of the string specified in
the listener PTERM definition or blanks if none was specified.

m The address of the socket descriptor.

m The address of a 4-byte field named the resume counter. The resume counter is
provided for suspend/resume processing.

Notes:

m If the listener program is written in CA ADS the parameters are passed in the
SOCKET-LISTENER-PARMS record. This record must be included as work record in
the dialog definition.

m |[f MODE IS SYSTEM is specified in the LISTENER PTERM definition, the listener

program must be written using DC/UCF calling convention conventions as described
in CA IDMS System Operations Guide.

The program associated with the server task responds to the message sent from the
client application. In addition to performing the required business function, it is also
responsible for the following services:

Security—When the program receives control, no user has been signed onto the
system. For security purposes, the executing program must immediately signon to
the system. To provide signon capabilities you must link to the RHDCSNON
program. Or, for Assembler programs, you can code a #SECSGON macro.

More Information:

For more information about linking to RHDCSNON, see the CA IDMS System Tasks
and Operator Commands Guide. For more information about #SECSGON, see the CA
IDMS Security Administration Guide.

Chapter 4: TCP/IP API Support 71

Application Design Considerations

m Character conversion—If the remote host sends text messages in a character set
other than the one used on the central version, these text messages might need
translation. The program is responsible for performing this translation and
IDMSINO1 functions are provided to assist in this process.

m Closing the socket—Once the conversation is over, the socket should be closed.
Closing the socket causes a sign off when the task terminates. If the task ends
normally without closing the socket, generic listening starts a "receive" on the
socket because it interprets this situation as a suspend. As a result, the
LTERM/PTERM pair remains in use and long-term resources, such as the signon
element, remain allocated. These resources are subject to CA IDMS time-out
processing and can be deleted with the DCMT VARY LTERM ... RESOURCE DELETE
command.

Note: If the task abends, CA IDMS closes the socket and the PTERM/LTERMpair is
signed off automatically.

More Information:

For more information about implementing the generic listening service required for
TCP/IP integration, see the CA IDMS System Generation Guide.

Application Design Considerations

The TCP/IP socket program interface is available only to CA IDMS/DC applications
running under a central version. A batch program trying to use the interface receives a
socket return code of RNOSLIND.

Server tasks started by a generic listener cannot do any terminal 1/0 such as #LINEIN,
H#LINEOUT, #TREQ and so on. If written in CA ADS, they should be mapless dialogs.

Using Stream Sockets

TCP allows for arbitrary amounts of data to be sent and received over a stream socket.
Because a stream is interpreted as a sequence of bits, TCP cannot identify the
organization, content or amount of data being processed. Therefore, a TCP application
should use its own protocol to logically divide a stream into messages. The most
common way of doing this is to prefix the data with the data length.

Receiving Data

TCP determines whether to break a block of data into pieces and transmit each piece
separately or to accumulate data in its buffer and send it in one block. However, the
receiving application can receive the data of multiple send requests in a single receive.
TCP receives data until the expected message is completely received.

72 Callable Services Guide

Application Design Considerations

Sending Data

As with receiving data, there is no guarantee that a send request is completely serviced.
TCP determines if the amount of data in the send request is too large. If so, it returns
the amount of data already processed and the application must re-issue the send with
an updated data length and buffer pointer. TCP sends data until the message is
completely sent.

TCP/IP Coding Samples

The CA IDMS installation media contains these sample programs, which are intended for
demonstration purposes only:

m TCPASMO01—An Assembler program that tests the #SOCKET API calls. TCPASMO01
can be invoked in one of two ways:

- Asauser task code at the "ENTER NEXT TASK CODE" prompt. Depending on the
command line parameters, a client or server program is initiated. The program
converses with a partner program using SEND and RECV calls. If no parameters
are specified, a HELP screen containing the full syntax and its options is
displayed.

- Asaserver program started by a listener PTE.
Note: The listener's PTERM definition should specify MODE is USER.
m TCPADSO1—A TCP/IP client program written in CA ADS.
= TCPCOBO1—A TCP/IP generic listener server program written in COBOL.
m TCPPLIO1—A TCP/IP generic listener server program written in PL/I.
TCPADS01 and TCPASMO1 (as a client) provide the same functionality: they connect to a
port number that matches a port number of a generic listener PTERM. TCPPLIO1,

TCPCOBO1, and TCPASMO1 (as a server) can be invoked by the task code associated with
the generic listener PTERM.

Note: The header section of each sample program contains compiler option
information that is required to successfully compile the program.

Chapter 4: TCP/IP API Support 73

Miscellaneous TCP/IP Considerations

Miscellaneous TCP/IP Considerations

Using the TCP/IP Trace Facility

To help debug socket programs, a TCP/IP trace facility is available. It is activated using
the DCMT VARY LTERM command.

More Information:

For more information about this command, see the CA IDMS System Tasks and Operator
Commands Guide.

Using Multiple TCP/IP Stacks

In a multiple TCP/IP stack environment, a CA IDMS system is able to use several
available TCP/IP stacks concurrently. Only z/OS and z/VM support multiple TCP/IP
stacks.

In the z/0S environment, the Common INET (CINET) configuration is required to run
multiple TCP/IP stacks concurrently. CA IDMS uses special system calls to get a list of the
available TCP/IP stacks in the system. For more information about the CINET feature,
see the IBM's z/0S Communication Server IP Configuration Guide.

For z/VM, multiple TCP/IP stacks are implemented by starting each stack in its own
virtual machine.

Limit the TCP/IP stacks available in a CA IDMS system

In a multiple TCP/IP stack environment, you can control or limit the stacks that are
usable by the socket applications running in the CA IDMS system. This enhancement is
primarily for CA IDMS systems running on z/OS with CINET active and on z/VM. It is
useful in an environment where certain applications need to use secured sockets or
some TCP/IP stacks are for testing only.

You can control or limit the TCP/IP stacks using the following methods:

m At startup, through the INCLUDE STACK or EXCLUDE STACK clause from the TCP/IP
system generation statement

m At startup, through the INCLUDE_TCP/IP_STACK or EXCLUDE_TCP/IP_STACK
SYSIDMS parameters

m Dynamically, through the DCMT VARY TCP/IP command

74 Callable Services Guide

Miscellaneous TCP/IP Considerations

Note: On z/VM, the definition of the TCP/IP stacks to use through the SYSTCPD file and
the 8 SYSIDMS parameters (TCP/IP_STACK_1 -> TCP/IP_STACK_8) as used in r16 is still
available and is kept for compatibility reasons.

More Information:

m For more information about the TCP/IP system generation statement, see the CA
IDMS System Generation Guide.

m For more information about the SYSIDMS parameters, see the CA IDMS Common
Facilities Guide.

m For more information about the DCMT VARY TCP/IP command, see the CA IDMS
System Tasks and Operator Commands Guide.

m For more information about the SYSTCPD file, see the CA IDMS System Operations
Guide.

Default TCP/IP stack
In a multiple stacks environment, the assignment of the default stack also depends on
the operating system where the CA IDMS system is running as follows:

m Onz/0S, the system always assigns a specific stack as the default stack. If TCP/IP
stacks are excluded from the system list, either using SYSGEN or using SYSIDMS
parameters, then the default stack for the socket environment will be assigned to
the following:

- the default stack from the system, if it has not been explicitly excluded.

- the first active stack from the resulting list, if the default stack from the system
has been excluded

m Onz/VM, the default stack will always be the first stack from the resulting list of
stacks.

There is a possibility to overwrite this default stack assignment in the system:

m At startup, through the DEFAULT STACK clause from the TCP/IP system generation
statement

m Dynamically, through the DCMT VARY TCP/IP command.
Current TCP/IP stack for a DC task
When a DC task is started, the current TCP/IP stack for the DC task is the default TCP/IP

stack from the CA IDMS system. The SETSTACK function can be used to assign another
value to the current TCP/IP stack or to restore the default value for the DC task.

Chapter 4: TCP/IP API Support 75

Miscellaneous TCP/IP Considerations

Stack affinity

This concept refers to sockets. When a socket is created and it is exclusively attached to
a specific TCP/IP stack, it is said to have "stack affinity." The stack affinity is equal to the
value of the current TCP/IP stack when the socket was created. A socket that is not
attached to a specific TCP/IP stack has no stack affinity.

Default stack affinity

When a socket is created in the default DC task environment, that is, no specific
SETSTACK calls have been issued in the task yet, the default stack affinity is the default
TCP/IP stack.

When a socket has set stack affinity to *ALL and the application issues an ACCEPT socket
call with the IP address equal to INADDR_ANY in the corresponding socket address
structure, then the ACCEPT request is propagated to all available TCP/IP stacks, and
therefore the application can accept connections from clients specifying an IP address
from any of the available TCP/IP stacks. This configuration is possible on z/OS only. If the
accepting socket is assigned a specific stack affinity, the client must specify the IP
address corresponding to that specific stack.

If a socket application is accepting connections from all the TCP/IP stacks available in the
system, that is its current stack affinity is set to *ALL, and if some of the TCP/IP stacks
have been excluded by the user, then the current processing for the #SOCKET ACCEPT
socket function will reject all connections that were explicitly addressed to one of the
excluded stacks. This processing is done internally. The user applications do not require
any changes. The output of the DCMT DISPLAY TCP/IP STATISTICS shows the number of
accepted connections that have been rejected for that reason.

Two socket functions return values that are influenced by which TCP/IP stack is current
on the DC task.

m GETHOSTID—Returns the IP address of the current TCP/IP stack.

m GETHOSTNAME—Returns the hostname of the current TCP/IP stack.

The output from the DCMT DISPLAY TCP/IP STACK TABLE command shows the available
TCP/IP stacks with their associated IP address and hostname.

More Information:

For more information about DCMT DISPLAY TCP/IP, see the CA IDMS System Tasks and
Operator Commands Guide.

76 Callable Services Guide

Miscellaneous TCP/IP Considerations

Associating Time-outs to Sockets

In the standard POSIX socket interface, time-out conditions can only be detected
through the use of the SELECT socket function. The socket interface provided by CA
IDMS offers an extension that assigns a time-out value to each socket that created in
the DC/UCF environment. The FCNTL socket function enables you to specify or retrieve a
socket's time-out value.

When a socket is created, a default time-out value is assigned. The default time out
value depends on the type of socket:

m For a socket created by the SOCKET function, or "client socket," the default
time-out value is set to the corresponding DC task's INACTIVE INTERVAL parameter.

m For a socket created by the ACCEPT function, or "serversocket," the default
time-out value is set to the corresponding DC task's EXTERNAL WAIT parameter.

The following socket functions check the time-out value at runtime:

m ACCEPT

m CONNECT
= READ

m RECV

m RECVFROM
= SEND

= SENDTO

m WRITE

When a time-out condition occurs, the socket function returns a ETIMEDOUT errno code
to the application.

More Information:
For more information about the FCNTL socket function, see FCNTL (see page 82). For

more information about the INACTIVE INTERVAL or EXTERNAL WAIT parameters of the
TASK statement, see the CA IDMS System Generation Guide.

Chapter 4: TCP/IP API Support 77

Function Descriptions

Function Descriptions

This section describes the socket functions that are supported by CA IDMS. The
following information is provided for each function:

ACCEPT

An Assembler #SOCKET macro invocation showing all of the parameters that can be
specified.

A list of parameters that can be passed when invoking the function in COBOL, PL/I,
and CA ADS. The first of these parameters is the function name as defined in the
SOCKET-CALL-INTERFACE record.

A description of the function-dependent parameters.

Additional notes if applicable to a specific function.

ACCEPT accepts the first connection request on the queue of pending connection
requests. If the queue is empty, the call waits until the first connection request arrives
or fails with an EWOULDBLOCK condition if the socket had been marked as
non-blocking. If successful, a new socket descriptor is returned.

Assembler

label #SOCKET ACCEPT,

RETCODE=return-code,
ERRNO=errno,

RSNCODE=reason- code,
SOCK=socket-descriptor,
SOCKADDR=sockaddr,
SOCKADDL=sockaddr- length,
NEWSOCK=new-socket-descriptor,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-ACCEPT,
return-code,

errno,

reason-code,
socket-descriptor,
sockaddr,
sockaddr-length,
new-socket-descriptor

78 Callable Services Guide

Function Descriptions

Parameters

Parameter

Description

socket-descriptor

Specifies the name of a fullword field containing the socket descriptor that
was used on the BIND and LISTEN functions.

sockaddr Specifies the name of an area in which to return the sockaddr structure of
the connecting client. The format of that structure depends on the domain
of the corresponding socket. This parameter can be assigned to NULL if the
caller is not interested in the connector's address.

sockaddr-length Specifies the name of a fullword field containing the length of sockaddr. If

SOCKADDR is assigned to NULL, sockaddr-length must be 0. On return,
sockaddr-length contains the size required to represent the connecting
socket. If the value is 0, the contents of sockaddr are unchanged. If the
sockaddr is too small to contain the full sockaddr structure, it is truncated.
The maximum value for this parameter is 4096.

new-socket-descriptor

Specifies the name of a fullword field where the socket descriptor of the
new connection is returned.

Notes

BIND

When the time-out value associated with the socket expires, the socket function
terminates with the ETIMEDOUT errno code. For more information about socket
time-outs, see Associating Time-outs to Sockets (see page 77).

BIND assigns a local name to an unnamed socket.

Assembler

label #SOCKET BIND,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason- code,
SOCK=socket-descriptor,
SOCKADDR=sockaddr,
SOCKADDL=sockaddr- length,
PLIST=parameter-list-area,
RGSV=(rgsv)

Chapter 4: TCP/IP API Support 79

Function Descriptions

Parameters

List of USING Parameters

SOCKET -FUNCTION-BIND,
return-code,

errno,

reason-code,
socket-descriptor,

sockaddr,

sockaddr- lengt

Parameter

Description

socket-descriptor

Specifies the name of a fullword field containing the socket descriptor to
bind.

sockaddr

Specifies the name of an area that contains the sockaddr structure to be
bound to the socket. The format of the sockaddr structure depends on the
domain of the corresponding socket.

z/VSE systems: Only the domain AF_INET is supported.

sockaddr-length

Specifies the name of a fullword field containing the length of sockaddr.
sockaddr-length can be specified as an absolute expression.

The maximum value for this parameter is domain dependent. If the
domain is AF_INET, it is the length of the SOCKET-SOCKADDR-IN record
(SINHLEN for Assembler). If the domain is AF_INETS, it is the length of the
SOCKET-SOCKADDR-ING record (SIN6HLEN for Assembler).

CLOSE

CLOSE deletes the socket descriptor from the internal descriptor table maintained for
the application program and terminates the existence of the communications endpoint.
If the socket was connected, the connection is terminated in an orderly fashion.

Assembler

label

#SOCKET CLOSE,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
PLIST=parameter-list-area,
RGSV=(rgsv)

80 Callable Services Guide

Function Descriptions

List of USING Parameters

SOCKET-FUNCTION-CLOSE,
return-code,

errno,

reason-code,
socket-descriptor

Parameters

Parameter Description

socket-descriptor Specifies the name of a fullword field containing the socket descriptor to
close.

CONNECT

CONNECT initiates a connection on a socket.

Assembler

label #SOCKET CONNECT,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason- code,
SOCK=socket-descriptor,
SOCKADDR=sockaddr,
SOCKADDL=sockaddr- length,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-CONNECT,
return-code,

errno,

reason-code,
socket-descriptor,
sockaddr,
sockaddr-length

Chapter 4: TCP/IP API Support 81

Function Descriptions

Parameters

Parameter

Description

socket-descriptor

Specifies the name of a fullword containing the socket descriptor to which
to connect.

sockaddr

Specifies the name of an area that contains the sockaddr structure to which
to connect. The format of the sockaddr structure depends on the domain
of the corresponding socket.

z/VSE systems: Only the domain AF_INET is supported. Specify family
AF@INET when building the sockaddr structure.

sockaddr-length

Specifies the name of a fullword field containing the length of sockaddr.
sockaddr-length can be specified as an absolute expression.

The maximum value for this parameter is domain dependent. If the domain
is AF_INET, it is the length of the SOCKET-SOCKADDR-IN record (SIN#LEN
for Assembler). If the domain is AF_INETS, it is the length of the
SOCKET-SOCKADDR-ING record (SIN6HLEN for Assembler).

Notes

FCNTL

m When the time-out value associated with the socket expires, the socket function
terminates with the ETIMEDOUT errno code. For more information about socket
time-outs, see Associating Time-outs to Sockets (see page 77).

m After a CONNECT error, including a time-out condition, the corresponding socket
cannot be used. For the application to continue processing, it must close the
current socket and create a new socket.

FCNTL provides control over a socket descriptor. Depending on the command, it
retrieves or sets control information.

Assembler

label #SOCKET FCNTL,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
COMMAND=command,
ARGUMENT=argument,
RETVAL=returned-value,
PLIST=parameter-list-area,
RGSV=(rgsv)

82 C(allable Services Guide

Function Descriptions

Parameters

List of USING Parameters

SOCKET-FUNCTION-FCNTL,
return-code,

errno,

reason-code,
socket-descriptor,
command,

argument,
returned-value

Parameter

Description

socket-descriptor

Specifies the name of a fullword field containing the socket descriptor to

process.
command Specifies the name of a fullword field containing the command to perform

on the socket. command can be specified as an absolute expression.
argument Specifies the name of a fullword field containing the argument that applies

to some commands. argument can be specified as an absolute expression.
While argument is optional, it must be specified for setting functions.

returned-value

Specifies the name of a fullword field that contains the returned
information from any retrieval commands. While returned-value is
optional, it must be specified for retrieval function.

Notes
m z/VSE systems: The F@GETFL and F@SETFL commands are not supported.
m The following table lists the commands and arguments that can be specified. The
EQUate symbol is generated by #SOCKET macro and the field names are associated
with the SOCKET-MISC-DEFINITIONS record.
EQUate Symbol Field Name Description
F@GETFL SOCKET-FCNTL-GET Gets file status command
F@SETFL SOCKET-FCNTL-SET Sets file status command
F@GETIMO SOCKET-FCNTL-GETIMO Gets time-out value
associated with a socket
F@SETIMO* SOCKET-FCNTL-SETIMO Associates a time-out value
with a socket
NONBLOCK SOCKET-FCNTL-NONBLOCK Sets socket in non-blocking

mode

Chapter 4: TCP/IP API Support 83

Function Descriptions

EQUate Symbol Field Name Description

* Acceptable argument values for the F@SETIMO command:
m 1through 32767—The time-out value in seconds
m 0—No time-out processing is wanted, but a task abend

m -1—Indefinite wait (equivalent for FOREVER)

PL/I programs: The SOCKET_MISC_DEFINITIONS is used and the dashes are
replaced by underscores.

FD_CLR

FD_CLR clears a socket descriptor's bit in a bit list.

Assembler

label #SOCKET FD CLR,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason- code,
SOCK=socket-descriptor,
BITLIST=bit-list,
BITLISTL=bit-list-length,
BITORDER=bit-order,
PLIST=parameter-list-area

Parameters

Parameter Description

socket-descriptor Specifies the name of a fullword field containing the socket descriptor
whose bit must be cleared (set to zero) in the bit list.

bit-list Specifies the name of the area containing the bit list.

bit-list-length Specifies the name of a fullword field containing the length of the bit-list in

bytes.

bit-list-length can be specified as an absolute expression. bit-list-length

must be a multiple of 4.

84 C(allable Services Guide

Function Descriptions

Parameter Description

bit-order Specifies the name of the fullword containing the order in which the bits
are addressed in the bit list. This order should be the same as the value
specified on the option parameter of the SELECT or SELECTX function.
bit-order can be specified as an absolute expression. The following are the
accepted values:
m SEL@BBKW (default)
m SEL@BFWD

Notes

m This function is only available to the Assembler interface.

m For performance reasons, FD_CLR does not call the RHDCSOCK processor to execute
the function. Instead, the corresponding code is expanded in your program. This
code is substantial, so it is best to code the function call in a subroutine.

FD_ISSET

FD_ISSET tests a socket descriptor's bit in a bit list to see if it is ON or OFF.

Assembler

label #SOCKET FD_ISSET,

RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason- code,
SOCK=socket-descriptor,
BITLIST=bit-list,
BITLISTL=bit-list-length,
BITORDER=bit-order,
RETVAL=returned-bit-status,
PLIST=parameter-list-area

Parameters

Parameter Description

socket-descriptor

Specifies the name of a fullword field containing the socket descriptor
whose bit needs testing in the bit list.

bit-list

Specifies the name of the area containing the bit list.

Chapter 4: TCP/IP API Support 85

Function Descriptions

Parameter Description
bit-list-length Specifies the name of a fullword field containing the length of the bit-list in
bytes.

bit-list-length can be specified as an absolute expression. bit-list-length
must be a multiple of 4.

bit-order Specifies the name of a fullword containing the order in which the bits are
addressed in the bit list. This order should be the same as the value
specified on the option parameter of the SELECT or SELECTX function.

bit-order can be specified as an absolute expression. The following are the
accepted values:

m SEL@BBKW (default)

m SEL@BFWD
returned-bit-status Specifies the name of a fullword field that will contain the status of the
tested bit:
m O0—OFF
m 1—ON
Notes
m This function is only available to the Assembler interface.
m For performance reasons, FD_ISSET does not call the RHDCSOCK processor to
execute the function. Instead, the corresponding code is expanded in your
program. This code is substantial, so it is best to code the function call in a
subroutine.
FD_SET

FD_SET sets a socket descriptor's bit in a bit list ON.

Assembler

label #SOCKET FD_SET,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
BITLIST=bit-list,
BITLISTL=bit-list-length,
BITORDER=bit-order,
PLIST=parameter-list-area

86 Callable Services Guide

Function Descriptions

Parameters

Parameter

Description

socket-descriptor

Specifies the name of a fullword field containing the socket descriptor
whose bit must be set ON in the bit list.

bit-list

Specifies the name of the area containing the bit list.

bit-list-length

Specifies the name of a fullword field containing the length of the bit-list in
bytes.

bit-list-length can be specified as an absolute expression. bit-list-length
must be a multiple of 4.

bit-order

Specifies the name of the fullword containing the order in which the bits
are addressed in the bit list. This order should be the same as the value
specified on the option parameter of the SELECT or SELECTX function.

bit-order can be specified as an absolute expression. The following are the
accepted values:

m SEL@BBKW (default)
= SEL@BFWD

Notes

FD_ZERO

This function is only available to the Assembler interface.

For performance reasons, FD_SET does not call the RHDCSOCK processor to execute
the function. Instead, the corresponding code is expanded in your program. This
code is substantial, so it is best to code the function call in a subroutine.

FD_ZERO clears all bits in a bit list.

Assembler

label #SOCKET FD_ZERO,

RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason- code,
BITLIST=bit-list,
BITLISTL=bit-list-length,
PLIST=parameter-list-area

Chapter 4: TCP/IP API Support 87

Function Descriptions

Parameters
Parameter Description
bit-list Specifies the name of the area containing the bit list.
bit-list-length Specifies the name of a fullword field containing the length of the bit-list in
bytes.
bit-list-length can be specified as an absolute expression. bit-list-length
must be a multiple of 4.
Notes
m This function is only available to the Assembler interface.
m For performance reasons, FD_ZERO does not call the RHDCSOCK processor to
execute the function. Instead, the corresponding code is expanded in your
program. This code is substantial, so it is best to code the function call in a
subroutine.
FREEADDRINFO

FREEADDRINFO frees the ADDRINFO structure that has been allocated by the system
during the processing of a previous call to the GETADDRINFO #SOCKET function.

Assembler

label #SOCKET FREEADDRINFO,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason- code,
AINFOIN=pointer-to-addrinfo-structure,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET -FUNCTION-FREEADDRINFO,
return-code,

errno,

reason-code,
pointer-to-addrinfo-structure

88 C(allable Services Guide

Function Descriptions

Parameters
Parameter Description
pointer-to-addrinfo-structure Specifies the name of a fullword field containing the address of the
ADDRINFO structure to release.
Notes
m The FREEADDRINFO function is supported as of z/OS V1R4.
m The FREEADDRINFO function is not supported in these operating environments:
- z/VSE
- z/VM
GETADDRINFO

GETADDRINFO converts a host name and/or a service name into a set of socket
addresses and other associated information. This information can be used to open a
socket and connect to the specified service.

Assembler

label #SOCKET GETADDRINFO,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason- code,
HOSTNAME=hostname,
HOSTNAML=hostname- length,
SERVNAME=service-name,
SERVNAML=service-name- length,
AINFOIN=pointer-to-input-addrinfo-structure,
AINFOOUT=pointer-to-output-addrinfo-structure,
CANONAML=canonical-name- length,
PLIST=parameter-list-area,
RGSV=(rgsv)

Chapter 4: TCP/IP API Support 89

Function Descriptions

List of USING Parameters

SOCKET-FUNCTION-GETADDRINFO,
return-code,

errno,

reason-code,

hostname,

hostname- length,

service-name,

service-name-length,
pointer-to-input-addrinfo-structure,
pointer-to-output-addrinfo-structure,
canonical-name-length

Parameters

Parameter Description

hostname Specifies the name of an area containing the name of the host to
resolve.

hostname-length Specifies the name of a fullword field containing the length of
hostname. hostname-length can be specified as an absolute
expression.
hostname and hostname-length are optional. If they are not specified,
service-name and service-name-length must be specified.

The maximum value for this parameter is 256.

service-name Specifies the name of an area containing the name of the service.

service-name-length Specifies the name of a fullword field containing the length of
service-name. service-name-length can be specified as an absolute
expression.
service-name and service-name-length are optional. If they are not
specified, hostname and hostname-length must be specified.

The maximum value for this parameter is 32.

pointer-to-input-addrinfo-structure Specifies the name of a fullword field containing the address of an
input ADDRINFO structure. The following fields in the ADDRINFO
structure can be set: flags, family, socket type, and protocol. If this
pointer is assigned to NULL, it is equivalent to an ADDRINFO structure
where all fields are set to 0.

pointer-to-output-addrinfo-structure Specifies the name of a fullword field that contains the address of the
output ADDRINFO structure returned by the system. This structure has
to be explicitly released by the user using the FREEADDRINFO #SOCKET
call.

90 Callable Services Guide

Function Descriptions

Parameter Description

canonical-name-length Specifies the name of a fullword field in which the system returns the
length of the canonical name. The system returns the canonical name
in the first output ADDRINFO structure if hostname is specified and the
Al_CANONNAMEOK flag is set in the input ADDRINFO structure. If the
canonical name length is not needed, canonical-name-length can be
omitted.

Notes

m For more information about the ADDRINFO structure, see Socket Structure
Descriptions (see page 166).

m Onz/VSE and z/VM, the GETADDRINFO function is supported by CA IDMS's internal
DNS and services resolvers. For more information, see the CA IDMS System
Operations Guide.

m The following table lists the flags that can be set or returned in the ADDRINFO
structure. The EQUate symbol is generated by the #SOCKET TCPIPDEF macro call
and the field names are associated with the SOCKET-MISC-DEFINITIONS record.

EQUate Symbol Field Name TCP Protocol Value
Al@PASSV SOCKET-AIFLAGS-PASSIVE Al_PASSIVE
AI@CANOK SOCKET-AIFLAGS-CANONNAMEOK Al_CANONNAMEOK
AI@NHOST SOCKET-AIFLAGS-NUMERICHOST AI_NUMERICHOST
AI@NSERV SOCKET-AIFLAGS-NUMERICSERV Al_NUMERICSERV
Al@VAMAP SOCKET-AIFLAGS-VAMAPPED Al_VAMAPPED
AI@ALL SOCKET-AIFLAGS-ALL Al_ALL

AI@ADDRC SOCKET-AIFLAGS-ADDRCONFIG Al_ADDRCONFIG

PL/1 programs: The SOCKET_MISC_DEFINITIONS is used and the dashes are replaced by
underscores.

Chapter 4: TCP/IP API Support 91

Function Descriptions

GETHOSTBYADDR

GETHOSTBYADDR takes an IP address and domain and tries to resolve it through a name
server. If successful, it returns the information in a HOSTENT structure.

Assembler

label #SOCKET GETHOSTBYADDR,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
IPADDR=1ip-address,
IPADDRL=ip-address-length,
DOMAIN=domain,
HOSTENTP=hostentp,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET -FUNCTION-GETHOSTBYADDR,
return-code,

errno,
reason-code,
ip-address,
ip-address-length,
domain,
hostentp
Parameters
Parameter Description
ip-address Specifies the name of a fullword field containing the binary format IP

address to resolve.

ip-address-length

Specifies the name of a fullword field containing the length of ip-address.
ip-address-length can be specified as an absolute expression.

The maximum value for this parameter is defined by IPADDRA4L in
Assembler and SOCKET-IPADDRAL in other languages.

domain Specifies the name of a fullword field containing the domain. domain can
be specified as an absolute expression. Currently, only AF_INET is
supported.

hostentp Specifies the name of a fullword field in which the system returns the

address of a HOSTENT structure containing the information about the host.

92 Callable Services Guide

Function Descriptions

Notes

GETHOSTBYNAME

m The HOSTENT structure area is allocated by the system at the CA IDMS task level,
and freed at task termination. It is reused by subsequent calls to a DNS function:
GETHOSTBYADDR or GETHOSTBYNAME.

® For more information about the HOSTENT structure, see Socket Structure
Descriptions (see page 166).

z/VM systems: The DNS socket functions are supported by CA IDMS's internal DNS
resolver. For information about configuring the DNS resolver, see the TCP/IP
Considerations section of the CA IDMS System Operations Guide.

z/VSE systems: The DNS socket functions can be supported by CA IDMS's internal DNS
resolver. If the socket functions are supported by CA IDMS, see the TCP/IP
Considerations section of CA IDMS System Operations Guide for information about
configuring the DNS resolver. If the socket functions are supported by Barnard Software
Inc. or Connectivity Systems Inc., see the appropriate TCP/IP stack documentation for
configuring DNS support.

GETHOSTBYNAME takes a host name and tries to resolve it through a name server. If
successful, it returns the information in a HOSTENT structure.

Assembler

label #SOCKET GETHOSTBYNAME,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason- code,
HOSTNAME=hostname,
HOSTNAML=hostname- length,
HOSTENTP=hostentp,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-GETHOSTBYNAME,
return-code,

errno,

reason-code,

hostname,

hostname- length,

hostentp

Chapter 4: TCP/IP API Support 93

Function Descriptions

Parameters
Parameter Description
hostname Specifies the name of an area containing the name of the host to resolve.
hostname-length Specifies the name of a fullword field containing the length of hostname.
hostname-length can be specified as an absolute expression.
The maximum value for this parameter is 256.
hostentp Specifies the name of a fullword field where the system returns the address
of a HOSTENT structure containing the information about the host.
Notes
m The HOSTENT structure area is allocated by the system at the CA IDMS task level,
and freed at task termination. It is reused by subsequent calls to a DNS function:
GETHOSTBYADDR or GETHOSTBYNAME.
® For more information about the HOSTENT structure, see Socket Structure
Descriptions (see page 166).
z/VM systems: The DNS socket functions are supported by CA IDMS's internal DNS
resolver. For information about configuring the DNS resolver, see the TCP/IP
Considerations section of the CA IDMS System Operations Guide.
z/VSE systems: The DNS socket functions can be supported by CA IDMS's internal DNS
resolver. If the socket functions are supported by CA IDMS, see the TCP/IP
Considerations section of CA IDMS System Operations Guide for information about
configuring the DNS resolver. If the socket functions are supported by Barnard Software
Inc. or Connectivity Systems Inc., see the appropriate TCP/IP stack documentation for
configuring DNS support.
GETHOSTID

GETHOSTID retrieves the IP address of the local host corresponding to the current
TCP/IP stack.

Assembler

label #SOCKET GETHOSTID,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
IPADDR=ip-address,
PLIST=parameter-list-area,
RGSV=(rgsv)

94 Callable Services Guide

Function Descriptions

List of USING Parameters

SOCKET -FUNCTION-GETHOSTID,
return-code,

errno,
reason-code,
ip-address
Parameters
Parameter Description
ip-address Specifies the name of a fullword field in which the service returns the IP
address in binary format.
Notes
This service only supports IPv4.
GETHOSTNAME

GETHOSTNAME retrieves the name of the local host corresponding to the current

TCP/IP stack.

Assembler

label #SOCKET GETHOSTNAME,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason- code,
HOSTNAME=hostname,
HOSTNAML=hostname- length,
RETLEN=returned-hostname- length,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET -FUNCTION-GETHOSTNAME,
return-code,

errno,

reason-code,

hostname,

hostname- length,
returned-hostname- length

Chapter 4: TCP/IP API Support 95

Function Descriptions

Parameters

Parameter Description

hostname Specifies the name of an area in which the service returns the host name.

hostname-length Specifies the name of a fullword field containing the length of hostname.
hostname-length can be specified as an absolute expression.
The maximum value for this parameter is 256.

returned-hostname-length Specifies the name of a fullword field in which the actual length of the host
name is returned.

