

ADS Reference Guide
Release 18.5.00, 2nd Edition

CA ADS™ for CA IDMS™

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at a ny time. This

Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or
duplicated, in whole or in part, without the prior wri tten consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable

l i cense for such software remains in full force and effect. Should the license terminate for any reason, i t is your responsibility to
certi fy in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOU T WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,

DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such

l icense agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions

set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2014 CA. Al l rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA products:

■ CA IDMS™/DB

■ CA IDMS™/DC (DC)

■ CA IDMS™/DC or CA IDMS™ UCF (DC/UCF)

■ CA IDMS™ OLQ

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the

information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer

services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you

can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Documentation Changes

The following documentation updates were made for the 18.5.00, 2nd Edition release of
this documentation:

■ DISPLAY (see page 334)—Updated the syntax diagram.

The following documentation updates were made for the 18.5.00 release of this

documentation:

■ Overview of ACCEPT (see page 373)—Added information to the ACCEPT sections to
document the new page-info parameter.

■ Extended Run Units (see page 143), Overview of Navigational Database Access (see

page 365), READY (see page 423)—Added information concerning the use of the
new FORCE option.

■ APPCCODE and APPCERC (see page 553)—Added an overview table summarizing

the APPCCODEs.

■ Runtime Error-Status Codes (see page 737)—This appendix was newly added,
previously it was available in the ADS Quick Reference Guide.

■ Online Debugger Syntax (see page 751)—This appendix was newly added,

previously it was available in the ADS Quick Reference Guide.

Contents 5

Contents

Chapter 1: Introduction to CA ADS 19

Introduction .. 19

Syntax Diagram Conventions ... 19

What is CA ADS? ... 21

What CA ADS Does... 22

Creating a CA ADS Application ... 23

Tools Used To Develop an Application ... 24

The CA ADS Application Compiler (ADSA) ... 25

Mapping Facil ities (MAPC and the Batch Compiler/Utility) ... 27

CA ADS Dialog Compilers (ADSC and ADSOBCOM) .. 28

IDD Menu Facility and Online IDD... 30

The CA ADS Runtime System.. 31

CA ADS Screens... 31
Action Bar .. 33

Action Bar Actions .. 35

Checkout and Release Procedures .. 44

How to check out or release an entity ... 45

Listing Checkouts (ADSL) ... 47

Modifying Checkouts (ADSM) .. 48

CA ADS Help Facility... 48

Chapter 2: CA ADS Application Compiler (ADSA) 51

Overview .. 51

Application Compiler Session... 51

Invoking the Application Compiler.. 52

Sequencing Through Application Compiler Screens .. 53

Suspending a Session... 56

Terminating a Session.. 57

Application Compiler Screens .. 57

Main Menu .. 57

General Options Screen—Page 1 .. 60

General Options Screen—Page 2 .. 63
Response/Function List Screen .. 66

Response Definition Screen.. 70

Function Definition (Dialog) Screen .. 74

Function Definition (Program) Screen .. 77

6 ADS Reference Guide

Function Definition (Menu) Screen ... 80

Global Records Screen... 85

Task Codes Screen.. 87

Chapter 3: CA ADS Dialog Compiler (ADSC) 91

Overview .. 91

Dialog Compiler Session.. 92

Invoking the Dialog Compiler ... 92

Sequencing Through Dialog Compiler Screens ... 94

Suspending a Session... 97

Terminating a Session.. 98

Dialog Compiler Screens ... 98
Main Menu .. 98

Options and Directives Screen ...101

Map Specifications Screen..105

Database Specifications Screen ...109

Records and Tables Screen ...111

Process Modules Screen ...114

Chapter 4: CA ADS Runtime System 119

Initiating the CA ADS Runtime System ...119

How to Define Runtime Tasks..119

How to Start a CA ADS Application ...120

Runtime Menu and Help Screens ..124

Menu Screens ...124

Site-Defined Menu Maps ..126

System-Defined Menu Maps..126

Application Help Screen ..133

Runtime Flow Of Control ..135

Effects of Automatic Editing on Flow of Control ..139
Message Prefixes..140

CA ADS Tasks, Run Units, and Transactions ..141

Run units and database access ..142

Extended Run Units ...143

Dialog Abort Information Screen...145

Debugging a Dialog ..148

Linking From CA ADS To CA OLQ ...149

Linking to CA OLQ ...149

Passing Syntax to CA OLQ ...149

Linking Built-In Functions With The Runtime System..150

ADSOVCON Module Creation ..150

Contents 7

Managing Storage ..151

Adjusting Record Compression..151

Calculating RBB Storage ..152

Writing Resources to Scratch Records ...152

Using XA Storage ..153

Chapter 5: Introduction to Process Language 155

Overview ..155

Process Modules ..156

Creating Process Modules ..156

Adding Process Modules to Dialogs..157

Executing Process Modules ..157
Process Commands ..159

Constructing Commands...159

Coding Considerations...160

Data Types ...161

Conversion Between Data Types...167

Chapter 6: Arithmetic Expressions 171

Overview ..171

Syntax ...171

Syntax: Arithmetic-Expression ...172

Evaluation Of Arithmetic Expressions ..173

Evaluation of Arithmetic Expressions ...174

Coding Considerations...174

Chapter 7: Built-in Functions 175

Overview ..177

Invocation Names ..178

Built-In Function Values ..178
Coding Parameters...179

User-Defined Built-In Functions ..179

System-Supplied Functions ..179

Arithmetic Functions ...179

Date Functions ..180

Date-Time Stamp Func tions ...181

String Functions ..182

Trailing-Sign Functions ..183

Trigonometric Functions ...184

ABSOLUTE-VALUE...185

8 ADS Reference Guide

ARC COSINE ...186

ARC SINE ..187

ARC TANGENT ...188

CONCATENATE..189

COSINE ...190

DATECHG ...191

DATEDIF ...194

DATEEXT...196

DATEINT ...196

DATEOFF ..197

DATETIMX ..199

DISPDT ..199
DTINT ..200

EXTRACT...201

FIX..202

GOODDATE ..203

GOODTRAILING...204

INITCAP ..205

INSERT ..206

INVERT-SIGN..207

LEFT-JUSTIFY..208

LIKE..209

LOGARITHM...210

MODULO ..211

NEXT-INT-EQHI..212

NEXT-INT-EQLO...213

NUMERIC ...214

RANDOM-NUMBER..216

REPLACE ...218

RIGHT-JUSTIFY...219

SIGN-VALUE...220
SINE...220

SOCKET ...221

SQUARE-ROOT ..223

STRING-INDEX ...223

STRING-LENGTH..224

STRING-REPEAT ..225

SUBSTRING ..226

TANGENT ...228

TIMEEXT ...229

TIMEINT..230

TODAY ..231

Contents 9

TOLOWER...232

TOMORROW ...233

TOUPPER ..234

TRAILING-TO-ZONED ...235

TRANSLATE ..236

VERIFY...237

WEEKDAY ...238

WORDCAP..240

YESTERDAY ..241

ZONED-TO-TRAILING ...242

Chapter 8: Conditional Expressions 245

Overview ..245

General Considerations...246

Syntax for Conditional Expressions ...247

Batch-Control Event Condition ..248

Command Status Condition..249

Comparison Condition...251

Cursor Position Condition ...253

Dialog Execution Status Condition ..254

Environment Status Condition...256

Level-88 Condition ...257

Map Field Status Condition ..257

Map Paging Status Conditions ...261

Set Status Condition ..265

Arithmetic and Assignment Command Status Condition..266

Chapter 9: Constants 269

Overview ..269

Figurative Constants ..269
Graphic Literals ...271

Multibit Binary Constants ...272

Nonnumeric Literals...273

Numeric literals ..273

Chapter 10: Error Handling 277

Overview ..277

The Autostatus Facil ity ..278

Status Codes Returned by the Autostatus Facility ...279

Error Expressions..279

10 ADS Reference Guide

The ALLOWING Clause ..280

Status Definition Records ...281

ADSO-STAT-DEF-REC..284

Chapter 11: Variable Data Fields 285

Overview ..285

User-Defined Data Field Names ..285

System-Supplied Data Field Names ..287

Entity Names ...293

Chapter 12: Introduction to Process Commands 295

Overview ..295

Summary Of Process Commands ..296

INCLUDE ...300

Dialog Compiler Directive ...301

Chapter 13: Arithmetic and Assignment Commands 303

Overview ..303

General Considerations...304

Numeric Fields ..304

EBCDIC and DBCS Fields ..304

Arithmetic and Assignment Command Status Condition..305

Arithmetic Commands...306

ADD ...306

COMPUTE ..307

DIVIDE...309

MULTIPLY ...311

SUBTRACT ..313

Assignment Command ..314

MOVE..315

Chapter 14: Conditional Commands 317

Overview ..317

EXIT ...318

IF ..319

NEXT ...321

WHILE ...322

Contents 11

Chapter 15: Control Commands 325

Overview ..325

General Considerations...326

Application Thread...327

Operative and Nonoperative Dialogs ...327
Application Levels ..328

Mainline Dialog...328

The Menu Stack ..328

Database Currencies ..329

CONTINUE..332

DISPLAY ..334

EXECUTE NEXT FUNCTION ..339

INVOKE ...341

LEAVE..343

LINK...345

READ TRANSACTION ..353

RETURN ..353

TRANSFER ..356

WRITE TRANSACTION ..358

Chapter 16: Database Access Commands 363

Overview ..363

Navigational DML ...365
Overview of Navigational Database Access...365

Use of Native VSAM Data Sets ...368

Record Locking..369

Suppression of Record Retrieval Locks...371

Overview of ACCEPT ..373

ACCEPT DB-KEY FROM CURRENCY ..374

ACCEPT DB-KEY RELATIVE TO CURRENCY ..376

ACCEPT PAGE-INFO ..378

ACCEPT STATISTICS ..380

BIND PROCEDURE ..383

COMMIT...384

CONNECT ...386

DISCONNECT ...389

ERASE..391

Overview of FIND/OBTAIN..394

FIND/OBTAIN CALC ..394

FIND/OBTAIN CURRENT ..397

FIND/OBTAIN DB-KEY ..399

12 ADS Reference Guide

FIND/OBTAIN OWNER ...402

FIND/OBTAIN WITHIN SET/AREA...404

FIND/OBTAIN WITHIN SET USING SORT KEY ...408

GET ..411

KEEP ..412

KEEP LONGTERM ..413

MODIFY ..420

READY ...423

RETURN DB-KEY ..426

ROLLBACK ..428

STORE ...429

Logical Record Facility Commands ..433
Overview of LRF Database Access ...433

WHERE Clause...434

Conditional Expression ..434

Comparison Expression ...436

ERASE..438

MODIFY ..439

OBTAIN ...440

ON Command..442

STORE ...445

Chapter 17: Map Commands 449

Overview ..449

Map Modification Commands ...450

Attributes Command ...450

CLOSE..454

MODIFY MAP...455

Pageable Maps..464

Areas of a Pageable Map ..465

Map Paging Session ...466
Map Paging Dialog Options ..471

GET DETAIL ..472

PUT DETAIL ..474

Creating or Modifying a Detail Occurrence of a Pageable Map ..477

Specifying a Numeric Value Associated with an Occurrence ...477

Specifying a Message to Appear in the Message Field of an Occurrence..477

Chapter 18: Queue and Scratch Management Commands 483

Overview ..483

Queue Records ...485

Contents 13

DELETE QUEUE..486

GET QUEUE..488

PUT QUEUE..491

Scratch Records ..494

CA ADS Usage..494

CA ADS Batch Considerations ..495

DELETE SCRATCH ..496

GET SCRATCH ..498

PUT SCRATCH ..502

Chapter 19: Subroutine Control Commands 505

Overview ..505
CALL ..505

DEFINE ..506

GOBACK..507

Chapter 20: Utility Commands 509

Overview ..509

ABORT ..510

ACCEPT ...513

INITIALIZE RECORDS...515

SNAP ...516

TRACE ...518

WRITE PRINTER...519

WRITE TO LOG/OPERATOR...523

Chapter 21: Cooperative Processing Commands 527

Using SEND/RECEIVE Commands ..527

How Cooperative Processing Works ...528

Sample Cooperative Application ...528
Program A: Client Listing (PC) ...530

Dialog B: Server l isting (Mainframe) ..532

SEND/RECEIVE Commands ...534

ALLOCATE ..535

CONFIRM ...538

CONFIRMED...539

CONTROL SESSION ...540

DEALLOCATE..541

PREPARE-TO-RECEIVE ..543

RECEIVE-AND-WAIT ...543

14 ADS Reference Guide

REQUEST-TO-SEND...545

SEND-DATA..545

SEND-ERROR ...546

Design Guidelines...547

Understanding Conversation States ...548

Conversation States ...549

Conversation States in a Successful Data Transfer ..550

Testing APPC Status Codes and System Fields ..552

Status Codes..552

System Fields...552

When APPC Status Codes and System Field Values are Returned ..552

APPCCODE and APPCERC ..553
System Fields...557

Chapter 22: OSCaR Commands 559

OSCaR Command Syntax...559

OPEN...560

SEND ...561

CLOSE..562

RECEIVE ..563

Sample OSCaR Application ...563

OSCaR to APPC Mapping...565

Appendix A: System Records 567

Overview ..567

ADSO-APPLICATION-GLOBAL-RECORD ...568

ADSO-APPLICATION-GLOBAL-RECORD ...576

ADSO-APPLICATION-MENU-RECORD..579

ADSO-APPLICATION-MENU-RECORD..582

Appendix B: CA ADS Dialog and Application Reporter 583

Overview ..583

AREPORTs Documenting CA ADS Dialogs...583

Dialog Reports...584

Application Reports ...595

Control Statements ..596

APPLICATIONS...596

DIALOGS ...599

LIST..603

SEARCH...603

Contents 15

SYSIDMS Parameter File..604

JCL and Commands To Run Reports ...605

Appendix C: Dialog Statistics 611

Overview ..611

Collecting Selected Statistics..611

Enabling Dialog Statistics ..615

Selecting Dialogs...616

Setting a Checkpoint Interval ...617

Collecting and Writing Statistics ..617

Statistics Reporting ..618

Appendix D: Application and Dialog Utilities 621

Overview ..621

ADSOBCOM ...621

Standard Control Statements ..622

Special Control Statements ..623

SIGNON ..623

COMPILE ..624

DECOMPILE..626

Dialog-expression ...628

JCL and Commands ..649

ADSOBSYS ..654

Control Statements ..655

SYSTEM Statement...655

JCL and Commands ..656

ADSOBTAT ...662

Control Statements ..664

JCL and Commands ..666

ADSOTATU ...671
TAT Update Utility Screen...672

Appendix E: Activity Logging for an CA ADS Dialog 675

Overview ..675

Data Dictionary Organization...676

Activity Logging Record Formats ...676

Appendix F: Built-in Function Support 681

Overview ..681

16 ADS Reference Guide

Internal Structure Of Built-In Functions ...681

Master Function Table ..682

Model XDE Module ..683

XDEs and VXDEs..685

Processing Program Modules ..693

Runtime Processing of Built-In Functions ..699

Assembler Macros..701

#EFUNMST ...701

RHDCEVBF..702

#EFUNMOD ...705

Changing Invocation Names...713

Creating User-Defined Built-In Functions ..714
Steps for Generating a User-Defined Built-In Function...714

LRF Considerations for User-Defined Built-In Functions ...715

Calling a User-Defined Built-In Function ..715

Appendix G: Security Features 717

Overview ..717

CA ADS Compiler Security...718

CA ADS Application Security...719

Response Security ..719

Signon Security ...720

Appendix H: Debugging an CA ADS Dialog 723

Overview ..723

Creating a Symbol Table ...723

Trace Facility ...725

Online Debugger...727

Appendix I: Compiler Overview and Default Control Keys 733

Summary of Application Compiler Process ...733

Default Control Keys ..734

Summary of Dialog Compiler Process...735

Default Control Keys ..736

Appendix J: Runtime Error-Status Codes 737

Status Codes Returned by the Autostatus Facility ...737

Major DB Status Codes..738

Minor DB Status Codes..738

Contents 17

Major DC Status Codes..743

Minor DC Status Codes..744

ERROR-STATUS Condition Names ...748

Autostatus Return Codes ..748

Default Level-88 Values...749

Appendix K: Online Debugger Syntax 751

General Registers Symbols ...751

DC/UCF System Symbols...752

Address Symbols and Markers...752

User Symbols...753

Program Symbols ...753
Syntax: Data Field Names ...753

Syntax: Line Numbers..753

Syntax: Qualifying Program Symbols ..753

Expression Operators ..753

Delimiters ..754

Debugger Commands ..754

Syntax: AT ..754

Syntax: DEBUG ..755

Syntax: EXIT ...755

Syntax: IOUSER ...755

Syntax: LIST..755

Syntax: MENU ...755

Syntax: PROMPT ...755

Syntax: QUALIFY ...756

Syntax: QUIT..756

Syntax: RESUME ...756

Syntax: SET ..756

Syntax: SNAP ...756

Syntax: WHERE ...757

Index 759

Chapter 1: Introduction to CA ADS 19

Chapter 1: Introduction to CA ADS

This section contains the following topics:

Introduction (see page 19)
Syntax Diagram Conventions (see page 19)
What is CA ADS? (see page 21)

What CA ADS Does (see page 22)
Creating a CA ADS Application (see page 23)
Tools Used To Develop an Application (see page 24)

CA ADS Screens (see page 31)
Checkout and Release Procedures (see page 44)
CA ADS Help Facil ity (see page 48)

Introduction

This guide is a reference for CA ADS for CA IDMS development tools and facil ities. It

provides reference information for application developers defining online and batch
applications.

Syntax Diagram Conventions

The syntax diagrams presented in this guide use the following notation conventions:

UPPERCASE OR SPECIAL CHARACTERS

Represents a required keyword, partial keyword, character, or symbol that must be
entered completely as shown.

lowercase

Represents an optional keyword or partial keyword that, if used, must be entered
completely as shown.

italicized lowercase

Represents a value that you supply.

lowercase bold

Represents a portion of the syntax shown in greater detail at the end of the syntax
or elsewhere in the document.

◄─

Points to the default in a l ist of choices.

►►────────────────────

Indicates the beginning of a complete piece of syntax.

Syntax Diagram Conventions

20 ADS Reference Guide

────────────────────►◄

Indicates the end of a complete piece of syntax.

─────────────────────►

Indicates that the syntax continues on the next l ine.

►─────────────────────

Indicates that the syntax continues on this l ine.

────────────────────►─

Indicates that the parameter continues on the next l ine.

─►────────────────────

Indicates that a parameter continues on this l ine.

►── parameter ─────────►

Indicates a required parameter.

►──┬─ parameter ─┬─────►
 └─ parameter ─┘

Indicates a choice of required parameters. You must select one.

►──┬─────────────┬─────►
 └─ parameter ─┘

Indicates an optional parameter.

►──┬─────────────┬─────►
 ├─ parameter ─┤
 └─ parameter ─┘

Indicates a choice of optional parameters. Sel ect one or none.

 ┌─────────────┐
►─▼─ parameter ─┴──────►

Indicates that you can repeat the parameter or specify more than one parameter.

 ┌─── , ─────────┐
►─▼─ parameter ───┴──────►

Indicates that you must enter a comma between repetitions of the parameter.

What is CA ADS?

Chapter 1: Introduction to CA ADS 21

Sample Syntax Diagram

The following sample explains how the notation conventions are used:

What is CA ADS?

The Application Development System (CA ADS) is a tool used to expedite the writing and
testing of modular applications. Activities such as flow-of-control processing, data
storage definition, data verification, editing, error handling, terminal input and output,

menu creation, and menu display are specified by using a series of screens instead of
conventional detailed code.

CA ADS can be used to develop online or batch applications. The following overview
provides general information about each environment. Detailed information about CA
ADS facil ities is contained in the subsequent sections of this manual.

What CA ADS Does

22 ADS Reference Guide

What CA ADS Does

Develop a prototype Using a series of CA ADS online development tools, you can create
an early version of an application without writing any code. In this way, the structure of
the online interactions and screen displays are available for review and modification
before coding occurs.

Process logic and other enhancements can be added to the application prototype at any
time. Process logic includes:

■ Modules written in traditional programming languages

■ Modules developed by using the Automatic System Facil ity (ASF)

■ Modules already created with CA ADS

Process and retrieve data

You can manipulate data from:

■ A CA IDMS/DB database

■ Online entries

■ VSAM data sets defined to the subschema

■ External sequential fi les (for CA ADS Batch only)

Edit input records

Input records can be automatically edited and verified usi ng the editing and

error-handling facilities available to CA ADS applications.

Batch applications also use suspense fi les to store erroneous input records found at
runtime. Suspense fi le records can be corrected and resubmitted at a later time.

Define and update multiple application components

Using the batch facil ities of CA ADS, updates to multiple application components, such

as record definitions, can be accomplished at one time.

System utilities and facilities

System util ities and facilities allow application developers to:

■ Transfer between CA ADS development tools

■ Debug applications

■ Monitor runtime performance and resource usage

Creating a CA ADS Application

Chapter 1: Introduction to CA ADS 23

Options include:

■ Archiving or printing log fi le information

■ Obtaining reports that document CA ADS applications and their components

Creating a CA ADS Application

A CA ADS application is based on an analysis of data and user requirements. This
analysis forms the basis for determining the processing and the flow of control between

processing activities required by the application. Once the blueprint, or design, of the
application is created, the components of the application are defined and created using
screen-driven development tools.

Procedure

Online application components can be developed in any order. However, the following

sequence is typically used:

1. Develop an application structure diagram based on user responses and the paths
between those responses.

2. Develop an application prototype by:

■ Defining the flow of control between processing activities

■ Defining the screens that the appli cation uses to communicate with the end
user

■ Defining the dialogs that represent application transactions and relate the
screens to the application structure

3. Execute the application prototype.

4. Modify the application prototype, as needed.

5. Add process logic that performs the custom processing required by each dialog in
the application.

6. Execute and test the application.

7. Put the approved application into production use.

The following diagram shows the steps and the online tools used for crea ting an online
application. The application can be executed throughout the application development
cycle. The online tools are discussed later in this section.

Tools Used To Develop an Application

24 ADS Reference Guide

Typical steps when creating a CA ADS application

 ┌─ ┌───────────────────────────────────┐
 Analyze │ │ - Data analysis │
 the │ │ - User requirements │
 system │ │ - System requirements │
 └─ └───────────────┬───────────────────┘
 │
 ┌─ ┌───────────────▼───────────────────┐
 │ │ Define the application structure │
 │ │ (Online tool: ADSA) │
 │ └───────────────┬───────────────────┘
 │ │
 Develop an │ ┌───────────────▼──────────────────┐
 executable │ │ Define the prototype maps │
 prototype │ │ (Online tool: MAPC) │
 │ └───────────────┬──────────────────┘
 │ │
 │ ┌───────────────▼──────────────────┐
 │ │ Define the prototype dialogs │
 │ │ (Online tool: ADSC) │
 └─ └───────────────┬──────────────────┘
 │
 ┌─ ┌───────────────▼──────────────────┐
 │ │ Create the process module │
 │ │ (Online tool: IDD) │
 Develop │ └───────────────┬──────────────────┘
 the test │ │
 application │ ┌───────────────▼──────────────────┐
 │ │ Enhance maps and dialogs │
 │ │ (Online tools: MAPC, IDD) │
 └─ └───────────────┬──────────────────┘
 │
 ┌───────────────▼──────────────────┐
 │ Implement production application │
 │ │
 └──────────────────────────────────┘

Tools Used To Develop an Application

The following online tools are used to develop CA ADS applications:

■ The CA ADS application compiler (ADSA)—Defines the executable application

structure

■ The CA IDMS mapping facility (MAPC)—Defines maps that establish preformatted
screens for online processing

■ The CA ADS dialog compiler (ADSC)—Defines dialogs that consist of map,
subschema, and process-module definitions

■ The Integrated Data Dictionary (IDD)—Creates data definitions, edit and code
tables, modules of process code, and declaration modules

Tools Used To Develop an Application

Chapter 1: Introduction to CA ADS 25

■ The runtime system— Executes CA ADS applications at any stage in the
applications' l ife cycle

■ The transfer control facility (TCF)—Allows the application developer to transfer
control between the online tools at definition time

Each development tool, except for the transfer control facil ity, is briefly discussed

below. Detailed information about the development tools is presented later in this
manual.

Note: For more information about the transfer control facil ity, see the CA IDMS
Common Facilities Guide.

The CA ADS Application Compiler (ADSA)

ADSA screens prompt for information that defines the application structure and runtime
flow of control. When the definition is completed and compiled, CA ADS stores the
resulting load module in the data dictionary for use at runtime.

Functions

Runtime flow of control is based on the analysis of the interactions (functions)
necessary to conduct the work of the application. In a CA ADS application, a function can
be any one of the function types l isted in the table below. Functions are the structural
units of an application. They are defined by using ADSA screens.

Typically, an online application contains menu functions, menu/dialog functions, dialog
functions, and many of the system functions. Program functions are less often used.

Functions in a CA ADS application

Function Type What it Does

Dialog Performs a variety of processing activities, such as
data retrieval and update

Program Performs processing specified in user-written

COBOL, PL/I, or Assembler programs

Menu Displays a system-defined menu screen

Performs standard menu processing activities at
runtime

Menu/dialog Displays either a system-defined or a site-defined
menu screen

Performs standard processing and any additional

site-defined processing supplied by an associated
dialog

Tools Used To Develop an Application

26 ADS Reference Guide

Function Type What it Does

System Functions Perform predefined activities

ESCAPE Bypasses a function even though the current screen
contains errors

FORWARD/BACKWARD Pages forward or backward on menu maps

HELP Displays the runtime Application Help screen

POP Returns to the last menu or menu/dialog function

POPTOP Returns to the first menu or the menu/dialog
function

QUIT Terminates application processing

RETURN Returns to the next higher level function in the
sequence of operative functions

SIGNON/SIGNOFF Signs on to or off of CA IDMS/DC or DC/UCF from

within the application

TOP Returns to the highest level function in the sequence
of operative functions

Responses

The path between two functions is called a response. Responses define all possible flow
of control in the application. The following diagram shows the functions and responses
of a sample employee information application that stores and displays employee

information.

Tools Used To Develop an Application

Chapter 1: Introduction to CA ADS 27

Functions and responses in a sample CA ADS application

Mapping Facilities (MAPC and the Batch Compiler/Utility)

Online

CA IDMS mapping facil ity (MAPC) screens prompt for specifications that define the
screen format (map) for a CA ADS application. Data editing, data conversion, and
error-handling criteria can also be specified. The specified criteria are automatically

applied to data processed by the map at runtime.

Batch

Alternatively, the batch compiler and util ity allow the developer to define and compile
maps in batch definition mode. These batch tools are particularly useful when several
maps require modification and recompilation.

Note: For more information about the online mapping facil ity and the batch compiler
and util ity, see the CA IDMS Mapping Facility Guide.

Tools Used To Develop an Application

28 ADS Reference Guide

Defining the screen format

A map in an online application defines the screen format displayed to an end user at

runtime. The fields displayed on the screen allow the end user to enter or modify data.
The data is then processed according to the instructions contained in the processing
logic of the dialog.

The following diagram shows the sequence followed when a map is displayed at
runtime. The DISPLAY statement in the processing logic accesses the map load module

that is stored in the data dictionary, causing the map to be displayed on the screen.
Data entered on the screen is then processed according to the instructions contained in
the dialog processing code.

Runtime display screen defined by online map

CA ADS Dialog Compilers (ADSC and ADSOBCOM)

Dialog

ADSC brings various application components together into a modular entity (dialog) that
is executed at runtime. The table below lists the components of a dialog and describes
what each component does. ADSC screens prompt for names of dialog components and
other information needed to define the dialog for an online or batch application.

ADSOBCOM is a util ity that can be used to define and recompile several dialogs in batch

mode. This capability is particularly useful when dialogs need to be recompiled because
maps, processes, subschemas, or records associated with several dialogs are modified.

Tools Used To Develop an Application

Chapter 1: Introduction to CA ADS 29

Components of a dialog

Dialog component What it does

Map Provides the means of communication
between one data source and the application

Subschema Provides the dialog's view of the database

Access module Provides optimized access to an SQL-defined
database

Records Describe the data used by the dialog and map

Subschema records Allow the dialog to read and write information
to the database

Dialog work records Provide temporary storage to be used by
dialogs and maps

Process modules Define the processing the dialog performs at
runtime

Premap process

(optional, maximum of one per
dialog)

Defines processing that prepares the screen

for display

Response process

(optional, any number per dialog)

Defines processing that occurs after the end
user presses a control key (such as Enter or

PF1) in response to the dialog's map

Declaration module

(optional, maximum of one per

dialog)

Specifies SQL cursor and WHENEVER
declarations (for SQL error processing)

See the CA IDMS SQL Programming Guide.

In an online application, a dialog interacts with the end user by displaying a screen and
allowing the user to view and input information.

Interaction between dialog and end user at runtime

The following diagram shows the interaction between the dialog and the end user at
runtime. In the EMPLIST dialog, the premap process generates a l ist of employee names.
The screen defined by the EMPLISTM map displays a page of names. The user can
respond by paging backward or forward by pressing PF7 or PF8. Pressing PF5 accesses

the MODIFY EMPLOYEE function.

Tools Used To Develop an Application

30 ADS Reference Guide

CA ADS dialog at run time

IDD Menu Facility and Online IDD

The CA Integrated Data Dictionary (IDD) consists of two related online tools, the IDD

menu facil ity and online IDD. These tools are used to define data and various CA ADS
application components to the data dictionary.

IDD menu facil ity screens prompt for all required specifications. Online IDD allows
developers to use Data Dictionary Definition Language (DDDL) statements to define and
modify data dictionary entities.

Note: For more information about how to use the IDD menu facil ity and online IDD
screens, see the CA IDMS Common Facilities Guide. For more information about online
IDD and DDDL statements, see the CA IDMS IDD Quick Reference Guide.

CA ADS Screens

Chapter 1: Introduction to CA ADS 31

The CA ADS Runtime System

CA IDMS/DC and DC/UCF

The CA ADS runtime system is a CA IDMS/DC or DC/UCF (DC/UCF) task that establishes
the application environment and executes the application components as a series of

tasks. Operations such as building and dis playing menus, allocating buffers, initializing
data, editing data, and validating data are automatically performed by the runtime
system.

CA ADS Screens

CUA-style screens

The dialog (ADSC), map (MAPC), and application (ADSA) compilers provide Common
User Access (CUA) style screens. These screens provide space for the developer to enter
data particular to the dialog, map, or application. There are key assignments at the
bottom of each screen and CUA-style selection by means of numbers or the "/"

character. Screens are consistent across tools with standard:

■ Screen layout

■ Terminology

■ Commands

■ Functions

■ Key assignments

CA ADS Screens

32 ADS Reference Guide

The initial screen of each compiler is made up of six areas. These areas are shown on the
following screen and described in the following table.

 Add Modify Compile Delete Display Switch
 .___
.

 CA ADS Online Dialog Compiler

 CA, INC.
 ┌─
 │
 │
 │ Dialog name ________
 │ Dialog version ____
 │ Dictionary name ________
 │ Dictionary node ________
 └─
 ┌─ Screen 1 1. General options
 │ 2. Assign maps

 │ 3. Assign database
 │ 4. Assign records and tables
 │ 5. Assign process modules
 └─
 Copyright (C) 2007 CA. ALL RIGHTS RESERVED

 Command ===>
 Enter F1=Help F3=Exit F10=Action

Areas of the screen

Area Description

Activity selection
area

Contains an action bar that identifies the actions that can be
taken on the entity and provides pull -down windows to

implement these actions.

Identification area Allows entry of information that uniquely identifies the entity
being worked on: name, vers ion, dictionary name, and
dictionary node.

The dictionary name and node information default to the
values established for the current terminal session.

Screen specification

area

Presents entity definition steps and provides space for the user

to request a specific step.

Message area Presents informational, warning, or error messages.

Command area Allows entry of action bar commands to pull down a window.
The action bar command can be abbreviated to three

characters.

In the case of the SWITCH command, both the command and
the desired task can be entered on the command line, thereby

bypassing the window (for example, SWI OLQ).

CA ADS Screens

Chapter 1: Introduction to CA ADS 33

Area Description

Key assignment area Presents the valid key choices and the action taken.

Action Bar

The activity selection area of each Main Menu screen is composed of an action bar

containing six actions. Each action on the action bar is associated with a pulldown
window.

Accessing the action bar

You access an item on the action bar in the activity selection area in one of three ways:

■ Tab to the item and press [Enter]

■ Press [PF10] to move to the action bar and then tab to the item and press [Enter]

■ Type the name of the action on the command line and press [Enter]

Any of these actions results in a pulldown window being opened.

 Add Modify Compile Delete Display Switch
 .___.
 │ │
 │ Copy from dialog │CA ADS Online Dialog Compiler
 │ Name ________ │
 │ Version 1 │CA, INC.
 │-----------------------│
 │ F3=Exit │
 │_______________________│
 Dialog name JPKD1
 Dialog version 1
 Dictionary name TSTDICT
 Dictionary node ________

 Screen 1 1. General options
 2. Assign maps
 3. Assign database
 4. Assign records and tables
 5. Assign process modules

 Command ===>
 Enter F1=Help F3=Exit F10=Action

CA ADS Screens

34 ADS Reference Guide

Pulldown windows

There are six pulldown windows available from the action bar on the Main Menu screen.

Use this
window...

To...

Add Check the entity out to the current developer and (optionally) copy the
definition of a currently existing entity.

Modify Check the entity out to the current developer or release the entity.

List the checked-out entities.

Delete Delete either the current changes (since the last compilation) or the
entire entity.

A confirmation window is opened if the option is to delete the entire
entity.

Compile Store the definition in the data dictionary, create a load module, and
present errors.

Display Display summary information (entity size, when built, user-id, etc.).

Browse the entity.

View the runtime image of the entity (for maps only).

Switch Use the transfer control facil ity (TCF) to transfer control to another CA
IDMS/DC task (such as IDD, OLQ, etc.).

Each of the actions on the action bar is described below.

Leaving the window

Most actions l isted in the pulldown windows require that the developer enter a menu
choice or data, and press [Enter].

To leave a pulldown window without entering a number or data, the developer presses

[PF3]

CA ADS Screens

Chapter 1: Introduction to CA ADS 35

Action Bar Actions

A description of each of the action items identified in the above table follows.

Add

Specifies that a new entity is being added.

Using the Add action, the developer can copy an existing entity into the current work
fi le and give it a new name.

When the application developer specifies an entity name, the compiler ensures that no
entity exists with the specified name and version number and returns the message:

DC498104 DIALOG1 was not found, use the Add action to create or copy the dialog

To request the add operation, the developer must either open the Add window by

moving the cursor to the action bar, or type the word ADD on the command line.

Note: The compiler does not assume that the add operation is requested when it does
not find the entity in the dictionary.

If an entity with the specified name and version number exists, the compiler assumes a
modify operation and returns the following message:

DC498102 Currency set for dialog empdemo version 1

When you add an entity, you have explicitly checked it out, and no one else can access it
until you check it in.

If another developer owns the entity, or if another entity type has already used the
name, the following error message is issued:

DC498103 Currency not established. Dialog is currently checked out

DC498107 to user MET on dictionary TESTDCT.

CA ADS Screens

36 ADS Reference Guide

The following screen shows the Add window on the dialog compiler Main Menu.

 Add Modify Compile Delete Display Switch
 .___.
 │ │
 │ Copy from dialog │A ADS Online Dialog Compiler
 │ Name JPKD5___ │

 │ Version 1 │CA, INC.
 │-----------------------│
 │ F3=Exit │
 │_______________________│
 Dialog name JPKD1
 Dialog version 1
 Dictionary name TSTDICT
 Dictionary node ________

 Screen 1 1. General options
 2. Assign maps
 3. Assign database
 4. Assign records and tables
 5. Assign process modules
 Dialog added using copy request.

 Command ===>
 Enter F1=Help F3=Exit F10=Action

Modify

Specifies that an existing entity is being modified or, if the specified entity belongs to a
suspended session, that the suspended session is being resumed.

You can resume a session by fi l l ing out the entity name. MODIFY CHECKOUT is the
name CA ADS gives to entities not yet checked out.

When the application developer specifies the Modify action, the compiler ensures that
an entity exists with the specified name and version number and returns the message:

DC498102 Currency set for dialog empdemo version 1

If the specified entity exists, the compiler retrieves and displays the definition. When
the Compile action is selected, a new load module is created for the entity.

If an entity with the specified name and version number does not exist, Modify is
invalid.

If an entity is currently in use, the name of the owner is displ ayed. The owner can
release the entity, if desired, without having to compile it and without deleting the
current changes in the work fi le. To release an entity, the developer chooses item 2,

Release, from the Modify pulldown window. Another developer can then assume
control of the entity by issuing a reserve request.

CA ADS Screens

Chapter 1: Introduction to CA ADS 37

To see a l ist of the entities checked out, the developer chooses item 3, List Checkouts.

Modify is the default for an existing dialog.

The following screen shows the Modify window on the dialog compiler Main Menu.

 Add Modify Compile Delete Display Switch
 .___.
 │ │

 │ 1 1. Checkout │ Online Dialog Compiler
 │ 2. Release │
 │ 3. List Checkouts │A, INC.
 │-----------------------│
 │ F3=Exit │
 │_______________________│
 Dialog name JPKD1
 Dialog version 1
 Dictionary name TSTDICT
 Dictionary node ________

 Screen 1 1. General options
 2. Assign maps
 3. Assign database
 4. Assign records and tables
 5. Assign process modules

 Command ===>
 Enter F1=Help F3=Exit F10=Action

Compile

Specifies that the current entity is being compiled.

When the application developer specifies the Compile action, the compiler ensures that
an entity exists with the specified name and version number.

If the specified entity exists, the compiler compiles the entity (including all process
modules in the case of a dialog) and, if the compilation is successful, creates a load
module. The load module is stored in the data dictionary.

Upon compilation, the compiler deletes any queue records saved for a suspended
session of the entity definition.

If an entity with the specified name and version number does not exist, the Compile
action is invalid and an error message is displayed.

If errors are encountered during the compilation process, they are written to a log fi le

that allows scrolling access and is chosen from the Compile window.

CA ADS Screens

38 ADS Reference Guide

The following screen shows the Compile action on the dialog compiler Main Menu.

 Add Modify Compile Delete Display Switch
 .___.
 │ │
 │ 1 1. Compile │ log Compiler
 │ 2. Display messages │

 │-------------------------│
 │ F3=Exit │
 │_________________________│

 Dialog name METDLG1
 Dialog version 1
 Dictionary name TSTDICT
 Dictionary node ________

 Screen 1 1. General options
 2. Assign maps
 3. Assign database
 4. Assign records and tables
 5. Assign process modules
 Command ===>
 Enter F1=Help F3=Exit F10=Action

When errors are encountered in the compilation process, the application developer
chooses item 2, Display messages, from the Compile action on the action bar. Messages
on the Messages screen indicate where there are errors.

CA ADS Screens

Chapter 1: Introduction to CA ADS 39

The following screen shows the Messages screen resulting from dialog compilation:

Sample Messages screen

 Compiled Process Modules Page 1 of 1

 Dialog METDLG01 Ver 1

 Name MET-ERROR 1 Commands
 Version 0001 Type 2 1 Errors
 Key _____ Value _ 1. Display
 2. Print
 Name ________________________________ Commands
 Version ____ Type _ Errors
 Key _____ Value _ 1. Display
 2. Print
 Name ________________________________ Commands
 Version ____ Type _ Errors
 Key _____ Value _ 1. Display
 2. Print
 Name ________________________________ Commands
 Version ____ Type _ Errors
 Key _____ Value _ 1. Display
 2. Print
 Type: 1=Declaration 2=Premap 3=Response 4=Default Response
Select a process for Display or Print.

 F1=Help F3=Exit F7=Bkwd F8=Fwd F11=Dialog-level messages
4B7 A IBM 07/62

The Messages screen displays the source statements for a premap or response process
that contains errors in its process code. It also contains other messages encountered

during the compilation of the dialog.

Enter 1, Display, to display a copy of the dialog process source errors.

CA ADS Screens

40 ADS Reference Guide

Sample Dialog Process Source screen

 Dialog Process Source Page 1 of 1
 .___.
 <PROCESS> MET-ERROR 0001
 100 MOBE ZNTRAIL(MYNUMBER) TO WK-PART-CODE
 $
 <E> DC157001 INVALID INITIATING KEYWORD FOR COMMAND. STMT FLUSHED.
 200 DISPLAY.

 .__.
 Module currently displayed: MET-ERROR VERSION: 1
 F3=Exit F5=IDD F7=Bkwd F8=Fwd F11=Next.error

Data dictionary sequence numbers appear to the left of the source statements. If the
listed code includes another process module, the source statements from the included

module are l isted after the INCLUDE statement.

Process statements that are in error are flagged with a dollar sign ($), followed by a CA
ADS error code and message. One erroneous process source statement can cause
subsequent statements to be found in error, even if they are coded correctly.

Note: For more information about the error messages used by CA ADS, see the CA IDMS

Messages and Codes Guide.

The Messages screen cannot be used to correct errors in the process source code. To
correct stored process code, the application developer must use IDD. To toggle to IDD
press [PF5].

Note: In order to toggle to IDD, you must be running ADSC under the CA IDMS

Command Facil ity. For more information about the CA IDMS Command Facil ity, see the
CA IDMS Common Facilities Guide. For more information about correcting errors in
process code, see the CA ADS User Guide.

Delete

Specifies that an existing entity, or changes to an existing entity, be deleted.

When the application developer specifies the Delete dialog action from this window,
the compiler ensures that an entity exists with the specified name and version number.

If the specified entity exists and the action is Delete dialog, a confirmation window is
presented to the user, allowing the request to be confirmed or rescinded. If the deletion
is confirmed, the compiler deletes the load module from the data dictionary, any

dictionary definitions, and any queue records saved for a suspended session of the
definition.

CA ADS Screens

Chapter 1: Introduction to CA ADS 41

If an entity with the specified name and version number does not exist, the Delete
dialog action is invalid and an error message is displayed.

The entity must not be reserved to another user if it is to be deleted.

If Delete changes has been chosen from this window, the working fi le is reconstructed
from the most recently stored (compiled) definition.

If Delete changes is chosen, the entity remains checked out to the current developer.

The following screen shows the Delete window on the dialog compiler Main Menu. A

confirmation window is displayed so that the request to delete the dialog can be
confirmed or rescinded.

 Add Modify Compile Delete Display Switch
 .___.
 │ │
 │ 2 1. Delete changes │ piler
 │ 2. Delete dialog │
 │-----------------------│ io .__________________.
 │ F3=Exit │ │ │

 │_______________________│. │ 2 1. Confirm │
 │ 2. Reject │
 Dialog name SOME1 │__________________│
 Dialog version 1
 Dictionary name TSTDICT
 Dictionary node ________

 Screen 1 1. General options
 2. Assign maps
 3. Assign database
 4. Assign records and tables
 5. Assign process modules

 Enter 1 to confirm the delete request.

 Command ===>
 Enter F1=Help F3=Exit F10=Action

CA ADS Screens

42 ADS Reference Guide

Display

Specifies that summary information for the named entity be displayed.

The following screen shows the Display window on the dialog compiler Main Menu.

 Add Modify Compile Delete Display Switch
 .___.
 │ │
 CA AD │ _ 1. Browse │ er
 │ 2. Summary │
 CA, │ 3. Map image │
 │ 4. Print Sum │
 │------------------│
 │ F3=Exit │
 Dialog name │__________________│
 Dialog version 1
 Dictionary name TSTDICT
 Dictionary node ________

 Screen 1 1. General options
 2. Assign maps
 3. Assign database
 4. Assign records and tables
 5. Assign process modules
 Command ===>
 Enter F1=Help F3=Exit F10=Action

From the Display window, the developer can choose Browse or Summary. Other
options available from this window depend on the compiler being used.

Browse

The Browse option allows the developer to walk through the entity definition process
without changing any information about the entity. All fields on the compiler screens
are protected.

If the entity is currently checked out to another developer and changes have been made

but not saved, the Browse option returns the entity definition as it exists in the
dictionary.

CA ADS Screens

Chapter 1: Introduction to CA ADS 43

Summary

The Summary option gives an overview of the entity definition.

The following screen shows the Summary option taken from the dialog compiler Mai n
Menu.

 Dialog Summary Display Page 1 of 1
 .___.
 DIALOG: PROCEMP VERSION: 1

 Entry Point......: PREMAP Mainline.........: YES
 Symbol Table.....: YES Diagnostic Tables: NO
 Cobol Moves......: NO Retrieval Lock...: NO
 Autostatus.......: YES Message Prefix...: DC

 Status Rec: ADSO-STAT-DEF-REC Version: 1
 Access Module: JMASQLD ANSI-flag: Date Format: Time Format:

 Online Map: MAP1 Version: 1

 Record: SQLCA Version: 1 NC

 Process: USER2-PM Version: 1 Premap
 Process: USER1-CONTINUE Version: 1 Response
 Execute on error: NO Key: ENTER Value:

 .__.
 F3=Exit F7=Bkwd F8=Fwd

Map image

The Map Image screen displays the dialog map as it appears to the user at runtime. The

application developer can position the cursor at map data fields and enter information.

Map modifications defined in process code associated with the dialog are not in effect
when the screen is displayed. Map data fields do not contain any values on the Map
Image screen.

Hit any key to return to the menu screen.

Print Sum

The Print Sum option prints a copy of the Print Summary screen.

Switch

Specifies that control is to be passed to another CA IDMS/DC or DC/UCF task. Switch
suspends the current dialog compilation session and transfers control to another

DC/UCF task, to the transfer control facil ity Selection screen, or to a new or suspended
session of another task.

Checkout and Release Procedures

44 ADS Reference Guide

A task code must be entered into the Task code field.

The following screen shows the Switch window on the dialog compiler Main Menu.

 Add Modify Compile Delete Display Switch
 .___.
 │ │
 CA ADS Online │ Task code ________ │
 │-----------------------│
 Computer Associate │ F3=Exit │
 │_______________________│

 Dialog name JPKD1
 Dialog version 1
 Dictionary name TSTDICT
 Dictionary node ________

 Screen 1 1. General options
 2. Assign maps
 3. Assign database
 4. Assign records and tables
 5. Assign process modules

 Command ===>
 Enter F1=Help F3=Exit F10=Action

More information:

Checkout and Release Procedures (see page 44)
Introduction to Process Commands (see page 295)

Checkout and Release Procedures

The checkout and release procedures allow a developer to own an application, dialog, or
map while working on it.

The developer checks out an entity to work on it. Until the entity is released, attempts
by another developer to work on that entity result in the following message:

If ADSC:

DC498107 to user MET on dictionary TESTDCT.

If ADSOBCOM:

DC497042 Dialog is checked out to ADSC and cannot be compiled in batch

Checkout and Release Procedures

Chapter 1: Introduction to CA ADS 45

How to check out or release an entity

Types of Checkouts and Releases

An application developer checks out and releases entities explicitly or implicitly.

Explicit checkouts

Explicit checkouts allow the developer to control and retain scope of an entity across
repeated definition sessions and entry compilations.

An explicit checkout begins with either:

■ An ADD action from the pulldown menu.

■ A CHECKOUT action from the MODIFY pulldown menu. The named entity must
exist in the dictionary.

When an entity has been explicitly checked out, no other developer can work on an
existing entity until Release is specified. If Release is not specified, al l other developers

are l imited to the Display and Switch actions.

Explicit checkouts end with either:

■ A RELEASE action from the MODIFY pulldown menu

■ A successful DELETE action

Explicit releases

This action checks the named entity in and releases it for use by another developer.

An explicit release occurs when:

■ The user selects the RELEASE option from the MODIFY sub menu

■ The user selects the DELETE DIALOG option from the DELETE sub menu

Implicit checkout

Implicit checkout is intended to facil itate a developer's work when a long scope of
retention is not required. You use implicit checkout instead of explicit checkout when
rapid deletion, compilation, or simple modification of one or many entiti es is required.

Checkout and Release Procedures

46 ADS Reference Guide

An implicit checkout begins with any of the following:

■ A COMPILE action

■ A DELETE action

■ Entering the number of a screen in the Screen field and pressing [Enter] from the
main menu screen

Note: If COMPILE or DELETE is successful, the dialog or application is automatically
released. If unsuccessful, the application or dialog remains checked out to the
developer.

When the entity has been implicitly checked out, checkin occurs automatically after the

entity successfully compiles.

Implicit releases

Implicit releases end an implicit checkout and occur when the application developer
does one of the following:

■ Successfully compiles the entity

■ Selects Modify from the action bar and chooses the Checkout option from the
pulldown window

■ Selects Delete from the action bar and chooses either the Delete changes or Delete

dialog option from the pulldown window

This action checks the named entity in and releases it for use by another developer.

Releasing an entity

The application developer releases an entity by selecting Modify from the action bar
and choosing the Release option from the pulldown window. The named entity must be

checked out to the developer before that developer can release it.

The release action suspends the current session and allows another developer to check
out the entity.

If the developer has made no changes to the entity definition, the queue records for the
current session are deleted and the developer checking out the released entity receives

the following message:

DC498102 Currency set for dialog empdemo version 1

If the developer has made changes to the entity definition and the entity has been
released, the queue records are retained. Another developer can check the entity out
and receive the following message:

DC498106 Dialog empdemo version 1 is recovered from a suspended session

Checkout and Release Procedures

Chapter 1: Introduction to CA ADS 47

Listing Checkouts (ADSL)

Within each compiler, the entities checked out to the executing user can be viewed.

The ADSL transaction allows a user to view the entities of any type checked out by any
user. To invoke ADSL, enter the task code ADSL and enter the desired tool and user

information. In this example, 'ADSC' and 'ALL USERS' have been selected:

 RELEASE nn.n volser
 CA ADS AND MAPPING CHECKOUT LISTS

 TOOL . . 1 1. ADSC
 2. ADSA
 3. MAPC
 4. ALL

 USER . . __________________

 ALL USERS / (/)

 ENTER F1=HELP F3=EXIT

The checkout l isting information you request is then displayed:

 Dialog compiler Checkout Listing Page 1 of 1

 Dialog: Dictionary:
 --Name-- -Version- ------------User Id------------- --Name-- --Node--
 NEWDIAL2 1 PAGTO01 APPLDICT
 NEWDIAL3 1 PAGTO01 APPLDICT
 NEWDIAL1 1 PAGTO01
 ADDS01D 1 PAGTO01

 F3=Exit F7=Bwd F8=Fwd

The user can modify checkouts using ADSM.

CA ADS Help Facility

48 ADS Reference Guide

Modifying Checkouts (ADSM)

What you can do

The ADSM transaction can be used to delete or modify the assignment of suspended
compiler sessions. For example, a project leader can use ADSM to reassign ongoing

work:

 Release nn.n volser
 CA ADS and MAPPING Checkout Modification

 Action 2 1. Delete
 2. Reassign

 Tool 1 1. ADSC
 2. ADSA
 3. MAPC

 Entity name ADDS01D

 Entity version . . 1

 Current user . . . PAGTO01

 Reassign to user . EMMWI02

 Copyright (C) 2007 CA. ALL RIGHTS RESERVED
 Enter F1=Help F3=Exit

How it works

When a checkout is reassigned, the queue for the tool session remains in place,

including uncompiled changes, but the user assignment is modified.

When a checkout is deleted, uncompiled changes are deleted.

Releasing the entity

You can release an entity through ADSM by leaving blank the field for the new user. The
queue for the entity is maintained, and the entity is available for checkout by another

user.

CA ADS Help Facility

CA ADS provides context-sensitive online help when working with CA ADS compilers and
the mapping compiler. Help is available at both the map level and the field level.

CA ADS Help Facility

Chapter 1: Introduction to CA ADS 49

Map-level help

Map-level help provides information on the purpose of the specific map and the general

type of information required for the map.

Field-level help

Field-level help provides information on data required for a specific field on the map.

Using help

Use... To...

PF1 Request help from any screen, depending on cursor position

PF3 Return from the help screen

PF7/PF8 Page backward and forward while on the help screen

Accessing help

Depending on the cursor position, either map or field help is accessed as follows:

If the cursor is positioned on... The following will be displayed...

A map field associated with help text The map field help text

A map field not associated with help text The map help text

Anywhere else on the screen The map help text

Help text for the map is displayed as full screen.

Help text for the map field is displayed as half screen covering either the top or bottom
half of the screen as appropriate.

CA ADS Help Facility

50 ADS Reference Guide

Sample help screen

The following screen shows map field help for the Mainline map field on the Dialog and

Options screen of the dialog compiler.

 : :
 : Specify MAINLINE if the dialog will be invoked from the :
 : CA IDMS/DC prompt or by an APPC (send-receive option) request. :
 : :
 : Mainline dialogs are potentially eligible to appear on the ADS :
 : MENU screen. :
 : :
 : :
 : :
 : :
 _______ Return F3 _______________ Page F7/F8 _________ Scroll: 010 _____
 Options and directives _ Mainline dialog
 _ Symbol table is enabled
 / Diagnostic table is enabled
 / Entry point is premap
 _ COBOL moves are enabled
 / Activity logging
 / Retrieval locks are kept
 / Autostatus is enabled

— --
 Enter F1=Help F3=Exit F4=PrevStep F5=NextStep

Chapter 2: CA ADS Application Compiler (ADSA) 51

Chapter 2: CA ADS Application Compiler
(ADSA)

This section contains the following topics:

Overview (see page 51)
Application Compiler Session (see page 51)

Application Compiler Screens (see page 57)

Overview

The CA ADS application compiler is an application design and prototyping tool. During
an application compiler session, the application developer defines the components and
structure of an application. When the definition is complete, the application developer

compiles the application. The resulting load module is stored in the data dictionary for
use at runtime.

When the load module for an application is compiled, the only definitions that must
exist in the data dictionary are those global records specifi cally associated with the
application. All other entities associated with the application can be created and added

to the dictionary at any time before the application is executed. This feature allows the
application developer to upgrade application components without having to recompile
the application.

Note: For more information about application compiling features, see the CA ADS
Application Design Guide. For examples of using the application compiler, see the CA
ADS User Guide.

Application Compiler Session

In an application compiler session, screens are displayed that prompt the application

developer for information about an application and the responses and functions
associated with the application. The information supplied by the application developer
is used by the CA ADS runtime system to control the execution of the application.

Application Compiler Session

52 ADS Reference Guide

Invoking the Application Compiler

The application developer can invoke the application compiler from any of the three
ways described below.

From CA IDMS/DC or DC/UCF

By specifying the appropriate CA IDMS/DC or DC/UCF task code, the application
developer can invoke the application compiler. Task codes are defined at system
generation and can vary from site to site. The default task code for the application
compiler is ADSA.

Note: To use the application compiler under the transfer control facil ity (TCF), specify
ADSAT, the TCF version of the application compiler task code. The TCF task code for the
dialog compiler is ADSCT and for the mapping facil ity is MAPCT.

When invoked, the application compiler displays a blank Main Menu screen on which

the application developer can begin a new session or resume a suspended session.

From Another TCF Task

By specifying the appropriate CA IDMS/DC or DC/UCF task code in conjunction with the
SWITCH command from another task executing under the transfer control facil ity, the
application developer can invoke the application compiler.

If a new session is requested, the application compiler displays a blank Main Menu

screen on which the application developer can begin a new session or resume a
suspended session.

If an old session is requested, the application compiler resumes its most recently

suspended session under the transfer control facil ity.

From the TCF Selection Screen

The application compiler can be invoked by keying any nonblank character, except the
underscore (_), next to the appropriate task code or descriptor, as follows:

■ Keying a nonblank character next to the appropriate task code invokes the

application compiler. A blank Main Menu screen on which the application
developer can begin a new session or resume a suspended session is displayed.

■ Keying a nonblank character next to the descriptor of a suspended application
compiler session invokes the application compil er and resumes the suspended

session at the Main Menu screen. The descriptor consists of the appropriate task
code, the application name, and the application version number.

Application Compiler Session

Chapter 2: CA ADS Application Compiler (ADSA) 53

The transfer control facil ity enables the application developer to transfer from one CA
IDMS/DC or DC/UCF task to another. For example, the application developer can

transfer between the application compiler, IDD, MAPC, and the dialog compiler. When
control is transferred from a task, the current session of that task is suspended, if
necessary. A task can have several suspended sessions.

Note: In a multiple dictionary environment, be sure to begin the application compiler
session in the correct dictionary. The dictionary name can be specified in the Dictionary
name field on the Main Menu screen. For more information about the transfer control
facil ity, see the CA IDMS Common Facilities Guide.

TCF Selection Screen

Sample selections on the transfer control facil ity Selection screen are shown below:

 CA, INC.
 TRANSFER CONTROL FACILITY *** SELECTION SCREEN ***

 _ SUSPEND TCF SESSION (PF9) DBNAME..: DBNODE..:
 _ TERMINATE TCF SESSION (PF3) DICTNAME: TSTDICT DICTNODE:

 TCF TASKCODES *SUSPENDED SESSIONS*
 SELECT ONE TO START A NEW SESSION SELECT ONE TO RESUME AN OLD SESSION
 TASKCODE DESCRIPTOR
 _ TCF _ADSCT MPKDIA1 0001
 _ SYSGENT SYSGEN COMPILER _ADSAT MPKAPP1 001
 _ MAPCT MAP DEFINITION _ADSAT MPKAPP1 002
 _ ADSCT DIALOG GENERATOR _ADSCT MPKDIA2 0001
 X ADSAT APPLICATION GENERATOR
 _ ASF
 _ ASFT
 _ IDDT IDD COMMAND MODE
 _ SSCT SUBSCHEMA COMPILER
 _ SCHEMAT SCHEMA COMPILER
 _ IDDMT IDD MENU MODE
 _ OLQ OLQ COMMAND MODE
 _ OLQT OLQ COMMAND MODE

Sequencing Through Application Compiler Screens

Application compiler screens prompt the application developer for information about an
application. The developer can sequence through the application definition steps or

request a step in the process explicitly.

The primary steps involved in creating an application are shown below. The developer
can either choose the next step from the Main Menu screen or move through the steps
from screen to screen using [PF5].

Application Compiler Session

54 ADS Reference Guide

Steps in Creating an Application

 ┌───────────┐
 │ Appl. │
 │ specifi- │
 │ cation │
 └─────▲─────┘
 │
 ┌───────────────┬────────┴──────┬───────────────┐
 │ │ │ │
 │ │ │ │
 │ │ │ │
┌─────▼─────┐ ┌─────▼─────┐ ┌─────▼─────┐ ┌─────▼─────┐
│ General │ * │ Responses/│ * │ Global │ * │ Task │
│ options ◄───► functions ◄───► records ◄───► codes │
│ │ │ │ │ │ │ │
└───────────┘ └───────────┘ └───────────┘ └───────────┘

 * Previous/next step (F4/F5)

Control Keys

While creating an application, the applications developer can use the control keys
shown below to:

■ Move from one step in the process to another step

■ Move from one screen to another screen while remaining on one step in the
process

■ Obtain help

■ Leave the ADSA compiler

■ Move between the action command line and the specification area (Main Menu
only)

Summary of Application Compiler Process

Each step in the process of creating an application is associated with one or more

screens as shown below.

Step in process Screen Purpose

Application specification Main Menu Identifies the name and

characteristics of an
application and specifies the
action to be taken

General options General Options Specifies application options
for date format, print
options, security, and
maximum number of

responses

Application Compiler Session

Chapter 2: CA ADS Application Compiler (ADSA) 55

Step in process Screen Purpose

Response/function

definition

Response/Function List Specifies the relationship

between functions and
responses

 Response Definition Specifies the name and

characteristics of a response

 Function Definition (Dialog) Allows specification of a
function and associated
dialog and valid responses

for the dialog or
menu/dialog function
currently being defined

 Function Definition

(Program)

Specifies the name and

description of the associated
program and records to be
passed to a user program

function

 Function Definition (Menu) Specifies characteristics for a
function defined as a menu;
allows alteration of the

sequence or suppress ion of
the display of responses on
a menu screen

Global records Global Records Specifies records available to
all functions in an
application

Task codes Task Codes Specifies DC/UCF task codes

that initiate an application at
runtime

Default Control Keys

Activity Control key Description

HELP [PF1] Displays a map or field help screen, depending
on cursor position

If the cursor is on a map field associated with
help text, a half screen of map field help text is
displayed.

If the cursor is set on a map field not associated

with help text or anywhere else on the map, a
full screen of map help text is displayed.

Application Compiler Session

56 ADS Reference Guide

Activity Control key Description

RETURN [PF3] From a pulldown window, returns to

specification area

From the Main Menu screen, returns control to
DC/UCF

From a screen other than the Main Menu
screen, applies updates to the current screen
and returns to the Main Menu screen

BACKWARD [PF4] Applies updates to the current screen and

displays the previous step in the process, as
outlined on the Main Menu screen

FORWARD [PF5] Applies updates to the current screen and
displays the next step in the process, as

outlined on the Main Menu screen

BACKPAGE [PF7] Displays the previous screen of any step
containing multiple screens

FORWARD PAGE [PF8] Displays the next screen of any step containing
multiple screens

ACTION [PF10] Toggles the cursor position between the
activity selection area action bar and the

specification area on the Main Menu screen

Suspending a Session

An application compiler session is automatically suspended in the event of a system
crash. Additionally, the current work is saved whenever an update is made. Application

definition sessions are entirely recoverable.

The developer can also suspend a session by selecting the Release option from the
Modify window on the action bar. This allows any other developer to check the

application out.

When a session is suspended, the application compiler saves the application definition,

including all specifications made during the session, on queue records. A suspended
session can be resumed at any time, as described in Invoking the Application Compiler
(see page 52).

Application Compiler Screens

Chapter 2: CA ADS Application Compiler (ADSA) 57

Terminating a Session

When a session is terminated by compiling or deleting an application, the application
compiler displays a blank Main Menu screen. The application developer can begin
another session or can leave the application compiler by selecting an appropriate

activity, such as Switch, from the action bar or by pressing [PF3].

When the application definition is complete, the application developer specifies

Compile as the next activity on the action bar in the activity selection area of the Main
Menu.

The application is compiled, and the resulting load module is stored in the data

dictionary load area where it is available for execution.

Note: For an example of an application compiler session, see the CA ADS User Guide.

Application Compiler Screens

Screens are available for use during an application compiler session. All adding,
modifying, deleting, compiling, displaying and switching is initiated from the Main Menu

screen.

Main Menu

The Main Menu screen is displayed when the application developer initiates an
application compiler session. This screen is used to specify the action taken regarding

the application, to name an application and a dictionary, and to specify the next step to
be taken in the application definition.

Areas

The screen is composed of six areas:

■ Activity selection area

■ Dialog identification area

■ Screen specification area

■ Message area

■ Command area

■ Key assignment area

Application Compiler Screens

58 ADS Reference Guide

Activity Selection Area

Displays the application compiler activities available.

The application developer selects an activity to be performed one of two ways:

■ By typing the name of the activity on the Command line in the lower left hand
corner of the screen.

■ By pressing PF10 to reach the Activity Selection Area, and, with the Tab key,
positioning the cursor on the activity name and pressing the [Enter].

Application Identification Area

Specifies the application name, application number, dictionary name, and the dictionary
node. The fields contained in this section are described below.

Screen Specification Area

Allows the application developer to specify the next step in the definition process. The

application developer can either:

■ Press Enter to go to the default next step

■ Specify a step

Message Area

Displays informational and error messages returned from the application compiler.

Note that the control keys as described earlier in this section (in addition to [Enter]), are
identified at the bottom of this screen.

Command Area

Provides a command line for entering the name of the desired action as specified in the

activity selection area above. Action names can be abbreviated to the first three letters,
ADD, MOD, DEL, COM, DIS or SWI. The system recognizes more than, but not less than,
the first three letters of each identification.

If more than one activity is specified on the command line, an error message is
displayed. If an activity is specified on the command line, and a control key is pressed,

the activity associated with the control key is executed.

If an error is detected after the application developer selects an activity, the application

compiler redisplays the current screen. The activity selection is retained and executed
when the error is corrected. The application developer can override the ini tial selection
by specifying another activity on the command line, selecting the activity directly from

the selection area or by using [PF10].

Application Compiler Screens

Chapter 2: CA ADS Application Compiler (ADSA) 59

Key Assignment Area

Presents the valid key choices and the action taken.

Control keys are described earlier in this section.

Main Menu Screen

 ┌─ Add Modify Compile Delete Display Switch

│ .___
__.
 │
 └─ CA ADS Application Compiler

 CA, INC.

 ┌─
 │ Application name ________

 │ Application version . . ____
 │ Dictionary name ________
 │ Dictionary node ________
 └─
 ┌─ Screen _ 1. General options
 │ 2. Responses and Functions
 │ 3. Global records
 │ 4. Task codes
 └─
 Copyright (C) 2008 CA, INC.
 Command ===>
 Enter F1=Help F3=Exit F10=Action

Field Descriptions

Application Name

Specifies the 1- to 8- character name of the current application. The application
name must begin with an alphabetic character and cannot contain embedded
blanks. An application name must be specified before any other application

compiler activity can be executed.

Application Version

Specifies the version number, in the range 1 through 9999, of the current
application. If no version number is specified, version defaults to 1.

Dictionary Name

Specifies the 1- to 8- character name of the data dictionary in which the application

load module is stored. If no dictionary name is specified, dictionary name is set to
the name of the dictionary identified in the user's profile or set through a DCUF SET
DICTNAME statement. The dictionary name cannot change once it is validated.

Application Compiler Screens

60 ADS Reference Guide

Dictionary Node

(DDS only) Specifies the node that controls the data dictionary specified by

Dictionary name. Dictionary node defaults to the system currently in use.

Specifying a node name is equivalent to issuing a DCUF SET DICTNODE command
under CA IDMS/DC or DC/UCF.

Screen

Provides the application developer with a quick form of navigation through the

application definition process. By specifying the number which precedes the step
name, the user avoids any unnecessary scrolling through the screens.

More information:

Sequencing Through Application Compiler Screens (see page 53)
Introduction to CA ADS (see page 19)

General Options Screen—Page 1

The first page of the General Options screen is used to specify options for an
application:

■ Description

■ Maximum responses

■ Date format

■ Application compiler execution mode

■ Application execution environment

■ Default print destination and class

The first page of the General Options screen is accessed from the Main Menu by
choosing option 1 at the Screen prompt.

The current settings for the application options are displayed on the screen. Each option

can be changed by overwriting the displayed setting.

Application Compiler Screens

Chapter 2: CA ADS Application Compiler (ADSA) 61

Sample Screen

 General Options Page 1 of 2

 Application name: TESTAPPL Version: 1

 Description . . . TEST APPLICATION

 Maximum responses 500

 Date format 1 1. mm/dd/yy 2. dd/mm/yy
 3. yy/mm/dd 4. yy/ddd

 Execution environment 1 1. Online 2. Batch

 Default execution mode. 1 1. Step 2. Fast

 Default print destination

 Default print class 1

 Enter F1=Help F3=Exit F4=Prev F5=Next F8=Fwd

Field Descriptions

Application Name

Specifies the name of the current application, as specified on the Main Menu
screen. This field is protected.

Version

Specifies the version number, in the range 1 through 9999, of the current
application.

Description

Specifies a 1- to 32-byte description of the current application. This field is a
documentation aid. The application description is included in the load module
created for the application.

Maximum Responses

Specifies the maximum number of responses, in the range 0 through 9999, that can

be defined for the application. The default maximum number of responses is 500.

The application compiler creates a table of responses for each application; 19 bytes

are allocated in the table for each response that can be defined. Therefore, the
value specified for Maximum responses determines the amount of space that is
allocated for the response table.

Application Compiler Screens

62 ADS Reference Guide

To optimize processing efficiency, the space allocated for the response table should
be kept as small as possible. If the application developer attempts to add more

responses than the maximum number specified, the application compiler returns a
message indicating that the attempt to add a response was unsuccessful because of
insufficient space. The developer can return to the General Options screen at any

time during an application compiler session and increase the Maximum responses
specification.

The value does l imit the number of responses that can be added, but the size of the
load module is exactly tailored to the actual number of responses, not set at this
l imit.

Date Format

Specifies the format in which the current date appears on runtime menu and help

screens. At runtime, the current date is retrieved from DC/UCF and is stored in the
specified format in ADSO- APPLICATION-GLOBAL-RECORD and ADSO-APPLICATION-
MENU-RECORD, if applicable. When a runtime menu or help screen is displayed, the

runtime system retrieves the date from the applicable record.

The date format is selected by entering the appropriate number in the response

field following Date format. Available formats are as follows:

■ MM/DD/YY (for example, 07/25/04). MM/DD/YY is the default.

■ DD/MM/YY (for example, 25/07/04)

■ YY/MM/DD (for example, 04/07/25)

■ DDD/YY (for example, 207/04)

Execution Environment

Specifies whether the application will execute online or under CA ADS Batch.

Default Execution Mode

Sets the default execution mode for the application.

If STEP mode is specified, the runtime system responds to a user signon with the
message that the signon is accepted. The user then must press [Enter] to initiate

the first function of the application. STEP mode is the default.

If FAST mode is specified, the system responds to an acceptable signon by directly
initiating the first function automatically.

Default Print Destination

Specifies a DC/UCF print destination. If not specified, the print destination defaults
at runtime to the system default.

At runtime, the specified print destination is stored in the AGR-PRINT-DESTINATION

field of the ADSO-APPLICATION-GLOBAL-RECORD. WRITE PRINTER commands can
use the default by specifying a print destination of AGR-PRINT-DESTINATION.

Application Compiler Screens

Chapter 2: CA ADS Application Compiler (ADSA) 63

Default Print Class

Specifies a DC/UCF print class number in the range 1 through 64. If not specified,

the print class defaults at runtime to the physical terminal default.

At runtime, the specified print class is stored in the AGR-PRINT-CLASS field of the
ADSO-APPLICATION- GLOBAL-RECORD. WRITE PRINTER process commands can use
the default by specifying a print class of AGR-PRINT-CLASS.

More information:

System Records (see page 567)

General Options Screen—Page 2

The second page of the General Options screen is used to specify runtime security
restrictions for a CA ADS application.

How to Access

The application developer accesses this screen from the first General Options screen in
one of two ways:

■ Pressing [PF8]

■ Entering a 2 in the Page field and pressing [Enter]

Security Classes

This screen allows the application developer to specify a DC/UCF security class for the
current application. Application security class is no longer used by the CA ADS runtime

system and is not used by CA IDMS internal security. It is provided for downward
compatibil ity with applications compiled under previous releases of DC/UCF and for
installations that use privately designed security systems that rely on the application

security class being stored in the ADSO-APPLICATION-GLOBAL-RECORD during runtime.

Note: Security classes assigned to responses are checked by CA IDMS central security if
security has been enabled.

Signon Functions

The second page of the General Options screen also allows the application developer to

specify a signon function to be executed before any other application function. A signon
function, if specified, is the first function initiated by the runtime system. I f signon is
required, the application cannot be executed until an acceptable signon is entered. If
signon is optional, the application can be executed whether or not a signon is entered.

Application Compiler Screens

64 ADS Reference Guide

Security for Runtime Menus

The application developer can also speci fy whether runtime menus are to be security

tailored. Only those responses for which the user has execution authority are displayed
on security-tailored menus.

The second page of the ADSA General Options screen itself can be the object of user
security restrictions imposed by the security administrator, through restricting
execution authority for program ADAPGOP2. Only application developers having

execution authority for ADAPGOP2 would have access to the second page of the
General Options screen.

Note: For more information about CA IDMS central security, see the CA IDMS Security

Administration Guide.

Sample Screen

 General Options Page 2 of 2

 Application name: TESTAPPL Version: 1

 Security class. 42

 Menus are 1 1. Not used 2. Security tailored
 3. Untailored

 Signon is 1 1. Not used 2. Optional

 Signon function is.

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd

Field Descriptions

Application Name

Specifies the name of the current application, as specified on the Main Menu
screen. This field is protected.

Security Class

Applicable to online applications only, specifies the DC/UCF security class, in the

range 1 to 256, assigned to the application.

File specification allows compatibility with Release 14.0 for applications compiled

under previous releases of CA IDMS and maintains the functionality of
installation-designed security systems that rely on application security classes being
stored in the ADSO-APPLICATION-GLOBAL-RECORD during runtime.

Application Compiler Screens

Chapter 2: CA ADS Application Compiler (ADSA) 65

Menus Are

Specifies whether runtime menus are security tailored. The application developer

can select one of the following specifications by entering the appropriate number in
the data field following this specification. The options are:

1. Not used— specifies that the application does not use menus.

2. Security tailored— specifies that only those responses that the user has
authority to execute are displayed on the runtime menus.

3. Untailored— (default) specifies that all responses defined as valid for
application functions are displayed on menus, regardless whether the user has

the authority to execute them.

The CA ADS runtime system tests to determine whether the user has authority to
execute each menu response if menus are security tailored. Only those responses
for which the user has execution authority are then displayed on the menus. If the
user attempts to execute a response for which execution authority is not granted,

the current function screen is redisplayed with the following message:

UNACCEPTABLE RESPONSE. PLEASE TRY AGAIN

Signon Is

Specifies whether a signon function is executed for the application. The application
developer can select a signon specification by entering the applicable number in the
field following this specification. A signon function can be specified as follows:

1. Not used— (default) specifies that no signon function is executed for the
application.

2. Optional— specifies that a signon function will be executed only when the user

is not signed on to DC/UCF. When the user is already signed on to DC/UCF, the
task top function is executed instead of the signon function (if it is a different
function). Also, the user is not required to sign on to the application to execute
unsecured functions.

3. Required— specifies that the application signon function is always executed
regardless of whether the user has signed on to DC/UCF, and regardless of
which function is the task top function. The user can only execute other

functions after successfully signing on to the application.

Signon Function Is

Specifies the name of a signon menu function to be defined by using the Function
Definition (Menu) screen. If Signon is specified as Optional or Required, a signon
function must be supplied. If Signon is specified as Not used, a signon function

name cannot be specified.

To identify system functions, enter the system function name. System functions are

reserved and cannot be edited.

ADSA warns the application developer if a function type code (1, 2 or 3), a program
name, or a dialog name are reserved for a system function.

Application Compiler Screens

66 ADS Reference Guide

More information:

Security Features (see page 717)

System-Defined Menu Maps (see page 126)

Response/Function List Screen

The Response/Function List screen is accessed from the Main Menu by choosing option

2 at the Screen prompt. This screen is used to:

■ Identify each response name for the application

■ Identify the associated control key

■ Identify the function associated with the response

■ Specify the function type

■ Name the program or dialog

For each response defined, the combination of response name, associated assigned key,
and function initiated must be unique within the application.

Up to 12 responses and functions can be entered on one page of the Response/Function
List screen.

The application developer can scroll between pages using the control keys associated
with paging forward and paging backward. See earlier in this section for a l isting of the
default control key assignments for the application compiler.

From the Response/Function List screen, the application developer can further define
both responses and functions by accessing the following screens:

■ Response Definition screen

■ Function Definition (Dialog) screen

■ Function Definition (Program) screen

■ Function Definition (Menu) screen

To access one of these screens, a nonblank character is placed in the appropriate Select
field.

Application Compiler Screens

Chapter 2: CA ADS Application Compiler (ADSA) 67

Sample Screen

 Response/Function List Page 1 of 1

 Application name: TESTAPP1 Version: 1

 Select Response Assigned Select Function Program/
 (/) name key (/) name/type(1,2,3)* Dialog name

 _ ________ _____ _ ________ / _ ________

 _ ________ _____ _ ________ / _ ________

 _ ________ _____ _ ________ / _ ________

 _ ________ _____ _ ________ / _ ________

 * Type: 1. Dialog 2. Program 3. Menu

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

Field Descriptions

Application Name

Specifies the name of the current application, as specified on the Main Menu
screen. This field is protected.

Version

Specifies the version number, in the range 1 through 9999, of the current
application.

Select

Placing a nonblank character in this field allows the developer to select a particular

response or function for further definiti on.

Response Name

Displays the name of the application response.

The following considerations apply:

■ For CA ADS, the response name cannot contain embedded blanks. At runtime, the

response name can be used in a $RESPONSE map field to select the response. The
response name is also stored by the runtime system in the AMR-RESPONSE-FIELD of
ADSO- APPLICATION-MENU-RECORD for use in runtime menus.

■ For CA ADS Batch, if the response field for an input record is the concatenation of
several fields, the response name specified on the Response Definition screen must

include any embedded blanks that occur in a concatenation. For example, the entry
'ADD ''E' is made for a response field that is the concatenation of two fields, the
first being six bytes long and the second being one byte long. The first field contains

the field value of ADD and the second field contains E.

Application Compiler Screens

68 ADS Reference Guide

Assigned Key

Specifies an online control key or a batch control event that selects the response at

runtime.

The following considerations apply:

■ Valid online assigned key specifications are ENTER, CLEAR, PA1 through PA3,

PF1 through PF24. LPEN can be specified as a control key if the use of l ight pens
is supported by the installation. The following consideration applies:

■ CLEAR, PA1, PA2, and PA3 do not transmit data.

■ Valid batch control events are EOF and IOERR. The following considerations

apply:

■ EOF indicates that the most recent input-fi le read operation resulted in an
end-of-fi le condition.

■ IOERR indicates that the most recent input fi le read operation resulted in a

physical input-error condition. In CA ADS Batch, an output error causes the
runtime system to terminate the application.

Function Name/Type

Displays the name and type of the application function associated with the

response.

The function name cannot contain embedded blanks.

The application compiler supplies a function type by crosschecking the defined
functions and responses.

Function types are as follows:

1. Dialog — The response is associated with a dialog function.

2. Program — The response is associated with a user program function.

3. Menu — The response is associated with a menu function.

For example, if the application developer specifies Menu and also provides a dialog

name in the Associated dialog field, of a Function Definition screen, the function is
associated with a menu.

When the application developer associates the response process with the dialog,
using the dialog compiler Process Modules screen, the Value and Key specified
should match the Response name and Assigned key entered on the

Response/Function List screen.

Associating a response with an internal function causes the dialog's response
process to be displayed as a valid response on runtime menu and help screens.

Program/Dialog Name

Specifies the name of the program or dialog associated with the function.

Application Compiler Screens

Chapter 2: CA ADS Application Compiler (ADSA) 69

Response/Function Search

The ADSA compiler:

■ Supports up to 999 pages of responses and function relationships

■ Returns to the current Response/Function screen when the selection list of
responses and functions has been exhausted

■ Provides a search function that allows partial keys and both next (forward) and
previous (backward) searches.

An example of the search function follows.

Invoking the Search Function

Pressing [PF6] brings up the search window. In this example, a partial key— 'IUA'— has

been entered. The search will attempt to match any response name beginning with
those letters:

 RELEASE nn.n volser
 Response/Function List Page 1 of 2

 Application name: METAPPL1 Version: 1

 Select Response Assigned Select Function Program/
 (/) name key (/) name/type(1,2,3)* Dialog name

 _ R1 ENTER _ F1 / 1 JPKSQLD1

 _ R3 ┌────────────────────────────────┐ STEVEDLG
 │ Search for. . . │
 _ R2 │ Response Assigned Function │ ________

 │ name key name │
 _ R4 │ │ DIAL4
 │ IUA _____ ________ │
 _ R5 │--------------------------------│ DIAL5
 │ F3=Exit F7=Prev F8=Next │
 _ LINKOLQR └────────────────────────────────┘ IDMSOLQS

 * Type: 1. Dialog 2. Program 3. Menu

 Enter F1=Help F3=Exit F4=Prev F5=Next F6=Search F7=Bkwd F8=Fwd

Application Compiler Screens

70 ADS Reference Guide

Search Result

Pressing [PF8] initiates a forward search. In this example, response IUADOLQR is found:

 RELEASE nn.n volser
 Response/Function List Page 2 of 2

 Application name: METAPPL1 Version: 1

 Select Response Assigned Select Function Program/
 (/) name key (/) name/type(1,2,3)* Dialog name

 _ IUADOLQR PF07 _ IUADOLQF / 1 IUADOLQ1

 _ ________ ┌────────────────────────────────┐ ________
 │ Search for. . . │
 _ ________ │ Response Assigned Function │ ________
 │ name key name │
 _ ________ │ │ ________
 │ IUA _____ ________ │
 _ ________ │--------------------------------│ ________

 │ F3=Exit F7=Prev F8=Next │
 _ ________ └────────────────────────────────┘ ________

 * Type: 1. Dialog 2. Program 3. Menu
 DC451536 Matching entry found on page 2

 Enter F1=Help F3=Exit F4=Prev F5=Next F6=Search F7=Bkwd F8=Fwd

More information:

Response Definition Screen (see page 70)

Function Definition (Dialog) Screen (see page 74)
Function Definition (Program) Screen (see page 77)
Function Definition (Menu) Screen (see page 80)
CA ADS Dialog Compiler (ADSC) (see page 91)

Response Definition Screen

The Response Definition screen enables the application developer to provide extended
specifications when defining responses. These specifications include:

■ Description

■ Security class

■ Response type

■ Response execution

■ Assigned key

■ Control command

Application Compiler Screens

Chapter 2: CA ADS Application Compiler (ADSA) 71

The Response Definition screen is accessed by entering a nonblank character in the
appropriate Select field on the Response/Function List screen and pressing [PF5].

Sample Screen

 Response Definition

 Application name: TEST1 Version: 1
 Response name: QUIT Drop response (/) _
 Function invoked: QUIT
 Description ____________________________ Security class: 1

 Response type. 2 1. Global 2. Local

 Response execution 2 1. Immediate 2. Deferred

 Assigned key PF01
 Control command. 1 1. Transfer 2. Invoke
 3. Link 4. Return
 5. Return continue 6. Return clear
 7. Return continue clear 8. Transfer nofinish
 9. Invoke nosave 10. Link nosave

 Enter F1=Help F3=Exit F4=Prev F5=Next

Field Descriptions

Application Name

Specifies the name of the current application, as specified on the Main Menu
screen. This field is protected.

Version

Specifies the version number, in the range 1 through 9999, of the current
application.

Response Name

Displays the name of the application response selected on the Response/Function
List screen.

This field can be modified by the user. The first character of the response name
cannot be blank. If modified, the user should insure that the combination of
response name, assigned key, and associated function must be unique within the
application.

Drop Response

Removes the response definition from the application. CA ADS does not drop the
function associated with the dropped response.

Application Compiler Screens

72 ADS Reference Guide

Function Invoked

Displays the function invoked by the current application response, as specified on

the Response/Function List screen.

This field is protected.

Description

Specifies a 1- to 28-byte description of the current response. The response
description is displayed with the associated response name on runtime menu and

help screens. Note that the specified description is truncated to 12 characters on
the short description menu screen.

Security Class

Specifies the security class for the response. Valid security class values are 1 to 256.
See your Security Administrator about the security class conventions being used at

your site.

Response Type

Specifies whether the response is global or local, as follows:

1. Global — The response is valid for all functions in the application. Global
responses can be deselected from the list of valid responses for a specific

function.

2. Local (default)— The response is valid only for those functions with which it is
explicitly associated on the Function Definition screen.

A response is specified as global (that is, valid for all functions in the application) or
local (that is, valid only if explicitly associated with a function). For each response
defined, the combination of response name, associated control key, and function
initiated must be unique within the application.

Response Execution

Specifies whether the invoked function is immediately executable or deferred. The
following considerations apply:

■ In online applications, the default for all functions except the HELP, SIGNON,
SIGNOFF, FORWARD, and BACKWARD system functions is deferred.

■ In the batch environment, the default for all functions is immediately
executable.

Defaults can be overridden by entering the appropriate number in the data field

immediately following the Response execution prompt.

Application Compiler Screens

Chapter 2: CA ADS Application Compiler (ADSA) 73

Assigned Key

Specifies an online control key or a batch control event that selects the response at

runtime.

The following considerations apply:

■ Valid online assigned key specifications are ENTER, CLEAR, PA1 through PA3,

PF1 through PF24, FWD, BWD, and HDR. LPEN can be specified as a control key
if the use of l ight pens is supported by the installation. The following
considerations apply:

■ CLEAR, PA1, PA2, and PA3 do not transmit data.

■ The FWD, BWD, and HDR control keys are associated with pageable maps.

■ FWD and BWD are synonymous with the keyboard control keys defined for
paging forward and backward respectively. If FWD or BWD is specified and
the keys defined for paging forward and backward are changed, the

response definition does not have to be updated or the application
recompiled.

 HDR is not associated with any keyboard control key. Conditions

encountered during a map paging session cause the response associated
with this control key value to be selected.

■ Valid batch control events are EOF and IOERR. The following considerations
apply:

■ EOF indicates that the most recent input-fi le read operation resulted in an

end-of-fi le condition.

■ IOERR indicates that the most recent input fi le read operation resulted in a
physical input-error condition. In CA ADS Batch, an output error causes the

runtime system to terminate the application.

Control Command

Specifies the CA ADS control command used to pass processing control to the
function associated with the response, as follows:

1. Transfer (default)— Control is passed by means of a TRANSFER command.

2. Invoke — Control is passed by means of an INVOKE command.

3. Link — Control is passed by means of a LINK command.

4. Return — Control is passed by means of a RETURN command.

5. Return Continue — Control is passed by means of a RETURN command to the
premap process.

6. Return Clear — Control is passed by means of a RETURN command and buffers
are initialized.

7. Return Continue Clear — Control is passed by means of a RETURN command to
the premap process and buffers are initialized.

Application Compiler Screens

74 ADS Reference Guide

In process code for dialogs associated with functions, the only control command
needed is EXECUTE NEXT FUNCTION. When a valid response is made, EXECUTE

NEXT FUNCTION causes the runtime system to execute the control command
associated with the response. The control commands perform the same record
buffer and currency maintenance as they do when they are coded in processes.

More information:

CA ADS Runtime System (see page 119)
Response Security (see page 719)

Control Commands (see page 325)

Function Definition (Dialog) Screen

The Function Definition (Dialog) screen is accessed by entering a nonblank character in

the appropriate Select field on the Response/Function List screen and pressing [PF5].
The function chosen must be associated with a type of dialog.

This screen is used to:

■ Provide a description of the dialog function

■ Identify the associated dialog name

■ Identify a user exit dialog

■ Name the default response

■ Specify valid responses for the current dialog function

The screen provides an alphabetical l isting of all responses valid for the application.
Responses that are valid are indicated by an X.

The application developer can select additional valid responses by typing a nonblank

character in the 1-byte field immediately preceding the applicable response. The
application developer can deselect any valid response by overwriting the 1 -byte field
immediately preceding the response with a blank or by using the ERASE EOF key.

Up to 6 responses can be displayed on one page of the Function Definition screen.

The application developer can scroll between pages using the control keys associated

with paging forward and paging backward. See earlier in this section for a l isting of the
default control key assignments for the application compiler.

Application Compiler Screens

Chapter 2: CA ADS Application Compiler (ADSA) 75

Sample Screen

 Function Definition (Dialog) Page 1 of 2

 Application name: GWGAPP01 Version: 1
 Function name: F1 Drop function (/) _
 Description . . . DEFINED

 Associated dialog D1 User exit dialog ________
 Default response ________

 Valid Valid
 response(/) Response Key Function response(/) Response Key Function

 _ R1 PF01 F1 _ R15 _____ ________
 _ R10 _____ ________ _ R2 PF02 F2
 _ R11 _____ ________ _ R3 PF08 FWD
 _ R12 _____ ________ _ R4 _____ FORWARD
 _ R13 _____ ________ _ R6 _____ HELP
 _ R14 _____ ________ _ R7 _____ ________

 more ...

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

Field Descriptions

Page

Specifies the page number of the Function Definition (Dialog) screen to be
displayed. If more than one page exists for the screen, this field displays the
current page of the total number of pages, as shown on the sample screen above.

This field is modifiable so that you can access the valid responses for the displayed

dialog function quickly. To request the next map page to be displayed:

■ Press the control key associated with paging forward or paging backward one
page (the system generation defaults are [PF8] and [PF7], respectively)

■ Enter a numeral for the page that you want to access, and press any control

key other than keys assigned for paging forward or backward

Application Name

Specifies the name of the current application, as specified on the Main Menu
screen.

This field is protected.

Version

Specifies the version number, in the range 1 through 9999, of the current
application.

This field is protected.

Application Compiler Screens

76 ADS Reference Guide

Function Name

Displays the name of the current function, as specified on the Response/Function

List screen.

This field can be modified by the user. The first character of the Function name
cannot be blank. If modified, the user should insure that the combination of

response name, assigned key, and associated function name must be unique within
the application.

Drop Function

Removes the function definition from the application.

Description

Specifies a 1- to 28-byte description of the current response. The response
description is displayed with the associated response name on runtime menu and

help screens. Note that the specified description is truncated to 12 characters on
the short description menu screen.

You must change the literal, UNDEFINED, to something else, or CA ADS displays the
following error message:

DC462226 FUNCTION FUNC4 IS UNDEFINED

Only the first 12 bytes of each description are displayed.

Associated Dialog

Specifies the name of the dialog or user program associated with the function. If
this field is left blank, the function is associated with a system-defined menu.

If the application developer provides a dialog name and also specifies Menu as the

Function type on the Response/Function List screen, the function is associated with
a menu.

Menu cannot be specified for CA ADS Batch applications.

User Exit Dialog

Specifies the name of a dialog to which a dialog function can LINK internally.

When the dialog function is initiated at runtime, the name of the dialog supplied as
the user exit dialog is stored in the AGR-EXIT-DIALOG field of
ADSO-APPLICATION-GLOBAL-RECORD. When the runtime system encounters a LINK
TO AGR-EXIT-DIALOG command, the dialog named in the AGR-EXIT-DIALOG field

becomes the object of the LINK command.

Default Response

Specifies the name of the response initiated by the runtime system when the user
presses [Enter] without entering a specific response. The default response is
displayed in bright intensity on the Function Definition screen for each function.

Application Compiler Screens

Chapter 2: CA ADS Application Compiler (ADSA) 77

Valid Response

A nonblank character in this field indicates that this response is valid for this

function.

Response

Displays the name of a response from the Respons e/Function List screen.

Key

Displays the assigned key that initiates the response.

Function

Displays the name of the function initiated by the response.

More information:

System Records (see page 567)
CA ADS Runtime System (see page 119)

Function Definition (Program) Screen

The Function Definition (Program) screen is accessed by entering a nonblank character
in the appropriate Select field on the Response/Function List screen and pressing [PF5].

The function chosen must be associated with a type of program.

The Function Definition (Program) screen is used to:

■ Provide a description of the program function

■ Identify the associated program name

■ Specify record buffers and control blocks passed to a program at runtime.

Information provided on this screen applies only to a current function associated with a

user program.

Up to eight records can be specified on one page of the Function Definition (Program)
screen.

The application developer can scroll between pages using the control keys associated
with paging forward and paging backward. Refer to the table earlier in this section for a

l isting of the default control key assignments for the application compiler.

When a function associated with a user program is initiated at runtime, CA ADS passes
control to the program. Additionally, the runtime system passes the data in the record
buffers and control blocks specified on the Function Definition (Program) screen. CA
ADS maintains all application record buffers at the level at which control was

relinquished.

Application Compiler Screens

78 ADS Reference Guide

When a user program finishes execution, control returns to the mapout operation of the
function from which the program was initiated or, if the program was initiated by an

EXECUTE NEXT FUNCTION command, to the command that follows EXECUTE NEXT
FUNCTION. Note that a user program must process its own responses. Valid responses
cannot be specified for the function associated with the program.

The Function Definition (Program) screen is similar to the USING clause of the LI NK TO
PROGRAM control command.

Sample Screen

 Function Definition (Program)

 Application name: TEST1 Version: 1
 Function name: PROG01 Drop function (/) _

 Associated program PROG01
 Description UNDEFINED

 Records passed Drop record (/)

 1. ________________________________ _
 2. ________________________________ _
 3. ________________________________ _
 4. ________________________________ _
 5. ________________________________ _
 6. ________________________________ _
 7. ________________________________ _
 8. ________________________________ _

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

Field descriptions

Application Name

Specifies the name of the current application, as specified on the Main Menu

screen. This field is protected.

Version

Specifies the version number, in the range 1 through 9999, of the current
application.

This field is protected.

Function Name

Displays the name of the current function, as specified on the Response/Function
List screen. The function must be associated with a user program.

Application Compiler Screens

Chapter 2: CA ADS Application Compiler (ADSA) 79

This field can be modified by the user. The first character of the Function name
cannot be blank. If modified, the user should insure that the combination of

response name, assigned key, and associated function name must be unique within
the application.

Drop Function

Removes the function definition from the application.

Associated Program

Displays the name of the user program with which the current function is

associated, as specified on the Response/Function List screen.

This field is protected.

Description

Specifies a 1- to 28-byte description of the current function. The function
description is displayed with the associated response name on runtime menu and

help screens. Note that the specified description is truncated to 12 characters on
the short description menu screen.

Records Passed

Specifies the data passed to the user program. The application developer specifies
record names and/or control block names as follows:

■ Record name passes the buffer for the specified record to the user program.
The specified record must be known to the issuing function.
ADSO-APPLICATION-MENU-RECORD is the only record that can be passed to a

user program from a system-defined menu function.

■ MAP-CONTROL/MAP_CONTROL passes the map request block (MRB) of the

issuing function to the user program.

■ SUBSCHEMA-CONTROL/SUBSCHEMA_CONTROL passes the subschema control
block of the issuing function to the user program.

The record and control block names must be entered from left to right, top to
bottom, in the same order in which they are defined in the program.

Drop Record

Removes the record from its association with the program function, but does not
delete the record definition from the dictionary.

More information:

CA ADS Runtime System (see page 119)
Control Commands (see page 325)

Application Compiler Screens

80 ADS Reference Guide

Function Definition (Menu) Screen

The Function Definition (Menu) screen is accessed by entering a nonblank character in
the appropriate Select field on the Response/Function List screen and pressing [PF5].
The function chosen must be associated with a type of menu.

The Function Definition (Menu) screen is made up of two screens used to specify the
characteristics of runtime menu screens and the responses to be listed on that menu.

Page 1 of the Function Definition (Menu) screen allows the application developer to
specify:

■ A description of the menu

■ The name of the associated dialog if this is a menu/dialog

■ The default response, if any

■ The name of the user exit dialog, if any

■ Whether the menu is defined by the site or the system

■ The description length

■ The number of responses per page

■ The number of heading lines and their content

Page 2 of the Function Definition (Menu) screen allows the application developer to
specify:

■ The responses to be displayed on the menu

■ The order in which the responses will be displayed at runtime

To specify the number of responses per page, the application developer specifies that

the menu is user-defined and specifies the number of responses, from 0 to 50. If the
application developer specifies that the menu is system-defined, the number of
responses is set by CA ADS: 12 for a signon menu, 15 for a nonsignon menu that uses

long descriptions, and 30 for a nonsignon menu that uses short descripti ons.

The Function Definition (Menu) screen also allows the application developer to specify
up to three lines of heading text for display at the top of each menu page. The heading
text can use any or all of the three lines available.

Information provided on the Function Definition (Menu) screens applies only to a

current function associated with a menu or a menu/dialog. The Function Definition
(Menu) screen is not available when defining CA ADS Batch.

Application Compiler Screens

Chapter 2: CA ADS Application Compiler (ADSA) 81

Page 1 of Function Definition (Menu)

 Function Definition (Menu) Page 1 of 2

 Application name: TEST Version: 1
 Function name: MENU1 Drop function (/) _
 Description . . . UNDEFINED

 Associated dialog ________
 Default response ________ User exit dialog ________

 Use signon menu (/). _
 Menu defined by: 2 1. User 2. System
 Description length 1 1. Long (28) 2. Short (12)
 Responses per page 15
 Number of heading lines (0-3). 0
 Heading line text

....+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....

 Enter F1=Help F3=Exit F4=Prev F5=Next F8=Fwd

Field descriptions for page 1

Application Name

Specifies the name of the current application, as specified on the Main Menu

screen. This field is protected.

Version

Specifies the version number, in the range 1 through 9999, of the current
application.

This field is protected.

Function Name

Displays the name of the current function, as specified on the Response/Function
List screen. The function must be associated with a user program.

This field can be modified by the user. The first character of the Function name
cannot be blank. If modified, the user should insure that the combination of
response name, assigned key, and associated function name must be unique within

the application.

Drop Function

Removes the function definition from the application.

Description

Specifies a 1- to 28-byte description of the current function. The function
description is displayed with the associated response name on runtime menu and

help screens. Note that the specified description is truncated to 12 characters on
the short description menu screen.

Application Compiler Screens

82 ADS Reference Guide

Associated Dialog

Specifies the name of the dialog or user program associated with the function. If

this field is left blank, the function is associated with a system-defined menu.

If the application developer provides a dialog name and also specifies Menu as the
Function type on the Response/Function List screen, the function is associated with
a menu.

Menu cannot be specified for CA ADS Batch applications.

Default Response

Specifies the name of the response initiated by the runtime system when the user
presses [Enter] without entering a specific response. The default response is
displayed in bright intensity on the Function Definition screen for each function.

User Exit Dialog

Specifies the name of a dialog to which a dialog function can LINK internally.

When the dialog function is initiated at runtime, the name of the dialog supplied as
the user exit dialog is stored in the AGR-EXIT-DIALOG field of
ADSO-APPLICATION-GLOBAL-RECORD. When the runtime system encounters a LINK
TO AGR-EXIT-DIALOG command, the dialog named in the AGR-EXIT-DIALOG field

becomes the object of the LINK command.

Use Signon Menu

Specifies whether the menu is a signon menu. At runtime, the menu uses the
AMR-USER-ID and AMR-PASSWORD fields of ADSO-APPLICATION-MENU-RECORD.

If the signon menu is system-defined, up to 12 responses are displayed on each
page at runtime.

Menu Defined By

Specifies whether the menu is system-defined or user-defined, as follows:

■ specifies that the menu is user-defined, meaning that the user can specify the

number of responses per page, from 0 to 50.

■ (default) specifies that the menu is system-defined, meaning that CA ADS
determines the number of responses per menu page: 12 for a signon menu, 15
for a nonsignon menu that uses long descriptions, and 30 for a nonsignon

menu that uses short descriptions.

Description Length

Specifies the description length for nonsignon menus, as follows:

■ (default) specifies that each function description displayed on the menu screen
contains the complete 28-byte description text. The long description al lows up

to 15 responses to be displayed on each page of a system-defined menu.

■ specifies that each description displayed on the menu screen is truncated to
the first 12 bytes of the description text. The short description allows up to 30

responses to be displayed on each page of a system-defined menu.

Application Compiler Screens

Chapter 2: CA ADS Application Compiler (ADSA) 83

At runtime, the description displayed is the description specified on the Response
Definition screen. If the response definition has no description, the runtime system

displays the description of the associ ated function for the response.

Responses Per Page

Specifies the maximum number of responses, in the range 0 through 50, that can be
displayed on one page of a user-defined menu at runtime.

The maximum number of responses per page for a system-defined menu is
determined by the menu format. A system-defined signon menu has 12 responses

per page. Other system-defined menus have either 15 or 30 responses per page,
depending on the length of the description (see Description length).

The default is 15.

Number of Heading Lines

Specifies the number of heading lines displayed at the top of each page of the

runtime menu screen.

The default is 0 (that is, no heading lines).

Heading Line Text

Specifies the heading text displayed at the top of each page of the runtime menu
screen. The application developer can enter free-form text in the three 79-byte

fields provided.

Page 2 of Function Definition (Menu)

 Function Definition (Menu) Page 2 of 2

 Application name: TEST1 Version: 1
 Function name: MENU1

 Valid Seq. Response Key Function Valid Seq. Response Key Function
 resp. # Resp. #

 _ ______ ADD PF02 F2 _ ______ ________ _____ ________

 _ ______ QUIT PF01 QUIT _ ______ ________ _____ ________

 _ ______ ________ _____ ________ _ ______ ________ _____ ________

 _ ______ ________ _____ ________ _ ______ ________ _____ ________
 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd F9=Update Seq

Field Descriptions for Page 2

Note: Page 2 of the Function Definition (Menu) only appears when you ha ve previously
defined responses.

Application Compiler Screens

84 ADS Reference Guide

Application Name

Specifies the name of the current application, as specified on the Main Menu

screen. This field is protected.

Version

Specifies the version number, in the range 1 through 9999, of the current
application. This field is protected.

Function Name

Displays the name of the current function, as specified on the Response/Function

List screen. The function must be associated with a user program. This field is
protected.

Valid Response

A nonblank character in this field indicates that this response is valid for this
function.

Seq.#

Specifies the sequence number of each response. The application developer can
modify the position or suppress the display of a response by overwriting the
sequence number in this field.

Response

Specifies the name of each response selected as valid for the current function.

This field is protected.

Key

Specifies the control key or control event associated with the current application
response, as specified on the Response/Function List screen.

This field is protected.

Function

Specifies the name of the current function, as specified on the Response/Function
List screen. The function must be associated with a menu or a menu/dialog.

This field is protected.

More information:

System Records (see page 567)
System-Defined Menu Maps (see page 126)
CA ADS Runtime System (see page 119)

Application Compiler Screens

Chapter 2: CA ADS Application Compiler (ADSA) 85

Global Records Screen

The Global Records screen is used to specify records that are available to all functions in
an application at runtime.

The Global Records screen is accessed from the Main Menu by choosing option 3 at the

Screen prompt.

The application developer can scroll between pages of the Global Records screen by

using the control keys associated with paging forward and paging backward. Refer to
the table earlier in this section for a l isting of the default control key assignments for the
application compiler.

Global records must be defined in the data dictionary before the application is
compiled. The records can be work records or map records. If a subschema record is

specified, the application compiler uses the IDD description of the record. Individual
subschema views are not used.

Once specified, global records are available to all dialogs, maps, and user programs
defined for the application.

There is no l imit to the number of records which can be specified.

Record buffers for global records are maintained across application functions, regardless

of the means of transfer of control. Thus, values in the records are preserved for the
duration of the application execution.

A global record used by a dialog must be associated with the dialog. The record can be
defined as a work record on the dialog compiler Records and Tables screen or it can be
associated with the dialog map or subschema.

Note: For more information about associating records with maps, see the CA IDMS
Mapping Facility Guide.

Application global records are optional. Note, however, that
ADSO-APPLICATION-GLOBAL-RECORD is automatically included in the list of global
records. The application developer can delete this record, but should be aware that

deleting ADSO- APPLICATION-GLOBAL-RECORD disables many of the runtime capabilities
provided by CA ADS.

Application Compiler Screens

86 ADS Reference Guide

Sample Screen

 Global Records Page 1 of 1

 Application name: TESTAPP1 Version: 1

 Record name Version Drop record (/)
 1. ADSO-APPLICATION-GLOBAL-RECORD 1 _

 2. ________________________________ ____ _

 3. ________________________________ ____ _

 4. ________________________________ ____ _

 5. ________________________________ ____ _

 6. ________________________________ ____ _

 7. ________________________________ ____ _

 8. ________________________________ ____ _

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

Field Descriptions

Application Name

Specifies the name of the current application, as specified on the Main Menu
screen. This field is protected.

Version

Specifies the version number, in the range 1 through 9999, of the current

application.

Record name

Specifies the 1- to 32-character name of each global record for the application. The
named record must be defined in the data dictionary before the applic ation is
compiled.

The application developer can delete records already specified by overwriting the
record name with blanks or by using the ERASE EOF key.

Version

Specifies the version number, in the range 1 through 9999, of the current
application. If no version number is specified, version defaults to 1.

Drop Record (/)

Removes the record from its association with the application, but does not delete
the record definition from the dictionary.

Application Compiler Screens

Chapter 2: CA ADS Application Compiler (ADSA) 87

More information:

System Records (see page 567)

CA ADS Dialog Compiler (ADSC) (see page 91)

Task Codes Screen

The Task Codes screen is used to specify DC/UCF task codes that initiate an application

at runtime. Each task code is associated with an application function.

The application compiler updates the table of task codes and associated functions (task
application table) that is referenced by the CA ADS runtime system.

The Task Code screen is accessed from the Main Menu by choosing option 4 at the
Screen prompt.

At runtime, the user can enter one of the specified task codes. If a signon is not
required, the associated function is executed as the first function in the application. If a
signon is required, the associated function is executed as the first function after an

acceptable signon is entered.

At least one task code must be specified for each application. Up to eight task codes and

corresponding functions can be specified on one page of the Task Codes screen. The
application developer can specify additional task codes by pressing [Enter] to enter the
specified task codes and then pressing the applicable control key to display a blank Task

Codes screen.

The application developer can scroll between pages of the Task Codes screen by using

the control keys associated with paging forward and paging backward. See earlier in this
section for a l isting of the default control key assignments.

Application Compiler Screens

88 ADS Reference Guide

Sample Screen

 Task Codes Page 1 of 1

 Application name: TEST1 Version: 1

 Task Code Function Drop (/)
 1. ________ ________ _

 2. ________ ________ _

 3. ________ ________ _

 4. ________ ________ _

 5. ________ ________ _

 6. ________ ________ _

 7. ________ ________ _

 8. ________ ________ _

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

Field descriptions

Application Name

Specifies the name of the current application, as specified on the Main Menu
screen. This field is protected.

Version

Specifies the version number, in the range 1 through 9999, of the current
application.

This field is protected.

Task Code

Specifies the 1- to 8-character name of each DC/UCF task code for the application.

Task code names cannot contain embedded blanks. The application developer can
delete task codes already specified by entering a nonblank character in the Drop ID
column opposite the task code to be dropped.

Note: Task codes must be defined to DC/UCF at system generation by means of the

TASK statement before they can be used to initiate an application directly from
DC/UCF without also having to specify the task code for the runtime system. Task
codes defined at system generation must invoke ADSORUN1. For more information

about the TASK statement, see the CA IDMS System Generation Guide.

Function Name

Displays the name of the current function, as specified on the Response/Function
List screen. The function must be associated with a user program.

This field is protected.

Application Compiler Screens

Chapter 2: CA ADS Application Compiler (ADSA) 89

Drop Code

Removes the task code from its association with the application.

More information:

CA ADS Runtime System (see page 119)

Chapter 3: CA ADS Dialog Compiler (ADSC) 91

Chapter 3: CA ADS Dialog Compiler (ADSC)

This section contains the following topics:

Overview (see page 91)
Dialog Compiler Session (see page 92)
Dialog Compiler Screens (see page 98)

Overview

The CA ADS dialog compiler is used to define dialogs for online and batch applications.
Dialogs perform database retrieval and update, and any required processing within an
application. Additionally, batch dialogs perform fi le input and output, and application

processing.

When the definition is complete, the dialog is compiled and the resulting load module

stored in the data dictionary. When using SQL, access modules are stored in the catalog
component of the dictionary by the CA IDMS access module compiler.

Modification or deletion of dialog components do not change the existing dialog until
the dialog is explicitly recompiled to create a new load module.

Note: For more information about modifying dialogs, see the CA ADS User Guide.

A dialog created by the dialog compiler can be associated with an application function

or can stand alone as a structural unit in an application that consists only of dialogs. A
dialog is associated with an application function by specifying the dialog name on the
Response/Function List screen during an application compiler (ADSA) session.

Batch and Online Definition and Execution Modes

It is important not to confuse batch and online definition modes with batch and online

execution modes. Batch dialogs and online dialogs can be defined using the dialog
compiler in online or batch mode. The dialog compiler, ADSC, is the online dialog
definition tool. ADSOBCOM defines dialogs in batch mode. Once defined, dialogs can be

executed in a batch environment or an online environment.

Process Commands for Online and Batch

Process modules contained in dialogs can include process commands appropriate for
online execution as well as commands designed exclusively for batch execution. The
dialog compiler, when compiling a process module, accepts both types of commands,

regardless of the environment of the dialog. This allows a process module to be used for
both online and batch applications. If, however, the runtime system encounters a
disallowed command or command parameter, the application abends.

Dialog Compiler Session

92 ADS Reference Guide

Execution Mode

The environment in which a dialog can be executed depends on the map associated

with it, as follows:

■ A dialog with an online map executes only in the online environment.

■ A dialog with a file map executes only in the batch environment.

■ A mapless dialog executes in either environment.

More information:

CA ADS Application Compiler (ADSA) (see page 51)

Application and Dialog Util ities (see page 621)

Dialog Compiler Session

In a dialog compiler session, screens are displayed that prompt the application
developer for information about a dialog and the components with which the dialog is

to be associated. The information supplied by the application developer is us ed by the
CA ADS runtime system to execute the dialog.

Invoking the Dialog Compiler

The application developer can invoke the dialog compiler from any of the three ways

described below.

From CA IDMS/DC or DC/UCF

By specifying the appropriate CA IDMS/DC or DC/UCF (DC/UCF) task code, the

application developer can invoke the dialog compiler. Task codes are defined at system
generation and can vary from site to site. The default task code for the dialog compiler is
ADSC. To use the dialog compiler under the transfer control facil ity, specify the transfer
control facil ity version of the dialog compiler task code, ADSCT.

When invoked, the dialog compiler displays a blank Main Menu screen on which a new

session can begin or a suspended session can be resumed.

From Another TCF Task

By specifying the appropriate DC/UCF task code in conjunction with the SWITCH
command from another task executing under the transfer control facil ity, the
application developer can invoke the dialog compiler.

Dialog Compiler Session

Chapter 3: CA ADS Dialog Compiler (ADSC) 93

If a new session is requested, the dialog compiler displays a blank Main Menu screen on
which a new session can begin or a suspended session resumed.

If an old session is requested, the dialog compiler resumes its most recently suspended
session under the transfer control facil ity.

From the TCF Selection Screen

By keying any nonblank character, except the underscore (_), next to the appropriate
task code or descriptor, the application developer can invoke the dialog compiler as

follows:

■ Keying a nonblank character next to the appropriate task code invokes the dialog
compiler, which displays a blank Main Menu screen on which a session can begin or

be resumed.

■ Keying a nonblank character next to the descriptor of a suspended dialog compiler
session invokes the dialog compiler and resumes the suspended session at the Main
Menu screen. The descriptor consists of the appropriate task code, the dialog

name, and the dialog version number.

The transfer control facil ity enables the application developer to transfer from one
DC/UCF task to another. For example, transfers between the dialog compiler, IDD,
MAPC, and the application compiler can be made. When control is transferred from a
task, the current session of that task is suspended, if necessary. A task can have several

suspended sessions.

Note: Be sure to begin the dialog compiler session in the correct dictionary. The
dictionary name can be specified in the Dictionary name field of the Main Menu screen.

For more information about the transfer control facil ity, see the CA IDMS Common
Facilities Guide.

Dialog Compiler Session

94 ADS Reference Guide

Sample selections on the transfer control facil ity Selection screen are shown below:

 CA, INC.
 TRANSFER CONTROL FACILITY *** SELECTION SCREEN ***

 _ SUSPEND TCF SESSION (PF9) DBNAME..: DBNODE..:
 _ TERMINATE TCF SESSION (PF3) DICTNAME: TSTDICT DICTNODE:

 TCF TASKCODES *SUSPENDED SESSIONS*
 SELECT ONE TO START A NEW SESSION SELECT ONE TO RESUME AN OLD SESSION
 TASKCODE DESCRIPTOR
 _ TCF _ADSCT MPKDIA1 0001
 _ SYSGENT SYSGEN COMPILER _ADSAT MPKAPP1 001
 _ MAPCT MAP DEFINITION _ADSAT MPKAPP1 002
 X ADSCT DIALOG GENERATOR _ADSCT MPKDIA2 0001
 _ ADSAT APPLICATION GENERATOR _OLMT CEXME2220001
 _ ASF
 _ ASFT
 _ IDDT IDD COMMAND MODE
 _ SSCT SUBSCHEMA COMPILER
 _ SCHEMAT SCHEMA COMPILER
 _ IDDMT IDD MENU MODE
 _ OLQ OLQ COMMAND MODE
 _ OLQT OLQ COMMAND MODE

More information:

Dialog Compiler Screens (see page 98)

Sequencing Through Dialog Compiler Screens

Dialog compiler screens prompt the application developer for information about a
dialog. The developer can sequence through the dialog definition steps or request a step
in the process explicitly. A step in the definition process can contain more than one
screen.

The primary steps involved in creating a dialog are shown below. The developer can
either choose the next step from the Main Menu screen or move through the steps
from screen to screen using [PF5].

Dialog Compiler Session

Chapter 3: CA ADS Dialog Compiler (ADSC) 95

Steps in Creating a Dialog

 ┌───────────┐
 │ Dialog │
 │ specifi- │
 │ cation │
 └─────▲─────┘
 │
 ┌───────────────┬───────────────┼───────────────┬───────────────┐
 │ │ │ │ │
 │ │ │ │ │
 │ │ │ │ │
┌─────▼─────┐ ┌─────▼─────┐ ┌─────▼─────┐ ┌─────▼─────┐ ┌─────▼─────┐
│ General │ * │ Assign a │ * │ Assign a │ * │ Assign │ * │ Assign │
│ options ◄───► map ◄───► database ◄───► records ◄───► Process │
│ │ │ │ │ │ │ │ │ Modules │
└───────────┘ └───────────┘ └───────────┘ └───────────┘ └───────────┘

 * Previous/next step (F4/F5)

Additional Screens

The table below lists additional screens accessed through the Display and Compile
windows on the action bar on the dialog compiler Main Menu.

Screen Purpose

Map image Displays a dialog's map as it appears to the terminal operator at
runtime

Summary Displays a summary listing of a dialog's components

Messages Displays messages and errors encountered during the
compilation process including errors in the source code for a
premap or response process associated with a dialog

General options Displays screens (when errors occur) l isting modules, error
browsing, and connections to IDD and DME

Control keys

While creating a dialog, the applications developer can use the control keys shown in
the table below to:

■ Move from one step in the process to another step

■ Move from one screen to another screen while remaining on one step in the

process

■ Obtain help

■ Leave the ADSC compiler

■ Move between the action command line and the specification area (Main Menu
only)

Dialog Compiler Session

96 ADS Reference Guide

Summary of Dialog Compiler Process

Each step in the process of creating a dialog is associated with one or more screens as
shown below.

Step in process Screens Purpose

Dialog specification Main Menu Identifies the name of a dialog and
specifies the action to be taken

General options Options and Directives Specifies dialog options for activity

logging, symbol and diagnostic
table building, entry point, COBOL
moves, retrieval locks, and

autostatus capability

Assign maps Map Specifications Associates a map with the dialog,
specifies paging options

Assign database Database Specifications Associates a schema and

subschema and an access module
with the dialog; identifies SQL
options

Assign records and

tables

Records and Tables Associates work records with the

dialog; specifies records for which
new buffers are allocated when the
dialog executes at runtime

Assign process
modules

Process Modules Associates a premap process, one
or more response processes, and a
declaration module with the dialog

Default Control Keys

Activity Control key Description

HELP [PF1] Displays a map or field help screen, depending

on cursor position

If the cursor is on a map field associated with
help text, a half screen of map field help text is
displayed.

If the cursor is set on a map field not
associated with help text or anywhere else on
the map, a full screen of map help text is
displayed.

Dialog Compiler Session

Chapter 3: CA ADS Dialog Compiler (ADSC) 97

Activity Control key Description

RETURN [PF3] From a pulldown window, returns to

specification area.

From the Main Menu screen, returns control
to DC/UCF

From a screen other than the Main Menu
screen, applies updates to the current screen
and returns to the Main Menu screen

BACKWARD [PF4] Applies updates to the current screen and

displays the previous step in the process, as
outlined on the Main Menu screen.

FORWARD [PF5] Applies updates to the current screen and
displays the next step in the process, as

outlined on the Main Menu screen.

BACKPAGE [PF7] Displays the previous screen of any step
containing multiple screens.

FORWARD PAGE [PF8] Displays the next screen of any step containing
multiple screens.

ACTION [PF10] Toggles the cursor position between the
activity selection area action bar and the

specification area on the Main Menu screen

Suspending a Session

A dialog compiler session is automatically suspended in the event of a system crash.

Leaving ADSC automatically suspends the session. The developer can also suspend a

session by selecting the Release option from the Modify window on the action bar. This
allows any other developer to check the dialog out.

When a session is suspended, the application compiler saves the dialog definition,
including all specifications made during the session, on queue records. A suspended
session can be resumed at any time.

More information:

Invoking the Dialog Compiler (see page 92)

Dialog Compiler Screens

98 ADS Reference Guide

Terminating a Session

When a session is terminated by compiling or deleting a dialog, the dialog compiler
displays a blank Main Menu screen. The application developer can begin another
session or can leave the dialog compiler by selecting an appropriate activity, such as

Switch, from the action bar or by pressing [PF3].

Dialog Compiler Screens

Main Menu

The Main Menu screen is displayed when the application developer initiates a dialog

compiler session. This screen is used to specify the action taken regarding the dialog,
name a dialog and dictionary, specify the next step to be taken in the dial og definition.

Areas

The screen is composed of six areas:

■ Activity selection area

■ Dialog identification area

■ Screen specification area

■ Message area

■ Command area

■ Key assignment area

Activity Selection Area

Displays the dialog compiler activities available.

The application developer selects an activity to be performed one of these ways:

■ By typing the name of the activity on the Command line in the lower left-hand
corner of the screen.

■ By pressing [PF10] to reach the Activity Selection Area, and, with the tab key,
positioning the cursor on the activity name and pressing [Enter].

Dialog Identification Area

Specifies the dialog name, dialog version number, the dictionary name, and the
dictionary node. The fields contained in this section are described below.

Dialog Compiler Screens

Chapter 3: CA ADS Dialog Compiler (ADSC) 99

Screen Specification Area

Allows the application developer to specify the next step in the definiti on process.

The application developer can either:

■ Press [Enter] to go to the default next step

Note: See the table earlier in this chapter for information on the default dialog

definition sequence.

■ Specify a step

Message Area

Displays informational and error messages returned from the dialog compiler.

Note: The control keys as described earlier in this section, (in addition to [Enter])

are identified at the bottom of this screen.

Command Area

Provides a command line for entering the name of the desired action as specified in
the activity selection area above. Action names can be abbreviated to the first three
letters, ADD, MOD, DEL, COM, DIS or SWI. The system recognizes more than, but

not less than, the first three letters of each identification.

If more than one activity is specified on the command line, an error message is

displayed. If an activity is specified on the command line, and a control key is
pressed, the activity associated with the control key is executed.

If an error is detected after the application developer selects an activity, the dialog
compiler redisplays the current screen. The activity selection is retained and

executed when the error is corrected. The application developer can override the
initial selection by specifying another activity on the command line, selecting the
activity directly from the selection area or by using [PF10].

Key Assignment Area

Presents the valid key choices and the action taken.

Control keys are described earlier in this section.

Dialog Compiler Screens

100 ADS Reference Guide

Main Menu Screen

 ┌─
 │ Add Modify Compile Delete Display Switch

└─ .__
_.

 CA ADS Online Dialog Compiler

 CA, INC.
 ┌─
 │
 │
 │ Dialog name ________

 │ Dialog version ____
 │ Dictionary name ________
 │ Dictionary node ________
 └─
 ┌─ Screen 1 1. General options
 │ 2. Assign maps
 │ 3. Assign database
 │ 4. Assign records and tables
 │ 5. Assign process modules
 └─
 Copyright (C) 2003 CA, INC.

 Command ===>
 Enter F1=Help F3=Exit F10=Action

Field Descriptions

Dialog Name

Specifies the 1- to 8- character name of the current dialog. The dialog must begin

with an alphabetic or national (@, #, and $) character and cannot contain
embedded blanks. A dialog name must be specified before any other dialog
compilation activity can be executed. Once specified, the dialog name cannot be
changed.

Dialog Version

Specifies the version number, in the range 1 through 9999, of the current dialog.
The default version is 1.

Dictionary Name

Specifies the 1- to 8-character name of the data dictionary that contains the source
modules and the map, access modules and subschema, and record definitions used

by the specified dialog.

The dialog compiler stores the dialog load module in the specified dictionary when
the dialog is compiled. If no dictionary name is specified, dictionary name is set to

the name of the dictionary identified in the user's profile or set through a DCUF SET
DICTNAME statement.

The dictionary name cannot change once it is validated.

Dialog Compiler Screens

Chapter 3: CA ADS Dialog Compiler (ADSC) 101

Dictionary Node

(DDS only) Specifies the node that controls the data dictionary specified by

Dictionary name. Dictionary node defaults to the system currently in use.

Specifying a node name is equivalent to issuing a DCUF SET DICTNODE command
under DC/UCF. The node name cannot change once it is validated.

Screen

Provides the application developer with a quick form of navigation between steps in

the dialog definition process. By specifying the number which precedes the screen
name, the user avoids unnecessary scrolling through the screens.

More information:

Introduction to CA ADS (see page 19)
Sequencing Through Dialog Compiler Screens (see page 94)

Options and Directives Screen

The Options and Directives screen is used to specify options for a dialog, such as:

■ Alternative message prefixes

■ Autostatus

■ Specifying the mainline dialog

■ Including a symbol table

■ Including a diagnostic table

■ Specifying the premap as the entry point

■ Using COBOL or CA ADS rules in handling data types and arithmetic and assignment

commands

■ Activity logging

■ Selectively disabling retrieval locks

The current settings for the dialog options are displayed on the screen. Each option can
be changed by overwriting the displayed setting or by placing a slash (/) or other

nonblank character in the space to the left of the option.

Dialog Compiler Screens

102 ADS Reference Guide

Sample screen

 Options and Directives

 Dialog JPKTD10 Version 1

 Message prefix DC
 Autostatus record ADSO-STAT-DEF-REC
 Version 1
 Description ADS DIALOG

 Options and directives _ Mainline dialog
 _ Symbol table is enabled
 / Diagnostic table is enabled
 / Entry point is premap
 _ COBOL moves are enabled
 / Activity logging
 / Retrieval locks are kept
 / Autostatus is enabled

 Enter F1=Help F3=Exit F4=Prev F5=Next

Field Descriptions

Dialog

Displays the name of the current dialog, as specified on the Main Menu screen. This
field is protected.

Version

Displays the version number, in the range 1 through 9999, of the current dialog.

This field is protected.

Message Prefix

Specifies a 2-character prefix for a message at the dialog level. DC is the default
prefix.

Autostatus Record

Specifies the 1- to 32-character name of the status definition record used when the

current dialog executes at runtime. The specified status definition record must be
defined in the data dictionary. If no record name is specified, Autostatus record
defaults to the name of the status definition record defined at DC/UCF system
generation.

An autostatus record is required if the Autostatus is enabled option is chosen.

Version

Specifies a 1- to 4-digit version number, in the range of 1 through 9999, of the
named status definition record. If a version number is not specified, Version
defaults to the system default version number specified at system generation. If no

system default version number is specified, Version defaults to 1.

Dialog Compiler Screens

Chapter 3: CA ADS Dialog Compiler (ADSC) 103

Mainline Dialog

Inserting a nonblank character in the accompanying data field specifies that the

current dialog is a mainline dialog.

At runtime, the dialog that executes first in a series of dialogs that make up an
application must be a mainline dialog. If a dialog function is initiated by an
application task code, the dialog associated with the function must be a mainline
dialog.

Symbol Table is Enabled

Inserting a nonblank character in the accompanying data field specifies that a
symbol table is created for a dialog.

A symbol table facil itates the use of element names and process l ine numbers by
the online debugger.

Diagnostic Table is Enabled

Inserting a nonblank character in the accompanying data field specifies that the
dialog load module contains diagnostic tables (l ine number tables and offset
tables).

During the testing of a dialog, the Diagnostic table is enabled option should be

selected.

Diagnostic tables facilitate the testing and debugging of a dialog. If a dialog aborts,
diagnostic tables are used to display the process command in error on the Dialog
Abort Information screen. The ADSORPTS util ity uses diagnostic tables to format the

dialog report for easy reference.

Once a dialog has been tested thoroughly, the Diagnostic table is enabled option

should be deselected and the dialog recompiled if dialog load module size is a
consideration. The size of a large dialog load module can be reduced significantly by
compiling the dialog without diagnostic tables.

The Diagnostic table is enabled option is deselected by spacing over the slash.

Note: The Diagnostic table is enabled option must be selected if the Symbol table
is enabled option is selected.

Entry Point is Premap

The entry point of a dialog specifies the point at which the dialog becomes

operative in the application thread.

Inserting a nonblank character in the accompanying data field specifies that the

dialog begins with its premap process.

Regardless of the specification, a dialog without an online map or a batch input fi le
map begins with its premap process. A dialog without a premap process begins with

its first mapping operation.

Dialog Compiler Screens

104 ADS Reference Guide

COBOL Moves are Enabled

Inserting a nonblank character i n the accompanying data field specifies that the

rules of COBOL are used in the conversion between data types and in the rounding
or truncation of the results of arithmetic and assignment commands.

If COBOL moves are enabled, certain types of invalid expression may be allowed by
the CA ADS compiler. When a MOVE, COMPUTE, ADD, SUBTRACT, MULTIPLY, or
DIVIDE statement has a numeric source expression and an EBCDIC target

expression, the source expression must be a l iteral or a simple dataname with an
optional subscript.

The default setting for COBOL MOVE is defined in the DC/UCF system generation
ADSO statement. NO is the system generation default status.

The COBOL moves are enabled option can be modified only if the DC/UCF system

generation COBOL MOVE subclause has been defined as OPTIONAL. OPTIONAL is
the system default.

Note: For more information about the COBOL MOVE subclause of the system

generation ADSO statement, see the CA IDMS System Generation Guide.

Activity Logging

Inserting a nonblank character in the accompanying data field specifies that the
dialog uses the activity logging facil ity. This facil ity documents all potential database
activity by a dialog, based on the database commands issued explicitly or implicitly

by the dialog's processes.

The default setting for the Activity logging option is defined at DC/UCF system
generation.

Note: For more information about the system generation ADSO statement, see the
CA IDMS System Generation Guide.

Retrieval Locks are Kept

Inserting a nonblank character in the accompanying data field specifies that
database record retrieval locks will be held on behalf of run units started by the
dialog.

Retrieval locks should be disabled only for retrieval dialogs that do not update the
database or pass currencies to update dialogs. When retrieval locks are disabled for

dialogs that do update the database or pass currencies, CA ADS displays the
following message:

DC173015 DIALOG ABORTED DUE TO VIOLATION OF NO RETRIEVAL LOCKING RULES

In addition, the update dialog abends when a higher dialog in the application thread
does not have retrieval locks kept and system-wide RETRIEVAL NOLOCKS are
specified.

Dialog Compiler Screens

Chapter 3: CA ADS Dialog Compiler (ADSC) 105

The update dialog or program is allowed to update the retrieval dialog's database
records when the dialog with retrieval locks turned off readies the area in UPDATE

mode or when the update dialog or program does not receive currencies when
control passes to it.

Autostatus is Enabled

Inserting a nonblank character in the accompanying data field specifies that the
autostatus facil ity is to be used when the current dialog executes at runtime.

The initial setting corresponds to the autostatus specification defined at DC/UCF

system generation. If autostatus is defined as optional, the application developer
can override the initial setting. If autostatus is defined as mandatory, this field is
protected and the initial setting cannot be changed.

More information:

CA ADS Runtime System (see page 119)
Control Commands (see page 325)

Error Handling (see page 277)
Debugging an CA ADS Dialog (see page 723)
Assignment Command (see page 314)
Activity Logging for an CA ADS Dialog (see page 675)

Map Specifications Screen

The Map Specifications screen is used to specify a map and map options for a dialog,
such as the:

■ Map name

■ Method of map paging, including overriding automatic display of the first page of a
pageable map

Dialog Compiler Screens

106 ADS Reference Guide

Sample Screen

 Map Specifications

 Dialog JPKTD01 Version 1

 Map name ________ Input map ________
 Version ____ Version ____
 Label ________
 Paging options _ 1. Wait
 2. No Wait Output map ________
 3. Return Version ____
 Label ________
 Paging mode . . . _ Update
 _ Backpage Suspense file label ________
 _ Auto display

 Enter F1=Help F3=Exit F4=Prev F5=Next F6=Switch Protection

Field Descriptions

Dialog

Displays the 1- to 8- character name of the current dialog, as specified on the Main
Menu screen. This field is protected.

Version

Displays the version number, in the range 1 through 9999, of the current dialog, as
specified on the Main Menu screen. This field is protected.

Map Name

Specifies the 1- to 8-character name of the map associated with the current dialog.

The specified map must be defined in the data dictionary. The map load module

does not have to exist. If no map name is specified, only a premap process (not a
response process) can be associated with the dialog.

Version

Specifies a 1- to 4-digit version number, in the range 1 through 9999, of the
corresponding map.

If no version number is specified, version defaults to 1.

Paging Options

Specifies the method used to determine the runtime fl ow of control when the user
presses a control key during a map paging session.

No Wait is the default for pageable maps.

Note: The map paging dialog options No Wait and Update cannot be specified
together.

Dialog Compiler Screens

Chapter 3: CA ADS Dialog Compiler (ADSC) 107

Paging Mode

Specifies parameters for a map paging session.

Update

Specifies that the user can modify map data fields in a map paging session, subject
to restrictions specified in the mapping facil ity and by the map modification process
commands. Update is the default for pageable maps.

Note: The map paging dialog options No Wait and Update cannot be specified

together. When Update is not selected, all map data fields except $RESPONSE and
$PAGE will be protected.

Backpage

Specifies that a previous map pages can be displayed during a map paging session.
Backpage is the default for a pageable map.

Auto display

Specifies an override of the automatic mapout of the first page of a pageable map.

When the Auto display option is not chosen, process logic must detect when the
first page of the map is built and map out the first page when it is ready for display,
even if the page is not full.

The $PAGE-READY pageable map condition should be used to detect completion of
the first page. The $PAGE-READY condition should be tested while building the map
page to determine when the page is ready for display.

Auto display is the default for pageable maps.

Input Map

(CA ADS/Batch only) Specifies that the named map is an input fi le map.

Note: Select Switch Protection [PF6] to unprotect the CA ADS/Batch input fields.

Version

Specifies the version number, in the range 1 through 9999, of the current map. If no

version number is specified, version defaults to 1.

Label

(CA ADS Batch only) Specifies the z/OS ddname (z/VSE fi lename and z/VM ddname)
of a batch dialog input fi le map. Specifications made in these fields can be
overridden at runtime.

The runtime label for an input map can be specified only if the dialog is associated
with an input fi le map.

Output Map

(CA ADS Batch only) Specifies that the named map is an output fi le map.

Dialog Compiler Screens

108 ADS Reference Guide

Version

Specifies the version number, in the range 1 through 9999, of the current map. If no

version number is specified, version defaults to 1.

Label

(CA ADS Batch only) Specifies the z/OS ddname (z/VSE fi lename, z/VM ddname) of a
batch dialog output fi le map. Specifications made in these fields can be overridden
at runtime.

A runtime label for an output map can be specified only if the dialog is assoc iated
with an output fi le map.

Suspense File Label

(CA ADS Batch only) Specifies the z/OS ddname (z/VSE fi lename, z/VM ddname) of a
batch dialog suspense fi le. Specifications made in these fields can be overridden at

runtime.

The runtime label for a suspense fi le can be specified only if the dialog is associated
with an input fi le map. A runtime label for a suspense fi le implicitly specifies that a

suspense fi le is required for the dialog.

Map Considerations

The specified map must be defined in the data dictionary. However, the map load
module does not have to exist. If no map name is specified, only a premap process
(not a response process) can be associated with the dialog.

The following rules apply to the environments in which a map can be executed.

■ A dialog associated with an online map cannot be associated with an input or
output fi le map.

■ A dialog associated with an input or output map cannot be run in the online
environment.

■ A dialog can be associated with both an input and an output fi le map.

■ If a dialog is not associated with any map, it is a mapless dialog and can be
executed in both batch and online environments.

More information:

Pageable Maps (see page 464)
Conditional Expressions (see page 245)

Dialog Compiler Screens

Chapter 3: CA ADS Dialog Compiler (ADSC) 109

Database Specifications Screen

The Database Specifications screen is used to specify database options for a dialog, such
as the:

■ Subschema name

■ Access module name

Sample Screen

 Database Specifications

 Dialog NAME1 Version 1

 Subschema ________
 Schema ________
 Version ____

 Access Module NAME1

 SQL Compliance _ 1. ANSI-standard SQL
 2. FIPS

 Date Default Format _ 1. ISO 2. USA 3. EUR 4. JIS
 Time Default Format _ 1. ISO 2. USA 3. EUR 4. JIS

 Enter F1=Help F3=Exit F4=Prev F5=Next

Field Descriptions

Dialog Name

Displays the name of the current dialog, as specified on the Main Menu screen. This

field is protected.

Version

Specifies the version number, in the range 1 through 9999, of the current dialog.
This field is protected.

Subschema

Specifies the 1- to 8-character name of the subschema associated with the current

dialog.

The specified subschema must be defined in the data dictionary. If no subschema is
specified, the dialog cannot perform database access.

Dialog Compiler Screens

110 ADS Reference Guide

Schema

Specifies the 1- to 8-character name of the schema with which the named

subschema is associated.

If the named subschema is associated with more than one schema or version of a
schema, a schema name must be specified. If the named subschema is associated

with exactly one schema and version, Schema defaults to the name of that schema.

Version

Specifies the version number, in the range 1 through 9999, of the named schema. If
no version number is specified, version defaults to the version of the named
schema that was most recently defined.

Access Module

Specifies the 1- to 8-character name of the access module associated with the

current dialog. The access module need not exist when the dialog is compiled, but it
must exist at runtime if the dialog accesses a database with SQL DML (other than
dynamic SQL). If the dialog will not require an access module to be loaded at

runtime, clear this field.

The dialog process logic can override the specification on this screen at runtime by

issuing a SET ACCESS MODULE statement.

If you do not change the value in this field, the default value assigned by CA ADS is
the dialog name. If the dialog was copied from another dialog, the default value is:

■ The name of the target dialog if the name of the access module name

associated with the source dialog matches the name of the target dialog

■ The name of the access module associated with the source dialog if the access
module name does not match the name of the source dialog

About Access Modules

An access module is the executable form of the SQL statement that a program issues.

