

Application Design Guide
Release 18.5.00

CA ADS™ for CA IDMS™

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time. This

Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or
duplicated, in whole or in part, without the prior wri tten consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable

l i cense for such software remains in full force and effect. Should the license te rminate for any reason, i t is your responsibility to
certi fy in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,

DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such

l icense agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions

set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2013 CA. Al l rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA product:

■ CA IDMS®/DB Database

■ CA IDMS®/DC Transaction Server Option

■ CA IDMS® Database Universal Communications Facility Option

■ CA IDMS®/DC Transaction Server Option or CA IDMS® Database Universal
Communications Facil ity Option

■ CA Culprit CA IDMS®

■ CA OLQ® Online Query for CA IDMS®

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA

Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Contents 5

Contents

Chapter 1: Introduction 9

Overview .. 9

Application Guidelines .. 10

Tools for Designing and Developing Applications .. 10

CA ADS Application Compiler (ADSA) ... 11

CA ADS Dialog Compiler (ADSC)... 11

CA ADS Runtime System ... 12

IDD Central Repository.. 13

CA IDMS/DC Mapping Facility .. 14

Batch and Online Reporting Facilities... 14

The Design and Development Team... 16

Chapter 2: Design Methodology 19

Development of Effective Design .. 19

Three Phases ... 20

Step One: Analyzing the Problem.. 21

Team Approach .. 21

How to Define the Need for the Application... 21

Developing Two Lists ... 22

Step Two: Developing the Design.. 22

DBA Incorporates Related Data ... 22

External/Functional Specifications.. 22

Internal/Technical Specifications .. 28

Step Three: Building a Prototype .. 28

Uses for the Prototype .. 29

Unique Features of the ADSA Builds Prototype.. 29

How to Create the Prototype... 30

Step Four : Writing Process Code for the Dialogs.. 31

Writing the Dialog Specifications .. 31

Writing the Source Code ... 34

Step Five: Testing and Implementing the Application.. 41

Test Plan... 41
Test Procedure Phases .. 41

Underlying Issues and Key Considerations .. 43

Data Definition and Database Design... 43

Advantages of Separating Information .. 43

6 Application Design Guide

Definition of Information .. 44

Chapter 3: Building a Prototype 45

Three-Stage Approach... 45

Stage I: Building the Basic Prototype.. 45

Prototype Can Be Developed Quickly... 45

Activities to Perform.. 46

How to Compile the Application (ADSA) .. 46

Compiling the Maps ... 47

Compiling the Dialogs (ADSC) .. 47

User Review... 48

Stage II: Adding Process Logic and Data Retrieval.. 48
ADSA Enhancements ... 48

Populating the Dictionary ... 49

CA IDMS Mapping Facility Enhancements ... 49

ADSC Enhancements.. 50

Stage III: Refining the Maps and Processes ... 50

Chapter 4: Designing Maps 51

Attributes of Successful Maps ... 51

Determining Success of an Application .. 51

Design Standards for a Dialog Map... 52

Dialog Map Standards ... 52

Online Mapping Procedures... 52

Choosing Menu Maps.. 53

Available Menu Map Types .. 53

System-Defined Menu Maps.. 53

User-Defined Menu Maps .. 54

Designing Dialog Maps .. 56

Design Dialog Questions ... 56
Standardizing Formats... 56

Sample Template for an Application Screen ... 57

Chapter 5: Designing Dialogs 59

Overview .. 59

What is a dialog? .. 59

Dialog Characteristics .. 59

Dialog Level ... 59

Dialog Status ... 60

Dialog Control ... 61

Contents 7

Design Considerations ... 62

Record Buffer Management... 62

Working Storage Areas.. 65

Global Records .. 67

Dialogs That Issue Navigational DML.. 73

Database Currencies: How Currency is Maintained... 73

Extended Run Units ... 75

Longterm Locks... 76

Record Buffer Management for Logical Records.. 77

Chapter 6: Naming Conventions 79

Overview .. 79
Naming Application Entities ... 79

Sample Naming Conventions ... 79

Assigning Names... 81

Naming Database Information Entities .. 81

Sample Glossary of Naming Tokens .. 82

Available Naming Conventions .. 83

Chapter 7: Performance Considerations 85

Overview .. 85

System Generation Parameters... 85

ADSO Statement Parameters ... 85

PROGRAM Statement Parameters .. 86

TASK Statement Parameters .. 86

Allocating Primary and Secondary Storage Pools... 86

Setting the Fast Mode Threshold .. 88

Specifying the Number of Internal and External Run Units.. 88

Resource Management ... 89

Application Resource Use ... 90
Monitoring Resource Consumption.. 91

Conserving Resources.. 96

Appendix A: Application Concepts 99

Overview .. 99

Application Components .. 99

The Structure of an CA ADS Application .. 99

Functions ...100

Responses ..102

Dialog Features ...103

8 Application Design Guide

Dialog Components..103

Dialog Procedures ..104

Control Commands ..106

The Flow of Control..108

Glossary 111

Index 127

Chapter 1: Introduction 9

Chapter 1: Introduction

This section contains the following topics:

Overview (see page 9)
Application Guidelines (see page 10)
Tools for Designing and Developing Applications (see page 10)

The Design and Development Team (see page 16)

Overview

This manual is designed for those individuals responsible for designing and developing
online applications in an CA ADS environment. A methodology is presented that covers

the design process and the implementation of a design in an application prototype.

Separate chapters discuss design features to be considered when creating the maps and
dialogs that are an integral part of the application. Also included is a discussion of
factors to be considered when defining data for the application and when establishing

the application database.

To benefit fully from the materials presented, the reader should be knowledgeable
about CA IDMS and have experience writing dialogs in an CA ADS environment. CA ADS
concepts that are basic to creating applications are summarized in Appendix A,
"Application Concepts." Additional concepts are reviewed throughout the manual and,

where appropriate, the reader is referred to other CA documentation for further
information. A glossary is included as a resource for any readers who might be
unfamiliar with the CA ADS terminology.

This introductory chapter covers the following topics:

■ Application guidelines

■ Tools for designing and developing applications

■ The design and development team

Each of these topics is discussed in the following sections.

Application Guidelines

10 Application Design Guide

Application Guidelines

The following guidelines should be considered when developing an application:

■ User needs — An application must satisfy the requirements of the user. To
accomplish this goal, the developer must consult frequently with the user,
remembering that all ramifications of an application are often not apparent in the

initial stages of development. Additionally, specifications may be subject to change
as the user reacts to the prototype application, or as new aspects of the application
become evident. A successful application requires strong user involvement
throughout the design process.

■ Human factors — A user-friendly application increases productivity. An application
should be designed so that the end user feels capable of responding, knows how to
proceed after each step, and knows how to get assistance if there is any confusion.

The screens should be straight-forward, uncomplicated, and uncluttered.

■ Flexibility — An application must be easy to maintain and modify. The structured
design methods used by the CA ADS Application Compiler (ADSA) help the
developer to accomplish this goal in the following ways: short, modules are used to
perform the given functions; and the code that performs the processing logic is kept

separate from the information about data (for example, format of records and
elements, editing criteria). The implementation of naming, coding, and map
formatting standards is strongly recommended, both for purpos es of maintenance
as well as for future enhancements of the application.

■ Performance — The ultimate test of a design lies in its performance capabilities.
The measures of what constitutes good performance are site-specific and vary with
the needs and expectations of the user. Optimally, a good design should have

acceptable throughput, should have reasonable response times, and should use the
available resources as efficiently as possible.

Tools for Designing and Developing Applications

The following tools are available for designing, developing, and implementing
applications in the CA database environment:

■ CA ADS Application Compiler (ADSA)

■ CA ADS Dialog Compiler (ADSC)

■ CA ADS runtime system

■ IDD (Integrated Data Dictionary)

■ CA IDMS/DC Mapping Facil ity

■ Batch and online reporting facil ities

Each of these design and development tools is discussed in the following sections.

Tools for Designing and Developing Applications

Chapter 1: Introduction 11

CA ADS Application Compiler (ADSA)

An application can be defined and compiled by using the CA ADS Application Compiler.
ADSA also serves as a design tool and an automatic prototyping tool for the CA ADS
application developer.

Facilitates Structured Application Planning

As a design tool, ADSA facil itates structured application planning at an early stage in the
design process. When the basic application design has been resolved, the developer
initiates an application compilation session and defines the application functions and

responses (the application components) to the dictionary.

At any stage, the developer can query the dictionary as to the status of the design by
using CA IDMS dictionary reports, CA OLQ, or IDD to access the definitions. Even if an
application compilation session is suspended (that is, the application is not compiled),

the dictionary still contains the component defi nitions and relationships defined up to
this point.

Provides Online Overview

As a prototyping tool, ADSA enables the user to have an online preview of what the

application looks l ike and what it can do. These walk-throughs can begin at an early
stage in the design, before any process code needs to be written. To compile a
prototype and create the appropriate load modules, ADSA only needs the dictionary

definitions of any global records associated with an application; if no global records are
specified, then no other definitions are necessary. To execute a prototype, only
rudimentary dialogs and maps are required. Prototypes are readily modified and,
therefore, can respond quickly to the needs of the user as the application design is being

developed. Once the final design is approved, the existing prototype is enhanced with
the requisite dialog code, and the completed application can be executed.

CA ADS Dialog Compiler (ADSC)

Dialogs are defined and compiled using the CA ADS Dialog Compiler (ADSC). In an ADSC

session, the application developer uses a series of screens to provide CA ADS with
information such as the dialog's name, subschema, maps, work records, and premap
and response processes. Once the dialog has been compiled successfully, it is stored as a

load module in the dictionary for use by the CA ADS runtime system.

Tools for Designing and Developing Applications

12 Application Design Guide

CA ADS Runtime System

An application can be executed after the user signs on to the DC/UCF system and uses
the necessary task code to initiate the CA ADS runtime system. This task code either
displays the CA ADS menu screen or begins executing a predefined dialog. The menu

screen contains the list of available mainline dialogs that can be selected by the user.

Accesses Record and Element Definitions

The CA ADS Application Compiler accesses record and element definitions stored in the
dictionary. ADSA supplies the dictionary with the application definition; the updated

Task Activity Table (TAT), the DC/UCF load module that associates task codes and the
invoked tasks; and the Application Definition Block (ADB), the application load module.
The CA ADS Dialog Compiler (ADSC) accesses record, element, subschema, map, and
source process definitions stored in the dictionary. ADSC supplies the dictionary with

the dialog definition and with the Fixed Dialog Block (FDB), the dialog load module.
When the application is executed, the CA ADS runtime system accesses the application,
dialog, map, subschema, and edit and code table load modules stored in the dictionary.

Creates Record Buffers and Control Blocks

During dialog execution, the CA ADS runtime system dynamically creates record buffers
for the subschema and dictionary records used by the dialog, and automa tically
initializes each field in the newly created buffers. The runtime system also creates

control blocks that provide information pertaining to the executing dialog's map and
database access activities. The application can include process code to test c ertain fields
in these control blocks and specify the action to be taken, based on the test outcome.

Tools for Designing and Developing Applications

Chapter 1: Introduction 13

At runtime, the sequence of events is controlled by the user's selection of processing.
The following figure shows the interrelationships of the CA ADS Application Compiler

(ADSA), the CA ADS Dialog Compiler (ADSC), and the CA ADS runtime system.

IDD Central Repository

The Integrated Data Dictionary (IDD) acts as a central repository of information about
data. The developer uses the dictionary to store definitions of the application's data

elements, records, tables, and maps, as well as the processing modules associated with
an application. IDD maintains information about the data stored in the application
database and makes this information directly available to the applications. IDD

comprises the dictionary itself (that is, the repository of information about data) and
software components for accessing (that is, adding, modifying, deleting, and displaying)
the dictionary-stored information.

IDD enables batch and online entry and examination of entity definitions stored in the
dictionary.

For example, the application designer can request the display of an element definition, a

record definition, or a user-defined entity (a site-specific data category defined by the
DBA). The displayed information shows the definition of the entity itself as well as
contextual information.

For information on how data can be defined for an application, see Chapter 2, Design

Methodology.

Tools for Designing and Developing Applications

14 Application Design Guide

CA IDMS/DC Mapping Facility

The CA IDMS/DC mapping facil ity is used to define the layout of the terminal screens
(that is, maps) used for communication between the application and the user. A map
definition, in addition to determining the appearance of the screen, associates fields on

the screen (map fields) with record elements in the data dictionary, and defines display
attributes (such as color and intensity) for map fields. All map definitions are stored in
the dictionary.

Because maps are defined in the dictionary as separate entities, an CA ADS dialog can

use a map simply by naming it on the appropriate CA ADS Dialog Compiler screen; the
dialog itself does not perform any screen formatting.

At runtime, the mapping facil ity can perform automatic editing and error handling.
When these facil ities are enabled, input is validated automatically and output is
formatted on the basis of dictionary-stored information on record elements (that is,

internal picture, external picture, edit table, and code table). When a map is defined,
the developer can specify different editing criteria for any field. The developer can also
define stand-alone edit and code tables as modules in the dictionary. During map
generation, these tables can be associated with map fields and external pictures can be

defined for the fields.

For further information on the CA IDMS Online Mapping Facil ity and the automatic
editing and error-handling capabilities available to the application, refer to CA IDMS

Mapping Facility Guide.

Batch and Online Reporting Facilities

This section describes reporting capabilities that are available to the designer for
assistance throughout the development process.

CA IDMS reports

Provides an extensive series of standard reports on information stored in the
dictionary. These include summary, detail, and key reports of the elements and
records in the dictionary. Reports are also available for dialogs and applications, and

their associated components. Dictionary reports comprise a valuable tool for
finding inconsistencies and redundant element types.

For more information, see the CA IDMS Reports Guide.

Subschema compiler

Enables batch and online examination of subschema definitions.

For further information on the use of the subschema compiler, see the CA IDMS
Database Administration Guide.

Tools for Designing and Developing Applications

Chapter 1: Introduction 15

IDMSRPTS utility

Provides a series of reports on database definitions (for example, schema

definitions, logical record definitions).

For further information, including a complete l ist of the reports available with the
IDMSRPTS util ity, see the CA IDMS Utilities Guide.

CA OLQ

Lets you interrogate an CA IDMS/DB and display and format the resulting

information at a terminal. CA OLQ accommodates ad hoc queries. With the use of
q-fi les (CA OLQ modules stored in the di ctionary), users can obtain formatted
reports at the terminal simply by supplying the name of the desired q-fi le.

For further information on using CA OLQ to query the dictionary and storing and
accessing of q-fi les, see the CA OLQ User Guide.

CA Culprit

Generates batch reports. CA Culprit is a parameter-driven system. CA Culprit
actively uses dictionary-stored element, record, and subschema definitions. Reports

can be packaged and stored as CA Culprit modules in the dictionary, enabling users
to obtain a report simply by supplying the module name.

For further information on the use of CA Culprit as an application reporting tool, see
the CA Culprit for CA IDMS User Guide.

The dialog reporter (ADSORPTS utility)

Requests batch reports that provide summary and/or detailed information about
one or more dialogs. Reports can include: information on the records and processes
of the named dialogs; a l ist of the contents of the Fixed Dialog Block (FDB); and a
summary that includes map, schema, subschema, and vers ion number information.

For further information on the ADSORPTS util ity, see the CA ADS Reference Guide.

The DC/UCF map utility

Generates and deletes map load modules, produces map source code, and provides

mapping reports. These reports display the decompiled source code, a l ist of the
attributes assigned to each map field, and a l ist of the records used by the named
map.

For further information on using the map util ity, see the CA IDMS Mapping Facility

Guide.

The Design and Development Team

16 Application Design Guide

The Design and Development Team

The personnel involved in the development of an application reflect the range of
responsibilities involved in the creation of a successful design. The manner in which
these responsibilities are assigned varies widely from installation to installation, with
some individuals often assuming more than one role.

The remainder of this chapter discusses the roles that should be included in the team
that develops an application.

Project leader

Orchestrates and coordinates the project. The project leader is ultimately
responsible for producing the system to specifications and on time.

DBA/DCA

Maintains consistent site-specific standards. The DBA is responsible for the data
resources (that is, the application database and the dictionary), designing and

implementing the database records, defining the logical records, and establishing
naming conventions and data dictionary standards. The DCA is involved in the
network and communication needs, helping to plan for space requirements,
performance, and system tuning.

Data administrator

Interfaces with all members of the design and development team, running any
reports that are needed as well as populating the dictionary. The data administrator
is also responsible for enforcing the standards and conventions laid out by the DBA,
entering the dictionary elements, records, maps, and edit and code tables as

needed for the application.

Systems analyst

Helps analyze and document the needs of the end users. The analyst often works
with the data administrator and also with the DBA in designing the database.
Additionally, the analyst defines the requirements for the applications that will

access the database.

The Design and Development Team

Chapter 1: Introduction 17

Programmers

Writes the processing logic that accesses the database, interpreting the dialog

requirements given to them by analysts and designers. Working from design
specifications, the programmer determines map data fields, field edits, map and
work record elements, and the messages needed for a given dialog. This

information is then submitted to the data administrator for approval and,
subsequently, for inclusion in the dictionary. The dialog source code is written and
stored in modules in the dictionary.

End users

Provides valuable input to the data administrator, DBA, systems analys t, and
application programmers. They define what their present data needs are and try to
predict future needs. There should be constant interaction between the end users
and the other members of the development team, to ensure maximum usefulness

of the applications developed.

Chapter 2: Design Methodology 19

Chapter 2: Design Methodology

This section contains the following topics:

Development of Effective Design (see page 19)
Step One: Analyzing the Problem (see page 21)
Step Two: Developing the Design (see page 22)

Step Three: Building a Prototype (see page 28)
Step Four: Writing Process Code for the Dialogs (see page 31)
Step Five: Testing and Implementing the Application (see page 41)

Underlying Issues and Key Considerations (see page 43)
Data Definition and Database Design (see page 43)

Development of Effective Design

There are a number of ways to approach the design of an CA ADS application. This
chapter provides information that may be useful to those involved in the development

stage of an effective design. This chapter also presents information on how data is
defined and stored in the CA IDMS/DB environment.

Note: The procedures presented in this manual represent one possible approach to a

design and should be used as a guideline. Application developers must determine their
system's specific needs and the design procedures that will best meet those needs.

Development of Effective Design

20 Application Design Guide

Three Phases

The sample approach to application design methodology tha t is presented throughout
this manual comprises the following three phases:

1. Data definition — The DBA and the systems analyst determine what element types

the application needs. After defining the elements in the dictionary, the DBA then
determines how the elements should be grouped into records and defines the
records in the dictionary. As a result of this phase, the dictionary is populated with
the element and record definitions required by the schema and subschema

definitions, and with the application dialogs.

2. Database design and definition — The project leader, with the help of the DBA,
designs and defines the application database, creating a schema that reflects the
data access needs of the application system as a whole (that is, al l the programs in

the application system); subschemas are then developed that reflect the data
access needs of a specific application. The database design and definition phase
also deals with the physical structure of the database (that is, how the databas e

exists on disk storage). As a result of this phase, the schema, DMCL, and subschema
are defined in the dictionary.

3. Application design and development — The application development group
designs and develops the applications. Dialogs are written using CA ADS process

code, and dialog maps are created with the DC/UCF mapping facil ity. The CA ADS
process code can link to routines written in source languages such as COBOL, PL/I,
or Assembler. As a result of this third phase, applications exist in a form that end

users can execute.

