CA ADS™ for CA IDMS™

Application Design Guide
Release 18.5.00

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for yourinformational purposes onlyandis subject to change or withdrawalby CAatanytime. This
Documentationis proprietaryinformation of CAand maynotbe copied, transferred, reproduced, disclosed, modified or
duplicated, inwhole orin part, without the prior written consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copiesof the Documentation forinternal use by you and your employeesin connection with
thatsoftware, provided that all CA copyright notices and legends are affixed to each re produced copy.

The rightto print or otherwise make available copiesof the Documentation is limited to the period during which the applicable
license for such software remains in fullforce and effect. Should the license te rminate foranyreason, itis your responsibility to
certifyin writing to CAthatall copies and partial copies of the Documentation have beenreturnedto CA ordestroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CAPROVIDES THISDOCUMENTATION “AS IS” WITHOUTWARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FORA PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILLCABE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THISDOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IFCA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCHLOSS OR DAMAGE.

The use of anysoftware product referencedinthe Documentationis governed bythe applicable license agreement and such
license agreementis not modified inanywaybythe terms ofthis notice.

The manufacturer of this Documentationis CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Governmentis subject to the restrictions
setforth in FARSections 12.212,52.227-14,and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
theirsuccessors.

Copyright © 2013 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belongto
theirrespective companies.

CA Technologies Product References

This document references the following CA product:

m CA IDMS®/DB Database

m CAIDMS®/DC Transaction Server Option

m CA IDMS® DatabaseUniversal Communications Facility Option

m CAIDMS®/DC Transaction Server Option or CA IDMS® Database Universal
Communications Facility Option

m CA CulpritCAIDMS®
m CA OLQ® OnlineQuery for CA IDMS®

Contact CA Technolodies

Contact CA Support

For your convenience, CA Technologies provides one sitewhere you canaccess the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

m Onlineandtelephone contactinformation for technical assistanceand customer
services

m Information about user communities and forums
m Product and documentation downloads
m CA Support policies and guidelines

m Other helpful resources appropriate for your product
Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
cansend a message to techpubs@ca.com.

To providefeedback about CA Technologies product documentation, complete our
shortcustomer survey which is availableonthe CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Contents

Chapter 1: Introduction 9
OVEIVIBW ..ttt ettt ettt b et ea s b et e b e s e e st eb e b et e st b eaesa et e st s eaesb et eae e b e e eme b eat e et et eat e b et eat e he e eneebentebensent et et eseebe st enesbensenenaeneebeneene 9
APPITICATION GUIHEIINES ..ottt ettt s et s bt et et e b e s e et e s e s e ese s b et esesaeneebe s entesessenesanssesessensssersnns 10
Tools for Designing and Developing APPIICAtIONS ..ot a et besae e saeste e e bensesessans 10
CA ADS Application Compiler (ADSA)
CA ADS DialOg COMPIIEN (ADSC)...cucuirireteeeierereeesistesestsseseessssessssssssesessssesasessssesasssesessssssesesesssesessssesasensssesessssssesesesssessnns
CA ADS RUNTIME SYSTEOIM ..ttt sttt ste st st e st s e e st e aeeste s saeesaeesaeesse e b e eee s st esaaesaseasseansesnsesaeesatasaeesseassesasesssanseessenns
DD CENEIAl REPOSITOIY ..cuiitiieiieieireirieestete et te e ettt e e e e st e st e e e s e s s ese et eseeseesessesesseseesessasesseneesersensesesanessensasesans 13
CA IDMS/DC MaPPing FACHITY . ocecueieieieteeeieteteeei e tete et te e e et e e et ete et ebebe st ebesass st ebesassebesesssesasensasebeseasesesassssesesannas 14
Batch and Online Reporting Facilities... .14
The Design and DeVelOPMENT TEAM ...ttt e sttt se st e st et esaese st e e e b et ese st e e ebesestesestensesessansssensesessansanessans 16

Chapter 2: Design Methodology 19
DevelOpMENt Of Eff @CTIVE D ESTEN .cciiiiirieieeieie ettt et sa et e s e sa e et e b e st s be st esesaeneesessesestensesessensesesans 19
Three Phases .20
Step ONe: ANAlYZING the Probl @M. ettt ettt et a e st e e s se st e e be e e st ssessesesaenes 21
TEAM APPIOACK ettt ettt et e e bt e e e be st e e e be st e se st ese e b et eae et e sbeseesensase st ens et e ses e et ansessebenbeseebenseseteseetenterentans 21
How to Define the Need for the APPliCatioN.......ccccecirrieecrecre sttt sa e es 21
DEVEIOPING TWO LiSTS cueeieiiuirieieieiiisieise et ete st e st e e e et e e e e st e e et et e seste e e s e tesesbesseseesessesessassesessesesteneesessensesessasessensasensans 22
Step Two: Developing the Design .22
DBA INCOrporates REIATEA Data....cccccceiirieirieiriiieeeerie et ste et s te st ettt et e s te e b e e e s e sesbesessensesessassssessesessansaneasans 22
External /FUNnCtional SPECITICAtIONS.c.ciciiueeiieieteteee ettt ettt ettt ettt et te e s be st et ess st eteseasesesesnasene 22
Internal/TechniCal SPECITICATIONScccueueuiieeeeeieteee et b s a s b st b b bbb et e b e s et et et esebebesesesetesenne 28
Step Three: BUildiNga PrOtOTYPE ..ttt se et ettt e e e be st e e e b et eneebesaeneetesaetesteneerestennesenes 28
Uses for the Prototype
Unique Features of the ADSA BUilds ProtOtYPe. .ttt ettt te e se st se s s e saaseseesans 29
HOW TO CrEate the PrOtOtYP .. iceiieieieeiirieieerts ettt sttt sttt ettt a et be et b e esa st e e et e sese e ebesenessesenensees 30
Step Four: Writing Process Code for the DialOgs. ..ottt tee st te e sa e e e s s e sesae e ssesaenessanes 31
Writing the Dial0g SPECITICATIONScciuiiieiteieteees ettt a e st e b et e e et et ese et eneebesteseebaneeaesaenes 31
Writing the Source Code .34
Step Five: Testing and Implementing the APPliCatioN. ...ttt e 41
TEST PlaN.eieiieeeee ettt ettt ettt A e e he A et h e e oAt A et e b e e e Rt Re A et e R et e Re e e eatebe s eaeeben b et eaentenentens
TEST PrOCEAUIE PRASES ..ottt ettt sttt b et e b st e b e b et st e b ettt be st sabene et ebenentnsenen
Underlying Issues and KeY CONSIABIATIONSccceeuerieiieieiieiiterieeste e e ste e s te e e e sae e e seste s sbessesesaessssesesessansessesassesensesessesesensans
Data Definition and Database Design............

Advantages of Separating Information

Contents 5

DEfi NIt ON OFf INTOIMATTION ettt be bbb et e b e b s essessessensessesbesssessebeessessenbansestessens 44

Chapter 3: Building a Prototype 45
THIEE-StAZE APPIOACK ...ttt st a et s b e et et e bt eseeaesbe st e s e s ess et e st eRe st ene et e bensesesbensesentesestensereaans 45
Stage |1 BUilding the BasiC ProtOTYPe . ..ccc ettt 45
Prototype Can Be DevelOped QUICKIY. ..ottt sttt sttt se e nes 45
ACTIVITIES O POITOMM ittt sttt ettt s e e ket et eae et e s e s e e st et ese e saesenesaebenenessesesenensesan 46
How to Compile the Application (ADSA) .46
COMPIING TNE IMIAPS ..ttt ettt et ettt ese et et e se et eseese et eseebesbene et e b ens et aneebe b ese et ansensebensesestensebesenensanes 47
COMPIliNG the DIialOZS (ADSC) ..uvvveveuieriereererieerereseesesesssseseessssasesessesssessesssessssssassssesessssssssesensssesesesesasenssssesssssesesessesesenens 47
USEI REVIBW ...ttt ettt ettt ettt h et st e e et e b et e b e s b et e b et e ae e b et e aeseeaE e b et e Rt see e e b e e en b ese b e st es et e st sbenesb et ebeseansentnans 48
Stage |1: Adding Process Logic and Data REtrTEVAL.......cceviceririeieininieirsee ettt s e ne s 48
ADSA ENNANCEMENTS .ottt sttt sttt es et et s et s e b et e s e b e ek e st st b e s et s e b e b et b e b e st e s e eb et sasbenenessebeseatnsenen 48
POPUIATING ThE DiCTIONATY ..cveicieieeieieeeeteee ettt e ettt e e be s ebe st ese et et ebeesesteseesansesesbasessansesessansesesbensesansesetans 49
CAIDMS Mapping Facility ENNANCEMENTSc.ovviiiiieiicerieeeerie ettt ettt et ettt esesaesesbesaenesaenes 49
ADSC ENNANCEMENTS ..ottt sttt ettt ettt a et be b e et et e be etk e et e ke se et e b ebe e st e ke se e st e se e saebese et ebasanesteten 50
Stage I11: Refining the IMaps @0 PrOCESSEScuiuiueuiuiiiueiieieieietteete ettt ettt sttt sttt sa s nttes 50
Chapter 4: Designing Maps 51
AL DULES Of SUCCESSTUI IMTAPS «..einveieiieee ettt ettt st et st s et e st eae st e e et e s e s s e s e b essesansesesbensesessenseseseseesensesensans 51
Determining SUCCESS OF AN APPIICATION ..cviiiiiee et st se e s e s b e e e s e s e sesaassesesans 51
Design Standards fOr @ DialOg IMaP.....ccccicerieiieeeetetete et te et e e et e st et st e s et e aese st e s ebeaesaesebasesbansesaebansesensesessensesnatans 52
Dialog Map Standards
ONliNE MAPPING PrOCEUUIES.....c.eeveveeietiieestete e te e tes e ea e st e te s e e e et e e et e e e s et eseebassese b e e ese st esaebesseseetassebantessasestansesessanessenes 52
ChOOSING IMEBNU IMTAPS ...ttt ettt sttt ettt b et e et b et e e E e s e R e e b et e e e b et e b et e b e st e e s b ene et e s ese e ne 53
AVATDIE MENU IMAP TYPES .eviieeiereieriieistete e e rte e teree e te e s te e e e te st ese st esaesessese st ensesessene et assessesansasessassesensesessensaneesensenessans 53
SYSTEM-DEFINEA IMENU IMPS c.eeuiiieiiirieteieee e se ettt ettt se st e st ae e sae b e e st e s ase e etese e st esasessssssenesessesesesssennssssesanens 53
User-Defined Menu Maps .54
DESTZNING DIlOZ IMAS cuueiviieuieieietieieee e e te e ste et et e et e se et e e e teba s etessess et astese et enseba s essesessessssansebesbessebansetessanteseesansesensesessansesesans 56
DESIZN Dial O QUESTIONS ..cueuvveuiirieieiieieieere ettt ettt se et sa et b ettt e b s et s s e b et sbebe et s b e st e seebentae s ebese st ebeneneseseneanres 56
Y RaTe T e [l o =g Sl o5 0T L (3OO SRRR 56
Sample Template for an APPliCATION SCrEENcucivivieieiereeer ettt a st et ss st as e essesanens 57
Chapter 5: Designing Dialogs 59
OVEIVIBW ...ttt sttt ettt h ettt et et e s b e st et et et e b e b e b e e b e e b e e he et e b e b e sheea e eRe e R e e R e e a b e b e eh e e besheeae e R b et et e b e sbesbeenteat et et enbesbenbe et 59
WAt iS @ QIAI0OZ? ..ottt sttt sttt e b et b s b e s et s b e bt e seebeme e b s s ene e s eneneas 59
Dial 08 CNAraCEIISTICS cuvveueuirieueieirieie ettt ettt ettt ettt st b et et a st e b et sbebe et st e be e st ek e se e st et et et e ae et ebenentes 59
DHAlOE LEVEI ...ttt sttt st b e st et b et e s s bt e a e s e et b et e Re A et be e e Rt s et e Rt e ae b e Re b entea et e R e ne et e e ebens 59
DAl 0Z SEATUS ...ttt sttt b e sttt s b e et b bt s ket E ke s et et e bk et be st s et e ket ek be Rttt be et ae et ene 60
(D11 o = 0o Yo ¥ | TSRS 61

6 Application Design Guide

DESTEN CONSIARIATIONS ...ttt ettt e st e et e e te s te e ete s be e et et ebe st eneebeaessebessess st ensebesessebensebessenteseebansesensasessensesesans 62

Record Buffer Management .62
W OTKING STOTAEE AN S...ccuiieuiireieteiteirteieteetete e e e e te st et ste e esasseseese st eseetasaesa et eseebasseseesestese et eseeb et ese et eseesentensesestansetesenensanes 65
(€1 o] o F 1 I 2=l o] o 3OO OSSOSO 67
Dialogs That Issue NaVigatioNal DIML.......c.cccuvieuirieieiiieiserieesieseeeste s et te e e e sas e stesaeseste e s esaese st e sesessansesassassssensesessensasessans 73
Database Currencies: HOw CUrrency is MaintaiNed......c..ococeeeeeininieieenieeiesieeeeneste et seese e te et sse st sesessssesessens 73
Extended Run Units
LONGEEIMN LOCKS ...eeteiietieieietete ettt et te et et e e e b e e et et ebe st ese et et ese et essebeebessebebessesensesesbess et essassesensesestansesensesessansasentans
Record Buffer Management for LOZIiCal RECOIMS.........ccveriiirieireiniseieertete ettt ettt ss s s s e snens 77
Chapter 6: Naming Conventions 79
OVEIVIBW ...ttt ettt et e bt e ae et st et et et e sb e e st et et et e b e b e b e s be e b e eh e et e b e s e saees e e st e st e st e st et e e b e e heea e e Rt e a e e at et e b esesseenteatententantansenseres 79
NaMING APPIICATION ENTiTIES ...eciiiiieieieiieeeee ettt ettt e et e e b e sb e e e se s esesseseesesaeneesasseseesensasessansesesans 79
SaMPle NAaMING CONVENTIONSocviiiiiiiieieeieieteste et te e e et te s te st esestesaeseete e ebe st ese et aseese et essassstansetesassetensetesseneesessansnsanes 79
ASSIENINE NAIMES.....eieuieiieietectertere ettt s et et e st et e s besaesae e st et et e s e b e sesseeat e st et et essassessesaeeate st e s esseeseesee st ensansansansansans 81
Naming Database INfOrmation ENTiITi@S ..ottt st be sttt e e et e st e e e ebe b e seebesaebenbesesbensesentans 81
Sample GIosSary Of NamiNgG TOKENSc.c.cuciiiueieieiceeteet ettt ettt sttt s sttt nenes 82
AVailable NamingG CONVENTIONSccuciviiieiieieeeetestete e e e e e te et e st e e et e st e e st e e ebe st ese st eseeseesastasessansesassesessansesessensesessans 83
Chapter 7: Performance Considerations 85
OVEIVIBW ..ttt ettt ettt et st e et s b et et e e st s e e s et e e s e s e e e e e e R e s e at s e e e st s e ae s e e ea e e R e e e Rt s et e R e e emt s et e st s e e enene et ere e eneneenes 85
SYSTEM GENEraAtiON Par@mMELErS ...cciiiieiiicteriestert ettt ettt s e et e s te et eete st e s e e sate s be e e e satesaeesatasaeessaasseennaesasasaeessaans 85
ADSO Statement Parameters85
PROGRAM Statement Parameters ...ttt b e sr e sr et 86
TASK STatemMENT PATamMELEIS ..ottt ettt ettt et et et et e s st et et e b e b e ssesseebeeseeneensesbassenaenns 86
Allocating Primary and Secondary STOrage POOIS........cucieiieiieieeseseste et e et sa e ae e ss e sae st e saans 86
Setting the FAst MOAE TRIESHO Iv ittt ettt sttt a et sese st se e s sassanessennnens 88
Specifying the Number of Internal and External Run Units ...88
RESOUICE IMANAEEMENT ...ttt ettt et ettt et e st e st e st e st e et e et e st e satesaeesbe e aeesaeesbe e sa e be e se et e easesasaenseenseestesnsesasassnesanas 89
APPITICAtION RESOUITE US ...ttt s ettt et st e e e e st et st e e e se st e e ebe e e st esesessssassasesseseesensesessensesessansesessans 90
MONITOring RESOUICE CONSUMPEION vttt st st et e st e s b e s besbesba e e eeesbesbeeseeseensassansansansassenes 91
CONSEIVING RESOUICES.....ceiiiiierierieuteteteete st st st et e st et e st e st e s be s st s at et et e b esbesae s st sateat et e s e e se e b e e bt e st e at e st et e benbesatententensansansansannes 96
Appendix A: Application Concepts 99
OVEIVIBW ...ttt sttt ettt h ettt et et e s b e st et et et e b e b e b e e b e e b e e he et e b e b e sheea e eRe e R e e R e e a b e b e eh e e besheeae e R b et et e b e sbesbeenteat et et enbesbenbe et 99
APPITICAtION COMPONENTS ..oovieiiiieieieeteeret ettt et st e st s e see st st et ese st e s e e be s e s eseseessesessesessensesesseneesessensssnnsesessansssesnns 99
The Structure of an CA ADS APPLICATION ...ocucieiiicieeeee ettt sttt be st st e s besbesaesesbanneseaesensans 99
FUNCTIONS ettt sttt st et b et b e bt e h s et st st et et e saeeae et e b et e s e s b e e b e e Re e Rt et et e b e sbessesseeatententenbesbessesaeenes 100
RS PONS S ..ttt ettt s et st s e st e st e st e st e s aesubesaeesaa e s bt e s b e e be e s b e s e st e s st e s b e e be et e e b e et e e et e e s e e b e e beeabenat e et enasesaae st seeaneearens 102
DIl 08 FEATUIES ...eteeeeeirteieecirte ettt st sae ettt e e s et e se et st e s e e e et e et et e e et et s e s e e et e s eseness et esese et ene et esese e et ebane st etesane e esanerensns 103

Contents 7

Dialog Components
DiIQlOZ PrOCEUUIES ...ttt ettt ettt et st e s sa et st e e e s e st ese et e st e sesse s eseseenees et eseseeseeba s ensesessanessensesessansssnnes 104
Control Commands

The Flow of Control
Glossary 111

Index 127

8 Application Design Guide

Chapter 1: Introduction

This section contains the following topics:

Overview (see page 9)

Application Guidelines (see page 10)

Tools for Designingand Developing Applications (see page 10)
The Design and Development Team (see page 16)

Overview

This manual is designed for those individuals responsible for designing and developing
onlineapplicationsinan CA ADS environment. A methodology is presented that covers
the design process and the implementation of a designinan application prototype.

Separate chapters discuss design features to be considered when creating the maps and
dialogs thatarean integral partof the application. Alsoincludedis a discussion of
factors to be considered when defining data for the applicationand when establishing
the application database.

To benefit fully from the materials presented, the reader should be knowledgeable
about CA IDMS and have experience writingdialogs inan CA ADS environment. CA ADS
concepts that are basictocreatingapplicationsaresummarizedin Appendix A,
"Application Concepts." Additional concepts arereviewed throughout the manual and,
where appropriate, the reader is referred to other CA documentation for further
information. A glossaryisincluded as a resourcefor anyreaders who might be
unfamiliarwith the CA ADS terminology.

This introductory chapter covers the followingtopics:
m Applicationguidelines
m Tools for designingand developingapplications

m The designand development team

Each of these topics is discussedin the followingsections.

Chapter 1: Introduction 9

Application Guidelines

Application Guidelines

The following guidelines should be considered when developing an application:

User needs — An application mustsatisfy the requirements of the user. To
accomplishthis goal, the developer must consultfrequently with the user,
remembering that all ramifications of an application are often not apparentinthe
initial stages of development. Additionally, specifications may be subjectto change
as the user reacts to the prototype application, or as new aspects of the application
become evident. A successful application requires strong user involvement
throughout the design process.

Human factors — A user-friendly applicationincreases productivity. An application
should be designed so that the end user feels capableof responding, knows how to
proceed after each step, and knows how to get assistanceifthereis anyconfusion.
The screens should be straight-forward, uncomplicated, and uncluttered.

Flexibility — An application mustbe easy to maintain and modify. The structured
design methods used by the CA ADS Application Compiler (ADSA) help the
developer to accomplish this goal in thefollowing ways:short, modules are used to
perform the given functions;and the code that performs the processinglogiciskept
separatefrom the information aboutdata (for example, format of records and
elements, editingcriteria). The implementation of naming, coding, and map
formatting standards is strongly recommended, both for purpos es of maintenance
as well as for future enhancements of the application.

Performance — The ultimate test of a designliesinits performancecapabilities.
The measures of what constitutes good performance are site-specificand vary with
the needs and expectations of the user. Optimally,a good design should have
acceptablethroughput, should have reasonableresponsetimes,and should usethe
availableresources as efficiently as possible.

Tools for Designing and Developing Applications

The followingtools areavailablefor designing, developing, and implementing
applicationsinthe CA databaseenvironment:

CA ADS Application Compiler (ADSA)
CA ADS Dialog Compiler (ADSC)

CA ADS runtime system

IDD (Integrated Data Dictionary)

CA IDMS/DC Mapping Facility

Batch and onlinereporting facilities

Each of these design and development tools is discussed in the followingsections.

10 Application Design Guide

Tools for Designing and Developing Applications

CA ADS Application Compiler (ADSA)

An application can bedefined and compiled by usingthe CA ADS Application Compiler.
ADSA alsoserves as a design tool and an automatic prototyping tool for the CA ADS
application developer.

Facilitates Structured Application Planning

As a design tool, ADSA facilitates structured application planningatan earlystage inthe
design process. When the basicapplication design has beenresolved, the developer
initiates an application compilation session and defines the application functions and
responses (the application components) to the dictionary.

At any stage, the developer can query the dictionary as to the status of the design by
using CA IDMS dictionaryreports, CAOLQ, or IDD to access thedefinitions.Even ifan
application compilation sessionissuspended (thatis, the applicationis notcompiled),
the dictionary still contains the component definitions and relationships defined up to
this point.

Provides Online Overview

As a prototyping tool, ADSA enables the user to have an online preview of what the
applicationlooks likeand whatit can do. These walk-throughs can begin atanearly
stage inthe design, before any process code needs to be written. To compilea
prototype and create the appropriateload modules, ADSA only needs the dictionary
definitions of any global records associated with an application;if no global records are
specified, then no other definitions arenecessary. To execute a prototype, only
rudimentary dialogs and maps arerequired. Prototypes arereadily modifiedand,
therefore, canrespond quicklytothe needs of the user as the application designis being
developed. Once the final designis approved, the existing prototype is enhanced with
the requisitedialog code, and the completed application can be executed.

CA ADS Dialog Compiler (ADSC)

Dialogs aredefined and compiled usingthe CA ADS Dialog Compiler (ADSC). Inan ADSC
session, the application developer uses a series of screens to provide CA ADS with
information such as the dialog's name, subschema, maps, work records, and premap
andresponse processes.Once the dialoghas been compiled successfully,itis stored as a
load moduleinthe dictionary for use by the CA ADS runtime system.

Chapter 1: Introduction 11

Tools for Designing and Developing Applications

CA ADS Runtime System

An application can be executed after the usersigns onto the DC/UCF system and uses
the necessarytaskcode to initiatethe CA ADS runtime system. This task code either
displaysthe CA ADS menu screen or begins executing a predefined dialog. The menu
screen contains the listofavailable mainlinedialogs thatcan be selected by the user.