When an access module is created, CA IDMS/DB automatically determines the most
effective access to the data requested by the SQL statements. The CA IDMS access
module compiler incorporates the access strategy in the access module, which is stored
in the catalog component of the dictionary.

Dialog Compiler Screens

Chapter 3: CA ADS Dialog Compiler (ADSC) 111

An access module is defined with a CREATE ACCESS MODULE statement in an SQL
session, and it is associated with an SQL schema. It is built at runtime for the dialog if it

is specified for the dialog on this screen and it has been created. Under CA IDMS internal
security, ownership of the schema qualifying the access module affects authority to use
the access module.

Note: For more information on creating and executing access modules, see:

■ CA IDMS SQL Programming Guide

■ CA IDMS SQL Reference Guide

■ CA IDMS Security Administration Guide

SQL Compliance

Specifies the SQL standard you are enforcing. If you select neither ANSI -standard
SQL nor FIPS, the default is CA IDMS extended SQL.

Note: For more information on SQL standards, see the CA IDMS SQL Reference
Guide.

Date Default Format

Specifies the external date representation format. The date format can be one of
the following:

■ ISO specifies the International Standards Organization standard

■ USA specifies the IBM USA standard

■ EUR specifies the IBM European standard

■ JIS specifies the Japanese Industrial Standard Christian Era standard

Time Default Format

Specifies the external time representation format. The time format can be one of
the following:

■ ISO specifies the International Standards Organization standard

■ USA specifies the IBM USA standard

■ EUR specifies the IBM European standard

■ JIS specifies the Japanese Industrial Standard Christian Era standard

Note: For more information on date/time representations, see the CA IDMS SQL
Reference Guide.

Records and Tables Screen

The Records and Tables screen is used to associate a record with a dialog definition and
to assign the New and Work record attributes.

Dialog Compiler Screens

112 ADS Reference Guide

New Attribute

The New attribute identifies records for which new buffers are allocated and initialized

when the dialog executes at runtime. Previously established buffers for records assigned
the New attribute are retained but are not available to the dialog. A record that is
assigned the New attribute must be known to the dialog as a subschema, map, or work

record.

Work Attribute

The Work attribute associates a record with a dialog as a work record. The CA ADS
runtime system allocates buffers for work records; in this way, records with the Work
attribute establish working storage for a dialog. A record must be defined in the data

dictionary before it can be associated with a dialog as a work record.

Records are dissociated from a dialog definition by:

■ Placing a non-blank character in the Drop column opposite the record to be
dissociated

■ Overtyping the name of the record to be dissociated with the name of a new record

Up to 7 records can be specified on one page of the Records and Tables screen. Using
the [PF8], additional pages are displayed.

Sample Screen

 Records and Tables Page 1 of 1

 Dialog NAME1 Version 1

 Name Version Work New copy Drop
 1. AA 1 / _ _

 2. AA 1 / _ _

 3. _____________________________________ ____ _ _ _

 4. _____________________________________ ____ _ _ _

 5. _____________________________________ ____ _ _ _

 6. _____________________________________ ____ _ _ _

 7. _____________________________________ ____ _ _ _

DC498240 Record 2 is defined twice as a work record.

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

Dialog Compiler Screens

Chapter 3: CA ADS Dialog Compiler (ADSC) 113

Field Descriptions

Dialog

Displays the name of the current dialog, as specified on the Main Menu screen. This
field is protected.

Version

Specifies the version number, in the range 1 through 9999, of the current dialog.
This field is protected.

Name

The 1- to 32-charcter name of each record assigned the WORK and/or NEW COPY
attribute. Records associated with the dialog's map or subschema will be
automatically associated with the dialog and need not be listed. If the dialog is to
use its own copy of a record or if the dialog must distinguish between logical

records or between a logical record and a database record, the required record or
logical record can be named.

The value of the Name field can also be the 1- to 18-character schema name,
followed by a period (.), followed by the 1- to 18-character table name of every
table to be assigned as a host variable of an SQL command.

Version

Specifies the version number, in the range 1 through 9999, of the named record.
The default version number is the system version default version number, as
specified at system generation. If no system number is specified, the default

version number is 1.

Work

Associates the Work attribute with the corresponding record. Records with the
Work attribute are available to the dialog as working storage at runtime.

The application developer associates the Work attribute with a record by entering a
nonblank character in the Work field corresponding to the applicable record.

If no attribute is specified when a record name is entered, Work is assigned as the
default. If New is specified for a record, Work is automatically unassigned.

To remove the Work attribute from a record, the application developer places a

nonblank character in the Drop column opposite the record to be dissociated.

New Copy

Associates the New attribute with the corresponding record. Records with the New
attribute are allocated new record buffers when the dialog executes at runtime.

The application developer associates the New attribute with a record by entering a
nonblank character in the New field corresponding to the applicable record. To
remove the New attribute from a record, the application developer places a

nonblank character in the Drop column opposite the record to be dissociated.

Dialog Compiler Screens

114 ADS Reference Guide

Drop

Removes the record from its association with the dialog, but does not delete the

record definition from the dictionary.

Process Modules Screen

The Process Modules screen is used to associate a declaration, premap, response
process, or default response process with a dialog.

Premap Process

The Process Modules screen is used to associate or dissociate a premap process with a
dialog. A premap process must exist in the data dictionary as a process module before it
can be associated with a dialog.

Response Process

A response process must exist in the data dictionary as a process module before it can

be associated with a dialog. For a response process, the screen prompts the application
developer for a control key and/or a response field value used to initiate the response
process when the dialog executes at runtime.

If a batch dialog response field for an input record is the concatenation of several fields,
the response field value specified on this screen must include any embedded blanks that

occur in a concatenation.

The Process Modules screen allows the application developer to specify whether the
response process is to be executed even if the map contains input errors. If map input
errors are allowed, automatic editing is performed as usual for the dialog's ma p. The
user is not required to correct errors before the response process begins execution. The

response process is executed, but the erroneous data is not mapped in. The response
process can test for map fields in error with an IF statement.

Note: For more information on automatic editing, see the CA IDMS Mapping Facility

Guide.

More than one control key or response field value can be associated with a response

process. The application developer defines the response process repeatedly as a new
response, each time specifying a different control key and/or response field value until
all control keys and response field values to be associated with the response process

have been specified. Note that the response process is compiled and stored in the
dialog load module only once.

Dialog Compiler Screens

Chapter 3: CA ADS Dialog Compiler (ADSC) 115

Declaration Module

A declaration module is used under the SQL Option to declare cursors and to issue

global WHENEVER statements. The statements in a declaration module are not
executed. They are compiler directives used by the CA ADS dialog compiler at dialog
compilation.

Declaration modules allow you to store declarations you have specified as global to your
application.

Unlike the premap and response process modules, the declaration module cannot
contain executable CA ADS commands . This module can contain only DECLARE CURSOR
statements and WHENEVER directives.

A WHENEVER directive or DECLARE CURSOR statement is also valid in a premap or
response process, but the scope of such a statement is not global.

Note: For more information about the usage for WHENEVER and DECLARE CURSOR, see
the CA IDMS SQL Programming Guide. For more information on the declaration module,
see the CA IDMS SQL Programming Guide.

Default Response

Specifies that the named process module is the optional default response process of the

dialog. At runtime, after a mapin operation, the runtime system executes the default
response process if no response process can be selected based on control event or
response field value.

Dissociating a Process

The Process Modules screen is also used to dissociate a response process from a dialog.
The developer places a nonblank character next to Drop opposite the process to be
deleted.

Multiple Processes

Up to 4 processes can be specified on one page of the Process Modules screen. Using

[PF8], you can display additional pages.

Compiling the Process

When the application developer chooses Compile from the action bar in the activity
selection area of the Main Menu screen, the dialog compiler compiles all processes
associated with the dialog. ADSC returns the following message after a successful

compile:

DC498140 Dialog TESTDIAL version 1 has been successfully compiled.

Dialog Compiler Screens

116 ADS Reference Guide

If a process does not compile successfully, the application compiler indicates the
number of errors encountered.

The application developer can view the source code and error messages for the process
by selecting item 2, Display messages, from the Compile window on the action bar in
the activity selection area of the Main Menu screen.

Sample Screen

 Process Modules Page 1 of 1

 Dialog NAME1 Version 1
 Name ________________________________ _ Type
 Version ____ _ Execute on errors
 Key _____ Value ________________________________ _ Drop

 Name ________________________________ _ Type
 Version ____ _ Execute on errors
 Key _____ Value ________________________________ _ Drop

 Name ________________________________ _ Type
 Version ____ _ Execute on errors
 Key _____ Value ________________________________ _ Drop

 Name ________________________________ _ Type
 Version ____ _ Execute on errors
 Key _____ Value ________________________________ _ Drop

* Type : 1=Declaration 2=Premap 3=Response 4=Default Response
DC498166 Neither a map nor premap are defined

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

Field Descriptions

Name

Specifies the 1- to 32-character name of the module associated with the current
dialog as a premap process, a response process, or a declaration module. The

specified source module must exist in the data dictionary.

Version

Specifies the version number in the range 1 through 9999, of the named process
source module. The default version number is the system version default version

number, as specified at system generation. If no system number is specified at
system generation, the default version number is 1.

Dialog Compiler Screens

Chapter 3: CA ADS Dialog Compiler (ADSC) 117

Key

Specifies the online control key or batch control event that initiates the runtime

response process. Valid control key specifications are:

■ ENTER

■ CLEAR

■ PA1, PA2, PA3

■ PF1 through PF24,

■ FWD

■ BWD

■ HDR

Considerations

■ FWD, BWD, and HDR can be specified only if the dialog is associated with a

pageable map.

■ LPEN can be specified as a control key if the use of l ight pens is supported by the
installation.

■ CLEAR, PA1, PA2, and PA3 do not transmit data; that is, input is not mapped in
when these keys are pressed at runtime.

■ The FWD, BWD, and HDR control keys are associated with pageable maps. FWD and
BWD are synonymous with the keyboard control keys defined for paging forward
and backward, respectively.

If FWD or BWD are specified and the keys defined for paging forward and backward
are changed, the dialog does not have to be recompiled.

■ HDR is not associated with any keyboard control key; rather, conditions
encountered during a map paging session cause a response process associated with

this control key value to be initiated.

Valid batch control events are as follows:

■ EOF indicates the most recent input fi le read operation resulting in an end-of-fi le
condition.

■ IOERR indicates the most recent input fi le read operation resulting in a physical

input-error condition. In CA ADS Batch, output errors cause the runtime system to
terminate the application.

Value

Specifies a 1- to 32-character response name that can be entered in a $RESPONSE

map field to initiate the response process at runtime. The response field value can
contain embedded blanks.

Dialog Compiler Screens

118 ADS Reference Guide

If the current dialog is associated with an application function, the application
developer can associate a response process in the dialog with an application

response. This is done by entering in the Value field the specification entered in the
Response Name field of the Response Definition screen during application
definition. Additionally, the same control key must be specified in the Key field on

both the dialog compiler Process Modules screen and the application compiler
Response/Function List screen.

By associating a dialog's response process with an application response, the
application developer can place security restrictions on the response process.
Additionally, the response process can be displayed as a valid response on runtime

menus.

Type

Specifies the type of module.

Execute on Errors

Specifies that the response process executes even if the map contains input errors.
Map fields in error are not mapped in. The map field status condition test can be
used to test for fields in error.

When this option is not selected, the user must correct all map fields in error before
processing continues.

Drop

Specifies that an existing process module is being dropped from the dialog

definition.

If Drop is specified. the dialog compiler dissociates the process module from the
dialog but does not delete the source from the data dictionary.

More information:

CA ADS Screens (see page 31)
Introduction to CA ADS (see page 19)
CA ADS Runtime System (see page 119)

Suspending a Session (see page 97)
Conditional Expressions (see page 245)
Conditional Commands (see page 317)

Chapter 4: CA ADS Runtime System 119

Chapter 4: CA ADS Runtime System

This section contains the following topics:

Initiating the CA ADS Runtime System (see page 119)
Runtime Menu and Help Screens (see page 124)
Runtime Flow Of Control (see page 135)

Message Prefixes (see page 140)
CA ADS Tasks, Run Units, and Transactions (see page 141)
Dialog Abort Information Screen (see page 145)

Debugging a Dialog (see page 148)
Linking From CA ADS To CA OLQ (see page 149)
Linking Built-In Functions With The Runtime System (see page 150)
Managing Storage (see page 151)

Initiating the CA ADS Runtime System

CA ADS applications are executed using the CA ADS runtime system.

To execute a CA ADS Batch application, use the CA ADS Batch runtime system.

Note: For more information about the CA ADS Batch runtime system, see the CA ADS

Batch User Guide.

How to Define Runtime Tasks

Tasks that initiate the CA ADS runtime system are defined at CA IDMS/DC or DC/UCF
(DC/UCF) system generation to activate program ADSORUN1. The task codes are

specified by means of the system generation TASK statement and are associated with
CA ADS in one of the following ways:

■ By means of the ADSTASK clause of the system generation ADSO statement.

■ By means of the application compiler Task Codes screen. At runtime, a task code

defined on the Task Codes screen directly initiates the application for which it is
defined.

A task code specified on the Task Codes screen can be used to initiate the runtime
system only if one of the following conditions is met:

– If the task code specified on the Task Codes screen is also defined in the system

generation TASK statement

– If the default ADSTASK task code (ADS) is entered in conjunction with the task
code specification on the Task Codes screen

Initiating the CA ADS Runtime System

120 ADS Reference Guide

■ By means of a task code invoking a mainline dialog (provided the task code invokes
ADSORUN1).

At runtime, the named dialog is directly initiated as the first dialog in an application
consisting of a series of dialogs.

Note: For more information on the system generation TASK statement, see the CA IDMS

System Generation Guide.

When the user initiates a CA ADS application, the runtime system loads the required
load modules into storage and sets up control blocks and record buffers for the
application.

More information:

CA ADS Application Compiler (ADSA) (see page 51)

How to Start a CA ADS Application

After signing on to DC/UCF, the user can initiate the CA ADS runtime system by
responding to the ENTER NEXT TASK CODE prompt, as follows:

■ By entering the task code that directly initiates an application

■ By entering the task code specified in the ADSTASK clause of the system generation
ADSO statement, followed either by a task code defined for an application or by the
name of a mainline dialog

■ By entering only the task code specified in the ADSTASK clause of the system
generation ADSO statement

Task Application Table

In either of the first two cases, the CA ADS runtime system responds by checking the
Task Application Table (TAT) for the specified task code. If the specified task code is in

the TAT, the runtime system begins execution of the appli cation with the function
associated with the task code or with a signon function if one is specified for the
application. The TAT is updated by the application compiler by using information
entered on the Task Codes screen.

The TAT table can also be updated online using ADSOTATU, or in batch using ADSOBTAT.

If the specified task code is not in the TAT, the runtime system checks for a mainline
dialog whose name matches the task code. If the dialog exists, the runtime system
begins execution of the dialog. If the dialog does not exist, the runtime system
terminates abnormally.

Initiating the CA ADS Runtime System

Chapter 4: CA ADS Runtime System 121

If the user enters only the task code specified in the ADSTASK clause of the system
generation ADSO statement, the runtime system responds by displaying the Dialog

Selection screen.

The Dialog Selection screen displays a menu of the mainline dialogs available to the
user. The user selects a dialog, and the runtime system begins execution of the dialog.

Dialog Selection Screen

CA ADS RELEASE nn.n PAGE:
 1
 DIALOG SELECTION FOR USER:

ENTER DIALOG NAME: OR SELECT ONE BELOW

_ ADSA _ ADSOTATU _ ASFADSGD _ ASFOOAKD
- OLQ _ RQERDQ

PA1 - PAGE FORWARD
PA2 - PAGE BACK
CLEAR - EXIT CA ADS

The user initiates a dialog from the Dialog Selection screen by entering a nonblank

character in the response field corresponding to the applicable dialog, or by entering the
name of the dialog in response to the ENTER DIALOG NAME prompt.

Initiating the CA ADS Runtime System

Syntax and syntax rules for the statement used to initiate the CA ADS runtime system
are shown below.

Use these statements in response to the DC/UCF prompt:

ENTER NEXT TASK CODE

Syntax

►►─┬─ ads-task-code ───►─
 │
 ├─ ads-task-code ─┬┬────────────────────────────┬─┬──────────────────┬──────
 │ │└─┬───────────┬ dialog-name ─┤ └─ NODe=node-name ─┘
 │ │ └─ DIAlog= ─┘ │
 │ └─ application-task-code ─────┘
 │
 └─ idms-dc/ucf-task-code ─┬──────────────────┬──────────────────────────────
 └─ NODe=node-name ─┘

─►──┬───────►◄
 ────┬────────────────────────┬───────┬─────────────────────┬────────┤
 └─ DBName=database-name ─┘ └─ TRACE= ──┬─ ALL ─┬─┘ │
 └─ CTL ─┘ │
 │
 ────┬────────────────────────┬──────────────────────────────────────┘
 └─ DBName=database-name ─┘

Initiating the CA ADS Runtime System

122 ADS Reference Guide

Parameters

ads-task-code

Specifies the task code defined in the ADSTASK clause of the system generation
ADSO statement.

Ads-task-code must be defined in a system generation TASK statement to invoke

program ADSORUN1. The default task code is ADS.

DIAlog=dialog-name

Specifies the name of a mainline dialog to begin execution as the first dialog in an
application.

Note: There is no space between the keyword DIAlog and = or between = and

dialog-name.

application-task-code

Specifies a task code defined for an application by means of the Task Codes screen.

If no signon function is specified, the function associated with the task code begins
execution as the first function in the application. If a signon function is specified,

the function associated with the task code begins execution after an acceptable
signon is entered.

idms-dc/ucf-task-code

Specifies either a task code defined for an application by means of the Task Codes
screen or the name of a mainline dialog.

Idms-dc/ucf-task-code must be defined in a system generation TASK statement to
invoke program ADSORUN1.

NODe=node-name

Specifies the node that controls the data dictionary in which the definitions and
load modules for the requested application are stored.

Node-name must be defined at DC/UCF system generation.

Note: There is no space between the keyword NODe and = or between = and
node-name.

DBName=database-name

Specifies the database accessed by the application.

Database-name must be defined at system generation.

Note: There is no space between the keyword DBName and = or between = and
database-name.

TRACE=

Specifies that the CA ADS trace facil ity is to be used for the application.

Note: There is no space between the keyword TRACE and = or between = and ALL
or CTL.

Initiating the CA ADS Runtime System

Chapter 4: CA ADS Runtime System 123

ALL

Writes trace records to the system log for each of the following:

■ Dialog entry

■ Process module entry

■ Subroutine entry

■ Process command execution for dialogs having symbol tables

■ Database status information

■ Currency save and restore operations

CTL

Writes the same trace records as ALL only for the following subset of process

commands:

■ Control commands

■ Database commands

Example 1: Specifying a Task Code that Directly Initiates an Application

The following statement initiates the run-time system with the system-generated task

code REPORTS. Because REPORTS is defined in the TAT and no signon function is
specified for the application that REPORTS initiates, the runtime system begins
execution of the function associated with REPORTS.

REPORTS

Example 2: Specifying the Run-Time System Task Code Without an Application Task
Code

The following statement initiates the run-time system with the default task code ADS.
The system displays the Dialog Selection screen.

ADS

Example 3: Specifying the Run-Time System Task Code with an Application Task Code

The following statement initiates the run-time system with the default task code ADS
and specifies the application task code TESTAPPL:

ADS TESTAPPL DBNAME=TESTDB

The DBNAME clause is included to specify that the database to be accessed by the
application is TESTDB. If the clause were not included in this statement, the application
would access the system's current database or the dbname set by a DCUF SET DBNAME
command.

Runtime Menu and Help Screens

124 ADS Reference Guide

More information:

CA ADS Application Compiler (ADSA) (see page 51)

Application and Dialog Util ities (see page 621)

Runtime System Initiating Statement

►►─┬─ ads-task-code ───►─
 │
 ├─ ads-task-code ─┬┬────────────────────────────┬─┬──────────────────┬──────
 │ │└─┬───────────┬─dialog-name ─┤ └─ NODe=node-name ─┘
 │ │ └─ DIAlog= ─┘ │
 │ └─ application-task-code ─────┘
 │
 └─ idms-dc/ucf-task-code ─┬──────────────────┬──────────────────────────────
 └─ NODe=node-name ─┘

─►──┬───────►◄
 ────┬────────────────────────┬───────┬─────────────────────┬────────┤
 └─ DBName=database-name ─┘ └─ TRACE= ──┬──ALL ─┬─┘ │
 └──CTL ─┘ │
 │
 ────┬────────────────────────┬──────────────────────────────────────┘
 └─ DBName=database-name ─┘

Runtime Menu and Help Screens

The CA ADS runtime system builds and displays menu and help screens for application
functions. These screens display valid responses for a function and allow the user to
select a response.

Note: Online help does not support terminal access methods that do not provide the

READ BUFFER functions (for example, VTAM does provide this function; TCAM does
not). Terminals running under a method that does not support READ BUFFER are
detected, and invocation of HELP at runtime is ignored.

Menu screens and the application help screen are discussed separately below.

Menu Screens

Specifying a Menu Function

Functions are defined as menu functions or menu/dialog functions on the
Response/Function List screen during application definition. The menu associated with a

function can be further described by using the Function Definition (Menu) screen. The
application developer can indicate on this series of screens whether the menu map is
system-defined or site-defined and provide a heading for the menu map.

System-defined menu maps can be associated with menu functions or with menu/dialog
functions. A site-defined menu map must be associated with a menu/dialog function.

Runtime Menu and Help Screens

Chapter 4: CA ADS Runtime System 125

ADSO-APPLICATION- MENU-RECORD

The CA ADS runtime system uses ADSO-APPLICATION-MENU- RECORD to create menus.

All menu maps must include ADSO- APPLICATION-MENU-RECORD as a map record.

When the map of a menu function or menu/dialog function is mapped out, the runtime
system initializes ADSO-APPLICATION-MENU- RECORD and moves as many responses
and descriptions as possible into the fields provided by the menu map. If the menu is
defined on the Function Definition (Menu) screen as a site-defined menu, the runtime

system moves as many responses and descriptions as specified on the Function
Definition (Menu) screen. If a response has no description, the runtime system displays
the description for the function associated with the response. AMR-RESPONSE-FIELD is

initialized with the default response specified for the function.

Selecting a Response

When the menu is displayed on the screen, the user can select a response in one of the
following ways:

■ By pressing the control key associated with the applicable response

■ By entering a nonblank character in the field immediately preceding the applicable
response

■ By entering a response name in the field that maps to AMR-RESPONSE-FIELD

The runtime system passes the selected response to the AMR- RESPONSE-FIELD of
ADSO-APPLICATION-MENU-RECORD. If the user uses more than one type of response

selection, the response selected by using a control key has precedence over a response
selected by a nonblank character, which has precedence over a response name entered
in a RESPONSE field. If the user presses the ENTER key without selecting a response, the
default response remains in AMR-RESPONSE-FIELD and is considered in the

determination of the runtime flow of control.

The value in AMR-RESPONSE-FIELD determines the next function to be executed from a
menu function.

The CA ADS runtime system processes system-defined and site-defined menu maps in
the same way, as described below.

More information:

CA ADS Application Compiler (ADSA) (see page 51)

System Records (see page 567)
Runtime Flow Of Control (see page 135)

Runtime Menu and Help Screens

126 ADS Reference Guide

Site-Defined Menu Maps

In order for the runtime system to perform this processing automatically, a site-defined
menu map must have the following characteristics:

■ The menu must map to ADSO-APPLICATION-MENU- RECORD. Fields in

ADSO-APPLICATION-MENU-RECORD are described in System Records (see
page 567).

■ The number of responses specified per menu page must not exceed the number of
occurrences defined for the AMR-SELECT-SECTION of

ADSO-APPLICATION-MENU-RECORD (that is, 50). The application developer
specifies the number of responses per page on the Function Definition (Menu)
screen during application definition.

Considerations

The following considerations apply:

■ AMR-RESPONSE-FIELD can be used to display default responses and to accept a
response from the user.

■ Unless specifically specified, unused occurrences of the AMR-SELECT-SECTION are
not protected on a site-defined menu map.

■ The menu record always appears initialized to a site-defined menu dialog.

Note: For more information on site-defined menu maps, see the CA ADS Application
Design Guide.

More information:

CA ADS Application Compiler (ADSA) (see page 51)

System-Defined Menu Maps

CA ADS provides three system-defined menu maps, as follows:

■ ADSOMUR1 — The short description menu map

■ ADSOMUR2 — The long description menu map

■ ADSOMSON — The signon menu map

The format for a system-defined nonsignon menu map is specified on the Function
Definition (Menu) screen during application definition. The application developer can
select a short description format (ADSOMUR1) or a long description format
(ADSOMUR2) for nonsignon menus.

Runtime Menu and Help Screens

Chapter 4: CA ADS Runtime System 127

Short Description Format

The short description format displays 30 responses per menu page; the long description

format displays 15 responses per menu page. The number of responses that are
displayed can be modified on the Function Definition (Menu) screen by specifying that
the menu is site-defined and by entering the number of responses per page.

Runtime Display

When a menu screen is displayed at runtime, ADS builds the menu by storing the

appropriate information in ADSO-APPLICATION- MENU-RECORD. System-defined
nonsignon menus map to all but two of the fields in
ADSO-APPLICATION-MENU-RECORD.

Sample Short Description Menu Screen (ADSOMUR1)

 DIALOG: PAGE: 1 OF: 1
 DATE: mm/dd/yy NEXT PAGE:
 TEST APPLICATION

 _ PAGETEST (PF22) TEST DIALOG _ FORWARD (PF8) FORWARD
 _ BACKWARD (PF7) BACKWARD _ POPTOP (PF3) POP TO TOP
 _ HELP (PF1) HELP _ QUIT (PF24) QUIT
 _ POP (PF2) POP 1 LEVEL _ LINKMENU (PF13) LINKTO SUBMENU
 _ LINKPAGE (PF14) LINK TO DIALOG _ START START OF LIST
 _ EDIT (PF17) TESTING BUG FIX

 RESPONSE: SEND DATA--> MODE: STEP

Runtime Menu and Help Screens

128 ADS Reference Guide

Sample Long Description Menu Screen (ADSOMUR2)

 DIALOG: PAGE: 1 OF: 1
 DATE: mm/dd/yy NEXT PAGE:
 TEST APPLICATION

 _ PAGETEST (PF22) TEST DIALOG
 _ FORWARD (PF8) FORWARD
 _ BACKWARD (PF7) BACKWARD
 _ POPTOP (PF3) POP TO TOP
 _ HELP (PF1) HELP
 _ QUIT (PF24) QUIT
 _ POP (PF2) POP 1 LEVEL
 _ LINKMENU (PF13) LINKTO SUBMENU
 _ LINKPAGE (PF14) LINK TO DIALOG
 _ START START OF LIST
 _ EDIT (PF17) TESTING BUG FIX

 RESPONSE: SEND DATA--> MODE: STEP

Field Descriptions

DIALOG

Specifies the name of the dialog associated with the current menu/dialog function.
The field is blank if no dialog is associated with the current function.

This field is protected.

DATE

Specifies the current date in the format selected on the Main Menu screen during
application definition.

This field is protected.

PAGE

Specifies the current page of the menu screen.

This field is protected.

OF

Specifies the total number of pages for the current menu.

This field is protected.

NEXT PAGE

Specifies the next page of the menu screen to be displayed. To page forward or

backward, the user enters the applicable page number and presses the ENTER key.
The FORWARD and BACKWARD system functions can also be used if they are valid
for the current function.

Runtime Menu and Help Screens

Chapter 4: CA ADS Runtime System 129

HEADING TEXT

Displays the heading for the current menu, as specified on the Function Definition

(Menu) screen during application definition.

RESPONSE LISTING

Displays the available valid responses for the current function and, for each
response, provides a 1-byte field that the user can use to select the response. A
short description menu displays 30 responses per page; a long description menu

displays 15 responses per page.

The responses are l isted in the order specified on the Function Definition (Menu)
screen during application definition. For each response listed, the following
information, which is supplied on the Response/Function List screen during
application definition, is displayed:

■ The response name.

■ The control key associated with the response.

■ The response description.

If the menu has a short description format, the description text is truncated to 12
bytes. If the menu has a long description format, the entire 28-byte description is
displayed. If the response has no description, the descripti on for the function

associated with the response is displayed.

SYSTEM MESSAGE AREA

Displays informational and error messages returned by the CA ADS runtime system.

This area is protected.

RESPONSE

Specifies the default response (if any) for the current function.

The user can select the default response by pressing the ENTER key without
modifying the screen.

The user can select a different response than the default response by overwriting
the default response with a nonblank character in the 1-byte field preceding the

applicable response, or by pressing the control key associated with the response. If
an invalid response name is entered, the value is replaced by the default next
response.

SEND DATA

Specifies a 32-byte field that is mapped to the AMR-PASSING field of
ADSO-APPLICATION-MENU-RECORD and then moved to the AGR-PASSED-DATA
field of ADSO-APPLICATION-GLOBAL- RECORD. The AGR-PASSED-DATA field can be
accessed in the process code of a dialog function or user program. AMR-PASSING is

initialized to spaces before the menu is mapped out. If AMR- PASSING contains all
spaces, nothing is moved to AGR-PASSED- DATA.

Runtime Menu and Help Screens

130 ADS Reference Guide

MODE

Specifies an execution mode of STEP or FAST for the function. This specification is

valid only if the application developer coded procedures for controlling the
execution mode of the current dialog function.

Signon Menu Maps

The application developer defines a menu as a signon menu on the application compiler
Function Definition (Menu) screen.

Signon menus are similar to nonsignon menus, except that signon menus map to two

additional fields (AMR-USER-ID and AMR- PASSWORD) in
ADSO-APPLICATION-MENU-RECORD. If the system function SIGNON is associated with a
valid response for the signon menu function, the runtime system submits the values
entered in the AMR-USER-ID and AMR-PASSWORD fields to DC/UCF for security

clearance when SIGNON is initiated.

If the return code from DC/UCF indicates a successful signon, CA ADS moves the value in
AMR-USER-ID to the AGR-USER-ID field of ADSO-APPLICATION-GLOBAL-RECORD. The
AMR-PASSWORD field is overwritten with blanks after being passed to DC/UCF.

If a signon is required, the runtime system does not allow any other application activity
to occur until a successful signon is processed.

Signon menu maps can be site-defined or system-defined.

Sample Signon Menu Screen (ADSOMSON)

 DIALOG: PAGE: 1 OF: 1
 DATE: mm/dd/yy NEXT PAGE:
 TEST APPLICATION

 ENTER USER ID--->
 PASSWORD-------->

 _ PAGETEST (PF22) TEST DIALOG
 _ FORWARD (PF8) FORWARD
 _ BACKWARD (PF7) BACKWARD
 _ POPTOP (PF3) POP TO TOP
 _ HELP (PF1) HELP
 _ QUIT (PF24) QUIT
 _ POP (PF2) POP 1 LEVEL
 _ LINKMENU (PF13) LINKTO SUBMENU
 _ LINKPAGE (PF14) LINK TO DIALOG
 _ START START OF LIST
 _ EDIT (PF17) TESTING BUG FIX

 RESPONSE: SEND DATA--> MODE: STEP

Runtime Menu and Help Screens

Chapter 4: CA ADS Runtime System 131

Field Descriptions

DIALOG

Specifies the name of the dialog associated with the current menu/dialog function.
The field is blank if no dialog is associated with the current function.

This field is protected.

DATE

Specifies the current date in the format selected on the Main Menu screen during

application definition.

This field is protected.

PAGE

Specifies the current page of the menu screen.

This field is protected.

OF

Specifies the total number of pages for the current menu.

This field is protected.

NEXT PAGE

Specifies the next page of the menu screen to be displayed. To page forward or
backward, the user enters the applicable page number and presses the ENTER key.

The FORWARD and BACKWARD system functions can also be used if they are valid
for the current function.

HEADING TEXT

Displays the heading for the current menu, as specified on the Function Definition
(Menu) screen during application definition.

ENTER USER ID

Prompts for the user's user id.

This 32-byte field is mapped to the AMR-USER-ID field of
ADSO-APPLICATION-MENU-RECORD.

PASSWORD

Prompts for the user's password.

This 8-byte field is mapped to the AMR-PASSWORD field of ADSO-
APPLICATION-MENU-RECORD. This is a darkened field; characters entered in this
field do not appear on the screen.

Runtime Menu and Help Screens

132 ADS Reference Guide

RESPONSE LISTING

Displays the available valid responses for the current function and, for each

response, provides a 1-byte field that the user can use to select the response.

The signon menu screen displays 12 responses per page. The responses are l isted in
the order specified on the Function Definition (Menu) screen during application

definition.

For each response listed, the following information, which is supplied on the

Response/Function List screen during application definition, is displayed:

■ The response name.

■ The control key associated with the response.

■ The 28-byte response description.

■ If a response has no description, the description for the function associated
with the response is displayed.

Note: If a signon is required for the application, at least one valid response must be

associated with the system function SIGNON.

SYSTEM MESSAGE AREA

Displays informational and error messages returned by the CA ADS runtime system.

This area is protected.

RESPONSE

Specifies the default response (if any) for the current function.

The user can select the default response by pressing the ENTER key without
modifying the screen.

The user can select a different response than the default response by overwriting
the default response, by entering a nonblank character in the 1-byte field preceding

the applicable response, or by pressing the control key associated with the
response.

SEND DATA

Specifies a 32-byte field that is mapped to the AMR-PASSING field of
ADSO-APPLICATION-MENU-RECORD and then moved to the AGR-PASSED-DATA

field of ADSO-APPLICATION-GLOBAL- RECORD. The AGR-PASSED-DATA field can be
accessed in the process code of a dialog function or user program. AMR-PASSING is
initialized to spaces before the menu is mapped out. If AMR- PASSING contains all

spaces, nothing is moved to AGR-PASSED-DATA.

Runtime Menu and Help Screens

Chapter 4: CA ADS Runtime System 133

MODE

Specified an execution mode of STEP or FAST for the function. If the user specifies

an acceptable signon and the execution mode is STEP, the runtime system
redisplays the signon menu. The user must press the ENTER key to proceed to the
first application function.

If the execution mode is FAST, the runtime system immediately proceeds to the first
function. Except for its use in signon menus, the execution mode specification is
valid only if the application developer coded procedures for controlling the
execution mode of the current dialog function.

More information:

CA ADS Application Compiler (ADSA) (see page 51)
System Records (see page 567)

Security Features (see page 717)

Application Help Screen

The runtime application help screen lists all the valid responses for the current function.

The screen is displayed when the user selects a response that initiates the system
function HELP.

The user can perform any of the following actions from the application help screen:

■ Select another page for display by entering the applicable page number in the NEXT
PAGE field

■ Select a response, as follows:

– By pressing the control key associated with the applicable response

– By entering a nonblank character in the 1-byte field immediately preceding the

applicable response name

– By entering the applicable response name in the RESPONSE field

■ Return to the current function by pressing the ENTER key without modifying the
screen

Runtime Menu and Help Screens

134 ADS Reference Guide

Sample Application Help Screen

 CURRENT FUNCTION: DUDMENU PAGE: 1 OF: 1
 DATE: mm/dd/yy NEXT PAGE:

 APPLICATION CONTROL FACILITY HELP SCREEN

 _ PAGETEST (PF22) TEST DIALOG
 _ QUIT (PF24) QUIT
 _ HELP (PF1) HELP
 _ FORWARD (PF8) FORWARD
 _ BACKWARD (PF7) BACKWARD
 _ POPTOP (PF3) POP TO TOP
 _ POP (PF2) POP 1 LEVEL
 _ LINKMENU (PF13) LINKTO SUBMENU
 _ LINKPAGE (PF14) LINK TO DIALOG
 _ START START OF LIST
 _ EDIT (PF17) TESTING BUG FIX

 RESPONSE:

Field Descriptions

CURRENT FUNCTION

Specifies the name of the function for which the listed responses are valid.

This field is protected.

DATE

Specifies the current date in the format selected on the General Options screen
during application definition.

This field is protected.

PAGE

Specifies the current page of the help screen.

This field is protected.

OF

Specifies the total number of pages for the current help screen. This field is
protected.

NEXT PAGE

Specifies the next page of the help screen to be displayed. To page forward or
backward, the user enters the applicable page number and presses the ENTER key.
The FORWARD and BACKWARD system functions cannot be used to page through
this screen.

Runtime Flow Of Control

Chapter 4: CA ADS Runtime System 135

RESPONSE LISTING

Displays the valid responses for the current function and, for each response,

provides a 1-byte field that the user can use to select the response. The application
help screen displays 15 responses per page.

For each response listed, the following information, which is supplied on the
Response Definition screen during application definition, is displayed:

■ The response name.

■ The control key associated with the response.

■ The 28-byte response description.

If a response has no description, the description for the function associated with

the response is displayed.

SYSTEM MESSAGE AREA

Displays informational and error messages returned by the CA ADS runtime system.

This area is protected.

RESPONSE

Specifies a response name entered by the user.

Runtime Flow Of Control

Flow of control is the way control is passed from one application function or dialog to
another at runtime. In CA ADS, the runtime flow of control is determined by user
requests or runtime events, based on specifications made at definition time.

AGR-CURRENT-RESPONSE

The CA ADS runtime system uses the AGR-CURRENT-RESPONSE field of

ADSO-APPLICATION-GLOBAL-RECORD to direct the flow of control in applications
defined by using the application compiler.

When the user presses a control key, the value of AGR-CURRENT-RESPONSE is
established by means of the following steps:

1. The runtime system moves spaces to AGR-CURRENT- RESPONSE.

2. The runtime system checks the AGR-MAP-RESPONSE field of
ADSO-APPLICATION-GLOBAL-RECORD (AMR- RESPONSE-FIELD of
ADSO-APPLICATION-MENU- RECORD for menu functions) for a response entered by
the user. If the user entered a response and pressed the ENTER key, the runtime

system moves the response to AGR-CURRENT-RESPONSE. If the user pressed a
control key other than the ENTER key, the runtime system proceeds to Step 4
below.

Runtime Flow Of Control

136 ADS Reference Guide

3. If the user did not enter a response, the runtime system checks the
AGR-DEFAULT-RESPONSE field of ADSO- APPLICATION-GLOBAL-RECORD for a

default response for the current function. If a default response exists and the user
pressed the ENTER key, the runtime system moves the default response to
AGR-CURRENT-RESPONSE. If a default response does not exist or if the terminal

operator did not press the ENTER key, the runtime system proceeds to Step 4
below.

4. If a default response does not exist or if the user did not press the ENTER key, the
runtime system checks the AGR-AID-BYTE field for the control key pressed by the
user. If the control key pressed is associated with a response, the runtime system

moves the associated response to AGR- CURRENT-RESPONSE. If the control key
pressed is not associated with a response, spaces remain in AGR-CURRENT-
RESPONSE.

The following diagram shows how the runtime system establishes the value of

AGR-CURRENT-RESPONSE.

Note: When a series of dialogs that are not associated with application functions is
executed as an application, the flow of control is directed by the control commands

coded in the premap and response processes. The control commands specify, either
explicitly or implicitly, the next component to be executed.

Runtime Flow Of Control

Chapter 4: CA ADS Runtime System 137

Establishing the Value of AGR-CURRENT-RESPONSE

Valid Response

If the response established in AGR-CURRENT-RESPONSE is valid for the current function,
the runtime system moves the name of the function associated with the response to the

AGR-NEXT-FUNCTION field of ADSO-APPLICATION-GLOBAL-RECORD.

For responses with a security class higher than zero, the runtime system also checks
whether the terminal operator has an acceptable security class. If the user does not
have an acceptable security class, the current screen is redisplayed with a message
indicating that a different response must be selected.

Note: Process code can move values to the AGR-CURRENT-RESPONSE field, overwriting
the response selected by the user. The runtime system does not check security for a
response moved to the AGR-CURRENT- RESPONSE field in process code. A process code

value is executed if it is valid for the current function.

The response moved to AGR-CURRENT-RESPONSE establishes the next function to be

executed. The function is not executed, however, until the runtime system satisfies
certain criteria. The following diagram shows how the flow of control is directed within
an application at runtime.

Runtime Flow Of Control

138 ADS Reference Guide

Application Flow of Control

Notes:

1. Immediately executable functions are HELP, SIGNON, SIGNOFF.

2. Message displayed on user's screen:

UNACCEPTABLE RESPONSE. PLEASE TRY AGAIN.

3. Inter-dialog control commands are DISPLAY, INVOKE, LEAVE, LINK, RETURN, and
TRANSFER.

4. Message displayed on user's screen:

INVALID RESPONSE SPECIFIED BY DIALOG PROCESS CODE

5. HDR can be specified only in a dialog associated with a pageable map.

Runtime Flow Of Control

Chapter 4: CA ADS Runtime System 139

Default Control Key Assignments

At system generation, default control key assignments can be specified for certain

formats of the LEAVE and RETURN process commands. By default, PA1 is assigned to
LEAVE APPLICATION; CLEAR is assigned to RETURN CLEAR. At runtime, the user can
press these keys to perform their associated commands.

Note: For more information on defining default control key assignments, see the
discussion of the KEYS statement in the CA IDMS System Generation Guide.

Default control key assignments are overridden by control key assignments specified for
application responses and dialog response processes.

More information:

System Records (see page 567)
Control Commands (see page 325)

Effects of Automatic Editing on Flow of Control

Runtime flow of control is altered when the automatic editing capability of the DC/UCF
mapping facil ity encounters input edit errors on mapin:

Response Process Selected

If a response process is selected, the outcome depends on whether the Execute on edit
errors option for the response is selected:

■ When it is selected, the response process is executed.

■ When it is not selected, the response process is not executed. The next event

depends on the control key pressed by the user:

– If the user presses [Clear] or [PA1], the CA ADS runtime system passes control
using the sysgen-defined assignment for the key. This means that it overrides

the application-defined assignment (if any) for the key.

Note: Required fields are always marked in error when the user presses [Clear]
or any PA key.

– If the user presses any other control key, the runtime system redisplays the

map, with edit errors.

System Function Selected

If a system function, except RETURN or TOP, is selected, the function is executed.

Message Prefixes

140 ADS Reference Guide

Any Other Application Function

If any other application function, including RETURN or TOP is selected, the map is

redisplayed with edit errors.

Considerations

Under certain circumstances, a dialog response process is selected even though the user
has selected an application function, as indicated in diagram above. In these cases, the
Execute on edit errors option of the selected response process determines whether the

map with errors is redisplayed. Circumstances under which a response process is
selected are as follows:

■ The dialog has a response process associated with the ENTER key and the user

selects a nonimmediately executable function (POP, POPTOP, RETURN, TOP, or
QUIT). The ENTER response process is selected.

■ The user selects a nonimmediately executable function and the control key pressed
or response name specified by the user is the same as a control key or a response

field value associated with a response proces s. The response process is selected.

More information:

CA ADS Dialog Compiler (ADSC) (see page 91)

Message Prefixes

In CA ADS, messages can be sent to a terminal in either of two ways:

■ The dialog process code can issue a DISPLAY MESSAGE command

■ Automatic editing can display a message for every field marked IN ERROR

Specific prefixes can be designated for each message.

Messages Issued Through DISPLAY MESSAGE Command

A prefix can be specified through ADSC in either of two ways:

■ In dialog process code in the DISPLAY command

■ At the dialog level on the Options and Directives screen

If the message prefixes defined at the dialog level and at the message level conflict, the
prefix set at the message level is used. If no prefix is set, 'DC' is used.

CA ADS Tasks, Run Units, and Transactions

Chapter 4: CA ADS Runtime System 141

Messages Issued Through Automatic Editing

A message prefix can be specified through the mapping compiler in either of two ways:

■ At the map level on the General Options screen

■ At the map field level on the Additional Edit Criteria screen

The map message prefix is set only at the field level. The map level value entered on the
screen is just a default carried to each field during a computation.

If the message prefixes defined at the map level and at the map field level conflict, the

prefix set at the map level is used. If no prefix is set, 'DC' is used.

CA ADS Tasks, Run Units, and Transactions

Tasks and run units opened when accessing a non-SQL defined database are handled
automatically during the execution of a CA ADS application. Tasks and run units for CA

ADS are discussed separately below.

Tasks

A task is a logical unit of work performed by the DC/UCF system that consists of one or
more programs.

The CA ADS runtime system executes as a series of tasks within the DC/UCF

environment. The first task begins when the user initiates the runtime system, as
discussed in Initiating the CA ADS Runtime System (see page 119). Subsequent tasks
begin on mapin from the terminal.

A task terminates when the runtime system performs a mapout operation to the
terminal with no errors or when the application terminates. When a task terminates, CA

ADS returns control to DC/UCF automatically; the application developer does not code a
DC RETURN command.

After a mapin operation, CA ADS determines whether the response entered by the user
is valid. If the response is valid, the task continues and the runtime system resumes
processing as directed by the response. If the response is not valid, the task terminates

and the runtime system performs a new mapout operation with an error message.

Run Units

Communication with the database is established by means of run units. A run unit
begins when an application signals its intent to perform database operations and ends
when the program releases all database resources from its control. A run unit can

consist of any number of CA IDMS/DB database requests.

CA ADS Tasks, Run Units, and Transactions

142 ADS Reference Guide

CA ADS can have 0 to 2 run units open at a time. With SQL access, run units are a
physical aspect of data access that is hidden, as the SQL model requires. CA ADS can

have a network run unit open and access the database using SQL at the same time.

If a dialog issues non-SQL DML and SQL DML against the same non-SQL defined
database at one time, deadlock of the run units is possible.

Establishing a run unit to access the database and extending run units using CA ADS is
discussed below.

Transactions

A database transaction is a unit of recovery within an SQL session.

CA IDMS/DB begins a database transaction when the dialog submits an SQL statement
that results in access to either user data or the dictionary, and ends a transaction when
a COMMIT or ROLLBACK is executed or when the SQL session is terminated.

Note: For more information on transactions within an SQL session, see the CA IDMS SQL
Programming Guide. For a l ist of SQL statements that start and end a database
transaction, see the CA IDMS SQL Programming Guide.

Run units and database access

During the execution of a CA ADS application, the following sequence occurs when
accessing the database:

1. The run unit begins and READY commands are automatically issued when the CA

ADS runtime system encounters the first database or logical record command that
accesses database records.

2. When READY commands are physically coded in process modules, the following
considerations apply:

■ The parameters from the last physically coded READY command for an area are
used by the runtime system.

■ If no READY command appears in the process code, the default parameters, as

defined in the subschema, are used by the runtime system.

3. The run unit that is not extended ends when the CA ADS runtime system

encounters any control command except RETURN in a nested structure.

Before executing the control command, CA ADS does the following:

■ Saves currencies unless additional specifications (NOSAVE, NOFINISH) indicate

otherwise

■ Issues a FINISH command to release the database areas and write a checkpoint
to the CA IDMS/DB journal

CA ADS Tasks, Run Units, and Transactions

Chapter 4: CA ADS Runtime System 143

Finishing SQL Transactions

An SQL transaction is finished only when the user explicitly terminates it (using the

appropriate SQL commands), or when CA ADS is terminating the task (such as DISPLAY
or LEAVE ADS). A network run unit can be closed and re-opened because of a change of
subschema causing CA ADS not to extend a run unit. If CA ADS has to finish such a run

unit, it does not finish the SQL transaction.

Extended Run Units

A run unit is kept open (extended) when a dialog passes control to another dialog, user
program, or application function by using an INVOKE, LINK, TRANSFER, or EXECUTE NEXT

FUNCTION command.

A run unit is extended when control passes to any one of the following:

■ A user program.

If a run unit is not already open and the LINK command's USING RECORDS list

includes SUBSCHEMA-CONTROL, CA ADS opens and extends a run unit. If the run
unit is already open, the run unit is extended.

■ A dialog with a premap process and no associated subschema.

■ A dialog with a premap process whose schema and subschema are the same as
those of the issuing dialog and whose usage modes are equally or less restrictive

than those of the linking dialog.

A usage mode is considered more restrictive than another usage mode if either of
its two components is more restrictive.

The following table shows the relative restrictiveness of usage modes.

Restrictiveness Usage mode Qualifier

Most restrictive Update Exclusive

 Protected

 Retrieval Shared

Least restrictive Noready

■ Any lower-level dialog, provided that the USING SUBSCHEMA-CONTROL clause of

the LINK command is used.

CA ADS Tasks, Run Units, and Transactions

144 ADS Reference Guide

Considerations

The following considerations apply to extended run units:

■ Rollback when a run unit is extended with the LINK command

The LINK command does not automatically write a checkpoint to the CA IDMS/DB
journal fi le. This allows a lower level dialog to check for errors and issue a

ROLLBACK command if necessary. In this case, the entire extended run unit is rolled
back.

If a COMMIT command is included in either dialog, the dialog is rolled back only to
the COMMIT checkpoint. In this case, the entire extended run unit is not rolled

back.

■ Adding an area to a dialog

It is possible that the extended run unit will no longer be extended, if:

– You add an area to one of the dialogs in an application thread (for example,
when the record is migrated into a different area).

and

– Any of the dialogs are recompiled.

A run unit that is no longer extended can have a serious impact on handling a

potential ROLLBACK or abend. If the run unit is no longer extended, then recovery
can be incomplete and can disrupt the integrity of the database. If such a change to
the subschema occurs, we recommend comparing the original application run unit
structure to the modified application run unit structure. For this comparison, use,

for example, ADS TRACE=CTL or Journal Reports.

■ Using default usage mode with the option FORCE

We recommend not to use the subschema FORCE option for ADS applications with
extended run units. Change the dialog code instead.

Several problems can occur if you use the subschema FORCE option for ADS

applications with extended run units. For example, if the dialog that needs a new
area is the recipient of an extended run unit, the FORCE area is not READIED.

Note: For more information on the limitations of using the FORCE option with ADS

dialogs, see the Area Statement section (in the Subschema Statements chapter) in
the CA IDMS Database Administration Guide.

Dialog Abort Information Screen

Chapter 4: CA ADS Runtime System 145

■ Runtime deadlocks

– If a user program issues a subschema BIND followed by any database activity,

the program can deadlock at runtime. To avoid this s ituation, a COMMIT
command should be coded before a LINK to a user program that issues a BIND
or FINISH command.

It may be more efficient to remove subschema BIND and FINISH activities from
the user program and allow the extended run unit to handle these functions. In
this case, the issuing dialog must pass SUBSCHEMA-CONTROL to the program.
Subschema records passed to the program must be bound only if the user

program provides its own subschema record buffers. When control returns to
CA ADS, the runtime system automatically rebinds the record buffers.

– If a dialog issues non-SQL DML and SQL DML against the same non-SQL defined
database at one time, deadlock of the run units is possible.

■ Extending SQL transactions

If a dialog l inks to a lower level dialog after beginning an SQL transaction (where the
lower level dialog also issues SQL commands), the developer must either:

1. Issue an SQL COMMIT WORK command before linking to the lower level dialog,

or

2. Compile the RCMs for the two dialogs into a single access module (AM).

Choice one results in two units of recoverable work; choice two results in a single
recoverable unit of work. When neither one or two are done, the SQL request of

the lower level dialog fails, because its RCM information is not found in the active
AM.

More information:

Control Commands (see page 325)

Dialog Abort Information Screen

When a dialog abends at runtime, the CA ADS runtime system can display a diagnostic

screen. The display of the diagnostic screen is enabled and disabled by using the
DIAGNOSTIC SCREEN clause of the DC/UCF system generation ADSO statement.

Note: For more information on the ADSO statement, see the CA IDMS System
Generation Guide.

Dialog Abort Information Screen

146 ADS Reference Guide

If the diagnostic screen is enabled when an abend occurs at runtime, error messages are
sent to the system log and the Dialog Abort Information screen is displayed. If the

diagnostic screen is not enabled when an abend occurs, error messages are sent to the
system log and the DC/UCF prompt ENTER NEXT TASK CODE is displayed with the
following message:

ERROR OCCURRED DURING PROCESSING. CA ADS DIALOG ABORTED.

The id of the above message is DC466019; the application developer can change the
message text by using IDD.

Sample Dialog Abort Information screen

 CA-ADS RELEASE nn.n *** DIALOG ABORT INFORMATION *** ABRT
DC173008 APPLICATION ABORTED. BAD IDMS STATUS RETURNED; STATUS=0306

 DATE....: yy.ddm TIME....: 15:12:29.08 TERMINAL....: LV81004

 ERROR OCCURRED IN DIALOG......: DIALOG1
 AT OFFSET......: 310
 IN PROCESS.....: DIALOG1-PREMAP VERSION: 1
 AT IDD SEQ NO. : 00000200

SEQUENCE
NUMBER: SOURCE :
00000100 IF FIRST-TIME
00000200 FIND CURRENT EMPLOYEE.
00000300 DISPLAY.

 HIT ENTER TO RETURN TO DC OR ENTER NEXT TASK CODE:

Field Descriptions

DATE

Specifies the date on which the dialog abended.

TIME

Specifies the time at which the dialog abended.

The date and time aid in locating the snap dump, if any, for the abend in the print
log fi le.

TERMINAL

Specifies the logical terminal at which the abend occurred.

DIALOG

Specifies the name of the aborted dialog.

OFFSET

Specifies the hexadecimal offset for the command that was executing when the
abend occurred. The offset is taken from the dialog's fixed dialog block (FDB).

Dialog Abort Information Screen

Chapter 4: CA ADS Runtime System 147

PROCESS

Specifies the name of the premap or response process containing the command

that caused the abend.

VERSION

Specifies the version number of the process containing the command that caused
the abend.

IDD SEQ NUMBER

Specifies the data dictionary sequence number of the source line containing the

command that caused the abend. The IDD sequence number is not displayed if the
dialog was compiled without diagnostic tables.

SEQUENCE NUMBER

Specifies the internal command numbers of the source line containing the
command that caused the abend and of the source lines immediately preceding and

following it.

Internal command numbers are not displayed if the dialog was compiled without
diagnostic tables.

Internal Commands for CA ADS Process Statements

Internal command numbers are assigned to all CA ADS process statements in addition to

the IDD sequence numbers. IDD numbers may overlap or repeat when code is included
from another data dictionary module.

Internal command numbers are assigned sequentially, regardless of the source of the

process code. When the abending process command is from an included module, IDD
sequence numbers should be used in conjunction with internal command numbers to
pinpoint the position of the command.

Internal Commands for SQL Statements

Internal commands are created by CA ADS to implement SQL statements. These

commands always have the sequence number of the line on which END-EXEC was
coded.

SOURCE

Displays the first 70 characters of text of the source line containing the command
that caused the abend and of the source lines immediately preceding and following

the command. Source lines are not displayed if the dialog was compiled without
diagnostic tables.

The three command lines are displayed only if the date on which the dialog was
compiled agrees with the date on which the process was last revised. This prevents

the display of source code that has been revised since the dialog was last compiled.
Note, however, that the display of process text other than that from which the
dialog was compiled could occur under the following circumstances:

Debugging a Dialog

148 ADS Reference Guide

■ During a single day, the following actions occur:

1. The process is revised.

2. The dialog is recompiled.

3. The process is revised again, but the dialog is not recompiled again.

In this case, the process source does not match the compiled process in the dialog

load module.

■ During a single run of the DC/UCF system, the following actions occur:

1. The dialog is recompiled by using the batch dialog compiler.

2. The dialog's program definition element (PDE) in the system program pool is

not updated. (The PDE can be updated by using the NEW COPY option of the
DCMT VARY PROGRAM command.)

3. The dialog is executed.

In this case, the process source matches the compiled process in the dialog load

module, but an old version of the dialog that remains in the DC/UCF pr ogram pool
is being executed.

SYSTEM MESSAGE AREA

Displays the informational and error messages returned by the CA ADS runtime

system.

HIT ENTER TO RETURN TO DC OR ENTER NEXT TASK CODE

Prompts the user for a DC/UCF task code.

If a dialog aborts during an online debugging session, a special version of the
diagnostic information screen is displayed.

More information:

CA ADS Dialog Compiler (ADSC) (see page 91)
CA ADS Dialog and Application Reporter (see page 583)

Debugging a Dialog

To debug a dialog, you can use the CA ADS trace facil ity or the CA IDMS online
debugger. Before using either facil ity, you must compile the dialog with a symbol table.

More information:

Debugging an CA ADS Dialog (see page 723)

Linking From CA ADS To CA OLQ

Chapter 4: CA ADS Runtime System 149

Linking From CA ADS To CA OLQ

A user-written CA ADS application compi led using the application compiler can link to
CA OLQ, pass syntax, and return to the application at the point where it was left. Linking
to CA OLQ and passing syntax is discussed below.

Linking to CA OLQ

To link to CA OLQ, perform the following steps:

1. Initialize the UNIVERSAL-COMMUNICATIONS-ELEMENT (UCE) version 2 record.

2. Issue an EXECUTE NEXT FUNCTION control command to initiate an ADSA program
function that l inks to program IDMSOLQS, passing the UCE in the program

parameter l ist.

Example

INITIALIZE(UNIVERSAL-COMMUNICATIONS-ELEMENT).

EXECUTE NEXT FUNCTION.

RETURN.

Passing Syntax to CA OLQ

To pass syntax to CA OLQ, perform the following steps:

1. Initialize the UNIVERSAL-COMMUNICATIONS-ELEMENT version 2 record.

2. Initialize an additional record to hold the CA OLQ syntax. The record must contain
only syntax and must not contain counters or any other values.

3. Move the syntax to the additional record.

4. Issue an EXECUTE NEXT FUNCTION control command to initiate an ADSA program
function that l inks to program IDMSOLQS, passing both the UCE and the syntax

record in the program parameter l ist.

Linking Built-In Functions With The Runtime System

150 ADS Reference Guide

Example

INITIALIZE(UNIVERSAL-COMMUNICATIONS-ELEMENT,SYNTAX-RECORD).

MOVE 'SIGNON SS=EMPSS01 ! SEL * FROM EMPLOYEE ! MEN DISPLAY;'

 TO SYNTAX-FIELD.

EXECUTE NEXT FUNCTION.

RETURN.

Note: The exclamation point (!) is the CA OLQ separator for stacked commands. The

semi-colon (;) is the required CA OLQ command terminator.

The command separator and terminator may differ from site to site, depending on the
character set during system generation.

Linking Built-In Functions With The Runtime System

All CA-supplied BIF modules are l inked with ADSOMAIN and all user-written BIF modules
can optionally be linked together as a new ADSOVCON module.

Note: Creating an ADSOVCON module is not required. CA ADS dynamically loads
user-written BIFs if they are not l inked with ADSOVCON.

ADSOVCON Module Creation

Optionally create an ADSOVCON module using the #BIFVCON macro to identify your
user-written BIF modules to be linked together. The following sample ADSOVCON
module indicates that the UDATE and UCHECK BIF modules are to be linked with

ADSOVCON.

#BIFVCON TYPE=INITIAL

#BIFVCON TYPE=ENTRY,PROGRAM=UDATE,EPNAME=UDATE

#BIFVCON TYPE=ENTRY,PROGRAM=UCHECK,EPNAME=UCHKEP1

#BIFVCON TYPE=FINAL

To create an ADSOVCON module, create a source member as described in the following
section and save it in your custom source library. Then assemble and link it into your

custom load library.

The following diagram shows the syntax for the #BIFVCON macro:

►►──────── #BIFVCON TYPE= ─┬─ INITIAL ─┬──────────────────────────────────►
 ├─ ENTRY ───┤
 └─ FINAL ───┘

 ►──────────────── ,PROGRAM=program-name ─────────────────────────────────►

 ►───────────────── ,EPNAME=entry-point-name ─────────────────────────────►◄

Managing Storage

Chapter 4: CA ADS Runtime System 151

#BIFVCON Macro Parameters

This section describes the parameters for for the #BIFVCON macro.

TYPE

Indicates the type of BIFVCON statement being generated.

INITIAL

Identifies the first BIFVCON statement in the program.

ENTRY

Identifies a BIFVCON statement defining a user-written BIF module.

FINAL

Identifies the last BIFVCON statement in the program.

PROGAM=program-name

Identifies the name of a user-written BIF module to be linked with ADSOVCON.
program-name must be the same as the program name associated with a built-in

function declared in your RHDCEVBF module.

This parameter is valid only if TYPE=ENTRY is coded.

EPNAME=entry-point-name

Identifies the name of the entry point of the user-written BIF module.
entry-point-name must be the name of the entry point in the program identified by
program-name.

This parameter is valid only if TYPE=ENTRY is coded.

Managing Storage

Various storage management techniques are available to system administrators at
DC/UCF sites. The following pages discuss techniques that specifically affect CA ADS
storage usage.

Note: For more information about storage management, see the CA IDMS System
Generation Guide.

Adjusting Record Compression

Record buffer blocks (RBBs) held for a dialog can be compressed during a

pseudo-converse. Record compression increases storage efficiency but causes increased
CPU util ization. This option is appropriate only at sites that need to maximize storage
usage.

Managing Storage

152 ADS Reference Guide

Record compression is only in effect when resources are fixed and the fast mode
threshold has not been exceeded.

Record compression can be enabled by using the system generation ADSO statement.

Note: For more information, see the CA IDMS System Generation Guide.

At runtime, the current record compression setting can be changed by using the DCMT
VARY ADSO command.

Note: For more information about this DCMT command, see the CA IDMS System Tasks

and Operator Commands Guide.

Calculating RBB Storage

Site administrators can direct the CA ADS runtime system to calculate the amount of
storage required for record buffer blocks (RBBs) instead of using the size specified in the

system generation ADSO statement. Calculated storage reduces the amount of wasted
space in the storage pool but slightly increases CPU usage. This option is a good choice
for storage-constrained systems.

Calculation of runtime RBB storage is enabled in the system generation ADSO
statement.

Writing Resources to Scratch Records

Writing resources to scratch records during a pseudo-converse removes the resources

from storage pools while the resources are not in use. This strategy is appropriate when
storage pool resources are tight.

The following strategies are available to site administrators:

■ Define a fast mode threshold. The fast mode threshold is the point at which the CA
ADS runtime system writes CA ADS record buffer blocks (RBBs) and statistics control

blocks to the scratch area (DDLDCSCR) across a pseudo-converse. If the total size of
the RBBs and statistics control blocks in all storage pools exceed the fast mode
threshold, the system writes the RBBs and statistics control blocks to scratch. To
define fast mode threshold, specify the threshold and also that resources are

relocatable in the system generation ADSO statement.

Resources must be fixed in order for the fast mode threshold to have any effect.
When resources are relocatable then RBBs always go to the scratch area.

Managing Storage

Chapter 4: CA ADS Runtime System 153

■ Define a relocatable threshold for one or more storage pools. The relocatable
threshold is the point at which the DC/UCF system writes relocatable storage to the

scratch area (DDLDCSCR) across a pseudo-converse.

When this option is in effect, CA ADS storage is always written to scratch across a
pseudo-converse.

Relocatable Resources

The following are relocatable resources:

■ CA ADS terminal block (OTB)

■ CA ADS terminal block extension (OTB ext)

■ HELP maps

■ Menu stack

■ Variable dialog blocks (VDBs)

Relocating storage makes more efficient use of the storage pool but increases I/O to the
scratch area. You should define a threshold so that the system relocates storage only
when the storage pool is heavily used.

System Generation Statement

Use the system generation ADSO statement to indicate whether resources are

relocatable. Use the RELOCATABLE THRESHOLD parameter of the system generation
SYSTEM statement to specify the relocatable threshold for storage pool zero. For
secondary storage pools, use the RELOCATABLE THRESHOLD parameter of the

corresponding system generation STORAGE POOL or XA STORAGE POOL statement.

Note: For more information about the ADSO and SYSTEM statements, see the CA IDMS
System Generation Guide.

Using XA Storage

Application development tools and CA ADS applications can be executed in XA storage
on any operating system that supports XA functionality. Record buffer blocks (RBBs)
and variable dialog blocks (VDBs) can be acquired from XA storage pools. The invoking
task for the application determines whether the runtime system can allocate RBBs and

VDBs for the entire application from XA storage pools.

Managing Storage

154 ADS Reference Guide

Considerations

If XA storage pools are used, the following rules apply:

■ If an application links to a 24-bit mode user program, the invoking task must have a
location of BELOW to insure that storage for the program is allocated from 24 -bit
storage pools. For example:

TASK APPL1 INVOKES ADSORUN1 LOCATION BELOW.

■ If an application links to 31-bit mode programs exclusively, the invoking task must
have a location of ANY to take advantage of XA storage. For example:

TASK APPL2 INVOKES ADSORUN1 LOCATION ANY.

■ Tasks invoked after the initial invoking task or after the return from a user program
must be defined with a location of ANY. For example:

– A task invoked after the initial invoking task:

TASK ADS2 INVOKES ADSOMAIN LOCATION ANY.

– A task invoked after the return from a user program:

TASK ADS2R INVOKES ADSOMAIN LOCATION ANY.

Sample Task Definitions

The following diagram shows the task definitions for two sample applications.

 APPL1 APPL2
 Location Location
 ┌──────────┐ mode: ┌──────────┐ mode:
 │ │ │ │
 │ Dialog │ 31-bit │ Dialog │ 31-bit
 │ │ │ │
 └──────────┘ └──────────┘

 ┌──────────┐ ┌──────────┐
 │ │ │ VS2 │
 │ COBOL │ 24-bit │ COBOL │ 31-bit
 │ program │ │ program │
 └──────────┘ └──────────┘

 Task definitions for these applications are:

 1. TASK APPL1 INVOKES ADSORUN1 LOCATION BELOW.
 2. TASK APPL2 INVOKES ADSORUN1 LOCATION ANY.

Chapter 5: Introduction to Process Language 155

Chapter 5: Introduction to Process
Language

This section contains the following topics:

Overview (see page 155)
Process Modules (see page 156)

Process Commands (see page 159)
Data Types (see page 161)

Overview

There are two types of modules that can be associated with a dialog using the CA ADS
dialog compiler:

■ Declaration module

■ Process module

Declaration Module

A declaration module is used under the SQL Option to declare cursors and to issue
global WHENEVER statements. The statements in a declaration module are not

executed. They are compiler directives used by the CA ADS dialog compiler at dialog
compilation.

Declaration modules al low you to store declarations you have specified as global to your

application.

Unlike the premap and response process modules, the declaration module cannot

contain executable CA ADS commands. This module can contain only DECLARE CURSOR
statements and WHENEVER directives.

A WHENEVER directive or DECLARE CURSOR statement is also valid in a premap or

response process, but the scope of such a statement is not global.

Note: For more information about the usage for WHENEVER and DECLARE CURSOR, see
the CA IDMS SQL Reference Guide. For further considerations regarding the declaration
module, see the CA IDMS SQL Programming Guide.

Since declaration modules do not contain executable code, they are not discussed in this
chapter.

Process Modules

156 ADS Reference Guide

Process Modules

In CA ADS, process modules are defined to handle dialog-specific processing, such as

data retrieval, data modifications, and data storage. Each process module consists of
one or more process commands and parameters that qualify the commands.

Data referenced by CA ADS process commands must be predefined in the data

dictionary.

Note: For more information on defining data, see the CA IDMS IDD Quick Reference
Guide. For more information on defining data in subschemas, see the CA IDMS Database
Administration Guide.

More information:

Data Types (see page 161)

Process Modules

A process module is a discrete dialog unit that performs the processing operations
required by a given dialog.

Creating Process Modules

CA ADS process modules are created and stored in the data dictionary by using IDD. The

IDD menu facil ity provides a series of menus used to define process modules to the data
dictionary.

Note: For more information on using the IDD menu facil ity in the CA ADS environment,

see the CA ADS User Guide.

The online IDD PROCESS statement can also be used.

Note: For more information on IDD PROCESS statement syntax, see the CA IDMS IDD
Quick Reference Guide.

Process Modules

Chapter 5: Introduction to Process Language 157

Adding Process Modules to Dialogs

A process module is added to a dialog as either a premap, a response process or a
declaration module. The process module is associated with a dialog by using the CA ADS
dialog compiler (ADSC) or the batch dialog compiler (ADSOBCOM). The module is

compiled when the dialog is compiled.

Note: For more information on using ADSC to associate process modules with dialogs,
see the CA ADS User Guide.

More information:

Application and Dialog Util ities (see page 621)

Executing Process Modules

Process modules are executed before or after a dialog's map is displayed on the
terminal screen (online applications) or are used to transfer input or output data (CA
ADS Batch):

■ A premap process module, which is executed before a map is used to transfer data

between variable storage and an online terminal (CA ADS) or fi les (CA ADS Batch).

A dialog can have a maximum of one premap process.

■ A response process module, which is performed after a map is displayed, based on

the user's selection of a response.

A dialog can have any number of response processes.

Process Modules

158 ADS Reference Guide

CA ADS Premap and Response Processes

The following diagram shows the execution sequence of CA ADS premap and response

process modules.

A premap process is executed before the dialog's map is displayed to the end user. A
response process, based on the user's selection, is executed.

CA ADS Batch Premap and Response Processes

The following diagram shows the execution sequence of CA ADS Batch premap and
response process modules. A premap process is executed at the beginning of the dialog

unless the dialog's entry point is its mapin operation. The process executes until it
issues a READ/WRITE TRANSACTION command. The response process executes after
the mapin operation and continues until it issues a READ/WRITE TRANSACTION

command.

Process Commands

Chapter 5: Introduction to Process Language 159

Process Commands

CA ADS premap and response process modules are written using process commands.
Process commands are COBOL-like statements.

The way that process commands are constructed and general coding considerations for
CA ADS process commands are discussed below.

Note: For more information about coding a declaration module, see the CA IDMS SQL
Programming Guide.

Constructing Commands

Command statements consist of commands and qualifying parameters .

Verbs

Specify the operation to perform.

For example, RETURN, COMPUTE, IF, DISPLAY, OBTAIN, and WRITE PRINTER are
commands.

Parameters

Qualify commands and specify additional operations to perform. Parameters can be:

■ Keywords, which are system-defined values. Each keyword must be specified as
shown in the documentation. (The required portion of each keyword is shown in

capital letters.)

For example, in the RETURN CLEAR statement, CLEAR is a keyword that qualifies the
operation of RETURN.

■ Variable terms, which show where user-defined values can be coded in process
command syntax.

For example, in the following command statement, dialog-name is a variable term:

RETURN TO dialog-name

Syntax and examples of variable terms are presented in the remaining chapters of
this volume. The following table summarizes the types of variable terms that can be
used.

Type of variable Purpose

Arithmetic expression Specifies a simple or compound arithmetic operation

Process Commands

160 ADS Reference Guide

Type of variable Purpose

Built-in function Specifies evaluation of a value according to a

predefined operation

Conditional expression Specifies test conditions

Constant Specifies a value to be used in command processing

Error expression Permits the return of error status codes to a dialog

Variable data field Supplies the name of a user- or system-supplied data
field for use in command processing

■ A combination of keywords and/or variable terms.

Coding Considerations

Process commands are coded by using syntax specific to each command. The following
general coding considerations apply to command statements:

■ A command statement can be coded in any column and continue through column

72.

■ A statement can be coded on one or more lines. The following considerations apply:

– No continuation character is requi red.

– More than one command can be coded on a single l ine, with the exception of

the INCLUDE command.

– Extend strings to the next l ine by coding up to and including column 72 of one
line, and continuing in column 1 of the next l ine.

■ The command must always appear first, followed by command parameters, if any.

■ Parameters must be separated from each other and from the command by one or
more blanks or commas.

■ Each statement must be terminated with a period.

■ Blank lines can be used to improve readability.

■ Commas and blanks can be inserted anywhere between command parameters to

improve readability, but cannot be used as a null place holder in a l ist in a
command, such as:

wrong ► LINK TO PROGRAM XYZ USING (REC1,,REC2)

wrong ► INITIALIZE RECORDS (REC1,,REC2).

Commas and blanks cannot be used in a built-in function.

Data Types

Chapter 5: Introduction to Process Language 161

■ Comments in CA ADS statements are specified by using an exclamation point
followed by the comment text. The following considerations apply:

– All characters between the exclamation point and the end of the line are
considered part of the comment.

– A comment can be terminated before the end of the line by using a second

exclamation point. All characters following a second exclamation point are
considered to be part of a command.

■ Comments within SQL statements are specified by using two hyphens (--) at the
beginning of the comment.

All characters between the hyphens and the end of the line are considered part of

the comment.

EXEC SQL.

SELECT * FROM PROD.EMPLOYEE WHERE EMP_ID > 5555;

--Selecting employees having consultant ids

END-EXEC.

■ A statement can include a quoted string of up to 255 characters.

■ Quotation marks appearing within a quoted string must be coded as two
consecutive single quotation marks.

Data Types

A data type is the internal representation of data. Data referenced by CA ADS process
statements must be predefined in the data dictionary using IDD alone or IDD and the
DDL compiler. The data types supported by CA ADS are described below. Examples of

each data type are outlined later in this chapter.

Note: CA ADS does not support edited data numeric fields. Therefore, PICTURE clauses
on elements in records used in CA ADS dialogs cannot include edit characters such as $,
Z, period, comma, or +.

For more information about the correlation between CA ADS data types and SQL data
types, see the CA IDMS SQL Reference Guide and the CA IDMS SQL Programming Guide.

Binary

Binary data fields are 1- to 18-digit signed integer data fields. The left-most bit in a
binary field is zero for a positive integer and one for a negative integer. The remainder

of the binary field contains the numeric value. A negative value is stored in twos
complement form.

Data Types

162 ADS Reference Guide

The following table describes the characteristics of binary data fields and shows how
each type of binary field is defined in the data dictionary.

Binary Field Size Range Data dictionary definition

Halfword 2 bytes -2
15

 to 2
15

-1 PICTURE S9(n) USAGE IS

COMPUTATIONAL

(n is an integer ranging from 1 to 4)

Fullword 4 bytes -2
31

 to 2
31

-1 PICTURE S9(n) USAGE IS

COMPUTATIONAL

(n is an integer ranging from 5 to 9)

Doubleword 8 bytes -2
63

 to 2
63

-1 PICTURE S9(n) USAGE IS

COMPUTATIONAL

(n is an integer ranging from 10 to 18)

EBCDIC

EBCDIC data fields are data fields containing any value in the EBCDIC collating sequence
(hexadecimal '00' through 'FF').

The following table describes the characteristics of EBCDIC data field and shows how it is
defined in the data dictionary.

Size Maximum length Data dictionary definition

1 byte per
character

32,767 bytes PICTURE X USAGE IS

DISPLAY

Floating Point

A floating point data field is a numeric data field whose value is expressed as a mantissa,
which represents the number, and an exponent (characteristic), which determines the
actual decimal position of the number. The value of a floating point data field is the
product of the mantissa, and ten raised to the power of the characteristic. A 1 - to

16-digit mantissa can be used.

Data Types

Chapter 5: Introduction to Process Language 163

The following table describes the characteristics of floating point data fields and shows
how each field is defined in the data dictionary.

Data Field Size Exponent
range

Data dictionary definition

Internal short1 4 bytes
2
 -64 to +63 USAGE IS

COMPUTATIONAL-1

(No picture clause)

Internal long1 8 bytes
2
 -64 to +63 USAGE IS

COMPUTATIONAL-2

(No picture clause)

Display3 1 byte for
each

character

-64 to +63 PICTURE
&plusmin.9V99E&plusmin.99

USAGE IS DISPLAY

Notes:

■ 1 To display data field values on a map, assign them to a floating point display data

field, or, if small enough, to a decimal or binary field.

■ 2 The left-most byte contains the sign of the mantissa and the characteristic. The
last 3 or 7 bytes contain the binary representation of the mantissa. Either 7 or 17
decimal digits are allowed.

■ 3 Display floating point data fields are in a displayable format. When used in
calculations, display floating point fields are converted to equivalent internal
floating point values.

Group

Group data fields, including record names, contain subordinate data fields. A group data

field references the storage of all subordinate data fields without consideration of their
data types. A group data field has no PICTURE or USAGE clauses.

Data Types

164 ADS Reference Guide

Multibit Binary

Multibit data fields are binary data fields. At runtime, the data fields contain either a 0

or 1 for each character.

The following table describes the characteristics of a multibit binary field and shows
how the field is defined in the data dictionary.

Data field Size Exponent
range

Data dictionary definition

Multibit

binary

1 bit per

character

1- to 32-

characters

PICTURE X

USAGE IS BIT

Packed Decimal

Packed decimal numeric data fields occupy a half byte of storage per digit. The sign of
the number (hexadecimal C, for positive, D for negative, and F for no sign) is stored in

the four low-order bits of the rightmost byte. S is used only when the field i s signed.

If a packed decimal field is defined with an even number of digits, the field is considered
to have one extra digit to the left of the decimal point. For example, a packed decimal
field with a picture of 9(4)V99 is considered to have a picture of 9(5)V99.

A packed decimal field with a picture of 9(4)V99 or S9(4)V99 occupies a half byte for the
sign and a half byte for each digit, totaling 3.5 bytes. Four bytes are reserved for this

field, adding an extra digit to the left of the decimal point.

The following table describes the characteristics of a packed decimal data field and
shows how the field is defined in the data dictionary.

Data field Size Range Data dictionary definition

Packed
decimal

1/2 byte per
digit

1 to 18
digits

PICTURE S9V99

USAGE IS COMPUTATIONAL-3

Zoned Decimal

Zoned decimal numeric data fields occupy one byte of storage per digit. The sign of the
number (hexadecimal C for positive, D for negative, F for unsigned positive) is stored in
the four high-order bits of the rightmost digit. S is used only when the field is signed.

Data Types

Chapter 5: Introduction to Process Language 165

The following table describes the characteristics of a zoned decimal data field and how
the field is defined in the data dictionary.

Data field Size Range Data dictionary definition

Zoned

decimal

1 byte per

digit

1 to 18 digits PICTURE S9V99

USAGE IS DISPLAY

Examples of Data Types

The following table i l lustrates the definition, use, and internal representation of the
different data types.

Type Description
1
 Command

Group

EMPLOYEE ← Group item

EMP-ID 9(4).

EMP-NAME

PIC X(10).

MOVE 'abcde' TO EMPLOYEE.

Internal

representation:
2

EBCDIC

FIELD-1

PIC X(10).

MOVE 'abcde' TO EMPLOYEE.

Internal

representation:

Zoned decimal

AMT-1

PIC 9(4).

MOVE 4505 TO AMT-1.

Internal

representation:

AMT-1

PIC S9(4).

MOVE 4505 TO AMT-1.

Internal

representation:

Packed decimal

AMT-1 PIC 9(4)

USAGE COMP-3.

MOVE 4505 TO AMT-1.

Internal

representation:

Data Types

166 ADS Reference Guide

Type Description
1
 Command

AMT-1 PIC S9(4)

USAGE COMP-3.

MOVE 4505 TO AMT-1.

Internal

representation:

Binary

AMT-1 PIC S9(8)

USAGE COMP.

MOVE 4505 TO AMT-1.

Internal

representation:

AMT-1 PIC S9(8)

USAGE COMP.

MOVE -4505 TO AMT-1.

Internal

representation:

Mulitibit binary

FIELD-1

PIC X(10)

USAGE BIT.

MOVE B'10011100' TO FIELD-1.

Internal

representation:

Floating point

AMT-1

USAGE COMP-1.

(Internal short)

MOVE -45.05E02 TO AMT-1.

(Value will be stored as -4505E04)

Internal

representation:

AMT-1

PIC S9.9999 E-99.

MOVE -45.05 E 02 TO AMT-1.

Internal

representation:

Note:

1
 If no USAGE clause is provided, the default usage is DISPLAY.

2
 A blank space = a blank (X'40') in internal representations.

Data Types

Chapter 5: Introduction to Process Language 167

Conversion Between Data Types

CA ADS automatically performs data type conversion in the following cases:

■ In an assignment command, conversion is performed if the target field is a different
data type than the source field.

■ In an arithmetic command, conversion is performed if the target field is a different
data type than the result of the command.

■ In an arithmetic expression, all operands are converted to signed packed decimal
fields or, if required, to internal floating point fields before the arithmetic operation
is performed.

■ In any command in which numeric literals are used, fixed point numeric l iterals are
stored internally as packed decimal fields, and floating point numeric l iterals are
stored internally as internal short or long floating point fields.

Data Type Conversions

The following table shows the permissible data type conversions in arithmetic and

assignment commands and in arithmetic expressions. Source data types are presented
down the left-hand side. Target data types are presented across the top. Permissible
conversions are indicated by a YES in the box formed by the intersection of the
applicable source and target data types.

SOURCE TARGET

Group EBCDIC Binary
*

Decimal
**

Multibit
binary

Internal
float pt.

Display
float pt.

Group YES
1
 YES

1
 YES

2
 YES

2
 YES

3
 YES

2
 NO

EBCDIC YES
1
 YES

1
 YES

2
 YES

2
 YES

3
 YES

2
 NO

Binary
*
 YES

1
 YES

4
 YES YES YES

5
 YES NO

Decimal
**

 YES
1
 YES

4
 YES YES YES

5
 YES YES

Multibit
binary

YES
6
 YES6 YES

7
 YES

7
 YES

10
 YES

7
 NO

Internal
float pt.

YES
1
 YES

9
 YES YES YES

5
 YES YES

8

Display
float pt.

YES
1
 YES

1
 YES YES NO YES YES

Data Types

168 ADS Reference Guide

Notes:

*
 Binary includes halfword, fullword, and doubleword binary.

**
Decimal includes zoned and packed decimal.

 Internal floating point includes internal short and long floating point.

1
Source moved to target without conversion. Target is blank-fi lled or truncated on

right, if necessary.

2
Number begins at leftmost numeric digit and includes all numeric digits up to the first

nonnumeric character (or end of data field). A negative sign can immediately precede
the number. A decimal point can immediately precede or be embedded in the number.
Embedded commas are ignored.

3
Bits in source moved to bits in target without conversion. Target is binary zero fi l led or

truncated on right, if necessary.

4
If CA ADS moves are in effect, decimal portion and leading zeros are dropped, a

negative sign, if any, is placed in front of the number, and the result is left justifi ed in
the target field, with leading blanks.

5
 If COBOL moves are in effect, the decimal portion (without the decimal point) and

leading zeros are maintained, the negative sign if any, is dropped, and the result is left
justified in the target, with blank fi l l ing or truncation on right, if necessary.

6
Decimal component of the number is dropped, forced positive, and converted to a

binary fullword. Bits are moved left to right. Target is binary, zero fi l led, or truncated on

right, if necessary.

7
Each bit value 0 or 1 is converted to the character 0 or 1, as appropriate. Target is

blank fi l led or truncated on right, if necessary.

8
Source bits are right justified in a fullword. The resulting fullword value is forced

positive by moving 0 to the leftmost bit, and is moved to the target with any required
data conversion.

9
The maximum output length is 23 bytes (mantissa sign, 17-digit mantissa, decimal

point, character E, characteristic sign, and 2-digit characteristic). The minimum output
length is 6 bytes (mantissa sign, 1-digit mantissa, character E, characteristic sign, and

2-digit characteristic).

10
 The mantissa is converted to zoned decimal format and moved to the target. The

negative sign and decimal point, if any, are dropped. The characteristic i s not moved.

Target is blank fi l led or truncated on right, if necessary.

11
 Target is binary zero fi l led or truncated on right, if necessary.

Data Types

Chapter 5: Introduction to Process Language 169

More information:

Options and Directives Screen (see page 101)

Chapter 6: Arithmetic Expressions 171

Chapter 6: Arithmetic Expressions

This section contains the following topics:

Overview (see page 171)
Syntax (see page 171)
Evaluation Of Arithmetic Expressions (see page 173)

Coding Considerations (see page 174)

Overview

An arithmetic expression is a variable term that can be a simple or compound arithmetic
operation. An arithmetic expression can be used as a variable wherever the command

syntax specifies arithmetic-expression.

The elements allowed in an arithmetic expression are summarized in the table below.
Arithmetic expressions are composed of operands, binary operations, and unary
operations. The elements of each entity are l isted below.

Arithmetic Expression Elements

Operands Binary operators Unary operators

Variable data fields Addition [+] Plus [+]

Numeric constants Subtraction [-] Minus [-]

Built-in functions Multiplication [*]

 Division [/]

Considerations

■ Any number of parentheses can be included in the expression to indicate order of
evaluation.

■ Parentheses can be nested.

Syntax

Parameters

–

The unary minus operator. It reverses the sign of the operand that follows it.

Syntax

172 ADS Reference Guide

arithmetic-function

For a l ist of arithmetic built-in functions, see Built-in Functions (see page 175).

variable

A user-defined variable data field.

The named variable must contain a number and can be any of the following:

■ A field on a map

■ A numeric variable

■ An element in a group

■ An element in an array

numeric-constant

A number.

system-supplied-data-field-name

See "System-supplied data field names" in Variable Data Fields (see page 285)

arithmetic-expression

An arithmetic expression. Use parentheses to control the order in which operations
are to be performed.

+ – * /

The arithmetic operators:

Operator What it does

+ Addition

– Subtraction

* Multiplication

/ Division

Syntax: Arithmetic-Expression

 ┌─ + ─┐
 ├─ - ─┤
 ├─ * ─┤
 ┌────────────────────┴─ / ─┴───────────────────────┐
►►───▼──┬─────┬───┬─ arithmetic-function ─────────────┬─┴─────────────────────►◄
 └─ - ─┘ ├─ variable-name ───────────────────┤
 ├─ numeric-constant ────────────────┤
 ├─ system-supplied-data-field-name ─┤
 └─ arithmetic-expression ───────────┘

Evaluation Of Arithmetic Expressions

Chapter 6: Arithmetic Expressions 173

Evaluation Of Arithmetic Expressions

Evaluation of Arithmetic Expressions

Arithmetic expressions are evaluated according to the following rules:

■ Expressions within parentheses are evaluated first. Within nested parentheses,
evaluation proceeds from the innermost to the outermost set of parentheses.

■ If the order of evaluation of an expression or of an embedded expression is not
specified explicitly by parentheses, the following order of evaluation is implied:

1. Unary plus, unary minus, and built-in functions, from left to right

2. Multiplication and division, from left to right

3. Addition and subtraction, from left to right

Variable data fields specified in an arithmetic expression are not changed during the
evaluation of the expression. All intermediate results in an expression are stored in
separate internal data fields.

Example

The following example il lustrates the order of evaluation of arithmetic expressions in

process commands:

MOVE -(4 - VALUE1 / (ABS(VALUE2) + -5 / VALUE3) + VALUE4)

 TO RESULT.

The expression is evaluated in the following order:

1. The absolute value of VALUE2 is calculated.

2. Unary minus is applied to 5.

3. The result of step 2 is divided by VALUE3.

4. The result of step 3 is added to the result of step 1.

5. VALUE1 is divided by the result of step 4.

6. The result of step 5 is subtracted from 4.

7. The result of step 6 is added to VALUE4.

8. Unary minus is applied to the result of step 7.

The result of the expression is moved to RESULT.

Coding Considerations

174 ADS Reference Guide

Evaluation of Arithmetic Expressions

Arithmetic expressions are evaluated according to the following rules:

■ Expressions within parentheses are evaluated first. Within nested parentheses,
evaluation proceeds from the innermost to the outermost set of parentheses.

■ If the order of evaluation of an expression or of an embedded expression is not
specified explicitly by parentheses, the following order of evaluation is implied:

1. Unary plus, unary minus, and built-in functions, from left to right

2. Multiplication and division, from left to right

3. Addition and subtraction, from left to right

Coding Considerations

The following considerations apply to coding arithmetic expressions:

■ An arithmetic expression must begin with a left parenthesis, a unary operator, or an
operand.

■ An arithmetic expression must end with a right parenthesis or an operand.

■ An arithmetic expression does not require a binary operation.

■ Each left parenthesis must be followed later in the expression by a corresponding
right parenthesis.

■ Operands and binary operators must be separated by at least one space from the
operand or operator that follows. Parentheses do not require surrounding spaces.

■ Operands can be followed by a right parenthesis, any binary operator, or can be the
end of the expression.

■ Any binary operator can be followed by an operand, a unary operator, or a left

parenthesis.

■ A unary operator can be followed by an operand or a left parenthesis.

■ A left parenthesis can be followed by an operand, a unary operator, or another left
parenthesis.

■ A right parenthesis can be followed by any binary operator, another right

parenthesis, or can be the end of the expression.

Chapter 7: Built-in Functions 175

Chapter 7: Built-in Functions

Coding Considerations

176 ADS Reference Guide

This section contains the following topics:

Overview (see page 177)

User-Defined Built-In Functions (see page 179)
System-Supplied Functions (see page 179)
ABSOLUTE-VALUE (see page 185)

ARC COSINE (see page 186)
ARC SINE (see page 187)
ARC TANGENT (see page 188)
CONCATENATE (see page 189)

COSINE (see page 190)
DATECHG (see page 191)
DATEDIF (see page 194)
DATEEXT (see page 196)

DATEINT (see page 196)
DATEOFF (see page 197)
DATETIMX (see page 199)

DISPDT (see page 199)
DTINT (see page 200)
EXTRACT (see page 201)
FIX (see page 202)

GOODDATE (see page 203)
GOODTRAILING (see page 204)
INITCAP (see page 205)

INSERT (see page 206)
INVERT-SIGN (see page 207)
LEFT-JUSTIFY (see page 208)
LIKE (see page 209)

LOGARITHM (see page 210)
MODULO (see page 211)
NEXT-INT-EQHI (see page 212)

NEXT-INT-EQLO (see page 213)
NUMERIC (see page 214)
RANDOM-NUMBER (see page 216)
REPLACE (see page 218)

RIGHT-JUSTIFY (see page 219)
SIGN-VALUE (see page 220)
SINE (see page 220)
SOCKET (see page 221)

SQUARE-ROOT (see page 223)
STRING-INDEX (see page 223)
STRING-LENGTH (see page 224)

STRING-REPEAT (see page 225)
SUBSTRING (see page 226)
TANGENT (see page 228)
TIMEEXT (see page 229)

TIMEINT (see page 230)
TODAY (see page 231)
TOLOWER (see page 232)

Overview

Chapter 7: Built-in Functions 177

TOMORROW (see page 233)
TOUPPER (see page 234)

TRAILING-TO-ZONED (see page 235)
TRANSLATE (see page 236)
VERIFY (see page 237)

WEEKDAY (see page 238)
WORDCAP (see page 240)
YESTERDAY (see page 241)
ZONED-TO-TRAILING (see page 242)

Overview

Built-in functions evaluate expressions according to predefined operations and return
results that can be used in command processing. Built-in functions use a specified list of
parameters, which are not changed by the execution of the function.

A built-in function can be used wherever the syntax for a variable expression specifies
an arithmetic expression, the name of a user-defined data field, a user supplied numeric
constant, a l iteral in quotes, or a string-variable.

Built-In Functions Supported

CA ADS supports the following types of built-in functions:

■ System-supplied functions that perform predefined arithmetic, date, string, and
trigonometric operations. The built-in function names given in this manual are
default invocation names that can be changed.

■ User-defined functions that perform site-specific functions defined by the

installation.

User-defined and system-defined functions are described below, after a discussion of
general considerations that apply to both types of built-in functions.

More information:

Changing Invocation Names (see page 713)
Creating User-Defined Built-In Functions (see page 714)

Overview

178 ADS Reference Guide

Invocation Names

A built-in function is invoked by means of a unique invocation name, such as
CONCATENATE, CONCAT, or CON for the concatenate function.

Note: Built-in function names are keywords. If an invocation name is the same name as

a data field known to a dialog, an error occurs because CA ADS interprets the function
invocation name as a subscripted reference to the data field.

An invocation name can be changed by modifying the internal table of invocation names
(the master function table).

More information:

Changing Invocation Names (see page 713)

Built-In Function Values

Values are supplied to a built-in function according to Parameters that are coded along
with the function's invocation name. Parameters can be either string values or numeric
values, as follows:

■ A string value should be coded as an EBCDIC variable data field, a nonnumeric
l iteral, or a built-in function that returns a string value. A value in a string built-in
function cannot be zero in length and cannot be fi l led with only spaces.

■ A numeric value should be coded as an arithmetic expression, a numeric variable
data field, a numeric l iteral, or a built-in function that returns a numeric value.

Some built-in function parameters have restrictions on the values they can contain. If an
invalid value is specified at runtime, the dialog aborts. For example, the value specified
in a square root function must be positive.

If a parameter is specified with a different data type than expected, CA ADS attempts to
make the appropriate conversion at runtime. The dialog aborts if the conversion cannot
be made.

More information:

Conversion Between Data Types (see page 167)

User-Defined Built-In Functions

Chapter 7: Built-in Functions 179

Coding Parameters

Parameters are coded within parentheses and separated by commas.

Each parameter must be coded in a specific position relative to the other parameters.
When an optional parameter is not included in a parameter l ist, it must be replaced by

the @ character unless no further parameters follow the optional parameter.

User-Defined Built-In Functions

User-defined built-in functions perform functions that are defined by individual sites.

More information:

Built-in Function Support (see page 681)

System-Supplied Functions

CA ADS system-supplied functions perform predefined arithmetic, date, string, and
trigonometric functions. System-supplied functions are summarized in the tables that

follow. Detailed discussions for each particular function appear later in this chapter,
arranged alphabetically by function name.

Arithmetic Functions

Arithmetic built-in functions (with the exception of NUMERIC) perform arithmetic

operations on numeric values and return numeric values as results.

Function Keyword What it does

Absolute value ABSOLUTE-VALUE Returns the absolute value of a
numeric value

Logarithm (base 10) LOG-BASE-10 Returns the common logarithm of a
numeric value

Logarithm (base E) LOG-BASE-E Returns the natural logarithm of a
numeric value

Modulo MODULO Returns the modulus (remainder) of

one specified numeric value divided
by another

System-Supplied Functions

180 ADS Reference Guide

Function Keyword What it does

Next integer equal or

higher

NEXT-INT-EQHI Returns the smallest integer that is

equal to or greater than a specified
numeric value

Next integer equal or

lower

NEXT-INT-EQLO Returns the largest integer that is

equal to or lower than a specified
numeric value

Numeric NUMERIC Returns TRUE or FALSE to indicate
whether a field is numeric

Random number RANDOM-NUMBER Returns a pseudo-random number
based on a seed numeric value

Sign inversion INVERT-SIGN Returns the value of a numeric value
multiplied by -1

Sign value SIGN-VALUE Returns a +1, 0, or -1, depending on
whether a numeric value is positive,
zero, or negative

Square root SQUARE-ROOT Returns the square root of a
numeric value

Date Functions

Date built-in functions perform date processing in eight formats:

■ Gregorian— The first format is yymmdd, where yy represents a year, mm a month,
and dd a day.

The second Gregorian format is yyyymmdd, where yyyy represents a year in any
century, mm a month, and dd a day.

■ Calendar— The first format is mmddyy, where yy represents a year, mm a month,
and dd a day.

The second Calendar format is mmddyyyy, where yyyy represents a year in any
century, mm a month, and dd a day.

■ European— The first format is ddmmyy, where yy represents a year, mm a month,
and dd a day.

The second European format is ddmmyyyy, where yyyy represents a year in any

century, mm a month, and dd a day.

■ Julian— The first format is yyddd, where ddd is a day in the year from 1 to 365 (366
for leap years).

The second Julian format is yyyyddd, where yyyy represents a year in any century,
and ddd is a day in the year from 1 to 365 (366 for leap years).

System-Supplied Functions

Chapter 7: Built-in Functions 181

Function Keyword What it does

Date change DATECHG Returns Gregorian, calendar, European, or
Julian date conversions

Date difference DATEDIF Returns the number of days between two

specified dates

Date offset DATEOFF Returns the date resulting from adding a
specified number of days to a date

Good date GOODDATE Returns TRUE or FALSE to indicate whether a

date is valid for the date type

Today's date TODAY Returns today's date in the specified format

Tomorrow's date TOMORROW Returns tomorrow's date in the specified
format

Weekday WEEKDAY Returns the weekday of a specified date

Yesterday's date YESTERDAY Returns yesterday's date in the specified
format

Date-Time Stamp Functions

Date-time stamp built-in functions convert external date-time stamps to internal
date-time stamps. Conversely, internal date-time stamps can be converted to external

date-time stamps. The date-time stamp built-in functions call the date-time functions of
IDMSIN01.

Note: For more information about IDMSIN01, see the CA IDMS Callable Services Guide.

In the following table, 8-byte binary fields are defined as PIC 9(16) COMPUTATIONAL
fields, while display fields are defined with PIC X definitions.

Note: For more information about the date-time stamp formats used by the date-time
stamp functions, see the chapter "Representation of Date/Time Values" in the CA IDMS
SQL Reference Guide.

Function Keyword What it does

External Date DATEEXT Returns a 10-byte external date stamp as an
8-byte internal binary date stamp

Internal Date DATEINT Returns an 8-byte internal binary date stamp
as a displayable 10-byte date stamp

System-Supplied Functions

182 ADS Reference Guide

Function Keyword What it does

Display Date Time DISPDT Returns the current date-time stamp as a

26-byte displayable date-time stamp

External Date-Time DATETIMX Returns a 26-byte external date-time stamp
as an 8-byte internal binary date-time stamp

Internal Date-Time DTINT Returns an 8-byte internal date-time stamp
as a 26-byte displayable date-time stamp

External Time TIMEEXT Returns an 8-byte displayable time stamp as
an 8-byte binary time stamp

Internal Time TIMEINT Returns an 8-byte internal time stamp as a
displayable 8-byte time stamp

String Functions

String built-in functions perform operations on string values and return either string or
numeric values.

Function Keyword What it does

Concatenate CONCATENATE Returns the concatenation of a
specified list of string values

Extract EXTRACT Returns the string that results from

removing leading and trail ing spaces
from a string value

Fixed-length string FIX Converts a string to a fixed-length

character variable

Index STRING-INDEX Returns the starting position of a
specified string within a string value

Initial cap INITCAP Capitalizes the first letter of a string

Insert INSERT Returns the string that results from
inserting a specified string into a string
value starting at a specified position

Left justify LEFT-JUSTIFY Returns the string that results from left
justifying a string value

Length STRING-LENGTH Returns the length of a string value

Like LIKE Returns TRUE or FALSE to indicate

whether a source string matches a
given pattern string

System-Supplied Functions

Chapter 7: Built-in Functions 183

Function Keyword What it does

Lowercase TOLOWER Converts a string to lowercase

characters

Repeat STRING-REPEAT Returns the string that results from
repeating a string value a specified

number of times

Replace REPLACE Returns a string that results from
replacing, in a string value, each
occurrence of a specified string by

another specified string

Right justify RIGHT-JUSTIFY Returns the string that results from
right justifying a string value

Substring SUBSTRING Returns the substring of a string value,

starting from a specified position, and
continuing for a specified length

Uppercase TOUPPER Converts a string to uppercase

characters

Translate TRANSLATE Returns the string that results from
translating characters in a string value
that also occur in a selection string, to

corresponding characters in a
substitution string

Verify VERIFY Returns the position of the first

character in a string value that does not
occur in a second specified string

Word cap WORDCAP Capitalizes the first character in each
word in a string

Trailing-Sign Functions

Trailing-sign built-in functions support conversion between trail ing sign and zoned

decimal representations.

Function Keyword What it does

Good trail ing sign GOODTRAILING Returns TRUE or FALSE to indicate

whether a target field is a valid
trail ing sign numeric field

Trail ing to zoned TRAILING-TO-ZONED Returns a zoned numeric from a
COBOL trail ing sign numeric

System-Supplied Functions

184 ADS Reference Guide

Function Keyword What it does

Zoned to trail ing ZONED-TO-TRAILING Returns a COBOL trail ing sign

numeric from a zoned numeric

Trigonometric Functions

Trigonometric built-in functions perform trigonometric operations on numeric values
that represent angles in either degrees or radians, and return numeric values that are
the results of the operations.

Function Keyword What it does

Arc cosine (degrees) ARCCOSDEG Returns the arc cosine of a
numeric value that represents an
angle in degrees

Arc cosine (radians) ARCCOSRAD Returns the arc cosine of a
numeric value that represents an
angle in radians

Arc sine (degrees) ARCSINDEG Returns the arc sine of a numeric
value that represents an angle in
degrees

Arc sine (radians) ARCSINRAD Returns the arc sine of a numeric

value that represents an angle in
radians

Arc tangent (degrees) ARCTANDEG Returns the arc tangent of a

numeric value that represents an
angle in degrees

Arc tangent (radians) ARCTANRAD Returns the arc tangent of a
numeric value that represents an

angle in radians

Cosine (degrees) COSINE-DEGREES Returns the cosine of a numeric
value that represents an angle in

degrees

Cosine (radians) COSINE-RADIANS Returns the cosine of a numeric
value that represents an angle in
radians

Sine (degrees) SINE-DEGREES Returns the sine of a numeric
value that represents an angle in
degrees

ABSOLUTE-VALUE

Chapter 7: Built-in Functions 185

Function Keyword What it does

Sine (radians) SINE-RADIANS Returns the sine of a numeric

value that represents an angle in
radians

Tangent (degrees) TANGENT-DEGREES Returns the tangent of a numeric

value that represents an angle in
degrees

Tangent (radians) TANGENT-RADIANS Returns the tangent of a numeric
value that represents an angle in

radians

ABSOLUTE-VALUE

Purpose

Returns the absolute value of a numeric value.

Syntax

►►─┬─ ABSOLUTE-VALUE ─┬─ (value) ───►◄
 └─ ABS-val ────────┘

Parameters

value

Specifies the numeric value whose absolute value is calculated.

Value can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric l iteral

Example

In the following example, the absolute value function is used to specify the absolute
value of a calculated length in a substring function:

Initial values:

 EMP-NAME: 'JOE SMITH'

 WK-LENGTH: -3

Statement:

 MOVE SUB(EMP-NAME,1,ABS(WK-LENGTH)) TO WK-FNAME.

Returned value from ABS function: 3

Returned string from SUB function: 'JOE'

ARC COSINE

186 ADS Reference Guide

ARC COSINE

Purpose

Returns the arc cosine of a numeric value that represents an angle in either degrees or
radians.

Syntax

Arc cosine (degrees):

►►─┬─ ARCCOSINE-DEGREES ─┬─ (value) ──►◄
 ├─ ARCCOSDEG ─────────┤
 └─ ACOSD ─────────────┘

Arc cosine (radians):

►►─┬─ ARCCOSINE-RADIANS ─┬─ (value) ──►◄
 ├─ ARCCOSRAD ─────────┤
 └─ ACOSR ─────────────┘

Parameters

ARCCOSINE-DEGREES

Returns an arc cosine value in degrees.

ARCCOSINE-RADIANS

Returns an arc cosine value in radians.

value

Specifies the numeric value representing the angle, in degrees or radians, whose arc

cosine is calculated.

Value can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric l iteral

Value must be a value ranging from -1 to +1.

Example

In the following example, the arc cosine (degrees) of -0.5 is calculated and moved to

WK-RESULT (PIC S999V9999):

MOVE ACOSD(-0.5) TO WK-RESULT.

Returned value: 120.

ARC SINE

Chapter 7: Built-in Functions 187

ARC SINE

Purpose

Returns the arc sine of a numeric value that represents an a ngle in either degrees or
radians.

Syntax

Arc sine (degrees):

►►─┬─ ARCSINE-DEGREES ─┬─ (value) ──►◄
 ├─ ARCSINDEG ───────┤
 └─ ASIND ───────────┘

Arc sine (radians):

►►─┬─ ARCSINE-RADIANS ─┬─ (value) ──►◄
 ├─ ARCSINRAD ───────┤
 └─ ASINR ───────────┘

Parameters

ARCSINE-DEGREES

Returns an arc sine value in degrees.

ARCSINE-RADIANS

Returns an arc sine value in radians.

value

Specifies the numeric value representing the angle, in degrees or radians, whose arc

sine is calculated.

Value can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric l iteral

Value must be a value ranging from -1 to +1.

Example

In the following example, the arc sine (degrees) of 0.8660 is calculated and moved to

WK-RESULT (PIC S999V9999):

MOVE ASIND(0.8660) TO WK-RESULT.

Return value: 59.9971

ARC TANGENT

188 ADS Reference Guide

ARC TANGENT

Purpose

Returns the arc tangent of a numeric value that represents an angle in either degrees or
radians.

Syntax

Arc tangent (degrees):

►►─┬─ ARCTAN-DEGREES ─┬─ (value) ───►◄
 ├─ ARCTANDEG ──────┤
 └─ ATAND ──────────┘

Arc tangent (radians):

►►─┬─ ARCTAN-RADIANS ─┬─ (value) ───►◄
 ├─ ARCTANRAD ──────┤
 └─ ATANR ──────────┘

Parameters

ARCTAN-DEGREES

Returns an arc tangent value in degrees.

ARCTAN-RADIANS

Returns an arc tangent value in radians.

value

Specifies the numeric value representing the angle, in degrees or radians, whose arc

tangent is calculated.

Value can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric l iteral

Example

In the following example, the arc tangent (degrees) of 1.7321 is calculated and moved to
WK-RESULT (PIC S999V9999):

 MOVE ATAND(1.7321) TO WK-RESULT.

Return value: 60.0007

CONCATENATE

Chapter 7: Built-in Functions 189

CONCATENATE

Purpose

Returns the concatenation of a specified list of string values.

Syntax

 ┌─── , ────┐
►►─┬─ CONCATENATE ─┬─ (─▼─ string ─┴─) ─────────────────────────────────────►◄
 ├─ CONCAT ──────┤
 └─ CON ─────────┘

Parameters

string

Specifies one or more string values that are concatenated to form a single string
value.

String can be:

■ A string l iteral, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

Example 1: Using the concatenate function only

In the following example, the concatenate function is used to concatenate EMP-FNAME
(PIC X(15)) and EMP-LNAME (PIC X(15)) so that the first name precedes the last name:

Initial values:

 EMP-FNAME: 'JOE '

 EMP-LNAME: 'SMITH '

Statement:

 MOVE CONCATENATE(EMP-FNAME,EMP-LNAME) TO WK-NAME.

Returned string:

 'JOE SMITH '

COSINE

190 ADS Reference Guide

Example 2: Using the concatenate function with the extract function

In this example, the concatenate function is used in conjunction with the extract

function to concatenate EMP-FNAME (PIC X(15)), up to but not including the first blank,
with a blank and then with EMP-LNAME (PIC X(15)):

Initial values:

 EMP-FNAME: 'JOE '

 EMP-LNAME: 'SMITH '

Statements:

 MOVE CON(EXTRACT(EMP-FNAME),' ',EMP-LNAME) TO WK-NAME.

Returned string:

 'JOE SMITH '

Another example of the concatenate function is provided in SUBSTRING (see page 226).

COSINE

Purpose

Returns the cosine of a numeric value that represents an angle in either degrees or
radians.

Syntax

Cosine (degrees):

►►─┬─ COSINE-DEGREES ─┬─ (value) ───►◄
 └─ COSDeg ─────────┘

Cosine (radians):

►►─┬─ COSINE-RADIANS ─┬─ (value) ───►◄
 └─ COSRad ─────────┘

Parameters

COSINE-DEGREES

Returns a cosine value in degrees.

COSINE-RADIANS

Returns a cosine value in radians.

DATECHG

Chapter 7: Built-in Functions 191

value

Specifies the numeric value representing the angle, in degrees or radians, whose

cosine is calculated.

Value can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric l iteral

Example

In the following example, the cosine (degrees) of 60 is calculated and moved to
WK-RESULT (PIC S999V9999):

MOVE COSD(60) TO WK-RESULT.

Return value: 0.5

DATECHG

Purpose

Returns the conversion of a specified date from one format (Gregorian, calendar,
European, or Julian) to another.

Date change functions can be coded two ways, as shown in the following syntax

diagrams.

Syntax

Format 1:

►►───┬─ DATECHG ──┬─ (date, input-date-format, output-date-format) ─────────►◄
 └─ DATECHGX ─┘

DATECHG

192 ADS Reference Guide

Format 2:

►►───┬─ GCDATE ───┬─ (date) ──►◄
 ├─ GCDATEX ──┤
 ├─ GEDATE ───┤
 ├─ GEDATEX ──┤
 ├─ GJDATE ───┤
 ├─ GJDATEX ──┤
 ├─ CGDATE ───┤
 ├─ CGDATEX ──┤
 ├─ CEDATE ───┤
 ├─ CEDATEX ──┤
 ├─ CJDATE ───┤
 ├─ CJDATEX ──┤
 ├─ EGDATE ───┤
 ├─ EGDATEX ──┤
 ├─ ECDATE ───┤
 ├─ ECDATEX ──┤
 ├─ EJDATE ───┤
 ├─ EJDATEX ──┤
 ├─ JGDATE ───┤
 ├─ JGDATEX ──┤
 ├─ JCDATE ───┤
 ├─ JCDATEX ──┤
 ├─ JEDATE ───┤
 └─ JEDATEX ──┘

Parameters

Format 1:

DATECHG/DATECHGX

Converts the input date value to the specified output date format. DATECHGX
operates on dates that contain the century portion of the year.

date

A numeric value that specifies the input date.

Date can be:

■ The name of a user-defined numeric variable data field

■ A user-supplied numeric l iteral

input-date-format

Specifies the format of date.

Input-date-format can be:

■ The date format, enclosed in quotation marks

■ The name of a user-defined variable data field containing the date format

DATECHG

Chapter 7: Built-in Functions 193

output-date-format

Specifies the format to which the input date date is converted.

Output-date-format can be:

■ The output date format, enclosed in quotation marks

■ The name of a user-defined variable data field containing the output date

format

Input-date-format and output-date-format can be:

■ C for calendar

■ E for European

■ G for Gregorian

■ J for Julian

Format 2:

Using format 2, the first character of each function name identifies the format of the
input date. The second character identifies the format to which the date is converted, as
follows:

■ C specifies calendar

■ E specifies European

■ G specifies Gregorian

■ J specifies Julian

For example, the GCDATE function converts from Gregorian to Calendar format.

Function names ending with X operate on values that contain the century portion of the
year.

date

A numeric value that specifies the input date.

DATEDIF

194 ADS Reference Guide

Examples

Using format 1 (DATECHG)

In this example, the DATECHG format of the date change function is used to convert
January 28, 1958 from Gregorian to calendar format:

Statement:

 MOVE DATECHG(580128,'G','C') TO WK-RESULT.

Returned value: 012858

Similarly, the DATECHGX function converts a date containing the century. Here,

WK-RESULT must contain an 8 character result:

Statement:

 MOVE DATECHGX(19580128,'G','C') TO WK-RESULT.

Returned value: 01281958

Using format 2 (GCDATE ...)

In this example, the GCDATE format is used to convert January 28, 1958 from Gregorian
to calendar format:

Statement:

 MOVE GCDATE (580128) TO WK-RESULT.

Returned value: 012858

In this example, GCDATEX is used to convert September 12, 1929 from Gregorian to

calendar format. The result contains the century portion of the year:

Statement:

 MOVE GCDATEX(19290912) TO WK-RESULT.

Returned value: 09121929

DATEDIF

Purpose

Returns the number of days between two specified dates.

Syntax

►►─┬─ DATEDIF ──┬─ (gregorian-date-1, gregorian-date-2) ────────────────────►◄
 └─ DATEDIFX ─┘

DATEDIF

Chapter 7: Built-in Functions 195

Parameters

DATEDIF/DATEDIFX

Invokes the date difference function. DATEDIFX operates on values containing the
century portion of the date.

gregorian-date1

Specifies the date, in Gregorian format, from which the second date is subtracted.

gregorian-date2

Specifies the date, also in Gregorian format, that is subtracted from the first date.

Gregorian-date1 and gregorian-date2 can be:

■ Names of user-defined variable data fields

■ User-supplied numeric l iterals

■ For two-digit years, the twentieth century is assumed unless year is 68 or less, in
which case, the twenty-first century is assumed

Example 1

In the following example, the date difference function is used to find the number of
days between January 28, 1978 and August 11, 1975:

Statement:

 MOVE DATEDIF(780128,750811) TO WK-RESULT.

Returned value: 901

Note that if the dates were supplied in reverse order, the value -901 would have been
returned.

Example 2

In this example, the date difference function is used to find the number of days between
January 6, 2000 and December 25, 1999, specifying the century portion of the year:

Statement:

 MOVE DATEDIFX(20000106,19991225) TO WK-RESULT.

Returned value: 12

Again, if the dates were supplied in reverse order, the value -901 would have been
returned.

DATEEXT

196 ADS Reference Guide

DATEEXT

Purpose

Returns a 10-byte external date stamp as an 8-byte internal binary date stamp.

Syntax

►►────┬─ DATE-EXTERNAL ──┬────────── (date-stamp) ────────────────────────────►◄
 ├─ DATEEXT ────────┤
 └─ DEXT ───────────┘

Parameter

date-stamp

Specifies the 10-byte representation of the date-stamp in the format CCYY-MM-DD.

date-stamp can be one of the following:

■ A string l iteral enclosed in single quotation marks

■ A name of a user-defined variable data field containing the date string

Example

In the following example, the DATEEXT function is used to convert a 10-byte string date,
with the format CCYY-MM-DD, to an 8-byte binary value:

Initial value:

 DATE-FIELD: '2007-08-01'

Statement:

 MOVE DATEEXT (DATE-FIELD) TO DATE-BINARY

Returned value:

 x0165DB0000000000

DATEINT

Purpose

Returns an 8-byte internal binary-date stamp as a displayable 10-byte date stamp. The
returned value is in the format CCYY-MM-DD.

Syntax

►►────┬─ DATE-INTERNAL ──┬────────── (binary-date) ───────────────────────────►◄
 ├─ DATEINT ────────┤
 └─ DINT ───────────┘

DATEOFF

Chapter 7: Built-in Functions 197

Parameter

binary-date

Specifies the user-defined variable that contains an 8-byte internal binary-date
stamp.

binary-date must be the name of a user-defined variable that contains an 8-byte

internal binary date stamp.

Example

In the following example, the DATEINT function converts an 8-byte internal date stamp
to a 10-byte displayable value. The returned value is in the format CCYY-MM-DD.

Initial value:

 DATE-STAMP-BINARY: x0165DB0000000000

Statement:

 MOVE DATEINT(DATE-STAMP-BINARY) TO DATE-FIELD

Returned string:

 '2007-08-01'

DATEOFF

Purpose

Returns the date resulting from adding a specified number of days to a specified date.

Syntax

►►─┬─ DATEOFF ──┬─ (gregorian-date, offset) ────────────────────────────────►◄
 └─ DATEOFFX ─┘

Parameters

DATEOFF/DATEOFFX

Invokes the date offset function. DATEOFFX operates on values that contain the
century portion of the year.

gregorian-date

Specifies the date, in Gregorian format, to which the offset is added.

Gregorian-date can be:

■ The name of a user-defined variable data field

■ A user-supplied numeric l iteral

DATEOFF

198 ADS Reference Guide

offset

Specifies the offset, in days, that is added to the specified date. Offset can be:

■ The name of a user-defined variable data field

■ A user-supplied numeric l iteral

■ A built-in function that returns a numeric value

Offset can be negative.

Usage

DATEOFF assumes the twentieth century if the year is greater than 68, and assumes the
twenty-first century if between 0 and 68. DATEOFFX allows a computation to be made in
any century.

DATEOFFX assumes a continuous algorithm using the modern Gregorian calendar. It
does not contain tables for historical aberrations.

Anytime a signed literal is used with DATEOFF, it should be enclosed within single
quotes l ike this:

MOVE DATEOFF(911119,'-1') TO EXP-DATE

Example 1

In the following example, the date offset function is used to find the date that results
from adding four days to January 28, 1978:

Statement:

 MOVE DATEOFF(780128,4) TO WK-RESULT.

Returned value: 780201

Example 2

In this example, the date offset function is used to find the date that results from adding
five days to December 28, 1999. Gregorian-date contains the century portion of the

year, as does the returned date.

Statement:

 MOVE DATEOFFX(19991228,5) TO WK-RESULT.

Returned value: 20000102

DATETIMX

Chapter 7: Built-in Functions 199

DATETIMX

Purpose

Returns a 26-byte external date-time stamp as an 8-byte date-time internal binary
stamp.

Syntax

►►────┬─ DATE-TIME-EXTERNAL ──┬────────── (date-time-stamp) ──────────────────►◄
 ├─ DATETIMX ────────────┤
 └─ DTEX ────────────────┘

Parameter

date-time-stamp

Specifies the 26-byte date-time-stamp to convert to an 8-byte binary
date-time-stamp.

date-time-stamp can be one of the following:

■ A string l iteral enclosed in quotation marks in the format
CCYY-MM-DD-HH.MM.SS.NNNNNN

■ The name of a user-defined variable containing the date-time string

Example

In the following example, the DATETIMX function converts a 26-byte string date-time,
with the format CCYY-MM-DD-HH.MM.SS.NNNNNN, to an 8-byte binary value:

Initial value:

 DT-FIELD: '2007-08-01-15.37.11.876526'

Statement:

 MOVE DATETIMX(DT-FIELD) TO DATE-TIME-BINARY

Returned value:

 x0165DB0DBA7D5FEE

DISPDT

Purpose

Returns the current date-time stamp as a 26-byte displayable date-time stamp. The
returned value is in the format CCYY-MM-DD-HH.MM.SS.NNNNNN.

DTINT

200 ADS Reference Guide

Syntax

►►────┬─ DISPLAY-DATE-TIME ──┬────────── () ──────────────────────────────────►◄
 ├─ DISPDT ─────────────┤
 └─ DDAT ───────────────┘

Example

In the following example, the DISPDT function is used to move the current date-time
stamp to the field DATE-TIME-FIELD. The DISPDT function is executed on August 1, 2007

at approximately 3:37 p.m.

Statement:

 MOVE DISPDT() TO DATE-TIME-FIELD

Returned string:

 '2007-08-01-15.37.11.876526'

DTINT

Purpose

Returns an 8-byte internal binary date-time stamp as a 26-byte displayable date-time
stamp.

Syntax

►►──┬─ DATE-TIME-INTERNAL ──┬─────── (binary-date-time-stamp) ────────────────►◄
 ├─ DTINT ───────────────┤
 └─ DTIN ────────────────┘

Parameter

binary-date-time-stamp

Specifies the user-defined variable that contains an 8-byte internal binary date-time

stamp.

binary-date-time stamp must be the name of a user-defined variable that contains
an 8-byte internal binary date-time stamp.

EXTRACT

Chapter 7: Built-in Functions 201

Example

In the following example, the DTINT function converts an 8-byte internal date-time

stamp to a 26-byte displayable date-time stamp. The returned value is in the format
CCYY-MM-DD-HH.MM.SS.NNNNNN.

Initial value:

 DATE-TIME-STAMP-BINARY: x0165DB0DBA7D5FEE

Statement:

 MOVE DTINT(DATE-TIME-STAMP-BINARY) TO DT-FIELD

Returned string:

 '2007-08-01-15.37.11.876526'

EXTRACT

Purpose

Returns the string that results from removing leading and trail ing spaces from a string
value.

Syntax

►►─── EXTract (string) ───►◄

Parameters

string

Specifies the string value on which the extract function is performed.

String can be:

■ A string l iteral, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

Usage

When a field contains only spaces, EXTRACT returns one space. In this example:

FNAME="JANA "

MID=" "

LNAME="SEDLAKOVA "

CONCAT(EXT(FNAME),' ',EXT(MID),' ',EXT(LNAME))

Extract returns the following value:

"JANA SEDLAKOVA"

FIX

202 ADS Reference Guide

Example

In the following example, the extract function is used to remove leading and trail ing

spaces from the string contained in EMP-LNAME:

Initial value:

 EMP-LNAME: ' GAR FIELD '

Statement:

 MOVE EXTRACT(EMP-LNAME) TO WK-EXTRACTED-NAME.

Returned string:

 'GAR FIELD'

Other examples of the extract function are provided in CONCATENATE (see page 189)
and in STRING-LENGTH (see page 224).

FIX

Purpose

Returns a fixed-length string of 20, 40, 60, or 80 characters.

Multiple detail l ines can be produced using this string function.

Syntax

►►─┬─ FIX20 ─┬─ (string) ───►◄
 ├─ FIX40 ─┤
 ├─ FIX60 ─┤
 └─ FIX80 ─┘

Parameters

string

Specifies the string value on which the fix function is performed.

String can be:

■ A string l iteral, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

GOODDATE

Chapter 7: Built-in Functions 203

Example

In the following example, the fix function is used to produce a formatted address l ist:

Statement:

 MOVE FIX40(CONCAT(EXT(EMP-FIRST-NAME), ' ', EXT(EMP-LAST-NAME)))

 TO WK-FIX-NAME.

 MOVE FIX40(EMP-STREET) TO WK-FIX-ADDR1.

 MOVE FIX40(CONCAT(EXT(EMP-CITY), ', ', EXT(EMP-STATE), ' ', EXT(EMP-ZIP)))

 TO WK-FIX-ADDR2.

Returned string:

 'JOHN RUPEE '

 '114 WEST INDIA ST '

 'METHUEN, MA 02312 '

GOODDATE

Purpose

Returns TRUE or FALSE to indicate whether a date is valid for the date type.

Syntax

►►──┬─ GOODDATE ──┬─ (date, date-format) ───────────────────────────────────►◄
 └─ GOODDATEX ─┘

Parameters

GOODDATE/GOODDATEX

Invokes the good date function. Use GOODDATEX to test dates that contain the
century portion of the year.

date

A numeric value that specifies the input date.

Date can be:

■ The name of a user-defined variable data field

■ A user-supplied numeric l iteral

Note: If you are specifying a Julian date, you must specify a leading zero in the

string that the process passes for Julian dates. The leading zero does not apply to
non-Julian dates.

GOODTRAILING

204 ADS Reference Guide

date-format

Specifies the date format for which GOODDATE or GOODDATEX tests date.

Date-format can be a string enclosed in quotation marks or a user-defined variable
data field containing one of the following:

■ C for calendar

■ E for European

■ G for Gregorian

■ J for Julian

Example

In this example, GOODDATE tests whether the date type in the user-defined variable,

MYDATE, is of date format calendar:

IF (GOODDATE(MYDATE,'C')) THEN

 CALL DATECONV.

ELSE

 CALL DATERROR.

GOODTRAILING

Purpose

Returns TRUE or FALSE to indicate whether the value passed is a valid trailing sign field.

Syntax

►►──┬─ GOODTRAILING ─┬─ (value) ──►◄
 └─ GOODTRL ──────┘

Parameters

value

Specifies the numeric value whose type is tested.

Value can be:

■ The name of a user-defined variable data field

■ A user-supplied numeric l iteral

Below are values of type trail ing sign:

100076+

2-

INITCAP

Chapter 7: Built-in Functions 205

Example

In this example, the good trail ing function is used to test MYNUMBER before attempting

to convert it from trail ing sign representation to zoned numeric.

IF (GOODTRL(MYNUMBER)) THEN

 TRAILING-TO-ZONED(MYNUMBER).

ELSE

 CALL NUMERROR.

INITCAP

Purpose

Returns the string that results when the first letter in the specified source string is

capitalized and all other characters in the string are converted to lowercase.

Syntax

►►─── INITCAP (string) ───►◄

Parameters

string

Specifies the string whose first letter is to be capitalized.

String can be:

■ A string l iteral enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

Example

In the following example, the initial cap function is used on the employee's last name:

Initial value:

 EMP-LNAME: 'O'HEARN '

Statement:

 MOVE INITCAP(EMP-LNAME) TO WK-STRING.

Returned string:

 'O'hearn '

INSERT

206 ADS Reference Guide

INSERT

Purpose

Returns the string that results from a specified string being inserted into a string value
starting at a specified position.

Syntax

►►─── INSert (string, insertion-string, starting-position) ─────────────────►◄

Parameters

string

Specifies the string into which insertion-string is inserted.

String can be:

■ A string l iteral, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

insertion-string

Specifies the string that is inserted into string.

Insertion-string can be:

■ A string l iteral, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

starting-position

Specifies the numeric position at which insertion will begin.

Starting-position can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric l iteral

Starting-position is in a range from 1 to the length of string plus 1.

Usage

Considerations

■ If starting-position is 1 or less, insertion starts at the beginning of the string value.

■ If starting-position is greater than the length of string, insertion starts at the end of
the string value.

INVERT-SIGN

Chapter 7: Built-in Functions 207

Example

In the following example, the INSERT function is used with the SUBSTRING function to

insert the first six letters of the string contained in EMP-LNAME (PIC X(20)) into the
string '**', starting at position 2:

Initial value:

 EMP-LNAME: 'PARKINSON '

Statement:

 MOVE INSERT('**',SUBS(EMP-LNAME,1,6),2) TO WK-STRING.

Returned string:

 '*PARKIN*'

INVERT-SIGN

Purpose

Returns the specified numeric value with the opposite sign:

■ A positive numeric value becomes negative.

■ A negative numeric value becomes positive.

Syntax

►►─┬─ INVERT-SIGN ─┬─ (value) ──►◄
 └─ INVert ──────┘

Parameters

value

Specifies the numeric value whose sign inversion value is calculated.

Value can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric l iteral

LEFT-JUSTIFY

208 ADS Reference Guide

Example

In the following example, the sign inversion function is used to form the negative of a

value if the transaction code is 'DB':

Initial values:

 TRANS-CODE: 'DB'

 WK-AMT: 453.29

Statements:

 IF TRANS-CODE EQ 'DB'

 THEN

 MOVE INVERT-SIGN(WK-AMT) TO WK-AMT.

Returned value: -453.29

LEFT-JUSTIFY

Purpose

Returns the string that results from removing leading blanks from the left side of a string

value, shifting the remainder of the string value to the left side, then fi l l ing the right side
with as many blanks as were removed from the left side.

Syntax

►►─┬─ LEFT-JUSTIFY ─┬─ (string) ──►◄
 ├─ LEFT-just ────┤
 └─ LEFJUS ───────┘

Parameters

string

Specifies the string value on which the left justify function is performed.

String can be:

■ A string l iteral, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

Example

In the following example, the left justify function is used to left justify EMP-LNAME (PIC
X(20)):

Initial value:

 EMP-LNAME: ' SMITH '

Statement:

 MOVE LEFT-JUSTIFY(EMP-LNAME) TO EMP-LNAME.

Returned string:

 'SMITH '

LIKE

Chapter 7: Built-in Functions 209

LIKE

Purpose

Returns TRUE or FALSE when comparing a source string value with a supplied string.

Syntax

►►─── LIKE (string, search-string ──┬──────────────────────┬─) ─────────────►◄
 └─ ,escape-character ──┘

Parameters

string

Specifies the source string value being tested.

String can be:

■ A string l iteral, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

search-string

Specifies the string used for testing string.

Search-string can be:

■ A string l iteral, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

Search-string is compared with string, one character at a time, starting with the

leftmost character in each string.

All characters in the search string, except the mask characters l isted below, must
match the contents of string exactly. The mask characters are:

■ _ (underscore)— Matches any single, non-blank character in the source string.

■ % (percent sign)— Matches by any number of consecutive characters (zero or

greater) in the source string

escape-character

Specifies a 1-character escape character that allows the current LIKE expression to
search for the underscore, percent sign, and the escape character itself as an actual
character.

Escape-character can be:

■ A string l iteral, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

LOGARITHM

210 ADS Reference Guide

Example 1: Testing for an embedded string

In the following example, the string contained in the field ADDRESS is evaluated for an

occurrence of BOSTON within the string:

IF LIKE (ADDRESS,'%BOSTON%')

 THEN

 DISPLAY.

Example 2: Testing for an embedded 4-character string starting with 'C'

In the following example, the string contained in the field PNAME is evaluated for an
occurrence of a 4-character string starting with 'C':

IF LIKE (PNAME,'%C___')

 THEN

 DISPLAY.

Example 3: Examples using an escape character

■ Does AGR-NEXT-FUNCTION = '% '?

IF LIKE (AGR-NEXT-FUNCTION, '*%', '*')

This gives the same result as

IF AGR-NEXT-FUNCTION = '% '

■ Does AGR-NEXT-FUNCTION = contain a '%'?

IF LIKE (AGR-NEXT-FUNCTION, '%*%%', '*')

This gives the same result as

IF AGR-NEXT-FUNCTION CONTAINS '%'

■ Does AGR-NEXT-FUNCTION end with a '%'?

IF LIKE (AGR-NEXT-FUNCTION, '%*%', '*')

■ Does AGR-NEXT-FUNCTION contain a '%A*'?

IF LIKE (AGR-NEXT-FUNCTION, '%*%A**%', '*')

LOGARITHM

Purpose

Returns the common (base 10) or natural (base E) logarithm of a numeric value.

MODULO

Chapter 7: Built-in Functions 211

Syntax

Logarithm (base 10)

►►─┬─ LOG-BASE-10 ─┬─ (value) ──►◄
 ├─ COMLOG ──────┤
 ├─ LOGCOM ──────┤
 └─ LOG10 ───────┘

Logarithm (base E)

►►─┬─ LOG-BASE-E ─┬─ (value) ───►◄
 ├─ NATLOG ─────┤
 ├─ LOGNAT ─────┤
 └─ LOGE ───────┘

Parameters

value

Specifies the numeric value whose logarithm is calculated. Value can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric l iteral

Value must be greater than zero.

Example

In the following example, the logarithm function is used to calculate the base-10
logarithm of a numeric value:

Initial value:

 WK-VALUE: 100

Statement:

 MOVE LOG-BASE-10(WK-VALUE) TO WK-LOG-EQUIVALENT.

Returned value: 2

MODULO

Purpose

Returns the modulus (remainder) of one numeric value divided by another.

Syntax

►►─── MODulo (dividend, divisor) ───►◄

NEXT-INT-EQHI

212 ADS Reference Guide

Parameters

dividend

Specifies the numeric value that is divided by divisor.

divisor

Specifies the numeric value that is divided into dividend.

Dividend and divisor can be:

■ Arithmetic expressions

■ Names of user-defined variable data fields

■ User-supplied numeric l iterals

Example

In the following example, the modulo function is used to find the remainder resulting
from the division of two numeric values:

Initial values:

 WK-VALUE1: 43

 WK-VALUE2: 10

Statement:

 MOVE MODULO(WK-VALUE1,WK-VALUE2) TO WK-REMAINDER.

Returned value: 3

NEXT-INT-EQHI

Purpose

Returns the smallest integer that is equal to or greater than a numeric value.

Syntax

►►─┬─ NEXT-INT-EQHI ─┬─ (value) ──►◄
 ├─ NEXTINTEH ──┬──┤
 └─ NEXIH ──────┴──┘

Parameters

value

Specifies the numeric value whose next integer equal or higher is calculated.

NEXT-INT-EQLO

Chapter 7: Built-in Functions 213

Value can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric l iteral

Example

In the following example, the next integer equal or higher function is used to raise a
balance due amount to the next higher dollar value:

Initial value:

 WK-BAL-DUE: 453.29

Statement:

 MOVE NEXT-INT-EQHI(WK-BAL-DUE) TO WK-NEW-BAL.

Returned value: 454

NEXT-INT-EQLO

Purpose

Returns the largest integer that is equal to or less than a numeric value.

Syntax

►►─┬─ NEXT-INT-EQLO ─┬─ (value) ──►◄
 ├─ NEXTINEL ──────┤
 └─ NEXIL ─────────┘

Parameters

value

Specifies the numeric value whose next integer equal or lower is calculated.

Value can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric l iteral

NUMERIC

214 ADS Reference Guide

Example

In the following example, the next integer equal or lower function is used with the

square root function to determine whether a number is the exact square of an integer
value:

Initial value:

 WK-VALUE: 65

Statements:

 IF NEXIL(SQRT(WK-VALUE)) NE SQRT(WK-VALUE)

 THEN

 DISPLAY TEXT 'VALUE IS NOT AN EXACT SQUARE'.

Returned value from square root functions: 8.0632

Returned value from next integer function: 8

NUMERIC

Purpose

Returns TRUE or FALSE to indicate whether an alphanumeric field is a valid candidate for
a MOVE to a numeric field or can be used in a computation without a data exception
occurring.

Syntax

►►──── NUMERIC (value) ───►◄

Parameters

value

An alphanumeric value tested by the function.

Value can be:

■ A user-supplied string l iteral

■ The name of a user-defined variable data field containing the string

■ A user-supplied string l iteral

Usage

For EBCDIC or group values, NUMERIC checks the field in isolation, without regard to
possible target fields of a move or computation. For example, '999999' will test as a

numeric field (TRUE), but an error would occur if this were moved to a field with the
picture of 9(4) COMP-3.

NUMERIC

Chapter 7: Built-in Functions 215

NUMERIC does not support validation of floating point numbers.

Because CA ADS and EVAL do not check the DECIMAL POINT IS clause of the OLM

SYSGEN statement, NUMERIC does not either. Therefore, a period (.) and a comma (,)
will always be the decimal point and the thousands separator respectively.

The types of fields tested for numeric and the tests applied to those fields a re:

Field data type Test NUMERIC applies

Binary Always returns a TRUE value.

Packed decimal Follows the IBM standard for what a packed field should

contain; and additionally checks for a maximum field length of
16 bytes.

Zoned decimal Follows the IBM standard for what a zoned decimal field should
contain; and additionally checks for a maximum field length of

31 bytes.

EBCDIC or group
values

One of the following must be true:

■ There are 0 or more leading spaces

■ The number starts with a plus or minus sign, or a decimal
point, or a number from 0 to 9

■ A decimal point or number immediately follows a plus or
minus sign

■ There must be at least one digit in the number

■ There may be no characters other than a decimal point
embedded in the number

■ There are 0 or more trail ing spaces

■ After a digit is encountered, commas are ignored

All other types Returns a FALSE value.

In general, a single number embedded in an EBCDIC field that may contain a leading sign

is considered NUMERIC.

The table below shows valid and invalid examples of NUMERIC values:

Valid examples Invalid examples

3 .