How Tasks are Performed

These phases can be implemented in chronological sequence, but they usually overlap,
because certain tasks within each phase can be performed concurrently.

For example, an application prototype can be defined and executed while the database
is being designed and data is being defined in the dictionary. However, each phase must
be completed before the next phase can be fully implemented.

Step One: Analyzing the Problem

Chapter 2: Design Methodology 21

Five-Method Design

The design method proposed in this manual is organized into the following five steps:

1. Analyzing the problem

2. Developing the design

3. Building a prototype

4. Writing process code for the dialogs

5. Testing and implementing the application

These steps are discussed below, followed by a presentation of issues that underlie the

entire design process.

Step One: Analyzing the Problem

Team Approach

Problem analysis involves defining end-user needs and agreeing upon the functional
requirements of the application. To generate an effective application, it is essential to
have the users involved as members of the team throughout the entire design and
development process.

How to Define the Need for the Application

During this stage, the team seeks answers to questions that help define the need for the
application. Information regarding the following i s required:

■ Who is the end user?

■ What departments use these transactions?

■ Who performs a given activity?

■ What data does the user need to see?

■ What activities need to be automated?

■ How is the activity usually performed?

■ What information is referenced by these activities?

■ Where is the output information used?

■ What improvements are anticipated?

■ What types of reports will be needed? When are reports usually run?

■ How often will the application be used? By how many?

Step Two: Developing the Design

22 Application Design Guide

Developing Two Lists

In the process of analyzing the problem, develop the following lists:

■ Lists of activities that the user wants to be able to perform

■ Lists of information available to or necessary for the identified activities

Step Two: Developing the Design

DBA Incorporates Related Data

In the second step, a design is created to meet the needs that have been identified.
During the actual design process, information begins to fall into groups of related data

that can be incorporated by the DBA into dictionary elements, records, schemas,
subschemas, and logical records. At the same time, activities combine into predictable
functions (for example, update, modify, delete) that logically work together and begin to
form a step-by-step design.

When developing a design, the application and development group must consider the

external/functional specifications and the internal/technical specifications. The
external/functional specifications reflect the user's view of the application, indicating
what functions will be performed by the application; the internal/technical
specifications reflect the developer's view of the application, indicating how the

application will operate. Each of these considerations is discussed separately below.

For the purposes of this manual, the discussion of the specifications assumes that the
database has already been designed and that subschema views and other site-specific

information have been obtained from the DBA.

External/Functional Specifications

Format Selection

Decisions need to be made about the format of the intended application. The developer
must decide what activities will take place and the response choices that will be
available to the user at each stage of the application.

Once the application components have been developed, it is helpful to develop a

structural chart that depicts the application graphically. Finally, the design details need
to be documented. Each of these stages is discussed below.

Step Two: Developing the Design

Chapter 2: Design Methodology 23

Identifying the Application Components

The following list suggests a few of the questions that need to be answered to establish
relationships within and between the functions and responses that make up an
application:

■ What online transactions need to be performed by the terminal user? For example,
in the sample application, the user needs to be able to update the address, phone
number, job code, or skil l level of an employee.

■ What information or processing is needed before a given function can be

implemented? For example, the appropriate employee record needs to be obtained
from the database and displayed online before the record can be modified by the
terminal user.

■ What are the possible results of a given function? For example, when the user
chooses to update a record, will it be possible to delete the displayed record or can

the record only be modified and stored?

■ After completing a function, what should be the next step? For example, will the
application return to the menu screen after the employee record has been updated
or will a new employee record be displayed? What response will the user have to
make to effect either of these actions?

■ What relationships can be established between functions? For example, can the

same map be used for both the update and browse functions?

■ How do these parts relate to the available or planned database entities? For
example, is there a record in the database that provides information on the skil l of
an employee? If an employee has more than one skil l or many employees have the

same skil l, will the application be able to access this information?

How to Develop a Structural Diagram

At this point in the design, it is useful to develop a graphic representation of the

application, identifying the functions and responses, and incorporating them in a
structural diagram that i l lustrates their interrelationships.

In addition to identifying the functions and responses of the application, the developer
needs to be concerned with the following design items:

■ The number of levels the application will contain.

■ The commands that will be used to pass control between dialogs.

■ The system-provided functions (for example, POP, POPTOP, QUIT) that will be
incorporated into the design.

■ The assignment of function keys and response codes.

Step Two: Developing the Design

24 Application Design Guide

The diagram presents one way in which the developer can begin to sketch out the
application and graphically depict the flow between functions and responses. The

management information system being developed in this sample diagram has
administrative and personnel applications; only the personnel application is represented
in the flowchart. The user begins by selecting an application from the main menu. After

obtaining the record on a particular employee, the user can select the appropriate
response from the employee information menu to add, modify, and display the skil ls of
the employee; obtain information on employee rank within the company's
organizational structure; and update the personnel data on the employee.

Returning to the Main Menu

At any point, the user can use the system functions defined for this application to return
to the main menu (POPTOP); display a screen that supplies the valid responses for the
current function (HELP); or return to the previous function (TOP).

Before proceeding to the next step in the design and development of the application,

the flowchart should be reviewed with end users and modified as necessary.

The following diagram il lustrates the partial structuring of a sample management
information system. The circles in the flowchart represent the application responses and
the rectangles represent the functions. Within each circle is the response code and
control key that will be defined to initiate the given function (for example, SKL/PF3 will

initiate the display of information on employee skil ls). The system functions to be used
in this application (that is, HELP, TOP, and POPTOP) are indicated.

Step Two: Developing the Design

Chapter 2: Design Methodology 25

Step Two: Developing the Design

26 Application Design Guide

Documenting the Design

When the user approves the basic design, the developer needs to document the details
of that design. The application worksheets are examples of the types of forms that can
be used to document the dialogs, maps, records, and processes required by an

application. The lists serve as helpful reference tools/checklists when the application is
being defined online in the prototyping step (see "Step Three: Building a Prototype" in
this chapter).

The following figures detail sample Application Worksheets:

Step Two: Developing the Design

Chapter 2: Design Methodology 27

Charts or checklists, such as those shown in the previous graphic, also serve as excellent

documentation for an application, because all pieces of the application, as well as their
relationships, are detailed.

Additionally, the use of naming conventions is helpful: consistent use of naming
standards makes it easier to keep track of application and dialog components as they

are created and maintained.

For suggestions on the use of standard naming techniques, see Chapter 6, Naming
Conventions.

Step Three: Building a Prototype

28 Application Design Guide

Internal/Technical Specifications

Application Considerations

After the application format has been determined, decisions need to be made about

how the application will work. The developer must consider the following:

■ Records — What subschema, map, and work records are to be part of this
application?

■ Menu Screens — Will standard system-defined menus be used or will the menus be

user-defined? If system-defined, which format of the system menu will be chosen?
If user-defined, how will the menus be formatted and what will they do?

For information about the three types of system-defined menu maps, see the CA

IDMS Mapping Facility Guide.

Chapter 4, Designing Maps discusses methods that can be used when designing
user-defined menu maps.

■ Map formatting — What maps will be needed? What will the maps look like? Are
there site-specific standards that need to be considered?

■ Automatic editing — What edit and/or code tables are necessary? Will the data be
displayed as it is stored? How will the internal and external pictures be defined?

How will the date display be formatted?

For further information on automatic editing and error handling, see the CA IDMS
Mapping Facility Guide.

■ Messages — What informational and error messages, other than those supplied by
the runtime system, should be conveyed to the terminal user?

■ Security — What levels of security will be assigned? Will user, program, or
subschema registration be implemented? Will a user id and password be required
to sign on to an application?

For further information on the security that can be implemented, see the CA ADS
User Guide.

Step Three: Building a Prototype

An application prototype in an CA ADS environment is a representation of an online
application system. As such, it is a tool that can be used throughout the design and

development phases. Even after the implementation of an application, prototyping can
be used as a vehicle for agreeing on revisions and enhancements.

Uses for a prototype, the unique features of a prototype, and creating a prototype are

each discussed in the following sections.

Step Three: Building a Prototype

Chapter 2: Design Methodology 29

Uses for the Prototype

The prototype provides the following benefits:

■ Aids in the design process — The prototype helps to build relationships between
the basic information entities (data items, records) of the business application, and

between the information entities and the activities to be automated (for example,
online screens/transactions, reports, batch jobs).

■ Maximizes end-user participation — The prototype provides an end-user view of
the application from an early point in the development process. Most importantly,
the users are actually seeing the prospective system online.

Additionally, the user can participate in the step-by-step progress being made and
can give valuable feedback while the application is sti ll in its formative stage. As a
review mechanism, the online screen walk-through provides a concrete means of
checking to see if the application meets user needs.

■ Enhances project control — The prototype provides an effective tool for monitoring

the progress of the application development process.

■ Enables training — The prototype can be used as a training tool for the data

administrator and programmers on the development team. It enables them to
become familiar with design techniques, dialog specifications, and documentation.
The use of naming conventions, standardized coding procedures, and boilerplate

process code facil itate the learning process. Additionally, the prototype can be
employed by end users as a tool for training their own staff prior to implementation
of the application in their production environment.

■ Establishes security procedures — The prototype can incorporate the desired
security standards without waiting for the source process code to be developed;

thus, security procedures become established and understood by the end users at
an early stage in the development of an application.

■ Provides an adaptable marketing tool — A prototype can be developed as a
demonstration model for use with prospective customers. As only a minimal

amount of source code needs to be created, it is easy to adjust the prototype in
response to specific user requests.

Unique Features of the ADSA Builds Prototype

The prototype uses all the standard application components: dialogs that have been

compiled with the CA ADS Dialog Compiler; maps that have been created with the
DC/UCF system's mapping facil ity; and data elements that have been defined in the
dictionary with DDDL statements. Most importantly, the prototype is built with the CA

ADS Application Compiler.

Step Three: Building a Prototype

30 Application Design Guide

ADSA provides the following capabilities that add considerable flexibility to the
application, in general, and to dialogs, in particular:

■ Security controls that can be put into effect for the application itself and for
responses within the application

■ Standard menus that are automatically created by the system at runtime and allow

the use of fewer dialogs

■ The EXECUTE NEXT FUNCTION command, which helps to control the flow of an

application and allows process code to be more independent of its position within
the application

■ Global records that enable the developer to use fewer levels in the application
thread

■ Defined responses that reduce the number of response processes needed per
dialog

■ Function-related task codes that facil itate multiple entry points into the applica tion

■ Signon capabilities that make it possible for the end user to bypass the ENTER NEXT
TASK CODE prompt from the DC/UCF system

How to Create the Prototype

A prototype application can be built in three stages, as follows:

1. Stage I: Building the basic prototype

2. Stage II: Adding process logic and data retrieval

3. Stage III: Refining the maps and processes

Each progressive stage contains enhancements that more closely approximate the final
application. Note that it is possible to demonstrate the prototype online as soon as the

first stage is completed successfully.

Information required

The developer must have the following information to format the prototype:

■ The screens needed to support the functional requirements

■ The processing activities taking place before and after communication with the user

■ The number of dialogs included in the application

■ The activities associated with each dialog

■ The manner in which processing selections will be made by the user

■ The control key and/or response code that will be associated with each selection

Step Four: Writing Process Code for the Dialogs

Chapter 2: Design Methodology 31

Worksheets can be developed to record all of the above information. Refer to the
graphic, Sample Application Worksheets, earl ier in this chapter for examples of sample

worksheets. Chapter 3, Building a Prototype provides the step-by-step procedure for
creating an online prototype.

Step Four: Writing Process Code for the Dialogs

Step Four is the stage at which the technical design is translated into specific dialogs

that can be coded and unit tested. Writing the dialog specifications and writing the
source code are each discussed separately.

Writing the Dialog Specifications

Before any code is written, it is necessary to write dialog specifications for each dialog

defined in the technical design. This process can be standardized (and simplified) if the
programmer has access to a template that provides the accepted format for these
specifications. The following text i l lustrates an example of a template that a design team
might develop for its programmers.

Step Four: Writing Process Code for the Dialogs

32 Application Design Guide

Sample Template for Dialog Specifications

 *** HRIS SYSTEM ***

SPECIFICATION FOR DIALOG CEMDxxxx (...description of dialog...)

**

* **** UPDATE LOG **** *

* WHO WHEN WHAT *

* === ==== ==== *

* MCS mm/dd/yy WROTE SPEC *

* MMC mm/dd/yy REVISED BASED ON NEW DATABASE DESIGN *

* *

* *

**

DICTIONARY : DOCUNET

SCHEMA : EMPSCHM

SUBSCHEMA : EMPSS07

MAP : CEMMXXXX

MAP RECORD : CEMMXXXX-MAP-RECORD

DIALOG RECORD : CEMDXXXX WORK-RECORD, CEMDXXX-WORK2-RECORD

SYSTEM RECORD : CEM-SYS-RECORD

MSG WORK RECORD : CEM-MESSAGE-WORK-RECORD

DB-ERROR RECORD : DATABASE-ERROR-RECORD

WORK INPUT/OUTPUT: CEM-MESSAGE-WORK-RECORD

 Record Layout: 05 CEM-MSG-MESSAGE-GET.

 10 CEM-MSG-PROJECT-CODE PIC X(2).

 10 CEM-MSG-MESSAGE-ID PIC S9(7) COMP-3.

 05 CEM-MSG-SUB PIC S9(7) COMP-3.

 05 CEM-MSG-MESSAGE-AREA.

 10 CEM-MSG-MESSAGE

 OCCURS 4 TIMES PIC X(40).

DATABASE INPUT : record names

DATABASE OUTPUT : record names

GENERAL DESCRIPTION:

*** PREMAP PROCESS: CEMDXXXX-PREMAP

DESCRIPTION:

*** RESPONSE PROCESS: CEMDXXXX-RESPONSE

DESCRIPTION:

Step Four: Writing Process Code for the Dialogs

Chapter 2: Design Methodology 33

Dialog Specifications Synopsis

Dialog specifications provide a synopsis of the dialog that includes descriptions of the
premap and response processes; names of the dictionary, schema, and subschema; and
the map and work records used by the dialog. Dialog s pecifications can be included at

the beginning of the dialog's premap process.

Guidelines for writing the specifications and the importance of a review process are
each discussed separately below.

Guidelines for Dialog Specifications

The following guidelines are suggested when writing the specifications:

■ Ensure that the specification narrative has all the information needed to write the
program.

■ Use the structure diagram and worksheets to obtain the proper dialog, record, and

map names.

■ Adhere to naming conventions.

■ Use the data structure diagram and reports of the elements and records for details
about the individual dialogs.

■ Store the completed specification in the data dictionary, as comments in the
premap process. Within process source, use the exclamation point (!) to lead all
comments.

■ If the specification is particularly long, store it as a separate module in the

dictionary and copy it into the premap process code with an INCLUDE statement. In
this way, the specifications are included in reports, but do not have to be viewed
when the programmer is working on the source code.

■ Refer to maps by name and location. As the design of the dialog maps would have
been completed when building the prototype, it is unnecessary to duplicate the

layouts in the specifications. If further definitions on map fields are required in
order to write the code, these definitions should be included in the specifications
and given to the data administrator.

■ Incorporate other comments in the process source, as needed, especially at the

beginning of response processes and subroutines. Batch programs and reports
should also have their specifications included as comments within the code, unless
the specifications are very long.

Some sites find it worthwhile to create a partitioned data set (PDS) or l ibrary for storing
the specifications for each dialog. Such a data set can also be useful for central storage

of the map templates and boilerplate code developed as programming aids.

Step Four: Writing Process Code for the Dialogs

34 Application Design Guide

Reviewing the Specifications

Coding should not begin until the project leader has reviewed and approved the dialog
specifications. This is also the time to provide answers for questions that might have
arisen during specification development. For example, in developing the specifications,

it might become necessary to add some dialogs not already identified in the application
structure. If so, this should be discussed and approved; changes can affect other screen
layouts, as well as the manner in which the application has been defined to ADSA.

Writing the Source Code

Once the specifications have been approved, the programmer can write the source
code. The use of test version numbers, procedures to aid the programmer, and d ialog
debugging aids are each discussed separately below.

Test Version Numbers

The DC/UCF system provides facil ities for establishing a runtime environment in which
test and production copies of the same application components can execute under one
system. Programmers can be assigned a unique version number to be used when
generating their own versions of maps, edit and code tables, and dialogs. When the

application is fully tested and working, the version number can be changed for
production purposes.

For a detailed discussion of the preparations necessary when establishing a test

environment, refer to CA IDMS System Operations Guide.

Programming Aids

To improve the efficiency of the development process and to help maintain standards,
an installation might institute some of the following procedures for the programming

staff:

■ Create templates of dialog premap and response processes. The programmer can
obtain a copy of the template, rename it, and add the specific dialog logic.

■ Provide a l ist of the standard (site-specific) work records that are to be used by each
dialog.

■ Provide process code for standard routines. Identify commonly performed activities
and decide how they are to be handled. Develop process code for these activities

and store as modules in the dictionary so that any dialog can link to them when
necessary. For example, routines can be developed to handle date conversions,
forward and backward paging, database error routines, and message formatting.

Step Four: Writing Process Code for the Dialogs

Chapter 2: Design Methodology 35

The following text i l lustrates a type of boilerplate code that can be developed for a
premap process; the template demonstrates a type of boilerplate code that can be

developed for a response process. These templates contain the standard logic for
interfacing with common subroutines.

Step Four: Writing Process Code for the Dialogs

36 Application Design Guide

Sample Premap Process Template: #1

 ADD

 MODULE NAME IS xxxDxxxx-PREMAP VERSION IS 1 LANGUAGE IS PROCESS

 MODULE SOURCE FOLLOWS

 !***

 !* THE PREMAP PROCESS FOR THE xxxx DIALOG

 !**

 INIT REC (xxx-message-work-record).

 KEEP LONGTERM ALL RELEASE.

 !

 ! THE ACTUAL LOGIC FOR SCROLLING BACKWARDS AND FORWARDS WILL

 ! BE DIFFERENT FOR EVERY DIALOG. THEREFORE, THESE ROUTINES HAVE

 ! NOT BEEN CODED IN THIS TEMPLATE.

 !

 IF FIRST-TIME

 INIT REC (..................).

 MOVE SPACES TO xxx-function.

 IF xxx-function EQ 'NEXT'

 THEN

 CALL forwrd02.

 ELSE

 IF xxx-function EQ 'PREV'

 THEN

 CALL backwd03.

 ! THE FOLLOWING CODE IS TO BE USED WHEN YOU WANT TO BE NOTIFIED

 ! THAT ANOTHER USER IS UPDATING THE SAME RECORDS THAT YOUR

 ! DIALOG IS UPDATING.

 ! SUBSTITUTE THE ACTUAL DIALOG NAME FOR 'dialog name' AND THE

 ! ACTUAL RECORDS OF CONCERN FOR record-name.

 ! IF MORE THAN ONE LOCK IS REQUESTED, INCLUDE A NUMERIC IDENTIFIER

 ! WITH THE DIALOG NAME (e.g., CEMD1LIS, CEMD2LIS).

 ! KEEP LONGTERM SHOULD BE CODED DIRECTLY AFTER AN OBTAIN.

 KEEP LONGTERM 'dialog name' NOTIFY CURRENT record-name.

 ! (Main premap logic goes here)

 IF AGR-CURRENT-FUNCTION EQ 'DELETE FUNCTION'

 THEN DO.