Accesses Record and Element Definitions

The CA ADS Application Compiler accessesrecord and element definitions storedin the
dictionary. ADSA supplies thedictionary with the application definition; the updated
Task Activity Table (TAT), the DC/UCF load module that associates task codes and the
invoked tasks;and the Application Definition Block (ADB), the application load module.
The CA ADS Dialog Compiler (ADSC) accesses record, element, subschema, map, and
source process definitions stored in the dictionary. ADSCsupplies the dictionary with
the dialogdefinition and with the Fixed Dialog Block (FDB), the dialogload module.
When the applicationisexecuted, the CA ADS runtime system accesses the application,
dialog, map, subschema, and edit and code table load modules stored in the dictionary.

Creates Record Buffers and Control Blocks

Duringdialogexecution, the CA ADS runtime system dynamically creates record buffers
for the subschema and dictionaryrecords used by the dialog,and automatically
initializes each field in the newly created buffers. The runtime system also creates
control blocks that provide information pertaining to the executing dialog's map and
databaseaccess activities. The application caninclude process codeto test certainfields
inthese control blocks and specify the action to be taken, based on the test outcome.

12 Application Design Guide

Tools for Designing and Developing Applications

At runtime, the sequence of events is controlled by the user's selection of processing.
The followingfigureshows the interrelationships of the CA ADS Application Compiler
(ADSA), the CA ADS Dialog Compiler (ADSC), and the CA ADS runtime system.

APPLICATION
COMPILER o USER
(ADSA) 0 4,
o)"VO A(
ISP
o7,
12,9
o T 10y,
°,9“°(Pt O,
&St 8,058
R WL,
) G
/p
APPLICATION APPLICATION o LOAD MODULES CA-ADS
DEVELOPER DICTIONARY HSL{«:TTIEMME
S ¢
& S
AR s
NP
N LG)
G T &
o %0000 ¢
o 0 S
SN P
o WM &
° o
< D
.0
oY
Mo
DIALOG o0
[+
COMPILER DATABASE
(ADSC)

IDD Central Repository

The Integrated Data Dictionary (IDD) acts as a central repository ofinformation about
data. The developer uses the dictionaryto store definitions of the application'sdata
elements, records, tables,and maps, as well as the processing modules associated with
anapplication.IDD maintainsinformation aboutthe data stored in the application
databaseand makes this information directly availableto the applications. DD
comprises the dictionaryitself (thatis, the repository of information about data) and
software components for accessing (thatis, adding, modifying, deleting, and displaying)
the dictionary-stored information.

IDD enables batch and onlineentry and examination of entity definitions storedin the
dictionary.

For example, the application designer can requestthe display of an element definition, a
record definition, or a user-defined entity (a site-specific data category defined by the
DBA). The displayed information shows the definition of the entity itselfas well as
contextual information.

For information on how data can be defined for an application, see Chapter 2, Design
Methodology.

Chapter 1: Introduction 13

Tools for Designing and Developing Applications

CA IDMS/DC Mapping Facility

The CA IDMS/DC mappingfacilityis used to define the layoutof the terminal screens
(thatis, maps)used for communication between the applicationandtheuser. A map
definition, in addition to determining the appearance of the screen, associates fields on
the screen (map fields) with record elements inthe data dictionary,and defines display
attributes (such as color andintensity) for map fields. All map definitions arestoredin
the dictionary.

Because maps are defined in the dictionary as separateentities,an CA ADS dialogcan
use a map simply by namingiton the appropriate CA ADS Dialog Compiler screen; the
dialogitself does not perform any screen formatting.

At runtime, the mapping facility can performautomatic editing and error handling.
When these facilities areenabled, input is validated automatically and outputis
formatted on the basisofdictionary-stored information onrecord elements (thatis,
internal picture, external picture, edit table, and code table). When a map is defined,
the developer can specify different editing criteria for anyfield. The developer canalso
define stand-aloneedit and code tables as modules in the dictionary. During map
generation, these tables can be associated with map fields and external pictures can be
defined for the fields.

For further information on the CA IDMS Online MappingFacility and the automatic
editing and error-handling capabilities availableto the application, refer to CA IDMS
Mapping Facility Guide.

Batch and Online Reporting Facilities

This section describes reporting capabilities thatareavailableto the designer for
assistancethroughoutthe development process.

CA IDMS reports

Provides an extensive series of standard reports on information storedin the
dictionary.These includesummary, detail, and key reports of the elements and
records in the dictionary. Reports are also availablefor dialogsand applications,and
their associated components. Dictionary reports comprisea valuabletool for
findinginconsistenciesand redundantelement types.

For more information, see the CA IDMS Reports Guide.
Subschema compiler
Enables batch and onlineexamination of subschema definitions.

For further information on the use of the subschema compiler, see the CA IDMS
Database Administration Guide.

14 Application Design Guide

Tools for Designing and Developing Applications

IDMSRPTS utility

Provides a series of reports on databasedefinitions (for example, schema
definitions, logical record definitions).

For further information, includinga complete list of the reports available with the
IDMSRPTS utility, see the CA IDMS Utilities Guide.

CAOLQ

Lets you interrogate an CA IDMS/DB and display and formatthe resulting
information ata terminal. CA OLQ accommodates ad hoc queries. With the use of
g-files (CA OLQ modules stored in the dictionary), users can obtain formatted
reports at the terminal simply by supplyingthe name of the desired g-file.

For further information on using CA OLQ to query the dictionary andstoringand
accessingofg-files, seethe CA OLQ User Guide.

CA Culprit

Generates batch reports. CA Culpritis a parameter-driven system. CA Culprit
actively uses dictionary-stored element, record, and subschema definitions. Reports
canbe packaged and stored as CA Culpritmodules inthe dictionary, enablingusers
to obtaina report simply by supplying the module name.

For further information on the use of CA Culpritas anapplication reportingtool, see
the CA Culprit for CA IDMS User Guide.

The dialog reporter (ADSORPTS utility)

Requests batch reports that providesummary and/or detailed information about
one or more dialogs.Reports caninclude:information on the records and processes
of the named dialogs;a listof the contents of the Fixed DialogBlock (FDB); and a
summary thatincludes map, schema, subschema, and version number information.

For further information on the ADSORPTS utility, see the CA ADS Reference Guide.
The DC/UCF map utility

Generates and deletes map load modules, produces map sourcecode, and provides
mappingreports. These reports display thedecompiled sourcecode, alistofthe
attributes assigned to each map field,and a listof the records used by the named
map.

For further information on usingthe map utility, see the CA IDMS Mapping Facility
Guide.

Chapter 1: Introduction 15

The Design and Development Team

The Design and Development Team

The personnel involved inthe development of anapplicationreflectthe range of
responsibilitiesinvolvedin the creation of a successful design. Themanner in which
these responsibilitiesareassigned varies widely frominstallation toinstallation, with
some individuals often assuming more than one role.

The remainder of this chapter discusses theroles that should be included in the team
that develops anapplication.

Project leader

Orchestrates and coordinates the project. The projectleader is ultimately
responsiblefor producingthe system to specificationsand ontime.

DBA/DCA

Maintains consistentsite-specific standards. The DBA is responsible for the data
resources (thatis, the application databaseandthe dictionary), designingand
implementing the databaserecords, definingthe logical records,and establishing
naming conventions and data dictionary standards. The DCA is involved in the
network and communication needs, helpingto planfor spacerequirements,
performance, and system tuning.

Data administrator

Interfaces with all members of the design and development team, runningany
reports that are needed as well as populatingthe dictionary. The data administrator
is alsoresponsiblefor enforcingthe standards and conventions laid out by the DBA,
entering the dictionary elements, records, maps, and edit and code tables as

needed for the application.

Systems analyst

Helps analyzeand document the needs of the end users.The analystoften works
with the data administrator and alsowith the DBA in designingthe database.
Additionally, theanalystdefines the requirements for the applications thatwill
access the database.

16 Application Design Guide

The Design and Development Team

Programmers

End

Writes the processinglogicthataccesses thedatabase,interpreting the dialog
requirements given to them by analysts and designers. Workingfromdesign
specifications, the programmer determines map data fields, field edits, map and
work record elements, and the messages needed for a given dialog. This
informationis then submitted to the data administrator for approval and,
subsequently, forinclusioninthedictionary.The dialogsourcecodeis written and
stored inmodules inthe dictionary.

users

Provides valuableinputto the data administrator, DBA, systems analyst,and
application programmers. They define what their present data needs areand try to
predictfuture needs. There should be constantinteraction between the end users
andthe other members of the development team, to ensure maximum usefulness
of the applications developed.

Chapter 1: Introduction 17

Chapter 2: Design Methodology

This section contains the following topics:

Development of Effective Design (see page 19)

Step One: Analyzingthe Problem (see page 21)

Step Two: Developing the Design (see page 22)

Step Three: Buildinga Prototype (see page 28)

Step Four: Writing Process Codefor the Dialogs (see page 31)

Step Five: Testing and Implementing the Application (seepage 41)
Underlyinglssues and Key Considerations (see page 43)

Data Definition and Database Design (see page 43)

Development of Effective Design

There are a number of ways to approach the design of an CA ADS application. This
chapter provides information thatmay be useful to those involved inthe development
stage of an effective design. This chapter also presents information on how datais
defined and stored inthe CA IDMS/DB environment.

Note: The procedures presented inthis manual represent one possibleapproachtoa
designand should be used as a guideline. Application developers mustdetermine their
system's specific needs and the design procedures that will best meet those needs.

Chapter 2: Design Methodology 19

Development of Effective Design

Three Phases

The sampleapproach to application design methodology that is presented throughout
this manual comprises the followingthree phases:

1.

How Tasks are Performed

Data definition — The DBA andthe systems analystdetermine what element types
the application needs. After definingthe elements inthe dictionary,the DBA then
determines how the elements should be grouped into records and defines the
records inthe dictionary. As a result of this phase, the dictionaryis populated with
the element and record definitions required by the schema and subschema
definitions,and with the application dialogs.

Database design and definition — The project leader, with the help of the DBA,
designs and defines the application database, creatinga schema that reflects the
data access needs of the application systemas a whole (thatis,all theprogramsin
the application system); subschemas arethen developed that reflect the data
access needs of a specific application. The databasedesign and definition phase
alsodeals with the physical structureof the database(thatis, how the database
exists ondiskstorage). As a resultof this phase, the schema, DMCL, and subschema
are defined in the dictionary.

Application design and development — The application development group
designs and develops the applications. Dialogs arewritten using CA ADS process
code, and dialog maps arecreated with the DC/UCF mappingfacility. The CA ADS
process code can link to routines written insourcelanguages such as COBOL, PL/I,
or Assembler. As a result of this third phase, applicationsexistina formthat end
users can execute.

These phases can be implemented inchronological sequence, but they usually overlap,
because certain tasks within each phasecan be performed concurrently.

For example, an application prototype can be defined and executed whilethe database
is beingdesigned and data is beingdefined inthe dictionary. However, each phase must
be completed before the next phasecan be fullyimplemented.

20 Application Design Guide

Step One: Analyzing the Problem

Five-Method Design

The design method proposed inthis manualis organizedinto the followingfivesteps:

1.
2.
3.
4.
5.

Analyzingthe problem

Developing the design

Buildinga prototype

Writing process codefor the dialogs

Testing and implementing the application

These steps arediscussed below, followed by a presentation of issues thatunderliethe
entire design process.

Step One: Analyzing the Problem

Team Approach

Problem analysisinvolves defining end-user needs and agreeing upon the functional
requirements of the application. To generate an effective application,itis essential to
have the users involved as members of the team throughout the entire designand
development process.

How to Define the Need for the Application

Duringthis stage, the team seeks answers to questions that help define the need for the
application. Information regarding thefollowingis required:

Who is the end user?

What departments use these transactions?

Who performs a given activity?

What data does the user need to see?

What activities need to be automated?

How is the activity usually performed?

What informationis referenced by these activities?
Where is the output information used?

What improvements are anticipated?

What types of reports will beneeded? When are reports usually run?

How often will the application beused? By how many?

Chapter 2: Design Methodology 21

Step Two: Developing the Design

Developing Two Lists

Inthe process of analyzingthe problem, develop the followinglists:
m Lists of activities thatthe user wants to be ableto perform

m Lists ofinformation availableto or necessary for the identified activities

Step Two: Developing the Design

DBA Incorporates Related Data

Inthe secondstep, a designis created to meet the needs that have been identified.
Duringthe actual design process, information begins to fall into groups of related data
that canbe incorporated by the DBA into dictionary elements, records, schemas,
subschemas, andlogicalrecords. At the same time, activities combineinto predictable
functions (for example, update, modify, delete) that logically work together and begin to
form a step-by-step design.

When developinga design, the application and development group must consider the
external/functional specifications and the internal/technical specifications. The
external/functional specifications reflectthe user's view of the application,indicating
what functions will be performed by the application;the internal/technical
specifications reflect the developer's view of the application, indicatinghow the
application will operate. Each of these considerationsis discussed separately below.

For the purposes of this manual, the discussion of the specificationsassumes thatthe
databasehas already been designed and that subschema views and other site-specific
information have been obtained from the DBA.

External/Functional Specifications

Format Selection

Decisions need to be made about the format of the intended application. The developer
must decide what activities will take placeand the responsechoices that will be
availableto the user at each stage of the application.

Once the application components have been developed, itis helpful to develop a
structural chartthatdepicts the application graphically. Finally, the design details need
to be documented. Each of these stages is discussed below.

22 Application Design Guide

Step Two: Developing the Design

Identifying the Application Components

The followinglistsuggests a few of the questions that need to be answered to establish
relationships within and between the functions and responses thatmake up an
application:

Whatonlinetransactions need to be performed by the terminal user? For example,
inthe sampleapplication, the user needs to be ableto update the address, phone
number, job code, or skilllevel of an employee.

What information or processingis needed before a given function can be
implemented? For example, the appropriateemployee record needs to be obtained
from the databaseanddisplayed online before the record can be modified by the
terminal user.

What arethe possibleresults of a given function? For example, when the user
chooses to update arecord, will ithbe possibleto delete the displayed record or can
the record only be modified and stored?

After completinga function, what should be the next step? For example, will the
application return to the menu screen after the employee record has been updated
or will a new employee record be displayed? Whatresponsewill the user have to
make to effect either of these actions?

What relationships can beestablished between functions? For example, canthe
same map be used for both the update and browse functions?

How do these parts relate to the availableor planned databaseentities? For
example, is there a recordinthe databasethatprovides information on the skill of
anemployee? If anemployee has more thanone skill or many employees have the
same skill, will theapplication beableto access this information?

How to Develop a Structural Diagram

At this pointinthe design,itis useful to develop a graphicrepresentation of the
application, identifyingthefunctions and responses, and incorporating themina
structural diagramthatillustrates their interrelationships.

In addition to identifying the functions and responses of the application, the developer
needs to be concerned with the following designitems:

The number of levels the application will contain.
The commands that will be used to pass control between dialogs.

The system-provided functions (for example, POP, POPTOP, QUIT) that will be
incorporated into the design.

The assignment of function keys and responsecodes.

Chapter 2: Design Methodology 23

Step Two: Developing the Design

The diagram presents one way in which the developer can begin to sketch out the
applicationand graphically depictthe flow between functions andresponses. The
management information system being developed in this samplediagramhas
administrativeand personnel applications;only the personnel applicationis represented
inthe flowchart. The user begins by selectingan application fromthe main menu. After
obtainingthe record on a particular employee, the user canselectthe appropriate
responsefrom the employee information menu to add, modify, and display theskills of
the employee; obtaininformation on employee rank withinthe company's
organizationalstructure; and update the personnel data on the employee.

Returning to the Main Menu

At any point, the user can use the system functions defined for this application toreturn
to the main menu (POPTOP); display a screen that supplies thevalid responses for the
current function (HELP); or return to the previous function (TOP).

Before proceeding to the next step inthe design and development of the application,
the flowchartshould be reviewed with end users and modified as necessary.

The followingdiagramillustrates thepartial structuring of a sample management
information system. The circles in theflowchartrepresent the application responses and
the rectangles represent the functions. Withineachcircleis theresponse code and
control key that will bedefined to initiatethe given function (for example, SKL/PF3 will
initiatethe display of information on employee skills). The system functions to be used
inthis application (thatis, HELP, TOP, and POPTOP) areindicated.

TOP MAIN
PF10 MENU
TOP — —
{System 1
function) |
——_d__
) A
1 1 EMPLOYEE
| 1 SELEGCTION
POPTOP L — — — _ _]
PF7
PSL
ENTER
POPTOP
(System
functian}
EMPLOYEE
INFORMATION
MENU

24 Application Design Guide

Step Two: Developing the Design

HELP
{System
functian)
UPDATE SKILLS MANAGEMENT REPORTING
MENU INFORMATION RESPONSIBILITIE] STRUCTURE
ADD MOD
ENTER PF4
ADD MODIFY DELETE
EMPLOYEE EMPLOYEE EMPLOYEE

Chapter 2: Design Methodology 25

Step Two: Developing the Design

Documenting the Design

When the user approves the basic design, the developer needs to document the details
of that design. The application worksheets are examples of the types of forms that can
be used to document the dialogs, maps, records,and processes required by an
application. The lists serve as helpful reference tools/checklists when the applicationis
being defined onlinein the prototyping step (see "Step Three: Buildinga Prototype" in
this chapter).

The followingfigures detail sample Application Worksheets:

APPLICATION GOMPILER WORKSHEET ****RESPONSES****

APPLICATION: AO52071A17 VERSION: 7 PAGE OF

DATE: 8/4/92 PREPARED BY: AHK
RESPONSE CONTROL KEY | FUNCTION INITIATED | CONTROL | RESPONSE SECURITY | GLOBAL/
NAME COMMAND | DESCRIPTION | CLASS LOCAL

COMPANY INFO
COoM PF7 AO5209F3 TRANS MENU 0 L
DEPARTMENT
DEP PF3 AOQ5409F8 INVOKE DISPLAY 0 L
EMPLOYEE

EMP PF4 AO5208F5 INVOKE DISPLAY 0 L
HELP PF2 HELP | - HELP SCREEN 0 G

26 Application Design Guide

Step Two: Developing the Design

APPLICATION COMPILER WORKSHEET x s FEUNCTIONS****

APPLICATION: AQ5209A17 VERSION: 7 PAGE OF

DATE: 8/4/92 PREPARED BY: AHK
FUNCTION | FUNCTION DESCRIPTION | TYPE | ASSOCIATED WITH EXIT | VALID RESPONSES
NAME (M/D/P) | (PROGRAM OR DIALOG)| DIALOG DEFAULT
AOS5209F1 | MAIN MENU FY S I — COM GMP SIGNON
A05209F2 | EMPLOYEE INFO MENU Mo COM PER POP HELP
A05209F3 | COMPANY DATA MENU Mo DEP QFF SKi pOP

HELP POPTOP

AOQ5209F7 | OFFICE DISPLAY D A05209D5 POP POPTOP EMP

Charts or checklists, such asthoseshown in the previous graphic,alsoserveas excellent
documentation for an application, becauseall pieces of the application, as well as their
relationships,aredetailed.

Additionally, theuse of naming conventions is helpful:consistentuse of naming
standards makes iteasier to keep track of application and dialog components as they
are created and maintained.

For suggestions on the use of standard namingtechniques, see Chapter 6, Naming
Conventions.

Chapter 2: Design Methodology 27

Step Three: Building a Prototype

Internal/Technical Sp

ecifications

Application Considerations

After the applicationformathas been determined, decisions need to be made about

how

the application willwork. The developer must consider the following:

Records — What subschema, map, and work records are to be part of this
application?

Menu Screens — Will standard system-defined menus be used or will the menus be
user-defined? If system-defined, which format of the system menu will be chosen?
If user-defined, how will the menus be formatted and what will they do?

For information aboutthe three types of system-defined menu maps, see the CA
IDMS Mapping Facility Guide.

Chapter 4, Designing Maps discusses methods that can be used when designing
user-defined menu maps.

Map formatting — What maps will be needed? Whatwill the maps look like? Are
there site-specific standards thatneed to be considered?

Automatic editing — Whatedit and/or code tables are necessary? Will the data be
displayedasitis stored? How will the internal and external pictures be defined?
How will the date display be formatted?

For further information on automatic editing and error handling, seethe CA IDMS
Mapping Facility Guide.

Messages — What informational and error messages, other than those supplied by
the runtime system, should be conveyed to the terminal user?

Security — What levels of security will be assigned? Will user, program, or
subschema registration beimplemented? Will a useridand password be required
to signonto anapplication?

For further information on the security that can be implemented, see the CAADS
User Guide.

Step Three: Building a Prototype

An a
appl

pplication prototypeinan CA ADS environment is a representation of anonline
ication system. As such, itis a tool that can be used throughout the designand

development phases. Even after the implementation of anapplication, prototypingcan

be u

sed as a vehiclefor agreeing on revisions and enhancements.

Uses for a prototype, the uniquefeatures of a prototype, and creatinga prototype are
each discussed in the followingsections.

28 Application Design Guide

Step Three: Building a Prototype

Uses for the Prototype

The prototype provides the following benefits:

m Aids in the design process — The prototype helps to build relationships between
the basicinformation entities (data items, records) of the business application,and
between the information entities and the activities to be automated (for example,
onlinescreens/transactions, reports, batch jobs).

m Maximizes end-user participation — The prototype provides an end-user view of
the applicationfromanearly pointinthe development process. Most importantly,
the users are actually seeingthe prospectivesystem online.

Additionally,theuser can participatein the step-by-step progress being made and
cangive valuablefeedback while the applicationisstillinits formativestage.As a

review mechanism, the onlinescreen walk-through provides a concrete means of

checkingto see if the application meets user needs.

m Enhances project control — The prototype provides an effective tool for monitoring
the progress of the application development process.

m Enables training — The prototype canbe used as a trainingtool for the data
administrator and programmers on the development team. It enables them to
become familiar with design techniques, dialogspecifications,and documentation.
The use of naming conventions, standardized coding procedures, and boilerplate
process code facilitatethe learning process. Additionally, the prototype can be
employed by end users as a tool for training their own staff prior to implementation
of the applicationintheir production environment.

m Establishes security procedures — The prototype canincorporatethe desired
security standards withoutwaiting for the source process codeto be developed;
thus, security procedures become established and understood by the end users at
anearlystage inthe development of anapplication.

m Provides an adaptable marketing tool — A prototype canbe developed as a
demonstration model for use with prospective customers. As onlya minimal
amount of sourcecode needs to be created, itis easyto adjustthe prototype in
responseto specific user requests.

Unique Features of the ADSA Builds Prototype

The prototype uses all thestandard application components:dialogs thathavebeen
compiled with the CA ADS Dialog Compiler; maps that have been created with the
DC/UCF system's mappingfacility;and data elements that have been defined inthe
dictionary with DDDL statements. Most importantly, the prototype is builtwith the CA
ADS Application Compiler.

Chapter 2: Design Methodology 29

Step Three: Building a Prototype

ADSA provides the following capabilities thatadd considerable flexibility to the
application,ingeneral,andto dialogs,in particular:

m Security controls thatcan be putinto effect for the applicationitselfand for
responses within the application

m Standard menus that are automatically created by the system at runtime and allow
the use of fewer dialogs

m The EXECUTE NEXT FUNCTION command, which helps to control the flow of an
applicationand allows process codeto be more independent of its position within
the application

m Global records thatenable the developer to use fewer levelsinthe application
thread

m Defined responses that reduce the number of response processes needed per
dialog

m Function-related task codes that facilitate multiple entry points into the application

m Signon capabilities thatmake it possiblefor the end user to bypass the ENTER NEXT
TASK CODE prompt from the DC/UCF system

How to Create the Prototype

A prototype application canbebuiltin three stages, as follows:

1. Stage I: Buildingthe basic prototype

2. Stage Il:Adding process logic and data retrieval

3. Stage lll:Refiningthe maps and processes

Each progressive stage contains enhancements that more closely approximatethe final

application. Note that itis possibleto demonstrate the prototype onlineas soon as the
firststage is completed successfully.