4.4 -+4

+6 .5.

RANDOM-NUMBER

216 ADS Reference Guide

Valid examples Invalid examples

.5 - . 6

-9

Example

In the following example, NUMERIC tests whether MYALPHANUM contains a valid

number:

IF (NUMERIC(MYALPHANUM)) THEN

 CALL NUMCALC.

ELSE

 CALL NUMERROR.

Initial value of MYALPHANUM: 123

Statement evaluates TRUE.

Initial value of MYALPHANUM: M123

Statement evaluates FALSE.

RANDOM-NUMBER

Purpose

Returns a pseudo-random number based on a seed numeric value. The returned
random number is greater than zero and less than 1, and has a length of 9 decimal

places.

Syntax

►►─┬─ RANDOM-NUMBER ─┬─ (random-number-seed) ───────────────────────────────►◄
 └─ RANdom ────────┘

Parameters

random-number-seed

Specifies the numeric variable data field containing the seed value from which the
pseudo-random number is calculated.

Random-number-seed cannot be zero.

RANDOM-NUMBER

Chapter 7: Built-in Functions 217

Usage

To obtain random numbers:

1. Set the initial random number seed value at execution time to some varying value,
such as TIME. The random seed value must not be zero.

If the result is set to a fixed value, each execution of the dialog will result in the

generation of the same series of pseudo-random numbers.

2. Move the pseudo-random number returned by the random number function to the
seed variable data field. The number returned becomes the next seed value. In this
way, the random number function can generate a nonrepeating sequence of

536,870,912 numbers.

3. Define the seed value with a picture of 9(9) and move the result of the function to
a variable with a picture of V9(9).

The result can be moved back to the seed variable by using the result as a
redefinition of the seed value, as follows:

03 SEED-VALUE PICTURE 9(9).

03 RESULT-VALUE REDEFINES SEED-VALUE PICTURE V9(9).

Example

In the following example, the random number function is used to generate a sequence
of ten pseudo-random numbers:

Field descriptions:

 03 SEED-VALUE PICTURE 9(9).

 03 RESULT-VALUE REDEFINES SEED-VALUE PICTURE V9(9).

 03 RANDOM-TABLE PICTURE V9(9) OCCURS 10 TIMES.

Statements:

 MOVE TIME TO SEED-VALUE.

 MOVE 1 TO WK-COUNT.

 WHILE WK-COUNT LE 10

 REPEAT.

 MOVE RANDOM(SEED-VALUE) TO RESULT-VALUE.

 MOVE RESULT-VALUE TO RANDOM-TABLE(WK-COUNT).

 ADD 1 TO WK-COUNT.

 END.

REPLACE

218 ADS Reference Guide

REPLACE

Purpose

Returns a string that results from replacing, in a string value, each occurrence of a
specified search string with a specified replacement string.

Syntax

►►─── REPlace ───── (string, search-string ──┬───────────────────────┬─) ───►◄
 └─ ,replacement-string ─┘

Parameters

string

Specifies the string value on which the replace function is performed.

String can be:

■ A string l iteral, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

search-string

Specifies the string that the replace function searches for within the string value.

Search-string can be:

■ A string l iteral, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

replacement-string

Specifies the string that replaces each occurrence of search-string in the string
value.

Replacement-string can be:

■ A string l iteral, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

If replacement-string is not specified, each occurrence of search-string in the string
value is deleted.

Usage

The replacement string can be a different length than the search string; if this is the

case, the target string value is adjusted appropriately for each replacement.

The resulting string value cannot be greater than 1,024 characters. Excess characters are
truncated.

RIGHT-JUSTIFY

Chapter 7: Built-in Functions 219

Example

In the following example, the replace function is used to replace all occurrences of BB

with XXX in the string 'AABBCCBBBDD':

Statement:

 MOVE REPLACE('AABBCCBBBDD','BB','XXX') TO WK-STRING.

Returned string:

 'AAXXXCCXXXBDD'

A further example of the replace function is provided in SUBSTRING (see page 226).

RIGHT-JUSTIFY

Purpose

Returns the string that results from removing blanks on the right side of a string val ue,
shifting the remainder of the string value to the right side, then fi l l ing the left side with
as many blanks as were removed from the right side.

Syntax

►►─┬─ RIGHT-JUSTify ─┬─ (string) ───►◄
 └─ RIGHTjus ──────┘

Parameters

string

Specifies the string value that is right justified.

String can be:

■ A string l iteral, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

Example

In the following example, the right justify function is used to right justify EMP-LNAME
(PIC X(20)):

Initial value:

 EMP-LNAME: ' SMITH '

Statement:

 MOVE RIGHT-JUSTIFY(EMP-LNAME) TO EMP-LNAME.

Returned string:

 ' SMITH'

SIGN-VALUE

220 ADS Reference Guide

SIGN-VALUE

Purpose

Returns a +1, 0, or -1, depending on whether the specified numeric value is positive,
zero, or negative, respectively.

Syntax

►►─┬─ SIGN-VALue ─┬─ (value) ───►◄
 └─ SIGV ───────┘

Parameters

value

Specifies the numeric value whose sign is determined.

Value can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric l iteral

Example

In the following example, the sign value function is used to move a zero to a transaction
code field if an amount is negative, and a 1 to the field if the amount is zero or positive.
On mapout, the transaction code field can be decoded to CR or DB:

Initial value:

 WK-AMT: -453.29

Statements:

 MOVE SIGN-VALUE(WK-AMT) + 1 TO TRANS-CODE.

 IF TRANS-CODE EQ 2

 THEN

 MOVE 1 TO TRANS-CODE.

Returned value from function: -1

Result of MOVE expression: 0

SINE

Purpose

Returns the sine of a numeric value that represents an angle in either degrees or
radians.

SOCKET

Chapter 7: Built-in Functions 221

Syntax

Sine (degrees):

►►─┬─ SINE-DEGREES ─┬─ (value) ───►◄
 ├─ SINEDEG ──────┤
 └─ SIND ─────────┘

Sine (radians):

►►─┬─ SINE-RADIANS ─┬─ (value) ───►◄
 ├─ SINERAD ──────┤
 └─ SINR ─────────┘

Parameters

SINE-DEGREES

Returns the sine value in degrees.

SINE-RADIANS

Returns the sine value in radians.

value

Specifies the numeric value representing the angle, in degrees or radians, whose
sine is calculated.

Value can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric l iteral

Example

In the following example, the sine (degrees) of -60 is calculated and moved to

WK-RESULT (PIC S999V9999):

MOVE SIND(-60) TO WK-RESULT.

Return value: -0.8660

SOCKET

Purpose

Interface from CA ADS to TCP/IP.

SOCKET

222 ADS Reference Guide

Syntax

►►──── SOCKET ─ (function, return-code, errno, reason-code ─────────────────►

 ►────┬───┬───────────────) ────►◄
 │ ┌─────────────── , ───────────────┐ │
 └─ , ──▼── function-dependent-parameter ─┴──────┘

Parameters

The parameters are the standard parameters used for CA IDMS interface to TCP/IP as
documented in CA IDMS Callable Services Guide.

The first four parameters passed are always the same:

1. function: a 4-byte binary field, S9(5) USAGE IS COMP, in which the desired socket
function must be fi l led in by the programmer.

2. return-code: a 4-byte binary field which receives the outcome of the operation.
Returned values are:

■ 0 - no errors occurred

■ 20 - a parameter l ist error was encountered

■ -1 - a socket error was encountered; the errno and reason-code fields contain
more detailed information about the error.

3. errno: a 4-byte field which receives the ERRNO value when the return code is -1.

4. reason code: a 4-byte binary field which receives the reason code value when the
return-code is -1.

Depending on the function, zero or more parameters can follow.

Note: If an optional parameter is not to be specified in the parameter l ist, it should be
replaced by the @ character. A pre-defined record in the dictionary, SOCKET-CALL-INT,
describes the socket function's return codes and the errno's, and should be included as
a work record.

An ADS dialog associated with a server task (a task started by a l is tener):

■ Must be mapless

■ Should include SOCKET-LISTENER-PARMS as a work record.

The build-in function should be used within an IF statement. For example:

IF (SOCKET(function,

 return-code,

 errno,

 reason-code,

 function-dependent-parameter1,

 ...)) NE ZERO

SQUARE-ROOT

Chapter 7: Built-in Functions 223

SQUARE-ROOT

Purpose

Returns the square root of a numeric value.

Syntax

►►─┬─ SQUARE-ROOT ─┬─ (value) ──►◄
 └─ SQRT ────────┘

Parameters

value

Specifies the numeric value whose square root is calculated. Value can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric l iteral

Value cannot be a negative number.

Example

In the following example, the square root function is used to calculate the square root

of a number:

Initial value:

 WK-VALUE: 256

Statement:

 MOVE SQUARE-ROOT(WK-VALUE) TO WK-RESULT.

Returned value: 16

Another example of the square root function is provided in NEXT-INT-EQLO (see
page 213).

STRING-INDEX

Purpose

Returns the starting position of a specified string within a string value.

If the specified string is not found, a zero is returned.

Syntax

►►─┬─ STRING-INDEX ─┬─ (string, search-string) ─────────────────────────────►◄
 ├─ INDEX ────────┤
 └─ INDX ─────────┘

STRING-LENGTH

224 ADS Reference Guide

Parameters

string

Specifies the string that is searched.

String can be:

■ A string l iteral, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

search-string

Specifies the string that the index function searches for within string.

Search-string can be:

■ A string l iteral, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

Search-string cannot be longer than string.

Example

In the following example, the index function is used to test whether a product code
contains the string 'ABC':

Initial value:

 PROD-CODE: '12AB43 ABC3254'

Statements:

 IF INDX(PROD-CODE,'ABC') EQ 0

 THEN

 DISPLAY TEXT 'INVALID PRODUCT CODE'.

Returned value from function: 8

Since the string 'ABC' appears in the product code (starting at character position 8), the
condition is false.

STRING-LENGTH

Purpose

Returns the length of a string value.

Syntax

►►─┬─ STRING-LENGTH ─┬─ (string) ───►◄
 └─ SLENgth ───────┘

STRING-REPEAT

Chapter 7: Built-in Functions 225

Parameters

string

Specifies the string value whose length is determined.

String can be:

■ A string l iteral, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

Example

In the following example, the length of a name contained in EMP-LNAME (PIC X(20)) is
determined. To calculate the length of a string value, excluding leading and trail ing
spaces, the length function is used in conjunction with the extract function, as foll ows:

Initial value:

 EMP-LNAME: 'SMITH '

Statement:

 MOVE SLENGTH(EXTRACT(EMP-LNAME)) TO WK-NAME-LENGTH.

Returned string from extract function:

 'SMITH'

Returned value from length function: 5

Note: If EXTRACT is called with an argument consisting only of spaces (x'40's), then it
returns a string of one space. If that is passed on to the STRING-LENGTH function, the
result will be 1.

Initial value:

EMP-LNAME:' '

Statement:

MOVE SLENGTH(EXTRACT(EMP-LNAME)) TO WK-NAME-LENGTH.

Returned string from extract function:

' '

Returned value from slength function:

1

STRING-REPEAT

Purpose

Returns the string that results from repeating a string value a specified number of times.

SUBSTRING

226 ADS Reference Guide

Syntax

►►─┬─ STRING-REPEAT ─┬─ (string, repetitions) ──────────────────────────────►◄
 └─ SREPeat ───────┘

Parameters

string

Specifies the string value that is repeated.

String can be:

■ A string l iteral, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

repetitions

Specifies the numeric value representing the number of times that the string value
is to be repeated.

Repetitions can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric l iteral

Example

In the following example, the repeat function is used to repeat the constant 'NAME' two
times:

Statement:

 MOVE SREPEAT('NAME',2) TO WK-TARGET.

Returned string:

 'NAMENAMENAME'

SUBSTRING

Purpose

Returns the substring of a string value, starting from a specified position and continuing
for a specified length.

Syntax

►►─┬─ SUBSTRING ─┬─ (string, starting-position ─┬───────────┬─) ────────────►◄
 └─ SUBStr ────┘ └─ ,length ─┘

SUBSTRING

Chapter 7: Built-in Functions 227

Parameters

string

Specifies the string value from which the substring is taken.

String can be:

■ A string l iteral, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

starting-position

Specifies the numeric starting position of the substring within the string value.

Starting-position can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric l iteral

Starting-position must be positive and not greater than the length of string.

length

Specifies the numeric length of the substring within the string value.

Length can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric l iteral

The sum of starting-position and length, minus 1, cannot be greater than the length
of string.

If length is not specified, the substring is taken from the specified starting position

to the end of the string value.

Example 1: Extracting a substring

In the following example, the substring function is used to extract a substring of
EMP-LNAME (PIC X(20)), starting at position 4 and continuing for a length of 3:

Initial value:

 EMP-LNAME: 'SMITH '

Statement:

 MOVE SUBSTR(EMP-LNAME,4,3) TO WK-NAME.

Returned string:

 'TH '

TANGENT

228 ADS Reference Guide

Example 2: Replacing a leading zero

In the next example, the substring function is used in conjunction with the verify and

concatenate functions to replace each leading zero in a number stored in WK-AMT (PIC
X(10)) with an asterisk (*):

Initial value:

 WK-AMT: '000500.43 '

Statements:

 MOVE VERIFY(WK-AMT,'0') TO WK-START-POSITION.

 IF WK-START-POSITION GT 1

 THEN

 MOVE CON(REP(SUBS(WK-AMT,1,WK-START-POSITION - 1),'0','*'),

 SUBS(WK-AMT,WK-START-POSITION)) TO WK-EDITED.

Returned value from verify function: 4

Returned string from first substring function: '000'

Returned string from replace function: '***'

Returned string from second substring function: '500.43 '

Returned string from concatenate function: '***500.43 '

The string '***500.43 ', with a length of ten characters, is moved to the field
WK-EDITED. Note that the MOVE VERIFY command in the above example locates the
position of the first nonzero character in WK-AMT.

Another example of the substring function is provided in INSERT (see page 206).

TANGENT

Purpose

Returns the tangent of a numeric value that represents an angle in either degrees or

radians.

Syntax

Tangent (degrees):

►►─┬─ TANGENT-DEGREES ─┬─ (value) ──►◄
 └─ TANDeg ──────────┘

Tangent (radians):

►►─┬─ TANGENT-RADIANS ─┬─ (value) ──►◄
 └─ TANRad ──────────┘

TIMEEXT

Chapter 7: Built-in Functions 229

Parameters

TANGENT-DEGREES

Returns the tangent value in degrees.

TANGENT-RADIANS

Returns the tangent value in radians.

value

Specifies the numeric value representing the angle, in degrees or radians, whose

tangent is calculated.

Value can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric l iteral

Value cannot equal values such as -270, +270, -90, or +90 in the tangent (degrees)
function, and cannot equal values such as -&pi./2 or +&pi./2 in the tangent

(radians) function.

Usage

■ For the tangent (degrees) function, value cannot be a value equal to the following
expression, where n is any integer:

(n * 180) + 90

■ For the tangent (radians) function, value cannot be a value equal to the following

expression:

(n * &pi.) + &pi./2

Example

In the following example, the tangent (degrees) of 60 is calculated and moved to
WK-RESULT (PIC S999V9999):

MOVE TAND(60) TO WK-RESULT.

Returned value: 1.7321

TIMEEXT

Purpose

Returns an 8-byte displayable time as an 8-byte internal binary time stamp.

TIMEINT

230 ADS Reference Guide

Syntax

►►────┬─ TIME-EXTERNAL ──┬────────── (time-stamp) ────────────────────────────►◄
 ├─ TIMEEXT ────────┤
 └─ TIMX ───────────┘

Parameter

time-stamp

Specifies the 8-byte displayable time stamp to be converted into an 8-byte binary

internal time stamp.

time-stamp can be one of the following:

■ A string l iteral enclosed in quotation marks i n the format HH.MM.SS

■ The name of a user-defined variable that contains the 8-byte time stamp string

Example

In the following example, the TIMEEXT function is used to convert an 8-byte displayable
time stamp to an 8-byte binary internal time stamp in the format HH.MM.SS:

Initial value:

 TIME-FIELD: '17.08.09'

Statement:

 MOVE TIMEEXT(TIME-FIELD) TO TIME-BINARY

Returned value:

 x0000000F0F900000

TIMEINT

Purpose

Returns an 8-byte internal binary time stamp as a displayable 8-byte time stamp.

Syntax

►►────┬─ TIME-INTERNAL ──┬────────── (binary-time-stamp) ─────────────────────►◄
 ├─ TIMEINT ────────┤
 └─ TINT ───────────┘

Parameters

binary-time-stamp

Specifies the 8-byte internal binary time stamp.

binary-time-stamp must be the name of a user-defined variable that contains an
8-byte internal binary time stamp.

TODAY

Chapter 7: Built-in Functions 231

Example

In the following example, the TIMEINT function converts an 8-byte internal binary time

stamp to an 8-byte displayable time stamp in the format HH.MM.SS:

Initial value:

 TIME-BINARY: x0000000F0F900000

Statement:

 MOVE TIMEINT (TIME-BINARY) TO TIME-FIELD

Returned string:

 '17.08.09'

TODAY

Purpose

Returns today's date in the format requested.

Syntax

►►─┬─ TODAY ──┬─ (date-format) ───►◄
 └─ TODAYX ─┘

Parameters

TODAY/TODAYX

Invokes the today function. TODAYX returns a date that contains the century
portion of the year.

date-format

Specifies the output date format. Date-format can be:

■ The date format, enclosed in quotation marks

■ The name of a user-defined variable data field containing the date format

Date-format can be:

■ C for calendar

■ E for European

■ G for Gregorian

■ J for Julian

TOLOWER

232 ADS Reference Guide

Example 1

In the following example, the today function is used to display today's date in the

calendar format (where today is March 17, 1989):

Statement:

 MOVE TODAY('C') TO WK-RESULT.

Returned value: 031789

Example 2

In this example, the today function is used to return today's date in the calendar format
(where today is October 30, 1990). The returned date contains the century portion of
the year:

Statement:

 MOVE TODAYX('C') TO WK-RESULT.

Returned value: 10301990

TOLOWER

Purpose

Returns the string that results from converting all characters to lowercase.

Syntax

►►─── TOLOWER (string) ───►◄
P

Parameters

string

Specifies the string value on which the lowercase function is performed.

String can be:

■ A string l iteral, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

TOMORROW

Chapter 7: Built-in Functions 233

Example

In the following example, the lowercase function is used to convert all characters in the

last name to lowercase:

Initial value:

 EMP-LNAME: 'LANCHESTER '

Statement:

 MOVE TOLOWER(EMP-LNAME) TO WK-EMP-LNAME.

Returned string:

 'lanchester '

TOMORROW

Purpose

Returns tomorrow's date in the format requested.

Syntax

►►─┬─ TOMORROW ──┬── (date-format) ───►◄
 └─ TOMORROWX ─┘

Parameters

TOMORROW/TOMORROWX

Invokes the tomorrow function. TOMORROWX returns a value that contains the
century portion of the year.

date-format

Specifies the output date format. Date-format can be:

■ A date format, enclosed in quotation marks

■ The name of a user-defined variable data field containing the date format

Date-format can be:

■ C for calendar

■ E for European

■ G for Gregorian

■ J for Julian

TOUPPER

234 ADS Reference Guide

Example 1

In the following example, the tomorrow function is used to display tomorrow's date in

the calendar format (where today is March 17, 1989):

Statement:

 MOVE TOMORROW('C') TO WK-RESULT.

Returned value: 031889

Example 2

In this example, the tomorrow function is used to return tomorrow's date in the
calendar format (where today is October 30, 1990). The returned date contains the
century portion of the year:

Statement:

 MOVE TOMORROWX('C') TO WK-RESULT.

Returned value: 10311990

TOUPPER

Purpose

Returns the string that results from converting all characters to uppercase.

Syntax

►►─── TOUPPER (string) ───►◄

Parameters

string

Specifies the string value on which the uppercase function is performed.

String can be:

■ A string l iteral, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

TRAILING-TO-ZONED

Chapter 7: Built-in Functions 235

Example

In the following example, the uppercase function is used to convert all characters in the

last name to uppercase:

Initial value:

 EMP-LNAME: 'Lanchester '

Statement:

 MOVE TOUPPER(EMP-LNAME) TO WK-EMP-LNAME.

Returned string:

 'LANCHESTER '

TRAILING-TO-ZONED

Purpose

Returns a zoned numeric from a COBOL trail ing sign numeric.

Syntax

►►──┬─ TRAILING-TO-ZONED ─┬── (value) ──────────────────────────────────────►◄
 └─ TRAILZN ───────────┘

Parameters

value

Specifies the COBOL trail ing sign numeric value on which the trail ing to zoned
function is performed.

Value can be:

■ The name of a user-defined variable data field in trail ing sign format

■ A user-supplied numeric l iteral

Example

In the following example, the trail ing to zoned function is used to convert the value of
MYNUMBER to a zoned numeric:

Initial value:

 MYNUMBER: 123-

Statement:

 MOVE TRAILZN(MYNUMBER) TO WK-PART-CODE.

Returned value:

 WK-PART-CODE: 123 negative (hex 'F1F2D3')

TRANSLATE

236 ADS Reference Guide

TRANSLATE

Purpose

Returns the string that results from translating characters in a string value.

The characters are translated to corresponding characters that are specified in a
substitution string:

■ Characters in a selection string correspond by position to characters in a
substitution string.

■ Each character in the string value specified in the selection string is translated to
the corresponding character contained in the substitution string.

Syntax

►►─── TRANSlate (string, substitution-string ───┬─────────────────────┬─) ──►◄
 └─ ,selection-string ─┘

Parameters

string

Specifies the string value on which the translate function is performed.

String can be:

■ A string l iteral, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

substitution-string

Specifies the substitution string.

Substitution-string can be:

■ A string l iteral, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the substitution
string

selection-string

Specifies the selection string. Characters in selection-string will be replaced by
corresponding characters in substitution-string.

Selection-string can be:

■ A string l iteral, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the selection string

VERIFY

Chapter 7: Built-in Functions 237

Usage

Considerations

■ If selection-string is longer than substitution-string, the excess characters in
selection-string correspond to blanks.

■ If selection-string specifies the same character more than once, the translate

function uses the first occurrence of the character.

■ If selection-string is not specified, the 256-character EBCDIC table is used, consisting
of hexadecimals 00 through FF.

Example

In the following example, the translate function is used to translate all occurrences in

PART-CODE (PIC X(20)) of the characters A, B, C, and D (selection-string), to W, blank, Y,
and Z (substitution-string), respectively:

Initial value:

 PART-CODE: 'B53A22B1E50D40C94 '

Statement:

 MOVE TRANS(PART-CODE,'W YZ','ABCD') TO WK-PART-CODE.

Returned string:

 ' 53W22 1E50Z40Y94 '

VERIFY

Purpose

Returns the position of the first character in a string value that does not occur in a

verification string.

If every character in the input string value occurs in the verification string, a zero is
returned.

Syntax

►►─── VERify (string, verification-string) ─────────────────────────────────►◄

Parameters

string

Specifies the string value on which the verify function is performed.

String can be:

■ A string l iteral, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

WEEKDAY

238 ADS Reference Guide

verification-string

Specifies the string value against whose characters the string value's characters are

verified.

Verification-string can be:

■ A string l iteral, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

Example

In the following example, the verify function is used to verify that WK-NUMBER (PIC
X(10)) contains only numeric values or blanks:

Statement:

 IF VER(WK-NUMBER,'0123456789 ') NE 0

 THEN

 DISPLAY TEXT 'INVALID SPECIFICATION FOR NUMERIC FIELD'.

Another example of the verify function is provided in SUBSTRING (see page 226).

WEEKDAY

Purpose

Returns the weekday (Monday, Tuesday, etc.) of a specified date.

Weekday functions can be coded in two ways, as shown in the syntax diagrams below.

Syntax

Format 1:

►►───┬─ WEEKDAY ──┬─ (date, date-format) ───────────────────────────────────►◄
 └─ WEEKDAYX ─┘

Format 2:

►►───┬─ GWEEKDAY ──┬─ (date) ───►◄
 ├─ GWEEKDAYX ─┤
 ├─ CWEEKDAY ──┤
 ├─ CWEEKDAYX ─┤
 ├─ EWEEKDAY ──┤
 ├─ EWEEKDAYX ─┤
 ├─ JWEEKDAY ──┤
 └─ JWEEKDAYX ─┘

WEEKDAY

Chapter 7: Built-in Functions 239

Parameters

Format 1:

WEEKDAY/WEEKDAYX

Invokes the weekday function. WEEKDAYX operates on dates that contain the
century portion of the year.

date

A numeric value that specifies the input date. Date can be:

■ The date, enclosed in quotation marks

■ The name of a user-defined variable data field containing the date

date-format

Specifies the format of the date specified by date. Date-format can be:

■ The date format, enclosed in quotation marks

■ The name of a user-defined variable data field containing the date format

Date-format can be:

■ C for calendar

■ E for European

■ G for Gregorian

■ J for Julian

Format 2:

GWEEKDAY/GWEEKDAYX

CWEEKDAY/CWEEKDAYX

EWEEKDAY/EWEEKDAYX

JWEEKDAY/JWEEKDAYX

The invocation names of the alternate formats of the weekday function. The prefix

C, E, G, or J of an invocation name identifies the format of the date specified by
date (calendar, European, Gregorian, or Julian.)

Invocation names ending in X operate on dates that contain the century portion of

the year.

date

A numeric value that specifies the input date. Date can be:

■ The name of a user-defined variable data field

■ A user-supplied numeric l iteral

WORDCAP

240 ADS Reference Guide

Example 1 (Format 1)

In the following example, the weekday function is used to determine on which weekday

January 28, 1958 fell. The date is provided in calendar format:

Statement:

 MOVE WEEKDAY(012858,'C') TO WK-RESULT.

Returned value: 'TUESDAY'

Example 2 (Format 1)

This example returns the weekday for a date that contains the century portion of the
year:

Statement:

 MOVE WEEKDAYX(01281958,'C') TO WK-RESULT.

Returned value: 'TUESDAY'

Example 3 (Format 2)

This is equivalent to Example 2:

Statement:

 MOVE CWEEKDAY(01281958) TO WK-RESULT.

Returned value: 'TUESDAY'

WORDCAP

Purpose

Returns the string that results when the first letter of each word in the specified source
string is capitalized and all other characters in the string are converted to lowercase.

Syntax

►►─── WORDCAP (string) ───►◄

Syntax Rule

string

Specifies the string to be converted.

YESTERDAY

Chapter 7: Built-in Functions 241

String can be:

■ A string l iteral, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

The first letter in each word is capitalized and all other characters are converted to
lowercase.

Example

In the following example, the word cap function is used on the employee's name:

Initial value:

 EMP-LNAME: 'O'HEARN '

Statement:

 MOVE WORDCAP(EMP-LNAME) TO WK-STRING.

Returned string:

 'O'Hearn '

YESTERDAY

Purpose

Returns yesterday's date in the format requested.

Syntax

►►─┬─ YESTERDAY ──┬─ (date-format) ───►◄
 └─ YESTERDAYX ─┘

Parameters

YESTERDAY/YESTERDAYX

Invokes the yesterday function. YESTERDAYX returns a date that contains the

century portion of the year.

date-format

Specifies the output date format. Date-format can be expressed using:

■ The date format, enclosed in single quotation marks

■ The name of a user-defined variable data field that contains the date format

ZONED-TO-TRAILING

242 ADS Reference Guide

Date-format can be:

■ C for calendar

■ E for European

■ G for Gregorian

■ J for Julian

Example 1

In the following example, the yesterday function is used to display yesterday's date in

the calendar format (where today is March 17, 1997).

Statement:

 MOVE YESTERDAY('C') TO WK-RESULT.

Returned value: 031697

Example 2

This example uses YESTERDAYX to return a date containing the century:

Statement:

 MOVE YESTERDAYX('C') TO WK-RESULT.

Returned value: 03161997

ZONED-TO-TRAILING

Purpose

Returns a COBOL trail ing sign numeric from a zoned numeric.

Syntax

►►──┬─ ZONED-TO-TRAILING ─┬── (value) ──────────────────────────────────────►◄
 └─ ZNTRAIL ───────────┘

Parameters

value

Specifies the zoned numeric value on which the zoned to trail ing function is
performed.

Value is the name of a user-defined variable data field in zoned numeric format.

ZONED-TO-TRAILING

Chapter 7: Built-in Functions 243

Example

In the following example, the zoned to trail ing function is used to convert the value of

MYNUMBER to a COBOL trail ing sign numeric:

Initial value:

 MYNUMBER: 123 negative (hex 'F1F2D3')

Statement:

 MOVE ZNTRAIL(MYNUMBER) TO WK-PART-CODE.

Returned value:

 WK-PART-CODE: 123-

Chapter 8: Conditional Expressions 245

Chapter 8: Conditional Expressions

This section contains the following topics:

Overview (see page 245)
General Considerations (see page 246)
Batch-Control Event Condition (see page 248)

Command Status Condition (see page 249)
Comparison Condition (see page 251)
Cursor Position Condition (see page 253)

Dialog Execution Status Condition (see page 254)
Environment Status Condition (see page 256)
Level-88 Condition (see page 257)
Map Field Status Condition (see page 257)

Map Paging Status Conditions (see page 261)
Set Status Condition (see page 265)
Arithmetic and Assignment Command Status Condition (see page 266)

Overview

A conditional expression specifies test conditions in an IF or WHILE command. The
outcome of a conditional test determines the processing that occurs.

A conditional expression can be used as a variable wherever the command syntax
specifies conditional-expression.

The table below summarizes the test conditions that can be used in conditional
expressions. Each condition is described separately in this section.

Summary of Test Conditions

Condition Purpose

Batch control event Determines the occurrence of runtime events (batch
input only)

Command status Tests for the presence of a status code in a dialog's

error-status field

Comparison Compares two values

Cursor position Determines if the cursor is located in a specified field
after a mapin operation

Dialog execution status Determines if a dialog is executing for the first time

General Considerations

246 ADS Reference Guide

Condition Purpose

Environment status Determines the environment in which the application is

executed

Level-88 condition name Determines if a variable data field value is equal to the
value of the associated level -88 condition name

Map field status Determines if a map's data field are changed or in error

Map paging status Determines the runtime events of a map paging session

Set status Determines member record occurrences or if a record is
a member of a specific set

Assignment condition Tests for an arithmetic or assignment exception

General Considerations

Contents

Conditional expressions can contain:

■ A single test condition

■ Two or more test conditions combined with the logical operators AND and OR

■ The logical operator NOT to specify the opposite of the condition

NOT can precede a single condition or a compound condition enclosed in
parentheses.

Evaluation of Operators

Operators in a conditional expression are evaluated one at a time, from left to right, in
the following order of precedence:

■ Unary plus or minus

■ Multiplication or division

■ Addition or subtraction

■ MATCHES or CONTAINS keywords

■ EQ, NE, GT, LT, GE, LE operators

General Considerations

Chapter 8: Conditional Expressions 247

■ NOT

■ AND

■ OR

The default order of precedence can be overridden by using parentheses. The
expression in the innermost parentheses is evaluated first.

Significant tests in conditional expressions should be coded to the left for greater
runtime efficiency.

Syntax for Conditional Expressions

The conditional expression syntax shown below applies when the command syntax

specifies conditional-expression.

Syntax

 ┌─ AND ─┐
 ┌──────────┴─ OR ──┴──────────┐
►►───┬─────────┬─────▼─┬───────┬─ test-condition ──┴───┬─────┬────────────────►◄
 └─ NOT (─┘ └─ NOT ─┘ └─) ─┘

Parameters

NOT

Specifies that the opposite of a condition fulfi l ls the test requirements.

The opposite of the entire conditional expression can be specified by enclosing the
expression in parentheses and preceding it with NOT.

test-condition

Specifies the condition being tested and can include parentheses.

AND

Specifies the expression is true only if the outcome of both test conditions is true.

OR

Specifies the expression is true if the outcome of either one or both test conditions
is true.

Batch-Control Event Condition

248 ADS Reference Guide

Batch-Control Event Condition

Purpose

(CA ADS Batch only) Tests the occurrence of runtime events, such as end-of-fi le or
physical input errors, specific to batch input.

The event status is initialized at the beginning of application execution and the outcome

of each test is false.

Syntax

►►────┬─┬─ $END-OF-FILE ─┬─┬──►◄
 │ └─ $EOF ────────┘ │
 └─── $IOERRor ───────┘

Parameters

$END-OF-FILE

Tests whether the most recent input fi le read operation results in an end-of-fi le
condition.

$IOERRor

Tests whether the most recent input fi le read operation results in a physical input
error.

A physical error on a write operation causes the application to abort.

Example

In the following example, execution of a group of commands continues until an

end-of-fi le condition occurs:

WHILE NOT $EOF

 REPEAT.

 .

 .

 .

 WRITE TRANSACTION.

 END.

LEAVE APPLICATION.

Command Status Condition

Chapter 8: Conditional Expressions 249

Command Status Condition

Purpose

Tests a dialog's error-status field for the presence of a specified status code, following
the execution of a process command that involves database, queue, or scratch activity,
or a WRITE PRINTER uti l ity command.

The command status is checked by testing the error-status field for a specified status
code or by testing a level -88 condition name. Level -88 condition names and status field
names other than ERROR-STATUS must be defined in the dialog's status definition
record.

Syntax

►►───┬── error-status-code-name ────┬───────────────────┬──────────────────┬──►◄
 │ └─ FOR record-name ─┘ │
 │ │
 └┬─ ERROR-STATUS ──────────┬─ comparison-operator error-status-code ─┘
 └─ status-field-variable ─┘

Parameters

error-status-code-name:

The name of a level-88 condition defined in the dialog's status definition record.

FOR record-name:

Specifies that the test applies to the last database command involving the named

record.

Record-name must be known to the dialog's subschema.

ERROR-STATUS

Represents the value contained in the internal error-status field for the dialog.

status-field-variable

Specifies the name of a user-supplied data field that contains the error-status field
for the dialog.

Status-field-variable must be defined in the dialog's status definition record.

comparison-operator:

The comparison operators are:

Operator Synonym Meaning

EQ = Equal

NE Not equal to

GT > Greater than

Command Status Condition

250 ADS Reference Guide

Operator Synonym Meaning

LT < Less than

GE Greater than or equal to

LE Less than or equal to

error-status-code:

Specifies the status code to which the value in status-field-variable is compared.

Error-status-code is:

■ the name of a variable data field that contains the status code

■ the code itself (optionally enclosed in single quotation marks)

■ an expression, including a built-in function, that returns the status code

Example 1: Testing for a database record status

The command status condition in the following IF statement is true when the dialog's
error-status field contains the status code 0326:

IF DB-REC-NOT-FOUND THEN ...

DB-REC-NOT-FOUND must be defined in the dialog's status definition record.

Example 2: Testing for the end-of-set

The command status condition in the following IF statement is true when the dialog's
error-status field does not contain the status code 0307:

IF NOT DB-END-OF-SET THEN ...

DB-END-OF-SET must be defined in the dialog's status definition record.

Example 3: Testing for the status of a database record

The command status condition in the following IF statement is true when the dialog's

error-status field contains the status code 0000 following execution of the most recent
command involving a CUSTOMER record:

IF DB-STATUS-OK FOR CUSTOMER THEN ...

DB-STATUS-OK must be defined in the dialog's status definition record.

Comparison Condition

Chapter 8: Conditional Expressions 251

Example 4: Testing for a dialog's error status

The command status condition in the following IF statement is true when the dialog's

error-status field contains the status code 0307:

IF ERROR-STATUS IS '0307'...

More information:

Error Handling (see page 277)

Comparison Condition

Purpose

Compares two values.

Each value can be a variable data field, an arithmetic expression, a built-in function, or a
numeric, nonnumeric, multi -bit binary, or figurative constant.

A comparison condition also compares two EBCDIC, DBCS, or unsigned zoned decimal
character strings to determine if the first string matches or contains the second string.

Syntax

►►──┬─ value comparison-operator value ────────────┬────────────────────────►◄
 │ │
 └─ string-value ──┬─ MATCHES ─┬── mask-value ───┘
 └─ CONTAINS ─┘

Parameters

value:

Identifies the operands being compared. Value is specified according to the rules
presented in Introduction to Process Language (see page 155).

comparison-operator:

The comparison operators are:

Operator Synonym Meaning

EQ = Equal

NE Not equal to

GT > Greater than

LT < Less than

Comparison Condition

252 ADS Reference Guide

Operator Synonym Meaning

GE Greater than or equal to

LE Less than or equal to

string-value:

Either the name of an elementary EBCDIC, DBCS, or unsigned zoned decimal data

field that contains the character string being compared, or the string itself enclosed
in single quotation marks.

MATCHES

Compares the left operand to the right operand, one character at a time, beginning
with the leftmost character in each operand.

The length of the string that is compared is set to the length of the shorter of the
two operands. If a character in the left operand does not match the corresponding
character in the right operand, the outcome of the comparison is false.

CONTAINS

Searches the left operand for an occurrence of the right operand.

The length of the right operand must be less than or equal to the length of the left
operand. If the right operand is not entirely contained in the left operand, the
outcome of the comparison is false.

mask-value:

Either the name of a variable data fiel d that contains the mask value or the value

itself enclosed in single quotation marks.

Usage

Considerations

Special mask characters in mask-value match characters in value according to the
following conventions:

■ @ -- Matches any alphabetic character

■ # -- Matches any numeric character

■ * -- Matches any character

Any other character in mask-value matches only itself in value.

'String-value' in either MATCHES or CONTAINS must be defined as either EBCDIC (PIC X)
or as unsigned zoned decimal (PIC 9).

Cursor Position Condition

Chapter 8: Conditional Expressions 253

Example 1: Using a simple comparison

The comparison condition in the following IF statement is true when the value in the

SALES field is greater than or equal to 5000:

IF SALES GE 5000 ...

Example 2: Using a compound comparison

The comparison condition in the following IF statement is true when the value in the
CODE field is not equal to X3 and the value in the QTY field is less than 15:

IF CODE NE 'X3' AND QTY LT 15 ...

Example 3: Searching for a given string occurrence

The comparison condition in the following IF statement is true when the character string

TOM occurs in the character string contained in the NAME field:

IF NAME CONTAINS 'TOM' ...

Example 4: Using a comparison to a given string value

The comparison condition in the following IF statement is true when the character string
contained in the PART-ID field matches the mask value **@398:

IF PART-ID MATCHES '**@398' ...

Cursor Position Condition

Purpose

Determines whether the cursor is located in a specified field following a mapin
operation.

The named map field can be tested for the presence of the cursor, or a comparison of

the cursor column or row position to a specified value can be made following mapin.

Syntax

►►──┬─ CURSOR ─────┬───────┬─────── at ───── map-field-name ───────┬──────────►◄
 │ └─ NOT ─┘ │
 │ │
 └┬─ CURSOR-COLUMN ─┬── comparison-operator cursor-position ───┘
 └─ CURSOR-ROW ─┘

Dialog Execution Status Condition

254 ADS Reference Guide

Parameters

NOT

Specifies the condition is true only when the cursor is not located in the named map
field.

map-field-name:

Tests the named map field for the presence of the cursor.

CURSOR-COLUMN

Specifies that the comparison with curson-position is made using the value in the
CURSOR-COLUMN.

CURSOR-ROW

Specifies that the comparison with curson-position is made using the value in the
CURSOR-ROW field.

comparison-operator:

The comparison operators are:

Operator Synonym Meaning

EQ = Equal

NE Not equal to

GT > Greater than

LT < Less than

GE Greater than or equal to

LE Less than or equal to

cursor-position:

Specifies the value being compared to the value in the CURSOR-COLUMN or
CURSOR-ROW field. The specified value should correspond to a possible cursor
column or row position on the terminal in use.

Cursor-position is a value variable, arithmetic expression, or numeric constant that
is specified according to the rules presented in this manual.

Dialog Execution Status Condition

Purpose

Determines whether a dialog is executing for the first time in an application thread.

Dialog Execution Status Condition

Chapter 8: Conditional Expressions 255

Syntax

►►────── FIRST-TIME ──►◄

Usage

Dialog Execution Status Test Outcomes

When a dialog executes for the first time, the CA ADS runtime system sets the execution
status to FIRST-TIME and the outcome of the execution status test is true. The outcome
of a subsequent test depends on the control command that precedes the test, as shown

in the table below.

Control command Status test outcome

DISPLAY False.

EXECUTE NEXT FUNCTION Depends on the control command (TRANSFER,
INVOKE, LINK, or RETURN) associated with the
selected application response.

INVOKE False for the dialog issuing the INVOKE command.

LEAVE Not applicable. The application is no longer
operative.

LINK Unchanged for the dialog issuing the LINK command.

RETURN Not applicable. The dialog is no longer operative in
the application thread.

If the dialog issuing the RETURN command is invoked

or l inked to again, the dialog execution status is reset
to FIRST-TIME.

TRANSFER Not applicable. The dialog is no longer operative in

the application thread.

If a dialog transfers to itself, the dialog execution
status is reset to FIRST-TIME.

READ False.

WRITE False.

CONTINUE False.

Environment Status Condition

256 ADS Reference Guide

Example

The following example shows the use of the dialog execution status condition:

IF FIRST-TIME

THEN

 MOVE 1 TO COUNTER.

ELSE

 ADD 1 TO COUNTER.

More information:

Control Commands (see page 325)

Environment Status Condition

Purpose

Determines the application's environment.

Status conditions can be tested in both online and batch environments.

Syntax

►►──────┬─ $BATCH ─┬───►◄
 └─ $ONLINE ─┘

Parameters

$BATCH

Is true when the dialog is executing in the batch environment.

$ONLINE

Is true when the dialog is executing in the online environment.

Example

In the following example, different types of processing are performed, depending on the
runtime environment.

IF $ONLINE

 THEN

 DISPLAY.

 ELSE

 WRITE TRANSACTION.

Level-88 Condition

Chapter 8: Conditional Expressions 257

Level-88 Condition

Purpose

Determines whether the value contained in a variable data field is equal to a value
associated with a level -88 condition name defined for that field. CA ADS checks for:

■ Single or multiple values

■ Single or multiple ranges of values

■ Any combination of values and ranges of values

Syntax

►►────── condition-name ──►◄

Parameters

condition-name:

Specifies the condition being tested.

Condition-name must be defined as a level -88 condition name in a data dictionary
or subschema record used by the dialog.

Map Field Status Condition

Purpose

Determines if one or more of a map's data fields are changed, identical, truncated,
erased, or in error.

A map field status condition applies to the status of the tested map data fields at the

time of the most recent mapin operation. The IN ERROR status condition also applies to
the status of the map fields following a map modification command that specifies EDIT
IS ERROR/CORRECT.

Map field status tests cannot be used to test the condition of system-supplied

$MESSAGE, $RESPONSE, and $PAGE fields.

Map Field Status Condition

258 ADS Reference Guide

Syntax

 ┌─────── , ────────┐
►►─────┬─┬── ALL ───┬───┬─ OF (─▼─ map-field-name ─┴─) ─┬──────┬─────────────►
 │ ├── ANY ───┤ └─ FIELDS ───────────────────────┘ │
 │ ├── SOME ──┤ │
 │ └┬─ NONE ─┬┘ │
 │ └─ NO ───┘ │
 ├─ ALL ─┬─ BUT ────┬── (map-field-name) ───────────────┤
 │ └─ EXCEPT ─┘ │
 └──┬─ FIELD ───┬── map-field-name ───────────────────────┘
 └─ DFLD ────┘

 ►─────┬───────┬────┬───────┬───┬─ IDENtical ─┬───────────────────────────────►◄
 ├─ IS ─┤ └─ NOT ─┘ ├─ CHANged ───┤
 └─ ARE ─┘ ├─ TRUNcated ─┤
 ├─ ERASed ────┤
 └─ in ERRor ──┘

Parameters

ALL

The outcome of the test must be true for every specified field.

ANY

The outcome of the test must be true for one or more of the specified fields.

NONE

The outcome of the test must be true for none of the specified fields.

NO can be used in place of NONE.

SOME

The outcome of the test must be true for at least one but not all of the specified
fields.

OF (map-field-name)

Specifies a data field in the dialog's map.

One or more fields, up to the number of fields defined for the map, can be specified

inside the parentheses.

FIELDS

Specifies all data fields in the dialog's map.

ALL BUT map-field-name:

Specifies that all map fields are to be tested, except for the fields specified by

map-field-name

EXCept can be used instead of ALL BUT.

Map-field-name specifies a data field in the dialog's map.

One or more fields can be specified, up to the number of fields defined for the map,

inside the parentheses.

Map Field Status Condition

Chapter 8: Conditional Expressions 259

FIELD map-field-name:

Explicitly names one map field for which the outcome of the test must be true.

Map-field-name must be a data field known to the dialog's map.

DFLD can be used in place of FIELD.

NOT

Specifies that a test is for the opposite of the specified status.

IDENtical

At the time of the most recent mapin from the terminal, the contents of the
mapped-in field are compared with the original contents of the dialog's record
buffer.

The condition is true if:

■ The field's modified data tag (MDT) is off. On mapin, the MDT is off if the user
did not type any characters in the field.

Note: The MDT can also be set at mapout, depending on the map's definition

and any MODIFY MAP commands issued before mapout.

■ The field's MDT is on, but each character in the input data is exactly the same
(including capitalization) as data that was originally mapped out for the field.

CHANged

At the time of the most recent mapin from the terminal, the field's modified data

tag (MDT) is checked to determine if the end user has changed the field.

When erase EOF is pressed at the beginning of a field, the MDT is set; however, the
changed condition is only true if you have specified a pad character.

The condition is true if:

■ The MDT is on for the field. The MDT is on if any characters are typed in the
field during mapin. This is true even if the characters are the same as those that
are mapped out.

Note: The MDT can also be set at mapout, depending on the map's definition
and any MODIFY MAP commands issued before mapout.

TRUNcated

At the time of the most recent mapin from the terminal, CA ADS truncates excess
data entered in the specified map fields.

ERASed

At the time of the most recent mapin from the terminal, the terminal operator
erased all data in specified map fields.

Map Field Status Condition

260 ADS Reference Guide

in ERRor

At the time of the most recent mapin from the terminal, specified map fields

contain erroneous data or were given the EDIT IS ERROR attribute in a map
modification command.

Note: You do not have to wait for mapin. You can set fields and immediately test

them.

Automatic editing affects the use of the IN ERROR status condition as follows:

■ If automatic editing is enabled and EXECUTE ON EDIT ERRORS is YES, fields that
contain erroneous data are set in error and control is returned to the response

process. Error tests can be made by using the IN ERROR status condition.

Note: The above does not apply for pageable map detail areas.

■ If automatic editing is enabled and EXECUTE ON EDIT ERRORS is NO, CA ADS
returns control to the mapout operation, displays specified error messages,
and waits for the user to enter valid data.

Note: The above does not apply for pageable map detail areas.

■ If automatic editing is not enabled for the map, fields that contain erroneous
data are not automatically set in error. To make use of the IN ERROR status

condition, the fields in error must be flagged by using the MODIFY MAP
command.

EXECUTE ON EDIT ERRORS is specified on the Process Modules screen.

Note: Map fields in error are not mapped in. Variable storage contains the values of

the fields prior to the last mapout operation.

Usage

Pageable Map Considerations

■ Conditions set for a data field are cumulative. If a map field is changed, identical,
truncated, erased, and/or in error at any time during a pseudo-converse, the field is

considered changed, identical, truncated, erased, or in error when control transfers
to a response process.

■ A test on a detail area map field applies to the detail occurrence referenced by the

most recent pageable map command following the last pseudo-converse.

■ After a PUT DETAIL command, the outcome of all tests on detail area map fields is
false.

Example 1: Testing for field changes

The map field status condition in the following IF statement is true when the user

modifies any map field:

IF ANY FIELD IS CHANGED ...

Map Paging Status Conditions

Chapter 8: Conditional Expressions 261

Example 2: Testing for modified data

The map field status condition in the following IF statement is true if the input data is

identical to data initially displayed on the map. In this example, the user is asked to
specify another department if no change is made to the department id or name:

IF FIELD DEPT-ID-0410 IS IDENTICAL

 AND FIELD DEPT-NAME-0410 IS IDENTICAL

 THEN

 DISPLAY MSG TEXT

 'PLEASE SPECIFY NEXT DEPARTMENT'.

Example 3: Testing for field truncation

The map field status condition in the following IF statement is true when excess data
entered in the CUST-CITY field has been truncated during the mapin operation:

IF FIELD CUST-CITY IS TRUNCATED ...

Example 4: Testing for erased data

The map field status condition in the following IF statement is true when the user erases
all data in the CUST-NAME, CUST-ADDR1, and CUST-CITY fields:

IF ALL OF (CUST-NAME, CUST-ADDR1, CUST-CITY) ARE ERASED ...

More information:

CA ADS Dialog Compiler (ADSC) (see page 91)
Map Commands (see page 449)

Map Paging Status Conditions

Purpose

Determines the occurrence of runtime events associated with a pageable map.

Map Paging Status Conditions

262 ADS Reference Guide

Syntax

►►───┬─┬──────── $PAGE-READY ──────────┬─┬────────────────────────────────────►◄
 │ └──────── $PRDY ─────────────┘ │
 ├─┬──────── $FULLPAGE ────────────┬─┤
 │ └──────── $FPG ──────────────┘ │
 ├─┬──────── $FORWARD ─────────────┬─┤
 │ └──────── $FWD ──────────────┘ │
 ├─┬──────── $BACKWARD ────────────┬─┤
 │ └──────── $BWD ──────────────┘ │
 ├─┬──────── $HEADER ──────────────┬─┤
 │ └──────── $HDR ──────────────┘ │
 ├─┬──────── $DETAIL ──────────────┬─┤
 │ └──────── $DTL ──────────────┘ │
 ├─┬──────── $END-OF-DATA ─────────┬─┤
 │ └──────── $EOD ──────────────┘ │
 ├─┬──────── $DETAIL-NOT-FOUND ────┬─┤
 │ └──────── $DNF ──────────────┘ │
 └─┬──────── $MAXIMUM-DETAILS-PUT ─┬─┘
 └──────── $MDP ──────────────┘

Parameters

$PAGE-READY

Tests whether the runtime system has written a full map page to scratch.

$PAGE-READY is set to true for each map page built in a given map paging session
before the page is displayed.

$PAGE-READY is reset and the outcome of the test is false as soon as the next detail
occurrence is written to a scratch record.

If $PAGE-READY is used, the Auto display option must not be chosen for the dialog.
This setting is made using the Map Specification screen.

$PRDY can be used in place of $PAGE-READY.

$FULLPAGE

Tests whether the runtime system has displayed the first map page to the user as a

result of a PUT DETAIL command.

$FULLPAGE is reset and the outcome of the test is false when a DISPLAY command
without the CONTINUE keyword is issued.

$FPG can be used in place of $FULLPAGE.

$FORWARD

Tests whether the user has pressed the control key associated with paging forward.

$FORWARD is reset and the outcome of the test is false when a new page is
displayed at the user's screen.

$FWD can be used in place of $FORWARD.

Map Paging Status Conditions

Chapter 8: Conditional Expressions 263

$BACKWARD

Tests whether the terminal operator has pressed the control key associated with

paging backward.

$BACKWARD is reset and the outcome of the test is false when a new page is
displayed at the user's screen.

$BWD can be used in place of $BACKWARD.

$HEADER

Tests whether a modified data tag (MDT) was set for any header or footer area map
fields following the most recent mapin operation from the terminal.

$HEADER is reset and the outcome of the test is false when a DISPLAY command

without the CONTINUE keyword is issued.

$HDR can be used in place of $HEADER.

$DETAIL

Tests whether the most recent GET DETAIL command with the FIRST or NEXT
keyword has retrieved a modified detail occurrence.

$DETAIL is reset and the outcome of the test is false when a DISPLAY command
without the CONTINUE keyword is issued.

$DTL can be used in place of $DETAIL.

$END-OF-DATA

Tests whether the most recent GET DETAIL command with the FIRST or NEXT

keyword has encountered an end-of-data condition while attempting to retrieve a
modified detail occurrence.

An end-of-data condition results when the runtime system reaches the physical end
of detail occurrences without finding a modified detail occurrence.

$END-OF-DATA is reset and the outcome of the test is false when a DISPLAY
command without the CONTINUE keyword is issued.

$EOD can be used in place of $END-OF-DATA.

$DETAIL-NOT-FOUND

Tests whether the most recent GET DETAIL command with the KEY IS specification

has encountered a detail -not-found condition while attempting to retrieve a
modified detail occurrence.

A detail-not-found condition results if no detail occurrence with the specified key

exists or if the existing detail occurrence is not a modified detail occurrence.

$DETAIL-NOT-FOUND is reset and the outcome of the test is false when a DISPLAY
command without the CONTINUE keyword is issued.

$DNF can be used in place of $DETAIL-NOT-FOUND.

Map Paging Status Conditions

264 ADS Reference Guide

$MAXIMUM-DETAILS-PUT

Tests whether storage is unavailable to hold new detail occurrences.

$MAXIMUM-DETAILS-PUT (MDP) is set when a PUT DETAIL command fails to create
a detail occurrence due to lack of storage.

The runtime system allocates storage for detail occurrences based on the system

generation OLM statement.

$MAXIMUM-DETAILS-PUT is reset across a pseudoconverse even though the
condition stil l exists.

You can use $MDP in place of $MAXIMUM-DETAILS-PUT.

Usage

Map paging status conditions can be used in one or more dialogs associated with the
same pageable map.

At the beginning of a map paging session, the map paging status conditions are
initialized and the outcome of each test is false.

Example

The following example defines a premap process that builds the first page of a pageable
map. The page is displayed with a message as soon as the page is built. The
$PAGE-READY condition is used to determine when the page is built:

OBTAIN FIRST EMPLOYEE WITHIN DEPT-EMPLOYEE.

WHILE NOT $PAGE-READY

 AND NOT DB-END-OF-SET

 REPEAT.

 MOVE EMP-ID TO WK-EMP-ID.

 MOVE EMP-LNAME TO WK-EMP-LNAME.

 MOVE EMP-START-DATE TO WK-EMP-START-DATE.

 ACCEPT DB-KEY INTO WK-KEY FROM CURRENCY.

 PUT NEW DETAIL KEY WK-KEY.

 OBTAIN NEXT EMPLOYEE WITHIN DEPT-EMPLOYEE.

 END.

DISPLAY MSG TEXT

 'FOR MORE INFORMATION, ENTER AN EMPLOYEE''S ID'.

Subsequent pages for this pageable map are built, as needed, by the map's response

process (not shown).

Set Status Condition

Chapter 8: Conditional Expressions 265

Set Status Condition

Purpose

Tests a set for the presence of member record occurrences or determine whether a
record is a member of a specified set.

Note: The set status condition is not allowed for sets whose members are stored in

native VSAM data sets.

Syntax

►►────┬─ SET set-name is ──────┬───────┬───── EMPTY ─────┬────────────────────►◄
 │ └─ NOT ─┘ │
 └─ SET set-name MEMBER ────────────────────────────┘

Parameters

set-name is EMPTY

Tests the current occurrence of the named set for the presence of member records.
The outcome of the test is true only when the specified set has no members.

Set-name must be known to the dialog's subschema.

NOT

Specifies that the set has one or more members for the test to be true.

set-name MEMBER

Tests the current record of run unit to determine whether it participates as a
member in any occurrence of the named set.

Set-name must be known to the dialog's subschema.

Example 1: Testing for set member records

The following statements establish a current occurrence of the CUSTOMER-ORDER set
and then test to determine whether the set has any member records:

FIND CALC CUSTOMER.

IF SET CUSTOMER-ORDER EMPTY

THEN

 .

 .

 .

Arithmetic and Assignment Command Status Condition

266 ADS Reference Guide

Example 2: Testing for a specific member of a set

The following statements establish a POLICY record as current of run unit and then test

to determine whether the record is a member of any occurrence of the AGENCY-POLICY
set:

OBTAIN CALC POLICY.

IF SET AGENCY-POLICY MEMBER

THEN

 .

 .

 .

More information:

Control Commands (see page 325)

Arithmetic and Assignment Command Status Condition

Purpose

Tests the results of the previous assignment command.

Syntax

►►─┬─ ANY-DATA-ERROR ──────────────────────┬──────────────────────────────────►◄
 ├─ BAD-DATA-TYPE ───────────────────────┤
 ├─ UNSUPPORTED-DATA-CONVERSION ─────────┤
 ├─ NO-NUMBER-EBCDIC/NUMERIC-CONVERSION ─┤
 ├─ INCORRECT-FIELD-LENGTH ──────────────┤
 ├─ INVALID-SUBSCRIPT-VALUE ─────────────┤
 ├─ DATE-FORMAT-ERROR ───────────────────┤
 ├─ SPECIFICATION-EXCEPTION ─────────────┤
 ├─ DATA-EXCEPTION ──────────────────────┤
 ├─ FIXED-POINT-OVERFLOW-EXCEPTION ──────┤
 ├─ FIXED-POINT-DIVIDE-EXCEPTION ────────┤
 ├─ DECIMAL-OVERFLOW-EXCEPTION ──────────┤
 ├─ DECIMAL-DIVIDE-EXCEPTION ────────────┤
 ├─ FLOATING-POINT-DIVIDE-EXCEPTION ─────┤
 ├─ EXPONENT-OVERFLOW-EXCEPTION ─────────┤
 ├─ EXPONENT-UNDERFLOW-EXCEPTION ────────┤
 └─ SIGNIFICANCE-EXCEPTION ──────────────┘

Arithmetic and Assignment Command Status Condition

Chapter 8: Conditional Expressions 267

Example

The following example shows how the ALLOWING clause can be used to prevent

application abends. The specified MOVE command moves a numeric field from an
eight-byte field to a four-byte field. The application must be prepared to handle any
error condition that might arise.

MOVE big-num TO little-num ALLOWING-ANY-DATA-ERROR.

IF DECIMAL-OVERFLOW-EXCEPTION

 DISPLAY MSG MESSAGE TEXT 'SOURCE DATA TOO LARGE'.

IF ANY-DATA-ERROR

 DISPLAY MSG MESSAGE TEXT 'INVALID DATA VALUE'.

Chapter 9: Constants 269

Chapter 9: Constants

This section contains the following topics:

Overview (see page 269)
Figurative Constants (see page 269)
Graphic Literals (see page 271)

Multibit Binary Constants (see page 272)
Nonnumeric Literals (see page 273)
Numeric l iterals (see page 273)

Overview

Constants are data items that are not subject to change during the execution of a dialog.
Constants include the following:

■ Figurative constants

■ Graphic l iterals

■ Multibit binary constants

■ Nonnumeric l iterals

■ Numeric l iterals

Figurative Constants

Purpose

A figurative constant is a reserved CA ADS word that represents a numeric value, a
character, or a string of characters.

A figurative constant can be used as the source field in a MOVE operation or as an

operand in a comparison expression.

Syntax

►►──┬───────┬──┬─ 'literal' ───┬──►◄
 └─ ALL ─┘ ├─ SPACEs ──────┤
 ├─ ZEROs ───────┤
 ├─ ZEROES ──────┤
 ├─ HIGH-VALUEs ─┤
 ├─ LOW-VALUEs ──┤
 └─ QUOTEs ──────┘

Figurative Constants

270 ADS Reference Guide

Parameters

ALL

Specifies that the figurative constant is repeated to fi l l the target field in a MOVE
statement.

ALL can precede 'literal'. Other figurative constants do not need to be preceded by

ALL, since they always repeat to fi l l the target field.

'literal'

A nonnumeric l iteral of up to 255 characters, enclosed in single quotation marks.

If ALL is specified, the literal value is repeated as many times as required to fi l l the
field. If ALL is not specified, any remaining positions in the target field are fi l led with

blanks.

SPACEs

Represents a field that contains all blanks.

ZEROs/ZEROES

Represents a field that contains all zeros.

Note: PIC X fields are treated as unsigned zoned decimal fields. ZEROS or ZEROES is
the only figurative constant that can be specified in arithmetic expressions.

HIGH-VALUEs

Represents a field fi l led with the character that has the highest value in the
computer collating sequence (that is, X'FF').

LOW-VALUEs

Represents a field fi l led with binary zeros (that is, X'00').

QUOTEs

Represents a field fi l led with single quotation marks.

Usage

The VALUE IS clause for fields in records used by an CA ADS dialog can be defined using

any of the figurative constants l isted in the syntax diagram. Note that the only allowable
figurative constants in the VALUE IS clause for fields defined as numeric constants are
ZEROS and ZEROES.

Restriction HIGH-VALUEs, LOW-VALUEs, and QUOTEs cannot be used as a source field in

a MOVE statement, or as an operand in a comparison expression if the corresponding
target field is a data type other than group, EBCDIC, or UNSIGNED ZONE DECIMAL.

Example 1: Moving zero to a numeric field

MOVE ZERO TO COUNTER.

Graphic Literals

Chapter 9: Constants 271

Example 2: Filling a field with binary zeros

MOVE ALL 'XO' TO HUGS-AND-KISSES.

Example 3: Comparing the contents of a field

IF EMP-NAME EQ SPACES

 THEN

 DISPLAY TEXT 'ENTER EMPLOYEE NAME'.

Graphic Literals

Purpose

A graphic l iteral, also known as a G-literal, is a special type of double-byte character set
(DBCS) string used when working with non-EBCDIC alphabets, such as the Japanese Kanji

alphabet, the Korean Han-gul alphabet, or Chinese characters.

Usage

The graphic l iteral allows DBCS characters to be moved or compared to database or map
record elements when shift codes are not part of the actual data.

This type of constant starts with the EBCDIC character G, followed by a single quotation

character, a shiftout [SO], one or more DBCS characters, a shiftin [SI], and a closing
single quotation character:

G'[SO]DBCS-characters[SI]'

The number of characters expressed depends on the hardware supporting DBCS.
Maximum size is 255 bytes.

Note: For more information about defining data to handle DBCS characters in the data
dictionary, see the CA IDMS IDD Quick Reference Guide. For more information about
defining maps that handle DBCS characters, see the CA IDMS Mapping Facility Guide.

Example

An example of a graphic l iteral used in a process command is shown below:

IF MAP-REC-DBCS EQ G'[SO]DBCS-characters[SI]'

 THEN

 RETURN.

Multibit Binary Constants

272 ADS Reference Guide

Multibit Binary Constants

Purpose

A multibit binary constant is a 1- to 32-character string that can contain only the values
1 and 0. The string is enclosed in single quotation marks with the first quotation mark
immediately preceded by the character B.

B'110101'

Usage

A multibit binary constant can be used as a comparison for a data field and can be used
to store a value in a data field.

The data field must be an elementary data field defined with the USAGE IS BIT clause. If
the data field is an occurring field within a group, all other data fields in the group must

be defined with USAGE IS BIT.

In general, groups in record structures are of type EBCDIC. Multibit binary is an
exception. Even at the group level, multibit binary (MBB) fields should be referenced
for MOVEs or comparisons with B'...' fields. Specifically, a MBB group field would be
initialized to all zeroes by moving B'000...' to the MBB field, or by redefining the MBB

field with an EBCDIC field and moving LOW-VALUES to the redefined EBCDIC field.

Example 1: Data field definition

02 MASK-VALUE PIC X(7) USAGE IS BIT.

02 MASK-VALUE-OCCURRENCE REDEFINES MASK-VALUE

 PIC X USAGE IS BIT OCCURS 7 TIMES.

Example 2: Process command

MOVE B'1001000' TO MASK-VALUE

WHILE MASK-VALUE EQ B'1001000'

 REPEAT.

 .

 .

 .

 IF DB-END-OF-SET

 THEN

 MOVE B'0' TO MASK-VALUE-OCCURRENCE (4).

 END.

Nonnumeric Literals

Chapter 9: Constants 273

Nonnumeric Literals

Purpose

A nonnumeric l iteral is a string of any allowable EBCDIC or DBCS characters. The
nonnumeric l iteral must be enclosed in single quotation marks.

Nonnumeric l iterals can be used whenever the process command syntax specifies that

the literal be in quotes.

Usage

A single quotation mark in the string is coded as two single quotation marks (' ').

Example 1: Digits and characters used as nonnumeric literals

The digits 0307 and the characters END OF SET CONDITION in the following example are
nonnumeric l iterals:

IF ERROR-STATUS EQ '0307'

 THEN

 DISPLAY TEXT 'END OF SET CONDITION'.

Example 2: Single quotation marks within a string

The apostrophe contained in the following nonnumeric l iteral is coded with two single

quotation marks:

MOVE 'JOHN KERR''S BROTHER' TO EMP-RELATIONSHIP.

Numeric literals

Purpose

A numeric l iteral is a numeric value that can be expressed as a fixed-point or

floating-point constant.

Numeric literals

274 ADS Reference Guide

First Usage

Fixed-Point Numeric Literals

A fixed-point numeric l iteral is a 1- to 16-digit number with an optional decimal point.
The decimal point cannot be in the first or last position of the constant. If the constant
does not contain a decimal point, it is an integer.

Fixed-point numeric l iterals are treated internally as packed decimal numbers and can
be used whenever the process command syntax specifies a user-supplied numeric
l iteral.

A fixed-point numeric l iteral can be signed or unsigned. A unary plus (+) or unary minus

(-) can immediately precede the first digit or can be separated from the digit by one or
more spaces. The numeric l iteral is positive if no sign is provided.

Example 1: Fixed-point numeric literal as a value for comparison

The following example compares the value in the field VALUE-2 to the fixed-point
numeric l iteral -13.65:

IF VALUE-2 EQ -13.65

 THEN

 .

 .

 .

Example 2: An integer as a fixed-point numeric literal

The following example moves the integer 31456 to the field VALUE-1:

MOVE 31456 TO VALUE-1.

Second Usage

Floating-Point Numeric Literals

A floating-point numeric l iteral is a numeric l iteral whose value is expressed as a
mantissa, which represents the number, followed by an exponent (characteristic), which

determines the actual decimal position of the number.

All floating-point numeric l iterals are treated internally as internal short or long
floating-point numbers, depending on the size of the mantissa. Floating-point numeric
l iterals can be used whenever the process command syntax specifies an a rithmetic

expression, the name of a user-defined data field, or a user-supplied numeric constant.

Numeric literals

Chapter 9: Constants 275

Format of a Floating-Point Numeric Literal:

■ The mantissa, coded first, is a 1- to 16-digit number with an optional decimal point.

The decimal point can be placed anywhere in the number, including in the first or
last position. If no decimal point is included, it is considered to be in the last
position. For example:

1.2564E3

In this example, 1.2564 is the mantissa.

■ The character E immediately follows the mantissa. For example:

1.2564E3

■ The characteristic, a 1- or 2-digit integer preceded by an optional plus (+) or minus
(-) sign immediately follows the character E. If no sign is included, it is assumed to
be a plus sign. For example:

1.2564E3

In this example, 3 is the characteristic.

The value of the floating-point constant is the product of the mantissa, and ten raised to

the power of the characteristic.

A floating-point numeric l iteral can be signed or unsigned. A unary plus (+) or unary
minus (-) can immediately precede the first digit or can be separated from the digit by

one or more spaces. If no sign is provided, the numeric l iteral is positive.

Examples

The following examples show the floating-point numeric l iterals and their fixed point
equivalents.

Floating-point numeric literal Fixed-point equivalent

1.2574E3 1257.4

1.2574E-3 0.0012574

-1.2574E20 -125740000000000000000

Chapter 10: Error Handling 277

Chapter 10: Error Handling

This section contains the following topics:

Overview (see page 277)
The Autostatus Facil ity (see page 278)
Error Expressions (see page 279)

The ALLOWING Clause (see page 280)
Status Definition Records (see page 281)

Overview

Errors encountered while accessing the database, or involving queue or scratch activity

are handled differently depending on whether or not SQL commands are used.

SQL Commands

When CA IDMS/DB executes an SQL statement, it returns information about the status
of statement execution to a data structure called the SQLCA. The dialog contains logical
to handle exceptional conditions resulting from statement execution. This logic takes

the form of checking SQLCA information through the use of a conditional statement or
through the use of the WHENEVER SQLERROR or WHENEVER SQLWARNING statement.
In either situation, control is always returned to the dialog.

Note: For more information about conditional statements and the WHENEVER

SQLERROR statement processed during an SQL session, see the CA IDMS SQL
Programming Guide.

Non-SQL Commands

When CA IDMS/DB executes a non-SQL process command that involves database,
queue, or scratch activity, or a WRITE PRINTER util ity command, CA ADS returns a 4 -byte

status code to an internal error-status field for the issuing dialog. A subsequent process
command statement can test for the presence of a specified status code. Based on the
outcome of the test, further processing can be done.

Handling errors in the non-SQL environment involves the use of the following:

■ The autostatus facility, which handles errors generated by command processing

■ Error expressions, which specify allowable status codes that can be returned

■ The status definition record, which allows level -88 condition names to be
associated with status codes

The Autostatus Facility

278 ADS Reference Guide

The autostatus facil ity, error expressions, and the status definition record are discussed
separately in this section.

Note: For more information about using automatic editing and error -handling facilities
to evaluate input data, see the CA IDMS Mapping Facility Guide.

The Autostatus Facility

Autostatus is a runtime facil ity that enables CA ADS to return specific status codes to an

issuing dialog. When autostatus is in use, CA ADS returns only certain status codes to
the issuing dialog. The autostatus facil ity is not appropriate for use when data is defined
in logical records and accessed using logical record commands.

Enabling Autostatus

Autostatus is enabled on a dialog-by-dialog basis during dialog compilation by specifying
the Autostatus option on the Options and Directives screen.

The availability of autostatus is controlled by the autostatus clause of the system

generation ADSO statement. The ADSO AUTOSTATUS clause specifies:

■ Whether the Autostatus option is selected, by default, on the Options and
Directives screen

■ Whether this default setting can be overridden during dialog compilation

Note: For more information about the AUTOSTATUS clause of the system generation
ADSO statement, see the CA IDMS System Generation Guide.

More information:

CA ADS Dialog Compiler (ADSC) (see page 91)
Database Access Commands (see page 363)

Error Expressions

Chapter 10: Error Handling 279

Status Codes Returned by the Autostatus Facility

If command processing results in a status code not allowed by autostatus, dialog
execution terminates abnormally. To allow the dialog to receive other status codes,
specify all allowable status codes in an error expression. Error expressions are described

later in this section.

Status codes allowed by autostatus are l isted below.

Status code Meaning

0000 The request was executed successfully.

0307 An end-of-set condition was encountered.

0326 The requested record cannot be found.

1707 An end-of-index condition was encountered.

1726 The requested index record cannot be found.

4303 The requested scratch area cannot be found.

4305 The requested scratch record cannot be found.

4317 A request to replace a scratch record was executed successfully.

4404 The requested queue id cannot be found.

4405 The requested queue record cannot be found.

5149 NOWAIT was specified in a KEEP LONGTERM request, and a wait is

required.

Error Expressions

An error expression is a clause that consists of one or more allowable status codes, a
range of status codes, or one or more level -88 status definition record condition names

that can be returned to a dialog. In command syntax, error expressions are indicated as
error-expression.

An error expression is allowed only if a dialog is compiled with the Autostatus option
selected. If a dialog is compiled without the Autostatus option, the expression is flagged

as an error during process compilation.

The ALLOWING Clause

280 ADS Reference Guide

The ALLOWING Clause

Purpose

The ALLOWING clause is used to allow the dialog to receive status codes not allowed by
the autostatus facil ity.

Syntax

►►─── ALLOWing error codes ───►

 ┌─────────────────────────────── , ───────────────────────────────────┐
 ►─(─▼─┬─ error-status-code-name ──┬─┴)─►◄
 └─ 'error─status─code'───┬──────────────────────────────────────┬─┘
 └─┬─ THROUGH ─┬── 'error-status-code' ─┘
 └─ THRU ────┘

Parameters

error-status-code-name

Specifies a level-88 condition name defined in the dialog's status definition record.

Multiple status code and condition name specifications must be separated by
commas or blanks.

'error-status-code'

A 4-digit number enclosed in single quotati on marks that identifies a status code
applicable to the process command.

THROUGH 'error-status-code'

Specifies a status code or range of status codes.

THRU can be used in place of THROUGH.

Usage

An error expression is coded in the form of an ALLOWING clause in any of the following

commands:

■ All database record commands except for ACCEPT STATISTICS, COMMIT, READY,
and ROLLBACK

■ All logical record commands except for ON

■ All queue and scratch management commands

■ The WRITE PRINTER util ity command

Status Definition Records

Chapter 10: Error Handling 281

An ALLOWING clause overrides the autostatus facil ity. The values normally allowed by
autostatus, with the exception of 0000, are returned only if explicitly named.

Nonzero status codes returned to a dialog are checked against the specified values. If
the status code matches any of the specified values, processing continues. If the status
code does not match any of the specified values, the CA ADS runtime system terminates

the application thread.

The ALLOWING clause is useful to check for deadlock conditions.

The examples below il lustrate the ALLOWING clause in two database access commands.

Example 1: Specification of a range of allowable error codes

MODIFY ORDOR ALLOWING ERROR CODES ('0801' THRU '0850').

Example 2: Specification of a site-defined level-88 status code

FIND CUST-NUM ALLOWING (ANY-ERROR).

ANY-ERROR is a level-88 condition name in a site-defined status definition record. See
the discussion of status definition records that follows this example.

Status Definition Records

Overview

Status codes can be tested using a system-supplied status definition record or by using a
site-defined definition record. A status definition record associates status codes with

level-88 condition names. The condition names can be coded in error expressions in
place of 4-character status codes.

The status definition record is specified by the STATUS clause of the system generation
ADSO statement. The STATUS clause specifies:

■ The name of the default status definition record available to dialogs at dialog

compilation time

■ Whether this default status definition record can be overridden during dialog
compilation

Note: For more information about the system generation ADSO statement, see the CA

IDMS System Generation Guide.

A status definition record is associated with a dialog during dialog compilation.
However, a buffer for this record is not allocated at runtime.

Status Definition Records

282 ADS Reference Guide

System-Supplied Status Definition Record

CA ADS supplies the ADSO-STAT-DEF-REC status definition record. ADSO-STAT-DEF-REC

defines level-88 record elements for the status codes most commonly tested.

Tests that specify error-status code names can include only those condition names that
are defined in the status definition record associated with the dialog.

Example 1: Testing with the 4-byte status code

The following example tests for an error using the 4-byte status code 0307:

IF ERROR-STATUS IS '0307'

THEN

 CALL SUBA.

ELSE

 CALL SUBZ.

Example 2: Testing with a status definition record

The following example uses a status definition record level -88 element to test for the

same error as in example 1 above:

IF DB-END-OF-SET

THEN

 CALL SUBA.

ELSE

 CALL SUBZ.

OBTAIN CALC DEPARTMENT.

OBTAIN CALC OFFICE.

IF DB-REC-NOT-FOUND FOR DEPARTMENT

 THEN CALL SUBA.

IF DB-REC-NOT-FOUND FOR OFFICE

 THEN CALL SUBB.

Site-Defined Status Definition Record

The system-defined status definition record ADSO-STAT-DEF-REC can be modified or
replaced with one or more site-specific status definition records by using the IDD DDDL
compiler.

Status Definition Records

Chapter 10: Error Handling 283

Considerations

■ The record definition must include a 1- to 32-character level-01 record name and

one or more level-88 condition names that refer to status codes returned by
database record, logical record, or queue and scratch management commands, or
by the WRITE PRINTER util ity command. Tests that specify error-status code names

can include only those condition names that are defined in the status definition
record.

■ The record definition can include no more than one level -02 elementary field
description that represents the value of the most recent status code returned to

the dialog. Such a field is not referenced directly. CA ADS uses the internal 4-byte
unsigned zoned decimal error-status field that contains the most recently returned
status code.

Example 1: Defining a site-specific status definition record

In this example, the first record defines the field CODE-FIELD, which contains two

level-88 condition names. The second record contains only level -88 record elements.
Record definitions are shown below:

01 ADSO-ONE-STAT-REC

 02 CODE-FIELD PIC X(4).

 88 OKAY VALUE '0000'.

 88 NOT-SO-GOOD VALUE '0001' THRU '9999'.

01 ADSO-TWO-STAT-DEF

 88 DB-STATUS-OKAY VALUE '0000'.

 88 DB-END-OF-SET VALUE '0307'.

 88 NO-RECORD VALUE '0326'.

 88 MODIFY-PROBLEM VALUE '0800' THRU '0899'.

Example 2: Testing for the return of specific error codes

In this example, ADSO-TWO-STAT-DEF (defined in example 1) is used to test for the
return of error-status codes 0800 through 0899:

MODIFY CUST

IF MODIFY-PROBLEM

THEN

 .

 .

 .

Status Definition Records

284 ADS Reference Guide

Example 3: Testing for subschema record error status

In this example, ADSO-ONE-STAT-REC (defined in example 1) is used to test the latest

error status returned for subschema records DEPARTMENT and OFFICE:

OBTAIN CALC DEPARTMENT.

OBTAIN CALC OFFICE.

IF NOT-SO-GOOD FOR DEPARTMENT

 THEN CALL SUBA.

IF NOT-SO-GOOD FOR OFFICE

 THEN CALL SUBB.

Note: For more information about using the RECORD statement to add, modify, or
delete status definition records, see the CA IDMS IDD Quick Reference Guide.

More information:

CA ADS Dialog Compiler (ADSC) (see page 91)

ADSO-STAT-DEF-REC

Record Definition

ADSO-STAT-DEF-REC.

02 ERROR-STATUS PIC 9(4).

 88 DB-STATUS-OK VALUE '0000'.

 88 DB-END-OF-SET VALUE '0307'.

 88 DB-REC-NOT-FOUND VALUE '0326'.

 88 DB-END-OF-INDEX VALUE '1707'.

 88 DB-INDEX-NOT-FOUND VALUE '1726'.

 88 SCRATCH-AREA-NOT-FOUND VALUE '4303'.

 88 SCRATCH-REC-NOT-FOUND VALUE '4305'.

 88 SCRATCH-REC-REPLACED VALUE '4317'.

 88 QUEUE-ID-NOT-FOUND VALUE '4404'.

 88 QUEUE-REC-NOT-FOUND VALUE '4405'.

 88 DB-ANY-ERROR VALUE '0001'

 THRU '9999'.

Chapter 11: Variable Data Fields 285

Chapter 11: Variable Data Fields

This section contains the following topics:

Overview (see page 285)
User-Defined Data Field Names (see page 285)
System-Supplied Data Field Names (see page 287)

Entity Names (see page 293)

Overview

Variable data fields are data items whose values can change during the execution of a
dialog.

Types of Variable Data Fields

Variable data fields can be user-defined or system-defined. Each of these types of
variable data fields is discussed separately below.

Syntax References

The appearance of variable in CA ADS process language syntax denotes the validity of

either a user-defined or a system-defined data field.

User-Defined Data Field Names

Purpose

User-defined data field names specify variable data fields in subschema records, map
work records, or dialog work records.

User-defined data fields can be used as both source and target fields in process
commands.

User-Defined Data Field Names

286 ADS Reference Guide

Syntax

►►──────┬─ + ◄ ┬─── data-field-name ──►
 └─ - ──┘

 ►─┬──┬───────────────────►
 └┬─ OF ─┬───┬─ sql-table-name ───────────────────────┬─┘
 └─ IN ─┘ ├─ lr-name ────────────────────────────┬─┘
 └┬─ record-name ─┬─┬───────────────────┤
 └─ role-name ───┘ └┬─ OF ─┬─ lr-name ─┘
 └─ IN ─┘

 ►──────┬────────────────────────────┬──►◄
 │ ┌────── , ───────┐ │
 └── (-─▼─── subscript ──┴─)-─┘

Parameters

+/–

Specifies the unary operator to precede a numeric data field.

A plus sign (+) does not change the sign of the data field.

A minus sign (-) multiplies the data field by -1.

+ is the default when neither + or - is specified.

A unary operator can be used when the data field is specified as part of an
arithmetic expression.

data-field-name

Specifies the 1- to 32-character name of a variable data field.

Data-field-name must begin with an alphabetic, national (@, #, and $), or numeric
character. This field can specify a record or role name where logically appropriate.
The named record or role is treated as a group field.

OF

Introduces record-name, role-name, or lr-name.

IN can be used in place of OF.

sql-table-name

Specifies the name of the SQL table that contains the fields referenced by
data-field-name, when the SQL schema name has been entered in the ADSC

Records and Tables screen.

record-name

Specifies the name of the record that contains the fields referenced by
data-field-name.

role-name

Specifies the name of the role that contains the fields referenced by
data-field-name.

System-Supplied Data Field Names

Chapter 11: Variable Data Fields 287

lr-name

Specifies the name of the logical record that contains the fields referenced by

data-field-name.

Record-name, role-name, or lr-name is required if the named field is not unique
among the records and roles known to the dialog. The reference to the data field

must be unambiguous. For example, if the named field participates in a role, then
reference to the field always requires qualification by record or role name. Further
qualification of record-name or role-name with lr-name may also be necessary.

subscript

Specifies an arithmetic expression, variable data field, or numeric l iteral that

indicates the value of each subscript required to reference a specific occurrence of
the field that is referenced by data-field-name.

Subscript applies only if the named field is defined as a multiply-occurring field.

Example

The following example il lustrates a data field name used with a MOVE command to

specify a nonunique subscripted field:

MOVE CUSTOMER-NUMBER OF CUST-ACC-REC (3) TO CUSTORDR.

More information:

Records and Tables Screen (see page 111)

System-Supplied Data Field Names

Purpose

System-supplied data field names specify variable data fields supplied by the CA ADS

runtime system.

System-Supplied Data Field Names

288 ADS Reference Guide

Syntax

►►───────┬─ + ◄─┬───┬─ DIRECT-DBKEY ────────────┬────────────────────────────►◄
 └─ - ──┘ ├─ DB-NAME ─────────────────┤
 ├─ NODE-NAME ───────────────┤
 ├─ agr-data-field ──────────┤
 ├─ amr-data-field ──────────┤
 ├─ $RESPONSE ───────────────┤
 ├─ $PAGE ───────────────────┤
 ├─ LENGTH (map-field-name) ─┤
 ├─ CURSOR-ROW ──────────────┤
 ├─ CURSOR-COLUMN ───────────┤
 ├─ ERROR-STATUS ────────────┤
 ├─ JULIAN ──────────────────┤
 ├─ JULIANX ─────────────────┤
 ├─ DATE ────────────────────┤
 ├─ DATEX ───────────────────┤
 ├─ TIME ────────────────────┤
 ├─┬─ $ERROR-COUNT ─┬────────┤
 │ └─ $ERRCNT ──────┘ │
 ├─┬─ $INPUT-COUNT ─┬────────┤
 │ └─ $INCNT ───────┘ │
 └─┬─ $OUTPUT-COUNT ─┬───────┘
 └─ $OUTCNT ───────┘

Parameters

+/-

Specifies the unary operator to precede a numeric data field.

A plus sign (+) does not change the sign of the data field.

A minus sign (-) multiplies the data field by -1.

+ is the default when neither + or - is specified.

A unary operator can be used when the data field is specified as part of an
arithmetic expression

DIRECT-DBKEY

References a binary fullword field that contains the database key of the record
being stored.

DIRECT-DBKEY is used in conjunction with a STORE operation when the location
mode of the record being stored is DIRECT.

DB-NAME/NODE-NAME

Establish the database name and Distributed Database System (DDS) node name
used for database commands at runtime. DB-NAME and NODE-NAME allow access
to multiple databases under a DC/UCF system. When used, DB-NAME and
NODE-NAME must be set before the first database command is issued for the run

unit.

When dialog execution begins, DB-NAME and NODE-NAME are initialized to spaces.
Database names and DDS node names that are moved to these fields within a
process are propagated downward to all lower level dialogs. In this way, a dialog
can access a database other than the subschema default.

DB-NAME and NODE-NAME can also be specified when the runtime system is
initiated,

System-Supplied Data Field Names

Chapter 11: Variable Data Fields 289

agr-data-field

Represents a data field provided in the ADSO-APPLICATION- GLOBAL-RECORD.

This record supplies runtime information in applications created by the CA ADS
application compiler (ADSA).

amr-data-field

Represents a data field provided in the ADSO-APPLICATION- MENU-RECORD.

The ADSO-APPLICATION-MENU-RECORD contains information used to build menus

in applications created by the CA ADS application compiler.

$RESPONSE

References the 32-character $RESPONSE field of a map.

Any value moved to $RESPONSE appears in the map's $RESPONSE field when the
map is displayed. On mapin, the value in the $RESPONSE field is considered by the

runtime system in its selection of a dialog response process or an application
function.

Once a response is selected, the $RESPONSE field is cleared.

Note: For more information about the $RESPONSE map field, see the CA IDMS
Mapping Facility Guide.

$PAGE

References the $PAGE field of a map.

$PAGE determines the page displayed when a pageable map is mapped out to the

terminal. Values are assigned to $PAGE, as follows:

– At the beginning of a map paging session, $PAGE is initialized to zero.

– Arithmetic and assignment process commands can modify $PAGE.

– When a map is displayed, if $PAGE is greater than the map's highest page
number or less than its lowest page number, $PAGE is set to the highest or

lowest page number.

Note: The lowest page number can be greater than zero when backpaging is
not allowed.

– If the user presses a control key associated with paging forward or backward,

$PAGE is incremented or decremented by 1, unless it is already equal to the
highest or lowest page number.

System-Supplied Data Field Names

290 ADS Reference Guide

– If the user modifies the $PAGE field displayed on the screen and presses a
control key other than the paging forward key or paging backward key, and

other than [Clear], [PA1], [PA2], or [PA3] (which do not transmit data), $PAGE is
assigned the modified value. If the new value is higher than the highest page
number or lower than the lowest page number, $PAGE is set to the highest or

lowest page number.

– A GET DETAIL process command assigns $PAGE the page number of the
retrieved detail occurrence. If no detail occurrence is retrieved, $PAGE is not
changed.

Note: For more information about the $PAGE map field, see the CA IDMS Mapping
Facility Guide.

LENGTH

Represents the halfword binary value equal to the number of characters entered
into the named map field.

map-field-name

The name of a data field used by the dialog's map, enclosed in parentheses.

CURSOR-ROW

Represents the halfword binary value equal to the cursor row position on the
dialog's map following the mapin operation.

CURSOR-COLUMN

Represents the halfword binary value equal to the cursor column position on the
dialog's map following the mapin operation.

ERROR-STATUS

Represents the 4-byte EBCDIC value equal to the most recent status code returned
to the dialog.

JULIAN

References a signed packed decimal field that contains the current date in the
format yyddd.

JULIAN is updated before the execution of each premap and response process.

JULIANX

References a signed packed decimal field that contains the current date in the

format yyyyddd.

JULIANX is updated before the execution of each premap and response process.

DATE

References an unsigned zoned decimal field that contains the current date in the
format yymmdd.

DATE is updated before the execution of each premap and response process.

System-Supplied Data Field Names

Chapter 11: Variable Data Fields 291

DATEX

References an unsigned zoned decimal field that contains the current date in the

format yyyymmdd.

DATEX is updated before the execution of each premap and response process.

TIME

References an unsigned zoned decimal field that contains the time in the format
hhmmss.

TIME is updated before the execution of each premap and response process.

$ERROR-COUNT

(CA ADS Batch only) Contains the number of input records that have been written
to the suspense fi le for the current dialog.

$ERRCNT can be used in place of $ERROR-COUNT.

Note: Data cannot be moved into $ERROR-COUNT.

If a record is written to the suspense fi le but a suspense fi le was not allocated for
the dialog, nothing is written, but $ERROR-COUNT is stil l incremented.

$INPUT-COUNT

(CA ADS Batch only) Contains the number of input records read for the current

dialog.

$INCNT can be used in place of $INPUT-COUNT.

Note: Data cannot be moved into $INPUT-COUNT.

$OUTPUT-COUNT

(CA ADS Batch only) Contains the number of output records written for the current
dialog.

$OUTCNT can be used in place of $OUTPUT-COUNT.

Note: Data cannot be moved into $OUTPUT-COUNT.

Usage

System-supplied data fields are provided automatically for use by a dialog, except for
fields in the ADSO-APPLICATION-GLOBAL- RECORD and the
ADSO-APPLICATION-MENU-RECORD. To use these system record fields in a dialog, the
records must be associated with the dialog.

System-Supplied Data Field Names

292 ADS Reference Guide

All system-supplied data fields can be used as source fields in process commands. The
following fields can also be used as target fields:

■ DIRECT-DBKEY

■ DB-NAME

■ NODE-NAME

■ Fields in ADSO-APPLICATION-GLOBAL-RECORD

■ Fields in ADSO-APPLICATION-MENU-RECORD

■ $RESPONSE

■ $PAGE

System-supplied data fields for batch processing ($ERROR-COUNT, $INPUT-COUNT,

$OUTPUT-COUNT) count the suspense, input, and output fi le records read or written by
each dialog. A field is set to zero when the fi le it describes is opened. If an input fi le is
opened, closed, then reopened, the field is reset to zero when the fi le is reopened. Data
from these fields can be moved to other data fields, but data cannot be moved into the

system-supplied fields.

Example 1: Using the DB-NAME and NODE-NAME fields

This example uses the DB-NAME and NODE-NAME fields to establish IDMSNWKZ as an
alternative database for a dialog. SYSTEM99 is named as the DDS node that controls
IDMSNWKZ. All lower level dialogs access IDMSNWKZ and SYSTEM99 unless another

database is established in a lower level dialog:

MOVE 'IDMSNWKZ' TO DB-NAME.

MOVE 'SYSTEM99' TO NODE-NAME.

Note: The database and DDS node cannot be changed at a lower level if the processing
is part of an extended run unit.

Example 2: Displaying a value in the $RESPONSE field

This example causes ADD to appear in the $RESPONSE field of a displayed map:

MOVE 'ADD' TO $RESPONSE.

DISPLAY.

Example 3: Using $PAGE to display a specified map page

This example displays page 10 of a pageable map:

MOVE 10 TO $PAGE.

DISPLAY.

Entity Names

Chapter 11: Variable Data Fields 293

More information:

System Records (see page 567)

CA ADS Runtime System (see page 119)
Control Commands (see page 325)
Initiating the CA ADS Runtime System (see page 119)

Map Commands (see page 449)

Entity Names

Purpose

Identifies the names of entities.

Usage

The names of entities, such as database records, logical records, sets, areas, queue ids,
scratch ids, subroutines, dialogs, user programs, or message identifiers are user
supplied.

Entity names are used whenever the command syntax specifies the type of entity
followed by -name or -id, such as record-name, set-name, and message-id.

Specific entity names are described where they occur in the syntax for individual
commands.

Chapter 12: Introduction to Process Commands 295

Chapter 12: Introduction to Process
Commands

This section contains the following topics:

Overview (see page 295)
Summary Of Process Commands (see page 296)

INCLUDE (see page 300)

Overview

CA ADS process commands are COBOL-like statements used to construct processing
routines for dialogs. These processing routines are stored in the dictionary as process
modules. Process commands can perform activities such as:

■ Calculate values and move data

■ Define and call subroutines

■ Access and update database values

■ Modify maps and handle pageable maps

■ Manage queue and scratch records

A summary of CA ADS process commands is presented below. Details of commands in

each command category are given in the remaining chapters of this volume and the next
volume.

Information about the INCLUDE directive, which inserts one process module into
another at compile time, is discussed in "Including common routines in process

modules" later in this section.

More Information:

Syntax Diagram Conventions (see page 19)

Summary Of Process Commands

296 ADS Reference Guide

Summary Of Process Commands

The table below summarizes the purpose of each process command. The commands are
categorized according to the activities they perform.

Category Keywords Purpose

Arithmetic and assignment
commands

ADD Calculates the sum of two
values

 COMPUTE Evaluates an arithmetic
expression

 DIVIDE Calculates the quotient of
two values

 MOVE Moves a value to a target

field

 MULTIPLY Calculates the product of
two values

 SUBTRACT Calculates the difference

between two values

Conditional commands EXIT Terminates a WHILE
command

 IF Performs conditional
execution

 NEXT Terminates an IF command

 WHILE Iterates a loop based on a

condition

Control commands CONTINUE Terminates a current
process and executes a

dialog's premap process

 DISPLAY Displays a dialog's map or
reexecutes a dialog's
premap process

 EXECUTE NEXT
FUNCTION

Directs the flow of control
in an application defined
by the application compiler

 INVOKE Passes control to a lower

level dialog

 LEAVE Terminates an CA ADS
application

Summary Of Process Commands

Chapter 12: Introduction to Process Commands 297

Category Keywords Purpose

 LINK Passes control to a lower

level dialog or to a user
program with inline return
expected

 READ TRANSACTION Terminates a current
process, performs a mapin
operation, and selects the
next function or response

process to be executed

 RETURN Returns control to a higher
level dialog

 TRANSER Passes control to a dialog

at the same level

 WRITE TRANSACTION Terminates a current
process, performs a

mapout operation, and
passes control within an
application (batch only)

Database commands ACCEPT Retrieves database keys

page group information
and database access
statistics for navigationally

accessed records

 BIND PROCEDURE Establishes communication
between a dialog and a
DBA-written procedure

 COMMIT Writes checkpoints to the
journal fi le and releases
record locks for

navigationally accessed
records

 CONNECT Connects records in
navigationally accessed

sets

 DISCONNECT Disconnects records from
navigationally accessed
sets

 ERASE Erases database records

Summary Of Process Commands

298 ADS Reference Guide

Category Keywords Purpose

 FIND Locates navigationally

accessed records in the
database

 GET Retrieves navigationally

accessed records from the
database

 KEEP Places locks on
navigationally accessed

records

 MODIFY Modifies database records

 OBTAIN Locates and retrieves
database records

 ON Performs conditional
execution based on the
outcome of LRF command

execution

 READY Specifies an area usage
mode for navigational
database access

 RETURN DB-KEY Retrieves index entries
associated with
navigationally accessed

database records

 ROLLBACK Requests recovery
operations for
navigationally accessed

records

 STORE Stores database records

Map commands ATTRIBUTES Alters map field attributes

(an alternative format to
MODIFY MAP)

 CLOSE Closes a dialog's input or
output fi le maps (batch

only)

 GET DETAIL Retrieves a modified detail
occurrence of a pageable
map

 MODIFY MAP Alters the options specified
for the dialog's map

Summary Of Process Commands

Chapter 12: Introduction to Process Commands 299

Category Keywords Purpose

 PUT DETAIL Creates or modifies a detail

occurrence of a pageable
map

Queue and scratch

management commands

DELETE QUEUE Deletes queue records

 GET QUEUE Retrieves queue records

 PUT QUEUE Stores queue records

 DELETE SCRATCH Deletes scratch records

 GET SCRATCH Retrieves scratch records

 PUT SCRATCH Stores scratch records

Subroutine commands CALL Passes control to a
predefined subroutine

 DEFINE Defines a subroutine

 GOBACK Returns control from a
subroutine

Util ity commands ABORT Causes the runtime system
to abort the application

 ACCEPT Retrieves runtime status
information associated

with the current dialog

 INITIALIZE RECORDS Reinitializes a dialog's
record buffers

 SNAP Requests a snapshot dump
of the areas in memory
associated with CA ADS

 WRITE PRINTER Transmits data from a

dialog to an CA IDMS/DC or
DC/UCF queue for
subsequent printing

 WRITE TO
LOG/OPERATOR

Sends a message to the log
fi le or to the operator's
console (batch only)

INCLUDE

300 ADS Reference Guide

SQL Statements

In addition to the database commands listed above, CA ADS also supports embedded

SQL statements.

Note: For more information about statements (WHENEVER) and database commands,
see the CA IDMS SQL Reference Guide. For more information about using SQL with CA

ADS, see the CA IDMS SQL Programming Guide.

INCLUDE

Purpose

Inserts stored process source code into another process at compile time.

Syntax

►►────── INClude ───┬────────────┬───┬──────┬── process-name ─────────────────►
 └┬─ MODule ─┬┘ ├─ IS ─┤
 └─ PROCESS─┘ └─ = ─┘

 ►────┬──┬── . ───────────────────────►◄
 └─┬────────────────────┬── version-number ─┘
 └─ VERsion ─┬──────┬─┘
 ├─ IS ─┤
 └─ = ──┘

Parameters

MODule is process-name

Causes the source code of the named process module to be inserted logically in the
current process source code at compile time. The process module itself is not

changed. At runtime, CA ADS executes the process as if the included code were
coded in the process itself.

Process-name must name a module occurrence in the data dictionary. The module

is defined with an IDD DDDL ADD PROCESS statement or an ADD MODULE
statement with the attribute LANGUAGE IS PROCESS.

VERsion is version-number

Indicates the version number associated with the included process module. If not
specified, version-number defaults to the default version number set in the

dictionary.

Usage

Considerations

■ The included source code must be stored in the data dictionary as a process
module.

■ INCLUDE commands can be nested.

INCLUDE

Chapter 12: Introduction to Process Commands 301

■ INCLUDE cannot be used recursively. An INCLUDE statement cannot reference a
process that is already in the nested INCLUDE structure.

■ A process cannot include itself. For example, if process A includes process B and
process B includes process C, then proces s C cannot include process A, B, or C.

■ The INCLUDE statement must be contained entirely on one process code line.

■ Any other process commands entered on the same line as the INCLUDE statement
must precede INCLUDE.

■ An INCLUDE statement can be followed by comments on the same line.

Example

The following example il lustrates the use of the INCLUDE command:

Process: CUST-NUM-CHECK

MOVE CUST-NUM TO A.

INCLUDE MODULE VALUE-CHECK.

RETURN.

Process: VALUE-CHECK

IF A = 1

THEN

 DISPLAY.

ELSE

 LINK TO 'LINKDIAL'.

If the application developer specifies CUST-NUM-CHECK as a premap or response
process using the CA ADS dialog compiler (ADSC), on the Process Modules screen, the
following process source code will logically be compiled:

MOVE CUST-NUM TO A.

IF A = 1

THEN

 DISPLAY.

ELSE

 LINK TO 'LINKDIAL'.

RETURN.

Dialog Compiler Directive

►►────── INClude ───┬────────────┬───┬──────┬── process-name ─────────────────►
 └┬─ MODule ─┬┘ ├─ IS ─┤
 └─ PROCESS─┘ └─ = ─┘

 ►────┬──┬── . ───────────────────────►◄
 └─┬────────────────────┬── version-number ─┘
 └─ VERsion ─┬──────┬─┘
 ├─ IS ─┤
 └─ = ──┘

Chapter 13: Arithmetic and Assignment Commands 303

Chapter 13: Arithmetic and Assignment
Commands

This section contains the following topics:

Overview (see page 303)
General Considerations (see page 304)

Arithmetic Commands (see page 306)
Assignment Command (see page 314)

Overview

CA ADS arithmetic and assignment commands are used to perform calculations and
move data. Values used in arithmetic or assignment commands can include built-in

functions.

Arithmetic and Assignment Commands

The arithmetic and assignment commands are l isted in the table below. Each command
is presented in alphabetical order after the general considerations that follow the table.

Command Purpose

ADD Calculates the sum of two values and places the result in a variable
data field

COMPUTE Evaluates an arithmetic expression and places the result in a
variable data field

DIVIDE Calculates the quotient of two values, places the result in a variable
data field, and optionally places the remainder in another variable

data field

MOVE Moves a value to a variable data field

MULTIPLY Calculates the product of two values and places the result in a

variable data field

SUBTRACT Calculates the difference between two values and places the result
in a variable data field

More information:

Built-in Functions (see page 175)

General Considerations

304 ADS Reference Guide

General Considerations

General considerations are given below for arithmetic and assignment operations that
involve source and target fields of different lengths. Cons iderations for numeric fields
are presented first, followed by considerations for EBCDIC and DBCS fields.

Numeric Fields

A value moved between numeric source and target fields is decimal -point aligned in the
target field. Differences between the source-field value and the target field are handled
as follows:

■ Differences to the left of the decimal point:

– If the portion of the source-field value to the left of the decimal point is shorter
than the corresponding portion of the target field, the leftmost positions in the
target field are fi l led with zeros.

– If the portion of the source-field value to the left of the decimal point is longer

than the corresponding portion of the target field, the operation cannot be
executed and CA ADS terminates the application thread abnormally.

■ Differences to the right of the decimal point:

– If the portion of the source-field value to the right of the decimal point is

shorter than the corresponding portion of the target field, the rightmost
positions in the target field are fi l led with zeros.

– If the portion of the source-field value to the right of the decimal point is
longer than the corresponding portion of the target field, the value is either

rounded to or truncated at the rightmost decimal position in the target field,
depending on whether the ROUNDED or TRUNCATED specification applies.

EBCDIC and DBCS Fields

A nonnumeric value moved between EBCDIC fields or DBCS fields is left justified in the

target field. The following considerations apply:

■ If the source-field value is shorter than the target field, the remaining positions in
the target field are fi l led with blanks.

■ If the source-field value is longer than the target field, the rightmost characters are

truncated.

More information:

Assignment Command (see page 314)

General Considerations

Chapter 13: Arithmetic and Assignment Commands 305

Arithmetic and Assignment Command Status Condition

ADS supports error handling for assignment and arithmetic commands. This allows an
application to handle errors such as data exception or decimal overflow rather than
forcing ADS to abort the dialog execution. An ALLOWING clause specifies which error

condition a dialog is prepared to handle.

Assignment Command Status Condition

The following condition names can be specified as assignment command status
conditions in ALLOWING clauses:

■ ANY-DATA-ERROR

■ BAD-DATA-TYPE

■ UNSUPPORTED-DATA-CONVERSION

■ NO-NUMBER-EBCDIC/NUMERIC CONVERSION

■ INCORRECT-FIELD-LENGTH

■ INVALID-SUBSCRIPT-VALUE

■ DATE-FORMAT-ERROR

■ SPECIFICATION-EXCEPTION

■ DATA-EXCEPTION

■ FIXED-POINT-OVERFLOW-EXCEPTION

■ FIXED-POINT-DIVIDE-EXCEPTION

■ DECIMAL-OVERFLOW-EXCEPTION

■ DECIMAL-DIVIDE-EXCEPTION

■ FLOATING-POINT-DIVIDE-EXCEPTION

■ EXPONENT-OVERFLOW-EXCEPTION

■ EXPONENT-UNDERFLOW-EXCEPTION

■ SIGNIFICANCE-EXCEPTION

Specifying ANY-DATA-ERROR allows a dialog to retain control following any error

condition. After an exception condition is encountered, the data will be returned as if
the command had never been attempted. The meaning of the exception conditions are
defined in the IBM Principles of Operations Manual.

Arithmetic Commands

306 ADS Reference Guide

Example

The following example shows how the ALLOWING clause can be used to prevent

application abends. The specified MOVE command moves a numeric field from an
eight-byte field to a four-byte field. The application must be prepared to handle any
error condition that might arise.

MOVE big-num TO little-num ALLOWING ANY-DATA-ERROR.

IF DECIMAL-OVERFLOW-EXCEPTION

 DISPLAY ERROR MESSAGE TEXT 'SOURCE DATA TOO LARGE'.

IF ANY-DATA-ERROR

 DISPLAY ERROR MESSAGE TEXT 'INVALID DATA VALUE'.

Arithmetic Commands

Arithmetic commands assign values to variable data fields based on the results of a
simple addition, subtraction, multiplication, or division operation or a compound
operation involving multiple arithmetic functions.

ADD

Purpose

Calculates the sum of two values.

Syntax

►►─── ADD arithmetic-expression to variable ─── options ── . ────────────►◄

Expansion of options

►───┬─────────────────────────────────┬──────────────────────────────────────►◄
 ├─ ROUNDED ───────────────────────┤
 ├─ TRUNCATED ─────────────────────┤
 └─ ALLOWING assignment-condition ─┘

Parameters

arithmetic-expression

Specifies the value being added to the value in variable.

to variable

Specifies the field that contains the value to which arithmetic-expression is added.
Following execution of the command, variable contains the result of the ADD
operation.

Arithmetic Commands

Chapter 13: Arithmetic and Assignment Commands 307

ROUNDED

Rounds the result of the addition to the number of decimal positions found in

variable.

TRUNCATED

Truncates the result of the addition to the number of decimal positions found in
variable.

The default specification is ROUNDED if COBOL moves are enabled is not selected

and TRUNCATED if the option is selected.

More information:

For more information, see 13.4, "Assignment Command" later in this chapter.

ALLOWING

Specifies which error conditions would normally abend and should cause control to

be returned to the dialog for error handling. The list of allowable
assignment-condition names can be found in the section entitled "Arithmetic and
Assignment Command Status Condition."

Usage

The ADD command is used to perform addition. A variable data field value, a numeric
l iteral, or the result of an arithmetic expression is added to a data field value. The result
is placed in the data field that contains the right operand.

Example

The following example uses the ADD command to add the value 1 to the contents of the
variable data field COUNTER.

ADD 1 TO COUNTER.

More information:

Arithmetic Expressions (see page 171)

COMPUTE

Purpose

Evaluates an arithmetic expression. The result of the evaluation is placed in a variable
data field.

Arithmetic Commands

308 ADS Reference Guide

Syntax

►►─── COMPUTE variable ── options ──┬─ ─ = ─ arithmetic-expression ───┬───►
 └─ ALLOWING assignment-condition ─┘

Expansion of options

►───┬─────────────────────────────────┬──────────────────────────────────►◄
 ├─ ROUNDED ───────────────────────┤
 └─ TRUNCATED ─────────────────────┘

Parameters

variable

Specifies the name of a variable data field that contains the result of the COMPUTE
operation.

ROUNDED

Rounds the result of the computation to the number of decimal positions found in

variable.

TRUNCATED

Truncates the result of the computation to the number of decimal positions found
in variable.

The default specification is ROUNDED if COBOL moves are enabled is not selected

and TRUNCATED if the option is selected.

ALLOWING

Specifies which error conditions would normally abend and should cause control to
be returned to the dialog for error handling. The list of allowable
assignment-condition names can be found in the section entitled "Arithmetic and

Assignment Command Status Condition."

arithmetic-expression

Specifies the arithmetic expression being evaluated for the value contained in
variable.

More information:

For information on arithmetic-expression, see Chapter 6, Arithmetic Expressions.

Example

The following example uses the COMPUTE command to calculate commission as a
percentage of sales plus a percentage of sales above quota. The result is truncated.

COMPUTE COMMISSION TRUNCATED =

 0.10 * SALES + 0.03 * (SALES - QUOTA).

Arithmetic Commands

Chapter 13: Arithmetic and Assignment Commands 309

More information:

Assignment Command (see page 314)

DIVIDE

Purpose

Calculates the quotient of two values.

Syntax

►►─── DIVIDE divisor into dividend ───►

 ►──┬┬─────────────────────────────────┬──────────────────────────┬─ . ───────►◄
 │├─ ROUNDED ───────────────────────┤ │
 │├─ TRUNCATED ─────────────────────┤ │
 │└─ ALLOWING assignment-condition ─┘ │
 └── GIVING quotient ─┬─────────────┬─┬───────────────────────┬┘
 ├─ ROUNDED ───┤ └─ REMAINDER remainder ─┘
 └─ TRUNCATED ─┘

Parameters

divisor

Specifies the divisor in the divide operation. Divisor cannot be longer than eight

bytes. Divisor can be an arithmetic expression, a numeric l iteral, or a user-defined
variable.

into dividend

Specifies the dividend in the divide operation. Dividend can be a user-defined
variable.

ROUNDED

(Coded immediately after dividend) Rounds the result of the division to the number
of decimal positions found in dividend.

TRUNCATED

(Coded immediately after dividend) Truncates the result of the division to the
number of decimal positions found in dividend.

The default specification is ROUNDED if COBOL moves are enabled is not selected
and TRUNCATED if the option is selected.

ALLOWING

Specifies which error conditions would normally abend and should cause control to
be returned to the dialog for error handling. The list of allowable
assignment-condition names can be found in the section entitled "Arithmetic and
Assignment Command Status Condition."

Arithmetic Commands

310 ADS Reference Guide

GIVING quotient

Specifies the user-defined variable that receives the quotient of the DIVIDE

operation.

ROUNDED

(Coded after the GIVING parameter) Rounds the result of the division to the

number of decimal positions found in quotient.

TRUNCATED

(Coded after the GIVING parameter) Truncates the result of the division to the
number of decimal positions found in quotient.

The default specification is TRUNCATED if the REMAINDER parameter is specified.

If the REMAINDER parameter is not specified and if COBOL moves are enabled is
not selected, the default specification is ROUNDED. If COBOL moves are enabled is
selected, the default specification is TRUNCATED.

REMAINDER remainder

Specifies the field that receives the remainder of a DIVIDE operation. The remainder

is calculated by subtracting the product of the truncated quotient and the divisor
from the dividend.

If quotient and remainder refer to the same data field, the data field at the end of
the DIVIDE command contains the quotient. The remainder is ignored.

Usage

Definition

The DIVIDE command is used to perform division. A variable data field value, a numeric
l iteral, or the result of an arithmetic expression, which represents the divisor, is divided
into a variable data field value, which represents the dividend.

The result of the division (the quotient) can be stored in the dividend data field or in a
designated quotient data field. If the result is stored in a quotient data field, a data field
to hold the remainder can also be specified.

Arithmetic Commands

Chapter 13: Arithmetic and Assignment Commands 311

Considerations

■ If the GIVING parameter is not specified, dividend contains the result of the DIVIDE

operation.

If dividend is to contain the result of the divide operation, ROUNDED or TRUNCATED
can be specified immediately after dividend. The GIVING and REMAINDER

parameters, however, cannot be specified.

If dividend is not to contain the result, ROUNDED or TRUNCATED cannot be
specified immediately after dividend. The GIVING parameter must be specified. The
GIVING parameter can be followed optionally by ROUNDED or TRUNCATED and the

REMAINDER parameter.

■ The truncated quotient contains as many positions to the right of the decimal point
as does quotient. If the ROUNDED keyword is used, the quotient is rounded after
the remainder is calculated.

Examples

The examples below il lustrate the use of the DIVIDE command to divide the value in the
TOT-SALES field by the value in the NUM-ORDERS field.

Example 1: Simple division

In this example, the quotient is placed in TOT-SALES:

DIVIDE NUM-ORDERS INTO TOT-SALES.

Example 2: Obtaining a truncated quotient with a remainder

In this example, the quotient is truncated and placed in TOT-SALES-Q. The remainder is

placed in TOT-SALES-R:

DIVIDE NUM-ORDERS INTO TOT-SALES

 GIVING TOT-SALES-Q TRUNCATED REMAINDER TOT-SALES-R.

More information:

Assignment Command (see page 314)

MULTIPLY

Purpose

Calculates the product of two variables.

Arithmetic Commands

312 ADS Reference Guide

Syntax

►►─── MULTIPLY arithmetic-expression by variable ── options ── . ─────────────►◄

Expansion of options

►───┬─────────────────────────────────┬──────────────────────────────────────►◄
 ├─ ROUNDED ───────────────────────┤
 ├─ TRUNCATED ─────────────────────┤
 └─ ALLOWING assignment-condition ─┘

Parameters

arithmetic-expression

Specifies the arithmetic expression being added to the value contained in variable.

by variable

Specifies the data field that contains the value by which arithmetic-expression is
multiplied. Following execution of the command, variable contains the result of the
MULTIPLY operation.

ROUNDED

Rounds the result of the multiplication to the number of decimal positions found in
variable.

TRUNCATED

Truncates the result of the multiplication to the number of decimal positions found

in variable.

The default specification is ROUNDED if COBOL moves are enabled is not selected
and TRUNCATED if the option is selected,

ALLOWING

Specifies which error conditions would normally abend and should cause control to

be returned to the dialog for error handling. The list of allowable
assignment-condition names can be found in the section entitled "Arithmetic and
Assignment Command Status Condition."

Usage

Definition

The MULTIPLY command is used to perform multiplication. A variable data field value, a
numeric l iteral, or the result of an arithmetic expression is multiplied by a variable data
field value. The result is placed in the variable data field that contains the right operand.

Arithmetic Commands

Chapter 13: Arithmetic and Assignment Commands 313

Example

The following example il lustrates the use of the MULTIPLY command to multiply the

value in the FICA-PCT field by the value in the second occurrence of the DEDUCT field:

MULTIPLY FICA-PCT BY DEDUCT(2).

More information:

Assignment Command (see page 314)
Arithmetic Expressions (see page 171)

SUBTRACT

Purpose

Calculates the difference between two variables.

Syntax

►►─── SUBTRACT arithmetic-expression from variable ── options ── . ───────────►◄

Expansion of options

►───┬─────────────────────────────────┬──────────────────────────────────────►◄
 ├─ ROUNDED ───────────────────────┤
 ├─ TRUNCATED ─────────────────────┤
 └─ ALLOWING assignment-condition ─┘

Parameters

arithmetic-expression

Specifies the arithmetic expression being subtracted from the value contained in
variable.

from variable

Specifies the data field that contains the value from which arithmetic-expression is
subtracted. Following execution of the command, variable contains the result of the
SUBTRACT operation.

Assignment Command

314 ADS Reference Guide

ROUNDED

Rounds the result of the multiplication to the number of decimal positions found in

variable.

TRUNCATED

Truncates the result of the multiplication to the number of decimal positions found

in variable.

The default specification is ROUNDED if COBOL moves are enabled is not selected
and TRUNCATED if the option is selected.

ALLOWING

Specifies which error conditions would normally abend and should cause control to

be returned to the dialog for error handling. The list of allowable
assignment-condition names can be found in the section entitled "Arithmetic and
Assignment Command Status Condition."

Usage

Definition

The SUBTRACT command is used to perform subtraction. A varia ble data field value, a
numeric l iteral, or the result of an arithmetic expression is subtracted from a variable
data field value. The result is placed in the variable data field that contains the right

operand.

Example

The following example il lustrates the use of the SUBTRACT command to subtract the
value in the QTY-SHIPPED field from the value in the BAL-ON-HAND field:

SUBTRACT QTY-SHIPPED FROM BAL-ON-HAND.

More information:

Assignment Command (see page 314)
Arithmetic Expressions (see page 171)

Assignment Command

MOVE Command

The MOVE command is used to move a variable data field value, a numeric,
nonnumeric, multi -bit binary, or figurative constant, or the result of an arithmetic

expression into a variable data field.

Assignment Command

Chapter 13: Arithmetic and Assignment Commands 315

Comparison of CA ADS and COBOL Rules for Move Operations

COBOL and CA ADS differ slightly when moving the results of an arithmetic or

assignment command into the target field of the command. The table below compares
the COBOL and CA ADS rules.

The application developer determines the set of rules to be used on a dialog-by-dialog
basis. The default set of rules is specified in the ADSO statement iss ued during system
generation. The default specification can be overridden for a dialog on the Options and

Directives screen of the CA ADS dialog compiler.

Operation CA ADS rules COBOL rules

Move a numeric result
to an EBCDIC target
field

1. Drop the decimal portion

2. Place a negative sign (if any)
to the left of the result

3. Right justify the result in the

target field

1. Retain the decimal
portion without the decimal
point

2. Drop any negative sign

3. Left justify the result in
the target field

Round or truncate the

value
1

Round the value

(By default the value is
truncated for a DIVIDE
command with the REMAINDER
parameter)

Truncate the value

1
Arithmetic and assignment commands allow the applica tion developer to override the

default rounding or truncating rule by means of the ROUNDED/TRUNCATED
specification.

More information:

CA ADS Dialog Compiler (ADSC) (see page 91)

MOVE

Purpose

Moves a value to a target field.

Syntax

►►─── MOVE value to variable ── options ── . ─────────────────────────────────►◄

Assignment Command

316 ADS Reference Guide

Expansion of options

►───┬─────────────────────────────────┬──────────────────────────────────────►◄
 ├─ ROUNDED ───────────────────────┤
 ├─ TRUNCATED ─────────────────────┤
 └─ ALLOWING assignment-condition ─┘

Parameters

value

Specifies the value being moved to variable. Value can contain an arithmetic
expression, a numeric l iteral, a user-defined variable, or a l iteral enclosed in single
quotation marks.

to variable

Specifies a variable data field that contains the result of the MOVE operation.

ROUNDED

Rounds the result of the move to the number of decimal positions found in variable.

TRUNCATED

Truncates the result of the move to the number of decimal positions found in
variable.

The default specification is ROUNDED if the COBOL moves are enabled option on
the Options and Directives screen has not been chosen and TRUNCATED if the
option has been chosen.

ALLOWING

Specifies which error conditions would normally abend and should cause control to

be returned to the dialog for error handling. The list of allowable
assignment-condition names can be found in the section entitled "Arithmetic and
Assignment Command Status Condition."

Usage

Consideration

ROUNDED/TRUNCATED is ignored if value is nonnumeric.

Example

The following example il lustrates the use of the MOVE command to move the value
from the ACCT-BAL field to the TOT-BAL field:

MOVE ACCT-BAL TO TOT-BAL.

Chapter 14: Conditional Commands 317

Chapter 14: Conditional Commands

This section contains the following topics:

Overview (see page 317)
EXIT (see page 318)
IF (see page 319)

NEXT (see page 321)
WHILE (see page 322)

Overview

CA ADS conditional commands are used to specify processing based on the outcome of

a conditional test. The conditions to be tested are specified by coding conditional
expressions.

Summary of Conditional Commands

Conditional commands are l isted below. Each command is presented in alphabetical
order after the table.

Command Purpose

EXIT Terminates WHILE and ON
1
 command processing and passes control to

the next command in the process

IF Performs a conditional test and specifies actions to be taken based on
the outcome of the test

NEXT Terminates IF or ON1 command processing and passes control to the

next command in the process

WHILE Performs a conditional test and specifies actions to be taken as long as
the outcome of the test is true

1
 See Database Access Commands (see page 363).

More information:

Conditional Expressions (see page 245)

EXIT

318 ADS Reference Guide

EXIT

Purpose

Exits a processing loop created by a WHILE or ON command regardless of the outcome
of the command condition.

The WHILE command is described later in this chapter.

Terminates WHILE and ON command processing.

Syntax

►►─── EXIT ──── . ──►◄

Usage

Considerations

■ EXIT can be used in conjunction with the REPEAT parameter in an ON command.

■ Control passes to the next command outside the WHILE or ON structure following
an EXIT command.

■ EXIT is typically used following an IF statement that tests for a secondary condition.

Example

The statements below il lustrate the use of an EXIT command. The DISPLAY command is

executed when A is greater than B or when Z becomes greater than 100, whichever
occurs first:

WHILE A LE B

 REPEAT.

 ADD 1 TO Z.

 IF Z GT 100

 THEN EXIT.

 ADD 1 TO A.

 END.

DISPLAY.

More information:

Database Access Commands (see page 363)

IF

Chapter 14: Conditional Commands 319

IF

Purpose

Evaluates one or more conditional expressions and specifies actions based on the
outcome of the evaluation.

Syntax

►►─── IF conditional-expression ──►

 ►─── then ──────┬─ command-statement. ────────────────────┬──────────────────►
 │ ┌───────────────────────┐ │
 └─ DO. ─▼─ command-statement. ──┴─ END. ──┘

 ►─┬───┬────────────────►◄
 └─ ELSE ──────┬─ command-statement. ────────────────────┬─┘
 │ ┌───────────────────────┐ │
 └─ DO. ─▼─ command-statement. ──┴─ END. ──┘

Parameters

conditional-expression

Specifies the conditional expression to be evaluated. The outcome of the evaluation
determines the processing that occurs.

Conditional-expression contains one or more conditions to be evaluated and is
specified according to the rules presented in Conditional Expressions (see
page 245).

then command-statement

Specifies the commands to be executed if the condition is true.

Multiple command statements must be preceded by DO and followed by END.

Command-statement can be any valid CA ADS process command, including another
conditional command.

ELSE command-statement

Specifies the commands to be executed if the condition is false.

Multiple command statements must be preceded by DO and followed by END.

IF

320 ADS Reference Guide

Usage

Considerations

■ An entire conditional expression is evaluated before a result is returned.

– If the outcome is true, CA ADS executes the commands following the
conditional expression.

– If the outcome is false, CA ADS bypasses commands following the conditional
expression and executes commands that specify alternative processing.

■ If no alternative processing commands exist for a false outcome, CA ADS proceeds
to the next executable command outside the IF statement.

■ IF commands can be nested to any level.

Indentation should be used wherever possible to make statements more readable
and to ensure that the required clauses are properly matched.

■ A given IF statement can include only one ELSE clause, and that ELSE clause must
match the most recent IF command not associated with an ELSE clause.

Example 1: Using a simple IF command

In this example, a simple IF command tests the status of a map field and executes a
DISPLAY command if the condition is true:

IF FIELD PROD-NUM IS NOT CHANGED

THEN

 DISPLAY MSG TEXT IS 'ENTER PRODUCT NUMBER'.

Example 2: Using an IF command with an ELSE clause

This example includes an ELSE clause to display an alternative message if the field
ERROR-FIELD contains 0:

IF ERROR-FIELD NE '0'

THEN

 DISPLAY MSG CODE IS 171075 PARM=(MSG-NUM).

ELSE

 DISPLAY MSG TEXT IS 'ENTER NEXT PRODUCT NUMBER'.

NEXT

Chapter 14: Conditional Commands 321

Example 3: Using a nested IF command

This example il lustrates a nested IF command that tests for CA-INDX if DB-END-OF-SET is

reached:

IF DB-END-OF-SET

THEN

 IF CA-INDX EQ 1

 THEN

 DO.

 MOVE 'NO CUSTOMERS QUALIFY' TO MSG-FIELD.

 MOVE '1' TO ERROR-FIELD.

 RETURN.

 END.

 ELSE

 DISPLAY MSG TEXT IS 'CUSTOMER NUMBER LIST COMPLETE'.

ELSE

 DISPLAY MSG TEXT IS 'ADDITIONAL CUSTOMERS MAY QUALIFY'.

NEXT

 Purpose

Exits IF and ON command processing.

Syntax

►►─── NEXT command ─── . ───►◄

Usage

Definition

The NEXT command is used to exit IF and ON command processing. When a NEXT
command is used, control passes to the command following the IF or ON statement.

Considerations

■ When used with an ON command, NEXT can be used in conjunction with the

THEN/ELSE parameters.

■ When used in a nested IF structure, NEXT exits only the current IF statement.

NEXT is typically used in a nested IF structure as a means of associating an ELSE

clause with the correct IF command.

WHILE

322 ADS Reference Guide

Example

The statements below il lustrate the use of the NEXT command to match the second

ELSE clause with the second IF command:

IF A = B

THEN

 DO.

 IF X = Y

 THEN

 IF Y = Z

 THEN

 MOVE A TO B.

 ELSE

 NEXT.

 ELSE MOVE B TO A.

 SNAP ALL.

 DISPLAY.

 END.

If A equals B and X equals Y, but Y does not equal Z, control exits from the innermost IF
command and passes to the SNAP ALL command. If the ELSE NEXT statement is not
included, the ELSE MOVE B TO A statement is matched incorrectly with the third rather
than with the second IF.

More information:

Database Access Commands (see page 363)

IF (see page 319)

WHILE

Purpose

Creates a processing loop based on conditions in a specified expression.

Syntax

►►─── WHILE conditional-expression ───►

 ┌──────────────────────┐
 ►─── repeat. ──────▼─ command-statement. ─┴── END. ──────────────────────────►◄

WHILE

Chapter 14: Conditional Commands 323

Parameters

conditional-expression

Evaluates the specified expression and returns a true or false value to the dialog.

Conditional-expression contains one or more conditions to be evaluated and is
specified according to the rules presented in Conditional Expressions (see

page 245).

repeat. command-statement

Specifies the commands to be executed as long as the WHILE condition is true.
REPEAT begins the WHILE command loop. END terminates the loop. Each command
is executed sequentially before the conditional expression is evaluated again.

Command-statement can be any valid CA ADS process command, including another
conditional command.

Usage

Definition

The WHILE command is used to create a processing loop. One or more process

commands are executed repeatedly as long as the conditions in a specified expression
are true.

Considerations

■ The conditional expression is evaluated prior to execution of the first process
command.

■ Processing continues to loop until the conditional expression is false or as soon as
an EXIT or control command is encountered.

■ WHILE commands can be nested to any level.

Indentation should be used in coding wherever possible to make the statement

more readable and to ensure that the required clauses are properly matched.

WHILE

324 ADS Reference Guide

Example

The following example il lustrates the use of the WHILE command with a nested IF

command:

MOVE 1 TO CA-INDX.

OBTAIN NEXT SALES WITHIN PRODUCT-SALES.

WHILE NOT DB-END-OF-SET AND CA-INDX LE 45

 REPEAT.

 IF SALES-AMT GE FULL-AMT

 DO.

 MOVE SLS-CUST-NUMBER TO CA-CUST(CA-INDX).

 ADD 1 TO CA-INDX.

 END.

 OBTAIN NEXT SALES WITHIN PRODUCT-SALES.

 END.

IF DB-END-OF-SET

THEN

 INVOKE 'EOS'.

ELSE

 RETURN.

Chapter 15: Control Commands 325

Chapter 15: Control Commands

This section contains the following topics:

Overview (see page 325)
General Considerations (see page 326)
CONTINUE (see page 332)

DISPLAY (see page 334)
EXECUTE NEXT FUNCTION (see page 339)
INVOKE (see page 341)

LEAVE (see page 343)
LINK (see page 345)
READ TRANSACTION (see page 353)
RETURN (see page 353)

TRANSFER (see page 356)
WRITE TRANSACTION (see page 358)

Overview

CA ADS control commands are used to pass control during the execution of an

application. The execution of a control command terminates the execution of the
process that issues the command. A control command can pass control to:

■ Another dialog

■ A copy of the same dialog

■ Another component within the same dialog

■ A user-written program

■ Another application function when using the EXECUTE NEXT FUNCTION command

Summary of Control Commands

Control commands are l isted in the table below. Each command is presented in
alphabetical order after General Considerations (see page 326).

Command Purpose

CONTINUE Terminates the current process, executes the dialog's
premap process, and writes a message

DISPLAY Displays a dialog's map, reexecutes a dialog's premap
process, or specifies a message that appears in a map's
message field

General Considerations

326 ADS Reference Guide

Command Purpose

EXECUTE NEXT FUNCTION Passes control to the application function associated

with a response by means of the control command
specified for the response during application
compilation

INVOKE Initiates execution of a lower level dialog in the
application thread

LEAVE Terminates the current application or terminates the
current CA ADS session

LINK Initiates execution of a lower level dialog, creating a
nested application structure, or initiates execution of a
user program

READ TRANSACTION Terminates the current process, performs a mapin

operation, and selects the next application function or
response to be executed (batch only)

RETURN Initiates execution of a higher level dialog

TRANSFER Initiates execution of a dialog at the same level as the
dialog passing control

WRITE TRANSACTION Terminates a current process, performs a mapout
operation, and passes control within an application

(batch only)

General Considerations

At run time, control commands connect the application functions or dialogs that make

up the application by directing the flow of control. The following diagram shows how
control commands pass control from one function or dialog to another. The way that
control is transferred determines the data that is available to the function or dialog

when it receives process control.

The application developer associates control commands with application responses by

using the Response Definition screen during application compilation.

Alternatively, the application developer can code control commands wher ever
appropriate in a premap or response process.

More information:

CA ADS Application Compiler (ADSA) (see page 51)

General Considerations

Chapter 15: Control Commands 327

Application Thread

The current sequence of operative functions or dialogs in an application is called the
application thread. A single dialog can occur more than once in an application structure
and can execute more than once within an application thread, whether or not the

function or dialog remains operative.

Control Command Processing

 Example 1 Example 2
 ┌────────────┐ ┌─────────────┐
 │ │ │ │
 │ CA─ADS ◄───┐ │ CA─ADS │
 │ │ │ │ │
 └─────┬──────┘ │ └─────┬───────┘
 │ │ │
 │ │ │
 ┌─────▼──────┐ │ ┌─────▼───────┐
 │ │ │ │ │
 │ RDCUST# │ │ ┌──► RDCUST# │
 │ │ │ │ │ │
 └─────┬──────┘ │ │ └─────┬───────┘
 │INVOKE │ │ │INVOKE
 │ │ │ │
 ┌─────▼──────┐ │ │ ┌─────▼───────┐
 │ │ │ │ │ │
 ┌─────► UPDATEC │───┘ │ │ UPDATEC ◄──────────────────────────┐
 │ │ │LEAVE │ │ │ │
 │ └─────┬──────┘ │ └─────┬───────┘ │
 │ │LINK │ │INVOKE │
 │ │ │ │ │
 │ ┌─────▼──────┐ │ ┌─────▼───────┐ ┌───────────┐ │
 │ │ │ │ │ │TRANSFER │ │ │
 └─────┤ UPDATEO │ └──┤ UPDATEO ├─────────► ADDORDR │────┘
RETURN │ │ RETURN │ │ │ │RETURN
TO TOP └────────────┘ TO TOP └─────────────┘ └───────────┘

Operative and Nonoperative Dialogs

At run time, a function or dialog can be either operative or nonoperative within an
application thread.

Operative Dialog

A dialog becomes operative when it receives processing control. A function or dialog
remains operative when it passes control to a lower level function or dialog or to
another part of itself.

Only one dialog can be operative at any time on any given application level. As long as a
dialog or dialog function remains operative, all record buffers associated with the dialog
are maintained.

General Considerations

328 ADS Reference Guide

Nonoperative Dialog

A function or dialog becomes nonoperative when it passes control to a higher

level-function or dialog or to a function or dialog (including a copy of itself) on the same
level. All functions and dialogs become nonoperative when control passes out of the
application.

When a dialog or dialog function becomes nonoperative, the record buffers established
by that dialog are released.

Application Levels

The first function or dialog executed in an application establishes the top level of the

application structure. The INVOKE and LINK commands establish lower levels in the
structure.

Maximum Number of Levels

By default, an application structure can contain a maximum of ten levels. This maximum
number of levels can be reduced at system generation time. If the execution of an

INVOKE or LINK command causes the maximum allowable number of levels to be
exceeded, CA ADS abnormally terminates the application. The application developer
should l imit the total number of nested INVOKE and LINK commands accordingly .

Mainline Dialog

The dialog at the top of an application structure must be a mainline dialog. The
application developer defines a dialog as mainline by using the Options and Directives
screen of the dialog compiler.

If a dialog function is initiated by an application task code, the dialog associated with the
function must be a mainline dialog. The application developer associates a function with

a task code by using the Task Codes screen during application definition.

More information:

CA ADS Application Compiler (ADSA) (see page 51)

CA ADS Dialog Compiler (ADSC) (see page 91)

The Menu Stack

System-supplied menu-handling routines use a menu stack to keep track of menu

execution at run time. The menu stack is maintained automatically at run time.

General Considerations

Chapter 15: Control Commands 329

Considerations

The following considerations apply:

■ When a menu (or menu/dialog) function is executed in an online application, the
function name is added to the internal menu stack. The menu or menu/dialog
function name is removed from the menu stack when a POP or RETURN function

returns control in either of the following ways:

– To the menu

– To a menu that is higher in the menu stack

■ If a menu or menu dialog function is already in the menu stack when a LINK,
INVOKE, or TRANSFER command passes control again to the function, the first

occurrence of the name is deleted from the stack. The name is then added to the
end of the stack, as usual.

■ Each menu name can appear only once in the menu stack.

Database Currencies

Database currencies are established by the last database command in an operative
dialog. Currencies are saved and made available to lower level dialogs and to the dialog
that established the currencies if control returns to that dialog from a lower application
level.

Considerations

The following considerations apply to currencies:

■ Database currencies are cumulative.

Currencies established by each dialog or dialog function are passed to lower level
dialogs along with any currencies received from a higher level dialog. A lower level

dialog can establish new currencies, which are passed to the next lower level dialog
along with the currencies already established.

■ All database currencies established for a dialog are released when a dialog or a
dialog function becomes nonoperative.

Unless the dialog or dialog function receiving control specifies the NOSAVE keyword

on a LINK command, it establishes its own currencies . These currencies are
established either by restoring the currencies saved when it originally passed
control or by using currencies previously established by a higher level dialog. The

following diagram shows currencies in an CA ADS application.

General Considerations

330 ADS Reference Guide

Currency Action

 DIALOG A
 ┌──────────────────────┐
 │ Currencies │
 │Received Established│ DIALOG A executes and establishes
 │ EMP A ◄───┐ current records of two sets.
 │NONE DEPT X │ │
 │ │ │
 └──────────┬───────────┘ │
 │ LINK │
 v │ DIALOG A links to DIALOG B and
 DIALOG B │ establishes a current record of
 ┌──────────────────────┐ │ a third set.
 │ Currencies │ │
 │Received Established│ │
 │EMP A EMP A │ │
 │DEPT X DEPT X │ │
 │ OFFICE M │ │
 └──────────┬───────────┘ │
 │ INVOKE │
 v │ DIALOG B invokes DIALOG C.
 DIALOG C │
 ┌──────────────────────┐ │
 │ Currencies │ │
 │Received Established│ │
 │EMP B EMP C │ │
 │DEPT Y DEPT Z │ │
 │OFFICE M │ │
 └──────────┬───────────┘ │
 │ │ DIALOG C returns control to
 └───────────────┘ DIALOG A:

 - Only currencies established
 by DIALOG A are available.
 - Record buffers still contain
 data established by DIALOG C

Effect of Control Commands on Issuing and Receiving Dialogs

The following table outlines the effect of control commands on issuing and receiving

dialogs. The EXECUTE NEXT FUNCTION command is not included in this table. The
characteristics established by EXECUTE NEXT FUNCTION depend on which command is
actually executed.