GETNAMEINFO

GETNAMEINFO resolves a socket address into a hostname and a service name.

Assembler

label #SOCKET GETNAMEINFO,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason- code,
SOCKADDR=sockaddr,
SOCKADDL=sockaddr- length,
SERVNAME=service-name,
SERVNAML=service-name- length,
RETSNAML=returned-service-name-length,
HOSTNAME=hostname,
HOSTNAML=hostname- length,
RETHNAML=returned-hostname- length,
FLAGS=flags,
PLIST=parameter-list-area,
RGSV=(rgsv)

96 Callable Services Guide

Function Descriptions

List of USING Parameters

SOCKET -FUNCTION-GETNAMEINFO,
return-code,

errno,

reason-code,

sockaddr,

sockaddr-length,
service-name,
service-name-length,
returned-service-name-length,

hostname,

hostname- length,
returned-hostname- length,

flags
Parameters
Parameter Description
sockaddr Specifies the name of the sockaddr structure containing the information that
must be resolved: the domain (or socket family), the port number and the IP
address.
sockaddr-length Specifies the name of a fullword field containing the length of sockaddr.

sockaddr-length can be specified as an absolute expression.

The maximum value for this parameter is domain dependent. If the domain
is AF_INET, it is the length of the SOCKET-SOCKADDR-IN record (SIN#LEN for
Assembler). If the domain is AF_INETS, it is the length of the
SOCKET-SOCKADDR-ING6 record (SINGHLEN for Assembler).

service-name

Specifies the name of an area where the system returns the service name
corresponding to the port number specified in the sockaddr structure.

service-name-length

Specifies the name of a fullword field containing the length of service-name.
service-name-length can be specified as an absolute expression.

The maximum value for this parameter is 4096. .row

returned-service-name-length

Specifies the name of a fullword field into which the actual length of the
service name is returned. service-name, service-name-length and
returned-service-name-length are optional; specify all three parameters, or
none of them. If none of these parameters are specified, hostname,
hostname-length, and returned-hostname-length must be specified.

hostname

Specifies the name of an area where the system returns the hostname
corresponding to the IP address specified in the sockaddr structure.

hostname-length

Specifies the name of a fullword field containing the length of hostname.
hostname-length can be specified as an absolute expression.

The maximum value for this parameter is 4096.

Chapter 4: TCP/IP API Support 97

Function Descriptions

Parameter

Description

returned-hostname-length

Specifies the name of a fullword field into which the length of the host name

is returned.

hostname, hostname-length and returned-hostname-length are optional;
specify all three parameters, or none of them. If none of these parameters
are specified, service-name, service-name-length, and
returned-service-name-length must be specified.

flags Specifies the name of a fullword field containing flags to control the
resolution of the socket address.
Notes

m The GETNAMEINFO function is supported as of z/OS V1R4.

® Onz/VSE and z/VM, the GETNAMEINFO function is supported by CA IDMS's internal
DNS and services resolvers. For more information, see the CA IDMS System
Operations Guide.

m The following table lists the flags that can be passed. The EQUate symbol is
generated by the #SOCKET TCPIPDEF macro call and the field names are associated
with the SOCKET-MISC-DEFINITIONS.

EQUate Symbol Field Name Description

NI@NFDQN SOCKET-NIFLAGS-NOFQDN Returns the node name
portion only

NI@NREQD SOCKET-NIFLAGS-NAMEREQD Returns an error if the host is
not located

NI@NHOST SOCKET-NIFLAGS-NUMERICHOST Returns the numeric form of
the host

NI@NSERV SOCKET-NIFLAGS-NUMERICSERV Returns the numeric form of
the server

NI@DGRAM SOCKET-NIFLAGS-DGRAM Specifies that the service is a

datagram service

PL/I programs: The SOCKET_MISC_DEFINITIONS is used and the dashes are replaced by
underscores.

98 Callable Services Guide

Function Descriptions

GETPEERNAME

Parameters

GETPEERNAME retrieves the name of the peer connected to a socket.

Assembler

label #SOCKET GETPEERNAME,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason- code,
SOCK=socket-descriptor,
SOCKADDR=sockaddr,
SOCKADDL=sockaddr- length,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET -FUNCTION-GETPEERNAME,
return-code,

errno,

reason-code,
socket-descriptor,

sockaddr,

sockaddr-length

Parameter

Description

socket-descriptor

Specifies the name of a fullword field containing the socket descriptor from
which to retrieve the peer name.

sockaddr Specifies the name of an area in which to return the sockaddr structure of
the peer. The format of this structure depends on the domain of the
corresponding socket. This parameter can be assigned to NULL if the caller
is not interested in the peer's address.

sockaddr-length Specifies the name of a fullword field containing the length of sockaddr. If

SOCKADDR is assigned to NULL, sockaddr-length must be 0. On return,
sockaddr-length contains the size required to represent the peer. If the size
of sockaddr is too small to contain the full sockaddr structure, it is
truncated.

The maximum value for this parameter is 4096.

Chapter 4: TCP/IP API Support 99

Function Descriptions

GETSERVBYNAME
GETSERVBYNAMIE takes a service name and a protocol and tries to resolve them using
the services file. If successful, it returns the information in a SERVENT structure.
Assembler
Label #SOCKET GETSERVBYNAME,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SERVNAME=service-name,
SERVNAML=service-name-length,
PROTNAME=protocol-name,
PROTNAML=protocol-name- length,
SERVENTP=serventp,
PLIST=parameter-list-area,
RGSV=(rgsv)
List of USING Parameters
SOCKET-FUNCTION-GETSERVBYNAME,
return-code,
errno,
reason-code,
service-name,
service-name-length,
protocol -name,
protocol-name-length,
serventp
Parameters
Parameter Description
service-name Specifies the name of an area containing the name of the service to
resolve.
service-name-length Specifies the name of a fullword field containing the length of
service-name. service-name-length can be specified as an absolute
expression.

Specifies the maximum value for this parameter is 256.
protocol-name Specifies the name of an area containing the name of the protocol to use.
protocol-name-length Specifies the name of a fullword field containing the length of

protocol-name. protocol-name-length can be specified as an absolute

expression.

Specifies the maximum value for this parameter is 256.

100 Callable Services Guide

Function Descriptions

Parameter

Description

serventp

Specifies the name of a fullword field where the system returns the address
of a SERVENT structure containing the information about the service.

Notes

GETSERVBYPORT

m The services socket functions are supported by CA IDMS's internal services resolver.
For more information, see the CA IDMS System Operations Guide.

m The SERVENT structure area is allocated by the system and associated with a CA
IDMS task. It is freed at task termination. It is reused by subsequent calls to a
services function: GETSERVBYNAME or GETSERVBYPORT.

Note: For more information about the SERVENT structure, see Socket Structure
Descriptions (see page 166).

m When the CASE sub-clause in the SERVICES FILE clause is defined as SENSITIVE, then
the service-name and the protocol-name must be specified exactly as they are
defined in the services file.

If it is defined as INSENSITIVE, the internal services resolver always tries to first
retrieve the service-name and protocol-name as they are coded in the socket
function call. If they are not found, the first entry where the uppercase versions of
the service names and protocol names match are returned. In all cases, all the
strings returned in the SERVENT structure are always coded as they appear in the
services file.

GETSERVBYPORT takes a port number and a protocol number and tries to resolve them
using the services file. If successful, it returns the information in a SERVENT structure.

Assembler

Label #SOCKET GETSERVBYPORT,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
PORT=port-number,
PROTNAME=protocol-name,
PROTNAML=protocol-name- length,
SERVENTP=serventp,
PLIST=parameter-list-area,
RGSV=(rgsv)

Chapter 4: TCP/IP API Support 101

Function Descriptions

List of USING Parameters

SOCKET-FUNCTION-GETSERVBYPORT,
return-code,

errno,

reason-code,

port-number,

protocol-name,
protocol-name-length,

serventp

Parameters

Parameter

Description

port-number

Specifies the name of a fullword field containing the port-number to
resolve.

protocol-name

Specifies the name of an area containing the name of the protocol to use.

protocol-name-length

Specifies the name of a fullword field containing the length of
protocol-name.protocol-name-length can be specified as an absolute
expression.

The maximum value for this parameter is 256.

serventp

Specifies the name of a fullword field where the system returns the address
of a SERVENT structure containing the information about the service.

Notes

The services socket functions are supported by CA IDMS's internal services resolver.
For more information, see the CA IDMS System Operations Guide.

The SERVENT structure area is allocated by the system and associated with a CA
IDMS task. It is freed at task termination. It is reused by subsequent calls to a
services function: GETSERVBYNAME or GETSERVBYPORT.

More Information:

For more information about the SERVENT structure, see Socket Structure
Descriptions (see page 166).

When the CASE sub-clause in the SERVICES FILE clause is defined as SENSITIVE, then
the service-name and the protocol-name must be specified exactly as they are
defined in the services file.

If it is defined as INSENSITIVE, the internal services resolver always tries to first
retrieve the service-name and protocol-name as they are coded in the socket
function call. If they are not found, the first entry where the uppercase versions of
the service names and protocol names match are returned. In all cases, all the
strings returned in the SERVENT structure are always coded as they appear in the
services file.

102 Callable Services Guide

Function Descriptions

GETSOCKNAME
GETSOCKNAME retrieves the current name of a socket into a sockaddr structure.

Assembler

label #SOCKET GETSOCKNAME,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason- code,
SOCK=socket-descriptor,
SOCKADDR=sockaddr,
SOCKADDL=sockaddr- length,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET -FUNCTION-GETSOCKNAME,
return-code,

errno,

reason-code,
socket-descriptor,

sockaddr,

sockaddr-length

Parameters

Parameter Description

socket-descriptor Specifies the name of a fullword field containing the socket descriptor from
which to retrieve the name.

sockaddr Specifies the name of an area in which to return the sockaddr structure of
the socket. The format of this structure depends on the domain of the
corresponding socket. This parameter can be assigned to NULL if the caller
is not interested in the socket's address.

sockaddr-length Specifies the name of a fullword field containing the length of sockaddr. If
SOCKADDR is assigned to NULL, sockaddr-length must be 0. On return,
sockaddr-length contains the size required to represent the socket. If the
size of sockaddr is too small to contain the full sockaddr structure, it is
truncated.

The maximum value for this parameter is 4096.

Chapter 4: TCP/IP API Support 103

Function Descriptions

GETSOCKOPT
GETSOCKOPT retrieves the options currently associated with a socket.
Assembler
label #SOCKET GETSOCKOPT,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
LEVEL=1evel,
OPTNAME=0option-name,
OPTVAL=option-value,
OPTLEN=option-value-length,
PLIST=parameter-list-area,
RGSV=(rgsv)
List of USING Parameters
SOCKET-FUNCTION-GETSOCKOPT,
return-code,
errno,
reason-code,
socket-descriptor,
level,
option-name,
option-value,
option-value-length
Parameters
Parameter Description

socket-descriptor

Specifies the name of a fullword field containing the socket descriptor for
which the service is to be performed.

level

Specifies the name of a fullword field containing the level for the option.
level can be specified as an absolute expression.

option-name

Specifies the name of a fullword field indicating the option to retrieve.
option-name can be specified as an absolute expression.

option-value

Specifies the name of an area that will contain the requested data.

option-value-length

Specifies the name of a fullword field that contains the length of
option-value. On return, option-value-length contains the size of the data
returned in option-value.

The maximum value for this parameter is 4096.

104 Callable Services Guide

Function Descriptions

Notes

m z/VSE systems: The GETSOCKOPT function is not supported.

m The following table lists the options that can be specified. The EQUate symbol is
generated by the #SOCKET TCPIPDEF macro call and the field names are associated
with the SOCKET-MISC-DEFINITIONS.

EQUate Symbol Field Names Description
S@SOCKET SOCKET-SOCKOPT-SOLSOCKET Specifies level number for
socket options
SO@REUSE SOCKET-SOCKOPT-REUSEADDR Allows local address reuse
SO@KEEPA SOCKET-SOCKOPT-KEEPALIVE Activates the keep-alive
mechanism
SO@OOBIN SOCKET-SOCKOPT-OOBINLINE Accepts out-of-band data
SO@SNBUF SOCKET-SOCKOPT-SNDBUF Reports send buffer size
information
SO@RCBUF SOCKET-SOCKOPT-RCVBUF Reports receive buffer size
information
TCP@NODL SOCKET-SOCKOPT-NODELAY Specifies TCP_NODELAY
option
PL/I programs: The SOCKET_MISC_DEFINITIONS is used and the dashes are
replaced by underscores.
GETSTACKS

GETSTACKS retrieves the list of all the TCP/IP stacks currently defined in the system.

Assembler

label #SOCKET GETSTACKS,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason- code,
BUFFER=buffer,
BUFFERL=buffer-length,
FORMAT=output- format
RETLEN=output- length,
RETNSTKS=stacks-count,
PLIST=parameter-list-area,
RGSV=(rgsv)

Chapter 4: TCP/IP API Support 105

Function Descriptions

List of USING Parameters

SOCKET -FUNCTION-GETSTACKS,
return-code,

errno,

reason-code,

buffer,

buffer-length,
output-format,
output-length,
stacks-count

Parameters

Parameter Description

buffer Specifies the name of a buffer that receives the list of all the stacks. This
parameter is optional.

buffer-length Specifies the name of a fullword field containing the length of buffer.
buffer-length can be specified as an absolute expression. This parameter is
optional.
If the size of buffer is too small to contain the full output, it is truncated.
The maximum value for this parameter is 4096.

output-format Specifies the name of a fullword field indicating the format desired for the

output. output-format can be specified as an absolute expression. If the
output-format value is 1, all the names of the different stacks are listed in a
sequence of 8-byte character string. If output-format value is 2, all the
names of the different stacks are listed in a sequence of the following
structure: a 1-byte field containing the length of the name followed by the
name itself.

This is an optional parameter. If it is not specified, output-format 1 is
assumed.

output-length

Specifies the name of a fullword field containing the actual length required
to hold all the output in the requested format..

stacks-count

Specifies the name of a fullword field containing the number of TCP/IP
stacks currently defined (but not necessarily active) in the system.

Notes

m The buffer and buffer-length parameters are optional. If these parameters are not
specified, only the output-length and stacks-count values are returned.

m For more information, see Using Multiple TCP/IP Stacks (see page 74).

106 Callable Services Guide

Function Descriptions

HTONL

Parameters

HTONL converts a fullword integer from host byte order to network byte order. Within
CA IDMS, host and network byte order are the same. Therefore, the HTONL function
does not apply to the mainframe environment; it is implemented for the application
programmer's convenience.

Assembler

label #SOCKET HTONL,
FIELDIN=input-field,
FIELDOUT=output-field,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET -FUNCTION-HTONL,
input-field,
output-field

Parameter

Description

input-field

Specifies the name of a fullword field containing the integer to convert.

output-field

Specifies the name of a fullword field that receives the converted integer.

HTONS

HTONS converts a halfword integer from host byte order to network byte order. Within
CA IDMS, host and network byte order are the same. Therefore, the HTONS function
does not apply to the mainframe environment; it is implemented for the application
programmer's convenience.

Assembler

label #SOCKET HTONS,
FIELDIN=input-field,
FIELDOUT=output-field,
PLIST=parameter-list-area,
RGSV=(rgsv)

Chapter 4: TCP/IP API Support 107

Function Descriptions

List of USING Parameters

SOCKET-FUNCTION-HTONS,
input-field,
output-field

Parameters
Parameter Description
input-field Specifies the name of a halfword field containing the integer to convert.
output-field Specifies the name of a halfword field that receives the converted integer.
INET_ADDR
INET_ADDR translates an IP address in standard dotted string format into its binary
format.
Assembler
label #SOCKET INET ADDR,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason- code,
IPADDRS=ip-address string,
IPADDRSL=ip-address-string-length,
IPADDR=ip-address,
PLIST=parameter-list-area,
RGSV=(rgsv)
List of USING Parameters
SOCKET-FUNCTION-INETADDR,
return-code,
errno,
reason-code,
ip-address-string,
ip-address-string-length,
ip-address
Parameters
Parameter Description
ip-address-string Specifies the name of an area containing the IP address in standard dotted

string format.

108 Callable Services Guide

Function Descriptions

Parameter Description

ip-address-string-length Specifies the name of a fullword field containing the length of
ip-address-string, which can be specified as an absolute expression.

The maximum value for this parameter is defined by IPADDSAL in
Assembler and SOCKET-IPADDSAL in other languages.

ip-address Specifies the name of a fullword field that will contain the IP address in
binary format.

INET_NTOA

INET_NTOA translates an IP address in binary format into standard dotted string format.
The IP address is in IPv4 format.

Note: INET_NTOA does not support IPv6 format. For new applications, you can use
INET_NTOP, which supports IPv6 and IPv4 formats.

Assembler

label #SOCKET INET NTOA,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason- code,
IPADDR=1ip-address,
IPADDRS=ip-address-string,
IPADDRSL=ip-address-string-length,
RETIPASL=returned-ip-address-string-length,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET -FUNCTION-INETNTOA,
return-code,

errno,

reason-code,

ip-address,

ip-address-string,
ip-address-string-length,
returned-ip-address-string-length

Chapter 4: TCP/IP API Support 109

Function Descriptions

Parameters

Parameter Description

ip-address Specifies the name of a fullword field containing the IP address in binary
format.

ip-address-string Specifies the name of an area in which to return the IP address in
standard dotted string format.

ip-address-string-length Specifies the name of a fullword field containing the length of
ip-address-string. ip-address-string-length can be specified as an absolute
expression.
The maximum value for this parameter is 4096.

returned-ip-address-string-length Specifies the name of a fullword field in which the actual length of the IP
address string is returned.

INET_NTOP

INET_NTOP translates an IP address in binary format into standard string format.

Assembler

label #SOCKET INET NTOP,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason- code,
DOMAIN=domain,
IPADDR=1ip-address,
IPADDRS=ip-address-string,
IPADDRSL=ip-address-string-length,
RETIPASL=returned-ip-address-string-length,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET -FUNCTION-INETNTOP,
return-code,

errno,

reason-code,

domain,

ip-address,

ip-address-string,
ip-address-string-length,
returned-ip-address-string-length

110 Callable Services Guide

Function Descriptions

Parameters

Parameter Description

domain Specifies the name of a fullword field containing the domain. domain
can be specified as an absolute expression. Possible values are AF@INET
and AF@INET6.

ip-address Specifies the name of an area containing the IP address in binary format:

a fullword for an lpv4 address, or a 16-byte area for an Ipv6 address.

ip-address-string

Specifies the name of an area in which to return the IP address in
standard string format.

ip-address-string-length

Specifies the name of a fullword field containing the length of
ip-address-string. ip-address-string-length can be specified as an
absolute expression.

The maximum value for this parameter is 4096.

returned-ip-address-string-length

Specifies the name of a fullword field in which the actual length of the IP
address string is returned.

INET_PTON

INET_PTON translates an IP address in standard string format into its binary format.

Assembler

label

#SOCKET INET PTON,

RETCODE=return-code,

ERRNO=errno,

RSNCODE=reason- code,

DOMAIN=domain,
IPADDRS=1ip-address area,
IPADDRSL=ip-address-string-length,
IPADDR=1ip-address,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-INETPTON,

return-code,

errno,

reason-code,
domain,

ip-address-string,
returned-ip-address-string-length,

ip-address

Chapter 4: TCP/IP API Support 111

Function Descriptions

Parameters
Parameter Description
domain Specifies the name of a fullword field containing the domain. domain can

be specified as an absolute expression. Possible values are AF@INET and
AF@INET®.

ip-address-string

Specifies the name of an area containing the IP address in standard string
format.

ip-address-string-length

Specifies the name of a fullword field containing the length of
ip-address-string. ip-address-string-length can be specified as an absolute
expression.

The maximum value for this parameter is determined by the type of

address:

m |Pv4 address—IPADDSAL in Assembler and SOCKET-IPADDSA4L in other
languages

m |Pv6 address—IPADDS6L in Assembler and SOCKET-IPADDS6L in other

languages
ip-address Specifies the name of an area in which to return the IP address in binary
format: a fullword for an IPv4 address, or a 16-byte area for an IPv6
address.
IOCTL

IOCTL controls certain characteristics of a socket. Depending on the command, it can
retrieve or set control information.

Assembler

Label #SOCKET IOCTL,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
COMMAND=command,
ARGUMENT=argument,
ARGUMENL=argument - length,
PLIST=parameter-list-area,
RGSV=(rgsv)

112 Callable Services Guide

Function Descriptions

Parameters

List of USING Parameters

SOCKET-FUNCTION-IOCTL,
return-code,

errno,

reason-code,
socket-descriptor,
command,

argument,

argument- length

Parameter

Description

socket-descriptor

The name of a fullword field containing the socket-descriptor to process.

command The name of a fullword field containing the command to perform on the
socket. command can be specified as an absolute expression.
argument The name of a fullword field containing the address of the argument area

that is used by the corresponding command. The argument area usually
contains input and output fields.

argument-length

The name of a fullword field that contains the length of the argument area.

The different commands and arguments allowed usually depend on the operating
system where the CA IDMS system is running. For a full description of these parameters,
see the corresponding socket APl manual.

Notes
m z/VSE systems-The IOCTL function is not supported.
m The following table lists the commands that can be specified. The EQUate symbol is
generated by #SOCKET macro and the field names are associated with the
SOCKET-MISC-DEFINITIONS-2 record.
EQUate Symbol Field Name Description
IO@NREAD SOCKET-IOCTL-FIONREAD Sets or resets socket in
non-blocking mode
IO@NBIO SOCKET-IOCTL-FIONBIO Retrieves the number of
readable bytes available
IO@CTTLS SOCKET-IOCTL-SIOCTTLSCTL Allows an application to query

or control AT-TLS

Chapter 4: TCP/IP API Support 113

Function Descriptions

PL/I programs: The SOCKET_MISC_DEFINITIONS_2 is used and the dashes are replaced
by underscores.

More Information:

For more information about socket functions, see the CA IDMS Callable Services Guide.

LISTEN
LISTEN indicates that an application is ready to accept client connection requests and
defines the maximum length of the connection request queue.
Assembler
label #SOCKET LISTEN,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
SOCK=socket-descriptor,
BACKLOG=backlog,
PLIST=parameter-list-area,
RGSV=(rgsv)
List of USING Parameters
SOCKET-FUNCTION-LISTEN,
return-code,
errno,
reason-code,
socket-descriptor,
backlog
Parameters
Parameter Description
socket-descriptor Specifies the name of a fullword field containing the socket descriptor on
which to listen.
backlog Specifies the name of a fullword field containing the backlog value. backlog

can be specified as an absolute expression. It defines the maximum number
of pending connections that may be queued. The value cannot exceed the
maximum number of connections allowed by the installed TCP/IP.

z/VSE systems: The BACKLOG parameter is ignored. The installed TCP/IP
determines the backlog value for a given socket.

114 Callable Services Guide

Function Descriptions

NTOHL

Parameters

NTOHL converts a fullword integer from network byte order to host byte order. Within
CA IDMS, host and network byte order are the same. Therefore, the NTOHL function
does not apply to the mainframe environment; it is implemented for the application
programmer's convenience.

Assembler

label #SOCKET NTOHL,
FIELDIN=input-field,
FIELDOUT=output-field,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-NTOHL,
input-field,
output-field

Parameter

Description

input-field

Specifies the name of a fullword field containing the integer to convert.

output-field

Specifies the name of a fullword field that receives the converted integer.

NTOHS

NTOHS converts a halfword integer from network byte order to host byte order. Within
CA IDMS, host and network byte order are the same. Therefore, the NTOHS function
does not apply to the mainframe environment; it is implemented for the application
programmer's convenience.

Assembler

label #SOCKET NTOHS,
FIELDIN=input-field,
FIELDOUT=output-field,
PLIST=parameter-list-area,
RGSV=(rgsv)

Chapter 4: TCP/IP API Support 115

Function Descriptions

List of USING Parameters

SOCKET-FUNCTION-NTOHS,
input-field,
output-field

Parameters

Parameter Description

input-field Specifies the name of a halfword field containing the integer to convert.
output-field Specifies the name of a halfword field that receives the converted integer.
READ

READ reads a number of bytes from a socket into an area.

Assembler

label #SOCKET READ,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason- code,
SOCK=socket-descriptor,
BUFFER=buffer,
BUFFERL=buffer-length,
RETLEN=read- length,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-READ,
return-code,

errno,

reason-code,
socket-descriptor,
buffer,
buffer-length,

read- length

116 Callable Services Guide

Function Descriptions

Parameters

Parameter

Description

socket-descriptor

Specifies the name of a fullword field containing the socket descriptor to

read from.
buffer Specifies the name of the area where the data is to be placed.
buffer-length Specifies the name of a fullword field containing the length of the buffer.

buffer-length can be specified as an absolute expression.

read-length

Specifies the name of a fullword field in which the actual length of the data
read is returned.

Notes

RECV

When the time-out value associated with the socket expires, the socket function
terminates with the ETIMEDOUT errno code. For more information about socket
time-outs, see Associating Time-outs to Sockets (see page 77).

RECV reads a number of bytes from a connected socket into an area.

Assembler

label #SOCKET RECV,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason- code,
SOCK=socket-descriptor,
BUFFER=buffer,
BUFFERL=buffer-length,
FLAGS=flags,
RETLEN=read- length,
PLIST=parameter-list-area,
RGSV=(rgsv)

Chapter 4: TCP/IP API Support 117

Function Descriptions

Parameters

List of USING Parameters

SOCKET -FUNCTION-RECV,
return-code,

errno,

reason-code,
socket-descriptor,

buffer,

buffer-length,

flags,

read- length

Parameter

Description

socket-descriptor

Specifies the name of a fullword field containing the socket descriptor from
which to read.

buffer Specifies the name of the area where the data is to be placed.

buffer-length Specifies the name of a fullword field containing the length of the buffer.
buffer-length can be specified as an absolute expression.

flags Specifies the name of a fullword field containing information on how the

data is to be received.

z/VSE systems: MSG@PEEK is the only flag value that is supported. The
remaining flags are not supported and returns an error if specified. When
the MSG@PEEK flag is specified only the first byte of the RECV buffer is
returned, even if a larger buffer size is specified.

z/VM systems: MSG@WALL is not supported.

read-length

Specifies the name of a fullword field in which the actual length of the data
read is returned.

Notes

m When the time-out value associated with the socket expires, the socket function
terminates with the ETIMEDOUT errno code. For more information about socket
time-outs, see Associating Time-outs to Sockets (see page 77).

m The following table lists the flags that can be specified. The EQUate symbol is
generated by the MSGFLAGS DSECT by the #SOCKET TCPIPDEF macro call and the
field names are associated with the SOCKET-MISC-DEFINITIONS.

EQUate Symbol

Field Name Description

MSG@DROU

SOCKET-MSGFLAGS-DONTROUTE Send without network routing

118 Callable Services Guide

Function Descriptions

EQUate Symbol Field Name Description
MSG@0O0B SOCKET-MSGFLAGS-O0B Send and receive out-of-band
data

MSG@PEEK SOCKET-MSGFLAGS-PEEK Peek at incoming data

MSG@WALL SOCKET-MSGFLAGS-WAITALL Wait until all data returned
PL/I programs: The SOCKET_MISC_DEFINITIONS is used and the dashes are
replaced by underscores.

RECVFROM

RECVFROM reads a number of bytes from a datagram socket into an area.

Assembler

label #SOCKET RECVFROM,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason- code,
SOCK=socket-descriptor,
BUFFER=buffer,
BUFFERL=buffer-length,
FLAGS=flags,
SOCKADDR=sockaddr,
SOCKADDL=sockaddr- length,
RETLEN=read- length,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-RECVFROM,
return-code,
errno,
reason-code,
socket-descriptor,
buffer,
buffer-length,
flags,

sockaddr,
sockaddr-length,
read-length

Chapter 4: TCP/IP API Support 119

Function Descriptions

Parameters

Parameter

Description

socket-descriptor

Specifies the name of a fullword field containing the socket descriptor from
which to read.

buffer

Specifies the name of the area where the data is to be placed.

buffer-length

Specifies the name of a fullword field containing the length of the buffer.
buffer-length can be specified as an absolute expression.

flags

Specifies the name of a fullword field containing information on how the
data is to be received. The list of the different flags supported can be found
in the MSGFLAGS DSECT generated by the #SOCKET TCPIPDEF macro call
and in the SOCKET-MISC-DEFINITIONS record for other languages. For an
explanation of flags that can be specified, see RECV function description.

sockaddr

Specifies the name of an area in which to return the sockaddr structure of
the sender of the data. The format of this structure depends on the
domain of the corresponding socket. This parameter can be assigned to
NULL if the caller is not interested in the sender's address.

sockaddr-length

Specifies the name of a fullword field containing the length of sockaddr. If
SOCKADDR is assigned to NULL, sockaddr-length must be 0. On return,
sockaddr-length contains the size required to represent the socket. If the
size of sockaddr is too small to contain the full sockaddr structure, it is
truncated.

The maximum value for this parameter is 4096.

read-length

Specifies the name of a fullword field in which the actual length of the data
read is returned.

Notes

When the time-out value associated with the socket expires, the socket function
terminates with the ETIMEDOUT errno code. For more information about socket
time-outs, see Associating Time-outs to Sockets (see page 77).

z/VSE systems: The RECVFROM function is not supported.

120 Callable Services Guide

Function Descriptions

SELECT and SELECTX

SELECT synchronizes processing of several sockets operating in non-blocking mode.
Sockets that are ready for reading, ready for writing, or have a pending exceptional
condition can be selected. If no sockets are ready for processing, SELECT can block
indefinitely or wait for a specified period of time (which may be zero) and then return.

SELECT examines the socket descriptors specified by read-list, write-list, and
exception-list to see if some are ready for reading, ready for writing, or have an
exceptional condition pending, respectively. On return, SELECT updates each of the lists
to indicate which socket descriptors are ready for the requested operation. The total
number of ready descriptors in all the lists is returned.

SELECTX has the same functionality as SELECT with the additional capability of waiting
on one or more ECBs in addition to a time interval. This allows interruption of a wait if
an external event occurs.

Assembler

label #SOCKET SELECT,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason- code,
NFDS=number-of-socket-descriptors,
READLST=read-list,
READLSTL=read- list-length,
WRITLST=write-list,
WRITLSTL=write-list-length,
EXCELST=exception-list,
EXCELSTL=exception-list-length,
OPTION=option,
TIMEOUT=timeval-structure,
RETNFDS=returned-number-of-descriptors,
PLIST=parameter-list-area,
RGSV=(rgsv)

Chapter 4: TCP/IP API Support 121

Function Descriptions

label #SOCKET SELECTX,

RETCODE=return-code,

ERRNO=errno,

RSNCODE=reason- code,
NFDS=number-of-socket-descriptors,
READLST=read- list,

READLSTL=read- list-length,
WRITLST=write-list,
WRITLSTL=write-list-length,
EXCELST=exception-list,
EXCELSTL=exception-list-length,
OPTION=option,
TIMEOUT=timeval-structure,
ECB=ecb,

ECBLIST=ecb- list,
RETNFDS=returned-number-of-descriptors,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET - FUNCTION-SELECT,
return-code,

errno,

reason-code,
number-of-socket-descriptors,
read-list,

read-list-length,

write-list,
write-list-length,
exception-list,
exception-list-length,
option,

timeval-structure,
returned-number-of-descriptors

122 Callable Services Guide

Function Descriptions

SOCKET-FUNCTION-SELECTX,
return-code,

errno,

reason-code,
number-of-socket-descriptors,
read-list,

read-list-length,

write-list,
write-list-length,
exception-list,
exception-list-length,
option,

timeval-structure,

ecb,

ecb-list,
returned-number-of-descriptors

Parameters

Parameter Description

number-of-socket-descriptors Specifies the name of a field containing the highest socket descriptor
specified in any of the lists + 1. Only socket descriptors whose value is
less than number-of-socket-descriptors are considered in servicing the
request.

read-list Specifies the name of an area containing a bit list identifying the socket
descriptors to be examined for a "ready to read" condition. Only socket
descriptors whose corresponding bit in the bit list is on are considered.
On return, the bits that are set indicate the descriptors that are ready to
read. Specify NULL if the read-list is to be ignored.

read-list-length Specifies the name of a fullword field containing the length in bytes of
read-list.
read-list-length can be specified as an absolute expression.
read-list-length must be a multiple of 4; specify 0 if the read-list is to be
ignored.

write-list Specifies the name of an area containing a bit list identifying the socket
descriptors to be examined for a "ready to write" condition. Only socket
descriptors whose corresponding bit in the bit list is on are considered.
On return, the bits that are set indicate the descriptors that are ready to
write. Specify NULL if the write-list is to be ignored.

write-list-length Specifies the name of a fullword field containing the length in bytes of
write-list.

write-list-length can be specified as an absolute expression.
write-list-length must be a multiple of 4; specify 0 if the write-list is to be
ignored.