Information required

The developer must have the followinginformation to format the prototype:

m The screens needed to supportthe functional requirements

m The processingactivities taking place before and after communication with the user
m The number of dialogs included inthe application

m The activities associated with each dialog

m The manner inwhich processingselections will be made by the user

m The control key and/or response code that will be associated with each selection

30 Application Design Guide

Step Four: Writing Process Code forthe Dialogs

Worksheets can be developed to record all of the above information. Refer to the
graphic, Sample Application Worksheets, earlier in this chapter for examples of sample
worksheets. Chapter 3, Buildinga Prototype provides the step-by-step procedure for
creatingan online prototype.

Step Four: Writing Process Code for the Dialogs

Step Four is the stage atwhich the technical designis translated into specific dialogs
that canbe coded and unittested. Writingthe dialogspecificationsand writing the
sourcecode areeach discussed separately.

Writing the Dialog Specifications

Before any codeis written, itis necessarytowrite dialogspecificationsfor each dialog
defined in the technical design. This process can bestandardized (and simplified) if the
programmer has access to a template that provides the accepted format for these
specifications. Thefollowing text illustrates an example of a template that a design team
might develop for its programmers.

Chapter 2: Design Methodology 31

Step Four: Writing Process Code forthe Dialogs

Sample Template for Dialog Specifications

*kk HRIS SYSTEM — *%*

SPECIFICATION FOR DIALOG CEMDxxxx (...description of dialog...)

Skookokok ok ok ok ok ok ok ok sk ko sk ok ok ok sk ok ok skok ok ok sk ok ok ok sk ok kok ok ok ok sk ok ok sk skok sk ok ok ok sk k sk kok ok ok ko skook kokok sk ok

* WHO VHEN WHAT *
L — == — *
*MCS mm/dd/yy WROTE SPEC *
*MMC mm/dd/yy REVISED BASED ON NBW DATABASE DESIGN *
* *
* *
koK ok ok ok ok ok ok ok ok ok ok kok 5k ok ok ok ok ok ok dkok sk ok ok ok sk ok sk >k kok sk ok ok ok ok ok ok dkok sk >k ok >k sk ok sk ok ok sk ok ok ok ok sk kok k ok
DICTIONARY : DOCUNET

SCHEMA : EMPSCHM

SUBSCHEMA : EMPSS07

MAP : CEMMOXX

MAP RECORD : CEMMXXXX -MAP -RECORD

DIALOG RECORD : CEMDXXXX WORK-RECORD, CEMDXXX-WORK2-RECORD
SYSTEM RECORD : CEM-SYS-RECORD

MSG WORK RECORD : CEM-MESSAGE-WORK-RECORD

DB-ERROR RECORD : DATABASE-ERROR-RECORD

WORK INPUT/OUTPUT: CEM-MESSAGE -WORK-RECORD
Record Layout: 05 CEM-MSG-MESSAGE-GET.
10 CEM-MSG-PROJECT-CODE PIC X(2).
10 CEM-MSG-MESSAGE-ID PIC S9(7) COMP-3.
05 CEM-MSG-SUB PIC S9(7) COMP-3.
05 CEM-MSG-MESSAGE-AREA.
10 CEM-MSG-MESSAGE
O0CQURS 4 TIMES PIC X(40).
DATABASE INPUT : record names
DATABASE OUTPUT : record names

GENERAL DESCRIPTION:

*** PREMAP PROCESS: CEMDXXXX-PREMAP

DESCRIPTION:

*** RESPONSE PROCESS: CEMDXXXX-RESPONSE

DESCRIPTION:

32 Application Design Guide

Step Four: Writing Process Code forthe Dialogs

Dialog Specifications Synopsis

Dialogspecifications providea synopsis of the dialogthatincludes descriptions of the
premap and response processes; names of the dictionary,schema, and subschema; and
the map and work records used by the dialog. Dialogs pecifications can beincluded at
the beginning of the dialog's premap process.

Guidelines for writing the specifications and theimportance of a review process are
each discussed separately below.

Guidelines for Dialog Specifications

The following guidelines aresuggested when writingthe specifications:

Ensure that the specification narrative has all theinformation needed to write the
program.

Use the structurediagramand worksheets to obtainthe proper dialog, record, and
map names.

Adhere to naming conventions.

Use the data structure diagramand reports of the elements andrecords for details
about the individual dialogs.

Store the completed specificationinthedata dictionary,as comments in the
premap process. Within process source, usethe exclamation point(!) to lead all
comments.

Ifthe specificationisparticularlylong,storeitas a separatemodule inthe
dictionaryand copyitinto the premap process code with an INCLUDE statement. In
this way, the specifications areincluded inreports, but do not have to be viewed
when the programmer is workingon the sourcecode.

Refer to maps by name andlocation. As the design of the dialog maps would have
been completed when buildingthe prototype, itis unnecessarytoduplicatethe
layouts in the specifications. If further definitions on map fields arerequired in
order to write the code, these definitions should beincluded in the specifications
and given to the data administrator.

Incorporate other comments inthe process source,as needed, especiallyatthe
beginning of response processes and subroutines. Batch programs and reports
should also havetheir specifications included as comments within the code, unless
the specifications areverylong.

Some sites find it worthwhile to create a partitioned data set (PDS) or library for storing
the specifications for each dialog. Such a data set can also be useful for central storage
of the map templates and boilerplate code developed as programmingaids.

Chapter 2: Design Methodology 33

Step Four: Writing Process Code forthe Dialogs

Reviewing the Specifications

Coding should notbegin until the project leader has reviewed and approved the dialog
specifications. This isalso thetime to provide answers for questions that might have
arisen duringspecification development. For example, in developing the specifications,
it might become necessaryto add some dialogs notalreadyidentifiedinthe application
structure. If so, this should be discussed and approved; changes can affect other screen
layouts, as well as the manner in which the application has been defined to ADSA.

Writing the Source Code

Once the specifications have been approved, the programmer can write the source
code. The use of test version numbers, procedures to aid the programmer, and dialog
debugging aids areeach discussed separately below.

Test Version Numbers

The DC/UCF system provides facilities for establishing a runtime environment in which
test and production copies of the same application components can execute under one
system. Programmers can be assigned a uniqueversion number to be used when
generating their own versions of maps, edit and code tables, and dialogs. When the
applicationisfully tested and working, the version number can be changed for
production purposes.

For a detailed discussion of the preparations necessary when establishing a test
environment, refer to CA IDMS System Operations Guide.

Programming Aids

To improve the efficiency of the development process and to help maintainstandards,
aninstallation mightinstitute some of the following procedures for the programming
staff:

m Create templates of dialogpremapandresponse processes. The programmer can
obtaina copy of the template, rename it, and add the specific dialoglogic.

m Providea listof the standard (site-specific) work records thatare to be used by each
dialog.

m Provideprocess code for standard routines. Identify commonly performed activities
anddecide how they are to be handled. Develop process code for these activities
andstore as modules inthe dictionarysothatanydialogcanlinktothem when
necessary. For example, routines can be developed to handledate conversions,
forward and backward paging, databaseerror routines,and message formatting.

34 Application Design Guide

Step Four: Writing Process Code forthe Dialogs

The followingtext illustrates a type of boilerplatecodethat can be developed for a
premap process;the template demonstrates a type of boilerplate codethat canbe

developed for aresponse process. These templates contain the standard logic for
interfacing with common subroutines.

Chapter 2: Design Methodology 35

Step Four: Writing Process Code forthe Dialogs

Sample Premap Process Template: #1

ADD
MODULE NAME IS xxxDxxxx-PREMAP VERSION IS 1 LANGUAGE IS PROCESS
MODULE SOURCE FOLLOWS

[okskorokofoksoroksorokkoksfokok ok sfokoskokokskoroksfoksforokskokskokoksotok ok sorskokoksforokokskokokskotok kok ook kok

¥ THE PREMAP PROCESS FOR THE xxxx DIALOG
!**
INIT REC (xxx-message-work-record).
KEEP LONGTERM ALL RELEASE.
!
! THE ACTUAL LOGIC FOR SCROLLING BACKWARDS AND FORWARDS WILL
! BE DIFFERENT FOR EVERY DIALOG. THEREFORE, THESE ROUTINES HAVE
! NOT BEEN CODED IN THIS TEMPLATE.
!
IF FIRST-TIME
INIT REC (vvvvvvvvnnnnnnnnns).
MOVE SPACES TO xxx-function.

IF xxx-function EQ 'NEXT'
THEN
CALL forwrdo2.
ELSE
IF xxx-function EQ 'PREV'
THEN
CALL backwd03.

THE FOLLOWING CODE IS TO BE USED WHEN YOU WANT TO BE NOTIFIED
THAT ANOTHER USER IS UPDATING THE SAME RECORDS THAT YOUR

DIALOG IS UPDATING.

SUBSTITUTE THE ACTUAL DIALOG NAME FOR 'dialog name' AND THE
ACTUAL RECORDS OF CONCERN FOR record-name.

IF MORE THAN ONE LOCK IS REQUESTED, INCLUDE A NUMERIC IDENTIFIER
WITH THE DIALOG NAME (e.g., CEMD1LIS, CEMD2LIS).

KEEP LONGTERM SHOULD BE CODED DIRECTLY AFTER AN OBTAIN.

KEEP LONGTERM 'dialog name' NOTIFY CURRENT record-name.
! (Main premap logic goes here)

IF AGR-CURRENT-FUNCTION EQ 'DELETE FUNCTION'
THEN DO.
MOVE 98xxxx TO xxx-message-id.
CALL messge98.
END.
!
! THIS MESSAGE WILL READ
! 'TO COMPLETE DELETE ENTER PROPER RESPONSE'
|

IF xxx-msg-sub GT O

36 Application Design Guide

Step Four: Writing Process Code forthe Dialogs

THEN
DISPLAY MESSAGE TEXT xxx-msg-message-area.
DISPLAY.

Sample Premap Process Template: #2

! 3k 3k sk sk ok Sk ok ok ok ok ko Sk Sk Sk Sk ok ok ok sk Sk Sk Sk Sk Sk Sk ok ok skok Sk Sk Sk ok ok ok ok skok Sk Sk Sk ok ok ok ok skok Sk Sk ok ok ok ok ok skok ok ok ok ok
DEFINE SUBROUTINE dberr99.
! 3k 3k sk sk ok Sk ok ok ok ok skok Sk Sk Sk ke ok ok ok skok Sk Sk Sk Sk Sk Sk ok Sk ko Sk Sk Sk Sk Sk ke ke Sk Sk Sk Sk Sk Sk Sk ke ke sk sk sk sk Sk sk ok kek skosk skk
!
!***
Prfokolkk ABEND ROUTINE FOR BAD DB CALLS. kwsbrdoksk
!***
KEEP LONGTERM ALL RELEASE.
ACCEPT RECORD INTO der-record-name.
ACCEPT AREA INTO der-area-name.
ACCEPT ERROR SET INTO der-error-set.
ACCEPT ERROR RECORD INTO der-error-record.
ACCEPT ERROR AREA INTO der-error-area.
MOVE ERROR-STATUS TO der-error-status.
ROLLBACK.
DISPLAY MESSAGE CODE IS 799999
PARMS = (der-error-status
,der-record-name
,der-area-name
,der-error-set
,der-error-record
,der-error-area).
GOBACK.
MSEND.

What Templates Provide

Templates providea means of supplyingsite-specific information to programmers. For
example, the installation using this template specifies the name of the dialogas the
unique identifier for longterm locks.

Chapter 2: Design Methodology 37

Step Four: Writing Process Code forthe Dialogs

Sample Response Process Template

The followingfigureshows the response process template that corresponds to the
premap process template.

ADD
MODULE NAME IS xxxDxxxx-RESPONSE VERSION IS 1 LANGUAGE IS PROCESS
MODULE SOURCE FOLLOWS

123Kk ok okokook ok ok sk skok sk ok ok ok ok sk ok kok ok ok sk ok ok ok >k sk kok ok ok ok ok sk ok sk ok sk ok ok ok sk ok ok kok ok ok sk >k ok ok sk kok sk sk skok sk k sk ok

1? THE RESPONSE PROCESS FOR THE xxxx DIALOG

| Pkokokoskokokokskopolokskokokoksk koo skkokokskkok kool sk kokkokto sk kokksk ook sk stk stk stk stok stk stk ok ok

INIT REC (xxx-message-work-record).

IF AGR-NEXT-FUNCTION EQ 'NEXT'
THEN DO.
MOVE 'NEXT' TO xxx-function.
DISPLAY CONTINUE.
END.
IF AGR-NEXT-FUNCTION EQ 'PREV'
THEN DO.
MOVE 'PREV' TO xxx-function.
DISPLAY CONTINUE.
END.

IF AGR-NEXT-FUNCTION EQ AGR-CURRENT-FUNCTION AND
AGR-CURRENT - FUNCTION EQ 'delete’
THEN DO.
CALLovvvnts
END.

IF NO FIELDS ARE CHANGED
THEN
EXEQUTE NEXT FUNCTION.

! THE FOLLOWING CODE WILL RETURN A VALUE INTO A SPECIFIED FIELD

! IN THE SYSTEM RECORD. THE VALUE GIVES NOTIFICATION OF ANY

! ACTIVITY AGAINST ANY RECORDS WHICH WERE SPECIFIED IN THE PREMAP
! PROCESS OF THE DIALOG.

KEEP LONGTERM 'dialog name' TEST RETURN NOTIFICATION INTO
xxx-notify.

! IF APPROPRIATE, THE FOLLOWING VALUES OF xxx-notify SHOULD BE

! CHECKED:

!

! VALUE OF xxx-notify MEANING

|

! 0 NO DATABASE ACTIVITY FOR RECORD
! 1 RECORD WAS OBTAINED

! 2 RECORD'S DATA EAS MODIFIED

38 Application Design Guide

Step Four: Writing Process Code forthe Dialogs

! 4 THE RECORD'S PREFIX WAS MODIFIED
! (I.E. A SET OPERATION OCCURRED

! INVOLVING THIS RECORD)

! 8 THE RECORD WAS LOGICALLY DELETED
! 16 THE RECORD WAS PHYSICALLY DELETED

! MULTIPLE ACTIVITIES WILL CAUSE A COMBINATION OF THESE VALUES.
! THE MAXIMUM POSSIBLE VALUE IS 31 (MEANING ALL OF THE ABOVE
! OCCURRED).

' (I.E.)

I IF xxx-notify GT 7

! THEN DO.

! MOVE 98xxxx TO xxx-msg-message-id.

! CALL messge98.

! DISPLAY MESSAGE TEXT xxx-msg-message-area.
! END.

! IF xxx-notify GT 1

! THEN DO.

! MOVE 98xxxx TO xxx-msg-message-id.

! CALL messge98.

! DISPLAY CONTINUE MESSAGE TEXT xxx-msg-message-area.
! END.

! IN THE FIRST EXAMPLE, THE RECORD HAS BEEN DELETED.

! IN THE SECOND EXAMPLE, THE RECORD WAS MODIFIED BY
! ANOTHER USER. THE DISPLAY CONTINUE WILL NOT ONLY
! DISPLAY A MESSAGE, BUT WILL ALSO REEXECUTE THE

! PREMAP TO SHOW THE USER THE MODIFIED RECORD.

IF AGR-CURRENT-FUNCTION EQ 'function a'
THEN
CALLcoviiiiinnnn
IF AGR-CURRENT-FUNCTION EQ 'function b'
THEN

(Other processing code specific to the dialog goes here)

IF AGR-STEP-MODE AND xxx-msg-sub GT O
THEN
DISPLAY MESSAGE TEXT xxx-msg-message-area.
EXECUTE NEXT FUNCTION.

| okokokofoskokokokokopokokoskkokokok koo sk kokkskkokkooksk ok kokkktokkokkok stk kooksk kok ok stk stok sk sk ok ok

DEFINE SUBROUTINE messge98.

Chapter 2: Design Methodology 39

Step Four: Writing Process Code forthe Dialogs

| okskorokofoksoroksotokokskookskokoksfokoskorokoksk ook sfokok ok sfokoskokokokokosk ook soroksokosforkskokokskokokokokskokok ok

IF xxx-msg-sub LT 4
THEN
LINK PROGRAM 'xxxxxxxx' USING (xxx-message-work-record).
ELSE
DISPLAY MESSAGE TEXT xxx-message-area.
GOBACK.
!
!**
DEFINE SUBROUTINE dberr99.
!**
!
!***
Prkokrolkk - ABEND ROUTINE FOR BAD DB CALLS. kwsbrdokrk
!***
KEEP LONGTERM ALL RELEASE.
ACCEPT RECORD INTO der-record-name.
ACCEPT AREA INTO der-area-name.
ACCEPT ERROR SET INTO der-error-set.
ACCEPT ERROR RECORD INTO der-error-record.
ACCEPT ERROR AREA INTO der-error-area.
MOVE ERROR-STATUS TO der-error-status.
ROLLBACK.
DISPLAY MESSAGE CODE IS 799999
PARMS = (der-error-status
,der-record-name
,der-area-name
,der-error-set
,der-error-record
,der-error-area).
GOBACK.
MSEND .

Debugging Aids

The following debugging aids areavailableto the CA ADS programmer:

m The ABORT and SNAP commands

m The diagnosticscreen (ifenabled)

m The PRINT LOG utility

s CAOLQ

m The ADSORPTS utility (particularly the DIALOG report and the FDBLIST)
m The mapping report utility (RHDCMPUT)

Errors can be resolved by signing onto IDD, making changes to the process code, and
signingon to ADSC to recompile the dialog.

40 Application Design Guide

Step Five: Testingand Implementing the Application

Step Five: Testing and Implementing the Application

The final stage of application design and development deals with the testing and
implementation of the application.Thisisanimportantstep that requires careful
planning.Testing should not begin until a comprehensive test plan has been formulated;
the testing itselfshould be thoughtfully structured.

Guidelines for developing a test planandthe procedures involved in the final testing of
anapplicationarediscussed inthe followingsections.

Test Plan

A definitivetest planshould bedrawn up after the technical designis finalized. This plan
is particularlyimportantwhen performing acceptancetesting for the user becauseit
must reflect the expectations of the user. The planshouldincludethe following
information:

Division of the application for testing purposes

Plans for testing interfaces

The order of testing, takinginto accountthe planned implementation
Approval criteria for user and operations acceptance of the system
Test data to be used and the method of creatingthis data
Operational and technical supportrequired

A listofall testingand related tasks

The people involved and their specific responsibilities

A schedulefor testing and acceptance of the system

Test Procedure Phases

Procedures for testing applications typically fallinto the following phases:

Unit testing by the programmer
Integrated system testing by the programmingteam

User acceptance testing

Each of these phases is described in the followingsections.

Chapter 2: Design Methodology 41

Step Five: Testing and Implementing the Application

Unit testing

Integration Testing

Acceptance Testing

Each dialogshould betested inisolation for all possibleerror conditions. This should be
done either by the person who developed the dialog, or, preferably, by another member
of the project team. The followinglists should bedrawn up beforehand:

m The conditions to be tested
m The data used to test these conditions

m The expected results

The documented results of the testing should be approved by the project leader. When
the unit testing is completed successfully, the dialogshould be submitted for subsystem
or integration testing. For dialogs thatoperate independently, no testing should be
required beyond unit testing.

Integration testing determines whether the dialogs within each subsystemare
functioningin accordancewith the specifications. Interdependent dialogs should be
grouped together andtested as a unit, usingthe same principleas for unittesting. To
avoid duplication of effort, this phaseshould usethe same data as that used for unit
testing whenever possible.The application,inits entirety, should be tested to ensure
that all paths through the applicationaretraversed correctly.

Regressiontesting is a useful practiceto implement. Test results aresaved from each of
the test procedures to be compared with subsequent test results if/when changes are
made to an application. Comparison of the test results can providean efficientway to
monitor the effectiveness of the changes.

Users determine the acceptance test criteria and should approveallsystemoutputs.
Acceptance testing ensures that the system is functionally acceptableto the users and
will operate successfullyin the production environment. Testing should be performed
usingliveor simulated-live data provided by the users.

42 Application Design Guide

Underlying Issuesand Key Considerations

Underlying Issues and Key Considerations

Data Definition and Database Design

Because CA ADS operates inthe CA IDMS/DB environment, it is importantto review
how datais defined and stored in that environment. Ina traditionalapplication
development environment, the application programs comprise both processinglogic
andinformation about the data accessed. Processinglogic, which determines the action
taken by a program to produce the desired output, correctly belongs in the realm of
programming. Defininginformation about data (such as the format of records and
elements, and editing criteria) can behandled more easily and efficiently as a separate
function.

The CA IDMS/DB environment uses the dictionary toaccomplish this separation of
information aboutdata from process logic. The dictionary maintainsinformation about
data and makes this information directly availableto the application maps and dialogs
that need it.

Advantades of Separating Information

Separatinginformation aboutdata from process logic has thefollowing advantages:

m Allows control of data resources — The site has better control over data resources
because the control is centralized. Centralized control provides the following
benefits:

— Eliminates unwanted data redundancy

Controls the data thatis available

Determines where data elements are used and by whom

Establishes standards for data element names, inputand output formats, and
editing criteria

m Facilitates the design, development, and maintenance of CA ADS applications —
The application canusedata from the dictionaryand canstoreapplication-specific
datainthe dictionary where it can be maintained. The data canbe accessed bya
variety of reporting facilities and software components, and can be populated and
updated automatically.

Chapter 2: Design Methodology 43

Data Definition and Database Design

Increases productivity — Productivityisincreased becauseactivities arennot
duplicated. Information aboutan element type is defined once and does not have
to be defined separately by every programmer usingthat element ina dialogor
map.

The DBA staff can concentrate on defininginformation for the applications,and the
programming staff can concentrate on the processinglogic. For example, the
dictionary can maintain editingand display information for each element. The DBA
cansimply defineinthe dictionary thatthe external format of social security
numbers is 999-99-999, and the application programmers need not be concerned
about editingand formatting the element when they useit.On all inputoperations
for this element, the automatic editing facility will verify thatuser inputconforms
to this picture;on all output operations, itwill formatthe data andinserthyphens.
Definingthe elements inthis way is easier, less error prone,and less time
consumingthan coding process logic.

Definition of Information

The definition of information for an application can bedivided into the following two
phases:

Data definition

Databasedesign and definition

Each of these phasesinthe design process is outlined below.

For further information on this topic, see the CA IDMS Database Design Guide.

44 Application Design Guide

Chapter 3: Building a Prototype

This section contains the following topics:

Three-Stage Approach (see page 45)

Stage |: Buildingthe Basic Prototype (see page 45)

Stage Il: Adding Process Logic and Data Retrieval (see page 48)
Stage lll:Refiningthe Maps and Processes (see page 50)

Three-Stade Approach

The development of a prototype can be approachedina variety of ways, depending
upon the needs of the designteam. The procedures suggested in this manual arebased
on a three-stage approach:the initial stage performs rudimentary navigation of the
application; the second stage begins to perform data retrieval and update; and the final
stage incorporates refinements that reflect the more complex requirements of an
applicationrunningina production environment.

Each stage of the prototype is discussed in the following sections.

Stage I:Building the Basic Prototype

The firststage details how to build the prototype and the benefits of doingso.