 MOVE 98xxxx TO xxx-message-id.

 CALL messge98.

 END.

 !

 ! THIS MESSAGE WILL READ

 ! 'TO COMPLETE DELETE ENTER PROPER RESPONSE'

 !

 IF xxx-msg-sub GT 0

Step Four: Writing Process Code for the Dialogs

Chapter 2: Design Methodology 37

 THEN

 DISPLAY MESSAGE TEXT xxx-msg-message-area.

 DISPLAY.

 !

Sample Premap Process Template: #2

 !**

 DEFINE SUBROUTINE dberr99.

 !**

 !

 !***

 !********* ABEND ROUTINE FOR BAD DB CALLS. *********

 !***

 KEEP LONGTERM ALL RELEASE.

 ACCEPT RECORD INTO der-record-name.

 ACCEPT AREA INTO der-area-name.

 ACCEPT ERROR SET INTO der-error-set.

 ACCEPT ERROR RECORD INTO der-error-record.

 ACCEPT ERROR AREA INTO der-error-area.

 MOVE ERROR-STATUS TO der-error-status.

 ROLLBACK.

 DISPLAY MESSAGE CODE IS 799999

 PARMS = (der-error-status

 ,der-record-name

 ,der-area-name

 ,der-error-set

 ,der-error-record

 ,der-error-area).

 GOBACK.

 MSEND.

What Templates Provide

Templates provide a means of supplying site-specific information to programmers. For
example, the installation using this template specifies the name of the dialog as the
unique identifier for longterm locks.

Step Four: Writing Process Code for the Dialogs

38 Application Design Guide

Sample Response Process Template

The following figure shows the response process template that corresponds to the
premap process template.

 ADD

 MODULE NAME IS xxxDxxxx-RESPONSE VERSION IS 1 LANGUAGE IS PROCESS

 MODULE SOURCE FOLLOWS

 !?***

 !? THE RESPONSE PROCESS FOR THE xxxx DIALOG

 !?***

 INIT REC (xxx-message-work-record).

 IF AGR-NEXT-FUNCTION EQ 'NEXT'

 THEN DO.

 MOVE 'NEXT' TO xxx-function.

 DISPLAY CONTINUE.

 END.

 IF AGR-NEXT-FUNCTION EQ 'PREV'

 THEN DO.

 MOVE 'PREV' TO xxx-function.

 DISPLAY CONTINUE.

 END.

 IF AGR-NEXT-FUNCTION EQ AGR-CURRENT-FUNCTION AND

 AGR-CURRENT-FUNCTION EQ 'delete'

 THEN DO.

 CALL

 END.

 IF NO FIELDS ARE CHANGED

 THEN

 EXECUTE NEXT FUNCTION.

 ! THE FOLLOWING CODE WILL RETURN A VALUE INTO A SPECIFIED FIELD

 ! IN THE SYSTEM RECORD. THE VALUE GIVES NOTIFICATION OF ANY

 ! ACTIVITY AGAINST ANY RECORDS WHICH WERE SPECIFIED IN THE PREMAP

 ! PROCESS OF THE DIALOG.

 KEEP LONGTERM 'dialog name' TEST RETURN NOTIFICATION INTO

 xxx-notify.

 ! IF APPROPRIATE, THE FOLLOWING VALUES OF xxx-notify SHOULD BE

 ! CHECKED:

 !

 ! VALUE OF xxx-notify MEANING

 !

 ! 0 NO DATABASE ACTIVITY FOR RECORD

 ! 1 RECORD WAS OBTAINED

 ! 2 RECORD'S DATA EAS MODIFIED

Step Four: Writing Process Code for the Dialogs

Chapter 2: Design Methodology 39

 ! 4 THE RECORD'S PREFIX WAS MODIFIED

 ! (I.E. A SET OPERATION OCCURRED

 ! INVOLVING THIS RECORD)

 ! 8 THE RECORD WAS LOGICALLY DELETED

 ! 16 THE RECORD WAS PHYSICALLY DELETED

 !

 ! MULTIPLE ACTIVITIES WILL CAUSE A COMBINATION OF THESE VALUES.

 ! THE MAXIMUM POSSIBLE VALUE IS 31 (MEANING ALL OF THE ABOVE

 ! OCCURRED).

 !

 ! (I.E.)

 !

 ! IF xxx-notify GT 7

 ! THEN DO.

 ! MOVE 98xxxx TO xxx-msg-message-id.

 ! CALL messge98.

 ! DISPLAY MESSAGE TEXT xxx-msg-message-area.

 ! END.

 ! IF xxx-notify GT 1

 ! THEN DO.

 ! MOVE 98xxxx TO xxx-msg-message-id.

 ! CALL messge98.

 ! DISPLAY CONTINUE MESSAGE TEXT xxx-msg-message-area.

 ! END.

 !

 ! IN THE FIRST EXAMPLE, THE RECORD HAS BEEN DELETED.

 !

 ! IN THE SECOND EXAMPLE, THE RECORD WAS MODIFIED BY

 ! ANOTHER USER. THE DISPLAY CONTINUE WILL NOT ONLY

 ! DISPLAY A MESSAGE, BUT WILL ALSO REEXECUTE THE

 ! PREMAP TO SHOW THE USER THE MODIFIED RECORD.

 IF AGR-CURRENT-FUNCTION EQ 'function a'

 THEN

 CALL

 IF AGR-CURRENT-FUNCTION EQ 'function b'

 THEN

 CALL

 (Other processing code specific to the dialog goes here)

 IF AGR-STEP-MODE AND xxx-msg-sub GT 0

 THEN

 DISPLAY MESSAGE TEXT xxx-msg-message-area.

 EXECUTE NEXT FUNCTION.

 !***

 DEFINE SUBROUTINE messge98.

Step Four: Writing Process Code for the Dialogs

40 Application Design Guide

 !***

 IF xxx-msg-sub LT 4

 THEN

 LINK PROGRAM 'xxxxxxxx' USING (xxx-message-work-record).

 ELSE

 DISPLAY MESSAGE TEXT xxx-message-area.

 GOBACK.

 !

 !**

 DEFINE SUBROUTINE dberr99.

 !**

 !

 !***

 !********* ABEND ROUTINE FOR BAD DB CALLS. *********

 !***

 KEEP LONGTERM ALL RELEASE.

 ACCEPT RECORD INTO der-record-name.

 ACCEPT AREA INTO der-area-name.

 ACCEPT ERROR SET INTO der-error-set.

 ACCEPT ERROR RECORD INTO der-error-record.

 ACCEPT ERROR AREA INTO der-error-area.

 MOVE ERROR-STATUS TO der-error-status.

 ROLLBACK.

 DISPLAY MESSAGE CODE IS 799999

 PARMS = (der-error-status

 ,der-record-name

 ,der-area-name

 ,der-error-set

 ,der-error-record

 ,der-error-area).

 GOBACK.

 MSEND.

Debugging Aids

The following debugging aids are available to the CA ADS programmer:

■ The ABORT and SNAP commands

■ The diagnostic screen (if enabled)

■ The PRINT LOG util ity

■ CA OLQ

■ The ADSORPTS util ity (particularly the DIALOG report and the FDBLIST)

■ The mapping report util ity (RHDCMPUT)

Errors can be resolved by signing on to IDD, making changes to the process code, and
signing on to ADSC to recompile the dialog.

Step Five: Testing and Implementing the Application

Chapter 2: Design Methodology 41

Step Five: Testing and Implementing the Application

The final stage of application design and development deals with the testing and
implementation of the application. This is an important step that requires careful
planning. Testing should not begin until a comprehensive test plan has been formulated;
the testing itself should be thoughtfully structured.

Guidelines for developing a test plan and the procedures involved in the final testing of
an application are discussed in the following sections.

Test Plan

A definitive test plan should be drawn up after the technical design is finalized. This plan

is particularly important when performing acceptance testing for the user because it
must reflect the expectations of the user. The plan should include the following
information:

■ Division of the application for testing purposes

■ Plans for testing interfaces

■ The order of testing, taking into account the planned implementation

■ Approval criteria for user and operations acceptance of the system

■ Test data to be used and the method of creating this data

■ Operational and technical support required

■ A list of all testing and related tasks

■ The people involved and their specific responsibilities

■ A schedule for testing and acceptance of the system

Test Procedure Phases

Procedures for testing applications typically fall into the following phases:

■ Unit testing by the programmer

■ Integrated system testing by the programming team

■ User acceptance testing

Each of these phases is described in the following sections.

Step Five: Testing and Implementing the Application

42 Application Design Guide

Unit testing

Each dialog should be tested in isolation for all possible error conditions. This should be
done either by the person who developed the dialog, or, preferably, by another member
of the project team. The following lists should be drawn up beforehand:

■ The conditions to be tested

■ The data used to test these conditions

■ The expected results

The documented results of the testing should be approved by the project leader. When
the unit testing is completed successfully, the dialog should be submitted for subsystem

or integration testing. For dialogs that operate independently, no testing should be
required beyond unit testing.

Integration Testing

Integration testing determines whether the dialogs within each subsystem are

functioning in accordance with the specifications. Interdependent dialogs should be
grouped together and tested as a unit, using the same principle as for unit testing. To
avoid duplication of effort, this phase should use the same data as that used for unit

testing whenever possible. The application, in its entirety, should be tested to ensure
that all paths through the application are traversed correctly.

Regression testing is a useful practice to implement. Test results are saved from each of
the test procedures to be compared with subsequent test results if/when changes are

made to an application. Comparison of the test results can provide an efficient way to
monitor the effectiveness of the changes.

Acceptance Testing

Users determine the acceptance test criteria and should approve all system outputs.

Acceptance testing ensures that the system is functionally acceptable to the users and
will operate successfully in the production environment. Testing should be performed
using live or simulated-live data provided by the users.

Underlying Issues and Key Considerations

Chapter 2: Design Methodology 43

Underlying Issues and Key Considerations

Data Definition and Database Design

Because CA ADS operates in the CA IDMS/DB environment, it is important to review
how data is defined and stored in that environment. In a traditional application
development environment, the application programs comprise both processing logic

and information about the data accessed. Processing logic, which determines the action
taken by a program to produce the desired output, correctly belongs in the realm of
programming. Defining information about data (such as the format of records and

elements, and editing criteria) can be handled more easily and efficiently as a separate
function.

The CA IDMS/DB environment uses the dictionary to accomplish this separation of
information about data from process logic. The dictionary maintains information about

data and makes this information directly available to the application maps and dialogs
that need it.

Advantages of Separating Information

Separating information about data from process logic has the following advantages:

■ Allows control of data resources — The site has better control over data resources
because the control is centralized. Centralized control provides the following
benefits:

– Eliminates unwanted data redundancy

– Controls the data that is available

– Determines where data elements are used and by whom

– Establishes standards for data element names, input and output formats, and

editing criteria

■ Facilitates the design, development, and maintenance of CA ADS applications —
The application can use data from the dictionary and can store application-specific

data in the dictionary where it can be maintained. The data can be accessed by a
variety of reporting facil ities and software components, and can be populated and
updated automatically.

Data Definition and Database Design

44 Application Design Guide

■ Increases productivity — Productivity is increased because activities are not
duplicated. Information about an element type is defined once and does not have

to be defined separately by every programmer using that element in a dialog or
map.

The DBA staff can concentrate on defi ning information for the applications, and the

programming staff can concentrate on the processing logic. For example, the
dictionary can maintain editing and display information for each element. The DBA
can simply define in the dictionary that the external format of social security
numbers is 999-99-999, and the application programmers need not be concerned

about editing and formatting the element when they use it. On all input operations
for this element, the automatic editing facil ity will verify that user input conforms
to this picture; on all output operations, it will format the data and insert hyphens.
Defining the elements in this way is easier, less error prone, and less time

consuming than coding process logic.

Definition of Information

The definition of information for an application can be divided into the following two
phases:

■ Data definition

■ Database design and definition

Each of these phases in the design process is outlined below.

For further information on this topic, see the CA IDMS Database Design Guide.

Chapter 3: Building a Prototype 45

Chapter 3: Building a Prototype

This section contains the following topics:

Three-Stage Approach (see page 45)
Stage I: Building the Basic Prototype (see page 45)
Stage II: Adding Process Logic and Data Retrieval (see page 48)

Stage III: Refining the Maps and Processes (see page 50)

Three-Stage Approach

The development of a prototype can be approached in a variety of ways, depending
upon the needs of the design team. The procedures suggested in this manual are based

on a three-stage approach: the initial stage performs rudimentary navigation of the
application; the second stage begins to perform data retrieval and update; and the final
stage incorporates refinements that reflect the more complex requirements of an
application running in a production environment.

Each stage of the prototype is discussed in the following sections.

Stage I: Building the Basic Prototype

The first stage details how to build the prototype and the benefits of doing so.

Prototype Can Be Developed Quickly

The first stage of the prototype can be developed quickly and easily because only

skeletal maps and dialogs are needed for execution by the CA ADS runtime system.
Typically, maps are created with just enough information to identify their use in the
application process, and one dialog is created for each map. The dialogs do not need a

premap process or a response process. With a minimum of time and effort, the designer
has the opportunity to see how the application is going to work even before data
processing takes place.

Stage I: Building the Basic Prototype

46 Application Design Guide

Activities to Perform

To build an executable prototype, the developer needs to provide load modules for the
runtime system by performing the following activities:

1. Compiling the application — The application and its components (the functions and

responses) are defined and compiled with ADSA.

2. Compiling the maps — Each map is formatted, defined, and compiled with the
online mapping facil ity.

3. Compiling the dialogs — Each dialog is identified, associated with the appropriate

map, and compiled with ADSC.

The prototype can be executed when the application, map, and dialog load modules are
available for use by the CA ADS runtime system. At this point, the developer has a
meaningful version of the prototype that can be presented for user review and
modification.

Each of the activities for building the basic prototype is discussed separately below,
followed by user review considerations.

How to Compile the Application (ADSA)

The amount of detail provided for a prototype can be as extensive as the developer

wishes, but the basic prototype does not have to be elaborate. After initiating an ADSA
session, the developer can define and compile an application as follows:

1. Specify the application — ADSA must be supplied the name of the application and
related information such as version number.

2. Name the task code — The task code designates an entry point into the application.
If there are multiple entry points, each task code must be defined individually.

3. Define the responses — The responses that initiate the functions of the application
must be specified.

4. Define the functions — Menu and dialog functions that are initiated by the
responses must be specified.

Note: Every function that you define as a dialog function in ADSA you must also
define to ADSC as a dialog.

5. Compile the application.

When the above-named activities are completed successfully, ADSA defines an
Application Definition Block (ADB) for the application and updates the Task Activity
Table. Both the ADB and the TAT are stored as load modules in the dictionary and are
used by the CA ADS runtime system when the application is executed.

Stage I: Building the Basic Prototype

Chapter 3: Building a Prototype 47

Compiling the Maps

How to Produce Prototype Screens

Maps that are compiled for the first stage of the prototype usually contain all l iteral

fields. The developer signs on to the online mapping facil ity (MAPC) and takes the
following steps to produce the prototype screens:

1. Specify the map and map options — The map name and related information such
as version number must be supplied to MAPC. Certain options, such as display

options, may also be appropriate to specify for the prototype.

2. Produce a screen layout —A layout can be produced automatically if the developer
specifies existing dictionary records to MAPC. Otherwise, the layout can be

produced manually. Literal values (such as hyphens or underscores) can be assigned
to represent variable data fields.

3. Compile the map — A map load module is stored in the DDLDCLOD area of the
dictionary when the map has been compiled successfully.

Compiling the Dialogs (ADSC)

Compile a Dialog for Each Map

You must compile one dialog for each map used by the prototype.

To compile a prototype dialog

1. Initiate an ADSC session

2. Add the dialog.

3. Associate the map with the dialog.

4. Compile the dialog.

Considerations

The following considerations should be noted when compiling dialogs for an application:

■ If a dialog is defined as a function in ADSA, it must be defined in ADSC.

■ If a dialog is associated with a task code, it must be defined as a mainline dialog.

■ The associated map must be compiled before the dialog can be compiled.

ADSC defines a Fixed Dialog Block (FDB) for every dialog that is compiled successfully.

The FDB is stored as a load module in the dictionary and is used by the CA ADS runtime
system when the application is executed.

Stage II: Adding Process Logic and Data Retrieval

48 Application Design Guide

User Review

After the application, map, and dialog load modules have been compiled, the prototype
is ready to be presented to the user for careful online review. Modifications based on
review should be made to the existing prototype, the necessary load modules

recompiled, and the prototype resubmitted for review until the users are satisfied.

Stage II: Adding Process Logic and Data Retrieval

The prototype becomes more functional in the second stage. The developer might add
activities such as the following to the prototype:

■ Global records (ADSA)

■ Security restrictions such as signon menus (ADSA)

■ Display capabilities (online mapping and IDD)

■ Premap and response process logic (ADSC and IDD)

The ADSA, online mapping facil ity, ADSC, and IDD activities used for these

enhancements are described separately in the following sections.

ADSA Enhancements

Adding Features

The following ADSA features can be added to the prototype at this point:

■ Global records (that is, records that are available for use by all dialogs in the
application) can be defined

■ User-program records (that is, records that are to be passed to a user -program) can
be defined if needed

■ Valid responses l isted for a function can be resequenced or their display can be
suppressed

Stage II: Adding Process Logic and Data Retrieval

Chapter 3: Building a Prototype 49

■ Signon can be specified as required or optional. If either is specified, these steps
must be taken:

– The signon function must be identified

– The function type of the signon function must be specified as menu

– The function must be defined as a menu

– The SIGNON system function must be specified as the function initiated by the
user's response from the signon screen

– The response that initiates the SIGNON system function must be specified as a
valid response for the named menu function

When these changes have been made, recompile the application.

Populating the Dictionary

Three necessary components

The dictionary must contain the following components if they are to be used by the
prototype:

■ Dialog premap and response processes — Premap and response processes must be

stored as process modules in the dictionary. If premap or response processes are
associated with a dialog, process modules must be defined in the dictionary before
the dialog can be compiled. Modules are added to the dictionary with the IDD
MODULE statement specifying LANGUAGE IS PROCESS.

■ Map records and dialog work records — All work records used by a dialog and all
records associated with maps must be defined in the dictionary before the dialogs
and maps can be compiled. Similarly, an application cannot be compiled unless all
global records associated with the application are defined in the dictionary. Records

are added with the IDD RECORD statement.

■ Edit and code tables — All stand-alone edit and code tables associated with map
records must be defined in the dictionary before the map is compiled. Edit and code

tables are added with the IDD TABLE statement.

CA IDMS Mapping Facility Enhancements

Variable map fields that were defined as l iterals for the first stage of the prototype
should be redefined as data fields and edited accordingly. When the appropriate

enhancements have been made, the map should be recompiled.

Stage III: Refining the Maps and Processes

50 Application Design Guide

ADSC Enhancements

The developer now uses ADSC, recompiling the dialog to include the premap and
response processes, as well as the changes made to the map associated with this dialog.
After initiating an ADSC session and naming the appropriate dialog, the develop can

make these enhancements:

■ Database specification—Specify the database that the dialog accesses

■ Work records — Supply the names of all work records associated with the dialog

Note: If the dialog is using subschema records, they must belong to the same

subschema as the dialog.

■ Premap process — Supply the name of the premap process associated with the
dialog.

■ Response process — Supply the name of the response process associated with the
dialog and a control key and/or response field value unique to that response

process.