Chapter 4: TCP/IP API Support 123

Function Descriptions

Parameter Description

exception-list Specifies the name of an area containing a bit list identifying the socket
descriptors to be examined for an exception condition. Only socket
descriptors whose corresponding bit in the bit list is on are considered.
On return, the bits that are set indicate the descriptors that have had
exceptions. Specify NULL if the exception-list is to be ignored.

exception-list-length Specifies the name of a fullword field containing the length in bytes of
exception-list.

exception-list-length can be specified as an absolute expression.
exception-list-length must be a multiple of 4; specify 0 if the exception-list
is to be ignored.

option Specifies the name of a fullword field containing the way the different
bits are interpreted in the different bit-lists. option can be specified as an
absolute expression. For a list of options that can be specified, see Notes
(see page 124).

timeval-structure Specifies the name of the area containing the TIMEVAL structure. If the
parameter is assigned to NULL, SELECT waits until at least one of the
descriptors is ready. If the time-out value (number of seconds + number
of microseconds) is 0, SELECT checks the descriptors and returns
immediately without waiting. The TIMEVAL structure is generated by the
#SOCKET TCPIPDEF macro call and described in the SOCKET-TIMEVAL
record.

returned-number-of-descriptors Specifies the name of a fullword field in which the total number of ready
descriptors is returned.

ecb Specifies the name of an area containing a CA IDMS ECB.

ecb-list Specifies the name of an area containing a CA IDMS ECB list. Each entry in
the ECB list is represented by two fullwords:

m The first fullword is a pointer to the ECB.

m The second fullword is zero, except for the last entry in the list. In
this case the high-order bit is turned ON to identify the end of the
ECB list.

Notes

m For more information about manipulating bits in bit lists, see FD_ZERO, FD_CLR,
FD_SET, and FD_ISSET #SOCKET function.

m For programming languages like COBOL and CA ADS where it is difficult to
manipulate bits in bit lists, byte lists can be used by specifying a
SOCKET-SELECT-BYTELIST for option. In this case, the read-list, write-list, and
exception-list are byte lists instead of bit lists. In byte lists, each byte represents one
socket descriptor. A socket descriptor will be processed if its corresponding byte is
set to the character '1'. A socket descriptor's corresponding byte is the nth byte
relative to 1 in the list, where n is equal to the value of socket descriptor + 1.

124 Callable Services Guide

Function Descriptions

m ECB and ECBLIST are mutually exclusive parameters.

m z/VM systems: If multiple TCP/IP stacks are used, all the sockets represented by a
bit in the 3 bit lists must be created in the same TCP/IP stack.

m z/VSE systems: The SELECT and SELECTX functions are not supported.

m The following table lists the options that can be specified. The EQUate symbol is
generated by the #SOCKET TCPIPDEF macro call and the field names are associated
with the SOCKET-MISC-DEFINITIONS.

EQUate Symbol Field Name Description

SEL@BBKW SOCKET-SELECT-BITBACKWARD Specifies that the bits in the
fullwords are in the backward
order. This is the default value
if the parameter is assigned to
NULL.

SEL@BFRW SOCKET-SELECT-BITFORWARD Specifies that the bits in each
fullword are in the forward
order

SEL@BYTV SOCKET-SELECT-BYTELIST Specifies that the read-list,
write-list, and exception-list
are byte lists instead of bit
lists.

PL/I programs: The SOCKET_MISC_DEFINITIONS is used and the dashes are replaced by
underscores.

SEND

SEND sends data on a connected socket.

Assembler

label #SOCKET SEND,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason- code,
SOCK=socket-descriptor,
BUFFER=buffer,
BUFFERL=buffer-length,
FLAGS=flags,
RETLEN=sent- length,
PLIST=parameter-list-area,
RGSV=(rgsv)

Chapter 4: TCP/IP API Support 125

Function Descriptions

List of USING Parameters

SOCKET -FUNCTION-SEND,
return-code,

errno,

reason-code,
socket-descriptor,

buffer,

buffer-length,

flags,

sent-length

Parameters

Parameter

Description

socket-descriptor

Specifies the name of a fullword field containing the socket descriptor on
which to do the send.

buffer Specifies the name of the area containing the data to be sent.

buffer-length Specifies the name of a fullword field containing the length of the buffer.
buffer-length can be specified as an absolute expression.

flags Specifies the name of a fullword field containing information on how the

data is to be sent. The list of the different flags supported can be found in
the MSGFLAGS DSECT generated by the #SOCKET TCPIPDEF macro call and
in the SOCKET-MISC-DEFINITIONS record for other languages. For an
explanation of flags that can be specified, see RECV function description.

z/VSE systems: No flag values are supported and an error is returned if a
value is specified.

sent-length

Specifies the name of a fullword field in which the actual length of the data
sent is returned.

Notes

When the time-out value associated with the socket expires, the socket function
terminates with the ETIMEDOUT errno code. For more information about socket
time-outs, see Associating Time-outs to Sockets (see page 77).

126 Callable Services Guide

Function Descriptions

SENDTO

Parameters

SENDTO sends data on a datagram socket.

Assembler

label #SOCKET SENDTO,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason- code,
SOCK=socket-descriptor,
BUFFER=buffer,
BUFFERL=buffer-length,
FLAGS=flags,
SOCKADDR=sockaddr,
SOCKADDL=sockaddr- length,
RETLEN=sent-length,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-SENDTO,
return-code,
errno,
reason-code,
socket-descriptor,
buffer,
buffer-length,
flags,

sockaddr,
sockaddr-length,
sent-length

Parameter

Description

socket-descriptor

Specifies the name of a fullword field containing the socket descriptor on

which to do the send.

buffer

Specifies the name of the area containing the data to be sent.

buffer-length

Specifies the name of a fullword field containing the length of the buffer.
buffer-length can be specified as an absolute expression.

Chapter 4: TCP/IP API Support 127

Function Descriptions

Parameter

Description

flags

Specifies the name of a fullword field containing information on how the
data is to be sent. The list of the different flags supported can be found in
the MSGFLAGS DSECT generated by the #SOCKET TCPIPDEF macro call and
in the SOCKET-MISC-DEFINITIONS record for other languages. For an
explanation of flags that can be specified, see RECV function description.

sockaddr

Specifies the name of an area containing the sockaddr structure describing
where data is to be sent. The format of this structure depends on the
domain of the corresponding socket.

sockaddr-length

Specifies the name of a fullword field containing the length of sockaddr.
Sockaddr-length can be specified as an absolute expression.

The maximum value for this parameter is domain dependent. If the domain
is AF_INET, it is the length of the SOCKET-SOCKADDR-IN record (SIN#LEN
for Assembler). If the domain is AF_INETS, it is the length of the
SOCKET-SOCKADDR-ING6 record (SINGHLEN for Assembler).

sent-length

Specifies the name of a fullword field in which the actual length of the data
sent is returned.

Notes

SETSOCKOPT

When the time-out value associated with the socket expires, the socket function
terminates with the ETIMEDOUT errno code. For more information about socket
time-outs, see Associating Time-outs to Sockets (see page 77).

z/VSE systems: The SENDTO function is not supported.

SETSOCKOPT sets options associated with a socket.

Assembler

label

#SOCKET SETSOCKOPT,

RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason- code,
SOCK=socket-descriptor,
LEVEL=1evel,
OPTNAME=option-name,
OPTVAL=option-value,
OPTLEN=option-value-length,
PLIST=parameter-list-area,
RGSV=(rgsv)

128 Callable Services Guide

Function Descriptions

Parameters

List of USING Parameters

SOCKET-FUNCTION-SETSOCKOPT,
return-code,

errno,

reason-code,
socket-descriptor,

level,

option-name,

option-value,
option-value-length

Parameter

Description

socket-descriptor

Specifies the name of a fullword field containing the socket descriptor for
which the service is to be performed.

level

Specifies the name of a fullword field containing the level for the option.
level can be specified as an absolute expression.

option-name

Specifies the name of a fullword field indicating the option to set.
option-name can be specified as an absolute expression.

option-value

Specifies the name of an area containing the data to associate with the
socket.

option-value-length

Specifies the name of a fullword field containing the length of option-value.

option-value-length can be specified as an absolute expression. The
maximum value for this parameter is 16.

Notes

m The list of level and options currently supported are listed by the #SOCKET
TCPIPDEF macro call for Assembler and in the SOCKET-MISC-DEFINITIONS record for
other languages. For a description of the options that can be specified, see
GETSOCKOPT.

m z/VSE systems: Only the SO@REUSE option is supported.

Chapter 4: TCP/IP API Support 129

Function Descriptions

SETSTACK
SETSTACK sets the requested TCP/IP stack affinity for the current executing CA IDMS
task.
Assembler
label #SOCKET SETSTACK,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason-code,
NAME=stack-name,
NAMEL=stack-name- length,
PLIST=parameter-list-area,
RGSV=(rgsv)
List of USING Parameters
SOCKET-FUNCTION-SETSTACK,
return-code,
errno,
reason-code,
stack-name,
stack-name-length
Parameters
Parameter Description
stack-name Specifies the area containing the name of the TCP/IP stack to set. This

name can be the JOBNAME of the corresponding TCPIP stack, a hostname
or an IP-address in binary or string format.

stack-name-length

Specifies the name of a fullword field containing the length of stack-name.

stack-name-length can be specified as an absolute expression. The
maximum value for this parameter is 256.

Notes

To clear TCP/IP stack affinity for the current task, call the SETSTACK function using
stack-name value equal to "*ALL'".

To restore the default TCP/IP stack affinity for the current task, call the SETSTACK
function using stack-name value equal to '"*DEFAULT".

For more information, see Using Multiple TCP/IP Stacks (see page 74).

130 Callable Services Guide

Function Descriptions

SHUTDOWN
SHUTDOWN shuts down all or part of a duplex socket connection.
Assembler
label #SOCKET SHUTDOWN,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason- code,
SOCK=socket-descriptor,
HOW=how-condition,
PLIST=parameter-list-area,
RGSV=(rgsv)
List of USING Parameters
SOCKET-FUNCTION-SHUTDOWN,
return-code,
errno,
reason-code,
socket-descriptor,
how-condition
Parameters
Parameter Description
socket-descriptor Specifies the name of a fullword field containing the socket descriptor to
shut down.
how-condition Specifies the name of a fullword field indicating the effect of the shutdown
on read and write operations. how-condition can be specified as an
absolute expression.
Notes
The following table lists the conditions that can be specified. The EQUate symbol is
generated by the #SOCKET TCPIPDEF macro call and the field names are located in the
SOCKET-MISC-DEFINITIONS record.
EQUate Symbol Field Name Description
SHUT_R SOCKET-SHUTDOWN-READ Terminates read
communication (from the
socket)

Chapter 4: TCP/IP API Support 131

Function Descriptions

EQUate Symbol Field Name Description

SHUT_W SOCKET-SHUTDOWN-WRITE Terminates write
communication (to the
socket)

SHUT_RW SOCKET-SHUTDOWN-READ-WRITE Terminates both read and

write communication

PL/I programs: The SOCKET_MISC_DEFINITIONS is used and the dashes are replaced by
underscores.

SOCKET
SOCKET creates a socket in a communications domain.

Assembler

label #SOCKET SOCKET,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason- code,
DOMAIN=domain,
TYPE=type,
PROTNUM=protocol-number,
NEWSOCK=new-socket-descriptor,
PLIST=parameter-list-area,
RGSV=(rgsv)

List of USING Parameters

SOCKET-FUNCTION-SOCKET,
return-code,

errno,

reason-code,

domain,

type,

protocol-number,
new-socket-descriptor

Parameters

Parameter Description

domain Specifies the name of a fullword field containing the domain or address
family of the socket. For a list of the domains that can be specified, see
Notes (see page 133).

132 Callable Services Guide

Function Descriptions

Parameter Description

type Specifies the name of a fullword field containing the type of the socket.
type can be specified as an absolute expression. For a list of socket types
that can be specified, see Notes (see page 133).

protocol-number Specifies the name of a fullword field containing the protocol.
protocol-number can be specified as an absolute expression. For a list of
supported protocols, see Notes (see page 133).

new-socket-descriptor Specifies the name of a fullword field where the newly created socket
descriptor is returned.

Notes

m The maximum number of sockets that can be created globally in the DC/UCF
system, and the maximum number of sockets that can be created by a single task in
the DC/UCF system can be controlled:

- At startup, through the MAXIMUM NUMBER OF SOCKETS and the MAXIMUM
NUMBER OF SOCKETS PER TASK clause from the TCP/IP system generation
statement.

- Dynamically, through the DCMT VARY TCP/IP command.
For more information:

- About the TCP/IP system generation statement, see the CA IDMS System
Generation Quick Reference Guide.

- About the DCMT VARY TCP/IP command, see the CA IDMS System Tasks and
Operator Commands Guide.

m The following table lists the domains that can be specified. The EQUate symbol is
generated by the are located in the SOCKET-MISC-DEFINITIONS record.

EQUate Symbol Field Name Description

AF@INET* SOCKET-FAMILY-AFINET AF_INET address family

AF@INET6 SOCKET-FAMILY-AFINET6 AF_INET6 address family

z/VSE systems: *—Only supports DOMAIN=AF@INET

m The following table lists the socket types that can be specified. The EQUate symbol
is generated by the in the SOCKET-MISC-DEFINITIONS record.

EQUate Symbol Field Name Description
STREAM* SOCKET-TYPE-STREAM Stream—Connection oriented
and reliable

Chapter 4: TCP/IP API Support 133

Function Descriptions

EQUate Symbol Field Name Description

DATAGRAM SOCKET-TYPE-DATAGRAM Datagram—Connectionless
and unreliable

z/VSE systems: *—Only supports TYPE=STREAM.

m The following table lists the protocols that can be specified. The EQUate symbol is
generated by the SOCKET-MISC-DEFINITIONS record.

EQUate Symbol Field Name Description
PROTIP SOCKET-PROTOCOL-IP Default protocol
PROTTCP* SOCKET-PROTOCOL-TCP TCP protocol
PROTUDP SOCKET-PROTOCOL-UDP UDP protocol
PROTIPV6 SOCKET-PROTOCOL-IPV6 IPv6 protocol

z/VSE systems: *—Only supports PROTNUM=PROTTCP

PL/1 programs: The SOCKET_MISC_DEFINITIONS is used and the dashes are replaced by
underscores.

WRITE
WRITE sends data on a socket.

Assembler

label #SOCKET WRITE,
RETCODE=return-code,
ERRNO=errno,
RSNCODE=reason- code,
SOCK=socket-descriptor,
BUFFER=buffer,
BUFFERL=buffer-length,
RETLEN=sent- length,
PLIST=parameter-list-area,
RGSV=(rgsv)

134 Callable Services Guide

Function Descriptions

Parameters

List of USING Parameters

SOCKET-FUNCTION-WRITE,
return-code,

errno,

reason-code,
socket-descriptor,
buffer,

buffer-length,
sent-length

Parameter

Description

socket-descriptor

Specifies the name of a fullword field containing the socket descriptor on
which to send.

buffer

Specifies the name of the area containing the data to be sent.

buffer-length

Specifies the name of a fullword field containing the length of the buffer.
buffer-length can be specified as an absolute expression.

sent-length

Specifies the name of a fullword field in which the actual length of the data
sent is returned.

Notes

When the time-out value associated with the socket expires, the socket function
terminates with the ETIMEDOUT errno code. For more information about socket
time-outs, see Associating Time-outs to Sockets (see page 77).

Chapter 4: TCP/IP API Support 135

Chapter 5: Invoking System Tasks from
Programs

This section contains the following topics:

Invoking Command List Modules from Programs (see page 137)
Invoking DCMT and DCUF Commands from Programs (see page 139)
Invoking SDEL Command from Programs (see page 146)

Invoking the SIGNON Task from Programs (see page 148)

Invoking Command List Modules from Programs

You can invoke the CLIST task from application programs. A program invokes a CLIST
task by linking to the program invoked by the CLIST task. This program is RHDCCLST.

RHDCCLST sets up the logical terminal for command list processing. DC/UCF executes
the specified command list module only when the issuing program returns control to
DC/UCF.

Linking to RHDCCLST

The calling program links to program RHDCCLST, passing four mandatory parameters
and optionally a fifth parameter:

#LINK PGM=RHDCCLST, PARMS=(PARM1, PARM2, PARM3, PARM4, PARM5)

Parameters
Mandatory Parameters

The link statement to RHDCCLST must include the following parameter list:
Parameter 1 (32 bytes)

Specifies the name of the module in the data dictionary. The name is left-justified
and padded on the right with blanks.

Parameter 2 (halfword)

Specifies the version number.

Chapter 5: Invoking System Tasks from Programs 137

Invoking Command List Modules from Programs

Parameter 3 (halfword)
Specifies the PROMPT/NOPROMPT status as follows:
0
Specifies a PROMPT status.

Specifies a NOPROMPT status.

Parameter 4 (halfword)

Specifies the return code. On return from RHDCCLST, the return code can contain
one of the following values:

0

Specifies command list processing has been set up successfully.
8

Specifies that the specified module was not found in the dictionary.
16

Specifies that the specified module has no text.
Optional Parameter
In addition, the link statement to RHDCCLST can include the following optional
parameter:
Parameter 5 (16 bytes)
(DDS users only) Specifies the dictionary node and dictionary name.
Bytes 1-8

Identifies the DDS dictionary node that controls the data dictionary specified by
the dictionary name.

Bytes 9-16

Identifies the data dictionary included in the database name table defined
either by the current system or for the system identified in the dictionary node.

Note: Both the dictionary node and dictionary name are left-justified and padded
with blanks.

138 Callable Services Guide

Invoking DCMT and DCUF Commands from Programs

Example

The following example invokes RHDCCLST to execute command list MYCLIST:

#LINK PGM='RHDCCLST',PARMS=(CLISTNAM, VERSION, PROMPT,RETCODE)

CLISTNAM DC CL32'MYCLIST' Command List name

VERSION DC H'1l' Version 1
PROMPT DC H'1' Don't prompt
RETCODE DC H'O' Return code

More Information

For more information about the CLIST command, see the CA IDMS System Tasks and
Operator Commands Guide.

Invoking DCMT and DCUF Commands from Programs

You can invoke DCMT and DCUF commands from application programs. The procedures
for invoking these commands are similar: your program invokes the DCUF or DCMT
command by linking to the same program that is invoked when the command is entered
from a terminal. Unless the programs are changed on site by the database
administrator, their names are as follows:

m RHDCMTOO—Invokes all DISPLAY and VARY DCMT commands.
m RHDCUFO00—Invokes all SET and SHOW DCUF commands.

Note: The program names end with two zeroes.

Linking to RHDCMTO00 and RHDCUFOO

RHDCMTO0/RHDCUFOQO0 handles all output. Therefore, you must specify the
NONOVERLAYABLE option for RHDCMTO0/RHDCUFQO0 on the system generation
PROGRAM statement.

RHDCMTOO Link Statement

The calling program links to the DCMT program RHDCMTOO, passing the addresses of
INREC and OUTREC as parameters:

#LINK PGM='RHDCMTOO', PARMS=(INREC, OUTREC)

Chapter 5: Invoking System Tasks from Programs 139

Invoking DCMT and DCUF Commands from Programs

RHDCUFOO Link Statement

The calling program then links to the DCUF program RHDCUFQO, passing the addresses
of INREC and OUTREC as parameters:

#LINK PGM='RHDCUF00"', PARMS=(INREC,OUTREC)

Parameters
The application program must allocate storage for two parameters, INREC and OUTREC,
before calling RHDCMTO0O0 or RHDCUFQO.

m |[NREC—Contains the command, prefixed by a halfword with the length of the
command.

m OUTREC—Contains control information such as return code and output handling
and where text output may be returned.

INREC Format

The format is identical for RHDCUFO0 and RHDCMTQO.

Field Length Type
Length of DCMT/DCUF command 2 bytes Binary
DCMT/DCUF command, left-justified Any number of bytes Character

OUTREC Format

The format is identical for RHDCUFO0 and RHDCMTOQO.

Field Length Type

return-area-length:* 4 bytes Binary

Length of the returned-text-area allocated by the calling program at the
end of OUTREC. The calling program must specify this value. If
return-area-length and output-code are set to zero, all DCMT/DCUF text
output is discarded. DCMT VARY and DCUF SET commands are still
performed.

140 Callable Services Guide

Invoking DCMT and DCUF Commands from Programs

Field Length Type

return-code:** 2 bytes Binary
m 0—Request accepted and processed

m 4—Invalid syntax

m 8—Invalid request (for example, SHUTDOWN, ABORT)

m 12—Security violation

m 16—Processing error

m 20—The output-code is 0 or 2 and the return-area-length is less
than output-length. All complete lines whose total length (including
a one-byte line-length indicator for each line) is less than or equal
to return-area-length are stored in returned-text-area. The value of
output-code determines how any remaining output lines are
handled. If output-code = 0, the lines are discarded. If output-code
=2, the lines are written to scratch.

output-code:* 2 bytes Binary
Halfword code indicating DCMT output target as follows:

m 0—The returned-text-area at the end of OUTREC.

m 1—The scratch area with a scratch ID of "DCMT" or "DCUF"
depending on the called program. Each line is written as a separate
scratch record.

m 2—Any complete lines of output whose total length (including a
one-byte line-length indicator per line) is less than or equal to
return-area-length are written to returned-text-area. Remaining
output is written to the scratch area with a scratch ID of "DCMT."

output-length:** 4 bytes Binary

Total length required for DCMT/DCUF output. It includes the total
length all text lines plus one byte (line-length indicator) for each line.
Note: Each line-length indicator byte is counted as part of the
output-length regardless of whether the record is written to the
returned-text-area, written to scratch, or discarded.

The line-length indicator byte is inserted before each text line written
to the returned-text-area. The line-length indicator is not written into
scratch records. Using the #GETSCR or GET SCRATCH command with the
appropriate parameters, you can determine the length of a individual
scratch record.

returned-output-length:** 4 bytes Binary

Total length of text lines inserted into the returned-text-area. The
length includes a one-byte line-length indicator for each text line.

Chapter 5: Invoking System Tasks from Programs 141

Invoking DCMT and DCUF Commands from Programs

Field Length

Type

returned-text-area:** Variable

Area where the DCMT/DCUF is to return text output. Each text line is
preceded by a one-byte field which contains the length of the text line
(excluding the line-length indicator) as a hexadecimal value. Only lines
whose total length is less than return-area-length are written into the
returned-text-area. Other lines are discarded or written to the scratch
area depending on the value of output-code.

DCMT/DCUF prefills this field with blanks up to the lesser value of the
length specified in return-area-length or 256 bytes. If
return-area-length is greater than 256 bytes, and
returned-output-length is less than return-area-length any remaining
storage in returned-text-area is not updated and remains as it was
when RHDCMTO0/RHDCUFOO0 was called.

Note: To avoid storage overlays, the number of bytes allocated for the
returned-text-area must be greater than or equal to the value assigned
to return-area-length.

Character

Notes:
*—|nformation supplied by the calling program.
**__|nformation supplied by RHDCMTO0/RHDCUFQO.

Usade

Queued Requests

RHDCMTOO can process commands such as VARY AREA, but it may queue the action.
Thus, a return code of zero does not always indicate that a VARY has occurred. The text
returned to the output area denotes the status of the request. You can recheck the
status of the request by including a SET TIMER POST or SET TIMER WAIT (#SETIME
TYPE=POST or #SETTIME TYPE=WAIT in Assembler) statement in your program. After the
interval has expired, you can reissue the VARY or issue a DISPLAY statement and check

the returned text to determine the status of the request.

Using Scratch Area for Output

If you do not know the exact size of the output, you can specify to send it to the scratch
area. This is also a useful method for dealing with possible future changes in output.

142 Callable Services Guide

Invoking DCMT and DCUF Commands from Programs

Examples
DCMT Example

The following example invokes RHDCMTOO to execute the DCMT VARY ACTIVE TASK
command specified in INREC and to handle an invalid command:

DCMT TITLE 'SAMPLE DRIVER TO CALL DCMT'
CALLDCMT CSECT

LR R12,R15
USING CALLDCMT,R12
B BEGIN

#MOPT CSECT=CALLDCMT, ENV=USER
BEGIN DS OH
#GETSTG LEN=WORKDSL,PLIST=*,ADDR=(R2), TYPE=(USER, LONG), X
INIT=X'00' GET WORK AREA FOR REENTRANCY.
USING WORKDS,R2
* FOLLOWING CODE ISSUES A VALID COMMAND TO CHANGE MAX TASKS.
* RESULTING STATUS CODE, RETURNED LENGTH, AND RETURNED DATA
* ARE DISPLAYED.
MVC INRECLN,=AL2(L'INRECTXT) SET COMMAND LENGTH.
MvVC INRECTXT,GOODCOMM SET COMMAND.
MVC OUTRECLN,=AL4(L'OUTRECTX) SET MAXIMUM OUTPUT LENGTH.

SR R1,R1 SET OUTPUT TYPE TO 0.

STH R1,0UTRECOD REQUEST OUTPUT TO STORAGE.

ST R1,0UTRECTL INITIALIZE RETURNED LENGTH.

ST R1,0UTRECAL INITIALIZE RETURNED LENGTH.

LA R1,99 INITIALIZE RETURN CODE.

STH R1,0UTRECRC

BAL R8,CALLDISP CALL DCMT AND DISPLAY RESULTS.

* FOLLOWING CODE ISSUES A COMMAND WITH INVALID SYNTAX.
* RESULTING STATUS CODE, RETURNED LENGTH, AND RETURNED DATA
* (ERROR MESSAGES) ARE DISPLAYED.
MVC INRECLN,=AL2(L'INRECTXT) SET COMMAND LENGTH.
MVC INRECTXT,BADCOMM SET COMMAND.
MVC OUTRECLN,=AL4(L'OUTRECTX) SET MAXIMUM OUTPUT LENGTH.

SR R1,R1 SET OUTPUT TYPE TO 0.

STH R1,0UTRECOD REQUEST OUTPUT TO STORAGE.

ST R1,OUTRECTL INITIALIZE RETURNED LENGTH.

ST R1, OUTRECAL INITIALIZE RETURNED LENGTH.

LA R1,99 INITIALIZE RETURN CODE.

STH R1,0UTRECRC

BAL R8,CALLDISP CALL DCMT AND DISPLAY RESULTS.
* DONE WITH DISPLAYS. TERMINATE PROGRAM.

#RETURN

EJECT

* SUBROUTINE TO CALL DCMT AND DISPLAY RESULT.

*

Chapter 5: Invoking System Tasks from Programs 143

Invoking DCMT and DCUF Commands from Programs

CALLDISP DS OH
#LINK PGM='RHDCMTOO' , PARMS=(INREC, OUTREC)
MVC WORKRCLN,STATLIT
LH R15,0UTRECRC GET RETURN CODE.
CVD R15,WORKDBL MAKE IT PRINTABLE.
UNPK WORKRC , WORKDBL
0I WORKRC+L'WORKRC-1,X'FO'
L R5, OUTRECAL GET LENGTH OF OUTPUT.
CVD RS5,WORKDBL MAKE IT PRINTABLE.
UNPK WORKLEN, WORKDBL
OI WORKLEN+L'WORKLEN-1,X'FO'
#LINEOUT OUTLEN=80,0UTAREA=WORKRCLN
LTR R5,R5 ANY RETURNED DATA?
BZ RETURN NO.
LA R4,0UTRECTX GET A(OUTPUT).
PUTLINE DS OH PUT OUT ONE LINE.
SR R3,R3 GET LENGTH OF ONE LINE.
IC R3,0(,R4)
LA R4,1(,R4) GET A(LINE TEXT)
#LINEOUT OUTLEN=(R3),0UTAREA=(R4)
AR R4,R3 POINT TO NEXT LENGTH BYTE.
SR R5,R3 REDUCE OUTPUT LENGTH.
BCTR R5,0 ACCOUNT FOR LENGTH BYTE.
LTR R5,R5 STILL MORE OUTPUT?
BP PUTLINE GET LENGTH OF OUTPUT.
RETURN DS OH
BR RS
GOODCOMM DC CL8O'VARY ACTIVE TASK MAX TASK 43"
BADCOMM DC CL80'BAD SYNTAX IN THIS COMMAND'
STATLIT DS CL8O' TEMPLATE FOR STATUS LINE

ORG ~ STATLIT

DC CL13'RETURN CODE:

DC CcL2' '

DC CL20'. RETURNED LENGTH:
DC cL4' !

DC CcL1.!

ORG STATLIT+80

LTORG

EJECT

WORKDS DSECT

REDEFINE STATUS LINE
RETURN CODE LITERAL
SPACE FOR RETURN CODE

' LENGTH LITERAL

SPACE FOR RETURN CODE
SPACE FOR RETURN CODE
DONE WITH REDEFINE

144 Callable Services Guide

Invoking DCMT and DCUF Commands from Programs

DCUF Example

SYSPLIST DS 10F
WORKDBL DS D
WORKRCLN DS CL8O

ORG WORKRCLN

DS CL13
WORKRC DS CL2

DS CL20
WORKLEN DS CL4

DS CL1

ORG WORKRCLN+80
INREC DS OF
INRECLN DS H
INRECTXT DS CL8o

DS H
OUTREC DS OF
OUTRECLN DS F
OUTRECRC DS H
OUTRECOD DS H
OUTRECTL DS F
OUTRECAL DS F
OUTRECTX DS CL132
WORKDSL EQU *-WORKDS

SPACE 2

END

PLIST AREA

TEMP WORK AREA

OUTPUT LINE FOR RETURN CODE

REDEFINE STATUS LINE

RETURN CODE LITERAL

SPACE FOR RETURN CODE
LENGTH LITERAL

LENGTH OF RETURNED DATA

SPACE FOR ENDING PERIOD

DONE WITH STATUS LINE

INPUT TO DCMT

INPUT LENGTH

INPUT COMMAND

FILLER

OUTPUT FROM DCMT

MAXIMUM ALLOWED OUTPUT LENGTH

RETURN CODE

OUTPUT TYPE

TOTAL LENGTH OF DCMT OUTPUT

ACTUAL LENGTH RETURNED

TEXT OUTPUT AREA

The following example invokes RHDCUFOO to execute the DCUF SET PRINT CLASS
command specified in INREC:

#LINK PGM='RHDCUFO0", PARMS=(INREC, OUTREC)

INREC DS
INRECLN DC
INRECTXT DC
*

OUTREC DS
OUTRECLN DC
OUTRECRC DC
OUTRECOD DC
OUTRECTL DC
OUTRECAL DC
OUTRECTX DS

OF
Y (L"'INRECTXT)

C'SET PRINT CLASS 01'

OF
A(L' OUTRECTX)
H'O*

H'O*

F'o'

F'o'

CL132

Input to DCUF

- length
- command

Output from DCUF

- maximum allowed length
- return code

- output type

- total length

- actual length

- actual output text

Chapter 5: Invoking System Tasks from Programs 145

Invoking SDEL Command from Programs

More Information

For more information about the SET TIMER and GET SCRATCH statements, see the
CA IDMS DML Reference Guide for COBOL.

For more information about the #SETIME and #GETSCR statements, see the CA
IDMS DML Reference Guide for Assembler.

For more information about RHDCMTO0O or RHDCUFQO, see the CA IDMS System
Generation Guide.

For more information about DCMT or DCUF commands, see the CA IDMS System
Tasks and Operator Commands Guide.

Invoking SDEL Command from Programs

You can invoke the SDEL command from application programs by linking to program
RHDCSDEL.

Note: Securing the SDEL task code does not secure usage of the RHDCSDEL program. If

you want to limit the use of RHDCSDEL, that program must be secured.

Linking to RHDCSDEL

The calling program links to program RHDCSDEL, passing the addresses DICTNAME,

RETCODE, and OUTAREA as parameters:

#LINK PGM='RHDCSDEL', PARMS=(DICTNAME,RETCODE, OUTAREA)

Parameters

DICTNAME

Specifies the dictionary name of the updatable DDLDML and DDLCAT areas to be
scanned for security definitions associated with logically deleted users.