Command New
level
estab-

lished

Status of
issuing
dialog

Data avail. to
receiving
dialog/

program

Currency
action for
issuing

dialog

Currency action
for receiving
dialog/

program

DISPLAY No Operative All data Saved N/A

INVOKE Yes Operative All data Saved Restored

LEAVE No Non-

operative

N/A Released N/A

LINK:

General Considerations

Chapter 15: Control Commands 331

Command New
level

estab-
lished

Status of
issuing

dialog

Data avail. to
receiving

dialog/
program

Currency
action for

issuing
dialog

Currency action
for receiving

dialog/
program

DIALOG Yes Operative All data Saved,

unless
NOSAVE is
specified

Restored

PROGRAM No Operative All, some, or

none
(depending on
command
specification)

Saved,

unless
NOSAVE is
specified

Program

receives
currencies as
part of
extended run

unit

RETURN No Non-
operative

(any
operative
dialogs
between

the issuing
dialog and
the

receiving
dialog also
become
non-

operative)

Data previously
available to the

receiving dialog

Released
(curren-

cies for any
dialogs
between the
issuing

dialog and
the
receiving

dialog are
also
released)

Restored

TRANSFER No Non-
operative

All data except
that acquired

by the issuing
dialog

Released Can use
currencies

previously
established by
higher level
dialogs

CONTINUE

332 ADS Reference Guide

CONTINUE

Purpose

Terminates a current process, executes a dialog's premap process, and specifies a
message.

In the online environment, the message appears at the terminal when the dialog
executes a DISPLAY command. In the batch environment, the message is sent to the log
fi le and/or the operator's console.

Syntax

►►─── CONtinue ────┬─────────────────────────────────┬─ . ────────────────────►◄
 └─┬─ MESSage ─┬─ message-options ─┘
 └─ MSG ─┘

Expansion of Message-Options

►►────┬─ TEXT ─────┬──────┬────────── message-text ───────────────────────────►
 │ ├─ IS ─┤
 │ └─ = ─┘
 └─ CODE ─────┬──────┬────────── message-code ───────────────────────────
 ├─ IS ─┤
 └─ = ─┘

 ►──►
 ────┬───┬───────────────────────
 │ ┌──────────────┐ │
 └─ PARMS ────┬─────┬─── (─▼── parameter ─┴─) ──┘
 └─ = ─┘

 ►──┬───────────────────────►◄
 ────┬──┬──────┘
 └─ PREFIX ───┬──────┬─────── prefix ─────┘
 ├─ IS ─┤
 └─ = ─┘

Parameters

MESSage message-options

Identifies message to be displayed.

MSG can be used in place of MESSAGE.

Expanded syntax for message-options is shown above immediately following the

CONTINUE syntax.

TEXT IS message-text

Specifies the text of a message to be displayed in an online map's message field or
sent to a batch application and a system log fi le.

Message-text specifies either the name of a variable data field containing the

message text or the text string itself, enclosed in single quotation marks.

The text string can contain up to 240 displayable characters.

IS or = are optional keywords and have no effect on processing.

CONTINUE

Chapter 15: Control Commands 333

CODE IS message-code

Specifies the message dictionary code of a message to be displayed in an online

map's message field or sent to the log fi le in a batch application.

In a batch application, the message is also sent to the operator, if directed by the
destination specified in the dictionary.

Message-code specifies either the name of a variable data field that contains the
message code or the 6-digit code itself, expressed as a numeric l iteral.

IS or = are optional keywords and have no effect on processing.

PARMS = parameter

Specifies a replacement parameter for each variable field in the stored message

identified by message-code.

Up to nine replacement parameters can be specified for a message. Multiple
parameters must be specified in the order in which they are numbered and
separated by blanks or commas.

Parameter specifies either the name of an EBCDIC or unsigned zoned decimal
variable data field that contains the parameter value or the actual parameter value,
enclosed in single quotation marks.

The parameter value must contain displayable characters. At run time, each
variable data field in a stored message expands or contracts to accommodate the
size of its replacement parameter. A replacement parameter can be a maximum of
240 bytes.

PREFIX IS prefix

Overrides the default prefix of a dialog and a map.

Prefix must either specify an EBCDIC or unsigned zoned decimal variable data field
that contains a 2-character prefix or the 2-character prefix itself, enclosed in single
quotation marks

IS or = are optional keywords and have no effect on processing.

Usage

Considerations

■ The premap process is reexecuted if CONTINUE is issued in the premap process.

This differs from the DISPLAY CONTINUE command, which causes a
pseudo-converse in the online environment.

■ Any message specified on the CONTINUE command is ignored in the online

environment if the DISPLAY command that follows also specifies a message.

DISPLAY

334 ADS Reference Guide

■ Up to nine replacement parameters can be specified for a message.

■ Multiple parameters must be separated by blanks or commas.

■ Multiple parameters must be specified in the order in which they occur in the
stored message.

DISPLAY

Purpose

Displays a dialog's map, or reexecutes a dialog's premap process.

Additionally, DISPLAY can specify a message that appears in a map's message field. If a
dialog has a map and a premap process, the premap process must include a DISPLAY
command to display the map. If a DISPLAY command is not coded, nothing is written to

the terminal at run time.

DISPLAY issued without the CONTINUE keyword, displays the map associated with the
current dialog. DISPLAY can be used in a premap process or a response process.

In a pageable map, the detail occurrences that are displayed when the DISPLAY
command is issued depend on the value of the system-defined data field $PAGE and the
number of detail occurrences that a single screen can hold. For example, given a screen

that can hold ten detail l ines, if $PAGE equals 1, detail occurrences 1 through 10 are
displayed; if $PAGE equals 2, occurrences 11 through 20 are displayed; and so forth.

Syntax

►►── DISPlay ─┬────────┬─┬──┬─ . ─►◄
 └ NOSAVE ┘ ├── ERAse ─────────────────────────────────────┤
 ├── CONTinue ──────────────────────────────────┤
 └┬─ MESSAGE ─┬ message-options ────────────────┘
 └─ MSG ─┘

Expansion of Message-Options

►►────┬─ TEXT ─────┬──────┬────────── message-text ───────────────────────────►
 │ ├─ IS ─┤
 │ └─ = ─┘
 └─ CODE ─────┬──────┬────────── message-code ───────────────────────────
 ├─ IS ─┤
 └─ = ─┘

 ►──►
 ────┬───┬───────────────────────
 │ ┌──────────────┐ │
 └─ PARMS ────┬─────┬─── (─▼── parameter ─┴─) ──┘
 └─ = ─┘

 ►──┬───────────────────────►◄
 ────┬──┬──────┘
 └─ PREFIX ───┬──────┬─────── prefix ─────┘
 ├─ IS ─┤
 └─ = ─┘

DISPLAY

Chapter 15: Control Commands 335

Parameters

NOSAVE

Specifies that currencies are not saved when control passes from the current
process to the pseudo-converse or premap process. After the pseudo-converse, or
when the premap process begins execution, the dialog's currencies are initialized to

those of the next higher level dialog, if any.

ERAse

Specifies that the following actions are performed at the terminal:

– Unprotected map data fields are cleared.

– The modified data tags (MDTs) for all unprotected map data fields are reset.

– The keyboard is unlocked.

– The cursor is placed at the first unprotected map data field.

If specified, ERASE is the only keyword that can follow DISPLAY in a DISPLAY
command.

CONTinue

(Used in a response process) Requests reexecution of the premap process
associated with the current dialog.

The keyword CONTINUE is ignored in a premap process.

MESSage message-options

Identifies message to be displayed.

MSG can be used in place of MESSAGE.

Expanded syntax for message-options is shown above immediately following the
CONTINUE syntax.

TEXT IS message-text

Specifies the text of a message to be displayed in an online map's message field or

sent to a batch application and a system log fi le.

Message-text specifies either the name of a variable data field containing the
message text or the text string itself, enclosed in single quotation marks.

The text string can contain up to 240 displayable characters.

IS or = are optional keywords and have no effect on processing.

DISPLAY

336 ADS Reference Guide

CODE IS message-code

Specifies the message dictionary code of a message to be displayed in an online

map's message field or sent to the log fi le in a batch application.

In a batch application, the message is also sent to the operator, if directed by the
destination specified in the dictionary.

Message-code specifies either the name of a variable data field that contains the
message code or the 6-digit code itself, expressed as a numeric l iteral.

IS or = are optional keywords and have no effect on processing.

PARMS = parameter

Specifies a replacement parameter for each variable field in the stored message

identified by message-code.

Up to nine replacement parameters can be specified for a message. Multiple
parameters must be specified in the order in which they are numbered and
separated by blanks or commas.

Parameter specifies either the name of an EBCDIC or unsigned zoned decimal
variable data field that contains the parameter value or the actual parameter value,
enclosed in single quotation marks.

The parameter value must contain displayable characters. At run time, each
variable data field in a stored message expands or contracts to accommodate the
size of its replacement parameter. A replacement parameter can be a maximum of
240 bytes.

PREFIX IS prefix

Overrides the default prefix of a dialog and a map.

Prefix must either specify an EBCDIC or unsigned zoned decimal variable data field
that contains a 2-character prefix or the 2-character prefix itself, enclosed in single
quotation marks

IS or = are optional keywords and have no effect on processing.

Usage

Rules for Mapping Out Fields

The DISPLAY command maps out l iteral fields and data fields according to these rules:

■ If the map is different than the map previously displayed, both literal fields and data

fields are mapped out.

■ If the map is the same as the map previously displayed, l iteral fields are not mapped
out. Data fields, except those set IN ERROR, are mapped out. Note that the MODIFY

MAP command can be used to change the IN ERROR setting for a map field.

DISPLAY

Chapter 15: Control Commands 337

■ If the ERASE keyword is specified, data fields are not mapped out. Instead,
unprotected data fields on the screen are cleared.

■ Data fields are further regulated by specifications made during map definition and
by MODIFY MAP process commands. Both methods allow the specification that
data is not displayed or is erased on a DISPLAY command.

■ For a pageable map, if a PUT DETAIL command causes the first map page to be
displayed, the following DISPLAY command does not map out l iteral or data fields.

However, the DISPLAY command is stil l required to terminate the current process
and create a pseudo-converse.

Specifying a Message

The DISPLAY command is also used to specify a message that is to appear in a map's
message field.

Message fields are defined by the map field $MESSAGE.

Note: For more information, see the CA IDMS Mapping Facility Guide.

One $MESSAGE field can be defined anywhere on the map. If the $MESSAGE field is
defined in the detail area of a pageable map, the PUT DETAIL command is used to
specify a message.

If a DISPLAY command specifies a message but the map has no message field, CA ADS
creates a special message map.

Considerations for Specifying a Message Code

■ Each message in the message dictionary is identified by a 6-digit code preceded by

the letters DC. A request for message 987654 retrieves message DC987654.

User-defined messages added to the message dictionary should be identified by a
code in the range 900001 through 999999 and preceded by letters other than DC.

■ Each message in the message dictionary can be assigned a severity code. The

severity code specifies the action that CA ADS takes when the message is retrieved.
Severity codes are l isted in the following table.

Message Dictionary Severity Codes

Severity code Action

0 Processes the DISPLAY command

1 Snaps all CA ADS resources and processes the DISPLAY command

2 Snaps all system areas and processes the DISPLAY command

DISPLAY

338 ADS Reference Guide

Severity code Action

3 Snaps all CA ADS resources and terminates CA ADS with a task

abend code of D002

4 Snaps all system areas and terminates CA ADS with a task abend
code of D002

5 Terminates CA ADS with a task abend code of D002

8 Snaps all system areas and terminates the DC system with an
operating system abend code of 3996

9 Terminates the DC system with an operating system abend code

of 3996

A message in the message dictionary can contain one or more variable fields that are
replaced with application-specific values at run time. In a DISPLAY command, the
PARMS parameter can be used to code replacement parameters for each variable field

in a specified message.

Within the message definition in the dictionary, symbolic parameters are identified by
an ampersand (&) followed by a 2-digit numeric identifier. These identifiers can appear
in any order. The position of the replacement values in the PARMS parameter must

correspond directly to the 2-digit numeric identifiers in the message; the first value
corresponds to &01, the second to &02, and so forth. For example, assume that the
stored message text is as follows:

THIS IS TEXT &01 AND &03 OR &02

The PARMS parameter reads PARMS=('A','B','C'). The resulting text would read as

follows:

THIS IS TEXT A AND C OR B

If the message is defined in the dictionary with more than one text l ine, only the first
l ine appears in the map's message field.

If the message is defined in the dictionary with a destination of TERMINAL, the message
will be redisplayed at the user's terminal when control exits from the CA ADS

application.

Examples

The examples below are based on the sample applications shown in Application Thread
(see page 327) where dialog UPDATEO updates or erases all ORDOR records associated
with a CUSTOMER record that is retrieved by dialog UPDATEC.

EXECUTE NEXT FUNCTION

Chapter 15: Control Commands 339

Example 1: Retrieving records

The following sample premap process from UPDATEO retrieves the ORDOR records to

be changed. The DISPLAY command is used to display the dialog's map with a message
informing the user of the processing status:

READY.

OBTAIN NEXT ORDOR WITHIN CUSTOMER-ORDER.

IF DB-END-OF-SET

THEN

 DISPLAY MESSAGE TEXT IS

 'CUSTOMER HAS NO ORDERS. HIT 'CLEAR' TO EXIT.'.

ELSE

 DISPLAY MESSAGE CODE IS 900101

 PARMS = (ORD-NUMBER,'ORDERS').

Example 2: Erasing records

The following sample response process from UPDATEO erases a retrieved ORDOR
record. DISPLAY CONTINUE is used to return control to the dialog's premap process,

which retrieves the next ORDOR record:

READY USAGE-MODE IS UPDATE.

ERASE ORDOR ALL MEMBERS.

DISPLAY CONTINUE.

More information:

PUT DETAIL (see page 474)

EXECUTE NEXT FUNCTION

Purpose

Passes control in a dialog that is associated with an application function.

Syntax

►►──── EXECute next function ─── . ───►◄

EXECUTE NEXT FUNCTION

340 ADS Reference Guide

Usage

EXECUTE NEXT FUNCTION is appropriate for use in applications defined by using the CA

ADS application compiler (ADSA).

When the user selects a response that is valid for a dialog function at runtime, the
function associated with the response is established as the next function to be

executed. The EXECUTE NEXT FUNCTION command initiates execution of that function.
Control is passed to the function by means of the control command associated with the
application response during application compilation.

Considerations

■ An EXECUTE NEXT FUNCTION command in a dialog that is not associated with an

application function is processed by the CA ADS runtime system as a DISPLAY
command. The runtime system displays the following message in the map's
message field:

DC177018 PLEASE SELECT NEXT FUNCTION

■ The EXECUTE NEXT FUNCTION command executes the function that is invoked by
the application response specified in the AGR-CURRENT-RESPONSE field of the

ADSO-APPLICATION- GLOBAL-RECORD. Note that the response is moved into
AGR-CURRENT-RESPONSE when the user selects an application response.

■ Premap and response process commands can modify the val ue of
AGR-CURRENT-RESPONSE, thereby modifying the function executed by the
EXECUTE NEXT FUNCTION command.

■ The premap process of a mapless dialog must move a valid application response to
AGR-CURRENT-RESPONSE before issuing an EXECUTE NEXT FUNCTION command.

■ If AGR-CURRENT-RESPONSE is modified by a process command, the runtime system
does not perform security checking.

Example

In this example, control passes to the next function in the CA ADS application after the
end-of-set condition is reached:

WHILE NOT DB-END-OF-SET

 REPEAT.

 OBTAIN NEXT ORDOR WITHIN CUST-ORDOR.

 .

 .

 .

 END.

EXECUTE NEXT FUNCTION.

Because EXECUTE NEXT FUNCTION is used to pass control in this example, the CA ADS
runtime system determines which function to execute next.

INVOKE

Chapter 15: Control Commands 341

More information:

Runtime Flow Of Control (see page 135)

ADSO-APPLICATION-GLOBAL-RECORD (see page 568)

INVOKE

Purpose

Passes control to a specified dialog in the current application and implicitly establishes
the next lower level in the application thread.

Syntax

►►───── INVoke ──┬──────────┬── dialog-name ─── . ────────────────────────────►◄
 └─ NOSAVE ─┘

Parameters

NOSAVE

Specifies that database currencies are not saved for the dialog issuing the INVOKE
command.

dialog-name

Specifies either the name of a variable data field containing the dialog name to
which control passes or the dialog name itself, enclosed in single quotation marks.

Usage

Considerations

■ The load module for the named dialog must be available at run time.

■ The dialog that issues the INVOKE command remains operative.

■ A lower level dialog can return control to the dialog by issuing a RETURN command.

■ The issuing dialog's database currencies are saved and available to the dialog

receiving control, unless the NOSAVE option is specified.

When a dialog that issued an INVOKE NOSAVE command regains control from a
lower level dialog or program, database currencies are dependent upon whether or
not the run unit was extended. The following diagram shows how currencies are

affected when the NOSAVE option is used in extended and nonextended run units.

INVOKE

342 ADS Reference Guide

Currency Settings of Extended and Nonextended Run Units

 1. DIALOG 1, which uses subschema SS1,
 obtains values for records A and B:

 DIALOG 1
 ┌───────────────┐ Currencies:
 │ OBTAIN A │ A: Jones
 │ OBTAIN B │ B: Accounting
 └───────────────┘

 2. DIALOG 1 invokes DIALOG 2 using
 the NOSAVE option:
 DIALOG 1 ──┐ The run unit is
 ┌───────────────┐ Currencies: │ extended only if
 │ │ A: Jones │ DIALOG 2 uses the
 ┌──┤ INVOKE NOSAVE │ B: Accounting ──┘ same subschema as
 │ └───────────────┘ DIALOG 1.
 │
 │ DIALOG 2
 │ ┌───────────────┐
 │ │ │
 └──► │
 └───────────────┘

 3. DIALOG 2, which can use DIALOG 1's
 record buffers and currencies, obtains
 a new occurrence of record A:
 DIALOG 1
 ┌───────────────┐ Currencies:
 │ │ A: Jones
 │ INVOKE NOSAVE │ B: Accounting
 └───────────────┘
 DIALOG 2
 ┌───────────────┐ A: Smith
 │ OBTAIN A │
 │ │
 └───────────────┘

 4. DIALOG 2 issues a RETURN to DIALOG 1:
 DIALOG 1
 ┌───────────────┐ Currencies:
 │ │ If the run unit
 │ INVOKE NOSAVE ◄──┐ was extended:
 └───────────────┘ │ A: Smith
 │ B: Accounting
 DIALOG 2 │
 ┌───────────────┐ │ If the run unit
 │ │ │ was not extended:
 │ RETURN │──┘ A: _________
 └───────────────┘ B: _________
 (Currencies in DIALOG 1
 have been initialized)

Considerations for Using NOSAVE

■ When the dialog that issues the command regains control from a lower level dialog
and the run unit is extended by the INVOKE command, currencies are set to those

of the most recent dialog returning control.

■ When the dialog that issues the command regains control from a lower level dialog
and the run unit is not extended by the INVOKE command, currencies are set to the

original currencies available to the dialog when it became operative in the
application thread.

LEAVE

Chapter 15: Control Commands 343

Example

In the sample applications shown in Application Thread (see page 327), dialog RDCUST#

prompts the user for the CALC key of a CUSTOMER record to be retrieved. RDCUST#
passes control to dialog UPDATEC, which retrieves and displays the record, and then
modifies or erases it as instructed by the user. RDCUST# uses the following response

process to pass control to UPDATEC:

INVOKE 'UPDATEC'.

Because RDCUST# uses the INVOKE command to pass control, processing can return to
the RDCUST# mapout operation following completion of UPDATEC processing. This
allows the user to update multiple CUSTOMER records in one CA ADS runtime session.

More information:

CA ADS Runtime System (see page 119)

LEAVE

Purpose

Terminates the current application thread or terminates the current CA ADS runtime
session.

Syntax

►►── LEAVE ─┬──►─
 ├─ APPLication ◄ ──┬────────────────────────────────────┬────
 │ └─ NEXT ─┬─ TASK - task-code ───────┬┘
 │ └─ dialog ◄ - dialog-name ─┘
 └─ ADS/online ─────┬──────────────────────────┬──────────
 └─ NEXT TASK dc-task-code ─┘

─►───┬── . ───────────────────►◄
 ───┤
 ───┬───┬─┘
 └─ CONDition code ─┬──────┬─ condition-code ──┘
 ├─ IS ─┤
 └─ = ─┘

Parameters

APPLication

Terminates the current application and passes control as specified by NEXT TASK or
NEXT dialog.

LEAVE is the equivalent of LEAVE APPLICATION.

LEAVE

344 ADS Reference Guide

NEXT TASK task-code

Passes control to an application as defined on the Task Codes screen of the

application compiler.

Task-code specifies an application task code, as defined on the Task Codes screen of
the application compiler. Task-code is either the name of a variable field containing

the task code or the task code itself, enclosed in single quotation marks.

NEXT dialog dialog-name

Specifies the name of a mainline dialog to which control passes. If the keyword
TASK or dialog is not specified, dialog is the default.

Dialog-name is either the name of a variable data field that contains the dialog

name or the dialog name itself, enclosed in single quotation marks.

The load module for the named dialog must be stored in the data dictionary.

ADS/online

Terminates the current application and the current CA ADS session. Control returns
to CA IDMS/DC or DC/UCF (DC/UCF).

NEXT TASK dc-task-code

(Online only) Passes control to another DC/UCF task.

Dc-task-code is either the name of a variable field containing the DC/UCF task or the
task name itself, enclosed in single quotation marks.

Dc-task-code must be defined with the NOINPUT parameter, which specifies that

only a task code, and no additional data, is expected.

CONDition code IS condition-code

(Batch z/OS only) Clause introducing a completion code for the current job step.

The completion code can be tested using the COND parameter in the job control
language (JCL).

Condition-code is either the name of a variable field containing the condition code
or the number itself, expressed as a numeric l iteral.

IS or = are optional keywords and have no effect on processing.

Usage

Effects of Issuing LEAVE

■ All operative dialogs in the terminating application become nonoperative.

■ All database currencies are released.

■ All record buffers are freed.

LINK

Chapter 15: Control Commands 345

Example

Dialog UPDATEC, shown in Example 1 in the earlier diagram, includes the following

response process, which allows the terminal operator to terminate the application
thread:

LEAVE APPLICATION.

When the above response process executes, control passes to the Dialog Selection

screen. The user can then select the next mainline dialog to be executed.

LINK

Purpose

Specifies the next dialog executed in a current application.

LINK is also used to request execution of a COBOL, PL/I, or Assembler program.

Syntax

►►── LINK ──┬──────────┬── to ─┬─┬────────────────────┬─ dialog-name ─────────►
 └─ NOSAVE ─┘ │ └─ DIALOG ───┬─ IS ─┬┘
 │ └─ = ─┘
 └┬─ PROGram ─┬─┬──────┬─ program-name ─────────
 └─ PGM ─────┘ ├─ IS ─┤
 └─ = ─┘

 ►──────┬─────────────────────────────┬────────────────────────────────┬─ . ──►◄
 └─ USING (control-options) ─┘ │
 │
 ──────┬──┬─┘
 └─ USING (─┬───────────────────┬──┬───────────────────┬─) ─┘
 │ │ │ ┌───────────────┐ │
 └─ control-options ─┘ └─▼─ record-name ─┴─┘

Expansion of Control-Options

►►─┬───────────────┬──┬─────────────────────┬─────────────────────────────────►◄
 ├─ MAP-CONTROL ─┤ ├─ SUBSCHEMA-CONTROL ─┤
 └─ MAP_CONTROL ─┘ └─ SUBSCHEMA_CONTROL ─┘

LINK

346 ADS Reference Guide

Parameters

NOSAVE

Specifies that the database currencies for the dialog that i ssues the LINK command
are not saved.

When a dialog that issues a LINK NOSAVE command regains control from a lower

level dialog or program, its database currencies are set as follows:

■ If the LINK command extends a run unit, the dialog's currencies are passed back
up to the dialog or program to which the linking dialog passed control.

■ If the LINK command does not extend a run unit, the dialog's database

currencies are reinitialized to whatever they were when the dialog gained
control.

DIALOG IS dialog-name

Specifies the name of the dialog to which control passes.

Dialog-name is either the name of a variable data field that contains the dialog

name or the dialog name itself, enclosed in single quotation marks.

The load module for the named dialog must be stored in the data dictionary of load
library.

IS or = are optional keywords and have no effect on processing.

PROGram IS program-name

Specifies the name of the COBOL, PL/I, or Assembler program to which control is
passed.

Program-name is either the name of a variable data field that contains the program

name or the program name itself, enclosed in single quotation marks.

The load module for the named program must be defined under DC/UCF as a
program. The program can be defined in any of the following ways:

■ At system generation by means of the PROGRAM statement

■ In the IDD by means of the DDDL PROGRAM statement

■ Under DC/UCF by means of the DCMT VARY DYNAMIC PROGRAM master
terminal command

PGM can be used in place of PROGRAM.

LINK

Chapter 15: Control Commands 347

USING control-options

Identifies the control options to be used.

Expanded syntax for control-options is shown above immediately following the LINK
syntax.

Multiple parameters in the USING clause must be separated by blanks or commas.

The record and control block names must be specified in the same order in which
they are defined in the user program. If used, the USING clause must specify at least
one record or control block name.

The SQLSSI parameter is used when passing a global cursor from an CA ADS dia log

to a user program. SQLSSI is a record that contains the SQL session identifier which
is assigned when the dialog's transaction started. This record is copied into the
dialog automatically, so the user does not need to add it to the dialog. The user
program must have a record in its "linkage" section defined with the SQLSESS

datatype.

record-name

Specifies the data that is passed to the named user program.

MAP-CONTROL

Passes the map request block of the original CA ADS dialog to the lower level dialog.

The lower level dialog must specify the same map as the call ing dialog. The version

number and date/time stamp for both maps must be identical. If the maps differ,
the application abends.

The keyword MAP_CONTROL may be used in place of MAP-CONTROL.

SUBSCHEMA-CONTROL

Extends a call ing dialog's run unit to a lower level dialog. The runtime system

ignores any differences between the two dialog's subschemas, schemas, and area
ready modes. On return to the call ing dialog, the run unit is unconditionally
extended upward.

The dialog to which control is extended is not al lowed to access a record or set not
defined in the original dialog's subschema. Such an attempt causes an abend at
runtime.

The keyword SUBSCHEMA_CONTROL may be used in place of

SUBSCHEMA-CONTROL.

Usage

Control Passed to a Specified Dialog

When control is passed to a specified dialog by means of a LINK command, the next
lower level in the application thread is implicitly established and a nested structure is

created.

LINK

348 ADS Reference Guide

Considerations

■ The dialog issuing the LINK command becomes the top of the nested structure and

remains operative.

If an application response passes control by means of a LINK command, the
function from which the response was selected becomes the top of a nested

structure.

■ A LINK command within a nested structure establishes the top of a lower nested
level.

■ Dialogs within a nested structure can issue any of the control commands.

A RETURN command cannot pass control higher than the top of the lowest nested

level that is operative in the application thread.

■ The dialog issuing a LINK command expects control to return to the command
following the LINK instruction.

■ The issuing dialog's database currencies are saved and are available to the dialog
when it regains control, unless the NOSAVE option is used.

When the dialog that issued a LINK NOSAVE command regains control from a lower
level dialog or program, the database currencies set depend on whether or not the
run unit was extended.

Refer to the LINK command syntax rules that follow this discussion for currency

settings of extended and nonextended run units.

Control Passed to a User Program

When a LINK command specifies a user program, control passes outside the CA ADS
environment and temporarily suspends CA ADS sessions.

Considerations

■ The LINK command must explicitly specify any data to be passed to the user

program, including the subschema control block, the map request block, and any
records used in the program's processing.

■ A user program has the option of using the call ing dialog's run unit.

If the LINK command does not contain subschema -control in its USING list, the user

program cannot access its calling dialog's run unit. The user program can access a
database by binding a run unit and establishing its own currencies. This run unit will
be bound concurrently with the dialog's run unit.

If the LINK command contains subschema-control in its USING list, the dialog's run
unit is passed to the user program. Any database records to be shared with the
dialog should be passed in the USING RECORD list.

LINK

Chapter 15: Control Commands 349

■ A user program must return control to CA ADS by mea ns of a DC RETURN
statement.

When the user program issues the DC RETURN statement, the suspended CA ADS
session resumes and control passes to the command following the LINK command.

The format of the DC RETURN statement varies based on whether the program has
previously issued a DC RETURN statement that specified a next task code other than
ADSR, as follows:

– If the program has previously issued a DC RETURN statement that specified a
next task code other than ADSR, the DC RETURN statement that returns control
to CA ADS must have the following format:

DC RETURN NEXT TASK CODE ADSR.

DC RETURN NEXT TASK CODE will end the task and rollback any open run unit,
whether it was bound by the user program or passed from the call ing dialog.

ADSR is the default task code that invokes ADSOMAIN with no input. The task
code can be changed by means of the DC/UCF system generation TASK

statement.

Note: For more information about specifying the task code for the CA ADS runtime
system, see the CA IDMS System Generation Guide.

– If the program has not previously issued a DC RETURN statement that specified
a next task code other than ADSR, the DC RETURN statement that returns

control to CA ADS can have the following format:

DC RETURN

■ A dialog with a standard subschema can link to a dialog with an LRF subschema
using subschema control. However, if the lower-level dialog makes an LR call, a
status of 0063 is returned; in this case, the status is equivalent to a status of 2008.

To use the LINK command effectively in conjunction with user programs, refer to the

online programming techniques presented in the CA IDMS DML Reference for the
appropriate language.

Example 1: Passing control to a lower level dialog

Dialog UPDATEC, shown in Example 1 of Application Thread (see page 327), uses the
response process l isted below to pass control to dialog UPDATEO.

UPDATEO obtains an ORDOR record for the current CUSTOMER, requests modifications,
and updates the record in the database. When UPDATEO returns control to dialog
UPDATEC, processing resumes with the DISPLAY command that follows the LINK

command:

LINK TO DIALOG 'UPDATEO'.

DISPLAY MESSAGE TEXT IS

'CUSTOMER ORDER HAS BEEN CHANGED'.

LINK

350 ADS Reference Guide

Example 2: Passing control to a COBOL program

The following statement from the premap process associated with dialog UPDATEC

passes control to the COBOL program LOOKUP. LOOKUP uses the subschema control
block and CUSTOMER record buffer from UPDATEC to check the status of the current
customer:

LINK PROGRAM 'LOOKUP'

USING (SUBSCHEMA-CONTROL,CUSTOMER).

Example 3: Extending the current map session

In this example, ERRCHK is a dialog that contains special error-checking and validating

routines. ERRCHK uses the same map as the call ing dialog. The LINK command passes
current map attributes and data to ERRCHK.

When ERRCHK finds errors, it:

■ Sets the appropriate fields in error by modifying error attributes for the map.

■ Returns control to the call ing dialog. The error attributes are returned along with
current map data.

The sample LINK statement that passes control to ERRCHK is:

LINK TO DIALOG 'ERRCHK'

USING (MAP-CONTROL).

Example 4: Extending the current run unit

In this example:

■ The call ing dialog uses subschema EMPSS01. This subschema contains records
EMPLOYEE and DEPARTMENT.

■ The LINK command unconditionally extends the current run unit to dialog UPDATE,

which is a mapless dialog containing update logic for records EMPLOYEE and
DEPARTMENT.

■ The USING statement bypasses the checking of the subschema and ready modes

when passing the run unit.

■ Dialog UPDATE updates the database and then returns control to the call ing dialog.

The sample LINK statement that passes control to UPDATE is:

LINK TO DIALOG 'UPDATE'

USING (SUBSCHEMA-CONTROL).

LINK

Chapter 15: Control Commands 351

Example 5: COBOL program that was passed the dialog's subschema-control

The following example shows a LINKed-to COBOL program that was passed the dialog's

SUBSCHEMA-CONTROL.

ENVIRONMENT DIVISION.

 PROTOCOL. IDMS-RECORDS MANUAL.

WORKING-STORAGE SECTION.

 01 COPY IDMS SUBSCHEMA-NAMES.

 01 COPY IDMS RECORD <the name of each database record that is

 needed but was not passed in the USING list>

LINKAGE SECTION.

 01 COPY IDMS SUBSCHEMA-CTRL.

 01 COPY IDMS RECORD <the name of each database record that is

 passed in the LINK command>

PROCEDURE DIVISION.

 BIND <the name of each database record that is needed but was

 not passed in the LINK command>

LINK

352 ADS Reference Guide

Example 6: BAl program that was passed the dialog's subschema-control

The following example shows a LINKed-to Basic Assembler Language program that was

passed the dialog's SUBSCHEMA-CONTROL and DIALOG record
ADSO-APPLICATION-GLOBAL-RECORD.

ADSPGM TITLE 'PROGRAM CALLED FROM AN ADS DIALOG'

*GETBTMAP RENT EP=GBMPEP1 XA

COPY #APGDS

COPY #CSADS

COPY #TCEDS

COPY #SSCDS

#MOPT CSECT=ADSPGM,ENV=USER

@MODE MODE=IDMSDC,WORKREG=RO,QUOTES=YES,DEBUG=YES

*At entry, R9 contains the address of the TCE

USING TCE,R9

*At entry, R10 contains the address of the CSA

USING csa,R10

ENTRY ADSPGEP1

ADSPGEP1 DS OH

*---

*Set base register

*---

LR,R12,R15 BASE THIS MODULE

USING ADSPGEP1,R12

*Registers at entry need not be saved

*At entry, R1 contains the address of the passed parameter list

*Accept ADSO-APPLICATION-GLOBAL-RECORD as a passed parameter

L R6,0(,R1) A(SSCTRL)

USING APG,R6

* Accept SUBSCHEMA-CONTROL as a passed parameter

L R7,4(,R1) A(SSCTRL)

LA R7,0(,R7) CLEAR HIGH-ORDER FLAG

USING SSCTRL,R7

SPACE

#GETSTG TYPE=(USER,SHORT),PLIST=*,X

LEN=12,X

ADDR=(R2),X

INIT=0

* Necessary DML commands here

EJECT

*---

*Return to caller

*---

#RETURN

LTORG

END

READ TRANSACTION

Chapter 15: Control Commands 353

More information:

CA ADS Runtime System (see page 119)

READ TRANSACTION

Purpose

(CA ADS/Batch only) Terminates the current process, performs a mapin operation, and

then selects the next application function or response process to be executed.

Syntax

►►────── READ TRANsaction ──────┬──────────┬───── . ──────────────────────────►◄
 └─ OUTput ─┘

Parameters

OUTput

Specifies that the fi le is to be opened as an input/output fi le.

Usage

Considerations

■ OUTPUT must be specified in the first READ TRANSACTION command for a VSAM

entry-sequenced data set (ESDS) that is to be opened for both input and output.

■ OUTPUT is ignored if the fi le is already opened; if the fi le is not a VSAM ESDS fi le,
the application abends.

■ If the current record's response field selects an immediately executable function
that is not the same as the current function, the runtime sys tem passes control to

the newly selected function. The next time a mapin operation is performed for the
fi le, the runtime system immediately maps in the record.

■ On a mapin operation, the runtime system automatically opens the fi le being read if

the fi le is not already opened.

RETURN

Purpose

Passes control to a higher level dialog or function in the application thread.

RETURN

354 ADS Reference Guide

Syntax

►►─── RETurn ─┬──────────────────┬─┬────────────┬─┬────────────┬─ . ──────────►◄
 ├─ TO dialog-name ─┤ └┬─ CLEAR ─┬─┘ └─ CONTinue ─┘
 └─ to ─┬─ TOP-─┬───┘ └─ CLR ───┘
 └─ ALL ─┘

Parameters

TO dialog-name

Introduces the name of a higher level dialog to which control passes.

Dialog-name can be the name of a variable data field that contains the dialog name
or the dialog name itself, enclosed in single quotation marks.

to TOP

Specifies the highest level to which control can pass.

ALL can be used in place of to TOP.

CLEAR

Specifies that record buffers are reinitialized and currencies are released for the
dialog receiving control.

CLEAR is ignored if the receiving dialog is at the top of a nested application
structure.

CLR can be used in place of CLEAR.

CONTinue

Specifies that control returns to the first command in the premap process of the

dialog receiving control.

If CONTINUE is not specified, control returns to the mapout operation of the dialog
that receives control. If the receiving dialog is at the top of a nested application

structure, CONTINUE is ignored.

Usage

Considerations

■ The dialog or function receiving control must be operative.

■ The dialog that issues the RETURN command becomes nonoperative as do any

operative dialogs or functions on a level between the issuing and receiving dialogs
or functions.

■ All database currencies established by the dialog issuing the RETURN command are
released.

■ A RETURN command cannot pass control higher than the top of the lowest level

nested application structure created by a LINK command.

RETURN

Chapter 15: Control Commands 355

■ The named dialog must not be higher than the top of the nested application
structure in which the issuing dialog participates.

■ If the named dialog is operative at more than one higher level, control passes to the
lowest level operative dialog with the specified name.

■ If the issuing dialog participates in a nested application structure, control returns to
the top of the nested structure.

■ If the issuing dialog does not participate in a nested structure, control returns to the

mainline dialog at the top of the application thread.

■ If a RETURN statement does not specify a receiving dialog, control passes to the
next higher level dialog or function.

■ If the mainline dialog at the top of an application thread issues a RETURN
command, the RETURN command is treated as a LEAVE APPLICATION command.

■ A dialog that receives control at the top of a nested structure resumes execution at

the command that follows the LINK command.

■ RETURN can pass control within a nested application structure to any operative
dialog that passed control with an INVOKE command.

■ If the issuing dialog is not in a nested structure, RETURN can pass control to any
higher level operative dialog or function, or directly to the top of the application

structure.

■ The application developer can specify whether the dialog receiving control resumes
execution with its premap process or with its mapout operation.

■ The application developer can also request reinitialized record buffers for the dialog
that receives control.

Examples

The examples below show the use of the RETURN command in response processes from
dialogs used in the two sample applications shown in Application Thread (see page 327):

Example 1: Using RETURN with the LINK command

In Example 1 of Application Thread (see page 327), dialog UPDATEC passes control to

the dialog UPDATEO by means of a LINK command. The following response process from
dialog UPDATEO returns control to the command following the LINK command in dialog
UPDATEC:

READY USAGE-MODE IS UPDATE.

MODIFY ORDOR.

RETURN.

TRANSFER

356 ADS Reference Guide

Example 2: Using RETURN with the INVOKE command

In Example 2 of Application Thread (see page 327), dialog UPDATEC passes control to

the dialog UPDATEO by means of an INVOKE command. The following response process
from dialog UPDATEO returns control to the mainline dialog RDCUST# and reinitializes
the record buffers associated with RDCUST#:

READY USAGE-MODE IS UPDATE.

MODIFY ORDOR.

RETURN TOP CLEAR.

Example 3: Transferring control within the same level

In Example 2 of Application Thread (see page 327), dialog UPDATEO provides the ability

to transfer to dialog ADDORDR. ADDORDR prompts the user for new order information.
The following response process from dialog ADDORDR adds a new ORDOR record to the
database and returns control to the mapout operation of dialog UPDATEC:

READY USAGE-MODE IS UPDATE.

STORE ORDOR.

RETURN.

TRANSFER

Purpose

Passes control to a specified dialog at the same level in the application structure.

Syntax

►►─── TRANsfer ───┬────────────┬── to dialog-name ─── . ──────────────────────►◄
 └─ NOFinish ─┘

Parameters

NOFinish

Specifies that the current run unit is to be extended.

to dialog-name

Either the name of a variable data field that contains the dialog name to which

control passes or the dialog name itself, enclosed in single quotation marks.

The load module for the named dialog must be stored in the data dictionary.

TRANSFER

Chapter 15: Control Commands 357

Usage

Considerations

■ When specified along with the NOFINISH option, TRANSFER can extend the current
run unit.

■ When TRANSFER is specified without NOFINISH, a dialog that issues a TRANSFER

command becomes nonoperative.

■ The receiving dialog or function replaces the issuing dialog in the application thread.

■ The receiving dialog or function has access to database currencies established by
dialogs at higher levels in the application thread and to the contents of global
records and of any records whose buffers were established by dialogs at higher

levels in the application thread.

■ A dialog can transfer control to itself.

■ The copy of the dialog receiving control acquires newly initialized record buffers.

■ When a dialog transfers control to itself, the FIRST-TIME status is reset.

Examples

The following examples use the TRANSFER statement to pass control to a dialog at the
same level.

Example 1: Using the dialog name

In Example 2 of Application Thread (see page 327), dialog UPDATEO passes control to
dialog ADDORDR by means of the following statement:

TRANSFER TO 'ADDORDR'.

Example 2: Using a variable data field to transfer control

In this example, control passes either to dialog ADDORDR or to dialog ORDCOUNT,
depending on the outcome of the OBTAIN command:

OBTAIN NEXT ORDOR WITHIN CUST-ORDER.

IF DB-END-OF-SET

THEN

 MOVE 'ADDORDR' TO NEXT-DIALOG.

ELSE

 MOVE 'ORDCOUNT' TO NEXT-DIALOG.

TRANSFER TO NEXT-DIALOG.

WRITE TRANSACTION

358 ADS Reference Guide

More information:

CA ADS Runtime System (see page 119)

Conditional Expressions (see page 245)

WRITE TRANSACTION

Purpose

(CA ADS/Batch only) Performs the following sequence of functions:

1. Terminates the current process

2. Performs a mapout operation

■ If the dialog's current input fi le record contains no errors and the keyword

SUSPENSE is not included in the command, the mapout writes a record to the
dialog's associated output fi le, according to the output fi le map definition.

■ If the input fi le record contains errors or the keyword SUSPENSE is included in
the command, the mapout writes the input record to the dialog's suspense fi le
and sends applicable error messages to the log fi le.

3. Passes control within the application. Control can be passed to:

■ The dialog's premap process or mapin operation

■ A higher level dialog or application function

Syntax

►►──── WRITE TRANsaction ─────┬───────────────┬───────────────────────────────►
 └─ to SUSpense ─┘

 ►──┬───┬───────►
 ├─ CONTinue ──┤
 └─ RETurn ────┬──────────────────┬─┬───────────┬─┬────────────┬───┘
 ├─ TO dialog-name ─┤ └┬─ CLEAR ─┬┘ └─ CONTinue ─┘
 └┬─ to TOP ─┬──────┘ └─ CLR ───┘
 └─ ALL ────┘

 ►──┬─────────────────────────────────┬── . ──────────────────────────────────►◄
 └┬ MESSAGE ─┬── message-options ──┘
 └ MSG ─────┘

WRITE TRANSACTION

Chapter 15: Control Commands 359

Expansion of Message-Options

►►────┬─ TEXT ─────┬──────┬────────── message-text ───────────────────────────►
 │ ├─ IS ─┤
 │ └─ = ─┘
 └─ CODE ─────┬──────┬────────── message-code ───────────────────────────
 ├─ IS ─┤
 └─ = ─┘

 ►──►
 ────┬───┬───────────────────────
 │ ┌──────────────┐ │
 └─ PARMS ────┬─────┬─── (─▼── parameter ─┴─) ──┘
 └─ = ─┘

 ►──┬───────────────────────►◄
 ────┬──┬──────┘
 └─ PREFIX ───┬──────┬─────── prefix ─────┘
 ├─ IS ─┤
 └─ = ─┘

Parameters

to SUSpense

Specifies that the dialog's input record is written to the suspense fi le even if it does

not contain errors. Nothing is written to the dialog's output fi le.

CONTinue

Specifies that control is passed to the dialog's premap process after mapout
operation.

RETurn

Specifies that control is returned to a higher level dialog or application function
after mapout operation.

TO dialog-name

Either the name of a variable data field that contains the dialog name to which
control is passed or the dialog name itself, enclosed in single quotation marks.

to TOP

Specifies the highest level to which control can pass.

ALL can be used in place of to TOP.
k

CLEAR

Specifies that record buffers are reinitialized and currencies are released for
the dialog receiving control.

CLEAR is ignored if the receiving dialog is at the top of a nested application
structure.

CLR can be used in place of CLEAR.

WRITE TRANSACTION

360 ADS Reference Guide

CONTinue

Specifies that control returns to the first command in the premap process of

the dialog receiving control. If not specified, control returns to the mapout
operation of the dialog that receives control. If the receiving dialog is at the top
of a nested application structure, CONTINUE is ignored.

If neither CONTINUE nor RETURN is specified, control passes to the dialog's
mapin operation. The runtime system maps the next record into variable

storage, then selects the next application function or dialog response process
to be executed.

Note: For applications defined using the application compiler, the runtime

system first examines the current record's response field. If the field selects an
immediately executable function that is not the same as the current function,
the runtime system passes control to the selected function. The next time a
mapin operation is performed for the fi le, the runtime system immediately

maps in the record.

MESSage message-options

Identifies message to be displayed.

MSG can be used in place of MESSAGE.

Expanded syntax for message-options is shown above immediately following the

CONTINUE syntax.

TEXT IS message-text

Specifies the text of a message to be displayed in an online map's message field or
sent to a batch application and a system log fi le.

Message-text specifies either the name of a variable data field containing the

message text or the text string itself, enclosed in single quotation marks.

The text string can contain up to 240 displayable characters.

IS or = are optional keywords and have no effect on processing.

CODE IS message-code

Specifies the message dictionary code of a message to be displayed in an online

map's message field or sent to the log fi le in a batch application.

In a batch application, the message is also sent to the operator, if directed by the
destination specified in the dictionary.

Message-code specifies either the name of a variable data field that contains the
message code or the 6-digit code itself, expressed as a numeric l iteral.

IS or = are optional keywords and have no effect on processing.

WRITE TRANSACTION

Chapter 15: Control Commands 361

PARMS = parameter

Specifies a replacement parameter for each variable field in the stored message

identified by message-code.

Up to nine replacement parameters can be specified for a message. Multiple
parameters must be specified in the order in which they are numbered and

separated by blanks or commas.

Parameter specifies either the name of an EBCDIC or unsigned zoned decimal
variable data field that contains the parameter value or the actual parameter value,
enclosed in single quotation marks.

The parameter value must contain displayable characters. At run time, each
variable data field in a stored message expands or contracts to accommodate the
size of its replacement parameter. A replacement parameter can be a maximum of
240 bytes.

PREFIX IS prefix

Overrides the default prefix of a dialog and a map.

Prefix must either specify an EBCDIC or unsigned zoned decimal variable data field
that contains a 2-character prefix or the 2-character prefix itself, enclosed in single

quotation marks

IS or = are optional keywords and have no effect on processing.

Usage

Considerations

■ The named dialog must not be higher than the top of a nested application structure

in which the issuing dialog participates.

■ If the named dialog is operative at more than one higher level, control passes to the
lowest level dialog with the specified name.

■ If the write operation results in a physical output-error condition, the application
terminates.

■ A WRITE TRANSACTION command can be issued in a dialog that is not associated
with an output fi le. In this case, the command is used only to write an input r ecord
to the suspense fi le. If the input record is not in error, nothing is written to the
suspense fi le.

■ The WRITE TRANSACTION command also allows specification of a message to be

sent to the log fi le or to the operator's console.

■ The destination of the message depends on the routing codes specified using
ADSOBSYS or at run time in a control statement.

WRITE TRANSACTION

362 ADS Reference Guide

■ If the issuing dialog participates in a nested application structure, control returns to
the top of the nested structure.

■ If the issuing dialog does not participate in a nested structure, control returns to the
mainline dialog at the top of the application thread.

■ If a RETURN statement does not specify a receiving dialog or TOP, control passes to
the next higher level dialog or function.

■ If the mainline dialog at the top of an application thread issues a RETURN

command, the RETURN command is treated as a LEAVE APPLICATION command.

■ Up to nine replacement parameters can be specified for a message.

■ Multiple parameters must be separated by blanks or commas.

■ Multiple parameters must be specified in the order in which they occur in the
stored message.

Chapter 16: Database Access Commands 363

Chapter 16: Database Access Commands

This section contains the following topics:

Overview (see page 363)
Navigational DML (see page 365)
Logical Record Facil ity Commands (see page 433)

Overview

An CA ADS application can access the CA IDMS/DB database by using navigational DML
or SQL DML.

Navigational DML

CA ADS navigational DML is used to retrieve and update database or VSAM records and
perform database control functions. Navigation DML commands can be used in process
logic to store, retrieve, modify, and delete data in a non-SQL defined database, using a
standard subschema or a Logical Record Facil ity (LRF) subschema.

When using LRF, the application developer selects a predefined path that meets the

dialog's data requirements and codes simple database requests in dialog process logic.
Database navigation is defined in the path, not in the process.

SQL DML

In an CA ADS application, SQL DML can be used to retrieve and update data defined
with:

■ Records in non-SQL defined databases (associated with an SQL schema)

■ Tables in SQL-defined databases

Note: For more information about using SQL DML statements, see the CA IDMS SQL
Self-Training Guide and the CA IDMS SQL Programming Guide.

Navigational DML and LRF commands used in the CA ADS environment are summarized
in the following two tables. Documentation of command syntax appears later in this
chapter.

Overview

364 ADS Reference Guide

Summary of Navigational DML Commands

Command Purpose

ACCEPT Moves database keys page information statistics from the
database management system to a dialog

BIND PROCEDURE Establishes communication from a dialog to a DBA-written
procedure

COMMIT Writes checkpoints to the journal fi le and releases locks
held on database records

CONNECT Connects member records to sets

DISCONNECT Disconnects member records from sets

ERASE Erases records from the database

FIND Locates records in the database

GET Copies record contents from the database to a dialog's
record buffers

KEEP Places locks on records

MODIFY Replaces records in the database with the contents of a
dialog's record buffers

OBTAIN Locates records in the database and copies their contents
to a dialog's record buffers

READY Prepares database areas for processing

RETURN DB-KEY Retrieves index entries without the associated record
(used only with the Sequential Processing Facility and with

system-owned indexed records)

ROLLBACK Requests recovery of the database

STORE Adds a record to the database

Summary of LRF Commands

Command Purpose

ERASE Deletes Logical Record Facil ity record occurrences

MODIFY Changes field values in Logical Record Facil ity record occurrences

OBTAIN Retrieves Logical Record Facil ity record occurrences

ON Performs additional processing based on the outcome of
conditional testing of Logical Record Facil ity record access

Navigational DML

Chapter 16: Database Access Commands 365

Command Purpose

STORE Stores a new occurrence of a Logical Record Facil ity record

Navigational DML

Each navigational DML command is presented alphabetically after the overview of
navigational database access.

Overview of Navigational Database Access

To use navigational DML commands effectively in a process, the application developer
should be familiar with database programming concepts. These concepts are discussed
in detail in the CA IDMS Navigational DML Programming Guide.

Considerations

The following special considerations apply to accessing the database in the CA ADS
environment:

■ Before coding database commands, the application developer must be familiar with

the characteristics of the subschema associated with the dialog. The subschema
specifies the elements, records, sets, and areas available to the dialog. The
subschema also includes the default usage modes for the database areas and

specifies any restrictions on the use of database commands.

■ The default usage mode for a database area can be specified with the FORCE
option. In some cases, using the FORCE option enables adding an area to a
subschema without recompiling the ADS dialogs that use it. However, we

recommend not to use FORCE with ADS applications that use extended run units. In
such cases, a forced automatic READY might ready the area in the default usage
mode on the 1

st
 dialog, but a lower-level dialog might need to READY the area in a

more restrictive mode. This situation can lead to an unexpected failure of the ADS
application.

Note: For more information on the limitations of using the FORCE option with ADS
dialogs, see the Area Statement section (in the Subschema Statements chapter) in

the CA IDMS Database Administration Guide.

■ Each database command can be coded any number of times within a process.

■ If a READY command specifies the same area more than once within a process, the
usage mode specified in the last READY statement applies to the specified area for
the entire process.

The READY command is executed when the first DML command is encountered. If

an invalid (non-zero) error status is returned from the READY or BIND processing,
the dialog aborts. Process code cannot intercept these errors.

Navigational DML

366 ADS Reference Guide

■ At runtime, CA ADS automatically initializes a buffer for each record type associated
with the mainline dialog. Subsequent dialogs that access the same record type use

the existing record buffer unless a reinitialized buffer for the record is requested by
using the Records and Tables screen during dialog compilation.

■ To enable proper positioning and movement through the database during the
execution of an application, the CA ADS runtime system automatically maintains
database keys for the records that are accessed by a dialog as shown in the

following table.

Record Description

Current of run unit The most recently accessed record occurrence

Current of record type The most recently accessed occurrence of each record
type

Current of set type The most recently accessed record occurrence (owner or

member) of each set

Current of area The most recently accessed record occurrence in each
area

■ Database commands use and update currencies, as l isted in the currency chart
below.

CA ADS saves or releases the currencies established during dialog execution based

on the command used to pass control to the next function or dialog.

Database
command

Currency updated by successful
execution

Successful execution

Run
unit

Record Set Area

ACCEPT
*
 X X X X None

IF
*
 X X None

FIND/OBTAIN
DB-KEY

 All

FIND/OBTAIN

CURRENT
*

 X X X X All

FIND/OBTAIN
WITHIN SET

 X All

FIND/OBTAIN
WITHIN AREA

 X
2
 All

Navigational DML

Chapter 16: Database Access Commands 367

Database
command

Currency updated by successful
execution

Successful execution

FIND/OBTAIN

OWNER

 X All

FIND/OBTAIN CALC All

FIND/OBTAIN
DUPLICATE

 X All

FIND/OBTAIN
USING SORT KEY

 X All

GET X None

STORE X
3
 All

MODIFY X None
4

ERASE X Nullifies of all record

types and sets involved

CONNECT X X Run unit, set

DISCONNECT X Nullifies currency of
object set; updates
current of run unit and

area

KEEP
*
 X X X X None

COMMIT None

COMMIT ALL Nullifies all currencies

ROLLBACK Nullifies all currencies

ROLLBACK

CONTINUE

 Nullifies all currencies

FINISH Nullifies all currencies

Note:

*
Uses only one currency as determined by command format.

2
Required for NEXT and PRIOR formats only.

3
All in which record type participates as an automatic member.

4
 Except in the case of a sorted set.

Navigational DML

368 ADS Reference Guide

More information:

Control Commands (see page 325)

Records and Tables Screen (see page 111)

Use of Native VSAM Data Sets

Native VSAM data sets can be defined in an CA IDMS/DB database schema and accessed

by CA ADS database commands as if they were standard database fi les. CA IDMS/DB
supports all three types of VSAM data sets: key sequenced (KSDS), entry sequenced
(ESDS), and relative record (RRDS).

Existing VSAM data structures are accessed by equating them to CA IDMS/DB structures
in the schema. The dialog issues standard process command statements for the

equivalent CA IDMS/DB structures and the DBMS converts these statements to native
VSAM access requests for the appropriate VSAM structures.

When a dialog's subschema includes records in a native VSAM file, process code for the
dialog is affected in the following ways:

■ The set status condition cannot be used with sets defined for native VSAM data

records.

■ Some database commands are affected, as l isted below.

The following table l ists considerations that apply to specific database commands when

using native VSAM data sets.

Database Commands and Native VSAM Data Sets

Command Consideration

ACCEPT DB-KEY RELATIVE

TO CURRENCY

Next, prior, and owner currency cannot be requested for

sets defined for native VSAM records.

CONNECT The CONNECT command is not allowed because all sets
in native VSAM data sets must be defined as mandatory
automatic.

DISCONNECT The DISCONNECT command is not allowed because all
sets in native VSAM data sets must be defined as
mandatory automatic.

ERASE ERASE record-name is the only form of the ERASE
command that is valid for use with native VSAM data
sets. No form of the ERASE command is permitted
against records contained in an ESDS.

Navigational DML

Chapter 16: Database Access Commands 369

Command Consideration

FIND/OBTAIN DB-KEY The FIND/OBTAIN DB-KEY command cannot be used to

access records in a native VSAM KSDS because the
database key does not necessarily remain static in a
KSDS.

FIND/OBTAIN OWNER The FIND/OBTAIN OWNER command is not allowed
because owner records are not defined in native VSAM
data sets.

FIND/OBTAIN WITHIN

SET/AREA

When an end-of-set or end-of-area condition occurs, all

currencies remain unchanged.

The FIRST, LAST, and sequence-vn WITHIN AREA options
cannot be used to access spanned data records in a
native VSAM data set.

MODIFY The length of a record in an ESDS fi le cannot be changed
even if the record is variable length.

The prime key for a KSDS cannot be modified.

STORE If the object record is to be stored in a native VSAM
RRDS, the DIRECT-DBKEY field must be initialized with
the relative record number of the record being stored.

More information:

Conditional Expressions (see page 245)

Record Locking

Record locks are used to protect the integrity of database records.

Share and Exclusive Locks

Record locks protect object records from concurrent access or update by other run
units. Locks can be shared or exclusive:

■ Shared record locks allow other run units to access but not update the locked
record.

■ Exclusive record locks prohibit other run units from accessing the locked record as
long as the lock is maintained.

Navigational DML

370 ADS Reference Guide

Implicit and Explicit Record Locks

Record locks can be set implicitly by the DC/UCF central version and explicitly by the

application developer, as follows:

■ Implicit record locks are maintained automatically for every run unit that executes
in shared update usage mode. Usage modes are discussed in 'READY' later in this

section.

■ Explicit record locks are set by means of a KEEP command or the KEEP clause of a
FIND/OBTAIN command. FIND/OBTAIN is described later in this section.

Long-term explicit record locks are shared or exclusive record locks that are
maintained across run units. A long-term lock placed on a record restricts other

concurrently executing run units from accessing or updating the record until the
lock is explicitly released. Subsequent run units in the same CA ADS application that
execute from the same terminal can access and update the locked record, and can
upgrade or release the long-term lock.

Note: For more information about record locks, see the CA IDMS Database Design
Guide.

The following conditions resulting from the use of record locks can cause abnormal
termination of an CA ADS application:

■ Too many locks— Abnormal termination of an CA ADS application occurs if a run

unit tries to generate more record locks than the maximum number specified at
DC/UCF system generation. To lessen the possibility of abnormal termination
because of too many locks, a COMMIT command can be used to release locks.

■ Wait time—Abnormal termination of an CA ADS application occurs if the internal
wait time of a run unit exceeds the wait interval specified at DC/UCF system

generation.

■ Deadlock—Abnormal termination of a run unit occurs when two run units would
cause a deadlock by being permitted to wait to set locks. The run-unit that would
complete the deadlock terminates, control returns to the issuing task, and a minor
code 29 is returned.

An online application can include logic that is invoked if the run unit is terminated
because of a db-key deadlock. In this way, the application can maintain the terminal
session and save data previously entered on the screen. The application can then

ask the user to resubmit the transaction or automatically restart the run unit,
establish currency, and try again.

Navigational DML

Chapter 16: Database Access Commands 371

If the run unit is automatically restarted, the following steps should be followed:

1. Rebind the run unit. CA ADS automatically starts a new run unit when it

encounters the first functional DML statement.

2. Reestablish currency. If appropriate currencies are not reestablished before
retrying the operation that initially caused the deadlock, a status code of nn06

(no currency established) will be returned.

Note: For more information about handling the minor code 29, see the CA IDMS
Navigational DML Programming Guide.

Checking for Deadlock Conditions

Deadlock conditions can be checked for programmatically by using the ALLOWING

clause when autostatus is enabled. The check for a deadlock condition can be made
after each service request to the DBMS.

Note: For more information about record contention, see the CA IDMS Database Design
Guide.

More information:

Error Handling (see page 277)
COMMIT (see page 384)

Suppression of Record Retrieval Locks

Specifications can be made during dialog compilation to indica te whether or not
database record retrieval locks will be held for dialog run units. Retrieval dialogs that do

not update the database and do not pass currencies to update dialogs can be
selectively allowed to access database records without locking those records.

Selectively disabling retrieval locks for dialogs allows:

■ Elimination of the overhead of maintaining retrieval locks. This decreases the
amount of potential storage and CPU time used by dialogs at runtime.

■ Reduction of the number of db-key deadlocks.

Navigational DML

372 ADS Reference Guide

Disabling Record Retrieval Locks

To disable record retrieval locks, you must:

1. Analyze the dialog in the context of the entire application to ensure that control
and currencies are passed appropriately. A dialog with disabled retrieval locks can
pass control and currencies only to a dialog or user program that does retrieval

based on these currencies.

2. Verify the status of the system retrieval locks. If the mandatory retrieval locks are
on, disable the locks at system generation time by specifying RETRIEVAL NOLOCK in
the system generation SYSTEM statement.

Note: For more information, see the CA IDMS System Generation Guide.

3. Use the CA ADS dialog compiler or ADSOBCOM to disable retrieval locking for
appropriate dialogs.

Considerations

■ To safeguard the database in the absence of retrieval locks, an update user program

will be aborted when:

– The program receives currencies from a retrieval dialog and attempts an
update DML call.

– The program finishes the current run unit and binds another. The abend occurs
when control is passed back to CA ADS.

■ The update dialog abends if:

– A higher dialog in the application thread has the RETRIEVAL NOLOCK indicator
set and system-wide RETRIEVAL NOLOCKS are specified.

■ An update dialog or program is allowed to update the retrieval dialog's database
records in the following cases:

– The dialog with retrieval locks turned off readies the area in UPDATE mode.

– The update dialog/program does not receive currencies when control passes to
it.

Updates are allowed because the update dialog/program must ready the
database in UPDATE mode and establish its own currency. The dialog/program
will use record-locking mechanisms and will be assured of having the most
up-to-date data.

The control command options that avoid passing currencies when control is
passed are the TRANSFER command and the NOSAVE clause of the DISPLAY,
INVOKE, and LINK commands.

Navigational DML

Chapter 16: Database Access Commands 373

More information:

CA ADS Application Compiler (ADSA) (see page 51)

Control Commands (see page 325)
Application and Dialog Util ities (see page 621)

Overview of ACCEPT

The ACCEPT command moves database keys, page informati on, and statistics from the
database management system to a dialog's record buffers.

Formats of the ACCEPT Command

The ACCEPT command has three formats, as outlined in the table below.

Format Description

ACCEPT DB-KEY FROM CURRENCY Saves the database key and,
optionally, the page information

of the current record of run unit,
record type, set, or area

ACCEPT DB-KEY RELATIVE TO CURRENCY Saves the database key and,
optionally, the page information

of the next, prior, or owner
record relative to the current
record of a set

ACCEPT PAGE-INFO Saves the page information of the
record named.

ACCEPT STATISTICS Returns runtime database
statistics to the dialog

Note: The ACCEPT util ity command should not be confused with the ACCEPT database
command. The ACCEPT util ity command is used to access information about the current
DC/UCF task.

More information:

Utility Commands (see page 509)

Navigational DML

374 ADS Reference Guide

ACCEPT DB-KEY FROM CURRENCY

Purpose

Saves the database key and, optionally, the page information of the current record of
run unit, record type, set, or area.

Syntax

►►── ACCept DB-KEY into db-key-variable - FROM ──┬─────────────────┬─────►
 ├─ record name ───┤
 ├─ set-name ──────┤
 └─ area-name ─────┘

 ►─── CURRENCY ───┬─────────────────────────────────────┬────────────────►
 └ PAGE-INFO into page-info-variable ──┘

 ►─────────┬──────────────────────┬─────────────────── . ──────────────►◄
 └ error-expression ───┘

Parameters

ACCept DB-KEY into db-key-variable

Specifies the variable data field to which the database key of the object record is
moved.

Db-key-variable is a PIC S9(8) COMP SYNC.

Db-key-variable must be a binary fullword field that is defined in a record
associated with the dialog.

FROM

Specifies the record whose database key is moved to the field identified by

db-key-variable.

record-name

Saves the database key of the record that is current of the specified record type.

set-name

Saves the database key of the record that is current of the specified set.

area-name

Saves the database key of the record that is current of the specified area.

CURRENCY

Specifies the current record of run unit, record type, set, or area.

If no record, set, or area is specified, CA ADS saves the database key of the record
that is current of run unit.

PAGE-INFO into page-info-variable

Specifies the variable data field to which the page information of the named record
is moved.

Navigational DML

Chapter 16: Database Access Commands 375

page-info-variable

A four-byte field that is defined either as a group field or as a fullword field (PIC

S9(8) COMP). This parameter identifies the variable data field to contain the page
information for the specified record. Upon successful completion of this statement,
the first two bytes of the field contain the page group number and the last two

bytes contain a value that may be used for interpreting dbkeys.

error-expression

Specifies the status codes that are returned to the dialog.

Usage

Definition

The ACCEPT DB-KEY FROM CURRENCY command is used to move the database key and,
optionally, the page information of the current record of run unit, record type, set, or

area to a specified location in a dialog's record buffers. A subsequent FIND/OBTAIN
DB-KEY command can use the saved database key to access the record directly.
FIND/OBTAIN DB-KEY is described later in this section.

Note: You must establish currency before using this statement. If no currency has been
established, the DBMS returns 0000 to the ERROR-STATUS field and -1 to the db-key
field.

Considerations

If autostatus is not in use, a dialog's error-status field indicates the outcome of an

ACCEPT DB-KEY FROM CURRENCY command:

Status code Meaning

0000 The request was executed successfully

1508 The object record is not in the dialog's subschema

Example

The statements in the following example establish a PRODUCT record as current of run

unit and save the record's database key in the field SAVE-DB-KEY:

MOVE 7690157 TO PROD-NUMBER.

FIND CALC PRODUCT.

ACCEPT DB-KEY INTO SAVE-DB-KEY FROM CURRENCY.

Navigational DML

376 ADS Reference Guide

More information:

Error Handling (see page 277)

ACCEPT PAGE-INFO (see page 378)

ACCEPT DB-KEY RELATIVE TO CURRENCY

Purpose

Saves the database key and, optionally, the page information of the next, prior, or
owner record relative to the current record of a set.

Syntax

►►─── ACCept DB-KEY into db-key-variable - FROM set-name ─┬─ NEXT ──┬►
 ├─ PRIOR ─┤
 └─ OWNER ─┘

 ►──── CURRENCY ─────┬─────────────────────────────────────┬──────────►
 └─ PAGE-INFO into page-info-variable ─┘

 ►───┬────────────────────┬─────────────────────────── . ───────────►◄
 └─ error-expression ─┘

Parameters

ACCept DB-KEY into db-key-variable

Specifies the variable data field to which the database key of the object record is
moved.

Db-key-variable is a PIC S9(8) COMP SYNC.

Db-key-variable must be a binary fullword field that is defined in a record
associated with the dialog.

FROM set-name

Specifies the record whose database key is moved to the field identified by

db-key-variable.

Set-name must be known to the dialog's subschema.

NEXT

Saves the database key of the next record relative to the current record of the
specified set.

A request for NEXT CURRENCY cannot be specified unless the object set has
prior pointers, which ensure that the next pointer in the prefix of the current
record does not point to a logically deleted record.

Navigational DML

Chapter 16: Database Access Commands 377

PRIOR

Saves the database key of the prior record relative to the current record of the

specified set.

A request for PRIOR CURRENCY cannot be specified unless the object set has
prior pointers.

Note: No indication of an end-of-set condition is possible for an ACCEPT NEXT
or ACCEPT PRIOR command. A retrieval command must be issued to determine
whether the next or prior record in the specified set is the owner record.

OWNER

Saves the database key of the owner of the current record of the specified set.

A request for OWNER CURRENCY cannot be specified unless the object set has
owner pointers. If the current record is the owner of the specified set, a
request for OWNER CURRENCY returns the database key of the current record,
even if the set does not have owner pointers.

CURRENCY

Specifies the current record of run unit, record type, set, or area.

PAGE-INFO into page-info-variable

Specifies the variable data field to which the page information of the named record
is moved.

page-info-variable

A four-byte field that is defined either as a group field or as a fullword field (PIC

S9(8) COMP). This parameter identifies the variable da ta field to contain the page
information for the specified record. Upon successful completion of this statement,
the first two bytes of the field contain the page group number and the last two
bytes contain a value that may be used for interpreting dbkeys.

error-expression

Specifies the status codes that are returned to the dialog.

Usage

Definition

The ACCEPT DB-KEY RELATIVE TO CURRENCY command is used to move the database
key and, optionally, the page information of the next, prior, or owner record relative to

the current record of set to a specified location in a dialog's record buffers.

Navigational DML

378 ADS Reference Guide

This command allows a process to save the database key of a record without accessing
the record itself. A subsequent FIND/OBTAIN DB-KEY command can use the saved

database key to access the record directly. FIND/OBTAIN DB-KEY is described later in
this section.

Note: You must establish currency before using this statement. If no set currency has

been established, the DBMS returns 0000 to the ERROR-STATUS field and -1 to the
db-key field. NEXT, PRIOR, and OWNER CURRENCY cannot be requested for sets defined
for native VSAM records.

If autostatus is not in use, a dialog's error-status field indicates the outcome of an

ACCEPT DB-KEY RELATIVE TO CURRENCY command:

Status code Meaning

0000 The request was executed successfully

1506 Currency was not established for the object set

1508 The object record is not in the dialog's subschema

Example

The statements in the following example establish a current ITEM record and save the
database key of the owner record of the PRODUCT-ITEM set in the field SAVE-KEY:

MOVE 1230407 TO ORD-NUMBER.

FIND CALC ORDOR.

FIND NEXT WITHIN ORDER-ITEM.

ACCEPT DB-KEY INTO SAVE-KEY FROM PRODUCT-ITEM OWNER CURRENCY.

More information:

Error Handling (see page 277)
ACCEPT PAGE-INFO (see page 378)

ACCEPT PAGE-INFO

Purpose

The ACCEPT PAGE-INFO statement moves the page information for a given record to a
specified location in program variable storage. Page information that is saved in this

manner is available for subsequent direct access by using a FIND/OBTAIN DB-KEY
statement.

Navigational DML

Chapter 16: Database Access Commands 379

The dbkey radix portion of the page information can be used in interpreting a dbkey for
display purposes and in formatting a dbkey from page and line numbers. The dbkey

radix represents the number of bits within a dbkey value that are reserved for the line
number of a record. By default, this value is 8, meaning that up to 255 records can be
stored on a single page of the area. Given a dbkey, you can separate its associated page

number by dividing the dbkey by 2 raised to the power of the dbkey radix. For example,
if the dbkey radix is 4, you would divide the dbkey value by 2**4. The resulting value is
the page number of the dbkey. To separate the l ine number, you would multiply the
page number by 2 raised to the power of the dbkey radix and subtract this value from

the dbkey value. The result would be the line number of the dbkey. The following two
formulas can be used to calculate the page and line numbers from a dbkey value:

■ Page-number = dbkey value / (2 ** dbkey radix)

■ Line-number = dbkey value - (page-number * (2 ** dbkey radix))

Syntax

►►─ ACCept PAGE-INFO into page-info-variable FOR record-name ────────────────►

 ►─┬────────────────────┬──►◄
 └─ error-expression ─┘

Parameters

ACCEPT PAGE-INFO into page-info-variable

Specifies the variable data field to which the page info of the named record is
moved.

page-info-variable

A four-byte field that may be defined either as a group field or as a fullword field
(PIC S9(8) COMP). Identifies the variable data field to contain the page information
for the specified record. Upon successful completion of this statement, the first two

bytes of the field contain the page group number and the last two bytes contain a
value that may be used for interpreting dbkeys.

FOR record-name

record-name

Specifies the record whose page information will be placed in the specified location
(page-info-variable).

Note: Page information is only used if the subschema includes areas that have
mixed page groups; otherwise it is ignored.

Navigational DML

380 ADS Reference Guide

Status Codes

If autostatus is not in use, a dialog's error-status field indicates the outcome of an

ACCEPT-PAGE-INFO command:

Status code Meaning

0000 The request has been serviced successfully.

1508 The named record is not in the subschema. The program probably
invoked the wrong subschema.

Example

The following example retrieves the page information for the DEPARTMENT record.

01 W-PG-INFO.

 02 W-GRP-NUM PIC S9(4) COMP.

 02 W-DBK-FORMAT PIC 9(4) COMP.

 ACCEPT PAGE-INFO into W-PG-INFO FOR DEPARTMENT.

ACCEPT STATISTICS

Purpose

Returns runtime database statistics to the dialog.

Syntax

►►──── ACCept ─┬─ STATISTICS ─┬── into db-statistics-variable ────────────────►
 └─ STATS ──────┘

 ►─── FROM IDMS-STATISTICS ────────┬─────────────────────────────┬─── . ──────►◄
 └─ EXTENDED db-stat-extended ─┘

Parameters

ACCept STATISTICS

Introduces the variable data field to which the database key of the object record is
moved.

STATS can be used in place of STATISTICS.

Navigational DML

Chapter 16: Database Access Commands 381

into db-statistics-variable

The name of the location in the dialog's record buffers where the runtime statistics

contained in the CA IDMS statistics block are to be moved.

A fullword aligned, 100-byte system supplied statistics block shown below:

01 DB-STATISTICS

 03 DATE-TODAY PIC X(8).

 03 TIME-TODAY PIC X(8).

 03 PAGES-READ PIC S9(8) COMP.

 03 PAGES-WRITTEN PIC S9(8) COMP.

 03 PAGES-REQUESTED PIC S9(8) COMP.

 03 CALC-TARGET PIC S9(8) COMP.

 03 CALC-OVERFLOW PIC S9(8) COMP.

 03 VIA-TARGET PIC S9(8) COMP.

 03 VIA-OVERFLOW PIC S9(8) COMP.

 03 LINES-REQUESTED PIC S9(8) COMP.

 03 RECS-CURRENT PIC S9(8) COMP.

 03 CALLS-TO-IDMS PIC S9(8) COMP.

 03 FRAGMENTS-STORED PIC S9(8) COMP.

 03 RECS-RELOCATED PIC S9(8) COMP.

 03 LOCKS-REQUESTED PIC S9(8) COMP.

 03 SEL-LOCKS-HELD PIC S9(8) COMP.

 03 UPD-LOCKS-HELD PIC S9(8) COMP.

 03 RUN-UNIT-ID PIC S9(8) COMP.

 03 TASK-ID PIC S9(8) COMP.

 03 LOCAL-ID PIC X(8).

 03 FILLER PIC X(8).

Note: Record DB-STATISTICS is defined in the dictionary when CA IDMS is installed

and can be included as a dialog work record. For more information about the CA
IDMS statistics block, see the CA IDMS Database Administration Guide.

The LOCAL-ID field consists of the 4-byte identifier of the interface in which the run
unit originated (in CA ADS, it is always DBDC) and a unique identifier (a fullword
binary value) assigned to the run unit by that interface. To display the originating

interface identifier and the run-unit identifier, the LOCAL-ID field can be moved to a
work field that is defined as follows:

01 WORK-LOCAL-ID

 02 WORK-LOCAL-ORIGIN PIC X(4).

 02 WORK-LOCAL-NUMBER PIC S9(8) COMP.

Alternatively, the DB-STATISTICS record can be modified to define two subordinate
fields for the LOCAL-ID field.

into db-stat-extended

The name of the location in the dialog's record buffers where the extended runtime
statistics contained in the CA IDMS statistics block are to be moved.

Navigational DML

382 ADS Reference Guide

A fullword aligned, 100-byte system supplied statistics block shown below:

01 DB-STAT-EXTENDED

 03 SR8-SPLITS PIC S9(8) COMP.

 03 SR8-SPAWNS PIC S9(8) COMP.

 03 SR8-STORES PIC S9(8) COMP.

 03 SR8-ERASES PIC S9(8) COMP.

 03 SR7-STORES PIC S9(8) COMP.

 03 SR7-ERASES PIC S9(8) COMP.

 03 BINARY-SEARCHES-TOTAL PIC S9(8) COMP.

 03 LEVELS-SEARCHED-TOTAL PIC S9(8) COMP.

 03 ORPHANS-ADOPTED PIC S9(8) COMP.

 03 LEVELS-SEARCHED-BEST PIC S9(4) COMP.

 03 LEVELS-SEARCHED-WORST PIC S9(4) COMP.

 03 FILLER PIC X(60).

Note: Record DB-STAT-EXTENDED is defined in the dictionary when CA IDMS is installed

and can be included as a dialog work record. For more information about the CA IDMS
statistics block, see the CA IDMS Database Administration Guide.

Usage

Definition

The ACCEPT STATISTICS command is used to move runtime statistics in the CA IDMS

statistics block to a dialog's record buffers. An ACCEPT STATISTICS command does not
reset fields in the CA IDMS statistics block. The fields are initialized at the beginning of a
run unit. The only acceptable status code returned for an ACCEPT STATISTICS command

is 0000.

Example

The statements in the following example:

■ Establish currency for the sets in which a new ITEM record will participate as a
member

■ Store the ITEM record

■ Move statistics regarding the stored ITEM record to the SAVE-STATS field in the
dialog's record buffers

Sample Statements

MOVE IN-PROD-NUMBER TO PROD-NUMBER.

FIND CALC PRODUCT.

MOVE IN-ORD-NUMBER TO ORD-NUMBER.

FIND CALC ORDOR.

STORE ITEM.

ACCEPT STATS INTO SAVE-STATS FROM IDMS-STATISTICS.

Navigational DML

Chapter 16: Database Access Commands 383

BIND PROCEDURE

Purpose

Establishes communication between a dialog and a DBA-written procedure.

Syntax

►►─── BIND PROCedure for procedure-name TO ───────────────────────────────────►

 ►─── procedure-control-location ────┬────────────────────┬─── . ─────────────►◄
 └─ error-expression ─┘

Parameters

BIND PROCedure for procedure-name

Provides the name of the database procedure.

Procedure-name is either the name of an 8-character variable field that contains the
procedure name or the procedure name itself enclosed in single quotation marks.

TO procedure-control-location

Specifies the location to which the named procedure is bound.

Procedure-control-location specifies a 256-byte, fixed-length area.

When the BIND PROCEDURE command is executed, information specified in the CA
IDMS application program information block is copied into
procedure-control-location. At runtime, this information is copied from
procedure-control-location back into the CA IDMS application program information

block each time the DBMS invokes the procedure. The information passed at
runtime is not the information in storage at the time of the procedure call.

error-expression

Specifies status codes that are returned to the dialog.

Usage

Definition

This statement should be used when the application must pass more information to the
procedure than that provided by the DBMS. Such instances are unusual.

In most cases, procedures that gain control before or after various database functions
are not apparent. After the BIND PROCEDURE command is executed, the DBMS
automatically invokes the named procedure for the operations specified in the schema

definition.

Note: For more information about database procedures, see the CA IDMS Database
Administration Guide.

Navigational DML

384 ADS Reference Guide

Considerations

If autostatus is not in use, a dialog's error-status field indicates the outcome of a BIND

PROCEDURE command:

Status code Meaning

0000 The request was executed successfully

1408 The named record or procedure was not in the specified subschema.

1418 The procedure was improperly bound to location 0

1472 The available memory to load a module from the load (core-image)

l ibrary or DDLDCLOD was not sufficient

1474 An attempt to load a module from the load (core-image) l ibrary or
DDLDCLOD failed

Example

In the following example, the BIND PROCEDURE command is used to bind the procedure
PROGCHEK to the 256-byte area PROC-CTL.

BIND PROCEDURE FOR 'PROGCHEK' TO PROC-CTL.

More information:

Error Handling (see page 277)

COMMIT

Purpose

Ends the current recovery unit and makes permanent any changes made to the
database data during the current recovery unit.

Syntax

►►─── COMMIT ───┬────────┬───┬───────┬── . ───────────────────────────────────►◄
 └─ TASK ─┘ └─ ALL ─┘

Navigational DML

Chapter 16: Database Access Commands 385

Parameters

TASK

COMMIT TASK writes a checkpoint to the CA IDMS/DB journal fi le and updates the
subschema control block for all database, queue, and scratch records associated
with run units that have been implicitly established for the issuing dialog. All record

locks except those held on current records are released.

If TASK is not specified, only database records are the objects of the COMMIT
command.

ALL

Releases all record locks, including those held on current records, and sets all

currencies to null.

Note: The COMMIT command does not release long-term locks held on database
records.

Usage

Definition

The COMMIT command is used to write a checkpoint to the CA IDMS/DB journal fi le and
to release record locks held on database, queue, and scratch records. The checkpoints
mark the beginning or end of specific database, queue, and scratch area activities within
the issuing dialog. The release of record locks lessens the possibility of abnormal

termination resulting from too many locks.

The CA ADS runtime system automatically writes a checkpoint to the CA IDMS/DB
journal fi le at the beginning and end of a run unit. Additional checkpoints can be written

to the journal fi le by using the COMMIT command.

Considerations

If autostatus is not in use, a dialog's error-status field indicates the outcome of a
COMMIT command:

Status code Meaning

0000 The request was executed successfully

5031 The request is invalid, possibly due to a logic error in the process

5096 Too many run units exist for the internal run-unit table

5097 An invalid status was received from DBIO. Check the DC/UCF system
log for details

Navigational DML

386 ADS Reference Guide

More information:

CA ADS Runtime System (see page 119)

Error Handling (see page 277)

CONNECT

Purpose

Establishes a record occurrence as a member in a set occurrence.

Participation of records in sets is governed by the membership options defined for each
set in the subschema, as shown below.

Membership option Description

Automatic Membership is established automatically when a record is
stored.

Manual Membership is not established automatically. A record is
established as a member of the set by using the CONNECT
command.

Mandatory Records remain members of the set until they are erased.

Optional Records remain members of the set until they are erased
or disconnected. For information on erasing or
disconnecting a record, see 'ERASE' and 'DISCONNECT'

later in this section.

Syntax

►►─── CONNECT record-name TO set-name ───┬────────────────────┬──── . ────────►◄
 └─ error-expression ─┘

Parameters

record-name

Specifies the current occurrence of the named record to be connected with the

current occurrence of the set specified by set-name.

Record-name must be known to the dialog's subschema.

Navigational DML

Chapter 16: Database Access Commands 387

TO set-name

Specifies the set to which the current occurrence of the named record is connected.

Set-name must be known to the dialog's subschema and must be defined as
optional automatic, optional manual, or mandatory manual.

The record is connected to the current occurrence of the named set in the order

specified for the set in the schema.

error-expression

Specifies the status codes that are returned to the dialog.

Usage

Considerations

If autostatus is not in use, a dialog's error-status field indicates the outcome of a
CONNECT command:

Status code Meaning

0000 The request was executed successfully

0705 The CONNECT command violates a duplicates -not-allowed option for
a CALC, sorted, or index set

0706 Currency was not established for the object record or set

0708 The object record is not in the dialog's subschema

0709 The object record's area was not readied in an update usage mode

0710 The dialog's subschema specifies an access restriction that prohibits
connecting the object record to the named set

0714 The CONNECT command cannot be executed because the object s et
was defined as mandatory automatic

0716 The CONNECT command cannot be executed because the object
record is already a member of the named set

0721 An area other than the area of the object record was readied with an
incorrect usage mode

0729 A run-unit deadlock condition occurred. DBMS aborted and rolled

back the run unit. All resources associated with the task are released

Navigational DML

388 ADS Reference Guide

Further Considerations

■ The object set in a CONNECT command must be defined as optional automatic,

optional manual, or mandatory manual.

■ The CONNECT command cannot be used with native VSAM data sets because all
such sets must be defined as mandatory automatic.

■ Before a CONNECT command can be executed, the following conditions must be
satisfied:

– All areas affected either directly or indirectly by the CONNECT command must
be readied in an update usage mode.

– The object record must be established as current of its record type.

– The applicable set occurrence must be established by the current record of set.
If set order is NEXT or PRIOR, the current record of set also determines the
position at which the object record is connected within the set.

■ After successful execution of the CONNECT command, the object record is current
of:

– The run unit

– Its record type

– Its area

– All sets in which the record currently participates

Example

The statements in the following example establish currency for the ITEM and PRODUCT
record types, and connect the current ITEM record to the set occurrence established by
the current PRODUCT record:

MOVE 'BB' TO ORD-NUMBER.

FIND CALC ORDOR.

OBTAIN FIRST WITHIN ORDER-ITEM.

MOVE ITEM-PROD-NUMBER TO PROD-NUMBER.

FIND CALC PRODUCT.

CONNECT ITEM TO PRODUCT-ITEM.

More information:

Error Handling (see page 277)
READY (see page 423)

Navigational DML

Chapter 16: Database Access Commands 389

DISCONNECT

Purpose

Disconnects a record occurrence from a set occurrence in which it participates as a
member.

Membership in the object set must be defined as OPTIONAL in the dialog's schema.

Syntax

►►─── DISCONNECT record-name FROM set-name ───┬────────────────────┬──── . ───►◄
 └─ error-expression ─┘

Parameters

record-name

Specifies the current occurrence of the named record to be disconnected.

Record-name must be known to the dialog's subschema.

FROM set-name

Specifies the set from which the current occurrence of the named record is to be

disconnected.

Set-name must be known to the dialog's subschema and must be defined as
optional.

error-expression

Specifies the status codes that are returned to the dialog.

Usage

Considerations

If autostatus is not in use, a dialog's error-status field indicates the outcome of a
DISCONNECT command:

Status code Meaning

0000 The request was executed successfully

1106 Currency was not established for the object record

1108 The specified record is not in the dialog's subschema

1109 The object record's area was not readied in an update usage mode

1110 The dialog's subschema specifies an access restriction that prohibits
disconnecting the object record from the named set

Navigational DML

390 ADS Reference Guide

Status code Meaning

1115 The DISCONNECT command cannot be executed because the object

set is defined as mandatory

1121 An area other than the area of the object record was readied with an
incorrect usage mode

1122 The object record is not currently a member of the specified set

1129 A run-unit deadlock condition occurred. DBMS aborted and rolled
back the run unit. All resources associated with the task are released

Further Considerations

■ The DISCONNECT command cannot be used with native VSAM data sets because all
such sets must be defined as mandatory automatic.

■ Before a DISCONNECT command can be executed, the following conditions must be
satisfied:

– All areas affected either directly or indirectly by the DISCONNECT command
must be readied in an update usage mode.

– The object record must be established as current of its record type.

■ After successful execution of a DISCONNECT command, the object record can no

longer be accessed through the set for which membership was canceled.

■ A disconnected record can be accessed through any other sets in which it
participates as a member or through its CALC key if it has a location mode of CALC.

■ A disconnected record is always accessible by means of an area search or through
its database key.

■ A DISCONNECT command nullifies currency in the object set. However, the next of
set and prior of set are maintained, enabling access to continue within the set.

■ A disconnected record becomes current of:

– The run unit

– Its record type

– Its area

Example

The statements in the following example establish an ITEM record as current of record
type and disconnect the record from the PRODUCT-ITEM set:

MOVE 'P8' TO PROD-NUMBER.

FIND CALC PRODUCT.

FIND FIRST ITEM WITHIN PRODUCT-ITEM.

DISCONNECT ITEM FROM PRODUCT-ITEM.

Navigational DML

Chapter 16: Database Access Commands 391

More information:

Error Handling (see page 277)

CONNECT (see page 386)
READY (see page 423)

ERASE

Purpose

Deletes a record from the database.

Syntax

►►─── ERASE record-name ────┬──────────────────────────┬──────────────────────►
 └┬─ PERMANENT ─┬─ MEMBERS ─┘
 ├─ SELECTIVE ─┤
 └─ ALL ───────┘

 ►───────┬────────────────────┬───────── . ───────────────────────────────────►◄
 └─ error-expression ─┘

Parameters

record-name

Erases the current occurrence of the named record from the database.

Record-name must be known to the dialog's subschema and must be current of run
unit.

Note: Native VSAM users—ERASE record-name is the only form of the ERASE
statement valid for records in a native VSAM KSDS or RRDS; no form of the ERASE
statement is allowed for a native VSAM ESDS.

PERMANENT

Specifies the named record and all mandatory member record occurrences owned

by the record to be erased. Optional member records are disconnected.

An erased mandatory member record that is itself the owner of any set occurrences
is also treated as the direct object of an ERASE PERMANENT command (that is, all
mandatory members in the sets owned by the record are also erased).

SELECTIVE

Specifies the named record and all mandatory member record occurrences owned
by the record to be erased. Optional member records are erased if they do not
currently participate as members in other set occurrences.

An erased member record that is itself the owner of any set occurrences is also

treated as the direct object of an ERASE SELECTIVE command.

Navigational DML

392 ADS Reference Guide

ALL

Specifies the named record, all mandatory and optional member record

occurrences owned by the record to be erased.

An erased member record that is itself the owner of any set occurrences is also
treated as the direct object of an ERASE ALL command.

MEMBERS

Must be specified if the record identified by record-name is the owner of any

nonempty set occurrences.

error-expression

Specifies the status codes that are returned to the dialog.

Usage

Definition

Erasure is a two-step process that first cancels a record's membership in any set

occurrences and then releases for reuse the space occupied by the record.

The ERASE command performs the following functions:

■ Erases the object record from the database

■ Erases all records that are mandatory members of set occurrences owned by the

object record

■ Disconnects or erases all records that are optional members of set occurrences
owned by the object record

Considerations

If autostatus is not in use, a dialog's error-status field indicates the outcome of an ERASE
command:

Status code Meaning

0000 The request was executed successfully

0206 Currency was not established for the object record

0209 The object record's area was not readied in an update usage mode

0210 The dialog's subschema specifies an access restriction that prohibits

use of the ERASE command.

0213 Run-unit currency was not established or was nullified by a previous
ERASE command

Navigational DML

Chapter 16: Database Access Commands 393

Status code Meaning

0220 The current record of run unit is not the same type as the specified

record

0221 An area other than the area of the object record was readied with an
incorrect usage mode

0225 Currency was not established for the object record or set

0229 A run-unit deadlock condition occurred. DBMS aborted and rolled
back the run unit. All resources associated with the task are released

0230 An attempt was made to erase the owner of a nonempty set

0233 Erasure of the object record is not allowed by the dialog's
subschema, or not all sets in which the object record participates are
included in the subschema

Further Considerations

■ Before an ERASE command can be executed, the following conditions must be
satisfied:

– All areas either directly or indirectly affected by the ERASE command must be

readied in an update usage mode.

– All sets in which the object record participates as owner either directly or
indirectly (for example, a set whose owner is a member of a set owned by the
object record) and all member record types in those sets must be included in

the dialog's subschema.

– The object record must be established as current of run unit.

■ An ERASE command nullifies the CURRENT pointer for all record types involved in
the erase and for all sets in which erased records participate. Run-unit and area
currencies remain unchanged.

■ The next of set and prior of set are maintained when walking the set occurrence of
an erased record, whether or not prior pointers have been defined for the sets.

■ Erased records are not available for further processing. An attempt to retrieve an
erased record results in an error condition.

■ Next, prior, and owner pointers are preserved for the last occurrence of each
record type erased. This enables access to the next or prior record within the area,
or the next, prior, or owner records within the sets in which the erased record
participated.

More information:

Error Handling (see page 277)
READY (see page 423)

Navigational DML

394 ADS Reference Guide

Overview of FIND/OBTAIN

The FIND command is used to locate a record occurrence in the database. The OBTAIN
command is used to locate a record and move the data associated with the record to a
dialog's record buffers. Because the FIND and OBTAIN command statements have

identical formats, they are discussed together.

There are six formats of the FIND/OBTAIN statement, as outlined below.

Formats of the FIND/OBTAIN Statement

Format Description

FIND/OBTAIN CALC Accesses a record occurrence by using its
CALC key value

FIND/OBTAIN CURRENT Accesses a record occurrence by using
established currencies

FIND/OBTAIN DB-KEY Accesses a record occurrence by using its
database key

FIND/OBTAIN OWNER Accesses the owner record of a set
occurrence

FIND/OBTAIN WITHIN SET/AREA Accesses a record occurrence based on its
logical location within a set or on its physical
location within an area

FIND/OBTAIN WITHIN SET USING SORT
KEY

Accesses a record occurrence in a sorted set
by using its sort key value

Considerations

■ Locks can be placed on located record occurrences by using the KEEP clause of a

FIND/OBTAIN statement. The KEEP clause sets a shared or exclusive lock.

– KEEP places a shared lock on the located record occurrence. Other concurrently
executing run units can access but not update the locked record.

– KEEP EXCLUSIVE places an exclusive lock on the located record occurrence.
Other concurrently executing run units can neither access nor update the
locked record.

FIND/OBTAIN CALC

Purpose

Accesses a record based on the value of the record's CALC key.

Navigational DML

Chapter 16: Database Access Commands 395

Syntax

►►──┬─ FIND ───┬───┬──────────────────────────┬───────────────────────────────►
 └─ OBTAIN ─┘ └─ KEEP ───┬─────────────┬─┘
 └─ EXCLUSIVE ─┘

 ►──┬─┬─ CALC ─┬──┬──── record-name ────┬────────────────────┬── . ───────────►◄
 │ └─ ANY ──┘ │ └─ error-expression ─┘
 └─ DUPLICATE ─┘

Parameters

KEEP

Places a shared lock on the object record.

EXCLUSIVE

Places an exclusive lock on the object record.

CALC

Accesses the first or only occurrence of the named record type whose CALC key

value matches the value of the CALC data item in the dialog's record buffer.

ANY can be used in place of CALC.

DUPLICATE

Accesses the next occurrence of the named record type with the same CALC key
value as the current record of run unit. Use of the DUPLICATE option requires

previous access to an occurrence of the same record type by means of the CALC
option.

record-name

Specifies the name of the record being accessed.

Record-name must be known to the dialog's subschema.

error-expression

Specifies the status codes that are returned to the dialog.

Usage

Considerations

If autostatus is not in use, a dialog's error-status field indicates the outcome of a
FIND/OBTAIN CALC command:

Status code Meaning

0000 The request was executed successfully

0306 Currency was not established for the object record (applies to the

DUPLICATE option only)

Navigational DML

396 ADS Reference Guide

Status code Meaning

0308 The object record is not in the dialog's subschema

0310 The dialog's subschema specifies an access restriction that prohibits
retrieval of the object record

0326 The specified record cannot be found

0329 A run-unit deadlock condition occurred. DBMS aborted and rolled
back the run unit. All resources associated with the task are released

0331 The object record was not defined with a location mode of CALC

0332 The value of the CALC data item in the dialog's record buffer does not

equal the value of the CALC data item in the current record of run
unit (applies to DUPLICATE option only)

Further Considerations

■ The object record must be stored in the database with a location mode of CALC.

■ Before a FIND/OBTAIN CALC command is issued, the CALC key value of the object
record must be placed in the applicable field of the dialog's record buffer .

■ After successful execution of a FIND/OBTAIN CALC command, the accessed record is
current of:

– The run unit

– Its record type

– Its area

– All sets in which it currently participates as member or owner

Example

The statements in the following example initialize the CALC key field in a dialog's ORDOR
record buffer and retrieve the specified occurrence of the ORDOR record:

MOVE IN-ORDER-NUMBER TO ORD-NUMBER.

OBTAIN CALC ORDOR.

More information:

Error Handling (see page 277)

Navigational DML

Chapter 16: Database Access Commands 397

FIND/OBTAIN CURRENT

Purpose

Accesses a record that is current of run unit, current of the record's record type or area,
or current of any set in which the record participates as member or owner.

Syntax

►►──┬─ FIND ───┬───┬──────────────────────────┬───────────────────────────────►
 └─ OBTAIN ─┘ └─ KEEP ───┬─────────────┬─┘
 └─ EXCLUSIVE ─┘

 ►──── CURRENT ───┬────────────────────┬────┬────────────────────┬── . ───────►◄
 ├─ record name ──────┤ └─ error-expression ─┘
 ├─ WITHIN set-name ─┤
 └─ WITHIN area-name ─┘

Parameters

KEEP

Places a shared lock on the object record.

EXCLUSIVE

Places an exclusive lock on the object record.

CURRENT

Accesses the record occurrence that is current of run unit.

record-name

Specifies the current occurrence of the named record to be accessed.

WITHIN set-name

Specifies the current occurrence of the named set to be accessed.

WITHIN area-name

Specifies the current occurrence of the named area to be accessed.

The named record, set, or area must be known to the dialog's subschema.

error-expression

Specifies the status codes that are returned to the dialog.

Navigational DML

398 ADS Reference Guide

Usage

FIND/OBTAIN CURRENT is an efficient means of establishing a record as current of run

unit before executing a command that uses run-unit currency (for example, ERASE, GET,
or MODIFY).

After successful execution of a FIND/OBTAIN CURRENT command, the accessed record is

current of:

■ Run unit

■ Record type

■ Area

■ All sets in which the record participates as member or owner

Considerations

If autostatus is not in use, a dialog's error-status field indicates the outcome of a
FIND/OBTAIN CURRENT command:

Status code Meaning

0000 The request was executed successfully

0306 Currency was not established for the named record, set, or area

0308 The object record is not in the dialog's subschema

0310 The dialog's subschema specifies an access restriction that prohibits
retrieval of the object record

0313 Run-unit currency was not established or was nullified by a previous

ERASE command

0323 The named area is not in the dialog's subschema

0329 A run-unit deadlock condition occurred. DBMS aborted and rolled
back the run unit. All resources associated with the task are released

Navigational DML

Chapter 16: Database Access Commands 399

Example

The statements in the following example establish an ITEM record as current of run-unit

before issuing a command that requires run-unit currency:

MOVE 'BB' TO ORD-NUM.

OBTAIN CALC ORDOR.

OBTAIN FIRST ITEM WITHIN ORDER-ITEM.

OBTAIN OWNER WITHIN PRODUCT-ITEM.

OBTAIN CURRENT ITEM.

MODIFY ITEM.

The object ITEM record becomes current of run unit following the third statement. The
fourth statement establishes the owner PRODUCT record as current of run unit. The

OBTAIN CURRENT statement reestablishes the ITEM record as current of run unit.

More information:

Error Handling (see page 277)

FIND/OBTAIN DB-KEY

Purpose

Accesses a record occurrence directly by using a database key that is stored in a field in

a dialog's record buffers.

Any record in a dialog's subschema can be accessed in this manner, regardless of its
location mode.

Syntax

►►─┬─ FIND ───┬─┬────────────────────────┬───────────────────────────────────►
 └─ OBTAIN ─┘ └─ KEEP ─┬─────────────┬─┘
 └─ EXCLUSIVE ─┘

 ►─┬─ DB-KEY ─┬──────┬─ db-key-variable ─┬──────────────────────┬─┬──────────►
 │ ├─ IS ─┤ └─ page-specification ─┘ │
 │ └─ = ──┘ │
 └─┬───────────────┬─ DB-KEY ─┬──────┬─ db-key-variable ────────┘
 └─ record name ─┘ ├─ IS ─┤
 └─ = ──┘

 ►─┬────────────────────┬──►◄
 └─ error-expression ─┘

Expansion of page-specification

►►─┬───┬────────────────────────►◄
 └─ PAGE-INFO ─┬──────┬─ page-info-variable ─┘
 ├─ IS ─┤
 └─ = ──┘

Navigational DML

400 ADS Reference Guide

Expansion of page-specification

►►─┬───┬────────────────────────►◄
 └─ PAGE-INFO ─┬──────┬─ page-info-variable ─┘
 ├─ IS ─┤
 └─ = ──┘

Parameters

KEEP

Places a shared lock on the object record.

EXCLUSIVE

Places an exclusive lock on the object record.

record-name

Specifies the name of the record to be accessed using the database key value

contained in db-key-variable.

If specified, record-name must be known to the dialog's subschema.

DB-KEY IS db-key-variable

Specifies the binary fullword in the dialog's record buffers that contains a previously
saved database key. If record-name is specified, db-key-variable must contain the

database key of an occurrence of the named record type. If record-name is not
specified, db-key-variable can contain the database key of an occurrence of any
record type in the dialog's subschema.

Db-key-variable is a PIC S9(8) COMP SYNC.

IS or = are optional keywords and have no effect on processing.

PAGE-INFO

Specifies page information that is used to determine the area with which the dbkey
is associated. If not specified, the page information associated with the record that
is current of rununit is used.

Note: Page information is only used if the subschema includes areas that have
mixed page groups; otherwise, it is ignored.

page-info-variable

A four-byte field that may be defined either as a group field or as a fullword field

(PIC S9(8) COMP). Identifies the location in variable storage that contains the page
information previously saved by the program.

Page information is returned in the PAGE-INFO field in the subschema control area
if the subschema includes areas in mixed page groups. Page information may also

be returned using an ACCEPT PAGE-INFO statement.

error-expression

Specifies the status codes that are returned to the dialog.

Navigational DML

Chapter 16: Database Access Commands 401

Usage

Considerations

If autostatus is not in use, a dialog's error-status field indicates the outcome of a
FIND/OBTAIN DB-KEY command:

Status code Meaning

0000 The request was executed successfully

0302 The database key value is inconsistent with the area in which the
named record is stored. Either the database key was not initialized

properly or the record name is incorrect

0308 The object record is not in the dialog's subschema

0310 The dialog's subschema specifies an access restriction that prohibits
retrieval of the named record

0326 The specified record cannot be found

0329 A run-unit deadlock condition occurred. DBMS aborted and rolled
back the run unit. All resources associated with the task are released

0371 The specified database key does not correspond to a database page

Further Considerations

■ FIND/OBTAIN DB-KEY cannot be used to access data records in a native VSAM KSDS.

■ After successful execution of a FIND/OBTAIN DB-KEY command, the accessed

record is current of the run unit, its record type, its area, and all sets in which it
currently participates as member or owner.

Example

The following example il lustrates the use of the FIND DB-KEY command to locate an
occurrence of the ITEM record whose database key matches the value in a field called

SAVED-KEY:

FIND ITEM DB-KEY IS SAVED-KEY.

More information:

Error Handling (see page 277)

Navigational DML

402 ADS Reference Guide

FIND/OBTAIN OWNER

Purpose

Accesses the owner record of the current occurrence of a set.

Syntax

►►──┬─ FIND ───┬───┬──────────────────────────┬───────────────────────────────►
 └─ OBTAIN ─┘ └─ KEEP ───┬─────────────┬─┘
 └─ EXCLUSIVE ─┘

 ►──── OWNER WITHIN set-name ───┬────────────────────┬─── . ──────────────────►◄
 └─ error-expression ─┘

Parameters

KEEP

Places a shared lock on the object record.

EXCLUSIVE

Places an exclusive lock on the object record.

OWNER WITHIN set-name

Specifies the set whose owner record is to be retrieved.

Set-name must be known to the dialog's subschema.

error-expression

Specifies the status codes that are returned to the dialog.

Usage

Considerations

If autostatus is not in use, a dialog's error-status field indicates the outcome of a

FIND/OBTAIN OWNER command:

Status code Meaning

0000 The request was executed successfully

0306 Currency was not established for the named record, set, or area

0308 The object record is not in the dialog's subschema

0310 The dialog's subschema specifies an access restriction that prohibits

retrieval of the object record

0329 A run-unit deadlock condition occurred. DBMS aborted and rolled
back the run unit. All resources associated with the task are released

Navigational DML

Chapter 16: Database Access Commands 403

Further Considerations

■ Currency must be established for the object set to execute a FIND/OBTAIN OWNER

command.

■ FIND/OBTAIN OWNER can be used to retrieve the owner record of any set in a
dialog's subschema, whether or not the set has owner pointers.

■ The FIND/OBTAIN OWNER command cannot be used with native VSAM data sets
because owner records are not defined for s uch sets.

■ When an optional or manual member of a set is accessed, it is not established as
current of set if it is not currently connected to the object set. A subsequent
attempt to access the owner record locates instead the owner of the current record

of set. The IF statement can be used to determine if the accessed record is actually
a member of the object set before executing the FIND/OBTAIN OWNER command.

■ After successful execution of a FIND/OBTAIN OWNER command, the accessed
record is current of:

– The run unit

– Its record type

– Its area

– All sets in which it currently participates as member or owner

■ If the current record of set is the owner record when the command is executed,

currency in the object set is not changed.

Example

The statements in the following example il lustrate the use of the FIND/OBTAIN OWNER
command:

MOVE 'CC' TO ORD-NUM.

OBTAIN CALC ORDOR.

OBTAIN LAST ITEM WITHIN ORDER-ITEM.

OBTAIN OWNER WITHIN PRODUCT-ITEM.

More information:

Error Handling (see page 277)
Conditional Commands (see page 317)

Navigational DML

404 ADS Reference Guide

FIND/OBTAIN WITHIN SET/AREA

Purpose

Accesses records logically, based on set relationships, or physically, based on database
location.

Records can be accessed serially in a specified set or area, or accessed by selected
specific occurrences of a given record type within the set or area.

Syntax

►►───┬─ FIND ───┬───┬──────────────────────────┬──────────────────────────────►
 └─ OBTAIN ─┘ └─ KEEP ───┬─────────────┬─┘
 └─ EXCLUSIVE ─┘

 ►───┬─ NEXT ────────────┬──┬───────────────┬── WITHIN ─┬─ set-name ──┬───────►
 ├─ PRIOR ───────────┤ └─ record-name ─┘ └─ area-name ─┘
 ├─ FIRST ───────────┤
 ├─ LAST ────────────┤
 └─ sequence-number ─┘

 ►───┬────────────────────┬── . ──►◄
 └─ error-expression ─┘

Parameters

KEEP

Places a shared lock on the object record.

EXCLUSIVE

Places an exclusive lock on the object record.

NEXT

Specifies the next record in the specified set or area relative to the current record.

PRIOR

Specifies the prior record in the specified set or area relative to the current record.

FIRST

Specifies the first record in the set or area.

LAST

Specifies the last record in the set or area.

sequence-number

Either the name of a variable data field that contains the sequence number of a
record in a set or area or the sequence number itself expressed as a positive or

negative integer. The actual sequence number, expressed as a positive or negative
integer.

If sequence-number is negative, the specified set must have prior pointers.

Navigational DML

Chapter 16: Database Access Commands 405

record-name

Specifies only occurrences of the named record type.

Record-name must be defined as a member of the object set or be contained in the
object area.

Record-name must be specified if set-name or area-name is specified, unless the

record or one of the record's elements is named explicitly somewhere in the
dialog's process code, or if the record is associated with the dialog as a map record.

WITHIN

Introduces the named set or area to be searched.

set-name

Specifies the set to be searched.

area-name

Specifies the area to be searched.

The named set or area must be known to the dialog's subschema.

error-expression

Specifies the status codes that are returned to the dialog.

Usage

Considerations

If autostatus is not in use, a dialog's error-status field indicates the outcome of a

FIND/OBTAIN WITHIN SET/AREA command:

Status code Meaning

0000 The request was executed successfully

0304 A sequence number of zero or a variable data field containing a value
of zero was specified for the object record

0306 Currency was not established for the named record, set, or area

0307 The end of the set or area was reached, or the set is empty

0308 The object record is not in the dialog's subschema

0310 The dialog's subschema specifies an access restriction that prohibits
retrieval of the named record

0318 The record retrieved was not bound. The record or one of the
record's elements must be named explicitly somewhere in the
dialog's process code, or the record must be associated with the

dialog as a map record

Navigational DML

406 ADS Reference Guide

Status code Meaning

0323 The named area is not in the dialog's subschema, or the named

record is not in the named area

0326 The object record cannot be found

0329 A run-unit deadlock condition occurred. DBMS aborted and rolled

back the run unit. All resources associated with the task are released

Further Considerations

■ After successful execution of a FIND/OBTAIN WITHIN SET/AREA command, the
accessed record is current of:

– The run unit

– Its record type

– Its area

– All sets in which it currently participates as member or owner

■ When accessing records within a set, the following considerations apply:

– The current record of the specified set determines the set occurrence to be
accessed. Set currency must be established before a FIND/OBTAIN WITHIN SET
command is executed.

– The next or prior record within a set is the subsequent or previous record,
relative to the current record of the named set in the logical order of the set.
The prior record in a set can be retrieved only if the set has prior pointers.

– The first or last record within a set is the first or last member occurrence,
respectively, in terms of the logical order of the set. The record accessed is the

same record accessed when the current of set is the owner record and the next
or prior record is requested. The last record in a set can be retrieved only if the
set has prior pointers.

– The nth occurrence of a record within a set can be accessed by specifying a
sequence number that identifies the position of the record in the set. The

search begins with the owner of the current of set for the specified set and
continues until the nth record is located or an end-of-set condition is
encountered. If the specified sequence number is negative, the search
proceeds in the prior direction in the set. A negative number can be specified

only if the set has prior pointers.

Navigational DML

Chapter 16: Database Access Commands 407

– When an end-of-set condition occurs, the owner record occurrence of the set
becomes current of:

– The run unit

– Its record type

– Its area

The owner record also becomes current of the set named in the FIND/OBTAIN
command. Currency of other sets in which the record participates as member
or owner is not changed.

– If OBTAIN is specified and an end-of-set condition occurs, the contents of the
owner record are not moved to the dialog's record buffer (that is, OBTAIN is

treated as FIND).

■ When accessing records within an area, the following considerations apply:

– The first record occurrence within an area is the one with the lowest database
key. The last record occurrence is the one with the highest database key.

– The next record within an area is the one with the next higher database key
relative to the current record of the object area. The prior record is the one
with the next lower database key relative to the current of area.

– The first or last record or the nth occurrence of a record in an area must be
accessed to establish correct starting position before next or prior records are
requested.

■ When using a native VSAM set, the following considerations apply:

– When an end-of-set or end-of-area condition (0307) occurs for a native VSAM
set, all currencies remain unchanged.

– The FIRST, LAST, and sequence-number WITHIN area-name options cannot be
used to access spanned data records in a native VSAM data set.

Example

The statements in the following example il lustrate the use of the FIND/OBTAIN WITHIN
SET command to retrieve records in an occurrence of the ORDER-ITEM set:

MOVE 'BB' TO ORD-NUM.

FIND CALC ORDOR.

OBTAIN FIRST ITEM WITHIN ORDER-ITEM.

OBTAIN NEXT WITHIN ORDER-ITEM.

OBTAIN 5 WITHIN ORDER-ITEM.

OBTAIN NEXT WITHIN ORDER-ITEM.

If the fifth ITEM record is the last record in the ORDER-ITEM set, the fourth OBTAIN
statement finds the owner ORDOR record.

Navigational DML

408 ADS Reference Guide

More information:

Error Handling (see page 277)

FIND/OBTAIN WITHIN SET USING SORT KEY

Purpose

Accesses a member record in a sorted set.

Sets are sorted in ascending or descending order based on the value of a sort-control
element in each member record. The search begins with the current of set or the owner
of the current of set and always proceeds through the set in the next direction.

Syntax

►►──┬─ FIND ───┬───┬──────────────────────────┬── record-name ────────────────►
 └─ OBTAIN ─┘ └─ KEEP ───┬─────────────┬─┘
 └─ EXCLUSIVE ─┘

 ►──── WITHIN set-name ──────┬───────────┬────────────────────────────────────►
 └─ CURRENT ─┘

 ►──── USING sort-field-name-variable ──────┬────────────────────┬─── . ──────►◄
 └─ error-expression ─┘

Parameters

KEEP

Places a shared lock on the object record.

EXCLUSIVE

Places an exclusive lock on the object record.

record-name

Specifies the record to be accessed.

Record-name must be known to the dialog's subschema and must participate in the
set specified by set-name.

WITHIN set-name

Specifies the set in which the object record participates.

Set-name must be known to the dialog's subschema.

Navigational DML

Chapter 16: Database Access Commands 409

CURRENT

Specifies that the search begins with the current record of the named set.

If the set is sorted in ascending order and the sort key value of the record that is
current of set is higher than the sort key value specified by sort-field-name-variable,
an error condition results. If the set is sorted in descending order and the sort key

value of the record that is current of set is lower than the sort key value specified
by sort-field-name-variable, an error condition results.

If CURRENT is not specified, the search begins with the owner of the current record
of the named set.

USING sort-field-name-variable

Specifies the sort-control element to be used in searching the sorted set.

Sort-field-name-variable is either the name of the sort-control element in the
record specified by record-name or the name of a variable data field that contains
the sort key value.

Note: The value specified for the sort-field-name variable may only be the name of
a single field. If the sort key is comprised of multiple individual fields, the value
specified must be that of a group-level element. If the name of a variable data field

is coded and represents a group-level element, the associated elementary elements
must be in the same sequence as the corresponding fields within the set's schema
definition. The data formats for the elementary elements must also match the
formats of the corresponding fields within the database record.

error-expression

Specifies the status codes that are returned to the dialog.

Usage

Considerations

If autostatus is not in use, a dialog's error-status field indicates the outcome of a
FIND/OBTAIN WITHIN SET USING SORT KEY command:

Status code Meaning

0000 The request was executed successfully

0306 Currency was not established for the named set

0308 The named record or set is not in the dialog's subschema

0310 The dialog's subschema specifies an access restriction that prohibits
retrieval of the object record

0326 The specified record cannot be found

Navigational DML

410 ADS Reference Guide

Status code Meaning

0329 A run-unit deadlock condition occurred. DBMS aborted and rolled

back the run unit. All resources associated with the task are released.

0331 No sort-control element is defined for the object record in the
dialog's subschema

Further Considerations

■ Before issuing a FIND/OBTAIN WITHIN SET USING SORT KEY command, the
application developer must place the sort key value of the object record in the
applicable field of the dialog's record buffer. If more than one record occurrence

has a sort key value equal to the value in the record buffer, the first such record is
accessed.

■ After successful execution of a FIND/OBTAIN WITHIN SET USING SORT KEY
command, the accessed record is current of:

– The run unit

– Its record type

– Its area

– All sets in which it currently participates as member or owner

■ If the object record is not found, next of set and prior of set are maintained, but
current of set is nullified.

■ Next of set points to the next higher (for ascending sets) or next lower (for
descending sets) sort key value.

Example

The statements in the following example establish a current PRODUCT-ITEM set and
then retrieve an ITEM record based on the lot number:

MOVE 'P8' TO PROD-NUMBER.

FIND CALC PRODUCT.

MOVE 1230427 TO ITEM-LOT-NUMBER.

FIND ITEM WITHIN PRODUCT-ITEM USING ITEM-LOT-NUMBER.

More information:

Error Handling (see page 277)

Navigational DML

Chapter 16: Database Access Commands 411

GET

Transfers the contents of a record occurrence to a dialog's record buffer.

Elements in the object record are moved to the buffer according to the subschema view
of the record.

Syntax

►►──── GET ─────┬───────────────┬─────┬────────────────────┬───── . ──────────►◄
 └─ record-name ─┘ └─ error-expression ─┘

Parameters

record-name

Retrieves the record that is current of run unit. If record-name is specified, current
of run unit must be an occurrence of the named record type.

Record-name must be specified, unless the record or one of the record's elements is
named explicitly somewhere in the dialog's process code, or the record is

associated with the dialog as a map record.

error-expression

Specifies the status codes that are returned to the dialog.

Usage

Considerations

If autostatus is not in use, a dialog's error-status field indicates the outcome of a GET
command:

Status code Meaning

0000 The request was executed successfully

0508 The object record is not in the dialog's subschema

0510 The dialog's subschema specifies an access restriction that prohibits

retrieval of the object record

0513 Run-unit currency was not established or was nullified by a previous
ERASE command

0518 The record retrieved was not bound. The record or one of the
record's elements must be named explicitly somewhere in the
dialog's process code or the record must be associated with the
dialog as a map record

0520 The current record of run unit is not the same type as the named
record

Navigational DML

412 ADS Reference Guide

Further Considerations

■ The GET command operates only on the record that is current of run unit.

■ After the successful execution of a GET command, the accessed record remains
current of run unit and becomes current of its record type, its area, and all sets in
which it participates as member or owner.

Example

The following example il lustrates the use of the GET command to move the CUSTOMER

record that is current of run unit to the dialog's record buffer:

GET CUSTOMER.

More information:

Error Handling (see page 277)

KEEP

Purpose

Places a shared or exclusive lock on a record occurrence that is current of run unit,
record, set, or area.

Syntax

►►─── KEEP ─────┬─────────────┬────── CURRENT ────────────────────────────────►
 └─ EXCLUSIVE ─┘

 ►────┬─ record-name ──────┬──────┬────────────────────┬─────── . ────────────►◄
 ├─ WITHIN set-name ─┤ └─ error-expression ─┘
 └─ WITHIN area-name ─┘

Parameters

EXCLUSIVE

Places an exclusive lock on the object record. If EXCLUSIVE is not specified, the
object record receives a shared lock.

CURRENT

Places a lock on the current record of run unit.

record-name

Places the record lock on the current record of the named record type.

Navigational DML

Chapter 16: Database Access Commands 413

WITHIN set-name

Places the record lock on the current record of the named set.

WITHIN area-name

Places the record lock on the current record of the named area.

error-expression

Specifies the status codes that are returned to the dialog.

Usage

Definition

Record locks set with the KEEP command are maintained only for the duration of the
run unit or until explicitly released by means of a COMMIT command. The COMMIT
command is described earlier in this section.

Considerations

If autostatus is not in use, a dialog's error-status field indicates the outcome of a KEEP

command:

Status code Meaning

0000 The request was executed successfully

0606 Currency was not established for the named record, set, or area

0610 The dialog's subschema specifies a privacy lock that prohibits
execution of the KEEP command

0629 Deadlock occurred during locking of target record.

More information:

Error Handling (see page 277)

KEEP LONGTERM

Purpose

Sets or releases long-term record locks, and monitors database activity across run units.

Information on database activity can be returned to a specified location in a dialog's
record buffers.

Navigational DML

414 ADS Reference Guide

Syntax

►►── KEEP LONGterm ────┬─ ALL ─────────┬──────────────────────────────────────►
 └─ longterm-id ─┘

 ►─┬─ NOTIFY CURrent ───┬─ record-name ─┬───────────────┬─────────────────────►
 │ ├─ set-name ────┤ │
 │ └─ area-name ───┘ │
 ├─ TEST RETurn notification into return-location ────┤
 ├─ RELease ──┤
 └─ lock-options ─────────────────────────────────────┘

 ►─┬────────────────────┬── . ──►◄
 └─ error-expression ─┘

Expansion of Lock-Options

►►─┬┬─ SHAre ─────┬───┬─ record-name ─┬─────────────────────────────────────┬─►
 │└─ EXClusive ─┘ ├─ set-name ─┤ │
 │ └─ area-name ─┘ │
 └─ UPgrade ─┬─ SHAre ─┬┬──┬┘
 └─ EXClusive ─┘└─ REturn notification into return-location ─┘

 ►───────┬─ WAIT ─────────┬───►◄
 ├─ NOWAIT────────┤
 └─ NODEADLOCK ◄ ─┘

Parameters

ALL

(Only with the RELEASE parameter) Requests release of all long-term locks
associated with the current task.

longterm-id

Either the name of a 1- to 16-character variable EBCDIC data field that contains a
lock identifier or the 1- to 16-character identifier itself, enclosed in single quotation
marks.

Longterm-id can be used by a subsequent KEEP LONGTERM command to upgrade or
release the long-term lock or to inquire about the status of database activity for the
object record.

NOTIFY CURrent

Initializes a preallocated area in the dialog's record buffer with the information

written by DC/UCF on the database activity for the record identified by longterm-id.

record-name

Specifies monitoring of database activity for the record that is current of record
type.

set-name

Specifies monitoring of database activity for the record that is current of set.

area-name

Specifies monitoring of database activity for the record that i s current of area.

Navigational DML

Chapter 16: Database Access Commands 415

TEST RETurn notification into

Requests that information on database activity for the record identified by

longterm-id be returned to the location in the dialog's record buffers specified by
return-location.

In order to specify RETURN NOTIFICATION, a previous KEEP LONGTERM command

must have included the NOTIFY CURRENT option.

return-location

The name of a binary fullword variable data field.

RELease

Releases either the long-term lock for the record identified by longterm-id or all
long-term record locks associated with the current task.

All long-term locks that have not been released by the time the application

terminates are released when the user s igns off from DC/UCF with a BYE, SIGNON,
or SIGNOFF command.

lock-options

Identifies the lock options.

Expanded syntax for lock-options is shown above immediately following the KEEP

LONGTERM syntax.

error-expression

Specifies the status codes that are returned to the dialog.

SHAre

Places a long-term shared lock on the object record.

EXClusive

Places a long-term exclusive lock on the object record.

Note: The shared or exclusive lock is placed only if the area in which the record is
located is readied in an update usage mode.

UPGRADE

Upgrades a longterm lock placed on the record identified by longterm-id during

execution of a previous process.

REturn notification into

Clause requesting that information on database activity for the record identified by
longterm-id be returned to the location in the dialog's record buffers specified by
return-location.

Navigational DML

416 ADS Reference Guide

WAIT

(Applies only to SHARE/EXCLUSIVE and UPGRADE) Places the run unit in a wait state

if the lock cannot be placed immediately due to an existing lock on the record.

If waiting causes a deadlock, the requesting run unit terminates abnormally.

NOWAIT

(Applies only to SHARE/EXCLUSIVE and UPGRADE) Does not place the run unit in a
wait state if the lock cannot be placed immediately due to an existing lock on the

record. Control returns to the requesting run unit. The KEEP LONGTERM request is
not executed.

NODEADLOCK

(Applies only to SHARE/EXCLUSIVE and UPGRADE) Places the run unit in a wait
state. If waiting causes a deadlock, control returns to the requesting run unit and

the KEEP LONGTERM request is not executed.

NODEADLOCK is the default when neither WAIT, NOWAIT, or NODEADLOCK is
specified.

If WAIT or NODEADLOCK is specified, the run unit waits to place the lock only if the
following conditions apply:

■ The object record already holds an exclusive lock assigned by a concurrently
executing run unit.

■ The run unit that assigned the existing lock has readied the area in which the

object record is located in an update usage mode.

■ The run unit issuing the KEEP LONGTERM request has readied the area in which
the object record is located in an update usage mode.

Control returns to the requesting run unit unless all of the above conditions apply.

Usage

Considerations

If autostatus is not in use, a dialog's error-status field indicates the outcome of a KEEP
LONGTERM command:

Status code Meaning

0000 The request was executed successfully

0032 One of the following conditions has occurred:

■ the lock id is already in use by the lterm, with a different page
group or l ine index format

■ a #getstg request has failed for a lock control block

Navigational DML

Chapter 16: Database Access Commands 417

Status code Meaning

0036 A lock manager error has occurred. Check the CV log for other error

messages.

0044 A DCL1 error has occurred. Check the CV log for other error
messages.

5101 NODEADLOCK was specified in the KEEP LONGTERM request and a
deadlock condition occurred

5105 The requested record cannot be found or currency was not
established for the object record

5121 Either of the following conditions has occurred:

■ The requested long-term id cannot be found

■ A KEEP LONGTERM request has been issued by a nonterminal
task

5123 Area not found.

5131 Invalid param list.

5147 Area has not been readied.

5148 Run unit has not been bound.

5149 NOWAIT was specified in the KEEP LONGTERM request and a wait is
required.

Further Considerations

When the database performs an action on an object record, one of five bit flags is
turned on by the runtime system. If no bit is turned on, no database activity has
occurred. The following table shows the bit assignments, their corresponding

hexadecimal and decimal values, and the database activity they represent.

Bit assignment Hexadecimal
value

Decimal
value

Database action

Fifth bit X'10' 16 The record was physically deleted.

Fourth bit X'08' 8 The record was logically deleted.

Third bit X'04' 4 The record's prefix was modified;

that is, a set operation occurred
involving the record (for example,
CONNECT, DISCONNECT).

Second bit X'02' 2 The record's data was modified.

First bit X'01' 1 The record was obtained.

Navigational DML

418 ADS Reference Guide

Information about database activity that occurred for an object record is returned to a
dialog as a decimal value. The action or combination of database actions taken can be

determined by comparing the returned decimal value listed above to a constant. For
example:

■ If the returned value is 0, no database activity occurred for the record.

■ If the returned value is 2, the record's data was modified.

■ If the returned value is 6, both the record's data and the record's prefix were
modified.

■ If the returned value is 8 or greater, the record was deleted.

■ If the returned value is 31 (the maximum possible value), all of the above actions
occurred for the object record.

Navigational DML

Chapter 16: Database Access Commands 419

Examples

The following examples i l lustrate the use of KEEP LONGTERM to set locks and to

monitor database activity:

Example 1: Setting and upgrading a lock

The following example il lustrates the use of KEEP LONGTERM to set an exclusive lock on

the current CUSTOMER record in one process and then to upgrade the lock to shared
after the record is modified in a subsequent process:

Process A

 .

 .

 .

KEEP LONGTERM LOCK-ID EXCLUSIVE CUSTOMER.

 .

 .

 .

Process B

 .

 .

 .

MODIFY CUSTOMER.

KEEP LONGTERM LOCK-ID UPGRADE SHARE.

 .

 .

 .

By upgrading the lock to shared, other concurrently executing run units are allowed to
access the CUSTOMER record after it has been modified.

Navigational DML

420 ADS Reference Guide

Example 2: Monitoring database activity

The following example il lustrates the use of KEEP LONGTERM to request monitoring of

database activity for the current CUSTOMER record in one process and then, in a
subsequent process, to test whether the record was deleted:

Process A

 .

 .

 .

OBTAIN CALC CUSTOMER.

KEEP LONGTERM LOCK-ID NOTIFY CURRENT CUSTOMER.

 .

 .

 .

Process B

 .

 .

 .

KEEP LONGTERM LOCK-ID TEST RETURN NOTIFICATION INTO DB-ACTIV.

IF DB-ACTIV GE 8

THEN

 INVOKE 'ORDCHECK'.

 .

 .

 .

More information:

Error Handling (see page 277)

MODIFY

Purpose

Replaces element values of a record occurrence in the database with new element
values defined in the dialog's record buffer.

Syntax

►►─── MODIFY record-name ───────┬────────────────────┬────── . ───────────────►◄
 └─ error-expression ─┘

Navigational DML

Chapter 16: Database Access Commands 421

Parameters

record-name

Specifies the current occurrence of the named record to be modified with the
values in the dialog's record buffer.

The named record must be known to the dialog's subschema.

error-expression

Specifies the status codes that are returned to the dialog.

Usage

Considerations

If autostatus is not in use, a dialog's error-status field indicates the outcome of a
MODIFY command:

Status code Meaning

0000 The request was executed successfully

0805 Modification of the record violates a duplicates -not-allowed

specification for a CALC record, sorted set, or index set

0806 Currency was not established for the object set

0809 The object record's area was not readied in an update usage mode

0810 The dialog's subschema specifies an access restriction that prohibits

modification of the named record

0813 Run-unit currency was not established or was nullified by an ERASE
command

0820 The current record of run unit is not the same type as the named
record

0821 An area other than the area of the object record was readied with an
incorrect usage mode

0825 No current record of set type was established

0829 A run-unit deadlock condition occurred. DBMS aborted and rolled
back the run unit. All resources associated with the task are released

0833 Not all sorted sets in which the object record participates are
included in the dialog's subschema

0855 An invalid length was defined for a variable-length record

0883 The length of a record in a native VSAM ESDS was changed or a prime

key in a native VSAM KSDS was modified

Navigational DML

422 ADS Reference Guide

Further Considerations

■ The following conditions must be satisfied before a MODIFY command is executed:

– All areas affected either directly or indirectly by the MODIFY command must be
readied in an update usage mode.

More information:

Usage modes are discussed in READY (see page 423).

– The values of all elements defined for the object record in the dialog's
subschema must be in the dialog's record buffer. If the MODIFY command is
not preceded by an OBTAIN or GET command, the application developer must

initialize the applicable values.

– The object record must be established as current of run unit.

■ After successful execution of a MODIFY command, the modified record is current
of:

– The run unit

– Its record type

– Its area

– All sets in which it participates as member or owner

■ The following special considerations apply to the modification of CALC and
sort-control elements:

– If the modification of a CALC or sort-control element violates a
duplicates-not-allowed specification in the dialog's schema, the MODIFY
command is not executed and an error condition results.

– When a CALC-control element is modified successfully, the object record can
be accessed by using its new CALC key value. The database key of the object
record does not change.

– If a sort-control element is to be modified, the sorted set in which the object
record participates must be included in the dialog's subschema.

– When a sort-control element is modified successfully, any set occurrence in
which the object record currently participates as a member is examined. If
necessary, the object record is disconnected and reconnected in the set
occurrence to maintain the sorted set order.

■ The following special considerations apply to the modification of records in native

VSAM data sets:

– The length of a record in an ESDS cannot be changed even if the records are
variable length.

– The prime key of a KSDS cannot be modified.

Navigational DML

Chapter 16: Database Access Commands 423

Example

The statements in the following example retrieve an occurrence of the CUSTOMER

record by using its CALC key, update the value of the CUST-NAME element in the
dialog's record buffer, and then modify the record occurrence in the database:

MOVE IN-CUST-NUMBER TO CUST-NUMBER.

OBTAIN CALC CUSTOMER.

MOVE NEW-CUST-NAME TO CUST-NAME.

MODIFY CUSTOMER.

More information:

Error Handling (see page 277)

READY

Purpose

Overrides the usage mode specified in a dial og's subschema for one or more database
areas.

Database areas are readied when a run unit begins (that is, immediately before the

execution of the first database-access command issued by a process).

Syntax

►►─── READY ────┬─────────────┬─────┬───►
 ├─ area-name ─┤ └─ USAGE-MODE ──┬──────┬──────────────────
 └─ ALL ◄ ─────┘ ├─ IS ─┤
 └─ = ─┘

 ►──┬─────────────────────────►◄
 ──┬─────┬─────────────┬────┬─ RETRIEVAL ◄ ─┬───┬──┘
 │ ├─ PROTECTED ─┤ └─ UPDATE ──────┘ │
 │ └─ EXCLUSIVE ─┘ │
 │ │
 └─ NOREADY ──────────────────────────────────┘

Parameters

area-name

Readies the named area in the specified usage mode.

ALL

Readies all areas in the specified usage mode.

If neither area-name nor ALL is specified, all areas defined in the dialog's

subschema are readied in the usage mode specified in the subschema.

Navigational DML

424 ADS Reference Guide

USAGE-MODE

Specifies the usage mode in which the object areas are readied.

IS or = are optional keywords and have no effect on processing.

PROTECTED

Prevents concurrent update of the object areas.

EXCLUSIVE

Prevents concurrent use of the object areas.

If neither PROTECTED nor EXCLUSIVE is specified, the usage mode is qualified

as shared.

RETRIEVAL

Readies the object areas for retrieval only.

RETRIEVAL is the default when neither RETRIEVAL or UPDATE is specified.

UPDATE

Readies the object areas for both retrieval and update.

NOREADY

Indicates that the area or areas named are not to be readied.

Usage

Overview of Usage Modes

Usage modes restrict runtime operations. Database areas can be readied in a retrieval
or update usage mode.

■ When an area is readied in a retrieval usage mode, the run unit cannot issue
CONNECT, DISCONNECT, ERASE, MODIFY, or STORE commands for records in the
area.

■ When an area is readied in an update usage mode, the run unit can issue all

database commands for records in the area.

Navigational DML

Chapter 16: Database Access Commands 425

Usage modes can be qualified as protected, exclusive, or shared.

■ A database area readied in a protected retrieval or update usage mode cannot be

updated by a concurrently executing run unit. A run unit cannot ready a database
area in a protected usage mode if another run unit has readied the same area in an
update usage mode.

■ A database area readied in an exclusive retrieval or update usage mode cannot be
used in any way by a concurrently executing run unit. A run unit cannot ready a
database area in an exclusive usage mode if another run unit has readied the area
in any usage mode.

■ A database area readied in a shared retrieval or update usage mode can be
accessed by multiple run units concurrently. If neither protected nor exclusive is
specified, the usage mode is qualified as shared.

Considerations

■ CA ADS automatically readies all areas defined in a dialog's subschema in the usage

mode (if any) specified in the subschema, or in a shared retrieval usage mode,
unless the NOREADY option is specified.

■ If you add an area to a subschema with default usage mode with the FORCE option,

this area is readied even if the dialog is not recompiled. However, we recommend
not to perform this action for ADS applications that use extended run units.

Note: For more information on the limitations of using the FORCE option with ADS
dialogs, see the Area Statement section (in the Subschema Statements chapter) in

the CA IDMS Database Administration Guide.

■ If the same area is named in more than one READY command in a process, the
usage mode specified by the last READY command coded in the process applies to
the named area for the entire process.

■ An area cannot be readied in an update usage mode if the area includes any records

that participate in a set whose members or owner are in an area readied in a
retrieval usage mode.

■ If a READY command results in a usage mode conflict for an area, the dialog issuing

the READY command is placed in a wait state until the area is available in the
requested usage mode.

Example 1: Readying an Area

The following example il lustrates the use of the READY command:

READY ORDOR-REGION

USAGE-MODE IS PROTECTED UPDATE.

Navigational DML

426 ADS Reference Guide

Example 2: Specifying That an Area Not be Readied

The following example il lustrates the use of the NOREADY option. In this example, the

area CUSTOMER-REGION is readied in shared update while the area ORDOR-REGION is
not readied.

READY CUSTOMER-REGION

USAGE-MODE IS SHARED UPDATE.

READY ORDOR-REGION

USAGE-MODE IS NOREADY.

More information:

CA ADS Runtime System (see page 119)

RETURN DB-KEY

Purpose

Retrieves an index entry without retrieving the associated record.

Note: This command applies only to CA IDMS system-owned indexed records.

Syntax

►►─── RETURN DB-KEY into db-key-variable FROM index-set-name ─────────────────►

 ►─┬─ CURRENCY ─────────────────┬────┬────────────────────┬─── . ─────────────►◄
 ├─ FIRST currency ───────────┤ └─ error-expression ─┘
 ├─ LAST currency ────────────┤
 ├─ NEXT currency ────────────┤
 ├─ PRIOR currency ───────────┤
 └─ USING index-key-variable ─┘

Parameters

RETURN DB-KEY into

Clause introducing the return of the database key, to the record associated with the

specified index entry, to the location identified by db-key-variable.

db-key-variable

A numeric variable data field in the dialog's record buffers that can hold a binary
fullword value.

Db-key-variable is a PIC S9(8) COMP SYNC.

FROM index-set-name

Specifies the index set associated with the index entry being retrieved.

Note: Index-set-name must be known to the dialog's subschema.

Navigational DML

Chapter 16: Database Access Commands 427

CURRENCY

Retrieves the entry that is current of index.

FIRST currency

Retrieves the first entry in the index.

LAST currency

Retrieves the last entry in the index.

NEXT currency

Retrieves the entry following the current of index.

PRIOR currency

Retrieves the entry preceding the current of index.

USING index-key-variable

Retrieves the first index entry whose symbolic key matches the contents of

index-key-variable.