Recompile the dialog after making the appropriate enhancements.

Stage III: Refining the Maps and Processes

The final stage of prototype development can focus on refinement of the map design

and the map field attributes. Some of the following additions can be made:

■ Incorporate additional fields in the maps

■ Add or change map field attributes

■ Specify automatic editing on selected map fields

■ Provide informational messages

■ Add error messages

Chapter 4: Designing Maps 51

Chapter 4: Designing Maps

This section contains the following topics:

Attributes of Successful Maps (see page 51)
Design Standards for a Dialog Map (see page 52)
Online Mapping Procedures (see page 52)

Choosing Menu Maps (see page 53)
Designing Dialog Maps (see page 56)

Attributes of Successful Maps

Determining Success of an Application

Maps displayed during the execution of the application interface directly with the user
and, therefore, can influence the success of an application. Consequently, the designer
must consider the appearance of the menu screens and the layout of the dialog maps.

A successful map design should exhibit the following attributes:

■ Consistency — Entities (for example, fields, headings, labels, responses, messages,
and control keys) should have the same meaning or effect throughout the
application. The meaning or effect need not be identical for every map, but should
be consistent within the broader confines of the system. In general, there are two

special fields on any screen: a message field and a response code field. These areas
should appear in a constant location on the screen throughout any application; for
maximum effectiveness, they should remain standard for all applications at a site.

■ Convenience — Features of the system should be designed to associate related
entities by using similar constructs, positioning, and responses to produce similar
reactions from the system. For example, assign one particular control key to initiate
the update function in all the dialogs of a given application.

■ Supportiveness — The reactions of the system should enable the user to handle
normal contingencies conveniently. Tutorial aids should be available when needed.
Displayed informational and/or error messages should be meaningful.

The remainder of this chapter discusses the following aspects of map design:

■ Standards to consider when designing maps

■ Mapping procedures that can be adopted by an installation

■ Choices available in the design of menu maps

■ Suggestions for designing dialog maps

Design Standards for a Dialog Map

52 Application Design Guide

Design Standards for a Dialog Map

Dialog Map Standards

The developer needs to consider the following standards when designing dialog maps:

■ Design the map with the user in mind. For example, a very dense screen is tiring

and difficult to use. In general, the screen most pleasing to the eye is about 40
percent full.

■ The placement of fields on the screen, the use of high intensity, and the nea tness of
the format have a great deal of impact on the effectiveness of the system.

■ When the screen is sent to the terminal, the cursor should be in the position most

l ikely to be used for data entry. Other frequently used fields should be easily
accessible with the tab and return keys.

■ The sequence of fields, when tabbed, should match the most common pattern used
for data entry.

■ Fields requiring special attention should be highlighted and clearly visible.

■ The screens should be as uncluttered as possible. The common error of using one
screen format for excessive and/or dissimilar functions tends to produce cluttered
or busy screens; separate screens with some common fields are more usable.

■ Users should be able to initiate proces sing by typing in the necessary data and
pressing a control key. They should not be required to make decisions that could
have been incorporated in program logic, nor should they be forced to use control

keys or responses needlessly.

Online Mapping Procedures

The following list details the mapping procedures that might be implemented by a
specific site:

■ Have one individual (for example, the data administrator) responsible for creating

and modifying all maps.

■ As much as possible, use the features of the online mapping facil ity to handle
editing, error handling, error messages, and modifying field attributes.

■ Use a standard map template. Whenever possible, keep data fields in columns and

double space rows of data.

■ Use the BRIGHT attribute to contrast items on the screen that have different uses

(for example, highlight required fields). Be consistent in the use of attributes.

Choosing Menu Maps

Chapter 4: Designing Maps 53

■ Use the cursor in a consistent manner. For example, either place the cursor at the
first field to be used for data entry or at the field where the user is to enter the next

function.

■ Use the BRIGHT attribute for redisplaying data fields that are in error.

Choosing Menu Maps

Available Menu Map Types

When designing an application, the developer needs to decide if system- or user-defined
menu maps are to be used. The system-defined menu provides a standard format for
the information provided by the developer during the definition of the functions and

responses of the application in an ADSA session. If a format other than the standard
format is desired (for example, the developer wishes to redefine certain l iteral fields on
the map or wants to supply site-specific headers), the user-defined menu map is used.
Both types of maps are discussed separately below.

System-Defined Menu Maps

Designer's options

If the menu map is to be system-defined, the designer has the option of using one of the
following menu formats:

■ Short description menu map (ADSOMUR1) — The menu screen that l ists 30 valid
menu responses per page; a short (12-byte) textual description is displayed for each

response.

■ Long description menu map (ADSOMUR2) — The menu screen that l ists 15 valid
menu responses per page; a long (28-byte) textual description is displayed for each
response name.

■ Signon menu map (ADSOMSON) — The menu screen that requires a DC/UCF
validation of user id and password before the menu request can be processed. The
standard signon menu map can have 12 valid menu response names per page with

28 bytes of descriptive text displayed for each.

If none of the these menus meets the needs of the user, the system-defined menu map
can be altered by the user or a new menu (designated as a menu/dialog function) can
be formatted. Both methods of creating user-defined maps are discussed in the
following sections.

Choosing Menu Maps

54 Application Design Guide

User-Defined Menu Maps

Altering Map Methods

When user-specific modifications to the existing system-defined menu maps are

necessary, designers can al ter the menu maps by using either of the following
techniques:

■ Reformatting and regenerating the standard system-defined menu

■ Designing a menu/dialog (that is, a menu map that is part of a menu/dialog

function)

Each of these methods is discussed in the following sections.

Reformat the System-Defined Menu

The existing system-designed menu map can be reformatted and regenerated, retaining

the same name. This method has the advantage of allowing the developer to use the
standard menu function rather than designing and using a menu/dialog function.

To reformat the system menu

1. Obtain the source for the map being used (that is, ASDSOMUR1, ADSOMUR2, or
ADSOMSON) from the source data sets created when the distribution tape was

installed. The maps are stored as members under their own names.

2. Use the batch mapping compiler to store the source in the dictionary.

3. Use the online mapping facil ity to modify and regenerate the menu map.

Regenerating the System-Defined Menu

When regenerating a menu map with the online mapping facil ity, the following rules
must be observed:

■ ADSO-APPLICATION-MENU-RECORD is a required map record. Optionally, the menu

can map to additional records, but it must always map to the .hw
ADSO--APPLICATION--MENU--RECORD.

■ The menu must contain the same number of responses per page as the number of

responses for the selected map (that is, 30 for ADSOMUR1, 15 for ADSOMUR2, or
12 for ADSOMSON).

■ The AMR-RESPONSE field of the .hw ADSO--APPLICATION--MENU--RECORD record
is a required field. The first response name on the map must map to the first
occurrence of AMR-RESPONSE. Each subsequent response name must map to the

next corresponding occurrence.

Choosing Menu Maps

Chapter 4: Designing Maps 55

■ The AMR-USER-ID and AMR-PASSWORD fields of the .hw
ADSO--APPLICATION--MENU--RECORD are required on a signon menu map. The

user id data field must map to AMR-USER-ID, and the password data field must map
to AMR-PASSWORD.

■ All other fields on the .hw ADSO--APPLICATION--MENU--RECORD are optional. The
map data fields that are used must be associated with the appropriate fields on the
record (for example, heading data must map to AMR-HEADING).

■ If using the AMR-KEY field, note that this field appears as a single byte (the AID
byte) in the .hw ADSO--APPLICATION--MENU--RECORD. The AMR-KEY field is
associated with a code table (ADSOAIDM) that translates the AID byte to more

easily readable characters (for example, 1 translates to PF1, percentage translates
to PA1).

For more information on using online mapping facil ity to regenerate a map, refer to CA
IDMS Mapping Facility Guide.

Design a Menu/Dialog

The user has the option of designing and generating an entirely new menu with the
online mapping facil ity. This map must be defined as a menu/dialog function of the
application.

To design a menu/dialog function

1. Design and generate the map using the online mapping facil ity. Observe the
following rules when generating the map:

■ ADSO-APPLICATION-MENU-RECORD must be one of the records associated
with the map.

■ The AMR-RESPONSE field is required for all menus. The number of required
occurrences depends on the number of responses per page (to a maximum of

50) specified on the ADSA Menu Specification screen. The first response name
on the map must map to the first occurrence of AMR-RESPONSE; each
subsequent occurrence must map to the next corresponding occurrence of

AMR-RESPONSE.

■ The AMR-USER-ID and AMR-PASSWORD fields are required for signon maps.
The user id data field must map to AMR-USER-ID, and the password data field
must map to AMR-PASSWORD.

■ All other fields on the .hw ADSO--APPLICATION--MENU--RECORD are optional.
The map data fields used must be associated with the appropriate fi elds on the
record (for example, heading data must map to AMR-HEADING).

2. Add the process source to the dictionary in an IDD session. (The dialog associated
with the menu does not have to include any process code, although the choice of a

menu/dialog function suggests that some processing is intended.)

Designing Dialog Maps

56 Application Design Guide

3. Compile the dialog in an ADSC session, associating the map and any processes with
the dialog using the ADSC Dialog Definition screen. Note that the dialog must be

compiled to include the map before the application can be executed at run time.

4. Define the dialog as a menu/dialog function for the application.

An installation can develop standard map templates and the associated boilerplate code

for site-specific menu/dialogs. When a menu is needed, programmers can obtain a copy
of the template/boilerplate, fi l l in the appropriate fields and the edit/code tables
needed for those fields, and submit it to the data adminis trator for approval.

Designing Dialog Maps

Design Dialog Questions

Each dialog map is associated with its own dialog and must be designed to reflect the
function of the associated dialog. The application specifications developed during the
initial design stages can be used to answer design questions such as the following:

■ How many of the dialogs specified for this application will require maps?

■ What premap and response processes are required for each map?

■ What job is performed by each process?

■ Will the map be used to pass data between processes and/or between dialogs?
What data will be passed?

■ What database and mapping work records are associated with the map?

■ What editing criteria should apply to the map fields?

Standardizing Formats

Just as site-specific standards can be established for menu/dialogs, an installation can
use map templates to standardize the formatting of maps associated with dialog
functions. Programmers can obtain a copy of the template; fi l l in the appropriate fields,

indicating the corresponding map record fields; and submit this information to the data
administrator. The data administrator can then add the necessary map design, map
records, and edit/code tables (if any) to the dictionary.

The following figure il lustrates a sample map template that can be provided for

programmers. This template designates standard areas for headers, footers, message
codes and descriptions, response areas, and the passing data field. The installation using
this template has written a routine that divides the message area into four 40-character

messages.

Designing Dialog Maps

Chapter 4: Designing Maps 57

Sample Template for an Application Screen

Column___1____1____2____2____3____3____4____4____5____5____6____6____7____7____8

 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0

<dialog> <.n a m e .. o f .. a p p l i c a t i o n.> < date > ™

<functn> <.. function description ..> USER: <userid> <md> MODE

NEXT RESPONSE: <respns> NEXT KEY: <..... p a s s e d ... d a t a >

<.......m e s s a g e a r e a.........><... may contain up to four.........>

<.......................................><....40 character messages..........>

Chapter 5: Designing Dialogs 59

Chapter 5: Designing Dialogs

This section contains the following topics:

Overview (see page 59)
Design Considerations (see page 62)
Dialogs That Issue Navigational DML (see page 73)

Overview

What is a dialog?

A dialog is a unit of work within an CA ADS application that enables interaction with the

user. Because dialogs are the basic building blocks of an CA ADS application, it is
important that they be well -designed. This chapter discusses characteristics and design
features of dialogs that merit the attention of application developers.

Dialog Characteristics

The characteristics of a dialog determine its role within the application; each dialog ha s
an implicit level and status, and can pass and receive control of the processing. The
significance of the dialog level and status and the manner in which control is passed are
discussed the following sections.

Dialog Level

Developer's Role

The level of a dialog refers to its position within the application structure. The

application developer can pass processing control to a dialog at the next lower level, the
same level, the next higher level, or the top level of the application structure.

Note: The meaning of TOP changes whenever a LINK command is executed. The dialog

issuing LINK becomes the current TOP.

Overview

60 Application Design Guide

Aspects Influenced

At runtime, the dialog level affects the following aspects of an application:

■ Availability of data — When combined with the manner in which processing
control is received, the level of a dialog governs the data passed in the record buffer

blocks and the currencies that are established, saved, stored, or released.

■ Use of system resources — The runtime system maintains record buffer blocks,
database currency blocks, and variable dialog blocks for dialogs at each level. There
is a direct correlation between the number of dialog levels in an application and the

size of the storage pool that is needed.

■ Performance — The number of dialog levels can affect the performance of an
application. For example, performance times are affected if a frequently accessed

dialog is located three or four levels down in an application structure.

An application can be composed of any number of dialog levels, but the most effici ent

application uses many levels only when absolutely necessary.

The top-level dialog must be a mainline dialog and must be defined as such by the
application developer. A mainline dialog is the entry point to the application. An
application can have more than one mainline dialog; entry points can also be
established at a lower level in the application structure. In addition to defining a task

code for the top-level dialog, the developer can identify an alternative entry point by
using the Task Definition screen to associate a task code with a lower-level function.

Dialog Status

Dialog Types

A dialog can have an operative or a nonoperative status within the application thread. A
dialog becomes operative when it receives control and begins executing; at a given

level, only one dialog can be operative at a time.

When control passes to a dialog at another level, the issuing dialog can remain operative
or can become nonoperative, depending upon the level of the next dialog. For example,
when control is passed with the LINK command, the issuing dialog remains operati ve;
when control is passed with the TRANSFER command, the issuing dialog becomes

nonoperative.

As long as a dialog is operative, all data that it has acquired is retained. When a dialog
becomes nonoperative, its data is released. See the table, later in this chapter, that
summarizes the way in which a dialog's status is affected by the successful execution of
a control command.

Overview

Chapter 5: Designing Dialogs 61

Sequence of Dialog Execution

Within the application structure, only one di alog executes at a time. The sequence of
dialog execution within an application structure is called the application thread. The
response of the user determines the dialogs that constitute a given application thread. A

figure later in this chapter shows an application structure and one application thread.

One dialog can exist in several places within the application structure and be part of the

same or different application threads. A dialog can execute more than once within the
application thread whether or not it remains operative.

In the next figure, the boxes with dotted lines represent an application thread that
includes dialog A, dialog C, and dialog D.

Dialog Control

Passing control to another dialog

A dialog passes control to another dialog based on the execution of a control command
and/or the user's selection of processing. The dialog that receives control can be a

different dialog, a copy of the executing dialog, or all or part of the executing dialog
itself.

Design Considerations

62 Application Design Guide

The application developer can use specific control commands to perform the following
operations:

1. Pass processing control from one dialog to another dialog or to a user program.

2. Display a dialog's map.

3. Terminate an existing dialog or application.

4. Exit CA ADS.

5. Pass processing control to specified points within a dialog and reinitialize the record
buffers associated with a dialog.

Most of the control commands used are available to all applications. When designing
dialogs that will become part of an application that is compiled in an ADSA session, the

developer can also use the EXECUTE NEXT FUNCTION command.

For a discussion of the commands that direct the flow of control within an application,

see Application Concepts. This appendix also contains a diagram and discussion of how
the runtime system determines the order in which the functions of an application are
executed.

Design Considerations

The application developer needs to keep the following CA IDMS/DB, DC/UCF, and CA
ADS system features in mind when designing the dialogs:

■ Record buffer management

■ Working storage areas

■ Global records

Record Buffer Management

What Affects Record Buffer Management

At the beginning of each application thread, the CA ADS runtime system allocates a
primary Record Buffer Block (RBB) and initializes a buffer in the RBB for each record
associated with the top-level dialog. All lower-level dialogs can access records in any of

the existing buffers, unless one of the following conditions is true:

■ The dialog that receives control accesses a record that has been assigned the NEW
COPY attribute during dialog generation.

■ The dialog that receives control accesses a record not used by a higher -level dialog.

■ The dialog that receives control issues navigational DML statements to access a
record that uses a subschema not used by a higher-level dialog.

Design Considerations

Chapter 5: Designing Dialogs 63

If one or more of these conditions exist, CA ADS allocates and initializes an additional
buffer for the record.

Additional buffers are also allocated and initialized when one of the following situations

exists:

■ The record is assigned the WORK RECORD attribute during dialog generation.

■ The record is associated with the map used by the dialog.

■ The record is named explicitly in a database command.

Record Buffer Allocation

The following example il lustrates the sequence in which CA ADS initializes record buffers
as a series of dialogs receives control.

Design Considerations

64 Application Design Guide

When dialog A begins executing, CA ADS allocates buffers for the EMPLOYEE and SKILL
record types. Dialog B uses the previously allocated EMPLOYEE record buffer, but

requires a new buffer for the OFFICE record. Dialog C requests and receives a new copy
of the EMPLOYEE record buffer, but uses the previous ly allocated SKILL record buffer.
Dialog D requires new buffers for both the DEPARTMENT and JOB records. CA ADS

allocates a secondary RBB to accommodate the DEPARTMENT record, but uses the
remaining space in the primary RBB for the JOB record.

Design Considerations

Chapter 5: Designing Dialogs 65

NEW COPY Records

Records or tables can be assigned the NEW COPY attribute during the definition of a
dialog. The NEW COPY designation signifies that the record in question is to receive
newly initialized record buffers when the dialog is executed.

The NEW COPY attribute is used when the programmer wants to obtain another
occurrence of a record type without overwriting the data that is in the current buffer. To

have the use of a second, temporary buffer for the same record type, the programmer
links to a lower-level dialog that has specified NEW COPY for that record. An occurrence
of the record type is brought into the new buffer and processed as dir ected. When

control returns to the call ing dialog, the record buffer at the upper level contains the
same data as before; the data in the lower-level record buffer is no longer available.

Dialogs at a level lower than the dialog with a NEW COPY record will not use the NEW
COPY buffer, but will use the first buffer allocated for the record.

Working Storage Areas

Queue and Scratch Areas

The DC/UCF system queue and scratch areas can be used by the CA ADS dialogs as

working storage areas. The methods by which dialogs can store and use records in the
queue and scratch areas are presented below.

Queue Records

Queue records can be used as work records that are shared by tasks on all DC/UCF
system terminals. Entries are directed to a queue with database commands embedded
in the dialogs or batch programs. Queues can transfer data across the entire DC/UCF
system and are maintained across system shutdowns and crashes. Currencies and locks

are not passed between tasks.

Note: When used in a sysplex environment, the queue area may be shared between
multiple DC/UCF systems. For more information on shared queues, please see the CA
IDMS System Operations Guide manual.

Queue records have the following characteristics:

■ A queue header record is allocated either at system generation or by an application

dialog.

■ Queue records participate in a set in the dictionary; this set is commonly referred to
as a queue.

■ Queue records are locked by each task; no other task can use them until the locks

are released.

Design Considerations

66 Application Design Guide

Queues created at system generation with the system QUEUE statement can be
accessed by an CA ADS application. Additionally, an application can create its own

queues by requesting storage space with a GET QUEUE statement in the dialog process
code.

An application can use queue records to accomplish the following functions:

■ Automatically initiate a task — The DC/UCF system initiates a task that process es
the queue entries when the number of entries in a queue reaches a specified limit

or when a specified time interval has passed. For example, an application can write
records to a queue and the system will route the records to a printer when the
collected records exceed the specified limit.