This is an 8-character field, left-justified, and padded with blanks. If DICTNAME is
set to blanks, DC/UCF processes the updatable DDLDML and DDLCAT areas of the
default dictionary for the system. If DICTNAME is set to CL8'*ALL', all DDLDML and
DDLCAT areas in the DMCL are processed.

146 Callable Services Guide

Invoking SDEL Command from Programs

RETCODE

Specifies a fullword in which RHDCSDEL provides a return code. The possible return
codes are as follows:

00

Specifies processing was successful. The OUTAREA contains informational
messages DC048004 and DC048008.

04

Specifies processing was successful but contains warnings. The possible causes
are as follows:

m There were no logically deleted users to process. The OUTAREA contains
informational message DC048002.

m The OUTAREA is too small to contain all output messages.

08
Specifies a processing error. The possible causes are as follows:
m The DICTNAME is invalid. The outarea contains error message DC048001.
m Anunexpected database error was encountered. The OUTAREA contains
error message DC048003.
m A BIND failed. The OUTAREA contains error message DC048004 or
DC048006.
12
Specifies the fatal error, the DMCL module is invalid. The OUTAREA contains
error message DC048007.
OUTAREA

Specifies an area where RHDCSDEL puts messages. The first fullword of the area
must be initialized to the area length, which also includes the first fullword. Upon
return, the first fullword contains the size of the messages. Each message is in the
following format:

AL1(L'message),C'message’

Note: RETCODE is set to 04 if the output area is too small, unless a more severe
error occurred.

Chapter 5: Invoking System Tasks from Programs 147

Invoking the SIGNON Task from Programs

Example

The following example invokes RHDCSDEL to clean up the security definitions for
logically deleted users in the default dictionary:

#LINK PGM='RHDCSDEL, PARMS=(DICTNAME,RETCODE, OUTAREA)

RETCODE DC F'o'

DICTNAME DC CL8* '
*

OUTAREA DS OF
OUTAREAL DC F'256'
OUTRECD DC XL252'00"

More Information

m For more information about the LINK statement, see the CA IDMS DML Reference
Guide for the language of the calling program.

m For more information about securing a program, see the CA IDMS Security
Administration Guide.

Invoking the SIGNON Task from Programs

You can invoke the SIGNON task from application programs. A program invokes the
SIGNON task by linking the program invoked by the SIGNON task. This program is
RHDCSNON.

Linking to RHDCSNON

The calling program links to program RHDCSNON, passing three mandatory parameters:

#LINK PGM=RHDCSNON, PARMS=(PARML1, PARM2, PARM3)

148 Callable Services Guide

Invoking the SIGNON Task from Programs

Parameters

The #LINK statement to RHDCSNON must include the following parameter list:
Parameter 1 (18-bytes)

Specifies the user ID. The user ID is left-justified and padded on the right with
blanks.

Parameter 2 (8-bytes)

Specifies the password. The password is left-justified and padded on the right with
blanks. For externally secured signons, this value can alternatively be a PassTicket.
PassTickets are short-term substitutes for passwords which are targeted to a
specific application.

Note: For more information on PassTickets, see the CA IDMS Security
Administration Guide.

Parameter 3 (aligned halfword)

Specifies the return code. On return from RHDCSNON, the return code parameter
can contain one of the following values:

0

Specifies the signon was successful.

Specifies the user is already signed on to another terminal, and multiple
signons are disallowed.

Specifies the user ID was not authorized.
12
Specifies the password is invalid.
16
Specifies the user ID is blank (format error).
20
Specifies an error occurred when processing the dictionary.
24

Specifies the signon was stopped by the signon user exit.

Chapter 5: Invoking System Tasks from Programs 149

Invoking the SIGNON Task from Programs

Example

The following sample #LINK command invokes RHDCSNON, passing the ID and password
stored in WKUSRID and WKPSWD:

#LINK PGM='RHDCSNON', PARMS=(WKUSRID, WKPSWD, WKRCODE)

WKUSRID DS CL32
WKPSWD DS CL8
WKRCODE DS H

More Information

m For more information about the SIGNON command, see the CA IDMS System Tasks
and Operator Commands Guide.

m For more information about security, see the CA IDMS Security Administration
Guide.

150 Callable Services Guide

Chapter 6: Two-Phase Commit Support with

RRS

Overview

This section contains the following topics:

Overview (see page 151)
RRS Support for Batch Applications (see page 152)
RRS Support for Online Applications (see page 156)

RRS is IBM's resource recovery platform for z/0S. CA IDMS can exploit RRS services in
the following ways:

m A batch application can use RRS as a coordinator to ensure that the updates made
through one or more central versions are coordinated with those of other resource
managers such as MQSeries.

m Anonline application can update external resources through an RRS-enabled
interface to ensure that those updates are coordinated with those made to CA
IDMS resources.

This section discusses how RRS support is enabled and describes considerations
associated with its use.

Chapter 6: Two-Phase Commit Support with RRS 151

RRS Support for Batch Applications

RRS Support for Batch Applications

Example

A batch application updating resources controlled by multiple resource managers can
make use of RRS services to guarantee atomicity of the updates. CA IDMS supports RRS
for batch applications that make their database updates through one or more central
versions running on the same operating system image as the batch job.

When RRS is used as the coordinator, each resource manager (RM), such as a CA IDMS
central version that is accessed, expresses an interest in the unit of recovery (UR)
controlled by RRS. To commit all changes as a unit, the application issues a Commit_UR
(or an HLL Application_Commit_UR) request to RRS. The following diagram illustrates
the flow of control that occurs:

Batch: RRS as a Coordinator

Resource
Manager B:
cy¥ 2

Resource
Manager 4:
cy i

hpplication

Commit_UR

- ——————— Exit

Prepare
oK Exit

— = = RRS RequeEst
----------- P RRS Exit Invocation

Consider a batch application that accesses CA IDMS and MQSeries and wants to
coordinate the work done on each. To do this, the central version must be accessed
through an RRS-enabled batch interface. The interface passes a context token to the
central version so that it can express an interest in the UR associated with the context.
At commit time, RRS invokes the central version's prepare and commit exits so that its
work is coordinated with that of MQSeries.

152 Callable Services Guide

RRS Support for Batch Applications

Enabling RRS for Batch Applications

A batch application notifies CA IDMS that it wants to use RRS as a coordinator by
specifying the following SYSIDMS parameter:

ENABLE_RRS=0N

CA IDMS then extracts the current context token and passes it on to the central version,
which expresses interest in it.

If ENABLE_RRS=0N is established as a default in a SYSIDMS load module, it can be
overridden at runtime by specifying the following parameter:

ENABLE_RRS=0FF

Note:

The central version(s) to which the batch application's database sessions are
directed must be started with RRS support and must be running on the same
operating system image.

It is not possible to access a pre-Release 16.0 central version if the batch job runs
with RRS enabled. Local access is supported but is not part of the RRS UR.

The 10.2 services batch interface (also known as IDML) does not support RRS.

Batch RRS Transaction Boundaries and Application Design Considerations

Batch applications that use RRS as a coordinator have to be carefully designed. The
usage of RRS implies the following rules:

The application verbs that mark a transaction boundary are the RRS verbs:
Commit_UR or Backout_UR.

Prior to issuing a Commit_UR, all database sessions whose transaction is under the
control of RRS must be completed. This can be accomplished by performing the
following tasks:

— Issuing a FINISH TASK DML command

- Explicitly finishing all active database sessions by issuing a FINISH or COMMIT
RELEASE DML command for each one

Chapter 6: Two-Phase Commit Support with RRS 153

RRS Support for Batch Applications

Note: A FINISH TASK must be issued if a BIND TASK was issued.

Finishing a database session does not terminate its associated transaction when it is
under the control of RRS; instead, the database session is closed and currency locks
are released, but the transaction remains active and update locks are maintained
until the RRS UR is committed or backed out.

It is possible to serially create and finish database sessions within a single RRS UR;
however, unless transaction sharing is in effect, a deadlock may occur if a later
session attempts to access a record that was updated by a previous session.

When a ROLLBACK [TASK] DML command is issued, it results in the back out of the
entire RRS UR, even if the application subsequently issues a Commit_UR request. At
the time the ROLLBACK command is issued, the changes made to the CA IDMS
database are backed out and the associated locks are released. However, the RRS
UR is not backed out until an RRS commit or backout operation is initiated. If
necessary, CA IDMS will initiate a BACKOUT operation during the first phase of
commit processing to cause the RRS UR to be backed out.

When an application program ends (normally or abnormally), the associated RRS
context is terminated by the operating system. RRS default actions are to commit
on normal context termination and backout on abnormal context termination.

Example of a COBOL Batch Program

The following extracts from a COBOL program show how to invoke the RRS Commit_UR
and Backout_UR services. The COBOL program is a subroutine that is called to perform a
certain action as defined in ACTION-CD. Only the CA IDMS task level and RRS actions are

shown.
*RETRIEVAL
*NO-ACTIVITY-LOG
*DMLIST
IDENTIFICATION DIVISION.
PROGRAM-ID. MBINDSUB.

koK ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok sk ok ok ok ok sk ok sk ok ok ok sk sk ok sk ok sk sk ok sk ok sk sk sk sk ok sk sk sk sk sk kok sk skosk ok k sk kok sk kk

* SUBSCHEMA CONTROL IS PASSED FROM MAINLINE PROGRAM.
SR AR AR KA KRR R KoK koK kK ook ok Kok ok sk ok ok ok sk ok ok ok ko ok Kok o
ENVIRONMENT DIVISION.
IDMS-CONTROL SECTION.
PROTOCOL. MODE IS BATCH DEBUG
IDMS-RECORDS MANUAL.

154 Callable Services Guide

RRS Support for Batch Applications

DATA DIVISION.

SCHEMA SECTION.
DB EMPSSO1 WITHIN EMPSCHM VERSION 160.
WORKING-STORAGE SECTION.

01 WK-DATA.

02

I

PIC

S9(4) COMP.

01 COPY IDMS SUBSCHEMA-NAMES.
01 COPY IDMS SUBSCHEMA-RECORDS.
LINKAGE SECTION.

01 DB-PARM.

02 DBNAME-IN PIC

02 FILLER PIC

02 DBNODE-IN PIC

02 FILLER PIC

02 ACTION-CD PIC
88 ACT-BIND
88 ACT -BINDU
88 ACT-DML1
88 ACT-DML2
88 ACT-DML3
88 ACT-UPDT
88 ACT-FIN
88 ACT-TCOM
88 ACT -RCOM
88 ACT-TFIN
88 ACT-TBAK
88 ACT-RBAK

02 RETURN-CD PIC

01 COPY IDMS SUBSCHEMA-CTRL.
PROCEDURE DIVISION USING DB-PARM, SUBSCHEMA-CTRL.

MAINLN SECTION.
MOVE 0 TO RETURN-CD.

IF ACT-BINDU

PERFORM BIND-IT

ELSE IF ACT-RCOM

PERFORM RCOM-IT

ELSE IF ACT-TFIN

PERFORM TFIN-IT

ELSE IF ACT-TBAK

PERFORM TBAK-IT

ELSE IF ACT-RBAK

PERFORM RBAK-IT

ELSE IF ...

ELSE
MOVE 32 TO RETURN-CD.
GOBACK.

X(8).

X.

X(8).

X.

X.

VALUE 'R'.
VALUE 'U'.
VALUE '1"'.
VALUE '2'.
VALUE '3"'.
VALUE '4'.
VALUE 'F'.
VALUE 'C'.
VALUE 'D'.
VALUE 'X'.
VALUE 'B'.
VALUE 'Y'.
S9(8) COMP.

Chapter 6: Two-Phase Commit Support with RRS 155

RRS Support for Online Applications

BIND-IT SECTION.

MOVE SPACES TO SUBSCHEMA-CTRL.

MOVE 'MBINDSUB' TO PROGRAM-NAME.

BIND RUN-UNIT DBNODE DBNODE-IN
DBNAME DBNAME-IN.

READY USAGE-MODE UPDATE.

PERFORM CHECK-STAT.

BIND EMPLOYEE.

PERFORM CHECK-STAT.

BIND DEPARTMENT.

PERFORM CHECK-STAT.

TCOM-IT SECTION.
COMMIT TASK.
PERFORM CHECK-STAT.
RCOM-IT SECTION.
* TIssue RRS Commit UR
CALL 'SRRCMIT' USING RETURN-CD.
PERFORM CHECK-RRS.
TFIN-IT SECTION.
FINISH TASK.
PERFORM CHECK-STAT.
RBAK-IT SECTION.
* Issue RRS Backout UR
CALL 'SRRBACK' USING RETURN-CD.
PERFORM CHECK-RRS.

RRS Support for Online Applications

RRS can be used by an online application to ensure that updates made through external
resource managers such as MQSeries are coordinated with those of CA IDMS. In order
to exploit this functionality, the external resource manager must be accessed through its
RRS-enabled interface.

Before accessing the external resource manager, the online task must establish a private
RRS context. This context can then be passed to any external resource manager that
wants to participate in the CA IDMS controlled transaction. Typically, online support for
accessing external resources is provided by a third party vendor and, consequently, it is
the vendor's responsibility to establish the private context and ensure that it is available
to the external resource manager's RRS-enabled interface. The RRS-enabled interface
passes the context to its resource manager so that it can register an interest in the
context's UR.

156 Callable Services Guide

RRS Support for Online Applications

Example

To initiate a commit operation involving all interested resource managers, the online
application issues a CA IDMS commit DML command (such as a FINISH TASK or a
COMMIT WORK). The local transaction manager then uses RRS as an agent to
coordinate its updates with those of the external resource managers.

Online: CA IDMS as a Coordinator Driving RRS

CAhIDMS
Resource Manager
(within same CV¥)

ChlDms
Transaction
Manager

External
Resource
Manager

hpplication

FINISH TASK

Frepare

0K

-
Prepare_dgent_UR
—— — — —
- Prepare
0K Exit
ok -
-+ — — — — -
Commit
0K
-t
Commit_Adgent_UR
—_—— ———
0K
0K -o----
- — — — — -
0K
-———

—— P (A IDHS Request
— — - RRS Request
----------- P RRS Exit Invocation

Consider an online application that accesses CA IDMS and MQSeries and wants to
coordinate the work done on each. To do this, the application program invokes a third
party interface to access MQSeries. The interface creates a private context (referred to
as CTXPRIV) by calling IDMSINO1. Next, the interface accesses MQSeries through its
RRS-enabled interface, specifying CTXPRIV.

The application program initiates a commit operation by issuing a DML command such
as FINISH TASK. When this happens, the CA IDMS transaction manager becomes the
coordinator and drives RRS as a participant. RRS in turn directs the actions of MQSeries
in support of the commit operation.

Chapter 6: Two-Phase Commit Support with RRS 157

RRS Support for Online Applications

Programming Interface

The RRSCTX IDMSINO1 function allows private context manipulation. It is designed for
third party vendors who want to exploit the two-phase commit functionality. For a
description of IDMSINO1 function RRSCTX, see Chapter 2: (see page 13).

Termination of a private context

If the private context is created by an SQL routine or database procedure that called
IDMSINO1, the private context is terminated when the encompassing transaction is
ended. Otherwise, the private context ends when the DC task ends.

Application Design Considerations

If an external resource manager, such as MQSeries, is invoked from within an SQL
routine or database procedure, its work is committed or backed out when the
encompassing transaction is committed or backed out. Otherwise, the work done by the
external resource manager is committed when one of the following situations occur:

m A COMMIT TASK is executed
m A FINISH TASK is executed

® The online task ends normally

The work is backed out when one of the following situations occur:
m A ROLLBACK TASK is executed

® The online task ends abnormally

158 Callable Services Guide

Appendix A: TCP/IP Error Codes

This section contains the following topics:

Return, Errno, and Reason Codes (see page 159)
HOSTENT Structure (see page 165)

SERVENT Structure (see page 165)

Socket Structure Descriptions (see page 166)

Return, Errno, and Reason Codes

The return code value returned by a call to the socket program interface can be a binary
0 (call successfully executed) or non-zero (an error occurred). In the latter case, the
errno field explains why the function call failed. The situations that occur are described
as follows:

m CAIDMS generates the error. Errno is set to a value in the range 12000-12999 as
documented in the following table. The reason code is not used and is 0.

m The error is generated by operating system services. Errno and (where applicable)
reason-code are documented in the appropriate operating system services
documentation.

- z/0S
§ UNIX System Services - Messages and Codes
§ z/0S Communications Server - IP and SNA codes
- z/VM—See the z/VM TCP/IP Programmer's Reference
- z/VSE
§ Connectivity Systems TCP/IP for z/VSE: Programmer's Guide
§ Barnard Systems TCP/IP Tools
§ TCP/IP for z/VSE - IBM Program Setup and Supplementary Information

m z/VM systems: For some errno codes returned by CA IDMS, the variable assigned to
the RSNCODE parameter may contain the IPRCODE extracted from the
corresponding IUCV parameter list. For the complete list of values, see the IPARML
DSECT.

m z/VSE and z/VM systems: The value of some errno codes can differ from the
equivalent standard POSIX value that is returned on z/0S. For example, the
standard value for ETIMEDOUT errno code (connection timed out) is 1127, but is 60
on z/VM. The standard errno code is returned to the variable assigned to the
ERRNO parameter. Applications must check the variable for common errno codes
that are handled programatically. The errno code value returned by the operating
system is saved in a variable assigned to the RSNCODE parameter.

Appendix A: TCP/IP Error Codes 159

Return, Errno, and Reason Codes

ERRNO Numbers Set by the Socket Program Interface

The name shown in the following table is the EQUate symbol generated by the #SOCKET
macro. The equivalent condition name in the SOCKET-CALL-INTERFACE record is
prefixed with the following:

®m SOCKET-ERRNO- for COBOL and CA ADS
m SOCKET_ERRNO_ for PL/I

Name Value Description

1-11999 The ERRNO is generated by the operating
system. See the appropriate operating system
documentation.

RNOINPL 12000 Invalid #SOCKET parameter list
RNOINAEC 12001 Invalid ASYNCECB parameter
RNOINAII 12002 Invalid AINFOIN parameter
RNOINAIO 12003 Invalid AINFOOUT parameter
RNOINBF 12004 Invalid BUFFER parameter
RNOINBFL 12005 Invalid BUFFERL parameter
RNOINBKL 12006 Invalid BACKLOG parameter
RNOINCAL 12007 Invalid CANONAML parameter
RNOINCMD 12008 Invalid COMMAND parameter
RNOINDOM 12009 Invalid DOMAIN parameter
RNOINEL 12010 Invalid EXCELST parameter
RNOINELL 12011 Invalid EXCELSTL parameter
RNOINFLG 12012 Invalid FLAGS parameter
RNOINFMT 12013 Invalid FORMAT parameter
RNOINFLT 12014 Invalid FROMLTE parameter
RNOINHDL 12015 Invalid HANDLE parameter
RNOINHNA 12016 Invalid HOSTNAME parameter
RNOINHNL 12017 Invalid HOSTNAML parameter
RNOINHNT 12018 Invalid HOSTENTP parameter
RNOINHOW 12019 Invalid HOW parameter
RNOINIL 12020 Invalid IPADDRL parameter

160 Callable Services Guide

Return, Errno, and Reason Codes

Name Value Description

RNOINIP 12021 Invalid IPADDR parameter
RNOINIPS 12022 Invalid IPADDRS parameter
RNOINISL 12023 Invalid IPADDRSL parameter
RNOINLEV 12024 Invalid LEVEL parameter
RNOINMXP 12025 Invalid MAXPTERM parameter
RNOINMXT 12026 Invalid MAXTASK parameter
RNOINNA 12027 Invalid NAME parameter
RNOINNAL 12028 Invalid NAMEL parameter
RNOINNS 12029 Invalid NEWSOCK parameter
RNOINNSD 12030 Invalid NFDS parameter
RNOINONA 12031 Invalid OPTNAME parameter
RNOINOVA 12032 Invalid OPTVAL parameter
RNOINOVL 12033 Invalid OPTLEN parameter
RNOINPNA 12034 Invalid PROTNAME parameter
RNOINPNL 12035 Invalid PROTNAML parameter
RNOINPNT 12036 Invalid PROTENTP parameter
RNOINPNU 12037 Invalid PROTNUM parameter
RNOINPOR 12038 Invalid PORT parameter
RNOINRHL 12039 Invalid RETHNAML parameter
RNOINRIL 12040 Invalid RETIPASL parameter
RNOINRL 12041 Invalid READLST parameter
RNOINRLL 12042 Invalid READLSTL parameter
RNOINRLN 12043 Invalid RETLEN parameter
RNOINRND 12044 Invalid RETNFDS parameter
RNOINRNS 12045 Invalid RETNSTKS parameter
RNOINSA 12046 Invalid SOCKADDR parameter
RNOINSAL 12047 Invalid SOCKADDL parameter
RNOINSNA 12048 Invalid SERVNAME parameter
RNOINSNL 12049 Invalid SERVNAML parameter
RNOINSNT 12050 Invalid SERVENTP parameter

Appendix A: TCP/IP Error Codes 161

Return, Errno, and Reason Codes

Name Value Description

RNOINSOC 12051 Invalid SOCK parameter

RNOINTLT 12052 Invalid TOLTE parameter

RNOINTYP 12053 Invalid TYPE parameter

RNOINWL 12054 Invalid WRITLST parameter

RNOINWLL 12055 Invalid WRITLSTL parameter

RNOINOPT 12056 Invalid OPTION parameter

RNOINTIM 12057 Invalid TIMEOUT parameter

RNOINARG 12058 Invalid ARGUMENT parameter

RNOINRV 12059 Invalid RETVAL parameter

RNOINECB 12060 Invalid ECB parameter

RNOINECL 12061 Invalid ECBLIST parameter

RNOINRSL 12062 Invalid RETSNAML parameter

RNOINBL 12063 Invalid BITLIST parameter

RNOINBLL 12064 Invalid BITLISTL parameter

RNOINBOR 12065 Invalid BITORDER parameter

RNOINNNA 12066 Invalid NODENAME parameter

RNOINSTA 12067 Invalid STATUS parameter

RNOINARL 12068 Invalid ARGUMENL parameter

RNO2BUFF 12100 Specify BUFFER and BUFFERL, or none of them

RNO2HNAM 12101 Specify HOSTNAME and HOSTNAML, or none of
them

RNO2NAME 12102 Specify NAME and NAMEL, or none of them

RNO2PNAM 12103 Specify PROTNAME and PROTNAML, or none of
them

RNO2SNAM 12104 Specify SERVNAME and SERVNAML, or none of
them

RNO3HNAM 12105 Specify HOSTNAME/HOSTNAML/ RETHNAML, or
none

RNO3SNAM 12106 Specify SERVNAME/SERVNAML/ RETSNAML, or
none

RNORQHS 12107 HOSTNAME or SERVNAME (or both) is required

RNORQECB 12108 ECB or ECBLIST is required

162 Callable Services Guide

Return, Errno, and Reason Codes

Name Value Description

RNOXCECB 12109 ECB and ECBLIST are mutually exclusive
RNOIECBL 12110 Invalid ECB in ECBLIST

RNOINARQ 12111 Invalid asynchronous command request
RNOINAIS 12112 Invalid ADDRINFO structure

RNOSYSP1 12113 ASYNCECB and HANDLE are system parms
RNOINHDA 12114 Invalid area pointed to by HANDLE
RNOIIPA 12115 Invalid format for IP-address

RNOIIPAG 12116 Invalid format for IP-address (V6)
RNOFNS 12200 Function not supported by interface
RNOFRSVD 12201 Function reserved for the system
RNOCAAIO 12202 Cannot allocate an AIO parameter list
RNOCANSU 12203 Cannot assign new socket to user
RNOCRSFU 12204 Cannot remove socket from user table
RNOCSHNT 12205 Cannot save HOSTENT structure info
RNOCSAIO 12206 Cannot save ADDRINFO structure info
RNONAINF 12207 Cannot find ADDRINFO to free
RNONOLTE 12208 No LTE available from current TCE
RNOSLIND 12209 SOCKET line not defined

RNOSLINO 12210 SOCKET line not opened

RNOSLRCY 12211 TCP/IP has been recycled

RNOPINL 12212 Plug-in module not loaded

RNODRTCE 12213 Driver's TCE does not point to the PLE
RNOINEPI 12214 Invalid environment when entering the plug-in
RNOSENA 12215 Socket environment not active
RNOUSTCA 12216 User's socket table cannot be allocated
RNOUSTNE 12217 User's socket table does not exist
RNOSSTCA 12218 System's socket table cannot be allocated
RNOSSTNE 12219 System's socket table does not exist
RNOSTKNF 12220 Requested stack not found

RNOSTKNA 12221 Requested stack not active

Appendix A: TCP/IP Error Codes 163

Return, Errno, and Reason Codes

Name Value Description

RNOSDTCE 12222 Socket Descriptor table cannot be extended

RNOCASWA 12223 Cannot allocate SELECT work area

RNOINSWA 12224 Inconsistent fields in SELECT work area

RNOSBLEM 12225 All SELECT bit lists are empty

RNOSNCSS 12226 All sockets not created under same stack

RNOCASBL 12227 Cannot allocate socket's bit list

RNOMAXSO 12228 Maximum number of sockets reached

RNOMAXST 12229 Maximum number of sockets per task reached

RNOCADNS 12230 Cannot allocate DNS work area

RNOINDNS 12231 Invalid response from DNS server

RNOPITNL 12232 (z/VSE only) Plugin table module not loaded

RNODDSNA 12233 No active DDSTCPIP PTE found for IDMS
nodename

RNODDSNC 12234 Cannot build a DDS connection to IDMS
nodename

RNODDSNF 12235 No free port found in PORT-RANGE

RNODDSMC 12236 Maximum number of connections reached

RNODDSRE 12237 Error during release of a DDS connection

RNONASTK 12238 No active stack found in the system

RNOCEXSI 12239 Connection on excluded stack ignored (internal)

RNOCSSNT 12240 Cannot save SERVENT structure info

RNOSRVNF 12241 Name/alias + protocol service not found

RNOPORNF 12242 Port number + protocol service not found

RNOSGNER 12243 SYSGEN internal error - wrong records counter

RNOSTKAA 12244 Requested stack already active

RNOSTKAI 12245 Requested stack already inactive

RNOCDSTK 12246 Cannot exclude the default stack

RNOSTKEX 12247 Owning stack has been dynamically excluded

RNOSENQ 12248 Socket environment is quiescing

RNOSFND 12249 Service file not defined in the CA IDMS system

RNOSTKCA 12250 System's Stack Table cannot be allocated

164 Callable Services Guide

HOSTENT Structure

Name Value Description

RNOSTKNI 12251 System's Stack Table not initialized yet

RNODNSNA 12252 Internal DNS Resolver not available

RNOHIUCV 12300 HNDIUCV error

RNOCIUCV 12301 CMSIUCV error

RNOIUCVS 12302 IUCV error for a socket function

RNOSEVER 12303 IUCV connection severed by TCP/IP

RNOTOIUC 12304 Time-out during IUCV connection
>12999 The ERRNO is generated by the operation

system. See the appropriate operating system
documentation.

HOSTENT Structure

The HOSTENT structure is returned by the GETHOSTBYADDR and GETHOSTBYNAME
function calls.

Field Description
Hostname Address of hostname (null-terminated string)
Aliases Address of a zero-terminated array of pointers to aliases,

which are null-terminated strings

Address type Address family of returned IP addresses (AF_INET or
AF_INETS6)
Address length Length of returned IP addresses
Addresses Address of a zero-terminated array of pointers to IP
addresses
SERVENT Structure

The SERVENT structure is returned by the GETSERVBYNAME and GETSERVBYPORT
function calls.

Field Description

Service name Address of a service name (null-terminated string).

Appendix A: TCP/IP Error Codes 165

Socket Structure Descriptions

Field

Description

Aliases

Address of a zero-terminated array of pointers to aliases,
which are null-terminated strings.

Port

Port number associated with a service.

Protocol

Address of the protocol associated with a service
(null-terminated string).

Socket Structure Descriptions

ADDRINFO Structure

The ADDRINFO structure is input and output to the GETADDRINFO function call.

Field

Description

Flags

A set of flags

Family

Address family (AF_INET or AF_INET6)

Socket type

Type of socket (STREAM or DATAGRAM)

Protocol

Protocol in use for the socket

SOCKADDR length

Length of SOCKADDR structure

Canonical name

Address of canonical name associated with input node name

SOCKADDR structure

Address of the SOCKADDR structure

New ADDRINFO

Address of next ADDRINFO structure

SOCKADDR Structure

The SOCKADDR structure describes the address of a socket. There are two versions of
this structure: IPv4 and IPv6.

SOCKADDR for IPv4

Field

Description

Family

A 2-byte field describing the socket address family type:
AF_INET

Port number

The port number for this socket

166 Callable Services Guide

Socket Structure Descriptions

Field Description
Address The 4-byte IP address of the TCP/IP stack
Zeros Eight bytes of binary zeros
SOCKADDR for IPv6
Field Description
Family A 2-byte field describing the socket address family type:
AF_INET6
Port number The port number for this socket
Flow Flow information
Address The 16-byte IP address of the TCP/IP stack
Scope ID Scope identifier
TIMEVAL Structure

The TIMEVAL structure may be passed as input to the SELECT and SELECTX function calls
in order to specify a wait interval.

Field Description
Seconds Number of seconds to wait
Microseconds Number of microseconds to wait

Appendix A: TCP/IP Error Codes 167

Appendix B: TCP/IP Programming Examples

This section contains the following topics:

PL/I Examples (see page 169)

COBOL Examples (see page 181)
Assembler Examples (see page 194)

CA ADS Examples (see page 212)

PL/I Examples

This section contains sample TCP/IP client and generic listener server programs written

in PL/I.