Prototype Can Be Developed Quickly

The firststage of the prototype can be developed quickly and easily becauseonly
skeletal maps and dialogs are needed for execution by the CA ADS runtime system.
Typically, maps arecreated with justenough information to identify their use in the
application process,and onedialogis created for each map. The dialogs donotneed a
premap process or a response process. With a minimum of time and effort, the designer
has the opportunity to see how the applicationis goingto work even before data
processingtakes place.

Chapter 3: Building a Prototype 45

Stage I:Building the Basic Prototype

Activities to Perform

To build an executable prototype, the developer needs to provideload modules for the
runtime system by performing the followingactivities:

1. Compiling the application — The applicationandits components (the functions and
responses) aredefined and compiled with ADSA.

2. Compiling the maps — Each map is formatted, defined, and compiled with the
onlinemappingfacility.

3. Compiling the dialogs — Each dialogis identified, associated with the appropriate
map, and compiled with ADSC.

The prototype can be executed when the application, map,and dialogload modules are
availablefor use by the CA ADS runtime system. At this point, the developer has a
meaningful version of the prototype that can be presented for user review and
modification.

Each of the activities for buildingthe basic prototype is discussed separately below,
followed by user review considerations.

How to Compile the Application (ADSA)

The amount of detail provided for a prototype can be as extensive as the developer
wishes, but the basic prototypedoes not have to be elaborate. After initiatingan ADSA
session, the developer can define and compileanapplication as follows:

1. Specify the application — ADSA must be supplied the name of the applicationand
related information such as version number.

2. Name the task code — The taskcode designates an entry pointintothe application.
Ifthere are multiple entry points, eachtask code must be defined individually.

3. Define the responses — The responses that initiatethe functions of the application
must be specified.

4. Define the functions — Menu and dialogfunctions thatareinitiated by the
responses must be specified.

Note: Every function that you define as a dialogfunctionin ADSA you must also
define to ADSC as a dialog.

5. Compile the application.

When the above-named activities arecompleted successfully, ADSA defines an
Application Definition Block (ADB) for the application and updates the Task Activity
Table. Both the ADB and the TAT are stored as load modules inthe dictionaryandare
used by the CA ADS runtime system when the applicationis executed.

46 Application Design Guide

StageI:Building the Basic Prototype

Compiling the Maps

How to Produce Prototype Screens

Maps that are compiled for the firststage of the prototype usually contain all literal
fields. The developer signs onto the online mappingfacility (MAPC) and takes the
following steps to produce the prototype screens:

1. Specify the map and map options — The map name and related information such
as version number must be supplied to MAPC. Certain options,such as display
options, may also be appropriateto specify for the prototype.

2. Produce ascreen layout —A layoutcan be produced automaticallyifthe developer
specifies existing dictionary records to MAPC. Otherwise, the layoutcan be
produced manually. Literal values (such as hyphens or underscores) can be assigned
to represent variabledata fields.

3. Compile the map — Amap load moduleis stored inthe DDLDCLOD area of the
dictionary when the map has been compiled successfully.

Compiling the Dialogs (ADSC)

Compile a Dialog for Each Map

Considerations

You must compileone dialogfor each map used by the prototype.

To compile a prototype dialog

1. Initiatean ADSC session

2. Add the dialog.

3. Associatethe map with the dialog.

4. Compilethe dialog.

The following considerations should be noted when compilingdialogs foranapplication:
m Ifa dialogis definedas afunctionin ADSA, it must be defined in ADSC.

m Ifa dialogisassociated with a task code, it must be defined as a mainlinedialog.

m The associated map must be compiled before the dialogcan becompiled.

ADSC defines a Fixed DialogBlock (FDB) for every dialogthatis compiled successfully.

The FDB is stored as a load module in the dictionaryandis used by the CA ADS runtime
system when the applicationisexecuted.

Chapter 3: Building a Prototype 47

StageI1: Adding Process Logicand Data Retrieval

User Review

After the application, map,anddialogload modules havebeen compiled, the prototype
isreadyto be presented to the user for careful onlinereview. Modifications based on
review should be made to the existing prototype, the necessaryload modules
recompiled, and the prototype resubmitted for review until the users aresatisfied.

Stade II: Adding Process Logic and Data Retrieval

The prototype becomes more functional inthe second stage. The developer might add
activities such as thefollowingto the prototype:

m Global records (ADSA)

m Security restrictions such assignon menus (ADSA)
m Displaycapabilities (online mappingand IDD)

m Premap and responseprocess logic (ADSC and IDD)

The ADSA, onlinemapping facility, ADSC, and IDD activities used for these
enhancements are described separatelyinthe followingsections.

ADSA Enhancements

Adding Features

The following ADSA features can be added to the prototype at this point:

m Global records (thatis, records that are availablefor use by all dialogsinthe
application) can bedefined

m User-program records (thatis, records that are to be passedto a user-program) can
be defined if needed

m Validresponses listed for a function can be resequenced or their displaycan be
suppressed

48 Application Design Guide

StageIl:Adding Process Logicand Data Retrieval

Signon can be specified as required or optional. If either is specified, these steps
must be taken:

— The signon function must be identified
— The function type of the signon function must be specified as menu
- The function must be defined as a menu

— The SIGNON system function must be specified as the functioninitiated by the
user's responsefrom the signon screen

— The response thatinitiates the SIGNON system function must be specifiedas a
validresponsefor the named menu function

When these changes have been made, recompile the application.

Populating the Dictionary

Three necessary components

The dictionary must contain the following components if they are to be used by the
prototype:

Dialog premap and response processes — Premap and response processes mustbe
stored as process modules inthe dictionary. If premap or response processes are
associated with a dialog, process modules mustbe defined inthe dictionary before
the dialogcan be compiled. Modules areadded to the dictionary with the IDD
MODULE statement specifying LANGUAGE 1S PROCESS.

Map records and dialog work records — All work records used by a dialogandall
records associated with maps must be defined inthe dictionary beforethe dialogs
and maps canbe compiled. Similarly, an application cannotbe compiled unless all
global records associated with the application aredefined inthe dictionary. Records
are added with the IDD RECORD statement.

Edit and code tables — All stand-aloneeditand code tables associated with map
records must be defined inthe dictionary beforethe map is compiled. Edit and code
tables are added with the IDD TABLE statement.

CA IDMS Mapping Facility Enhancements

Variablemap fields thatwere defined as literals for the first stage of the prototype
should be redefined as data fields and edited accordingly. When the appropriate
enhancements have been made, the map should be recompiled.

Chapter 3: Building a Prototype 49

Stage III: Refining the Maps and Processes

ADSC Enhancements

The developer now uses ADSC, recompilingthe dialogto includethe premap and
response processes, as well as the changes made to the map associated with this dialog.
After initiatingan ADSC session and namingthe appropriatedialog, the develop can
make these enhancements:

m Database specification—Specify the databasethatthe dialogaccesses
m Workrecords — Supply the names of all work records associated with the dialog

Note: Ifthe dialogis using subschema records, they must belong to the same
subschema as the dialog.

m Premap process — Supply the name of the premap process associated with the
dialog.

m Response process — Supplythe name of the responseprocess associated with the
dialogand a control key and/or responsefield valueunique to that response
process.

Recompile the dialogafter making the appropriateenhancements.

Stage III: Refining the Maps and Processes

The final stage of prototype development can focus on refinement of the map design
andthe map field attributes. Some of the followingadditionscan be made:

m Incorporateadditionalfieldsinthe maps

m Add orchange map field attributes

m Specify automatic editingon selected map fields
m Provideinformational messages

m Add error messages

50 Application Design Guide

Chapter 4: Designing Maps

This section contains the following topics:

Attributes of Successful Maps (seepage 51)

Design Standards for a Dialog Map (see page 52)

Online MappingProcedures (see page 52)

Choosing Menu Maps (see page 53)

Designing Dialog Maps (see page 56)

Attributes of Successful Maps

Determining Success of an Application

Maps displayed during the execution of the applicationinterfacedirectly with the user
and, therefore, caninfluencethe success of anapplication. Consequently, the designer
must consider the appearance of the menu screens and the layoutof the dialog maps.

A successfulmap design should exhibitthe following attributes:

Consistency — Entities (for example, fields, headings, labels, responses, messages,
and control keys) should have the same meaning or effect throughout the
application. The meaning or effect need not be identical for every map, but should
be consistentwithin the broader confines of the system. In general, there aretwo
special fieldsonanyscreen: a message field and a response code field. These areas
should appearina constantlocation onthe screen throughout anyapplication;for
maximum effectiveness, they should remainstandard forall applications ata site.

Convenience — Features of the system should be designed to associaterelated
entities by usingsimilarconstructs, positioning, and responses to produce similar
reactions from the system. For example, assign oneparticular control key to initiate
the update functionin all the dialogs of a given application.

Supportiveness — The reactions of the system should enablethe user to handle
normal contingencies conveniently. Tutorial aids should beavailable when needed.
Displayed informational and/or error messages should be meaningful.

The remainder of this chapter discusses thefollowingaspects of map design:

Standards to consider when designing maps
Mapping procedures that can be adopted by an installation
Choices availablein the design of menu maps

Suggestions for designing dialog maps

Chapter 4: Designing Maps 51

Design Standards foraDialog Map

Design Standards for a Dialog Map

Dialog Map Standards

The developer needs to consider the following standards when designingdialog maps:

Design the map with the userinmind. For example, a very dense screen is tiring
anddifficulttouse. Ingeneral, the screen most pleasingto the eye is about40
percent full.

The placement of fields on the screen, the use of high intensity,and the neatness of
the format have a great deal of impacton the effectiveness of the system.

When the screenis sent to the terminal, the cursor should bein the position most
likely to be used for data entry. Other frequently used fields should beeasily
accessiblewiththe tab and return keys.

The sequence of fields, when tabbed, should match the most common pattern used
for data entry.

Fields requiring special attention should be highlighted and clearly visible.

The screens should be as uncluttered as possible. The common error of usingone
screen format for excessiveand/or dissimilarfunctions tends to produce cluttered
or busyscreens; separatescreens with some common fields are more usable.

Users should be ableto initiate processing by typinginthe necessarydata and
pressinga control key. They should not be required to make decisions thatcould
have been incorporatedin program logic, nor should they be forced to use control
keys or responses needlessly.

Online Mapping Procedures

The followinglistdetailsthe mapping procedures that might be implemented by a
specificsite:

Have one individual (for example, the data administrator) responsiblefor creating
and modifying all maps.

As much as possible, usethe features of the online mappingfacility to handle
editing, error handling, error messages, and modifying field attributes.

Use a standard map template. Whenever possible, keep data fields in columns and
double spacerows of data.

Use the BRIGHT attribute to contrastitems on the screen that have different uses
(for example, highlightrequired fields). Be consistentin the use of attributes.

52 Application Design Guide

Choosing Menu Maps

m Usethe cursorina consistentmanner. For example, either placethe cursoratthe
firstfield to be used for data entry or at the field where the user is to enter the next
function.

m Usethe BRIGHT attribute for redisplaying data fields thatarein error.

Choosing Menu Maps

Available Menu Map Types

When designingan application, the developer needs to decide if system- or user-defined
menu maps are to be used. The system-defined menu provides a standard formatfor
the information provided by the developer duringthe definition of the functions and
responses of the applicationinan ADSA session. If a format other than the standard
formatis desired (for example, the developer wishes to redefine certain literal fieldson
the map or wants to supply site-specificheaders), the user-defined menu map is used.
Both types of maps arediscussed separately below.

System-Defined Menu Maps

Designer's options

Ifthe menu map is to be system-defined, the designer has the option of using one of the
following menu formats:

m Short description menu map (ADSOMUR1) — The menu screen that lists 30 valid
menu responses per page; a short(12-byte) textual descriptionis displayed for each
response.

m Long description menumap (ADSOMUR2) — The menu screen that lists 15 valid
menu responses per page; a long(28-byte) textual descriptionis displayed for each
responsename.

m Signon menu map (ADSOMSON) — The menu screen that requires a DC/UCF
validation of useridand password before the menu request can be processed. The
standard signon menu map can have 12 valid menu responsenames per page with
28 bytes of descriptive text displayed for each.

If none of the these menus meets the needs of the user, the system-defined menu map
canbe altered by the user or a new menu (designated as a menu/dialogfunction) can
be formatted. Both methods of creating user-defined maps are discussedin the
followingsections.

Chapter 4: Designing Maps 53

Choosing Menu Maps

User-Defined Menu Maps
Altering Map Methods

When user-specific modifications to the existing system-defined menu maps are

necessary, designers can alter the menu maps by usingeither of the following
techniques:

m Reformatting and regenerating the standard system-defined menu

m Designinga menu/dialog (thatis,a menu map that is partof a menu/dialog
function)

Each of these methods is discussed in the followingsections.

Reformat the System-Defined Menu

The existing system-designed menu map can be reformatted andregenerated, retaining
the same name. This method has the advantage of allowingthe developer to use the
standard menu function rather than designingand using a menu/dialog function.

To reformat the system menu

1. Obtainthe sourcefor the map being used (thatis, ASDSOMUR1, ADSOMUR2, or
ADSOMSON) from the source data sets created when the distribution tapewas
installed. The maps arestored as members under their own names.

2. Usethe batch mapping compiler to store the sourceinthe dictionary.

3. Usethe onlinemappingfacility to modify and regenerate the menu map.

Redenerating the System-Defined Menu

When regenerating a menu map with the online mapping facility, the followingrules
must be observed:

m ADSO-APPLICATION-MENU-RECORD is arequired map record. Optionally, the menu
canmap to additional records, butitmust always map to the .hw
ADSO--APPLICATION--MENU--RECORD.

m The menu must containthe same number of responses per page as the number of
responses for the selected map (thatis,30 for ADSOMUR1, 15 for ADSOMUR2, or
12 for ADSOMSON).

m The AMR-RESPONSE field of the .hw ADSO--APPLICATION--MENU--RECORD record
isarequiredfield. The firstresponsename on the map must map to the first
occurrence of AMR-RESPONSE. Each subsequent response name must map to the
next correspondingoccurrence.

54 Application Design Guide

Choosing Menu Maps

The AMR-USER-ID and AMR-PASSWORD fields of the .hw
ADSO--APPLICATION--MENU--RECORD are required on a signon menu map. The
user id data field must map to AMR-USER-ID, andthe password data field must map
to AMR-PASSWORD.

All other fields onthe .hw ADSO--APPLICATION--MENU--RECORD are optional.The
map data fields that areused must be associated with the appropriatefields onthe
record (for example, heading data must map to AMR-HEADING).

Ifusingthe AMR-KEY field, note that this field appears as a single byte (the AID
byte) inthe .hw ADSO--APPLICATION--MENU--RECORD. The AMR-KEY fieldis
associated with a code table (ADSOAIDM) that translates the AID byte to more
easilyreadablecharacters (for example, 1 translates to PF1, percentage translates
to PA1).

For more information on usingonline mappingfacility to regenerate a map, refer to CA
IDMS Mapping Facility Guide.

Design a Menu/Dialog

The user has the option of designingand generating an entirely new menu with the
onlinemappingfacility. This map must be defined as a menu/dialogfunction of the
application.

To design a menu/dialog function

1.

Design and generate the map usingthe onlinemappingfacility. Observethe
followingrules when generating the map:

m ADSO-APPLICATION-MENU-RECORD must be one of the records associated
with the map.

m The AMR-RESPONSE fieldis required for all menus. The number of required
occurrences depends on the number of responses per page (to a maximum of
50) specified onthe ADSA Menu Specification screen. The firstresponsename
on the map must map to the firstoccurrence of AMR-RESPONSE; each
subsequent occurrence must map to the next corresponding occurrence of
AMR-RESPONSE.

m The AMR-USER-ID and AMR-PASSWORD fields arerequired for signon maps.
The user id data field must map to AMR-USER-ID, and the password data field
must map to AMR-PASSWORD.

m All other fields onthe .hw ADSO--APPLICATION--MENU--RECORD are optional.
The map data fields used must be associated with the appropriatefields onthe
record (for example, heading data must map to AMR-HEADING).

Add the process sourceto the dictionaryinanIDDsession. (The dialogassociated
with the menu does not have to includeany process code, although the choiceof a
menu/dialogfunction suggests that some processingis intended.)

Chapter 4: Designing Maps 55

Designing Dialog Maps

3. Compilethe dialoginan ADSC session, associatingthe map and any processes with
the dialogusingthe ADSC Dialog Definition screen. Note that the dialog mustbe
compiled to includethe map before the application can beexecuted at run time.

4. Define the dialogas a menu/dialogfunction for the application.

An installation can develop standard map templates and the associated boilerplatecode
for site-specific menu/dialogs. When a menu is needed, programmers can obtaina copy
of the template/boilerplate, fill inthe appropriatefields and the edit/code tables

needed for those fields,and submitit to the data administrator for approval.

Designing Dialog Maps

Design Dialog Questions

Each dialogmapis associated with its own dialogand must be designed to reflect the
function of the associated dialog. The application specifications developed duringthe
initial design stages can beused to answer design questions such as the following:

m How many of the dialogs specified for this application will require maps?
m What premap and responseprocesses arerequired for each map?
m Whatjobis performed by each process?

m Will themap be used to pass data between processes and/or between dialogs?
What data will bepassed?

m What databaseand mappingwork records are associated with the map?

m Whateditingcriteria should applytothe map fields?

Standardizing Formats

Just as site-specificstandards can beestablished for menu/dialogs, aninstallation can
use map templates to standardizethe formatting of maps associated with dialog
functions. Programmers can obtain a copy of the template; fill intheappropriatefields,
indicatingthe corresponding map record fields;and submit this information to the data
administrator. The data administrator canthen add the necessary map design, map
records,and edit/code tables (if any) to the dictionary.

The followingfigureillustrates a sample map template that can be provided for
programmers. This template designates standard areas for headers, footers, message
codes and descriptions, responseareas,and the passingdata field. The installation using
this template has written a routine that divides the message area into four 40-character
messages.

56 Application Design Guide

Designing Dialog Maps

Sample Template for an Application Screen

Column_ 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8

5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0

<dialog> <.name..of ..application.> <date> ™

<functn> <.. function description ..> USER: <userid> <md> MODE
NEXT RESPONSE: <respns> NEXT KEY: <..... passed...data >
< message area........ ><,.. may contain up to four......... >
L3 ><,...40 character messages.......... >

Chapter 4: Designing Maps 57

Chapter 5: Designing Dialods

Overview

What is a dialog?

This section contains the following topics:

Overview (see page 59)
Design Considerations (see page 62)
Dialogs Thatlssue Navigational DML (see page 73)

A dialogis a unitof work withinan CA ADS application thatenables interaction with the
user. Because dialogs arethe basic building blocks of an CA ADS application,itis
important that they be well-designed. This chapter discusses characteristics and design
features of dialogs that merit the attention of application developers.

Dialog Characteristics

Dialog Level

Developer's Role

The characteristics of a dialog determine its role within the application;each dialoghas
animplicitlevel and status,and can pass and receive control of the processing.The
significanceof the dialoglevel and status and the manner in which control is passed are
discussed the followingsections.

The level of a dialogrefers to its position within the application structure. The

application developer can pass processing control to a dialog atthe next lower level, the
same level, the next higher level, or the top level of the application structure.

Note: The meaning of TOP changes whenever a LINK command is executed. The dialog
issuing LINK becomes the current TOP.

Chapter 5: Designing Dialogs 59

Overview

Aspects Influenced

At runtime, the dialoglevel affects the followingaspects of anapplication:

m Availability of data — When combined with the manner inwhich processing
control is received, the level of a dialoggoverns the data passedinthe record buffer
blocks and the currencies thatare established, saved, stored, or released.

m Use of system resources — The runtime system maintains record buffer blocks,
databasecurrencyblocks,and variabledialogblocks for dialogs ateach level. There
is adirectcorrelation between the number of dialoglevelsinanapplicationandthe
size of the storage pool that is needed.

m Performance — The number of dialoglevels can affectthe performance of an
application. For example, performance times are affected ifa frequently accessed
dialogis located three or four levels down inanapplicationstructure.

An application can becomposed of any number of dialoglevels, butthe most effici ent
application uses many levels only when absolutely necessary.

The top-level dialog mustbe a mainline dialogand must be defined as such by the
application developer. A mainlinedialogis theentry point to the application. An
application can havemore than one mainlinedialog; entry points canalsobe
established ata lower level in the application structure. In addition to defininga task
code for the top-level dialog, the developer canidentify analternativeentry pointby
usingthe Task Definition screento associatea task code with a lower-level function.

Dialog Status
Dialog Types

A dialogcanhavean operative or a nonoperative status withinthe applicationthread.A
dialogbecomes operative when itreceives control and begins executing; ata given
level, only one dialogcan beoperative at a time.

When control passes to a dialogatanother level, the issuingdialogcan remain operative
or can become nonoperative, depending upon the level of the next dialog. For example,
when control is passed with the LINK command, the issuing dialogremains operative;
when control is passed with the TRANSFER command, the issuing dialogbecomes
nonoperative.

As longas a dialogis operative, all data thatit has acquiredis retained. When a dialog
becomes nonoperative, its data is released. See the table, later in this chapter, that
summarizes the way in which a dialog's statusis affected by the successful execution of
a control command.

60 Application Design Guide

Overview

Sequence of Dialog Execution

Within the application structure, only one dialogexecutes at a time. The sequence of
dialogexecutionwithinan application structureis called the application thread. The
response of the user determines the dialogs thatconstitute a given application thread. A
figure later in this chapter shows an application structureand one application thread.

One dialogcanexistinseveral places withinthe application structureand be partof the
same or different application threads. A dialogcan execute more than once within the
application thread whether or not itremains operative.

Inthe next figure, the boxes with dotted lines represent anapplication thread that
includes dialogA, dialogC,and dialogD.

.
-

DC/UCF

i

CA-ADS/
ONLINE -
MENU

T
B
1
1 DIALOG » DIALOG

1 A 1 B
| I |

Y ;
- = I |
| | DIALOG I DIALOG !
D 1 (o] 1

[|

; v THE
f——Jd-—-4 APPLICATION
1 DIALOG | DIALOG STRUCTURE
1 B 1 E
L - - - =] * Bl
DIALOG | DiALOG
F o F

Dialog Control
Passing control to another dialog

A dialogpasses control to another dialogbased on the execution of a control command
and/or the user's selection of processing. The dialogthat receives control can be a
different dialog, a copy of the executing dialog, or all or partof the executing dialog
itself.

Chapter 5: Designing Dialogs 61

Design Considerations

The application developer can use specific control commands to perform the following
operations:

1. Pass processingcontrol fromone dialogtoanother dialogorto a user program.
2. Displayadialog'smap.

Terminate anexisting dialogor application.

®

Exit CA ADS.

ul

Pass processing control to specified points within a dialogand reinitialize the record
buffers associated with a dialog.

Most of the control commands used areavailabletoall applications. When designing
dialogs thatwill become partof an application thatis compiledinan ADSA session, the
developer canalsousethe EXECUTE NEXT FUNCTION command.

For a discussion of the commands that directthe flow of control withinan application,
see Application Concepts. This appendix also containsa diagramand discussion of how
the runtime system determines the order in which the functions of an applicationare
executed.