■ Avoid prime time updating — Records that need to be updated can be collected on
a queue; the queue can be accessed by a batch program at a low-use time.

■ Prevent run-away tasks — A maximum limit can be established for the number of
entries permitted in a queue. The UPPER LIMIT parameter of the QUEUE statement

is especially useful in a test environment to prevent a looping program from fil l ing
the scratch/queue area.

Scratch Records

Scratch records are shared between tasks and saved across the transactions of an CA

ADS application. Used as a temporary storage area, scratch records provide a means of
passing data between tasks running on the same terminal; they are not accessible to
tasks that execute on other terminals and are not saved across a system shutdown or a

system crash.

The following characteristics are associated with scratch records:

■ Scratch records are stored in the dictionary.

■ Multiple scratch areas are allowed for a task and multiple records can be
maintained within a scratch area.

■ Currency is maintained for each area and record, and can be passed between tasks.

■ The scratch area is allocated dynamically within the storage pool. When all scratch
records are deleted, the area will also be deleted.

Design Considerations

Chapter 5: Designing Dialogs 67

Scratch records can be used in the following ways within an application:

■ To save input acquired from two or more dialogs over the course of the application.

■ To allow multiple occurrences of a record to be mapped out at one time. For
example, if the names, addresses, and phone numbers of all department employees
need to be mapped onto the same screen in multiples of five, the following steps

could be taken:

1. Walk the set of employee records, moving the required data to a work record
that contains multiply-occurring fields.

2. When the work record contains the data on five employees, move the contents

of the work record to the scratch area with a PUT SCRATCH command so that,
in effect, a screenful of data on five employees is put on each record in the
scratch fi le.

3. Walk the set of scratch records when the screens of information are to be

displayed.

■ To pass the contents of the record buffer when a dialog receives control with a
TRANSFER command. Data acquired by the dialog issuing a TRANSFER command is

not available to the dialog receiving control. However, the dialog receiving control
could access buffer data that had been placed in a scratch record.

Global Records

Global records are records that are available to all dialogs, maps, and user programs in

an application. Subschema records cannot be defined as global records.

The ADSO-APPLICATION-GLOBAL-RECORD is the system-defined global record that
enables communication between the application and the runtime system. To be
accessed by a dialog, the ADSO-APPLICATION-GLOBAL-RECORD must either be specified

as a dialog work record or be associated with the dialog's map. This record is initialized
when an application is first loaded by the runtime system.

All fields in the .hw ADSO--APPLICATION--GLOBAl--RECORD are addressable by dialogs

or user programs.

Design Considerations

68 Application Design Guide

Selected Fields

Selected fields from the .hw ADSO--APPLICATION--GLOBAl--RECORD are l isted below.

■ The AGR-NEXT-FUNCTION field contains the name of the next function that is to be
executed. When the dialog associated with the current function ends with an

EXECUTE NEXT FUNCTION command, the function named in the
AGR-NEXT-FUNCTION field is executed by the runtime system. A dialog or user
program can query this field to check what the next function will be. Modification
of the AGR-NEXT-FUNCTION field, however, does not change the next function to

be executed; a change in the next function can only be accomplished by
modification of the AGR-CURRENT-RESPONSE field (see below).

■ The AGR-DEFAULT-RESPONSE field contains the default response value specified on

the Function Definition screen when an application is generated. When a value is
specified and the screen includes a data field for a default response, the user can
type in a new value or can space out the value that appears.

■ The AGR-CURRENT-RESPONSE field contains the response specified by the user. The
process code of a dialog or user program can also move values into this field,

overwriting the user response. Note that, if .hw AGR--CURRENT--RESPONSE is
modified by a dialog, security is not checked for the response moving into the field,
even if security is associated with this response.

■ When EXECUTE NEXT FUNCTION is encountered within process code, the response
named in the AGR-CURRENT-RESPONSE field is executed if it is a valid response for

the current function. The AGR-CURRENT-RESPONSE field determines the next
function in the application thread (that is, it determines the value moved into the
AGR-NEXT-FUNCTION field).

■ The value in AGR-CURRENT-RESPONSE depends upon whether the
AGR-DEFAULT-RESPONSE field contains a value; whether the user enters a new

value in the response field; or whether there is a response value associated with the
control key (other than ENTER) pressed by the user.

■ The following flowchart i l lustrates how the CA ADS runtime system places a value in
the AGR-CURRENT-RESPONSE field of the .hw

ADSO--APPLICATION--GLOBAL--RECORD. The runtime system executes the response
named in the AGR-CURRENT-RESPONSE field after determining that it is a valid
response for the current function.

Design Considerations

Chapter 5: Designing Dialogs 69

Design Considerations

70 Application Design Guide

■ The AGR-EXIT-DIALOG field initially contains the name of the exit dialog specified on
the Application Definition screen. This field can be used to l ink to a special routine.

■ For example, one department of a company might want the employee name
specified as John Doe, while another department wants the name specified as Doe,
John. The same dialog could be used for both departments by l inking to an exit

dialog (that is, LINK TO AGR-EXIT-DIALOG) containing a name routine.

■ The AGR-PRINT-DESTINATION field initially contains the default name of the printer
for the application as specified on the ADSA Application Defini tion screen. Dialogs
and user programs can use this print destination with the WRITE PRINTER

DESTINATION command.

■ The AGR-USER-ID field can be queried by dialogs and user programs.

■ The AGR-PRINT-CLASS field initially contains the default printer class for the
application as specified on the ADSA Application Definition screen. The dialog can

reference this field with the WRITE PRINTER CLASS command.

■ The AGR-SIGNON-SWITCH field can be queried to determine if there has been a
valid signon.

■ The AGR-SIGNON-REQMTS field indicates whether signon is optional, required, or
not used for the signon menu, as specified on the Security screen. This field can be
referenced for additional security checking.

■ The AGR-MAP-RESPONSE field can be used as a response field, in place of the

$RESPONSE field, in any user-defined nonmenu map. The dialog can initialize this
response field before mapout so that the desired default response appears on the
map. For input purposes, the AGR-MAP-RESPONSE field works in the same manner

as the $RESPONSE field.

■ For further information on the $RESPONSE field, refer to CA IDMS Mapping Facility
Guide

■ The AGR-MODE field initially contains the value STEP or FAST as specified on the

Application Definition screen. Typically, the design of a dialog map includes a field
that displays the value of AGR-MODE. The user can change this field at any time.

AGR-MODE Field Examples

In the following text, two examples of how the AGR-MODE field can be used are

presented, with the EXECUTE NEXT FUNCTION command, to implement a STEP/FAST
mode for an ADSA application. The logic in the first example assumes that all data field
validation is handled by the automatic editing specifications in the dialog's map. The

logic in the second example assumes that additional data validation is required in the
response process code. In both cases, any data entered by the user is always processed.
Note that the first pass flag field has no significance in FAST mode.

Design Considerations

Chapter 5: Designing Dialogs 71

Using the AGR-MODE-field (example 1)

IF ANY OF (EMPLOYEE-NBR, SKILL-CODE, SKILL-LEVEL)

 ARE CHANGED

 DO.

 MOVE 'Y' TO FIRST-PASS-FLAG.

 MOVE EMPLOYEE-NBR TO WK-EMPNBR.

 MOVE SKILL-CODE TO WK-SKLCODE.

 MOVE SKILL-LEVEL TO WK-SKLEVEL.

 LINK TO 'CEMDUEMP'.

 END.

IF AGR-STEP-MODE

 DO.

 IF FIRST-PASS-FLAG='Y'

 DO.

 MOVE 'N' TO FIRST-PASS-FLAG.

 DISPLAY MSG TEXT IS 'EMPLOYEE UPDATED'.

 END.

 MOVE 'Y' TO FIRST-PASS-FLAG.

 END.

EXECUTE NEXT FUNCTION.

The preceding sample process code il lustrates the manner in which a dialog can query
the AGR-MODE field of the .hw ADSO--APPLICATION--GLOBAL--RECORD to determine
what course to follow. If the dialog is in STEP mode, the dialog redisplays the screen

with a confirmation message for the user; if in FAST mode, control is passed
immediately to the next function. The initial value of AGR-MODE is supplied by the
runtime system; the user can alter the value of AGR-MODE at any time during
application execution.

Design Considerations

72 Application Design Guide

Using the AGR-MODE field (example 2)

IF ANY OF (EMPLOYEE-NBR, SKILL-CODE, SKILL-LEVEL)

 ARE CHANGED

 DO.

 MOVE 'Y' TO FIRST-PASS-FLAG.

 IF EMPLOYEE-NBR GE 2000 AND SKILL-CODE='A'

 DO.

 MOVE 'Y' TO ERROR-FLAG.

 DISPLAY MSG TEXT IS

 'EMPLOYEE NUMBER/SKILL CODE MISMATCH'.

 END.

 MOVE 'N' TO ERROR-FLAG.

 MOVE EMPLOYEE-NBR TO WK-EMPNBR.

 MOVE SKILL-CODE TO WK-SKLCODE.

 MOVE SKILL-LEVEL TO WK-SKLEVEL.

 LINK TO 'CEMDUEMP'.

 CALL EMPDTE25.

 END.

IF ERROR-FLAG='Y'

 DISPLAY MSG TEXT IS

 'EMPLOYEE NUMBER/SKILL CODE MISMATCH'.

CALL EMPDTE25.

!**

DEFINE EMPDTE25.

!**

IF AGR-STEP-MODE

 DO.

 IF FIRST-PASS-FLAG='Y'

 DO.

 MOVE 'N' TO FIRST-PASS-FLAG.

 DISPLAY MSG TEXT IS 'EMPLOYEE UPDATED'.

 END.

 MOVE 'Y' TO FIRST-PASS-FLAG.

 END.

EXECUTE NEXT FUNCTION.

The sample code shown in the preceding figure il lustrates the use of the AGR-MODE
field when data validation needs to be handled by code in the response process. Note
that the EXECUTE NEXT FUNCTION command is never encountered while uncorrected

validation errors still exist.

Dialogs That Issue Navigational DML

Chapter 5: Designing Dialogs 73

Mapping to Screens

The following fields from the .hw ADSO--APPLICATION--GLOBAL--RECORD are often
mapped to screens associated with user-defined nonmenu maps:

■ AGR-DIALOG-NAME

■ AGR-APPLICATION-NAME

■ AGR-CURRENT-FUNCTION

■ AGR-FUNCTION-DESCRIPTION

■ AGR-DATE

■ AGR-USER-ID

■ AGR-MODE

■ AGR-PASSED-DATA

■ AGR-MAP-RESPONSE

For an il lustration of how these fields can be used on maps, refer to Chapter 4,
Designing Maps.

Dialogs That Issue Navigational DML

Additional design considerations apply to dialogs that issue navigational DML

commands. These considerations are as follows:

■ Database currencies

■ Extended run units

■ Longterm locks

■ Record buffer management for logical records

Database Currencies: How Currency is Maintained

In CA ADS, currency is maintained automatically for the user. To facil itate this feature, a

currency control block is created that maintains currency information. At run time, a
currency block is created for each dialog in the application structure that performs
database requests.

Database currencies are passed from one dialog to another dialog at a lower level,

enabling dialogs to continue database processing from an established position in the
database. Currencies are cumulative. The currencies established by each dialog are
passed to lower-level dialogs, which, in turn, establish their own currencies; the
cumulative currencies are passed to the next lower-level dialog.

Dialogs That Issue Navigational DML

74 Application Design Guide

Currencies are established, saved, restored, and released as follows:

1. Established — Currency is established with the dialog's first functional database

call. Established currencies are updated when database commands (for example,
FIND, OBTAIN, ERASE) are encountered during the run unit. Currency is nulled when
a dialog receives control with a RETURN or TRANSFER command.

2. Saved — When a LINK, DISPLAY, or INVOKE command is issued, the database
currencies established with the last database command in the dialog are saved.
Saved currencies are available to lower-level dialogs and are restored to the issuing
dialog if processing control returns.

3. Restored — Saved currencies are restored when CA ADS opens a run unit in the

dialog receiving control (that is, saved currencies are restored just prior to the first
database call).

4. Released — When a LEAVE, RETURN, or TRANSFER command is issued, all database
currencies at the same and lower levels are released. The dialog receiving control

must establish its own currencies or use the currencies passed to it from another
higher-level dialog.

The successful execution of control commands can affect the operative or nonoperative

status of a dialog, the dialog's acquired data that is retained or released, and the
currencies that are saved, restored, or released.

Dialogs That Issue Navigational DML

Chapter 5: Designing Dialogs 75

The Effects of Control Commands

The following table i l lustrates the ways in which the passing and receiving of control
affects the contents of the currency block.

Extended Run Units

Typically, an CA ADS run unit begins when the dialog issues a command accessing the
database (for example, OBTAIN) and ends when the runtime system encounters the

next control command issued by the dialog (that is, LINK, INVOKE, DISPLAY, TRANSFER,
LEAVE, or RETURN).

An extended run unit is a run unit that is kept open when the runtime system
encounters the LINK command under the following circumstances:

1. When the LINK is to the premap process of a dialog with no associated subschema

2. When the LINK is to the premap process of a dialog with an associated schema and
subschema identical to those of the call ing dialog

3. When the LINK is to a user program

Dialogs That Issue Navigational DML

76 Application Design Guide

Implications of the extended run unit are as follows:

1. Currencies are passed to the lower-level dialog and are restored upon return to the

upper-level dialog.

2. Currencies are not passed to user programs; currencies are saved and restored to
the upper-level dialog when control is returned.

3. The lower-level dialog can perform error checking to decide whether to issue a
ROLLBACK command.

4. Because a FINISH is not issued, record locks held by the upper-level dialog are not
released. A COMMIT can be coded in the upper-level dialog if the developer needs
to release locks before linking to the lower-level dialog.

5. If a COMMIT is issued prior to the LINK command and an abend occurs in the
lower-level dialog, the rollback will be incomplete; the rollback will only go to the

COMMIT checkpoint and not to the start of the run unit.

6. If a lower-level user program opens its own run unit, a deadlock can occur. The
possibility of a deadlock condition can be avoided by taking either of the following
actions:

a. Issue a COMMIT prior to the LINK.

b. Pass the subschema control block to the user program and let the program use
the same run unit. Issue no BINDs or FINISHes in the user program.

Longterm Locks

KEEP LONGTERM is a navigational DML command that sets or releases longterm record

locks. Longterm locks are shared or exclusive locks that are maintained across run units.
Once the longterm locks are set, all other run units are restricted from updating or
accessing the named records until the dialog explicitly releases the locks.

Example

The following example requests the release of all longterm locks associated with the
current task:

KEEP LONGTERM ALL RELEASE

The KEEP LONGTERM command can also be used to monitor the database activity
associated with a record, set, or area. When a dialog is updating records that could also
be updated by another user, the following code can be included in the premap process

of the named dialog:

KEEP LONGTERM longterm-id NOTIFY CURRENT record-name

Dialogs That Issue Navigational DML

Chapter 5: Designing Dialogs 77

This command instructs the CA ADS runtime system to monitor the database activity
associated with the current occurrence of the named record type.

The following code is included in the response process of the same dialog:

KEEP LONGTERM longterm-id

TEST RETURN NOTIFICATION INTO return-location-v

This command requests notification of any database activity against records that were
specified in the KEEP LONGTERM premap process. If appropriate, the dialog can check

the return value placed in the specified work record field.

Record Buffer Management for Logical Records

When an application thread contains dialogs that use a combination of database records
and logical records, special considerations apply with respect to record buffer

management. For each database record component of a logical record, CA ADS
initializes individual, contiguous record buffers. The logical record components are
placed in the buffer in the order named in the logical record definition.

For example, consider the EMP-JOB-LR logical record, which consists of four database
records: EMPLOYEE, DEPARTMENT, JOB, and OFFICE records. If dialog B accesses

EMP-JOB-LR, CA ADS initializes new record buffers for each of the four records l isted
above (in that order) regardless of whether buffers for one or more of the records were
initialized when dialog A, a higher-level dialog, began executing. Therefore, dialog B (and
lower-level dialogs accessing the same logical record) does not have access to data

established in the record buffer by dialog A. However, dialogs at levels lower than dialog
B will use the buffers established by dialog A if those dial ogs use the same database
records as dialog A.

When using both database records and logical records, the first dialog of the application
thread should include an INITIALIZE command for the logical record. This action

associates the logical record with the top-level dialog and ensures that the buffer for the
entire logical record is allocated and available to all lower-level dialogs. Lower-level
dialogs use the component record buffers established at the highest level unless the

logical record itself is referenced.

Chapter 6: Naming Conventions 79

Chapter 6: Naming Conventions

This section contains the following topics:

Overview (see page 79)
Naming Application Entities (see page 79)
Naming Database Information Entities (see page 81)

Overview

The establishment of naming conventions reduces the accumulation of redundant data
and improves the overall design of an application. Naming convention standards apply
to the components of an application as well as to the database entities accessed by the

application. Naming conventions for application entities and database information
entities are each discussed separately below.

Naming Application Entities

Naming conventions make it easier to keep track of application components as they are
created and maintained. While mnemonic names can work well for less complex

applications, mnemonics are inadequate when handling the large volume of complex
applications that typically exist at most sites. Adhering to a naming convention eases the
construction of component names, eases the reconstruction of component names if one

is forgotten, and eases the use and maintenance of an application.

Sample Naming Conventions

The table below lists the naming convention standards used for the sample application
in this manual.

Position Value Meaning

1 C CA product

2-3 Type of application:

 EM Employee information

 IS Information system

 FS Financial system

 MS Manufacturing system

Naming Application Entities

80 Application Design Guide

Position Value Meaning

 SY System activities

4 Component type:

 D Dialog

 F Function

 M Map

 P User-defined program

 R Report

 S Subschema

 T Table

 U Menu

5 Component functions:

 A Add operation

 C Encode/decode (column 4 indicates table)

 D Delete operation

 E Edit operation (column 4 indicates tables)

 I Inquiry operation

 M Modify operation

 U Update operation

6-8 Component designator

 xxx Three characters used as unique

 identifiers

Naming Database Information Entities

Chapter 6: Naming Conventions 81

Assigning Names

Names in an application can be assigned in the following manner:

■ Dialogs, maps, tables, programs, and reports can use the conventions in the
previous table, as follows:

Dialog: CEMDILIS

Map: CEMMILIS

Code table: CEMTCLIS

Edit table: CEMTELIS

Menu: CEMUILIS

User program: CEMPILIS

Report: CEMRILIS

■ Dialog premap and response process names can be the concatenation of the dialog
name and the suffix -PREMAP or -RESPONSE, as in the following examples:

CEMDILIS-PREMAP

CEMDILIS-RESPONSE

If there are multiple response processes, the suffixes can be structured to reflect
the function of each response process, as follows:

CEMDILIS-ADDRESP

CEMDILIS-DELRESP

■ Names for subroutines included in the premap and response processes can be
made up of a meaningful name of up to six characters with a 2-digit suffix, as
follows:

PASSDT05

MESSGE97

DBERR99

The numeric suffixes can be assigned and incremented as the subroutines appear in the
dialog. This numbering convention makes it easier to locate a subroutine in the dialog
l isting. For example, MESSGE97 is located near the end of the listing while PASSDT0 5 is

located near the beginning.

Naming Database Information Entities

The creation of a glossary can be an effective means of establishing naming conventions
for database information. The glossary can be stored in the dictionary where it is readily
available as a reference tool. Tools such as the glossary also aid in the development of

consistent site-specific application coding standards.