PL/I TCP/IP Client Program

/*RETRIEVAL*/
/*DMLIST*/

/**/

/* The following program is an example of a TCP/IP client */
/* program written in PL1. */
/* The processing is the following: */
/* - Create a socket for the client program. */
/* - Convert the known dotted string format IPA to binary. */
/* - Find host information for connection. */
/* - Establish a connection to the host listener. */
/* - Send message 1 to the listener (first 4 bytes = data length)*/
/* - Read message 1 from 1listener (first 4 bytes = data length) */
/* - Send message 2 to the listener (first 4 bytes = data length)*/
/* - Read message 2 from listener (first 4 bytes = data length) */
/* - Close socket and exit. */
/**/
/* Notes for the PL/I compiler on VSE. */
/* - in order to allow arithmetic operations on POINTER type */
/* variables, specify the LANGLVL(0S,SPROG) compiler option */
/* - there is no option to allow external names on 8 characters, */
/* so replace all CALL IDMSOCKI by CALL IDMSOCK, as described */
/* in the Callable Services manual. */

/**/

Appendix B: TCP/IP Programming Examples 169

PL/T Examples

PLICLI : PROC OPTIONS (REENTRANT,FETCHABLE);

DCL MODE(IDMS DC) DEBUG;

DCL ADDR BUILTIN;

DCL IDMSPLI ENTRY OPTIONS(INTER,ASSEMBLER);
DCL IDMSOCKI ENTRY OPTIONS(INTER,ASSEMBLER);
DCL IDMSP ENTRY;

INCLUDE IDMS (SUBSCHEMA CTRL);
INCLUDE IDMS (SOCKET_CALL_INTERFACE);
INCLUDE IDMS (SOCKET_MISC DEFINITIONS);
DCL 1 SOCKADDR1,

3 INCLUDE IDMS (SOCKET-SOCKADDR-IN);
DCL 1 AINFO1,

3 INCLUDE IDMS (SOCKET_ADDRINFO);

DCL 1 MSGO1 CHAR (20) INIT (' Parameter string :');
DCL 1 MSGO2 CHAR (20) INIT (' Socket descriptor :');
DCL 1 MSGO3 CHAR (20) INIT (' Resume count A
DCL 1 MSGO4 CHAR (15) INIT (' Starting read.');

DCL 1 MSGO5 CHAR (16) INIT (' Starting write.');

DCL 1 MSGO6 CHAR (16) INIT (' Closing socket.');

DCL 1 MSGO7 CHAR (20) INIT (' Socket return code:');
DCL 1 MSGO8 CHAR (20) INIT (' Socket reason code:');
DCL 1 MSGO9 CHAR (20) INIT (' Socket errno ')
DCL 1 MSG10 CHAR (20) INIT (' Buffer length ')
DCL 1 MSG11 CHAR (08) INIT (' Buffer:');

DCL 1 MSG12 CHAR (22) INIT (' Data length too long.');
DCL 1 MSG20 CHAR (19) INIT (' Calling GETHOSTID.');
DCL 1 MSG21 CHAR (23) INIT (' Calling GETHOSTBYADDR.');
DCL 1 MSG22 CHAR (21) INIT (' Calling GETADDRINFO.');
DCL 1 MSG23 CHAR (22) INIT (' Calling FREEADDRINFO.');
DCL 1 MSG24 CHAR (21) INIT (' Calling GETNAMEINFO.');
DCL 1 MSG25 CHAR (16) INIT (' Calling SOCKET.');

DCL 1 MSG26 CHAR (17) INIT (' Calling CONNECT.');

DCL 1 MSG27 CHAR (20) INIT (' Calling GETSOCKOPT.');
DCL 1 MSG28 CHAR (20) INIT (' Calling SETSOCKOPT.');
DCL 1 MSG29 CHAR (19) INIT (' Calling GETSTACKS.');
DCL 1 MSG30 CHAR (18) INIT (' Calling SETSTACK.');

DCL 1 MSG31 CHAR (19) INIT (' Calling INET PTON.');

DCL 1 MSG97 CHAR (24) INIT (' Socket call successful.');
DCL 1 MSG98 CHAR (19) INIT (' Socket call error.');
DCL 1 MSG99,
3 MSG99 1 CHAR (29) INIT (' Program PLICLI terminated.
3 MSG99 2 CHAR (15) INIT (' Error count = '),
3 MSG99 3 PIC '(4)9';

170 Callable Services Guide

PL/T Examples

/**/

/* Modify DEST-PORT and IPA-HOST to connect to desired listener */
/* If the port number is greater than 32767 use the following */

/* DEST PORT = (port number - 65536). */
/*DCL 1 DEST_PORT FIXED BINARY(15) INIT((12345-65536))*/
/**/
DCL 1 DEST_PORT FIXED BINARY(15) INIT(12345);
DCL 1 IPAHOST REC,
3 IPA HOST CHAR (12) INIT ('255.255.25.2'),
3 FILLER CHAR (12) INIT (' '),
3 IPA HOSTL FIXED BINARY(31) INIT(16);
DCL 1 SOCKDESC FIXED BINARY(31);
DCL 1 NIFLAGS FIXED BINARY(31) INIT(O);
DCL 1 SNAPLEN FIXED BINARY(31);
DCL 1 WK1 FIXED BINARY(31);
DCL 1 WK2 FIXED BINARY(31);
DCL 1 WK3 FIXED BINARY(31);
DCL 1 RETLEN FIXED BINARY(31) INIT(0);
DCL 1 WK_LENGTH FIXED BINARY(31);
DCL 1 WK SUBSCRIPT FIXED BINARY(31);
DCL 1 WK_PTR POINTER;
DCL 1 TEXT CHAR(80) BASED(WK_PTR);
DCL 1 TERM FLAG FIXED BINARY(31) INIT(O);
DCL 1 ERROR_COUNT FIXED BINARY(31) INIT(0);
DCL 1 RETURN_CODES,
3 RETCD FIXED BINARY(31),
3 ERRNO FIXED BINARY(31),
3 RSNCD FIXED BINARY(31);
DCL 1 IPADDR REC,
3 IPADDRBUFL FIXED BINARY(31) INIT(16),
3 IPADDRRETL FIXED BINARY(31),
3 IPADDRBUF CHAR(16) ;
DCL 1 BUFFER,
3 BUFLEN FIXED BINARY(31),
3 BUFTXT80 CHAR(80) ;
DCL 1 WORKW,
3 WORK_WCC CHAR(1),
3 WORK CHAR(80) ;
DCL 1 HOSTENTP POINTER;
DCL 1 HOSTENT1 BASED(HOSTENTP),

3 INCLUDE IDMS (SOCKET HOSTENT);

Appendix B: TCP/IP Programming Examples

171

PL/T Examples

DCL 1 HOSTENT NAME CHAR(64) BASED(HOSTENT NAME_PTR);
DCL 1 AINFOINP POINTER;
DCL 1 AINFOOUTP POINTER;
DCL 1 AINFO2 BASED (AINFOOUTP) ,
3 INCLUDE IDMS (SOCKET_ADDRINFO);

DCL 1 HOST IPA FIXED BINARY(31) INIT(O);
/**/
/* Include also all the structures that we deliver in DLODPROT, */
/* but that are not used by this test program. */
/**/

INCLUDE IDMS (SOCKET LISTENER PARMS);

INCLUDE IDMS (SOCKET SOCKADDR IN6);

INCLUDE IDMS (SOCKET TIMEVAL);

/***/

/* Create a socket in the communications domain */
/***/
WRITE LOG MESSAGE ID (9060300) PARMS FROM (MSG25) LENGTH (16);
CALL IDMSOCKI (SOCKET FUNCTION SOCKET,

SOCKET RETCD,

SOCKET _ERRNO,

SOCKET RSNCD,

SOCKET FAMILY AFINET,

SOCKET TYPE_STREAM,

SOCKET PROTOCOL_TCP,

SOCKDESC) ;
CALL TCP_CHECKRC;
IF (TERM FLAG = 1) THEN GOTO TCP_EXIT;

/***/

/* Convert the IP address from dotted string format to binary. */
/***/
WRITE LOG MESSAGE ID (9060300) PARMS FROM (MSG31) LENGTH (19);
CALL IDMSOCKI (SOCKET FUNCTION INETPTON,

SOCKET RETCD,

SOCKET _ERRNO,

SOCKET _RSNCD,

SOCKET FAMILY AFINET,

IPA HOST,

IPA HOSTL,

HOST IPA);
CALL TCP_CHECKRC;

/**/
*/
*/

/* Take the IP address and domain and resolve it through a name
/* server. If successful, return the information in a HOSTENT

172 Callable Services Guide

PL/T Examples

/* structure. */
/**/
WRITE LOG MESSAGE ID (9060300) PARMS FROM (MSG21) LENGTH (23);
CALL IDMSOCKI (SOCKET FUNCTION GETHOSTBYADDR,

SOCKET RETCD,

SOCKET ERRNO,

SOCKET RSNCD,

HOST IPA,

SOCKET IPADDRAL,

SOCKET FAMILY AFINET,

HOSTENTP) ;
CALL TCP_CHECKRC;

/**/

/* Connect DEST_PORT */
/**/
SOCKADDR1.SIN FAMILY SOCKET_FAMILY_AFINET;
SOCKADDR1.SIN_PORT_NUMBER = DEST_PORT;
SOCKADDR1.SIN_ADDRESS = HOST_IPA;
WRITE LOG MESSAGE ID (9060300) PARMS FROM (MSG26) LENGTH (17);
CALL IDMSOCKI (SOCKET_FUNCTION CONNECT,
SOCKET_RETCD,
SOCKET_ERRNO,
SOCKET_RSNCD,
SOCKDESC,
SOCKADDR1,
SOCKADDR_IN_LENGTH);
CALL TCP_CHECKRC;
IF (TERM_FLAG = 1) THEN DO;
CALL TCP_CLOSE;
GOTO TCP_EXIT;
END;

/**/

/* Build two messages and send them to DEST PORT */

/**/

BUFTXT80 = 'PLICLI TCP/IP test message number 00001 ';
BUFLEN = 41;

WK LENGTH = 45;

WK _PTR = ADDR(BUFLEN) ;

CALL TCP_WRITE;
IF (TERM FLAG = 1) THEN GOTO TCP_EXIT,;

/**/

/* Read the response from DEST PORT */

/**/

WK_LENGTH = 4;

Appendix B: TCP/IP Programming Examples 173

PL/T Examples

BUFLEN =0;
WK_PTR = ADDR(BUFLEN) ;
CALL TCP_READ;
IF (TERM_FLAG = 1) THEN RETURN;
IF (BUFLEN > 80) THEN DO;
WRITE LOG MESSAGE ID (9060300) PARMS FROM (MSG12) LENGTH (22);
CALL TCP_CLOSE;
RETURN;
END;
WK_LENGTH = BUFLEN;
WK_PTR = ADDR(BUFTXT80) ;
CALL TCP_READ;
IF (TERM_FLAG = 1) THEN GOTO TCP_EXIT;
WORK = BUFTXTS80;
WK1 = BUFLEN + 1;
WRITE LOG MESSAGE ID (9060300) PARMS FROM (MSG1l) LENGTH (8)
FROM (WORKW) LENGTH (WK1);

BUFTXT80 = 'PLICLI TCP/IP test message number 00002 ';
BUFLEN = 41;

WK LENGTH = 45;

WK PTR = ADDR (BUFLEN) ;

CALL TCP_WRITE;
IF (TERM_FLAG = 1) THEN GOTO TCP_EXIT;

WK_LENGTH = 4;
BUFLEN =0;
WK_PTR = ADDR(BUFLEN) ;

CALL TCP_READ;
IF (TERM_FLAG = 1) THEN GOTO TCP_EXIT;
IF (BUFLEN > 80) THEN DO;
WRITE LOG MESSAGE ID (9060300) PARMS FROM (MSG12) LENGTH (22);
CALL TCP_CLOSE;
RETURN;
END;
WK_LENGTH = BUFLEN;
WK_PTR = ADDR(BUFTXT80) ;
CALL TCP_READ;
IF (TERM FLAG = 1) THEN RETURN;
WORK = BUFTXTS80;
WK1 = BUFLEN + 1;
WRITE LOG MESSAGE ID (9060300) PARMS FROM (MSG1l1l) LENGTH (8)
FROM (WORKW) LENGTH (WK1);

/**/

/* Close the socket and exit */
/**/
CALL TCP_CLOSE;
GOTO TCP_EXIT;

174 Callable Services Guide

PL/T Examples

TCP_EXIT:
MSG99_3 = ERROR_COUNT;
WRITE LINE TO TERMINAL FROM (MSG99) LENGTH (48);
WRITE LOG MESSAGE ID (9060300) PARMS FROM (MSG99) LENGTH (48);
RETURN;

/**/

/* Procedure to read a message from DEST PORT */
/**/
TCP_READ: PROC;
WRITE LOG MESSAGE ID (9060300) PARMS FROM (MSGO4) LENGTH (15);
DO WHILE (WK LENGTH > 0);
CALL IDMSOCKI (SOCKET FUNCTION READ,
SOCKET RETCD,
SOCKET ERRNO,
SOCKET RSNCD,
SOCKDESC,
WK_PTR->TEXT,
WK_LENGTH,
RETLEN) ;
CALL TCP_CHECKRC;
IF ((TERM FLAG = 1) | (RETLEN = 0)) THEN DO;
CALL TCP_CLOSE;
RETURN;
END;
WK PTR = WK PTR + RETLEN;
WK LENGTH = WK LENGTH - RETLEN;
END;
END TCP_READ;

/**/

/* Procedure to send a message DEST PORT */
/**/
TCP_WRITE: PROC;
WRITE LOG MESSAGE ID (9060300) PARMS FROM (MSGO5) LENGTH (16);
DO WHILE (WK LENGTH > 0);
CALL IDMSOCKI (SOCKET FUNCTION_WRITE,
SOCKET_RETCD,
SOCKET_ERRNO,
SOCKET_RSNCD,
SOCKDESC,
WK_PTR->TEXT,
WK_LENGTH,
RETLEN) ;
CALL TCP_CHECKRC;
IF ((TERM FLAG = 1) | (RETLEN = 0)) THEN DO;
CALL TCP_CLOSE;
RETURN;

Appendix B: TCP/IP Programming Examples 175

PL/T Examples

END;
WK_PTR = WK_PTR + RETLEN;
WK_LENGTH = WK_LENGTH - RETLEN;
END;
END TCP_WRITE;

/**/

/* Procedure to close the socket */
/**/
TCP_CLOSE: PROC;
WRITE LOG MESSAGE ID (9060300) PARMS FROM (MSGO6) LENGTH (16);
CALL IDMSOCKI (SOCKET FUNCTION CLOSE,
SOCKET RETCD,
SOCKET ERRNO,
SOCKET RSNCD,
SOCKDESC) ;
CALL TCP_CHECKRC;
END TCP_CLOSE;

/**/

/* Procedure to check the return codes */
/**/

TCP_CHECKRC: PROC;

RETCD = SOCKET_RETCD;
ERRNO = SOCKET_ERRNO;
RSNCD = SOCKET_RSNCD;

IF (RETCD ,= 0) THEN DO;
TERM_FLAG = 1;
ERROR_COUNT = ERROR_COUNT + 1;
WRITE LOG MESSAGE ID (9060300) PARMS FROM (MSG98) LENGTH (19);
SNAP FROM (RETURN_CODES) LENGTH (12);
END;

ELSE DO;
TERM_FLAG = 0;
WRITE LOG MESSAGE ID (9060300) PARMS FROM (MSG97) LENGTH (24);
END;

END TCP_CHECKRC;

END PLICLI ;

176 Callable Services Guide

PL/T Examples

PL/I TCP/IP Generic Listener Server Program

/*RETRIEVAL*/
/*DMLIST*/

JFFHRHRAAAAAFAAAFAAFAAAFAAAAAAAAAFAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAAAAFK /

/* The following program is an example of a TCP/IP generic */
/* listener server program written in PL/I. */
/* The processing is the following: */
/* - read a message from the client (first 4 bytes = data length)*/
/* - send the message back to the client program */
/* - if the message text is equal to "STOP" or if the connection */
/* is closed, then it closes its socket and return to the */
/* generic listener service. */

/* - if the message text is not equal to "STOP", then it returns */
/* to the generic listener service without closing its socket. */

/* */
/* Notes for the PL/I compiler on VSE. */
/* - in order to allow arithmetic operations on POINTER type */

/* variables, specify the LANGLVL(OS,SPROG) compiler option */
/* - there is no option to allow external names on 8 characters, */
/* so replace all CALL IDMSOCKI by CALL IDMSOCK, as described */

/* in the Callable Services manual. */
/**/

PLILIS: PROC (P1, P2, P3)
OPTIONS (REENTRANT,FETCHABLE);

/**/

/* Parameter list with which a listener program receives control */

/**/
DCL (P1,P2,P3) POINTER;
DCL SOCKET PARMS CHAR(80) BASED (ADDR(P1));
DCL SOCKET DESCRIPTOR FIXED BIN(31) BASED (ADDR(P2));
DCL SOCKET RESUME_COUNT FIXED BIN(31) BASED (ADDR(P3));

DCL MODE(IDMS DC) DEBUG;

DCL ADDR BUILTIN;

DCL IDMSPLI ENTRY OPTIONS(INTER,ASSEMBLER);

DCL IDMSOCKI ENTRY OPTIONS(INTER,ASSEMBLER);

DCL IDMSP ENTRY;

Appendix B: TCP/IP Programming Examples 177

PL/T Examples

INCLUDE IDMS (SUBSCHEMA CTRL);
INCLUDE IDMS (SOCKET_CALL_INTERFACE);

DCL 1 MSGO1 CHAR (20) INIT (' Parameter string :');
DCL 1 MSGO2 CHAR (20) INIT (' Socket descriptor :');
DCL 1 MSGO3 CHAR (20) INIT (' Resume count A
DCL 1 MSGO4 CHAR (15) INIT (' Starting read.');

DCL 1 MSGO5 CHAR (16) INIT (' Starting write.');
DCL 1 MSGO6 CHAR (16) INIT (' Closing socket.');
DCL 1 MSGO7 CHAR (20) INIT (' Socket return code:');
DCL 1 MSGO8 CHAR (20) INIT (' Socket reason code:');
DCL 1 MSGO9 CHAR (20) INIT (' Socket errno O H
DCL 1 MSG10 CHAR (20) INIT (' Buffer length ')
DCL 1 MSG11 CHAR (08) INIT (' Buffer:');

DCL 1 MSG12 CHAR (22) INIT (' Data length too long.');
DCL 1 RETLEN FIXED BINARY(31);

DCL 1 WK LENGTH FIXED BINARY(31);

DCL 1 WK PTR POINTER;

DCL 1 TEXT CHAR(80) BASED(WK PTR);

DCL 1 TERM FLAG FIXED BINARY(31) INITIAL(O);

DCL 1 BUFFER,
3 BUFLEN FIXED BINARY(31),
3 BUFTXT80 CHAR(80) ;

DCL 1 WORKW,
3 WORK_WCC CHAR(1),
3 WORK CHAR(80) ;

/**/
/* Display the 3 input parameters */
/**/
/**/
/* Read the first 4 bytes: will contain the remaining length */
/**/
WK_LENGTH = 4;

BUFLEN = 0;

WK _PTR = ADDR(BUFLEN);

CALL TCP_READ;

IF (TERM FLAG = 1) THEN RETURN;

/**/

/* Read the remaining data (maximum 80 characters are allowed) */
/**/
IF (BUFLEN > 80)
THEN DO;
WRITE LOG MESSAGE ID (9060300)
PARMS FROM (MSG12) LENGTH (22);

178 Callable Services Guide

PL/T Examples

CALL TCP_CLOSE;
RETURN;
END;

WK_LENGTH = BUFLEN;

WK_PTR = ADDR(BUFTXT80) ;

CALL TCP_READ;

IF (TERM_FLAG = 1) THEN RETURN;

WORK = BUFLEN;
WRITE LOG MESSAGE ID (9060300)
PARMS FROM (MSG10) LENGTH (20)
FROM (WORKW) LENGTH (15);
WORK = BUFTXTS80;
WK_LENGTH = BUFLEN + 1;
WRITE LOG MESSAGE ID (9060300)
PARMS FROM (MSG11) LENGTH (8)
FROM (WORKW) LENGTH (WK_LENGTH);

/**/

/* Send the message back to the client */
/**/
WK _LENGTH = BUFLEN + 4;

WK _PTR = ADDR(BUFLEN);

CALL TCP_WRITE;

IF ((BUFLEN = 4) & (SUBSTR(BUFTXT80,1,4) = 'STOP'))
THEN CALL TCP_CLOSE;

RETURN;

/**/

/* Procedure to read a message from the client */
/**/
TCP_READ: PROC;
WRITE LOG MESSAGE ID (9060300)
PARMS FROM (MSGO4) LENGTH (15);
DO WHILE (WK LENGTH > 0);
CALL IDMSOCKI (SOCKET FUNCTION READ,
SOCKET RETCD,
SOCKET _ERRNO,
SOCKET _RSNCD,
SOCKET DESCRIPTOR,
WK_PTR->TEXT,
WK_LENGTH,
RETLEN) ;
WORK = SOCKET RETCD;
WRITE LOG MESSAGE ID (9060300)
PARMS FROM (MSGO7) LENGTH (20)

Appendix B: TCP/IP Programming Examples 179

PL/T Examples

FROM (WORKW) LENGTH (15);
IF ((SOCKET_RETCD ,= 0) | (RETLEN = 0))
THEN DO;
CALL TCP_ERROR;
RETURN;
END;
WK_PTR = WK_PTR + RETLEN;
WK_LENGTH = WK_LENGTH - RETLEN;
END;
END TCP_READ;

/**/

/* Procedure to send a message to the client */
/**/
TCP_WRITE: PROC;
WRITE LOG MESSAGE ID (9060300)
PARMS FROM (MSGO5) LENGTH (16);
DO WHILE (WK LENGTH > 0);
CALL IDMSOCKI (SOCKET FUNCTION WRITE,
SOCKET RETCD,
SOCKET ERRNO,
SOCKET RSNCD,
SOCKET DESCRIPTOR,
WK_PTR->TEXT,
WK _LENGTH,
RETLEN) ;
WORK = SOCKET RETCD;
WRITE LOG MESSAGE ID (9060300)
PARMS FROM (MSGO7) LENGTH (20)
FROM (WORKW) LENGTH (15);
IF ((SOCKET RETCD ,= 0) | (RETLEN = 0))
THEN DO;
CALL TCP_ERROR;
RETURN;
END;
WK PTR = WK PTR + RETLEN;
WK LENGTH = WK LENGTH - RETLEN;
END;
END TCP_WRITE;

/**/

/* Procedure to close the socket */
/**/
TCP_CLOSE: PROC;
WRITE LOG MESSAGE ID (9060300)
PARMS FROM (MSGO6) LENGTH (16);
CALL IDMSOCKI (SOCKET FUNCTION CLOSE,
SOCKET RETCD,
SOCKET _ERRNO,

180 Callable Services Guide

COBOL Examples

SOCKET_RSNCD,
SOCKET_DESCRIPTOR) ;
WORK = SOCKET_RETCD;
WRITE LOG MESSAGE ID (9060300)
PARMS FROM (MSGO7) LENGTH (20)
FROM (WORKW) LENGTH (15);
END TCP_CLOSE;

/**/

/* Procedure to process the socket call errors */
/**/
TCP_ERROR: PROC;
WORK = SOCKET RSNCD;
WRITE LOG MESSAGE ID (9060300)
PARMS FROM (MSG08) LENGTH (20)
FROM (WORKW) LENGTH (15);
WORK = SOCKET_ERRNO;
WRITE LOG MESSAGE ID (9060300)
PARMS FROM (MSGG9) LENGTH (20)
FROM (WORKW) LENGTH (15);
WORK = RETLEN;
WRITE LOG MESSAGE ID (9060300)
PARMS FROM (MSG10) LENGTH (20)
FROM (WORKW) LENGTH (15);
CALL TCP_CLOSE;
TERM FLAG = 1;
END TCP_ERROR;

END PLILIS;

COBOL Examples

This section contains sample TCP/IP client and generic listener server programs written
in COBOL.

Appendix B: TCP/IP Programming Examples 181

COBOL Examples

COBOL TCP/IP Client Program

RETRIEVAL
NO-ACTIVITY-LOG
DMLIST

K KKK oK KKK oK oK oK KoK oK oK A KKK oK K KKK oK KK oK oK oK KK oK oK oK ok KoK ok oK ok ook ok oK ok o KoK oK ok ok KoK oK ok ok KoK oK ok oK

The following program is an example of a TCP/IP client
program written in COBOL.
The processing is the following:
- Create a socket for the client program.
- Convert the known dotted string format IPA to binary.
- Find host information for connection.
- Establish a connection to the host listener.
- Send message 1 to the listener (first 4 bytes = data length)*
- Read message 1 from 1listener (first 4 bytes = data length) *
- Send message 2 to the listener (first 4 bytes = data length)*
- Read message 2 from 1listener (first 4 bytes = data length) *

- Close socket and exit. *
Sk Sk sk sk >k >k sk ok ok Sk Sk ok >k >k sk ok ok Sk Sk Sk Sk sk sk ok ok sk k Sk sk sk >k sk kok ok ok Sk Sk sk sk sk ok ok ok Sk Sk sk koo ok ok k sk sk sk sk sk skok sk okok sk ok

* X ¥ X X ¥ X

IDENTIFICATION DIVISION.
PROGRAM-ID. COBCLI.
ENVIRONMENT DIVISION.
IDMS-CONTROL SECTION.
PROTOCOL. MODE IS IDMS-DC DEBUG
IDMS-RECORDS MANUAL.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 COPY IDMS SUBSCHEMA-CTRL.
01 COPY IDMS SOCKET-LISTENER-PARMS.
01 COPY IDMS SOCKET-SOCKADDR-ING.
01 COPY IDMS SOCKET-TIMEVAL.
01 COPY IDMS RECORD SOCKET-CALL-INTERFACE.
01 COPY IDMS RECORD SOCKET-MISC-DEFINITIONS.
01 SOCKADDR1.
02 COPY IDMS RECORD SOCKET-SOCKADDR-IN.
01 SOCKET-DESCRIPTOR PIC S9(8) COMP.

Sk >k ok ok >k sk ok ok ok >k ok okok Sk ok ok kook sk ok ok sk ok sk ok ok ok ok sk ok ok ok ok sk ok >k ok ok kok sk sk sk kok sk sk sk sk k skosk sk skok sk sk sk ko skk sk kok

Modify DEST-PORT and IPA-HOST to connect to desired server *
Sk sk sk sk sk sk skok sk ok Sk Sk sk sk >k sk ok ok Sk sk sk sk sk sk ok ok sk k sk sk sk sk sk kok sk ok sk sk sk sk sk sk sk ok sk sk sk skok sk sk sk sk sk sk sk sk kokokokok sk sk
01 DEST-PORT PIC 9(8) VALUE 12345.

01 TIPAHOST-REC.
02 IPA-HOST PIC X(12) VALUE '255.255.25.2'.
02 FILLER PIC X(4) VALUE SPACES.
02 IPA-HOSTL PIC S9(8) COMP VALUE 16.

182 Callable Services Guide

COBOL Examples

01 HOSTENTP USAGE IS POINTER.

01 WK1 PIC S9(8) COMP.
01 WK2 PIC S9(8) COMP.
01 WK3 PIC S9(8) COMP.
01 WK-SUBSCRIPT PIC S9(4) COMP.
01 WK-LENGTH PIC S9(8) COMP.
01 RETLEN PIC S9(8) COMP VALUE 0.
01 TERM-FLAG PIC S9(8) COMP VALUE 0.
01 ERROR-COUNT PIC S9(8) COMP VALUE 0.
01 BUFFER.
03 BUFFER-ARRAY PIC X(1) OCCURS 84 TIMES.
01 BUFFER-REDEF REDEFINES BUFFER.
03 BUFLEN PIC 9(8) COMP.
03 BUFTXT80 PIC X(80).
03 BUFTXT80-REDEF1 REDEFINES BUFTXT80.
05 BUFTXT04 PIC X(4).
05 BUFTXT76 PIC X(76).

03 BUFTXT80-REDEF2 REDEFINES BUFTXT80.
05 BUFTXT-MSG PIC X(41).
05 BUFTXT-BLANK PIC X(1).
05 BUFTXT-FILLER PIC X(38).

01 WORKW.
03 WORK-WCC PIC X.
03 WORK PIC X(80).

03 WORK-REDEF1 REDEFINES WORK.

04 WORK-ARRAY PIC X(1) OCCURS 80 TIMES.
03 WORK-REDEF2 REDEFINES WORK.

04 WORKNUM PIC 9(8) DISPLAY.

04 WORK-FILLER1 PIC X(72).

01 IPADDR-REC.
02 IPADDRBUFL PIC S9(8) COMP VALUE 16.
02 IPADDRRETL PIC S9(8) COMP.
02 IPADDRBUF PIC X(16).

01 RETURN-CODES.

02 RETCD PIC S9(8) COMP.
02 ERRNO PIC S9(8) COMP.
02 RSNCD PIC S9(8) COMP.

01 MSGO1 PIC X(18
01 MSGO2 PIC X(13
01 MSGO3 PIC X(19

) VALUE ' Creating Socket.'.
)
)
01 MSGO4 PIC X(16) VALUE ' Starting read.'.
)
)
)

VALUE ' Connecting: '.

01 MSGO5 PIC X(16) VALUE ' Starting write.'
01 MSGO6 PIC X(16) VALUE ' Closing Socket.'.
01 MSGO7 PIC X(19

VALUE ' Socket return code'.

VALUE ' Socket reason code'.

Appendix B: TCP/IP Programming Examples 183

COBOL Examples

01 MSGO8 PIC X(19) VALUE ' Socket errno "
01 MSG1O PIC X(08) VALUE ' Buffer:'.
01 MSGl1l PIC X(22) VALUE ' Data length too long.'.
01 MSG12 PIC X(19) VALUE ' Calling INET PTON.'.
01 MSG13 PIC X(23) VALUE ' Calling GETHOSTBYADDR.'.
01 MSG97 PIC X(24) VALUE ' Socket call successful.'.
01 MSG98 PIC X(19) VALUE ' Socket call error.'.
01 MSG99.
02 MSG99-1 PIC X(28) VALUE ' Program COBCLI terminated.'.
02 MSG99-2 PIC X(15) VALUE ' Error count = '.
02 MSG99-3 PIC 9(4) DISPLAY.

01 HOSTIPA PIC 9(8) COMP.
LINKAGE SECTION.
01 COPY IDMS RECORD SOCKET-HOSTENT.
01 AINFO1.
05 COPY IDMS RECORD SOCKET-ADDRINFO.

PROCEDURE DIVISION.

Skesk >k sk ok ok sk ok >k sk ok sk ok >k >k Sk ke ok sk >k sk ok ok sk sk sk Sk sk ok sk sk sk sk skesk sk >k sk ke ok sk >k sk ko k ok sk sk kosk ok sk sk skosk koo sk sk skosksksk sk >k
Create a socket in the communications domain *
Skesk >k sk ok ok sk ok >k sk ok sk ok >k >k Sk ke ok sk >k sk ok ok sk sk sk Sk sk ok sk sk sk sk skesk sk >k sk ke ok sk >k sk ko sk ok sk sk kosk ok sk sk skoskoskook sk sk skosksksk sk >k
*
TCP-CLIENT-SOCKET.
*
WRITE LOG MESSAGE ID 9060300
PARMS FROM MSGO1 LENGTH 18.
CALL 'IDMSOCKI' USING SOCKET-FUNCTION-SOCKET,
SOCKET-RETCD,
SOCKET-ERRNO,
SOCKET-RSNCD,
SOCKET-FAMILY-AFINET,
SOCKET-TYPE-STREAM,
SOCKET-PROTOCOL-TCP,
SOCKET-DESCRIPTOR.
PERFORM TCP-CLIENT-CHECKRC THRU TCP-CLIENT-CHECKRC-EXIT.
IF TERM-FLAG = 1
PERFORM TCP-CLIENT-CLOSE THRU TCP-CLIENT-CLOSE-EXIT
GO TO TCP-CLIENT-EXIT.

Sk >k ok ok >k sk ok ok ok >k ok okok Sk ok ok kook sk ok ok sk ok sk ok ok ok ok sk ok ok ok ok sk ok >k ok ok kok sk sk sk kok sk sk sk sk k skosk sk skok sk sk sk ko skk sk kok

Convert the IP address from dotted string format to binary. *
Skeok >k 3k ok ok sk ok sk sk ok sk ok >k sk Sk sk ok sk sk Sk ok ok sk >k sk Sk ok ok sk sk sk sk sk ok sk sk Sk ke ok sk >k sk ok ok ok sk sk sk sk sk ok sk sk sk skook sk sk skokok sk sk k
TCP-CLIENT-INETPTON.

WRITE LOG MESSAGE ID 9060300 PARMS FROM MSG12 LENGTH 19.
CALL 'IDMSOCKI' USING SOCKET-FUNCTION-INETPTON,
SOCKET-RETCD,
SOCKET-ERRNO,

184 Callable Services Guide

COBOL Examples

SOCKET-RSNCD,
SOCKET-FAMILY -AFINET,
IPA-HOST,
IPA-HOSTL,
HOSTIPA.
PERFORM TCP-CLIENT-CHECKRC THRU TCP-CLIENT-CHECKRC-EXIT.

Sk >k 3k ok ok >k 3k >k ok ok sk ok >k >k Sk ke ok sk >k sk ke ok ok >k sk kook ok sk >k sk Sk sk ok >k >k sk keok ok >k sk ko k ok sk sk kosk ok ok >k skoskoskok ok skoskosksksk sk k
Take the IP address and domain and resolve it through a name *
server. If successful, return the information in a HOSTENT *
structure. *

Sk >k 3k ok ok >k ok >k ok ok sk ok >k >k Sk ke ok sk >k sk ok ok ok >k sk kook ok sk >k sk Sk sk ok >k >k sk keok ok >k sk kok ok sk sk kok ok ok >k skoskoskok ok skoskosksksk sk k

TCP-CLIENT-GETHOST.

WRITE LOG MESSAGE ID 9060300 PARMS FROM MSG13 LENGTH 23.
CALL 'IDMSOCKI' USING SOCKET-FUNCTION-GETHOSTBYADDR,
SOCKET-RETCD,
SOCKET-ERRNO,
SOCKET-RSNCD,
HOSTIPA,
SOCKET-IPADDRAL,
SOCKET-FAMILY -AFINET,
HOSTENTP.
PERFORM TCP-CLIENT-CHECKRC THRU TCP-CLIENT-CHECKRC-EXIT.

SET ADDRESS OF SOCKET-HOSTENT TO HOSTENTP.
TCP-CLIENT-CONNECT.

SET ADDRESS OF SOCKET-HOSTENT TO HOSTENTP.
WRITE LOG MESSAGE ID 9060300 PARMS FROM MSGO2 LENGTH 13.

MOVE SOCKET-FAMILY-AFINET TO SIN-FAMILY OF SOCKADDRL.
MOVE DEST-PORT TO SIN-PORT-NUMBER OF SOCKADDR1.
MOVE HOSTIPA TO SIN-ADDRESS OF SOCKADDRL.
MOVE LOW-VALUES TO SIN-ZEROS OF SOCKADDRL.