Design Considerations

The application developer needs to keep the following CAIDMS/DB, DC/UCF, and CA
ADS system features in mind when designingthe dialogs:

m Record buffer management
m Workingstorage areas

m Global records

Record Buffer Management

What Affects Record Buffer Management

At the beginning of each application thread, the CA ADS runtime system allocates a
primary Record Buffer Block (RBB) and initializes a buffer in the RBB for each record
associated with the top-level dialog. All lower-level dialogs canaccessrecords inany of
the existing buffers, unless one of the followingconditionsis true:

m The dialogthatreceives control accesses a record that has been assigned the NEW
COPY attribute duringdialoggeneration.

m The dialogthatreceives control accesses a record not used by a higher-level dialog.

m The dialogthatreceives control issues navigational DML statements to access a
record that uses a subschema not used by a higher-level dialog.

62 Application Design Guide

Design Considerations

Ifone or more of these conditions exist, CA ADS allocates and initializes an additional
buffer for the record.

Additional buffers arealsoallocated andinitialized when one of the followingsituations
exists:

m The record is assigned the WORK RECORD attribute duringdialoggeneration.

m The record is associated with the map used by the dialog.

m The record is named explicitlyina database command.

Record Buffer Allocation

The following example illustrates the sequence in which CA ADS initializes record buffers
as aseries of dialogs receives control.

Chapter 5: Designing Dialogs 63

Design Considerations

When dialog Abegins executing, CA ADS allocates buffers for the EMPLOYEE and SKILL
record types. Dialog B uses the previously allocated EMPLOYEE record buffer, but
requires a new buffer for the OFFICE record. Dialog Crequests and receives a new copy
of the EMPLOYEE record buffer, but uses the previouslyallocated SKILLrecord buffer.
DialogDrequires new buffers for both the DEPARTMENT andJOB records. CA ADS
allocates a secondary RBB to accommodate the DEPARTMENT record, but uses the
remainingspaceinthe primary RBB for the JOB record.

DIALCG PRIMARY REB
A RBE
-
-EMPLOYEE
EMPLOYEE
“SKILL REGORD
RBE
SKILL
DIALOG RECORD
B
RBE
-EMPLOYEE
-OFFICE Lt OFFIGE
RECORD
RBE
EMPLOYEE
(NEW COPY)
D"LC\;LOG RECORD
-EMPLOYEE RBE
(NEW COPY)
.SKILL JoB
/ RECORD
DIALOG SECONDARY RBB
b RBE
"DEPARTMENT p| DEPARTMENT
JosB RECORD
FREE
/\.-—/\

64 Application Design Guide

Design Considerations

NEW COPY Records

Records or tables can be assigned the NEW COPY attribute duringthe definition of a
dialog.The NEW COPY designation signifies thatthe record in questionis to receive
newly initialized record buffers when the dialogis executed.

The NEW COPY attribute is used when the programmer wants to obtain another
occurrence of a record type without overwritingthe data that is inthe current buffer. To
have the use of a second, temporary buffer for the same record type, the programmer
links to a lower-level dialogthathas specified NEW COPY for that record. An occurrence
of the record type is brought into the new buffer and processed as directed. When
control returns to the calling dialog, the record buffer at the upper level contains the
same data as before; the data inthe lower-level record buffer is nolonger available.

Dialogs ata level lower than the dialogwitha NEW COPY record will not usethe NEW
COPY buffer, but will usethe firstbuffer allocated for the record.

Working Storade Areas

Queue and Scratch Areas

Queue Records

The DC/UCF system queue andscratch areas canbeused by the CA ADS dialogs as
working storageareas. The methods by which dialogs canstoreand userecords inthe
gueue and scratchareas arepresented below.

Queue records can be used as work records that are shared by tasks on all DC/UCF
system terminals. Entries are directed to a queue with database commands embedded
inthe dialogs or batch programs. Queues cantransfer data across theentire DC/UCF
system and aremaintained across systemshutdowns and crashes. Currencies and locks
are not passed between tasks.

Note: When usedin a sysplex environment, the queue area may be shared between
multiple DC/UCF systems. For more information on shared queues, pleasesee the CA
IDMS System Operations Guide manual.

Queue records have the following characteristics:

m A queue header record is allocated either atsystem generation or by anapplication
dialog.

m Queue records participateina setinthe dictionary;this setis commonly referred to
as aqueue.

m Queue records are locked by each task; no other task can use them until the locks
arereleased.

Chapter 5: Designing Dialogs 65

Design Considerations

Queues created at system generation with the system QUEUE statement can be
accessed by an CA ADS application. Additionally,an application can create its own
queues by requesting storagespacewith a GET QUEUE statement inthe dialogprocess
code.

An application can usequeue records to accomplish thefollowingfunctions:

m Automatically initiate a task — The DC/UCF system initiates a task that processes
the queue entries when the number of entries ina queue reaches a specified limit
or when a specified time interval has passed. For example, anapplication can write
records to a queue and the system will routethe records to a printer when the
collected records exceed the specified limit.

m Avoid prime time updating — Records that need to be updated can be collected on
a queue; the queue canbeaccessed by a batch program ata low-usetime.

m Preventrun-away tasks — A maximum limitcan be established for the number of
entries permitted ina queue. The UPPER LIMIT parameter of the QUEUE statement

is especially useful inatestenvironment to prevent alooping programfrom filling
the scratch/queue area.

Scratch Records

Scratch records are shared between tasks and saved across the transactions of an CA
ADS application.Used as a temporary storagearea, scratchrecords providea means of
passingdata between tasks running on the same terminal; they arenot accessibleto
tasks that execute on other terminals and are not saved across a systemshutdown ora
systemcrash.

The followingcharacteristics areassociated with scratch records:

m Scratchrecords are stored inthe dictionary.

m Multiplescratch areas areallowed for a taskand multiplerecords can be
maintained withina scratch area.

m Currencyis maintainedforeachareaand record, and can be passed between tasks.

m The scratchareais allocated dynamically within the storage pool. When all scratch
records are deleted, the area will also be deleted.

66 Application Design Guide

Design Considerations

Global Records

Scratchrecords canbe usedinthe followingways withinan application:
m To saveinputacquired from two or more dialogs over the course of the application.

m To allowmultipleoccurrences of a record to be mapped out at one time. For
example, ifthe names, addresses,and phone numbers of all department employees
need to be mapped onto the same screen in multiples of five, the following steps
could be taken:

1. Walkthe set of employee records, moving the required data to a work record
that contains multiply-occurringfields.

2. When the work record contains the data on five employees, move the contents
of the work record to the scratch area witha PUT SCRATCH command so that,
in effect, a screenful of data on five employees is puton each record inthe
scratchfile.

3. Walkthe set of scratch records when the screens of information are to be
displayed.

m To pass the contents of the record buffer when a dialogreceives control witha
TRANSFER command. Data acquired by the dialogissuinga TRANSFER command is
not availableto the dialogreceivingcontrol. However, the dialogreceivingcontrol
could access buffer data that had been placedina scratchrecord.

Global records arerecords that areavailabletoall dialogs, maps,anduser programsin
anapplication.Subschema records cannotbe defined as global records.

The ADSO-APPLICATION-GLOBAL-RECORD is the system-defined global record that
enables communication between the application andtheruntime system. To be
accessed by a dialog, the ADSO-APPLICATION-GLOBAL-RECORD must either be specified
as a dialogworkrecord or be associated with the dialog's map. This recordis initialized
when an applicationisfirstloaded by the runtime system.

All fields in the .hw ADSO--APPLICATION--GLOBAI--RECORD are addressable by dialogs
or user programs.

Chapter 5: Designing Dialogs 67

Design Considerations

Selected Fields

Selected fields from the .hw ADSO--APPLICATION--GLOBAI--RECORD are listed below.

The AGR-NEXT-FUNCTION field contains the name of the next functionthatis to be
executed. When the dialogassociated with the current function ends with an
EXECUTE NEXT FUNCTION command, the function named in the
AGR-NEXT-FUNCTION fieldis executed by the runtime system. A dialogor user
program can query this field to check what the next function will be. Modification
of the AGR-NEXT-FUNCTION field, however, does not change the next function to
be executed; a change in the next function can only be accomplished by
modification of the AGR-CURRENT-RESPONSE field (see below).

The AGR-DEFAULT-RESPONSE field contains the defaultresponse valuespecified on
the Function Definition screen when an applicationisgenerated. When a valueis
specified and the screen includes a data field for a default response, the user can
type ina new valueor canspaceout the valuethat appears.

The AGR-CURRENT-RESPONSE field contains the response specified by the user. The
process code of a dialogor user program can also move values into this field,
overwritingthe user response. Note that, if .hw AGR--CURRENT--RESPONSE is
modified by a dialog, securityis notchecked for the response moving into the field,
even ifsecurityis associated with this response.

When EXECUTE NEXT FUNCTION is encountered within process code, the response
named inthe AGR-CURRENT-RESPONSE fieldis executed ifitis avalidresponsefor
the current function. The AGR-CURRENT-RESPONSE field determines the next
functioninthe application thread (thatis, itdetermines the value moved into the
AGR-NEXT-FUNCTION field).

The valuein AGR-CURRENT-RESPONSE depends upon whether the
AGR-DEFAULT-RESPONSE field contains a value; whether the user enters a new
valueinthe response field; or whether there is a responsevalue associated with the
control key (other than ENTER) pressed by the user.

The following flowchartillustrates howthe CA ADS runtime system places a valuein
the AGR-CURRENT-RESPONSE field of the .hw
ADSO--APPLICATION--GLOBAL--RECORD. The runtime system executes the response
named inthe AGR-CURRENT-RESPONSE field after determining thatitis avalid
responsefor the current function.

68 Application Design Guide

Design Considerations

MOVE DEFAULT

RESPONSE TO

AGR-GURRENT-
RESPONSE

USER PRESSES
CONTROL KEY

'

MOVE SPACES

AGR-CURRENT-
RESPONSE

?

DOES

FUNCTION HAVE

A DEFAULT

RESPONSE
?

YES

ENTER KEY
PRESSED

?

ENTER KEY
PRESSED

RESPONSE

MOVE RESPONSE
ASSQOCIATED WITH
PRESSED KEY TO AGR-
CURRENT-RESPONSE

MOVE USER
ENTERED RESPONSE
TO AGR-CURRENT-
RESPONSE

SPACES
REMAIN IN
AGR CURRENT-
RESPONSE

|

EXECUTE RESPONSE IN
AGR-CURRENT-RESPONS

Chapter 5: Designing Dialogs 69

Design Considerations

The AGR-EXIT-DIALOG fieldinitially containsthe name of the exit dialogspecified on
the Application Definition screen. This field can be used to link to a special routine.

For example, one department of a company might want the employee name
specified as John Doe, whileanother department wants the name specified as Doe,
John. The same dialogcould beused for both departments by linking to an exit
dialog (thatis, LINK TO AGR-EXIT-DIALOG) containinga name routine.

The AGR-PRINT-DESTINATION fieldinitially contains thedefaultname of the printer
for the application as specified on the ADSA Application Definition screen. Dialogs
and user programs can use this printdestination with the WRITE PRINTER
DESTINATION command.

The AGR-USER-ID field canbe queried by dialogs and user programs.

The AGR-PRINT-CLASS fieldinitially containsthedefault printer class for the
application as specified on the ADSA Application Definition screen.The dialogcan
reference this field with the WRITE PRINTER CLASS command.

The AGR-SIGNON-SWITCH field can be queried to determine if there has been a
validsignon.

The AGR-SIGNON-REQMTS field indicates whether signonis optional, required, or
not used for the signon menu, as specified onthe Security screen. This field can be
referenced for additional security checking.

The AGR-MAP-RESPONSE fieldcanbe used as aresponse field, in placeof the
SRESPONSE field,inany user-defined nonmenu map. The dialogcaninitializethis
responsefield before mapout sothat the desired default responseappears onthe
map. For input purposes, the AGR-MAP-RESPONSE field works inthe same manner
as the SRESPONSE field.

For further information on the SRESPONSE field, refer to CA IDMS Mapping Facility
Guide

The AGR-MODE fieldinitially contains thevalue STEP or FAST as specified on the
Application Definition screen. Typically, the design of a dialogmap includes a field
that displaysthevalue of AGR-MODE. The user canchange this field at anytime.

AGR-MODE Field Examples

Inthe followingtext, two examples of how the AGR-MODE field canbe used are
presented, with the EXECUTE NEXT FUNCTION command, to implement a STEP/FAST
mode for an ADSA application.The logicinthe firstexample assumes that all data field
validationis handled by the automatic editing specificationsin the dialog's map.The
logicinthe second example assumes that additional data validationisrequiredinthe
response process code. Inboth cases,any data entered by the useris always processed.
Note that the firstpass flagfield has nosignificancein FAST mode.

70 Application Design Guide

Design Considerations

Using the AGR-MODE-field (example 1)

IF ANY OF (EMPLOYEE-NBR, SKILL-CODE, SKILL-LEVEL)
ARE CHANGED
DO.
MOVE 'Y' TO FIRST-PASS-FLAG.
MOVE EMPLOYEE-NBR TO WK-EMPNBR.
MOVE SKILL-CODE TO WK-SKLCODE.
MOVE SKILL-LEVEL TO WK-SKLEVEL.
LINK TO 'CEMDUEMP'.
END.
IF AGR-STEP-MODE
DO.
IF FIRST-PASS-FLAG='Y'
DO.
MOVE 'N' TO FIRST-PASS-FLAG.
DISPLAY MSG TEXT IS 'EMPLOYEE UPDATED'.
END.
MOVE 'Y' TO FIRST-PASS-FLAG.
END.
EXECUTE NEXT FUNCTION.

The preceding sample process code illustrates themanner in which a dialogcan query
the AGR-MODE field of the .hw ADSO--APPLICATION--GLOBAL--RECORD to determine
what course to follow. If the dialogis in STEP mode, the dialogredisplaysthescreen
with a confirmation message for the user;ifin FAST mode, control is passed
immediately to the next function. The initial value of AGR-MODE is supplied by the
runtime system; the user can alter the value of AGR-MODE at anytime during
application execution.

Chapter 5: Designing Dialogs 71

Design Considerations

Using the AGR-MODE field (example 2)

IF ANY OF (EMPLOYEE-NBR, SKILL-CODE, SKILL-LEVEL)
ARE CHANGED
DO.
MOVE 'Y' TO FIRST-PASS-FLAG.
IF EMPLOYEE-NBR GE 2000 AND SKILL-CODE='A'
DO.
MOVE 'Y' TO ERROR-FLAG.
DISPLAY MSG TEXT IS
'"EMPLOYEE NUMBER/SKILL CODE MISMATCH'.
END.
MOVE 'N' TO ERROR-FLAG.
MOVE EMPLOYEE-NBR TO WK-EMPNBR.
MOVE SKILL-CODE TO WK-SKLCODE.
MOVE SKILL-LEVEL TO WK-SKLEVEL.
LINK TO 'CEMDUEMP'.
CALL EMPDTE25.
END.
IF ERROR-FLAG='Y'
DISPLAY MSG TEXT IS
'EMPLOYEE NUMBER/SKILL CODE MISMATCH'.
CALL EMPDTE25.

1 okoksforokokoksforoskfoksforoskofoksorokokoksokoskokkoksfotok ok okskokoksfokoskokok ok okokok

DEFINE EMPDTE2S.
| skkok sk sk ksk Rk Rk ok ko Rk ok kKRR sk sk ok ok ok sk ok kK ook
IF AGR-STEP-MODE
DO.
IF FIRST-PASS-FLAG='Y"'
DO.
MOVE 'N' TO FIRST-PASS-FLAG.
DISPLAY MSG TEXT IS 'EMPLOYEE UPDATED'.
END.
MOVE 'Y' TO FIRST-PASS-FLAG.
END.
EXECUTE NEXT FUNCTION.

The samplecode shown inthe precedingfigureillustrates the use of the AGR-MODE
field when data validation needs to be handled by code inthe response process. Note
that the EXECUTE NEXT FUNCTION command is never encountered whileuncorrected
validation errors still exist.

72 Application Design Guide

Dialogs That Issue Navigational DML

Mapping to Screens
The followingfields fromthe .hw ADSO--APPLICATION--GLOBAL--RECORD are often
mapped to screens associated with user-defined nonmenu maps:
m AGR-DIALOG-NAME
m AGR-APPLICATION-NAME
® AGR-CURRENT-FUNCTION
® AGR-FUNCTION-DESCRIPTION
m AGR-DATE
m AGR-USER-ID
= AGR-MODE
m AGR-PASSED-DATA
® AGR-MAP-RESPONSE

For anillustration of howthese fields can be used on maps, refer to Chapter 4,
Designing Maps.

Dialogs That Issue Navigational DML

Additional design considerations apply to dialogs thatissue navigational DML
commands. These considerationsareas follows:

m Databasecurrencies
m Extended run units
m Longterm locks

m Record buffer management for logicalrecords

Database Currencies: How Currency is Maintained

In CA ADS, currencyis maintained automatically for the user. To facilitatethis feature, a
currency control blockis created that maintains currencyinformation. At runtime, a
currency blockis created for each dialoginthe application structurethatperforms
databaserequests.

Databasecurrencies arepassed from one dialogto another dialogata lower level,
enablingdialogs to continuedatabase processingfroman established positionin the
database. Currencies arecumulative. The currencies established by each dialogare
passedto lower-level dialogs, which,inturn, establish their own currencies;the
cumulativecurrencies are passed to the next lower-level dialog.

Chapter 5: Designing Dialogs 73

Dialogs That Issue Navigational DML

Currencies areestablished, saved, restored, and released as follows:

1.

Established — Currency is established with the dialog's first functional database
call.Established currencies areupdated when databasecommands (for example,
FIND, OBTAIN, ERASE) are encountered duringthe run unit. Currencyis nulled when
adialogreceives control with a RETURN or TRANSFER command.

Saved — When a LINK, DISPLAY, or INVOKE command is issued, the database
currencies established with the lastdatabasecommandinthe dialogaresaved.
Saved currencies areavailableto lower-level dialogs and arerestored to the issuing
dialogif processingcontrol returns.

Restored — Saved currencies arerestored when CA ADS opens a run unitinthe
dialogreceiving control (thatis, saved currencies arerestored justprior to the first
databasecall).

Released — When a LEAVE, RETURN, or TRANSFER command isissued, all database
currencies atthe same and lower levels are released. The dialogreceiving control
must establishits own currencies or use the currencies passed toitfrom another
higher-level dialog.

The successful execution of control commands can affect the operative or nonoperative
status of a dialog, the dialog's acquired data thatis retained or released, and the
currencies that aresaved, restored, or released.

74 Application Design Guide

Dialogs That Issue Navigational DML

The Effects of Control Commands

The followingtableillustrates theways in which the passingand receivingof control
affects the contents of the currency block.

Command | New Level Status of Data Available to Currency Action
Established Issuing Dialog Receiving Dialog Issuing Dialog Receiving Dialog

DISPLAY No Operative All data Saved N/A

INVOKE Yes Operative All data Saved Restored

LEAVE No Nonoperative No data Released Must establish

LINK

DIALOG Yes Operative All data Saved Restared
PROGRAM No Operative All, some, or Saved Must establish
none {depending
on command
specification)
RETURN No Nonoperative (any Data previously Released (cur- Restored
operative dialogs be- acquired by the rencies for any
tween the issuing dia- receiving dialog dialogs between
log and the receiving the issuing dia-
dialog also become log and the re-
nonoperalive ceiving dialog
are also released)

TRANSFER| Na Nonoperative All data except Released Can use cur-
that acquired by rencies pre-
the issuing viously
dialog established by

higher-level
dialogs

Extended Run Units

Typically,an CAADS run unit begins when the dialogissues a commandaccessingthe
database (for example, OBTAIN) and ends when the runtime system encounters the

next control command issued by the dialog(thatis, LINK, INVOKE, DISPLAY, TRANSFER,
LEAVE, or RETURN).

An extended run unitis a run unitthatis kept open when the runtime system
encounters the LINK command under the followingcircumstances:

1. When the LINK is to the premap process of a dialog with no associated subschema

2. When the LINK is to the premap process of a dialogwith an associated schema and
subschema identical to those of the calling dialog

3. When the LINK is to a user program

Chapter 5: Designing Dialogs 75

Dialogs That Issue Navigational DML

Longterm Locks

Implications of the extended run unit areas follows:

1. Currencies arepassed to the lower-level dialogandarerestored upon return to the
upper-level dialog.

2. Currencies arenot passedto user programs; currencies aresaved and restored to
the upper-level dialogwhen control is returned.

3. The lower-level dialogcan performerror checkingto decide whether to issuea
ROLLBACK command.

4. Becausea FINISH is notissued, recordlocks held by the upper-level dialogarenot
released. ACOMMIT can be coded inthe upper-level dialogifthe developer needs
to releaselocks before linking to the lower-level dialog.

5. Ifa COMMITisissued priortothe LINK command andan abend occursinthe
lower-level dialog, the rollback will beincomplete; the rollback will only go to the
COMMIT checkpointand not to the startof the run unit.

6. |Ifa lower-level user program opens its own rununit, a deadlock canoccur.The
possibility of a deadlock condition can be avoided by taking either of the following
actions:

a. Issuea COMMIT priorto the LINK.

b. Passthe subschema control blockto the user programand let the program use
the same run unit. Issueno BINDs or FINISHes in the user program.

KEEP LONGTERM is a navigational DMLcommand that sets or releases longterm record
locks. Longterm locks areshared or exclusivelocks thataremaintained across run units.
Once the longterm locks areset, all other run units arerestricted from updatingor
accessingthenamed records until the dialogexplicitly releases thelocks.

Example

The following example requests the release of all longtermlocks associated with the
current task:

KEEP LONGTERM ALL RELEASE

The KEEP LONGTERM command canalsobeused to monitor the databaseactivity
associated with a record, set, or area. When a dialogis updatingrecords thatcouldalso
be updated by another user, the followingcode canbe includedinthe premap process
of the named dialog:

KEEP LONGTERM longterm-id NOTIFY CURRENT record-name

76 Application Design Guide

Dialogs That Issue Navigational DML

This command instructs the CA ADS runtime system to monitor the databaseactivity
associated with the current occurrence of the named record type.

The followingcode is includedinthe responseprocess of the same dialog:

KEEP LONGTERM longterm-id
TEST RETURN NOTIFICATION INTO return-location-v

This command requests notification of any databaseactivity againstrecords thatwere
specifiedinthe KEEP LONGTERM premap process.|fappropriate, the dialogcan check
the return valueplacedinthe specified work record field.

Record Buffer Management for Logical Records

When anapplication thread contains dialogs thatusea combination of database records
andlogical records, special considerations apply with respect to record buffer
management. Foreach databaserecord component of alogical record, CA ADS
initializes individual, contiguous record buffers. The logical record components are
placedinthe buffer in the order named inthe logical record definition.

For example, consider the EMP-JOB-LR logical record, which consists of four database
records:EMPLOYEE, DEPARTMENT, JOB, and OFFICE records. If dialog Baccesses
EMP-JOB-LR, CA ADS initializes newrecord buffers for each of the four records listed
above (inthat order) regardless of whether buffers for one or more of the records were
initialized when dialogA, a higher-level dialog, began executing. Therefore, dialogB (and
lower-level dialogs accessingthe same logical record) does not have access to data
establishedinthe record buffer by dialog A. However, dialogs atlevels lower than dialog
B will usethe buffers established by dialog Aifthose dial ogs usethe same database
records as dialogA.

When using both databaserecords and logicalrecords, thefirstdialog of the application
thread shouldincludean INITIALIZE command for the logical record. This action
associates thelogical record with the top-level dialogand ensures that the buffer for the
entire logical recordis allocated and availableto all lower-level dialogs. Lower-level
dialogs usethe component record buffers established atthe highestlevel unless the
logical recorditselfisreferenced.