Naming Database Information Entities

82 Application Design Guide

Sample Glossary of Naming Tokens

The following sample i l lustrates sample entries from one type of glossary. The following
example shows one way in which a glossary can be defined; each design team must
determine the naming conventions that best suit its needs. Note that the word WORD in

this example is a user-defined entity defined to the dictionary, as follows:

ADD CLASS NAME IS WORD

CLASS TYPE IS ENTITY.

ADD WORD ABEND ABBREVIATED NEVER

ADD WORD ABSOLUTE ABBREVIATED NEVER

ADD WORD ACCEPT ABBREVIATED NEVER

ADD WORD ACCOUNT ABBREVIATED SOMETIMES ABBR ACCT

ADD WORD ACCRUAL ABBREVIATED NEVER

ADD WORD ACCUMULATE ABBREVIATED SOMETIMES ABBR ACCUM

ADD WORD ACKNOWLEDGE ABBREVIATED SOMETIMES ABBR ACK

ADD WORD ADMINISTRATION ABBREVIATED ALWAYS ABBR ADMIN

ADD WORD ADDRESS ABBREVIATED ALWAYS ABBR ADDR

 .

 .

 .

 .

 .

 .

ADD WORD YIELD ABBREVIATED SOMETIMES ABBR YLD

ADD WORD YTD ACRONYM 'YEAR TO DATE'

ADD WORD YY ABBREVIATED NEVER

ADD WORD ZERO ABBREVIATED NEVER

ADD WORD ZONE ABBREVIATED NEVER

The sample entries from this glossary show one way in which naming conventions can

be implemented within an installation. In this glossary, the application designers have
determined that certain words are always to be abbreviated and others are never to be
abbreviated; the majority of words are to be spelled out completely whenever possible.

When stored on the dictionary, the glossary is readily available as a reference guide for
programmers and developers.

Naming Database Information Entities

Chapter 6: Naming Conventions 83

Available Naming Conventions

■ Database elements can be established using approved names from the glossary and
can be further defined with synonyms. Element names should have a maximum of
25 characters. The following example lists an element and three synonyms:

EMPLOYEE-CODE

DB-REC-EMPLOYEE-CODE

MAP-EMPLOYEE-CODE

WORK-EMPLOYEE-CODE

■ Database Records can be composed of approved, usable names (for example,
EMPLOYEE). Records can be given greater flexibil ity with the addition of suffixes.
The following example lists employee records with identifying suffixes:

EMPLOYEE-0600

EMPLOYEE-2500

EMPLOYEE-6359

SQL: Hyphens are not valid in SQL identifiers referenced in statement syntax.

Therefore, SQL entities may not be named using hyphens but may be named using
underscores. Hyphens are valid in host variables referenced in SQL sta tement
syntax.

For more information, refer to CA IDMS SQL Programming Guide.

In CA ADS process source, as well as in COBOL, CA Culprit, and map source, the
elements can be referenced by the element name plus the suffix, as follows:

EMPLOYEE-CODE-6359

■ Map work records are composed of the map name followed by the suffix
-MAP-RECORD, as in the following example:

CEMMILIS-MAP-RECORD

Elements in the map record util ize the prefix MAP- and the element name, as

follows:

MAP-OFFICE-CODE

If the map needs more than one work record, a number is added to the word MAP,
as follows:

CEMMILIS-MAP2-RECORD (the second map record)

MAP2-OFFICE CODE (a record element from the second record)

Naming Database Information Entities

84 Application Design Guide

■ Dialog work records are composed of the dialog name followed by the suffix
-WORK-RECORD as in the following example:

CEMDULIS-WORK-RECORD

Elements in the dialog work record util ize the prefix WORK- and the element name,
as follows:

WORK-OFFICE-CODE

If the dialog needs more than one work record, a number is added to the word

WORK, as follows:

CEMDILIS-WORK2-RECORD (the second dialog work record)

WORK2-OFFICE CODE (a record element from the second record)

■ Set names are established by concatenating an abbreviation of the owner record (a
seven-character maximum) with that of the member record (a six-character
maximum), as follows:

EMPL-SKILL

Chapter 7: Performance Considerations 85

Chapter 7: Performance Considerations

This section contains the following topics:

Overview (see page 85)
System Generation Parameters (see page 85)
Resource Management (see page 89)

Overview

The performance of the CA ADS runtime system is dependent upon a number of factors,
such as the size of the DC/UCF system, the number of applications being run
concurrently, and the number of users for a given application. Rather than attempting

to give definitive instructions for the improvement of performance, this chapter
discusses the following aspects of the CA ADS runtime system:

■ Parameters affecting performance

■ Resource management

Each of these considerations is discussed separately below.

System Generation Parameters

The CA ADS runtime system is generated by submitting ADSO, PROGRAM, and TASK
statements to the CA IDMS system generation compiler. Optionally, the KEYS statement

is used to define site-specific control key functions.

For detailed syntax and examples of system generation statements, refer to CA IDMS
System Generation Guide.

ADSO Statement Parameters

The ADSO statement includes parameters that define the CA ADS runtime environment,
as follows:

■ The task code (ADS) that initiates the CA ADS runtime system

■ The mainline dialog that can begin executing immediately

■ The maximum number of dialog levels that can be established by each application

■ The disposition of record buffers during a pseudo converse

■ The size of the primary and secondary record buffers

System Generation Parameters

86 Application Design Guide

■ The AUTOSTATUS facil ity that handles errors generated by navigational DML, queue
record, and scratch record processing

■ The Status Definition Record that associates status codes returned by non-SQL data
processing

PROGRAM Statement Parameters

The PROGRAM statement defines the following CA ADS components as DC/UCF system

programs:

■ The ADSORUN1, ADSORUN2, and ADSOMAIN runtime system programs

■ The system maps (the menu map, runtime message map, and maps for each of the

application and dialog compiler screens)

■ The application and dialog compiler programs (ADSA and ADSC)

■ CA ADS dialogs (an optional parameter if null Program Definition Elements (PDEs)
are defined in the SYSTEM statement)

TASK Statement Parameters

The TASK statement defines the following task codes:

■ ADS and ADS2 to initiate the runtime system

■ ADSA to initiate the CA ADS Application Compiler

■ ADSC to initiate the CA ADS Dialog Compiler

■ ADSR to initiate the runtime system when returning from a linked user program

Allocating Primary and Secondary Storage Pools

How Storage is Managed

The runtime system allocates and initializes record buffers for use by executing dialogs.

When an application is initiated, CA ADS allocates a Record Buffer Block (RBB) from the
DC/UCF system's storage pool to hold the records identified in the dialog definitions and
accessed by the dialogs in the application thread. The RBB must be large enough to
accommodate the largest of these records.

There is one primary RBB for each application. CA ADS allocates a secondary RBB when

the RBB becomes full during execution of the application or does not have enough
remaining space to hold a record.

System Generation Parameters

Chapter 7: Performance Considerations 87

Additional secondary RBBs can be allocated by the CA ADS runtime system as necessary.
The data communications administrator (DCA) specifies the size of the primary and

secondary RBBs with the PRIMARY POOL and SECONDARY POOL parameters of the
ADSO statement. When allocating the primary and secondary storage pools, the DCA
needs to consider the size and number of the records used by the application as well as

the header records maintained by the buffers.

Layout of the Record Buffer Block

The following figure diagrams the structure of the Record Buffer Block allocated for a
combination of subschema records and logical records:

System Generation Parameters

88 Application Design Guide

Size Considerations

Each record buffer contains a 24-byte header to keep track of available space. For each
record in the pool, CA ADS maintains a record header (RBE) that requires at least 44
bytes of storage. Each buffer must be large enough to accommodate the largest record

used by a dialog in the application.

Setting the Fast Mode Threshold

Record Buffers

The fast mode threshold is used by the CA ADS runtime system to determine whether
record buffers are written to disk or kept in main storage across a pseudo converse. If
the total size of all record buffers, in bytes, exceeds the fast mode threshold, the r ecord
buffers are written to disk; otherwise, the record buffers are kept in the storage pool.

The size of the threshold is a site-specific determination that is based on the availability

of general resources versus the amount of available storage. I/Os for DC/UCF system
journaling and CPU cycles for record locking are used when record buffers are written to
the scratch/queue areas. Therefore, when buffers exceed the fast mode threshold, the
increased use of resources will slow down the transaction response time. On the other

hand, if buffers are always under the threshold (that is, if the fast mode threshold is
high), more memory is required.

Specifying the Number of Internal and External Run Units

The MAXIMUM TASKS and MAXIMUM ERUS parameters specify the maximum number

of user tasks and external request units that can be active concurrently. The size of
these parameters can affect the amount of time spent by the DC/UCF system in
searching the queues for tasks that are waiting to be executed.

Resource Management

Chapter 7: Performance Considerations 89

The numbers that should be specified are a site-specific determination and are
dependent upon factors such as the number of tasks processed each hour in a particular

environment. When setting the MAXIMUM TASKS and MAXIMUM ERUS parameters on
the SYSTEM statement, the following statistics should be considered:

■ Increasing the MAXIMUM TASKS or MAXIMUM ERUS parameters by one (1) causes

virtual storage requirements to increase as shown below:

Resource Size of resource Total
TCE 736 bytes 736 bytes
STACKSIZE 320 words 1,280 bytes

DCE 64 bytes 64 bytes
ECB * 3 8 bytes 24 bytes
DPE * 20 16 bytes 320 bytes
RCE * 15 24 bytes 360 bytes

RLE * 25 12 bytes 300 bytes

 Total increase per task: 3,084 bytes

Note: A value larger than the default (420) should be specified for the STACKSIZE
when using CA ADS. If the STACKSIZE is at 420 and two tasks exceed stacksize and
go into abend storage at the same time, the system will abort with an abend code
of 3995.

■ The following DC/UCF system parameters should be increased as specified for every
increment of one (1) in the size of MAXIMUM TASKS or MAXIMUM ERUS:

Parameter Amount increased

ECB LIST 3

DPE COUNT 20

RCE COUNT 15

RLE COUNT 25

Resource Management

In designing applications, consideration must be given to the efficient management of
system resources. The management of resources such as the database, the storage
pool, and the program pool storage affects the performance of online applications

because many users may require access to these resources simultaneously.

Resource Management

90 Application Design Guide

Application Resource Use

The following figures i l lustrate the resources used by an application while a task is active
and after the task has terminated.

Resource Management

Chapter 7: Performance Considerations 91

Monitoring Resource Consumption

The remainder of this chapter discusses methods that can be used to monitor the
resource consumption of an application and ways in which to use available resources
efficiently.

Tools

As with any task running under the DC/UCF system, the major resources to be
monitored in an CA ADS environment are as follows:

■ Task processing support

■ Variable storage pool

■ Program pool storage

■ Database locks

■ I/Os (disk and terminal data transmission)

■ CPU cycles

Each of these resources can be monitored with dictionary reports and DC/UCF system
master terminal functions, as discussed below.

Task Processing Support

The next figure shows the resources in use while a task is active and those in use after
the task terminates. The following DC/UCF system master terminal functions display the
internal resources used to support task processing:

■ DCMT DISPLAY ACTIVE TASK displays global statistics on active tasks and

information on each active task thread.

■ DCMT DISPLAY STATISTICS SYSTEM displays information about the system including
the peak task control element (TCE) stack; and the maximum number of resource

link elements (RLEs), resource control elements (RCEs), and deadlock prevention
elements (DPEs) used by the tasks.

Resource Management

92 Application Design Guide

Task Resource Structure

Resource Management

Chapter 7: Performance Considerations 93

Variable Storage Pool

The following sysgen reports (CREPORTS) and DCMT functions can be used to monitor
the use of the storage pool:

■ CREPORT 25 verifies the size of the storage pool and indicates whether storage

protection has been enabled for the system.

■ DCMT DISPLAY ACTIVE STORAGE shows the current fragmentation of the storage
pool.

■ DCMT DISPLAY LTERM indicates which terminals are active and own resources.

■ DCMT DISPLAY LTERM logical-terminal-id RESOURCES displays the specific
resources (and the addresses of those resources) owned by the named terminal.

■ DCMT DISPLAY MEMORY can be used to display an actual resource as it appears in
memory.

■ CREPORT 40 supplies the current parameters specified in the ADSO statement, as it
this example:

REPORT NO. 40 CA-IDMS/DC ADS REPORT

 LISTING OF CA-ADS PARAMETERS

 OBJECT REPORT

SYSTEM PRIMARY SECONDARY MAXIMUM FAST MODE PRIMARY
VERSION AUTODIALOG TASK CODE TASK CODE LINKS MENU IS THRESHOLD POOL

 90 ADS ADS2 10 USER 50000 40

 99 ADS ADS2 10 USER KEEP OFF 40

Information from the above displays and reports can be used to calculate the number of
users the system can currently support, assuming various storage pool si zes.

The CA IDMS System Generation Guide manual describes CREPORTS; the CA IDMS
System Operations Guide manual details the master terminal functions available to
monitor system resources.

Resource Management

94 Application Design Guide

Program Pool Storage

The following DCMT commands can be used to provide information on the program
pool:

■ DCMT DISPLAY ACTIVE PROGRAMS displays the following:

■ Statistics on program pool usage, including the total number of pages and total
number of bytes in the pool; the number of loads to the program pool; the
number of pages loaded; and the number of load conflicts

■ Information on currently active programs including the program name, type,

and version number; count of users currently using the programs; size of the
program in K bytes; the number of times the program was called; and the
number of times the program was loaded into the program pool

■ The program pool page allocation map that shows which pages are not in use;
which pages are in use by one program; and which pages are in used by more
than one program

■ DCMT DISPLAY ACTIVE REENTRANT PROGRAMS displays the above information for

the reentrant program pool and the active reentrant programs. If no reentrant pool
is defined, the standard program pool is shown.

Database Locks

The DCMT DISPLAY RUN UNIT and OPER WATCH DB RUN UNITS commands can be used

to show the number of database locks being requested for a particular run unit. The
number of database locks maintained by an CA IDMS system has considerable impact on
CPU usage. These locks are specified at sysgen time by the RULOCKS and SYSLOCKS

parameters of the SYSTEM statement.

For further information on database locks, refer to CA IDMS Database Design Guide

For further information on factors to consider when preparing the SYSTEM statement,
refer to CA IDMS System Operations Guide.

Disk I/O

The following reports can be used for monitoring disk I/O:

■ JREPORT 004 shows the average number of I/Os to disk for a given program.

■ DCMT DISPLAY RUN UNITS or OPER W DB RU shows if any run units are waiting for

a journal buffer (as indicated by a run unit status value of IUH). IUHs occur most
frequently when the fast mode threshold is set too low.

For information on JREPORTS (journal reports), refer to CA IDMS Reports Guide.

Resource Management

Chapter 7: Performance Considerations 95

Monitor Terminal I/O

Use the following procedure to monitor terminal I/O.

To monitor terminal I/Os

1. Run the mapping util ity (RHDCMPUT) for a report on a specific map. This report will

display a picture of the map and the attributes currently assigned to the map. The
report will also indicate whether BACKSCAN is enabled for any mapping fields. If
BACKSCAN is in effect and the NEWPAGE option on the ADSO statement has been
selected, extraneous data from the previous mapout may be left on the screen

when a map is redisplayed. It is advantageous to have NEWPAGE in effect, however,
because this option increases runtime efficiency by reducing the number of data
fields that need to be transmitted to the terminal.

2. Use DCMT VARY PTERM physical-terminal-id TRACE ALLIO to cause the data stream
being transmitted to the terminal to be written to the log as well.

3. Use SHOWMAP map-name with DCUF USERTRACE to cause the data stream of a
particular map to be traced.

4. Use DCMT VARY PTERM physical-terminal-id TRACE ALLIO OFF to turn off the trace,
suppressing any further transmission of data streams to the log.

5. Run the PRINT LOG util ity to show the actual trace.

Transmission times can be calculated by analyzing the length of the data stream.

CPU Usage

To monitor CPU cycles and obtain CPU usage by task, the system can be instructed to

collect task statistics. It is advisable not to request task statistics unless there is a
demonstrated need as they require considerable overhead and generate a large volume
of data. Task statistics are requested by specifying TASK STATISTICS WRITE or TASK
STATISTICS COLLECT on the SYSTEM statement. The statistics are written to the DC/UCF

system log.

For further information on collecting task statistics, refer to CA IDMS System Operations
Guide.

Resource Management

96 Application Design Guide

Conserving Resources

Storage Protection

Storage protection is enabled by specifying PROTECT in the SYSTEM statement at system

generation. The benefits of using storage protection are that CPU overhead is reduced
because there are shorter chains for the system to walk.

To avoid SVC overhead, it is advisable to enable storage protection (that is, specify
PROTECT) on the SYSTEM statement and to disable storage protection (that is, specify

NOPROTECT) on the PROGRAM statement.

Buffer Sizes in Multiples of 4084 Bytes

The 4084-byte limit represents a multiple of 4K (4096 bytes) less the 12 bytes for
pointer information and task id address, as i l lustrated below:

If a 4K page were selected, storage would have to be taken from two contiguous pages.
The benefits of placing a 4084-byte limit on the amount of storage acquired are as
follows:

Benefits of Storage Limit

The storage limit offers the following benefits:

■ Fragmentation of the storage pool is reduced when only one page is requested.

Space is allocated in contiguous frames for a particular request. It is easier for the
system to find one page rather than two contiguous pages.

■ Less CPU overhead is required because partial pages do not have to be calculated or
scanned.

Size of Subschemas

Subschemas for navigational DML access should be specified to the requirements of the
application. The size of the currency block is directly related to the storage requirements
of the variable subschema storage block (VB50) used at run time; the runtime system

maintains currency tables for every record, set, and area in a subschema, regardless of
whether they are accessed by the dialog. Therefore, it is worthwhile to make
subschemas as streamlined as possible.

Resource Management

Chapter 7: Performance Considerations 97

Number of Dialog Levels

The MAXIMUM LINKS parameter of the ADSO sysgen statement specifies the maximum
number of dialog levels that can be established by each respective CA ADS application;
keep this parameter low. A well designed application has as few levels as possible. The

number of levels should be limited because, for each level established in the application,
kept storage is acquired for the Variable Dialog Block (VDB) and the currency block.
Storage established at a particular level is not released until control is passed upward.

To l imit the number of levels established, use the TRANSFER command whenever

possible; build the application horizontally (that is, pass control laterally) rather than
vertically.

Size of the Application

The size of dialog premap and response processes, the number of data fields included in

a map, and the size of records affect the performance of the CA ADS runtime system.
The actual number of I/Os required to load a complete program is dependent upon the
size of a page in the DDLDCLOD area, the amount of overflow that will be encountered

to load that record, and the size of the actual program being loaded. Therefore, the
following benefits are realized by minimizing the size of programs:

■ A reduction in the work required to load a small program as compared to a large
program

■ A reduction in time spent loading a particular program in the program pool or
reentrant pool

■ A reduction in time spent waiting for space in the program pool or reentrant pool

Under the DC/UCF system, the term program includes dialogs, edit and code tables,
maps, subschemas, and online and batch programs.

Making Frequently Called Programs Resident

A frequently called program (such as ADSOMAIN) is virtually a resident in the program

pool or the reentrant pool. The program should be made resident because the operating
system can page more rapidly than the DC/UCF system can read in a page from the
DDLDCLOD area. By making the program resident, the operating system, rather than the
DC/UCF system, will be requested to bring the page in core. Additionally, the program

and resident pool will be less fragmented when a frequently used program is made
resident. A program can be specified as resident on the PROGRAM statement at system
generation.