Index-key-variable is the name of a variable data field that is not more than 256
bytes in length.

error-expression

Specifies the status codes that are returned to the dialog.

Usage

The RETURN DB-KEY command is used as follows:

■ The value of the symbolic key in the index entry is returned to the symbolic key field
for the associated record in the dialog's record buffer.

■ The database key that points to the record associated with the index entry is

returned to a specified field in the dialog's record buffers.

■ The record referenced in the RETURN DB-KEY command must be referenced in a
prior DML call in the dialog's run unit.

Considerations

If autostatus is not in use, a dialog's error-status field indicates the outcome of a

RETURN DB-KEY command:

Status code Meaning

0000 The request was executed successfully

Navigational DML

428 ADS Reference Guide

Status code Meaning

1707 The end of the index was reached. Currency is set on the index

owner. The DBMS returns the owner's db-key

When 1707 is returned for an SPF index, currency remains on the last
entry of the index. No db-key is returned.

1725 Index currency was not establi shed with an OBTAIN command

1726 The index entry cannot be found

1729 A run-unit deadlock condition occurred. DBMS aborted and rolled
back the run unit. All resources associated with the task are released

Further Considerations

■ After successful execution of a RETURN DB-KEY command, the retrieved index entry
is current of index.

■ If an end-of-set condition is encountered, currency is set to the last or first entry in

the index, based on whether next or prior currency has been requested.

■ If a specified entry cannot be found, currency is set between the two entries that
are higher and lower than the specified value.

■ If the specified value is higher or lower than all index entries, currency is set after or

before the highest or lowest entry in the index.

More information:

Error Handling (see page 277)

ROLLBACK

Purpose

Requests recovery of the part of a run unit that falls between two checkpoints (a

recovery unit).

Syntax

►►─── ROLLBACK ────┬────────┬────┬────────────┬───────── . ───────────────────►◄
 └─ TASK ─┘ └─ CONTINUE ─┘

Parameters

TASK

Specifies that database, queue, and scratch areas are recovered.

If TASK is not specified, only database areas are recovered.

Navigational DML

Chapter 16: Database Access Commands 429

CONTINUE

Rolls back the issuing run unit (ROLLBACK CONTINUE) or all run units associated

with the issuing task (ROLLBACK TASK CONTINUE), but does not terminate the run
unit. Database access can be resumed without issuing BIND and READY statements.

Usage

Definition

ROLLBACK performs the following functions:

■ Writes an ABRT checkpoint to the CA IDMS/DB journal fi le.

■ Nullifies all currencies.

■ Terminates database activities within the process and, if no database commands

are issued after the ROLLBACK command, relinquishes control over database areas.
If other database commands are issued after the ROLLBACK command, the
database areas are readied again automatically in the applicable usage modes.

Considerations

After successful execution of a ROLLBACK command, database, queue, and scratch areas

are restored to the most recent checkpoint.

The only acceptable status code returned for a ROLLBACK command is 0000.

STORE

Purpose

Adds records to the database.

Syntax

►►─────── STORE record-name ───┬────────────────────┬─── . ───────────────────►◄
 └─ error-expression ─┘

Parameters

record-name

Specifies the name of the object record occurrence to be moved from the dialog's
record buffer to the database.

Record-name must be known to the dialog's subschema.

error-expression

Specifies the status codes that are returned to the dialog.

Navigational DML

430 ADS Reference Guide

Usage

Definition

The STORE command moves the object record occurrence from the dialog's record
buffer to the database and connects it to an occurrence of each set for which the record
is defined as an automatic member. The STORE command performs the following

functions:

■ Acquires space in the database and a database key for a new record occurrence

■ Transfers the values of the record elements from the dialog's record buffer to the
object record occurrence in the database

■ Connects the object record to all sets for which it is defined as an automatic
member

Considerations

If autostatus is not in use, a dialog's error-status field indicates the outcome of a STORE
command:

Status code Meaning

0000 The request was executed successfully

1202 The suggested DIRECT-DBKEY value is not within the page range for
the object record

1205 Storage of the record violates a duplicates -not-allowed specification
for a CALC record, sorted set, or index set

1208 The object record is not in the dialog's subschema

1209 The object record's area was not readied in an update usage mode

1210 The dialog's subschema specifies an access restriction that prohibits
storage of the named record

1211 The object record cannot be stored because of insufficient space

1212 The record cannot be stored because no database key is available

1221 An area other than the area of the object record was readied with an

incorrect usage mode

1225 A current of set was not established for each set to which the object
record is to be connected

1229 A run-unit deadlock condition occurred. DBMS aborted and rolled

back the run unit. All resources associated with the task are released.

1233 Not all sets in which the object record participates as an automatic
member are included in the dialog's subschema.

Navigational DML

Chapter 16: Database Access Commands 431

Status code Meaning

1255 An invalid length was defined for a variable-length record.

1261 The record cannot be stored because of broken chains in the
database.

1287 The owner and member records for a set to be updated are not in

the same page group or do not have the same dbkey radix point.

Further considerations

■ A record occurrence is stored in the database based on the location mode specified
in the schema definition of the record:

– CALC— The object record is placed on or near a database page that is
calculated by CA IDMS from a control element (the CALC key) in the record.

– VIA— The object record is placed as close as possible to its owner record
occurrence if owner and member record occurrences share a common

database page range. If owner and member record occurrences do not share a
common page range, the object record is placed in the same relative position in
its own page range as that in which the owner record is placed in its page

range.

– DIRECT— The object record is placed on or near a database page that is
identified by a value moved by the application developer to the DIRECT-DBKEY
field.

■ Before a STORE command can be executed, the following conditions must be

satisfied:

– All areas affected either directly or indirectly by the STORE command must be
readied in an update usage mode.

– All control elements (that is, CALC and sort keys) must be initialized.

– If the object record has a location mode of DIRECT, the DIRECT-DBKEY field

must be initialized with a suggested database key value or a null database key
value of -1.

– If the object record is to be stored in a native VSAM RRDS, the DIRECT-DBKEY

field must be initialized with the relative record number that represents the
location within the data set where the record is to be stored.

– All sets in which the object record is defined as an automatic member and the
owner record of each of those sets must be included in the dialog's subschema.

– If the object record has a location mode of VIA, currency must be established

for the owner of the set through which the record is stored, regardless of
whether the record is an automatic or manual member of the set.

Navigational DML

432 ADS Reference Guide

– Currency must be established for all set occurrences for which the object
record is defined as an automatic member. A STORE command connec ts the

object record to a set occurrence, based on set order, as follows:

– If the object record is defined as a member of a set that is ordered FIRST,
the object record is connected right after the owner to become the first

member of the set. If the set is ordered LAST, the object record is
connected as the last member of the set.

– If the object record is defined as a member of a set that is ordered NEXT or
PRIOR, the record that is current of set establishes the set occurrence to
which the object record is connected and determines the record's position

within the set.

– If the object record is defined as a member of a sorted set, the process

must establish currency on the set by getting currency on the set's owner.
Then, the process can store the object record. CA IDMS/DB automatically
connects the object record to the correct position in the set in order to

maintain the proper set sequence.

 The sort key of the object record is compared with the sort key of the
record that is current of set to determine if the object record can be

inserted in the set by movement in the next direction. If it can, current of
set remains unchanged and the object record is connected. If it cannot,
current of set is repositioned at the owner record occurrence (not
necessarily the current occurrence of the owner record type) and

movement proceeds in the next direction until the object record can be
properly connected.

■ After successful execution of a STORE command, the object record becomes current
of:

– The run unit

– Its record type

– Its area

– All sets in which it participates as owner or automatic member

Example

The statements in the following example store a new ITEM record in the database and

connect it to the correct occurrences of the ORDER-ITEM and PRODUCT-ITEM sets:

MOVE IN-PROD-NUMBER TO PROD-NUMBER.

FIND CALC PRODUCT.

MOVE IN-ORD-NUMBER TO ORD-NUMBER.

FIND CALC ORDOR.

STORE ITEM.

Logical Record Facility Commands

Chapter 16: Database Access Commands 433

More information:

Error Handling (see page 277)

READY (see page 423)

Logical Record Facility Commands

In CA ADS, Logical Record Facil ity (LRF) commands are used to retrieve and update data

that is defined in a Logical Record Facil ity subschema.

Overview of LRF Database Access

To enable use of LRF, DBAs predefine the paths that a dialog can use to access specific
views of data in the database. Logic to navi gate the database is contained in the path

definition.

Given the dialog's data requirements, the programmer selects the appropriate LRF path
and then codes database requests in the form of LRF commands within the dialog's
process logic. At runtime, CA IDMS/DB locates the requested data using the specified

path.

Components of LRF

LRF processes commands associated with logical records. When a dialog issues an LRF
command, LRF selects an appropriate path based on the information in the command
statement. LRF uses field values in the record buffer that is established for the logical

record to update the database.

Logical records are defined in a subschema by the database administrator (DBA). Each
logical record is composed of fields selected from one or more subschema records or
roles that are typically accessed together.

Logical Record Facility paths are also defined in the subschema. Each path is a group of

database access instructions that perform the processing necessary to sa tisfy an LRF
request. One or more paths are associated with each logical record in the subschema.

The predefined conditions affecting logical record access include:

■ Restrictions on the commands that can be issued for each logical record

■ Selection criteria that can be specified by a WHERE clause in each command for

each logical record

■ Path statuses returned by LRF to indicate the result of each command

Logical Record Facility Commands

434 ADS Reference Guide

To use Logical Record Facil ity commands effectively, the application developer must be
familiar with the processing characteristics of the logical records that are defined in the

subschema.

Note: For more information about using Logical Record Facil ity, see the CA IDMS Logical
Record Facility.

Process code within a single dialog cannot reference more than one logical record that
includes fields from a given subschema record.

WHERE Clause

A WHERE clause is used to specify criteria for selection of one or more occurrences of a

logical record that is the object of an ERASE, MODIFY, OBTAIN, or STORE command. A
WHERE clause is also used to direct LRF to a particular logical record path.

Considerations

■ A WHERE clause is specified in the form of an expression that consists of one or
more conditions to be tested.

– Multiple conditions are combined with the logical operators AND and OR.

– The logical operator NOT can precede a single condition or a compound
condition that is enclosed in parentheses. NOT specifies the opposite of the
condition.

■ A test condition is expressed as a comparison or a keyword.

■ A logical record occurrence is selected only if the entire expression evaluates as
true.

■ Operators in a conditional expression are evaluated one at a time, from left to right,
in order of precedence.

Note:The default order of precedence is the same as that described for other
conditional expressions discussed in Conditional Expressions (see page 245).

Conditional Expression

Purpose

The conditional expression of the WHERE clause is used when the process command
syntax specifies lr-conditional-expression.

Logical Record Facility Commands

Chapter 16: Database Access Commands 435

Syntax

 ┌───────────── AND ────────────────┐
 ├───────────── OR ─────────────────┤
►►──┬─────────┬──▼─┬─ dba-designated-keyword ──────┬┴──┬─────┬────────────────►◄
 └─ NOT (─┘ └─┬───────┬─┬─ lr-comparison ──┬┘ └─) ─┘
 └─ NOT ─┘ └─ test-condition ─┘

Syntax: Logical Record Expression

 ┌───────────── AND ────────────────┐
 ├───────────── OR ─────────────────┤
►►──┬─────────┬──▼─┬─ dba-designated-keyword ──────┬┴──┬─────┬────────────────►◄
 └─ NOT (─┘ └─┬───────┬─┬─ lr-comparison ──┬┘ └─) ─┘
 └─ NOT ─┘ └─ test-condition ─┘

►►─┬─┬─ comparison-value ──────┬── operator ──┬─ comparison-value ──────┬─┬───►◄
 │ └─ arithmetic-expression ─┘ └─ arithmetic-expression ─┘ │
 │ │
 └─ comparison-value ─┬─ CONTAINS ─┬─ comparison-value ─────────────────┘
 └─ MATCHES ──┘

Parameters

NOT

Specifies that the opposite of the condition fulfi lls the test requirements.

The opposite of the entire conditional expression can be specified by enclosing the
expression in parentheses and preceding it with NOT.

dba-designated-keyword

Specifies a keyword, defined in the subschema by the database administrator
(DBA), that directs LRF to a particular logical record path. The selected path must be
associated with the object logical record.

lr-comparison

Specifies a comparison expression that establishes criteria used to select

occurrences of the object logical record.

Syntax for the comparison expression is shown later in this chapter.

test-condition

Specifies a condition to be tested, such as command status or cursor position.

AND

Specifies that the expression is true only if the outcome of both of the conditions

being tested is true.

OR

Specifies that the expression is true if the outcome of either one or both of the
conditions being tested is true.

Logical Record Facility Commands

436 ADS Reference Guide

More information:

Conditional Expressions (see page 245)

Comparison Expression

Purpose

Used to compare two values or to compare two character strings to determine if the

first string matches or contains the second string.

Syntax

►►─┬─┬─ comparison-value ──────┬── operator ──┬─ comparison-value ──────┬─┬───►◄
 │ └─ arithmetic-expression ─┘ └─ arithmetic-expression ─┘ │
 │ │
 └─ comparison-value ─┬─ CONTAINS ─┬─ comparison-value ─────────────────┘
 └─ MATCHES ──┘

Expansion of Comparison-Value

►►─┬─ literal ──┬─────►◄
 ├─ data-field-name-variable ───┤
 └─ lr-field-name ─┬────────────┬─┬───────────────────────┬─┬───────┬─┘
 └ OF lr-name ┘ │ ┌─────────────┐ │ └ OF LR ┘
 └ (─▼─ subscript ─┴─) ┘

Expansion of Comparison-Value

Parameters

comparison-value

Specifies the value to be compared.

Expanded syntax for comparison-value is shown above immediately following the
compression expression syntax.

arithmetic-expression

Specifies an arithmetic expression, according to the rules presented in Arithmetic
Expressions (see page 171).

operator

The comparison operators are:

Operator Synonym Meaning

EQ = Equal

NE Not equal to

GT > Greater than

Logical Record Facility Commands

Chapter 16: Database Access Commands 437

Operator Synonym Meaning

LT < Less than

GE Greater than or equal to

LE Less than or equal to

CONTAINS

Searches the left operand for an occurrence of the right operand.

The length of the right operand must be less than or equal to the length of the left
operand, and both operands must be EBCDIC or unsigned zoned decimal data types.
If the right operand is not entirely contained in the left operand, the outcome of the

comparison is false.

MATCHES

Compares the left operand to the right operand, one character at a time, beginning
with the leftmost character in each operand. The right operand can contain mask
characters, as follows:

■ @ -- Matches any alphabetic character

■ # -- Matches any numeric character

■ * -- Matches any character

Any other character in the right operand matches only itself in the left operand.

literal

A user-supplied variable, expressed as a numeric constant, or the character string
itself, enclosed in single quotation marks.

data-field-name-variable

Specifies the name of a variable data field, according to the rules presented in
Variable Data Fields (see page 285).

lr-field-name

Specifies the name of a field in a Logical Record Facil ity record known to the

subschema associated with the dialog.

OF lr-name

Specifies the name of the record that contains the field referenced by lr-field-name.

This clause is required only if the named field is not unique among the records
known to the dialog.

Logical Record Facility Commands

438 ADS Reference Guide

subscript

Specifies the applicable occurrence of the field referenced by lr-field-name. This can

be a variable field containing the applicable occurrence, the occurrence itself, or an
expression.

This clause applies only if the named field is defined as a multiply-occurring field.

OF LR

Specifies that the value of the named field at the time that the request is issued is

used throughout processing of the request.

If the value of the field changes during processing, LRF continues to use the original
value. If OF LR is not specified and the value of the field changes during processing

of the request, the new value in the dialog's record buffer is used for any further
processing of the request.

Usage

Considerations

Both the left and right operands must be EBCDIC or unsigned zoned decimal data types.

The length of the string that is compared is set to the length of the shorter of the two
operands. If a character in the left operand does not match the corresponding cha racter
in the right operand, the outcome of the comparison is false.

ERASE

Purpose

Deletes record occurrences.

The execution of an ERASE command does not necessarily result in the deletion of all or
any of the database records used to create the object Logical Record Facil ity

database-access record. The path selected to service the ERASE request performs only
the database-access operations specified in the subschema.

Syntax

►►─── ERASE lr-name ────┬───────────────────────────────────┬─────────────────►
 └─ WHERE lr-conditional-expression ─┘

 ►──┬────────────────────┬───── . ──►◄
 └─ error-expression ─┘

Parameters

lr-name

Specifies occurrences of the logical record used for database access.

Lr-name must be known to the dialog's subschema.

Logical Record Facility Commands

Chapter 16: Database Access Commands 439

WHERE lr-conditional-expression

Specifies the selection criteria to be applied to the logical record request.

Syntax for lr-conditional-expression is described earlier in this section.

error-expression

Specifies the status codes that are returned to the dialog.

Example

The ERASE command in the following example deletes the occurrence of
CUST-ORDER-LR with the specified customer and order numbers:

ERASE CUST-ORDER-LR

 WHERE CUST-NUMBER EQ '1234567890'

 AND ORD-NUMBER EQ '7654321'

 AND DELETE-ORDER.

The DBA-designated keyword, DELETE-ORDER, directs processing to a path that
retrieves the applicable occurrence of the CUST-ORDER-LR logical record and deletes the
specified order information from the database.

More information:

Error Handling (see page 277)

MODIFY

Purpose

Modifies field values in a record occurrence.

Syntax

►►─── MODIFY lr-name ────┬───────────────────────────────────┬────────────────►
 └─ WHERE lr-conditional-expression ─┘

 ►──┬────────────────────┬───── . ──►◄
 └─ error-expression ─┘

Parameters

lr-name

Specifies the name of the logical record.

Lr-name must be known to the dialog's subschema.

Logical Record Facility Commands

440 ADS Reference Guide

WHERE lr-conditional-expression

Specifies the selection criteria to be applied to the logical record request.

Syntax for lr-conditional-expression is described earlier in this section.

error-expression

Specifies the status codes that are returned to the dialog.

Example

The statements in the following example update an occurrence of the logical record
CUST-ORDER-LR by specifying a new customer name and a new required date for the

associated order:

OBTAIN FIRST CUST-ORDER-LR

 WHERE CUST-NUMBER EQ '1234567890'

 AND ORD-NUMBER EQ '7654321'.

MOVE NEW-CUST-NAME TO CUST-NAME.

MOVE NEW-DATE-REQ TO ORD-DATE-REQ.

MODIFY CUST-ORDER-LR.

More information:

Error Handling (see page 277)

OBTAIN

Purpose

Retrieves logical record occurrences.

Syntax

►►───── OBTAIN ───┬─ FIRST ──┬─── lr-name ────────────────────────────────────►
 └─ NEXT ◄ ─┘

 ►───┬───────────────────────────────────┬──────┬────────────────────┬── . ───►◄
 └─ WHERE lr-conditional-expression ─┘ └─ error-expression ─┘

Parameters

FIRST

Retrieves the first occurrence of the named logical record that meets the selection
criteria specified in the WHERE clause.

Logical Record Facility Commands

Chapter 16: Database Access Commands 441

NEXT

Retrieves the next occurrence of the named logical record that meets the selection

criteria specified in the WHERE clause.

NEXT is the default when neither FIRST or NEXT is specified.

If the same selection criteria were not specified in a previous OBTAIN command,

OBTAIN NEXT is equivalent to OBTAIN FIRST.

lr-name

Specifies the name of the logical record

Lr-name must be known to the dialog's subschema.

WHERE lr-conditional-expression

Specifies the selection criteria to be applied to the logical record request.

Syntax for lr-conditional-expression is described earlier in this section.

error-expression

Specifies the status codes that are returned to the dialog.

Usage

Definition

Data from object logical-record fields is transferred to the buffer established in the
dialog's record buffers. The OBTAIN command can be issued iteratively to retrieve a

series of record occurrences that meet the criteria specified in a WHERE clause.

Example

The statements in the following example retrieve all occurrences of the logical record
CUST-ORDER-LR for customer 1234567890:

OBTAIN FIRST CUST-ORDER-LR

 WHERE CUST-NUMBER EQ '1234567890'.

ON LR-NOT-FOUND THEN INVOKE 'CUSTCHEK'.

ON LR-FOUND

 REPEAT.

 OBTAIN NEXT CUST-ORDER-LR

 WHERE CUST-NUMBER EQ '1234567890'.

 .

 .

 .

 END.

DISPLAY.

Logical Record Facility Commands

442 ADS Reference Guide

More information:

Error Handling (see page 277)

ON Command

Purpose

Indicates additional processing to be performed when a specified path status is returned

by the Logical Record Facil ity following the execution of an LRF command.

Syntax

 ┌────────────────────────┐
►►─── ON path-status ─┬─ REPEAT. ──▼── command-statement. ──┴── END. ─────────►
 │
 └─ THEN ───┬── command-statement. ───────────────────┬──
 │ ┌──────────────────────┐ │
 └─ DO. ─▼─ command-statement. ─┴── END. ──┘

 ►──┬───────────►◄
 ──┬───┬───┘
 └── ELSE ───┬── command-statement. ───────────────────┬───┘
 │ ┌──────────────────────┐ │
 └─ DO. ─▼─ command-statement. ─┴── END. ──┘

Parameters

path-status

Tests whether Logical Record Facil ity returned the named path status. Path-status
specifies a 1- to 16-character DBA-defined or standard path status defined for the
path selected to service the previous logical record request.

REPEAT command-statement

Specifies the commands to be executed as long as LRF returns the named path

status.

REPEAT begins a processing loop; END terminates the loop. Each command is
executed sequentially before the path status is tested again.

Command-statement can be any valid CA ADS process command, including another
logical record command.

THEN command-statement

Specifies the commands to be executed if LRF returns the named path status.

Note: Multiple command statements must be preceded by DO and followed by

END.

Command-statement can be any valid CA ADS process command, including another
logical command.

Logical Record Facility Commands

Chapter 16: Database Access Commands 443

ELSE command-statement

Specifies the commands to be executed if LRF returns the named path status.

Command-statement can be any valid CA ADS process command, including another
logical record command.

Note: Multiple command statements must be preceded by DO and followed by

END.

A given ON command statement can include only one ELSE clause, and that ELSE
clause must match the most recent ON command not associated with an ELSE
clause.

Usage

Path Statuses

A path status, in the form of a 1- to 16-character unquoted string, indicates the result of
an LRF request. LRF can return either a path status defined by the DBA in the subschema
associated with the dialog or one of the standard path statuses. The standar d path

statuses are:

■ LR-FOUND indicates that the logical record request was executed successfully.
When LR-FOUND is returned, the dialog's error-status field contains 0000.

■ LR-NOT-FOUND indicates that the object record cannot be found either because no
such record exists or because all occurrences of the record have already been

retrieved. When LR-NOT-FOUND is returned, the dialog's error-status field contains
0000.

■ LR-ERROR indicates that a logical record request was issued incorrectly or that an

error occurred in the processing of the path selected to service the request. When
LR-ERROR is returned, the dialog's error-status field contains one of the status
codes l isted below.

Status code Meaning

2001 The requested logical record was not found in the subschema (The
path DML statement, EVALUATE, returns 0000 if true and 2001 if

false)

2008 The object record is not in the dialog's subschema, or the specified
request is not permitted for the named record

2010 The dialog's subschema prohibits access to logical records

2040 The WHERE clause in an OBTAIN NEXT command directed LRF to a
different processing path than did the WHERE clause in the preceding
OBTAIN command for the same logical record

2041 The request's WHERE clause cannot be matched to a path in the

dialog's subschema

Logical Record Facility Commands

444 ADS Reference Guide

Status code Meaning

2042 The logical record path for the request specifies return of the

LR-ERROR status to the process

2043 Bad or inconsistent data was encountered in the logical record buffer
during evaluation of the request's WHERE clause

2044 The request's WHERE clause does not include data required by the
logical record path

2045 A subscript value in a WHERE clause is either less than zero or greater
than its maximum allowed value

2046 One of the following conditions occurred during the evaluation of a
WHERE clause:

■ Arithmetic overflow (fixed point, decimal, or exponent)

■ Arithmetic inflow (exponent)

■ Divide exception (fixed point, decimal, or floating point)

■ Significance exception

2063 The request's WHERE clause contains a keyword that exceeds the

16-character maximum

2072 The request's WHERE clause is too long to be evaluated in the
available work area

Considerations

■ One or more process commands can be specified to be executed once or iteratively,
based on the returned path status. If an iterative sequence is used, the path status
must change during processing to prevent uncontrolled looping.

■ ON commands can be nested to any level and can be included in IF and WHILE
command structures.

■ When coding ON commands, indentation should be used wherever possible to
make the statement more readable and to ensure that the required clauses are

properly matched.

Logical Record Facility Commands

Chapter 16: Database Access Commands 445

Examples

The following examples test the path status before performing additional processing.

Example 1: Displaying messages when a record is not found

The statements in the following example display messages based on the path status
returned after an attempt is made to retrieve a CUST-ORDER-LR logical record:

OBTAIN CUST-ORDER-LR

 WHERE CUST-NUMBER EQ '1234567890'.

ON NO-CUSTOMER

THEN

 DISPLAY MSG TEXT IS 'CUSTOMER NOT ON FILE'.

ON NO-ORDER

THEN

 DISPLAY MSG TEXT IS 'CUSTOMER HAS NO ORDERS'.

ON LR-NOT-FOUND

THEN

 DISPLAY MSG TEXT IS 'RECORD NOT FOUND'.

Example 2: Retrieving a record after a specified record

The statements in the following example retrieve VENDOR-LR logical records as long as

the path status returned after the previous retrieval is VENDOR-CODE-010:

OBTAIN FIRST VENDOR-LR.

ON VENDOR-CODE-010

 REPEAT.

 OBTAIN NEXT VENDOR-LR.

 .

 .

 .

 END.

DISPLAY.

More information:

Conditional Commands (see page 317)

STORE

Purpose

Stores new occurrences of logical records.

Logical Record Facility Commands

446 ADS Reference Guide

Syntax

►►─── STORE lr-name ────┬───────────────────────────────────┬─────────────────►
 └─ WHERE lr-conditional-expression ─┘

 ►──┬────────────────────┬─── . ──►◄
 └─ error-expression ─┘

Parameters

lr-name

Specifies the name of the Logical Record Facil ity record.

Lr-name must be known to the dialog's subschema.

WHERE lr-conditional-expression

Specifies the selection criteria to be applied to the logical record request.

Syntax for lr-conditional-expression is described earlier in this section.

error-expression

Specifies the status codes that are returned to the dialog.

Usage

Considerations

The execution of a STORE command does not necessarily result in new occurrences of
all or any of the database records used to create the object logical record. The path

selected to service the STORE request performs only the database access operations
specified in the subschema.

For example, CUST-ORDER-LR comprises fields from the CUSTOMER, PRODUCT, ORDOR,
and ITEM records. A new CUST-ORDER-LR logical record is stored for each new

customer order; however, only new occurrences of the ORDOR and ITEM records are
actually added to the database. The CUSTOMER and PRODUCT records already exist in
the database.

Logical Record Facility Commands

Chapter 16: Database Access Commands 447

Example

The statements in the following example store a new occurrence of the logical record

CUST-ORDER-LR for customer 1234567890. The DBA-designated keywords NEW-ORDER
and NEW-ITEM direct LRF to the logical record paths that store new order and new item
information, respectively.

MOVE ORDER-NEW TO ORDOR.

STORE CUST-ORDER-LR

 WHERE CUST-NUMBER EQ '1234567890' AND NEW-ORDER.

 .

 .

 .

MOVE ITEM-NEW TO ITEM.

MODIFY CUST-ORDER-LR

 WHERE NEW-ITEM.

More information:

Error Handling (see page 277)

Chapter 17: Map Commands 449

Chapter 17: Map Commands

This section contains the following topics:

Overview (see page 449)
Map Modification Commands (see page 450)
Attributes Command (see page 450)

CLOSE (see page 454)
MODIFY MAP (see page 455)
Pageable Maps (see page 464)

Overview

Online maps (CA ADS) and fi le maps (CA ADS Batch) are created and stored in the data
dictionary using the CA IDMS mapping facil ity. Map modification commands change the
copy of the map maintained for a particular dialog, not the stored map definition.

Note: For more information about maps and map attributes, see the CA IDMS Mapping

Facility Guide.

Map Commands

CA ADS map commands are used to adjust maps to meet the processing requirements
of individual dialogs at run time. Pageable map commands are used to create, retrieve,
and modify detail occurrences of a pageable map.

The map modification and pageable map commands are summarized in the following
table. Each command is presented alphabetically later in this section.

Summary of Map Modification and Pageable Map Commands

Type Command Description

Map modification
commands

Attributes Modifies the display intensity or the
protected/unprotected specification of one
or more map data fields, providing an

alternative format to the MODIFY MAP
command for these attributes

 CLOSE Closes the dialog input and output fi le maps
(batch only)

 MODIFY MAP Modifies a map's write control character
(WCC) options and specifies attributes of
one or more map data fields

Map Modification Commands

450 ADS Reference Guide

Type Command Description

Pageable map detail

commands

GET DETAIL Retrieves a modified detail occurrence

 PUT DETAIL Creates or modifies a detail occurrence

Map Modification Commands

Map modification commands are used to change a map to meet processing
requirements of individual dialogs at run time. Single or multiple attributes can be
changed globally or on a field-specific basis. Requested map modifications can be
designated as temporary or permanent. Temporary changes apply only to the next

display of the map. Permanent changes apply as long as the dialog remains operative in
the application thread.

Pageable Map Considerations

For a pageable map, the following considerations apply:

■ Permanent map modifications to detail area map fields modify only detail
occurrences referenced by subsequent PUT DETAIL commands.

■ Temporary map modifications to detail area map fields modify only the detail
occurrence referenced by the next PUT DETAIL command. If temporary

modifications are to apply in subsequent PUT DETAIL commands, the appropriate
map modification commands must be repeated.

■ Temporary map modifications to header and footer map data fields apply only to
the first display of the map following the map modification. Temporary map

modifications to fields in a detail occurrence apply only to the first display of that
occurrence following map modification.

Attributes Command

Purpose

Modifies a map attribute for one or more map fields.

Attributes Command

Chapter 17: Map Commands 451

Syntax

►►───┬─ BRIGHTen ──┬──►
 ├─ DARKen ────┤
 ├─ NORMALize ─┤
 ├─ PROTect ───┤
 └─ UNPROTect ─┘

 ►──┬─┬────────────────────┬───── CURrent ───────────────┬────────────────────►
 │ └─ all ─┬─ BUT ────┬─┘ │
 │ └─ EXCept ─┘ │
 ├─ ALL ────┬───────────┬─── FIELDS ──────────────────┤
 │ ├─ CORrect ─┤ │
 │ └─ ERRor ─┘ │
 │ ┌───────────────┐ │
 └─ all ─┬────────────┬─┬─ (─▼── field-name ─┴─) ─┬─┘
 └┬─ BUT ────┬┘ └┬─ FIELD ─┬─ field-name ───┘
 └─ EXCept ─┘ └─ DFLD ──┘

 ►──┬─ PERManent ◄ ─┬── . ──►◄
 └─ TEMPorary ───┘

Parameters

BRIGHTen

Displays the specified map fields at brighter-than-normal intensity. A brightened
field appears highlighted on the terminal screen.

DARKen

Displays the specified map fields at darker-than-normal intensity. Characters in a

darkened field do not appear on the terminal screen.

NORMALize

Displays the specified map fields at normal intensity.

PROTect

Enables the input protect attribute for the specified map fields. The user cannot
enter, modify, or delete data in the specified fiel ds.

UNPROTect

Disables the input protect attribute for the specified map fields. The user can enter,
modify, or delete data in the specified fields.

CURrent

Modifies the current map data field only. The current map data field is determined
by the most recent map modification command or map field status condition test:

■ Map modification command— The current field is the last field named in an
explicit l ist of map fields or the last map field modified in an implicit l ist.

An implicit l ist results from specifying the FOR ALL BUT clause or the FOR ALL
CORRECT/ERROR FIELDS clause in the map modification command. An implicit

l ist of map fields is ordered in the sequence in which the fields are defined in
the map that is, top to bottom, left to right).

Attributes Command

452 ADS Reference Guide

■ Map field status condition test— The current field is the last field tested in the
explicit or implicit l ist of fields. An implicit l ist results from specifying the

ALL/ANY/NONE/SOME FIELDS clause in the map field status conditi on test.

The runtime system tests the fields in an explicit l ist from left to right, and tests
the fields in an implicit l ist in the order in which the fields are defined in the

map (that is, top to bottom, left to right).

Note that a status condition test ends at the first map field that determines the
result of the test. For example, a test is run to determine if any fields in a l ist
are truncated; the test stops at the first field that is truncated, and that field

becomes the current map field.

all BUT

Modifies all map data fields except the current field.

EXCEPT can be used in place of BUT.

ALL FIELDS

Means that the attribute coded in this command will be applied to all data fields on

the map, unless either of the optional positional parameters CORrect and ERRor are
specified.

CORrect

Means that the attribute coded in this command will be applied during the next
error display to all data fields that have NOT been marked as 'IN ERROR'.

ERRor

Means that the attribute coded in the command will be applied during the next
error display to all data fields that have been marked as 'IN ERROR'.

If CORRECT or ERROR is not specified, all map data fields are modified.

all BUT

Introduces the fields to be modified.

The optional keyword BUT modifies all map data fields except the field or fields
specified by field-name.

EXCEPT can be used in place of BUT.

FIELD field-name

Specifies the map data field to be modified.

DFLD can be used in place of FIELD.

Attributes Command

Chapter 17: Map Commands 453

PERManent

Specifies permanent modification.

The modification applies to each display of the map associated with the current
dialog as long as the dialog remains operative in the application thread. In a
pageable map, a modification to a map data field of a detail l ine occurrence applies

throughout the map paging session.

PERMANENT is the default when neither TEMPORARY or PERMANENT is specified.

TEMPorary

Specifies temporary modification.

The modification applies only to the next display of the map associated with the

current dialog. In a pageable map, a modification to a map data field of a detail l ine
occurrence applies only to the next time the detail l ine occurrence is displayed on
the screen during the map paging session.

Usage

Definition

The attributes command provides an alternative format to the MODIFY MAP command
for modification of display intensity or protected status of one or more map data fields.
Only one attribute can be specified in a single attribute command.

The MODIFY MAP command can be used to modify multiple attributes. MODIFY MAP is

discussed later in this section.

Example

The statements in the following example make up part of a response process that adds a
new CUSTOMER record occurrence to the database. If the user enters a customer
number that is already assigned, the screen is redisplayed with the CUST-NUMBER field

in bright intensity:

FIND CALC CUSTOMER.

IF DB-STATUS-OK

THEN

 DO.

 BRIGHTEN FIELD CUST-NUMBER TEMPORARY.

 DISPLAY MESSAGE TEXT IS

 'CUSTOMER NUMBER ALREADY ASSIGNED.'.

 END.

ELSE

 STORE CUSTOMER.

 DISPLAY MESSAGE TEXT IS

 'CUSTOMER HAS BEEN ADDED.'.

CLOSE

454 ADS Reference Guide

More information:

Conditional Expressions (see page 245)

CLOSE

Purpose

(CA ADS Batch only) Closes the dialog input and output fi le maps.

Syntax

►►─── CLOSE ───────┬─ BOTH ◄──┬─────── file MAPs ─────── . ──────────────────►◄
 ├─ INPUT ──┤
 └─ OUTPUT ─┘

Parameters

BOTH

Specifies the dialog's input and output fi le maps.

BOTH can be specified even if the dialog has only an input or an output fi le map.

BOTH is the default when no other option is specified.

INPUT

Specifies the dialog's input fi le map.

OUTPUT

Specifies the dialog's output fi le map.

Usage

 Considerations

■ The runtime system automatically closes the fi les if an application terminates with
fi les stil l open:

– A CLOSE command logically closes a fi le only if other dialogs using different

maps have accessed the same fi le.

– A CLOSE command must be issued for each map to physically close a fi le.

■ The CLOSE command is required when closing a fi le before the application
terminates, as in the following cases:

– The application has been reading from or writing to a fi le and is required to

start over at the beginning of the fi le.

MODIFY MAP

Chapter 17: Map Commands 455

– An output fi le to which records were written is to be read as an input fi le.

– A run-unit commit is performed by a COMMIT command or at the end of a run

unit.

If a COMMIT command is issued, but not all fi les used in the application are
closed, the runtime system either takes no action, sends a warning message to

the log, or abends the application, as specified at system generation or at run
time. The default action is abend.

MODIFY MAP

Purpose

Modifies a map write control character (WCC) options and specifies attributes for map

data fields.

Syntax

►►─── MODIFY MAP ──────────┬─ PERManent ◄ ─┬──────────────────────────────────►
 └─ TEMPorary ─┘

 ►─┬───┬────────────────────────────►
 └─ CURSOR at ──┬─┬─ FIELD ─┬─ field-name ───┬─┘
 │ └─ DFLD ──┘ │
 └─ row, column ──────────────┘

 ►─┬──────────────────────────────┬───►
 │ ┌────────────────────┐ │
 └─ WCC ─▼─┬─┬─ RESETMDT ─┬─┬─┴─┘
 │ └─ NOMDT ────┘ │
 ├─┬─ RESETKBD ─┬─┤
 │ └─ NOKBD ────┘ │
 ├─┬─ ALARM ────┬─┤
 │ └─ NOALARM ──┘ │
 ├─┬─ STARTPRT ─┬─┤
 │ └─ NOPRT ────┘ │
 └─┬─ NLCR ─┬─────┘
 ├─ 40CR ─┤
 ├─ 64CR ─┤
 └─ 80CR ─┘

 ►──┬───►
 └─ FOR ─┬─┬────────────────────┬───── CURrent ───────────────┬────────────
 │ └─ all ─┬─ BUT ────┬─┘ │
 │ └─ EXCept ─┘ │
 ├─ ALL ────┬───────────┬─── FIELDS ──────────────────┤
 │ ├─ CORrect ─┤ │
 │ └─ ERRor ─┘ │
 │ ┌───────────────┐ │
 └─ all ─┬────────────┬─┬─ (─▼── field-name ─┴─) ─┬─┘
 └┬─ BUT ────┬┘ └┬─ FIELD ─┬─ field-name ───┘
 └─ EXCept ─┘ └─ DFLD ──┘

MODIFY MAP

456 ADS Reference Guide

►──►
 ──┬──────────────┬───────┬──────────────────────────────────┬───────────────
 ├─ BACKscan ───┤ └─ OUTput DATA is ──┬─ Yes ───────┬┘
 └─ NOBACKscan ─┘ ├─ No ────────┤
 ├─ ERASE ─────┤
 └─ ATTribute ─┘
 ►──►
 ──┬──────────────────────────┬───────┬──────────────────────┬───────────────
 └─ INput DATA is ─┬─ Yes ─┬┘ └┬─ Right ─┬─ JUSTify ─┘
 └─ No ─┘ └─ Left ──┘

 ►──►
 ──┬───────────────────────────┬──┬────────────────────────┬─────────────────
 ├─ PAD ─┬─ pad-character ─┬─┤ └─ EDIT is ─┬─ CORrect ─┬┘
 │ ├─ LOW-VALUE ─────┤ │ └─ ERRor ───┘
 │ └─ HIGH-VALUE ────┘ │
 └─ NOPAD ───────────────────┘

 ►──►
 ─┬────────────┬─────┬───┬─────────
 ├─ REQuired ─┤ └─ ERRor ─┬─ MESSAGE ─┬─ is ──┬─ ACTive ───┬──┘
 └─ OPTional ─┘ └─ MSG ─────┘ └─ SUPpress ─┘

 ►──┬── . ──────────────────────►◄
 ──┬──┬──┘
 │ ┌─────────────────────────┐ │
 └─ ATTRibutes ─▼─┬─── SKIP ───────────┬──┴─┘
 ├─┬─ ALPHAmeric ─┬───┤
 │ └─ NUMeric ────┘ │
 ├─┬─ PROTected ───┬──┤
 │ └─ UNPROTected ─┘ │
 ├─┬─ DISPlay ─┬──────┤
 │ ├─ DARK ────┤ │
 │ └─ BRIGHT ──┘ │
 ├─── DETECTable ─────┤
 ├─┬─ MDT ──┬────────┤
 │ └─ NOMDT ─┘ │
 ├─┬─ BLINK ───┬──────┤
 │ └─ NOBLINK ─┘ │
 ├─┬─ REVerse-video ─┬┤
 │ └─ NORMal-video ──┘│
 ├─┬─ UNDERscore ───┬─┤
 │ └─ NOUNDERscore ─┘ │
 └─┬─ NOColor ─────┬──┘
 ├─ BLUe ────────┤
 ├─ RED ─────────┤
 ├─ PINk ────────┤
 ├─ GREen ───────┤
 ├─ TURquoise ───┤
 ├─ YELlow ──────┤
 └─ WHIte ───────┘

Parameters

PERManent

Specifies permanent modification.

The modifications apply to each display of the map as long as the dialog remains

operative in the application thread. In a pageable map, a modification to a map
data field of a detail l ine occurrence applies throughout the map paging session.

PERMANENT is the default when neither TEMPORARY nor PERMANENT is specified.

MODIFY MAP

Chapter 17: Map Commands 457

TEMPorary

Specifies temporary modification.

The modifications apply only to the next display of the map. In a pageable map, a
modification to a map data field of a detail l ine occurrence applies only to the next
time the detail l ine occurrence is displayed on the screen during the map paging

session.

CURSOR

Specifies the cursor position on the terminal screen when the map is displayed.

FIELD field-name

Positions the cursor at the beginning of the named map field.

Field-name specifies a data field in the map associated with the current dialog.

DFLD can be used in place of FIELD.

row

Either the name of a variable data field that contains the row number or the row
number itself, expressed as a numeric constant.

column

Either the name of a variable data field that contains the column number or the
column number itself, expressed as a numeric constant.

The specified row and column numbers must be 1- to 16-digit unsigned integers
and must be valid for the terminal in use. The row and column specifications must
be separated by a blank or a comma.

WCC

Modifies the write control character (WCC) specifications for the map associated

with the current dialog.

RESETMDT

The modified data tags (MDTs) are turned off.

NOMDT

The modified data tags (MDTs) are not turned off.

An MDT marks a data field for transmission to the dialog whether or not it is

modified by the user.

RESETKBD

The keyboard is unlocked when the map is displayed.

NOKBD

The keyboard remains locked when the map is displayed.

MODIFY MAP

458 ADS Reference Guide

ALARM

If installed, the terminal's audible alarm will sound when the map is displayed.

NOALARM

Even if installed, the terminal's audible alarm will not sound when the map is
displayed.

STARTPRT

The contents of the terminal buffer are printed when the map is displayed.

NOPRT

The contents of the terminal buffer are not printed when the map is displayed.

Note: This specification is meaningful only when a 3280-type printer is in use.

NLCR

No line formatting is performed on the printer output. The printer advances to a
new line only when the new line (NL) and carriage return (CR) characters occur.

40CR

Printer output is formatted into 40 characters per l ine.

64CR

Printer output is formatted into 64 characters per l ine.

80CR

Printer output is formatted into 80 characters per l ine.

Note: This specification is meaningful only if the STARTPRT option above is
specified.

If the MODIFY MAP command is used to alter any WCC option, all WCC options are

overridden by the command. Unspecified WCC options default, as follows:

■ RESETMDT/NOMDT defaults to NOMDT.

■ RESETKBD/NOKBD defaults to NOKBD.

■ ALARM/NOALARM defaults to NOALARM.

■ STARTPRT/NOPRT defaults to NOPRT.

■ NLCR/40CR/64CR/80CR has no default.

FOR

Specifies the map data fields being modified.

all BUT CURrent

Modifies all map data fields except the current field.

EXCEPT can be used in place of BUT.

MODIFY MAP

Chapter 17: Map Commands 459

ALL FIELDS

Introduces which map data fields are to be modified.

CORrect

Modifies all map data fields set to be correct by the automatic error -handling
facil ity or the dialog.

ERRor

Modifies all map data fields set to be correct by the automatic error -handling
facil ity or the dialog.

If CORRECT or ERROR is not specified, al l map data fields are modified.

all BUT

Introduces the fields to be modified.

The optional keyword BUT modifies all map data fields except the field or fields
specified by field-name.

EXCEPT can be used in place of BUT.

FIELD field-name

Specifies the map data field to be modified.

DFLD can be used in place of FIELD.

BACKscan

The contents of the designated map fields are displayed without trail ing blanks.

Characters remaining from the previous display of the map may appear in any
unused positions.

NOBACKscan

The contents of the designated map fields are displayed with trail ing blanks.

OUTput DATA is

Clause introducing selections which determine whether data from the dialog's

record buffers and attribute specifications are transmitted to the designated map
fields when the map is displayed. Attribute specifications include all attributes that
can be specified in conjunction with the ATTRIBUTES keyword of the MODIFY MAP
command.

Yes

Data and attribute specifications are transmitted.

MODIFY MAP

460 ADS Reference Guide

No

Data is not transmitted. Data remaining from the previous display of the map

appears in the designated map fields. Attribute specifications for a designated map
field are transmitted only if one of the following conditions is met:

■ The map being displayed is different than the map previously displayed.

■ The designated map field is in error.

ERASE

Data is not transmitted, and data remaining from the previous display of the map is
erased from the designated map fields. Attribute specifications are transmitted.

ATTribute

Attribute specifications are transmitted, but data is not. Data remaining from the
previous display of the map appears in the designated map fields.

INput DATA is

Clause introducing selections which determine whether data entered in the
specified map fields is transmitted to the dialog's record buffers.

Yes

Data in the designated map fields is transmitted to the dialog's record buffers.

No

Data in the designated map fields is not transmitted to the dialog's record buffers.

JUSTify

Introduces how data entered in the designated map fields is justified before it is
transmitted to the dialog's record buffers.

Note: This specification is meaningful for nonnumeric fields only.

Right

Data in the designated map fields is right justified.

Left

Data in the designated map fields is left justified.

PAD pad-character

Specifies whether data entered in the designated map fields is padded before it is
transmitted to the dialog's record buffers.

Data is padded on the left (if RIGHT JUSTIFY is specified) or on the right (if LEFT
JUSTIFY is specified) with the specified pad character.

Pad-character is either the name of a variable data field that contains the pad
character or the actual pad character, enclosed in single quotation marks.

MODIFY MAP

Chapter 17: Map Commands 461

NOPAD

Data in the designated map fields is not padded.

EDIT is

Specifies whether an error flag is set for the designated map fields.

ERRor

An error flag is set for the designated map fields.

CORrect

No error flag is set for the designated map fields.

Note: Error flags cannot be set permanently.

On a mapout operation, if any field is flagged to be in error, then for all fields both
correct and incorrect) only attribute bytes are transmitted; no data is moved from
program variable storage to the screen.

There is one exception to the above rule: on the initial display of a map by an CA

ADS dialog, all l iterals and data fields are transmitted even if a field is in error.

REQuired

The user must enter data in the designated map fields.

OPTional

The user can enter data in the designated map fields, as applicable.

ERRor MESSAGE is

Specifies display or suppression of an error message associated with a field.

ACTive

Enables display of an error message.

A message is usually enabled after ERROR MESSAGE SUPPRESS is specified within a
MODIFY MAP PERMANENT specification.

SUPpress

Disables display of an error message associated with a field.

When the map is redisplayed because of errors, the message defined for the map

field will not be displayed even if the field contains edit errors.

Note: Autoedit errors detected on map in for detail fields within a pageable map
cannot be suppressed unless you turn off autoedit.

ATTRibutes

Applies 3270- and 3279-type terminal display attributes to the designated map

fields.

MODIFY MAP

462 ADS Reference Guide

SKIP

Causes repositioning of the cursor over the designated map fields to the next

unprotected field.

SKIP automatically assigns the NUMERIC and PROTECTED attributes (see below) to
the designated map fields.

ALPHAmeric

The user can enter any data type characters.

Note: ALPHAMERIC cannot be specified if SKIP (see above) is specified.

NUMeric

The user can enter only numeric data type characters.

PROTected

The designated map fields are input protected. The user cannot enter, modify, or
delete data.

UNPROTected

The designated map fields are not input protected. The user can enter, modify, or
delete data.

Note: UNPROTECTED cannot be specified if SKIP (see above) is specified.

DISPlay

The designated map fields are displayed at normal intensity.

DARK

The designated map fields are displayed at darker-than-normal intensity.

Characters in a darkened field do not appear on the terminal screen. DARK cannot
be specified if DETECTABLE (see below) is specified.

BRIGHT

The designated map fields are displayed at brighter-than-normal intensity. A

brightened field appears highlighted on the terminal screen.

DETECTable

Specifies that the designated map fields are detectable by selector l ight pen.

Note: DETECTABLE cannot be specified if DARK (see above) is specified.

MDT

Modified data tags (MDTs) are turned on for the designated map fields when the
map is displayed.

NOMDT

Modified data tags (MDTs) are not turned on for the designated map fields when
the map is displayed.

MODIFY MAP

Chapter 17: Map Commands 463

BLINK

(3279-type terminals only) The designated map fields are displayed with blinking

characters.

Note: BLINK cannot be specified if either REVERSE-VIDEO or UNDERSCORE (see
below) is specified.

NOBLINK

(3279-type terminals only) Blinking characters are suppressed for the designated

map fields.

REVerse-video

(3279-type terminals only) The designated map fields are displayed with dark
characters on a l ight background.

Note: REVERSE-VIDEO cannot be specified if either BLINK (see above) or

UNDERSCORE (see below) is specified.

NORMal-video

(3279-type terminals only) The designated map fields are displayed with l ight
characters on a dark background.

UNDERscore

(3279-type terminals only) The designated map fields are underscored.

Note: UNDERSCORE cannot be specified if either BLINK or REVERSE-VIDEO (see
above) is specified.

NOUNDERscore

(3279-type terminals only) The designated map fields are not underscored.

NOColor

(3279-type terminals only) The designated map fields are displayed with the default

color of the terminal.

BLUE/RED/PINk/GREen/TURquoise/YELlow/WHIte

(3279-type terminals only) The designated map fields are displayed with one of the
seven available color attributes.

Usage

 Considerations

■ Multiple attributes to be modified can be specified in a single MODIFY MAP
command. All indicated modifications apply to all specified map data fields in the
command.

If multiple attributes are specified, they must be separated by commas or blanks.

Pageable Maps

464 ADS Reference Guide

■ The following rules apply to attributes and WCC options that are omitted from a
MODIFY MAP command:

– If an attribute that is not a WCC option is omitted, the attribute remains as
defined at map compilation time or as set by a previous modification
designated as PERMANENT.

– If any WCC option is altered by the MODIFY MAP command, all WCC options
are overridden by the command. Unspecified WCC options are assigned the
default values l isted in the syntax rules below.

■ The ERROR MESSAGE clause of the MODIFY MAP statement allows suppression of a
default error message and display of a more appropriate message. For example, the

following error message can be displayed for a part-number field in an order entry
application:

THE SPECIFIED PART CANNOT BE MAILED

Note: Pageable maps cannot have the error message suppressed on map in.

Example

The following statements are part of a response process that adds a new CUSTOMER

record occurrence to the database. The CUST-NUMBER field is required when adding a
customer. If the user does not enter a customer number, an error flag is set for the
CUST-NUMBER field and the field is made required:

IF CUST-NUMBER EQ SPACES

THEN

 DO.

 MODIFY MAP TEMPORARY FOR FIELD CUST-NUMBER EDIT ERROR.

 MODIFY MAP PERMANENT FOR FIELD CUST-NUMBER REQUIRED.

 DISPLAY MESSAGE TEXT IS

 'CUSTOMER NUMBER REQUIRED WHEN ADDING CUSTOMER.'.

 END.

ELSE

 MODIFY MAP TEMPORARY FOR FIELD CUST-NUMBER EDIT CORRECT OPTIONAL.

Pageable Maps

A pageable map is a map that contains multiple occurrences of a set of map fields. Each

occurrence of the multiply-occurring set is called a detail occurrence.

A pageable map can contain more detail occurrences than can fit on the user's screen at
one time. The runtime system stores detail occurrences in the order in which they are

created by pageable map commands, and divides them into pages, based on the
number of occurrences that can fit on the screen. One page of occurrences can be
displayed on the screen at a time.

Pageable Maps

Chapter 17: Map Commands 465

An example of a pageable map is one that displays information about a department and
lists all the employees within the department. The set of map fields related to employee

information occurs once for each employee to be listed. These detail occurrences of
employee information are created at run time by pageable map commands and can be
displayed to the user one page at a time.

Areas of a Pageable Map

A pageable map is divided into three areas.

Header Area

The header area (optional) is located across the top of the screen and contains one or

more rows of map fields associated with header information. The header area
information is displayed whenever the map is displayed.

Detail Area

The detail area (required) is located across the middle of the screen and contains the
detail occurrences. Detail occurrence map fields are defined in the detail area only once.

At run time, the number of detail occurrences that are displayed in the detail area
depends on the space available on the screen after accounting for the header and footer
information.

Pageable Maps

466 ADS Reference Guide

Footer Area

The footer area (optional) is located across the bottom of the screen and contains one

or more rows of map fields associated with footer information. The footer information
is displayed whenever the map is displayed.

For example, a pageable map used to display a department record and all associated

employee records might contain the following information:

■ Header area— The title of the map and department information

■ Footer area— A message field, the map page, and information about how to page
through the map

■ Detail area— Detail occurrences of employee information

 ┌─
 │
 │ DEPT. ID: _____
 │
 └─

 ┌─
 │ EMP. ID: _____ LAST NAME: _______________ ACTION CODE: ___
 │
 │ START DATE: ________ MESSAGE: ________
 │
 │
 │
 └─

 ┌─
 │ PAGE: _____
 │
 │
 │ __
 └─

Map Paging Session

A map page refers to the header and footer map fields and to a page of detail
occurrences.

When a pageable map is displayed, the page of occurrences that appears in the detail

area is determined by the current value of the $PAGE system-supplied data field. For
example, given a screen that can hold ten occurrences, if $PAGE equals 1, occurrences 1
through 10 are displayed; if $PAGE equals 2, occurrences 11 through 20 are displayed;
and so forth. Actions taken by the user and commands issued by premap and response

processes can modify the value of $PAGE.

Pageable Maps

Chapter 17: Map Commands 467

Beginning a Map Paging Session

A map paging session begins when a dialog associated with a pageable map begins

execution. A map paging session ends when the application terminates or when a dialog
passes control to another dialog under any of the following conditions:

■ The dialog receiving control is associated with a different pageable map than the

dialog that initiated the map paging session

■ The dialog receiving control has different map paging dialog options than the dialog
that initiated the map paging session

■ The dialog that initiated the map paging session issues a TRANSFER command

■ The dialog receiving control is at a level higher than the dialog that initiated the

map paging session

Note: The first two conditions do not apply when the receiving dialog is not associated
with a pageable map. In such cases, the map paging session conti nues, provided that the
third or fourth condition is not met.

If none of the above conditions is met, the map paging session continues. Detail

occurrences created during the session can be added to, displayed, and modified by
dialogs associated with the pageable map. If the map paging session terminates, the
runtime system deletes all detail occurrences created during the session.

One or more dialogs can be associated with the same pageable map in a given map

paging session. During a map paging session, premap and response process commands
can create, display, retrieve, and modify detail occurrences.

Considerations

The following considerations apply:

■ Detail occurrences are created by PUT NEW DETAIL process commands. Detail

occurrences are built from the values stored in the variable data fields to which the
detail occurrence fields map.

The runtime system stores detail occurrences in the order in which they are created

and divides them into pages, based on the number of detail occurrences that can fit
on the screen at one time. A detail occurrence is displayed on the screen only when
the map page to which the occurrence belongs is displayed.

■ A dialog process displays a map page to the terminal as a result of either of the
following actions:

– A PUT NEW DETAIL command is issued that creates the first detail occurrence
of the second map page. The runtime system automatically displays the first
map page, allowing the user to enter information.

Pageable Maps

468 ADS Reference Guide

The process that issues the PUT NEW DETAIL command continues to execute
and can create additional detail occurrences. The process must issue a DISPLAY

command to terminate processing. The runtime system does not process
information entered during a pseudo-converse until the DISPLAY command is
issued.

Note: In this case, the DISPLAY command does not send information to the
terminal. Header and footer variable data fields should be primed before the
first map page is displayed. If the map contains a message field in the header or
footer area, any text for the message field should be specified once by issuing a

PUT NEW DETAIL command before the first map page is displayed.

– A DISPLAY command is issued, except when the map has already been
displayed as a result of a PUT NEW DETAIL command. The map page displayed
is determined by the current value of $PAGE.

■ The user can modify map data fields on the screen, including header and footer
data fields and detail occurrence fields of the current map page. Restrictions that

apply include those specified in the map definition (such as the PROTECT
specification), in the dialog definition (that is, the paging mode dialog option,
UPDATE/BROWSE), and by process commands (such as the MODIFY MAP
command).

■ The user can make a paging request to specify the next map to be displayed by

performing one of the following actions:

– Pressing the control key associated with paging forward one page. The system
generation default paging-forward key is PF8.

– Pressing the control key associated with paging backward one page. The

system generation default paging-backward key is PF7.

– Changing the $PAGE map field (if one is defined for the map) and pressing a
control key other than the paging-forward key, paging-backward key, [Clear],

[PA1], [PA2], or [PA3]

■ The user presses a control key, including the paging-forward or paging-backward

key, and the runtime system performs the following processing:

– Updates map data fields— The runtime system updates its internal
representation of the header and footer map data fields and updates detail

occurrence fields to reflect changes made by the user. No updates are
performed if [Clear], [PA1], [PA2], or [PA3] are pressed; these control keys do
not transmit data.

Map field attributes set temporarily by the user or by map modification

commands are reset. Attributes set permanently in the map definition or by
map modification commands remain set.

Pageable Maps

Chapter 17: Map Commands 469

– Updates $PAGE— If a paging request was made, the runtime system updates
$PAGE as follows:

– Adds 1 to $PAGE if the paging forward key was pressed and the current
map page is not the last map page.

– Subtracts 1 from $PAGE if the paging backward key was pressed and the

current map page is not the first map page.

– Moves the value entered in the $PAGE map field to $PAGE if the $PAGE
map field was changed and the control key pressed was not the paging
forward key, the paging backward key, [Clear], [PA1], [PA2], or [PA3]. If the

value entered in the $PAGE field is less than the first map page or greater
than the last map page, $PAGE is set to the first or last page number.

$PAGE determines the next map page to be displayed.

– Determines the flow of control— In a session that is not a map-paging session,
the runtime system always attempts to initiate a function or response process

when the user presses a control key. In a map paging session, the runtime
system either attempts to initiate a function or response process, or instead
displays the same or another map page. The action taken by the runtime

system depends on the paging-type dialog option (NOWAIT/WAIT/RETURN), on
whether a paging request was made, and whether any map field's modified
data tag was set, as shown in the following table.

Flow of Control in a Map Paging Session

Paging Type

Paging request
1
 Nonpaging request

No MDT set Any MDT set
2
 No MDT set Any MDT set

2

NOWAIT Displays the

requested
map page

Displays the

requested map
page

Initiates a

function or
response
process

3

Redisplays the same

map page

WAIT Displays the
requested
map page

Initiates a
function or
response
process

3

Initiates a
function or
response
process

3

Initiates a function or
response process

3

RETURN Initiates a
function or
response
process

3

Initiates a
function or
response
process

3

Initiates a
function or
response
process

3

Initiates a function or
response process

3

Pageable Maps

470 ADS Reference Guide

Notes:

1
A paging request occurs when the user presses a control key associated with paging

forward or backward or modifies the $PAGE field, if one is defined for the map. If
[Clear], [PA1], [PA2], or [PA3] is pressed, any modification to $PAGE is ignored and is not
considered as a paging request. If a paging request is not made, refer to the Nonpaging

request columns.

2
If the control key pressed is [Clear], [PA1], [PA2], or [PA3], refer to the No MDT set

column under the applicable Paging/Nonpaging request column.

3
The function or response is selected as described in Runtime flow of control (see

page 135).

If the same or another map page is displayed, the user can modify map fields, make a
paging request, and press a control key, as described above.

If a function or response process is initiated, the internal representations of the header
and footer fields are mapped into their associated variable data fields.

■ Detail occurrences are retrieved by GET DETAIL process commands. A GET DETAIL
command locates the occurrence to be retrieved, then moves the occurrence's
fields into the variable data fields to which the fields map.

■ Only modified detail occurrences can be retrieved. A detail occurrence is
considered to be modified if it has the following two characteristics:

– Contains one or more map fields whose modified data tags (MDTs) are set at
the time of the most recent pseudo-converse.

– Has yet to be retrieved since the most recent pseudo-converse. Once a

modified detail occurrence has been retrieved, it is no longer considered to be
modified.

Note that if a modified detail occurrence is not retrieved following a
pseudo-converse, it is not automatically considered to be modified following a

subsequent pseudo-converse. The detail occurrence must once again have the
two characteristics l isted above.

A detail occurrence that is not a modified detail occurrence cannot be retrieved by

dialog process code.

■ Detail occurrence fields are modified in dialog processes by PUT CURRENT DETAIL

commands. A PUT CURRENT DETAIL command modifies the detail occurrence
referenced by the most recent GET DETAIL or PUT DETAIL command.

■ Additional detail occurrences can be created by PUT NEW DETAIL commands. New

occurrences are stored at the end of the set of detail occurrences.

Pageable Maps

Chapter 17: Map Commands 471

■ Detail occurrences cannot be deleted by process commands. Detail occurrences
are deleted as follows:

– If the backpage dialog option (described below) is NO, detail occurrences of
previous map pages are deleted when a new map page is displayed.

– At the end of a map paging session, all detail occurrences are deleted.

More information:

Variable Data Fields (see page 285)

Map Paging Dialog Options

Map paging dialog options define parameters for a map paging session. Specification of
options for a dialog are made during dialog definition. The map paging dialog options
NOWAIT, BACKPAGE NO, and UPDATE cannot be specified together.

The following table l ists available map paging dialog options.

Map Paging Dialog Options

Option Parameter Description

Paging type NOWAIT WAIT

RETURN

Specifies the runtime flow of control when the

user presses a control key, as described in the
previous table.

Backpage BACKPAGE YES Allows the user to display a previous map page.
The runtime system maintains the resources

that describe the detail occurrences of previous
pages.

 BACKPAGE NO Prohibits the user from displaying a previous

map page. The runtime system deletes all
previous pages of detail occurrences when a
new map page is displayed. The lowest page
number is the first page that has not been

deleted.
1

Paging mode UPDATE Specifies that the terminal operator can modify
map data fields, subject to restrictions specified

in the mapping facil ity and by map modification
process commands.

Pageable Maps

472 ADS Reference Guide

Option Parameter Description

 BROWSE Specifies that the user can modify only the

$PAGE and $RESPONSE fields of the map. Map
fields can stil l have their MDTs set in the map
definition or by map modification commands.

Note:

1
On mapin from the terminal when backpaging is not allowed, if $PAGE has been set to

a value greater than the current map page, the runtime system flags all map pages
below $PAGE for deletion. When the map is displayed again, these flagged pages are

deleted, even if $PAGE has been modified to a lower value in the interim.

GET DETAIL

Purpose

Retrieves a modified detail occurrence of a pageable map.

A GET DETAIL command can retrieve all the fields of a modified detail occurrence or
only those fields whose MDTs are turned on.

Syntax

►►── GET DETail─┬───┬─►
 ├┬─ NEXt ◄ ─┬─┬──┬┤
 │└─ FIRst ─┘ └─ RETurn KEY into data-field-name-variable ─┘│
 └─ KEY ────┬──────┬──── key-number ─────────────────────────┘
 ├─ IS ─┤
 └─ = ─┘

 ►────────┬─────────────────────────┬─── . ───────────────────────────────────►◄
 ├─ ALL ◄ ────┬── FIElds ──┘
 └─ MODified ─┘

Parameters

NEXt

Retrieves the first modified detail occurrence that follows the detail occurrence
referenced by the preceding pageable map command.

The preceding pageable map command must follow the most recent
pseudo-converse.

Pageable Maps

Chapter 17: Map Commands 473

FIRst

Retrieves the first modified detail occurrence of the pageable map.

Note that the GET DETAIL FIRST command can be used repeatedly to retrieve all the
modified detail occurrences of a pageable map. The first GET DETAIL FIRST
command retrieves the first modified detail occurrence. Once retrieved, the

occurrence is no longer considered as modified, and the second modified detail
occurrence becomes the first modified detail occurrence. This modified detail
occurrence can be retrieved by a subsequent GET DETAIL FIRST command, and so
forth.

An end-of-data condition results if no pageable map command precedes the GET
DETAIL command, if the preceding pageable map command resulted in an
end-of-data or detail -not-found (see the KEY IS parameter below) condition or if the
GET DETAIL command cannot find a modified detail occurrence before reaching the

end of the set of detail occurrences.

RETurn KEY into data-field-name-variable

Specifies the numeric variable field into which the runtime system moves the binary
fullword value (if any) associated with the detail occurrence being retrieved. A value

is associated with a detail occurrence by specifying the KEY IS parameter in a PUT
DETAIL command.

If no value is associated with the detail occurrence, data-field-name-variable is set
to zero. Data-field-name-variable does not have to be a binary fullword.

KEY is key-number

Specifies the modified detail occurrence to be retrieved based on the numeric key
value associated with the detail occurrence. A key value is associated with a detail
occurrence by specifying the KEY IS parameter in a PUT DETAIL command.

Key-number is either the numeric variable data field or the numeric l iteral itself.

The runtime system finds the first detail occurrence associated with the key value
specified by key-number. If the detail occurrence is a modified detail occurrence, it
is retrieved. If the occurrence is not a modified detail occurrence, or if no detail

occurrence with the specified key value is found, a detail -not-found condition is set.

ALL

Specifies all the fields of the modified detail occurrence to be retrieved.

ALL is the default when neither ALL or MODIFIED is specified.

MODified

Specifies only those fields whose MDTs are turned on to be retrieved.

If MODIFIED is specified, variable data fields that map to nonretrieved fields retain

their previous values.

Pageable Maps

474 ADS Reference Guide

Usage

Considerations:

■ The GET DETAIL command causes the runtime system to move the following:

– The retrieved fields into the variable data fields to which they map

– The page number of the retrieved detail occurrence into the $PAGE

system-supplied data field

– The numeric key value (if any) associated with the occurrence into a specified
field (optional)

■ A GET DETAIL command can retrieve only a modified detail occurrence. A detail
occurrence is considered modified if it has the following characteristics:

– Contains one or more map fields whose modified data tags (MDTs) are turned
on at the time of the most recent pseudo-converse.

– Has yet to be retrieved. Once a modified detail occurrence has been retrieved,
it is no longer considered modified.

■ A detail occurrence that is not a modified detail occurrence cannot be retrieved by
dialog process code.

PUT DETAIL

Purpose

The PUT DETAIL command:

■ creates or modifies a detail occurrence of a pageable map

■ specifies a numeric value to be associated with the occurrence

■ specifies a message to appear in the message field of the occurrence.

Syntax

►►─── PUT ──┬──┬────►
 ├─ NEW ◄ ───┬──── DETail ───┬──────────────────────────────┬─┘
 └─ CURRent ─┘ └─ KEY ─┬──────┬─ key-number ──┘
 ├─ IS ─┤
 └─ = ─┘

Expansion of Message-Options

 ►───┬────────────────────────────────────┬── . ──────────────────────────────►◄
 └─┬─ MESSAGE ─┬── message-options ───┘
 └── MSG ────┘

Pageable Maps

Chapter 17: Map Commands 475

►►────┬─ TEXT ─────┬──────┬────────── message-text ───────────────────────────►
 │ ├─ IS ─┤
 │ └─ = ─┘
 └─ CODE ─────┬──────┬────────── message-code ───────────────────────────
 ├─ IS ─┤
 └─ = ─┘

 ►──►
 ────┬───┬───────────────────────
 │ ┌──────────────┐ │
 └─ PARMS ────┬─────┬─── (─▼── parameter ─┴─) ──┘
 └─ = ─┘

 ►──┬───────────────────────►◄
 ────┬──┬──────┘
 └─ PREFIX ───┬──────┬─────── prefix ─────┘
 ├─ IS ─┤
 └─ = ─┘

Parameters

NEW DETail

Creates a detail occurrence which is stored at the end of the set of detail
occurrences.

NEW is the default when neither NEW or CURRENT is specified.

CURRent DETail

Modifies the detail occurrence referenced by the most recent pageable map

command.

After a pseudo-converse, a pageable map command must be issued to establish
currency on a detail occurrence before a PUT CURRENT DETAIL command can be
issued. If currency is not established, CA ADS abnormally terminates the dialog.

KEY is key-number

Specifies the numeric value to be associated with the detail occurrence being
created or modified.

Key-number is either the name of a variable data field or the number itself,
expressed as a numeric constant.

Key-number replaces the numeric value (if any) previously associated with the detail
occurrence. The numeric value is not displayed at the terminal, but is stored along
with the detail occurrence as a binary fullword.

The KEY parameter can be used to store the database key of a subschema record
associated with a detail occurrence. A GET DETAIL command can later retrieve the
database key when it retrieves the detail occurrence, facil itating the retrieval of the
subschema record.

MESSage

Introduces the text or code of a message.

MSG can be used in place of MESSAGE.

Pageable Maps

476 ADS Reference Guide

message-options

Identifies message to be displayed.

Expanded syntax for message-options is shown above immediately following the
PUT DETAIL syntax.

TEXT is message-text

Specifies the text of a message to be displayed in an online map's message field or
sent to a batch application and a system log fi le.

Message-text specifies either the name of a variable data field containing the
message text or the text string itself, enclosed in single quotation marks.

The text string can contain up to 240 displayable characters.

CODE is message-code

Specifies the message dictionary code of a message to be displayed in an online

map's message field or sent to the log fi le in a batch application.

In a batch application, the message is also sent to the operator, if directed by the
destination specified in the dictionary.

Message-code specifies either the name of a variable data field that contai ns the
message code or the 6-digit code itself, expressed as a numeric l iteral.

PARMS = parameter

Specifies a replacement parameter for each variable field in the stored message
identified by message-code.

Up to nine replacement parameters can be specified for a message. Multiple
parameters must be specified in the order in which they are numbered and
separated by blanks or commas.

Parameter specifies either the name of an EBCDIC or unsigned zoned decimal

variable data field that contains the parameter value or the parameter value itself,
enclosed in single quotation marks.

The parameter value must contain displayable characters. At run time, each

variable data field in a stored message expands or contracts to accommodate the
size of its replacement parameter. A replacement parameter can be a maximum of
240 bytes.

PREFIX is prefix

Overrides the default prefix of a dialog and a map.

Prefix specifies an EBCDIC or unsigned zoned decimal variable data field that
contains a 2-character prefix or the 2-character prefix itself, enclosed in single
quotation marks.

Pageable Maps

Chapter 17: Map Commands 477

Creating or Modifying a Detail Occurrence of a Pageable Map

After a PUT DETAIL command is executed, the map fields of a created or modified
occurrence contain the values of the variable data fields to which they map. The created
or modified occurrence appears on the user's screen when the map page to which it

belongs is displayed.

Storage

The amount of storage available at run time to hold detail occurrences is specified at
system generation with the PAGING STORAGE clause of the OLM statement. By default,
the available storage is 10K bytes. If a PUT DETAIL command would cause storage

overflow, the detail occurrence is not created and the $MAXIMUM-DETAILS-PUT map
paging condition is set. The $MAXIMUM-DETAILS-PUT condition can be tested.

Note: For more information about calculating the storage required by a pageable map,
see the CA IDMS Mapping Facility Guide.

More information:

Conditional Expressions (see page 245)

Specifying a Numeric Value Associated with an Occurrence

A numeric value, such as a database key, can be associated with a created or modified
detail occurrence.

This value is not displayed to the user, but can be retrieved by a GET DETAIL command.

Specifying a Message to Appear in the Message Field of an Occurrence

The text of a message or a code associated with a message that has already been
defined in the message dictionary can be specified in a PUT DETAIL command. When the
dialog is executed, the runtime system moves the appropriate message to the message

field in the dialog's map.

A message field is defined by the $MESSAGE map field.

Note: For more information, see the CA IDMS Mapping Facility Guide.

Pageable Maps

478 ADS Reference Guide

If no message field is defined for the detail area of the pageable map, the runtime
system places the message in the header or footer message field or, if neither the

header nor the footer has a message field, the runtime system ignores the message. If
more than one message is placed in the header or footer message field, the messages
are concatenated up to the length of the message field.

Considerations

The following considerations apply to specifying a message code in a PUT DETAIL

command:

■ Each system-supplied message in the data dictionary message area (DDLDCMSG) is
identified by a six-digit code prefixed by the letters DC. For example, a request for

message 987654 retrieves message DC987654.

User-defined messages added to the message dictionary can have a prefix other
than DC and digits in the range 900001 through 999999.

■ Each message in the message dictionary can be assigned a severity code. The
severity code specifies the action CA ADS takes when a message is retrieved. The

following table l ists the severity codes and their associated actions.

Severity code Action

0 Processes the PUT DETAIL command

1 Snaps all CA ADS resources and processes the PUT DETAIL
command

2 Snaps all system areas and processes the PUT DETAIL command

3 Snaps all CA ADS resources and terminates CA ADS with a task
abend code of D002

4 Snaps all system areas and terminates CA ADS with a task abend
code of D002

5 Terminates CA ADS with a task abend code of D002

8 Snaps all system areas and terminates the DC system with an
operating system abend code of 3996

9 Terminates the DC/UCF system with an operating system abend
code of 3996

Pageable Maps

Chapter 17: Map Commands 479

■ A message in the message dictionary can contain one or more variable fields that
are replaced with application-specific values at run time. In a PUT DETAIL command,

the application developer can use the PARMS parameter to code replacement
parameters for each variable field in a specified message.

Within the message definition in the dictionary, symbolic parameters are identified

by an ampersand (&) followed by a two-digit numeric identifier. These identifiers
can appear in any order. The position of the replacement values in the PARMS
parameter must correspond directly to the two-digit numeric identifiers in the
message; the first value corresponds to &01, the second to &02, and so forth. For

example, assume that the stored message text is as follows:

THIS IS TEXT &01 AND &03 OR &02

The PARMS parameter reads PARMS=('A','B','C'). The resulting text would read as
follows:

THIS IS TEXT A AND C OR B

■ If the message is defined in the dictionary with more than one text l ine, only the

first l ine appears in the map's message field.

Example

The following example il lustrates the map and the premap and response processes of a
dialog that:

■ Lists the employees in a department one page at a time

■ Allows the user to modify employee information and delete employees

■ Updates the database based on the user's entries

■ Redisplays the map with appropriate messages and allows the user to make further

modifications

The paging type in this example is WAIT. If the user makes a paging request and no
MDTs are set, the runtime system displays the requested page. If the user makes a
nonpaging request or if any MDTs are set, the runtime system initiates the response
process. The response process is associated with the control keys ENTER, FWD (paging

forward), and BWD (paging backward).

The pageable map associated with the dialog is shown in the screen that follows. The
following considerations apply to the detail area map fields:

■ The fields are defined once. At run time, the number of occurrences of these fields
that are displayed to the user at any one time depends on the number of

occurrences that can fit on the screen between the header and footer areas.

Pageable Maps

480 ADS Reference Guide

■ At run time, the fields map to variable data fields through detail occurrences:

– PUT NEW DETAIL commands create detail occurrences from associated variable

data fields.

– When a map page is displayed, the detail occurrences for the page are
displayed.

– When the user presses a control key, the appropriate detail occurrence fields
are updated.

– GET DETAIL commands can retrieve modified detail occurrences into associated
variable data fields.

■ The fields map to work record data fields and not directly to EMPLOYEE database

record elements. This facil itates the update of EMPLOYEE database records in the
response process.

 ┌─
 │ 1
 │ DEPT. ID: _____
 │
 └─

 ┌─ 2 3 4
 │ EMP. ID: _____ LAST NAME: _______________ ACTION CODE: ___
 │ 5 6
 │ START DATE: ________ MESSAGE: ________
 │
 │
 │
 │
 │
 │
 │
 │
 └─

 ┌─ 7
 │ PAGE: _____
 │
 │
 │ 8
 │ __
 └─

Note:

1. Maps to DEPT-ID of DEPARTMENT database record

2. Maps to WK-EMP-ID through detail occurrence

3. Maps to WK-EMP-LNAME through detail occurrence

4. Maps to WK-ACTION through detail occurrence

5. Maps to WK-EMP-START-DATE through detail occurrence

6. Maps to $MESSAGE through detail occurrence

7. Maps to $PAGE system-supplied data field

8. Maps to WK-MESSAGE

Pageable Maps

Chapter 17: Map Commands 481

Sample Premap Process

The premap process shown below performs the following:

■ Obtains a DEPARTMENT record based on a CALC key passed from another dialog or
function

■ Obtains all associated EMPLOYEE records

■ Creates a detail occurrence for each retrieved record

■ Displays the first map page at the terminal

 OBTAIN CALC DEPARTMENT.

 IF DB-REC-NOT-FOUND

 THEN

 DO.

 MOVE 'DEPARTMENT NOT FOUND' TO WK-MESSAGE.

 DISPLAY.

 END.

 MOVE SPACES TO WK-ACTION.

 OBTAIN FIRST EMPLOYEE WITHIN DEPT-EMPLOYEE.

 WHILE NOT DB-END-OF-SET

 REPEAT.

 MOVE EMP-ID TO WK-EMP-ID.

 MOVE EMP-LNAME TO WK-EMP-LNAME.

 MOVE EMP-START-DATE TO WK-EMP-START-DATE.

 ACCEPT DB-KEY INTO WK-KEY FROM CURRENCY.

 PUT NEW DETAIL KEY WK-KEY.

IF $PAGE-READY

 THEN

 DO.

 MOVE 'MORE EMPLOYEES EXIST FOR THIS DEPT' TO WK-MESSAGE.

 DISPLAY.

 END.

OBTAIN NEXT EMPLOYEE WITHIN DEPT-EMPLOYEE.

 END.

MOVE 'ALL EMPLOYEES DISPLAYED FOR THIS DEPT' TO WK-MESSAGE.

 DISPLAY.

Pageable Maps

482 ADS Reference Guide

Sample Response Process

The response process shown below performs the following:

■ Retrieves each modified detail occurrence.

■ Updates the EMPLOYEE database accordingly.

■ Modifies each retrieved detail occurrence:

– Moves a confirming message to the message field

– Initializes the action code

– Protects the fields if the associated database record is deleted

■ Redisplays the map. The value of $PAGE is saved at the beginning of the response
process and is restored at the end in order to display the page requested by the

user. During the response process, $PAGE is modified by GET DETAIL commands.

READY USAGE-MODE UPDATE.

MOVE $PAGE TO WK-PAGE.

GET DETAIL FIRST RETURN KEY WK-KEY.

WHILE NOT $END-OF-DATA

 REPEAT.

 OBTAIN EMPLOYEE DB-KEY IS WK-KEY.

 IF WK-ACTION EQ 'DEL'

 THEN

 DO.

 ERASE EMPLOYEE.

 PROTECT (WK-EMP-ID WK-EMP-LNAME

 WK-EMP-START-DATE WK-ACTION) PERMANENT.

 MOVE SPACES TO WK-ACTION.

 PUT CURRENT DETAIL TEXT 'DELETED'.

 END.

 ELSE

 DO.

 MOVE WK-EMP-LNAME TO EMP-LNAME.

 MOVE WK-EMP-START-DATE TO EMP-START-DATE.

 MODIFY EMPLOYEE.

 MOVE SPACES TO WK-ACTION.

 PUT CURRENT DETAIL TEXT 'MODIFIED'.

 END.

 GET DETAIL NEXT RETURN KEY WK-KEY.

 END.

 MOVE WK-PAGE TO $PAGE.

 DISPLAY.

Chapter 18: Queue and Scratch Management Commands 483

Chapter 18: Queue and Scratch
Management Commands

This section contains the following topics:

Overview (see page 483)
Queue Records (see page 485)

DELETE QUEUE (see page 486)
GET QUEUE (see page 488)
PUT QUEUE (see page 491)
Scratch Records (see page 494)

DELETE SCRATCH (see page 496)
GET SCRATCH (see page 498)
PUT SCRATCH (see page 502)

Overview

CA ADS queue and scratch management commands are used to control the allocation
and access of queue and scratch records. Queue and scratch records are work records
stored in the data dictionary that allow data to be passed from one CA IDMS/DC or
DC/UCF (DC/UCF) task to another.

Note: During the execution of an CA ADS application, each pseudo-converse is a new
task.

Queue Records

Queue records are stored in the data dictionary queue area (DDLDCRUN). Use of queue
records allows data to be passed from one DC/UCF task or batch application to another.

Scratch Records

Scratch records are temporarily maintained in the data dictionary s cratch area
(DDLDCSCR). Under CA ADS Batch, scratch records can be stored in and retrieved from a
scratch fi le allocated by the site. Use of scratch records allows data to be passed
between tasks or dialogs.

Overview

484 ADS Reference Guide

Queue and Scratch Management Commands

Queue and scratch management commands are summarized in the following table. Each

command is discussed later in this section.

Type Command Description

Queue

management

DELETE QUEUE Deletes one or all queue records in a specified
queue.

 GET QUEUE Transfers the contents of a queue record to a
specified location in a dialog's record buffers

and, optionally, deletes the record from the
queue.

 PUT QUEUE Stores a queue record in the data dictionary
and assigns a queue id.

Scratch

management

DELETE SCRATCH Deletes one or all scratch records associated
with a specified scratch area.

In CA ADS Batch, one or all scratch records

associated with a specified scratch fi le are
deleted.

 GET SCRATCH Transfers the contents of a scratch record to a
specified location in a dialog's record buffers

and, optionally, deletes the record.

In CA ADS Batch, the contents of a scratch
record are transferred to a specified location

and a scratch fi le is assigned to the record.

 PUT SCRATCH Stores or replaces a scratch record in the data
dictionary and assigns a scratch area id.

In CA ADS Batch, a scratch record is stored or

replaced in the scratch fi le and assigned a
scratch area id.

More information:

CA ADS Runtime System (see page 119)

Queue Records

Chapter 18: Queue and Scratch Management Commands 485

Queue Records

Overview

Queue records are available to all tasks running under DC/UCF, as well as to batch
programs. Records in a queue established by one task are available to subsequent tasks
running on the same logical terminal, or to concurrent or subsequent tasks running on

any other terminal. Queue records are saved across system shutdowns and are
recovered across a system crash.

Because queue records are available to concurrent tasks running on other terminals, the
records can be used to pass data from one application to another. Additionally, queue
records provide a convenient means of storing data for subsequent processing.

Storing a Queue Record

A queue record is stored in the data dictionary as a member occurrence in a set owned
by a queue header record. All records associated with a particular queue header are
referred to collectively as a queue. The queue is identified by a queue id. Requests to
access a queue record can use the queue id to specify the queue in which the object

record participates. If a request to store a queue record specifies an unknown queue id,
a queue is created with the specified id.

When a queue record is stored, DC/UCF can return a queue record identifier to a
specified location in a dialog's record buffers. The queue record identifier can then be
used to access the queue record.

Currencies

The CA ADS runtime system maintains currencies for each queue accessed by a task. If
concurrently executing tasks access the same queue, each task has its own queue
currency. A request for a particular queue record can identify the record by the queue
id, by the queue record id, by the position of the record within the queue, or by the

relationship of the object record to the record that is current of queue for the
requesting task.

Queue records remain in the data dictionary until explicitly deleted or until the
retention period specified for the queue has expi red. When all records associated with a

given queue header have been deleted, the header record is also deleted and the queue
no longer exists.

DELETE QUEUE

486 ADS Reference Guide

Considerations

■ An exclusive lock is placed on a queue record when the record is retrieved or

stored, thereby preventing concurrently executing tasks from accessing the same
record. Queue record locks are released when the task terminates or when a
COMMIT command with the TASK keyword is executed.

Because no other task can access a locked queue record, a concurrently executing
task that attempts to access the record must wait until the lock is released. To
minimize such waits, queue access should be as brief as possible.

■ Queue currencies are not saved when a task terminates. Each task must establish
its own currencies. The following considerations apply:

– Queue currencies are lost each time a DISPLAY command is executed.

– Queue currencies are lost across a system shutdown or a system crash.

■ All queue management command clauses must be coded in the same order in
which they appear in the syntax.

■ Queue management commands are allowed in CA ADS Batch only if the application

is running under the central version.

More information:

Database Access Commands (see page 363)

DELETE QUEUE

Purpose

Deletes a queue or queue record.

Syntax

►►─── DELETE QUEUE ────┬────────────────┬───────────┬─ ALL ───────┬───────────►
 └─ ID queue-id ──┘ └─ CURRENT ◄ ─┘

 ►───┬────────────────────┬─────── . ───►◄
 └─ error-expression ─┘

Parameters

ID queue-id

Specifies the queue or queue record associated with queue-id to be deleted.

Queue-id is the name of a variable data field that contains a queue id or the 1 - to
16-character id itself, enclosed in single quotation marks.

If queue-id is not specified, a null queue id (that is, 16 blanks) is assumed.

DELETE QUEUE

Chapter 18: Queue and Scratch Management Commands 487

ALL

Deletes all records, including the queue header record, in the queue specified by

queue-id.

CURRENT

Deletes the record that is current of queue for the requesting task.

CURRENT is the default when you specify neither CURRENT or ALL.

error-expression

Specifies the status codes that are returned to the dialog.

Usage

Considerations

If autostatus is not in use, a dialog's error-status field indicates the outcome of a DELETE
QUEUE command:

Status Code Meaning

0000 The request was executed successfully

4404 The requested header record cannot be found

4405 The requested queue record cannot be found

4406 Currency was not established for the object queue record

4407 An I/O error occurred during processing

4431 The CA ADS internal parameter l ist was invalid

Example

The following example il lustrates the use of the DELETE QUEUE command to delete the

current record from queue CUSTQ:

DELETE QUEUE ID 'CUSTQ'.

More information:

Error Handling (see page 277)

GET QUEUE

488 ADS Reference Guide

GET QUEUE

Purpose

Transfers the contents of a queue record to a specified location in a dialog's record
buffers.

Syntax

►►─── GET QUEUE ───────┬───────────────┬──────────────────────────────────────►
 └─ ID queue-id ─┘

 ►───┬─ DELETE ◄ ─┬────────────────┬─ NOWAIT ◄ ─┬─────────────────────────────►
 └─ KEEP ─────┘ └─ WAIT ─────┘

 ►───── INTO return-queue-data-location-variable ─────────────────────────────►

 ►───┬──┬───────────────────────────────►
 ├─ TO end-queue-data-location-variable ──┤
 └─ MAX LENGTH queue-data-max-length ─────┘

 ►───┬─ FIRST ───────────────────────┬──►
 ├─ LAST ────────────────────────┤
 ├─ NEXT ◄ ──────────────────────┤
 ├─ PRIOR ───────────────────────┤
 ├─ SEQUENCE sequence-number ────┤
 └─ RECORD ID queue-record-id ───┘

 ►───┬───┬────────────►
 └── RETURN LENGTH into queue-data-actual-length-variable ───┘

 ►───┬────────────────────┬────── . ──►◄
 └─ error-expression ─┘

Parameters

ID queue-id

Specifies the queue-id to be retrieved.

Queue-id is either the name of a variable data field that contains a queue id or the

1- to 16-character queue id itself, enclosed in single quotation marks.

If queue-id is not specified, a null queue id (that is, 16 blanks) is assumed.

DELETE

Deletes the record from the queue after it is passed to the requesting task. If the
record is truncated, the truncated data may be lost permanently.

DELETE is the default when you specify neither DELETE or KEEP.

KEEP

Retains the record in the queue after it is passed to the requesting task.

NOWAIT

Continues task execution in the event of a nonexistent queue. NOWAIT is the
default when you specify neither NOWAIT or WAIT.

GET QUEUE

Chapter 18: Queue and Scratch Management Commands 489

WAIT

Suspends task execution until the requested queue exists.

INTO return-queue-data-location-variable

Specifies the location to which the requested queue record is transferred.

Return-queue-data-location-variable is the name of a variable data field in the
dialog's record buffers.

TO end-queue-data-location-variable

Specifies the end of the buffer area allocated for the requested queue record.

End-queue-location-variable is either the name of a dummy byte field or the name
of a variable data field that contains a data item not associated with the requested
queue record. The field specified by end-queue-data-location must immediately
follow the last byte of the buffer area allocated for the requested queue record.

MAX LENGTH queue-data-max-length

Specifies the length of the buffer area allocated for the requested queue record.

Queue-data-max-length is either the name of a variable data field that contains the
length of the buffer area allocated for the requested queue record or the length
itself, expressed as a numeric constant.

If neither TO end-queue-data-location-variable nor MAX LENGTH
queue-data-max-length is specified, the length of the location is the length of
return-queue-data-location-variable.

FIRST

Obtains the first record in the queue that is specified by queue-id.

LAST

Obtains the last record in the queue that is specified by queue-id.

NEXT

Obtains the record that follows the current record of the queue specified by
queue-id.

NEXT is the default when you specify no other queue record to be obtained.

If currency is not established, NEXT is equivalent to FIRST.

PRIOR

Obtains the record that precedes the current record in the queue specified by
queue-id.

If currency is not established, PRIOR is equivalent to LAST.

GET QUEUE

490 ADS Reference Guide

SEQUENCE sequence-number

Obtains the nth record in the queue specified by queue-id.

Sequence-number is either the name of a variable data field that contains the
sequence number or the sequence number itself, expressed as a numeric constant.

RECORD ID queue-record-id

Obtains the record identified by queue-record-id.

Queue-record-id is either the name of a numeric variable data field that contains

the system-assigned queue record id or the queue record id itself, expressed as a
numeric constant.

Queue-record-id cannot be a doubleword binary field. The runtime system converts

the queue record id to a binary fullword for internal storage.

RETURN LENGTH into queue-data-actual-length-variable

Returns the untruncated length of the obtained queue record to the location
specified by queue-data-actual-length-variable.

Queue-data-actual-length-variable is the name of a numeric field in the dialog's

record buffers.

error-expression

Specifies the status codes that are returned to the dialog.

Usage

Considerations

■ If the queue record is larger than the allocated buffer area, the record is truncated

as necessary. Deletion of the record from the queue after the transfer is complete
can be specified.

■ If autostatus is not in use, a dialog's error-status field indicates the outcome of a
GET QUEUE command:

Status Code Meaning

0000 The request was executed successfully

4404 The requested header record cannot be found

4405 The requested queue record cannot be found

4407 An I/O error occurred during processing

4419 The dialog's storage location is too small for the requested queue

record. The record was truncated accordingly

PUT QUEUE

Chapter 18: Queue and Scratch Management Commands 491

Status Code Meaning

4431 The CA ADS internal parameter l ist was invalid. In CA ADS, this is

usually due to using a RECORD ID parameter that includes a
queue-record-id that contains all zeros.

4432 The derived length of the queue record data area is negative

Example

The following example il lustrates the use of the GET QUEUE command. The data in the
last record in queue CUSTQ is transferred to the location in the dialog's record buffers
identified by CUSTWORK. The record is deleted from the queue:

GET QUEUE ID 'CUSTQ' INTO CUSTWORK MAX LENGTH REC-LENGTH LAST.

More information:

Error Handling (see page 277)

PUT QUEUE

Purpose

Stores a queue record in the data dictionary.

Syntax

►►─── PUT QUEUE ─────┬───────────────┬──────────┬─ LAST ◄ ─┬──────────────────►
 └─ ID queue-id ─┘ └─ FIRST ──┘

 ►─── FROM queue-data-location-variable ──────────────────────────────────────►

 ►──┬──┬────────────────────────────────►
 ├─ TO end-queue-data-location-variable ──┤
 └─ LENGTH queue-data-length ─────────────┘

 ►──┬──┬────────────────────────────►
 └─ RETENTION is ──┬─ FOREVER ◄ ──────────────┤
 └─ queue-retention-period ─┘

 ►──┬───┬───────────────────►
 └── RETURN RECORD ID into return-queue-id-variable ───┘

 ►──┬────────────────────┬─────── . ──►◄
 └─ error-expression ─┘

PUT QUEUE

492 ADS Reference Guide

Parameters

ID queue-id

Stores a record in the queue identified by queue-id.

Queue-id is either the name of a variable data field that contains a queue id or the
1- to 16-character queue id itself, enclosed in single quotation marks.

If queue-id is not specified, a null queue id (that is, 16 blanks) is assumed.

LAST

Stores a record at the end of the queue.

LAST is the default when you specify neither LAST or FIRST.

FIRST

Stores a record at the beginning of the queue.

FROM queue-data-location-variable

Specifies the location of the data to be stored in the queue record.

Queue-data-location-variable is the name of a variable data field in the dialog's
record buffers.

TO end-queue-data-location-variable

Specifies the end of the buffer area that contains the queue record data.

End-queue-data-location-variable is the name of a variable data field that contains a

data item not associated with the queue record data.

The field specified by end-queue-data-location-variable must immediately follow
the last byte of the buffer area that contains the queue record data.

LENGTH queue-data-length

Specifies the length, to be specified in bytes, of the buffer area that contains the

data to be stored in the queue record.

Queue-data-length is either the name of a variable data field that contains the
length or the length itself, expressed as a numeric constant.

If neither TO end-queue-data-location-variable nor LENGTH queue-data-length is
specified, the length of the location is the length of queue-data-location-variable.

RETENTION

Introduces the number of days, in the range 0 through 255, that the queue is to be
retained.

A retention period of 255 is equivalent to FOREVER.

PUT QUEUE

Chapter 18: Queue and Scratch Management Commands 493

FOREVER

Retains the queue until all queue records associated with the queue are explicitly

deleted.

FOREVER is the default when the queue's retention period is not otherwise
specified.

queue-retention-period

The name of a variable data field that contains the retention period or the retention

period itself, expressed as a numeric constant.

RETURN RECORD ID into return-queue-id-variable

Returns a system-assigned queue record id to the location specified by
return-queue-id-variable.

The queue record id is returned as a binary fullword and is converted, as

appropriate, when it is moved to return-queue-id-variable

Return-queue-id-variable is the name of a numeric variable data field in the dialog's
record buffers.

Return-queue-id-variable cannot be a doubleword binary field. The system-assigned
queue record id can subsequently be used to retrieve or delete the associated
queue record.

error-expression

Specifies the status codes that are returned to the dialog.

Usage

Considerations

If autostatus is not in use, a dialog's error-status field indicates the outcome of a PUT
QUEUE command:

Status Code Meaning

0000 The request was executed successfully

4407 The queue upper l imit has been reached or an I/O error occurred
during processing

4431 The CA ADS internal parameter l ist was invalid

Scratch Records

494 ADS Reference Guide

Example

The following example il lustrates the use of the PUT QUEUE command to store the data

in CUSTWORK in a queue record associated with queue CUSTQ:

PUT QUEUE ID 'CUSTQ' FROM CUSTWORK LENGTH REC-LENGTH

 RETURN RECORD ID INTO REC-ID.

More information:

Error Handling (see page 277)

Scratch Records

Scratch records allow a task to pass information to subsequent tasks, thereby providing
data continuity among tasks. The scratch records are used only for temporary storage of

data and are not saved across a system shutdown or a system crash.

Scratch Area ID

A scratch area is identified by an eight-character name. Requests to access a scratch
record can use the scratch area id to specify the area with which the object record is
associated. If a request to store a scratch record specifies an unknown scratc h area id, a

scratch area is created with the specified id.

Scratch records are also assigned numeric identifiers either by the application developer
or by the system. Records in a scratch area are arranged sequentially in ascending order,
according to the value of the scratch record identification. System-assigned identifiers
are sequenced last in a scratch area.

All scratch management command clauses must be coded in the same order in which
they appear in the syntax.

CA ADS Usage

Scratch records are common to all tasks running on the same logical terminal. The

records stored by one task are available to subsequent tasks running on the same
terminal.

A request to store a scratch record places a record of the requested length in the data

dictionary. A database key pointer to the scratch record is placed in a scratch area
associated with the requesting task. Scratch records remain in the data dictionary until
explicitly deleted, until a signoff from DC/UCF occurs, or until the system is shut down or
crashes.

Scratch Records

Chapter 18: Queue and Scratch Management Commands 495

Currencies are maintained for each scratch area associated with a task. Scratch area
currencies are passed from one task to the next. A request for a particular scratch

record can identify the record by the scratch area id, by the scratch record id, by the
position of the record within the scratch area, or by the relationship of the object record
to the record that is current of the scratch area.

Considerations

■ Scratch records associated with one terminal are not available to tasks associated

with other terminals.

■ Any number of scratch records can be associated with a single scratch area, and any
number of scratch areas can be associated with a ta sk.

■ When all records associated with a given scratch area have been deleted, the
scratch area is also deleted.

■ During the execution of an CA ADS application, each pseudo-converse is a new task.

More information:

CA ADS Runtime System (see page 119)

CA ADS Batch Considerations

Information can be written to temporary scratch fi les at dialog execution time and
passed between dialogs within the same job step in a given CA ADS Batch application. A
request to store a scratch record places a record of the requested length in a temporary
work fi le. Records can be accessed in any order from this fi le. The scratch fi le need not

be defined to the data dictionary.

Scratch records remain in the temporary fi le until they are explicitly deleted, until the
job step is completed, until a signoff occurs, or if the system is shut down or crashes.

Using Scratch Files

To use scratch fi les:

1. Include process-language SCRATCH statements in dialog process modules. At
dialog execution time, these statements store, retrieve, and delete scratch records.

Syntax for SCRATCH statements in CA ADS Batch dialogs is the same as for CA ADS

dialogs. SCRATCH statement syntax is presented later in this section.

2. Define the external name for a scratch file in the DMCL module for scratch
(SCRDMCL).

3. Initialize a data set for the scratch file the first time the file is used by using the
FORMAT util ity.

DELETE SCRATCH

496 ADS Reference Guide

4. Include FORMAT job control language statements immediately before control
statements for the CA ADS Batch application.

5. Specify the ddname/filename for the scratch file in the CA ADS Batch job to make
the initialized scratch fi le available to the application.

Note: For more information about the FORMAT util ity and its input parameters, see

the CA IDMS Utilities Guide.

Considerations

■ The scratch fi le cannot be used to communicate between CA ADS Batch job steps.

■ The same scratch fi le can be used in several CA ADS Batch job steps without
reinitializing the fi le. A PUT SCRATCH command must be used before any GET

SCRATCH commands.

■ Central version must be used to run CA ADS Batch.

More information:

Application and Dialog Util ities (see page 621)

DELETE SCRATCH

Purpose

Deletes one or all records associated with a particular scratch area id.

Syntax

►►─── DELETE SCRATCH ────┬────────────────────────────┬───────────────────────►
 └─ AREA ID scratch-area-id ──┘

 ►──┬─ CURRENT ◄ ────────────────────┬──►
 ├─ FIRST ────────────────────────┤
 ├─ LAST ─────────────────────────┤
 ├─ NEXT ─────────────────────────┤
 ├─ PRIOR ────────────────────────┤
 ├─ ALL ──────────────────────────┤
 └─ RECORD ID scratch-record-id ──┘

 ►──┬──┬────────────►
 └─ RETURN RECORD ID into return-scratch-record-id-variable ──┘

 ►──┬────────────────────┬──────── . ───►◄
 └─ error-expression ─┘

DELETE SCRATCH

Chapter 18: Queue and Scratch Management Commands 497

Parameters

AREA ID scratch-area-id

Specifies the area in the data dictionary scratch area to be deleted.

Scratch-area-id is either the name of a variable data field that contains a scratch
area id or the 1- to 8-character scratch area id itself, enclosed in single quotation

marks.

If scratch-area-id is not specified, a null scratch area id (that is, eight blanks) is
assumed.

CURRENT

Deletes the record that is current of the scratch area specified by scratch-area-id.

CURRENT is the default when you specify no other scratch record to be deleted.

FIRST

Deletes the first record in the scratch area specified by scratch-area-id.

LAST

Deletes the last record in the scratch area specified by scratch-area-id.

NEXT

Deletes the record that follows the current record of the scratch area specified by
scratch-area-id.

If currency is not established, NEXT is equivalent to FIRST.

PRIOR

Deletes the record that precedes the current record of the scratch area specified by
scratch-area-id.

If currency is not established, PRIOR is equivalent to LAST.

ALL

Deletes all records in the scratch area specified by scratch-area-id.

RECORD ID scratch-record-id

Deletes the record identified by scratch-record-id.

Scratch-record-id is either the name of a variable data field that contains the scratch
record id or the scratch record id itself, expressed as a numeric constant.

RETURN RECORD ID into return-scratch-record-id-variable

Returns the id of the last scratch record deleted to the location specified by
return-scratch-record-id-variable.

Return-scratch-record-id-variable is the name of a numeric variable data field in the
dialog's record buffers.

Return-scratch-record-id-variable cannot be a doubleword binary field.

GET SCRATCH

498 ADS Reference Guide

error-expression

Specifies the status codes that are returned to the dialog.

Usage

Considerations If autostatus is not in use, a dialog's error-status field indicates the
outcome of a DELETE SCRATCH command:

Status Code Meaning

0000 The request was executed successfully.

4303 The requested scratch area cannot be found.

4305 The requested scratch record cannot be found.

4307 An I/O error occurred during processing.

4331 The CA ADS internal parameter l ist is invalid.

Example

The following example il lustrates the use of the DELETE SCRATCH command to delete all

of the records in scratch area CUSTAREA:

DELETE SCRATCH AREA ID 'CUSTAREA' ALL.

More information:

Error Handling (see page 277)

GET SCRATCH

Purpose

Transfers the contents of a scratch record to a specified location in a dialog's record

buffers.

GET SCRATCH

Chapter 18: Queue and Scratch Management Commands 499

Syntax

►►─── GET SCRATCH ────┬────────────────────────────┬──────────────────────────►
 └─ AREA ID scratch-area-id ──┘

 ►──┬─ DELETE ◄ ─┬──── INTO return-scratch-data-location-variable ────────────►
 └─ KEEP ─────┘

 ►──┬──┬──────────────────────────────►
 ├─ TO end-scratch-data-location-variable ──┤
 └─ MAX LENGTH scratch-data-max-length ─────┘

 ►──┬─ CURRENT ──────────────────────┬──►
 ├─ FIRST ────────────────────────┤
 ├─ LAST ─────────────────────────┤
 ├─ NEXT ◄ ───────────────────────┤
 ├─ PRIOR ────────────────────────┤
 └─ RECORD ID scratch-record-id ──┘

 ►──┬───┬───────────►
 └── RETURN LENGTH into scratch-data-actual-length-variable ───┘

 ►──┬────────────────────┬────── . ───►◄
 └─ error-expression ─┘

Parameters

AREA ID scratch-area-id

Specifies an area in the scratch area to be retrieved.

Scratch-area-id is either the name of a variable data field that contains a scratch
area id or the 1- to 8-character scratch area id itself, enclosed in single quotation

marks.

If scratch-area-id is not specified, a null scratch area id (that is, eight blanks) is
assumed.

DELETE

Deletes the record from the scratch area after it is passed to the requesting task.

If the record is truncated, the truncated data may be lost permanently.

DELETE is the default when you specify neither DELETE or KEEP.

KEEP

Retains the record in the scratch area after it is passed to the requesting task.

INTO return-scratch-data-location-variable

Specifies the location to which the requested scratch record is transferred.

Return-scratch-data-location-variable is the name of a variable data field in the
dialog's record buffers.

GET SCRATCH

500 ADS Reference Guide

TO end-scratch-data-location-variable

Specifies the end of the buffer area allocated for the requested scratch record.

End-scratch-data-location-variable is the name of a dummy byte field or the name
of a variable data field that contains a data item not associated with the requested
scratch record.

The field specified by end-scratch-data-location-variable must immediately follow
the last byte of the buffer area allocated for the requested scratch record.

MAX LENGTH scratch-data-max-length

Specifies the length of the buffer area allocated for the requested scratch record.

Scratch-data-max-length is the name of a variable data field that contains the

length or the length itself, expressed as a numeric constant.

If neither TO end-scratch-data-location-variable nor MAX LENGTH
scratch-data-max-length is specified, the length of the location is the length of
return-scratch-data-location-variable.

CURRENT

Obtains the record that is current of the scratch area specified by scratch-area-id.

FIRST

Obtains the first record in the scratch area specified by scratch-area-id.

LAST

Obtains the last record in the scratch area specified by scratch-area-id.

NEXT

Obtains the record that follows the current record of the scratch area specified by
scratch-area-id.

NEXT is the default when you specify no other scratch record to be obtai ned.

If currency is not established, NEXT is equivalent to FIRST.

PRIOR

Obtains the record that precedes the current record of the scratch area specified by
scratch-area-id.

If currency is not established, PRIOR is equivalent to LAST.

RECORD ID scratch-record-id

Obtains the record identified by scratch-record-id.

Scratch-record-id is either the name of a variable data field that contains the scratch
record id or the scratch record id itself, expressed as a numeric constant.

GET SCRATCH

Chapter 18: Queue and Scratch Management Commands 501

RETURN LENGTH into scratch-data-actual-length-variable

Returns the untruncated length of the obtained scratch record to the location

specified by scratch-data-actual-length-variable.

Scratch-data-actual-length-variable is the name of a numeric field in the dialog's
record buffers.

error-expression

Specifies the status codes that are returned to the dialog.

Usage

Considerations

If the scratch record is larger than the allocated buffer area, the record is truncated as
necessary.

If autostatus is not in use, a dialog's error-status field indicates the outcome of a GET

SCRATCH command:

Status Code Meaning

0000 The request was executed successfully

4303 The requested scratch area cannot be found

4305 The requested scratch record cannot be found

4307 An I/O error occurred during processing

4319 The dialog's storage location is too small for the requested scratch
record. The record was truncated accordingly

4331 The CA ADS internal parameter l ist was invalid

4332 The derived length of the scratch record data area is negative.

Example

The following example il lustrates the use of the GET SCRATCH command to copy the last
record in scratch area CUSTAREA to a location in the dialog's record buffers identified by

CUSTWORK. The record is retained in the scratch area for later access:

GET SCRATCH AREA ID 'CUSTAREA' KEEP LAST

INTO CUSTWORK MAX LENGTH REC-LENGTH.

More information:

Error Handling (see page 277)

PUT SCRATCH

502 ADS Reference Guide

PUT SCRATCH

Purpose

Stores or replaces a scratch record in the scratch area.

Syntax

►►─── PUT SCRATCH ────┬────────────────────────────┬──────────────────────────►
 └─ AREA ID scratch-area-id ──┘

 ►─── FROM scratch-data-location-variable ────────────────────────────────────►

 ►──┬──┬──────────────────────────────►
 ├─ TO end-scratch-data-location-variable ──┤
 └─ LENGTH scratch-data-length ─────────────┘

 ►──┬──┬──────────────────────────►
 └─ RECORD ID scratch-record-id ──┬───────────┬─┘
 └─ REPLACE ─┘

 ►─┬──┬─────────────►
 └─ RETURN RECORD ID into return-scratch-record-id-variable ──┘

 ►──┬────────────────────┬─────── . ──►◄
 └─ error-expression ─┘

Parameters

AREA ID scratch-area-id

Specifies the area in the scratch area where the record will be stored.

Scratch-area-id is either the name of a variable data field that contains a scratch
area id or the 1- to 8-character scratch area id itself, enclosed in single quotation

marks.

If scratch-area-id is not specified, a null scratch area id (that is, eight blanks) is
assumed.

FROM scratch-data-location-variable

Specifies the location of the data to be stored in the queue record.

Scratch-data-location-variable is the name of a variable data field in the dialog's
record buffers.

TO end-scratch-data-location-variable

Specifies the end of the buffer area that contains the data to be stored in the
scratch record.

End-scratch-data-location-variable is either the name of a dummy byte field or the
name of a variable data field that contains a data item not associated with the
scratch record data.

The field specified by end-scratch-data-location-variable must immediately follow
the last byte of the buffer area that contains the scratch record data.

PUT SCRATCH

Chapter 18: Queue and Scratch Management Commands 503

LENGTH scratch-data-length

Specifies the length, to be specified in bytes, of the buffer area that contains the

data to be stored in the scratch record.

Scratch-data-length is either the name of a variable data field that contains the
length or the length itself, expressed as a numeric constant.

If neither TO end-scratch-data-location-variable nor LENGTH scratch-data-length is
specified, the length of the location is the length of scratch-data-location-variable.

RECORD ID scratch-record-id

Assigns an id to the scratch record being stored.

Scratch-record-id is either the name of a variable data field that contains the scratch

record id or the scratch record id itself, expressed as a numeric constant.

The scratch record id can subsequently be used to retrieve or delete the associated
scratch record.

The scratch record id is stored as a binary fullword.

REPLACE

Replaces the scratch record identified by scratch-record-id with the scratch record
being stored.

RETURN RECORD ID into return-scratch-record-id-variable

Returns a system-assigned scratch record id to the location specified by
return-scratch-record-id-variable.

Return-scratch-record-id-variable is the name of a variable data field in the dialog's
record buffers.

Return-scratch-record-id-variable cannot be defined as a doubleword binary field.

The scratch record id can subsequently be used to retrieve or delete the associated

scratch record.

The system assigns a scratch record id if one is not specified in the RECORD ID
parameter.

error-expression

Specifies the status codes that are returned to the dialog.

PUT SCRATCH

504 ADS Reference Guide

Usage

Considerations

If autostatus is not in use, a dialog's error-status field indicates the outcome of a PUT
SCRATCH command:

Status Code Meaning

0000 The request to add a scratch record was executed successfully

4307 An I/O error occurred during processing

4317 The request to replace a scratch record was executed successfully

4322 The request to store a scratch record cannot be executed because
the scratch record id already exists within the scratch area and the
REPLACE option was not specified

4331 The CA ADS internal parameter l ist was invalid

4332 The derived length of the scratch record data location is negative

Example

The following example il lustrates the use of the PUT SCRATCH command:

PUT SCRATCH AREA ID 'CUSTAREA' FROM CUSTWORK LENGTH REC-LENGTH

RETURN RECORD ID INTO REC-ID.

More information:

Error Handling (see page 277)

Chapter 19: Subroutine Control Commands 505

Chapter 19: Subroutine Control Commands

This section contains the following topics:

Overview (see page 505)
CALL (see page 505)
DEFINE (see page 506)

GOBACK (see page 507)

Overview

CA ADS subroutine control commands are used to define and call subroutines within a
process.

The subroutine control commands are l isted in the following table. Each command is
discussed later in this section.

Subroutine Control Commands

Command Description

CALL Passes control to a predefined subroutine

DEFINE Establishes an entry point for a subroutine and defines subroutine
processing

GOBACK Terminates subroutine processing and returns control to the command

following the associated CALL command

CALL

Purpose

Passes control to a predetermined subroutine.

Syntax

►►─── CALL subroutine-name ──── . ──►◄

Parameter

subroutine-name

Specifies the 1- to 8-character name of the subroutine to which control is passed.

The subroutine name is defined by the DEFINE command, described below.

DEFINE

506 ADS Reference Guide

Usage

When the CA ADS runtime system encounters a CALL command, processing control

passes to the beginning of the named subroutine. Processing continues through the
subroutine until CA ADS encounters a GOBACK command, or a control command

If no GOBACK or control command occurs before the end of the subroutine, the runtime

system automatically returns control to the command that immediately follows the
associated CALL command.

Considerations

■ A CALL statement can occur in the body of a process or within a subroutine
definition.

■ Subroutine calls can be nested up to ten levels.

■ The called subroutine must be defined by using the DEFINE command, described
later in this section, and must be coded later in the process than the CALL
command.

More information:

Control Commands (see page 325)
GOBACK (see page 507)

DEFINE

Purpose

Establishes an entry point for a subroutine and to define the subroutine processing. At

runtime, a subroutine is executed when it is named in a CALL statement.

Syntax

 ┌───────────────────────┐
►►─── DEFINE subroutine subroutine-name ─── . ───▼─ command statement. ──┴────►◄

Parameters

subroutine-name

Specifies the 1- to 8-character name of the subroutine being defined.

Subroutine-name must be unique within the process.

GOBACK

Chapter 19: Subroutine Control Commands 507

command-statement

Specifies the process commands that define the subroutine.

Command-statement can be any process command statement except DEFINE
SUBROUTINE.

Usage

Considerations

■ Each command statement must be terminated with a period (.).

■ Any number of subroutine definitions can be coded at the end of a process.

■ A subroutine definition is terminated by the occurrence of another subroutine
definition or by the end of the process code.

■ DEFINE is the only process command that can follow a subroutine definition.

■ Subroutine order and physical placement within the process code are important.

The physical placement of multiple subroutines depends on the code within each
subroutine. All called subroutines must be physically coded lower than the call ing
subroutine.

Example:

CALL SUBROUTINE-A.

....

CALL SUBROUTINE-B.

....

DEFINE SUBROUTINE-A.

 (within this code which is subroutine-d)

DEFINE SUBROUTINE-D.

 (within this code which is subroutine-b)

DEFINE SUBROUTINE-B.

GOBACK

Purpose

Terminates subroutine processing.

Syntax

►►─── GOBACK ──── . ───►◄

Usage

At run time, GOBACK returns processing control to the command following the CALL

that passed control to the subroutine.

GOBACK

508 ADS Reference Guide

Considerations

■ A GOBACK command can be coded wherever logically appropriate within the body

of a subroutine.

■ A GOBACK command is automatically generated by CA ADS to ensure that GOBACK
is the last command in the subroutine.

Example

The following example uses the CALL, DEFINE, and GOBACK commands to i l lustrate the

use of a subroutine within a process:

FIND CALC CUSTOMER.

IF DB-REC-NOT-FOUND

THEN

 DO.

 STORE CUSTOMER.

 CALL UPDMAIL.

 DISPLAY MSG TEXT 'CUSTOMER ADDED'.

 END.

ELSE

 DO.

 MODIFY CUSTOMER.

 CALL UPDMAIL.

 DISPLAY MESSAGE TEXT 'CUSTOMER CHANGED'.

 END.

DEFINE SUBROUTINE UPDMAIL.

 MOVE 1 TO SB.

 WHILE SB LE 3

 REPEAT.

 MOVE CUST-INT(SB) TO MAIL-INT.

 FIND CALC MAILIST.

 CONNECT CUSTOMER TO MAILIST.

 ADD 1 TO SB.

 END.

GOBACK.

Chapter 20: Utility Commands 509

Chapter 20: Utility Commands

This section contains the following topics:

Overview (see page 509)
ABORT (see page 510)
ACCEPT (see page 513)

INITIALIZE RECORDS (see page 515)
SNAP (see page 516)
TRACE (see page 518)

WRITE PRINTER (see page 519)
WRITE TO LOG/OPERATOR (see page 523)

Overview

CA ADS util ity commands are used to reinitialize record buffers, transmit data to be
printed, and provide information about the current task.

The util ity commands are summarized in the following table.

Summary of Utility Commands

Command Description

ABORT Abnormally terminates an application

ACCEPT Retrieves task-related information

INITIALIZE RECORDS Reinitializes dialog record buffers

SNAP Requests a snap dump of selected memory areas

WRITE PRINTER Transmits data from a dialog to an CA IDMS/DC or
DC/UCF print queue

WRITE TO LOG/OPERATOR Sends a message to the log fi le or to the operator's
console (CA ADS Batch only)

ABORT

510 ADS Reference Guide

ABORT

Purpose

Terminates the execution of the current task.

Syntax

►►─── ABORT ─────┬────────┬─────┬─────────────────────────────────┬───────────►◄
 └─ SNAP ─┘ └─┬─ MESSage ─┬─ message-options ─┘
 └─ MSG ─────┘

Expansion of message-options

►►────┬─ TEXT ─────┬──────┬────────── message-text ───────────────────────────►
 │ ├─ IS ─┤
 │ └─ = ─┘
 └─ CODE ─────┬──────┬────────── message-code ───────────────────────────
 ├─ IS ─┤
 └─ = ─┘

 ►──►
 ────┬───┬───────────────────────
 │ ┌──────────────┐ │
 └─ PARMS ────┬─────┬─── (─▼── parameter ─┴─) ──┘
 └─ = ─┘

 ►──┬───────────────────────►◄
 ────┬──┬──────┘
 └─ PREFIX ───┬──────┬─────── prefix ─────┘
 ├─ IS ─┤
 └─ = ─┘

Expansion of message-options

►►────┬─ TEXT ─────┬──────┬────────── message-text ───────────────────────────►
 │ ├─ IS ─┤
 │ └─ = ─┘
 └─ CODE ─────┬──────┬────────── message-code ───────────────────────────
 ├─ IS ─┤
 └─ = ─┘

 ►──►
 ────┬───┬───────────────────────
 │ ┌──────────────┐ │
 └─ PARMS ────┬─────┬─── (─▼── parameter ─┴─) ──┘
 └─ = ─┘

 ►──┬───────────────────────►◄
 ────┬──┬──────┘
 └─ PREFIX ───┬──────┬─────── prefix ─────┘
 ├─ IS ─┤
 └─ = ─┘

Parameters

SNAP

Writes a formatted snap dump to the CA IDMS/DC or DC/UCF (DC/UCF) log. Snap
dumps can be printed by means of the PRINT LOG util ity.

Note: For more information about PRINT LOG, see the CA IDMS Utilities Guide.

ABORT

Chapter 20: Utility Commands 511

MESSage

Specifies a message to be displayed on the Dialog Abort Information screen and

written to the system log. If a MESSAGE clause is not specified, system message
DC174020 is used (text of this message can be changed by using IDD):

ADS/ON-LINE ABORT. USER SPECIFIED ABORT WITH NO MESSAGE CODE/TEXT

MSG can be used in place of MESSAGE.

Note: For more information about altering message text using IDD, see the CA IDMS
IDD Quick Reference Guide, under the MESSAGE command.

TEXT IS message-text

Specifies the text of a message to be sent to the system log or, if batch, sent to the
console and batch log fi le.

This can be either the name of a variable data field containing the message text or
the text string itself, enclosed in single quotation marks.

The text string can contain up to 240 displayable characters.

CODE IS message-code

Specifies the message dictionary code of a message to be displayed in an online

map's message field or sent to the log fi le in a batch application.

This can be either the name of a variable data field that contains the message code
or the 6-digit code itself, expressed as a numeric l iteral.

In a batch application, the message is also sent to the operator, if directed by the

destination specified in the dictionary.

PARMS = parameter

Introduces a replacement parameter for each variable field in the stored message
identified by message-code. The parameter can be either the name of an EBCDIC or
unsigned zoned decimal variable data field that contains the parameter value or the

actual parameter value, enclosed in single quotation marks.

Up to nine replacement parameters can be specified for a message. Multiple
parameters must be specified in the order in which they are numbered and

separated by blanks or commas.

The parameter value must contain displayable characters. At run time, each
variable data field in a stored message expands or contracts to accommodate the
size of its replacement parameter. A replacement parameter can be a maximum of

240 bytes.

PREFIX IS prefix

Overrides the default prefix of a dialog and a map. Prefix specifies an EBCDIC or
unsigned zoned decimal variable data field that contains a 2-character prefix or the
2-character prefix itself, enclosed in single quotation marks

ABORT

512 ADS Reference Guide

Usage

Considerations

■ When a dialog issues an ABORT command, CA ADS abnormally terminates the
current task and returns control to DC/UCF. A snap dump of all memory areas
maintained for the current CA ADS runtime session at the time of the abort can be

requested.

■ The CA ADS runtime system provides a diagnostic screen that displays information

about an abnormally terminated dialog. The diagnostic screen is enabled for an
installation by means of the DIAGNOSTIC SCREEN clause of the system generation
ADSO statement.

Note: For more information about the ADSO statement, see the CA IDMS System
Generation Guide.

If the diagnostic screen is not enabled when an ABORT command is issued, a system
error message (DC466019) is displayed. If a message code is specified in the ABORT

command and the dictionary message specifies a destination of log, the message is
also sent to the system log.

■ Up to nine replacement parameters can be specified for a message.

■ Multiple message parameters must be separated by blanks or commas.

■ Message parameters must be specified in the order in which they occur in the
stored message.

■ Within the message definition in the dictionary, symbolic parameters are identified
by an ampersand (&) followed by a two-digit numeric identifier. These identifiers
can appear in any order. The position of the replacement values in the PARMS
parameter must correspond directly to the two-digit numeric identifiers in the

message; the first value corresponds to &01, the second to &02, and so forth. For
example, assume that the stored message text is as follows:

THIS IS TEXT &01 AND &03 OR &02

The PARMS parameter reads PARMS=('A','B','C'). The resulting text would read as

follows:

THIS IS TEXT A AND C OR B

Example

The following example il lustrates the use of the ABORT command:

ADD ACC-BAL TO TOT-BAL.

ADD 1 TO CONTROL-CTR.

IF CONTROL-CTR < 100

THEN

 INVOKE 'CEXDR008'.

ELSE

 ABORT SNAP MSG TEXT CUST-NUM.

ACCEPT

Chapter 20: Utility Commands 513

More information:

CA ADS Runtime System (see page 119)

ACCEPT

Purpose

Retrieves information about the current task and dialog. (In CA ADS Batch, ACCEPT is

used to accept runtime parameters into a storage location.)

Syntax

►►─ ACCept ──┬──┬─ TASK CODE ───────────┬─ INTO location ──┬── . ─────────────►◄
 │ ├─ TASK ID ─────────────┤ │
 │ ├─ LTERM ID ────────────┤ │
 │ ├─ PTERM ID ────────────┤ │
 │ ├─ SYSVERSION ──────────┤ │
 │ ├─ USER ID ─────────────┤ │
 │ ├─ current DIALOG name ─┤ │
 │ ├─ HIGHER DIALOG name ─┤ │
 │ ├─ RECORD name ─────────┤ │
 │ ├─ AREA name ───────────┤ │
 │ ├─ ERROR SET name ──────┤ │
 │ ├─ ERROR RECORD name ───┤ │
 │ ├─ ERROR AREA name ─────┤ │
 │ ├─ SYSTEM ID ───────────┤ │
 │ └─┬─ RUN PARameters ─┬──┘ │
 │ └─ PARMS ──────────┘ │
 │ │
 └─ SCREEN SIZE INTO location1 location2 ─────┘

Parameters

TASK CODE

Retrieves the eight-character code used to invoke the current task.

TASK ID

Retrieves the DC/UCF-assigned task identification number. The task id is a unique
sequence number stored in a binary fullword field. The task id is zero when DC/UCF
is started and is incremented by one for each new task added to the system.

LTERM ID

Retrieves the eight-character identification of the logical terminal associated with
the current task.

PTERM ID

Retrieves the eight-character identification of the physical terminal associated with
the current task.

ACCEPT

514 ADS Reference Guide

SYSVERSION

Retrieves the version number, in the range 0 to 32767, of the DC/UCF system

currently in use. The version number is stored in a binary halfword field.

USER ID

Retrieves the user identification.

In CA ADS, the 32-character identification of the user signed on to the logical
terminal associated with the current task is retrieved. If no user is signed on, a null

user id (that is, 32 blanks) is returned.

In CA ADS Batch, the user identification specified in the USER (REQUESTOR) input
parameter is retrieved.

current DIALOG name

Retrieves the name of the current dialog.

HIGHER DIALOG name

Retrieves the name of the dialog that is operative at the next higher level in the
current application thread.

RECORD name

Retrieves the name of the record that is current of run unit for the issuing dialog.

AREA name

Retrieves the name of the area that is current of area for the issuing dialog.

ERROR SET name

Retrieves the name of the last set involved in an operation tha t resulted in an error
condition.

ERROR RECORD name

Retrieves the name of the last record involved in an operation that resulted in an
error condition.

ERROR AREA name

Retrieves the name of the last area involved in an operation that resulted in an
error condition.

RUN PARameters

(CA ADS Batch only) Retrieves runtime parameters, which are specified in the JCL
PARM parameter (z/OS, z/VSE Release 2.1, and z/VM) or in a JOB VARIABLE
statement. If no runtime parameters are specified in the JCL, the storage location is
blank fi l led.

PARMS can be used in place of RUN PAR.

INITIALIZE RECORDS

Chapter 20: Utility Commands 515

SYSTEM ID

Retrieves the 8 character name(nodename) by which the DC/UCF system is known

to other nodes in the DC/UCF communications network.

INTO location

Specifies the location to which the information is moved.

Location is the name of a variable data field in the dialog's record buffers. The
specified field must have an appropriate picture and usage for the value being
retrieved.

SCREEN SIZE INTO location1 location2

Retrieves the dimensions (that is, the number of rows and columns) of the physical
terminal screen associated with the current task.

Location1 is the name of a numeric variable data field in the dialog's record buffers
to which the number of rows moved.

Location2 is the name of a numeric variable data field in the dialog's record buffers
to which the number of columns is moved.

INITIALIZE RECORDS

Purpose

Reinitializes one or more of a dialog's record buffers.

Syntax

►►─── INITialize records ────┬─ ALL ────────────────────┬─── . ───────────────►◄
 │ ┌───────────────┐ │
 └─ (─▼─ record-name ─┴─) ─┘

Parameters

ALL

Reinitializes the buffers for all subschema, map, and work records referenced by
the issuing dialog, regardless of which dialog originally allocated the buffers.

record-name

Reinitializes the buffer for each record specified by record-name. The named
records must be associated with the issuing dialog.

SNAP

516 ADS Reference Guide

Usage

Considerations

■ After execution of an INITIALIZE RECORDS command, the record elements in the
specified record buffers contain their original values, as follows:

– If the record element is defined with a VALUE IS clause, the buffer is

reinitialized with the defined value.

– If the record element definition has no VALUE IS clause, the buffer is
reinitialized either with spaces (EBCDIC and DBCS fields) or with zeros of the
appropriate data type (numeric fields).

SNAP

Purpose

Request a snap dump of the contents of one or more areas maintained in memory for
CA ADS. The dump produced by a SNAP command can be used to assess the use of

system resources by an executing dialog.

Syntax

 ┌──┐
►►──── SNAP ───▼────┬─┬── ALL ──────────┬─────────────────┬───┴───────────────►
 │ │ │ │
 │ │ ┌────────────┐ │ │
 │ └─▼─┬─ OCB ─┬─┴──┘ │
 │ ├─ OWA -─┤ │
 │ ├─ OTB ─┤ │
 │ ├─ OTBX ─┤ │
 │ ├─ FDB ─┤ │
 │ ├─ VDB ─┤ │
 │ ├─ RBB ─┤ │
 │ ├─ ADB ─┤ │
 │ └─ TAT ─┘ │
 │ ┌───────────────┐ │
 └─ RECORDs - (─▼─ record-name ─┴─) ─┘

 ►──┬──┬─── . ────────────────────────►◄
 └─ TITLE ───┬──────┬──── 'title-text' ─────┘
 ├─ IS ─┤
 └─ = ─┘

Parameters

ALL

Writes all areas of memory maintained for the issuing dialog to the SNAP dump.

OCB

Keyword which requests the CA ADS control block. The OCB contains CA ADS
system parameters specified in the system generation ADSO statement.

SNAP

Chapter 20: Utility Commands 517

OWA

Keyword which specifies the CA ADS online work area. The OWA is maintained as a

temporary storage buffer for application and dialog information used during CA
ADS runtime processing. The OWA is not maintained across tasks.

OTB

Keyword which specifies the CA ADS terminal block. The OTB contains information
about the current CA ADS session. The OTB is maintained across tasks.

OTBX

Keyword which specifies the CA ADS terminal block extension. The OTBX is an
extension of the OTB and contains pointers to the TAT, the
ADSO-APPLICATION-GLOBAL-RECORD record buffer, the RBB, and the ADB for the
currently executing application. The OTBX exists only for applications defined using

the application compiler (ADSA).

FDB

Keyword which specifies the fixed dialog block. The FDB is the dialog load module
created by the dialog compiler (ADSC). Information in the FDB includes executable
process code and parameters required to execute the dialog, and information on

the maps and records associated with the dialog.

VDB

Keyword which specifies the variable dialog block. One VDB exists for each
operative dialog. A VDB contains runtime variable information about a dialog, such

as the status of map fields, information concerning flow of control, addresses of
records used by the dialog, and the address of the executing command.

The VDB is created dynamically for the issuing dialog at runtime.

RBB

Keyword which specifies the record buffer block. The RBB contains header

information and buffers for all records associated with the current application.

ADB

Keyword which specifies the application definition block. The ADB is the application
load module created by the CA/ADS online application compiler. The ADB contains
the application information supplied on the definition screens during an application

compiler session. The ADB exists only if the application is defined using the
application compiler.

TAT

Keyword which specifies the task application table. The TAT contains the names of
task codes used to initiate applications and the names of the applications (ADBs)

thus initiated. The TAT exists only if there are applications on the system that are
defined using the application compiler.

TRACE

518 ADS Reference Guide

RECORDS record-name

Includes information associated with the specified subschema, map, or work

records in the SNAP dump. The information is taken from the RBB; it includes data,
but no headers, from the buffers for the named records.

Record-name must be associated with the issuing dialog.

TITLE is 'title-text'

Specifies a title for the SNAP dump.

Title-text is a 1- to 90-character string enclosed in single quotation marks. The
specified title is printed on the hard-copy listing of the SNAP dump.

Usage

Snap dumps are written to the DC/UCF log and can be printed by using the PRINT LOG
print log util ity.

Note: For more information about PRINT LOG, see the CA IDMS Utilities Guide.

TRACE

Purpose

Activates the CA ADS trace facil ity; with the OFF parameter, deactivates the CA ADS

trace facil ity.

Syntax

►►─── TRACE ─┬─────────┬──►◄
 ├─ ALL ◄ ─┤
 ├─ CTL ───┤
 └─ OFF ───┘

Parameters

ALL

Writes trace records to the system log for each of the following:

■ Dialog entry

■ Process module entry

■ Subroutine entry

■ Process command execution for dialogs having symbol tables

■ Database status information

■ Currency save and restore operations

WRITE PRINTER

Chapter 20: Utility Commands 519

CTL

Writes the same trace records as ALL only for the following subset of process

commands:

■ Control commands

■ Database commands

OFF

Deactivates the trace facil ity.

WRITE PRINTER

Purpose

Sends data from a dialog to a printer or to a fi le.

Syntax

►►─── WRITE PRINTER ────┬─────────────┬───┬──────────┬────────────────────────►
 └┬─ ERASE ───┬┘ └─ ENDRPT ─┘
 └─ NEWPAGE ─┘

 ►────┬─ SCREEN CONTENTS ───►
 └┬──────────┬─ FROM message-location-variable ──────────────────────────
 └─ NATIVE ─┘

 ►───┬──────────────────────────────►
 ────┬─ TO end-message-location-variable ──┬──┘
 └─ LENGTH message-length ─────────────┘

 ►────┬──────────────────────┬──►
 └─ COPIES copy-count ──┘

 ►────┬────────────────────────┬──►
 └─ REPORT ID report-id ──┘

 ►────┬─────────────────────────┬──────────────────────┬──────────────────────►
 ├─ CLASS printer-class ──┘ │
 │ │
 └─ DESTINATION printer-destination ──┬───────┬───┘
 └─ ALL ─┘
 ►────┬────────┬───┬────────┬───┬────────────────────┬─── . ──────────────────►◄
 └─ HOLD ─┘ └─ KEEP ─┘ └─ error-expression ─┘

Parameters

ERASE

Specifies that the data being transmitted is to be printed on a new page.

NEWPAGE may be used in place of ERASE.

ENDRPT

Specifies that the data being transmitted is the last record of the specified report. If
ENDRPT is specified, the report is printed before the current task terminates.

WRITE PRINTER

520 ADS Reference Guide

SCREEN CONTENTS

Transmits the contents of the currently displayed screen to the print queue. This

option is valid only for 3270-type terminals. If SCREEN CONTENTS is specified for
another terminal type, an error condition results.

NATIVE

Specifies that the data stream being transmitted contains l ine and device control
characters. If NATIVE is not specified, DC/UCF automatically inserts the necessary

characters.

FROM message-location-variable

Specified the location of the data to be transmitted to the print queue.

Message-location-variable is the name of a variable data field in the dialog's record
buffers.

TO end-message-location-variable

Specifies the end of the buffer area that contains the data to be transmitted.

End-message-location-variable is the name of a dummy byte field or the name of a
variable data field that contains a data item not associated with the data being
transmitted.

The field specified by end-message-location-variable must immediately follow the
last byte of the buffer area that contains the data to be transmitted.

LENGTH message-length

Specifies the length of the buffer area that contains the data to be transmitted.

Message-length is either the name of a numeric variable data field that contains the
length in bytes or the length itself, in bytes, expressed as a numeric constant.

COPIES copy-count

Specifies the number of report copies to print.

Copy-count-number is either the name of a numeric variable data field that contains

the copy count or the number of report copies itself, expressed as a numeric
constant in the range 1 through 255.

If COPIES is not specified, the number of copies defaults to 1.

REPORT ID report-id

Specifies the report with which the transmitted data is associated. The report id

must be an integer in the range 1 through 255.

Report-id is either the name of a numeric variable data field that contains the
report id or the report id itself expressed as a numeric constant.

If REPORT ID is not specified, the report id defaults to 1.

WRITE PRINTER

Chapter 20: Utility Commands 521

CLASS printer-class

Specifies the print class, in the range 1 through 64, to which the report is assigned.

Printer-class is either The name of a numeric variable data field that contains the
print class or the print class itself, expressed as a numeric constant.

If no print class is specified, the physical terminal default is used.

DESTINATION printer-destination

Specifies the printer to which the report is routed.

Printer-destination is either the name of a variable data field that contains the 1 to
8-character destination or the destination itself, enclosed in single quotation marks.

If no print destination is specified, the physical terminal default is used.

ALL

Specifies that the report is to be printed on all of the logical terminals at the

specified print destination. If ALL is not specified, the report is printed on only one
of the logical terminals.

HOLD

Specifies that DC/UCF is not to print the report until a system operator releases it
with a DCMT VARY REPORT command.