Chapter 5: Designing Dialogs 77

Chapter 6: Naming Conventions

Overview

This section contains the following topics:

Overview (see page 79)
Naming Application Entities (see page 79)
Naming Databaselnformation Entities (see page 81)

The establishment of naming conventions reduces the accumulation of redundantdata
andimproves the overall design of an application. Naming convention standards apply
to the components of an application as well as to the databaseentities accessed by the
application.Naming conventions for application entities and databaseinformation
entities areeach discussed separately below.

Naming Application Entities

Naming conventions make it easier to keep track of application components as they are
created and maintained. While mnemonic names can work well for less complex
applications, mnemonics areinadequate when handlingthe largevolume of complex
applicationsthattypically existatmost sites. Adhering to a naming convention eases the
construction of component names, eases the reconstruction of component names if one
is forgotten, and eases the use and maintenance of an application.

Sample Naming Conventions

The table below lists the naming convention standards used for the sampleapplication
inthis manual.

Position Value Meaning

1 C CA product

2-3 Type of application:
EM Employee information
IS Information system
FS Financial system
MS Manufacturing system

Chapter 6: Naming Conventions 79

Naming Application Entities

Position Value Meaning
SY System activities
4 Component type:
D Dialog
F Function
M Map
P User-defined program
R Report
S Subschema
T Table
u Menu
5 Component functions:
A Add operation
C Encode/decode (column4 indicates table)
D Delete operation
E Edit operation (column 4 indicates tables)
| Inquiry operation
M Modify operation
u Update operation
6-8 Component designator
XXX Three characters used as unique

identifiers

80 Application Design Guide

Naming Database Information Entities

Assigning Names

Names inanapplication canbeassigned in the following manner:

Dialogs, maps, tables, programs,andreports can use the conventions in the
previous table, as follows:

Dialog: CEMDILIS
Map: CEMMILIS
Code table: CEMTCLIS
Edit table: CEMTELIS
Menu: CEMUILIS
User program: CEMPILIS
Report: CEMRILIS

Dialogpremap and response process names can be the concatenation of the dialog
name and the suffix -PREMAP or -RESPONSE, as inthe following examples:

CEMDILIS-PREMAP
CEMDILIS-RESPONSE

Ifthere are multipleresponseprocesses, the suffixes can be structured to reflect
the function of eachresponse process, as follows:

CEMDILIS-ADDRESP
CEMDILIS-DELRESP

Names for subroutines includedinthe premap andresponse processes can be
made up of a meaningful name of up to six characters with a 2-digitsuffix, as
follows:

PASSDTO5
MESSGE97
DBERR99

The numeric suffixes can be assigned and incremented as the subroutines appearinthe
dialog. This numbering convention makes it easier to locatea subroutineinthe dialog
listing. For example, MESSGE97 is located near the end of the listingwhile PASSDTO5 is
located near the beginning.

Naming Database Information Entities

The creation of a glossary can bean effective means of establishingnaming conventions
for databaseinformation.The glossary can bestored inthe dictionary whereitis readily
availableas a reference tool. Tools such as the glossaryalso aidin the development of
consistentsite-specific application coding standards.

Chapter 6: Naming Conventions 81

Naming Database Information Entities

Sample Glossary of Naming Tokens

The followingsampleillustrates sampleentries from one type of glossary. Thefollowing
example shows one way in which a glossary can bedefined; each designteam must
determine the namingconventions that best suitits needs. Note that the word WORD in
this example is a user-defined entity defined to the dictionary, as follows:

ADD CLASS NAME IS WORD
CLASS TYPE IS ENTITY.

ADD WORD ABEND ABBREVIATED NEVER
ADD WORD ABSOLUTE ABBREVIATED NEVER
ADD WORD ACCEPT ABBREVIATED NEVER
ADD WORD ACCOUNT ABBREVIATED SOMETIMES ABBR ACCT
ADD WORD ACCRUAL ABBREVIATED NEVER
ADD WORD ACCUMULATE ABBREVIATED SOMETIMES ABBR ACCUM

ADD WORD ACKNOWLEDGE ABBREVIATED SOMETIMES ABBR ACK
ADD WORD ADMINISTRATION ABBREVIATED ALWAYS ABBR ADMIN

ADD WORD ADDRESS ABBREVIATED ALWAYS ABBR ADDR
ADD WORD YIELD ABBREVIATED SOMETIMES ABBR YLD
ADD WORD YTD ACRONYM 'YEAR TO DATE'

ADD WORD YY ABBREVIATED NEVER

ADD WORD ZERO ABBREVIATED NEVER

ADD WORD ZONE ABBREVIATED NEVER

The sampleentries from this glossary showoneway in which naming conventions can
be implemented withinaninstallation.Inthis glossary, theapplication designers have
determined that certain words are always to be abbreviated and others arenever to be
abbreviated; the majority of words are to be spelled out completely whenever possible.
When stored on the dictionary, the glossaryis readily availableas a reference guide for
programmers and developers.

82 Application Design Guide

Naming Database Information Entities

Available Naming Conventions

Databaseelements canbe established usingapproved names from the glossaryand
can be further defined with synonyms. Element names should have a maximum of
25 characters. The following examplelists an element and three synonyms:

EMPLOYEE - CODE
DB-REC-EMPLOYEE - CODE
MAP-EMPLOYEE-CODE
WORK - EMPLOYEE-CODE

DatabaseRecords can be composed of approved, usable names (for example,
EMPLOYEE). Records can be given greater flexibility with the addition of suffixes.
The followingexample lists employeerecords with identifying suffixes:

EMPLOYEE-0600
EMPLOYEE-2500
EMPLOYEE-6359

SQL: Hyphens arenot validin SQLidentifiers referenced in statement syntax.
Therefore, SQL entities may not be named using hyphens but may be named using
underscores. Hyphens are validin hostvariables referenced in SQL sta tement
syntax.

For more information, refer to CA IDMS SQL Programming Guide.

In CA ADS process source, as well as in COBOL, CA Culprit,and map source, the
elements canbe referenced by the element name plus the suffix, as follows:

EMPLOYEE - CODE-6359

Map work records are composed of the map name followed by the suffix
-MAP-RECORD, as inthe followingexample:

CEMMILIS-MAP-RECORD

Elements inthe map record utilizethe prefix MAP- and the element name, as
follows:

MAP-OFFICE-CODE

Ifthe map needs more than one work record, a number is added to the word MAP,
as follows:

CEMMILIS-MAP2-RECORD (the second map record)
MAP2-0OFFICE CODE (a record element from the second record)

Chapter 6: Naming Conventions 83

Naming Database Information Entities

Dialogworkrecords are composed of the dialog name followed by the suffix
-WORK-RECORD as inthe following example:

CEMDULIS-WORK-RECORD

Elements inthe dialogwork record utilizethe prefix WORK- and the element name,
as follows:

WORK-0FFICE-CODE

Ifthe dialogneeds more than one work record, a number is added to the word
WORK, as follows:

CEMDILIS-WORK2-RECORD (the second dialog work record)
WORK2-0FFICE CODE (a record element from the second record)

Set names are established by concatenatinganabbreviation of the owner record (a
seven-character maximum) with that of the member record (a six-character
maximum), as follows:

EMPL-SKILL

84 Application Design Guide

Chapter 7: Performance Considerations

Overview

This section contains the following topics:

Overview (see page 85)
System Generation Parameters (see page 85)
Resource Management (see page 89)

The performance of the CA ADS runtime system is dependent upon a number of factors,
such as the size of the DC/UCF system, the number of applications beingrun
concurrently, and the number of users for a given application. Rather than attempting
to give definitiveinstructions for the improvement of performance, this chapter
discusses the followingaspects of the CA ADS runtime system:

m Parameters affecting performance

m Resource management

Each of these considerationsisdiscussed separately below.

System Generation Parameters

The CA ADS runtime system is generated by submitting ADSO, PROGRAM, and TASK
statements to the CA IDMS system generation compiler. Optionally, the KEYS statement
is used to define site-specific control key functions.

For detailed syntax and examples of system generation statements, refer to CA IDMS
System Generation Guide.

ADSO Statement Parameters

The ADSO statement includes parameters that define the CA ADS runtime environment,
as follows:

m The taskcode (ADS) that initiates the CA ADS runtime system

m The mainlinedialogthatcan begin executing immediately
m The maximum number of dialoglevels thatcan be established by each application
m The disposition of record buffers duringa pseudo converse

m The sizeof the primaryandsecondaryrecord buffers

Chapter 7: Performance Considerations 85

System Generation Parameters

m The AUTOSTATUS facilitythathandles errors generated by navigational DML, queue
record, and scratch record processing

m The Status Definition Record that associates status codes returned by non-SQL data
processing

PROGRAM Statement Parameters

The PROGRAM statement defines the following CA ADS components as DC/UCF system
programs:

m The ADSORUN1, ADSORUN2, and ADSOMAIN runtime system programs

m The system maps (the menu map, runtime message map, and maps for each of the
applicationand dialog compiler screens)

m The applicationand dialogcompiler programs (ADSA and ADSC)

m CA ADS dialogs (an optional parameter if null Program Definition Elements (PDEs)
are defined inthe SYSTEM statement)

TASK Statement Parameters

The TASK statement defines the followingtask codes:
m ADS and ADS2 to initiatethe runtime system
m ADSA toinitiatethe CA ADS Application Compiler
m ADSC to initiatethe CA ADS Dialog Compiler

m ADSR to initiatethe runtime system when returning from a linked user program

Allocating Primary and Secondary Storage Pools
How Storade is Managed

The runtime system allocates and initializes record buffers for use by executing dialogs.
When anapplicationisinitiated, CA ADS allocates a Record Buffer Block (RBB) from the
DC/UCF system's storage pool to hold the records identified in the dialogdefinitions and
accessed by the dialogs intheapplicationthread. The RBB must be large enough to
accommodate the largestof these records.

There is one primary RBB for each application. CA ADS allocates a secondary RBB when
the RBB becomes full during execution of the application or does not have enough
remainingspaceto holda record.

86 Application Design Guide

System Generation Parameters

Additional secondary RBBs can be allocated by the CA ADS runtime system as necessary.
The data communications administrator (DCA) specifies thesize of the primaryand
secondary RBBs with the PRIMARY POOL and SECONDARY POOL parameters of the
ADSO statement. When allocatingthe primaryand secondary storage pools, the DCA
needs to consider the size and number of the records used by the applicationas well as
the header records maintained by the buffers.

Layout of the Record Buffer Block

The following figure diagrams the structure of the Record Buffer Block allocated for a
combination of subschema records and logical records:

RBB

RBE (STANDARD RECORD)

RBE {LOGICAL RECORD)
RBE (LOGICAL RECORD ELEMENT)
RBE (LOGICAL RECORD ELEMENT)
RBE (LOGICAL RECORD ELEMENT)
ELEMENT 1
OF
LOGICAL RECORD
ELEMENT 2
OF
LOGICAL RECORD

ELEMENT 3
OF
LOGICAL RECORD

RBE

x/_\

Chapter 7: Performance Considerations 87

System Generation Parameters

Size Considerations

Each record buffer contains a 24-byte header to keep track of availablespace.Foreach
record inthe pool, CA ADS maintains a record header (RBE) that requires at least44
bytes of storage. Each buffer must be large enough to accommodate the largestrecord
used by a dialoginthe application.

Settingthe Fast Mode Threshold

Record Buffers

The fastmode thresholdis used by the CA ADS runtime system to determine whether
record buffers are written to disk or kept in main storage across a pseudo converse. If
the total size of all record buffers, in bytes, exceeds the fastmode threshold, the record
buffers arewritten to disk;otherwise, the record buffers arekept inthe storage pool.

The size of the thresholdis a site-specificdetermination thatis based on the availability
of general resources versus the amount of available storage. |/Os for DC/UCF system
journalingand CPU cycles for record lockingare used when record buffers arewritten to
the scratch/queue areas. Therefore, when buffers exceed the fast mode threshold, the
increased useof resources will slow down the transactionresponsetime. On the other
hand, if buffers arealways under the threshold (that is, if the fastmode thresholdis
high), more memory is required.

Specifying the Number of Internal and External Run Units

The MAXIMUM TASKS and MAXIMUM ERUS parameters specify the maximum number
of user tasks and external request units that can be active concurrently. The size of
these parameters can affect the amount of time spent by the DC/UCF systemin
searchingthe queues for tasks that are waitingto be executed.

88 Application Design Guide

Resource Management

The numbers that should be specified area site-specific determinationand are
dependent upon factors such as the number of tasks processed each hour ina particular
environment. When setting the MAXIMUM TASKS and MAXIMUM ERUS parameters on
the SYSTEM statement, the followingstatistics should be considered:

®m Increasingthe MAXIMUM TASKS or MAXIMUM ERUS parameters by one (1) causes
virtual storagerequirements to increaseas shown below:

Resource Size of resource Total
TCE 736 bytes 736 bytes
STACKSIZE 320 words 1,280 bytes

DCE 64 bytes 64 bytes

ECB * 3 8 bytes 24 bytes
DPE * 20 16 bytes 320 bytes

RCE * 15 24 bytes 360 bytes

RLE * 25 12 bytes 300 bytes

Total increase per task: 3,084 bytes

Note: A valuelarger than the default(420) should be specified for the STACKSIZE
when using CA ADS. If the STACKSIZE is at420 and two tasks exceed stacksizeand
go into abend storage at the same time, the system will abortwith anabend code
of 3995.

m The following DC/UCF system parameters should be increased as specified for every
increment of one (1) in the sizeof MAXIMUM TASKS or MAXIMUM ERUS:

Parameter Amount increased
ECB LIST 3

DPE COUNT 20

RCE COUNT 15

RLE COUNT 25

Resource Management

Indesigningapplications, consideration mustbe given to the efficient management of
system resources. The management of resources such as the database, the storage
pool,and the program pool storage affects the performance of onlineapplications
because many users may requireaccess to these resources simultaneously.

Chapter 7: Performance Considerations 89

Resource Management

Application Resource Use

The followingfigures illustratethe resources used by an application whilea task is active
and after the task has terminated.

WHILE TASK IS ACTIVE

CONTROL BLOCKS TASK LOGICAL
CONTRQOL TERMINAL
ELEMENT ELEMENT
(TCE) (LTE)
PROGRAM POOL STORAGE POOL ONLINE ONLINE
TERMINAL TERMINAL
BLOCK BLOCK
(OTR) EXTENSION
{OTBX)
APPLIGATION FIXED FIXED 9 - -
DIALOG PORTION OF DIALOG VARIABLE RECORD
BLOCK SUBSCHEMA BLOCK DIALOG BUFFER CURRENCY
(ADB) (0B50) (FDB) BLOCK BLOCK BLOCK
(VDB) 1 (RBB)

TASK ONLINE — VARIABLE
APPLICATION MAP WORK REQUESTOR SUBSCHEMA
TABLE AREA LOCKING BLOCK
(TAT) (QWA) TABLE (VB50)

L {RLT)
AFTER TASK HAS TERMINATED
CONTROL BLOGKS
LTE
PROGRAM POOL STORAGE POOL
aTB OTBX
1 1 1
1 1 1
CURRENCY
vDB RBB BLOCK
——1
ALT

90 Application Design Guide

Resource Management

Monitoring Resource Consumption

The remainder of this chapter discusses methods that can be used to monitor the
resource consumption of anapplication and ways in which to use availableresources
efficiently.

Tools

As with anytask running under the DC/UCF system, the major resources to be
monitored inan CA ADS environment are as follows:

Task processing support

Variablestorage pool

Program pool storage

Databaselocks

1/0s (disk and terminal data transmission)

CPU cycles

Each of these resources can be monitored with dictionary reports and DC/UCF system
master terminal functions, as discussed below.

Task Processing Support

The next figure shows the resources inuse whilea task is activeand those in use after
the task terminates. The following DC/UCF system master terminal functions display the
internal resources used to support task processing:

DCMT DISPLAY ACTIVE TASK displays global statistics on activetasks and
information on each activetask thread.

DCMT DISPLAY STATISTICS SYSTEM displaysinformation aboutthe system including
the peak task control element (TCE) stack;and the maximum number of resource
link elements (RLEs), resource control elements (RCEs), and deadlock prevention
elements (DPEs) used by the tasks.

Chapter 7: Performance Considerations 91

Resource Management

Task Resource Structure

WHILE A TASK IS ACTIVE

TCE LTE
RLE
RCE
(RESOURCE)
EXAMPLE:
TCE LTE
RLE - RLE - RLE
RCE RCE RCE
STORAGE STORAGE STORAGE
VDB RBB OowAa

AFTER A TASK HAS TERMINATED

LTE

RLE

RCE

(RESOURCE)

LTE

RLE - RLE

RCE RCE
STORAGE STORAGE

vDB RBB

92 Application Design Guide

Resource Management

Variable Storage Pool

The following sysgen reports (CREPORTS) and DCMT functions can be used to monitor
the use of the storage pool:

m CREPORT 25 verifies the size of the storage pool and indicates whether storage
protection has been enabled for the system.

m DCMT DISPLAY ACTIVE STORAGE shows the current fragmentation of the storage
pool.

m DCMT DISPLAY LTERM indicates which terminals areactiveand own resources.

m DCMT DISPLAY LTERM logical-terminal-id RESOURCES displaysthe specific
resources (and the addresses of those resources) owned by the named terminal.

m DCMT DISPLAY MEMORY canbe used to displayanactual resourceasitappearsin
memory.

m CREPORT 40 supplies thecurrent parameters specifiedinthe ADSO statement, as it
this example:

REPORT NO. 40 CA-IDMS/DC ADS REPORT

LISTING OF CA-ADS PARAMETERS

OBJECT REPORT

SYSTEM PRIMARY SECONDARY MAXIMUM FAST MODE PRIMARY
VERSION AUTODIALOG TASK CODE TASK CODE LINKS MENU IS THRESHOLD POOL
920 ADS ADS2 10 USER 50000 40
9 ADS ADS2 10 USER KEEP OFF 40

Information from the above displaysand reports can be used to calculatethe number of
users the system can currently support, assumingvarious storage pool si zes.

The CA IDMS System Generation Guide manual describes CREPORTS; the CA IDMS
System Operations Guide manual details the master terminal functions availableto
monitor system resources.

Chapter 7: Performance Considerations 93

Resource Management

Program Pool Storage

The following DCMT commands can be used to provide information on the program
pool:

m DCMT DISPLAY ACTIVE PROGRAMS displaysthefollowing:

m Statistics on programpool usage, includingthetotal number of pages and total
number of bytes in the pool;the number of loads to the program pool;the
number of pages loaded;and the number of load conflicts

m Informationon currentlyactive programs including the program name, type,
andversion number; count of users currently using the programs;size of the
program inK bytes; the number of times the program was called;and the
number of times the program was loaded into the program pool

m The program pool page allocation map that shows which pages arenot inuse;
which pages areinuseby one program; and which pages arein used by more
than one program

m DCMT DISPLAY ACTIVE REENTRANT PROGRAMS displaystheabove information for
the reentrant program pool and the active reentrant programs.If no reentrant pool
is defined, the standard program pool is shown.

Database Locks

The DCMT DISPLAY RUN UNIT and OPER WATCH DB RUN UNITS commands can be used
to showthe number of databaselocks beingrequested for a particular rununit.The
number of databaselocks maintained by an CA IDMS system has considerableimpacton
CPU usage.These locks arespecified atsysgen time by the RULOCKS and SYSLOCKS
parameters of the SYSTEM statement.

For further information on databaselocks, refer to CA IDMS Database Design Guide

For further information on factors to consider when preparingthe SYSTEM statement,
refer to CA IDMS System Operations Guide.

Disk 1/0

The followingreports can be used for monitoring disk1/0:
m JREPORT 004 shows the average number of I/Os to disk for a given program.

m DCMT DISPLAY RUN UNITS or OPER W DB RU shows ifanyrun units arewaiting for
ajournal buffer (as indicated by a run unit status value of IUH). IUHs occur most
frequently when the fastmode threshold is settoo low.

For information on JREPORTS (journal reports), refer to CA IDMS Reports Guide.

94 Application Design Guide

Resource Management

Monitor TerminalI/0

CPU Usage

Use the following procedureto monitor terminal 1/0.

To monitor terminal I/Os

1.

Run the mapping utility (RHDCMPUT) for a report on a specific map. This report will
displaya picture of the map and the attributes currently assigned to the map. The
report will also indicate whether BACKSCAN is enabled for any mapping fields. If
BACKSCAN is in effect and the NEWPAGE option on the ADSO statement has been
selected, extraneous data from the previous mapout may be left on the screen
when a map is redisplayed. Itis advantageous to have NEWPAGE in effect, however,
because this optionincreases runtimeefficiency by reducing the number of data
fields thatneed to be transmitted to the terminal.

Use DCMT VARY PTERM physical-terminal-id TRACE ALLIO to causethe data stream
being transmitted to the terminal to be written to the log as well.

Use SHOWMAP map-name with DCUF USERTRACE to causethe data stream of a
particularmapto be traced.

Use DCMT VARY PTERM physical-terminal-id TRACE ALLIO OFF to turn off the trace,
suppressingany further transmission of data streams to the log.

Run the PRINT LOG utility to showthe actual trace.

Transmission times can be calculated by analyzing the length of the data stream.

To monitor CPU cycles and obtain CPU usage by task, the system can be instructed to
collecttaskstatistics. Itis advisablenotto request taskstatisticsunless thereis a
demonstrated need as they require considerableoverhead and generate a largevolume
of data. Task statisticsarerequested by specifying TASK STATISTICS WRITE or TASK
STATISTICS COLLECT on the SYSTEM statement. The statisticsarewritten to the DC/UCF
system log.

For further information on collecting task statistics, refer to CA IDMS System Operations
Guide.

Chapter 7: Performance Considerations 95

Resource Management

Conserving Resources

Storade Protection

Storage protection is enabled by specifying PROTECT inthe SYSTEM statement at system
generation. The benefits of using storage protection are that CPU overhead is reduced
because there are shorter chains for the system to walk.

To avoid SVC overhead, itis advisableto enable storage protection (that is, specify
PROTECT) on the SYSTEM statement andto disablestorage protection (thatis, specify
NOPROTECT) on the PROGRAM statement.

Buffer Sizes in Multiples of 4084 Bytes

The 4084-byte limitrepresents a multiple of 4K (4096 bytes) less the 12 bytes for
pointer information andtaskid address, as illustrated below:

RCE Storage Actual RCE
address length storage address
4 bytes 4 bytes 4084 bytes 4 bytes

Ifa 4K page were selected, storage would have to be taken from two contiguous pages.
The benefits of placinga 4084-byte limit on the amount of storage acquiredareas
follows:

Benefits of Storade Limit

Size of Subschemas

The storage limit offers the following benefits:

m Fragmentation of the storage pool is reduced when only one page is requested.
Spaceis allocatedin contiguous frames for a particular request. It is easier for the
system to find one page rather than two contiguous pages.

m Less CPU overhead is required because partial pages do not have to be calculated or
scanned.

Subschemas for navigational DMLaccess should bespecified to the requirements of the
application. The size of the currency blockis directly related to the storage requirements
of the variablesubschema storageblock (VB50) used at run time; the runtime system
maintains currency tables for every record, set, and area ina subschema, regardless of
whether they are accessed by the dialog. Therefore, itis worthwhile to make
subschemas as streamlined as possible.

96 Application Design Guide

Resource Management

Number of Dialog Levels

The MAXIMUM LINKS parameter of the ADSO sysgen statement specifies the maximum
number of dialoglevels thatcanbe established by each respective CA ADS application;
keep this parameter low. A well designed application hasas fewlevels as possible.The
number of levels should be limited because, for each level established inthe application,
kept storageis acquired for the Variable Dialog Block (VDB) and the currency block.
Storage established ata particular level is notreleased until control is passed upward.