CALL 'IDMSOCKI' USING SOCKET-FUNCTION-CONNECT,
SOCKET-RETCD,
SOCKET-ERRNO,
SOCKET-RSNCD,
SOCKET-DESCRIPTOR,
SOCKADDR1,
SOCKADDR-IN-LENGTH.
PERFORM TCP-CLIENT-CHECKRC THRU TCP-CLIENT-CHECKRC-EXIT.
IF TERM-FLAG = 1
PERFORM TCP-CLIENT-CLOSE THRU TCP-CLIENT-CLOSE-EXIT
GO TO TCP-CLIENT-EXIT.

TCP-CLIENT-BUILD.

*
Sk 3k sk sk sk sk skok sk ok Sk ok sk sk >k sk ok ok Sk sk sk sk sk sk ok ok sk sk sk sk sk sk sk kok sk ok sk sk sk sk sk sk sk ok sk sk sk skok sk sk sk sk sk sk sk sk kokoskokok sk k

Build and send first message to DEST-PORT *

Sk >k ok ok >k sk ok ok ok >k sk okook ok ok ok Sk ok sk ok ok sk ok Sk ok >k sk sk ok ok >k ok ok sk sk sk ok ok sk ok sk sk sk kok sk sk sk skok skok sk skok sk sk sk skok sk k sk kok

Appendix B: TCP/IP Programming Examples 185

COBOL Examples

MOVE 'COBCLI - TCP/IP test message number 00001’
TO BUFTXT-MSG.
MOVE ' ' TO BUFTXT-BLANK.
MOVE 41 TO BUFLEN.
MOVE 45 TO WK-LENGTH.
MOVE 1 TO WK-SUBSCRIPT.
PERFORM TCP-CLIENT-WRITE THRU TCP-CLIENT-WRITE-EXIT.
IF TERM-FLAG = 1 GO TO TCP-CLIENT-EXIT.

koo ok ok >k ok ok ok ok >k ok okok ok ok ok okook ok ok ok ok ok ok ok ok ok >k ok ok ok ok ok sk ok >k ok ok ok ok sk ok sk ok sk sk ok sk ok sk sk sk skk ok skok kokskk sk kok

Read the response from DEST-PORT *

koo ok ok >k ok ok ok ok ok ok okok ok ok ok okook ok ok ok ok sk sk ok ok ok >k ok sk ok ok ok sk ok >k ok ok ok ok sk ok sk ok sk sk sk sk ok sk sk sk skok ok kok skokskk sk kok

MOVE 4 TO WK-LENGTH.

MOVE © TO BUFLEN.

MOVE 1 TO WK-SUBSCRIPT.

PERFORM TCP-CLIENT-READ THRU TCP-CLIENT-READ-EXIT.

IF TERM-FLAG = 1 GO TO TCP-CLIENT-EXIT.

IF BUFLEN GREATER THAN 80
WRITE LOG MESSAGE ID 9060300 PARMS FROM MSG1l LENGTH 22
PERFORM TCP-CLIENT-CLOSE THRU TCP-CLIENT-CLOSE-EXIT
GO TO TCP-CLIENT-EXIT.

MOVE BUFLEN TO WK-LENGTH.

MOVE 5 TO WK-SUBSCRIPT.

PERFORM TCP-CLIENT-READ THRU TCP-CLIENT-READ-EXIT.

IF TERM-FLAG = 1 GO TO TCP-CLIENT-EXIT.

MOVE BUFTXT80 TO WORK.

MOVE BUFLEN TO WK1.

ADD 1 TO WK1.

WRITE LOG MESSAGE ID 9060300 PARMS FROM MSG10 LENGTH 8

FROM WORKW LENGTH WK1.

Sk ok ok ok >k sk ok ok ok >k ok kok ok ok ok kook ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok sk ok ok ok ok sk ok sk skook sk ok sk sk ok sk k sk sk sk skk ok sk ok skok skok sk kok

Build and send second message to DEST-PORT *

3k >k ok ok >k sk ok ok ok >k ok kok ok ok ok kok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok sk ok ok ok ok sk ok sk skook sk ok sk sk ok sk k sk sk sk sk k sk skok skokskok sk kok

MOVE 'COBCLI - TCP/IP test message number 00002’
TO BUFTXT-MSG.
MOVE ' ' TO BUFTXT-BLANK.
MOVE 41 TO BUFLEN.
MOVE 45 TO WK-LENGTH.
MOVE 1 TO WK-SUBSCRIPT.
PERFORM TCP-CLIENT-WRITE THRU TCP-CLIENT-WRITE-EXIT.
IF TERM-FLAG = 1 GO TO TCP-CLIENT-EXIT.

Sk >k ok ok >k sk ok ok ok >k ok skok Sk ok ok kok sk ok ok sk ok sk ok sk ok ok ok ok ok ok sk sk ok ok sk ok kok sk sk ok sk ok sk sk sk sk k skosk sk skk sk sk sk ko sk ks kok

Read the response from DEST-PORT *

Sk >k ok ok >k sk ok ok ok >k ok okok ok ok ok kok Sk ok ok ok ok sk ok ok ok ok sk ok ok ok sk ok ok sk sk sk sk ok ok sk ok skok sk sk sk skok sk sk sk skosk sk k sk sk ks ksk sk >k

MOVE 4 TO WK-LENGTH.
MOVE © TO BUFLEN.

186 Callable Services Guide

COBOL Examples

MOVE 1 TO WK-SUBSCRIPT.

PERFORM TCP-CLIENT-READ THRU TCP-CLIENT-READ-EXIT.

IF TERM-FLAG = 1 GO TO TCP-CLIENT-EXIT.

IF BUFLEN GREATER THAN 80
WRITE LOG MESSAGE ID 9060300 PARMS FROM MSG1l LENGTH 22
PERFORM TCP-CLIENT-CLOSE THRU TCP-CLIENT-CLOSE-EXIT
GO TO TCP-CLIENT-EXIT.

MOVE BUFLEN TO WK-LENGTH.

MOVE 5 TO WK-SUBSCRIPT.

PERFORM TCP-CLIENT-READ THRU TCP-CLIENT-READ-EXIT.

IF TERM-FLAG = 1 GO TO TCP-CLIENT-EXIT.

MOVE BUFTXT80 TO WORK.

MOVE BUFLEN TO WK1.

ADD 1 TO WK1.

WRITE LOG MESSAGE ID 9060300 PARMS FROM MSG10 LENGTH 8

FROM WORKW LENGTH WK1.

TCP-CLIENT-CLOSE-IT.

>k ok ok ok >k ok ok ok ok ok ok okok ok ok ok okook ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok sk ok >k ok ok kok ok sk ok sk ok sk sk sk sk k sk sk ok skok ok skok kokskok sk kok

Close the socket and exit *
Skesk >k sk ok ok sk ok >k sk ok sk ok >k >k Sk ke ok sk >k sk ok ok sk sk sk Sk sk ok sk sk sk sk skesk sk >k sk ke ok sk >k sk ko k ok sk sk kosk ok sk sk skosk koo sk sk skosksksk sk >k
PERFORM TCP-CLIENT-CLOSE THRU TCP-CLIENT-CLOSE-EXIT.
GO TO TCP-CLIENT-EXIT.

TCP-CLIENT-EXIT.
MOVE ERROR-COUNT TO MSG99-3.
WRITE LINE TO TERMINAL FROM MSG99 LENGTH 48.
WRITE LOG MESSAGE ID 9060300 PARMS FROM MSG99 LENGTH 48.
GOBACK.

Sk ok ok ok >k sk ok ok ok >k ok kok ok ok ok kook ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok sk ok ok ok ok sk ok sk skook sk ok sk sk ok sk k sk sk sk skk ok sk ok skok skok sk kok

Procedure to read a message from DEST-PORT *
Sk sk sk sk ok sk sk ok ok ok Sk ok sk sk ok >k sk ok ok k sk sk ok >k sk ok sk ok sk sk sk sk sk skoko ok sk sk sk sk sk k sk sk ok sk sk sk skok sk sk sk sk sk skosk sk kkkoskk sk k
TCP-CLIENT-READ.

WRITE LOG MESSAGE ID 9060300 PARMS FROM MSGO4 LENGTH 15.
PERFORM UNTIL WK-LENGTH = 0
CALL 'IDMSOCKI' USING SOCKET-FUNCTION-READ,
SOCKET-RETCD,
SOCKET-ERRNO,
SOCKET-RSNCD,
SOCKET-DESCRIPTOR,
BUFFER-ARRAY (WK -SUBSCRIPT),
WK-LENGTH,
RETLEN
PERFORM TCP-CLIENT-CHECKRC THRU TCP-CLIENT-CHECKRC-EXIT
IF TERM-FLAG = 1 OR RETLEN = 0
PERFORM TCP-CLIENT-CLOSE THRU TCP-CLIENT-CLOSE-EXIT

Appendix B: TCP/IP Programming Examples 187

COBOL Examples

GO TO TCP-CLIENT-READ-EXIT
END-IF
ADD RETLEN TO WK-SUBSCRIPT
SUBTRACT RETLEN FROM WK-LENGTH
END-PERFORM.
TCP-CLIENT-READ-EXIT.
EXIT.

>kook ok ok ok ok ok ok ok ok ok kok ok ok ok kok ok ok ok ok ok ok ok ok ok >k ok k ok ok ok sk ok ok ok ok ok sk sk ok sk ok sk sk sk sk ok sk sk ok skk ok kok skok ko k sk kok

Procedure to send a message to DEST PORT

Skook ok ok ok ok ok ok ok ok ok kok ok ok ok kok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok k ok ok ok ok ok sk sk ok sk ok sk sk sk sk ok ok sk ok skok ok kok skok ok k sk kok

TCP-CLIENT-WRITE.
WRITE LOG MESSAGE ID 9060300 PARMS FROM MSGO5 LENGTH 16.
PERFORM UNTIL WK-LENGTH = 0
CALL 'IDMSOCKI' USING SOCKET-FUNCTION-WRITE,
SOCKET-RETCD,
SOCKET-ERRNO,
SOCKET-RSNCD,
SOCKET-DESCRIPTOR,
BUFFER-ARRAY (WK-SUBSCRIPT),
WK-LENGTH,
RETLEN
PERFORM TCP-CLIENT-CHECKRC THRU TCP-CLIENT-CHECKRC-EXIT
IF TERM-FLAG = 1 OR RETLEN = 0
PERFORM TCP-CLIENT-CLOSE THRU TCP-CLIENT-CLOSE-EXIT
GO TO TCP-CLIENT-WRITE-EXIT
END-IF
ADD RETLEN TO WK-SUBSCRIPT
SUBTRACT RETLEN FROM WK-LENGTH
END-PERFORM.
TCP-CLIENT-WRITE-EXIT.
EXIT.

3k >k ok ok >k sk ok ok ok >k ok kok ok ok ok kok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok sk ok ok ok ok sk ok sk skook sk ok sk sk ok sk k sk sk sk sk k sk skok skokskok sk kok

Procedure to close the socket

3k >k ok ok >k sk ok ok ok >k ok kok ok ok ok kok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok sk ok ok ok ok sk ok sk skook sk ok sk sk ok sk k sk sk sk sk k sk skok skokskok sk kok

TCP-CLIENT-CLOSE.
WRITE LOG MESSAGE ID 9060300 PARMS FROM MSGO6 LENGTH 16.
CALL 'IDMSOCKI' USING SOCKET-FUNCTION-CLOSE,
SOCKET-RETCD,
SOCKET-ERRNO,
SOCKET-RSNCD,
SOCKET-DESCRIPTOR.
PERFORM TCP-CLIENT-CHECKRC THRU TCP-CLIENT-CHECKRC-EXIT.

TCP-CLIENT-CLOSE-EXIT.
EXIT.

Sk >k ok ok >k sk ok ok ok >k ok okok Sk ok ok kok sk ok ok sk ok sk ok ok ok ok sk ok ok sk sk sk ok sk ok ok kok sk sk ok sk ok sk sk sk sk k sksk sk skok sk sk sk ko skk sk sk ok

188 Callable Services Guide

COBOL Examples

Procedure to check the return codes *
Sk >k 3k ok ok >k 3k >k ok ok sk ok >k >k Sk ke ok sk >k sk ke ok ok >k sk kook ok sk sk sk Sk sk ok sk >k sk Skeoke ok >k sk Skook ok sk sk kok ok ok >k koskoskok ok skoskosksksk sk k
TCP-CLIENT-CHECKRC.

MOVE SOCKET-RETCD TO RETCD.
MOVE SOCKET-ERRNO TO ERRNO.
MOVE SOCKET-RSNCD TO RSNCD.
IF RETCD NOT = 0
MOVE 1 TO TERM-FLAG
ADD 1 TO ERROR-COUNT
WRITE LOG MESSAGE ID 9060300 PARMS FROM MSG98 LENGTH 19
SNAP FROM RETURN-CODES LENGTH 12
ELSE
MOVE O TO TERM-FLAG
WRITE LOG MESSAGE ID 9060300 PARMS FROM MSG97 LENGTH 24
END-IF.
TCP-CLIENT-CHECKRC-EXIT.
EXIT.

>k ok ok ok >k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok sk sk ok sk k sk sk ok ok ok sk sk ok ok ok sk sk k sksk ok kok sk k sk ksk sk ok

COPY IDMS IDMS-STATUS.
IDMS-ABORT SECTION.
IDMS-ABORT-EXIT.

EXIT.

COBOL TCP/IP Generic Listener Server Program

RETRIEVAL
NO-ACTIVITY-LOG
DMLIST

3Kk >k ok ok ok ok ok ok ok >k Sk ok >k 3k ok ok ok ok ok Sk >k ok Sk >k sk Sk ok ok ok ok ok >k sk ok >k ok ok >k sk ok ok sk ok ok sk >k ok sk ok ok sk ok sk ok >k sk k ok sk sk sk sk sk k

The following program is an example of a TCP/IP generic *
listener server program written in COBOL. *
The processing is the following: *
- read a message from the client (first 4 bytes = data length)*
- send the message back to the client program *

- if the message text is equal to "STOP" or if the connection *
is closed, then it closes its socket and return to the *
generic listener service. *

- if the message text is not equal to "STOP", then it returns *

*

to the generic listener service without closing its socket.
K3k >k ok ok ok ok ok ok ok >k sk ok >k 3k ok ok Sk ok ok 3k koK Sk >k ok Sk ok ok ok ok ok >k Sk ok >k sk sk sk sk sk >k sk sk ok sk sk ok sk ok sk sk ok sk sk k sk k k sk ks sk >k k

Appendix B: TCP/IP Programming Examples 189

COBOL Examples

IDENTIFICATION DIVISION.

PROGRAM-ID.

ENVIRONMENT DIVISION.

IDMS-CONTROL SECTION.

PROTOCOL. MODE IS IDMS-DC DEBUG
IDMS-RECORDS MANUAL.

COBLIS.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 COPY IDMS SUBSCHEMA-CTRL.

01 COPY IDMS RECORD SOCKET-CALL-INTERFACE.
01 MSGO1 PIC X(20 H
01 MSGO2 PIC X(20
01 MSGO3 PIC X(20

VALUE ' Parameter string
VALUE ' Socket descriptor :'.
VALUE ' Resume count HEN

(20)

(20)

(20)
01 MSGO4 PIC X(15) VALUE ' Starting read.'.
01 MSGO5 PIC X(16) VALUE ' Starting write.'.
01 MSGO6 PIC X(16) VALUE ' Closing socket.'.
01 MSGO7 PIC X(20) VALUE ' Socket return code:'.
01 MSGO8 PIC X(20) VALUE ' Socket reason code:'.
01 MSGO9 PIC X(20) VALUE ' Socket errno HA
01 MSG10 PIC X(20) VALUE ' Buffer length 'L
01 MSGll PIC X(08) VALUE ' Buffer:'
01 MSG1l2 PIC X(22) VALUE ' Data length too long.'.
01 RETLEN PIC S9(8) COMP.
01 WK-LENGTH PIC S9(8) COMP.
01 WK-SUBSCRIPT PIC S9(4) COMP.
01 TERM-FLAG PIC S9(8) COMP VALUE 0.
01 BUFFER.

03 BUFFER-ARRAY
01 BUFFER-REDEF
03 BUFLEN

PIC X(1) OCCURS 84 TIMES.
REDEFINES BUFFER.
PIC 9(8) COMP.

03 BUFTXT80 PIC X(80).
03 BUFTXT80-REDEF REDEFINES BUFTXT80.
05 BUFTXT04 PIC X(4).
05 BUFTXT76 PIC X(76).
01 WORKW.
03 WORK-WCC PIC X.
03 WORK PIC X(80).

LINKAGE SECTION.

Sk >k ok ok >k sk ok ok ok >k sk okook ok >k ok kok Sk sk ok sk ok sk ok ok ok sk sk ok ok ok sk ok ok sk sk sk sk k sk sk ok kok sk sk sk kok sksk sk skk skok sk skok skok sk sk >k

Parameter list with which a listener program receives control *
Sk sk sk sk sk sk skok ok ok Sk ok sk sk >k sk ok ok Sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk kok ok ok Sk sk sk sk sk sk sk ok sk sk sk skok sk sk sk sk sk sk sk sk kokokokok sk k

190 Callable Services Guide

COBOL Examples

01 SOCKET-PARMS PIC X(80).
01 SOCKET-DESCRIPTOR PIC S9(8) COMP.
01 SOCKET-RESUME-COUNT PIC S9(8) COMP.

PROCEDURE DIVISION USING SOCKET-PARMS,
SOCKET-DESCRIPTOR,
SOCKET -RESUME -COUNT .

>kook ok ok ok ok ok ok ok ok ok kok ok ok ok kok ok ok ok ok ok ok ok ok ok >k ok k ok ok ok sk ok ok ok ok ok sk sk ok sk ok sk sk sk sk ok sk sk ok skk ok kok skok ko k sk kok

Display the 3 input parameters *
Sk ok ok ok ok ok >k ok ok ok ok ok ok ok K K 3k ok ok ok k koK K 5k 5k sk k k ok sk sk ok Kok ok ok ok sk ok K K sk sk ok sk sk ok koK ok sk sk sk k k ok sk sk k ki sk sk sk k
TCP-START.

Sk 3k sk sk ok ok sk ok ok ok ok ok sk ok >k >k sk ok ok ok sk sk ok >k sk ok skek sk sk sk sk sk sk ok ok ok sk sk sk sk K sk sk ok ok sk sk kR sk sk sk sk sk sk sk sk sk kokskok sk k

Read the first 4 bytes: will contain the remaining length *

koo ok ok >k ok ok ok ok ok ok okok ok ok ok okook ok ok ok ok sk sk ok ok ok >k ok sk ok ok ok sk ok >k ok ok ok ok sk ok sk ok sk sk sk sk ok sk sk sk skok ok kok skokskk sk kok

MOVE 4 TO WK-LENGTH.

MOVE © TO BUFLEN.

MOVE 1 TO WK-SUBSCRIPT.

PERFORM TCP-READ THRU TCP-READ-EXIT.
IF TERM-FLAG = 1 GO TO TCP-EXIT.

>k ok ok ok >k ok ok ok ok >k ok kok ok ok ok ok ok ok ok >k ok ok sk ok >k ok ok sk ok ok ok ok ok ok sk ok ok sk k sk sk sk ok ok sk sk sk ok ok ok sk ok ksk ok ksk sk ok sk ok sk sk ok

Read the remaining data (maximum 80 characters are allowed) *
Skesk >k 3k ok ok sk sk sk sk ok sk sk sk >k Sk ok ok sk >k sk ok ok sk sk sk sk sk ok sk sk sk sk skek sk >k sk ke ok sk sk sk Sk ke k sk >k skosk ok sk sk skosk skooke sk skskosksk sk sk k
IF BUFLEN GREATER THAN 80
WRITE LOG MESSAGE ID 9060300
PARMS FROM MSG12 LENGTH 22
PERFORM TCP-CLOSE THRU TCP-CLOSE-EXIT
GO TO TCP-EXIT.

MOVE BUFLEN TO WK-LENGTH.

MOVE 5 TO WK-SUBSCRIPT.

PERFORM TCP-READ THRU TCP-READ-EXIT.
IF TERM-FLAG = 1 GO TO TCP-EXIT.

MOVE BUFLEN TO WORK.
WRITE LOG MESSAGE ID 9060300
PARMS FROM MSG10 LENGTH 20
FROM WORKW LENGTH 9.
MOVE BUFTXT80 TO WORK.
MOVE BUFLEN TO WK-LENGTH.
ADD 1 TO WK-LENGTH.
WRITE LOG MESSAGE ID 9060300
PARMS FROM MSG11 LENGTH 8
FROM WORKW LENGTH WK-LENGTH.

Sk >k ok ok >k sk ok ok ok >k ok okok Sk ok ok kok sk ok ok sk sk sk ok ok ok ok ok ok ok ok ok sk ok sk ok ok kok sk sk sk sk ok sk sk sk sk k sk osk sk skok sk sk k sk skk sk sk ok

Send the message back to the client *

Appendix B: TCP/IP Programming Examples 191

COBOL Examples

Aok AR AR oK R A KoK ok Aok Aok Kok oKk Aok ok Aok A ok ok Ak ok Kok ok ok ok ok ok Kok ok
MOVE BUFLEN TO WK-LENGTH.
ADD 4 TO WK-LENGTH.
MOVE 1 TO WK-SUBSCRIPT.
PERFORM TCP-WRITE THRU TCP-WRITE-EXIT.

IF BUFLEN = 4 AND BUFTXT04 = 'STOP'
PERFORM TCP-CLOSE THRU TCP-CLOSE-EXIT.

TCP-EXIT.
GOBACK.

>k ok ok ok >k ok ok ok ok ok ok okok ok ok ok okook ok ok ok ok ok sk ok sk ok ok sk ok ok ok ok ok ok sk sk ok ok k sk sk sk sk ok sk sk sk sk ok ok ke k skk ok ok sk sk kskok sk sk ok

Procedure to read a message from the client *
Sk 3k sk sk ok ok sk ok ok ok ok ke sk ok >k >k sk ok ok ok sk sk sk >k sk ok sk ok sk sk sk sk sk sk ok sk ok sk sk sk sk k sk sk ok sk sk sk kR sk sk sk sk sk sk sk sk sk kokskok sk k
TCP-READ.

WRITE LOG MESSAGE ID 9060300
PARMS FROM MSGO4 LENGTH 15.
PERFORM UNTIL WK-LENGTH = 0
CALL 'IDMSOCKI' USING SOCKET-FUNCTION-READ,
SOCKET-RETCD,
SOCKET-ERRNO,
SOCKET-RSNCD,
SOCKET-DESCRIPTOR,
BUFFER-ARRAY (WK-SUBSCRIPT),
WK-LENGTH,
RETLEN
MOVE SOCKET-RETCD TO WORK
WRITE LOG MESSAGE ID 9060300
PARMS FROM MSGO7 LENGTH 20
FROM WORKW LENGTH 9
IF SOCKET-RETCD NOT = 0 OR RETLEN = 0
PERFORM TCP-ERROR THRU TCP-ERROR-EXIT
GO TO TCP-READ-EXIT
END-IF
ADD RETLEN TO WK-SUBSCRIPT
SUBTRACT RETLEN FROM WK-LENGTH
END-PERFORM.
TCP-READ-EXIT.
EXIT.

Sk >k ok ok >k sk ok ok ok >k ok okok Sk ok ok kook sk ok ok sk ok sk ok ok ok ok sk ok ok ok ok sk ok >k ok ok kok sk sk sk kok sk sk sk sk k skosk sk skok sk sk sk ko skk sk kok

Procedure to send a message to the client *
Sk sk sk sk sk sk skok ok ok Sk ke sk sk sk sk ok ok sk sk sk sk sk sk ok ok ok k sk sk sk sk sk kok sk ok sk sk sk sk sk sk sk ok sk sk sk skok sk sk sk sk sk sk sk sk kkokoskk sk sk
TCP-WRITE.

WRITE LOG MESSAGE ID 9060300
PARMS FROM MSGO5 LENGTH 16.
PERFORM UNTIL WK-LENGTH = 0
CALL 'IDMSOCKI' USING SOCKET-FUNCTION-WRITE,

192 Callable Services Guide

COBOL Examples

SOCKET-RETCD,
SOCKET-ERRNO,
SOCKET-RSNCD,
SOCKET-DESCRIPTOR,
BUFFER-ARRAY (WK-SUBSCRIPT),
WK-LENGTH,
RETLEN
MOVE SOCKET-RETCD TO WORK
WRITE LOG MESSAGE ID 9060300
PARMS FROM MSGO7 LENGTH 20
FROM WORKW LENGTH 9
IF SOCKET-RETCD NOT = 0 OR RETLEN = 0
PERFORM TCP-ERROR THRU TCP-ERROR-EXIT
GO TO TCP-WRITE-EXIT
END-IF
ADD RETLEN TO WK-SUBSCRIPT
SUBTRACT RETLEN FROM WK-LENGTH
END-PERFORM.
TCP-WRITE-EXIT.
EXIT.

>k ok ok ok >k ok ok ok ok >k ok okok ok ok ok okook ok ok ok ok ok ok ok sk ok >k ok ok ok ok ok ke ok ok ok ok ok ok sk ok sk ok sk sk sk sk ok sk sk sk skk ok skok skokskk sk kok

Procedure to close the socket *
Skesk >k 3k ok ok sk sk sk sk ok sk sk sk >k Sk ok ok sk >k sk ok ok sk sk sk sk sk ok sk sk sk sk skek sk >k sk ke ok sk sk sk Sk ke k sk >k skosk ok sk sk skosk skooke sk skskosksk sk sk k
TCP-CLOSE.

WRITE LOG MESSAGE ID 9060300
PARMS FROM MSGO6 LENGTH 16.
CALL 'IDMSOCKI' USING SOCKET-FUNCTION-CLOSE,
SOCKET-RETCD,
SOCKET-ERRNO,
SOCKET-RSNCD,
SOCKET-DESCRIPTOR.
MOVE SOCKET-RETCD TO WORK.
WRITE LOG MESSAGE ID 9060300
PARMS FROM MSGO7 LENGTH 20
FROM WORKW LENGTH 9.
TCP-CLOSE-EXIT.
EXIT.

Sk >k ok ok >k sk ok ok ok >k ok skok Sk ok ok kok ok sk ok sk ok sk ok ok ok ok sk ok ok ok ok sk ok sk ok ok kok sk sk ok sk ok sk sk sk sk k skosk sk skok sk sk sk ko skk sk kok

Procedure to process the socket call errors *
Skeok >k sk ok ok sk ok >k sk ok sk ok sk sk Sk ke ok sk sk sk ok ok ok sk sk Sk sk ok sk sk sk sk ke ok sk >k sk ok ok ok sk sk Sk sk ok sk sk sk sk ok ok sk sk sk skook ok skoskoskskok sk >k
TCP-ERROR.

MOVE SOCKET-RSNCD TO WORK.
WRITE LOG MESSAGE ID 9060300
PARMS FROM MSGO8 LENGTH 20
FROM WORKW LENGTH 9.
MOVE SOCKET-ERRNO TO WORK.
WRITE LOG MESSAGE ID 9060300

Appendix B: TCP/IP Programming Examples 193

Assembler Examples

PARMS FROM MSGO9 LENGTH 20
FROM WORKW LENGTH 9.
MOVE RETLEN TO WORK.
WRITE LOG MESSAGE ID 9060300
PARMS FROM MSG10 LENGTH 20
FROM WORKW LENGTH 9.
PERFORM TCP-CLOSE THRU TCP-CLOSE-EXIT.
MOVE 1 TO TERM-FLAG.
TCP-ERROR-EXIT.
EXIT.

koo ok ok >k ok ok ok ok >k ok okok ok ok ok okook ok ok ok ok ok ok ok ok ok >k ok ok ok ok ok sk ok >k ok ok ok ok sk ok sk ok sk sk ok sk ok sk sk sk skk ok skok kokskk sk kok

COPY IDMS IDMS-STATUS.
IDMS-ABORT SECTION.
IDMS-ABORT-EXIT.

EXIT.

Assembler Examples

This section contains sample TCP/IP client and generic listener server programs written
in Assembler.

Assembler TCP/IP Client Program

TITLE 'Sample ASSEMBLER client TCP/IP program'

* ASMCLI ~ RENT EP=ASMCLIEP

Sk sk sk sk ok sk sk ok ok ok Sk ok sk sk ok sk sk ok Sk sk sk kR sk sk ok sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk ok sk sk k sk sk sk skok sk skok ke sk sk sk koksk sk kskoskk ok
* The following program is an example of a TCP/IP client

* client program written in Assembler.

* The processing is the following:

* - Create a socket for the client program.

- Convert the known dotted string format IPA to binary.

- (Host IPA is defined in IPADOT, see below.)

- Find host information for connection.

- (Host port is defined in DESTPORT, see below.)

- Establish a connection to the host listener.

- Send message 1 to the listener (first 4 bytes = data length)
- Read message 1 from 1listener (first 4 bytes = data length) *
- Send message 2 to the listener (first 4 bytes = data length)*
- Read message 2 from 1listener (first 4 bytes = data length) *

- Close socket and exit. *
Sk sk >k sk ok ok sk ok >k sk ok ok ok sk sk Sk ok ok sk >k sk ok ok ok sk sk Sk sk ok ok sk sk sk ke k sk sk sk Sk ok sk sk sk Sk sk ok sk sk sk sk sk ok sk skosk sk ko sk skoskskok sk k sk

¥ X X X X X ¥ X X %

¥ X X X ¥ X ¥ X ¥ *

194 Callable Services Guide

Assembler Examples

&LABEL.
&LABEL.

&LABEL.
&LABEL.

&LABEL.

&TMP.

&LABEL.
L1&TMP.
L2&TMP.

ASMCLI

ASMCLIEP

DESTPORT
IPADOT

IPADOTL
MAX_LOOP

*

TCPSTART

*

MACRO

#SAVEREG

ST
ST
STM
LA

R12,0(,R13)
R14,4(,R13)
R2,R8,8(R13)
R13,9*4(,R13)

MACRO

#RESTREG

LA
SR

R12,9*4
R13,R12
R12,0(,R13)
R14,4(,R13)
R2,R8,8(R13)

MACRO

MSGTXT &TXT.

LCLC

SETC

DC
DC
EQU

&TMP.
'&YSNDX" .
AL1(L2&TMP) .
C&TXT.
*-L1&TMP.

CSECT

@MODE MODE=IDMSDC
#MOPT CSECT=ASMCLI, ENV=USER, RMODE=ANY, AMODE=ANY
ENTRY ASMCLIEP

DS

OH

BALR R12,0
BCTR R12,0
BCTR R12,0
USING ASMCLIEP,R12

Save R12
Save R14
Save R2-R8

Get register stack entry length
Get A(previous register stack entry)
Restore R12
Restore R14
Restore R2-R8

B TCPSTART Branch around constants
___ *

the following connection parameters before compiling -k
___ *

DS OF

DC F'12345' Known host port for connection

DC CL13'255.255.00.01' Known IP address of host

DC cL4' ' filler

DC F'17' Total length of dotted string IPA

DC F'2' Maximum message count to send

DS OH

Appendix B: TCP/IP Programming Examples 195

Assembler Examples

#GETSTG TYPE=(USER, SHORT) ,ADDR=(R1) ,PLIST=*,INIT=X'0",

LEN=WORKAREL

LR R11,R1

USING WORKAREA,R11

LA R13,REGSTACK R13 -> Register stack
* 1Initialize some WORKAREA fields

XR R5,R5

ST R5, ERRCOUNT

MVI OUTAREA,L'OUTAREAT

MVC OVRLOG,=X'8000000000"

MVC OVRLOGCO,=X'C000000000"

MVC WKCLEAR,=XL8'OFOFOFOFOFOFOFOF'

MVC TRTAB,=CL16'0123456789ABCDEF"

MVC TRTABX,=XL6'FAFBFCFDFEFF'
Skesk 3k 3k ok ok sk ok sk sk ok sk ok >k >k Sk ke ok sk >k sk ok ok sk sk sk Sk sk ok sk sk sk Sk ke k sk >k sk ok ok sk sk sk Skosk ok sk >k skosk sk sk sk skosk skokosk sk skoskskok sk sk k
* Create a socket in the communications domain *
Skesk >k 3k ok ok sk ok >k sk ok sk ok >k >k Sk ke ok sk >k sk ok ok sk sk sk Sk sk ok sk sk sk Sk ke k sk sk ok skek sk sk sk okeok sk >k sk skosk sk sk sk skosk keok sk skoskokok sk ko kok

LA R1,MSGO1 Display socket function.