Note: For more information about DCMT commands, see the CA IDMS System Tasks
and Operator Commands Guide.

KEEP

Specifies that each time DC/UCF finishes printing the report, the report is to be kept

instead of deleted. The report can be reprinted or deleted with a DCMT VARY
REPORT command.

If KEEP is not specified, the report is deleted once it is printed.

error-expression

Specifies the status codes that are returned to the dialog.

Usage

Definition

The WRITE PRINTER command is used to transmit data from the issuing dialog to a
DC/UCF printer terminal and to initiate printing of the transmitted data. Data is passed
first to a report queue maintained by DC/UCF and then to the printer.

Each line of data transmitted by a WRITE PRINTER request is considered a record. Each
record is associated with a particular report in the report queue. A report consists of

one or more records. The report queue can contain up to 256 active reports for any one
task.

WRITE PRINTER

522 ADS Reference Guide

If autostatus is not in use, a dialog's error-status field indicates the outcome of a WRITE
PRINTER command:

Status Code Meaning

0000 The request was executed successfully

4807 An I/O error occurred in placing the record in the print queue

4818 The DC/UCF system has no logical terminals associated with a printer

4821 The specified printer destination is invalid

4838 The variable storage field that contains the record to be printed was

not allocated

4845 The output terminal type is not correct for the WRITE PRINTER
request

4846 A terminal I/O error occurred while attempting to print the contents

of a screen.

Considerations

■ A report is terminated when the current run unit is terminated or when a WRITE

PRINTER ENDRPT command is issued. Note that a run unit can be extended across
dialogs by using the LINK command.

■ A process can contain multiple WRITE PRINTER requests, each for a different report.
DC/UCF maintains the records associated with each report individually, ensuring

that records associated with one report are not interspersed with records
associated with other reports when the reports are printed.

■ Printing is initiated either explicitly by a WRITE PRINTER request or implicitly by
termination of the current task. If a task terminates abnormally, all data in the print
queue is deleted, unless it was previously committed by a COMMIT TASK command.

■ Each printer has one or more DC/UCF classes or destinations. The print class and
destination for a report are assigned when the WRITE PRINTER command is issued
for the first record in the report. The entire report is printed on the first available

printer with the specified class .

■ A default print class and print destination can be specified for applications defined
using the application compiler. The defaults are specified on the General Options
screen.

At runtime, the defaults are stored in the AGR-PRINT-CLASS and

AGR-PRINT-DESTINATION record elements of the ADSO-
APPLICATION-GLOBAL-RECORD. WRITE PRINTER commands can select these
defaults by specifying these record elements in the CLASS and DESTINATION
parameters.

WRITE TO LOG/OPERATOR

Chapter 20: Utility Commands 523

More information:

CA ADS Application Compiler (ADSA) (see page 51)

System Records (see page 567)
CA ADS Runtime System (see page 119)
Control Commands (see page 325)

Error Handling (see page 277)

WRITE TO LOG/OPERATOR

Purpose

Sends messages to the log fi le or, in the batch environment, to the log fi le and the

operator's console.

Syntax

►►─── WRITE ─── to ──┬─ LOG ──────┬───┬── MESSAGE ──┬── message-options ── . ─►◄
 └─ OPERator ─┘ └── MSG ─────┘

Expansion of Message-Options

►►────┬─ TEXT ─────┬──────┬────────── message-text ───────────────────────────►
 │ ├─ IS ─┤
 │ └─ = ─┘
 └─ CODE ─────┬──────┬────────── message-code ───────────────────────────
 ├─ IS ─┤
 └─ = ─┘

 ►──►
 ────┬───┬───────────────────────
 │ ┌──────────────┐ │
 └─ PARMS ────┬─────┬─── (─▼── parameter ─┴─) ──┘
 └─ = ─┘

 ►──┬───────────────────────►◄
 ────┬──┬──────┘
 └─ PREFIX ───┬──────┬─────── prefix ─────┘
 ├─ IS ─┤
 └─ = ─┘

Parameters

LOG/OPERATOR

Sends a message to the system log or to the operator's console. OPERATOR can be
specified only in the batch environment.

MESSage message-options

Identifies message to be displayed.

MSG can be used in place of MESSAGE.

WRITE TO LOG/OPERATOR

524 ADS Reference Guide

TEXT IS message-text

Specifies the text of a message to be sent to the system log or, if batch, sent to the

console and batch log fi le.

Message-text specifies either the name of a variable data field containing the
message text or the text string itself, enclosed in single quotation marks.

The text string can contain up to 240 displayable characters.

CODE IS message-code

Specifies the message dictionary code of a message to be displayed in an online
map's message field or sent to the log fi le in a batch application.

In a batch application, the message is also sent to the operator, if directed by the

destination specified in the dictionary.

Message-code specifies either the name of a variable data field that contains the
message code or the 6-digit code itself, expressed as a numeric l iteral.

PARMS = parameter

Specifies a replacement parameter for each variable field in the stored message

identified by message-code.

Up to nine replacement parameters can be specified for a message. Multiple
parameters must be specified in the order in which they are numbered and
separated by blanks or commas.

Parameter specifies either the name of an EBCDIC or unsigned zoned decimal
variable data field that contains the parameter value or the actual parameter value,
enclosed in single quotation marks.

The parameter value must contain displayable characters. At run time, each
variable data field in a stored message expands or contracts to accommodate the
size of its replacement parameter. A replacement parameter can be a maximum of
240 bytes.

PREFIX IS prefix

Overrides the default prefix of a dialog and a map.

Prefix must either specify an EBCDIC or unsigned zoned decimal variable data field
that contains a 2-character prefix or the 2-character prefix itself, enclosed in single
quotation marks

Usage

Considerations

■ Up to nine replacement parameters can be specified for a message.

■ Multiple parameters must be separated by blanks or commas.

■ Multiple parameters must be specified in the order in which they occur in the

stored message.

WRITE TO LOG/OPERATOR

Chapter 20: Utility Commands 525

Chapter 21: Cooperative Processing Commands 527

Chapter 21: Cooperative Processing
Commands

This section contains the following topics:

Using SEND/RECEIVE Commands (see page 527)
Sample Cooperative Application (see page 528)

SEND/RECEIVE Commands (see page 534)
ALLOCATE (see page 535)
CONFIRM (see page 538)
CONFIRMED (see page 539)

CONTROL SESSION (see page 540)
DEALLOCATE (see page 541)
PREPARE-TO-RECEIVE (see page 543)

RECEIVE-AND-WAIT (see page 543)
REQUEST-TO-SEND (see page 545)
SEND-DATA (see page 545)
SEND-ERROR (see page 546)

Design Guidelines (see page 547)
Understanding Conversation States (see page 548)
Testing APPC Status Codes and System Fields (see page 552)

Using SEND/RECEIVE Commands

SEND/RECEIVE commands allow you to create applications that execute cooperatively
on two systems. You can exchange information between an CA ADS application (on the
mainframe) and:

■ An CA ADS application (running under a different CA IDMS/DC system)

■ An Assembler program (running under CA IDMS/DC)

■ Any program using APPC/LU6.2, regardless of the program's platform

Applications that execute cooperatively on two systems are taking advantage of
cooperative processing.

Client and Server

With cooperative processing, labor is divided so that one side of the application acts as a
client and the other acts as a server. The client provides front-end processing for the
user (l ike data input, validation, and display). The server provides back-end processing

(l ike database access and the implementation of business rules and procedures).

Sample Cooperative Application

528 ADS Reference Guide

How Cooperative Processing Works

The SEND/RECEIVE commands in CA ADS follow the standards set for Advanced Program
to Program Communication (APPC).

APPC is an IBM standard that provides enhanced Systems Network Architecture (SNA)

support for distributed processing. APPC enables 2 processors to work together: it
describes the protocols the 2 processors' programs use to communicate as they execute
a single distributed transaction.

APPC is composed of logical and physical definitions of the system network. The logical
component is the LU 6.2 protocol, which defines the rules that govern the exchange of

information between the 2 programs.

The LU 6.2 protocol structures a program-to-program conversation like a polite
conversation: one side talks and the other s ide listens.

■ One program (the primary program) starts the conversation by call ing the other

program (the secondary program).

■ The 2 programs agree on the rules governing the conversation before the
conversation can continue.

■ The conversation goes back and forth, with the current speaker (in send state)

always in control:

1. When the listener (in receive state) wants to speak, the listener requests
permission.

2. If the speaker approves the request, the listener switches to send state and the
speaker to receive state.

Sample Cooperative Application

This application retrieves employee information from the database. A user on the PC
uses Program A (the client) to send an employee ID to the mainframe. Dialog B (the

server) on the mainframe returns employee information to the PC.

Sample Cooperative Application

Chapter 21: Cooperative Processing Commands 529

The flowchart below describes the flow of information in the cooperative application.
The communication commands in Program A and Dialog B are labeled in sequence (A1

through A8 and B1 through B6).

Sample Cooperative Application

530 ADS Reference Guide

Program A: Client Listing (PC)

!***

 !

 ! This module sends up the employee ID and receives employee

 ! data back from mainframe server dialog A240D1.

 LOCAL Emp_data_group DICT.

 SHOW TEXT '&nAccessing. remote server ...'.

 ! Since we are going to use this data in some meaningful fashion we

 ! define a formatted conversation. Note the use of "FORMAT". This

 ! means that all data is automatically translated from PC data types

 ! to mainframe data types. IBM APPC LU 6.2 calls for the use of a return

 ! code to verify the state of a particular APPC verb. We use "Appccode".

(A1) ALLOCATE CONNECT 'SYSTEM55' TPN 'A240D1' FORMAT.

 AFTER Comm-error CALL SR_Abend.

 ! Note the use of a local subroutine called SR_Abend.

 !

 ! Let's send up the employee ID.

 !

(A2) SEND-DATA Emp_id.

 AFTER Comm-error CALL SR_Abend.

 !

 ! "Turn the line around" and wait for server to send down

 ! the requested data. This flushes the communications

 ! buffer and passes control to the server dialog.

(A3) RECEIVE-AND-WAIT Emp_data_group.

 !

 ! If an employee was not found, then the server's SEND-ERROR

 ! shows PROG-ERROR at the client side of the conversation.

 !

 AFTER Prog-error

 DO.

 ! One more receive to get the deallocate state...

(A4) RECEIVE-AND-WAIT.

 AFTER Deallocate-normal

 DO.

(A5) DEALLOCATE LOCAL.

 AFTER Comm-error CALL SR_Abend.

 INITIALIZE (emp_first_name, emp_last_name,

 office_code, emp_street, emp_city,

 emp_state, emp_zip_first_five, status).

 DISPLAY TEXT '&wEmployee. not on file. Try again.'.

Sample Cooperative Application

Chapter 21: Cooperative Processing Commands 531

 END.

 END.

 IF Appccode LT 0 OR What-received NE 'DATA-COMPLETE'

 CALL SR_Abend.

 !

 ! We seem to have received the data ok.

 !

 ! The server is still in control of the conversation, so we

 ! do one more receive-and-wait to receive the fact that the

 ! server has deallocated. This puts the client in deallocate state,

 ! allowing the client to deallocate normally and regain control.

 !

(A6) RECEIVE-AND-WAIT.

 AFTER Deallocate-normal

 DO.

(A7) DEALLOCATE LOCAL.

 ! Now move data to form fields and display it.

 Emp_first_name = Emp_data_group.emp_first_name.

 Emp_last_name = Emp_data_group.emp_last_name.

 Emp_street = Emp_data_group.emp_street.

 Emp_city = Emp_data_group.emp_city.

 Emp_state = Emp_data_group.emp_state.

 Emp_zip_first_five = Emp_data_group.emp_zip_first_five.

 Status = Emp_data_group.status.

 Office_code = Emp_data_group.office_code.

 DISPLAY FIELD Emp_id TEXT ' '.

 END.

 AFTER Comm-error CALL SR_Abend.

 !******* Local subroutine *********

 DEFINE SR_Abend.

 SHOW TEXT '&cComm. Error. APPCCODE='&svb.&svb. Appccode

 &svb.&svb. ', APPCERC=' &svb.&svb. Appcerc.

(A8) DEALLOCATE ABEND.

 DISPLAY.

 !

Sample Cooperative Application

532 ADS Reference Guide

Dialog B: Server listing (Mainframe)

!***

 DIALOG A240D1 (CA ADS)

 PROCESS NAME IS A240D1-PREMAP

 ! THE INTENT OF THIS MAPLESS DIALOG IS TO RECEIVE THE EMPLOYEE-ID

 ! FROM THE PC APPLICATION AND THEN OBTAIN THE APPROPRIATE RECORDS FROM

 ! THE CA IDMS/DB DATABASE, BASED ON THE CONTENTS OF THE EMPLOYEE ID.

 ! THEN CERTAIN ELEMENTS IN THE RECORDS ARE SENT BACK TO THE PC FOR FURTHER

 ! PROCESSING.

 !

 ! IN ALL APPC CONVERSATIONS THERE ARE LOCAL AND REMOTE PROGRAM.

 ! ONLY ONE OF THE PROGRAMS CAN CONTROL THE CONVERSATION BUT CONTROL

 ! CAN BE PASSED BACK AND FORTH BETWEEN LOCAL AND REMOTE APPLICATIONS.

 !

 ! IN THIS APPLICATION THE DEFAULT SENDER IS THE PC PROGRAM BECAUSE IT

 ! ISSUED THE ALLOCATE. ON THE RECEIVING END A "CONTROL SESSION" IS

 ! INITIATED IN RESPONSE TO THE ALLOCATE.

 !

 ! NOTE THAT THE USE OF THE FORMAT/NOFORMAT PARAMETERS MUST BE THE SAME AT

 ! BOTH ENDS OF THE CONVERSATION.

 READY.

(B2)CONTROL SESSION FORMAT.

 IF APPCCODE LT 0 THEN

 CALL SR-ABEND.

 ! LET'S GET THE EMPLOYEE ID FROM THE PC.

(B2)RECEIVE-AND-WAIT EMP-ID-WORK.

 IF APPCCODE LT 0 OR WHAT-RECEIVED NE 'DATA-COMPLETE' THEN

 CALL SR-ABEND.

 ! ALL APPC COMMUNICATIONS OCCUR IN HALF-DUPLEX MODE. THAT IS, ONLY ONE

 ! OF THE PROGRAMS CAN TALK WHILE THE OTHER LISTENS. IN ORDER TO

 ! "TURN THE LINE AROUND" THE RECEIVER MUST WAIT UNTIL THE SENDER SAYS IT'S

 ! OK TO SEND. THIS IS ACCOMPLISHED BY WAITING FOR 'SEND' TO BE RECEIVED

 ! IN THE WHAT-RECEIVED SYSTEM VARIABLE.

(B3)RECEIVE-AND-WAIT.

 IF APPCCODE LT 0 OR WHAT-RECEIVED NE 'SEND' THEN

 CALL SR-ABEND.

 ! EMP-ID-0415 IS DEFINED AS PIC 9(4) USAGE IS DISPLAY. APPC PRESENTATION

 ! SERVICES DO NOT SUPPORT ZONED DECIMAL DATA TYPE. IN ORDER TO RECEIVE THE

 ! EMPLOYEE ID FROM THE PC, A WORK RECORD IS CREATED WITH USAGE IS COMP.

Sample Cooperative Application

Chapter 21: Cooperative Processing Commands 533

 ! THEN GET THE RECORD USING AN OBTAIN CALC.

 MOVE WK-EMP-ID TO EMP-ID-0415.

 OBTAIN CALC EMPLOYEE.

 IF DB-REC-NOT-FOUND THEN DO.

(B4) SEND-ERROR. ! NOTIFY CLIENT WE DIDN'T FIND EMPLOYEE

 IF APPCCODE LT 0 THEN CALL SR-ABEND.

(B5) DEALLOCATE.

 LEAVE ADS.

 END.

 ! GET THE OFFICE RECORD, IF ONE EXISTS.

 IF SET OFFICE-EMPLOYEE MEMBER THEN

 OBTAIN OWNER WITHIN OFFICE-EMPLOYEE.

 MOVE EMP-FIRST-NAME-0415 TO WK-EMP-FIRST-NAME.

 MOVE EMP-LAST-NAME-0415 TO WK-EMP-LAST-NAME.

 MOVE EMP-STREET-0415 TO WK-EMP-STREET.

 MOVE EMP-CITY-0415 TO WK-EMP-CITY .

 MOVE EMP-STATE-0415 TO WK-EMP-STATE.

 MOVE EMP-ZIP-FIRST-FIVE-0415 TO WK-EMP-ZIP-FIRST-FIVE.

 MOVE STATUS-0415 TO WK-STATUS.

 MOVE OFFICE-CODE-0450 TO WK-OFFICE-CODE.

(B6) SEND-DATA WK-EMP-REC2.

 IF APPCCODE LT 0 THEN CALL SR-ABEND.

 ! NOW THAT WE HAVE FINISHED, LET'S FLUSH THE COMMUNICATIONS

 ! BUFFER AND TERMINATE THE CONVERSATION.

(B6)DEALLOCATE.

 LEAVE ADS.

!***********************

 !

 ! SEND/RECEIVE ERROR HANDLING SUBROUTINE

 !

 DEFINE SR-ABEND.

(B7) DEALLOCATE ABEND.

 LEAVE ADS.

SEND/RECEIVE Commands

534 ADS Reference Guide

SEND/RECEIVE Commands

SEND/RECEIVE commands are l isted below. Syntax and syntax rules for each command
is presented in alphabetical order after the table.

Command What it does When it's issued

ALLOCATE Begins a conversation with a
server dialog

The first communication
command issued by the
client dialog when it's ready

to communicate

CONFIRM Sends a confirmation request
to the remote program and

waits for a reply

Issued by the dialog in send
state

CONFIRMED Sends a confirmation reply to
the remote program

Issued by the dialog in
confirm state

CONTROL SESSION Acknowledges the

conversation and agrees to
the rules governing the
conversation; a CA extension

to APPC used in
PC-to-mainframe
conversations, but not
required for

mainframe-to-mainframe
communication

Issued by the server dialog in

response to the client
dialog's ALLOCATE;
parameters must match

those on the ALLOCATE

DEALLOCATE Ends the conversation The last command in the

conversation issued by
either dialog

PREPARE-TO- RECEIVE Changes the local side to
receive state

Issued by the dialog in send
state in response to

REQUEST-TO-SEND

RECEIVE-AND-WAIT Waits for a response from the
remote program and receives
the data or a value in the

system field,
WHAT-RECEIVED, upon arrival

Issued by a dialog that wants
to receive data (the dialog
can be in send or receive

state); when used in send
state, it indicates that the
local dialog wants to receive

data, allowing the remote
dialog to send data

ALLOCATE

Chapter 21: Cooperative Processing Commands 535

Command What it does When it's issued

REQUEST-TO-SEND Notifies the remote program

that the local program is
ready to send data

Issued by the dialog in

receive state

SEND-DATA Sends data to the remote

program

Issued by the dialog in send

state

SEND-ERROR Notifies the other dialog of an
application-level error

Issued by either dialog

ALLOCATE

Purpose

Begins a conversation between an CA ADS dialog and a remote dialog or program. The
FORMAT/NOFORMAT setting on the ALLOCATE command must match the

FORMAT/NOFORMAT setting on the CONTROL SESSION command.

Syntax

►►─── ALLOCATE LU-NAME name ──┬──────────────────┬────────────────────────────►
 └─ MODE-NAME name ─┘

 ►─── TPN task-code-name ───►

 ►──┬───┬─────────────────────►
 └─ SECURITY ─┬─ NONE ◄ ───────────────────────────┬─┘
 ├─ SAME ─────────────────────────────┤
 └─ PGM USER-ID id PASSWORD password ─┘

 ►──┬───────────────────────────┬───────┬─ FORMAT ◄ ─┬────────────────────────►
 └─ SYNC-LEVEL ─┬─ NONE ◄ ──┬┘ └─ NOFORMAT ─┘
 └─ CONFIRM ─┘

 ►──┬─────────────────────────┬─────────┬──────────────────────────┬─── . ────►◄
 └─ LOCAL VERSION version ─┘ └─ REMOTE VERSION version ─┘

Parameters

LU-NAME name

Specifies a field or string that identifies the 1- through 8-character name of the

logical unit used by the remote dialog.

Name must match the logical unit name of an APPC line defined to the local CA
IDMS/DC system.

ALLOCATE

536 ADS Reference Guide

MODE-NAME name

Specifies the name used by the remote logical unit to select the mode of

transmission for the conversation.

Name Is either a 1- through 8-character mode name or a variable containing the
mode name.

If omitted, CA IDMS/DC uses the mode name defined to the APPC line.

TPN task-code-name

A variable or string that contains or specifies the name of the remote program to be
initiated by the ALLOCATE command.

If trying to initiate a mainframe CA ADS task, the task-code-name must be a 1-

through 8-character task code defined to the remote CA IDMS/DC system that
invokes ADSORUN1.

SECURITY

Provides security information to the remote program.

NONE

Specifies that no security information is required for the conversation.

NONE is the default for SECURITY.

SAME

Specifies that the signon user ID is passed to the remote program. The following
considerations apply:

■ This signon does not work if a password is required to sign on to a separate CA

IDMS/DC or CICS system

■ This password does not allow you to sign on to the same CA IDMS/DC system
(CA IDMS/DC will not support 2 LTEs signed on for the same user at the same
time)

PGM USER-ID id

Specifies the user ID of the user who runs the application.

Id is either a 1- through 32-character user ID or a field containing a user ID.

PASSWORD password

Introduces the password of the user who runs the application.

Password is either a 1- through 8-character password or a field containing a

password.

This information is used to sign on to the remote logical unit.

ALLOCATE

Chapter 21: Cooperative Processing Commands 537

SYNC-LEVEL

Introduces the level of synchronization to use for the conversation.

NONE

Specifies that no confirmation commands can be used.

CONFIRM

Specifies that confirmation commands can be used.

FORMAT

Specifies that data will be converted by APPC presentation services before the
receiving program sees it:

■ Text is converted between ASCII and EBCDIC.

■ Numbers are converted between mainframe and PC format.

FORMAT is the default when neither FORMAT or NOFORMAT is specified.

NOFORMAT

Specifies that no data will be converted. If data conversion is required, you must
code any data translation or conversion.

LOCAL VERSION version

Specifies either a 1- through 32-character local program version identifier or a field

containing a version ID sent to the remote program.

REMOTE VERSION version

Specifies a variable of at least 32 characters to receive the version identifier sent by
the remote program.

Example

In order to allocate a conversation with another CA ADS dialog on a different CA

IDMS/DC system, code:

ALLOCATE LU-NAME 'S75LU1' TPN 'DLG1' SECURITY NONE

 SYSNC-LEVEL NONE NOFORMAT.

S75LU1 is the logical unit name of an APPC line defined to the local CA IDMS/DC system,
and DLG1 is the task code that initiates an CA ADS dialog on the remote CA IDMS/DC

system. Security and confirmation are not being used, and conversion is not needed
between 2 mainframe applications.

CONFIRM

538 ADS Reference Guide

CONFIRM

Purpose

Sends a confirmation request to a remote program and waits for a reply.

Syntax

►►───── CONFIRM ── . ───►◄

Usage

CONFIRM sends all data in the communications buffers to the remote program.

Considerations

■ Before CONFIRM can be issued, the conversation must have a synchronization level

of CONFIRM: SYNC-LEVEL CONFIRM on the ALLOCATE command and the i ssuing
dialog must be in the send state.

■ When using CONFIRM to synchronize processing between 2 programs

– If the remote program received all data sent, it returns CONFIRMED.

– If the remote program can't process the data due to an application-level error,
it returns SEND-ERROR.

■ To check the status of a conversation, test the system fields

REQUEST-TO-SEND-RECEIVED and WHAT-RECEIVED.

Example

The local program can issue a confirmation or send an error message:

SEND-DATA EMPLOYEE-RECORD.

IF APPCCODE EQ ZERO

 THEN

 CONFIRM.

ELSE

 DO.

 DEALLOCATE ABEND.

 ABORT MSG TEXT 'SEND-DATA ERROR'.

 END.

For the corresponding response from the remote program, see CONFIRMED.

CONFIRMED

Chapter 21: Cooperative Processing Commands 539

CONFIRMED

Purpose

Sends a confirmation reply to the remote dialog.

Syntax

►►───── CONFIRMED ── . ───►◄

Usage

CONFIRMED sends all data in the communications buffers to the remote program.

Note: CONFIRMED is sent in response to CONFIRM only.

Considerations

■ Before CONFIRMED can be issued, the conversation must have a synchroniza tion
level of CONFIRM: SYNC-LEVEL CONFIRM on the ALLOCATE command.

■ When using CONFIRM to synchronize processing between 2 programs

– If the local dialog received all data sent, it returns CONFIRMED.

– If the local dialog can't process the data due to an application-level error, it
returns SEND-ERROR.

■ To check the status of a conversation

Test the system fields: APPCCODE and WHAT-RECEIVED.

Example

In response to the preceding CONFIRM example, the remote program would issue:

RECEIVE-AND-WAIT EMPLOYEE-RECORD.

IF APPCCODE EQ ZERO

 THEN

 DO.

 RECEIVE-AND-WAIT.

 IF APPCCODE EQ ZERO AND WHAT-RECEIVED EQ 'CONFIRM'

 THEN

 CONFIRMED.

 END.

CONTROL SESSION

540 ADS Reference Guide

CONTROL SESSION

Purpose

Issued by the secondary dialog in response to the ALLOCATE command sent by the
primary dialog.

Syntax

►►───── CONTROL SESSION ──────┬─ FORMAT ◄ ─┬──────────────────────────────────►
 └─ NOFORMAT ─┘

 ►───┬─────────────────────────┬─────────┬──────────────────────────┬──── . ──►◄
 └─ LOCAL VERSION version ─┘ └─ REMOTE VERSION version ─┘

Parameters

FORMAT

Specifies that data will be converted by APPC presentation services before the

receiving program sees it:

■ Text is converted between ASCII and EBCDIC.

■ Numbers are converted between mainframe and PC format.

FORMAT is the default for CONTROL SESSION.

NOFORMAT

Specifies that no data will be converted. If data conversion is required, you must
code any data translation or conversion.

Note: The FORMAT/NOFORMAT setting on the ALLOCATE command must match

the FORMAT/NOFORMAT setting on the CONTROL SESSION command.

LOCAL VERSION version

Specifies either a 1- to 32-character local program version identifier or a field
containing a version ID sent to the remote program.

REMOTE VERSION version

Specifies a variable of at least 32 characters to receive the version identifier sent by

the remote program.

Usage

CONTROL SESSION is issued in response to the ALLOCATE command sent by the primary
program. These 2 commands establish the conventions governing the conversation.

This command is required in PC-to-mainframe conversations but is not used for

mainframe-to-mainframe conversations.

DEALLOCATE

Chapter 21: Cooperative Processing Commands 541

Considerations

The FORMAT/NOFORMAT setting on the ALLOCATE command must match the

FORMAT/NOFORMAT setting on the CONTROL SESSION command.

Example

In response to an ALLOCATE with the FORMAT setting, the local dialog sends LEVEL 1 in
its local version to the remote dialog for testing. The remote dialog will receive it in the
field, REMOTE-FIELD, for testing.

CONTROL SESSION FORMAT LOCAL VERSION 'LEVEL 1'

 REMOTE VERSION REMOTE-FIELD.

IF APPCCODE NE ZERO

 THEN

 DO.

 DEALLOCATE ABEND.

 ABORT MSG TEXT 'CONTROL SESSION ERROR'.

 END.

IF REMOTE-FIELD NE 'FIRST RELEASE'

 THEN

 DO.

 DEALLOCATE ABEND.

 ABORT MSG TEXT 'WRONG RELEASE OF PARTNER DIALOG'.

 END.

DEALLOCATE

Purpose

Ends the conversation.

Syntax

►►─── DEALLOCATE ────┬─ FLUSH ────────┬────── . ──────────────────────────────►◄
 ├─ SYNC-LEVEL ◄ ─┤
 ├─ ABEND ────────┤
 └─ LOCAL ────────┘

Parameters

FLUSH

Sends all data in the communications buffer to the remote program and then
terminates the conversation normally.

DEALLOCATE

542 ADS Reference Guide

SYNC-LEVEL

Terminates the conversation based on the synchronization level. If the current

synchronization level is:

■ NONE— All data in the communications buffer is sent to the remote dialog and
the conversation terminates normally.

■ CONFIRM— All data in the communications buffer is sent to the remote dialog
along with a request for confirmation. Once confirmation arrives from the
remote program, the conversation terminates normally. Otherwise, the return
code determines the state of the conversation.

SYNC-LEVEL is the default for DEALLOCATE

ABEND

Terminates the conversation abnormally.

The following considerations apply:

■ If the dialog is in send state, all data in the buffer is sent to the remote program

■ If the dialog is in receive state, all data in the buffer is purged

LOCAL

Terminates the conversation after the remote dialog has deallocated the
conversation.

Usage

DEALLOCATE is the last command in the conversation, but each dialog can continue

independent processing. The command only ends the conversation.

Considerations

DEALLOCATE:

■ Is not a control command

■ Does not end the dialog

Example

IF APPCCODE NE ZERO

 THEN

 DO.

 DEALLOCATE ABEND.

 ABORT MSG TEXT 'PROBLEM IN PROCESSING'.

 END.

PREPARE-TO-RECEIVE

Chapter 21: Cooperative Processing Commands 543

PREPARE-TO-RECEIVE

Purpose

Prepares to receive data from a remote program.

Syntax

►►─── PREPARE-TO-RECEIVE ───┬─ SYNC-LEVEL ◄─┬────── . ───────────────────────►◄
 └─ FLUSH ───────┘

Parameters

SYNC-LEVEL

Processes data based on the current synchronization level. If the synchronization
level is:

■ NONE— All data in the communications buffer is sent to the remote program
before the local dialog is put in receive state.

■ CONFIRM— All data in the communications buffer is sent to the remote

program along with a request for confirmation. If the remote dialog i ssues
CONFIRMED, the local dialog is put in receive state. Otherwise, the return code
from the remote program determines the state of the conversation.

SYNC-LEVEL is the default for PREPARE-TO-RECEIVE

FLUSH

Sends all data in the communications buffer to the remote program.

Usage

PREPARE-TO-RECEIVE is issued by the dialog in send state in response to
REQUEST-TO-SEND. PREPARE-TO-RECEIVE switches the local dialog to receive state.

Considerations

To check the status of a conversation test the system fields: REQUEST-TO-SEND and

WHAT-RECEIVED.

RECEIVE-AND-WAIT

Purpose

Names the record or field to receive data.

Syntax

►►──── RECEIVE-AND-WAIT ────┬─────────────────┬─── . ─────────────────────────►◄
 └─ variable-name ─┘

RECEIVE-AND-WAIT

544 ADS Reference Guide

Parameters

variable-name

Names the record or field to receive data from the remote program.

Variable-name can be up to 32 characters long.

If you omit the variable-name, data received from the remote program is lost. Only
a value is received in the WHAT-RECEIVED field.

Usage

Considerations

RECEIVE-AND-WAIT is issued by the dialog in receive state:

■ If presentation services are being used, then the variable's definition must match
the description of the incoming data definition.

■ If unformatted data is being received, the maximum length received is derived

from the variable's definition.

Example

This server dialog receives an employee id from the client and then obtains the
appropriate employee records from the database. The first RECEIVE-AND-WAIT receives
the id. The second turns the line around prior to sending information to the client.

CONTROL SESSION FORMAT.

IF APPCCODE LT ZERO

 THEN CALL SR-ABEND.

RECEIVE-AND-WAIT EMP-ID-WORK.

IF APPCCODE LT 0 OR WHAT-RECEIVED NE 'DATA-COMPLETE'

 THEN CALL SR-ABEND.

RECEIVE-AND-WAIT.

 .

 .

 .

REQUEST-TO-SEND

Chapter 21: Cooperative Processing Commands 545

REQUEST-TO-SEND

Purpose

Notifies the remote dialog that the CA ADS application is ready to send data. The
remote dialog can respond to this command in either of the following ways:

■ Ignoring the request and continuing to send data

■ Granting the request and starting to receive data

To determine whether permission to send has been granted, check the system field
(WHAT-RECEIVED).

Syntax

►►──── REQUEST-TO-SEND ───── . ───►◄

SEND-DATA

Purpose

Sends data to the remote dialog.

Syntax

►►──── SEND-DATA variable-name ─────── . ─────────────────────────────────────►◄

Parameters

variable-name

Specifies the name of the record or element to be sent.

Variable-name can be up to 32 characters long.

Note: The definition of variable-name must be in the dictionary associated with the

local dialog.

Usage

Data to be sent is stored in the CA ADS communications buffer. When the buffer is full
or you issue a CONFIRM command or DEALLOCATE with the FLUSH option, the data in
the buffer is sent to the remote dialog.

SEND-ERROR

546 ADS Reference Guide

Considerations

CA ADS issues a compiler error:

■ If the record or field transmitted is not a valid data type (these data types are not
valid for SEND/RECEIVE):

– Pointer

– Multibit binary

– Zoned decimal

– Graphics (kanji)

■ If the record or field transmitted is coded:

– With an OCCURS DEPENDING ON clause

– As USAGE COMP with decimal positions

■ If the record is a logical record

■ If variable-name is a level 88

■ If a group contains more than 256 fields

■ If a record definition makes an FD longer than 32,768 bytes

Any field that redefines another field is ignored, but a transmitted field can be a
REDEFINES field. For example, FIELD-B redefines FIELD-A within RECORD1. If you send
RECORD1, FIELD-B is ignored and the record is sent as if FIELD-A is the current definition
of the field.

Because only a subset of IDD data types are supported, you should:

1. Create a work record (much like the map work record) of the proper data types.

2. Move the values from your database record to this work record.

3. Move the received values back to your database record.

Example

After retrieving data and building the work record, send the data to the client dialog.

SEND-DATA WK-EMP-REC2.

 IF APPCCODE LT 0 THEN CALL SR-ABEND.

SEND-ERROR

Purpose

Informs the remote program that CA ADS detected an application-level error (such as

DB-REC-NOT-FOUND).

Design Guidelines

Chapter 21: Cooperative Processing Commands 547

Syntax

►►──── SEND-ERROR ───── . ──►◄

Usage

When you issue SEND-ERROR, the remote program does not automatically send the
data again. The remote program must detect the SEND-ERROR and respond
appropriately.

Example

If the record is not found, notify the client.

IF DB-REC-NOT-FOUND THEN DO.

 SEND-ERROR.

 IF APPCCODE LT 0 THEN CALL SR-ABEND.

 DEALLOCATE.

 LEAVE ADS.

 END.

Design Guidelines
■ Be careful not to end a conversation inadvertently.

A conversation is a task-level resource in CA IDMS/DC. When the task ends, any
ongoing conversation will be deallocated automatically. So do not use:

– DISPLAY

– LEAVE ADS NEXT TASK CODE

– LINK (to a program that will pseudoconverse)

Using any of these commands will deallocate your conversation.

■ Be aware of the location of the allocated dialog.

The CA ADS allocated task runs as a nonterminal task. Because you can not point to
a secondary load area or load library on the ALLOCATE command, the allocated
dialog should reside in the CA IDMS/DC default load search sequence.

If you want to use a secondary load area or load library, you must override the
search sequence by:

– Using the SECURITY parameter on the ALLOCATE command issued by the
primary dialog.

– Dialogs which exist in secondary load areas can be accessed in the client task
thread by using a signon profile associated with that user containing DCUF SET

DICTNAME or LOADLIST to change the search sequence for the secondary
dialog.

Understanding Conversation States

548 ADS Reference Guide

For server task threads a new system loadlist must be created and the
secondary dictionary entry must be coded prior to the primary dictionary entry.

A typical loadlist follows:

ADD LOADLIST NEWLOAD

 DICTNAME IS APPCDICT VERSION IS 1

 DICTNAME IS USER-DEFAULT VERSION IS USER-DEFAULT

 DICTNAME IS SYSTEM-DEFAULT VERSION IS SYSTEM-DEFAULT

 LOADLIB IS USER-DEFAULT

 DICTNAME IS USER-DEFAULT VERSION IS 1

 DICTNAME IS SYSTEM-DEFAULT VERSION IS 1

 LOADLIB IS SYSTEM-DEFAULT

MOD SYSTEM nnn

 LOADLIST = NEWLOAD

Understanding Conversation States

You must be aware of conversation states when you are developing a cooperative
application. Whenever a dialog is involved in a conversation, it is in a specific

conversation state. The state determines which communication operations can be
performed at that time. For example, a dialog must be in send state to send data; and
the partner dialog must be in receive state to receive data. You must keep both dialogs
synchronized to allow information to be exchanged.

Valid Conversation States

State What it means

Reset No conversation exists

Send The dialog can send data, request confirmation, or deallocate the

conversation

Receive The dialog can receive information from its partner dialog.

Confirm The dialog can reply to a confirmation request (there are three types of

confirm state, based on the state of the dialog after a communication
command is issued)

Deallocate The dialog can deallocate the conversation

Confirmation

The use of confirmation is optional. The primary program can request confirmation at
the beginning of the session. If confirmation is used, the sending program can issue a
CONFIRM command to which the recipient must respond CONFIRMED or SEND-ERROR.

You can acknowledge the receipt of data programmatically if you prefer.

Understanding Conversation States

Chapter 21: Cooperative Processing Commands 549

Conversation States

Statements and Conversation States

The following table summarizes, for each communication command, the states in which
the command can be issued and the resulting state after the command is executed.

To issue this
command

The dialog must be in
this state

After this return
code

The dialog is
in this state

ALLOCATE Reset OK Send

 Other Reset

CONFIRM Send OK Send

 PROG-ERROR Receive

 Other Deallocate

CONFIRMED ConfirmR OK Receive

 Other Deallocate

 ConfirmS OK Send

 Other Deallocate

 ConfirmD Any Deallocate

CONTROL Receive OK Receive

SESSION Other Deallocate

DEALLOCATE

 FLUSH Send Any Reset

 CONFIRM Send OK Reset

 PROG-ERROR Receive

 Other Reset

 ABEND Any Any Reset

 LOCAL Deallocate Any Reset

PREPARE-TO-
RECEIVE

Send OK or PROG-ERROR Receive

 Other Deallocate

RECEIVE-AND- Send or receive OK, Data complete Receive

WAIT OK, Send Send

 PROG-ERROR Receive

Understanding Conversation States

550 ADS Reference Guide

To issue this
command

The dialog must be in
this state

After this return
code

The dialog is
in this state

 Other Deallocate

 OK, CONFIRM ConfirmR

 OK, CONFIRM-SEND ConfirmS

 OK, CONFIRM-

 DEALLOCATE ConfirmD

REQUEST-TO- Receive OK Receive

SEND Other Deallocate

SEND-DATA Send OK Send

 PROG-ERROR Receive

 Other Deallocate

SEND-ERROR Send or Receive OK Send

 PROG-ERROR Receive

 Other Deallocate

 ConfirmR OK Send

 ConfirmS PROG-ERROR N/A

 ConfirmD Other Deallocate

Conversation States in a Successful Data Transfer

In the following diagram, for example, Dialog A on the PC establishes a conversation

with Dialog B on the mainframe. Dialog A sends a request for employee information to
Dialog B. Dialog B processes the request and returns a reply. Matching data is found a nd
returned. This is the same application shown in the flowchart earlier in this chapter.

The state changes are noted under the communications commands. Refer back to the
previous flowchart and the sample code if you wish. You can see that Dialog B uses a

RECEIVE-AND-WAIT to switch the line (changing from receive to send state in
preparation for returning data to the PC). Also note the state changes necessary to
deallocate the conversation. (Here, WR represents the WHAT-RECEIVED system field.)

Understanding Conversation States

Chapter 21: Cooperative Processing Commands 551

A Successful Transaction

Dialog A Dialog B

(A1) ALLOCATE (B1) CONTROL SESSION

 State (reset to send) State (receive)

(A2) SEND-DATA Emp-id (B2) RECEIVE-AND-WAIT Emp-id

 State (send) State (receive)

 WR=DATA-COMPLETE

(A3) RECEIVE-AND-WAIT Emp-data

 State (send to receive) (B3) RECEIVE-AND-WAIT

 State (receive to send)

 WR=SEND

(A6) RECEIVE-AND-WAIT. (B5) SEND-DATA Emp-data

 State (receive to State (send)

 deallocate)

 (A7) DEALLOCATE (B6) DEALLOCATE

 State (deallocate to State (send to reset)

 reset)

In this transaction:

■ (A1) initiates conversation with ALLOCATE.

■ (B1) acknowledges conversation with CONTROL SESSION.

■ (B2) prepares to receive a request with RECEIVE-AND-WAIT.

■ (A2) issues SEND-DATA with the employee id as a parameter.

■ (B3) prepares to send a reply with RECEIVE-AND-WAIT. This command switches the

line. Dialog B changes state from receive to send.

■ (A3) prepares to receive the employee data.

■ (B5) returns employee data to Dialog A with SEND-DATA. Dialog A tests for the
PROG-ERROR condition, but does not find it. Dialog A checks that the data is
complete (APPCCODE=OK and WR=DATA-COMPLETE).

■ (A6) once the data is successfully received, RECEIVE-AND-WAIT prepares to
deallocate resources verifying that Dialog B (currently in control) is ready to end the
conversation.

■ (B6) flushes the communications buffer and terminates the conversation with
DEALLOCATE.

■ (A7) releases local resources with DEALLOCATE LOCAL.

Testing APPC Status Codes and System Fields

552 ADS Reference Guide

Testing APPC Status Codes and System Fields

You can test the values of these codes and fields in your dialogs to determine how
information will be processed. For example, you can refer back to the sample code to
see the use of APPCCODE in the server dialog.

Status Codes

These codes report the status of each communications command performed:

■ APPCCODE provides the category of the message returned from the
communications services for the most recent command executed.

■ APPCERC contains more detailed information about the message returned by

APPCCODE.

System Fields

These system fields track information received from the remote program:

■ WHAT-RECEIVED tells you what was received from the remote program.

■ REQUEST-TO-SEND-RECEIVED tells you whether or not the remote program is
requesting to send data.

When APPC Status Codes and System Field Values are Returned

These are the status codes and system fields returned by the communications

commands.

Command APPCCODE APPCERC RECEIVED RECEIVED

ALLOCATE

CONFIRM

CONFIRMED

DEALLOCATE

PREPARE-TO-

RECEIVE

RECEIVE-AND- WAIT

REQUEST-TO- SEND

Testing APPC Status Codes and System Fields

Chapter 21: Cooperative Processing Commands 553

Command APPCCODE APPCERC RECEIVED RECEIVED

SEND-DATA

SEND-ERROR

Keep in mind:

■ Status codes are updated after each communications command executes.

■ A condition can be reported when the communications command that caused the
error executes or when a subsequent communications command executes.

APPCCODE and APPCERC

If an error description says internal error, request technical support from your site. If

your technical support staff cannot remedy the problem, make sure they have the
APPCCODE and APPCERC before they call CA Technical Support.

The following table displays an overview of the APPCCODEs (detailed descriptions of the
APPCCODEs follow after this table):

APPCCODE Status

0 OK

-1 Parameter check

-3 Allocation error

-4 Resource failure

-5 Deallocate condition

-6 Program error

-7 SVC error

-8 State error

-9 Unsuccessful

-10 Control session error

-11 Format descriptor error

-12 Send-data error

-13 Receive format error

Testing APPC Status Codes and System Fields

554 ADS Reference Guide

0: OK

The communications command executed successfully. Control has returned to your CA

ADS application. The current state of the conversation depends on the specific
communications command you issued.

APPCERC What it means

0 Data is available for the dialog to receive

1 Information other than data is available for the dialog to receive

-1: Parameter Check

There is a coding error in either the CA ADS application or the remote dialog that must
be corrected. The syntax is correct, but there is a mismatch of parameters passed
between the two dialogs or the parameters supplied are invalid.

APPCERC What it means

0 Internal error

10 You issued a CONFIRM command when the conversation was allocated

with a synchronization level of NONE

30 Internal error

31 Internal error

32 Internal error

33 Internal error

34 Internal error

35 Internal error

36 Internal error

-3: Allocation Error

The specified conversation cannot be allocated.

APPCERC What it means

0 Internal error

1 The conversation cannot be allocated because of a condition that is not

temporary (for example, a session protocol error). Do not retry the
allocation request until the condition is corrected.

Testing APPC Status Codes and System Fields

Chapter 21: Cooperative Processing Commands 555

APPCERC What it means

2 The conversation cannot be allocated because of a condition that can be

temporary (for example, the secondary application is not available). If
the condition is temporary, you can retry the allocation request.

3 The remote program rejected the allocation request because it did not

understand the TPN. The TPN must be a task code associated with the
dialog and defined to CA IDMS/DC if you are trying to al locate an CA
ADS task.

4 The task-code-name specified on the ALLOCATE command exists but

cannot be started. This is not a temporary condition and must be
resolved by a systems programmer. Do not retry the ALLOCATE until the
situation is corrected.

5 The task-code-name specified on the ALLOCATE command exists but

cannot be started. This is a temporary condition. You can retry the
allocation request.

6 The user specified on the SECURITY parameter of the ALLOCATE

command is not known to the remote program.

7 Internal error.

8 Internal error.

-4: Resource Failure

A resource failure terminated the conversation prematurely.

APPCERC What it means

1 The resource failure is not temporary (for example, a session protocol
error). Do not retry the transaction until the condition is corrected.

2 The resource failure can be temporary (for example, a power outage, a
l ine failure, or a problem with a modem). You can retry the transaction.

-5: Deallocate Condition

The remote program issued a DEALLOCATE command.

APPCERC What it means

0 The deallocation was normal.

1 The remote program specified the ABEND option on the DEALLOCATE
command or the remote program has abended. Any data remaining in

the CA ADS communications buffer is purged.

Testing APPC Status Codes and System Fields

556 ADS Reference Guide

-6: Program Error

The remote program issued the SEND-ERROR command. There is an error in the local

application that must be corrected.

-7: SVC Error

The remote program issued the SEND-ERROR command. There is an error in the local
application that must be corrected.

-8: State Error

There is a coding error in your CA ADS application. The CA ADS side of the conversation

was not in the correct state to execute the communications command you specified: for
example, you tried to issue SEND-DATA while in receive state.

In some cases, you can need to issue a DEALLOCATE ABEND to recover from this error.

-9: Unsuccessful

The conversation command was unsuccessful.

-10: Control Session Error

The CA ADS side of the conversation issued an ALLOCATE command correctly. But the
remote program did one of the following:

■ Omitted the CONTROL SESSION command

■ Transmitted a CONTROL SESSION command after another communications

command

■ Transmitted a CONTROL SESSION command whose parameters do not agree with
the ALLOCATE command

This code is returned by the ALLOCATE command. This code can indicate an internal
error.

-11: Format Descriptor Error

The CA ADS side of the conversation received an internal error from presentation
services about the format descriptors.

-12: Send-Data Error

The CA ADS side of the conversation detected an internal error or a conversion error.

This code is reported by the SEND DATA command.

Testing APPC Status Codes and System Fields

Chapter 21: Cooperative Processing Commands 557

-13: Receive Format Error

CA ADS received an error in a formatted conversation. This indicates an internal error.

This code is reported by the RECEIVE-AND-WAIT command.

System Fields

WHAT-RECEIVED

This variable tells you what was received from the remote program. It is updated after

the RECEIVE-AND-WAIT command is executed.

Contents Meaning

DATA-COMPLETE Data was received successfully.

CONFIRM The remote dialog issued a CONFIRM command
and expects the local dialog to reply with the
CONFIRMED command.

CONFIRM-SEND The remote dialog issued a PREPARE-TO-RECEIVE
command with the CONFIRM option. The local
dialog can reply with either a CONFIRMED or a
SEND-ERROR command.

CONFIRM-DEALLOCATE The remote dialog issued a DEALLOCATE
command with the CONFIRM option. The loca l
dialog can reply with either a CONFIRMED or a

SEND-ERROR command.

SEND The remote program is in receive state and the
local dialog is now in send state. The local dialog
can now issue a SEND-DATA command.

REQUEST-TO-SEND- RECEIVED

This variable tells you whether or not the remote dialog issued the REQUEST-TO-SEND
command. This variable is updated after the CONFIRM or the SEND-DATA command

executes.

Contents Meaning

0 The remote program has not requested to send data

1 The remote program is requesting to send data

Testing APPC Status Codes and System Fields

558 ADS Reference Guide

If the local dialog receives REQUEST-TO-SEND then REQUEST-TO-SEND-RECEIVED is set
to 1.

The local dialog resets REQUEST-TO-SEND-RECEIVED to 0 after every CONFIRM,
SEND-DATA, and SEND-ERROR command.

Chapter 22: OSCaR Commands 559

Chapter 22: OSCaR Commands

This section contains the following topics:

OSCaR Command Syntax (see page 559)
Sample OSCaR Application (see page 563)
OSCaR to APPC Mapping (see page 565)

OSCaR Command Syntax

Purpose

OPEN, SEND, CLOSE, and RECEIVE (OSCaR) commands are an interface between
mainframe CA ADS dialogs. OSCaR commands run as APPC commands; that is, as LU6.2

between mainframes. If a mainframe application is accessing a remote data base rather
than a remote application, DDS should be more efficient.

Concept

OSCaR commands are much simpler than the CA IDMS SEND/RECEIVE verb set for APPC
cooperative processing in that they provide only a subset of the complete APPC

functionality and synchronization of conversation states is automatic. It is not necessary
to understand the CA IDMS SEND/RECEIVE verb set, the IBM APPC verb set, or
Conversation States before using OSCaR commands. However, it is necessary to
understand basic cooperative processing concepts.

Coding Considerations

■ Only four commands are defined: OPEN, SEND, CLOSE, and RECEIVE

■ APPC and OSCaR commands are mutually exclusive within a single dialog:

– APPC verbs such as ALLOCATE, CONTROL SESSION, and SEND-DATA are not
allowed in dialogs containing OSCaR verbs

– The four OSCaR verbs are not allowed in dialogs containing APPC verbs

■ APPC data areas WHAT-RECEIVED and REQUEST-TO-SEND-RECEIVED cannot be
referenced in a dialog that contains OSCaR commands

■ OSCaR has no parameters equivalent to the FORMAT or SYNC-LEVEL parameters on

the APPC ALLOCATE command

OSCaR Command Syntax

560 ADS Reference Guide

■ OSCaR verbs always run as NOFORMAT

■ Confirmation of user-validated data content must be sent via a user-defined control

record rather than as a separate CONFIRM or SEND-ERROR command

■ Commands to perform synchronization of conversation states, (RECEIVE-AND-WAIT,
PREPARE-TO-RECEIVE, and REQUEST-TO-SEND) are done automatically by the

runtime system when needed. These commands are needed only when a command
is issued and the line is in the wrong state.

Error conditions can be detected with autostatus or by examining ERROR-STATUS for
6901 or APPCCODE for a negative value.

More information:

Cooperative Processing Commands (see page 527)
Understanding Conversation States (see page 548)

OPEN

Purpose

Establishes a conversation.

Syntax

►►─── OPEN CONVersation ──►

 ►─┬──┬─────────────────────────────────►
 └─ LU-NAME lu-name ─┬──────────────────┬─┘
 └─ MODE mode-name ─┘

 ►─┬──►─
 └─ TRANSACTION task-code ─┬──┬───
 └─ SECURITY user-id ─┬─────────────────────┬─┘
 └─ PASSWORD password ─┘

─►──┬───────────────────────── . ───►◄
 ─┬──┬─┘
 └─ LU-NAME lu-name ─┬──────────────────┬─┘
 └─ MODE mode-name ─┘

Parameters

TRANSACTION task-code

Indicates that the dialog runs as a client; task-code names the task to be invoked on
the remote logical unit.

If task-code names a mainframe CA ADS dialog, it must be defined on the remote
logical unit as invoking program ADSORUN1.

OSCaR Command Syntax

Chapter 22: OSCaR Commands 561

SECURITY user-id

Specifies the identifier of user to be signed on to the remote logical unit.

If SECURITY is not specified, signon is performed with no user identifier.

PASSWORD password

Specifies the password associated with user-id during signon to the remote logical
unit. If PASSWORD is not specified, signon is performed with no password.

LU-NAME lu-name

Specifies a field or string that identifies the 1- through 8-character name of the

logical unit used by the remote dialog.

Lu-name must match the logical unit name of an APPC line defined to the local CA
IDMS/DC system.

If LU-NAME is not specified, lu-name is the value of the ADSLUNAM attribute for the

user session.

MODE mode-name

Specifies the name used by the remote logical unit to select the mode of
transmission for the conversation.

Mode-name is either a 1- through 8-character mode name or a variable containing

the mode name.

If MODE is not specified, mode-name is the value of the ADSMODE attribute for the
user session. If there is no ADSMODE attribute, the value is the default mode name

defined by the DLOGMOD parameter within the VTAM definition. If there is no
default mode in the VTAM definition, the dialog aborts.

Usage

Placement of OPEN CONVERSATION

OPEN must be the first APPC command encountered in an OSCaR dialog.

OPEN CONVERSATION with No Parameters

If no parameters are specified on OPEN CONVERSATION, the dialog runs as a server.

SEND

Purpose

Sends a data name to a remote logical unit.

OSCaR Command Syntax

562 ADS Reference Guide

Syntax

►►─── SEND data-name ─┬───────────────┬───────────────────────────────── . ───►◄
 ├─ TRANSlate ───┤
 └─ NOTRANSlate ─┘

Parameters

data-name

Identifies the record or element name associated with the dialog to send to the

remote logical unit.

TRANSlate

Not meaningful in an CA ADS mainframe dialog.

NOTRANSlate

Not meaningful in an CA ADS mainframe dialog.

Usage

Restrictions on Data Name

In a SEND command, data-name must not be or correspond to the name of:

■ A logical record

■ A built-in function

■ An element defined as pointer, multi -bit binary, or graphic

■ An 88-level element

■ A reserved word, such as SPACES, DATE, CURSOR-ROW

■ A quoted literal

CLOSE

Purpose

Ends a conversation.

Syntax

►►─── CLOSE CONVersation ─── . ───►◄

Usage

Placement of CLOSE CONVERSATION

CLOSE CONVERSATION must be the last APPC command encountered in both client and
server dialogs that use OSCaR commands.

Sample OSCaR Application

Chapter 22: OSCaR Commands 563

RECEIVE

Purpose

Receives a data name from a remote logical unit.

Syntax

►►─── RECEIVE data-name ─┬───────────────┬────────────────────────────── . ───►◄
 ├─ TRANSlate ───┤
 └─ NOTRANSlate ─┘

Parameters

data-name

Identifies the record or element name associated with the dialog to receive from
the remote logical unit.

TRANSlate

Not meaningful in an CA ADS mainframe dialog.

NOTRANSlate

Not meaningful in an CA ADS mainframe dialog.

Usage

Restrictions on Data Name

In a RECEIVE command, data-name must not be or correspond to the name of:

■ A logical record

■ A built-in function

■ An element defined as pointer, multi -bit binary, or graphic

■ An 88-level element

■ A reserved word, such as SPACES, DATE, CURSOR-ROW

■ A quoted literal

Sample OSCaR Application

About this Example

This sample application program retrieves EMPLOYEE/OFFICE data from a remote demo
data base. It performs the same function as the example in Sample Cooperative

Application (see page 528). No intermediate records are needed because the OSCaR
verbs support all data types found in the EMPLOYEE and OFFICE records.

Sample OSCaR Application

564 ADS Reference Guide

Client Map

 RETRIEVE EMPLOYEE DATA

EMPLOYEE ID: ____

 Employee name:

 Office street:

 Office city :

 Enter any employee ID.

 The employee's name and office address will be returned.

Client ENTER Process

IF EMP-ID-0415 EQ ZEROES DO. !IF NO EMP-ID ENTERED

 INITIALIZE RECORDS (EMPLOYEE, OFFICE). ! CLEAR OLD DATA

 DISPLAY MESSAGE TEXT 'ENTER AN EMPLOYEE ID'.! REQUEST EMP-ID

END.

IF FIELD EMP-ID-0415 IS CHANGED DO. !IF EMP-ID WAS ENTERED

 OPEN CONVERSATION TRANSACTION 'EMPSERVE'.

 SEND EMP-ID-0415. ! SEND EMP-ID TO EMPSERV

 RECEIVE EMPLOYEE. ! RETRIEVE EMPLOYEE

 RECEIVE OFFICE. ! RETRIEVE OFFICE

 CLOSE CONVERSATION.

END.

IF EMP-NAME-0415 EQ ALL '*' !DISPLAY RESULTS

 DISPLAY MESSAGE TEXT 'EMPLOYEE DOES NOT EXIST'.

 ELSE

 DISPLAY MESSAGE TEXT 'EMPLOYEE DISPLAY IS COMPLETE'.

OSCaR to APPC Mapping

Chapter 22: OSCaR Commands 565

Server PREMAP Process

!****** GET EMP-ID FROM DIALOG EMPCLIEN *****

OPEN CONVERSATION TRANSACTION 'EMPSERVE'.

RECEIVE EMP-ID-0415.

!****** GET EMPLOYEE/OFFICE DATA *****

OBTAIN CALC EMPLOYEE.

IF DB-STATUS-OK DO.

 IF SET OFFICE-EMPLOYEE MEMBER

 OBTAIN OWNER WITHIN OFFICE-EMPLOYEE.

 ELSE

 MOVE ALL '*' TO OFFICE-ADDRESS-0450.

 END.

 ELSE DO.

 MOVE ALL '*' TO EMP-NAME-0415.

 !MIGHT INITIALIZE ALL EMPLOYEE FIELDS

 !EXCEPT EMP-NAME-0415 AND EMP-IF-0415.

 END.

!****** RETURN RECORDS TO CLIENT *****

SEND EMPLOYEE.

SEND OFFICE.

CLOSE CONVERSATION.

LEAVE ADS.

OSCaR to APPC Mapping

The following table outlines the conversions which can be used to map OSCaR

commands to standard APPC commands. This will allow any CA IDMS/ADS dialog using
the OSCaR verb set to communicate with any other program using the standard
LU6.2/APPC verb set.

Command Present State APPC Result ADS Equivalent #TREQ
Assembler
Equivalent

OPEN

*With
LU-NAME or

ADSLUNAM
defined

Reset ALLOCATE Allocate... #TREQ Alloc...

LU-NAME
and

ADSLUNAM
not defined

Reset GET_ ATTRIBUTES Control- Session
no format

#TREQ UIOCB...

OSCaR to APPC Mapping

566 ADS Reference Guide

Command Present State APPC Result ADS Equivalent #TREQ
Assembler

Equivalent

SEND Send SEND_DATA Send-Data TREQ Put...

 Receive REQUEST_TO_

SEND

SEND_DATA

Request-To- Send

Send-Data

#TREQ Put

optns= signal

#Treq Put...

CLOSE Deallocate DEALLOCATE_
LOCAL

Deallocate Local #TREQ Get...
(receive

deallocate)

 Send DEALLOCATE_
SYNC_LEVEL

Deallocate
Sync-Level

#TREQ Put

optns= last

RECEIVE Receive RECEIVE_

AND_WAIT

Receive- And-Wait #TREQ Get...

 Send PREPARE_TO
_RECEIVE

RECEIVE_
AND_WAIT

Prepare-To
-Receive

Receive- And-Wait

#TREQ Put

optns= invite

#TREQ Get...

*ADSLUNAM is a user-defined User-Profile attribute. This can be used to define a
default LU name for OPEN commands. Additionally, ADSMODE may be used to define a

default MODE name for the OSCaR OPEN command. For more information about user
profiles, see the CA IDMS Security Administration Guide.

Appendix A: System Records 567

Appendix A: System Records

This section contains the following topics:

Overview (see page 567)
ADSO-APPLICATION-GLOBAL-RECORD (see page 568)
ADSO-APPLICATION-MENU-RECORD (see page 579)

Overview

CA ADS provides the three system records, l isted in the table below. This appendix
describes ADSO-APPLICATION-GLOBAL-RECORD and
ADSO-APPLICATION-MENU-RECORD.

CA ADS System Records

System record Purpose

ADSO-APPLICATION-GLOBAL-RECORD Passes information between dialogs in
an application

ADSO-APPLICATION-MENU-RECORD Holds information for the runtime
system to use in building menus.

ADSO-STAT-DEF-REC Associates level-88 condition names
with status codes during dialog

compilation

ADSO-APPLICATION-GLOBAL-RECORD and ADSO- APPLICATION-MENU-RECORD have
fully addressable fields. At runtime, information supplied during application definition is

moved to the applicable fields in the system records.

When the fields of a system record are referenced by a dialog, the record must be

associated with the dialog as a work or map record. In applications not defined using the
application compiler, system records are treated like any other work or map records.

The CA ADS system records ADSO-APPLICATION-GLOBAL-RECORD and

ADSO-APPLICATION-MENU-RECORD are discussed separately below.

More information:

Error Handling (see page 277)

ADSO-APPLICATION-GLOBAL-RECORD

568 ADS Reference Guide

ADSO-APPLICATION-GLOBAL-RECORD

ADSO-APPLICATION-GLOBAL-RECORD is automatically associated with an application as
a global record, unless the record is explicitly deselected on the Global Records screen
while defining the application with the application compiler (ADSA). If
ADSO-APPLICATION-GLOBAL-RECORD is deselected, on the Global Records screen, the

runtime system does not supply runtime information to the application's dialogs, and
dialogs cannot modify runtime flow of control by changing AGR-CURRENT-RESPONSE.

The CA ADS runtime system uses ADSO-APPLICATION- GLOBAL-RECORD in the following
ways:

■ To pass information about the current application to dialogs in the application

■ To allow dialogs to modify the application flow of control (by modifying
AGR-CURRENT-RESPONSE)

■ To provide an additional means of passing information between dialogs (by

assigning values to the AGR-PASSED-DATA and AGR-MESSAGE fields)

Field Descriptions

AGR-APPLICATION-NAME

Contains the name of the current application, as specified on the Main Menu during
application definition.

This field is updated once at the beginning of the application.

AGR-CURRENT-FUNCTION

Contains the name of the current function.

This field is updated at the beginning of each function.

AGR-NEXT-FUNCTION

Contains the name of the next function to be executed. The next function is the
function initiated by the response contained in the AGR-CURRENT-RESPONSE field.

This field is updated on mapin from the terminal.

If a process command modifies AGR-CURRENT-RESPONSE to change the flow of
control, AGR-NEXT-FUNCTION does not have to be changed. On an EXECUTE NEXT
FUNCTION command, the runtime system transfers control to the function

associated with the response.

ADSO-APPLICATION-GLOBAL-RECORD

Appendix A: System Records 569

AGR-CURRENT-RESPONSE

Contains the name of the next response to be executed, as specified by the user.

This field is updated on each mapin from the terminal.

The runtime system executes the response in AGR-CURRENT- RESPONSE when it
encounters an EXECUTE NEXT FUNCTION command. The value in

AGR-CURRENT-RESPONSE can be overwritten by the premap or response process of
a dialog function.

Note that if AGR-CURRENT-RESPONSE is modified by a process command, the
runtime system does not perform security checking.

AGR-DEFAULT-RESPONSE

Contains the name of the default response (if any) for the current function, as
specified on any Function Definition screen with ADSA dur ing application definition.

This field is updated at the beginning of each function. If the function has no default
response, AGR-DEFAULT-RESPONSE contains blanks.

AGR-TASK-CODE

Contains the task code entered by the user to initiate the application.

This field is updated once at the beginning of the application.

AGR-EXIT-DIALOG

Contains the name of the user exit dialog (if any) associated with the current
function, as specified on the Function Definition screen during application

definition.

This field is updated at the beginning of each function, and is blank if the function
has no user exit dialog.

AGR-PRINT-DESTINATION

Contains the default print destination for the application, as specified on the Main

Menu during application definition.

AGR-PRINT-DESTINATION can be specified in a WRITE PRINTER command to specify
a print destination.

This field is updated once at the beginning of the application and is blank if the

application has no default print destination.

AGR-DATE

Contains the current date in the format specified by the application developer on
the Main Menu during application definition.

This field is updated at the beginning of each premap and response process, and
each menu and menu/dialog function.

ADSO-APPLICATION-GLOBAL-RECORD

570 ADS Reference Guide

AGR-USER-ID

Contains the user id passed to ADSO-APPLICATION-GLOBAL- RECORD from the

AMR-USER-ID field of ADSO- APPLICATION-MENU-RECORD.

This field is updated after a successful user signon to the application and is blank if
signon is unsuccessful or is not performed.

AGR-SECURITY-CODE

Contains the security class associated with the user id, as returned by CA IDMS/DC

or DC/UCF following successful execution of a system SIGNON function.
AGR-SECURITY-CODE is treated as a 256-bit field, with each bit representing a
security class, from 0 to 255. A bit is set to 1 if the user is authorized at that security

class, and is set to 0 if the user is not.

AGR-INSTALLATION-CODE

Contains the installation-defined security code associated with the user id, as
returned by CA IDMS/DC or DC/UCF following successful execution of a system
SIGNON function.

AGR-PASSED-DATA

A group field that consists of the following elements:

AGR-PASSED-ONE

Contains data passed to ADSO-APPLICATION-GLOBAL-RECORD from the
AMR-PASSING field of ADSO-APPLICATION-MENU- RECORD on mapin from the
terminal.

Note that if the user does not enter data in AMR- PASSING, AGR-PASSED-ONE is
not updated.

AGR-PASSED-TWO

A 32-byte field that the application developer can use as applicable.

AGR-PASSED-THREE

A 32-byte field that the application developer can use as applicable.

AGR-PASSED-FOUR

A 32-byte field that the application developer can use as applicable.

The runtime system never updates fields AGR-PASSED-TWO,
AGR-PASSED-THREE, and AGR-PASSED-FOUR.

AGR-APPLICATION-VERSION

Contains the version number of the current application, as specified by the
application developer on the Main Menu during application definition.

This field is updated once at the beginning of the application.

ADSO-APPLICATION-GLOBAL-RECORD

Appendix A: System Records 571

AGR-APPL-SECURITY-CLASS

Contains the security class associated with the current application, as specified

during application definition.

This field is updated once at the beginning of the application.

AGR-RESP-SECURITY-CLASS

Contains the security class associated with the response contained in the
AGR-CURRENT-RESPONSE field, as specified on the Response Definition screen

during application definition.

This field is updated on mapin from the terminal.

Note that if AGR-CURRENT-RESPONSE is modified by a process command, the

runtime system does not perform security checking.

AGR-PRINT-CLASS

Contains the default print class for the application, as specified on the General
Options screen during application definition.

AGR-PRINT-CLASS can be specified in a WRITE PRINTER command to specify a print

class.

This field is updated once at the beginning of the application and is blank if the
application has no default print class.

AGR-MODE

Contains the value passed to ADSO-APPLICATION-GLOBAL- RECORD from the

AMR-MODE field of ADSO-APPLICATION- MENU-RECORD. The following level -88
condition names are defined for AGR-MODE:

AGR-STEP-MODE

AGR-MODE contains the value STEP.

AGR-FAST-MODE

AGR-MODE contains the value FAST.

This field is updated at the beginning of the application with the default mode
specified on the Main Menu during application definition.

AGR-DATE-FORMAT

Contains a value indicating the date format specified by the application developer
on the Main Menu during application definition. The following level -88 condition

names are defined for AGR-DATE-FORMAT:

AGR-MMDDYY

AGR-DATE-FORMAT contains the value C.

AGR-DDMMYY

AGR-DATE-FORMAT contains the value E.

ADSO-APPLICATION-GLOBAL-RECORD

572 ADS Reference Guide

AGR-YYMMDD

AGR-DATE-FORMAT contains the value G.

AGR-YYDDD

AGR-DATE-FORMAT contains the value J.

This field is updated once at the beginning of the application.

AGR-AID-BYTE

Contains the AID byte that represents the control key pressed by the user.

A level-88 condition name is defined for each possible value.

AGR-CURRENT-FUNC-TYPE

Contains a value indicating the type of function named in the
AGR-CURRENT-FUNCTION field. The following level-88 condition names are defined
for AGR-CURRENT-FUNC-TYPE:

AGR-FUNCTION-DIALOG

AGR-CURRENT-FUNC-TYPE contains the value D.

AGR-FUNCTION-MENU

AGR-CURRENT-FUNC-TYPE contains the value M.

AGR-FUNCTION-SIGNON

AGR-CURRENT-FUNC-TYPE contains the value S.

This field is updated at the beginning of each function.

AGR-NEXT-FUNC-TYPE

Contains a value indicating the type of the function named in the
AGR-NEXT-FUNCTION field. The following level-88 condition names are defined for

AGR-NEXT-FUNC-TYPE:

AGR-NEXT-DIALOG

AGR-NEXT-FUNC-TYPE contains the value D.

AGR-NEXT-MENU

AGR-NEXT-FUNC-TYPE contains the value G.

AGR-NEXT-MENU-DIALOG

AGR-NEXT-FUNC-TYPE contains the value M.

AGR-NEXT-SIGNON

AGR-NEXT-FUNC-TYPE contains the value N.

AGR-NEXT-SIGNON-DIALOG

AGR-NEXT-FUNC-TYPE contains the value S.

ADSO-APPLICATION-GLOBAL-RECORD

Appendix A: System Records 573

AGR-NEXT-PROGRAM

AGR-NEXT-FUNC-TYPE contains the value P.

AGR-NEXT-SYSTEM-FUNC

AGR-NEXT-FUNC-TYPE contains the value F, B, O, U, R, T, or Q.

AGR-NEXT-FORWARD

AGR-NEXT-FUNC-TYPE contains the value F.

AGR-NEXT-BACKWARD

AGR-NEXT-FUNC-TYPE contains the value B.

AGR-NEXT-POP

AGR-NEXT-FUNC-TYPE contains the value O.

AGR-NEXT-POPTOP

AGR-NEXT-FUNC-TYPE contains the value U.

AGR-NEXT-RETURN

AGR-NEXT-FUNC-TYPE contains the value R.

AGR-NEXT-TOP

AGR-NEXT-FUNC-TYPE contains the value T.

AGR-NEXT-QUIT

AGR-NEXT-FUNC-TYPE contains the value Q.

This field is updated on mapin from the terminal.

AGR-CTRL-COMMAND

Contains a value indicating the control command associated with the response

named in the AGR-CURRENT-RESPONSE field, as specified on the Response
Definition screen during application definition. The following level -88 condition
names are defined for AGR-CTRL-COMMAND:

AGR-TRANSFER

AGR-CTRL-COMMAND contains the value T.

AGR-INVOKE

AGR-CTRL-COMMAND contains the value I.

AGR-LINK

AGR-CTRL-COMMAND contains the value L.

ADSO-APPLICATION-GLOBAL-RECORD

574 ADS Reference Guide

AGR-RETURN

AGR-CTRL-COMMAND contains the value R.

This field is updated on mapin from the terminal. If a process command
modifies AGR-CURRENT-RESPONSE to change the flow of control,
AGR-CTRL-COMMAND does not have to be changed. On an EXECUTE NEXT

FUNCTION command, the runtime system uses the control command
associated with the response.

AGR-SIGNON-SWITCH

Contains a value indicating whether a system SIGNON function was performed for
the current application. The following level -88 condition names are defined for

AGR-SIGNON-SWITCH:

AGR-SIGNON-NOT-DONE

AGR-SIGNON-SWITCH contains the value N.

AGR-SIGNON-OK

AGR-SIGNON-SWITCH contains the value Y.

AGR-DIALOG-NAME

Contains the name of the dialog or user program (if any) associated with the
function named in the AGR-CURRENT-FUNCTION field.

This field is updated at the beginning of a dialog, menu/dialog, or user program
function, and is blank if the function is not a ssociated with a dialog or user program.

AGR-FUNC-DESCRIPTION

Contains the description of the function named in the AGR- CURRENT-FUNCTION
field, as specified on the Function Definition screen during application definition.

This field is updated at the beginning of each function and is blank if the function
does not contain a description.

AGR-MESSAGE

AGR-MESSAGE is a 240-byte field that the application developer can use, as
necessary. The runtime system never updates this field. (This field can be used for

pass data.)

AGR-SIGNON-REQMTS

Contains a value indicating the signon requirements for the current application, as
specified during application definition. The following level -88 condition names are
defined for AGR-SIGNON-REQMTS:

AGR-SIGNON-REQUIRED

AGR-SIGNON-REQMTS contains the value R.

AGR-SIGNON-OPTIONAL

AGR-SIGNON-REQMTS contains the value O.

ADSO-APPLICATION-GLOBAL-RECORD

Appendix A: System Records 575

AGR-SIGNON-NOT-ALLOWED

AGR-SIGNON-REQMTS contains the value N.

This field is updated once at the beginning of the application.

AGR-MAP-RESPONSE

Contains a response name entered by the user in a field that maps to
AGR-MAP-RESPONSE. AGR-MAP-RESPONSE performs the same function as a
$RESPONSE map field. The application developer can initialize the

AGR-MAP-RESPONSE field with a default response name.

If both AGR-MAP-RESPONSE and $RESPONSE are defined for a map, a value in the
AGR-MAP-RESPONSE field has precedence over a value entered in the $RESPONSE

field. Once the AGR-MAP- RESPONSE field is initialized with a value, that value
remains in the AGR-MAP-RESPONSE field until it is reinitialized with a new value
either by process code or by the user.

Note: The $RESPONSE map field can also be initialized by process code, through the

$RESPONSE system-supplied data field. For more information about the $RESPONSE
system-supplied data field, see the CA IDMS Mapping Facility Guide.

Usage

The following example il lustrates the role of ADSO-APPLICATION- GLOBAL-RECORD
during runtime execution of an application.

During execution of a nonmenu dialog function, the user selects a response that initiates

either the FORWARD or BACKWARD system function. The following values are
established in ADSO-APPLICATION-GLOBAL-RECORD:

■ AGR-NEXT-FUNCTION contains FORWARD or BACKWARD, as applicable.

■ AGR-CURRENT-RESPONSE contains the name of the response that initiates the

FORWARD or BACKWARD system function.

■ AGR-AID-BYTE contains the AID byte representing the control key pressed by the
user.

■ AGR-NEXT-FUNC-TYPE contains F or B, as applicable.

■ AGR-CTRL-COMMAND contains a blank (X'40').

All other fields in the record remain unchanged.

The dialog can now access these fields to do its own paging, provided that
ADSO-APPLICATION-GLOBAL-RECORD is defined to the dialog as a work record.
(Automatic paging by the runtime system is performed only for menu functions.)

Note: For more information about the use of ADSO-APPLICATION-GLOBAL-RECORD, see
the CA ADS Application Design Guide.

ADSO-APPLICATION-GLOBAL-RECORD

576 ADS Reference Guide

More information:

CA ADS Application Compiler (ADSA) (see page 51)

CA ADS Runtime System (see page 119)
Variable Data Fields (see page 285)

ADSO-APPLICATION-GLOBAL-RECORD

One copy of the record is automatically associated with all applications during
application definition.

ADSO-APPLICATION-GLOBAL-RECORD is defined in the data dictionary as follows:

01 ADSO-APPLICATION-GLOBAL-RECORD.

 03 AGR-APPLICATION-NAME PICTURE IS X(8) USAGE IS DISPLAY.

 03 AGR-CURRENT-FUNCTION PICTURE IS X(8) USAGE IS DISPLAY.

 03 AGR-NEXT-FUNCTION PICTURE IS X(8) USAGE IS DISPLAY.

 03 AGR-CURRENT-RESPONSE PICTURE IS X(8) USAGE IS DISPLAY.

 03 AGR-DEFAULT-RESPONSE PICTURE IS X(8) USAGE IS DISPLAY.

 03 AGR-TASK-CODE PICTURE IS X(8) USAGE IS DISPLAY.

 03 AGR-EXIT-DIALOG PICTURE IS X(8) USAGE IS DISPLAY.

 03 AGR-PRINT-DESTINATION PICTURE IS X(8) USAGE IS DISPLAY.

 03 AGR-DATE PICTURE IS X(8) USAGE IS DISPLAY.

 03 AGR-USER-ID PICTURE IS X(32) USAGE IS DISPLAY.

 03 AGR-SECURITY-CODE PICTURE IS X(32) USAGE IS DISPLAY.

 03 AGR-INSTALLATION-CODE PICTURE IS X(32) USAGE IS DISPLAY.

 03 AGR-PASSED-DATA USAGE IS DISPLAY.

 05 AGR-PASSED-ONE PICTURE IS X(32) USAGE IS DISPLAY.

 05 AGR-PASSED-TWO PICTURE IS X(32) USAGE IS DISPLAY.

 05 AGR-PASSED-THREE PICTURE IS X(32) USAGE IS DISPLAY.

 05 AGR-PASSED-FOUR PICTURE IS X(32) USAGE IS DISPLAY.

 03 AGR-APPLICATION-VERSION PICTURE IS S9(4) USAGE IS COMP.

 03 AGR-APPL-SECURITY-CLASS PICTURE IS S999 USAGE IS COMP.

 03 AGR-RESP-SECURITY-CLASS PICTURE IS S999 USAGE IS COMP.

 03 AGR-PRINT-CLASS PICTURE IS S999 USAGE IS COMP.

 03 AGR-MODE PICTURE IS X(4) USAGE IS DISPLAY.

 88 AGR-STEP-MODE USAGE IS CONDITION-NAME VALUE IS 'STEP'.

 88 AGR-FAST-MODE USAGE IS CONDITION-NAME VALUE IS 'FAST'.

 03 AGR-DATE-FORMAT PICTURE IS X USAGE IS DISPLAY.

 88 AGR-MMDDYY USAGE IS CONDITION-NAME VALUE IS 'C'.

 88 AGR-DDMMYY USAGE IS CONDITION-NAME VALUE IS 'E'.

 88 AGR-YYMMDD USAGE IS CONDITION-NAME VALUE IS 'G'.

 88 AGR-YYDDD USAGE IS CONDITION-NAME VALUE IS 'J'.

ADSO-APPLICATION-GLOBAL-RECORD

Appendix A: System Records 577

 03 AGR-AID-BYTE PICTURE IS X USAGE IS DISPLAY.

 88 AGR-ENTER USAGE IS CONDITION-NAME VALUE IS QUOTE.

 88 AGR-PF1 USAGE IS CONDITION-NAME VALUE IS '1'.

 88 AGR-PF2 USAGE IS CONDITION-NAME VALUE IS '2'.

 88 AGR-PF3 USAGE IS CONDITION-NAME VALUE IS '3'.

 88 AGR-PF4 USAGE IS CONDITION-NAME VALUE IS '4'.

 88 AGR-PF5 USAGE IS CONDITION-NAME VALUE IS '5'.

 88 AGR-PF6 USAGE IS CONDITION-NAME VALUE IS '6'.

 88 AGR-PF7 USAGE IS CONDITION-NAME VALUE IS '7'.

 88 AGR-PF8 USAGE IS CONDITION-NAME VALUE IS '8'.

 88 AGR-PF9 USAGE IS CONDITION-NAME VALUE IS '9'.

 88 AGR-PF10 USAGE IS CONDITION-NAME VALUE IS ':'.

 88 AGR-PF11 USAGE IS CONDITION-NAME VALUE IS '#'.

 88 AGR-PF12 USAGE IS CONDITION-NAME VALUE IS '@'.

 88 AGR-PF13 USAGE IS CONDITION-NAME VALUE IS 'A'.

 88 AGR-PF14 USAGE IS CONDITION-NAME VALUE IS 'B'.

 88 AGR-PF15 USAGE IS CONDITION-NAME VALUE IS 'C'.

 88 AGR-PF16 USAGE IS CONDITION-NAME VALUE IS 'D'.

 88 AGR-PF17 USAGE IS CONDITION-NAME VALUE IS 'E'.

 88 AGR-PF18 USAGE IS CONDITION-NAME VALUE IS 'F'.

 88 AGR-PF19 USAGE IS CONDITION-NAME VALUE IS 'G'.

 88 AGR-PF20 USAGE IS CONDITION-NAME VALUE IS 'H'.

 88 AGR-PF21 USAGE IS CONDITION-NAME VALUE IS 'I'.

 88 AGR-PF22 USAGE IS CONDITION-NAME VALUE IS '¢.'.

 88 AGR-PF23 USAGE IS CONDITION-NAME VALUE IS '.'.

 88 AGR-PF24 USAGE IS CONDITION-NAME VALUE IS '<'.

 88 AGR-PA1 USAGE IS CONDITION-NAME VALUE IS '%'.

 88 AGR-PA2 USAGE IS CONDITION-NAME VALUE IS '>'.

 88 AGR-PA3 USAGE IS CONDITION-NAME VALUE IS ','.

 88 AGR-CLEAR USAGE IS CONDITION-NAME VALUE IS '_'.

 88 AGR-LPEN USAGE IS CONDITION-NAME VALUE IS '='.

 88 AGR-EOF USAGE IS CONDITION-NAME VALUE IS 'N'.

 88 AGR-IOERR USAGE IS CONDITION-NAME VALUE IS 'O'.

 88 AGR-SERR USAGE IS CONDITION-NAME VALUE IS 'P'.

 88 AGR-IERR USAGE IS CONDITION-NAME VALUE IS 'R'.

 88 AGR-OERR USAGE IS CONDITION-NAME VALUE IS 'S'.

ADSO-APPLICATION-GLOBAL-RECORD

578 ADS Reference Guide

03 AGR-CURRENT-FUNC-TYPE PICTURE IS X USAGE IS DISPLAY.

 88 AGR-FUNCTION-DIALOG USAGE IS CONDITION-NAME

 VALUE IS 'D'.

 88 AGR-FUNCTION-MENU USAGE IS CONDITION-NAME

 VALUE IS 'M'.

 88 AGR-FUNCTION-SIGNON USAGE IS CONDITION-NAME

 VALUE IS 'S'.

03 AGR-NEXT-FUNC-TYPE PICTURE IS X USAGE IS DISPLAY.

 88 AGR-NEXT-DIALOG USAGE IS CONDITION-NAME VALUE IS 'D'.

 88 AGR-NEXT-MENU USAGE IS CONDITION-NAME VALUE IS 'G'.

 88 AGR-NEXT-MENU-DIALOG USAGE IS CONDITION-NAME

 VALUE IS 'M'.

 88 AGR-NEXT-SIGNON USAGE IS CONDITION-NAME VALUE IS 'N'.

 88 AGR-NEXT-SIGNON-DIALOG USAGE IS CONDITION-NAME

 VALUE IS 'S'.

 88 AGR-NEXT-PROGRAM USAGE IS CONDITION-NAME VALUE IS 'P'.

 88 AGR-NEXT-SYSTEM-FUNC USAGE IS CONDITION-NAME

 VALUE IS 'F'

 VALUE IS 'B'

 VALUE IS 'O'

 VALUE IS 'U'

 VALUE IS 'R'

 VALUE IS 'T'

 VALUE IS 'Q'.

 88 AGR-NEXT-FORWARD USAGE IS CONDITION-NAME VALUE IS 'F'.

 88 AGR-NEXT-BACKWARD USAGE IS CONDITION-NAME VALUE IS 'B'.

 88 AGR-NEXT-POP USAGE IS CONDITION-NAME VALUE IS 'O'.

 88 AGR-NEXT-POPTOP USAGE IS CONDITION-NAME VALUE IS 'U'.

 88 AGR-NEXT-RETURN USAGE IS CONDITION-NAME VALUE IS 'R'.

 88 AGR-NEXT-TOP USAGE IS CONDITION-NAME VALUE IS 'T'.

 88 AGR-NEXT-QUIT USAGE IS CONDITION-NAME VALUE IS 'Q'.

03 AGR-CTRL-COMMAND PICTURE IS X USAGE IS DISPLAY.

 88 AGR-TRANSFER USAGE IS CONDITION-NAME VALUE IS 'T'.

 88 AGR-INVOKE USAGE IS CONDITION-NAME VALUE IS 'I'.

 88 AGR-LINK USAGE IS CONDITION-NAME VALUE IS 'L'.

 88 AGR-RETURN USAGE IS CONDITION-NAME VALUE IS 'R'.

03 AGR-SIGNON-SWITCH PICTURE IS X USAGE IS DISPLAY

 VALUE IS 'N'.

 88 AGR-SIGNON-NOT-DONE USAGE IS CONDITION-NAME

 VALUE IS 'N'.

 88 AGR-SIGNON-OK USAGE IS CONDITION-NAME VALUE IS 'Y'.

03 AGR-DIALOG-NAME PICTURE IS X(8) USAGE IS DISPLAY.

03 AGR-FUNC-DESCRIPTION PICTURE IS X(28) USAGE IS DISPLAY.

03 AGR-MESSAGE PICTURE IS X(240) USAGE IS DISPLAY.

03 AGR-SIGNON-REQMTS PICTURE IS X USAGE IS DISPLAY.

 88 AGR-SIGNON-REQUIRED USAGE IS CONDITION-NAME

 VALUE IS 'R'.

 88 AGR-SIGNON-OPTIONAL USAGE IS CONDITION-NAME

 VALUE IS 'O'.

ADSO-APPLICATION-MENU-RECORD

Appendix A: System Records 579

 88 AGR-SIGNON-NOT-ALLOWED USAGE IS CONDITION-NAME

 VALUE IS 'N'.

03 AGR-MAP-RESPONSE PICTURE IS X(8) USAGE IS DISPLAY.

03 FILLER PICTURE IS X(54) USAGE IS DISPLAY.

ADSO-APPLICATION-MENU-RECORD

The CA ADS runtime system builds menus by storing information in
ADSO-APPLICATION-MENU-RECORD. This record is associated with maps used by menu

and menu/dialog functions.

The menu map can be system-defined or user-defined. If a menu map is user-defined,
ADSO-APPLICATION-MENU-RECORD must be explicitly associated with the map when it

is defined.

Usage

In a menu/dialog function, ADSO-APPLICATION-MENU-RECORD is initialized at the
beginning of the dialog, and its fields are primed by the runtime system when the map is
displayed.

Thus, for example, at the beginning of a menu/dialog, AMR-PASSING does not contain
any value passed by the previous menu function (AGR-PASSED-ONE of
ADSO-APPLICATION-GLOBAL- RECORD does); and any value moved to a field in ADSO-
APPLICATION-MENU-RECORD will be overwritten when the menu map is displayed.

Field Descriptions

AMR-PAGE

Maps to the PAGE field.

AMR-PAGE contains the number of the currently displayed page of the menu
screen.

AMR-TOTAL-PAGES

Maps to the OF field.

AMR-TOTAL-PAGES contains the total number of pages for the current menu.

AMR-NEXT-PAGE

Maps to the NEXT PAGE field.

AMR-NEXT-PAGE contains the number of the next page to be displayed, as entered
by the user.

ADSO-APPLICATION-MENU-RECORD

580 ADS Reference Guide

AMR-HEADING

(or AMR-HDG) Maps to the heading text area.

AMR-HEADING or AMR-HDG contains the heading text specified by the application
developer on the Function Definition (Menu) screen during application definition.

AMR-DATE

Maps to the DATE field.

AMR-DATE contains the current date in the format specified by the application

developer on the General Options screen during application definition.

AMR-DIALOG

Maps to the DIALOG field.

If the current menu is associated with a dialog, AMR-DIALOG contains the name of
the menu/dialog, as specified on the Response/Function List screen during

application definition.

AMR-RESPONSE-FIELD

Maps to the RESPONSE field.

AMR-RESPONSE-FIELD contains the name of the next response to be executed, as
entered by the user.

AMR-RESPONSE-FIELD is initialized with the default response for the current
function (if any), as specified on the Function Definition screen during application
definition. If the user does not specify a response, the default response remains in

AMR-RESPONSE-FIELD.

AMR-MODE

Maps to the MODE field.

MODE contains the execution mode for the function, as specified on the Main
Menu during application definition. At runtime, the user can change the

specification in the MODE field on a menu map, thereby modifying the value in
AMR-MODE. The value in AMR-MODE is passed to the AGR-MODE field of ADSO-
APPLICATION-GLOBAL-RECORD each time the menu is mapped in.

AMR-PASSING

Maps to the SEND DATA field.

AMR-PASSING contains data to be passed to the next function, as entered by the
user. CA ADS transfers the contents of AMR-PASSING to the AGR-PASSED-ONE field
of ADSO- APPLICATION-GLOBAL-RECORD. The runtime system reinitializes the

AMR-PASSING field each time the menu is mapped out.

ADSO-APPLICATION-MENU-RECORD

Appendix A: System Records 581

AMR-USER-ID

Maps to the ENTER USER ID field of a signon menu.

AMR-USER-ID contains the user id entered by the user.

CA ADS transfers the contents of AMR-USER-ID to the AGR- USER-ID field of
ADSO-APPLICATION-GLOBAL-RECORD. If a system SIGNON function is initiated, the

runtime system passes the value in AMR-USER-ID to CA IDMS/DC or DC/UCF
(DC/UCF) for security verification.

AMR-PASSWORD

Maps to the PASSWORD field of a signon menu.

AMR-PASSWORD contains the password entered by the user.

If a system SIGNON function is initiated, the runtime system passes the value in
AMR-PASSWORD to DC/UCF for security verification. After passing the value, CA
ADS overwrites the AMR-PASSWORD field with blanks.

AMR-SELECT-SECTION

Maps to the response listing area.

AMR-SELECT-SECTION is a group field that occurs 50 times.

Each valid response associated with the current function is moved to an occurrence
of AMR-SELECT-SECTION. The occurrences are mapped out to the menu screen one
page at a time.

Each occurrence of AMR-SELECT-SECTION consists of the following elements:

AMR-SELECT

Contains the character entered by the user in the one-byte field provided to
select the response.

AMR-RESPONSE

Contains the name of the response, as specified on the Response/Function List

screen during application definition.

AMR-KEY

Contains the AID byte representing the control key that initiates the response,
as specified on the Response/Function List screen during application definition.

AMR-KEY is translated by a code table to a five-byte map field in order to

display the associated control key.

AMR-DESCRIPTION

Contains the description of the response, as specified on the Response
Definition screen during application definition.

ADSO-APPLICATION-MENU-RECORD

582 ADS Reference Guide

More information:

CA ADS Application Compiler (ADSA) (see page 51)

CA ADS Runtime System (see page 119)

ADSO-APPLICATION-MENU-RECORD

ADSO-APPLICATION-MENU-RECORD is defined in the data dictionary as follows:

01 ADSO-APPLICATION-MENU-RECORD.

 03 AMR-PAGE PICTURE IS S99 USAGE IS COMP.

 03 AMR-TOTAL-PAGES PICTURE IS S99 USAGE IS COMP.

 03 AMR-NEXT-PAGE PICTURE IS S99 USAGE IS COMP.

 03 AMR-HEADING PICTURE IS X(237) USAGE IS DISPLAY.

 03 AMR-HDG REDEFINES AMR-HEADING USAGE IS DISPLAY.

 05 AMR-HL1 PICTURE IS X(79) USAGE IS DISPLAY.

 05 AMR-HL2 PICTURE IS X(79) USAGE IS DISPLAY.

 05 AMR-HL3 PICTURE IS X(79) USAGE IS DISPLAY.

 03 AMR-DATE PICTURE IS X(8) USAGE IS DISPLAY.

 03 AMR-DIALOG PICTURE IS X(8) USAGE IS DISPLAY.

 03 AMR-RESPONSE-FIELD PICTURE IS X(8) USAGE IS DISPLAY.

 03 AMR-MODE PICTURE IS X(4) USAGE IS DISPLAY.

 03 AMR-PASSING PICTURE IS X(32) USAGE IS DISPLAY.

 03 AMR-USER-ID PICTURE IS X(32) USAGE IS DISPLAY.

 03 AMR-PASSWORD PICTURE IS X(8) USAGE IS DISPLAY.

 03 AMR-SELECT-SECTION USAGE IS DISPLAY OCCURS 50 TIMES.

 05 AMR-SELECT PICTURE IS X USAGE IS DISPLAY.

 05 AMR-RESPONSE PICTURE IS X(8) USAGE IS DISPLAY.

 05 AMR-KEY PICTURE IS X USAGE IS DISPLAY.

 05 AMR-DESCRIPTION PICTURE IS X(28) USAGE IS DISPLAY.

Appendix B: CA ADS Dialog and Application Reporter 583

Appendix B: CA ADS Dialog and Application
Reporter

This section contains the following topics:

Overview (see page 583)
Dialog Reports (see page 584)

Application Reports (see page 595)
Control Statements (see page 596)
SYSIDMS Parameter File (see page 604)
JCL and Commands To Run Reports (see page 605)

Overview

The CA ADS dialog and application reporter (ADSORPTS) is used to request batch reports
about dialogs and applications. Reports can be summary or detailed. One dialog and/or
application can be reported on, or several. Dialogs and applications to be included can

be specified as a l ist of names, name ranges, and mask values.

Additional reports (AREPORTs) also provide information about dialogs and their
components that are stored in the data dictionary. The information provided by each
report is shown below.

Note: For more information about these reports, see the CA IDMS Reports Guide.

This appendix provides the following information about ADSORPTS:

■ A description of the dialog reporting capabilities

■ A description of the application reporting capabilities

■ Syntax rules for control statements

■ JCL and commands for running reports

AREPORTs Documenting CA ADS Dialogs

Report Description

 1 Lists detail information about dialogs and their components

 2 Lists information about specified dialogs

 3 Lists all dialogs associated with specified processes

Dialog Reports

584 ADS Reference Guide

Report Description

 4 Lists all dialogs associated with specified records.

 5 Lists all dialogs associated with specified subschemas

 6 Lists all dialogs associated with specified maps

Dialog Reports

The dialog reporting capabilities of ADSORPTS enable the application developer to

request any or all of the following reports for one or several dialogs:

Summary Reports

These list the following information about the object dialog:

■ The name and version number of the dialog, and the date and time at which the

dialog was compiled

■ The name and version number of the map associated with the dialog, and the date
and time at which the map was compiled

■ The name and version number of the schema associated with the dialog

■ The name of the subschema associated with the dialog

■ The dialog's autostatus specification

■ The dialog's FDB size

Processes Reports

These list the module source statements for the premap and response processes
associated with the object dialog. Source statements from included process modules are

l isted separately.

For each module l isted, the following information is provided:

■ The name and version number of the module

■ The date on which the module was created, the date on which the module was last
modified, and the ids of the users who created and modified the module

Note: The cross-reference report options are available with processes.

Dialog Reports

Appendix B: CA ADS Dialog and Application Reporter 585

Records Reports

These list the following information:

■ The dictionary definitions for all records associated with the dialog

■ The decimal position and hexadecimal offset of the fields in the listed records

■ The lengths of the fields in the listed records

FDBLIST Reports

These list the contents of the Fixed Dialog Block (FDB) for the dialog. The FDBLIST report

includes the following information:

■ General information, such as the dialog's name and compilation date, its map name
and compile date, and its subschema description.

■ Record descriptions contained in the Record Description Elements (RDEs).

■ Premap process information contained in the Premap Process Element (PME).

■ Response process information contained in the Response Process Elements (RSEs).

■ Object code contained in the Process Object Code Table. One Process Object Code
Table is associated with each PME and RSE of an FDB that contains object code.

■ Command information contained in the Command Element (CME). One or more
CMEs can be associated with a PME or RSE.

■ Executable code and vector call information contained in the Executable

Code/Vector Call Offset Table. One Executable Code/Vector Call Offset Table is
associated with each PME and RSE of an FDB that contains object code.

■ Included process module information in the Included Module Table (MDTA). One

MDTA is displayed for each process in a dialog that has included modules.

Note that the representation of premap and response process information in a dialog's
FDB and, consequently, the representation of this information in the report, depend on
how the dialog was compiled, as follows:

■ If the dialog was compiled with the symbol table option enabled, premap and
response process commands are converted in the FDB to a series of command
elements (CMEs).

■ If the dialog was compiled without the symbol table option, premap and response

process commands are converted in the FDB to object code. The object code for a
command can be either an item of executable code or a vector call that references
a CME.

Note: Dialogs being reported on by ADSORPTS should be compiled with the diagnostic
tables option enabled. ADSORPTS uses diagnostic tables to format premap and response
process information. If a dialog's FDB does not contain diagnostic tables, ADSORPTS
produces an unformatted report wherever formatting is not possible.

Dialog Reports

586 ADS Reference Guide

Fixed Dialog Block Field Descriptions

The following table l ists the fields displayed in the FDBLIST report.

Group Field Description

FDB ID Fixed dialog block identifier

 NAME Dialog name

 DATE Date dialog compiled

 TIME Time dialog compiled

 MPNM Map name

 MPDT Date map compiled

 MPTM Time map compiled

 SCHNM Schema name

 SSNM Subschema name

 RDEA Offset— start of record table

 PMEA Offset— start of premap element

 RSEA Offset— start of response table

 LITA Offset— start of l iteral pool

 SSANA Offset— subschema area name table

 NSSAN Number of subschema area names

 SVER Schema version

 MPVER Map version

 DVER Dialog version

 NRECS Number of map records

 NFLDS Number of map fields

 NDREC Number of dialog records

 RSPMI MRE index of map response field

 MSGMI MRE index of map message field

 SEGVW MRB— subschema segmented view

 FLAG Fixed dialog block flag byte

 LREA Offset— first logical record RDE

 ASRA Offset— status definition record ASR

Dialog Reports

Appendix B: CA ADS Dialog and Application Reporter 587

Group Field Description

 RLSE CA ADS release

 FLAG2 FDB flag byte 2

 MAPPG Map paging type

 HEXTA Offset— FDB header extension area

 MDBO Offset— map descriptor block (MDB)

 FLAG3 FDB flag byte 3

 PREFX Message prefix

 DRSPO Offset— default response process

 FDEO Offset— format description headers (FDH)
and elements (FDE)

FHE

(FDB header

 extension)

NODE Alternate DB name

 DICT Alternate dictionary name

 SDDN Suspense fi le DD name

 DCLA Offset— SQL
declaration process

 SQLAM SQL Access module name

 SQLTM SQL time format

 SQLDT SQL date format

 SQLFL SQL compliance flag

MDB (map

descriptor block)

MPNAM Map name (batch)

 NEXT Offset— next MDB

 DATE Date map compiled

 TIME Time map compiled

 VER Version

 NRECS Number of records

 NFLDS Number of fields

 RSPMI MRE index of map response field

 FLG1 Flag byte 1

Dialog Reports

588 ADS Reference Guide

Group Field Description

 DDNAM File/ddname

 CRECL Compressed length for output map external
record

 RECL Real external record length

 CRECO Offset— compressed external record

SSAN Subschema area names

ASR NAME Status definition record name

 VER Status definition record version

RDE NAME Record name

 NRDEA Offset— next RDE

 RECL Record length (except logical records)

 NLRE Number of logical record elements

 VER Record version

 INDX Relative variable record element index entry

 MINDX Map record index

 FLG1 Flag byte 1

 FLG2 Flag byte 2

 CRECL Compressed INIT record size

 INTOF Offset— RDEINITV within RDE to the

compressed initialized record

 NLRA Offset— next logical record RDE (logical
records only)

 FLG3 Flag byte 3

 IMNDX Input map record index

 OMNDX Output map record index

 SCHML Length of schema name when created from

an SQL table

 SCHMO Offset into RDE of schema name when
created from an SQL table

 INITV Initial value (in compressed format)

FDH (format
description
header)

LEN Length of format description

Dialog Reports

Appendix B: CA ADS Dialog and Application Reporter 589

Group Field Description

 ID Format identifier

 FDES Start of format descriptor element

FDE (format
description

element)

TYPE Element type

 FLAGS Flag byte

 PEND Type dependent section

DCL (declaration

module)

NAME Declaration module name

 VER Declaration module version

 DATLU Date module last updated

 DATCR Date module last created

PME NAME Premap process name

 LASTB Offset of last byte in PME

 RATA Offset to ready area table

 FCMEA Offset to first CME1

 PVER Process version

 NCMES Number of CMEs in response2

 NEWF Initialized to X'FF' if new format

 FLAG1 Flag byte

 NMDTE Number of module table entries

 LNTA Offset of l ine number table

 DATLU Date module last updated

 DATCR Date module created

 MDTA Offset of included module table

 OFTBL Offset to executable code/vector call offset
table

RSE NAME Response process name

 NXTA Offset of next RSE in FDB

 LASTB Offset of last byte in response process

 RATA Offset to ready area table

Dialog Reports

590 ADS Reference Guide

Group Field Description

 FCMEA Offset to first CME1

 PVER Process version

 NCMES Number of CMEs in response2

 PFKEY PF key for response

 FUNLN Length of response field

 OFUNC Start old-format function code

 FLAG1 Flag byte

 FUNOF Offset within RSE to function code

 NMDTE Number of module table entries

 LNTA Offset of l ine number table

 DATLU Date module last updated

 DATCR Date module created

 MDTA Offset of included module table

 OFTBL Offset to executable code/vector call offset
table

 FUNC Response field value

PROCESS OBJECT

CODE TABLE

ICMD# GENERATED

CODE

Internal command number Executable code

and vector calls

CME CLASS Command element major class

 FUNC Command element function

 NXTA Offset to next CME from first CME within PME
or RSE

 NEXT Offset of next CME with FDB

 INCLUDED MODULE Name of included module from which CME

was generated

 VERS Included module version

 SEQ# IDD sequence number

 FLAG1 First flag byte

 FLAG2 Second flag byte

 FLAG3 Third flag byte

 FLAG4 Fourth flag byte

Dialog Reports

Appendix B: CA ADS Dialog and Application Reporter 591

Group Field Description

 ICMD# Internal command number

 BODY Parameter for use by run-time system

EXEC CODE/

VECTOR

CALL

OFFSET

TABLE

ICMD# Internal command number

 VECTOR # Vector code

 CODE/CME LEN Length of object code, if executable code;
length of CME, if a vector call

 CODE OFF Offset from first item of object code in
process

 VECTOR CALL Identifies an ICMD as a vector call

RAT

TABLE

 Ready Area Table

INCLUDED

MODULE

TABLE

PROCESS Included module name

VER Included module

version

 DATLU Date included module last updated

 DATCR Date included module created

LIT POOL Literal pool

1 If the FDB contains object code, the FCMEA indicates the offset to the first item of
object code in the Process Object Code Table.

2 If the FDB contains object code, the NCMES contains the original number of CMEs
before their conversion to executable code and vector calls.

Dialog Reports

592 ADS Reference Guide

Vector Call Codes

The following table l ists vector call codes and their associated process commands.

Vector code Process command

■ 0000

■ 0001

■ 0002

■ 0003

■ 0004

■ 0005

■ 0006

■ 0007

■ 0008

■ 0009

■ 000A

■ 000B

■ 000C

■ 000D

■ 000E

■ 000F

■ Database command

■ Database command— logical record

■ ABORT

■ INVOKE

■ TRANSFER

■ RETURN

■ DISPLAY

■ --

■ LEAVE

■ LINKT

■ Assignment command

■ Conditional command

■ WHILE REPEAT

■ Internal branch

■ Subroutine call

■ --

Dialog Reports

Appendix B: CA ADS Dialog and Application Reporter 593

Vector code Process command

■ 0010

■ 0011

■ 0012

■ 0013

■ 0014

■ 0015

■ 0016

■ 0017

■ 0018

■ 0019

■ 001A

■ 001B

■ 001C

■ 001D

■ 001E

■ 001F

■ ON

■ ADD

■ SUBTRACT

■ MULTIPLY

■ DIVIDE

■ MOVE

■ COMPUTE

■ MODIFY MAP

■ (DC) ACCEPT

■ PUT/GET/DELETE SCRATCH

■ PUT/GET/DELETE QUEUE

■ WRITE PRINTER

■ INITIALIZE RECORDS

■ KEEP LONGTERM

■ SNAP

■ COMMIT

Dialog Reports

594 ADS Reference Guide

Vector code Process command

■ 0020

■ 0021

■ 0022

■ 0023

■ 0024

■ 0025

■ 0026

■ 0027

■ 0028

■ 0029

■ 002A

■ 002B

■ 003D

■ 003E

■ 003F

■ ROLLBACK TASK

■ EXECUTE NEXT FUNCTION

■ --

■ --

■ Last vector call; end of process

■ PUT DETAIL

■ GET DETAIL

■ WRITE TRANSACTION

■ READ TRANSACTION

■ CONTINUE

■ WRITE TO LOG

■ CLOSE FILE MAPS

■ ALLOCATE

■ CONTROL SESSION

■ SEND-DATA

■ CONFIRM

■ 0040

■ 0041

■ 0042

■ 0043

■ 0044

■ 0045

■ 0046

■ 0047

■ 0048

■ 0049

■ 004A

■ 004B

■ 004C

■ CONFIRM

■ CONFIRMED

■ REQUEST-TO-SEND

■ SEND-ERROR

■ RECEIVE-AND-WAIT

■ PREPARE-TO-RECEIVE

■ DEALLOCATE

■ SQL call

■ TRACE

■ OPEN

■ CLOSE

■ SEND

■ RECEIVE

Debugging Information

Application Reports

Appendix B: CA ADS Dialog and Application Reporter 595

The information provided in the dialog reports generated by ADSORPTS can be used for
debugging. For example, when the CA ADS runtime system causes a dialog to

abnormally terminate, it sends messages to the system log. The messages provide the
following information:

■ The reason for the abnormal termination.

■ The name of the aborted dialog.

■ The name of the process that was executing at the time of the termination.

■ The hexadecimal offset within the Fixed Dialog Block (FDB) of the command that
was executing at the time of the termination. If the FDB does not contain object
code, the offset is to the CME representing the command. If the FDB contains

object code, the offset is to the object code that references the CME representing
the command.

■ The IDD sequence number (SEQ#) of the source line containing the command that
caused the abend.

■ The internal command number (ICMD#) of the source line containing the command

that caused the abend.

Note: The information above is also displayed on the Dialog Abort Information screen, if
enabled.

The information in the system messages can be used in conjunction with the FDBLIST
report to determine the command that caused the abend. The internal command

number and the hexadecimal offset of the problem command can both be used to
locate the command as it is represented in the Process Object Code Table, the list of
CMEs, and the Executable Code/Vector Call Offset Table. A CME displays the process
command that it represents; an item in the Process Object Code Table and the

Executable Code/Vector Call Offset Table displays the vector code of the command, as
described in the vector call codes table earlier in this appendix.

More information:

CA ADS Runtime System (see page 119)
CA ADS Dialog Compiler (ADSC) (see page 91)

Application Reports

The application reporting capabilities of ADSORPTS enable the application developer to
request any or all of the following reports for one or several applications:

■ Summary reports l ist information about task codes, global records, functions, and

responses.

■ Records reports l ist information about global records.

Control Statements

596 ADS Reference Guide

■ Functions/responses detail reports l ist information about functions, responses, and
the relationships between functions and responses.

■ Functions/responses summary reports l ist the relationships between functions and
responses.

Additionally, all of the application reports l ist basic information about the application,

such as security requirements and application-wide defaults.

Control Statements

ADSORPTS is driven by five control statements, as shown below.

Summary of the ADSORPTS Control Statements

Control statement Purpose

APPLICATIONS Specifies the applications for which reports are being
requested and the reports desired for the applications

DIALOGS Specifies the dialogs for which reports are being
requested and the reports desired for the dialogs

LIST Controls the online or printed format of the ADSORPTS
output

SEARCH Specifies whether ADSORPTS searches in the load
(core-image) l ibrary or the load area for the dialogs and
applications specified by the DIALOGS and APPLICATIONS
control statements

APPLICATIONS

Purpose

Generates reports for specified applications.

Control Statements

Appendix B: CA ADS Dialog and Application Reporter 597

Syntax

►►─── APPLications = ───►

 ►─┬─ ALL ──┬─ , ─►
 │ ┌─────────────────────── , ──────────────────────────┐ │
 └─┬───┬─▼─┬─ application-name ─────────────────────────────┬─┴─┬───┬─┘
 └ (─┘ ├─ application-mask-value ───────────────────────┤ └) ┘
 └─ low-application-name - high-application-name ─┘

 ►───┬───┬────────►
 └─ VERsions = ───┬─ ALL ◄ ──────────────────────────────── , ─┬─┘
 ├─ version-number ───────────────────────────┤
 └─ low-version-number - high-version-number ─┘

 ►───┬───┬────────────────►◄
 └─ REPORTs = ────┬─ ALL ─────────────────────────────┬──┘
 │ ┌───────────────────┐ │
 └─┬───┬─▼─┬── SUMmary ◄ ──┬─┴─┬───┬─┘
 └ (┘ ├┬─ RECords ─┬──┤ └) ┘
 │└─ RCD ─────┘ │
 ├── F/RSUMmary ─┤
 └── F/RDETail ──┘

Parameters

ALL

Specifies all applications in the load area.

application-name

Specifies the 1- to 8-character name of a single application.

If the name includes a hyphen (-) as a character, replace with a mask character. The
mask character is the asterisk (*).

application-mask-value

Specifies any application with a name that matches the mask criteria.

The mask character is the asterisk (*); it matches any character. For example,

APPLICATIONS=ORE***** generates the requested reports for all applications
beginning with ORE.

low-application-name - high-application-name

Specifies all applications within the application-name range (inclusive).

The hyphen (-) is required and cannot have surrounding blanks.

Application names and masks that have fewer than eight characters are padded on
the right with blanks.

VERsions =

Introduces the version numbers of the applications for which reports are requested.

ALL

Specifies all versions of the named applications.

ALL is the default when no other version is specified.

Control Statements

598 ADS Reference Guide

version-number

Specifies a single version number for the named applications.

low-version-number - high-version-number

Specifies all versions of the named applications within the version-number range
(inclusive).

The hyphen (-) is required and cannot have surrounding blanks.

REPORTS=

Introduces the reports requested for the named applications.

ALL

Requests the summary, records, and functions/responses detail reports for the
named applications.

SUMmary

Requests summary reports for the named applications.

SUMMARY is the default when no other report is specified.

RECords

Requests records reports for the named applications.

F/RSUMmary

Requests functions/responses summary reports for the named applications.

F/RDETail

Requests functions/responses detail reports for the named applications.

Usage

Considerations

If both dialog and application reports are requested in a single ADSORPTS run, dialogs

are reported first, followed by applications.

Example 1: Requesting summary reports

The following statement requests summary reports for all versions of applications with
names in the range A through C (inclusive):

APPLICATIONS=(A-C),REPORTS=SUMMARY

Control Statements

Appendix B: CA ADS Dialog and Application Reporter 599

Example 2: Requesting all reports

The following statement requests all reports for all applications whose names begin

with ABC and whose version number is 20:

APPLICATIONS=ABC*****,VERSION=20,REPORT=ALL

Example 3: Requesting summary and records reports for all versions

The following statement requests summary and records reports for all versions of
applications with names that contain the characters S and T in the third and fourth
positions and blanks in the last two positions:

APPLICATIONS=**ST**,REPORTS=(SUMMARY,RECORDS)

Example 4: Requesting functions/responses summary reports

The next statement requests functions/responses summary reports for all versions of
the following applications:

■ Applications whose names begin with the characters ABC

■ Applications whose names contain the characters S and T in the third and fourth

positions and blanks in the last two positions

■ Applications whose names are in the range A through C (inclusive)

APPLICATIONS=(ABC*****,**ST**,A-C),REPORTS=F/RSUMMARY

DIALOGS

Purpose

Generates reports for specified dialogs.

Control Statements

600 ADS Reference Guide

Syntax

►►─── DIALOGs = ──►

 ►─┬─ ALL ──┬─ , ───►
 │ ┌────────────────────── , ─────────────────────────┐ │
 └─┬───┬─▼─┬─ dialog-name ────────────────────────────────┬─┴─┬───┬─┘
 └ (─┘ ├─ dialog-mask-value ──────────────────────────┤ └) ┘
 └─ low-dialog-name - high-dialog-name ─────────┘

 ►───┬───┬── , ───►
 └─ VERsions = ───┬─ ALL ◄ ────────────────────────────────────┬─┘
 ├─ version-number ───────────────────────────┤
 └─ low-version-number - high-version-number ─┘

 ►───┬───┬────►◄
 └─ REPORTs = ─┬ ALL ───┬──┘
 │ ┌────────────────────────────────────┐ │
 └┬───┬─▼─┬ SUMmary ◄ ─────────────────────┬─┴─┬───┬┘
 └ (┘ ├┬ RECords ─┬────────────────────┤ └) ┘
 │└ RCD ─────┘ │
 ├ FDBlist ───────────────────────┤
 └ PROcesses ─┬─────────────────┬─┘
 └─ sxref-options ─┘

Expansion of sxref-options

►►─── with SXREF ─┬───────────────────────┬───────────────────────────────────►◄
 └─ (─┬─ LONG ────┬─) ─┘
 └─ SHORT ◄ ─┘

Parameters

ALL

Generates reports for all dialogs in the load area.

dialog-name

Specifies the 1- to 8-character name of a single dialog.

If the name includes a hyphen (-) as a character, replace with a mask character. The
mask character is the asterisk (*).

dialog-mask-value

Specifies any dialog with a name that matches the mask criteria. The mask

character is the asterisk (*); it matches any character. For example,
DIALOGS=DCB***** generates the requested reports for all dialogs beginning with
DCB.

low-dialog-name - high-dialog-name

Specifies all dialogs within the dialog-name range (inclusive).

The hyphen (-) is required and cannot have surrounding blanks.

Dialog names and masks that have fewer than eight characters are padded on the
right with blanks.

VERSIONS =

Introduces the version numbers of the dialogs for which reports are requested.

Control Statements

Appendix B: CA ADS Dialog and Application Reporter 601

ALL

Specifies all versions of the named dialogs.

ALL is the default when no other version is specified.

version-number

Specifies a single version number for the named dialogs.

low-version-number - high-version-number

Specifies all versions of the named dialogs within the version-number range
(inclusive). The hyphen (-) is required and cannot have surrounding blanks.

REPORTS =

Introduces the reports requested for the named dialogs.

ALL

Requests all reports (that is, the summary, processes, records, and FDBLIST reports)
for the named dialogs.

SUMmary

Requests summary reports for the named dialogs.

SUMMARY is the default when no other report is specified.

RECords

Requests records reports for the named dialogs.

FDBlist

Requests FDBLIST reports for the named dialogs.

PROcesses

Requests processes reports for the named dialogs.

sxref-options

Specifies sorted cross-reference report options.

with SXREF

Requests a sorted cross-reference for process reports. The usage of all data names

and subroutine calls is cross-referenced.

LONG

Specifies that all elements be included in the report.

Control Statements

602 ADS Reference Guide

SHORT

Specifies that only elements that are referenced be included in the report.

SHORT is the default.

Note: When specifying the cross-reference option, the Master Function Table
(RHDCEVBF) must reside in either the load area or the load library.

Usage

Considerations

A maximum of 100 dialog report requests can be specified in a single ADSORPTS run. If
both dialog and application reports are requested in a single ADSORPTS run, dialogs are
reported first, followed by applications, regardless of their order in the control

statements.

Example 1: Requesting summary reports

The following statement requests summary reports for all versions of dialogs with
names in the range A-C (inclusive):

DIALOGS=(A-C),REPORTS=SUMMARY

Example 2: Requesting summary and records reports

The following statement requests all reports for all dialogs with names that contain the
characters S and T in the third and fourth positions and blanks in the last two positions:

DIALOGS=**ST**,REPORTS=(SUMMARY,RECORDS)

Example 3: Requesting summary reports for all versions

The next statement requests summary reports for all versions of these dialogs:

■ Dialogs whose names begin with the characters ABC

■ Dialogs whose names contain the characters S and T in the third and fourth

positions and blanks in the last two positions

■ Dialogs whose names are in the range A through C (inclusive)

DIALOGS=(ABC*****,**ST**,A-C)

Example 4: Requesting all reports for the dialog named TBXSUMD

The following statement requests all reports for the named dialog:

DIALOGS=TBXSUMD,REPORTS=ALL

Control Statements

Appendix B: CA ADS Dialog and Application Reporter 603

LIST

Purpose

Specifies the format for requested reports.

Syntax

►►────┬──────────────────────────┬──►◄
 └─ LIST = ──┬── NARROW ────┤
 └┬─ FULLlist ─┬┘
 └─ WIDE ◄ ───┘

Parameters

NARROW

Formats report output for display on a terminal screen.

FULLlist

Formats report output for a 132-character printer.

FULLIST is the default when neither NARROW or FULLIST is specified.

WIDE can be used in place of FULLLIST.

Usage

Considerations

If more than one LIST statement is submitted for a single run of ADSORPTS, the
specification in the last LIST statement applies for the entire run.

SEARCH

Purpose

Specifies where ADSORPTS searches for the object dialogs and applications.

Syntax

►►────┬──────────────────────────────┬──►◄
 └─ SEARCH = ──┬─ loadAREA ◄ ─┬─┘
 └─ loadLIB ────┘

Parameters

loadAREA

Specifies that ADSORPTS searches for the dialogs and applications in the load area.

LOADAREA is the default when neither LOADAREA OR LOADLIB is specified.

SYSIDMS Parameter File

604 ADS Reference Guide

loadLIB

Specifies that ADSORPTS searches for the dialogs and applications in the load

(core-image) l ibrary.

Usage

Considerations

■ If more than one SEARCH statement is submitted for a single run of ADSORPTS, the
specification in the last SEARCH statement applies for the entire run.

■ The DIALOGS and APPLICATIONS statements cannot specify a range of dialog or
application names (such as low-dialog-name - high-dialog-name) or a dialog or
application mask (such as dialog-mask-value).

■ The load (core-image) l ibraries in which the dialogs and applications are located
must be specified in the JCL or commands that run the reports, as follows:

– z/OS JCL

In the CDMSLIB statement or, if a CDMSLIB statement is not specified, in the
STEPLIB statement

– z/VSE JCL

In the ASSGN/EXTNT statement for the private core-image library or in the
LIBDEF equivalent

– z/VM commands

In the GLOBAL LOADLIB command, added to the list of l ibraries

SYSIDMS Parameter File

For more information about SYSIDMS parameters, see the CA IDMS Database
Administration.

JCL and Commands To Run Reports

Appendix B: CA ADS Dialog and Application Reporter 605

JCL and Commands To Run Reports

Sample z/OS and PS/390 JCL for Central Version

ADSORPTS (central version) (z/OS and PS/390)

//ADSORPTS EXEC PGM=ADSORPTS,REGION=1024K

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.loadlib,DISP=SHR

//sysctl DD DSN=idms.sysctl,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//SYSLST DD SYSOUT=A

//SYSIDMS DD *

DMCL=dmcl-name

DICTNAME=appldict

Put other SYSIDMS parameters, as appropriate, here

/*

//SYSIPT DD *

Put ADSORPTS parameters, as appropriate, here

/*

//*

Sample z/OS and PS/390 JCL for Local Mode ADSORPTS (local mode) (z/OS and
PS/390)

//ADSORPTS EXEC PGM=ADSORPTS,REGION=1024K

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.loadlib,DISP=SHR

//dictdb DD DSN=idms.appldict.ddldml,DISP=SHR

//dloddb DD DSN=idms.appldict.ddldclod,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//sysjrnl DD DUMMY

//SYSPCH DD syspch-def

//SYSLST DD SYSOUT=A

//SYSIDMS DD *

DMCL=dmcl-name

DICTNAME=appldict

Put other SYSIDMS parameters, as appropriate, here

/*

//SYSIPT DD *

Put ADSORPTS parameters, as appropriate, here

/*

//*

idms.dba.loadlib Data set name of the load library containing the DMCL and
database name table load modules

JCL and Commands To Run Reports

606 ADS Reference Guide

idms.loadlib Data set name of the load library containing the CA IDMS
executable modules

sysctl DDname of the SYSCTL fi le

idms.sysctl Data set name of the SYSCTL fi le

dcmsg DDname of the system message (DDLDVM/ESAG) area

idms.sysmsg.ddldcmsg Data set name of the system message (DDLDVM/ESAG) area

dmcl-name Name of the DMCL load module

appldict Name of the application dictionary

dictdb DDname of the application dictionary definition (DDLDML)

area

idms.appldict.ddldml Data set name of the application dictionary definition
(DDLDML) area

dloddb DDname of the application dictionary definition load

(DDLDML) area

idms.appldict.ddldclod Data set name of the application dictionary definition load
(DDLDCLOD) area

sysjrnl DDname of the tape journal fi le

Sample z/VSE JCL for Central Version

ADSORPTS (z/VSE)

// UPSI b if specified in the IDMSOPTI module

// DLBL userlib

// EXTENT ,nnnnnn

// LIBDEF *,SEARCH=(userlib.cdmslib)

// EXEC ADSORPTS

SYSIDMS parameters

control statements

b appropriate 1- through 8-character UPSI bit switch, as

specified in the IDMSOPTI module

nnnnnn volume serial number of the library

userlib fi lename of the CA IDMS/DB library

userlib.cdmslib fi le-id of the CA IDMS/DB sublibrary

SYSPCH definition See "ADSA migration syntax considerations" below

SYSIDMS parameters A l ist of SYSIDMS parameters for this job

JCL and Commands To Run Reports

Appendix B: CA ADS Dialog and Application Reporter 607

Sample z/VSE JCL for Local Mode

To execute ADSORPTS in local mode, perform the following steps:

1. Remove the UPSI specification.

2. Add the following statements before the EXEC statement:

// DLBL dictdb,'idms.appldict.ddldml',,DA

// EXTENT sys015,nnnnnn

// ASSGN sys015,DISK,VOL=nnnnnn,SHR

// DLBL dloddb,'idms.appldict.ddldclod',,DA

// EXTENT sys017,nnnnnn

// ASSGN sys017,DISK,VOL=nnnnnn,SHR

// DLBL dmsgdb,'idms.system.ddldcmsg',,DA

// EXTENT sys016,nnnnnn

// ASSGN sys016,DISK,VOL=nnnnnn,SHR

// TLBL sys009,'idms.tapejrnl',,nnnnnn,,f

// ASSGN sys009,TAPE,VOL=nnnnnn

idms.appldict.ddldml = fi le-id of the data dictionary DDLDML area

idms.appldict.ddldclod = fi le-id of the data dictionary load area

idms.system.ddldcmsg = fi le-id of the data dictionary message area

idms.tapejrnl = fi le-id of the tape journal fi le

dictdb = fi lename of the data dictionary DDLDML area

dloddb = fi lename of the data dictionary load area (DDLDCLOD)

dmsgdb = fi lename of the data dictionary message area
(DDLDVM/ESAG)

f = fi le number of the tape journal fi le

nnnnnn = volume serial number

sys009 = logical unit assignment for the tape journal fi le

sys015 = logical unit assignment for the data dictionary DDLDML

area

sys016 = logical unit assignment for the data dictionary message
area

sys017 = logical unit assignment for the data dictionary load area

JCL and Commands To Run Reports

608 ADS Reference Guide

Sample z/VM Commands for Central Version

ADSORPTS (z/VM)

FILEDEF SYSCTL DISK sysctl frame a

FILEDEF SYSLST PRINTER

FILEDEF SYSIDMS DISK sysidms input a

FILEDEF SYSIPT DISK rpts input a

GLOBAL LOADLIB idmslib

OSRUN ADSORPTS

sysctl frame a fi lename, fi letype, and fi lemode of the SYSCTL fi le for the CV
to run against

sysidms input a fi lename, fi letype, and fi lemode of the fi le containing the
SYSIDMS input parameters

rpts input a fi le identifier of the fi le containing ADSORPTS source
statements

idmslib fi lename of the CA IDMS/DB LOADLIB library

Sample z/VM Commands for Local Mode

To execute ADSORPTS in local mode, add the following commands before the OSRUN
command:

FILEDEF sysjrnl TAP1 SL VOLID nnnnnn (RECFM VB LRECL lll BLKSIZE bbb

FILEDEF dictdb DISK dictdb addr

FILEDEF dloddb DISK dloddb addr

FILEDEF dmsgdb DISK dmsgdb addr

bbb = block size of the tape journal fi le

dictdb = ddname of the data dictionary DDLDML area

dictdb addr = disk address of the data dictionary DDLDML area; for
example, 500

dloddb = ddname of the data dictionary load area (DDLDCLOD)

dloddb addr = disk address of the data dictionary load area; for example,

500

dmsgdb = ddname of the data dictionary message area
(DDLDVM/ESAG)

dmsgdb addr = disk address of the data dictionary message area

lll = record length of the tape journal fi le

JCL and Commands To Run Reports

Appendix B: CA ADS Dialog and Application Reporter 609

Specifying Central Version or Local Mode

To specify whether ADSORPTS executes under central version or in local mode, take one

of the following actions:

■ Specify either CVMACH=dc/ucf-machine-name (for central version) or *LOCAL* (for
local mode) as the first statement to be submitted to ADSORPTS.

Dc/ucf-machine-name is the 1- through 8-character user identifier of the z/VM
virtual machine in which the CA IDMS/DC or DC/UCF (DC/UCF) system is executing.

■ Link edit ADSORPTS with an IDMSOPTI module that specifi es either
CVMACH=dc/ucf-machine-name (for central version) or CENTRAL=NO (for local

mode).

Note: For more information about the instructions to create an IDMSOPTI module,
see the CA IDMS System Operations Guide.

■ Code PARM='CVMACH=dc/ucf-machine-name' or PARM='*LOCAL*' on the OSRUN

command used to invoke the compiler. This option is not allowed if the OSRUN
command is issued from a z/VM EXEC program; however, it is allowed if the OSRUN
command is issued from a System Product interpreter (REXX) or EXEC 2 program.

Note: For more information about central version and local mode operations in the
z/VM environment, see the Installation and Maintenance Guide—z/VM.

Appendix C: Dialog Statistics 611

Appendix C: Dialog Statistics

This section contains the following topics:

Overview (see page 611)
Collecting Selected Statistics (see page 611)
Enabling Dialog Statistics (see page 615)

Selecting Dialogs (see page 616)
Setting a Checkpoint Interval (see page 617)
Collecting and Writing Statistics (see page 617)

Statistics Reporting (see page 618)

Overview

The CA ADS dialog statistics feature allows collection of runtime statistics about dialog
and overhead activity. (Overhead activity is not directly attributable to any dialog.
Overhead activity occurs once at the beginning and once at the end of an applic ation.)

Statistics are collected for each logical terminal through which the application is
executed.

The following aspects of dialog statistics are discussed in this appendix:

■ Collecting selected statistics

■ Enabling dialog statistics

■ Selecting dialogs for collection of individual statistics

■ Setting a checkpoint interval, after which accumulated statistics are written to the
log fi le at runtime

■ Collecting and writing statistics at runtime

■ Dialog statistics reporting

Note: For more information about statistics-related DCMT commands described later in
this appendix, see the CA IDMS System Tasks and Operator Commands Guide.

Collecting Selected Statistics

Individual sets of dialog statistics can be collected for selected dialogs or for every dialog

that executes during an application. If statistics are collected for selected dialogs, one
additional set of statistics is collected for all the nonselected dialogs.

Collecting Selected Statistics

612 ADS Reference Guide

Transaction Statistics Block Fields

The following table l ists the sets of CA IDMS/DB and CA IDMS/DC transaction statistics

that can be collected for each dialog and for overhead activity.

Note: For more information about transaction statistics, see the CA IDMS System Tasks
and Operator Commands Guide.

Type of information Fields

IDENTIFICATION INFORMATION Transaction Statistics Block identifier

DC user identifier

DC logical terminal identifier

Dialog identifier

Date that BIND command was issued

Time that BIND command was issued

CA IDMS/DC STATISTICS Number of programs called

Number of programs loaded

Number of terminal reads

Number of terminal writes

Number of terminal errors

Number of storage acquisitions

Number of scratch gets

Number of scratch puts

Number of scratch deletes

Number of queue gets

Number of queue puts

Number of queue deletes

Number of get time requests

Number of set time requests

Number of database calls

Max words used in stack

User mode time

System mode time

Wait time

Task storage high-water mark

Total number of free storage requests

Collecting Selected Statistics

Appendix C: Dialog Statistics 613

Type of information Fields

IDMS-DB STATISTICS Number of pages read

Number of pages written

Number of pages requested

Number of CALC records stored with no

overflow

Number of CALC records stored with
overflow

Number of VIA records stored with no

overflow

Number of VIA records stored with overflow

Number of records requested

Number of records current of run unit

Number of fragments stored

Number of records relocated

Total number of locks

Number of select locks

Number of update locks

CA ADS Statistics Block Fields

The following table l ists the sets of CA ADS statistics that can be collected for each

dialog.

Type of information Fields

IDENTIFICATION INFORMATION CA ADS Statistics Block identifier

DC user identifier

DC logical terminal identifier

Dialog identifier

Date that Transaction Statistics

 Block BIND command was issued

Time that Transaction Statistics

 Block BIND command was issued

Dialog version number

Collecting Selected Statistics

614 ADS Reference Guide

Type of information Fields

STATISTICS FOR EXPLICITLY CODED

CONTROL COMMANDS

Number of DISPLAY commands

Number of DISPLAY CONTINUE commands

Number of INVOKE commands

Number of LINK TO DIALOG commands

Number of LINK TO PROGRAM commands

Number of RETURN commands

Number of RETURN CONTINUE commands

Number of TRANSFER commands

Number of LEAVE ADS commands

Number of LEAVE APPLICATION commands

Number of ABORT commands

STATISTICS FOR IMPLICITLY GENERATED

CONTROL COMMANDS

Number of DISPLAY commands

Number of INVOKE commands

Number of LINK TO DIALOG commands

Number of LINK TO PROGRAM commands

Number of RETURN commands

Number of RETURN CONTINUE commands

Number of TRANSFER commands

Number of LEAVE ADS commands

Number of LEAVE APPLICATION commands

Number of ABORT commands

Enabling Dialog Statistics

Appendix C: Dialog Statistics 615

Type of information Fields

DIALOG EXECUTION STATISTICS Number of premap process executions

Number of response process executions

Number of statistics accumulation calls

Number of explicit scratch gets

Number of explicit scratch puts

Number of explicit scratch deletes

Number of WRITE PRINTER commands

Number of PUT NEW DETAIL commands

Number of PUT CURRENT DETAIL
commands

Number of GET DETAIL commands

Size of Fixed Dialog Block (FDB)

Size of Variable Dialog Block (VDB)

Highest l ink level at which a dialog was
executed

Lowest l ink level at which a dialog was
executed

STATISTICS FOR RECORD BUFFER BLOCK
(RBB) USAGE

Number of times RBBs put to scratch

Most RBB storage used (all dialogs)

RBB free space when most storage used

Least RBB storage used (all dialogs)

RBB free space when least storage used

Most RBB space acquired for a dialog

Least RBB space acquired for a dialog

Highest number of RBBs used

Lowest number of RBBs used

Enabling Dialog Statistics

Dialog statistics can be collected only if task and transaction statistics collection is
enabled. Task statistics are enabled at system generation time. Transaction statistics can

be enabled at either system generation or runtime in the following manner:

■ To enable transaction statistics at system generation time, use the STATISTICS
parameter in the SYSTEM statement, specifying TASK, WRITE, and TRANSACTION.

■ To enable transaction statistics at runtime, use the DCMT VARY STATISTICS

TRANSACTION command.

Selecting Dialogs

616 ADS Reference Guide

The DCMT VARY ADSO STATISTICS command is used to enable or disable dialog statistics
and to specify whether individual statistics are collected for selected dialogs or for all

dialogs, as follows:

■ DCMT VARY ADSO STATISTICS ON ALL DIALOGS enables dialog statistics and
specifies that sets of statistics are to be collected for overhead activity and for each

dialog that is executed during an CA ADS application.

■ DCMT VARY ADSO STATISTICS ON SELECTED DIALOGS enables dialog statistics and

specifies that sets of statistics are to be collected for overhead activity and for each
selected dialog that is executed during an CA ADS application. One additional set of
statistics is collected to accumulate statistics for all nonselected dialogs.

■ DCMT VARY ADSO STATISTICS OFF disables the dialog statistics feature.

If no DCMT VARY ADSO STATISTICS command is issued prior to the execution of an
application, the runtime system uses the default specification established at system
generation.

Selecting Dialogs

The DCMT VARY PROGRAM command is used to select or deselect dialogs for individual
statistics collection, as follows:

■ DCMT VARY PROGRAM dialog-name ADSO STATISTICS ON selects the named

dialog for individual statistics collection. At runtime, if dialog statistics are enabled,
individual statistics are collected for the dialog when it executes.

■ DCMT VARY PROGRAM dialog-name ADSO STATISTICS OFF deselects a dialog
from individual statistics collection. At runtime, if dialog statistics are enabled in the
SELECTED DIALOGS mode, individual statistics for the dialog are not collected;

however, one set of statistics is collected for all nonselected dialogs. If dialog
statistics are enabled in the ALL DIALOGS mode, individual statistics are collected
for the dialog when it executes, even if it is not selected.

If no DCMT VARY PROGRAM command with the STATISTICS parameter is issued for a
dialog prior to the execution of an application, the runtime system uses the specification

established at system generation.

The DCMT VARY ADSO STATISTICS and the DCMT VARY PROGRAM commands can be
issued in any order.

Setting a Checkpoint Interval

Appendix C: Dialog Statistics 617

Setting a Checkpoint Interval

The DCMT VARY ADSO STATISTICS command is used to set a checkpoint interval, which
determines when the collected statistics are written to the system log, as follows:

■ DCMT VARY ADSO STATISTICS CHECKPOINT INTERVAL
checkpoint-interval-number specifies that statistics for all dialogs are written to the

log once at every checkpoint-interval-number statistics accumulations. Additionally,
statistics are written to the log when the application terminates. Note that
CHECKPOINT INTERVAL 0 is equivalent to CHECKPOINT INTERVAL OFF.

■ DCMT VARY ADSO STATISTICS CHECKPOINT INTERVAL OFF specifies that statistics
are written to the log only when the application terminates.

If no DCMT VARY ADSO STATISTICS command with the CHECKPOINT INTERVAL
parameter is issued prior to the execution of an application, the runtime system uses
the specification established at system generation.