To limitthe number of levels established, usethe TRANSFER command whenever
possible; buildtheapplication horizontally (thatis, pass control laterally) rather than
vertically.

Size of the Application

The sizeof dialog premap and response processes, the number of data fields includedin
a map, andthe size of records affect the performance of the CA ADS runtime system.
The actual number of 1/0s required to load a complete program is dependent upon the
sizeof a pageinthe DDLDCLOD area, the amount of overflow that will be encountered
to load thatrecord, and the sizeof the actual programbeing loaded. Therefore, the
following benefits are realized by minimizing the size of programs:

m Areductioninthe work requiredto loada small programas comparedto a large
program

m Areductionintime spent loadinga particularprogramin the program pool or
reentrant pool

m Areductionintime spent waitingfor spaceinthe program pool or reentrant pool

Under the DC/UCF system, the term program includes dialogs, editand code tables,
maps, subschemas,and onlineand batch programs.

Making Frequently Called Programs Resident

A frequently called program (such as ADSOMAIN) is virtually a residentinthe program
pool or the reentrant pool.The programshould be made resident becausethe operating
system can page more rapidly than the DC/UCF system canread in a page from the
DDLDCLOD area.By makingthe program resident, the operating system, rather than the
DC/UCF system, will berequested to bringthe page incore. Additionally, the program
andresident pool will be less fragmented when a frequently used programis made
resident. A program can be specified as residenton the PROGRAM statement at system
generation.

Chapter 7: Performance Considerations 97

Resource Management

Freeing the Resources of an Inactive Terminal

The resource timeout facility can be activated on the SYSTEM statement at system
generation, specifying the amount of time a terminal is permitted to be inactive (thatis,
have no task executing) before all resources owned by the terminal aredeleted and
control is returned to the system. Becauselongterm storage resources areassociated
with a terminal even though a programis not active, freeing those resources will free
spacefor other users of the system. This is particularlyimportantin navigational DMLif
longterm locks are being implemented.

98 Application Design Guide

Appendix A: Application Concepts

This section contains the following topics:

Overview (see page 99)

Application Components (see page 99)
DialogFeatures (see page 103)
Control Commands (see page 106)
The Flow of Control (see page 108)

Overview

This chapter provides an overview of application terms and concepts within the CA ADS
environment. The followingtopics arediscussed:

m Application components — The two basic parts of an CA ADS application

m Dialog features — The components and procedures that make up a dialog

m Control Commands — The commands that can be used to pass control withinan
application

m Flow of Control — How the runtime system determines the way inwhich an
applicationis executed

Application Components

An applicationiscomposed of functions and responses.

The Structure of an CA ADS Application

An applicationiscomposed of functions and responses. Functions definethe activities
that canbe performed in anapplication;responses associate the functions with one
another and directthe flow of processing. Aresponsecan be associated with a control
key and/or a code entered by the user.

Appendix A: Application Concepts 99

Application Components

The followingfigureillustrates therelationship between functions and responses. Each
of these components is described.

Functions

FUNCTION

RESP.

FUNCTION FUNCTION FUNCTION

RESP.

FUNCTION FUNCTION

RESP.

FUNCTION FUNCTION

A function is a named procedure or activity withinan application.

Available Types

The followingtypes of functions areavailable under CA ADS:

Menu Functions are used to direct a user through an application. The menus
containalistofvalidresponses for the terminal user to use when processingin
application. System-defined menus arebuiltautomatically by the runtime system.

Dialog Functions areused for data processing, such as databaseaccess.Adialog
function can have any number of valid responses defined for it duringapplication
generation. Aresponse canactivateanother dialogfunctionor canactivatea dialog
not defined as a function.

100 Application Design Guide

Application Components

m Menu/Dialog Functions are dialogs thatdisplaya user-defined menu. When a
menu is associated with a dialog, its mapis displayed when the executing dialog
issues a DISPLAY process command. Menu/dialogs must be used ifthe menu map is
user-defined.

m For further information on the options available when designing menus for an
application, refer to Chapter 4, Designing Maps.

m System Functions arepredefined. Availabletoall applications, they perform the
same actioninall applications to which they are assigned. The use of system
functions adds flexibility toan application, eli minating the need to write code for a
given activity.

Available System Functions

The following system functions areavailable:
POP

Returns processing control to the previous menu inthe application thread.
POPTOP

Returns processingcontrol to the firstmenu in the application thread.
TOP

returns processing control tothe highest functioninthe current application thread.
RETURN

Returns processing control to the next higher functionin the current application
thread.

Note: Ifa RETURN command is coded intoa responseprocess,itis considereda
process command, not a system function. As a process command, RETURN
performs as itwould inanthe DC/UCF system's environment.

HELP

Displaysa HELP screen atruntime. This screenlists allvalid responses for the
current function.

QuIT

Terminates processingofthe current application. If previously signed on to the
application, the user is automatically signed off.

SIGNON/SIGNOFF

Allows a user to signon or signoff. This is an CAIDMS/DC signon/signoff function
executed from withinthe application.

FORWARD/BACKWARD

Allows a user to page forward or backward on menu maps.

Appendix A: Application Concepts 101

Application Components

System functions can be subdivided as follows:

m QUIT, POPTOP, POP, TOP, and RETURN aregenerally executed when an EXECUTE
NEXT FUNCTION command is encountered.

m SIGNON, SIGNOFF, and HELP are always executed as soon as they are encountered
by the runtime system.

m FORWARD and BACKWARD (menu functions only) are executed as soon as they are
encountered. If associated with a nonmenu dialogfunction, the FORWARD and
BACKWARD functions aremoved intothe ADSO-APPLICATION-GLOBAL-RECORD
prior to executing the dialog's response process.

m User Program Functions arewritten ina process languageother than CA ADS.
When a user program functionis activated, the CA ADS runtime system relinquishes
control to the user program. CA ADS does not define valid responses for a user
program; any responses made by the user must be processed by the executing user
program. The runtime system maintains all buffers for the application atthe level at
which control was relinquished, anticipating return of the processingcontrol.

m Internal Functions are associated with the current dialogfunction. An internal
functionis assumed to be a response defined for the dialogresponseprocess.

m The developer might define a response thatinitiates aninternal functionas a
method of documenting the responseprocess and/or as a method of providingthe
dialogresponseprocess as avalidresponsechoiceatruntime. Additionally,a
security classcan beassigned to this type of response, thereby enablingsecurity
protection for a dialog's responseprocess.

Responses

A response is a named entity that establishes a relationship between two functions. A
responsecanbe a control key or aresponse valueentered inthe response field by the
user.

Note: Itis importantto distinguish between a response and a response process. A
response is the action taken by the user when pressinga key or entering a response
value. Aresponse is defined by the CA ADS Application Compiler;itcaninitiatean
application function or the dialog's response process.

A response process is the dialogcomponent that receives data from the terminal user,
processes itaccordingly,and passes control to the next activity. Aresponse process is
stored as a MODULE-067 record (with the attribute LANGUAGE 1S PROCESS) andis
associated with a dialogby usingthe CA ADS Dialog Compilerinan ADSC session.

Processingcontrol is directed by the valid responses of a function. When a valid
responseto the current functionis selected by the user, a new function (or a reiteration
of the current function) is executed.

102 Application Design Guide

Dialog Features

Dialog Features

A dialogenables interaction between the user and the applicationand canbedefined in
terms of its components and how it accomplishesits job. The components and
procedures of a dialogarediscussedinthe followingsections.

Dialog Components

Each dialogconsists of the following components:
Map

Provides a means of communication between the application andtheuser. Map
definitions inthe dictionary maintain a formatted screen layoutof literal and
variablemap fields (thatis, data fields). Map data fields areassociated with areas in
program variablestorageandare containedin map records. There canbe onlyone
map for each dialog. The application developer defines the map onlinewith the
onlinemappingfacility; the resultingmapload moduleis stored in the load area of
the data dictionary.

Processes

Performs data retrieval and processing.Processes areinstructions writtenin CA ADS
process code. Each process consists of one or more commands that specify the type
of processingto be performed (for example, databaseaccessing, conditional
testing, inter-and intra-dialog communication).Adialogis associated with two
types of processes:premap andresponse. Both types are optional. A maximum of
one premap process can be associated with a dialog;there is nolimitto the number
of response processes.

The application developer defines the processes by usingthe batch or online
capabilities of IDD. The batch DDDL compiler stores the source statements as
modules inthe dictionary.

Subschema

Provides the dialogwith a view of the database.Each dialogcan be associated with
a maximum of one subschema. Subschemas aredefined by the database
administrator and storedin the dictionary by the subschema compiler. Subschemas
are associated with dialogs when a dialogis compiled by ADSC.

Appendix A: Application Concepts 103

Dialog Features

Records

Dialog Procedures

Supplies data to the dialogfor processing. A dialog obtains data froma combination
of records, as follows:

Subschema records

Identifies the databaseandlogical records thatcomprisethe subschema.
Map records

Identifies subschema or work records.
Dialog work records

Identifies dictionary records used as working storage by a dialog.

These records contain the data elements that areneeded by the application.
Data elements andrecords are created with the use of IDD DDDL and are
stored inthe dictionary. They can have associated values, editcriteria, external
andinternal pictures,and code tables that areall recognized by the maps and
dialogs ofanapplication. For a more detailed discussion on creating the
records used inanapplication, see Chapter 2: (see page 19).

When the CA ADS runtime system executes a dialog, one or all of the following
procedures cantake place:

Premap processing

Performs optional processing prior to displayinga map to the user. For example,
the dialogcanretrieve a record that contains the data to be displayed by the map.
The dialogpremap procedure is notautomatic.

Mapout

Displaysa formatted screen (map) for use by the user. The user uses the map to
supplydata and to specify how this datais to be processed. For example, a dialog
candisplaydata froma customer record; the user then updates the record and
requests that it be modified inthe database. The mapout procedureis automatic
when there is nopremap processing; otherwise a mapout occurs when the DISPLAY
command isissued.

Mapin

Receives data and the requested response from the user. For example, if the user
requests that the customer record be modified, the values that the user keys into
the map data fields arethen moved intovariablestorage. The dialog mapin
procedureis performed automatically when the user presses a control key.

104 Application Design Guide

Dialog Features

Response process selection

Selects a response process based onthe responseentered by the user. The runtime
system performs this procedure automatically.

Response processing

Processes data as directed by the terminal user's response (for example, modifies
the customer record) and specifies the next activity to be executed. Response
processingis notperformed automatically.

Appendix A: Application Concepts 105

ControlCommands

Control Commands

The application developer can use specific CAADS commands to perform the following
operations:

m Pass control fromone dialogto another dialogorto a user program
m Displayamap
m Terminate anexistingdialogorapplication
m Exitthe CA ADS environment
m Direct processingto specified places within a dialog
m Reinitializethe record buffers associated with a dialog
m Establishthestatus andlevel of a dialogwithinthe application structure
m Implicitly governthe availabledata and databasecurrencies maintained for a dialog
Most of the control commands are availableto all applications. When designing dialogs
that will become partof an application defined by usingthe CA ADS Application
Compiler, the developer canalsousethe EXECUTE NEXT FUNCTION command.
The CA ADS control commands areas follows:
DISPLAY
Requests display of the dialog's map or reexecution of the premap process
INVOKE
Specifies the next lower-level dialogto be executed inthe applicationthread
LEAVE

Terminates the current application, optionallyinitiatinganother application, or
terminating the CA ADS session

LINK

Specifies the next lower-level dialogto be executed inthe application thread,
implicitly establishing a nested application structure, or links to a user program that
executes outsidethe CA ADS environment

RETURN

Terminates the currently executing dialog, returns control to a higher-level dialog,
and, optionally, initializes that dialog's record buffers

TRANSFER

Terminates the currently executing dialogand passes control toa dialogatthe
same level (which may be the same dialog)

EXECUTE NEXT FUNCTION

106 Application Design Guide

ControlCommands

Activates fields in the ADSO-APPLICATION-GLOBAL-RECORD that determine the
next activity to be executed

For further information on the way in which the runtime system moves information
to these fields, refer to "Global Records"in Chapter 5: (see page 59).

Note: Ifan EXECUTE NEXT FUNCTION command is encountered ina dialogthat has
not been defined to an ADSA application,the command is processed as a DISPLAY
command and a message is issuedindicatingthatthe user should selectthe next
function.

Appendix A: Application Concepts 107

The Flow of Control

The Flow of Control

The followingfigure presents the way in which the flow of control is directed withinan

application:

RESPONSE IN
AGR-CURRENT-RESPONSE
FIELD

RESPONSE
VALID FOR
DIALOG
?

RESPONSE
VALID FOR
APPLICATION
FUNCTION
?

ERROR
MESSAGES

RESPONSE
ASSQCIATED WIT|
AN IMMEDIATELY
EXECUTABLE

EXECUTE DIALOG'S
ENTER RESPONSE
PROCESS

EXECUTE DIALOG'S
RESPONSE PROCESS

EXECUTE
CONTROL COMMAND

YES

FUNCTION
?
Y !
EXECUTE ERROR
RE APPLICATION MESSAGES
X FUNCTION

EXEC
NEXT FUNCTION
COMMAND
ENCOUNTERED,
?

YES

RESPONSE
VALID FOR
APPLICATION
FUNCTION

EXECUTE
CONTROL COMMAND

The numerals in the flowchart, above, refer to the four sets of circumstances that
determine when the next function will be executed, as discussed in the text.

108 Application Design Guide

The Flow of Control

When the user selects a valid response, the function associated with that responseis
established as the next function to be executed. This functionis not executed until the
runtime system satisfies certain criteria. Theflowchartillustrates thecircumstances that
determine when the next function will be executed, as follows:

1.

Ifthe responseis known to the dialog, the runtime system immediately executes
the response process of the dialog. If an EXECUTE NEXT FUNCTION command is
encountered andthe responseis valid for theapplication function, thefunction
associated with the applicationresponseis executed next. If there is no EXECUTE
NEXT FUNCTION command, the dialogpasses control with an INVOKE, TRANSFER,
RETURN, LINK, or DISPLAY control command.

Ifthe responseis not valid for the application function, the following error message
is displayed when an EXECUTE NEXT FUNCTION command is encountered: PLEASE
SELECT NEXT FUNCTION

Ifthe responseis validfor the function, the system checks to see ifthe responseis
associated with one of the following ADSA system functions:

HELP

SIGNON/SIGNOFF

FORWARD/BACKWARD (menus only)

If so, the system function is executed immediately.

Ifthe responseis notvalid for the dialog, the CA ADS runtime system determines if
the response is known to the application. If not, the followingerror messageis
displayed:

UNACCEPTABLE RESPONSE. PLEASE TRY AGAIN.

Ifthe responseis valid for the application function, butnot known to the dialog,
andif the responseis not animmediately executable ADSA system function, the
runtime system checks to see ifthere is a responseprocess associated with the
ENTER key. Ifthere is no such associated response process, the application function
is executed immediately.

Ifthe status ofthe responseis the same asinsituation #3 (that is, valid for the
application, notknown to the dialog,and not an immediately executable function)
anda responseprocess is associated with the ENTER key, the ENTER response
process is executed firstand the application functionisexecuted when an EXECUTE
NEXT FUNCTION is encountered. Ifthere is no EXECUTE NEXT FUNCTION command,
the dialogpasses control with an INVOKE, LINK, TRANSFER, RETURN, or DISPLAY
command, as inthe firstexample.

Appendix A: Application Concepts 109

Glossary

ADB

ADSA

ADSC

ADSOCDRV

ADSORUN1

ADSORUN2

See Application Definition Block.

The task code that activates the CA ADS Application Compiler; also, the application
compiler.

The task code that activates the CA ADS Dialog Compiler; also, the dialogcompiler.

The CA ADS runtime programthat initializes and updates the
ADSO-APPLICATION-GLOBAL-RECORD; performs system functions (for example, TOP,
POPTOP); processes responses entered on the HELP screen; and selects the valuefor the
AGR-CURRENT-RESPONSE field of the system global record.

The CA ADS runtime programthat loads the Task Activity Table (TAT), creates an Online
Terminal Block Extension (OTBX), if necessary,andloads the Application Definition Block
(ADB) for the application being executed.

The CA ADS runtime programthat allocates application global recordsin the Record
Buffer Block (RBB); builds menu records prior to mappingout application menus;and
builds and maps out the runtime HELP screen.

ADSO-APPLICATION-GLOBAL-RECORD

The CA ADS system-defined global record thatis used by the CA ADS Application
Compiler to pass information between functions and the runtime system; fields defined
inthe record are addressableand can be modified by dialogs and user programs.

ADSO-APPLICATION-MENU-RECORD

ADSO-STAT-DEF-REC

The system menu record that is includedin all menu maps; when the menu map is to be
mapped out, the runtime system moves values into the fields of this record.

The predefined status definition record that contains level -88 record element
definitions associating condition names with the status codes most commonly tested
after database,logical record,and queue and scratch record access;stored on the
dictionary, this record can be modified or replaced to meet site-specific needs.

Glossary 111

The Flow of Control

CA ADS

A CA software product, running under the DC/UCF system, that enables users to
develop and execute onlineapplicationsfor the query and update of the databasewith
more ease than when traditional programmingtechniques areused.

CA ADS Application Compiler (ADSA)

A facility of CA ADS that provides the application development team with a flexible
design and prototyping tool; ten definition screens prompt the designer for names of
functions, responses, records, task codes, and security and menu specifications; ADSA
updates the Task Activity Table (TAT) and compiles anapplicationload module
(Application Definition Block (ADB)) that is stored in the dictionaryand used at runtime
to directthe flow of control inan executing application.

CA ADS Dialog Compiler (ADSC)

CA ADS runtime system

CA Culprit

CA IDMS/DB

CA IDMS/DC

CA IDMS UCF

CAoOLQ

A facility of CA ADS that processes dialog, map,and process definitions, and stores this
informationin the dictionary; ADSC compiles a dialogload module (Fixed Dialog Block
(FDB)) thatis used by the runtime system.

A taskthat runs within the DC/UCF system environment; the runtime system can
execute anapplicationas compiledinan ADSA session or can execute a combination of
dialogs as compiledinan ADSC session.

A CA software productthat is fullyintegrated with the dictionaryandis designed to
generate reports from CA IDMS databases as well as fromother databases and
conventional files.

A CA software productthat interprets application requests for databaseservices and
issues callsforaccessand update of the database.

A CA software productthat controls the concurrent execution of onlineapplicationsand
provides supportfacilities for the use of sophisticated terminal devices.

The CA software product that can be integrated with CAIDMS to offer
teleprocessing-monitor independence to communication users;this facility enables CA
IDMS-based applicationsto run without modification under a variety of teleprocessing
monitors.

A CA software productthat is fullyintegrated with the dictionary and provides
conversational accessto CA IDMS databases for applications developers and end users.

112 Application Design Guide

The Flow of Control

application
A named set of functions or dialogs used to accomplish a specific businesstask (for
example, general ledger, shop floor control, inventory control, payroll).

application components
The application functions and responses defined duringan ADSA session; see also,
dialog components.

Application Definition Block (ADB)
The application load module compiled by ADSA for use by the CA ADS runtime system;
the ADB contains the applicationinformation supplied on the definition screens during
an ADSA session.

application function
The basic structural component of an application; functions can bedefined as dialogs,
menus, menu/dialogs, user-defined programs, or system functions.

application levels
The logical structureofan application;levels areachieved through the use of dialog
control commands and are importantfor the purpose of maintainingcurrencies and
record buffers.

application response
See response.

application thread
The path through the application, as decided by the response of the user at runtime.

automatic editing and error handling
A mappingfeature of the CA ADS runtime system that compares input/output data with
internal and external pictures, validates data againstedittables,and encodes/decodes
data by usingcode tables.

AUTOSTATUS
A runtime facility thathandles errors compiled by database, logical record, or queue and
scratch record processing; enabled for each dialogduringan ADSC session.

B

bill-of-materials structure
The databasestructure, with a variable number of levels, that represents network
relationshipsamongrecord occurrences of the same type; sincethe relationshipisreally
many-to-many, itis implemented by two or more sets.

BIND
The databasecommand that signs ona rununit and notifies the database management
system that the user will be requesting runtime services; this function is automatically
performed by the CA ADS runtime system.

Glossary 113

The Flow of Control

C

checkpoint

code table

COMMIT

compile

control block

control commands

control key

currency block

D

An entry inthe journal filethat defines a position after which run unit updates to the
databasecanbereversed duringrecovery.

A tableused to translateinternal codes inarecordto a screen display format.

The databasecommand that causes a checkpoint to be written to the journal fileand
releases record locks ifthey are being maintained; committed updates cannotbe rolled
back.

The process that produces output thatis itselfin machine-executablecode oris suitable
for processinginthe form of a load module that can be executed atruntime; also, to
store DDDL descriptions in the dictionary; also, the process that creates a load module
thatis stored inthe DDLDCLOD area of the dictionary by ADSA (the ADB), ADSC (the
FDB), onlinemappingfacility (the map load module), and SSC (the subschema load
module).

A logical collection of specificparameter data used by the operating system during
runtime.

The DISPLAY, TRANSFER, INVOKE, RETURN, LINK, and LEAVE CA ADS process commands
that instructthe runtime system to pass control fromone dialogto another, or to a user
program duringthe execution of an application.

A programfunction (PF) key, program attention (PA) key, ENTER key, or CLEAR key
defined to activateanapplicationresponseatruntime.

The control blockthat maintains currencyinformation on all subschema records used by
the application;maintained by CAIDMS, a currency blockis created for each level inthe
applicationthataccesses thedatabase.

Data Description Language (DDL)

The CA IDMS languageused to define the structural components of a database:schema,
Device-Media Control Language (DMCL), and subschema.

Data Dictionary Definition Language (DDDL)

See DDDL.

114 Application Design Guide

The Flow of Control

DC

DC/UCF

Dictionary Reporter

DDDL

DDDL compiler

DDL

DDR

See CA IDMS/DC.

A general term for a system that is either an CA IDMS/DC system or an CA IDMS UCF
system. A DC/UCF system provides both databaseand data communications services.

A CA report compiler that provides standard reports on the contents of the dictionary.

A medium for describingand maintaining the contents of IDD (the Integrated Data
Dictionary).

An IDD-supplied programthat stores DDDL descriptions in thedictionary.

See Data Description Language.

See Data Dictionary Reporter.

Device-Media Control Language

dialog

dialog components

dialog function

dialog response process

dictionary

See DMCL.

A unitof work inthe CA ADS environment that performs one interaction with a user and
all the processingassociated with that interaction.

A dialog comprises not more than one premap process module, zero or more response
process modules,and, optionally,onemap and one subschema view of the database;
components areassociated with the dialogduringan ADSC session.

An application function thatis defined as a dialogduringan ADSA session.

See response.

A storagefacility thatis integrated with other CA products and is used by these products
as a central sourcefor information on data descriptions and relationships.

Glossary 115

The Flow of Control

DMCL

ECBLIST

edit table

A databasecomponent that controls the mapping of the schema-defined databaseinto

physicalfiles;designates which areas of the databaseareutilized at runtime; and,

optionally, describes thefiles used to journal databaseactivities.

See Event Control Block List.

A listofsinglevalues or ranges of values that are valid for a data field.

Event Control Block List (ECBLIST)

EXECUTE NEXT FUNCTION

extended run unit

external picture

FAST mode

FDB

field mark

FINISH

The control block used to synchronize events between the DC/UCF system and the host
operating system; the listcontainsan ECB for each task waiting for an operating system
event (for example, a diskread).