L R15,=A(DISLINE)

BALR R14,R15

#SOCKET SOCKET,

DOMAIN=AFQINET,

TYPE=STREAM,

PROTNUM=6,

NEWSOCK=S_NEWSOC,
RETCODE=RETCODE , ERRNO=ERRNO, RSNCODE=RSNCODE

LA R1,MSGO2 Display results of socket function.
L R15,=A(DISRC)
BALR R14,R15 Display the 3 return codes.
CLC RETCODE,=F'0' Socket function successful?
BNE TCPCLOSE N. Close socket and exit.

Sk sk sk sk ok sk sk ok ok ok Sk ok sk sk ok sk sk ok Sk sk sk sk ok sk sk ok ok sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk ok sk sk sk sk sk kok sk skok skesk sk skk kosk sk ksk skk ok

* Convert the IP address from dotted string format to binary. *

Sk sk sk sk ok sk >k ok ok ok Sk ok sk sk ok sk skok Sk sk sk sk ok sk sk ok sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk ok sk k sk sk sk kok sk sk kesk sk sk sk ksk sk sk sk sk k-
LA R1,MSG12 Display INET PTON socket function.
L R15,=A(DISLINE)
BALR R14,R15

#SOCKET INET_PTON,DOMAIN=AFQINET,

LA
L
BALR

IPADDRS=IPADOQT, IPADDRSL=IPADOTL, IPADDR=HOSTIPA,
RETCODE=RETCODE , ERRNO=ERRNO, RSNCODE=RSNCODE

R1,MSG13 Display INET PTON results.
R15,=A(DISRC)
R14,R15 Display the 3 return codes.

Skook ok ok >k sk ok ok ok >k sk ok ok ok ok ok kok Sk sk ok kok sk ok ok ok ok sk ok sk ok skok ok ok sk sk sk sk sk sk sk sk ok sk sk sk kok sk sk ok kok ksk sk ksk ko sk kosk ok

* Take the IP address and domain and resolve it through a name *
* server. If successful, return the information in a HOSTENT *

* structure.

*

k>R ok ok >k ok ok ok ok >k sk okok ok ok ok kok ok sk ok kok sk ok ok sk ok sk ok ok ok sk ok ok sk sk sk sk sk sk sk sk sk ok sk sk sk kok sk sk ok kok ksko sk ksk skok sk ksk ok

LA

R1,MSG14 Display GETHOSTBYADDR function.

X X X X X

196 Callable Services Guide

Assembler Examples

L R15,=A(DISLINE)
BALR RI14,R15

LA R2,BUFFER R2 -> buffer for host information

#SOCKET GETHOSTBYADDR, IPADDR=HOSTIPA,IPADDRL=4, X
DOMAIN=AF@INET,HOSTENTP=(R2), X
RETCODE=RETCODE , ERRNO=ERRNO , RSNCODE=RSNCODE

LA R1,MSG15 Display GETHOSTBYADDR results

L R15,=A(DISRC)

BALR R14,R15 Display the 3 return codes

CLC RETCODE,=F'0' GETHOSTBYADDR successful?

BNE TCPCLOSE N. Close socket and exit.

koo ok ok >k ok ok ok ok ok sk okok ok ok ok okok ok ok ok okok sk ok ok ok ok ok ok sk ok sk sk ok ok ok sk sk ok ok ok ok skok sk skook kok sk skook kok kskosk sk skoskok sk kosk ok

* Prepare to connect to DESTPORT *
Sk 3k sk sk ok ok sk ok ok ok Sk ok ok >k >k >k sk ok ok ok sk sk ok sk sk ok sk k sk sk sk sk sk sk ok ok ok sk sk sk sk sk sk sk k ok ok sk skook sk ok sk sk k k sk sk sk kkosk sk k sk k

LA R5, SOCKADDC R5 -> Socket address structure.
USING SOCK@IN,R5

MVI SIN@FAM,AF@INET Get the family,

MVC SIN@ADDR(4),HOSTIPA binary IPA, and

MVC SIN@PORT(2),DESTPORT+2 port number

LA R1,MSGO3 for the Host connect.

L R15,=A(DISLINE) Display socket connect function.

BALR RI14,R15

koo ok ok >k ok ok ok ok >k sk ok ok ok ok ok okok ok ok ok kok sk ok ok ok sk ok ok ok ok sk sk ok ok ok sk sk ok ok ok ok sk ok ok sk ok kok sk skook kok kskosk sk sk skok skck kok

* Connect to DESTPORT *

Skook ok ok >k ok ok ok ok >k sk okok ok ok sk okok ok ok sk okok sk ok ok ok ok sk ok sk ok sk sk ok sk ok sk sk ok sk sk ok skok sk skook kok sk skook skok kskosk sk sk skok sk kosk ok

#SOCKET CONNECT,
SOCK=S_NEWSOC,
SOCKADDR=(R5),
SOCKADDL=SIN#LEN,
RETCODE=RETCODE , ERRNO=ERRNO, RSNCODE=RSNCODE
LA R1,MSG04
L R15,=A(DISRC)

X X X X

BALR R14,R15 Display the 3 return codes.
CLC RETCODE,=F'0' Connect successful?
BNE TCPCLOSE N. Close socket and exit.

Skook ok ok >k sk ok ok ok >k sk okok ok ok sk okok ok ok sk okook sk ok ok ok ok sk ok ok ok sk sk ok sk ok sk sk sk sk sk ok skok sk skook kok sk skook kok kskosk sk sk skok sk ksk ok

* Write and read two messages to/from DESTPORT *
Sk sk sk sk ok sk kok ok ok Sk sk sk sk >k sk ok ok sk sk sk skook sk ok sk sk sk sk sk sk sk k sk ok ok ok sk sk sk sk ok ok sk k sk sk sk kok sk skook kesk sk kokkosk sk sk sk sk k

WRLOOP

DS OH

L R5,L00P_CNT Add 1

LA R5,1(R5) to current

ST R5,L00P_CNT message count
ST R5,WORK1 and

UNPK WORK2(9) ,WORK1(5) make

NC WORK2 (8) ,WKCLEAR it

TR WORK2 (8) , TRTAB displayable.
MVC BUFTXT S(1),WORK2+7

LA R7,BUFFER A R7 -> buffer array.

Build client message.

Appendix B: TCP/IP Programming Examples 197

Assembler Examples

koK ok ok >k ok ok ok ok >k ok okok ok ok ok kok ok ok ok kok ok ok ok ok ok ok ok ok ok sk ko ok ok ok sk ke ok ok ok ok sk ok sk ok ok kok sk skook kok koskosk sk skskokskokosk ok

* Send a message to the listener
Sk ok ok sk ok ok K ok ok ok ok ok ok K K 3K 5k ok Sk k sk ok >k >k sk ok ok ok sk ok ok sk K Kok ok ok sk koK >k 5k 5k sk k ok ok ok skok ok sk ok sk ok ok sk Rk sk Rk sk ki k k-

BUFTXT M(33),=C'ASMCLI TCP/IP test message number'

MvC
MvC
MvC
MvC
BAL

*

BUFTXT_B(1),=C"' '
BUFLEN(4) ,=F'43"
WK_LEN(4),=F'47'
R4, TCPWRITE

*

Blank character.

Length of message text.
Total length of message.
Send message to listener.

Skook ok ok >k ok ok ok ok >k ok okook ok ok ok kok ok ok ok kok ok ok ok ok ok ok ok ok ok sk ko ok ok ok sk ke ok ok ok ok sk ok ok ok ok kok sk sk ok kok kskosk sk skskokskok sk k

* Read the first 4 bytes of reply: contains the remaining length *
Sk ok sk sk ok ok sk ok sk ok Sk ok sk >k >k >k sk ok Sk ok sk sk ok sk sk ok skesk sk sk sk sk ok sk ok ok ok sk sk sk sk ok sk sk ok sk sk sk skiok sk sk sk sk sk ok sk sk sk skokosk sk sk k

R7 -> buffer array.
Perform socket read function.

Incoming buffer less than 807
Y. Read listener reply.
N. Reply too long,issue
error message
and
close socket.

Reply msg length=read length.
R7 -> reply from listener.
Read listener reply.

All messages sent?
N. loop until done.
Y. Close socket and exit.

Skook ok ok >k ok ok ok ok >k sk okok ok ok sk okok ok ok sk okok sk ok ok ok ok sk ok ok ok sk sk ok sk ok sk sk ok sk sk ok sk ok sk sk ok kok sk skook kok kskosk sk sk skok sk ksk ok

* Routine to read a message from DESTPORT *
Sk sk sk sk sk sk ok ok ok ok Sk ok sk sk ok sk sk ok Sk sk sk sk ok sk sk ok sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk sk sk ok sk sk sk skok sk sk skesk sk sk k kosk sk sk skoskk ok

LA R5,4
ST R5,WK_LEN
XR R5,R5
ST R5, BUFLEN
LA R7,BUFFER_A
BAL R4,TCPREAD
*
CLC BUFLEN(4),=F'80'
BL READLIS
LA R1,MSG11
L R15,=A(DISLINE)
BALR RI14,R15
B TCPCLOSE
READLIS DS OH
MvC WK_LEN,BUFLEN
LA R7,BUFFER_A+4
BAL R4,TCPREAD
*
CLC MAX_LOOP,LOOP_CNT
BH WRLOOP
B TCPCLOSE
TCPREAD DS OH
LA R1,MSGO5
L R15,=A(DISLINE)
BALR R14,R15

Display socket read function.

#SOCKET READ,SOCK=S_NEWSOC,BUFFER=(R7),
RETLEN=RETLEN, BUFFERL=WK_LEN,
RETCODE=RETCODE , ERRNO=ERRNO, RSNCODE=RSNCODE

BALR
CLC
BNE

R1,MSGO6 Display results of read.

R15,=A(DISRC)

R14,R15 Display the 3 return codes.codes
RETCODE,=F'0"' Successful read?

TCPCLOSE N.

Error close socket.

198 Callable Services Guide

Assembler Examples

R7,RETLEN Adjust buffer array pointer

L R5,WK LEN and

S R5,RETLEN read length

ST R5,WK LEN with reply length.

CLI WK LEN,O Read done?

BNE TCPREAD N. Read some remainder.

BR R4 Y. Return.
Sk ok ok sk ok ok Kok ok ok ok ok ok K K K 5k ok ok k sk ok >k >k sk ok ok ok sk ok ok sk K >k ok ok ok ok koK K ok ok sk k ok ok sk skok sk skok skosk sk sk Rk sk sk ko k sk ok k
* Routine to send a message to DESTPORT *
Sk ok ok sk ok ok Kok ok ok ok ok ok K K K 5k ok ok k sk ok >k >k sk ok ok ok sk ok ok sk K >k ok ok ok ok koK K ok ok sk k ok ok sk skok sk skok skosk sk sk Rk sk sk ko k sk k k-
TCPWRITE DS OH Display socket write function.

LA R1,MSGO7

L R15,=A(DISLINE)
BALR RI14,R15
#SOCKET WRITE,SOCK=S_NEWSOC,BUFFER=(R7),
RETLEN=RETLEN, BUFFERL=WK_LEN, X
RETCODE=RETCODE , ERRNO=ERRNO, RSNCODE=RSNCODE

>

LA R1,MSGO8 Display results of socket write.
L R15,=A(DISRC)
BALR R14,R15 Display the 3 return codes.
*
CLC RETCODE,=F'0' Write successful?
BNE TCPCLOSE N. Close socket and exit.
MVC OUTAREA,WK LEN+3 Message text length.
MVC OUTAREAT,BUFTXT80 Message text.
LA R1,0UTAREA Display buffer contents

L R15,=A(DISLINE)
BALR RI14,R15

R7,RETLEN Adjust buffer array
L R5,WK LEN and
S R5,RETLEN write length
ST R5,WK LEN with message length.
CLI WK LEN,O Anything left to write?
BNE TCPWRITE Y. Loop back.
BR R4 N. Return.

k>R ok ok >k ok ok ok ok >k sk ok ok ok ok ok kok sk sk ok kok sk ok ok sk ok sk ok sk ok sk sk ok sk sk sk sk sk sk sk sk sk ok sk sk sk kok sk sk ok kok ksko sk ksk ok sk ksk ok

* Close the socket and exit *
Sk ok >k 3k ok ok sk ok sk sk ok ok ok sk sk Sk ok ok sk >k sk ok ok sk sk sk sk sk ok ok sk sk Sk ke k sk sk sk ok ok ok sk sk Sk sk ok sk sk sk sk sk ok sk skosk sk ok sk sk skoskok sk k sk

TCPCLOSE DS OH

LA R1,MSGO9 Display closing socket.

L R15,=A(DISLINE)

BALR R14,R15 Display the 3 return codes.

#SOCKET CLOSE,SOCK=S_NEWSOC, X

RETCODE=RETCODE , ERRNO=ERRNO, RSNCODE=RSNCODE

LA R1,MSG10 Display socket close function.
L R15,=A(DISRC)

Appendix B: TCP/IP Programming Examples 199

Assembler Examples

BALR R14,R15 Display the 3 return codes.

MVC OUTAREAT(41),MSG99+1 Display ASMCLI temrimation msg.

L R5, ERRCOUNT Get number of socket errors
ST R5,WORK1 and

UNPK WORK2(9) ,WORK1(5) make

NC WORK2 (8) ,WKCLEAR it

TR WORK2 (8) , TRTAB displayable
MVC ERRINDEC(4),WORK2+4 on the
MVC OUTAREAT+41(4),ERRINDEC terminal.
IC R3,MSG99

LA R3,4(R3)

STC R3,0UTAREA

LR R1,R3

LA R3, OUTAREAT
#LINEOUT OUTLEN=(R1),0UTAREA=(R3),0PTNS=(NOWAIT, TRLATIN)

LA R3,0UTAREA
#WTL MSGID=M#999043,MSGDICT=NO, OVRIDES=0VRLOG,
PARMS=((R3)) ,RGSV=(R2-R8)

#RETURN
#BALI

DROP R12

LTORG

TITLE 'ASMCLI - DISRC : DISPLAY THE RETURN CODES'
- Routine to display the 3 return values from any TCP/IP calls. -*
- Input : RETCODE, ERRNO and RSNCODE from the WORKAREA -
- Rl -> String to start with (e.g. MSGTXT format) -
DISRC DS OH

#SAVEREG Save the caller's registers

LR R12,R15
USING DISRC,R12

MVI OUTAREA,L'OUTAREAT
MVI OUTAREAT,C' '
MVC OUTAREAT+1(L'OUTAREAT-1),0UTAREAT

XR R2,R2

IC R2,0(,R1) Get message length
BCTR R2,0 -1 for EX

EX R2,DISRCEX Copy text

LA R2, 1+1+0UTAREAT (R2) Point to next free space

CLC RETCODE,=F'0’

200 Callable Services Guide

Assembler Examples

BE DISRCOO
L R3, ERRCOUNT
LA R3,1(R3)

ST R3, ERRCOUNT
DISRCOO DS OH

MVC WORK1(4),RETCODE

UNPK WORK2(9) ,WORK1(5)

NC WORK2 (8) , WKCLEAR

TR WORK2(8) , TRTAB

MvC 0(8,R2),=CL8'RETCODE="
MVC 8(8,R2),WORK2

L R15, ERRNO
CVD R15,WORK1
0I WORK1+7, X" OF
UNPK WORK2(10) ,WORK1+2(6)
LA R14,WORK2
LA R15,9
DISRCO1 DS OH
CLI 0o(R14),C'0'
BNE DISRCO2
MVI O(R14),C' '
LA R14,1(,R14)
BCT R15,DISRCO1
DISRCO2 DS OH
MVC 17(8,R2),=CL6'ERRNO="
MVC 23(8,R2),WORK2+2

MVC WORK1(4),RSNCODE

UNPK WORK2(9) ,WORK1(5)

NC WORK2 (8) ,WKCLEAR

TR WORK2(8) , TRTAB

MVC 32(8,R2),=CL8'RSNCODE="
MVC 40(8,R2),WORK2

LA R1,0UTAREA
L R15,=A(DISLINE)
BALR R14,R15

#RESTREG Restore the caller's registers
BR R14
*
DROP R12
*
DISRCEX MVC OUTAREAT(0),1(R1) COPY TEXT
LTORG

TITLE 'ASMCLI - DISLINE : Write message line to log'

- Subroutine to write a message line to the log. -k

Appendix B: TCP/IP Programming Examples 201

Assembler Examples

*- Input : Rl = A(output message) (first byte = message length) -

DISLINE DS OH

#SAVEREG Save the caller's registers
*

LR R12,R15

USING DISLINE,R12

LR R3,R1 Get parm in R3

#WTL MSGID=M#999043,MSGDICT=NO, OVRIDES=0VRLOG,
PARMS=((R3)) ,RGSV=(R2-R8)

#RESTREG Restore the caller's registers
BR R14

DROP R12

*

M#999043 DC PL4'9990430'

*

MSGO1 MSGTXT 'Creating Socket.'

MSGO2 MSGTXT 'SOCKET call:'

MSGO3 MSGTXT 'Connecting: '

MSGO4 MSGTXT 'CONNECT call:'

MSGO5 MSGTXT 'Starting read.'

MSGO6 MSGTXT 'READ call:'

MSGO7 MSGTXT 'Starting write.'

MSGO8 MSGTXT 'WRITE call:'

MSGO9 MSGTXT 'Closing Socket.'

MSG10 MSGTXT 'CLOSE call:'

MSG11 MSGTXT 'Data length too long.'
MSG12 MSGTXT 'Calling INET PTON.'
MSG13 MSGTXT 'INET PTON call:'

MSG14 MSGTXT 'Calling GETHOSTBYADDR.'
MSG15 MSGTXT 'GETHOSTBYADDR call:'
MSG99 MSGTXT 'Program ASMCLI terminated. Error count = '

*

LTORG

TITLE 'ASMCLI - WORK AREA'
WORKAREA DSECT

SYSPLIST DS 16F
REGSTACK DS 32F

*

DS 0D

202 Callable Services Guide

Assembler Examples

WORK1 DC XL10'00'

DS oD
WORK?2 DC XL10'00' AT LEAST 10 BYTES DOUBLEWORD ALIGNED
*
*
HOSTIPA DS F Binary IPA address of host
HOSTENTP DS F Pointer to HOSTENT structure
LOOP_CNT DS F Message counter
WK LEN DS F Length for read or write
ERRCOUNT DS F Number of socket errors
ERRINDEC DS cL4 Number of socket errors decimal
*
*
SOCKADDC DS (SIN#LEN)X SOCKADDR for the client
SOCKDESN DS F
S _NEWSOC DS F
RETLEN DS F
RETCODE DS F
ERRNO DS F
RSNCODE DS F

*

*

OUTAREA DS X

OUTAREAT DC CLso*' OUTPUT AREA
DS OF

BUFFER DS CL84
ORG BUFFER

BUFLEN DS F
BUFTXT80 DS CL8O
ORG BUFTXT80

BUFTXT M DS CL33 Message text
BUFTXT B DS CL1 Blank character
BUFTXT_S DS CL5 Message sequence number
BUFTXT_F DS CL41 Filler

ORG BUFFER

BUFFER_A DS CL84

- STATIC DATA -

K o e e e e e e e e e e mmmmm *

*

OVRLOG DS X'8000000000' #WTL TO LOG ONLY
OVRLOGCO DS X'Co00000000' #WTL TO LOG + CONSOLE

*

*

WKCLEAR DS XL8'OFOFOFOFOFOFOFOF
TRTAB DS CL16'0123456789ABCDEF'

Appendix B: TCP/IP Programming Examples 203

Assembler Examples

TRTABX DS XL6' FAFBFCFDFEFF'

*

WORKAREL EQU *-WORKAREA

#SOCKET TCPIPDEF
#SOCKET ERRNOS

END ASMCLIEP

Assembler TCP/IP Generic Listener Server Program

TITLE 'Sample ASSEMBLER listener TCP/IP'

* ASMLIS RENT EP=ASMLISEP

3Kk ok ok >k ok sk ok Sk >k ok skok Sk >k ok Skok Sk >k ok kok Sk >k ok ok ok Sk sk ok ok K ok sk sk ok sk ok ok ok Sk sk ok k >k sk sk sk k K sk sk kk sk k sk kk ko sk kokk

* The following program is an example of a TCP/IP generic *

* listener server program written in Assembler.

* The processing is the following:

* - read a message from the client (first 4 bytes = data length)

- send the message back to the client program

- if the message text is equal to "STOP" or if the connection
is closed, then it closes its socket and return to the
generic listener service.

- if the message text is not equal to "STOP", then it returns

to the generic listener service without closing its socket.
3Kk >k ok ok ok Sk ok ok Sk >k Sk ok >k 3k ok ok ok ok ok Sk >k ok Sk >k ok Sk ok ok ok ok ok >k sk ok >k ok ok kok ok ok Sk >k ok sk >k sk sk ok sk ok ok sk ok ok Sk >k sk ok sk k ok sk sk k

¥ X X ¥ X X X X ¥

* X X ¥ X ¥

MACRO
&LABEL. #SAVEREG
&LABEL. ST R12,0(,R13) Save R12
ST R14,4(,R13) Save R14
STM R2,R8,8(R13) Save R2-R8
LA R13,9*4(,R13)
MEND
K o o o o e m e e mmmmmmm e —— = *
MACRO
&LABEL. #RESTREG
&LABEL. LA R12,9*4 Get register stack entry length
SR R13,R12 Get A(previous register stack entry)
L R12,0(,R13) Restore R12
L R14,4(,R13) Restore R14
M R2,R8,8(R13) Restore R2-R8
MEND

204 Callable Services Guide

Assembler Examples

&LABEL.

&TMP.

&LABEL.
L1&TMP.
L2&TMP.

MACRO

MSGTXT &TXT.
LCLC &TMP.

SETC '&SYSNDX'.

DC AL1(L2&TMP) .

DC C&TXT.
EQU *-L1&TMP.
MEND

Appendix B: TCP/IP Programming Examples 205

Assembler Examples

ASMLIS CSECT
@ODE MODE=IDMSDC
#MOPT CSECT=ASMLIS, ENV=USER, RMODE=ANY , AMODE=ANY
ENTRY ASMLISEP
ASMLISEP DS OH
BALR R12,0
BCTR R12,0
BCTR R12,0
USING ASMLISEP,R12
GETWORK #GETSTG TYPE=(USER, SHORT) ,ADDR=(R1),PLIST=*,INIT=X'0",
LEN=WORKAREL
LR R11,R1
USING WORKAREA,R11
LA R13,REGSTACK
MVI ~ OUTAREA,L'OUTAREAT
MvVC OVRLOG,=X'8000000000"
MvC OVRLOGCO,=X'C000000000"
MVC WKCLEAR,=XL8'OFOFOFOFOFOFOFOF'
MVC TRTAB,=CL16'0123456789ABCDEF"
MVC TRTABX,=XL6'FAFBFCFDFEFF'

*

TCPSTART DS OH

koo ok ok >k sk ok ok ok >k sk ok ok ok ok sk okok ok ok sk okok sk ok ok ok ok sk ok ok ok sk sk ok sk ok sk sk ok sk sk ok sk ok sk sk ok kok sk skook skok sk skosk sk sk skok sk ksk ok

* Read the first 4 bytes: will contain the remaining length *
Sk sk >k 3kook ok sk ok sk sk ok sk ok >k >k Sk ok ok sk >k sk ok ok sk sk sk Sk sk ok sk sk sk Sk okeok sk >k sk ke ok sk sk sk sk sk ok sk sk skosk sk ok sk sk sk sk ko sk sk skskok sk sk k
*
LA R5,4
ST R5,WK LEN Set read length to 4.
XR R5,R5
ST R5, BUFLEN Set buffer length to 0.
LA R7,BUFFER A R7 -> Buffer array.
BAL R4,TCPREAD Perform the read.
*
CLC BUFLEN(4),=F'80' Incoming buffer less than 807?
BL READCLI Y. Read client message.
LA R1,MSGO4 N. Message too long,issue
L R15,=A(DISLINE) error message
BALR R14,R15 and
B TCPCLOSE close socket.
READCLI DS OH
MVC WK LEN,BUFLEN client msg length=read length.
LA R7,BUFFER _A+4 R7 -> client message to read.
BAL R4,TCPREAD Read client message.

XC OUTAREAT (L 'OUTAREAT) ,OUTAREAT Clear out message area

MVC OUTAREAT(15),=C'Buffer Length: ' Build
L R1,BUFLEN buffer length
CVvD R1,WORK1 display

206 Callable Services Guide

Assembler Examples

0I WORK1+7,X"'OF'

UNPK WORK2(9) ,WORK1+3(5)

MVC WORK2(8),WORK2+1 Shift value 1 byte to the left.
MVI WORK2+8,C' '

MVI WORK2+9,C' ' Clear last 2 bytes from WORK2 field.
MVC OUTAREAT+15(2),WORK2+6
LA R1,0UTAREA Display read buffer length.

L R15,=A(DISLINE)
BALR RI14,R15

XC OUTAREAT (L' OUTAREAT) , OUTAREAT Build

MVC OUTAREAT(8),=C'Buffer: ' buffer
MVC OUTAREAT+8,BUFTXT80 display.
LA R1,0UTAREA Display read buffer text.

L R15,=A(DISLINE)
BALR RI14,R15

koo ok ok >k ok ok ok ok ok sk okok ok ok ok okok ok ok ok okok sk ok ok ok ok ok ok ok ok sk sk ok ok ok sk sk ok ok ok ok sk ok sk sk ok kok ok sk sk kok sk k skook kokok sk sk k ok

* Send the message back to the client *
Sk ok sk sk ok ok sk ok ok ok ok ke ok >k >k sk sk ok Sk ok sk sk ok sk sk ok sk sk sk sk sk sk ok sk ok ok ok sk sk sk sk sk sk sk ok sk sk sk skiok sk skk kosk sk sk sk sk sk sk sksk skk ok
MVC WK LEN,BUFLEN
L R5,WK LEN

LA R5,4(R5) Include 1st 4 bytes

ST R5,WK LEN in message length.

LA R7,BUFFER A R7 -> Buffer array.

BAL R4, TCPWRITE Perform the write.

CLC BUFLEN,=F'4' Incoming buffer length = 4?

BNE LISEXIT N. Return.

CLC BUFTXT04,=C'STOP' Y. Stop listener?

BNE LISEXIT N. Return.

B TCPCLOSE Y. Close socket.
Sk sk sk sk ok sk sk ok ok ok Sk ok sk sk ok sk sk ok Sk sk sk kR sk sk ok sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk ok sk k sk sk sk skok sk skok skesk sk skk ksk sk sk sk skk ok
* Routine to read a message from the client *

k>R ok ok >k ok ok ok ok >k sk okok ok ok sk okok ok ok sk okok sk ok sk ok ok sk ok ok ok sk ok ok sk ok sk sk ok sk sk ok skok sk skook kok sk skook skok kskosk sk sk skok sk ksk ok

TCPREAD DS OH
LA R1,MSGO1 Display socket read function.
L R15,=A(DISLINE)
BALR R14,R15
#SOCKET READ,SOCK=S_NEWSOC,BUFFER=(R7), X
RETLEN=RETLEN, BUFFERL=WK LEN, X
RETCODE=RETCODE , ERRNO=ERRNO , RSNCODE=RSNCODE

LA R1,MSGO6 Display results of read.

L R15,=A(DISRC)

BALR R14,R15 Display the 3 return codes.
CLC RETCODE,=F'0' Successful read?

BNE TCPCLOSE N. Error close socket.
CLC RETLEN,=F'Q' Anything left to read?

BE TCPCLOSE N.Close socket.

A R7,RETLEN Adjust buffer array pointer
L R5,WK LEN and

Appendix B: TCP/IP Programming Examples 207

Assembler Examples

S R5,RETLEN read length

ST R5,WK LEN with message length.
CLI WK LEN,0

BNE TCPREAD

BR R4

koK ok ok >k ok ok ok ok >k ok okok ok ok ok skok ok ok ok kok ok ok ok ok ok ok ok ok ok sk ok ok ok ok sk ke ok ok ok ok sk ok ok sk ok kok sk sk ok kok ksksk sk sk skok sk ksk ok

*

Routine to send a message to the client *

Skook ok ok >k ok ok ok ok >k ok okok ok ok ok skok ok ok ok okok ok ok ok ok ok ok ok ok ok sk ok ok ok ok sk ke ok ok ok ok sk ok ok sk ok skok sk sk ok kok kskosk sk sk skoksk sk osk ok

TCPWRITE DS OH

LA R1,MSGO2 Display socket write function.
L R15,=A(DISLINE)
BALR R14,R15
#SOCKET WRITE,SOCK=S NEWSOC,BUFFER=(R7),
RETLEN=RETLEN, BUFFERL=WK LEN,
RETCODE=RETCODE , ERRNO=ERRNO , RSNCODE=RSNCODE

LA R1,MSGO5 Display results of socket write.
L R15,=A(DISRC)

BALR R14,R15 Display the 3 return codes.
CLC RETCODE,=F'0' Write successful?

BNE TCPCLOSE N. Close socket.

A R7,RETLEN Adjust buffer array

L R5,WK LEN and

S R5,RETLEN write length

ST R5,WK LEN with message length.

CLI WK LEN,O Anything left to write?
BNE TCPWRITE Y. Loop back.

BR R4 N. Return.

Skook ok ok >k sk ok ok ok >k sk okok ok ok sk okok ok ok sk okok sk ok sk k ok sk ok ok ok sk sk ok sk ok ok sk sk sk ok ok kok sksk ok sk ok sksk ok skok skoksk sk oskskok sk kk ok

*

Close the socket and exit *

k>R ok ok >k ok ok ok ok >k sk okok ok ok sk okok ok ok sk okok sk ok sk ok ok sk ok ok ok sk ok ok sk ok sk sk ok sk sk ok skok sk skook kok sk skook skok kskosk sk sk skok sk ksk ok

TCPCLOSE DS OH

*

#SOCKET CLOSE, SOCK=S_NEWSOC,
RETCODE=RETCODE , ERRNO=ERRNO, RSNCODE=RSNCODE

LA R1,MSGO7 Display socket close function.
L R15,=A(DISRC)
BALR R14,R15 Display the 3 return codes.

LISEXIT DS OH

*

#RETURN Return to caller
#BALI

DROP R12
LTORG
TITLE 'ASMLISO1 - DISRC : DISPLAY THE RETURN CODES'

208 Callable Services Guide

Assembler Examples

- Rotuine to display the 3 return values from any TCP/IP calls. -
- Input : RETCODE, ERRNO and RSNCODE from the workarea -
- Rl -> String to start with (e.g.MSGTXT FORMAT) -

#SAVEREG

LR R12,R15
USING DISRC,R12

MVI OUTAREAT,C' '
MVC OUTAREAT+1(L'OUTAREAT-1),0UTAREAT

XR R2,R2

IC R2,0(,R1) Get message length.
BCTR R2,0 -1 FOR EX.

EX R2,DISRCEX Copy text.

LA R2, 1+1+0OUTAREAT (R2) Point to next free space.

MVC WORK1(4),RETCODE

UNPK WORK2(9) ,WORK1(5)

NC WORK2 (8) , WKCLEAR

TR WORK2(8) , TRTAB

MVC 0(8,R2),=CL8'RETCODE="
MVC 8(8,R2),WORK2

L R15, ERRNO
CVD R15,WORK1
0I WORK1+7,X"'OF'
UNPK WORK2(10) ,WORK1+2(6)
LA R14,WORK2
LA R15,9
DISRCO1 DS OH
CLI 0o(R14),C'0'
BNE DISRCO2
MVI 0(R14),C' '
LA R14,1(,R14)
BCT R15,DISRCO1
DISRCO2 DS OH
MVC 17(8,R2),=CL6'ERRNO="
MVC 23(8,R2),WORK2+2

MVC WORK1(4),RSNCODE

UNPK WORK2(9) ,WORK1(5)

NC WORK2 (8) ,WKCLEAR

TR WORK2(8) , TRTAB

MVC 32(8,R2),=CL8'RSNCODE="
MVC 40(8,R2),WORK2

Appendix B: TCP/IP Programming Examples 209

Assembler Examples

LA
L
BALR

R1,0UTAREA
R15,=A(DISLINE)
R14,R15

#RESTREG

BR

DROP
*
DISRCEX MVC
LTORG
TITLE

*- Subroutine
- Input : R1

DISLINE DS

R14
R12
OUTAREAT(0) ,1(R1) Copy text

"ASMLIS - DISLINE : WRITE MESSAGE LINE TO LOG'

to write a message line to the log. -*
= A(output message) (first byte = message length) -*

OH

#SAVEREG

LR
USING
LR

#WTL

R12,R15
DISLINE,R12
R3,R1 Get parm in R3.