Collecting and Writing Statistics

At runtime, if dialog statistics are enabled, statistics for overhead activity are collected
and written to the CA IDMS/DC or DC/UCF (DC/UCF) system log whenever overhead
activity is performed, once at the beginning of the application and once at the end. The
transaction statistics block identifier for overhead activity is either the application name

or, for applications not defined using the application generator, $ADS@@OH.

Dialog statistics are collected each time a dialog issues a control command. These
statistics are not written immediately to the system log, but are accumulated in
transaction and CA ADS statistics blocks (TSBs and ASBs).

The runtime system allocates TSBs and ASBs as follows:

■ If dialog statistics are enabled in the ALL DIALOGS mode, one TSB and one ASB are

allocated for each dialog the first time the dialog becomes operative in the
application thread. The statistics block identifier for the TSB and ASB is the dialog
name.

■ If dialog statistics are enabled in the SELECTED DIALOGS mode, one TSB and one

ASB are allocated for each selected dialog the first time the dialog becomes
operative in the application thread. Additionally, one TSB and one ASB are allocated
to accumulate statistics for all nonselected dialogs; the statistics block identifier for

the additional TSB and ASB is $ADS@@AO.

Statistics Reporting

618 ADS Reference Guide

Dialog statistics are written to the system log each time the number of statistics
accumulations equals the predefined checkpoint interval. Addi tionally, statistics are

written to the log when the application terminates.

When dialog statistics are written to the system log, only TSBs and ASBs that contain
accumulated statistics are written to the system log. The TSBs and ASBs are then

initialized, and the statistics accumulations count is reset to zero.

TSBs and ASBs are freed only when the application terminates. Note, however, that

during a pseudo-converse they may be written to scratch along with record buffer
blocks, as directed at system generation with the FAST MODE THRESHOLD and
RESOURCES parameters of the ADSO statement.

Statistics Reporting

DC/UCF statistics reports (SREPORTs) allow the application developer to produce
reports on dialog statistics.

Statistics collected in the CA ADS statistics block can be reported on by using any of the
following SREPORTs, identified by report number:

■ 018— CA ADS statistics by user id

■ 019— CA ADS statistics by dialog and version number

■ 020— CA ADS statistics by logical terminal id

Statistics collected in the transaction statistics block can be reported on by using any of
the following SREPORTs:

■ 011— CA IDMS/DC transaction statistics by logical terminal id

■ 021— IDMS-DC transaction statistics by dialog and

SREPORTS are similar in format.

Statistics Reporting

Appendix C: Dialog Statistics 619

Sample SREPORT for Dialog Statistics

The following shows sample output from SREPORT number 019:

 REPORT NO. 019 ADS STATISTICS BY DIALOG AND VERSION NUMBER - R15.0 09/19/99 PAGE 8

 DIALOG NAME : ADSOAFNC VERSION NUMBER: 1

 DATE : 91043 TIME : 09:49 USER ID : SMT
 DATE BIND : 91043 TIME BIND : 09:46 LTERM ID : LT12011

 DISPLAY COMMAND: 21 DISPLAY CONTINU: 21 INVOKES : 3 LINK TO DIALOGS: 18

 LNKS TO PROGRAM: 18 RETURNS : 0 RETURN CONTINUE: 0 TRANSFERS : 18
 LEAVE ADS : 0 LEAVE APPLICATN: 0 ABORTS : 0 IMPL DISPLAYS : 0

 IMPL INVOKE : 0 IMPL LINK DLGS : 0 IMPL LINK PGMS : 0 IMPL RETURNS : 0

 IMPL RET CONT : 0 IMPL TRANSFERS : 0 IMPL LEAVE ADS : 0 IMPL LEAVE PGMS: 0
 IMPL ABORTS : 0 PREMAP PROCESS : 42 RESPONSE PROCES: 21 STAT ACCUM CALL: 99

 EXPL GET SCRS : 0 EXPL PUT SCRS : 0 EXPL DEL SCRS : 0 WRTE PRINT REQS: 0

 PUT NEW DETAILS: 0 PUT CUR DETAILS: 0 GET DETAILS : 0 SIZE OF FDB : 23,080
 SIZE OF VDB : 836 HIGHEST LNK LEV: 1 LOWEST LNK LEVL: 1 RBB PUT TO SCR : 0

 RBB STG HI MARK: 3,176 RBB FREE HI : 908 RBB STG LOW MK : 3,176 RBB FREE LOW : 908

 MOST RBB ACQ : 304 LEAST RBB ACQ : 304 HICOUNT RBB USE: 1 LOCOUNT RBB USE: 1

 **** DIALOG TOTAL ****

 DISPLAY COMMAND: 21 DISPLAY CONTINU: 21 INVOKES : 3 LINK TO DIALOGS: 18
 LNKS TO PROGRAM: 18 RETURNS : 0 RETURN CONTINUE: 0 TRANSFERS : 18

 LEAVE ADS : 0 LEAVE APPLICATN: 0 ABORTS : 0 IMPL DISPLAYS : 0

 IMPL INVOKE : 0 IMPL LINK DLGS : 0 IMPL LINK PGMS : 0 IMPL RETURNS : 0

 IMPL RET CONT : 0 IMPL TRANSFERS : 0 IMPL LEAVE ADS : 0 IMPL LEAVE PGMS: 0

 IMPL ABORTS : 0 PREMAP PROCESS : 42 RESPONSE PROC : 21 STAT ACCUM CALL: 99

 EXPL GET SCRS : 0 EXPL PUT SCRS : 0 EXPL DEL SCRS : 0 WRTE PRINT REQS: 0

 PUT NEW DETAILS: 0 PUT CUR DETAILS: 0 GET DETAILS : 0 RECORD COUNT : 1

Appendix D: Application and Dialog Utilities 621

Appendix D: Application and Dialog Utilities

This section contains the following topics:

Overview (see page 621)
ADSOBCOM (see page 621)
ADSOBSYS (see page 654)

ADSOBTAT (see page 662)
ADSOTATU (see page 671)

Overview

CA ADS provides util ities that allow the application developer to maintain applications

and dialogs. The util ities are summarized in the table below and discussed in further
detail throughout this appendix.

Summary of CA ADS Utilities

Utility Purpose

ADSOBCOM Creates, modifies, deletes, and recompiles dialogs in batch mode

ADSOBSYS Sets up system generation parameters required by ADSOBCOM

ADSOBTAT Modifies the task application table (TAT) in batch mode when an
application is migrated from one dictionary to another

ADSOTATU Modifies the task application table (TAT) online when an application
is migrated from one dictionary to another

ADSOBCOM

ADSOBCOM, the batch dialog compiler, allows the application developer to add, modify,
delete, and recompile dialogs. Batch dialog recompilation is useful when modifications

are made to maps, processes, subschemas, or records that are associated with several
dialogs. There is no limit to the number of dialogs that can be processed in a single run
of ADSOBCOM.

ADSOBCOM

622 ADS Reference Guide

ADSOBSYS

The ADSOBSYS util ity must be run before ADSOBCOM can be run. ADSOBSYS creates an

ADSOOPTI load module that contains CA ADS system generation parameters for the
specified CA IDMS/DC or DC/UCF (DC/UCF) system. ADSOBSYS must be run once when
the system is first generated, and once each time CA ADS system generation parameters

are changed.

Dialog compiler security is in effect during execution of ADSOBCOM. Dialog compiler

security prohibits unauthorized application developers from adding, modifying, and/or
deleting dialogs.

ADSOBCOM uses standard control statements as well as special ADSOBCOM control

statements.

More information:

Security Features (see page 717)

Standard Control Statements

The following control statements can be used with ADSOBCOM:

If used, the ICTL, OCTL, and ISEQ control statements must be submitted into the job
stream before the SIGNON statement.

ICTL

Specifies a scan for meaningful data within a specified column range. The default
specification is 1-72. The ICTL statement format is shown below:

►►─┬───┬──────────────────────►◄
 └─ ICTL = (start-column-number end-column-number) ─┘

OCTL

Specifies the number of printed lines on each page of printed ADSOBCOM output. The
default specification is 56. The OCTL statement format is shown below:

►►─┬──────────────────────────────┬───►◄
 └─ OCTL = (line-count-number) ─┘

ISEQ

Specifies sequence checking on source statements within a specified column range. The

ISEQ statement format is shown below:

►►─┬───┬──────────────────────►◄
 └─ ISEQ = (start-column-number end-column-number) ─┘

ADSOBCOM

Appendix D: Application and Dialog Utilities 623

Special Control Statements

ADSOBCOM is driven by the control statements SIGNON, COMPILE, and DECOMPILE.

SIGNON

Purpose

Specifies the name and any necessary password of the DC/UCF user, as well as the

dictionary in which the dialogs to be recompiled are stored.

Syntax

►►─┬──►
 └─ SIGnon ─┬──┬──
 └─ USER ─┬──────┬─ user-name ─┬─────────────────────────────┬┘
 ├─ IS ─┤ └ PASSword ─┬────┬─ password ─┘
 └─ = ──┘ ├ IS ┤
 └ = ─┘

 ►──►
 ────┬───────────────────────────────────────┬───────────────────────────────
 └─ DICTNAME ─┬──────┬─ dictionary-name ─┘
 ├─ IS ─┤
 └─ = ──┘

 ►──┬─────────────────────────►◄
 ────┬──────────────────────────────────────┬─ . ──┘
 └─ DICTNODE ───┬──────┬── node-name ───┘
 ├─ IS ─┤
 └─ = ──┘

Parameters

USER is user-name

Specifies the signon user.

The equals sign (=) can be used in place of IS.

Note: USER must be the first parameter specified on the SIGNON statement.

PASSword is password

Specifies, when necessary, the user's DC/UCF password.

The user name and password must be supplied in order to use ADSOBCOM when
dialog compiler level security is in effect. Additionally, security at the dialog level
may also require that the user name and password be supplied.

ADSOBCOM

624 ADS Reference Guide

DICTNAME is dictionary-name

Specifies the 1- to 8-character name of the data dictionary from which the dialog

load module, process source code, record, map, and subschema definitions are
retrieved. This is the same dictionary into which the compiled dialog load module is
placed.

If no dictionary name is specified, ADSOBCOM uses the name of the primary
dictionary.

DICTNODE is node-name

(for DDS only) Specifies the 1- to 8-character name of the DDS node that controls
the data dictionary specified by DBNAME.

More information:

Security Features (see page 717)

COMPILE

Purpose

Either specifies the dialogs to be recompiled based on information in the load module,
or specifies the dialogs to be added, modified, or deleted, based on information in the

dialog statements that accompany the COMPILE statement.

There is no limit to the number of COMPILE statements that can be submitted to each
run of ADSOBCOM.

Syntax

►►─── COMpile from ───►

 ┌──────────────────────┐
 ►─┬─ SOUrce ──▼── dialog-expression ─┴───────────────────────────────────────►─
 │
 └─ LOAD ─┬─ ALL ───
 │ ┌────────────────────────┐
 └─ DIALog ─┬──────┬─ (─▼─ dialog-name-options ─┴─) ────────────
 ├─ IS ─┤
 └─ = ──┘

─►───┬── . ─────►◄
 ───┬─┘
 ─┬───┬─┘
 │ ┌───────────────────────────┐ │
 └─ VERsion ─┬──────┬── (─▼── version-number-options ─┴─) ─┘
 ├─ IS ─┤
 └─ = ─┘

ADSOBCOM

Appendix D: Application and Dialog Utilities 625

Expansion of dialog-name-options

►►─┬─ dialog-name ───────────────────────────────────────┬────────────────────►◄
 ├─ dialog-mask-value ─────────────────────────────────┤
 ├─ (low-dialog-name high-dialog-name) ─────────────┤
 └─ (low-dialog-mask-value high-dialog-mask-value) ─┘

Expansion of version-number-options

►►─┬─ version-number ──────────────────────────────┬──────────────────────────►◄
 └─ (low-version-number high-version-number) ─┘

Parameters

SOUrce dialog-expression

Specifies that dialogs to be added, modified, or deleted based on information in the
dialog expression.

Repeated dialog expressions can be used to process several dialogs. Each

expression must end with a period.

See the explanation of dialog-expression on the following pages.

LOAD

Specifies that the dialogs are to be recompiled based on the information in the
dialog load modules.

ALL

Specifies that all dialogs in the dictionary load area are to be recompiled.

DIALog is dialog-name-options

Specifies the dialogs in the dictionary load area to be recompiled. See expansion of
dialog-name-options below.

VERsion is version-number-options

Specifies the version numbers of the dialogs to be recompiled. See expansion of

version-number-options below.

dialog-name

Specifies the 1 to 8-character name of a single dialog.

dialog-mask-value

Specifies any dialog with a name that matches the mask criteria.

The mask character is the asterisk (*); it matches any character. For example,
DIALOG IS (DCB*****) causes all dialogs beginning with DCB to be recompiled.

If the mask contains fewer than eight characters, the remaining character positions
are treated as blanks.

ADSOBCOM

626 ADS Reference Guide

(low-dialog-name high-dialog-name)

Specifies all dialogs within the dialog-name range (inclusive).

Note: Parentheses are needed when using a range of values.

(low-dialog-mask-value high-dialog-mask-value)

Specifies all dialogs within the dialog-mask range (inclusive).

Note: Parentheses are needed when using a range of values.

version-number

Specifies a single version number for the selected dialogs.

(low-version-number high-version-number)

Specifies all versions of the selected dialogs within the version-number range
(inclusive).

Note: Parentheses are needed when using a range of values.

The default version number is 1.

Usage

Considerations

ADSOBCOM does not update a dialog's program definition element (PDE) to indicate
that a new copy of the dialog exists in the load area. If a dialog is recompiled by
ADSOBCOM and then executed during a single DC/UCF run, the application developer

should update the PDE by issuing the following command:

DCMT VARY PROGRAM dialog-name NEW COPY

Note: For more information about the DCMT VARY PROGRAM command, see the CA
IDMS System Tasks and Operator Commands Guide.

DECOMPILE

Purpose

Specifies the dialogs to be decompiled based on information in the load module.

There is no limit to the number of DECOMPILE statements that can be submitted to

each run of ADSOBCOM.

ADSOBCOM

Appendix D: Application and Dialog Utilities 627

Syntax

►►─── DECOMpile ──►

─►──────────┬─ ALL ───
 │ ┌────────────────────────┐
 └─ DIALog ─┬──────┬─ (─▼─ dialog-name-options ─┴─) ────────────
 ├─ IS ─┤
 └─ = ──┘

─►───┬──── . ─────►◄
 ─┬───┬─┘
 │ ┌───────────────────────────┐ │
 └─ VERsion ─┬──────┬── (─▼── version-number-options ─┴─) ─┘
 ├─ IS ─┤
 └─ = ─┘

Expansion of dialog-name-options

►►─┬─ dialog-name ───────────────────────────────────────┬────────────────────►◄
 ├─ dialog-mask-value ─────────────────────────────────┤
 ├─ (low-dialog-name high-dialog-name) ─────────────┤
 └─ (low-dialog-mask-value high-dialog-mask-value) ─┘

Expansion of version-number-options

►►─┬─ version-number ──────────────────────────────┬──────────────────────────►◄
 └─ (low-version-number high-version-number) ─┘

Parameters

SOUrce dialog-expression

Specifies that dialogs to be added, modified, or deleted based on information in the
dialog expression.

Repeated dialog expressions can be used to process several dialogs. Each
expression must end with a period.

See the explanation of dialog-expression on the following pages.

LOAD

Specifies that the dialogs are to be recompiled based on the information in the

dialog load modules.

ALL

Specifies that all dialogs in the dictionary load area are to be recompiled.

DIALog is dialog-name-options

Specifies the dialogs in the dictionary load area to be recompiled. See expansion of
dialog-name-options below.

VERsion is version-number-options

Specifies the version numbers of the dialogs to be recompiled. See expansion of
version-number-options below.

dialog-name

Specifies the 1- to 8-character name of a single dialog.

ADSOBCOM

628 ADS Reference Guide

dialog-mask-value

Specifies any dialog with a name that matches the mask criteria.

The mask character is the asterisk (*); it matches any character. For example,
DIALOG IS (DCB*****) causes all dialogs beginning with DCB to be recompiled.

If the mask contains fewer than eight characters, the remaining character positions

are treated as blanks.

(low-dialog-name high-dialog-name)

Specifies all dialogs within the dialog-name range (inclusive).

Note: Parentheses are needed when using a range of values.

(low-dialog-mask-value high-dialog-mask-value)

Specifies all dialogs within the dialog-mask range (inclusive).

Note: Parentheses are needed when using a range of values.

version-number

Specifies a single version number for the selected dialogs.

(low-version-number high-version-number)

Specifies all versions of the selected dialogs within the version-number range
(inclusive).

Note: Parentheses are needed when using a range of values.

The default version number is 1.

Usage

Considerations

ADSOBCOM does not update a dialog's program definition element (PDE) to indicate
that a new copy of the dialog exists in the load area. If a dialog is recompiled by

ADSOBCOM and then executed during a single DC/UCF run, the application developer
should update the PDE by issuing the following command:

DCMT VARY PROGRAM dialog-name NEW COPY

Note: For more information about the DCMT VARY PROGRAM command, see the CA

IDMS System Tasks and Operator Commands Guide.

Dialog-expression

Purpose

Dialog-expression is used to specify those dialogs which are to be added, modified, and

deleted.

ADSOBCOM

Appendix D: Application and Dialog Utilities 629

Syntax

►►──┬─┬──────────┬─── DIAlog ────┬──────┬──── dialog-name ──────────────────┬─►
 │ ├─ ADD ────┤ ├─ IS ─┤ │
 │ └─ DELete ─┘ └─ = ──┘ │
 └ MODify DIAlog dialog-name-options ┬──────────────────────────────────┬┘
 └ VERsion ┬─────┬ version#-options ┘
 ├ IS ─┤
 └ = ──┘

 ►──┬──┬──────────────────────────────►
 └─ VERsion ──┬──────┬── version-number ────┘
 ├─ IS ─┤
 └─ = ──┘

 ►──┬─────────────────────────────────────┬───────────────────────────────────►
 └─ MAInline ───┬──────┬────┬─ YES ─┬─┘
 ├─ IS ─┤ └─ NO ◄ ─┘
 └─ = ──┘

 ►──┬───►─
 └─────┬──────────┬─────── SUBschema ───┬──────┬──── subschema-name ───────
 ├─ ADD ────┤ ├─ IS ─┤
 ├─ MODify ─┤ └─ = ──┘
 └─ DELete ─┘

─►──┬─►
 -─┬───┬─┘
 └─ SCHema ─┬────┬─ schema-name ─┬───────────────────────────────────┬─┘
 ├ IS ┤ └─ VERsion ─┬────┬─ version-number ─┘
 └ = ─┘ ├ IS ┤
 └ = ─┘

 ►─┬──┬───────►
 └─┬──────────┬─ ACCess MODule (AM) ─┬──────┬── access-module-name ─┘
 ├─ ADD ────┤ ├─ IS ─┤
 ├─ MODify ─┤ └─ = ──┘
 └─ DELete ─┘

 ►─┬──►─
 └┬──────────┬──
 ├─ ADD ────┤
 ├─ MODify ─┤
 └─ DELete ─┘

─►──┬─►
 ─┬──────────┬─ MAP ─┬──────┬─ map-name ─┬───────────────────────────────┬┘
 └─ ONLine ─┘ ├─ IS ─┤ └─ version ─┬──────┬─ version# ─┘
 └─ = ──┘ ├─ IS ─┤
 └─ = ──┘

 ►─┬──►─
 └┬──────────┬──
 ├─ ADD ────┤
 ├─ MODify ─┤
 └─ DELete ─┘

ADSOBCOM

630 ADS Reference Guide

─►──►─
 ─── INput ─┬──┬─
 └─ MAPname ─┬─ IS ─┬─ map-name ┬──────────────────────────────┬┘
 │ │ └ version ─┬──────┬─ version# ─┘
 └─ = ──┘ ├─ IS ─┤
 └─ = ──┘

─►──┬─►
 ┬────────────────────────────────────┬┬──────────────────────────────────┬┘
 └─ FILEname ─┬────┬─ run-time-label ─┘└─ SUSfile ─┬────┬─ suspense-label ┘
 ├ IS ┤ ├ IS ┤
 └ = ─┘ └ = ─┘

 ►─┬──►─
 └┬──────────┬──
 ├─ ADD ────┤
 ├─ MODify ─┤
 └─ DELete ─┘

─►──►─
 ─── OUTput ─┬───┬─
 └─ MAPname ─┬─ IS ─┬ map-name ┬──────────────────────────────┬┘
 │ │ └ version ─┬──────┬─ version# ─┘
 └─ = ──┘ ├─ IS ─┤
 └─ = ──┘

─►──┬─────────────────────────────────►
 ─┬──────────────────────────────────────┬─┘
 └─ FILEname ─┬──────┬─ run-time-label ─┘
 ├─ IS ─┤
 └─ = ──┘

 ►─┬──────────────────────────────────┬───────────────────────────────────────►
 └─ AUTostatus ─┬──────┬──┬─ Yes ─┬─┘
 ├─ IS ─┤ └─ No ──┘
 └─ = ──┘

 ►─┬──►─
 └─ STAtus ─┬───────────────────────────┬─┬──────┬─ record-name ────────────
 └─ DEFinition ─┬──────────┬─┘ ├─ IS ─┤
 └─ RECord ─┘ └─ = ──┘

─►──┬─────────────────────────────────►
 ─┬──────────────────────────────────────┬─┘
 └─ VERsion ─┬──────┬─ version-number ──┘
 ├─ IS ─┤
 └─ = ──┘

 ►─┬───┬────────────────────────────►
 └─ AUTO ─┬───────────┬──┬──────┬──┬─ Yes ◄ ─┬─┘
 └─ DISPlay ─┘ ├─ IS ─┤ └─ No ────┘
 └─ = ──┘

ADSOBCOM

Appendix D: Application and Dialog Utilities 631

 ►─┬──┬─────────────────────────────────►
 └─ PAGing MODE ─┬──────┬──┬─ UPDate ◄ ─┬─┘
 ├─ IS ─┤ └─ BROwse ───┘
 └─ = ──┘
 ►─┬──────────────────────────────────┬───────────────────────────────────────►
 └─ BACKpage ─┬──────┬──┬─ Yes ◄ ─┬─┘
 ├─ IS ─┤ └─ No ────┘
 └─ = ──┘

 ►─┬──┬─────────────────────────────────►
 └─ PAGing TYPE ─┬──────┬──┬─ Nowait ◄ ─┬─┘
 ├─ IS ─┤ ├─ Return ───┤
 └─ = ──┘ └─ Wait ─────┘

 ►─┬────────────────────────────────────┬─────────────────────────────────────►
 └─ ACTivity log ─┬──────┬──┬─ Yes ─┬─┘
 ├─ IS ─┤ └─ No ──┘
 └─ = ──┘

 ►─┬──┬─────────────────────────────►
 └─ SYMbol ─┬─────────┬──┬──────┬──┬─ Yes ──┬─┘
 └─ TABle ─┘ ├─ IS ─┤ └─ No ◄ ─┘
 └─ = ──┘

 ►─┬───┬────────────────────────►
 └─ DIAGnostic ─┬─────────┬──┬──────┬──┬─ Yes ◄ ─┬─┘
 └─ TABle ─┘ ├─ IS ─┤ └─ No ────┘
 └─ = ──┘
 ►─┬───┬────────────────────────────►
 └─ MESsage PREfix ─┬──────┬──┬─ prefix ─────┬─┘
 ├─ IS ─┤ └─ DEfault ◄ ──┘
 └─ = ──┘

 ►─┬───┬────────────────────────────────►
 └─ COBol ─┬────────┬──┬──────┬──┬─ Yes ─┬─┘
 └─ MOVe ─┘ ├─ IS ─┤ └─ No ──┘
 └─ = ──┘

 ►─┬───┬────────────────────────────►
 └┬─ ENTRY POINT ─┬─┬──────┬──┬─ Premap ◄ ──┬──┘
 └─ EP ──────────┘ ├─ IS ─┤ └─ Map ───────┘
 └─ = ──┘

 ►─┬──┬─────────────────────────────────►
 └─ RETrieval LOCKing ─┬────┬─┬─ Yes ◄ ─┬─┘
 ├ IS ┤ └─ No ────┘
 └ = ─┘

ADSOBCOM

632 ADS Reference Guide

 ►─┬──┬─►
 └─── SQL CHEck SYNtax ─┬─ EXTended ◄ ─┬──────────────────────────────────┘
 ├─ SQL89 ──────┤
 └─ FIPS ───────┘

 ►─┬─────────────────────────────────────┬────────────────────────────────────►
 └─── SQL ─── DATe ─┬──────┬─┬─ ISO ─┬─┘
 ├─ IS ─┤ ├─ USA ─┤
 └─ = ──┘ ├─ EUR ─┤
 └─ JIS ─┘

 ►─┬─────────────────────────────────────┬────────────────────────────────────►
 └─── SQL ─── TIMe ─┬──────┬─┬─ ISO ─┬─┘
 ├─ IS ─┤ ├─ USA ─┤
 └─ = ──┘ ├─ EUR ─┤
 └─ JIS ─┘

 ►─┬───┬────────►
 │ ┌───┐ │
 └─▼─┬────────┬ SQL TABle ┬────┬ table-name ─┬─────────────────┬─┴─┘
 ├ ADD ───┤ ├ IS ┤ └─ table-options ─┘
 ├ MODify ┤ └ = ─┘
 └ DELete ┘

 ►─┬───┬──────►
 │ ┌──┐ │
 └─▼─┬──────────┬─ RECord ─┬──────┬─ record-name record-options -─┴──┘
 ├─ ADD ────┤ ├─ IS ─┤
 ├─ MODify ─┤ └─ = ──┘
 └─ DELete ─┘

 ►─┬──►─
 └┬──────────┬─ PREmap ─┬──────────────────────┬─┬──────┬───────────────────
 ├─ ADD ────┤ └─ PROcess ─┬────────┬─┘ ├─ IS ─┤
 ├─ MODify ─┤ └─ NAMe ─┘ └─ = ──┘
 └─ DELete ─┘

─►──┬─────────────►
 ─── process-name ───┬──────────────────────────────────────┬──┘
 └─ VERsion ─┬──────┬─ version-number ──┘
 ├─ IS ─┤
 └─ = ──┘

 ►─┬──►─
 └┬──────────┬─ DECLaration ─┬──────────────────────┬─┬──────┬──────────────
 ├─ ADD ────┤ └─ PROcess ─┬────────┬─┘ ├─ IS ─┤
 ├─ MODify ─┤ └─ NAMe ─┘ └─ = ──┘
 └─ DELete ─┘

─►──┬─────────────►
 ─── process-name ───┬──────────────────────────────────────┬──┘
 └─ VERsion ─┬──────┬─ version-number ──┘
 ├─ IS ─┤
 └─ = ──┘

 ►─┬──┬───────────────────────►◄
 │ ┌──┐ │
 └─▼──┬──────────┬─ RESponse ── response-options ─┴─┘
 ├─ ADD ────┤
 ├─ MODify ─┤
 └─ DELete ─┘

ADSOBCOM

Appendix D: Application and Dialog Utilities 633

Expansion of response-options

 ►►─┬──────────┬─ RESponse ─┬──────────────────────┬─┬──────┬─ process-name ──►
 ├─ ADD ────┤ └─ PROcess ─┬────────┬─┘ ├─ IS ─┤
 ├─ MODify ─┤ └─ NAMe ─┘ └─ = ──┘
 └─ DELete ─┘

 ►─┬──────────────────────────────────────┬─┬─────────────────────────────┬───►
 └─ VERsion ─┬──────┬─ version-number ──┘ └─ DEFault ─┬──────┬┬─ Yes ──┬┘
 ├─ IS ─┤ ├─ IS ─┤└─ No ◄ ─┘
 └─ = ──┘ └─ = ──┘

 ►─┬──┬─►
 │ ┌───┐│
 └─▼─┬ CONtrol KEY ─┬────┬─ key ─┬────────────────┬─────────────────────┬┴┘
 │ ├ IS ┤ └─ FROm old-key ─┘ │
 │ └ = ─┘ │
 ├ RESponse ─┬──────────────────┬─┬────┬─ value ─┬────────────────┬─┤
 │ └ FIELD ─┬───────┬─┘ ├ IS ┤ └ FROm old-value ┘ │
 │ └ VALue ┘ └ = ─┘ │
 ├─ BATch CONtrol EVENT ─┬─┬────┬─ event ───────────────────────────┘
 └─ BCE ─────────────────┘ ├ IS ┤
 └ = ─┘

 ►─┬───┬──────────────────────────────►◄
 └─ EXEc ON EDIT ERRors ─┬──────┬─┬─ Yes ──┬─┘
 ├─ IS ─┤ └─ No ◄ ─┘
 └─ = ──┘

Expansion of table-options

►►──┬───────────────────────────────────┬┬────────────────────────┬───────────►◄
 └─ SCHema ─┬────┬─ sql-schema-name ─┘│ ┌────────────────────┐ │
 ├ IS ┤ └─▼─┬─┬─ NEW copy ─┬─┬─┴─┘
 └ = ─┘ │ └─ NC ───────┘ │
 └─┬─ WORk ─┬─────┘
 └─ WK ───┘

Expansion of record-options

►►──┬───────────────────────────────────┬┬────────────────────────┬───────────►◄
 └─ VERsion ─┬────┬─ version-number ─┘│ ┌────────────────────┐ │
 ├ IS ┤ └─▼─┬─┬─ NEW copy ─┬─┬─┴─┘
 └ = ─┘ │ └─ NC ───────┘ │
 └─┬─ WORk ─┬─────┘
 └─ WK ───┘

Expansion of version#-options

►►─┬─ version-number ──────────────────────────────┬──────────────────────────►◄
 └─ (low-version-number high-version-number) ─┘

Parameters

ADD

Specifies that a dialog is to be added to the data dictionary.

ADD is the default if the named dialog does not exist in the data dictionary.

MODify

Specifies that an existing dialog is to be modified.

MODIFY is the default if the named dialog exists in the data dictionary.

ADSOBCOM

634 ADS Reference Guide

DELete

Specifies that an existing dialog is to be deleted.

When the action is DELETE, only the dialog name and version number can be
specified in the dialog expression.

DIAlog is dialog-name

Specifies the 1- to 8-character name of the dialog being added, modified, or
deleted.

The dialog name must begin with an alphabetic or national (@, #, and $) character
and cannot contain embedded blanks.

The equals sign (=) can be used in place of IS.

VERsion is version-number

Specifies the version number (in the range 1 through 9999) of the dialog being

added, modified, or deleted.

The default version number is 1.

The equals sign (=) can be used in place of IS.

MAInline is Yes/No

Specifies whether the dialog is a mainline dialog.

At runtime, the dialog that executes first in a series of dialogs that make up an
application must be a mainline dialog. If a dialog function is initiated by an
application task code, the dialog associated with the function must be a mainline

dialog.

No is the default when neither Yes or No is specified.

ADD

Specifies that the subschema specification is to be added.

ADD is the default if no subschema is associated with the dialog.

MODify

Specifies that the existing subschema specification is to be replaced by a new
subschema specification.

MODIFY is the default if a subschema is associated with the dialog.

DELete

Specifies that the subschema specification is to be deleted.

If the action is DELETE, the SCHEMA clause cannot be specified.

ADSOBCOM

Appendix D: Application and Dialog Utilities 635

SUBschema is subschema-name

Specifies the 1- to 8-character name of the subschema associated with the dialog.

The equals sign (=) can be used in place of IS.

The specified subschema must be defined in the data dictionary. If no subschema is
specified for a dialog, the dialog cannot perform database access.

SCHema is schema-name

Specifies the 1- to 8-character name of the schema.

A schema name must be specified if the named subschema is associated with more
than one schema or version of a schema. If the named subschema is associated
with only one schema and version, SCHEMA defaults to the name of that schema.

The equals sign (=) can be used in place of IS.

VERsion is version-number

Specifies the version number (in the range 1 through 9999) of the named schema.

The equals sign (=) can be used in place of IS.

If no version number is specified, VERSION defaults to the version of the named

schema that was defined most recently.

ADD

Specifies that the access module specification is to be added.

MODify

Specifies that the existing access module specification is to be replaced by a new
access module specification.

DELete

Specifies that the access module specification is to be cleared to spaces.

ACCess MODule

Sets the access module name which is used at runtime to satisfy the IDMS/DB
request of the dialog.

(AM) is access-module-name

Specifies the 1- to 8-character name of the access module associated with the
current dialog.

The dialog can override this specification at runtime by issuing a SET ACCESS
MODULE statement.

When the access module name is not specified, the name defaults to the dialog
name.

ADSOBCOM

636 ADS Reference Guide

ADD

Specifies that a map specification is to be added to the dialog.

ADD is the default if no map of the type specified (online, input, or output) is
associated with the dialog.

MODify

Specifies that the existing map specification is to be replaced by a new map
specification.

MODIFY is the default if a map of the type specified (online, input, or output) is
already associated with the dialog.

DELete

Specifies that the map definition is to be dissociated from the dialog.

If DELETE is specified, the version number of the MAPNAME clause cannot be

specified.

ONLine/INput/OUTput

Specifies the type of map.

ONLINE is the default when no other map type is specified.

A dialog associated with an online map cannot be associated with an input or

output fi le map. A dialog can be associated with both an input and an output fi le
map by coding multiple ADD ... MAPNAME clauses. A dialog not associated with a
map is called a mapless dialog and can be executed in both batch and online

environments.

MAPname is map-name

Specifies the 1- to 8-character name of the map associated with the dialog.

The specified map must be defined in the data dictionary; however, the map load
module does not have to exist. If the dialog has no map specification, only a premap

process (not a response process) can be associated with the dialog.

VERsion is version-number

Specifies the version number (in the range 1 through 9999) of the named map.

The equals sign (=) can be used in place of IS.

If no version number is specified and the map is being added to a dialog, or the

dialog is being associated with a different map, the version defaults to 1. Otherwise,
the version number defaults to the version of the map currently associated with the
dialog.

ADSOBCOM

Appendix D: Application and Dialog Utilities 637

FILEname is runtime-label

(Batch only) Specifies the z/OS ddname (z/VSE fi lename, z/VM ddname) of the input

or output fi le added or modified.

The equals sign (=) can be used in place of IS.

The runtime label must be specified either during dialog definition or at runtime.

The runtime control statement overrides the default specified during dialog
definition.

SUSfile is suspense-label

(Batch only) Specifies the z/OS ddname (z/VSE fi lename, z/VM ddname) of the
suspense fi le for input fi le maps only.

The equals sign (=) can be used in place of IS.

If a suspense fi le is maintained for the dialog at runtime, the label must be specified
either during dialog definition or at runtime. The runtime control statement
overrides the default specified during dialog definition.

AUTostatus is Yes/No

Specifies whether the autostatus facility is used when the current dialog executes.

The default setting corresponds to the autostatus specification defined at DC/UCF
system generation. If autostatus is defined as optional, the application developer
can override the initial setting. If autostatus is defined as mandatory, the initial

setting cannot be changed.

STAtus DEFinition RECord is record-name

Specifies the 1 to 32-character name of the status definition record.

The specified record must be defined in the data dictionary. If no record name is
specified, STATUS DEFINITION RECORD defaults to the name of the status definition

record defined at DC/UCF system generation.

VERsion is version-number

Specifies the version number (in the range 1 through 9999) of the named status
definition record.

If a version number is not specified, VERSION defaults to the system default version

number, as specified in the OOAK record at system generation.

If no system default version is specified in the OOAK record, VERSION defaults to 1.

The equals sign (=) can be used in place of IS.

AUTO DISPlay is Yes/No

Specifies whether the first page of pageable map is displayed automatically.

A DISPLAY statement must be coded in the dialog's premap process to display the
first page.

YES is the default when neither YES or NO is specified.

ADSOBCOM

638 ADS Reference Guide

PAGing MODE is UPDate/BROwse

Specifies whether the user can modify data fields on a map during a map paging

session.

UPDATE is the default setting for the paging mode option.

BACKpage is Yes/No

Specifies whether the user can page backward in a map paging session.

YES is the default setting for the backpage option.

PAGing TYPE is Nowait/Return/Wait

Specifies the method used to determine the runtime flow of control when the user
presses a control key during a map paging session.

NOWAIT is the default setting for the paging type option.

These three paging session dialog options can be specified only if the dialog is

associated with a pageable map.

The following combination of paging sessi on dialog options cannot be specified:
PAGING MODE IS UPDATE, BACKPAGE IS NO, and PAGING TYPE IS NOWAIT.

ACTivity log is Yes/No

Specifies whether the dialog uses the activity logging facility.

This facil ity documents all potential database activity by a dialog, based on the
database commands issued explicitly or implicitly by the dialog's processes.

The default setting for the activity logging option is defined at DC/UCF system

generation.

SYMbol TABle is Yes/No

Specifies whether a symbol table is created for a dialog.

A symbol table facil itates the use of element names and process l ine numbers by
the online debugger.

Note: For more information about the online debugger, see the CA IDMS Online
Debugger Guide.

NO is the default setting for the symbol table option.

DIAGnostic TABle is Yes/No

Specifies whether the dialog load module contains diagnostic tables (l ine number

tables and offset tables).

Diagnostic tables facilitate the testing and debugging of a dialog. If a process aborts,
diagnostic tables are used to display the process command in error on the Dialog

Abort Information screen. The ADSORPTS util ity uses diagnostic tables to format the
dialog report for easy reference.

YES is the default setting for the diagnostic table option.

ADSOBCOM

Appendix D: Application and Dialog Utilities 639

The setting must be YES if the symbol table setting is YES. Also, during the testing of
a dialog, the diagnostic table setting should be YES.

Once a dialog has been tested thoroughly, the diagnostic table setting should be NO
and the dialog recompiled if dialog load module size is a consideration. The size of a
large dialog load module can be reduced significantly by compiling the dialog

without diagnostic tables.

MESSage PREfix is

Clause introducing a message prefix for a dialog.

The equals sign (=) can be used in place of IS.

prefix

Specifies a user-supplied 2-character alphanumeric message prefix for the dialog.

DEfault

Specifies that the dialog uses the default message prefix.

DEFAULT is the default setting when the message prefix is not specified.

COBol MOVe is Yes/No

Specifies whether the rules of COBOL or CA ADS are used in the conversion
between data types and in the rounding or truncation of the results of arithmetic
and assignment commands.

The default setting for the COBOL MOVE option is defined at DC/UCF system
generation. The system generation default is NO.

ENTRY POINT is

Clause introducing the entry point into the dialog when the dialog begins execution
at runtime.

EP can be used in place of ENTRY POINT; the equals sign (=) can be used in place of
IS.

Premap

Specifies that the dialog begins with its premap process.

PREMAP is the default when no other entry point is specified.

Map

Specifies that the dialog begins with its first mapping operation (mapout for online
dialogs, mapin for batch dialogs).

Regardless of the specification, a dialog without an online map or batch input fi le
map begins with its premap process. A dialog without a premap process begins with

its first mapping operation.

ADSOBCOM

640 ADS Reference Guide

RETrieval LOCKing is Yes/No

Specifies whether or not the dialog will cause record locks to be held for database

records.

YES, the default, specifies that database record retrieval locks will be held on behalf
of run units started by the dialog.

SQL CHEck SYNtax

Specifies the SQL standard you are enforcing. The default is CA IDMS extended

ANSI-standard SQL. CA ADS supports the following SQL standards:

■ EXTended

■ SQL89

■ FIPS

Note: For more information about SQL standards, see the CA IDMS SQL Reference
Guide.

SQL DATe is

Specifies the external date representation format. The date format can be one of

the following:

■ ISO specifies the International Standards Organization standard

■ USA specifies the IBM USA standard

■ EUR specifies the IBM European standard

■ JIS specifies the Japanese Industrial Standard Christian Era standard

SQL TIMe is

Specifies the external time representation format. The time format can be one of
the following:

■ ISO specifies the International Standards Organization standard

■ USA specifies the IBM USA standard

■ EUR specifies the IBM European standard

■ JIS specifies the Japanese Industrial Standard Christian Era standard

Note: For more information on date/time representations, see the CA IDMS SQL
Reference Guide.

ADD

Specifies that the SQL table specification is to be added.

MODify

Specifies that the existing SQL table specification is to be replaced by a new SQL

table specification.

ADSOBCOM

Appendix D: Application and Dialog Utilities 641

DELete

Specifies that the SQL table specification is to be cleared to spaces.

SQL TABle is table-name

Specifies the name of the SQL table assigned the new copy attribute and/or the
work record attribute.

table-options

See expansion of table-options below.

ADD

Specifies that a new copy/work record specification is to be added to the dialog.

ADD is the default if the named new copy/work record is not associated with the
dialog.

MODify

Specifies that a new copy/work record specification of a dialog is to be modified.

MODIFY is the default if the named new copy/work record is already associated

with the dialog.

DELete

Specifies that a new copy/work record specification of a dialog is to be deleted.

If the action is DELETE, the VERSION specification is optional, and the NEW COPY
and WORK specifications cannot be included.

RECord is record-name record-options

Specifies the name of the record assigned the new copy attribute and/or the work
record attribute.

See expansion of record-options below.

ADD

Specifies that a premap process is to be added to the dialog.

ADD is the default if no premap process is associated with the dialog.

MODify

Specifies that a new premap process is to replace the existing premap process.

MODIFY is the default if a premap process is already associated with the dialog.

DELete

Specifies that the premap process is to be deleted from the dialog.

If the action is DELETE, the version number cannot be specified.

ADSOBCOM

642 ADS Reference Guide

PREmap PROcess NAMe is process-name

Specifies the 1- to 32-character name of the process source module associated with

the dialog as a premap process.

PROCESS and NAME are optional keywords; the equals sign may be used in place of
IS.

Note: The specified process source module must exist in the data dictionary.

VERsion is version-number

Specifies the version number (in the range 1 through 9999) of the named process
source module.

The equals sign (=) may be used in place of IS.

The default version number is the system default version number, as specified in
the OOAK record at system generation. If no system default version number is
specified in the OOAK record, the default version number is 1.

ADD

Specifies that a premap process is to be added to the dialog.

ADD is the default if no premap process is associated with the dialog.

MODify

Specifies that a new premap process is to replace the existing premap process.

MODIFY is the default if a premap process is already associated with the dialog.

DELete

Specifies that the premap process is to be deleted from the dialog.

If the action is DELETE, the version number cannot be specified.

DECLaration PROcess NAMe is process-name

Specifies the 1- to 32-character name of the process source module associated with
the dialog as a premap process.

PROCESS and NAME are optional keywords; the equals sign may be used in place of

IS.

Note: The specified process source module must exist in the data dictionary.

VERsion is version-number

Specifies the version number (in the range 1 through 9999) of the named process
source module.

The equals sign (=) may be used in place of IS.

The default version number is the system default version number, as specified in
the OOAK record at system generation. If no system default version number is
specified in the OOAK record, the default version number is 1.

ADSOBCOM

Appendix D: Application and Dialog Utilities 643

ADD

Specifies that a response process is to be added to the dialog.

ADD is the default if the named response process is not already associated with the
dialog.

ADD can be used to define duplicate response processes, in which the same

response process is associated with several control keys and/or response field
values. In the example shown below, response process RP1 is associated with
control keys PF1, PF2, and PF3, and with response field values ADD and MOD:

ADD RESPONSE PROCESS RP1 CONTROL KEY PF1 RES VALUE ADD

ADD RESPONSE PROCESS RP1 CONTROL KEY PF2 RES VALUE MOD

ADD RESPONSE PROCESS RP1 CONTROL KEY PF3

MODify

Specifies that a response process of the dialog is to be modified.

MODIFY is the default if the named response process is already associated with the
dialog.

In the example shown below, the control key specification for nonduplicate
response process RP1 is modified to PF2:

MODIFY RESPONSE PROCESS RP1 CONTROL KEY PF2

To modify a duplicate response process, the application developer must specify
which occurrence of the duplicate response process is being modified.

To modify the control key associated with the response process, the application
developer specifies the FROM parameter of the CONTROL KEY specification. In the
example shown below, the control key ENTER is changed to PA1 for duplicate

response process RP1:

MODIFY RESPONSE PROCESS RP1 CONTROL KEY PA1 FROM ENTER

To modify the response field value associated with the response process, the
application developer specifies the FROM parameter of the RESPONSE FIELD VALUE
specification. In the example shown below, the response field value MOD is
changed to ADD for duplicate response process RP1:

MODIFY RESPONSE PROCESS RP1 RES VALUE ADD FROM MOD

To modify the EXECUTE ON EDIT ERRORS specification associated with the response

process, the application developer specifies either the CONTROL KEY or RESPONSE
FIELD VALUE parameter. In the example shown below, the EXECUTE ON EDIT
ERRORS specification is set to YES for the occurrence of duplicate response process
RP1 that is associated with the ENTER key:

MODIFY RESPONSE PROCESS RP1 CONTROL KEY ENTER

 EXECUTE ON EDIT ERRORS YES

ADSOBCOM

644 ADS Reference Guide

DELete

Specifies that a response process of the dialog is to be deleted.

If the action is DELETE, the version number is optional and the EXEC ON EDIT
ERRORS specifications cannot be included.

An occurrence of a duplicate response process is deleted by specifying the

CONTROL KEY or RESPONSE FIELD VALUE parameter. The example shown below
deletes the occurrence of duplicate response process RP1 that is associated with
the response field value ADD:

DELETE RESPONSE PROCESS RP1 RES VALUE ADD

RESponse response-options

See expansion of response-options below.

Expansion of response-options

RESponse PROcess NAMe

Specifies the 1- to 32-character name of the process source module associated with
the dialog as a response process.

Note: The specified source module must exist in the data dictionary.

VERsion is version-number

Specifies the version number (in the range 1 through 9999) of the named process

source module.

The default version number is the system default version number, as specified in
the OOAK record at system generation. If no system default version number is

specified in the OOAK record, the default version number is 1.

The equals sign (=) may be used in place of IS.

DEFault is Yes/No

Specifies whether the response process defined is the optional default response
process of the dialog.

At runtime, after a mapin operation, the runtime system executes the default
response process if no response process can be selected based on control event or
response field values.

NO is the default specification.

If DEFAULT is NO, a control key, a response field value, a response field value, or a
batch control event for the response process must be specified. If DEFAULT is YES,
these specifications are optional.

ADSOBCOM

Appendix D: Application and Dialog Utilities 645

CONtrol KEY is key

Specifies a user-defined control key that initiates the response process at runtime.

The equals sign (=) can be used in place of IS.

Key can also be specified to identify an occurrence of a duplicate response process,
as described under ADD/MODIFY/DELETE RESPONSE PROCESS above.

Valid control key specifications are ENTER, CLEAR, PA1 through PA3, PF1 through
PF24, FWD, BWD, and HDR. FWD, BWD, and HDR can be specified only if the dialog

is associated with a pageable map. LPEN can be specified as a control key if the use
of l ight pens is supported by the installation.

CLEAR, PA1, PA2, and PA3 do not transmit data; that is, input is not mapped in
when these keys are pressed at runtime. The FWD, BWD, and HDR control keys are
associated with pageable maps. FWD and BWD are synonymous with the keyboard

control keys for paging forward and backward, respectively. If FWD and BWD are
specified and the keys defined for paging forward and backward are changed, the
dialog does not have to be recompiled.

HDR is not associated with any keyboard control key; rather, conditions
encountered during a map paging session cause a response process associated with

this control key value to be initiated.

FROm old-key

Identifies the occurrence of a duplicate response process whose associated control
key specification is being modified, as described under ADD/MODIFY/DELETE

RESPONSE PROCESS above.

RESponse FIEld VALue is value

Specifies a response name associated with the response process.

Value can also be specified to identify an occurrence of a duplicate response
process, as described under ADD/MODIFY/DELETE RESPONSE PROCESS above.

The equals sign (=) may be used in place of IS.

When a control key value or a response field value of a response process needs to

be dissociated from the response, a blank value (' ') can be used, as in the following
example:

MOD RES PRO response-name VER 1 RES VALUE ' '

FROm old-value

Identifies the occurrence of a duplicate response process whose associated
response field value specification is being modified, as described under

ADD/MODIFY/DELETE RESPONSE PROCESS above.

ADSOBCOM

646 ADS Reference Guide

BATch CONtrol EVENT is event

Specifies a batch control event that initiates the response process at runtime.

BCE can be used in place of BATCH CONTROL EVENT; the equals sign (=) can be used
in place of IS.

Valid Batch Control Events

■ EOF indicates that the most recent input fi le read operation resulted in an
end-of-fi le condition.

■ IOERR indicates that the most recent input fi le read operation resulted in physical
input-error condition. In CA ADS Batch, output errors cause the runtime system to
terminate the application.

Batch control events can be specified only for batch dialogs. Control keys can be
specified only for online dialogs.

EXEc ON EDIt ERRors is

Introduces whether processing continues if automatic editing encounters map input
errors.

The equals sign (=) can be used in place of IS.

Yes

Specifies that the response process executes even if the map contains input errors.

No

Specifies that the response process is not executed if the map contains input errors.
The user must correct all map fields that are in error before processing continues.

NO is the default when neither YES or NO is specified.

Expansion of table-options

SCHema is sql-schema-name

Specifies the schema containing the SQL table.

The equals sign (=) can be used in place of IS.

NEW copy

Specifies that the table is assigned the new copy attribute.

Records with the new copy attribute are allocated new table buffers when the
dialog executes at runtime.

NC can be used in place of NEW COPY.

ADSOBCOM

Appendix D: Application and Dialog Utilities 647

WORk

Specifies that the table is assigned the work attribute.

Records with the work table attribute are available to the dialog as working storage
at runtime.

WK can be used in place of WORK.

If no attribute is specified for the named table, WORK is assigned as the default. If
NEW COPY is specified for the table, WORK is not automatically assigned; the
application developer must explicitly specify the work table attribute.

Expansion of record-options

VERsion is version-number

Specifies the version number (in the range 1 through 9999) of the named record.

If a version number is not specified, VERSION defaults to the system default version
number, as specified in the OOAK record at system generation.

If no system default version number is specified in the OOAK record, VERSION

defaults to 1.

The equals sign (=) can be used in place of IS.

NEW copy

Specifies that the record is assigned the new copy attribute.

Records with the new copy attribute are allocated new record buffers when the

dialog executes at runtime.

NC can be used in place of NEW COPY.

WORk

Specifies that the record is assigned the work attribute.

Records with the work record attribute are available to the dialog as working

storage at runtime.

WK can be used in place of WORK.

If no attribute is specified for the named record, WORK is assigned as the default. If
NEW COPY is specified for the record, WORK is not automatically assigned; the
application developer must explicitly specify the work record attribute.

Expansion of version#-options

version-number

Specifies a single version number for the selected dialogs.

ADSOBCOM

648 ADS Reference Guide

low-version-number high-version-number

Specifies all versions of the selected dialogs within the version-number range

(inclusive).

The default version number is 1.

Usage

Considerations

■ The DIALOG clause must be the first clause of a dialog expression.

■ The MAINLINE, SUBSCHEMA, MAPNAME, AUTOSTATUS, STATUS DEFINITION
RECORD, ACTIVITY LOG, SYMBOL TABLE, DIAGNOSTIC TABLE, MESSAGE PREFIX,
COBOL MOVE, ENTRY POINT, and RETRIEVAL LOCKING clauses can appear in any

order, but must precede the first RECORD clause.

■ The PAGING MODE, BACKPAGE, and PAGING TYPE clauses can be specified only if

the dialog's map is pageable. These clauses can appear in any order, but must
follow the MAPNAME clause and precede the first RECORD clause.

■ All RECORD clauses must precede the first PROCESS clause.

■ PREMAP PROCESS and RESPONSE PROCESS clauses can appear in any order,
provided that the above requirements are met.

Example 1: Recompiling all dialogs

All dialogs in the load area are recompiled:

COMPILE FROM LOAD ALL.

Example 2: Recompiling dialogs by version number

All dialogs with version number 2 and version numbers 5 through 8 are recompiled:

COMPILE FROM LOAD ALL VERSION (2 (5 8)).

Example 3: Recompiling dialogs by name

All dialogs with names that begin with C and that have the letters D and R in the fourth
and fifth positions are recompiled:

COMPILE FROM LOAD DIALOG (C**DR***).

Example 4: Recompiling dialogs within a specified range

Dialogs QWERT001 through ZZZZZZZZ are recompiled:

COMPILE FROM LOAD DIALOG ((QWERT001 ZZZZZZZZ)).

ADSOBCOM

Appendix D: Application and Dialog Utilities 649

Example 5: Recompiling an added dialog

The dialog SXADIAL is added and compiled:

COMPILE FROM SOURCE

 ADD DIALOG SXADIAL VER IS 1 MAINLINE YES

 ADD SUBSCHEMA DEMOSS01 SCHEMA DEMOSCHM VER 1

 ADD MAPNAME SXA1 VER IS 1

 ADD REC CUSTOMER VER 2 NC

 ADD REC SXAREC1 VER 1 NC WK

 ADD PREMAP SXAPREMAP VER 1

 ADD RESPONSE PROCESS NAME SXARESP5 VER 2 CONTROL KEY

 PF5 EXEC NO

 ADD RESPONSE PROCESS NAME SXARESP3 VER 1 CONTROL KEY ENTER

 RESPONSE FIELD SXARESP4 EXEC NO.

More information:

CA ADS Runtime System (see page 119)

Control Commands (see page 325)
CA ADS Dialog Compiler (ADSC) (see page 91)
Error Handling (see page 277)
Debugging an CA ADS Dialog (see page 723)

Activity Logging for an CA ADS Dialog (see page 675)
Database Specifications Screen (see page 109)
Introduction to Process Language (see page 155)
Map Commands (see page 449)

Database Access Commands (see page 363)

JCL and Commands

JCL and commands for running ADSOBCOM are shown below for z/OS, z/VSE, and z/VM

systems.

ADSOBCOM

650 ADS Reference Guide

z/OS JCL

Sample z/OS JCL for Central Version

ADSOBCOM (z/OS)

// EXEC PGM=ADSOBCOM,REGION=500K

//STEPLIB DD DSN=idms.loadlib,DISP=SHR

//sysctl DD DSN=idms.sysctl,DISP=SHR

//dclscr DD DSN=cdms.dclscr,DISP=SHR

//SYSLST DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SYSIDMS DD *

SYSIDMS parameters

//SYSIPT DD *

control statements

/*

idms.loadlib data set name of the CA IDMS load library

idms.sysctl data set name of the SYSCTL fi le

dclscr ddname of the local scratch fi le (if one is specified in the
DMCL; otherwise not required)

cdms.dclscr data set name of the local scratch fi le (if one is specified;

otherwise not required)

sysctl ddname of the SYSCTL fi le

SYSIDMS parameters a l ist of the SYSIDMS parameters that pertain to this job

Sample z/OS JCL for Local Mode

To execute ADSOBCOM in local mode, perform the following steps:

1. Remove the sysctl DD statement.

2. Add the following statements after the CDMSLIB DD statement:

//sysjrnl DD DSN=idms.tapejrnl,DISP=(NEW,KEEP),UNIT=tape

//dictdb DD DSN=idms.appldict.ddldml,DISP=SHR

//dloddb DD DSN=idms.appldict.ddldclod,DISP=SHR

//dmsgdb DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

idms.appldict.ddldml data set name of the data dictionary DDLDML area

idms.appldict.ddldclod data set name of the data dictionary load area

idms.sysmsg.ddldcmsg data set name of the data dictionary message area

idms.tapejrnl data set name of the tape journal fi le

ADSOBCOM

Appendix D: Application and Dialog Utilities 651

dictdb ddname of the data dictionary DDLDML area

dloddb ddname of the data dictionary load area (DDLDCLOD)

dmsgdb ddname of the data dictionary message area (DDLDVM/ESAG)

sysjrnl ddname of the tape journal fi le

tape symbolic device name of the tape journal fi le

z/VSE JCL

// LIBDEF *Sample z/VSE JCL for Central Version

ADSOBCOM (z/VSE)

// UPSI b if specified in ADSOOPTI module

// DLBL userlib

// EXTENT ,nnnnnn

// LIBDEF *.SEARCH=idmslib.sublib

// DLBL dclscr,,'cdms.dcllscr',,DA

// EXTENT sys014,nnnnnn

// ASSGN sys014,DISK,VOL=nnnnnn,SHR

// EXEC ADSOBCOM

control statements

SYSIDMS parameters

b appropriate 1- to 8-character UPSI bit switch, as specified in
the IDMSOPTI module

cdms.dclscr fi le-id of the local scratch area

dclscr fi lename of the local scratch area (if one is specified in the

DMCL, otherwise not required)

sys014 logical unit assignment for the local scratch area (if one is
specified in the DMCL, otherwise not required)

nnnnnn volume serial number of the library

userlib fi lename of the CA IDMS library

idmslib.sublib fi le-id of the CA IDMS sublibrary

SYSIDMS parameters A l ist of SYSIDMS parameters for this job

Note: For more information about SYSIDMS parameters, see the CA IDMS Database
Administration.

ADSOBCOM

652 ADS Reference Guide

Sample z/VSE JCL for Local Mode

To execute ADSOBCOM in local mode, perform the following steps:

1. Remove the UPSI specification.

2. Add the following statements before the EXEC statement:

// DLBL dictdb,'idms.appldict.ddldml',,DA

// EXTENT sys015,nnnnnn

// ASSGN sys015,DISK,VOL=nnnnnn,SHR

// DLBL dloddb,'idms.appldict.ddldclod',,DA

// EXTENT sys017,nnnnnn

// ASSGN sys017,DISK,VOL=nnnnnn,SHR

// DLBL dmsgdb,'idms.sysmsg.ddldcmsg',,DA

// EXTENT sys016,nnnnnn

// ASSGN sys016,DISK,VOL=nnnnnn,SHR

// TLBL sys009,'idms.tapejrnl',,nnnnnn,,f

// ASSGN sys009,TAPE,VOL=nnnnnn

idms.appldict.ddldml fi le-id of the data dictionary DDLDML area

idms.appldict.ddldclod fi le-id of the data dictionary load area

idms.sysmsg.ddldcmsg fi le-id of the data dictionary message area

idms.tapejrnl fi le-id of the tape journal fi le

dictdb fi lename of the data dictionary DDLDML area

dloddb fi lename of the data dictionary load area (DDLDCLOD)

dmsgdb fi lename of the data dictionary message area
(DDLDVM/ESAG)

f fi le number of the tape journal fi le

nnnnnn volume serial number

sys009 logical unit assignment for the tape journal fi le

sys015 logical unit assignment for the data dictionary DDLDML area

sys016 logical unit assignment for the data dictionary message area

sys017 logical unit assignment for the data dictionary load area

ADSOBCOM

Appendix D: Application and Dialog Utilities 653

z/VM commands

Sample z/VM commands for Central Version

ADSOBCOM (z/VM)

FILEDEF SYSLST PRINTER

FILEDEF SYSIDMS DISK sysidms input a

FILEDEF SYSIPT DISK bgen input a

GLOBAL LOADLIB idmslib

OSRUN ADSOBCOM

sysidms input a fi lename, fi letype, and fi lemode of the fi le containing the
SYSIDMS input parameters

bgen input a fi le identifier of the fi le containing ADSOBCOM source
statements

idmslib fi lename of the CA IDMS LOADLIB library

Note: For more information about SYSIDMS parameters, see the CA IDMS Database
Administration.

Sample z/VM commands for Local Mode

To execute ADSOBCOM in local mode, add the following commands before the OSRUN
command:

FILEDEF sysjrnl TAP1 SL VOLID nnnnnn (RECFM VB LRECL 111 BLKSIZE bbb

FILEDEF dictdb DISK dictdb dictfile d (RECFM F LRECL ppp BLKSIZE ppp XTENT nnn

FILEDEF dloddb DISK dloddb dictfile f (RECFM F LRECL ppp BLKSIZE ppp XTENT nnn

FILEDEF dmsgdb DISK dmsgdb dictfile e (RECFM F LRECL ppp BLKSIZE ppp XTENT nnn

bbb block size of the tape journal fi le

dictdb ddname of the data dictionary DDLDML area

dictdb dictfile d fi le identifier of the data dictionary DDLDML area

dloddb ddname of the data dictionary load area (DDLDCLOD)

dloddb dictfile f fi le identifier of the data dictionary load area

dmsgdb ddname of the data dictionary message area (DDLDVM/ESAG)

dmsgdb dictfile e fi le identifier of the data dictionary message area

lll record length of the tape journal fi le

nnnnnn volume serial number of the tape journal fi le

ppp page size of the area

ADSOBSYS

654 ADS Reference Guide

sysjrnl ddname of the tape journal fi le

Specifying Central Version or Local Mode

To specify whether ADSOBCOM executes under central version or in local mode, take
one of the following actions:

1. Specify either CVMACH=dc/ucf-machine-name (for central version) or *LOCAL* (for

local mode) as the first statement submitted to ADSOBCOM. Dc/ucf-machine-name
is the 1- through 8-character user identifier of the z/VM virtual machine in which
the DC/UCF system is executing.

2. Link edit ADSOBCOM with an IDMSOPTI module that specifies either

CVMACH=dc/ucf-machine-name (for central version) or CENTRAL=NO (for local
mode). Instructions for creating an IDMSOPTI module are given in CA IDMS System
Operations Guide.

3. Code PARM='CVMACH=dc/ucf-machine-name' or PARM='*LOCAL*' on the OSRUN
command used to invoke the compiler. This option is not allowed if the OSRUN

command is issued from a z/VM EXEC program; however, it is allowed if the OSRUN
command is issued from a System Product interpreter (REXX) or EXEC 2 program.

Note: For more information about central version and local mode operations in the

z/VM environment, see the Installation and Maintenance Guide— z/VM.

ADSOBSYS

The ADSOBSYS util ity builds a load module (ADSOOPTI) that supplies CA ADS system
generation parameters to ADSOBCOM. ADSOBSYS must be run once for each DC/UCF
system at installation and whenever CA ADS system generation parameters are

changed.

The ADSOOPTI module can be either loaded at runtime by ADSOBCOM or l ink edited
with ADSOBCOM. Note that with dynamic loading, the module must have the default
ADSOOPTI module name.

ADSOSYS can also supply system generation parameters to the CA ADS Batch runtime
system.

ADSOBSYS uses standard control statements in addition to the SYSTEM statement. The
control statements and the JCL used to run ADSOBSYS are presented below. Parameters
given for the SYSTEM statement apply to CA ADS applications.

ADSOBSYS

Appendix D: Application and Dialog Utilities 655

Control Statements

The following control statements can be used with ADSOBSYS:

ICTL

Specifies scanning a specified column range for meaningful data. The default

specification is 1-72. The ICTL statement format is shown below:

Syntax

►►─┬───┬──────────────────────►◄
 └─ ICTL = (start-column-number end-column-number) ─┘

OCTL

Specifies the number of l ines to appear on each page of the ADSOBSYS printed output.
The default specification is 56. The OCTL statement format is shown below:

►►─┬──────────────────────────────┬───►◄
 └─ OCTL = (line-count-number) ─┘

ISEQ

Specifies sequence checking on source statements fall ing within a specified column
range. The ISEQ statement format is shown below:

►►─┬───┬──────────────────────►◄
 └─ ISEQ = (start-column-number end-column-number) ─┘

The ICTL, OCTL, and ISEQ control statements must be submitted to the job stream
before the SYSTEM statement.

SYSTEM Statement

Purpose

Specifies the DC/UCF system for which the ADSOOPTI module is being created.

Syntax

►►── SYStem ──┬──────┬── system-number ──┬─────────────────────────────────┬──►◄
 ├─ IS ─┤ └─ MODULE ─┬──────┬─ module-name ─┘
 └─ = ─┘ ├─ IS ─┤
 └─ = ─┘

Parameters

SYStem IS system-number

Specifies the 1- to 4-digit number of the DC/UCF system for which the ADSOOPTI

module is being created.

ADSOBSYS

656 ADS Reference Guide

MODULE IS module-name

Specifies the 1 to 8-character name of the module being created. The default

module name is ADSOOPTI.

JCL and Commands

JCL and commands for running ADSOBSYS are shown below for z/OS, z/VSE, and z/VM
systems.

z/OS JCL

Sample z/OS JCL for Central Version

ADSOBSYS (central version) (z/OS)

//ADSOBSYS EXEC PGM=ADSOBSYS,REGION=1024K

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.loadlib,DISP=SHR

//sysctl DD DSN=idms.sysctl,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//SYSLST DD SYSOUT=A

//SYSPCH DD DSN=&&object.,DISP=(NEW,PASS),

// UNIT=disk,SPACE=(TRK,1),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)

//SYSIDMS DD *

DMCL=dmcl-name

DBNAME=system

Put other SYSIDMS parameters, as appropriate, here

/*

//SYSIPT DD *

Put ADSOBSYS parameters, as appropriate, here

/*

//*

//LINKOPTI EXEC PGM=IEWL,REGION=1024K,PARM='LET,LIST,NCAL,XREF'

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD UNIT=disk,SPACE=(CYL,(3,2))

//SYSLMOD DD DSN=idms.dba.loadlib,DISP=SHR

//SYSLIN DD DSN=&&object.,DISP=(OLD,DELETE)

// DD *

 ENTRY adsoopti

 NAME adsoopti(R)

/*

//*

ADSOBSYS

Appendix D: Application and Dialog Utilities 657

Sample z/OS JCL for Local Mode ADSOBSYS (local mode) (z/OS)

//ADSOBSYS EXEC PGM=ADSOBSYS,REGION=1024K

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.loadlib,DISP=SHR

//dcdml DD DSN=idms.system.ddldml,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//sysjrnl DD DUMMY

//SYSLST DD SYSOUT=A

//SYSPCH DD DSN=&&object.,DISP=(NEW,PASS),

// UNIT=disk,SPACE=(TRK,1),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)

//SYSIDMS DD *

DMCL=dmcl-name

DBNAME=system

Put other SYSIDMS parameters, as appropriate, here

/*

//SYSIPT DD *

Put ADSOBSYS parameters, as appropriate, here

/*

//*

//LINKOPTI EXEC PGM=HEWL,REGION=1024K,PARM='LET,LIST,NCAL,XREF'

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD UNIT=disk,SPACE=(CYL,(3,2))

//SYSLMOD DD DSN=idms.dba.loadlib,DISP=SHR

//SYSLIN DD DSN=&&object.,DISP=(OLD,DELETE)

// DD *

 ENTRY adsoopti

 NAME adsoopti(R)

/*

//*

idms.dba.loadlib Data set name of the load library containing the DMCL and

database name table load modules

idms.loadlib Data set name of the load library containing the CA IDMS
executable modules

sysctl DDname of the SYSCTL fi le

idms.sysctl Data set name of the SYSCTL fi le

dcmsg DDname of the system message (DDLDVM/ESAG) area

idms.sysmsg.ddldcmsg Data set name of the system message (DDLDVM/ESAG) area

&&object. Temporary data set name for the ADSOOPTI object module

disk Symbolic device name for the work fi les

dmcl-name Name of the DMCL load module

ADSOBSYS

658 ADS Reference Guide

system Name of the system dictionary

adsoopti ADSOOPTI module name

dcdml DDname of the system dictionary definition (DDLDML) area

idms.system.ddldml Data set name of the system dictionary definition (DDLDML)
area

sysjrnl DDname of the tape journal fi le

Note: For more information about SYSIDMS parameters, see the CA IDMS Database
Administration.

z/VSE JCL

Sample z/VSE JCL for Central Version

ADSOBSYS (z/VSE)

// UPSI b if specified in IDMSOPTI module

// DLBL userlib

// EXTENT ,nnnnnn

// LIBDEF *,SEARCH=idmslib.sublib

// LIBDEF *,CATALOG=(userlib.cdmslib)

// DLBL IDMSPCH,'temp.adsootpi'

// EXTENT sysnnn,nnnnnn,,,ssss,llll

 ASSGN sysnnn,DISK,VOL=nnnnnn,SHR

// EXEC ADSOBSYS

 SYSTEM=nnnn,MODULE=adsoopti

SYSIDMS parameters

/*

// DLBL IJSYSIN,'temp.adsoopti'

// EXTENT SYSIPT,nnnnnn

 ASSGN SYSIPT,DISK,VOL=nnnnnn,SHR

// OPTION CATAL

 PHASE adsoopti,*

 INCLUDE

 ENTRY (adsoopti)

// EXEC LNKEDT

 CLOSE SYSIPT,SYSRDR

 CLOSE sysclb,UA

adsoopti ADSOOPTI module name

SYSIDMS parameters a l ist of SYSIDMS parameters for this job

b appropriate 1- to 8-character UPSI bit switch, as specified in
the IDMSOPTI module

ADSOBSYS

Appendix D: Application and Dialog Utilities 659

llll number of tracks (CKD) or blocks (FBA) of the disk extent

nnnn version number of the DC/UCF system

nnnnnn volume serial number of the library

ssss starting track (CKD) or block (FBA) of the disk extent

sysnnn logical unit assignment of the temporary adsoopti module

temp.adsoopti temporary fi le-id of the ADSOOPTI module

userlib fi lename of the user l ibrary

userlib.cdmslib fi le-id of the CA IDMS sublibrary

Note: For more information about SYSIDMS parameters, see the CA IDMS Database

Administration.

Sample z/VSE JCL for Local Mode

To execute ADSOBSYS in local mode, perform the following steps:

1. Remove the UPSI specification.

2. Add the following statements before the EXEC ADSOBSYS statement:

// DLBL dictcb,'idms.appldict.ddldml',,DA

// EXTENT sys015,nnnnnn

// ASSGN sys015,DISK,VOL=nnnnnn,SHR

// DLBL dloddb,'idms.appldict.ddldclod',,DA

// EXTENT sys017,nnnnnn

// ASSGN sys017,DISK,VOL=nnnnnn,SHR

// DLBL dmsgdb,'idms.sysmsg.ddldcmsg',,DA

// EXTENT sys016,nnnnnn

// ASSGN sys016,DISK,VOL=nnnnnn,SHR

// TLBL sys009,'idms.tapejrnl',, nnnnnn,,f

// ASSGN sys009,TAPE,VOL=nnnnnn

idms.appldict.ddldml fi le-id of the data dictionary DDLDML area

idms.appldict.ddldclod fi le-id of the data dictionary load area

idms.sysmsg.ddldcmsg fi le-id of the data dictionary message area

idms.tapejrnl fi le-id of the tape journal fi le

dictdb fi lename of the data dictionary DDLDML area

dloddb fi lename of the data dictionary load area (DDLDCLOD)

dmsgdb fi lename of the data dictionary message area
(DDLDVM/ESAG)

f fi le number of the tape journal fi le

ADSOBSYS

660 ADS Reference Guide

nnnnnn volume serial number of the library

sys009 logical unit assignment for the tape journal fi le

sys015 logical unit assignment for the data dictionary DDLDML area

sys016 logical unit assignment for the data dictionary message area

sys017 logical unit assignment for the data dictionary load area

userlib fi lename of the user l ibrary

userlib.cdmslib fi le-id of the CA IDMS sublibrary

z/VM commands

Sample z/VM Commands for Central Version

ADSOBSYS (z/VM)

FILEDEF SYSLST PRINTER

FILEDEF SYSPCH DISK opti TEXT a (LRECL 80 BLKSIZE 400 RECFM FB

FILEDEF SYSIDMS DISK sysidms input a

FILEDEF SYSIPT DISK bsys input a

GLOBAL LOADLIB idmslib

OSRUN ADSOBSYS

FILEDEF SYSPRINT PRINTER

TXTLIB DEL utextlib opti

TXTLIB ADD utextlib opti

FILEDEF SYSLMOD DISK uloadlib LOADLIB a6 (RECFM V LRECL 1024 BLKSIZE 1024

FILEDEF objlib DISK utextlib TXTLIB a

LKED linkctl (LET LIST NCAL

Linkage editor control statements (linkctl):

INCLUDE objlib (opti)

ENTRY opti

NAME opti(R)

sysidms input a fi lename, fi letype, and fi lemode of the fi le containing the
SYSIDMS input parameters

bsys input a fi le identifier of the fi le containing ADSOBSYS source
statements

idmslib fi lename of the CA IDMS LOADLIB library

linkctl fi lename of the fi le containing the linkage editor control

statements; the fi le must have the fi letype of TEXT

objlib ddname of the user TXTLIB l ibrary

ADSOBSYS

Appendix D: Application and Dialog Utilities 661

opti fi lename of the fi le for the ADSOOPTI module

opti TEXT a fi le identifier of the fi le for the ADSOOPTI module

uloadlib LOADLIB a6 fi le identifier of the user LOADLIB library

utextlib fi lename of a user TXTLIB l ibrary

Note: For more information about SYSIDMS parameters, see the CA IDMS Database

Administration.

Sample z/VM Commands for Local Mode

To execute ADSOBSYS in local mode, add the following commands before the OSRUN
command:

FILEDEF sysjrnl TAP1 SL VOLID nnnnnn (RECFM VB LRECL 111 BLKSIZE bbb

FILEDEF dictdb DISK dictdb dictfile d (RECFM F LRECL ppp BLKSIZE ppp XTENT nnn

FILEDEF dloddb DISK dloddb dictfile f (RECFM F LRECL ppp BLKSIZE ppp XTENT nnn

FILEDEF dmsgdb DISK dmsgdb dictfile e (RECFM F LRECL ppp BLKSIZE ppp XTENT nnn

bbb block size of the tape journal fi le

dictdb ddname of the data dictionary DDLDML area

dictdb dictfile d fi le identifier of the data dictionary DDLDML area

dloddb ddname of data dictionary load area (DDLDCLOD)

dloddb dictfile f fi le identifier of the data dictionary load area

dmsgdb ddname of data dictionary message area (DDLDVM/ESAG)

dmsgdb dictfile e fi le identifier of the data dictionary message area

lll record length of the tape journal fi le

nnnnnn volume serial number of the tape journal fi le

ppp page size of the area

sysjrnl ddname of the tape journal fi le

ADSOBTAT

662 ADS Reference Guide

Specifying Central Version or Local Mode

To specify whether ADSOBSYS executes under central version or in local mode ,

perform one of the following actions:

1. Specify either CVMACH=dc/ucf-machine-name (for central version) or *LOCAL* (for
local mode) as the first statement to submit to ADSOBSYS. Dc/ucf-machine-name is

the 1- through 8-character user identifier of the z/VM virtual machine in which the
DC/UCF system is executing.

2. Link edit ADSOBSYS with an IDMSOPTI module that specifies either
CVMACH=dc/ucf-machine-name (for central version) or CENTRAL=NO (for local

mode). Instructions for creating an IDMSOPTI module are given in CA IDMS System
Operations Guide.

3. Code PARM='CVMACH=dc/ucf-machine-name' or PARM='*LOCAL*' on the OSRUN
command used to invoke the compiler. This option is not allowed if the OSRUN

command is issued from a z/VM EXEC program; however, it is allowed if the OSRUN
command is issued from a System Product interpreter (REXX) or EXEC 2 program.

Note: For more information about central version and local mode operations in the

z/VM environment, see the CA IDMS Installation and Maintenance Guide— z/VM.

ADSOBTAT

What It Is

ADSOBTAT is a batch util ity that allows the application developer to add, modify, and
delete entries in the task application table (TAT). For example, ADSOBTAT can be used

to update the TAT for a dictionary when an application is migrated to that dictionary.

Note: When an application is added, modified, or deleted by using the application
compiler, the TAT is automatically updated in the applicable dictionary, and ADSOBTAT

is not required. The TAT can also be updated online by using ADSOTATU, as described
under 'ADSOTATU' earlier in this appendix.

How It Works

At the beginning of an ADSOBTAT run, ADSOBTAT copies the TAT stored either in the
load area or, if the load area has no TAT, in the load library. If no TAT exists, ADSOBTAT

creates a new TAT if the action is ADD. ADSOBTAT updates the copy of the TAT, based
on the control statements provided. At the end of the run, if the control statements
contain no errors, ADSOBTAT stores the copy of the TAT in the load area, replacing any
previous copy.

ADSOBTAT

Appendix D: Application and Dialog Utilities 663

ADSOBTAT does not update a TAT's program description element (PDE) to indicate that
a new copy of the TAT exists in the load area. If a TAT is updated by ADSOBTAT and

then referenced during a single DC/UCF run, the application developer should update
the PDE by issuing the following command:

DCMT VARY PROGRAM $ACF@TAT NEW COPY

Note: For more information on the DCMT VARY PROGRAM command, see the CA IDMS

System Tasks and Operator Commands Guide.

ADSOBTAT Output

ADSOBTAT produces a l isting that displays the card images of all control statements
processed. Error messages, if any, are l isted under their associated control statements.
If an error in any control statement prevents ADSOBTAT from updating the TAT,

ADSOBTAT issues the following message:

DC474029 *** WARNING *** DUE TO ABOVE ERROR TAT WILL NOT BE

UPDATED DURING THIS RUN; SYNTAX CHECKING ONLY

Note: At a site where alternate dictionaries are used, the system database name table
must map network subschema IDMSNWKL (used by ADSOBTAT) to the copy of the
network subschema appropriate for the alternate dictionary. The database name table

is defined by the DBNAME statement.

More information:

CA ADS Application Compiler (ADSA) (see page 51)

ADSOBTAT

664 ADS Reference Guide

Control Statements

Purpose

Syntax

►►───┬───┬──────────────────────────────►
 └─ DICTNAME ──┬──────┬── dictionary-name ─┘
 ├─ IS ─┤
 └─ = ─┘

 ►───┬────────────────────────────────────┬───────────────────────────────────►
 └─ DICTNODE ──┬──────┬── node-name ──┘
 ├─ IS ─┤
 └─ = ─┘

 ►───┬───┬────────►
 └─ LOCation for ─┬─ APPlication ─┬───┬──────┬───┬─ loadAREA ◄ ─┬┘
 └─ ADB ─────────┘ ├─ IS ─┤ └─ loadLIB ─┘
 └─ = ─┘

 ┌───┐
 ►───▼──┬──────────┬──┬── APPlication ─┬───┬──────┬─── application ──┴────────►◄
 ├─ ADD ────┤ └── ADB ─────────┘ ├─ IS ─┤
 ├─ MODify ─┤ └─ = ─┘
 └─ DELete ─┘

Expansion of Application

►─── application-name ─┬───┬───────────►◄
 └─ VERsion ───┬──────┬─── version-number ─┘
 ├─ IS ─┤
 └─ = ─┘

Parameters

DICTNAME IS dictionary-name

Specifies the 1- to 8-character name of the data dictionary in which the TAT is
stored.

DICTNAME defaults to the name of the primary dictionary.

DICTNODE IS node-name

Specifies the node that controls the data dictionary in which the TAT is stored.

LOCation for APPlication IS

Introduces where the applications specified in the control statements are stored.

ADB can be used in place of APPLICATION; the equals sign (=) can be used in place

of IS.

loadAREA

Specifies that the applications are stored in the load area.

LOADAREA is the default when no location for application is specified.

ADSOBTAT

Appendix D: Application and Dialog Utilities 665

loadLIB

Specifies that the applications are stored in the load (core-image) l ibrary.

The load libraries in which the applications are stored must be specified in the JCL,
as follows:

■ z/OS JCL -- In the CDMSLIB statement or, if a CDMSLIB statement is not

specified, in the STEPLIB statement

■ z/VSE JCL -- In the ASSGN/EXTNT statement for the private core-image library
or in the LIBDEF equivalent

■ z/VM commands -- In the GLOBAL LOADLIB command, added to the list of

l ibraries

ADD

Specifies that task code entries for an application are being added to the TAT.

If ADD is specified and the TAT already contains entries for the application, the
action is changed to MOD and a warning message is displayed. If ADD is specified

and the TAT does not exist, ADSOBTAT creates a TAT.

ADD is the default if the TAT contains no entries for the application.

MODify

Specifies that the task code entries for an application are being replaced in the TAT
by the task codes defined in the current application load module.

If MOD is specified and the TAT does not contain entries for the application,
ADSOBTAT treats the request l ike an ADD request.

MOD is the default if the TAT already contains entries for the application.

DELete

Specifies that the task code entries for an application are being deleted from the

TAT.

If the TAT does not contain entries for the application, a warning message is issued.
Note that the application does not have to exist when DEL is specified.

APPlication IS application

Identifies the application.

See expansion of application below.

application-name

Specifies the name of the application.

VERsion is version-number

Gives the version number (in the range 1 through 9999) of the application.

The default version number is 1.

ADSOBTAT

666 ADS Reference Guide

Usage

Considerations

If specified, the DICTNODE and DICTNAME clauses must be coded first, in any order. The
LOCATION clauses, if specified, must be coded next, in any order. The
ADD/MODIFY/DELETE APPLICATION clause must be coded last, and can be repeated any

number of times to reference several applications.

JCL and Commands

JCL for running ADSOBTAT is shown below for z/OS, z/VSE, and z/VM systems.

z/OS JCL

Sample z/OS JCL for Central Version

ADSOBTAT (central version) (z/OS)

//ADSOBTAT EXEC PGM=ADSOBTAT,REGION=1024K

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.loadlib,DISP=SHR

//sysctl DD DSN=idms.sysctl,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//SYSLST DD SYSOUT=A

//SYSIDMS DD *

DMCL=dmcl-name

Put other SYSIDMS parameters, as appropriate, here

/*

//SYSIPT DD *

Put ADSOBTAT parameters, as appropriate, here

/*

//*

ADSOBTAT

Appendix D: Application and Dialog Utilities 667

ADSOBTAT (local mode) (z/OS)

//ADSOBTAT EXEC PGM=ADSOBTAT,REGION=1024K

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.loadlib,DISP=SHR

//dloddb DD DSN=idms.appldict.ddldclod,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//sysjrnl DD DSN=idms.tapejrnl,DISP=(NEW,CATLG),UNIT=tape

//SYSLST DD SYSOUT=A

//SYSIDMS DD *

DMCL=dmcl-name

Put other SYSIDMS parameters, as appropriate, here

/*

//SYSIPT DD *

Put ADSOBTAT parameters, as appropriate, here

/*

//*

idms.dba.loadlib Data set name of the load library containing the DMCL and

database name table load modules

idms.loadlib Data set name of the load library containing the CA IDMS
executable modules

sysctl DDname of the SYSCTL fi le

idms.sysctl Data set name of the SYSCTL fi le

dcmsg DDname of the system message (DDLDVM/ESAG) area

idms.sysmsg.ddldcmsg Data set name of the system message (DDLDVM/ESAG) area

dmcl-name Name of the DMCL load module

dloddb DDname of the application dictionary definition load
(DDLDCLOD) area

idms.appldict.ddldclod Data set name of the application dictionary definition load

(DDLDCLOD) area

sysjrnl DDname of the tape journal fi le

idms.tapejrnl Data set name of the tape journal fi le

tape symbolic device name of the tape journal fi le

Note: For more information about SYSIDMS parameters, see the CA IDMS Database
Administration.

ADSOBTAT

668 ADS Reference Guide

z/VSE JCL

Sample z/VSE JCL for Central Version

ADSOBTAT (z/VSE)

// UPSI b if specified in the IDMSOPTI module

// DLBL userlib

// EXTENT ,nnnnnn

// LIBDEF *,SEARCH=(userlib.cdmslib)

// EXEC ADSOBTAT

control statements

SYSIDMS parameters

b appropriate 1- through 8-character UPSI bit switch, as
specified in the IDMSOPTI module

nnnnnn volume serial number of the library

userlib fi lename of the user l ibrary

userlib.cdmslib fi le-id of the CA IDMS sublibrary

SYSIDMS parameters A l ist of SYSIDMS parameters for this job

Note: For more information about SYSIDMS parameters, see the CA IDMS Database
Administration.

Sample z/VSE JCL for Local Mode

To execute ADSOBTAT in local mode, perform the following steps:

1. Remove the UPSI specification.

2. Add the following statements before the EXEC statement:

// DLBL dloddb,'idms.appldict.ddldclod',,DA

// EXTENT sys017,nnnnnn

// ASSGN sys017,DISK,VOL=nnnnnn,SHR

// DLBL dmsgdb,'idms.sysmsg.ddldcmsg',,DA

// EXTENT sys016,nnnnnn

// ASSGN sys016,DISK,VOL=nnnnnn,SHR

// TLBL sys009,'idms.tapejrnl',,nnnnnn,,f

// ASSGN sys009,TAPE,VOL=nnnnnn

idms.appldict.ddldclod fi le-id of the data dictionary load area

idms.sysmsg.ddldcmsg fi le-id of the data dictionary message area

idms.tapejrnl fi le-id of the tape journal fi le

ADSOBTAT

Appendix D: Application and Dialog Utilities 669

dloddb fi lename of the data dictionary load area (DDLDCLOD)

dmsgdb fi lename of the data dictionary message area

(DDLDVM/ESAG)

f fi le number of the tape journal fi le

nnnnnn volume serial number

sys009 logical unit assignment for the tape journal fi le

sys016 logical unit assignment for the data dictionary message area

sys017 logical unit assignment for data dictionary load area

z/VM commands

Sample z/VM Commands for Central Version

ADSOBTAT (z/VM)

FILEDEF SYSLST PRINTER

FILEDEF SYSIDMS DISK sysidms input a

FILEDEF SYSIPT DISK btat input a

GLOBAL LOADLIB idmslib

OSRUN ADSOBTAT

sysidms input a fi lename, fi letype, and fi lemode of the fi le containing the

SYSIDMS input parameters

btat input a fi le identifier of the fi le containing ADSOBTAT source
statements

idmslib fi lename of the CA IDMS LOADLIB library

Note: For more information about SYSIDMS parameters, see the CA IDMS Database
Administration.

Sample z/VM Commands for Local Mode

To execute ADSOBTAT in local mode, add the following commands before the OSRUN

command:

FILEDEF sysjrnl TAP1 SL VOLID nnnnnn (RECFM VB LRECL 111 BLKSIZE bbb

FILEDEF dictdb DISK dictdb dictfile d (RECFM F LRECL ppp BLKSIZE ppp XTENT nnn

FILEDEF dloddb DISK dloddb dictfile f (RECFM F LRECL ppp BLKSIZE ppp XTENT nnn

FILEDEF dmsgdb DISK dmsgdb dictfile e (RECFM F LRECL ppp BLKSIZE ppp XTENT nnn

bbb block size of the tape journal fi le

ADSOBTAT

670 ADS Reference Guide

dictdb ddname of the data dictionary DDLDML area

lll record length of the tape journal fi le

nnnnnn volume serial number of the tape journal fi le

sysjrnl ddname of the tape journal fi le

dictdb dictfile d fi le identifier of the data dictionary DDLDML area

ppp page size of the area

dloddb ddname of the data dictionary load area (DDLDCLOD)

dloddb dictfile f fi le identifier of the data dictionary load area

dmsgdb ddname of the data dictionary message area (DDLDVM/ESAG)

dmsgdb dictfile e fi le identifier of the data dictionary message area

Specifying Central Version or Local Mode

To specify whether ADSOBTAT executes under central version or in local mode, take
one of the following actions:

1. Specify either CVMACH=dc/ucf-machine-name (for central version) or *LOCAL* (for

local mode) as the first statement to submit to ADSOBTAT. Dc/ucf-machine-name is
the 1- through 8-character user identifier of the z/VM virtual machine in which the
DC/UCF system is executing.

2. Link edit ADSOBTAT with an IDMSOPTI module that specifies either

CVMACH=dc/ucf-machine-name (for central version) or CENTRAL=NO (for local
mode). Instructions for creating an IDMSOPTI module are given in CA IDMS System
Operations Guide.

3. Code PARM='CVMACH=dc/ucf-machine-name' or PARM='*LOCAL*' on the OSRUN
command used to invoke the compiler. This option is not allowed if the OSRUN
command is issued from a z/VM EXEC program; however, it is allowed if the OSRUN
command is issued from a System Product interpreter (REXX) or EXEC 2 program.

Note: For more information about central version and local mode operations in the
z/VM environment, see the CA IDMS Installation and Maintenance— z/VM.

ADSOTATU

Appendix D: Application and Dialog Utilities 671

ADSOTATU

ADSOTATU is an online util ity that allows the application developer to add, modify, and
delete entries in the task application table (TAT). For example, ADSOTATU can be used
to update the TAT for a dictionary when an application is migrated to that dictionary.

Note: When an application is added, modified, or deleted by using the application

compiler, the TAT is automatically updated in the applicable dictionary, and ADSOTATU
is not required. The TAT can also be updated in batch by using ADSOBTAT, as described
under 'ADSOBTAT' later in this appendix.

ADSOTATU is invoked by specifying the task code ADSOTATU at the DC/UCF prompt.

ADSOTATU displays the TAT Update Util ity screen on which the application developer

specifies the name of the application whose TAT entries are being added, modified, or
deleted. Additionally, the application developer can specify the dictionary that contains
the TAT, the node that controls the dictionary, the application version number, and the

action to take regarding the TAT entries.

Each time the application developer specifies an action, ADSOTATU makes a copy of the

TAT stored in either the program pool, load area (if the program pool has no TAT), or
load library (if the load area has no TAT). If no TAT exists, ADSOTATU creates a new TAT
if the action is ADD. ADSOTATU updates the copy of the TAT as appropriate; stores the

copy in the load area, replacing any previous TAT; and issues a DCMT VARY PROGRAM
NEW COPY command to update the TAT in the program pool.

Specifying Activities

The application developer specifies activities in an ADSOTATU session by using the
ENTER, CLEAR, and PF9 keys, as follows:

■ ENTER instructs ADSOTATU to add, modify, or delete entries in the TAT, based on
information specified on the screen.

If the TAT is updated successfully, ADSOTATU issues a confirming message. The
screen can be used repeatedly to specify several applications.

If ADSOTATU encounters an error, it redisplays the screen with an appropriate error
message. The application developer can change information on the screen, then
resubmit the information by pressing ENTER.

■ CLEAR and PF9 terminate ADSOTATU and return control to DC/UCF.

More information:

CA ADS Application Compiler (ADSA) (see page 51)

ADSOTATU

672 ADS Reference Guide

TAT Update Utility Screen

Sample Screen

 CA, INC.
 CA ADS REL nn.n ***TAT UPDATE UTILITY***

 DICT NAME: NODE:

 ACTION: (ADD/MOD/DEL)
 APPLICATION: VERSION:

Field descriptions

DICT NAME

Specifies the 1- to 8-character name of the data dictionary in which the TAT is

stored.

DICT NAME defaults to the name of the primary dictionary. Specifying a dictionary
name is equivalent to issuing a DCUF SET DICTNAME command under DC/UCF.

NODE

(for DDS only) Specifies the DDS node that controls the data dictionary specified by

DICT NAME.

NODE defaults to the system currently in use. Specifying a node name is equivalent
to issuing a DCUF SET DICTNODE command under DC/UCF.

ADD

Specifies that task code entries for an application are being added to the TAT.

If ADD is specified and the TAT already contains entries for the application, the
action is changed to MOD and a warning message is displayed.

ADD is the default if the TAT contains no entries for the application.

MODify

Specifies that the task code entries for an application are being replaced in the TAT

by the task codes defined in the current application load module.

If MODIFY is specified and the TAT does not contain entries for the application,
ADSOTATU treats the request l ike an ADD request.

MODIFY is the default if the TAT already contains entries for the application.

ADSOTATU

Appendix D: Application and Dialog Utilities 673

DELete

Specifies that the task code entries for an application are being deleted from the

TAT.

If the TAT does not contain entries for the application, a warning message is issued.
Note that the application does not have to exist when DEL is specified.

APPLICATION

Specifies the name of the application. If the action is ADD or MOD, the specified

application must exist in the data dictionary specified by DICT NAME.

VERSION

Specifies the version number (in the range 1 through 9999) of the application. The
default version number is 1.

Appendix E: Activity Logging for an CA ADS Dialog 675

Appendix E: Activity Logging for an CA ADS
Dialog

This section contains the following topics:

Overview (see page 675)
Data Dictionary Organization (see page 676)

Activity Logging Record Formats (see page 676)

Overview

What it Does

The activity logging feature of CA ADS creates activity records that document all
potential database activity for a dialog. Documentation is based on the database

commands issued explicitly or implicitly by the dialog's processes. (Examples of implicit
database commands are the implicit READY command, is sued automatically for each
subschema area when a run unit is opened for a process, and the BIND command,

issued automatically for each subschema record used by the dialog.) If enabled, activity
logging is performed when a dialog is compiled and has no impact on runtime
performance.

The activity logging feature can be used to perform the following tasks:

■ Monitor database usage ── If runtime activity is high for a particular subschema

area, set, record, or logical record, activity records can show which dialogs contain
database commands that potentially access the entity.

■ Modify dictionary entity occurrences ── If a subschema area, set, record, or logical
record needs to be modified, activity records can show which dialogs need to be

recompiled as a result of the modification.

Enabling Activity Logging

The activity logging feature is enabled or disabled at system generation. The application
developer can override the system generation default when defining a dialog.

If enabled, the activity logging feature creates database activity records when a dialog is
compiled. Database activity records can be accessed by using query programs such as

OnLine Query, by using the Data Dictionary Reporter, or by writing an appropriate
program.

The remainder of this appendix describes the data dictionary organization and the
format of activity logging records.

Data Dictionary Organization

676 ADS Reference Guide

More information:

CA ADS Dialog Compiler (ADSC) (see page 91)

Data Dictionary Organization

Database activity records are stored as junction records between a dialog's PROG-051
record and the dictionary's AREA, SET, RECORD, and LOGICAL RECORD entities, as

follows:

Dictionary entity Junction record stored

SSA-024 (AREA) AFACT-057

SSOR-034 (SET) SETACT-061

SSR-032 (RECORD) RCDACT-059

LR-190 (LOGICAL RECORD) LRACT-193

Thus, if an area, set, record, or logical record must be modified, the application
developer can follow a path from the dictionary entity occurrence, through the
appropriate junction record, to the PROG-051 records of the dialogs that need to be
recompiled because of the modification.

Activity Logging Record Formats

An activity logging record contains the following information about the database
command being logged for a dialog:

■ The function number of the database command being logged

■ The number of times in the dialog that the database command is coded against the
dictionary entity occurrence

■ The name of the dictionary entity occurrence

AFACT-057

The record description of the AFACT-057 junction record is as follows:

02 AF-FUNCT-057 PICTURE IS S9(4) USAGE IS COMP.

02 AF-COUNT-057 PICTURE IS 9(4) USAGE IS COMP.

02 AF-AREA-OWN-057 PICTURE IS X(32) USAGE IS DISPLAY.

02 EXTRNL-NAME-057 PICTURE IS X(32) USAGE IS DISPLAY.

02 FILLER PICTURE IS X(4) USAGE IS DISPLAY.

Activity Logging Record Formats

Appendix E: Activity Logging for an CA ADS Dialog 677

SETACT-061

The format of the SETACT-061 junction record is as follows:

02 SA-FUNCT-061 PICTURE IS 9(4) USAGE IS COMP.

02 SA-COUNT-061 PICTURE IS 9(4) USAGE IS COMP.

02 SA-SET-OWN-061 PICTURE IS X(32) USAGE IS DISPLAY.

02 FILLER PICTURE IS X(4) USAGE IS DISPLAY.

RCDACT-059

The format of the RCDACT-059 junction record is as follows:

02 RA-FUNCT-059 PICTURE IS 9(4) USAGE IS COMP.

02 RA-COUNT--059 PICTURE IS 9(4) USAGE IS COMP.

02 RA-RCD-OWN-059 PICTURE IS X(32) USAGE IS DISPLAY.

02 FILLER PICTURE IS X(4) USAGE IS DISPLAY.

LRACT-193

The format of the LRACT-193 junction record is as follows:

02 FUNCT-193 PICTURE IS S9(4) USAGE IS COMP.

02 COUNT-193 PICTURE IS S9(4) USAGE IS COMP.

02 LR-NAM-193 PICTURE IS X(16) USAGE IS DISPLAY.

Record Fields

FUNCT

Contains the numeric function number that is assigned to the database command

or logical record command being logged.

The function numbers for the AFACT-057 (AREA), SETACT-061 (SET), RCDACT-059
(RECORD), and LRACT-193 (LOGICAL RECORD) junction records and their associated
database or logical record commands are l isted in the following table.

Note: No activity records are stored for the COMMIT and ROLLBACK database
commands.

COUNT

Contains the number of times the logged database command is coded in all of the
processes of the dialog.

OWN

Contains the name of the record, set, or area whose activity is being documented
by the record, set, or area activity record.

EXTRNL-NAME

Contains spaces.

Activity Logging Record Formats

678 ADS Reference Guide

NAM

Contains the name of the logical record whose activity is being documented by the

logical record activity record.

Usage

Considerations

The COUNT field for a READY command reflects only the effective READY commands
issued implicitly or explicitly in the dialog's processes. An implicit or explicit READY

command sets the usage mode of a database area during a dialog's premap or response
process.

If the same area is named in more than one READY command in a process, the usage
mode specified in the last READY command applies to the named area for the entire
process. The COUNT field of a junction record for a READY command reflects the

number of processes for which the specified usage mode applies to the specified area.

Activity Logging Function Numbers and Associated Commands

Junction record Function
number

Navigational or LRF database command

AFACT-057 3 FIND

 6 KEEP and KEEP LONGTERM

 15 ACCEPT

 23 FIND KEEP

 36 READY USAGE MODE UPDATE

 37 READY USAGE MODE RETRIEVAL

 38 READY USAGE MODE PROTECTED UPDATE

 39 READY USAGE MODE PROTECTED RETRIEVAL

 40 READY USAGE MODE EXCLUSIVE RETRIEVAL

 41 READY USAGE MODE EXCLUSIVE UPDATE

 43 OBTAIN

 63 OBTAIN KEEP

SETACT-061 3 FIND

 6 KEEP and KEEP LONGTERM

 7 CONNECT

 11 DISCONNECT

Activity Logging Record Formats

Appendix E: Activity Logging for an CA ADS Dialog 679

Junction record Function
number

Navigational or LRF database command

 15 ACCEPT

 16 IF SET EMPTY/MEMBER

 17 RETURN

 23 FIND KEEP

 43 OBTAIN

 63 OBTAIN KEEP

RCDACT-059 2 ERASE

 3 FIND

 5 GET

 6 KEEP and KEEP LONGTERM

 7 CONNECT

 8 MODIFY

 11 DISCONNECT

 12 STORE

 14 BIND

 15 ACCEPT

 23 FIND KEEP

 43 OBTAIN

 63 OBTAIN KEEP

LRACT-193 2 ERASE

 8 MODIFY

 12 STORE

 43 OBTAIN

More information:

Map Commands (see page 449)

Appendix F: Built-in Function Support 681

Appendix F: Built-in Function Support

This section contains the following topics:

Overview (see page 681)
Internal Structure Of Built-In Functions (see page 681)
Assembler Macros (see page 701)

Changing Invocation Names (see page 713)
Creating User-Defined Built-In Functions (see page 714)

Overview

About Built-In Functions

CA ADS built-in function support enables an installation to change the invocation names
of built-in functions and to generate user-defined built-in functions. This appendix
discusses the following topics:

■ The internal structure of built-in functions

■ The assembler macros that define components of built-in functions

■ How to change invocation names

■ How to create user-defined built-in functions

To change invocation names, the user needs only to read the following topics:

■ The discussion of the master function table under 'Internal Structure of Built-in

Functions'

■ The discussion of the #EFUNMST macro under 'Assembler Macros'

■ The instructions provided under 'Changing Invocation Names'

Internal Structure Of Built-In Functions

CA ADS supplied built-in functions and user-defined built-in functions share the same
internal structure. This structure consists of the following components.

Master Function Table

The master function table l ists the invocation names for each built-in function. The

master function table is used during process compilation to associate a coded invocation
name with a real (generic) function name and to point to a model XDE (expression
description element) module that describes the function.

Internal Structure Of Built-In Functions

682 ADS Reference Guide

Model XDE Modules

Model XDE modules contain one or more model XDE tables . Each model XDE table

describes a function, including the function's parameters, work area requirements,
result field, and processing program name. During process compilation, a model XDE
table is used to produce a series of XDEs that form the compiled representation of the

function.

XDEs and VSDEs

XDEs and VXDEs describe functions at runtime. XDEs are created during process
compilation; one VXDE (variable expression description element) is created for each XDE
at runtime to hold variable information.

Processing Program Modules

Processing program modules contain processing logic for one or more functions. At

runtime, when the XDEs and VXDEs for the function are processed, the runtime system
calls the appropriate program and passes to it all required information. The program
executes, then returns control to the dialog.

Master Function Table

The master function table is a dictionary load module that l ists the invocation names for
all CA ADS supplied and user defined built-in functions. Each entry contains a function
invocation name, a corresponding real (generic) function name, and the name of the

model XDE module that describes the function.

The concatenate function, for example, has by default three invocation names:

CONCATENATE, CONCAT, and CON. Each invocation name has an entry in the master
function table. Each entry also specifies the real function name for the concatenate
function, CONCAT, and the model XDE module that describes the concatenate function,

RHDCEV51.

During compilation of a coded function, the dialog compiler searches the master
function table for the coded invocation name. If it finds an entry, it uses the information
in the entry to find the model XDE module that describes the function; if it does not find
an entry, it generates a syntax error message.

Note: At runtime, an invocation name that is used in a dialog must not duplicate the
name of a record element known to the dialog. If it does, CA ADS interprets the function
as a subscripted reference to the record element.

The DSECT for an entry in the master function table is shown below. The load module

for the master function table is stored in the data dictionary load area under the name
RHDCEVBF.

Internal Structure Of Built-In Functions

Appendix F: Built-in Function Support 683

DSECT for a Master Function Table Entry

EFMASDS DSECT 11:15:30 03/06/86 00001000

* EVAL MASTER FUNCTION TABLE ENTRY DSECT 00002000

EFMINAML DS H LENGTH OF INVOCATION FUNCT NAME 00003000

EFMINAME DS CL32 FUNCTION NAME - INVOCATION 00004000

EFMRNAME DS CL8 FUNCTION NAME - REAL 00005000

EFMMPGMN DS CL8 PROGRAM NAME - MODEL XDE TABLE 00006000

EFMMPGMV DS H PROGRAM VERSION - MODEL XDE TABLE 00007000

EFMFLAG1 DS XL1 MASTER FUNCTION ENTRY FLAG1 00008000

EFMASFU EQU X'80' AGGREGATE FUNCTION ENTRY 00009000

 DS XL3 FILLER 00010000

EFMASLNG EQU *-EFMASDS LENGTH OF MASTER ENTRY 00011000

Model XDE Module

A model XDE module is a load module that contains one or more model XDE tables,
each describing a function. During process compilation of a function, the dialog compiler
uses the appropriate model XDE table to generate a series of XDEs that form the
compiled representation of the function. A model XDE table contains the following

entries:

■ A header entry that contains the function's proces sing program name, work area
requirements, number and types of function parameters, and a description of the

function's result field. Each model XDE table contains one header entry.

■ XDE entries that describe the function's parameters and determine certain

characteristics of the result field. One XDE entry exists for each function parameter.

■ Data type conversion entries that define the data types and length of each function
parameter. One or more data type conversion entries exist for each function

parameter.

The DSECTs for these three entries are shown below. The load modules for the model

XDE modules are stored in the load library. The model XDE source and load modules for
the CA ADS supplied built-in functions are called RHDCEV51, RHDCEV52, RHDCEV53, and
RHDCEV59, and can be used as a reference when defining user-defined built-in

functions.

Internal Structure Of Built-In Functions

684 ADS Reference Guide

DSECTs for the Model XDE Table Entries

EFHDRDS DSECT 12:01:34 05/18/84 00001000

* EVAL FUNCTION MODEL TABLE HEADER DSECT 00002000

EFHNEXT DS H OFFSET TO NEXT HDR ENTRY 00003000

EFHFUNNM DS CL8 FUNCTION NAME - REAL 00004000

EFHPPGMN DS CL8 PROCESSING PROGRAM NAME 00005000

EFHPPGMV DS H PROCESSING PROGRAM VERSION 00006000

EFHFUNCN DS XL1 FUNCTION NUMBER 00007000

 DS XL1 FILLER 00008000

EFHWORKL DS H LENGTH OF REQUIRED WORKAREA 00009000

EFHZOPND DS 0XL4 4 X'00'S INDICATE ZERO OPERANDS 00010000

EFHFOPDN DS H NUMBER OF FIXED OPERANDS 00011000

EFHVOPDO DS H OFFSET TO VARIABLE OPERAND MODEL 00012000

EFHRESLN DS H RESULT LENGTH IN BYTES 00013000

EFHRDATP DS XL1 RESULT DATA TYPE 00014000

EFHRNDEC DS XL1 RESULT NUMBER DECIMALS 00015000

 DS XL4 FILLER 00016000

EFHDRLNG EQU *-EFHDRDS LENGTH OF FUNCTION MODEL HEADER 00017000

EFXDEDS DSECT 07:36:43 05/31/84 00001000

* EVAL FUNCTION MODEL XDE DSECT 00002000

EFXNEXT DS H OFFSET TO NEXT MODEL XDE 00003000

EFXNDEC DS XL1 NUMBER OF DECIMALS 00004000

EFXRLCF DS XL1 RESULT LENGTH CALCULATION FLAG 00005000

EFXRLCP EQU X'80' ADD LENGTH 00006000

EFXRLCS EQU X'40' SUBT LENGTH 00007000

* IF ZERO, IGNORE 00008000

EFXFLAG1 DS XL1 FIRST FLAG 00009000

EFXF1MAN EQU X'80' ON=MANDATORY, OFF=OPTIONAL 00010000

EFXF1TRU EQU X'40' ON=TRUNCATE, OFF=ROUND 00011000

EFXF1RES EQU X'20' RESULT CHARACTERISTICS DEFAULT 00012000

 SPACE 1 00013000

 DS XL3 FILLER 00014000

EFXDCTN DS H NUMBER OF ENTRIES IN DATA CONV TBL 00014500

EFXLNG1 EQU *-EFXDEDS BASE LENGTH OF ENTRY 00015000

 SPACE 1 00016000

Internal Structure Of Built-In Functions

Appendix F: Built-in Function Support 685

* DATA TYPE CONVERSION TABLE 00017000

EFXCNVE DSECT CONVERSION TBL ENTRY DSECT 00018000

EFXSRCT DS XL1 SOURCE DATATYPE 00019000

EFXTART DS XL1 TARGET DATATYPE 00020000

EFXTARL DS H TARGET LENGTH 00021000

 DS XL2 FILLER 00022000

 SPACE 1 00023000

EFXDCTL EQU *-EFXSRCT LENGTH OF ENTRY 00024000

XDEs and VXDEs

XDEs (expression description elements) and VXDEs (variable expression description

elements) form the compiled representation of a process at runtime. During
compilation, each process statement is converted into a series of XDEs that represent
the operands and operations within each statement. The XDEs of the statements are
strung together to form the compiled representation of the process. At runtime, the

runtime system builds a VXDE for each XDE. VXDEs contain variable runtime
information; the information in XDEs does not change.

The compiled representation of a function consists of one operand XDE/VXDE for each
parameter and one function XDE/VXDE for the function. These XDE/VXDE pairs contain
the following information:

■ Function XDE/VXDE:

– Name and address of the function's processing program module

– Function number identifying the appropriate program within the processing

program module

– Number of function operands (parameters)

– Address of the work area available to the processing program

– Description and address of the function's result field

– Address of the operand VXDE for the last parameter in the parameter l ist

■ Operand XDE/VXDE:

– Description and address of the operand (parameter)

– Address of the operand VXDE for the previous parameter in the parameter l ist

The DSECTs for the XDE and VXDE are shown below.

The runtime use of the XDEs and VXDEs is described under "Runtime Processing" later in
this appendix.

Internal Structure Of Built-In Functions

686 ADS Reference Guide

DSECT of the XDE (Expression Description Element)

 SPACE 1

*

* #AXDEDS - EXPRESSION DESCRIPTION ELEMENT *

*

* THIS COPY MEMBER IS INCLUDED IN #XDEDS. IF ANY CHANGES ARE *

* MADE HERE, PLEASE INSURE THAT ALL MODULES CONTAINING #XDEDS ARE *

* REASSEMBLED. *

* *

* THIS MACRO ALLOWS THE ADS MODULES TO MORE EASILY REFERENCE XDE *

* FIELDS WHEN AN XDE IS BEING BUILT WITHOUT THE XDENEXT FIELD. *

*

 SPACE

XDEDATAD DS 0F (REAL) DATA ADDRESS (OPERAND OR RESULT)

XDEBRNXT DS 0F ** BRANCH OPERATOR XDES ONLY

* IF RELOCATABLE XDE MODE TO BE USED IN

* EVAL/ADSOXDES THE OFFSET

* OF BRANCH TARGET XDE

* FROM 1ST XDE ELSE REAL ADDRESS OF TARGET

XDEDTABO DS H (LOGICAL)DATA ADDRESS - ADCON TABLE OFFSET

XDEDDSPL DS H (LOGICAL) DATA ADDRESS - DISPLACEMENT

* NOTE THAT REAL ADDRESSES ARE DISTINGUISHED FROM LOGICAL ADDRESSES

* (TABLE OFFSET/DISPLACEMENT PAIRS) BY THE X'80' BIT OF THE HIGH

* ORDER ADDRESS BYTE - ON => REAL, OFF => LOGICAL.

 SPACE

XDETGT EQU X'80' High order bit of DYN used as temporary

* flag during executable code generation

* with following meaning :

* ON -> This XDE is a target of a BRC2 XDE

* OFF -> This XDE is a NOT a BRC2 target

* This bit will ALWAYS be OFF in ALL XDEs

* in a final FDB.

XDEDYN DS H OFFSET INTO DYNAMIC AREA OF VXDE

XDEDATLN DS 0H OPERAND LENGTH (IN BYTES)

XDEBROFF DS 0H ** BRANCH OPERATOR XDES ONLY

* OFFSET IN XDES OF BRANCH TARGET FROM

* BRANCH OPERATOR. ONLY USED WHEN CONTIG.

* XDE MODE USED IN EVAL.

* ALWAYS USED IN ADSOXDES.

XDEBITDP DS C BIT DISPLACEMENT (FOR MB-BIN)

XDEBITLN DS C LEN (NBR OF BITS)(FOR MB-BIN)

Internal Structure Of Built-In Functions

Appendix F: Built-in Function Support 687

 ORG XDEDATLN

XDEEPWR DS C POWER 10-1 (FOR EDIT)

XDEEPLN DS 0C PICTURE LENGTH (FOR EDIT)

XDEESGN DS C SIGN CHARACTER (FOR EDIT)

XDENODEC DS C NUMBER OF DECIMAL PLACES

XDEDATYP DS C OPERAND DATA TYPE

 SPACE

* XDE DATA TYPE EQUATES :

XDEDGRP EQU 0 GROUP

XDEDEBCD EQU 1 EBCDIC

XDEDHBIN EQU 2 BINARY HALFWORD

XDEDFBIN EQU 3 BINARY FULLWORD

XDEDSPAK EQU 4 PACKED DECIMAL (SIGNED)

XDEDUPAK EQU 5 PACKED DECIMAL (UNSIGNED)

XDEDSZON EQU 6 ZONED DECIMAL (SIGNED)

XDEDUZON EQU 7 ZONED DECIMAL (UNSIGNED)

XDEDFLTD EQU 8 DISPLAY FLOATING POINT

XDEDSFLT EQU 9 INTERNAL FLOAT (SHORT)

XDEDLFLT EQU 10 INTERNAL FLOAT (LONG)

XDEDBIT EQU 11 BIT

XDEDDBIN EQU 12 BINARY DOUBLEWORD

XDEDFC EQU 13 FIGURATIVE CONSTANT

XDEDMBIN EQU 14 MULTI-BIT BINARY (PL1 STYLE)

XDEDVCHR EQU 15 VARYING CHARACTER

XDEDEDIT EQU 16 EDIT INFO

XDEDEDP EQU 17 EDIT PICTURE

XDEDGEXT EQU 18 EXTERNAL GRAPHICS SO......SI

XDEDGINT EQU 19 INTERNAL GRAPHICS

* FOLLOWING EQU SHOULD ALWAYS REFLECT THE HIGHEST DATA TYPE

* !!!!!!!!!!!!!!!! PLEASE NOTE : !!!!!!!!!!!!!!!!!!!!!!!

* !!!! ANY CHANGE TO THE FOLLOWING EQUATE REQUIRES CHGS !!!

* !!!! TO RHDCEVAL AND ADSOXDES.

* !!!

XDEDMXTP EQU XDEDGINT MAX DATA TYPE VALUE

* NOTE THAT RHDCEVAL CURRENTLY ONLY SUPPORTS BIT FIELDS IN LOGICAL

* OPERATIONS.

 SPACE

XDEOPTYP DS 0C OPERATION/OPERAND CODE

XDEEPAD DS C PAD CHARACTER (FOR EDIT)

 SPACE

Internal Structure Of Built-In Functions

688 ADS Reference Guide

* XDE OPERATOR TYPE EQUATES :

XDEOOPND EQU 0 OPERAND (NOT OPERATOR)

XDEOPNOT EQU 5 LOGICAL "NOT"

XDEOPOR EQU 6 LOGICAL "OR"

XDEOPAND EQU 7 LOGICAL "AND"

XDEOPCNJ EQU 9 CLASS OF LOGICAL CONJUNCTIONS

XDEOPEQ EQU 10 "EQ" (RELATIONAL OPERATION)

XDEOPNE EQU 11 "NE"

XDEOPLT EQU 12 "LT"

XDEOPLE EQU 13 "LE"

XDEOPGT EQU 14 "GT"

XDEOPGE EQU 15 "GE"

XDEOMTCH EQU 16 "MATCHES"

XDEOPCON EQU 17 "CONTAINS"

XDEOPCMP EQU 18 "COMPARE"; 8:EQUAL, 4:<, 2:>

XDEOPREL EQU 19 CLASS OF RELATIONAL OPERATORS

XDEOUNMN EQU 20 UNARY "-"

XDEOADDN EQU 21 "+"

XDEOBNMN EQU 22 BINARY "-"

XDEOMULT EQU 23 "*"

XDEOPDIV EQU 24 "/"

XDEOPDVR EQU 25 "/" WITH REMAINDER

XDEOPART EQU 29 CLASS OF ARITHMETIC OPERATORS

* NOTE : Test Under Mask used as pseudo-operator to

* process "boolean variables", e.g. Map Status tests.

* This operator will never appear directly

* in an XDE list.

Internal Structure Of Built-In Functions

Appendix F: Built-in Function Support 689

XDEOPTM EQU 35 "TEST UNDER MASK"

XDEOASGN EQU 40 "ASSIGNMENT"

* NOTE : MULTIPLE ASSIGNMENT NO LONGER SUPPORTED

* Operator code available for reuse.

*DEOASGM EQU 41 "ASSIGNMENT",MULTIPLE TARGETS

XDEOASGR EQU 42 REVERSE ASSIGNMENT

XDEOINDX EQU 45 ARRAY "INDEX"

*

* NOTE : DATE CONVERSIONS NO LONGER SUPPORTED.

* THESE CODES ARE AVAILABLE FOR REUSE.

*

*DEODTJA EQU 50 JULIAN DATE TO GREGORIAN (AMER.

*DEODTJG EQU 51 JULIAN DATE TO GREGORIAN (WORLD

*DEODTAJ EQU 52 GREGORIAN DATE (AMER. - MMDDYY)

*DEODTGJ EQU 53 GREGORIAN DATE (WORLD - DDMMYY)

*DEODTES EQU 55 CLASS OF DATE CONVERSIONS

* NOTE : CONCATENATE NO LONGER SUPPORTED.

* Operator code available for reuse.

*DEOCONC EQU 60 "CONCATENATION"

* NOTE : INDA ONLY USED BY DEBUGGER.

* Not supported by ADSOXDES.

XDEOINDA EQU 65 INDIRECT ADDRESSING

** Following is a "pseudo-opcode" used only in generation

** of machine code for True/False DXBs. This opcode will NEVER

** appear in an XDE list. It is used only for convenience

** so that generating code for T/F DXBs easily fits into the

** standard methodology of code generation.

XDEODXTF EQU 78 True/False DXB

XDEOBRC2 EQU 79 BRANCH OPERATOR

XDEOBRCH EQU 80 BRANCH OPERATOR

* NOTE : IF A NEW OPERATOR CODE IS ADDED WHICH IS

* GREATER THAN THE CURRENT VALUE OF XDEOMXTP,

* WE MUST CHANGE XDEOMXTP TO THIS NEW VALUE.

* IN THIS CASE, WE MUST ALSO ADD ENTRIES TO THE

* RHDCEVAL/ADSOXDES OPTABLE.

* TO MINIMIZE THE SIZE OF OPTABLE,

* IT WOULD BE BEST TO ASSIGN NEW CODES <=

* THE CURRENT VALUE OF XDEOMXTP.

* RHDCEVAL/ADSOXDES CURRENTLY ASSUME THAT THE ONLY

* VALID OPTYP > XDEOMXTP IS XDEOUFUN AND THIS IS

* HANDLED AS A SPECIAL CASE.

Internal Structure Of Built-In Functions

690 ADS Reference Guide

XDEOMXTP EQU XDEOBRCH MAX OPTYP VALID FOR USE WITH

* RHDCEVAL/ADSOXDES OPTABLE.

XDEADSLR EQU 253 "OF LR" OPERAND (USED BY ADS/ONLINE)

* CODE NOT USED FOR AN OPERATOR

XDEOKWD EQU 254 KEYWORD - USED BY LRF.

* ALL OTHERS TREAT AS OPERAND

XDEOUFUN EQU 255 USER-DEFINED FUNCTION

XDEFLAG DS C FLAG BYTE

XDEFNVL EQU X'80' FIELD IS NOT VALUED

XDEFNED EQU X'40' NO DATA VALIDATION NEEDED

* (FOR PACKED/ZONED FIELDS)

XDEFNCV EQU X'20' NO CONVERSION NEEDED

XDEADDR EQU X'10' XDEDATAD IS OPRND,VS OPRND ADR

* XDEADDR USED ONLY BY DEBUGGER

XDEFFCZ EQU X'08' FIGURATIVE CONSTANT ZERO

XDEBTF EQU X'08' ** BRANCH OPERATOR XDES ONLY

* ON => BRANCH IF PREVIOUS RESULT TRUE

* OFF => BRANCH IF PREVIOUS RESULT FALSE

XDEBNEG EQU X'04' ** BRANCH2 OPERATOR XDES ONLY

* If we branch to last XDE, final

* result is value at top of XDE stack.

* ON => This value must be negated

* OFF => Value is correct as is

XDEBEND EQU X'02' ** BRANCH2 OPERATOR XDES ONLY

* Special flag for branch on last XDE

* in list to say final value must be

* negated.

XDEFTRUN EQU X'02' TRUNCATE IF DST DEC < SRC DEC

XDEFRQST EQU X'01' USED BY LOGICAL RECORD PROCESSING

 SPACE 1

* FLAG CODES FOR EDIT

XDEEF99 EQU X'01' SIGNIFICANCE ON HI ORDER

XDEEFLT EQU X'04' FLOAT THE SIGN CHARACTER

* Blank on zero flag never utilized by any EVAL callers

*DEEFBZ EQU X'08' BLANK ON ZERO

XDEEFPI EQU X'10' XDEEADR POINTS TO PICTURE

XDEEFJL EQU X'20' LEFT JUSTIFY OUTPUT

XDEEFNE EQU X'40' PICTURE IS ALL X'S

XDEEFNS EQU X'80' DO NOT SCALE SOURCE

*

XDELEN1 EQU *-XDE LENGTH OF STANDARD XDE

 SPACE

Internal Structure Of Built-In Functions

Appendix F: Built-in Function Support 691

* FOR USER DEFINED FUNCTIONS, SEVERAL ADDITION FLDS ARE REQUIRED

XDEUPGMN DS CL8 PROGRAM NAME

XDEUNOPS DS XL1 NBR OPERANDS

XDEUFUNC DS XL1 FUNCTION NUMBER

XDEUSTLN DS H REQ'D STORAGE LENGTH

XDEUPGMV DS H PROGRAM VERSION

XDEUFLG1 DS XL1 USER FUNCTION FLAG BYTE

XDEUAGFU EQU X'80' AGGREGATE FUNCTION

 DS XL1 UNUSED

XDELEN2 EQU *-XDE LENGTH OF "USER FUNCTION" XDE

 SPACE

* EQUATES FOR RESULTS OF COMPARISONS

XDECMPEQ EQU X'08' RESULT OF COMPARE IS =

XDECMPLT EQU X'04' RESULT OF COMPARE IS <

XDECMPGT EQU X'02' RESULT OF COMPARE IS >

 SPACE

DSECT of the VXDE (Variable Expression Description Element)

*

* THE VXDE IS THE DYNAMIC (WRITABLE) PORTION OF THE XDE *

*

VXDE DSECT 11:16:59 04/14/87

 SPACE

VXDEFLAG DS 0C FLAG BIT FOR NON-VALUED RESULT

VXDEFNVL EQU X'80' NON-VALUED RESULT

VXDESNXT DS F OPERAND STACK NEXT XDE ADDR

VXDEFLG2 DS 0C FLAG BIT FOR ALREADY VALIDATED DECIMAL

VXDEFNED EQU X'80' ALREADY VALIDATED DECIMAL

VXDEXDEA DS F CORRESPONDING XDE ADDRESS

VXDEDADR DS F REAL DATA FIELD ADDRESS

VXDEDLEN EQU *-VXDE

 SPACE 1

* FOR USER-DEFINED FUNCTIONS, THE FOLLOWING FLDS

* ARE ALSO REQUIRED.

 SPACE 1

Internal Structure Of Built-In Functions

692 ADS Reference Guide

VXDEUPGA DS F PROGRAM ADDR

VXDEUWKA DS 0F WORK AREA ADDR

VXDEUWTO DS H LOGICAL ADDR TBL OFFSET

VXDEUWDS DS H LOGICAL ADDR DISPL

VXDEUFLG DS CL1 FLAG FOR USER FUNCTIONS

VXDEUBRK EQU X'80' AGGREGATE FUNCTION BREAK

VXDEUINT EQU X'40' AGGREGATE FUNCTION INIT

VXDEUNIV EQU X'20' NO INITIAL VALUE FOR AGG FUN BREAK

VXDEUBAD EQU X'10' BAD DATA WITHIN BREAK

VXDEUOVR EQU X'08' OVERFLOW WITHIN BREAK

VXDELOD #FLAG X'04' USER PGM WAS #LOADED

 DS XL3 UNUSED

VXDEDLN2 EQU *-VXDE LNG OF EXTENSION

 SPACE

*

* THE XDEIX IS THE DOPE VECTOR USED IN "INDEX" OPERATIONS TO DEFINE *

* THE FORMAT OF THE ARRAY DIMENSIONS BEING ADDRESSED *

*

XDEIX DSECT

XDEIXDOA DS F "DEPEND ON" CONTROL FIELD ADDR

XDEIXNDM DS H NUMBER OF DIMENSIONS (IN ARRAY)

XDEIXFLG DS C FLAG BYTE

XDEIXFDF EQU X'80' FULLWORD "DEPENDS ON" CONTROL FIELD

XDEIXFDH EQU X'40' HALFWORD "DEPENDS ON" CONTROL FIELD

 DS C UNUSED BYTE

XDEIXRLN EQU *-XDEIX LENGTH OF DDOPE VECTOR ROOT

 SPACE

* THE FOLLOWING FIELDS ARE REPEATED ONCE FOR EACH DIMENSION IN

* THE ARRAY - FOR MBB TABLES, OFFSET AND SIZE ARE IN BITS

 SPACE

XDEIXOFF DS H FIELD OFFSET WITHIN CONTAINING OCCURRENCE

XDEIXSIZ DS H SIZE OF A DIMENSION OCCURRENCE

XDEIXMAX DS H MAXIMUM SUBSCRIPT VALUE FOR DIMENSION

XDEIXDLN EQU *-XDEIXOFF LENGTH OF ONE DIMENSION DESCRIPTOR

XDEIXLMT EQU 15 Maximum number of dimensions supported by ADS

 EJECT

Internal Structure Of Built-In Functions

Appendix F: Built-in Function Support 693

Processing Program Modules

Processing program modules contain one or more programs; each program processes
one function. When a function XDE/VXDE is processed at runtime, the runtime system
calls the appropriate processing program module. The module performs the operation,

then returns control to the runtime system. The components of the source module
RHDCEV01, which contains the processing programs for the CA ADS supplied string
functions are shown below.

Processing program load modules are usually stored in the load library. The load

modules for the CA ADS supplied built-in functions are named RHDCEV01, RHDCEV02,
RHDCEV03, and RHDCEV09.