The process command that activates the flow of control in an ADSA-defined application
at runtime.

A feature of the CA ADS runtime system that keeps the run unit open when a dialog
issues a LINKto a lower-level dialogor to a user programunder certain conditions.

The format of data as displayed on the terminal screen; defined at record element level
usingIDD or duringan onlinemappingsession.

An optional mode of execution in ADSC, ADSA, the online mapping facility,andinan
applicationatruntime, in which control is passed directly to the next sequential screen
when a transactionissuccessful;otherwise STEP mode is in effect and the current
screen is always redisplayed before control is passed.

See Fixed DialogBlock.

The special character used to define the beginning of a map field.

The databasecommand that releases all resources and completes the run unit; FINISH is
performed automatically by the CA ADS runtime system.

116 Application Design Guide

The Flow of Control

first functional call

Fixed Dialog Block (FDB)

function

G

global record

global response

IDD

The firstdatabasecommand passed to CAIDMS/DB at execution time.

The dialogload modulecompiledin ADSC for use by the CA ADS runtime system when
anapplicationisexecuted.

See application function.

A record, defined in the dictionary prior to compilingan application, thatis availableto
all functions of an ADSA-defined application;also, a record that remains inthe record
buffer for the duration of the application, unaffected by dialog control commands;also,
arecord defined on the Global Records screen during ADSA; see also,
ADSO-APPLICATION-GLOBAL-RECORD.

See response.

A CA software productused to control and report information thatis stored ina central
storage facility called a dictionary.

Integrated Data Dictionary

internal picture

internal response

KEEP

See IDD.

The format of data as storedin variablestorageor the database; defined inthe
dictionary through IDD.

See response.

The databasecommand that locks a record occurrenceagainstaccess or update by
another run unit.

Glossary 117

The Flow of Control

load module

local response

logical record

A programunit thatis suitableforloadinginto mainstoragefor execution; CA ADS uses
the TAT, ADB, FDB, map, table, and subschema load modules stored inthe DDLDCLOD
area of the dictionary.

See response.

One or more databaserecords presented to the application programas a singlerecord,
permitting access to fields in multipledatabaserecords by a singlerequest.

Logical Record Facility (LRF)

logical terminal

The CA software product that simplifies application programming by allowingthe DBA
to predefine combined databaserecords and the processingsequence necessary to
access them.

CA IDMS/DC's view of the events associated with a particular physical terminal; the
logical terminal isused by CA IDMS/DC to communicate with the physical terminal;at
runtime, the user's signoninformation (for example, password, security codes), the
executing task,and dynamic storage are associated with the logical terminal;a logical
terminal is defined on the LTERM statement at system generation.

Logical Terminal Element (LTE)

LRF

LTE

M

mainline dialog

map

The control block used by CA IDMS/DC to manage and maintain the resources
associated with a particular terminal; also, the control block that ties together the user's
longterm resources across a pseudoconverse.

See Logical Record Facility.

See Logical Terminal Element.

A dialogthatis designated as an entry pointto an CA ADS application.

A formatted layoutthat names the literal and variablefields onaterminal screen,
identifies the location of each field on a screen, names the record elements associated
with each variablefield;and allows transfer of data a full screen at a time.

118 Application Design Guide

The Flow of Control

map load module
The load module generated by the DC/UCF system's mappingfacility; used by the CA
ADS runtime system.

Map Request Block (MRB)
The control block, contained in the Variable Dialog Block (VDB), thatis used to perform
mappingoperations.

mapin
The mapping operationin which values keyed by the user intovariablemapfields are
moved into variablestorage;inthe CA ADS environment, a task begins with each mapin
operation.

mapout
The mapping operationinwhichthe map is displayed out to the terminal; literal fields
are moved to their assigned positions and contents of the associated data areasin
variablestoragearemoved to the map's data fields.

mapping
The method used by CA ADS to transfer data between the applicationandthe user.

menu

See menu map.

menu/dialog function
A function defined as a menu inan ADSA session;this functionis controlled by a
user-written dialogthat may provideadditional processing.

menu function
An application functionthatis defined as a menu duringan ADSA session.

menu map
A map that contains a listof valid responses for the user to use inthe processingofan
application; automatically built by the runtime system, the format of the map can be
system- or user-defined.

MRB

See Map Request Block.

Glossary 119

The Flow of Control

online mapping facility

The onlinefacility for definingand compiling maps used by application programs
executing inthe CA IDMS/DC environment.

Online Terminal Block (OTB)

The control block used by the CA ADS runtime system; associated with a logical
terminal, this block exists acrosstasks in user kept storage, anchoringall other CA ADS
control blocks; the OTB contains the name of the current dialogand addresses of the
current Variable DialogBlock (VDB) and the Fixed DialogBlock (FDB).

Online Terminal Block Extension (OTBX)
An extension of the OnlineTerminal Block (OTB) that is created when the CA ADS
runtime system executes anapplication compiled by ADSA; contains pointers to the
TAT, and the RBB and ADB for the currently executing application.

Online Work Area (OWA)
The work area that exists for the lifeof an CA ADS task; the OWA contains fields for
communication between ADSORUN2 and ADSOCDRYV, the subschema control block, a
pointer to the current Map Request Block (MRB), and an internal stack.

operative status
The status of adialogthatis stillanactivepartofan application thread.

OTB
See OnlineTerminal Block.
OTBX
See OnlineTerminal Block Extension.
OWA
See OnlineWork Area.
P
PA key
See programattention key.
PF key

See programfunction key.

120 Application Design Guide

The Flow of Control

physical terminal
A physical devicesuch as a CRT (3270-type device), TTY, or printer that exists within a
teleprocessing system; in the DC/UCF environment, physical terminal areassociated
with logical terminals; physical terminals aredefined with the PTERM statement at
system generation.

premap process
An optional component of an CA ADS dialogthatperforms any necessary processing
before a mapout operation.

process code
A modular set of commands used to perform one or more specific functions withina
dialog;the set of commands is stored as a module (with LANGUAGE 1S PROCESS) inthe
dictionary.

program attention (PA) key
A predefined key that serves as an alternativeto typing the correspondingresponse
code; when a PAkey is pressed (for example, [PA1]) no data is transmitted to the record
buffer.

program function (PF) key
A predefined key that serves as analternativeto typing the correspondingresponse
code; when a PF key is pressed (for example, [Clear]) data is transmitted to the record
buffer.

pseudconversational programming
A programmingtechnique that frees resources beingused by a task whilethe system
waits for completion of data entry by the terminal operator; this technique utilizes CA
IDMS/DC's ability to permit a task to terminate after issuing a terminal outputrequest
that requires an operator response; the CA ADS runtime system is pseudconversational.

pseudconverse
The interval between mapout and mapin.

queue
A diskwork area shared by tasks on all CAIDMS/DC terminals and by batch programs;
gueue records allowa taskor application to pass data to another task or application, or
to transfer data from one terminal to another.

Glossary 121

The Flow of Control

R
RBB
See Record Buffer Block.
RCE
See Resource Control Element.
READY

The statement that specifies to CAIDMS the areas of the databasethat the application
program will accessandin which usagemode; the CA ADS runtime system readies all
databaseareas when the firstfunctional navigational DMLdatabasecommand is
encountered; no more than one READY should be coded in an CA ADS process.

Record Buffer Block (RBB)
The storage block dynamically allocated by the CA ADS runtime system for subschema,
database, work, and map records used by a dialog;an application can haveone primary
RBB and as many secondary RBBs as needed; the size of the RBB is specified by the
PRIMARY POOL and SECONDARY POOL parameters of the ADSO system generation
statement.

Resource Control Element (RCE)

The control blockthatis created when a taskrequires the use of aresource and contains
pointers to the taskidandto the resource being used.

Resource Link Element (RLE)
The control blockthat links allresources inusebya particular terminal.

122 Application Design Guide

The Flow of Control

RLE

run unit

response See specific responses below.

application response The actiontaken by the user when pressinga key or
entering a response code when the runtime system is executing an application;
also, the response that caninitiateanapplication function ora dialog's
responseprocess;also,the global or local responseassociated with a function
an ADSA session.

dialog response process A process module initiated by a uniquelyassigned
response code or control key, after a mapin operation; this module must
containa control command to pass control to another point either insideor
outside of the application;there can be multipleresponseprocesses fora
singledialog; also, the process module associated with a dialog duringan ADSC
session.

global response The type of responsethatis validforall functionsina
particularapplication; also, a responsetype that can be defined for an
application duringan ADSA session.

internal response In ADSA, a response, known onlyto a dialog, thatis assumed
to initiatethe responseprocess of that dialog.

local response A type of response thatis valid only when specifically associated
with a function; also, aresponse type that can be defined duringan ADSA
session.

response code The response field valuethatis associated with the dialog
response process; also, the responsefield valuesupplied during an ADSC
session.

response field The 1- to 32-character map field in which terminal operators can
choose to enter the responsecode that initiates the next activity to be
executed by the runtime system; also, the mapping SRESPONSE field or the
AGR-MAP-RESPONSE field of the ADSO-APPLICATION-GLOBAL-RECORD.

response process See response, dialogresponseprocess.

valid response A global orlocalresponsethatis defined as valid for a particular
application function;there can be more than one validresponsefor asingle
function.

See Resource Link Element.

In CA ADS, that portion of runtime processingthatbegins with the firstfunctional
navigational DMLdatabasecall and ends when a control command (except for certain
cases of LINK) is encountered; see also, extended run unit.

Glossary 123

The Flow of Control

schema

schema compiler

STEP mode

subschema

subschema compiler

system function

table

task

The part of the databasedefinition thatdescribes the logical structure of the database,
includingthenames and descriptions of alltables, elements, records, sets, and areas.
One schema exists per database.

An CA IDMS-supplied programthat converts source schema statements into a
description of the databaseand stores this descriptioninthe dictionary.

An optional mode of execution in ADSA, ADSC, the onlinemapping facility,andinan
application atruntime, in which the current screen is redisplayed with error messages (if
any)or verification messages (if the transactionis successful) beforecontrol is passed to
the next sequential screen.

A programview of the databaseusedat runtime and consistingofall or a subsetof the
data elements, record types, set types, and areas defined inthe schema.

An CA IDMS-supplied programthat converts sourcesubschema DDL into subschema
descriptions, which arestoredinthe dictionaryandinthe dictionaryloadareaorina
load (core-image) library for useatruntime.

A predefined function availableto all applications compiled duringan ADSA session
(thatis,POP, POPTOP, TOP, RETURN, HELP, QUIT, SIGNON/SIGNOFF,
FORWARD/BACKWARD); asystem functionis associated with anapplication whenit has
been associated witha validr.

The IDD entity type describingthe edit and code tables that enableautomatic editing,
encoding, and decoding of map fields used by the DC/UCF mappingfacility.

The basic unitof work under DC/UCF that consists of the execution of a main program
andone or more additional programs;a taskis identified to the system by a unique
name (such as ADS); an IDD entity type, the task nameinthe dictionaryisusually
identical to the task code used by the teleprocessingsystem.

Task Application Table (TAT)

The table that contains names of task codes used to initiateapplications and the names
of the applications (ADBs) thus initiated; the TAT is maintainedin the dictionary by the
application compiler (ADSA) andis loaded by the runtime system.

124 Application Design Guide

The Flow of Control

task code
The unique name, of 1 to 8 characters, that identifies a task to the runtime system; the
terminal operator types the task codeinresponseto the DC/UCF ENTER NEXT TASK
CODE prompt.

Task Control Element (TCE)

The control block that ties together all the resources ofan application.

TAT

See Task Application Table.
TCE

See Task Control Element.
V)
UCF

See CA IDMS UCF.

Universal Communication Facility (UCF)
See CA IDMS UCF.

usage mode
The manner inwhicharun unit accesses a given databasearea;the usagemode dictates
whether arun unit performs retrieval or updates functions againstrecords inthe area
andspecifies the allowed extent of concurrent usage of these records by other run
units.

\'

valid response
See response.

Variable Dialog Block (VDB)
A non-reentrant tableused by the CA ADS runtime system to obtain user-specified
information abouta particular dialog; dynamically created for each user dialoghen the
dialogis initiated, the VDB resides in the storage pool and contains header information,
the Map Request Block (MRB) for the dialog(ifany),and a Variable Record Element
(VRE) for each record usedinthe dialog.

Variable Record Element (VRE)
A control block, one for each record needed by the dialog, thatcontains variable
runtime information on each record.

vDB
See Variable DialogBlock.

Glossary 125

The Flow of Control

VRE
See Variable Record Element.

126 Application Design Guide

Index

A LEAVE e 73,106
LINK ¢ 73,106
ADSA 9 RETURN ¢ 73,101, 106
CA ADS Application Compiler (ADSA) * 9 TRANSFER ¢ 73,106
taskcode ¢ 9
ADSC « 9 D

CA ADS Dialog Compiler (ADSC) » 9
taskcode ¢ 9

ADSO sysgen statement e 85

ADSO-APPLICATION-GLOBAL-RECORD e 68, 106
AGR-CURRENT-RESPONSE field e 68
AGR-DEFAULT-RESPONSE field ¢ 68
AGR-EXIT-DIALOG field » 68
AGR-MAP-RESPONSE field » 68
AGR-MODE field » 68
AGR-NEXT-FUNCTION field » 68
AGR-PRINT-CLASS field ¢ 68
AGR-PRINT-DESTINATION field » 68
AGR-SIGNON-REQMTS field 68
AGR-SIGNON-SWITCH field » 68
AGR-USER-ID field » 68

ADSORPTS utility » 14

application 10,97

data administrator ¢ 16
data communications administrator (DCA) » 16
data definition » 20, 44
data redundancy ¢ 43
dataresources ® 43
databaseadministrator (DBA) » 16
databasecurrencies ¢ 73
debugging aids 40
dialoge 23,31,47,49, 50,59, 60,97, 102
compiling e 47
levels » 23,59, 97
premap process ® 49, 50
process code ¢ 31
responsee 102
responseprocess ® 49,50
specifications 31

i tatus e 60
designtools e 10 . status
uidelines ¢ 10 dialogcomponents ¢ 103
: map ¢ 103

sizee 97
applicationdesign ¢ 20, 21

methodology ¢ 21

phases ¢ 20
applicationthread e 61

processes ® 103

work records ¢ 103
dialogfunction * 100
dialogprocedures » 104

mapine 104
C mapout 104
premap processing e 104
responseprocess selection ¢ 104
responseprocessing e 104

CA ADS Application Compiler (ADSA) » 48
CA ADS components ¢ 11,12

CA ADS Application Compiler (ADSA) 11 dialogs 59
interrelationship ¢ 12 definition ¢ 59
runtime system e 12

CA ADS Dialog Compiler (ADSC) 50 E

CA IDMS OnlineMappingFacility ¢ 28
automaticediting » 28
checkliste 26

end users ¢ 16
EXECUTE NEXT FUNCTION e« 106

control commands ¢ 23,73, 101, 106 F
DISPLAY e 73, 106
EXECUTE NEXT FUNCTION ¢ 106 FAST MODE THRESHOLD e 87
INVOKE e 73, 106 functions ¢ 100

Index 127

types ¢ 100

G

global records 48, 67
prototype ¢ 48
glossary 81

I

internal function 101

L

load modules ¢ 47
FDB ¢ 47
map ¢ 47
load modules (figure) 12
logical records 77
longterm locks 76
KEEP LONGTERM command ¢ 76

M

mainlinedialog ¢ 60
map ¢ 103
data fields # 103
definition » 103
load module » 103
map templates ¢ 56
mappingutility « 14
maps e 28,47,51,52
compilinge47
designe 51
designstandards 52
format e 28
menu function « 100
menu maps 53,54
reformatting « 54
system-defined ¢ 53
user-defined ¢ 54
menu/dialoge 55, 100
design e 55
function e 100
generation ¢ 55
menus ¢ 28
system-defined ¢ 28
user-defined « 28

N

naming conventions ¢ 26, 79, 83

application components ¢ 79
databaseentities 83

0

onlinemappingfacility 47
screens for a prototype application ¢47

P

performance ¢ 91
monitoringtools ¢ 91
populatingthe dictionary ¢ 49
premap process ¢ 103
process modules ¢ 49
PROGRAM sysgen statement * 86
programmers ¢ 16
programming aids ¢34
project leader e 16
prototype ¢ 28, 29, 45, 48, 50
firststage » 45
second stage ¢ 48
thirdstage 50
uses e 29

Q

QUEUE sysgen statement ¢ 65
queue/scratch working storage areas ¢ 65

R

record buffer ¢ 62,96
allocation 62
management ¢ 62
sizee 96

Record Buffer Block (RBB) » 86

records * 28,49, 50,62, 65,66, 103
map ¢ 49,103
queue ® 65
scratch ¢ 66
subschema ¢ 103
work ¢ 49,50, 103
WORK RECORD e 62

reports ¢ 14
ADSORPTS utility e 14
CA Culprite 14
CA IDMS Reports » 14
IDMSRPTS utility » 14
mappingutility e 14
Online Query (CAOLQ) » 14
subschema compiler e 14

128 Application Design Guide

request units ¢ 88
external « 88
MAXIMUM ERUS parameter e 88
MAXIMUM TASKS parameter ¢ 88
resources ¢ 90, 91, 93, 94, 95, 96, 98
CPU usagee® 95
databasee® 94
diskandterminal I/Os » 94
internal processing e 91
longterm storage ¢ 98
management ¢ 90
program pool storage * 94
storage pool * 93,96
responses ¢ 108
flow of control « 108
run units e 73
extended ¢ 73

S

security e 28
signon menu function ¢ 48
subschemas ¢ 96

sizee 96
system functions ¢ 23, 48,59, 100, 101
systems analyste 16

T

tables ¢ 49
code ¢ 49
edite 49
taskcode » 47
ADSC » 47
TASK sysgen statement ¢ 86
testing guidelines ¢ 41
testing procedures ¢ 41, 42
acceptancetesting ¢ 42
integration testing e 42
regression testing 42
unittesting ¢ 41

U
user programfunction ¢ 101

vV

validresponses ¢ 108

Index 129

	CA ADS for CA IDMS Application Design Guide
	CA Technologies Product References
	Contact CA Technologies
	Contents
	1: Introduction
	Overview
	Application Guidelines
	Tools for Designing and Developing Applications
	CA ADS Application Compiler (ADSA)
	Facilitates Structured Application Planning
	Provides Online Overview

	CA ADS Dialog Compiler (ADSC)
	CA ADS Runtime System
	Accesses Record and Element Definitions
	Creates Record Buffers and Control Blocks

	IDD Central Repository
	CA IDMS/DC Mapping Facility
	Batch and Online Reporting Facilities

	The Design and Development Team

	2: Design Methodology
	Development of Effective Design
	Three Phases
	How Tasks are Performed
	Five-Method Design

	Step One: Analyzing the Problem
	Team Approach
	How to Define the Need for the Application
	Developing Two Lists

	Step Two: Developing the Design
	DBA Incorporates Related Data
	External/Functional Specifications
	Format Selection
	Identifying the Application Components
	How to Develop a Structural Diagram
	Returning to the Main Menu
	Documenting the Design

	Internal/Technical Specifications
	Application Considerations

	Step Three: Building a Prototype
	Uses for the Prototype
	Unique Features of the ADSA Builds Prototype
	How to Create the Prototype
	Information required

	Step Four: Writing Process Code for the Dialogs
	Writing the Dialog Specifications
	Sample Template for Dialog Specifications
	Dialog Specifications Synopsis
	Guidelines for Dialog Specifications
	Reviewing the Specifications

	Writing the Source Code
	Test Version Numbers
	Programming Aids
	Sample Premap Process Template: #1
	Sample Premap Process Template: #2
	What Templates Provide
	Sample Response Process Template
	Debugging Aids

	Step Five: Testing and Implementing the Application
	Test Plan
	Test Procedure Phases
	Unit testing
	Integration Testing
	Acceptance Testing

	Underlying Issues and Key Considerations
	Data Definition and Database Design
	Advantages of Separating Information
	Definition of Information

	3: Building a Prototype
	Three-Stage Approach
	Stage I: Building the Basic Prototype
	Prototype Can Be Developed Quickly
	Activities to Perform
	How to Compile the Application (ADSA)
	Compiling the Maps
	How to Produce Prototype Screens

	Compiling the Dialogs (ADSC)
	Compile a Dialog for Each Map
	Considerations

	User Review

	Stage II: Adding Process Logic and Data Retrieval
	ADSA Enhancements
	Adding Features

	Populating the Dictionary
	Three necessary components

	CA IDMS Mapping Facility Enhancements
	ADSC Enhancements

	Stage III: Refining the Maps and Processes

	4: Designing Maps
	Attributes of Successful Maps
	Determining Success of an Application

	Design Standards for a Dialog Map
	Dialog Map Standards

	Online Mapping Procedures
	Choosing Menu Maps
	Available Menu Map Types
	System-Defined Menu Maps
	Designer's options

	User-Defined Menu Maps
	Altering Map Methods
	Reformat the System-Defined Menu
	Regenerating the System-Defined Menu
	Design a Menu/Dialog

	Designing Dialog Maps
	Design Dialog Questions
	Standardizing Formats
	Sample Template for an Application Screen

	5: Designing Dialogs
	Overview
	What is a dialog?
	Dialog Characteristics
	Dialog Level
	Developer's Role
	Aspects Influenced

	Dialog Status
	Dialog Types
	Sequence of Dialog Execution

	Dialog Control
	Passing control to another dialog

	Design Considerations
	Record Buffer Management
	What Affects Record Buffer Management
	Record Buffer Allocation
	NEW COPY Records

	Working Storage Areas
	Queue and Scratch Areas
	Queue Records
	Scratch Records

	Global Records
	Selected Fields
	AGR-MODE Field Examples
	Using the AGR-MODE-field (example 1)
	Using the AGR-MODE field (example 2)
	Mapping to Screens

	Dialogs That Issue Navigational DML
	Database Currencies: How Currency is Maintained
	The Effects of Control Commands

	Extended Run Units
	Longterm Locks
	Record Buffer Management for Logical Records

	6: Naming Conventions
	Overview
	Naming Application Entities
	Sample Naming Conventions
	Assigning Names

	Naming Database Information Entities
	Sample Glossary of Naming Tokens
	Available Naming Conventions

	7: Performance Considerations
	Overview
	System Generation Parameters
	ADSO Statement Parameters
	PROGRAM Statement Parameters
	TASK Statement Parameters
	Allocating Primary and Secondary Storage Pools
	How Storage is Managed
	Layout of the Record Buffer Block
	Size Considerations

	Setting the Fast Mode Threshold
	Record Buffers

	Specifying the Number of Internal and External Run Units

	Resource Management
	Application Resource Use
	Monitoring Resource Consumption
	Tools
	Task Processing Support
	Task Resource Structure
	Variable Storage Pool
	Program Pool Storage
	Database Locks
	Disk I/O
	Monitor Terminal I/O
	CPU Usage

	Conserving Resources
	Storage Protection
	Buffer Sizes in Multiples of 4084 Bytes
	Benefits of Storage Limit
	Size of Subschemas
	Number of Dialog Levels
	Size of the Application
	Making Frequently Called Programs Resident
	Freeing the Resources of an Inactive Terminal

	A: Application Concepts
	Overview
	Application Components
	The Structure of an CA ADS Application
	Functions
	Available Types
	Available System Functions

	Responses

	Dialog Features
	Dialog Components
	Dialog Procedures

	Control Commands
	The Flow of Control

	Glossary
	Index