MSGID=M#999043,MSGDICT=NO, OVRIDES=0VRLOG, X
PARMS=((R3)) ,RGSV=(R2-R8)

#RESTREG

BR

DROP

R14

R12

M#999043 DC PL4'9990430'

LTORG

*

*

MSGO1 MSGTXT 'Starting read.'

MSGO2 MSGTXT 'Starting write.'
MSGO3 MSGTXT 'Closing Socket.'
MSGO4 MSGTXT 'Data length too long.'
MSGO5 MSGTXT 'WRITE call:'

MSGO6 MSGTXT 'READ call:'

MSGO7 MSGTXT 'CLOSE call:'

DS

OF

TITLE 'ASMLIS - WORK AREA'
WORKAREA DSECT

- DYNAMIC DATA -*

210 Callable Services Guide

Assembler Examples

SYSPLIST DS 16F
REGSTACK DS 32F

DS 0D
WORK1 DC XL10'00'
DS 0D
WORK2 DC XL10'00' AT LEAST 10 BYTES DOUBLEWORD ALIGNED

WK_LEN DS F

SOCKADDC DS (SINALEN)X SOCKADDR for the LISTENER
S_NEWSOC DS F
RETLEN DS F
RETCODE DS F
ERRNO DS F
RSNCODE DS F
*
*
DS OF
BUFFER DS CL84
ORG BUFFER

BUFLEN DS F
BUFTXT80 DS CL8O

ORG BUFTXT80
BUFTXT04 DS CL4
BUFTXT76 DS CL76

ORG BUFFER
BUFFER_A DS CL84

*

*

OUTAREA DS X

OUTAREAT DC (CL80" OUTPUT AREA
DS 6D

*

*

K e e e e e e e e mm e e mmmmm e *

*- STATIC DATA -

K e e e e e e e e mm e e mmmmm e *

*

OVRLOG DS X'8000000000' #TL TO LOG ONLY

OVRLOGCO DS X'C000000000' #TL TO LOG + CONSOLE

*

WKCLEAR DS XL8'OFOFOFOFOFOFOFOF
TRTAB DS CL16'0123456789ABCDEF'
TRTABX DS XL6' FAFBFCFDFEFF'

*

Appendix B: TCP/IP Programming Examples 211

CA ADS Examples

WORKAREL EQU *-WORKAREA

#SOCKET TCPIPDEF
#SOCKET ERRNOS

END ASMLISEP

CA ADS Examples

This section contains sample TCP/IP client and generic listener server programs written
in CA ADS.

CA ADS TCP/IP Client Program

koo ok ok >k ok ok ok ok ok sk okok ok ok ok okok ok ok ok okok sk ok ok ok ok ok ok ok ok sk sk ok ok ok sk sk ok ok ok ok sk ok sk skook kok sk skook kok kskosk sk sk skok sk k sk ok

* The following program is an example of a TCP/IP client
* program written in ADS.

* The processing is the following:

* - Create a socket for the client program.

* - Convert the known dotted string format IPA to binary.
* - (Host IPA is defined in IPADOT, see below.)

* - Find host information for connection.

* - (Host port is defined in DESTPORT, see below.)

* - Establish a connection to the host listener.
*
*
*
*
*

* X X X X X ¥ X ¥

- Send message 1 to the listener (first 4 bytes = data length)*
- Read message 1 from 1listener (first 4 bytes = data length) *
- Send message 2 to the listener (first 4 bytes = data length)*
- Read message 2 from 1listener (first 4 bytes = data length) *

- Close socket and exit. *
Sk sk >k 3k ok ok sk ok >k sk ok ok ok sk sk Sk ok ok sk >k sk ok ok sk sk sk Sk sk ok ok sk sk Sk ke k sk sk sk Sk ok ok sk sk sk sk ok sk sk sk sk sk ok sk skosk sk ok sk sk skskok sk k sk
kkk A D S C L I kkk
*%k TDD input Fokok

k>R ok ok >k sk ok ok ok >k sk ok ok ok ok ok kok sk sk ok kok sk ok ok ok ok sk ok ok ok sk ok ok sk sk sk sk sk sk sk sk sk ok sk sk sk kok sk sk ok kok ksk sk ksk skok sk kosk ok

SET OPTIONS DEFAULT IS ON INPUT 1 THRU 80.

212 Callable Services Guide

CA ADS Examples

ADD RECORD ADSCLI-WORK-RECORD.

02 WK-RETCD PIC
02 WK-ERRNO PIC
02 WK-RSNCD PIC
02 SOCKDESC PIC
02 LOOP-COUNT PIC
02 RETLEN PIC
02 WK-LENGTH PIC
02 WK-SUBSCRIPT PIC
02 HOSTIPA PIC
02 HOSTENTP PIC
02 MAX-LOOP PIC
02 DEST-PORT PIC
02 IPA-HOST PIC
02 FILLER PIC
02 IPA-HOSTL PIC
ADD RECORD ADSCLI-BUFFER-RECORD.

02 BUFFER PIC
02 BUFFER-REDEF1 REDEFINES
03 BUFLEN PIC

03 BUFTXT80 PIC

03 BUFTXT80-REDEF REDEFINES

04 BUFTXT-MSG PIC

04 BUFTXT-SEQ PIC

04 BUFTXT-BLANK PIC

04 BUFTXT-FILLER PIC

02 BUFFER-REDEF2 REDEFINES
03 BUFFER-ARRAY PIC

ADD PROCESS ADSCLI-PM MODULE SOURCE

)
)
)
)
)
)
)
)
)
8)
4)

COMP.

COMP.

COMP.

COMP.

COMP.

COMP.

COMP.

COMP.

COMP.

COMP.

COMP VALUE 2.
9(8) COMP VALUE 12345.

X(12) VALUE '255.255.25.2'.

X(4) VALUE SPACES.
S9(8) COMP VALUE 16.

S9(8
S9(8
S9(8
S9(8
S9(8
S9(8
S9(8
S9(8

9(8

9(

9(

X(84).
BUFFER.
9(8) COMP.
X(80).
BUFTXT80.
X(29).
X(5).
X(1).
X(45).
BUFFER.
X(1) OCCURS 84.

FOLLOWS

WRITE TO LOG MESSAGE TEXT = 'ADSCLI: Starting dialog.'.

1 >kok >k sk ok ok ok ok ok ok ok ok ok ok ok sk sk ok sk ok ok sk ok ok ok ok sk ok sk ok ok ok ok kok ok sk sk kok sk sk ok kok sk skosko ko ok skok ok ks skokskoskoskskok sk sk kk

! Create a socket

*

1>k >k sk ok ok ok ok ok ok ok ok ok ok ok sk ok ok sk ok ok sk ok ok ok ok sk ok sk ok ok >k sk kok ok sk sk kok ok sk ok ok sk sk ok sk sk sk skosk sk sk ok sk sk skoskook kok ko sk kok

IF (SOCKET (SOCKET-FUNCTION-SOCKET,

SOCKET-RETCD,
SOCKET-ERRNO,
SOCKET-RSNCD,
SOCKET - FAMILY -AFINET
SOCKET-TYPE-STREAM,
SOCKET-PROTOCOL-TCP,
SOCKDESC) EQ 0)
THEN DO.
WRITE TO LOG MESSAGE TEXT
END.
ELSE DO.
WRITE TO LOG MESSAGE TEXT
CALL TCPERROR.

’

"ADSCLI: SOCKET successful.'.

"ADSCLI: SOCKET error'.

Appendix B: TCP/IP Programming Examples 213

CA ADS Examples

LEAVE ADS.
END.

1 >kok >k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok ok ok ok sk ok sk ok ok ok ok kok ok sk ok kok ok sk ok kok ok sk ok ok ok ok kok ok skokskok ok ckokckok ok kok ok

! Convert the IP address from dotted string format to binary. *
!***
IF (SOCKET (SOCKET-FUNCTION-INETPTON,

SOCKET-RETCD,

SOCKET -ERRNO,

SOCKET-RSNCD,

SOCKET -FAMILY -AFINET,

IPA-HOST,
IPA-HOSTL,
HOSTIPA) EQ 0)
THEN DO.
WRITE TO LOG MESSAGE TEXT = 'ADSCLI: INETPTON successful.'.
END.
ELSE DO.

WRITE TO LOG MESSAGE TEXT
CALL TCPERROR.
CALL TCPCLOSE.

"ADSCLI: INETPTON error.'.

LEAVE ADS.

END.
!***
! Take the IP address and domain and resolve it through a name *
! server. If successful, return the information in a HOSTENT *
! structure. *

1 >kok >k sk ok ok ok ok ok ok ok ok ok ok ok sk ok ok sk ok sk sk ok ok ok ok sk ok ok ok ok sk sk skok ok sk sk skok sk sk ok kok sk skoskookoskok skok ok skoskskokskoskoskskok sk kkk

IF (SOCKET (SOCKET-FUNCTION-GETHOSTBYADDR,
SOCKET-RETCD,
SOCKET-ERRNO,
SOCKET-RSNCD,
HOSTIPA,
SOCKET-IPADDR4L,
SOCKET-FAMILY -AFINET,
HOSTENTP) EQ 0)
THEN DO.
WRITE TO LOG MESSAGE TEXT = 'ADSCLI:GETHOSTBYADDR successful.'.
END.
ELSE DO.
WRITE TO LOG MESSAGE TEXT = 'ADSCLI: GETHOSTBYADDR error'.
CALL TCPERROR.
CALL TCPCLOSE.
LEAVE ADS.
END.

MOVE SOCKET-FAMILY-AFINET TO SIN-FAMILY.
MOVE DEST-PORT TO SIN-PORT-NUMBER.
MOVE HOSTIPA TO SIN-ADDRESS.

214 Callable Services Guide

CA ADS Examples

MOVE LOW-VALUES TO SIN-ZEROS.
IF (SOCKET (SOCKET -FUNCTION-CONNECT,
SOCKET-RETCD,
SOCKET-ERRNO,
SOCKET-RSNCD,

SOCKDESC,
SOCKADDR-IN,
SOCKADDR-IN-LENGTH) EQ 0)
THEN DO.
WRITE TO LOG MESSAGE TEXT = 'ADSCLI: CONNECT successful.'.
END.
ELSE DO.

WRITE TO LOG MESSAGE TEXT
CALL TCPERROR.

CALL TCPCLOSE.

LEAVE ADS.

END.

"ADSCLI: CONNECT error.'.

1 >kok >k ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok sk sk sk ok ok ok ok kok ok sk ok kok ok sk ok kok ok ok ok sk sk skook sk okook sk k skosk ok kok ko sk kok

! Loop of write and read of messages with the server *
!***
MOVE 1 TO LOOP-COUNT.

WHILE LOOP-COUNT LE MAX-LOOP

REPEAT.

MOVE 'ADSCLI test message number ' TO BUFTXT-MSG.
MOVE LOOP-COUNT TO BUFTXT-SEQ.

MOVE ' ' TO BUFTXT-BLANK.

MOVE 37 TO BUFLEN.

MOVE 41 TO WK-LENGTH.

MOVE 1 TO WK-SUBSCRIPT.

CALL TCPWRITE.

! Read the first 4 bytes: will contain the remaining length
MOVE 4 TO WK-LENGTH.
MOVE © TO BUFLEN.
MOVE 1 TO WK-SUBSCRIPT.
CALL TCPREAD.

Read the remaining data (maximum 80 characters are allowed)
IF (BUFLEN GT 80)
THEN DO.
WRITE TO LOG MESSAGE TEXT = 'ADSCLI: Data length too long.'.
CALL TCPCLOSE.
LEAVE ADS.
END.

MOVE BUFLEN TO WK-LENGTH.
MOVE 5 TO WK-SUBSCRIPT.

Appendix B: TCP/IP Programming Examples 215

CA ADS Examples

CALL TCPREAD.
SNAP RECORD (ADSCLI-BUFFER-RECORD).

ADD 1 TO LOOP-COUNT.
END. ! WHILE LOOP-COUNT

1 >kok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok ok ok ok sk ok sk ok ok ok ok kok ok sk ok kok ok sk ok kok ok sk sk ok kok kok ok skokskokkockoskckokokkok ok

! Loop completed. Close the socket and exit the program. *
!***

WRITE TO LOG MESSAGE TEXT = 'ADSCLI: READ/WRITE loop completed.'.
CALL TCPCLOSE.

WRITE TO LOG MESSAGE TEXT = 'ADSCLI: Dialog ended successfully.'.
LEAVE ADS.

1>k >k sk ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok sk ok sk ok ok ok ok kok ok sk ok skok ok sk ok kok ok skoskookosk ok skok ok koskskokskoskoskskok sk kk ok

! Subroutine to read a message from the client *
!***
DEFINE SUBROUTINE TCPREAD.
WHILE WK-LENGTH GT O REPEAT.
IF (SOCKET(SOCKET-FUNCTION-READ,
SOCKET-RETCD,
SOCKET-ERRNO,
SOCKET-RSNCD,
SOCKDESC,
BUFFER-ARRAY (WK -SUBSCRIPT),
WK-LENGTH,
RETLEN) EQ 0)
THEN DO.
WRITE TO LOG MESSAGE TEXT = 'ADSCLI:
END.
ELSE DO.
WRITE TO LOG MESSAGE TEXT
CALL TCPERROR.
CALL TCPCLOSE.
LEAVE ADS.
END.
IF (RETLEN = 0)
THEN DO.
WRITE TO LOG MESSAGE TEXT
CALL TCPCLOSE.
LEAVE ADS.
END.
ADD RETLEN TO WK-SUBSCRIPT.
SUBTRACT RETLEN FROM WK-LENGTH.
END. ! READ LOOP
GOBACK.

READ successful.'.

READ error.'

'ADSCLI:

'ADSCLI: READ 0 bytes'.

216 Callable Services Guide

CA ADS Examples

1 3kok >k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ko ok ok ok ok sk ok sk ok ok ok ok kok ok sk ok kok ok sk ok kok ok sk osk ok sk ok skok ok skokskokkoskokckokokkok ok

! Subroutine to send a message to the client *
!***
DEFINE SUBROUTINE TCPWRITE.
WHILE WK-LENGTH GT O REPEAT.
IF (SOCKET (SOCKET-FUNCTION-WRITE,
SOCKET-RETCD,
SOCKET-ERRNO,
SOCKET-RSNCD,

SOCKDESC,
BUFFER-ARRAY (WK -SUBSCRIPT),
WK-LENGTH,
RETLEN) EQ 0)
THEN DO.
WRITE TO LOG MESSAGE TEXT = 'ADSCLI: WRITE successful.'.
END.
ELSE DO.

WRITE TO LOG MESSAGE TEXT
CALL TCPERROR.
CALL TCPCLOSE.
LEAVE ADS.
END.
IF (RETLEN = 0)
THEN DO.
WRITE TO LOG MESSAGE TEXT
CALL TCPCLOSE.
LEAVE ADS.
END.
ADD RETLEN TO WK-SUBSCRIPT. SUBTRACT RETLEN FROM WK-LENGTH.
END. ! WRITE LOOP
GOBACK.

'ADSCLI: WRITE error.'.

'ADSCLI: WRITE O bytes.'.

1 >kok >k sk ok ok ok ok ok ok ok ok ok ok ok sk sk ok sk ok ok sk ok ok ok ok sk ok sk ok ok ok ok kok ok sk sk kok sk sk ok kok sk skosko ko ok skok ok ks skokskoskoskskok sk sk kk

! Subroutine to close the socket *
!***
DEFINE SUBROUTINE TCPCLOSE.
IF (SOCKET(SOCKET-FUNCTION-CLOSE,
SOCKET-RETCD,
SOCKET-ERRNO,
SOCKET-RSNCD,
SOCKDESC) EQ 0)
THEN DO.
WRITE TO LOG MESSAGE TEXT = 'ADSCLI: CLOSE successful.'.
END.
ELSE DO.
WRITE TO LOG MESSAGE TEXT = 'ADSCLI: CLOSE error.'.
CALL TCPERROR.
LEAVE ADS.

Appendix B: TCP/IP Programming Examples 217

CA ADS Examples

END.
GOBACK.

1 3kok >k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok ok ok ok ok ok kook ok ok ok kok ok ok ok okok ok ok ok ok ok ok ok ok ok sk ok sk ok ok ok kesk sk skook kok koskck kok

! Subroutine to process the socket calls errors *
!***
DEFINE SUBROUTINE TCPERROR.

MOVE SOCKET-RETCD TO WK-RETCD.

MOVE SOCKET-ERRNO TO WK-ERRNO.

MOVE SOCKET-RSNCD TO WK-RSNCD.

SNAP RECORD (ADSCLI-WORK-RECORD) .

GOBACK.

MSEND.

CA ADS TCP/IP Generic Listener Server Program

Kok >k ok ok ok ok ok ok ok >k Sk ok ok 3k ok kK ok ok ok ok sk ok ok Sk ok ok ok >k ok ok >k Sk ok ok Sk sk sk sk ok ok ok >k sk ok >k sk ok ok sk ok ok ok ok ok ok >k sk ok sk k ok sk k &

** The following program is an example of a TCP/IP generic *
** listener server program written in ADS.

** The processing is the following:

** - read a message from the client (first 4 bytes = data length)
** - send the message back to the client program

¥k - if the message text is equal to "STOP" or if the connection

** is closed, then it closes its socket and return to the

** generic listener service.

** - if the message text is not equal to "STOP", then it returns

** to the generic listener service without closing its socket.

¥ X X X X X X X ¥

218 Callable Services Guide

CA ADS Examples

)oKk
)oKk
)oKk
)oKk
)oKk
)oKk

)oKk

ADD

koK ok ok ok ok ok ok ok ok ok ok ok ok ok ok >k ok kok ok ok ok kok ok ok ok ok ok ok ok sk ok sk sk ok sk ok sk ko ok ok sk ok skeok sk sk ok kok sk sk sk sk sk skok sk k ok ok

ADSLIS rorok

IDD input Hokx
Use also the following work records defined for ADSCLI: Fokok
ADSCLI-WORK-RECORD rork
ADSCLI-BUFFER-RECORD rorok

koK ok ok ok ok ok ok ok ok ok ok ok ok ok ok >k ok kok ok ok ok kok ok ok ok ok sk sk ok sk ok sk ok ok sk ok sk k ok ok sk ok skeok sk sk ok kok sk sksk sk sk skokskok ok ok

SET OPTIONS DEFAULT IS ON INPUT 1 THRU 80.

PROCESS ADSLIS-PM MODULE SOURCE FOLLOWS
WRITE TO LOG MESSAGE TEXT = 'ADSLIS: STARTING DIALOG'.
SNAP RECORD (SOCKET-LISTENER-PARMS).
! Read the first 4 bytes: will contain the remaining length
MOVE 4 TO WK-LENGTH.
MOVE 6 TO BUFLEN.
MOVE 1 TO WK-SUBSCRIPT.
CALL TCPREAD.

MOVE BUFLEN TO WK-LENGTH. ! Read data
MOVE 5 TO WK-SUBSCRIPT.
CALL TCPREAD.

IF ((BUFLEN = 4) AND (BUFTXT80 = 'STOP'))

THEN DO.
WRITE TO LOG MESSAGE TEXT = 'ADSLIS: STOP MESSAGE RECEIVED'.
CALL TCPCLOSE.

LEAVE ADS.

END.
MOVE BUFLEN TO WK-LENGTH. ! Echo the message
ADD 4 TO WK-LENGTH. ! Include header

MOVE 1 TO WK-SUBSCRIPT.
WHILE WK-LENGTH GT O REPEAT.
IF (SOCKET(
SOCKET-FUNCTION-WRITE,
SOCKET-RETCD,
SOCKET-ERRNO,
SOCKET-RSNCD,
SOCKET-LISTENER-SOCKDESC,
BUFFER-ARRAY (WK-SUBSCRIPT),
WK-LENGTH,
RETLEN) NE 0)
THEN DO.
WRITE TO LOG MESSAGE TEXT = 'ADSLIS: WRITE ERROR'.
CALL TCPERROR.
CALL TCPCLOSE.
LEAVE ADS.
END.
ADD RETLEN TO WK-SUBSCRIPT.

Appendix B: TCP/IP Programming Examples 219

CA ADS Examples

SUBTRACT RETLEN FROM WK-LENGTH.
END.

WRITE TO LOG MESSAGE TEXT = 'ADSLIS: One message processed'.
LEAVE ADS.

1 >kok >k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok ok ok ok sk ok sk ok ok ok ok kok ok sk ok kok ok sk ok kok ok sk ok ok kok skok ok skoskskok ok skoskckok ok kok ok

! Subroutine to read a message *
!***
DEFINE SUBROUTINE TCPREAD.
WHILE WK-LENGTH GT O REPEAT.
IF (SOCKET(SOCKET-FUNCTION-READ,
SOCKET-RETCD,
SOCKET-ERRNO,
SOCKET-RSNCD,

SOCKDESC,
BUFFER-ARRAY (WK -SUBSCRIPT),
WK-LENGTH,
RETLEN) EQ 0)
THEN DO.
WRITE TO LOG MESSAGE TEXT = 'ADSLIS: READ successful.'.
END.
ELSE DO.

WRITE TO LOG MESSAGE TEXT = 'ADSLIS: READ error.'.
CALL TCPERROR.
CALL TCPCLOSE.
LEAVE ADS.
END.
IF (RETLEN = 0)
THEN DO.
WRITE TO LOG MESSAGE TEXT
CALL TCPCLOSE.
LEAVE ADS.
END.
ADD RETLEN TO WK-SUBSCRIPT.
SUBTRACT RETLEN FROM WK-LENGTH.
END. ! READ LOOP
GOBACK.

'ADSLIS: READ 0 bytes'.

1>k 3k >k k ok >k ok ok ok ok sk ok ok ok ok sk ok ok sk ok sk ok ok ok ok sk ok sk sk ok ok >k sk skok ok sk sk skok sk sk sk kok sk skosk ko sk skok sk skok sk skoskokskok sk kkk

! Subroutine to close the socket *
!***
DEFINE SUBROUTINE TCPCLOSE.
IF (SOCKET(SOCKET-FUNCTION-CLOSE,
SOCKET-RETCD,
SOCKET-ERRNO,
SOCKET-RSNCD,
SOCKDESC) EQ 0)
THEN DO.

220 Callable Services Guide

CA ADS Examples

WRITE TO LOG MESSAGE TEXT = 'ADSLIS: CLOSE successful.'.
END.
ELSE DO.
WRITE TO LOG MESSAGE TEXT = 'ADSLIS: CLOSE error.'.
CALL TCPERROR.
LEAVE ADS.
END.
GOBACK.

1 >kok >k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok ok ok ok sk ok sk ok ok ok ok kok ok sk ok kok ok sk ok kok ok sk sk ok sk ok kok ok skokskokokoskokckokokkok ok

! Subroutine to process the socket calls errors *
!***
DEFINE SUBROUTINE TCPERROR.

MOVE SOCKET-RETCD TO WK-RETCD.

MOVE SOCKET-ERRNO TO WK-ERRNO.

MOVE SOCKET-RSNCD TO WK-RSNCD.

SNAP RECORD (ADSCLI-WORK-RECORD) .

GOBACK.

MSEND.

Appendix B: TCP/IP Programming Examples 221

Index

A

Assembler ¢ 16, 59, 194
calling IDMSINO1 » 16
sample programs ¢ 194
TCP/IP * 59

C

CAADS » 61
TCP/IP ¢ 61

Calling from a program e 13, 24, 137, 139, 146, 148

CLIST tasks » 137
IDMSCALC » 13
IDMSINO1 o 24
RHDCMTOO » 139
RHDCSDEL e 146
RHDCUFO0O e 139
SIGNON tasks » 148

CLIST tasks « 137

COBOL » 64, 181
sample programs ¢ 181
TCP/IP » 64

D
date ¢ 16

formatting for display * 16

internal format ¢ 16
date/time stamp * 16
DATEEXT » 18
DATEIN » 18
DATEINT » 18
DATEOUT » 18
DCMT e 139
DCUF » 139
Display format » 16

date ¢ 16

E

Example ¢ 24
IDMSINO1 » 24

Examples ¢ 13
IDMSCALC » 13

F
FORMAT « 18

G

Generic listener service ¢ 70, 71

functionality * 70

implementation ¢ 71
GETDATE parameters » 18
GETMSG parameters ¢ 18
GETPROF function ¢ 16
GETPROF parameters ¢ 18
GETUSER parameters ¢ 18

I
IDMSCALC » 13

calling from a program e 13

input e 13
output e 13
process ¢ 13
usage ¢ 13
IDMSINO1 « 16, 17, 18
Assembler macro ¢ 16
DATEEXT 18
DATEIN « 18
DATEINT » 18
DATEOUT » 18
FORMAT « 18

GETDATE parameters ¢ 18
GETMSG parameters ¢ 18
GETPROF parameters ¢ 18
GETUSER parameters ¢ 18
PLIST parameters ¢ 18
RPB parameters ¢ 18
RRSCTX parameters ¢ 18
SETPROF parameters ¢ 18
STRCONV parameters ¢ 18
syntax e 17

SYSCTL parameters ¢ 18
TRACE parameter ¢ 18
TXNSOFF parameter ¢ 18
TXNSON parameter ¢ 18

Input e 13, 140

IDMSCALC » 13

Index 223

RHDCMTOO e 140
RHDCUFO0O0 « 140

L

Link statement 139, 140, 146
RHDCMTOO » 139
RHDCSDEL » 146
RHDCUF00 » 140

N

NOTRACE parameters ¢ 18
NOTRACE parameters ¢ 18

0

Output ¢ 13, 140
IDMSCALC » 13
RHDCMTOO » 140
RHDCUFO0O e 140

P

Parameters e 140
RHDCMTOO » 140
RHDCUFO0O e 140

PL/1 67, 169
sample programs ¢ 169
TCP/IP 67

PLIST parameters ¢ 18

profile, session ¢ 16

R

RHDCCLST e 137

linking to RHDCCLST » 137
RHDCMTOO » 139, 140, 143

calling from a program e 143

input e 140

link statement 139

output e 140

parameters ¢ 140
RHDCSDEL ¢ 146

link statement » 146

parameters ¢ 146
RHDCUF0O0 » 140, 145

calling from a program ¢ 145

input e 140

link statement ¢ 140

output ¢ 140

parameters ¢ 140

RPB parameters 18
RRSCTX parameters ¢ 18

S

SDEL command e 146

Invoking SDEL command ¢ 146

sessions ¢ 16

profiles 16

SETPROF function ¢ 16
SETPROF parameters ¢ 18
SIGNON tasks 148
STRCONV parameters ¢ 18
Syntax e 17

IDMSINO1 » 17

SYSCTL parameters ¢ 18
SYSIDMS e 15

System tasks and operator commands ¢ 137, 139,

T

TCP/IP ¢ 57,59, 61, 64, 67, 72,73, 78, 212

148
CLIST tasks » 137
DCMT commands ¢ 139
DCUF commands ¢ 139
SIGNON tasks ¢ 148

application considerations 72
Assembler ¢ 59
CAADS ¢ 61

COBOL * 64

functions « 78

PL/1 » 67

receiving data e 72
sample programs ¢ 212
sending data ¢ 73
server types ¢ 57
stream sockets ¢ 72

time ¢ 16

formatting for display * 16
internal format ¢ 16

TRACE parameter ¢ 18
trace, DML and SQL » 16
transaction sharing ¢ 16
TXNSOFF parameter ¢ 18
TXNSON parameter » 18

224 Callable Services Guide

	CA IDMS Callable Services Guide
	CA Technologies Product References
	Contact CA Technologies
	Documentation Changes
	Contents
	1: Introduction
	Syntax Diagram Conventions

	2: IDMSCALC
	Calling the IDMSCALC Routine
	The IDMSCALC Argument

	3: IDMSIN01
	Overview
	Calling IDMSIN01 from an Assembler Program
	IDMSIN01 Macro Syntax
	Parameters
	Assembler Program Calling IDMSIN01

	Calling IDMSIN01 from a CA ADS Dialog
	Calling IDMSIN01 from a COBOL Program
	COBOL Program Calling IDMSIN01

	Calling IDMSIN01 from a PL/I Program

	4: TCP/IP API Support
	Using TCP/IP with CA IDMS
	TCP/IP Programming Support for Online Applications
	Socket Macro Interface for Assembler Programs
	Notes
	Assembler Structure Description

	The CA ADS Socket Interface
	Comparing IDMSOCKI and SOCKET
	Notes
	CA ADS Structure Description

	Socket Call Interface for COBOL
	Notes
	COBOL Structure Description

	Socket Call Interface for PL/I
	Notes
	PL/I Structure Description

	Generic Listener Service
	Implementation

	Application Design Considerations
	Using Stream Sockets
	Receiving Data
	Sending Data

	TCP/IP Coding Samples

	Miscellaneous TCP/IP Considerations
	Using the TCP/IP Trace Facility
	Using Multiple TCP/IP Stacks
	Associating Time-outs to Sockets

	Function Descriptions
	ACCEPT
	Parameters
	Notes

	BIND
	Parameters

	CLOSE
	Parameters

	CONNECT
	Parameters
	Notes

	FCNTL
	Parameters
	Notes

	FD_CLR
	Parameters
	Notes

	FD_ISSET
	Parameters
	Notes

	FD_SET
	Parameters
	Notes

	FD_ZERO
	Parameters
	Notes

	FREEADDRINFO
	Parameters
	Notes

	GETADDRINFO
	Parameters
	Notes

	GETHOSTBYADDR
	Parameters
	Notes

	GETHOSTBYNAME
	Parameters
	Notes

	GETHOSTID
	Parameters
	Notes

	GETHOSTNAME
	Parameters

	GETNAMEINFO
	Parameters
	Notes

	GETPEERNAME
	Parameters

	GETSERVBYNAME
	Parameters
	Notes

	GETSERVBYPORT
	Parameters
	Notes

	GETSOCKNAME
	Parameters

	GETSOCKOPT
	Parameters
	Notes

	GETSTACKS
	Parameters
	Notes

	HTONL
	Parameters

	HTONS
	Parameters

	INET_ADDR
	Parameters

	INET_NTOA
	Parameters

	INET_NTOP
	Parameters

	INET_PTON
	Parameters

	IOCTL
	Parameters
	Notes

	LISTEN
	Parameters

	NTOHL
	Parameters

	NTOHS
	Parameters

	READ
	Parameters
	Notes

	RECV
	Parameters
	Notes

	RECVFROM
	Parameters
	Notes

	SELECT and SELECTX
	Parameters
	Notes

	SEND
	Parameters
	Notes

	SENDTO
	Parameters
	Notes

	SETSOCKOPT
	Parameters
	Notes

	SETSTACK
	Parameters
	Notes

	SHUTDOWN
	Parameters
	Notes

	SOCKET
	Parameters
	Notes

	WRITE
	Parameters
	Notes

	5: Invoking System Tasks from Programs
	Invoking Command List Modules from Programs
	Linking to RHDCCLST
	Parameters
	Mandatory Parameters
	Optional Parameter

	Example
	More Information

	Invoking DCMT and DCUF Commands from Programs
	Linking to RHDCMT00 and RHDCUF00
	RHDCMT00 Link Statement
	RHDCUF00 Link Statement

	Parameters
	INREC Format
	OUTREC Format

	Usage
	Queued Requests
	Using Scratch Area for Output

	Examples
	DCMT Example
	DCUF Example

	More Information

	Invoking SDEL Command from Programs
	Linking to RHDCSDEL
	Parameters
	Example
	More Information

	Invoking the SIGNON Task from Programs
	Linking to RHDCSNON
	Parameters
	Example
	More Information

	6: Two-Phase Commit Support with RRS
	Overview
	RRS Support for Batch Applications
	Example
	Enabling RRS for Batch Applications
	Batch RRS Transaction Boundaries and Application Design Considerations
	Example of a COBOL Batch Program

	RRS Support for Online Applications
	Example
	Programming Interface
	Application Design Considerations

	A: TCP/IP Error Codes
	Return, Errno, and Reason Codes
	ERRNO Numbers Set by the Socket Program Interface

	HOSTENT Structure
	SERVENT Structure
	Socket Structure Descriptions
	ADDRINFO Structure
	SOCKADDR Structure
	SOCKADDR for IPv4
	SOCKADDR for IPv6

	TIMEVAL Structure

	B: TCP/IP Programming Examples
	PL/I Examples
	PL/I TCP/IP Client Program
	PL/I TCP/IP Generic Listener Server Program

	COBOL Examples
	COBOL TCP/IP Client Program
	COBOL TCP/IP Generic Listener Server Program

	Assembler Examples
	Assembler TCP/IP Client Program
	Assembler TCP/IP Generic Listener Server Program

	CA ADS Examples
	CA ADS TCP/IP Client Program
	CA ADS TCP/IP Generic Listener Server Program

	Index