Resource Management

98 Application Design Guide

Freeing the Resources of an Inactive Terminal

The resource timeout facil ity can be activated on the SYSTEM statement at system
generation, specifying the amount of time a terminal is permitted to be inactive (that is,
have no task executing) before all resources owned by the terminal are deleted and

control is returned to the system. Because longterm storage resources are associated
with a terminal even though a program is not active, freeing those resources will free
space for other users of the system. This is particularly important in navigational DML if
longterm locks are being implemented.

Appendix A: Application Concepts 99

Appendix A: Application Concepts

This section contains the following topics:

Overview (see page 99)
Application Components (see page 99)
Dialog Features (see page 103)

Control Commands (see page 106)
The Flow of Control (see page 108)

Overview

This chapter provides an overview of application terms and concepts within the CA ADS

environment. The following topics are discussed:

■ Application components — The two basic parts of an CA ADS application

■ Dialog features — The components and procedures that make up a dialog

■ Control Commands — The commands that can be used to pass control within an
application

■ Flow of Control — How the runtime system determines the way in which an
application is executed

Application Components

An application is composed of functions and responses.

The Structure of an CA ADS Application

An application is composed of functions and responses. Functions define the activities
that can be performed in an application; responses associate the functions with one
another and direct the flow of processing. A response can be associated with a contro l
key and/or a code entered by the user.

Application Components

100 Application Design Guide

The following figure il lustrates the relationship between functions and responses. Each
of these components is described.

Functions

A function is a named procedure or activity within an application.

Available Types

The following types of functions are available under CA ADS:

■ Menu Functions are used to direct a user through an application. The menus
contain a l ist of valid responses for the terminal user to use when processing in
application. System-defined menus are built automatically by the runtime system.

■ Dialog Functions are used for data processing, such as database access. A dialog

function can have any number of valid responses defined for it during application
generation. A response can activate another dialog function or can activate a dialog
not defined as a function.

Application Components

Appendix A: Application Concepts 101

■ Menu/Dialog Functions are dialogs that display a user-defined menu. When a
menu is associated with a dialog, its map is displayed when the executing dialog

issues a DISPLAY process command. Menu/dialogs must be used if the menu map is
user-defined.

■ For further information on the options available when designing menus for an
application, refer to Chapter 4, Designing Maps.

■ System Functions are predefined. Available to all applications, they perform the

same action in all applications to which they are assigned. The use of system
functions adds flexibility to an application, eli minating the need to write code for a
given activity.

Available System Functions

The following system functions are available:

POP

Returns processing control to the previous menu in the application thread.

POPTOP

Returns processing control to the first menu in the application thread.

TOP

returns processing control to the highest function in the current application thread.

RETURN

Returns processing control to the next higher function in the current application

thread.

Note: If a RETURN command is coded into a response process, it is considered a
process command, not a system function. As a process command, RETURN
performs as it would in an the DC/UCF system's environment.

HELP

Displays a HELP screen at run time. This screen lists all valid responses for the
current function.

QUIT

Terminates processing of the current application. If previously signed on to the
application, the user is automatically signed off.

SIGNON/SIGNOFF

Allows a user to signon or signoff. This is an CA IDMS/DC signon/signoff function
executed from within the application.

FORWARD/BACKWARD

Allows a user to page forward or backward on menu maps.

Application Components

102 Application Design Guide

System functions can be subdivided as follows:

■ QUIT, POPTOP, POP, TOP, and RETURN are generally executed when an EXECUTE

NEXT FUNCTION command is encountered.

■ SIGNON, SIGNOFF, and HELP are always executed as soon as they are encountered
by the runtime system.

■ FORWARD and BACKWARD (menu functions only) are executed as soon as they are
encountered. If associated with a nonmenu dialog function, the FORWARD and

BACKWARD functions are moved into the ADSO-APPLICATION-GLOBAL-RECORD
prior to executing the dialog's response process.

■ User Program Functions are written in a process language other than CA ADS.
When a user program function is activated, the CA ADS runtime system relinquishes
control to the user program. CA ADS does not define valid responses for a user

program; any responses made by the user must be processed by the executing user
program. The runtime system maintains all buffers for the application at the level at
which control was relinquished, anticipating return of the processing control.

■ Internal Functions are associated with the current dialog function. An internal
function is assumed to be a response defined for the dialog response process.

■ The developer might define a response that initiates an internal function as a
method of documenting the response process and/or as a method of providing the
dialog response process as a valid response choice at run time. Additionally, a

security class can be assigned to this type of response, thereby enabling security
protection for a dialog's response process.

Responses

A response is a named entity that establishes a relationship between two functions. A

response can be a control key or a response value entered in the response field by the
user.

Note: It is important to distinguish between a response and a response process. A
response is the action taken by the user when pressing a key or entering a response

value. A response is defined by the CA ADS Application Compiler; it can initiate an
application function or the dialog's response process.

A response process is the dialog component that receives data from the terminal user,
processes it accordingly, and passes control to the next activity. A response process is
stored as a MODULE-067 record (with the attribute LANGUAGE IS PROCESS) and is

associated with a dialog by usi ng the CA ADS Dialog Compiler in an ADSC session.

Processing control is directed by the valid responses of a function. When a valid
response to the current function is selected by the user, a new function (or a reiteration

of the current function) is executed.

Dialog Features

Appendix A: Application Concepts 103

Dialog Features

A dialog enables interaction between the user and the application and can be defined in
terms of its components and how it accomplishes its job. The components and
procedures of a dialog are discussed in the following sections.

Dialog Components

Each dialog consists of the following components:

Map

Provides a means of communication between the application and the user. Map
definitions in the dictionary maintain a formatted screen layout of l iteral and

variable map fields (that is, data fields). Map data fields are associated with areas in
program variable storage and are contained in map records. There can be only one
map for each dialog. The application developer defines the map online with the
online mapping facil ity; the resulting map load module is stored in the load area of

the data dictionary.

Processes

Performs data retrieval and processing. Processes are instructions written in CA ADS

process code. Each process consists of one or more commands that specify the type
of processing to be performed (for example, database accessing, conditional
testing, inter- and intra-dialog communication). A dialog is associated with two
types of processes: premap and response. Both types are optional. A maximum of

one premap process can be associated with a dialog; there is no limit to the number
of response processes.

The application developer defines the processes by using the batch or online

capabilities of IDD. The batch DDDL compiler stores the source statements as
modules in the dictionary.

Subschema

Provides the dialog with a view of the database. Each dialog can be associated with
a maximum of one subschema. Subschemas are defined by the database

administrator and stored in the dictionary by the subschema compiler. Subschemas
are associated with dialogs when a dialog is compiled by ADSC.

Dialog Features

104 Application Design Guide

Records

Supplies data to the dialog for processing. A dialog obtains data from a combination

of records, as follows:

Subschema records

 Identifies the database and logical records that comprise the subschema.

Map records

Identifies subschema or work records.

Dialog work records

Identifies dictionary records used as working storage by a dialog.

These records contain the data elements that are needed by the application.
Data elements and records are created with the use of IDD DDDL and are
stored in the dictionary. They can have associated values, edit criteria, external
and internal pictures, and code tables that are all recognized by the maps and

dialogs of an application. For a more detailed discussion on creating the
records used in an application, see Chapter 2: (see page 19).

Dialog Procedures

When the CA ADS runtime system executes a dialog, one or all of the following

procedures can take place:

Premap processing

Performs optional processing prior to displaying a map to the user. For example,

the dialog can retrieve a record that contains the data to be displayed by the map.
The dialog premap procedure is not automatic.

Mapout

Displays a formatted screen (map) for use by the user. The user uses the map to

supply data and to specify how this data is to be processed. For example, a dialog
can display data from a customer record; the user then updates the record and
requests that it be modified in the database. The mapout procedure is automatic

when there is no premap processing; otherwise a mapout occurs when the DISPLAY
command is issued.

Mapin

Receives data and the requested response from the user. For example, if the user
requests that the customer record be modified, the values that the user keys into

the map data fields are then moved into variable s torage. The dialog mapin
procedure is performed automatically when the user presses a control key.

Dialog Features

Appendix A: Application Concepts 105

Response process selection

Selects a response process based on the response entered by the user. The runtime

system performs this procedure automatically.

Response processing

Processes data as directed by the terminal user's response (for example, modifies

the customer record) and specifies the next activity to be executed. Response
processing is not performed automatically.

Control Commands

106 Application Design Guide

Control Commands

The application developer can use specific CA ADS commands to perform the following
operations:

■ Pass control from one dialog to another dialog or to a user program

■ Display a map

■ Terminate an existing dialog or application

■ Exit the CA ADS environment

■ Direct processing to specified places within a dialog

■ Reinitialize the record buffers associated with a dialog

■ Establish the status and level of a dialog within the application structure

■ Implicitly govern the available data and database currencies maintained for a dialog

Most of the control commands are available to all applications. When designing dialogs

that will become part of an application defined by using the CA ADS Application
Compiler, the developer can also use the EXECUTE NEXT FUNCTION command.

The CA ADS control commands are as follows:

DISPLAY

Requests display of the dialog's map or reexecution of the premap process

INVOKE

Specifies the next lower-level dialog to be executed in the application thread

LEAVE

Terminates the current application, optionally initiating another application, or
terminating the CA ADS session

LINK

Specifies the next lower-level dialog to be executed in the application thread,
implicitly establishing a nested application structure, or l inks to a user program that
executes outside the CA ADS environment

RETURN

Terminates the currently executing dialog, returns control to a higher-level dialog,
and, optionally, initializes that dialog's record buffers

TRANSFER

Terminates the currently executing dialog and passes control to a dialog at the
same level (which may be the same dialog)

EXECUTE NEXT FUNCTION

Control Commands

Appendix A: Application Concepts 107

Activates fields in the ADSO-APPLICATION-GLOBAL-RECORD that determine the
next activity to be executed

For further information on the way in which the runtime system moves information
to these fields, refer to "Global Records" in Chapter 5: (see page 59).

Note: If an EXECUTE NEXT FUNCTION command is encountered in a dialog that has

not been defined to an ADSA application, the command is processed as a DISPLAY
command and a message is issued indicating that the user should select the next
function.

The Flow of Control

108 Application Design Guide

The Flow of Control

The following figure presents the way in which the flow of control is directed within an
application:

The numerals in the flowchart, above, refer to the four sets of circumstances that

determine when the next function will be executed, as discussed in the text.

The Flow of Control

Appendix A: Application Concepts 109

When the user selects a valid response, the function associated with that response is
established as the next function to be executed. This function is not executed until the

runtime system satisfies certain criteria. The flowchart i l lustrates the circumstances that
determine when the next function will be executed, as follows:

1. If the response is known to the dialog, the runtime system immediately executes

the response process of the dialog. If an EXECUTE NEXT FUNCTION command is
encountered and the response is valid for the application function, the function
associated with the application response is executed next. If there is no EXECUTE
NEXT FUNCTION command, the dialog passes control with an INVOKE, TRANSFER,

RETURN, LINK, or DISPLAY control command.

If the response is not valid for the application function, the following er ror message
is displayed when an EXECUTE NEXT FUNCTION command is encountered: PLEASE
SELECT NEXT FUNCTION

2. If the response is valid for the function, the system checks to see if the response is
associated with one of the following ADSA system functions:

■ HELP

■ SIGNON/SIGNOFF

■ FORWARD/BACKWARD (menus only)

If so, the system function is executed immediately.

If the response is not valid for the dialog, the CA ADS runtime sys tem determines if

the response is known to the application. If not, the following error message is
displayed:

UNACCEPTABLE RESPONSE. PLEASE TRY AGAIN.

1. If the response is valid for the application function, but not known to the dialog,
and if the response is not an immediately executable ADSA system function, the
runtime system checks to see if there is a response process associated with the

ENTER key. If there is no such associated response process, the application function
is executed immediately.

2. If the status of the response is the same as in situation #3 (that is, valid for the

application, not known to the dialog, and not an immediately executable function)
and a response process is associated with the ENTER key, the ENTER response
process is executed first and the application function is executed when an EXECUTE
NEXT FUNCTION is encountered. If there is no EXECUTE NEXT FUNCTION command,

the dialog passes control with an INVOKE, LINK, TRANSFER, RETURN, or DISPLAY
command, as in the first example.

Glossary 111

Glossary

A

ADB
See Application Definition Block.

ADSA

The task code that activates the CA ADS Application Compiler; also, the application
compiler.

ADSC
The task code that activates the CA ADS Dialog Compiler; also, the dialog compiler.

ADSOCDRV
The CA ADS runtime program that initializes and updates the

ADSO-APPLICATION-GLOBAL-RECORD; performs system functions (for example, TOP,
POPTOP); processes responses entered on the HELP screen; and selects the value for the
AGR-CURRENT-RESPONSE field of the system global record.

ADSORUN1
The CA ADS runtime program that loads the Task Activity Table (TAT), creates an Online

Terminal Block Extension (OTBX), i f necessary, and loads the Application Definition Block
(ADB) for the application being executed.

ADSORUN2
The CA ADS runtime program that allocates application global records in the Record
Buffer Block (RBB); builds menu records prior to mapping out application menus; and

builds and maps out the runtime HELP screen.

ADSO-APPLICATION-GLOBAL-RECORD
The CA ADS system-defined global record that is used by the CA ADS Application
Compiler to pass information between functions and the runtime system; fields defined
in the record are addressable and can be modified by dialogs and user programs.

ADSO-APPLICATION-MENU-RECORD

The system menu record that is included in all menu maps; when the menu map is to be
mapped out, the runtime system moves values into the fields of this record.

ADSO-STAT-DEF-REC
The predefined status definition record that contains level -88 record element
definitions associating condition names with the status codes most commonly tested

after database, logical record, and queue and scratch record access; stored on the
dictionary, this record can be modified or replaced to meet site-specific needs.

The Flow of Control

112 Application Design Guide

CA ADS
A CA software product, running under the DC/UCF system, that enables users to

develop and execute online applications for the query and update of the database with
more ease than when traditional programming techniques are used.

CA ADS Application Compiler (ADSA)
A facil ity of CA ADS that provides the application development team with a flexible
design and prototyping tool; ten definition screens prompt the designer for names of

functions, responses, records, task codes, and security and menu specifications; ADSA
updates the Task Activity Table (TAT) and compiles an application load module
(Application Definition Block (ADB)) that is stored in the dictionary and used at runtime

to direct the flow of control in an executing application.

CA ADS Dialog Compiler (ADSC)

A facil ity of CA ADS that processes dialog, map, and process definitions, and stores this
information in the dictionary; ADSC compiles a dialog load module (Fixed Dia log Block
(FDB)) that is used by the runtime system.

CA ADS runtime system
A task that runs within the DC/UCF system environment; the runtime system can

execute an application as compiled in an ADSA session or can execute a combination of
dialogs as compiled in an ADSC session.

CA Culprit
A CA software product that is fully integrated with the dictionary and is designed to

generate reports from CA IDMS databases as well as from other databases and
conventional fi les.

CA IDMS/DB
A CA software product that interprets application requests for database services and
issues calls for access and update of the database.

CA IDMS/DC
A CA software product that controls the concurrent execution of online applications and

provides support facil ities for the use of sophisticated terminal devices.

CA IDMS UCF
The CA software product that can be integrated with CA IDMS to offer
teleprocessing-monitor independence to communication users; this facil ity enables CA
IDMS-based applications to run without modification under a variety of teleprocessing

monitors.

CA OLQ
A CA software product that is fully integrated with the dictionary and provi des
conversational access to CA IDMS databases for applications developers and end users.

The Flow of Control

Glossary 113

application
A named set of functions or dialogs used to accomplish a specific business task (for

example, general ledger, shop floor control, inventory control, payroll).

application components
The application functions and responses defined during an ADSA session; see also,
dialog components.

Application Definition Block (ADB)
The application load module compiled by ADSA for use by the CA ADS runtime system;

the ADB contains the application information supplied on the definition screens during
an ADSA session.

application function
The basic structural component of an application; functions can be defined as dialogs,
menus, menu/dialogs, user-defined programs, or system functions.

application levels

The logical structure of an application; levels are achieved through the use of dia log
control commands and are important for the purpose of maintaining currencies and
record buffers.

application response
See response.

application thread

The path through the application, as decided by the response of the user at runtime.

automatic editing and error handling

A mapping feature of the CA ADS runtime system that compares input/output data with
internal and external pictures, validates data against edit tables, and encodes/decodes
data by using code tables.

AUTOSTATUS
A runtime facil ity that handles errors compiled by database, logical record, or queue and
scratch record processing; enabled for each dialog during an ADSC session.

B

bill-of-materials structure

The database structure, with a variable number of levels, that represents network
relationships among record occurrences of the same type; since the relationship is really
many-to-many, it is implemented by two or more sets.

BIND

The database command that signs on a run unit and notifies the database management
system that the user will be requesting runtime services; this function is automatically
performed by the CA ADS runtime system.

The Flow of Control

114 Application Design Guide

C

checkpoint

An entry in the journal fi le that defi nes a position after which run unit updates to the
database can be reversed during recovery.

code table

A table used to translate internal codes in a record to a screen display format.

COMMIT

The database command that causes a checkpoint to be written to the journal fi le and
releases record locks if they are being maintained; committed updates cannot be rolled
back.

compile
The process that produces output that is itself in machine-executable code or is suitable

for processing in the form of a load module that can be executed at runtime; also, to
store DDDL descriptions in the dictionary; also, the process that creates a load module
that is stored in the DDLDCLOD area of the dictionary by ADSA (the ADB), ADSC (the

FDB), online mapping facil ity (the map l oad module), and SSC (the subschema load
module).

control block
A logical collection of specific parameter data used by the operating system during
runtime.

control commands

The DISPLAY, TRANSFER, INVOKE, RETURN, LINK, and LEAVE CA ADS process commands
that instruct the runtime system to pass control from one dialog to another, or to a user
program during the execution of an application.

control key
A program function (PF) key, program attention (PA) key, ENTER key, or CLEAR key

defined to activate an application response at runtime.

currency block
The control block that maintains currency information on all subschema records used by
the application; maintained by CA IDMS, a currency block is created for each level in the

application that accesses the database.

D

Data Description Language (DDL)
The CA IDMS language used to define the structural components of a database: schema,
Device-Media Control Language (DMCL), and subschema.

Data Dictionary Definition Language (DDDL)
See DDDL.

The Flow of Control

Glossary 115

DC
See CA IDMS/DC.

DC/UCF

A general term for a system that is either an CA IDMS/DC system or an CA IDMS UCF
system. A DC/UCF system provides both database and data communications services.

Dictionary Reporter
A CA report compiler that provides standard reports on the contents of the dictionary.

DDDL
A medium for describing and maintaining the contents of IDD (the Integrated Data

Dictionary).

DDDL compiler

An IDD-supplied program that stores DDDL descriptions in the dictionary.

DDL
See Data Description Language.

DDR
See Data Dictionary Reporter.

Device-Media Control Language

See DMCL.

dialog
A unit of work in the CA ADS environment that performs one interaction with a user and

all the processing associated with that interaction.

dialog components
A dialog comprises not more than one premap process module, zero or more response
process modules, and, optionally, one map and one subschema view of the database;

components are associated with the dialog during an ADSC session.

dialog function

An application function that is defined as a dialog during an ADSA session.

dialog response process
See response.

dictionary
A storage facil ity that is integrated with other CA products and is used by these products
as a central source for information on data descriptions and relationships.