Components of Processing Program Module RHDCEV01

Internal Structure Of Built-In Functions

694 ADS Reference Guide

 RHDCEV01 TITLE 'STRING PROCESSOR FOR RHDCEVAL' * RHDCEV01 EP=EV01EP1

 06/29/90 14:04:31
 *CONTAINS PTF# 90-05-1133 EXG 05/31/90

 *CONTAINS PTF# 88-07-1081 JMA 02/26/90

 *CONTAINS PTF# 87-06-1031 MCM 08/21/87

 *CONTAINS PTF# 85-08-S004 MCM 03/31/86

 * CONTAINS PTF # LEFT/RITE JUST SPA CRM 14:37:29 01/14/85

 * CONTAINS PTF # 84-11-1067 CRM 13:37:25 12/14/84

 SPACE 1

 #MOPT CSECT=RHDCEV01,ENV=USER

 SPACE 3

 **

 * *

 * RHDCEV01 IS THE STRING PROCESSOR FOR RHDCEVAL. ALL *

 * EVAL STRING-HANDLING FUNCTIONS ARE CONTAINED HEREIN. *

 * *

 * THESE FUNCTIONS ARE: *
 * LENGTH - RETURN LENGTH OF A CHARACTER STRING *

 * SUBSTRING - RETURN A SUBSET OF A STRING *

 * INDEX - FIND POSITION OF A SUBSTRING *
 * VERIFY - INSURE ONE STRING CONTAINS ANOTHER *

 * REPLACE - TRANSLATE CHARACTERS *

 * CONCATENATE - SHOVE TWO OR MORE STRINGS TOGETHER *
 * LIKE - STRING PATTERN MATCHING *

 * *

 * UPON ENTRY, R1 MUST CONTAIN THE ADDRESS OF THE OPERATION *
 * VXDE, WHICH IS BACK-CHAINED TO ALL OPERAND VXDE'S. *

 * *

 * ALL STRING INPUT AND OUTPUT WILL BE VARYING-CHARACTER. *
 * ALL NUMERIC INPUT AND OUTPUT WILL BE HALFWORD-BINARY. *

 * *

 **
 ┌─ EJECT

 │RHDCEV01 CSECT *

 │RHDCEV01 AMODE ANY
 │RHDCEV01 RMODE 24

 │ USING EV01EP1,R12 PROGRAM BASE

 │ USING EV01EP1+4096,R10 USE SECOND BASE REGISTER
 │ USING WORKAREA,R11 WORKAREA BASE

 │ USING XDE,R8

 │ USING VXDE,R7
 │ SPACE 1

 │ ENTRY EV01EP1

Initialization │EV01EP1 DS 0H
statements ─────────────────► STM R14,R12,12(R13) SAVE REGISTERS

 │ LR R12,R15 SET PROGRAM BASE

 │ L R10,BASE SET UP SECOND BASE REGISTER

 │ B EV01STRT AND GO START UP

 │BASE DC A(EV01EP1+4096)

 │EV01STRT DS 0H

 │ LR R7,R1 GET RESULT VXDE ADDR

 │ L R8,VXDEXDEA AND XDE ADDR

 │ L R11,VXDEUWKA GET WORKAREA ADDR

 │ STM R7,R8,WKRESADR AND SAVE THEM

 │ SPACE 1

 │ MVI WKERRMSG,C' ' NOW BLANK OUT

 └─ MVC WKERRMSG+1(L'WKERRMSG-1),WKERRMSG ERROR MSG FIELD

 ┌─ SPACE 1

 │ SLR R2,R2 CLEAR FOR NEXT INST
 │ IC R2,XDEUFUNC GET FUNCTION NUMBER

 │ CLI XDEUFUNC,15 CK AGAINST MAX FUNCTION JMA90179

 │ BH EV01NFC BIF HIGH TO ERR EXIT
 │ SLL R2,2 MAKE FUNCT NBR MULTIPLE OF 4

 │ B EV01BTB1(R2) AND GO SELECT FUNCTION

 │ SPACE 1
 │EV01BTB1 DS 0H

 │ B LENGTH FUNC 0

 │ B SUBSTRNG FUNC 1
 │ B INDEX FUNC 2

Branching statements ──────────────────────► B VERIFY FUNC 3

 │ B TRANSLAT FUNC 4
 │ B CONCATEN FUNC 5

 │ B REPEAT FUNC 6

Internal Structure Of Built-In Functions

Appendix F: Built-in Function Support 695

 │ B EXTRACT FUNC 7

 │ B REPLACE FUNC 8

 │ B LEFTJUS FUNC 9

 │ B RITEJUS FUNC 10

 │ B INSERT FUNC 11
 │ B LIKE FUNC 12

 │ B GOODTRL FUNC 13

 │ B TRAILZN FUNC 14
 │ B ZNTRAIL FUNC 15

 └─

 ┌─ EJECT
 │EV01NFC DS 0H NO FUNCTION EXIT

 │ LA R15,4 SET ERROR CODE

 │ MVC WKERRMSG(L'ERMSG01),ERMSG01 SET ERROR MSG
 │ B EV01RET AND GET OUT

 │ SPACE 3

 │EV01NVAL DS 0H *MCM86253*
Final processing statements────────────────► OI VXDEFLAG,VXDEFNVL RESULT IS NON─VALUED *MCM86253*

 │ SPACE 3 *MCM86253*

 │EV01RET0 DS 0H GOOD EXIT
 │ SLR R15,R15 SET GOOD RETURN CODE

 │ SPACE 1

 │EV01RET DS 0H
 │ L R14,12(R13) RESTORE R14

 │ LM R0,R12,20(R13) RESTORE REGS 0-12

 └─ BR R14 AND RETURN TO CALLER
 ┌─ EJECT

 │**

 │* ERROR MESSAGES *
 │**

 │ SPACE 2

 │ERMSG01 DC C'UNSUPPORTED STRING FUNCTION REQUESTED'
 │ERMSG02 DC C'INVALID OBJECT STRING LENGTH'

 │ERMSG03 DC C'INVALID START VALUE'

 │ERMSG04 DC C'INVALID LENGTH VALUE'

Error messages ────────────────────────────►ERMSG05 DC C'STRING TO BE EXTRACTED EXCEEDS OBJECT LENGTH'

 │ERMSG06 DC C'RESULT STRING TOO SMALL TO CONTAIN SUBSTRING'

 │ERMSG07 DC C'INVALID SEARCH STRING LENGTH'

 │ERMSG08 DC C'SEARCH STRING LENGTH EXCEEDS OBJECT STRING LENGTH'

 │ERMSG09 DC C'INVALID STRING LENGTH'

 │ERMSG10 DC C'RESULT STRING NOT LARGE ENOUGH'

 │ERMSG11 DC C'INVALID INSERTION VALUE'

 │ERMSG12 DC C'INVALID PATTERN FOR LIKE COMPARISON'

 │ERMSG13 DC C'ESCAPE CHARACTER LENGTH GREATER THAN 1'

 │ERMSG14 DC C'INVALID ESCAPE CHARACTER STRING'

 └─ EJECT

 ┌─**
 │* *

 │* LENGTH - STRING FUNCTION TO RETURN THE LENGTH OF *

 │* A VARYING-CHARACTER FIELD. *
 │* *

 │* ONLY REQUIRES ONE OPERAND, THE VARYING-CHAR FIELD. *

 │* THE RESULT FIELD MUST BE HALFWORD-BINARY. *
 │* *

 │**

 │ SPACE 2
 │LENGTH DS 0H

 │ L R5,VXDESNXT GET ADDR OF OPERAND VXDE

 │ L R6,VXDEXDEA-VXDE(,R5) AND OPERAND XDE *MCM86253*
 │ BAL R14,CHKNOVAL *MCM86254*

 │ LTR R15,R15 *MCM86254*

 │ BNZ EV01NVAL *MCM86254*
 │ L R4,VXDEDADR-VXDE(,R5) GET ADDR OF VC FLD

 │ MVC WKFULL(2),0(R4) MOVE HALFWORD TO ALIGN

 │ LH R4,WKFULL GET LENGTH OF FIELD
 │ L R5,VXDEDADR GET ADDR OF RESULT FLD

 │ STCM R4,3,0(R5) SET ANSWER -STCM FOR BS2K*MCM86090*

 │ B EV01RET0 USE GOOD EXIT
 │ LTORG

 │ EJECT

 │**
 │* *

 │* SUBSTRING - STRING FUNCTION TO RETURN A SPECIFIED *

 │* SUBSET OF A GIVEN STRING *

Internal Structure Of Built-In Functions

696 ADS Reference Guide

 │* *

 │* THIS FUNCTION REQUIRES 3 OPERANDS - *

 │* 1 OBJECT STRING (VARYING-CHARACTER) *

 │* 2 START DISPLACEMENT (HALFWORD) *

 │* 3 LENGTH (OPTIONAL) (HALFWORD) *
 │* THE RESULT FIELD MUST BE VARYING-CHARACTER ALSO. *

 │* *

 │* THE OBJECT STRING MAY NOT BE LENGTH ZERO. *
 │* IF AN ERROR IS DETECTED, THE RESULT STRING LENGTH *

Processing program ────────────────────────►* IS SET TO ZERO, AND AN ERROR RETURNED TO RHDCEVAL. *

 │* *
 │* REQUIREMENTS OF THE OPERANDS ARE: *

 │* K = OBJECT STRING LENGTH, I = START DISPLACEMENT, *

 │* J = LENGTH *
 │* *

 │* 0 LE J LE K 1 LE I LE K *

 │* I+J-1 LE K *
 │* *

 │* IF J IS NOT GIVEN, J = K-I+1 *

 │* *
 │* THE OMISSION OF J (3RD OPERAND - LENGTH) IS INDICATED *

 │* BY A NON-VALUED XDE. *

 │* *
 │**

 │ SPACE 3

 │SUBSTRNG DS 0H
 │* NOTE : SUBSTRING OP3 IS AN OPTIONAL PARAMETER. 4*

 │* MUST DIFFERENTIATE BETWEEN OP3 OMITTED 4*

 │* AND OP3 SPECIFIED BUT NON-VALUED. 4*
 │ L R5,VXDESNXT BACK UP TO OP3 VXDE

 │ L R6,VXDEXDEA-VXDE(,R5) AND XDE

 │ TM VXDEFLAG-VXDE(R5),VXDEFNVL IF OP3 VXDE NON-VA *MCM86260*
 │ BO EV01NVAL THEN SO IS RESULT *MCM86260*

 │ TM XDEFLAG-XDE(R6),XDEFNVL IF OP3 XDE NON-VAL *MCM86260*

 │ BO SUBS0010 THEN CHK FURTHER *MCM86260*

 │ B SUBS0040 CONTINUE WITH OP2 *MCM86260*

 │ SPACE 1 *MCM86260*

 │SUBS0010 DS 0H *MCM86260*

 │ CLC XDEDATAD-XDE(,R6),=X'80000000' OP3 OMIITED?*MCM86260*

 │ BE SUBS0040 YES - CONTINUE *MCM86260*

 │ B EV01NVAL NO - OP3 NON-VALUED *MCM86260*

 │ SPACE 1 *MCM86260*

 │SUBS0040 DS 0H *MCM86260*

 │ STM R5,R6,WKOP3SV SAVE OP3 XDE,VXDE *MCM86260*

 │ L R5,VXDESNXT-VXDE(,R5) BACK UP TO OP2 VXDE

 │ L R6,VXDEXDEA-VXDE(,R5) AND XDE

 │ BAL R14,CHKNOVAL
 │ *MCM86254*

 │ LTR R15,R15

 │ *MCM86254*
 │ BNZ EV01NVAL

 │ *MCM86254*

 │ STM R5,R6,WKOP2SV SAVE OP2 XDE,VXDE
 │ *MCM86253*

 │ SPACE 1

 │ L R5,VXDESNXT-VXDE(,R5) BACK UP TO OP1 VXDE
 │ L R6,VXDEXDEA-VXDE(,R5) AND XDE

 │ BAL R14,CHKNOVAL

 │ *MCM86254*
 │ LTR R15,R15

 │ *MCM86254*

 │ BNZ EV01NVAL
 │ *MCM86254*

 │ STM R5,R6,WKOP1SV SAVE OP1 XDE,VXDE

 │ *MCM86253*
 │ EJECT

Processing program (cont'd)────────────────►******* OBJECT STRING LENGTH MUST BE GREATER THAN ZERO **********

 │ L R4,VXDEDADR-VXDE(,R5) GET OP1 DATA ADDR
 │ MVC WKFULL,0(R4) GET HALFWORD LNG FROM VC FLD

 │ LH R4,WKFULL PUT INTO A REGISTER

 │ LTR R4,R4 CK IT FOR ZERO
 │ BP SUBS0050 GTR ZERO IS OKAY - BRANCH

 │ SPACE 1

 │ MVC WKERRMSG(L'ERMSG02),ERMSG02 SET ERROR MSG

Internal Structure Of Built-In Functions

Appendix F: Built-in Function Support 697

 │ B SUBS0950 USE ERROR EXIT

 │ SPACE 1

 │SUBS005 DS 0H R4 NOW CONTAINS LENGTH OF OBJECT STRING

 │******* CHECK STARTING DISPLACEMENT *************

 │ LM R7,R8,WKOP2SV GET VXDE/XDE ADDRS, OP2
 │ L R3,VXDEDADR GET OP2 DATA ADDR

 │ MVC WKFULL,0(R3) GET HALFWORD DATA FIELD

 │ LH R3,WKFULL GET THE VALUE
 │ LTR R3,R3 CK FOR ZERO OR LESS

 │ BP SUBS0080 IF POSITIVE, BRANCH

 │ SPACE 1
 │SUBS0075 DS 0H INVALID START FIELD

 │ MVC WKERRMSG(L'ERMSG03),ERMSG03 SET ERROR MSG

 │ B SUBS0950 USE ERROR EXIT
 │ SPACE 1

 │SUBS0080 DS 0H

 │ CR R3,R4 COMPARE TO MAX START
 │ BH SUBS0075 ERR IF START GTR LENGTH

 │ SPACE 1

Processing program (cont'd)────────────────►******** R3 NOW HAS STARTING DISPLACEMENT RELATIVE TO ONE ********
 │******** NOW GET EXTRACT LENGTH, WHICH MIGHT HAVE BEEN OMITTED ***

 │ LM R7,R8,WKOP3SV GET VXDE/XDE ADDRS

 │ TM XDEFLAG,XDEFNVL CK FOR PARMETER OMITTED
 │ BZ SUBS0090 BIF IT IS PRESENT

 │ SPACE 1

 │SUBS0085 DS 0H
 │ LR R2,R4 ELSE SET

 │ SR R2,R3 EXTRACT LNG TO

 │ LA R2,1(,R2) TOTAL-START+1
 │ B SUBS0120 AND BYPASS NEXT EDIT

 │ SPACE 1

 │SUBS0090 DS 0H
 │ L R2,VXDEDADR GET DATA ADDR, OP3

 │ MVC WKFULL,0(R2) GET HALFWORD LENGTH

 │ LH R2,WKFULL PUT INTO A REGISTER

 │ LTR R2,R2 CK FOR ZERO OR LESS

 │ BZ SUBS0085 ZERO - TAKE DEFAULT ABOVE

 │ BP SUBS0100 POSITIVE IS OKAY - BRANCH

 │ SPACE 1

 │SUBS0095 DS 0H INVALID LENGTH FIELD

 │ MVC WKERRMSG(L'ERMSG04),ERMSG04 SET ERROR MESSAGE

 │ B SUBS0950 USE ERROR EXIT

 │ SPACE 1

 │SUBS0100 DS 0H

 │ CR R2,R4 MUST BE LESS THAN OBJECT-LNG

 │ BH SUBS0095 IF NOT, ERROR

 │ EJECT
 │SUBS0120 DS 0H

 │******** INSURE START + EXTRACT LNG DOESN'T EXCEED OBJECT STRING

 │LNG**
 │ LR R1,R3 GET START DISPLACEMENT

 │ AR R1,R2 ADD EXTRACT LENGTH

 │ BCTR R1,0 DECREMENT BY ONE
 │ CR R1,R4 COMPARE TO TOTAL AVAIL

 │ BNH SUBS0140 EQ OR LOW IS OKAY - BRANCH

 │ SPACE 1
 │ MVC WKERRMSG(L'ERMSG05),ERMSG05 SET ERROR MESSAGE

 │ B SUBS0950 USE ERROR EXIT

 │ SPACE 1
 │SUBS0140 DS 0H

 │******** R4 HAS TOTAL STRING LENGTH OF OBJECT ********

 │******** R3 HAS DISPLACEMENT TO START OF EXTRACT ********
 │******** R2 HAS LENGTH TO EXTRACT ********

 │******** MUST NOW TEST RESULT FIELD SIZE TO INSURE IT CAN ********

 │******** CONTAIN THE EXTRACTED SUBSTRING ********
 │ SPACE 1

 │ LM R7,R8,WKRESADR GET VXDE/XDE ADDRS OF RESULT

 │ LH R5,XDEDATLN GET MAX RESULT SIZE
 │ CR R2,R5 EXTRACT LNG CAN'T EXCEED TARG LEN

 │ BNH SUBS0150 BRANCH IF OKAY

 │ SPACE 1
 │ MVC WKERRMSG(L'ERMSG06),ERMSG06 SET ERROR MESSAGE

 │ B SUBS0950 USE ERROR EXIT

 │ SPACE 1

Internal Structure Of Built-In Functions

698 ADS Reference Guide

 │SUBS0150 DS 0H NOW READY TO EXTRACT THE SUBSTRING

 │ L R5,VXDEDADR GET RESULT FLD ADDR

 │ STH R2,WKFULL ALIGN THE SUBSTRING LENGTH

 │ MVC 0(2,R5),WKFULL PUT LENGTH FIELD INTO RESULT (VC)

 │ LA R5,2(,R5) AND ADVANCE RESULT FIELD POINTER
Processing program (cont'd)────────────────► SPACE 1

 │ L R6,WKOP1SV GET VXDE ADDR OBJECT STRING

 │ L R6,VXDEDADR-VXDE(,R6) GET DATA ADDR
 │ LA R6,2(,R6) BUMP PAST LENGTH FIELD

 │ BCTR R3,0 MAKE START RELATIVE TO ZERO

 │ AR R6,R3 CALC ADDR OF SUBSTRING
 │ SPACE 1

 │ LR R4,R2 GET LENGTH IN RIGHT REGISTER

 │ BAL R14,MOVEIT MOVE THE SUBSTRING
 │ B SUBS0980 AND USE SUCCESS EXIT

 │ EJECT

 │SUBS0950 DS 0H ERROR EXIT
 │ LM R7,R8,WKRESADR GET RESULT VXDE/XDE ADDRS

 │ L R6,VXDEDADR GET DATA FIELD ADDR

 │ XC 0(2,R6),0(R6) SET LNG TO NULL
 │ LA R15,4 SET ERROR RETURN CODE

 │ B EV01RET AND USE ERROR EXIT

 │ SPACE 2
 │SUBS0980 DS 0H SUCCESS EXIT

 │ B EV01RET0 USE GOOD EXIT

 │ LTORG
 │ EJECT

 └─

 ┌─
 │***

 │*

 │*
 │*

 │* WORKAREA — PASSED BY CALLER

 │*

 │*

 │*

 │***

 │*

 │ SPACE 2

 │WORKAREA DSECT

 │WKERRMSG DS CL80

 │WKFULL DS F

 │ ORG WKFULL

 │WKHALF DS H *THIS CAN'T BE USED WITH WKFULL !!

 │WKFLAG1 DS CL1 WORK FLAG1

 │WKF1ASTR EQU X'80' GOT ME AN ARBITRARY STRING WORKING
 │WKF1OP3O EQU X'40' ESCAPE CHAR IN REQUEST

 │WKF1OP3S EQU X'20' ESCAPE CHAR ENCOUNTERED

 │WKF1FX10 EQU X'10' X'10' BIT FOR FLAG1
 │WKF1PON EQU X'08' PROCESSING % OPERATOR

 │WKF1PSET EQU X'04' 1ST CHAR IN % STR MATCHED IN OBJ

Work area storage definition────────────────►WKF1FX02 EQU X'02' X'02' BIT FOR FLAG1
 │WKF1FX01 EQU X'01' X'01' BIT FOR FLAG1

 │WKFLAG2 DS CL1 WORK FLAG2

 │WKRESADR DS 2F VXDE/XDE ADDRS, RESULT FIELD
 │WKRSLADR DS F RESULT ADDR

 │WKRSLLNG DS F RESULT LENGTH

 │WKOP1SV DS 2F VXDE/XDE ADDRS, OPERAND 1 FIELD
 │WKOP2SV DS 2F VXDE/XDE ADDRS, OPERAND 2 FIELD

 │ ORG WKOP2SV

 │WKPATCNT DS F STARTING COUNT FOR % PATTERN
 │WKPATADR DS F STARTING POSITION FOR % PATTERN

 │WKOP3SV DS 2F VXDE/XDE ADDRS, OPERAND 3 FIELD

 │ ORG WKOP3SV
 │WKOBJCNT DS F STARTING COUNT FOR % PATTERN

 │WKOBJADR DS F STARTING POSITION FOR % PATTERN

 │WKOP1LNG DS F OPERAND 1 LENGTH
 │WKOP2LNG DS F OPERAND 2 LENGTH

 │WKOP3LNG DS F OPERAND 3 LENGTH

 │WKOP1ADR DS F OPERAND 1 ADDRESS
 │WKOP2ADR DS F OPERAND 2 ADDRESS

 │WKOP3ADR DS F OPERAND 3 ADDRESS

 │ SPACE 2

Internal Structure Of Built-In Functions

Appendix F: Built-in Function Support 699

 │WKLENGTH EQU *-WORKAREA LENGTH OF WORKAREA

 │ EJECT

 │ COPY #XDEDS

 │ END EV01EP1

 └─

Runtime Processing of Built-In Functions

At runtime, the following processing sequence occurs for each function:

1. The runtime system begins processing the function, as follows:

■ Moves each parameter in the function to an intermediate result area (IRA). If a

parameter is coded as a multi -operand expression, the expression is evaluated
and only the result is moved to the IRA. Data conversions are performed as
necessary.

The runtime system maintains an operand XDE/VXDE for each function
parameter. The XDE/VXDE pair describes the parameter as it is stored in the
IRA and contains the parameter's IRA address.

■ Passes control to the processing program module named in the function XDE.
The runtime system places in register 1 the address of the function VXDE. (A

function VXDE contains addresses that enable access to the work area, the
result field in the IRA, and the function's operand XDEs/VXDEs.)

2. The processing program continues processing the function, as follows:

■ Processes initialization statements, as i l lustrated earlier in this appendix.
Register information is saved by using standard z/OS conventions. Register 1 is

used to access the function VXDE, which in turn enables access to all the
information required for processing the function, as i l lustrated below.

■ Branches to the appropriate program by using a branching routine in
conjunction with the XDEUFUNC field of the function XDE.

■ Processes the program statements.

■ Processes final statements. If the program did not encounter an error
condition, register 15 is set to 0. If an error was encountered, register 15 is set
to a nonzero value and an optional error message is moved to the first 80 bytes

of the work area. Registers are restored and the module passes control back to
the runtime system.

3. The runtime system finishes processing the function by checking the value returned
in register 15. If register 15 equals 0, the runtime system resumes the process. The
result of the function is used in the statement in which the function is coded. If

register 15 is greater than 0, the runtime system aborts the dialog and displays the
Dialog Abort Information screen along with the optional error message.

Internal Structure Of Built-In Functions

700 ADS Reference Guide

Internal Representation of a Function at Run Time

The internal representation of a substring function is i l lustrated below.

An arrow indicates that the source structure contains the address of the object
structure, i l lustrating that the processing program module can use register 1 to gain
access to all required information.

Field names containing the addresses are l isted next to the arrows.

 SUBSTRING(EMP-NAME, START-POS-1)

 XDEs VXDEs INTERMEDIATE RESULT AREA
┌───────────────┐ ┌───────────────┐ ┌─────────────────────┐
│Operand XDE │ VXDEXDEA │Operand VXDE │ VXDEDADR │ │
│for first ◄──────────┤for first ├────────────► │First parameter │ │
│parameter │ │parameter │ │ └────────────────┘ │
│(EMP-NAME) │ │(EMP-NAME) │ │ │
└───────────────┘ └───────────────┘ │ │
 ▲ ┌──► │Second parameter│ │
 │ VXDESNXT │ │ └────────────────┘ │
┌───────────────┐ ┌──────┴────────┐ │ │ │
│Operand XDE │ VXDEXDEA │Operand VXDE │ VXDEDADR│ │ │
│for second ◄──────────┤for second ├─────────┘ │ │
│parameter │ │parameter │ ┌──► │Result field │ │
│(START-POS-1) │ │(START-POS-1) │ │ │ └────────────────┘ │
└───────────────┘ └───────────────┘ │ └─────────────────────┘
 ▲ │
 │ VXDESNXT │
┌───────────────┐ ┌──────┴────────┐ │
│Dummy operand │ VXDEXDEA │Dummy operand │ │
│XDE for omitted◄──────────┤VXDE for omit─ │ │
│third parameter│ │ted third │ │
└───────────────┘ │parameter │ │
 └───────────────┘ │
 ▲ │
 │ VXDESNXT │
┌───────────────┐ ┌──────┴────────┐ VXDEDADR│ ┌───────────────────┐
│Function XDE │ VXDEXDEA │Function VXDE ├─────────┘ │ │
│for substring ◄──────────┤for substring ├────────────► WORK AREA │
│function │ │function │ VXDEUWKA │ │
└───────────────┘ └───────────────┘ └───────────────────┘
 ▲
 │
 ┌──────┴────────┐
 │ Register 1 │
 │ │
 └───────────────┘

More information:

Steps for Generating a User-Defined Built-In Function (see page 714)

Assembler Macros

Appendix F: Built-in Function Support 701

Assembler Macros

Assembler macros (#EFUNMST and #EFUNMOD) are used in assembler programs to
define the master function table and the model XDE modules. The programs are
assembled to create object modules. The object module for the master function table is
then placed in the data dictionary load area by using the DDDL compiler. The object

module for a model XDE module is placed in the load library by using the linkage editor.

The macros #EFUNMST and #EFUNMOD are discussed separately below.

#EFUNMST

Purpose

Defines the master function table. Three types of #EFUNMST macros are coded in a
source assembler program, as follows:

Syntax

►►────── #EFUNMST TYPE = ───┬─ INITIAL ───────────────────────────────────────►─
 ├─ FINAL ───
 └─ ENTRY, INVOKE = invocation-name ── , ──────────

─►──►

──
 ────── FUNCT = ──┬─ function-name ─┬── , ──────────────────────────────────
 └─ * ──────────────┘

─►──┬─►◄
 ──┤
 ── PROGRAM = ──┬─ model-xde-module ──┬──────────────────────────────┬─┬───┘
 │ └─ , VERSION = version-number ─┘ │
 └─ * ──┘

Parameters

INITIAL

Generates header information and automatically generates the #EFUNMST
TYPE=ENTRY macros for the CA ADS supplied built-in functions.

TYPE=INITIAL is coded first and only once in the assembler program.

FINAL

Defines the end of the table.

ENTRY

Generates an entry in the master function table.

TYPE=ENTRY macros are coded once for each entry in the table.

INVOKE= invocation-name

Specifies a user-defined, 1- to 32-character invocation name for the function.

Assembler Macros

702 ADS Reference Guide

FUNCT= function-name/*

Specifies a user-defined, 1- to 8-character real (generic) function name for the

function.

This function name is used to associate the coded invocation name with the model
XDE table that describes the function in the model XDE module. The character *

can be specified if the real function name is the same as the real function name for
the previous entry in the master function table.

PROGRAM= model-xde-module

Specifies the 1- to 8-character name of the model XDE module in which the function
is described.

,VERSION= version-number

Specifies the 1- to 4-digit version number of the model XDE module in which the

function is described.

*

The character * can be specified if the model XDE module name is the same as the
model XDE module name for the previous entry in the master function table (see
RHDCEVBF below).

Usage

Considerations

■ A source module must begin with one TYPE=INITIAL macro and end with one
TYPE=FINAL macro.

■ Any number of TYPE=ENTRY macros can be coded between the INITIAL and FINAL
type macros.

RHDCEVBF

The master function table is defined in a source assembler program called RHDCEVBF.

RHDCEVBF is shown below as it appears when CA ADS is installed. Entries for
user-defined functions are defined by coding #EFUNMST TYPE=ENTRY macros between
the INITIAL and FINAL type macros.

Assembler Macros

Appendix F: Built-in Function Support 703

Source Assembler Program RHDCEVBF

RHDCEVBF TITLE 'EVAL - BUILT-IN FUNCTIONS - MASTER TABLE'

* RHDCEVBF EP=RHDCEVBF 06/25/90 14:52:50

 #EFUNMST TYPE=INITIAL 12/08/88 15:52:14

 EJECT

 #EFUNMST TYPE=FINAL

 END

The TYPE=INITIAL macro automatically generates the entries for the CA ADS supplied

built-in functions. It does this by copying the TYPE=ENTRY macros coded in the source
module #EFMBIFS. A segment of source module #EFMBIFS is shown below. Invocation
names for the CA ADS supplied buil t-in functions can be changed by modifying the

source module #EFMBIFS, as described under Changing Invocation Names.

Segment of Source Module #EFMBIFS

* #EFMBIFS EVAL BUILT-IN FUNCTIONS - MASTER DEFS

******** FUNCTION = LENGTH (STRING FUNCTION) *******************

 SPACE 2

**** INVOCATION NAME = SLENGTH ****

 #EFUNMST TYPE=ENTRY, X

 INVOKE=SLENGTH, X

 FUNCT=LENGTH, X

 PROGRAM=RHDCEV51

 SPACE 2

**** INVOCATION NAME = STRING-LENGTH ****

 #EFUNMST TYPE=ENTRY, X

 INVOKE=STRING-LENGTH, X

 FUNCT=*, X

 PROGRAM=*

 SPACE 2

**** INVOCATION NAME = SLEN ****

 #EFUNMST TYPE=ENTRY, X

 INVOKE=SLEN, X

 FUNCT=*, X

 PROGRAM=*

 EJECT

******** FUNCTION = SUBSTRING (STRING FUNCTION) *****************

 SPACE 2

**** INVOCATION NAME = SUBSTRING ****

 #EFUNMST TYPE=ENTRY, X

 INVOKE=SUBSTRING, X

 FUNCT=SUBSTRNG, X

 PROGRAM=RHDCEV51

Assembler Macros

704 ADS Reference Guide

 SPACE 2

**** INVOCATION NAME = SUB-STRING ****

 #EFUNMST TYPE=ENTRY, X

 INVOKE=SUBSTR, X

 FUNCT=*, X

 PROGRAM=*

 SPACE 2

**** INVOCATION NAME = SUBS ****

 #EFUNMST TYPE=ENTRY, X

 INVOKE=SUBS, X

 FUNCT=*, X

 PROGRAM=*

 EJECT

******** FUNCTION = INDEX (STRING FUNCTION) ********************

 SPACE 2

**** INVOCATION NAME = INDEX ****

 #EFUNMST TYPE=ENTRY, X

 INVOKE=INDEX, X

 FUNCT=INDEX, X

 PROGRAM=RHDCEV51

 SPACE 2

**** INVOCATION NAME = STRING-INDEX ****

 #EFUNMST TYPE=ENTRY, X

 INVOKE=STRING-INDEX, X

 FUNCT=*, X

 PROGRAM=*

 SPACE 2

**** INVOCATION NAME = INDX ****

 #EFUNMST TYPE=ENTRY, X

 INVOKE=INDX, X

 FUNCT=*, X

 PROGRAM=*

More information:

Changing Invocation Names (see page 713)

Assembler Macros

Appendix F: Built-in Function Support 705

#EFUNMOD

Purpose

Defines a model XDE module and the model XDE tables within the module.

Each model XDE table describes one function. During process compilation of a built-in

function, the dialog compiler uses the appropriate model XDE table to convert the
built-in function into a series of XDEs, which represents the function at runtime.

Syntax

►►─── #EFUNMOD TYPE = ──┬─ INITIAL, NAME = model-xde-module-name ────┬────────►◄
 │ │
 ├─ HDR, hdr-options──────────────────────────┤
 │ │
 ├─ XDE, DECS = decimal-options ──────────────┤
 │ │
 ├─ DATA, CONV = (conv-options) ────────────┤
 │ │
 └─ FINAL ────────────────────────────────────┘

Expansion of hdr-options

►►─── FUNCNAM = function-name ── , ───►

 ►─── PROGRAM = processing-program-name ── , ─────────────────────────────────►

 ►─── FUNCNBR = function-number ── , ───►

 ►─── WORKLNG = work-area-length ── , ──►

 ►─── FIXOPND = fixed-operands-count ── , ────────────────────────────────────►

 ►─┬─────────────────────────────┬──►
 └─ VAROPND = ─┬─ YES ──┬── , ─┘
 └─ NO ◄ ─┘

 ►─── RESLNG = ──┬─ CALC────────────┬── , ────────────────────────────────────►
 ├─ OPND ───────────┤
 └─ result-length ──┘

 ►─── RESDATP = ──┬─ OPND ───────┬── , ───────────────────────────────────────►
 └─ data-type ──┘

 ►─── RESDEC = ───┬─ OPND ──────────────────┬─────────────────────────────────►◄
 └─ result-decimal-places ─┘

Expansion of decimal-options

►►─┬─ SOURCE ─────────┬─ , ────────┬────────────────────────┬─────────────────►
 └─ decimal-places ─┘ └─ OPT = ─┬─ YES ──┬─ , ─┘
 └─ NO ◄ ─┘

 ►─┬──────────────────────────┬────┬───────────────────────────┬──────────────►
 └─ ROUND = ─┬─ YES ◄ ─┬ , ─┘ └─ RESLCAL = ─┬─ ADD ──┬ , ─┘
 └─ NO ────┘ └─ SUBT ─┘

 ►─┬────────────────────────┬───►◄
 └─ RESDEFL = ─┬─ YES ──┬─┘
 └─ NO ◄ ─┘

Assembler Macros

706 ADS Reference Guide

Expansion of source-specification

►►─── source-data-type ── , ─┬─ SOURCE ───────────┬─┬──────────────────┬──────►◄
 └─ target-data-type ─┘ ├─ ,SOURCE ────────┤
 └─ ,target-length ─┘

Expansion of hdr-options

Expansion of decimal-options

Expansion of source-specification

Parameters

INITIAL, NAME = model-xde-module-name

Specifies the 1- to 8-character model XDE module name.

The TYPE=INITIAL macro is coded first and only once in the assembler program.

HDR, hdr-options

Defines the beginning of a model XDE table and specifies function XDE information.

One TYPE=HDR macro is coded for each model XDE table.

See expansion of hdr-options below.

XDE, DECS = decimal-options

Specifies operand XDE information that describes a target parameter.

The TYPE=XDE macro describes a function parameter. One TYPE=XDE macro is
coded for each parameter in the order that the parameter is to appear in the
parameter l ist.

DECS = decimal-options is used to specify the number of decimal places in the

target parameter being described.

See the expansion of decimal-options below.

DATA, CONV = (conv-options)

Specifies the data type and length of the target parameter (that is, the parameter as

it is stored in the IRA for use by the processing program), based on the data type of
the source parameter (that is, the parameter as it is coded in the parameter l ist).

See expansion of conv-options below.

At least one TYPE=DATA macro must be coded following a TYPE=XDE macro. If two
or more are specified, the dialog compiler uses the TYPE=DATA macro whose

source-data-type specification matches the data type of the source parameter. If no
source-data-type specification matches, the last TYPE=DATA macro is used.

Note: During process compilation, any combination of source and target parameter
data types is accepted. At runtime, the runtime system attempts to make any

required data type conversions; if it cannot, the dialog aborts.

FINAL

Defines the end of the model XDE module.

Assembler Macros

Appendix F: Built-in Function Support 707

Expansion of hdr-options

FUNCNAM= function-name

User-defined parameter specifying the 1- to 8-character real (generic) function
name.

The real function name associates a master function table entry with the model XDE

table.

PROGRAM= processing-program-name

User-defined parameters specifying the 1- to 8-character name of the processing
program module that contains the processing program for the function.

FUNCNBR= function-number

User-supplied numeric l iteral specifying a number from 0 to 255 that uniquely
identifies the associated processing program within the processing program

module.

WORKLNG= work-area-length

User-supplied numeric l iteral specifying the number of bytes of work area required
by the processing program module for the function.

The WORKLNG specification should not include work space required by the runtime

system, which is automatically added by the macro.

Note: Work-area-length must be at least 80.

FIXOPND= fixed-operands-count

User-supplied numeric l iteral specifying the number of fixed parameters for the

function.

A fixed parameter is a parameter that can be specified only once in a parameter l ist.
A function can have from 0 to 50 fixed parameters.

VAROPND=YES/NO

Specifies whether one parameter in the parameter l ist is variable.

A variable parameter can be specified repeatedly in a parameter l ist. (An example
of a variable parameter is 'string' or string-variable in the concatenate function.)

A function can have only one variable parameter and it must follow all fixed
parameters.

The default VAROPND specification is NO.

RESLNG=

Clause introducing the length, in bytes, of the function's result field,

Assembler Macros

708 ADS Reference Guide

CALC

Specifies that the result field length is calculated from the lengths of the

function parameters, based on the RESLNG specification of each parameter's
TYPE=XDE macro.

If CALC is specified, the result field length is calculated as the sum of the

lengths of the function parameters whose RESLNG specification is ADD, minus
the sum of the lengths of the function parameters whose RESLNG specification
is SUBT. Parameters without a RESLNG specification are not included in the
calculation.

OPND

Specifies that the result length is equal to the length of the function parameter
whose RESDEFL specification is YES.

result-length

Specifies a result length, in bytes, from 1 to 32767.

RESDATP=

Clause introducing the data type of the function's result field of the function.

OPND

Specifies that the result data type is the same as the data type of the function

parameter whose RESDEFL specification is YES.

data-type

User-defined parameter specifying the result field data type.

Data-type is one of the three-character data type abbreviations shown in the
table under Usage below.

RESDEC=

Clause introducing the number of decimal places in the function's result field.

OPND

Specifies that the number of decimal places is equal to the number of decimal
places in the function parameter whose RESDEFL specification is YES.

result-decimal-places

Specifies the number of result decimal places, from 0 to 32.

Expansion of decimal-options

SOURCE

Specifies that the number of decimal places equals the number of decimal places in
the source parameter.

Assembler Macros

Appendix F: Built-in Function Support 709

decimal-places

Specifies the number of decimal places, from 0 to 32.

OPT=YES/NO

Specifies whether the parameter is optional and can be omitted from the coded
parameter l ist.

NO is the default when neither YES or NO is specified.

ROUND=YES/NO

Specifies whether rounding or truncation is used when converting from the source

parameter to the target parameter. NO indicates truncation.

YES is the default when neither YES or NO is specified.

RESLCAL=

Clause introducing the action to be taken to the parameters length in the
calculation of the length of the result field.

ADD

Specifies that the parameter's length is added in the calculation of the length of
the result field.

SUBT

Specifies that the parameter's length is subtracted in the calculation of the
length of the result field.

The RESLCAL specification should be included only if the RESLNG specification
of the preceding TYPE=HDR macro is CALC. If the RESLCAL specification i s
omitted, the parameter's length is not considered in the calculation of the
length of the result field.

RESDEFL=YES/NO

Specifies whether the parameter is used to determine result field characteristics
that are specified in the associated TYPE=HDR macro as OPND.

Only one TYPE=XDE macro for a function can specify RESDEFL=YES.

The default RESDEFL specification is NO.

Expansion of conv-options

source-data-type

User-defined parameters specifying the three-character abbreviation of the data
type of the source parameter; these abbreviations are l isted in the table under
Usage below.

During process compilation, if the data type of the source parameter is
source-data-type, then the target parameter is assigned a data type of
SOURCE/target-data-type and a length of SOURCE/target-length. The target

parameter's data type and length are stored in the parameter's operand XDE.

Assembler Macros

710 ADS Reference Guide

SOURCE

Specifies that the data type of the target parameter is the same as the data type of

the source parameter.

target-data-type

User-defined parameters specifying the three-character abbreviation of the data
type of the target parameter; these abbreviations are l isted in the table under
Usage below.

SOURCE

Specifies that the length of the target parameters is the same as the length of the
source parameter.

target-length

Specifies the length of the target parameter in bytes.

If neither is specified, a length is generated based on the data type of the target

parameter, if possible.

Usage

Considerations

■ The source assembler program must begin with one TYPE=INITIAL macro and end
with one TYPE=FINAL macro.

■ One TYPE=HDR macro is coded for each function that is described in the module.

■ One TYPE=XDE macro is coded for each parameter of each function; the macro
applies to the function described by the preceding TYPE=HDR macro and is coded in
the order that the parameter is to appear in the parameter l ist.

■ One or more TYPE=DATA macros are coded for each data type conversion

specification for each parameter; the macro applies to the parameter described by
the preceding TYPE=XDE macro.

Data Type Abbreviations

Data type Abbreviation

Display floating point DFL

Doubleword binary DWB

EBCDIC EBD

Fullword binary FWB

Group GRP

Halfword binary HWB

Assembler Macros

Appendix F: Built-in Function Support 711

Data type Abbreviation

Long floating point LFL

Multibit binary MBB

Short floating point SFL

Signed packed decimal SPK

Signed zoned decimal SZN

Unsigned packed decimal UPK

Unsigned zoned decimal UZN

Varying character VCH

Note: Only target parameters and the result field can have the varying character data
type. A varying character field consists of a halfword binary field that specifies the
length of the varying character string, followed by a fixed field that contains the string
itself.

Model XDE Modules

The model XDE modules for the CA ADS supplied built-in functions are defined by the
source assembler programs called RHDCEV51, RHDCEV52, and RHDCEV53. Segments of
RHDCEV51 are shown below. An installation should not change these modules, but can

reference them as guides for creating user-defined built-in functions.

Assembler Macros

712 ADS Reference Guide

Segments of Source Assembler Program RHDCEV51

RHDCEV51 TITLE 'EVAL - BUILT-IN STRING FUNCTIONS - MODEL XDE TBL'

* RHDCEV51 EP=RHDCEV51 06/29/90 14:05:40

 SPACE 3

RHDCEV51 AMODE ANY

RHDCEV51 RMODE 24

 #EFUNMOD TYPE=INITIAL,NAME=RHDCEV51

 EJECT

**

* FUNCTION = LENGTH *

**

 SPACE 3

LENGTH #EFUNMOD TYPE=HDR, X

 FUNCNAM=LENGTH, X

 FUNCNBR=0, X

 PROGRAM=RHDCEV01, X

 WORKLNG=148, X

 FIXOPND=1, X

 RESLNG=2, X

 RESDATP=HWB, X

 RESDEC=0

 SPACE 1

 #EFUNMOD TYPE=XDE,DECS=0,OPT=NO

 SPACE 1

 #EFUNMOD TYPE=DATA,CONV=(EBD,VCH,SOURCE)

 EJECT

**

* FUNCTION = SUBSTRING *

**

 SPACE 3

SUBSTRNG #EFUNMOD TYPE=HDR, X

 FUNCNAM=SUBSTRNG, X

 FUNCNBR=1, X

 PROGRAM=RHDCEV01, X

 WORKLNG=148, X

 FIXOPND=3, X

 RESLNG=CALC, X

 RESDATP=VCH, X

 RESDEC=0

Changing Invocation Names

Appendix F: Built-in Function Support 713

 SPACE 1

 #EFUNMOD TYPE=XDE,DECS=0,OPT=NO,RESLCAL=ADD

 SPACE 1

 #EFUNMOD TYPE=DATA,CONV=(EBD,VCH,SOURCE)

 SPACE 1

 #EFUNMOD TYPE=XDE,DECS=0,OPT=NO

 SPACE 1

 #EFUNMOD TYPE=DATA,CONV=(EBD,HWB,2)

 SPACE 1

 #EFUNMOD TYPE=XDE,DECS=0,OPT=YES

 SPACE 1

 #EFUNMOD TYPE=DATA,CONV=(EBD,HWB,2)

 EJECT

 ...

 #EFUNMOD TYPE=FINAL

 SPACE 2

 END RHDCEV51 *CRM84199*

Changing Invocation Names

An installation can add, modify, or delete any invocation name for any CA ADS supplied
or user-defined built-in function. The following steps update the master function table,

which contains the valid invocation names:

1. Modify source macro #EFMBIFS— #EFMBIFS contains the assembler macros that
define the entries in the master function table for the CA ADS supplied built-in

functions. Invocation names can be changed by adding, modifying, and/or deleting
the appropriate #EFUNMST macros in #EFMBIFS, then following the steps l isted
below. Refer to the syntax rules for the #EFUNMST macro earlier in this appendix.

2. Modify source module RHDCEVBF— RHDCEVBF contains the #EFUNMST assembler
macros that define the master function table, including the TYPE=INITIAL macro,

which automatically generates the macros stored in #EFMBIFS.

Invocation names for user-defined functions are defined by TYPE=ENTRY macros

coded between the TYPE=INITIAL and TYPE=FINAL macros in RHDCEVBF.
TYPE=ENTRY macros can be added, modified, and deleted as required.

RHDCEVBF also contains PUNCH statements that prefix the module with the
required IDD statement to place the master function table in the data dic tionary

load area. Change the action ADD to MOD if it has not already been changed.

3. Assemble source module RHDCEVBF— The object module generated should also

be called RHDCEVBF.

4. Place RHDCEVBF in the data dictionary load area— Use the DDDL compiler.

Note: For more information on JCL for the DDDL compiler, see the CA IDMS IDD

Quick Reference Guide.

Creating User-Defined Built-In Functions

714 ADS Reference Guide

Creating User-Defined Built-In Functions

Built-in functions can be created to meet site-specific needs. User-defined built-in
functions are coded like the CA ADS supplied functions.

The following topics are discussed below:

■ Steps for generating a user-defined built-in function

■ LRF Considerations

■ Calling a user-defined built-in function

Steps for Generating a User-Defined Built-In Function

An installation can generate a user-defined function by following the instructions l isted

below in any order:

■ Create a processing program module, as follows:

1. Create the source module— As a guide, refer to the source module RHDCEV01
which contains some of the source code for the CA ADS supplied built-in

functions.

Processing logic for several functions can be included in one processing
program module, thereby reducing the number of modules that must be

loaded at runtime. Each function is distinguished by a unique function number.
The function number is defined in the model XDE module by the FUNCNBR
parameter of the #EFUNMOD TYPE=HDR macro. At runtime, the function
number is contained in the XDEUFUNC field of the function XDE, and can be

used by the processing program module to branch to the appropriate
processing program.

Note: A built-in function that supports entry of optional parameters must be

able to determine at execution time whether the optional parameters have
been entered. To do this, the built-in function must perform a runtime check of
the XDE/VXDE for each such parameter.

If an optional parameter is omitted, the runtime system passes a dummy
operand VDE/VXDE to the built-in function for the omitted parameter. The

dummy XDE/VXDE for the parameter has the following characteristics, for
which a built-in function can test:

– The XDEFNVL bit in the XDEFLAG field is set to 1.

– The XDEDATAD field is set to X'80000000'.

2. Assemble the processing program source module .

3. Link edit the module into the load library.

4. Add the program at system generation with the PROGRAM statement .

Creating User-Defined Built-In Functions

Appendix F: Built-in Function Support 715

■ Create a model XDE module, as follows:

1. Create the source module— The source module consists of #EFUNMOD

macros. As a guide, refer to RHDCEV51, RHDCEV52, RHDCEV53, RHDCEV59, and
RHDCEV60, the model XDE source modules for the CA ADS supplied built-in
functions.

2. Assemble the source module.

3. Link edit the module into the load library.

■ Update the master function table by following the steps described under Changing
Invocation Names (see page 713).

More information:

CA ADS Runtime System (see page 119)

LRF Considerations for User-Defined Built-In Functions

If a site-defined built-in function is used with the Logical Record Facil ity (LRF) WHERE
clause, the function must check each parameter to determine if the record containing
the parameter value has been read by LRF processing. If the value has been read, the

parameter is considered valued. If the value has not yet been read, the parameter is
nonvalued.

A parameter is checked for being nonvalued by examining its associated XDE and VXDE.
The exact checks that need to be made depend on whether a parameter is optional or
required for that particular built-in function. The following considerations apply:

■ If a parameter is optional, it is nonvalued if VXDEFNVL is ON, or if XDEFNVL is ON
and XDEDATAD is not equal to X'80000000'.

■ If a parameter is required, it is nonvalued if either of its XDEFNVL or VXDEFNVL bits

is ON.

If any parameter is nonvalued, the built-in function must react accordingly. The proper
action to take depends on the function being performed and which parameter is
nonvalued. In most cases, the built-in function will return a nonvalued result by setting
the VXDEFNVL flag in the result VXDE.

Calling a User-Defined Built-In Function

Purpose

This is the generalized syntax for call ing a user-defined built-in function.

Creating User-Defined Built-In Functions

716 ADS Reference Guide

Syntax

 ┌───── , ─────┐
►►─── invocation-name ────── (─▼─ parameter ─┴─) ───────────────────────────►◄

Parameters

invocation-name

Specifies the invocation name for the user-defined function.

parameter

Specifies the parameters for the user-defined function.

Optional parameters that are not included must be replaced by the character @,
unless no included parameters follow the omitted parameter.

Appendix G: Security Features 717

Appendix G: Security Features

This section contains the following topics:

Overview (see page 717)
CA ADS Compiler Security (see page 718)
CA ADS Application Security (see page 719)

Overview

In the CA IDMS environment, use of the CA ADS compilers and use of the CA ADS
applications that you develop with the compilers can be secured.

Compiler Security

Use of the CA ADS compilers can be secured through the CA IDMS central security
system at various levels, such as at the task level and at the program level. A dictionary

that the compiler accesses can be secured as a database.

Note: For more information about CA IDMS central security, see the CA IDMS Security
Administration Guide.

Use of the CA ADS compilers to access particular dictionary entities ca n also be

controlled. You can secure access to dictionaries that the CA ADS compilers access using
DDDL statements.

Application Security

Use of CA ADS applications can be secured through CA IDMS central security at various
levels, such as at the task level, the program level, and the activity level. Databases that

the application accesses, including dictionaries, can be secured.

CA ADS security classes are used when activities are secured in CA IDMS. You can also

specify a security class for the CA ADS application and security classes for application
responses. At runtime, the application issues a request for a security check when a user
tries to execute an application or an application response for which you have specified a

security class. If activity security has been enabled, CA IDMS central security checks to
see whether the user has authority to execute the activity whose activity number
matches the security class.

Note: For more information about CA IDMS activity security, see the CA IDMS Security

Administration Guide.

When you define an CA ADS application, you can specify that the user must sign on to
the application in order to execute it.

CA ADS Compiler Security

718 ADS Reference Guide

More information:

Response Security (see page 719)

Signon Security (see page 720)
CA ADS Compiler Security (see page 718)

CA ADS Compiler Security

Compiler security for the Application Compiler (ADSA) and the Dialog Compiler (ADSC)
prohibits unauthorized users from adding, modifying, displaying, or deleting applications
and dialogs. The compilers perform a security check whenever a user begins a compiler
session (that is, when a user specifies the name of a application/dialog to add, modify

display, or delete). If the security check fails, the user cannot perform the specified
action.

Security is established by using the Integrated Data Dictionary (IDD) when the following
is true:

■ IDD SECURITY is ON in the dictionary

■ You are assigned the IDD authority through the AUTHORITY clause of the DDDL
USER statement

Note: For more information on IDD security and the DDDL USER statement, see the CA

IDMS IDD Quick Reference Guide.

DDDL Statements Governing Compiler Security

Security at the compiler level restricts the actions that a user can specify for any
application and dialog. Security at the compiler level is governed by the following two
DDDL statements:

■ SET OPTIONS ... SECURITY FOR ADS IS ON/OFF— Specifies whether compiler level
security is in effect. If security for CA ADS is off, the user passes the compiler level
security check. If security is on and the user has not signed on to DC/UCF, the user
immediately fails the security check. Otherwise, the user passes or fails the security

check based on the USER statement discussed below.

■ ADD/MOD USER user-name ... INCLUDE/EXCLUDE AUTHORITY FOR
UPDATE/ADD/MODIFY/REPLACE/DELETE/DISPLAY IS ADS— Specifies the actions
that the user has the authority to perform using the application or dialog compiler.
The user passes or fails the security check depending on whether the user has

specified an authorized action.

Note: For more information on the SET OPTIONS and USER statements, see the CA IDMS
IDD Quick Reference Guide.

CA ADS Application Security

Appendix G: Security Features 719

If the user fails the application or dialog compiler level security check, the compiler
displays an error message. If the user passes the security check, the compiler performs a

security check at the application/dialog-specific level.

CA ADS Application Security

There are two ways in which CA ADS applications can be protected from unauthorized
use.

Outside the Application

Protection can be provided at the application level through the CA IDMS central security
system. For example, a user's authority to execute programs and dictionary load
modules can be controlled through the CA IDMS central security facility.

Within the Application

In addition to defining security outside the application, the CA ADS application compiler
provides two security features that allows you to define security within the application:

■ Security for responses

■ Signon security

Security for responses is based on application activity security controlled through the CA

IDMS central security facil ity. Within the security facil ity, application activities can be
defined as secured resources and authority to execute those activities granted to one or
more users.

Response security, and signon security are discussed separately below.

Response Security

Response security enables you to define security for individual application functions. To
implement response security, you enter a number in the Security class field of the ADSA
Response Definition screen. When the application is compiled, the application load

module includes the activity number of each response.

At runtime, response security is enforced if the security administrator has secured
activities and has defined activities that correspond to the application functions for
which response security is defined. When the application issues a security check on a
response, CA IDMS central security looks for an activity definition in which the

application name matches the CA ADS application name and the activity number
matches the CA ADS response security class.

CA ADS Application Security

720 ADS Reference Guide

CA ADS makes no calls to CA IDMS central security for security class 0, which is defined
always as unsecured.

Note: For more information on defining and controlling application activities, see the CA
IDMS Security Administration Guide.

If a user without execute authority for the corresponding activity, attempts to execute a
secured response, the runtime system redisplays the screen from which the response
was selected, along with the following message:

UNACCEPTABLE RESPONSE. PLEASE TRY AGAIN

Because the response is secured, the function invoked by the response cannot be

accessed unless the security administrator has authorized the appropriate users to
execute the corresponding application activity defined to CA IDMS central security.

Response security is complemented by the CA ADS security-tailored menus feature. At
runtime, security-tailored menus list only those responses that the user has authority to
select. Menus are security-tailored by selecting option 2, Security tailored, on the

second page of the ADSA General Options screen.

Signon Security

Signon security can be implemented for any application defined using the application
compiler. With signon security, a user begins executing an application by entering a user

ID and password, which the runtime system validates. To implement signon security for
an application, follow the steps l isted below:

1. Specify SIGNON IS OPTIONAL or SIGNON IS REQUIRED on the second page of the
ADSA General Options screen. If signon is optional, the user can sign on before

executing the application, but is not required to. If signon is required, the user must
enter a valid user ID and password before executing the application.

2. Specify the name of the signon menu function on the second page of the ADSA
General Options screen. The signon menu function is executed first when the user

begins executing the application. The function displays a signon menu screen, which
provides fields in which to enter a user ID and password.

3. Define an immediate response that invokes the SIGNON system function on the
Response Definition screen. When invoked at runtime, the SIGNON function
validates the user ID and password entered by the user, then returns control to the

signon menu function.

CA ADS Application Security

Appendix G: Security Features 721

4. Define the signon menu function on the Function Definition screen and any
appropriate secondary screen, as follows:

■ On the Function Definition screen, define the function as a menu function and
specify the function name supplied on the Security screen. Optionally, specify
that the response that invokes the SIGNON system function is the default

response for the signon menu function; if this response is the default, the user
need only press the [Enter] from the function at runtime to invoke the SIGNON
function.

■ On the Menu Function Definition screen, specify that the menu function is a

signon menu function by entering a slash (/) in the Use signon menu field.

■ On the Valid Responses screen, specify that the response that invokes the
SIGNON system function is a valid response for the signon menu function.

Runtime Processing

At runtime, processing is performed as follows:

1. When the application begins execution, the runtime system displays the signon
menu function. If signon is optional, all valid responses for the function are
displayed. If signon is required and menus are security tailored, only authorized

responses are displayed.

2. On the signon menu screen, the user signs on by entering a user ID and password in
the appropriate fields, then selecting the response that invokes the SIGNON system
function. If signon is optional, the user can instead begin executing the application

immediately.

3. The SIGNON system function validates the signon, then redisplays the signon menu
screen with one of the following messages:

SIGNON ACCEPTED

SIGNON FAILED; UNKNOWN USER ID

SIGNON FAILED; INVALID PASSWORD

4. If the signon is accepted, all valid responses for the signon menu function are
displayed; the user can execute the application. If the signon fails, the user can

attempt to sign on again.

CA ADS Application Security

722 ADS Reference Guide

The signon menu function may be different than the function invoked by the initiating
application task code. In such cases, the application begins by executing the signon

menu function. The function associated with the application task code is executed when
the user presses [Enter] from the redisplayed signon menu screen after signing on
successfully. If signon is optional, the user can press [Enter] without signing on.

The SIGNOFF system function can be used in conjunction with signon security. When
selected at runtime, the SIGNOFF function signs the user off the application, then
redisplays the screen from which the function was selected. If signon is required, the
next user must sign on successfully before executing the application.

The SIGNOFF Function

To implement the SIGNOFF system function, perform the following steps using the
application compiler:

1. Define a response that invokes the SIGNOFF system function on the Response
Definition screen.

2. Make the response a valid response for the signon menu function on the Valid
Responses screen.

3. Define the application structure so that the user, at runtime, can return to the

signon menu function to sign off.

At runtime, when the SIGNOFF system function is invoked, the runtime system signs the

user off the application, then redisplays the screen with the following message:

SIGNOFF ACCEPTED

If signon is required, the runtime system additionally blanks out all responses l isted on
the screen.

More information:

System-Defined Menu Maps (see page 126)

Appendix H: Debugging an CA ADS Dialog 723

Appendix H: Debugging an CA ADS Dialog

This section contains the following topics:

Overview (see page 723)
Creating a Symbol Table (see page 723)
Trace Facil ity (see page 725)

Online Debugger (see page 727)

Overview

About this Appendix

To debug dialogs, you can use the CA ADS trace facil ity and the CA IDMS online

debugger. This appendix explains the use of both facil ities.

Creating a Symbol Table

Prerequisite for Debugging

To use either the trace facil ity or the online debugger to debug a dialog, you must first
compile the dialog with a symbol table. A symbol table contains information such as

data field names and process command line numbers that enable the trace facil ity and
the online debugger to execute.

Creating a Symbol Table

724 ADS Reference Guide

How to Create a Symbol Table

When defining the dialog using the dialog compiler, invoke the Options and Directives

screen and enter a nonblank character next to the Symbol table is enabled prompt, as
shown below:

 Options and Directives

 Dialog JPKTD10 Version 1

 Type and select each option and directive. Then Enter.

 Message prefix DC
 Autostatus record ADSO-STAT-DEF-REC
 Version 1

 Options and directives _ Mainline dialog
 x Symbol table is enabled
 / Diagnostic table is enabled
 / Entry point is premap
 _ COBOL moves are enabled
 / Activity logging
 / Retrieval locks are kept
 / Autostatus is enabled

 Enter F1=Help F3=Exit F4=Prev F5=Next

In ADSOBCOM, use the symbol table option of the DIALOG expression.

Compile the dialog. When the dialog successfully compiles, a load module with
interpretable CMEs is created.

More information:

CA ADS Dialog Compiler (ADSC) (see page 91)
Application and Dialog Util ities (see page 621)

Trace Facility

Appendix H: Debugging an CA ADS Dialog 725

Trace Facility

The CA ADS trace facil ity is a debugging aid used to trace the flow of control and
commands executed in an CA ADS application at runtime.

The CA ADS trace facil ity writes trace records to the DC/UCF system log as DEBUG
records. Trace records can be viewed by using online PLOG or the batch print-log util ity

(PRINT LOG). Use the MESSAGES parameter to print the CA ADS trace records.

Note: The PRINT LOG TRACES parameter will not print the CA ADS trace records. For
more information about online PLOG, see the CA IDMS System Tasks and Operator
Commands Guide. For more information about the batch print-log util ity, see the CA

IDMS Utilities Guide.

Information in a Trace Facility Report

The table below describes the information contained in a trace facil ity report.

Field Contents

Dialog name The name of the currently executing dialog.

Process name The name of the currently executing premap or response
process.

****** DIALOG-ENTRY ****** in this field documents the
beginning of a dialog.

Subroutine name The name of the process subroutine currently executing.

MAIN in this field documents the beginning of a dialog,

process, or process command that is not in a subroutine.

Sequence number The IDD sequence number of the command currently
executing.

00000000 appears in this field at the beginning of a dialog,
process, or subroutine.

Process command The process command currently executing.

ENTRY in this field documents the beginning of a dialog,

process, or subroutine.

Command offset The hexadecimal offset of the command from the beginning
of the dialog's fixed dialog block (FDB).

Included module name The name of each included module.

Trace Facility

726 ADS Reference Guide

Format of a Trace Facility Record for a Non-SQL DML Statement

The format of a trace facil ity record for a non-SQL DML statement is shown below.

 ┌────────┬┬────────┬┬────────┬┬────────┬┬────────┬┬────────┬┬────────┬┬────────┐
 │ ││ ││ ││ ││ ││ ││ ││ │
 │ Blank ││ Dialog ││Process ││Sub- ││Sequence││Process ││Command ││Included│
 │ ││ Name ││Name ││routine ││Number ││Command ││Offset ││Module │
 │ ││ ││ ││Name ││ ││ ││ ││Name │
 └────────┴┴────────┴┴────────┴┴────────┴┴────────┴┴────────┴┴────────┴┴────────┘
 0 8 17 50 61 70 79 86 11
8

Format of a Trace Facility Record for an SQL DML Statement

The trace facil ity report for an SQL statement follows the format below:

1. SQL CMT = followed by the SQL command (for example, SELECT).

2. CODE = followed by the appropriate SQL code

3. ERROR = followed by the 5-digit error.

Below this information is the database message passed from the SQLCA.

Note: For more information about the SQLCA, see the CA IDMS SQL Programming
Guide.

Initiating the Trace Facility

You can initiate the trace facil ity in one of these ways:

■ Use the TRACE keyword in the runtime system initiating statement when requesting
execution of the application

■ Coding the TRACE command in the dialog process

Specifying TRACE when initiating CA ADS results in tracing the execution of all dialogs in
the application that have been compiled with a symbol table. You use TRACE and TRACE
OFF in process logic to l imit the trace.

The System Log

Using the CA ADS trace facil ity can fi l l the DC/UCF system log quickly. Information on the

entire application is collected for each process command in dialogs that have a symbol
table enabled and TRACE=ALL specified. A record is written to the system log for each
command.

To avoid overloading the system log, the system log can be defined to sequential log

fi les instead of the DDLDCLOG area. Assigning the system log to sequential log fi les
facil itates offloading the system log when it becomes full.

Note: For more information about log fi les, see the CA IDMS System Generation Guide.

Online Debugger

Appendix H: Debugging an CA ADS Dialog 727

More information:

Initiating the CA ADS Runtime System (see page 119)

TRACE (see page 518)

Online Debugger

What You Can Do

The online debugger enables the application developer to interrupt execution of a
dialog's premap or response process, display and change the contents of data fields, and
restart execution from any point in the interrupted dialog. If a dialog aborts during a
debugger session, the application developer can review the contents of the data fields

at the time of the abend, change the contents of the data fields, and resume dialog
execution at any point. For example, a breakpoint can be set at l ine 200 in a premap
process and can specify that an interruption is to occur every second time the process

command is executed at runtime.

If CA ADS encounters a potential breakpoint at runtime, it passes control to the online

debugger. If the conditions for interrupting the dialog are not met, control returns to
the runtime system and execution continues. If the conditions are met, the online
debugger keeps control and allows the application developer to perform functions such

as reviewing and modifying data fields, modifying breakpoint specifications, aborting
dialog execution, and resuming execution at a specified point.

If a dialog aborts during a debugger session, the CA ADS runtime system displays a
special version of the Dialog Abort Information screen and then links to the online
debugger.

The special screen version allows the application developer to continue the debugging
session for the dialog. The application developer can enter debugger commands at the
prompt that appears on the screen.

Procedures

Procedures for debugging an CA ADS dialog are the same as those used with any other

program running under DC/UCF: once the dialog is defined to the debugger with the
DEBUG command, debugging procedures can take place. It is easier, however, to find
dialog records or to find the command elements (CMEs) for breakpoints when the load
module is generated in interpretable code and symbol recognition is in effect.

Note: For more information about debugging, see the CA IDMS Online Debugger Guide.

Online Debugger

728 ADS Reference Guide

Recommended Steps

It is recommended that you take the following steps when debugging an CA ADS dialog:

1. Create a symbol table for the dialog

2. Compile the dialog

3. Run ADSORPTS for the dialog

4. Issue the DEBUG task code to invoke the debugger

5. Define the dialog to the debugger

6. Set breakpoints (as required)

7. Issue the EXIT command to leave the debugger

8. Invoke the CA ADS runtime system and execute the dialog

9. Continue processing the dialog

10. Issue the EXIT or QUIT command when debugging is completed

Run ADSORPTS for the Dialog

Run the CA ADS Dialog Report (ADSORPTS) for the given dialog. Specify the PROCESS

and/or FDBLIST options when submitting the report: PROCESS displays the sequence
line numbers that are assigned to the process source; FDBLIST provides the line
numbers (SEQ#) and the offsets of the CMEs. The address or l ine number of a CME can

then be used to set a valid breakpoint within the premap or response process.

Issue the DEBUG Task Code

Issue the DEBUG task code to invoke the debugger.

Note: For more information on initiating a debugger session, see the CA IDMS Online
Debugger Guide.

Define the Dialog to the Debugger

Define the dialog to the debugger by issuing a command similar to the one in the

following example:

DEBUG>

debug dialog medduins

The debugger responds to the above command with the following message:

DEBUG DIALOG MEDDUINS

DEBUG> DEBUGGING INITIATED FOR MEDDUINS VERSION 1

DEBUG>

Online Debugger

Appendix H: Debugging an CA ADS Dialog 729

If you omit the word dialog, the debugger issues an error message:

DEBUG>

debug medduins

DEBUG MEDDUINS

DEBUG> INCONSISTENT ENTITY TYPE

 - MEDDUINS VERSION 1 DEFINED AS A DIALOG

DEBUG>

This message indicates that the debugger has tried to process MEDDUINS as a program
but can only find a PDE (program descriptor element) that defines MEDDUINS as a

dialog. The command needs to be modified to state that MEDDUINS is a dialog:

DEBUG>

debug dialog medduins

Set Breakpoints

Set breakpoints as required. Breakpoints must be set at l ine numbers or addresses that
contain valid command instructions (valid CMEs).

Note: For more information about setting breakpoints, see the CA IDMS Online

Debugger Guide.

Issue EXIT

Issue the EXIT command and leave the debugger.

Invoke the CA ADS Runtime System

Invoke the CA ADS runtime system and execute the dialog in the standard manner.

When a breakpoint is encountered during the execution of the dialog, a message

appears on the screen that identifies the breakpoint. The DEBUG> prompt or menu
mode screen is displayed, signalling that you are now in the runtime phase of the
debugger and can enter any of the debugger commands except DEBUG.

Note: For more information on command syntax, see the CA IDMS Online Debugger

Guide.

Continue Processing the Dialog

Continue processing the dialog. When the single command RESUME is issued without
any qualifying parameters, processing continues from the current CME (the instruction
immediately following the breakpoint). When a RESUME debug-expression is issued,

processing resumes at the address specified by the expression.

Online Debugger

730 ADS Reference Guide

When you issue a RESUME dialog-expression command from a point within the main
body of the dialog process, the debug expression must resolve to an address also within

the main body of the dialog. Similarly, when a RESUME dialog-expression is issued from
a subroutine, the debug expression must resolve to an address within the same
subroutine. Results are unpredictable when execution is not resumed in accordance

with these rules.

In the Event of an Abend

In the event of an abend, you see the CA ADS Debug screen with dialog abort
information, the DEBUG> prompt, and the menu mode selection area. Any valid
debugger command can be entered on the prompt line or can be selected from the

menu. When a selection is made from the menu, the debugger automatically operates
in menu mode and displays the specified screen. A sample Debug screen is shown
below. Note the DEBUG> prompt and menu selection area located at the bottom of the
screen. All commands, except DEBUG, can be issued in response to the prompt or can

be selected in the menu area:

 CA-ADS RELEASE nn.n *** DIALOG ABORT INFORMATION *** DBUG
DC175020 APPLICATION ABORTED. PGM CHECK (DATA EXCEPTION).

 DATE....: 91.220 TIME....: 17:10:23.55 TERMINAL....: LV81001

 ERROR OCCURRED IN DIALOG......: MISINCD
 AT OFFSET......: 3D8
 IN PROCESS.....: MIS-MAIN1 VERSION: 1
 AT IDD SEQ NO. : 000000100 INTERNAL COMMAND: 2
 INCLUDED MODULE : MIS-INC1 VERSION: 1
SEQUENCE
NUMBER: SOURCE :
00000000
00000100 ADD 1 TO MIS-NUM.
00000200 ! THIS IS MIS-INC1

DEBUG>
 NEXT _ ACTIVITY OR _ HELP:
 _ AT _ LIST _ SET _ SNAP _ RESUME _ DEBUG _ WHERE

 _ EXIT _ PROMPT _ QUIT _ IOUSER
 HELP SCREENS: _ USAGE _ SYMBOLS _ KEYS

Issue the RESUME ABEND or a RESUME debug-expression command to continue
processing the dialog.

QUIT or EXIT

Issue the QUIT or EXIT command when debugging is completed. QUIT clears the
debugger control blocks and ends the debugger session; EXI T returns you to the ENTER

NEXT TASK CODE prompt. but leaves the control blocks intact so that the debugger
session can continue.

Online Debugger

Appendix H: Debugging an CA ADS Dialog 731

More information:

Dialog Abort Information Screen (see page 145)

Appendix I: Compiler Overview and Default Control Keys 733

Appendix I: Compiler Overview and Default
Control Keys

This section contains the following topics:

Summary of Application Compiler Process (see page 733)
Default Control Keys (see page 734)

Summary of Dialog Compiler Process (see page 735)
Default Control Keys (see page 736)

Summary of Application Compiler Process

Each step in the process of creating an application is associated with one or more
screens as shown below.

Step in process Screen Purpose

Application specification Main Menu Identifies the name and

characteristics of an
application and specifies the
action to be taken

General options General Options Specifies application options

for date format, print
options, security, and
maximum number of

responses

Response/function
definition

Response/Function List Specifies the relationship
between functions and
responses

 Response Definition Specifies the name and
characteristics of a response

 Function Definition (Dialog) Allows specification of a
function and associated

dialog and valid responses
for the dialog or
menu/dialog function

currently being defined

Default Control Keys

734 ADS Reference Guide

Step in process Screen Purpose

 Function Definition

(Program)

Specifies the name and

description of the associated
program and records to be
passed to a user program

function

 Function Definition (Menu) Specifies characteristics for a
function defined as a menu;
allows alteration of the

sequence or suppression of
the display of responses on
a menu screen

Global records Global Records Specifies records available to

all functions in an
application

Task codes Task Codes Specifies DC/UCF task codes

that initiate an application at
runtime

Default Control Keys

Activity Control key Description

HELP [PF1] Displays a map or field help screen, depending
on cursor position

If the cursor is on a map field associated with

help text, a half screen of map field help text is
displayed.

If the cursor is set on a map field not associated
with help text or anywhere el se on the map, a

full screen of map help text is displayed.

RETURN [PF3] From a pulldown window, returns to
specification area

From the Main Menu screen, returns control to
DC/UCF

From a screen other than the Main Menu
screen, applies updates to the current screen

and returns to the Main Menu screen

BACKWARD [PF4] Applies updates to the current screen and
displays the previous step in the process, as

outlined on the Main Menu screen

Summary of Dialog Compiler Process

Appendix I: Compiler Overview and Default Control Keys 735

Activity Control key Description

FORWARD [PF5] Applies updates to the current screen and

displays the next step in the process, as
outlined on the Main Menu screen

BACKPAGE [PF7] Displays the previous screen of any step

containing multiple screens

FORWARD PAGE [PF8] Displays the next screen of any step containing
multiple screens

ACTION [PF10] Toggles the cursor position between the

activity selection area action bar and the
specification area on the Main Menu screen

Summary of Dialog Compiler Process

Each step in the process of creating a dialog is associated with one or more screens as

shown below.

Step in process Screens Purpose

Dialog specification Main Menu Identifies the name of a dialog and

specifies the action to be taken

General options Options and Directives Specifies dialog options for activity
logging, symbol and diagnostic
table building, entry point, COBOL

moves, retrieval locks, and
autostatus capability

Assign maps Map Specifications Associates a map with the dialog,

specifies paging options

Assign database Database Specifications Associates a schema and
subschema and an access module
with the dialog; identifies SQL

options

Assign records and
tables

Records and Tables Associates work records with the
dialog; specifies records for which

new buffers are allocated when the
dialog executes at runtime

Assign process
modules

Process Modules Associates a premap process, one
or more response processes, and a

declaration module with the dialog

Default Control Keys

736 ADS Reference Guide

Default Control Keys

Activity Control key Description

HELP [PF1] Displays a map or field help screen, depending
on cursor position

If the cursor is on a map field associated with
help text, a half screen of map field help text is
displayed.

If the cursor is set on a map field not

associated with help text or anywhere else on
the map, a full screen of map help text is
displayed.

RETURN [PF3] From a pulldown window, returns to
specification area.

From the Main Menu screen, returns control
to DC/UCF

From a screen other than the Main Menu
screen, applies updates to the current screen
and returns to the Main Menu screen

BACKWARD [PF4] Applies updates to the current screen and
displays the previous step in the process, as
outlined on the Main Menu screen.

FORWARD [PF5] Applies updates to the current screen and

displays the next step in the process, as
outlined on the Main Menu screen.

BACKPAGE [PF7] Displays the previous screen of any step

containing multiple screens.

FORWARD PAGE [PF8] Displays the next screen of any step containing
multiple screens.

ACTION [PF10] Toggles the cursor position between the

activity selection area action bar and the
specification area on the Main Menu screen

Appendix J: Runtime Error-Status Codes 737

Appendix J: Runtime Error-Status Codes

This section contains the following topics:

Status Codes Returned by the Autostatus Facil ity (see page 737)
Major DB Status Codes (see page 738)
Minor DB Status Codes (see page 738)

Major DC Status Codes (see page 743)
Minor DC Status Codes (see page 744)
ERROR-STATUS Condition Names (see page 748)

Autostatus Return Codes (see page 748)
Default Level-88 Values (see page 749)

Status Codes Returned by the Autostatus Facility

If command processing results in a status code not allowed by autostatus, dialog
execution terminates abnormally. To allow the dialog to receive other status codes,

specify all allowable status codes in an error expression. Error expressions are described
later in this section.

Status codes allowed by autostatus are l isted below.

Status code Meaning

0000 The request was executed successfully.

0307 An end-of-set condition was encountered.

0326 The requested record cannot be found.

1707 An end-of-index condition was encountered.

1726 The requested index record cannot be found.

4303 The requested scratch area cannot be found.

4305 The requested scratch record cannot be found.

4317 A request to replace a scratch record was executed successfully.

4404 The requested queue id cannot be found.

4405 The requested queue record cannot be found.

5149 NOWAIT was specified in a KEEP LONGTERM request, and a wait is
required.

Major DB Status Codes

738 ADS Reference Guide

Major DB Status Codes

Major
Code

Database Function

00 Any DML statement

01 FINISH

02 ERASE

03 FIND/OBTAIN

05 GET

06 KEEP

07 CONNECT

08 MODIFY

09 READY

11 DISCONNECT

12 STORE

14 BIND

15 ACCEPT

16 IF

17 RETURN

18 COMMIT

19 ROLLBACK

20 LRF requests

Minor DB Status Codes

Minor
Code

Database Function Status

00 Combined with a major code of 00, this code indicates successful completion
of the DML operation. Combined with a nonzero major code, this code
indicates that the DML operation was not completed successfully due to
central version causes, such as time-outs and program checks.

01 An area has not been readied. When this code is combined with a major
code of 16, an IF operation has resulted in a valid false condition.

Minor DB Status Codes

Appendix J: Runtime Error-Status Codes 739

Minor
Code

Database Function Status

02 Either the db-key used with a FIND/OBTAIN DB-KEY statement or the direct
db-key suggested for a STORE is not within the page range for the specified
record name.

03 Invalid currency for the named record, set, or area. This can only occur when
a run unit is sharing a transaction with other database sessions. The 03
minor status is returned if the run unit tries to retrieve or update a record
using a currency that has been invalidated because of changes made by

another database session that is sharing the same transaction.

04 The occurrence count of a variably occurring element has been specified as
either less than zero or greater than the maximum number of occurrences
defined in the control element.

05 The specified DML function would have violated a duplicates -not-allowed
option for a CALC, sorted, or index set.

06 No currency has been established for the named record, set, or area.

07 The end of a set, area, or index has been reached or the set i s empty.

08 The specified record, set, procedure, or LR verb is not in the subschema or
the specified record is not a member of the set.

09 The area has been readied with an incorrect usage mode.

10 An existing access restriction or subschema usage prohibits execution of the
specified DML function. For LRF users, the subschema in use allows access to
database records only. Combined with a major code of 00, this code means

the program has attempted to access a database record, but the subschema
in use allows access to logical records only.

11 The record cannot be stored in the specified area due to insufficient space.

12 There is no db-key for the record to be stored. This is a system internal error

and should be reported.

13 A current record of run unit either has not been established or has been
nullified by a previous ERASE statement.

14 The CONNECT statement cannot be executed because the requested record
has been defined as a mandatory automatic member of the set.

15 The DISCONNECT statement cannot be executed because the requested
record has been defined as a mandatory member of the set.

16 The record cannot be connected to a set of which it is already a member.

17 The transaction manager encountered an error.

18 The record has not been bound.

19 The run unit's transaction was forced to back out.

Minor DB Status Codes

740 ADS Reference Guide

Minor
Code

Database Function Status

20 The current record is not the same type as the specified record name.

21 Not all areas being used have been readied in the correct usage mode.

22 The record name specified is not currently a member of the set name

specified.

23 The area name specified is either not in the subschema or not an extent
area; or the record name specified has not been defined within the area
name specified.

25 No currency has been established for the named set.

26 No duplicates exist for the named record or the record occurrences cannot
be found.

28 The run unit has attempted to ready an area that has been readied

previously.

29 The run unit has attempted to place a lock on a record that is locked already
by another run unit. A deadlock results. Unless the run unit issued either a

FIND/OBTAIN KEEP EXCLUSIVE or a KEEP EXCLUSIVE, the run unit is aborted.

30 An attempt has been made to erase the owner record of a nonempty set.

31 The retrieval statement format conflicts with the record's location mode.

32 An attempt to retrieve a CALC/DUPLICATE record was unsuccessful; the

value of the CALC field in variable storage is not equal to the value of the
CALC control element in the current record of run unit.

33 At least one set in which the record participates has not been included in the

subschema.

40 The WHERE clause in an OBTAIN NEXT logical-record request is inconsistent
with a previous OBTAIN FIRST or OBTAIN NEXT command for the same
record. Previously specified criteria, such as reference to a key field, have

been changed. A path status of LR-ERROR is returned to the LRC block.

41 The subschema contains no path that matches the WHERE clause in a
logical-record request. A path status of LR-ERROR is returned to the LRC

block.

42 An ON clause included in the path by the DBA specified return of the
LR-ERROR path status to the LRC block; an error has occurred while
processing the LRF request.

Minor DB Status Codes

Appendix J: Runtime Error-Status Codes 741

Minor
Code

Database Function Status

43 A program check has been recognized during evaluation of a WHERE clause;
the program check indicates that either a WHERE clause has specified
comparison of a packed decimal field to an unpacked nonnumeric data field,

or data in variable storage or a database record does not conform to its
description. A path status of LR-ERROR is returned to the LRC block unless
the DBA has included an ON clause to override this action in the path.

44 The WHERE clause in a logical-record request does not supply a key element

(sort key, CALC key, or db-key) expected by the path. A path status of
LR-ERROR is returned to the LRC block.

45 During evaluation of a WHERE clause, a program check has been recognized
because a subscript value is neither greater than 0 nor less than its

maximum allowed value plus 1. A path status of LR-ERROR is returned to the
LRC block unless the DBA has included an ON clause to override this action
in the path.

46 A program check has revealed an arithmetic exception (for example:
overflow, underflow, significance, divide) during evaluation of a WHERE
clause. A path status of LR-ERROR is returned to the LRC block unless the
DBA has included an ON clause to override this action in the path.

53 The subschema definition of an indexed set does not match the indexed
set's physical structure in the database.

54 Either the prefix length of an SR51 record is less than zero or the data length

is less than or equal to zero.

55 An invalid length has been defined for a variable-length record.

56 An insufficient amount of memory to accommodate the CA IDMS
compression/decompression routines is available.

57 A retrieval-only run unit has detected an inconsistency in an index that
should cause an 1143 abend, but optional APAR bit 216 has been turned on.

58 An attempt was made to rollback updates in a local mode program. Updates

made to an area during a local mode program's execution cannot be
automatically rolled out. The area must be manually recovered.

60 A record occurrence type is inconsis tent with the set named in the
ERROR-SET field in the IDMS communications block. This code usually

indicates a broken chain.

61 No record can be found for an internal db-key. This code usually indicates a
broken chain.

62 A system-generated db-key points to a record occurrence, but no record

with that db-key can be found. This code usually indicates a broken chain.

Minor DB Status Codes

742 ADS Reference Guide

Minor
Code

Database Function Status

63 The DBMS cannot interpret the DML function to be performed. When
combined with a major code of 00, this code means invalid function
parameters have been passed on the call to the DBMS. For LRF users, a

WHERE clause includes a keyword that is longer than the 32 characters
allowed.

64 The record cannot be found; the CALC control element has not been defined
properly in the subschema.

65 The database page read was not the page requested.

66 The area specified is not available in the requested usage mode.

67 The subschema invoked does not match the subschema object tables.

68 The CICS interface was not started.

69 A BIND RUN-UNIT may not have been issued; the CV may be inactive or not
accepting new run units; or the connection with the CV may have been
broken due to time out or other factors. When combined with a major code

of 00, this code means the program has been disconnected from the DBMS.

70 The database will not ready properly; a JCL error is the probable cause.

71 The page range or page group for the area being readied or the page
requested cannot be found in the DMCL.

72 There is insufficient memory to dynamically load a subschema or database
procedure.

73 A central version run unit will exceed the MAXERUS value specified at

system generation.

74 The dynamic load of a module has failed. If operating under the central
version, a subschema or database procedure module either was not found in
the data dictionary or the load (core image) l ibrary or, if loaded, will exceed

the number of subschema and database procedures provided for at system
generation.

75 A read error has occurred.

76 A write error has occurred.

77 The run unit has not been bound or has been bound twice. When combined
with a major code of 00, this code means either the program is no longer
signed on to the subschema or the variable subschema tables have been

overwritten.

78 An area wait deadlock has occurred.

79 The run unit has requested more db-key locks than are available to the
system.

Major DC Status Codes

Appendix J: Runtime Error-Status Codes 743

Minor
Code

Database Function Status

80 The target node is either not active or has been disabled.

81 The converted subschema requires specified database name to be in the
DBNAME table.

82 The subschema must be named in the DBNAME table.

83 An error has occurred in accessing native VSAM data sets.

87 The owner and member records for a set to be updated are not in the same
page group or do not have the same db-key radix.

91 The subschema requires a DBNAME to do the bind run unit.

92 No subschema areas map to DMCL.

93 A subschema area symbolic was not found in DMCL.

94 The specified dbname is neither a dbname defined in the DBNAME table,

nor a SEGMENT defined in the DMCL.

95 The specified subschema failed DBTABLE mapping usi ng the specified
dbname.

Note: For a complete description of DB runtime status codes, see the chapter "CA IDMS
Status Codes" in the Messages and Codes Guide.

Major DC Status Codes

Major

Code

Function

00 Any DML statement

30 TRANSFER CONTROL

31 WAIT/POST

32 GET STORAGE/FREE STORAGE

33 SET ABEND EXIT/ABEND CODE

34 LOAD/DELETE TABLE

35 GET TIME/SET TIMER

36 WRITE LOG

37 ATTACH/CHANGE PRIORITY

38 BIND/ACCEPT/END TRANSACTION STATISTICS

Minor DC Status Codes

744 ADS Reference Guide

Major
Code

Function

39 ENQUEUE/DEQUEUE

40 SNAP

43 PUT/GET/DELETE SCRATCH

44 PUT/GET/DELETE QUEUE

45 BASIC MODE TERMINAL MANAGEMENT

46 MAPPING MODE TERMINAL MANAGEMENT

47 LINE MODE TERMINAL MANAGEMENT

48 ACCEPT/WRITE PRINTER

49 SEND MESSAGE

50 COMMIT TASK/ROLLBACK TASK/FINISH TASK/WRITE JOURNAL

51 KEEP LONGTERM

58 SVC SEND/RECEIVE

Minor DC Status Codes

Minor
Code

Function Status

00 Combined with a major code of 00, this code indicates either successful

completion of the DML function or that all tested resources have been
enqueued.

01 The requested operation cannot be performed immediately; waiting will
cause a deadlock.

02 Either there is insufficient storage in the storage pool or the storage
required for control blocks is unavailable.

03 The scratch area ID cannot be found.

04 Either the queue ID (header) cannot be found or a paging session was in
progress when a second STARTPAGE command was received (that is, an
implied ENDPAGE was processed before this STARTPAGE was executed
successfully).

05 The specified scratch record ID or queue record cannot be found.

06 No resource control element (RCE) exists for the queue record; currency has
not been established.

Minor DC Status Codes

Appendix J: Runtime Error-Status Codes 745

Minor
Code

Function Status

07 Either an I/O error has occurred or the queue upper l imit has been reached.

08 The requested resource is not available.

09 The requested resource is available.

10 New storage has been assigned.

11 A maximum task condition exists.

12 The named task code is invalid.

13 The named resource cannot be found.

14 The requested module is defined as nonconcurrent and is currently in use.

15 The named module has been overlaid and cannot be reloaded immediately.

16 The specified interval control element (ICE) address cannot be found.

17 The record has been replaced.

18 No printer terminals have been defined for the current DC system.

19 The return area is too small; data has been truncated.

20 An I/O, program-not-found, or potential -deadlock status condition exists.

21 The message destination is undefined, the long term ID cannot be found, or
a KEEP LONGTERM request was issued by a nonterminal task.

22 A record already exists for the scratch area specified.

23 No storage or resource control element (RCE) could be allocated for the

reply area.

24 The maximum number of outstanding replies has been exceeded.

25 An attention interrupt has been received.

26 There is a logical error in the output data stream.

27 A permanent I/O error has occurred.

28 The terminal dial -up line is disconnected.

29 An invalid parameter has been passed in the list set up by the DML

processor.

30 The named function has not yet been implemented.

31 An invalid parameter has been passed; the TRB, LRB, or MRB contains an

invalid field; or the request is invalid because of a possible logic error in the
application program. In a DC-BATCH environment, a possible cause is that
the record length specified by the command exceeds the maximum length
based on the packet size.

Minor DC Status Codes

746 ADS Reference Guide

Minor
Code

Function Status

32 The derived length of the specified variable storage is negative or zero.

33 Either the named table or the named map cannot be found in the data
dictionary load area.

34 The named variable-storage area must be an 01-level entry in the LINKAGE
SECTION.

35 A GET STORAGE request is invalid because the LINKAGE SECTION variable
has already been allocated.

36 The program either was not defined during system generation or is marked
out-of-service.

37 A GET STORAGE operand is invalid because the specified va riable storage
area is in the WORKING-STORAGE SECTION instead of the LINKAGE SECTION.

38 Either no GET STORAGE operand was specified or the specified LINKAGE
SECTION variable has not been allocated.

39 The terminal device being used is out of service.

40 NOIO has been specified but the datastream cannot be found.

41 An IF operation resulted in a valid true condition.

42 The named map does not support the terminal device in use.

43 A line I/O session has been cancelled by the terminal operator.

44 The referenced field does not participate in the specified map; a possible
cause is an invalid subscript.

45 An invalid terminal type is associated with the issuing task.

46 A terminal I/O error has occurred.

47 The named area has not been readied.

48 The run unit has not been bound.

49 NOWAIT has been specified but WAIT is required.

50 Statistics are not being kept.

51 A lock manager error occurred during the processing of a KEEP LONGTERM
request

52 The specified table is missing or invalid.

53 An error occurred from a user-written edit routine.

54 Either there is invalid internal data or a data conversion error has occurred.

55 The user-written edit routine cannot be found.

Minor DC Status Codes

Appendix J: Runtime Error-Status Codes 747

Minor
Code

Function Status

56 No DFLDS have been defined for the map.

57 The ID cannot be found, is not a long-term permanent ID, or is being used by
another run unit.

58 Either the LRID cannot be found, the maximum number of concurrent task
threads was exceeded, or an attempt was made to rollback database
changes in local mode.

59 An error occurred in transferring the KEEP LONGTERM request to IDMSKEEP

60 The requested KEEP LONGTERM lock id was already in use with a different
page group

63 Invalid function parameters have been passed on the call to the DBMS.

64 No detail exists currently for update; no action has been taken.

Alternatively, the requested node for a header or detail is either not present
or not updated.

68 There are no more updated details to MAP IN or the amount of storage

defined for pageable maps at sysgen is insufficient. In the latter case,
subsequent MAP OUT DETAIL statements are i gnored.

72 No detail occurrence, footer, or header fields exist to be mapped out by a
MAP OUT RESUME command, or the scratch record that contains the

requested detail could not be accessed. The latter case is a mapping internal
error and should be reported.

76 The first screen page has been transmitted to the terminal.

77 Either the program is no longer signed on to the subschema or the variable
subschema tables have been overwritten.

80 The target node is either not active or has been disabled.

97 An error was encountered processing a syncpoint request; check the log for

details.

98 An unsupported COBOL compiler option (for example, DEBUG) has been
specified for an online program or a program running in a batch region has

issued a DML verb that is only valid when running online under CA
IDMS/DC/UCF.

99 An unexpected internal return code has been received; the terminal device
is out of service.

Note: For a complete description of DC runtime status codes, see the chapter "CA IDMS
Status Codes" in the Messages and Codes Guide.

ERROR-STATUS Condition Names

748 ADS Reference Guide

ERROR-STATUS Condition Names

Code Condition name Explanation

0000 DB-STATUS-OK No error

0307 DB-END-OF-SET End of set, area, or SPF index

0326 DB-REC-NOT-FOUND No record found

0001 to

9999

ANY-ERROR-STATUS Any nonzero status

0000 to

9999

ANY-STATUS Any status

3101 3201

3401 3901

DC-DEADLOCK Waiting will cause a deadlock

3202 3402 DC-NO-STORAGE Insufficient space available

4303 DC-AREA-ID-UNK ID cannot be found

4404 DC-QUEUE-ID-UNK Queue header cannot be found

4305 4405 DC-REC-NOT-FOUND Record cannot be found

3908 DC-RESOURCE-NOT-AVAI
L

Resource not available

3909 DC-RESOURCE-AVAIL Resource is available

3210 DC-NEW-STORAGE New space allocated

3711 DC-MAX-TASKS Maximum attached tasks

4317 DC-REC-REPLACED Record has been replaced

4319 4419

4519 4719

DC-TRUNCATED-DATA Return area too small; data has

been truncated

4525 4625 DC-ATTN-INT Attention interrupt received

4743 DC-OPER-CANCEL Session cancelled

Autostatus Return Codes

Status Code Meaning

0307 The end-of-set condition was

encountered.

Default Level-88 Values

Appendix J: Runtime Error-Status Codes 749

Status Code Meaning

0326 The requested record cannot be found.

1707 The end-of-index condition was
encountered.

1726 The requested index record cannot be

found.

4303 The requested scratch area cannot be
found.

4305 The requested scratch record cannot be

found.

4317 A request to replace a scratch record was
executed successfully.

4404 The requested queue id cannot be found.

4405 A request queue record cannot be found.

5149 NOWAIT was specified in a KEEP
LONGTERM request, and a wait is

required.

Default Level-88 Values

Status Code Condition Name

0000 DB-STATUS-OK

0307 DB-END-OF-SET

0326 DB-REC-NOT-FOUND

1707 DB-END-OF-INDEX

1726 DB-INDEX-NOT-FOUND

4303 SCRATCH-AREA-NOT-FOUND

4305 SCRATCH-REC-NOT-FOUND

4317 SCRATCH-REC-REPLACED

4404 QUEUE-ID-NOT-FOUND

4405 QUEUE-REC-NOT-FOUND

0001 THRU 9999 DB-ANY-ERROR

Appendix K: Online Debugger Syntax 751

Appendix K: Online Debugger Syntax

This section contains the following topics:

General Registers Symbols (see page 751)
DC/UCF System Symbols (see page 752)
Address Symbols and Markers (see page 752)

User Symbols (see page 753)
Program Symbols (see page 753)
Expression Operators (see page 753)

Delimiters (see page 754)
Debugger Commands (see page 754)

General Registers Symbols

General registers include the registers used by the program at the time of execution
and the registers used by the DC/UCF system. The program status word (PSW) and

register definitions are always preceded by a colon (:) and are specified by these
symbols:

■ :PSW for the current program status word

■ :Rn for the user program register at the time of interrupt, where n represents the
number of the register and can have a value of 0 through 15

■ :REGS for all user program registers at the time of interrupt

■ :SRn for a DC/UCF system register at the time of interrupt, where n represents the

number of the register and can have a value of 0 through 15

■ :SREGS for all DC/UCF system registers at the time of interrupt

Important! A single debug expression can reference only one general register.

DC/UCF System Symbols

752 ADS Reference Guide

DC/UCF System Symbols

Certain DC/UCF system symbols also function as debugger entities, and you can refer to
them during a debugging session. A colon (:) must precede each symbol. These are the
valid symbols:

:BAT

Specifies the base address table for session.

:CSA

Specifies the DC/UCF common storage area.

:DLB

Specifies the debug local block, control block required for debugging session.

:LTE

Specifies the current logical terminal element.

:PTE

Specifies the current physical terminal element.

:TCE

Specifies the current task control element.

:VECT

Specifies the vector table for debugger.

Important! A single debug expression can reference only one system entity.

Address Symbols and Markers

Symbol Symbol Name Designated Location

@ At sign Absolute address

$ Dollar sign Load address

¢ Cent sign Address of current dialog process

User Symbols

Appendix K: Online Debugger Syntax 753

User Symbols
■ :DRn for a debugger general register, where n represents the number of the

register and can have a value of 0 through 15

■ :DREGS for all debugger registers

■ :H1 and :H2 for halfword 1 and halfword 2

■ :F1 and :F2 for fullword 1 and fullword 2

■ :UCHR for a 48-byte character area

You can also refer to specified sections of this area:

– :UC0, the first 16 bytes

– :UC16, the next 16 bytes

– :UC32, the last 16 bytes

Program Symbols

Syntax: Data Field Names

►►──── data-field-name ─┬──────────────────────┬──────────────────────────────►◄
 ├─ IN ─┬─ record-name ─┘
 └─ OF ─┘

Syntax: Line Numbers

►►──── # line-number ───►

 ►─┬──┬───►◄
 └─┬─ IN ─┬─┬─ current-process-name ───────────────────────────────────┬┘
 └─ OF ─┘ └─ included-module-name ─┬────────────────────────────────┬┘
 └─ OCCurrence occurrence-number ─┘

Syntax: Qualifying Program Symbols

►►─── process-name - . - program-symbol ──────────────────────────────────────►◄

Expression Operators

Operator Meaning

+ Addition

- Subtraction

Delimiters

754 ADS Reference Guide

Operator Meaning

* Multiplication

/ Division

Delimiters

Delimiter Meaning

* Asterisk

 Blank

, Comma

= Equal sign

! Exclamation point

- Hyphen

% Percent sign

. Period

+ Plus sign

/ Slash

Debugger Commands

Syntax: AT

ADD Format

►►─── AT debug-expression ──►

 ►─┬───────────────────────────────┬─┬──────────────────────────────┬─────────►
 └─ BEFore ─┬─ MAXimum ◄ ───────┬┘ └─ AFTer ─┬─ 0 ◄ ─────────────┬┘
 └─ execution-count ─┘ └─ execution-count ─┘

 ►─┬──────────────────────────────┬─┬──────────┬──────────────────────────────►◄
 └─ EVEry ─┬─ 1 ◄ ─────────────┬┘ ├─ ON ◄ ───┤
 └─ execution-count ─┘ └─ IGNore ─┘

INQUIRE Format

►►─── AT ─┬─ ALL ──────────────┬─┬─ INQuire ─┬────────────────────────────────►◄
 └─ debug-expression ─┘ ├─ ON ──────┤
 ├─ IGNore ──┤
 └─ OFF ─────┘

Debugger Commands

Appendix K: Online Debugger Syntax 755

Syntax: DEBUG

ADD format

►►─── DEBug ─┬─ PROgram ◄ ──┬─ entity-name ─┬──────────────────────────┬───────►◄
 ├─ DIAlog ─────┤ └─ VERsion version-number ─┘
 ├─ MAP ────────┤
 ├─ SS ─────────┤
 └─ TABle ──────┘

INQUIRE format

►►─── DEBug ─┬─ entity-name ─┬──────────────────────────┬─┬─┬─ INQuire ─┬─────►◄
 │ └─ VERsion version-number ─┘ │ └─ OFF ─────┘
 └─ ALL ──────────────────────────────────────┘

Syntax: EXIT
►►─── EXIt ───►◄

Syntax: IOUSER

►►─── IOUser ───►◄

Syntax: LIST

MEMORY Format

►►─┬─ List ────┬─┬──────────┬─ begin-debug-expression ────────────────────────►
 └─ Display ─┘ └─ Memory ─┘

 ►─┬──────────────────────────────────┬──┬──────┬─────────────────────────────►◄
 ├─ TO end-debug-expression ────────┤ ├─ C ──┤
 └─┬──────────┬─ byte-count-number ─┘ ├─ X ──┤
 └─ LENgth ─┘ └─ XC ─┘

ATTRIBUTES Format

►►─┬─ List ────┬─ SESsion ATTributes ───►◄
 └─ Display ─┘

Syntax: MENU
►►─── MENu ─┬───────────────┬───►◄
 └─ screen-name ─┘

Syntax: PROMPT
►►─── PROmpt ───►◄

Debugger Commands

756 ADS Reference Guide

Syntax: QUALIFY

RESET Format

►►─── QUAlify ─┬──────────────────────┬─ PROCess process-name ────────────────►
 └─ DIAlog dialog-name ─┘

 ►─┬──────────────────────────┬───►◄
 └─ VERsion version-number ─┘

INQUIRE Format

►►─── QUAlify INQuire ──►◄

Syntax: QUIT

►►─── QUIt ───►◄

Syntax: RESUME
►►─── RESume ─┬───────────────────────────────┬───────────────────────────────►◄
 └┬──────┬─┬─ debug-expression ─┬┘
 └─ AT ─┘ └─ ABEnd ────────────┘

Syntax: SET

MEMORY Format

►►─┬─ Set ──┬─┬──────────┬─ debug-expression ─┬──────────┬───────────────────►
 └─ Vary ─┘ └─ Memory ─┘ ├─ EQUals ─┤
 └─ = ──────┘

 ►─┬─ data-field-name ────┬─┬──────┬─┬─────────────┬──────────────────────────►◄
 ├─ H halfword ─────────┤ ├─ C ──┤ ├─ RESEt ─────┤
 ├─ F fullword ─────────┤ ├─ X ──┤ └─ NOReset ◄ ─┘
 ├─ X hex-value ────────┤ └─ XC ─┘
 ├─ C character-string ─┤
 └─ P packed-value ─────┘

ATTRIBUTES Format

►►─── Set ─┬─ CHAr ─┬───►◄
 ├─ HEX ──┤
 └─ BOTh ─┘

Syntax: SNAP

►►─── SNAp ─┬─ TASk ──┬───►
 └─ begin-debug-expression ─┬─────────────────────────────────┬┘
 ├─ TO end-debug-expression ───────┤
 └┬──────────┬─ byte-count-number ─┘
 └─ LENgth ─┘

 ►─┬───────────────┬──►◄
 └─ TITle title ─┘

Debugger Commands

Appendix K: Online Debugger Syntax 757

Syntax: WHERE

►►─── WHEre ──►◄

Index 759

Index

#EFMBIFS macro • 702
#EFUNMOD macro • 705

#EFUNMST macro • 701

$

$BACKWARD condition • 261
$BATCH condition • 256
$DETAIL condition • 261
$DETAIL-NOT-FOUND condition • 261

$END-OF-DATA condition • 261
$END-OF-FILE condition • 248
$ERROR-COUNT field • 287
$FORWARD condition • 261

$HEADER condition • 261
$INPUT-COUNT field • 287
$IOERROR condition • 248

$MAXIMUM-DETAILS-PUT condition • 261, 477
$MESSAGE field • 257, 477
$ONLINE condition • 256
$OUTPUT-COUNT field • 287

$PAGE field • 257, 466
$PAGE-READY condition • 261
$RESPONSE field • 257

A

ABORT command • 510
ABSOLUTE-VALUE • 185

ACCEPT command • 373, 513
access module • 109
activity logging • 676

function commands • 676

function numbers • 676
ADD command • 306
ADSL • 47

ADSM • 48
ADSO-APPLICATION-GLOBAL-RECORD • 135, 339

AGR-CURRENT-RESPONSE • 135, 339
ADSO-APPLICATION-MENU-RECORD • 124

at runtime • 124
ADSOBCOM • 621, 623, 650

control statements • 623

JCL and command statements • 650
ADSOBSYS • 654, 656

ADSOOPTI load module • 654
JCL and command statements • 656

ADSOBTAT • 662, 666
JCL and command statements • 666

task application table (TAT) • 662
ADSOMSON menu map • 126
ADSOMUR1 menu map • 126

ADSOMUR2 menu map • 126
ADSORPTS • 584, 595, 596

application reports • 595
control statements • 596

dialog debugging • 584
dialog reports • 584

ADSO-STAT-DEF-REC record • 281

ADSOTATU • 671
AFACT-057 record • 676
ALLOCATE command • 535
ALLOWING clause • 280

APPC (Advanced Program to Program
Communication) • 528

APPC status codes • 552
APPCCODE status code • 552, 553

APPCERC status code • 552, 553
application compiler (ADSA) • 57, 60, 63, 66, 70, 74,

77, 80, 85, 87

control key assignments • 57
Function Definition (Menu) screen • 80
Function Definition (Program) • 77
Function Definition screen • 74

General Options • 60
General Options screen?Page 2 • 63
General Options?Page 1 • 60

Global Records screen • 85
Response Definition screen • 70
Response/Function List screen • 66
Task Codes screen • 87

application compiler sequence • 53
screen sequence • 53

application compiler session • 52, 56

invoking • 52
suspending • 56

application definition block (ADB) • 516
application security • 719

application structure • 328
levels of • 328

760 ADS Reference Guide

mainline dialogs • 328
application thread • 327, 328

definition of • 327
menu stack • 328
nonoperative dialogs • 327

operative dialogs • 327
applications • 57, 66, 77, 80, 85, 87

compiling of • 57
defining global records • 85

defining responses and functions • 66
defining task codes • 87
specifying control blocks • 77
specifying menus • 80

specifying record buffers • 77
APPLICATIONS statement • 596
arc cosine values • 186

arc sine values • 187
arc tangent values • 188
AREPORTs • 583
arithmetic built-in functions • 185, 207, 210, 211,

212, 213, 214, 216, 220, 223
ABSOLUTE-VALUE • 185
INVERT-SIGN • 207

LOG-BASE-10 • 210
LOG-BASE-E • 210
MODULO • 211
next integer equal or higher • 212

next integer equal or lower • 213
NUMERIC • 214
RANDOM-NUMBER • 216

sign inversion • 207
SIGN-VALUE • 220
SQUARE-ROOT • 223

arithmetic commands • 306, 307, 309, 311, 313

ADD • 306
COMPUTE • 307
DIVIDE • 309
MULTIPLY • 311

SUBTRACT • 313
arithmetic expressions • 171, 173, 174, 436

binary operations • 171

coding rules • 174
operands • 171
order of evaluation • 173
unary operations • 171

variable data fields • 173
WHERE clause • 436

assigned key • 66

assignment command • 314

MOVE • 314
automatic editing • 139, 257

autostatus facil ity • 278

B

BACKWARD function • 25
batch control event conditions • 248

$END-OF-FILE ($EOF) • 248
$IOERROR ($IOERR) • 248

batch processing • 287
$ERROR-COUNT • 287
$INPUT-COUNT • 287
$OUTPUT-COUNT • 287

binary data • 161
BIND PROCEDURE command • 383
BS2000/OSD JCL • 605

ADSORPTS • 605
built-in functions • 150, 178, 179, 180, 681, 699,

713, 714, 715
call ing user-defined functions • 715

changing invocation names • 681
coding user-defined functions • 715
creating user-defined functions • 714

data type conversion • 178
date formats • 180
error processing • 178
internal structure • 681

invocation name • 178, 713
omitted optional parameter • 179
parameters • 178

runtime processing • 699
user-defined • 179, 714
with LRF • 715

C

CA ADS • 314
conversion rules • 314

CA ADS comment character • 160

CA IDMS statistics block • 380
CALL command • 505
CHANGED condition • 257

characteristic • 273
checkouts • 45, 47, 48

explicit • 45
implicit • 45

l isting • 47
modifying with ADSM • 48
releasing with ADSM • 48

Index 761

checkpoint • 143, 428
database • 428

queue • 428
scratch • 428

CLOSE command • 454

COBOL • 314
conversion rules • 314

COBOL moves • 101, 167, 306, 307, 309, 311, 313,
314, 315

coding • 160, 174
arithmetic expressions • 174
CA ADS comment character • 160
general rules • 160

SQL comment character • 160
command status condition • 249

ERROR-STATUS • 249

Commands • 300, 303, 306, 307, 309, 311, 313, 314,
317, 318, 319, 321, 322, 325, 332, 334, 339, 341,
343, 345, 353, 356, 358, 365, 373, 383, 384, 386,
389, 391, 394, 411, 412, 413, 420, 426, 428, 429,

433, 438, 439, 440, 445, 449, 454, 472, 474, 483,
486, 488, 491, 496, 498, 502, 505, 506, 507, 509,
510, 513, 516, 518, 519, 523

ABORT • 510
ACCEPT • 373, 513
ADD • 306
arithmetic • 303

assignment • 314
BIND PROCEDURE • 383
CALL • 505

CLOSE • 454
COMMIT • 384
COMPUTE • 307
conditional • 317

CONNECT • 386
CONTINUE • 332
control • 325
DEFINE • 506

DELETE QUEUE • 486
DELETE SCRATCH • 496
DISCONNECT • 389

DISPLAY • 334
DIVIDE • 309
ERASE • 391, 438
EXECUTE NEXT FUNCTION • 339

EXIT • 318
FIND/OBTAIN • 394
GET • 411

GET DETAIL • 472

GET QUEUE • 488
GET SCRATCH • 498

GOBACK • 507
IF • 319
INCLUDE • 300

INVOKE • 341
KEEP • 412
KEEP LONGTERM • 413
LEAVE • 343

LINK • 345
LRF • 433
map modification • 449
MODIFY • 420, 439

MULTIPLY • 311
navigational database access • 365
NEXT • 321

OBTAIN • 440
pageable map • 449
PUT DETAIL • 474
PUT QUEUE • 491

PUT SCRATCH • 502
queue management • 483
READ TRANSACTION • 353

RETURN • 353
RETURN DB-KEY • 426
ROLLBACK • 428
scratch management • 483

SNAP • 516
STORE • 429, 445
SUBTRACT • 313

TRACE • 518
TRANSFER • 356
util ity • 509
WHILE • 322

WRITE PRINTER • 519
WRITE TO LOG/OPERATOR • 523
WRITE TRANSACTION • 358

command-statements • 319, 322

DO • 319
ELSE • 319
END • 319, 322

REPEAT • 322
THEN • 319

COMMIT command • 384
comparison conditions • 251

CONTAINS • 251
mask characters • 251
MATCHES • 251

operators • 251

762 ADS Reference Guide

compiler (ADSA) • 718
security • 718

compiler (ADSC) • 718
security • 718

COMPUTE command • 307

CONCATENATE built-in function • 189
conditional commands • 318, 319, 321, 322

EXIT • 318
IF • 319

NEXT • 321
WHILE • 322

conditional expressions • 246, 248, 249, 251, 253,
254, 256, 257, 261, 265, 450

$MESSAGE field • 257
$PAGE field • 257
$RESPONSE field • 257

batch control event condition • 248
command status condition • 249
comparison condition • 251
cursor position condition • 253

dialog execution status condition • 254
environment status condition • 256
for maps • 450

level-88 condition • 257
map field status condition • 257
map paging status conditions • 261
operators in • 246

order of precedence • 246
set status condition • 265
summary • 248

CONFIRM command • 538
CONFIRMED command • 539
CONNECT command • 386
constants • 269, 271, 272, 273

figurative constants • 269
fixed-point numeric l iterals • 273
floating-point numeric l iterals • 273
graphic l iterals • 271

multibit binary • 272
nonnumeric l iterals • 273
numeric l iterals • 273

CONTAINS condition • 251
CONTINUE command • 332
control commands • 332, 334, 339, 341, 343, 345,

353, 356, 358, 383, 454, 523

BIND PROCEDURE • 383
CLOSE • 454
CONTINUE • 332

DISPLAY • 334

EXECUTE NEXT FUNCTION • 339
INVOKE • 341

LEAVE • 343
LEAVE APPLICATION • 343
LINK • 345

READ TRANSACTION • 353
RETURN • 353
TRANSFER • 356
WRITE TO LOG/OPERATOR • 523

WRITE TRANSACTION • 358
control event • 66, 248
control keys • 135

default assignments • 135

CONTROL SESSION command • 540
control statements • 624, 626, 655, 664

ADSOBSYS • 655

ADSOBTAT • 664
COMPILE • 624
DECOMPILE • 626

conversation, ending • 547

conversion • 314
CA ADS rules • 314
COBOL rules • 314

cosine values • 190
currency • 329, 365, 397, 426, 485, 494

database • 329, 365
index • 426

of run unit • 397
queue • 485
scratch requests • 494

cursor position condition • 253
CURSOR-COLUMN • 253
CURSOR-ROW • 253

cursor position data field • 287

CURSOR-COLUMN • 287
CURSOR-ROW • 287

CURSOR-COLUMN condition • 253
CURSOR-ROW condition • 253

D

data dictionary • 676

AFACT-057 • 676
LR-190 • 676
LRACT-193 • 676
organization • 676

RCDACT-059 • 676
SETACT-061 • 676
SSA-024 • 676

Index 763

SSOR-034 • 676
SSR-032 • 676

data types • 161, 167, 314
available to CA ADS • 161
binary • 161

conversion of • 167
conversion rules • 314
definition of • 161
examples of • 167

floating point • 161
group • 161
multibit binary • 161
packed decimal • 161

zoned decima l • 161
database • 142, 365, 374, 376, 380, 384, 386, 394,

399, 413, 420, 423, 426, 429

access of • 142
CA IDMS statistics block • 380
CALC key • 394
checkpoint • 384

currency • 365
db-key • 374, 376, 399, 426
location modes • 429

modification of CALC elements • 420
modification of sort-control elements • 420
monitoring activity • 413
set membership options • 386

statistics • 380
usage modes • 423

database access • 141, 434

Logical Record Facil ity (LRF) • 434
date built-in functions • 191, 194, 196, 197, 199,

200, 203, 230, 231, 233, 238, 241
DATECHG • 191

DATEDIF • 194
DATEEXT • 196
DATEINT • 196
DATEOFF • 197

DATETIMX • 199
DISPDT • 199
DTINT • 200

GOODDATE • 203
TIMEINT • 230
TODAY • 231
TOMORROW • 233

WEEKDAY • 238
YESTERDAY • 241

date formats • 180, 287

calendar • 180

European • 180
Gregorian • 180

Julian • 180, 287
date offset • 197
DATECHG built-in function • 191

DBCS data • 271, 273, 304
as a graphic l iteral • 271
as a nonnumeric l iteral • 273
storage of • 304

deadlock • 143
DEALLOCATE command • 541
debugging • 148
DEFINE command • 506

DELETE QUEUE command • 486
DELETE SCRATCH command • 496
Design guidelines • 547

detail area • 465
diagnostic table • 101
dialog • 584

FDB • 584

Dialog Abort Information screen • 145, 510, 584
enabling of • 510

dialog compiler (ADSC) • 35, 92, 94, 98, 101

control keys • 94
Dialog Summary Report screen • 35
Map Image screen • 35
Options and Directives • 101

screens • 98
session • 92

dialog compiler session • 92, 97

invoking • 92
suspending • 97

dialog execution status • 254
FIRST-TIME • 254

dialog expression (ADSOBCOM) • 628
dialog function • 25
Dialog Selection screen • 120
dialog statistics • 611, 615, 616, 617, 618

CA ADS statistics block • 611
checkpoint interval • 617
enabling of • 615

runtime collection and writing • 617
selecting • 616
statistics block identifiers • 617
statistics reporting • 618

Dialog Summary screen • 35
dialog, location of allocated • 547
dialogs • 119

mainline • 119

764 ADS Reference Guide

DIALOGS statement • 599
DISCONNECT command • 389

DISPLAY command • 334
mapout rules • 334

DIVIDE command • 309

DO command-statement • 319
dumps • 510

snap dumps • 510

E

EBCDIC data type • 304
EDIT IS ERROR/CORRECT condition • 257
ELSE command-statement • 319

END command-statement • 319, 322
environment status condition • 256

$BATCH • 256

$ONLINE • 256
ERASE command • 391, 438
ERASED condition • 257
error expressions • 279

error handling • 278, 279, 280, 281, 699
ADSO-STAT-DEF-REC • 281
ALLOWING clause • 280

autostatus • 278
built-in functions • 699
error expressions • 279
level-88 condition names • 281

site defined status definition record • 281
STATUS clause • 281
status definition record • 281

system-defined status definition record • 281
error messages • 455

suppression of • 455
ERROR-STATUS condition • 249

exclusive usage mode • 423
EXECUTE NEXT FUNCTION command • 339

mapless dialog • 339
EXECUTE ON EDIT ERRORS command • 257

execution modes • 60, 91
EXIT command • 318
explicit checkouts • 45

explicit releases • 45
extended run units • 143

checkpoint • 143
deadlock • 143

EXTRACT built-in function • 201

F

fast mode • 60
figurative constants • 269
FIND/OBTAIN • 394

FIND • 394
FIRST-TIME condition • 254, 356
FIX built-in function • 202
fixed dialog block (FDB) • 516, 584

contents of • 584
fixed-point numeric l iterals • 273
floating-point numeric l iterals • 273
flow of control • 135, 139

automatic editing • 139
default control key assignments • 135

footer area • 465

FORWARD function • 25
Function Definition (Dialog) screen • 74
Function Definition (Menu) screen • 80
Function Definition (Program) screen • 77

G

General Options screen?Page 2 • 63

General Options?Page 1 • 60
GET command • 411
GET DETAIL command • 261, 472
GET QUEUE command • 488

GET SCRATCH command • 498
Global Records screen (ADSA) • 85
GOBACK command • 507
GOODDATE built-in function • 203

GOODTRAILING built-in function • 204
graphic l iterals • 271
group data type • 161

H

header area • 465
HELP function • 25

help screen • 133

I

ICTL statement • 622, 655
ADSOBCOM • 622
ADSOBSYS • 655

IDENTICAL condition • 257

IF command • 319
implicit checkouts • 45
implicit releases • 45

Index 765

IN ERROR condition • 257
INCLUDE command • 300

INDEX built-in function • 223
INITCAP built-in function • 205
INITIALIZE RECORDS command • 515

INSERT built-in function • 206
INSERT directive • 300
intermediate result area (IRA) • 699
INVERT-SIGN built-in function • 207

INVOKE command • 341
ISEQ statement • 622, 655

ADSOBCOM • 622
ADSOBSYS • 655

K

KEEP commands • 412

L

LEAVE APPLICATION command • 343
LEAVE command • 343

LEFT-JUSTIFY built-in function • 208
level-88 condition • 249, 257
LIKE built-in function • 209

LINK command • 149, 345
l inking to OLQ • 149
nesting • 345
with a user program • 345

LIST statement • 603
local mode processing • 604

SYSIDMS parameter fi le • 604
location mode • 429

CALC • 429
DIRECT • 429
VIA • 429

LOG-BASE-10 built-in function • 210
LOG-BASE-E built-in function • 210
Logical Record Facil ity • 345

l inking to dialog with LRF subschema • 345

logical records • 433
in database access • 433
path • 433

LR-190 record • 676
LRACT-193 record • 676
LRF • 442

path status • 442

LRF commands • 434, 438, 439, 440, 442, 445
ERASE • 438
MODIFY • 439

OBTAIN • 440
ON command • 442

STORE • 445
WHERE clause • 434

LU 6.2 • 528

M

mainline dialogs • 328
mantissa values • 273

map field status conditions • 257
ALL BUT • 257
CHANGED • 257
ERASED • 257

EXCEPT • 257
IDENTICAL • 257
IN ERROR • 257

pageable map considerations • 257
TRUNCATED • 257

Map Image screen • 35
map modification commands • 450, 455

ATTRIBUTES • 450
MODIFY MAP • 455

map paging session • 466

map paging status condition • 261
maps • 450, 455

conditional expressions • 450
output data options • 455

permanent modifications • 450, 455
suppressing error message • 455
temporary modifications • 450, 455

mask character • 209, 251, 436
master function table • 681, 682
MATCHES condition • 251
matching string • 209

menu definition • 124
menu function • 25
menu maps • 126

ADSOMSON • 126

ADSOMUR1 • 126
ADSOMUR2 • 126
signon • 126

site-defined • 126
system-defined • 126

menu stack • 328
menu/dialog function • 25

message codes • 334
messages • 334
modified data tags (MDTs) • 455

766 ADS Reference Guide

resetting • 455
setting for map fields • 455

MODIFY command • 420, 439
MODIFY MAP command • 257, 455
MODULO built-in function • 211

MOVE command • 314
multibit binary constants • 272
multibit binary data type • 161
multiple databases • 287

accessing • 287
MULTIPLY command • 311

N

native VSAM data sets • 368, 376, 386, 389, 391,
402, 420

currency requests • 376

set status condition • 368
with CONNECT • 386
with DISCONNECT • 389
with ERASE • 391

with FIND/OBTAIN OWNER • 402
with MODIFY • 420

natural logarithm • 210

navigational DML commands • 373, 384, 386, 389,
391, 394, 411, 412, 420, 423, 426, 428, 429

ACCEPT • 373
COMMIT • 384

CONNECT • 386
DISCONNECT • 389
ERASE • 391

FIND/OBTAIN • 394
GET • 411
KEEP • 412
MODIFY • 420

READY • 423
RETURN DB-KEY • 426
ROLLBACK • 428
STORE • 429

nesting • 345
NEXT command • 321
NEXT-INTEGER-EQUAL-HIGHER built-in function •

212
NEXT-INTEGER-EQUAL-OR-LOWER built-in function •

213
nonnumeric l iterals • 273

NUMERIC built-in function • 214
numeric fields • 304
numeric l iterals • 273

O

OBTAIN command • 440
OCTL statement • 622, 655

ADSOBCOM • 622

ADSOBSYS • 655
ON command • 442
online control block (OCB) • 516
online help • 48, 124

in CA ADS applications • 124
in CA ADS compilers • 48

online terminal block (OTB) • 516
online terminal block extension (OTBX) • 516

online work area (OWA) • 516
Options and Directives • 101

P

packed decimal data type • 161
page=end CA OLQ • 150
page=start CA OLQ • 149

pageable map commands • 472, 474
GET DETAIL • 472
PUT DETAIL • 474

pageable maps • 105, 465, 466, 471
$PAGE field • 466
areas of • 465
Auto display specification • 105

Backpage specification • 105
flow of control • 466
map paging dialog options • 105, 471
map paging session • 466

UPDATE specification • 105
parameters for process commands • 159

keywords • 159

variable terms • 159
path status (LRF) • 442
POP function • 25
POPTOP function • 25

PREPARE-TO-RECEIVE command • 543
printer output • 455
process commands • 160

coding of • 160
comment character • 160
quoted strings • 160

process modules • 157

premap • 157
response • 157

processing • 527

cooperative • 527

Index 767

program function • 25
protected usage mode • 423

PUT DETAIL command • 257, 474
PUT QUEUE command • 491
PUT SCRATCH command • 502

Q

queue management commands • 486, 488, 491
DELETE QUEUE • 486

GET QUEUE • 488
PUT QUEUE • 491

queue records • 485
QUIT function • 25

R

RANDOM-NUMBER built-in function • 216

RCDACT-059 record • 676
READ TRANSACTION command • 353
READY command • 423
RECEIVE-AND-WAIT command • 543

record buffer block (RBB) • 516
record locking • 485

queue • 485

record locks • 369, 371, 384
deadlock conditions • 369
exclusive • 369
explicit • 369

implicit • 369
long-term explicit • 369
release of • 384
retrieval locks • 371

shared • 369
records • 485, 494

queue • 485

scratch • 494
recovery • 428
releases • 45

explicit • 45

implicit • 45
releasing entities • 45
remainder values • 211

REPEAT command-statement • 322
repeat string • 225
REPLACE built-in function • 218
replace string • 218

REQUEST-TO-SEND command • 545
REQUEST-TO-SEND-RECEIVED system field • 552,

557

reset keyboard • 455
response • 25, 124

runtime selection • 124
Response Definition screen (ADSA) • 70
response process • 114

security • 114
Response/Function List screen • 66
Response/Function List screen (ADSA) • 66
Response/Function search • 66

responses • 133, 135
runtime selection • 133
security • 135

RETURN command • 353

RETURN DB-KEY command • 426
RETURN function • 25
RHDCEVBF source module • 702

RIGHT-JUSTIFY built-in function • 219
ROLLBACK command • 428
run units • 142, 143

extended • 143

runtime system • 119
ADSOMAIN • 119
ADSORUN1 • 119

initiation of • 119

S

scratch area • 494

scratch management commands • 496, 498, 502
DELETE SCRATCH • 496
GET SCRATCH • 498

PUT SCRATCH • 502
scratch records • 494
screens • 35, 57, 60, 63, 66, 70, 74, 77, 80, 85, 87,

98, 101, 120, 124, 133, 145, 672

application compiler • 57
Dialog Abort Information screen • 145
Dialog Selection screen • 120
Dialog Summary Report screen • 35

Function Definition (Dialog) screen • 74
Function Definition (Menu) screen • 80
Function Definition (Program) • 77

General Options?Page 1 (ADSA) • 60
General Options?Page 2 (ADSA) • 63
Global Records • 85
help • 133

Menu definition • 124
Options and Directives (ADSC) • 101
Response Definition • 70

768 ADS Reference Guide

Response/Function List • 66
Response/Function List screen • 66

screens • 98
task codes • 87
TAT Update Util ity • 672

SEARCH Statement • 603
search, Response/Function • 66
security • 63, 114, 621, 719, 720

ADAPGOP2 • 63

ADSOBCOM • 621
General Options screen?Page 2 • 63
response • 719
response process • 114

security-tailored menus • 719
signon • 720

SEND/RECEIVE commands • 527, 534

summary • 534
SEND-DATA command • 545
SEND-ERROR command • 546
SET condition • 265

set membership options • 386
SETACT-061 record • 676
sign inversion • 207

SIGNOFF function • 25, 720
SIGNON function • 25, 720
SIGNON statement (ADSOBCOM) • 623
SIGN-VALUE built-in function • 220

sine values • 220
SNA (Systems Network Architecture) • 528
SNAP command • 516

sort key • 408
sorted set • 408
SQL • 109

access module • 109

compliance • 109
SQL comment character • 160
SQUARE-ROOT • 223
SREPORTs • 618

SSA-024 area • 676
SSOR-034 set • 676
SSR-032 record • 676

status codes • 553
status definition record • 281

ADSO-STAT-DEF-REC • 281
level-88 condition names • 281

site defined • 281
STATUS clause • 281
system defined • 281

step mode • 60

storage • 151
management • 151

XA • 151
STORE command • 429, 445
string built-in functions • 189, 201, 202, 205, 206,

208, 209, 218, 219, 223, 224, 225, 226, 232, 234,
236, 237, 240

CONCATENATE • 189
EXTRACT • 201

FIX • 202
INDEX • 223
INITCAP • 205
INSERT • 206

LEFT-JUSTIFY • 208
LIKE • 209
REPLACE • 218

RIGHT-JUSTIFY • 219
STRING-INDEX • 223
STRING-LENGTH • 224
STRING-REPEAT • 225

SUBSTRING • 226
TOLOWER • 232
TOUPPER • 234

TRANSLATE • 236
VERIFY • 237
WORDCAP • 240

string verification • 237

STRING-LENGTH built-in function • 224
STRING-REPEAT built-in function • 225
subroutine control commands • 505, 506, 507

CALL • 505
DEFINE • 506
GOBACK • 507

Subschema Control Block • 384

SUBSCHEMA-CONTROL • 345
SUBSTRING built-in function • 226
SUBTRACT command • 313
suspense fi le • 358

symbol table • 101
SYSIDMS parameters • 604

for physical requirements • 604

system fields • 552, 557
system functions • 25, 133, 720

BACKWARD • 25
FORWARD • 25

HELP • 25, 133
POP • 25
POPTOP • 25

QUIT • 25

Index 769

RETURN • 25
SIGNOFF • 25, 720

SIGNON • 25, 720
TOP • 25

SYSTEM statement (ADSOBSYS) • 655

system-supplied data fields • 287
$ERROR-COUNT • 287
$INPUT-COUNT • 287
$OUTPUT-COUNT • 287

CURSOR-COLUMN • 287
CURSOR-ROW • 287
DATE • 287
DB-NAME • 287

DIRECT-DBKEY • 287
ERROR-STATUS • 287
LENGTH • 287

NODE-NAME • 287
TIME • 287

T

tables • 101
diagnostic • 101
symbol • 101

task • 141
task application table (TAT) • 87, 120, 516
task code, for TCF • 52
Task Codes screen (ADSA) • 87

TAT Update Util ity • 672
test conditions • 434

WHERE clause • 434

THEN command-statement • 319
time built-in functions • 229

TIMEEXT • 229
TODAY built-in function • 231

TOLOWER built-in function • 232
TOMORROW built-in function • 233
TOP function • 25
TOUPPER built-in function • 234

TRACE • 518, 725
trace facil ity • 725
trail ing sign built-in functions • 204, 235, 242

GOODTRAILING • 204
TRAILING-TO-ZONED • 235
ZONED-TO-TRAILING • 242

TRAILING-TO-ZONED built-in function • 235

TRANSFER command • 356
transfer control facil ity • 52, 92
TRANSLATE built-in function • 236

trigonometric built-in functions • 186, 187, 188, 190,
220

ARCCOSINE-DEGREES • 186
ARCCOSINE-RADIANS • 186
ARCSINE-DEGREES • 187

ARCSINE-RADIANS • 187
ARCTAN-DEGREES • 188
ARCTAN-RADIANS • 188
COSINE-DEGREES • 190

COSINE-RADIANS • 190
SINE-DEGREES • 220
SINE-RADIANS • 220

TRUNCATED condition • 257

U

usage modes • 423

exclusive • 423
protected • 423
retrieval • 423
shared • 423

update • 423
user program • 345

DC RETURN statement • 345

l inking • 345
user-defined • 285

user-defined • 285
util ities • 583, 621, 654, 662, 671

ADSOBCOM • 621
ADSOBSYS • 654
ADSOBTAT • 662

ADSORPTS • 583
ADSOTATU • 671

util ity commands • 510, 513, 515, 516, 518, 519
ABORT • 510

ACCEPT • 513
INITIALIZE RECORDS • 515
SNAP • 516
TRACE • 518

WRITE PRINTER command • 519

V

variable dialog block (VDB) • 516
variables • 171, 245, 269, 279, 285, 287, 293

arithmetic expressions • 171
conditional expressions • 245

constants • 269
data fields • 285
entity names • 293

770 ADS Reference Guide

error expressions • 279
system-supplied • 287

target fields • 287
variable target fields • 287

VDE module • 693

processing of • 693
vector call codes • 584
VERIFY built-in function • 237
VXDE module • 681, 685, 693

processing of • 693

W

WEEKDAY built-in function • 238

WHAT-RECEIVED system field • 552, 557
WHERE clause • 434, 436

comparison expression • 436

conditional expression • 434
test condition • 434

WHILE command • 322
with FIND/OBTAIN DB-KEY • 399

WORDCAP built-in function • 240
WRITE TO LOG/OPERATOR command • 523
WRITE TRANSACTION command • 358

X

XDE module • 681, 683, 685

Y

YESTERDAY built-in function • 241

Z

z/OS and PS/390 JCL • 605
ADSORPTS • 605

z/OS JCL • 650, 656

ADSOBCOM • 650
ADSOBSYS • 656

z/VM commands • 605, 653, 660
ADSOBCOM • 653

ADSOBSYS • 660
ADSORPTS • 605

z/VSE JCL • 605, 651, 658

ADSOBCOM • 651
ADSOBSYS • 658
ADSORPTS • 605

zoned decimal data type • 161

ZONED-TO-TRAILING built-in function • 242

	CA ADS for CA IDMS ADS Reference Guide
	CA Technologies Product References
	Contact CA Technologies
	Documentation Changes
	Contents
	1: Introduction to CA ADS
	Introduction
	Syntax Diagram Conventions
	What is CA ADS?
	What CA ADS Does
	Creating a CA ADS Application
	Tools Used To Develop an Application
	The CA ADS Application Compiler (ADSA)
	Mapping Facilities (MAPC and the Batch Compiler/Utility)
	CA ADS Dialog Compilers (ADSC and ADSOBCOM)
	IDD Menu Facility and Online IDD
	The CA ADS Runtime System

	CA ADS Screens
	Action Bar
	Action Bar Actions

	Checkout and Release Procedures
	How to check out or release an entity
	Listing Checkouts (ADSL)
	Modifying Checkouts (ADSM)

	CA ADS Help Facility

	2: CA ADS Application Compiler (ADSA)
	Overview
	Application Compiler Session
	Invoking the Application Compiler
	Sequencing Through Application Compiler Screens
	Summary of Application Compiler Process
	Default Control Keys

	Suspending a Session
	Terminating a Session

	Application Compiler Screens
	Main Menu
	General Options Screen--Page 1
	General Options Screen--Page 2
	Response/Function List Screen
	Response Definition Screen
	Function Definition (Dialog) Screen
	Function Definition (Program) Screen
	Function Definition (Menu) Screen
	Global Records Screen
	Task Codes Screen

	3: CA ADS Dialog Compiler (ADSC)
	Overview
	Dialog Compiler Session
	Invoking the Dialog Compiler
	Sequencing Through Dialog Compiler Screens
	Summary of Dialog Compiler Process
	Default Control Keys

	Suspending a Session
	Terminating a Session

	Dialog Compiler Screens
	Main Menu
	Options and Directives Screen
	Map Specifications Screen
	Database Specifications Screen
	Records and Tables Screen
	Process Modules Screen

	4: CA ADS Runtime System
	Initiating the CA ADS Runtime System
	How to Define Runtime Tasks
	How to Start a CA ADS Application
	Runtime System Initiating Statement

	Runtime Menu and Help Screens
	Menu Screens
	Site-Defined Menu Maps
	System-Defined Menu Maps
	Application Help Screen

	Runtime Flow Of Control
	Effects of Automatic Editing on Flow of Control

	Message Prefixes
	CA ADS Tasks, Run Units, and Transactions
	Run units and database access
	Extended Run Units

	Dialog Abort Information Screen
	Debugging a Dialog
	Linking From CA ADS To CA OLQ
	Linking to CA OLQ
	Passing Syntax to CA OLQ

	Linking Built-In Functions With The Runtime System
	ADSOVCON Module Creation
	#BIFVCON Macro Parameters

	Managing Storage
	Adjusting Record Compression
	Calculating RBB Storage
	Writing Resources to Scratch Records
	Using XA Storage

	5: Introduction to Process Language
	Overview
	Process Modules
	Creating Process Modules
	Adding Process Modules to Dialogs
	Executing Process Modules

	Process Commands
	Constructing Commands
	Coding Considerations

	Data Types
	Conversion Between Data Types

	6: Arithmetic Expressions
	Overview
	Syntax
	Syntax: Arithmetic-Expression

	Evaluation Of Arithmetic Expressions
	Evaluation of Arithmetic Expressions

	Coding Considerations

	7: Built-in Functions
	Overview
	Invocation Names
	Built-In Function Values
	Coding Parameters

	User-Defined Built-In Functions
	System-Supplied Functions
	Arithmetic Functions
	Date Functions
	Date-Time Stamp Functions
	String Functions
	Trailing-Sign Functions
	Trigonometric Functions

	ABSOLUTE-VALUE
	ARC COSINE
	ARC SINE
	ARC TANGENT
	CONCATENATE
	COSINE
	DATECHG
	DATEDIF
	DATEEXT
	DATEINT
	DATEOFF
	DATETIMX
	DISPDT
	DTINT
	EXTRACT
	FIX
	GOODDATE
	GOODTRAILING
	INITCAP
	INSERT
	INVERT-SIGN
	LEFT-JUSTIFY
	LIKE
	LOGARITHM
	MODULO
	NEXT-INT-EQHI
	NEXT-INT-EQLO
	NUMERIC
	RANDOM-NUMBER
	REPLACE
	RIGHT-JUSTIFY
	SIGN-VALUE
	SINE
	SOCKET
	SQUARE-ROOT
	STRING-INDEX
	STRING-LENGTH
	STRING-REPEAT
	SUBSTRING
	TANGENT
	TIMEEXT
	TIMEINT
	TODAY
	TOLOWER
	TOMORROW
	TOUPPER
	TRAILING-TO-ZONED
	TRANSLATE
	VERIFY
	WEEKDAY
	WORDCAP
	YESTERDAY
	ZONED-TO-TRAILING

	8: Conditional Expressions
	Overview
	General Considerations
	Syntax for Conditional Expressions

	Batch-Control Event Condition
	Command Status Condition
	Comparison Condition
	Cursor Position Condition
	Dialog Execution Status Condition
	Environment Status Condition
	Level-88 Condition
	Map Field Status Condition
	Map Paging Status Conditions
	Set Status Condition
	Arithmetic and Assignment Command Status Condition

	9: Constants
	Overview
	Figurative Constants
	Graphic Literals
	Multibit Binary Constants
	Nonnumeric Literals
	Numeric literals

	10: Error Handling
	Overview
	The Autostatus Facility
	Status Codes Returned by the Autostatus Facility

	Error Expressions
	The ALLOWING Clause
	Status Definition Records
	ADSO-STAT-DEF-REC

	11: Variable Data Fields
	Overview
	User-Defined Data Field Names
	System-Supplied Data Field Names
	Entity Names

	12: Introduction to Process Commands
	Overview
	Summary Of Process Commands
	INCLUDE
	Dialog Compiler Directive

	13: Arithmetic and Assignment Commands
	Overview
	General Considerations
	Numeric Fields
	EBCDIC and DBCS Fields
	Arithmetic and Assignment Command Status Condition

	Arithmetic Commands
	ADD
	Purpose
	Syntax
	Parameters
	Usage

	COMPUTE
	DIVIDE
	MULTIPLY
	SUBTRACT
	Purpose
	Syntax
	Parameters
	Usage

	Assignment Command
	MOVE

	14: Conditional Commands
	Overview
	EXIT
	IF
	NEXT
	WHILE

	15: Control Commands
	Overview
	General Considerations
	Application Thread
	Operative and Nonoperative Dialogs
	Application Levels
	Mainline Dialog
	The Menu Stack
	Database Currencies

	CONTINUE
	Purpose
	Syntax
	Parameters
	Usage

	DISPLAY
	EXECUTE NEXT FUNCTION
	INVOKE
	LEAVE
	LINK
	READ TRANSACTION
	RETURN
	TRANSFER
	WRITE TRANSACTION

	16: Database Access Commands
	Overview
	Navigational DML
	Overview of Navigational Database Access
	Use of Native VSAM Data Sets
	Record Locking
	Suppression of Record Retrieval Locks
	Overview of ACCEPT
	ACCEPT DB-KEY FROM CURRENCY
	ACCEPT DB-KEY RELATIVE TO CURRENCY
	ACCEPT PAGE-INFO
	ACCEPT STATISTICS
	BIND PROCEDURE
	COMMIT
	CONNECT
	DISCONNECT
	ERASE
	Overview of FIND/OBTAIN
	FIND/OBTAIN CALC
	FIND/OBTAIN CURRENT
	FIND/OBTAIN DB-KEY
	FIND/OBTAIN OWNER
	FIND/OBTAIN WITHIN SET/AREA
	FIND/OBTAIN WITHIN SET USING SORT KEY
	GET
	KEEP
	KEEP LONGTERM
	MODIFY
	READY
	RETURN DB-KEY
	ROLLBACK
	STORE

	Logical Record Facility Commands
	Overview of LRF Database Access
	WHERE Clause
	Conditional Expression
	Comparison Expression
	ERASE
	MODIFY
	OBTAIN
	ON Command
	STORE

	17: Map Commands
	Overview
	Map Modification Commands
	Attributes Command
	CLOSE
	MODIFY MAP
	Syntax

	Pageable Maps
	Areas of a Pageable Map
	Map Paging Session
	Map Paging Dialog Options
	GET DETAIL
	PUT DETAIL
	Creating or Modifying a Detail Occurrence of a Pageable Map
	Specifying a Numeric Value Associated with an Occurrence
	Specifying a Message to Appear in the Message Field of an Occurrence

	18: Queue and Scratch Management Commands
	Overview
	Queue Records
	DELETE QUEUE
	GET QUEUE
	PUT QUEUE
	Scratch Records
	CA ADS Usage
	CA ADS Batch Considerations

	DELETE SCRATCH
	GET SCRATCH
	PUT SCRATCH

	19: Subroutine Control Commands
	Overview
	CALL
	DEFINE
	GOBACK

	20: Utility Commands
	Overview
	ABORT
	ACCEPT
	INITIALIZE RECORDS
	SNAP
	TRACE
	WRITE PRINTER
	WRITE TO LOG/OPERATOR

	21: Cooperative Processing Commands
	Using SEND/RECEIVE Commands
	How Cooperative Processing Works

	Sample Cooperative Application
	Program A: Client Listing (PC)
	Dialog B: Server listing (Mainframe)

	SEND/RECEIVE Commands
	ALLOCATE
	CONFIRM
	CONFIRMED
	CONTROL SESSION
	DEALLOCATE
	PREPARE-TO-RECEIVE
	RECEIVE-AND-WAIT
	REQUEST-TO-SEND
	SEND-DATA
	SEND-ERROR
	Design Guidelines
	Understanding Conversation States
	Conversation States
	Conversation States in a Successful Data Transfer

	Testing APPC Status Codes and System Fields
	Status Codes
	System Fields
	When APPC Status Codes and System Field Values are Returned
	APPCCODE and APPCERC
	System Fields

	22: OSCaR Commands
	OSCaR Command Syntax
	OPEN
	SEND
	CLOSE
	RECEIVE

	Sample OSCaR Application
	OSCaR to APPC Mapping

	A: System Records
	Overview
	ADSO-APPLICATION-GLOBAL-RECORD
	ADSO-APPLICATION-GLOBAL-RECORD

	ADSO-APPLICATION-MENU-RECORD
	ADSO-APPLICATION-MENU-RECORD

	B: CA ADS Dialog and Application Reporter
	Overview
	AREPORTs Documenting CA ADS Dialogs

	Dialog Reports
	Application Reports
	Control Statements
	APPLICATIONS
	DIALOGS
	LIST
	SEARCH

	SYSIDMS Parameter File
	JCL and Commands To Run Reports

	C: Dialog Statistics
	Overview
	Collecting Selected Statistics
	Enabling Dialog Statistics
	Selecting Dialogs
	Setting a Checkpoint Interval
	Collecting and Writing Statistics
	Statistics Reporting

	D: Application and Dialog Utilities
	Overview
	ADSOBCOM
	Standard Control Statements
	ICTL
	OCTL
	ISEQ

	Special Control Statements
	SIGNON
	COMPILE
	DECOMPILE
	Dialog-expression
	JCL and Commands
	z/OS JCL
	z/VSE JCL
	z/VM commands

	ADSOBSYS
	Control Statements
	SYSTEM Statement
	JCL and Commands
	z/OS JCL
	z/VSE JCL
	z/VM commands

	ADSOBTAT
	Control Statements
	JCL and Commands
	z/OS JCL
	z/VSE JCL
	z/VM commands

	ADSOTATU
	TAT Update Utility Screen

	E: Activity Logging for an CA ADS Dialog
	Overview
	Data Dictionary Organization
	Activity Logging Record Formats

	F: Built-in Function Support
	Overview
	Internal Structure Of Built-In Functions
	Master Function Table
	Model XDE Module
	XDEs and VXDEs
	Processing Program Modules
	Runtime Processing of Built-In Functions

	Assembler Macros
	#EFUNMST
	RHDCEVBF
	#EFUNMOD

	Changing Invocation Names
	Creating User-Defined Built-In Functions
	Steps for Generating a User-Defined Built-In Function
	LRF Considerations for User-Defined Built-In Functions
	Calling a User-Defined Built-In Function

	G: Security Features
	Overview
	CA ADS Compiler Security
	CA ADS Application Security
	Response Security
	Signon Security

	H: Debugging an CA ADS Dialog
	Overview
	Creating a Symbol Table
	Trace Facility
	Online Debugger

	I: Compiler Overview and Default Control Keys
	Summary of Application Compiler Process
	Default Control Keys
	Summary of Dialog Compiler Process
	Default Control Keys

	J: Runtime Error-Status Codes
	Status Codes Returned by the Autostatus Facility
	Major DB Status Codes
	Minor DB Status Codes
	Major DC Status Codes
	Minor DC Status Codes
	ERROR-STATUS Condition Names
	Autostatus Return Codes
	Default Level-88 Values

	K: Online Debugger Syntax
	General Registers Symbols
	DC/UCF System Symbols
	Address Symbols and Markers
	User Symbols
	Program Symbols
	Syntax: Data Field Names
	Syntax: Line Numbers
	Syntax: Qualifying Program Symbols

	Expression Operators
	Delimiters
	Debugger Commands
	Syntax: AT
	Syntax: DEBUG
	Syntax: EXIT
	Syntax: IOUSER
	Syntax: LIST
	Syntax: MENU
	Syntax: PROMPT
	Syntax: QUALIFY
	Syntax: QUIT
	Syntax: RESUME
	Syntax: SET
	Syntax: SNAP
	Syntax: WHERE

	Index