The Flow of Control

116 Application Design Guide

DMCL
A database component that controls the mapping of the schema -defined database into

physical fi les; designates which areas of the database are util ized at runtime; and,
optionally, describes the fi les used to journal database activities.

E

ECBLIST
See Event Control Block List.

edit table
A list of single values or ranges of values that are valid for a data field.

Event Control Block List (ECBLIST)
The control block used to synchronize events between the DC/UCF system and the host
operating system; the list contains an ECB for each task waiting for an operating system

event (for example, a disk read).

EXECUTE NEXT FUNCTION
The process command that activates the flow of control in an ADSA-defined application
at runtime.

extended run unit
A feature of the CA ADS runtime system that keeps the run unit open when a dialog

issues a LINK to a lower-level dialog or to a user program under certain conditions.

external picture
The format of data as displayed on the terminal screen; defined at record element level

using IDD or during an online mapping session.

F

FAST mode
An optional mode of execution in ADSC, ADSA, the online mapping facil ity, and in an
application at runtime, in which control is passed directly to the next sequential screen

when a transaction is successful; otherwise STEP mode is in effect and the current
screen is always redisplayed before control is passed.

FDB
See Fixed Dialog Block.

field mark

The special character used to define the beginning of a map field.

FINISH

The database command that releases all resources and completes the run unit; FINISH is
performed automatically by the CA ADS runtime system.

The Flow of Control

Glossary 117

first functional call
The first database command passed to CA IDMS/DB at execution time.

Fixed Dialog Block (FDB)

The dialog load module compiled in ADSC for use by the CA ADS runtime system when
an application is executed.

function
See application function.

G

global record
A record, defined in the dictionary prior to compiling an application, that is available to
all functions of an ADSA-defined application; also, a record that remains in the record
buffer for the duration of the application, unaffected by dialog control commands; also,

a record defined on the Global Records screen during ADSA; see also,
ADSO-APPLICATION-GLOBAL-RECORD.

global response

See response.

I

IDD
A CA software product used to control and report information that is stored in a centra l
storage facil ity called a dictionary.

Integrated Data Dictionary

See IDD.

internal picture
The format of data as stored in variable storage or the database; defined in the
dictionary through IDD.

internal response
See response.

K

KEEP
The database command that locks a record occurrence against access or update by

another run unit.

The Flow of Control

118 Application Design Guide

L

load module

A program unit that is suitable for loading into main storage for execution; CA ADS uses
the TAT, ADB, FDB, map, table, and subschema load modules stored in the DDLDCLOD
area of the dictionary.

local response
See response.

logical record
One or more database records presented to the application program as a single record,
permitting access to fields in multiple database records by a single request.

Logical Record Facility (LRF)
The CA software product that simplifies application programming by allowing the DBA

to predefine combined database records and the processing sequence necessary to
access them.

logical terminal
CA IDMS/DC's view of the events associated with a particular physical terminal; the
logical terminal is used by CA IDMS/DC to communicate with the physical terminal; at

runtime, the user's signon information (for example, password, security codes), the
executing task, and dynamic storage are associated with the logical terminal; a logical
terminal is defined on the LTERM statement at system generation.

Logical Terminal Element (LTE)

The control block used by CA IDMS/DC to manage and maintain the resources
associated with a particular terminal; also, the control block that ties together the user's
longterm resources across a pseudoconverse.

LRF
See Logical Record Facil ity.

LTE
See Logical Terminal Element.

M

mainline dialog
A dialog that is designated as an entry point to an CA ADS application.

map
A formatted layout that names the literal and variable fields on a terminal screen,
identifies the location of each field on a screen, names the record elements associated
with each variable field; and allows transfer of data a full screen at a time.

The Flow of Control

Glossary 119

map load module
The load module generated by the DC/UCF system's mapping facil ity; used by the CA

ADS runtime system.

Map Request Block (MRB)
The control block, contained in the Variable Dialog Block (VDB), that is used to perform
mapping operations.

mapin
The mapping operation in which values keyed by the user into variable map fields are

moved into variable storage; in the CA ADS environment, a task begins with each mapin
operation.

mapout
The mapping operation in which the map is displayed out to the terminal; l iteral fields
are moved to their assigned positions and contents of the associated data areas in

variable storage are moved to the map's data fields.

mapping
The method used by CA ADS to transfer data between the application and the user.

menu
See menu map.

menu/dialog function
A function defined as a menu in an ADSA session; this function is controlled by a

user-written dialog that may provide additional processing.

menu function

An application function that is defined as a menu during an ADSA session.

menu map
A map that contains a l ist of valid responses for the user to use in the processing of an
application; automatically built by the runtime system, the format of the map can be
system- or user-defined.

MRB

See Map Request Block.

The Flow of Control

120 Application Design Guide

O

online mapping facility

The online facil ity for defining and compiling maps used by application programs
executing in the CA IDMS/DC environment.

Online Terminal Block (OTB)

The control block used by the CA ADS runtime system; associated with a logical
terminal, this block exists across tasks in user kept storage, anchoring all other CA ADS
control blocks; the OTB contains the name of the current dialog and addresses of the
current Variable Dialog Block (VDB) and the Fixed Dialog Block (FDB).

Online Terminal Block Extension (OTBX)

An extension of the Online Terminal Block (OTB) that is created when the CA ADS
runtime system executes an application compiled by ADSA; contains pointers to the
TAT, and the RBB and ADB for the currently executing application.

Online Work Area (OWA)
The work area that exists for the life of an CA ADS task; the OWA contains fields for

communication between ADSORUN2 and ADSOCDRV, the subschema contr ol block, a
pointer to the current Map Request Block (MRB), and an internal stack.

operative status
The status of a dialog that is sti l l an active part of an application thread.

OTB
See Online Terminal Block.

OTBX
See Online Terminal Block Extension.

OWA
See Online Work Area.

P

PA key
See program attention key.

PF key
See program function key.

The Flow of Control

Glossary 121

physical terminal
A physical device such as a CRT (3270-type device), TTY, or printer that exists within a

teleprocessing system; in the DC/UCF environment, physical terminal are associated
with logical terminals; physical terminals are defined with the PTERM statement at
system generation.

premap process
An optional component of an CA ADS dialog that performs any necessary processing

before a mapout operation.

process code
A modular set of commands used to perform one or more specific functions within a
dialog; the set of commands is stored as a module (with LANGUAGE IS PROCESS) in the
dictionary.

program attention (PA) key

A predefined key that serves as an alternative to typing the corresponding response
code; when a PA key is pressed (for example, [PA1]) no data is transmitted to the record
buffer.

program function (PF) key
A predefined key that serves as an alternative to typing the corresponding response

code; when a PF key is pressed (for example, [Clear]) data is transmitted to the record
buffer.

pseudconversational programming
A programming technique that frees resources being used by a task while the system
waits for completion of data entry by the terminal operator; this technique util izes CA

IDMS/DC's ability to permit a task to terminate after issuing a terminal output request
that requires an operator response; the CA ADS runtime system is pseudconversational.

pseudconverse

The interval between mapout and mapin.

Q

queue
A disk work area shared by tasks on all CA IDMS/DC terminals and by batch programs;
queue records allow a task or application to pass data to another task or application, or

to transfer data from one terminal to another.

The Flow of Control

122 Application Design Guide

R

RBB

See Record Buffer Block.

RCE

See Resource Control Element.

READY
The statement that specifies to CA IDMS the areas of the database that the application

program will access and in which usage mode; the CA ADS runtime system readies all
database areas when the first functional navigational DML database command is
encountered; no more than one READY should be coded in an CA ADS process.

Record Buffer Block (RBB)
The storage block dynamically allocated by the CA ADS runtime system for subschema,

database, work, and map records used by a dialog; an application can have one primary
RBB and as many secondary RBBs as needed; the size of the RBB is specified by the
PRIMARY POOL and SECONDARY POOL parameters of the ADSO system generation

statement.

Resource Control Element (RCE)

The control block that is created when a task requires the use of a resource and contains
pointers to the task id and to the resource being used.

Resource Link Element (RLE)
The control block that l inks all resources in use by a particular terminal.

The Flow of Control

Glossary 123

response See specific responses below.

■ application response The action taken by the user when pressing a key or

entering a response code when the runtime system is executing an application;
also, the response that can initiate an application function or a dialog's
response process; also,the global or local response associated with a function

an ADSA session.

■ dialog response process A process module initiated by a uniquely assigned
response code or control key, after a mapin operation; this module must
contain a control command to pass control to another point either inside or

outside of the application; there can be multiple respons e processes for a
single dialog; also, the process module associated with a dialog during an ADSC
session.

■ global response The type of response that is valid for all functions in a

particular application; also, a response type that can be defined for an
application during an ADSA session.

■ internal response In ADSA, a response, known only to a dialog, that is assumed

to initiate the response process of that dialog.

■ local response A type of response that is valid only when specifically associated
with a function; also, a response type that can be defined during an ADSA
session.

■ response code The response field value that is associated with the dialog
response process; also, the response field value supplied during an ADSC
session.

■ response field The 1- to 32-character map field in which terminal operators can
choose to enter the response code that initiates the next activity to be
executed by the runtime system; also, the mapping $RESPONSE field or the
AGR-MAP-RESPONSE field of the ADSO-APPLICATION-GLOBAL-RECORD.

■ response process See response, dialog response process.

■ valid response A global or local response that is defined as valid for a particular
application function; there can be more than one valid response for a single

function.

RLE

See Resource Link Element.

run unit
In CA ADS, that portion of runtime processing that begins with the first functional

navigational DML database call and ends when a control command (except for certain
cases of LINK) is encountered; see also, extended run unit.

The Flow of Control

124 Application Design Guide

S

schema

The part of the database definition that describes the logical structure of the database,
including the names and descriptions of all tables, elements, records, sets, and areas.
One schema exists per database.

schema compiler
An CA IDMS-supplied program that converts source schema statements into a
description of the database and stores this description in the dictionary.

STEP mode
An optional mode of execution in ADSA, ADSC, the online mapping facil ity, and in an

application at runtime, in which the current screen is redisplayed with error messages (if
any) or verification messages (if the transaction is successful) before control i s passed to
the next sequential screen.

subschema
A program view of the database used at runtime and consisting of all or a subset of the

data elements, record types, set types, and areas defined in the schema.

subschema compiler

An CA IDMS-supplied program that converts source subschema DDL into subschema
descriptions, which are stored in the dictionary and in the dictionary load area or in a
load (core-image) l ibrary for use at runtime.

system function
A predefined function available to all applications compiled during an ADSA session
(that is, POP, POPTOP, TOP, RETURN, HELP, QUIT, SIGNON/SIGNOFF,
FORWARD/BACKWARD); a system function is associated with an application when it has

been associated with a valid r.

T

table
The IDD entity type describing the edit and code tables that enable automatic editing,
encoding, and decoding of map fields used by the DC/UCF mapping facil ity.

task
The basic unit of work under DC/UCF that consists of the execution of a main program
and one or more additional programs; a task is identified to the system by a unique

name (such as ADS); an IDD entity type, the task name in the dictionary is usually
identical to the task code used by the teleprocessing system.

Task Application Table (TAT)
The table that contains names of task codes used to initiate applications and the names
of the applications (ADBs) thus initiated; the TAT is maintained in the dictionary by the

application compiler (ADSA) and is loaded by the runtime system.

The Flow of Control

Glossary 125

task code
The unique name, of 1 to 8 characters, that identifies a task to the runtime system; the

terminal operator types the task code in response to the DC/UCF ENTER NEXT TASK
CODE prompt.

Task Control Element (TCE)

The control block that ties together all the resources of an application.

TAT
See Task Application Table.

TCE
See Task Control Element.

U

UCF
See CA IDMS UCF.

Universal Communication Facility (UCF)
See CA IDMS UCF.

usage mode
The manner in which a run unit accesses a given database area; the usage mode dictates

whether a run unit performs retrieval or updates functions against records in the area
and specifies the allowed extent of concurrent usage of these records by other run
units.

V

valid response
See response.

Variable Dialog Block (VDB)
A non-reentrant table used by the CA ADS runtime system to obtain user-specified

information about a particular dialog; dynamically created for each user dialog hen the
dialog is initiated, the VDB resides in the storage pool and contains header information,
the Map Request Block (MRB) for the dialog (if any), and a Variable Record Element
(VRE) for each record used in the dialog.

Variable Record Element (VRE)

A control block, one for each record needed by the dialog, that contains variable
runtime information on each record.

VDB
See Variable Dialog Block.

The Flow of Control

126 Application Design Guide

VRE
See Variable Record Element.

Index 127

Index

A

ADSA • 9
CA ADS Application Compiler (ADSA) • 9

task code • 9
ADSC • 9

CA ADS Dialog Compiler (ADSC) • 9

task code • 9
ADSO sysgen statement • 85
ADSO-APPLICATION-GLOBAL-RECORD • 68, 106

AGR-CURRENT-RESPONSE field • 68

AGR-DEFAULT-RESPONSE field • 68
AGR-EXIT-DIALOG field • 68
AGR-MAP-RESPONSE field • 68
AGR-MODE field • 68

AGR-NEXT-FUNCTION field • 68
AGR-PRINT-CLASS field • 68
AGR-PRINT-DESTINATION field • 68

AGR-SIGNON-REQMTS field • 68
AGR-SIGNON-SWITCH field • 68
AGR-USER-ID field • 68

ADSORPTS util ity • 14

application • 10, 97
design tools • 10
guidelines • 10

size • 97
application design • 20, 21

methodology • 21
phases • 20

application thread • 61

C

CA ADS Application Compiler (ADSA) • 48
CA ADS components • 11, 12

CA ADS Application Compiler (ADSA) • 11
interrelationship • 12

runtime system • 12
CA ADS Dialog Compiler (ADSC) • 50
CA IDMS Online Mapping Facil ity • 28

automatic editing • 28

checklist • 26
control commands • 23, 73, 101, 106

DISPLAY • 73, 106

EXECUTE NEXT FUNCTION • 106
INVOKE • 73, 106

LEAVE • 73, 106
LINK • 73, 106
RETURN • 73, 101, 106
TRANSFER • 73, 106

D

data administrator • 16

data communications administrator (DCA) • 16
data definition • 20, 44
data redundancy • 43
data resources • 43

database administrator (DBA) • 16
database currencies • 73
debugging aids • 40
dialog • 23, 31, 47, 49, 50, 59, 60, 97, 102

compiling • 47
levels • 23, 59, 97
premap process • 49, 50

process code • 31
response • 102
response process • 49, 50
specifications • 31

status • 60
dialog components • 103

map • 103

processes • 103
work records • 103

dialog function • 100
dialog procedures • 104

mapin • 104
mapout • 104
premap processing • 104

response process selection • 104
response processing • 104

dialogs • 59
definition • 59

E

end users • 16
EXECUTE NEXT FUNCTION • 106

F

FAST MODE THRESHOLD • 87

functions • 100

128 Application Design Guide

types • 100

G

global records • 48, 67
prototype • 48

glossary • 81

I

internal function • 101

L

load modules • 47
FDB • 47

map • 47
load modules (figure) • 12
logical records • 77

longterm locks • 76
KEEP LONGTERM command • 76

M

mainline dialog • 60
map • 103

data fields • 103
definition • 103

load module • 103
map templates • 56
mapping util ity • 14

maps • 28, 47, 51, 52
compiling • 47
design • 51
design standards • 52

format • 28
menu function • 100
menu maps • 53, 54

reformatting • 54
system-defined • 53
user-defined • 54

menu/dialog • 55, 100

design • 55
function • 100
generation • 55

menus • 28
system-defined • 28
user-defined • 28

N

naming conventions • 26, 79, 83

application components • 79
database entities • 83

O

online mapping facil ity • 47

screens for a prototype application • 47

P

performance • 91

monitoring tools • 91
populating the dictionary • 49
premap process • 103
process modules • 49

PROGRAM sysgen statement • 86
programmers • 16
programming aids • 34

project leader • 16
prototype • 28, 29, 45, 48, 50

first stage • 45
second stage • 48

third stage • 50
uses • 29

Q

QUEUE sysgen statement • 65
queue/scratch working storage areas • 65

R

record buffer • 62, 96
allocation • 62
management • 62

size • 96
Record Buffer Block (RBB) • 86
records • 28, 49, 50, 62, 65, 66, 103

map • 49, 103
queue • 65
scratch • 66
subschema • 103

work • 49, 50, 103
WORK RECORD • 62

reports • 14

ADSORPTS util ity • 14
CA Culprit • 14
CA IDMS Reports • 14
IDMSRPTS util ity • 14

mapping util ity • 14
OnLine Query (CA OLQ) • 14
subschema compiler • 14

Index 129

request units • 88
external • 88

MAXIMUM ERUS parameter • 88
MAXIMUM TASKS parameter • 88

resources • 90, 91, 93, 94, 95, 96, 98

CPU usage • 95
database • 94
disk and terminal I/Os • 94
internal processing • 91

longterm storage • 98
management • 90
program pool storage • 94
storage pool • 93, 96

responses • 108
flow of control • 108

run units • 73

extended • 73

S

security • 28

signon menu function • 48
subschemas • 96

size • 96

system functions • 23, 48, 59, 100, 101
systems analyst • 16

T

tables • 49
code • 49
edit • 49

task code • 47

ADSC • 47
TASK sysgen statement • 86
testing guidelines • 41

testing procedures • 41, 42
acceptance testing • 42
integration testing • 42
regression testing • 42

unit testing • 41

U

user program function • 101

V

valid responses • 108

	CA ADS for CA IDMS Application Design Guide
	CA Technologies Product References
	Contact CA Technologies
	Contents
	1: Introduction
	Overview
	Application Guidelines
	Tools for Designing and Developing Applications
	CA ADS Application Compiler (ADSA)
	Facilitates Structured Application Planning
	Provides Online Overview

	CA ADS Dialog Compiler (ADSC)
	CA ADS Runtime System
	Accesses Record and Element Definitions
	Creates Record Buffers and Control Blocks

	IDD Central Repository
	CA IDMS/DC Mapping Facility
	Batch and Online Reporting Facilities

	The Design and Development Team

	2: Design Methodology
	Development of Effective Design
	Three Phases
	How Tasks are Performed
	Five-Method Design

	Step One: Analyzing the Problem
	Team Approach
	How to Define the Need for the Application
	Developing Two Lists

	Step Two: Developing the Design
	DBA Incorporates Related Data
	External/Functional Specifications
	Format Selection
	Identifying the Application Components
	How to Develop a Structural Diagram
	Returning to the Main Menu
	Documenting the Design

	Internal/Technical Specifications
	Application Considerations

	Step Three: Building a Prototype
	Uses for the Prototype
	Unique Features of the ADSA Builds Prototype
	How to Create the Prototype
	Information required

	Step Four: Writing Process Code for the Dialogs
	Writing the Dialog Specifications
	Sample Template for Dialog Specifications
	Dialog Specifications Synopsis
	Guidelines for Dialog Specifications
	Reviewing the Specifications

	Writing the Source Code
	Test Version Numbers
	Programming Aids
	Sample Premap Process Template: #1
	Sample Premap Process Template: #2
	What Templates Provide
	Sample Response Process Template
	Debugging Aids

	Step Five: Testing and Implementing the Application
	Test Plan
	Test Procedure Phases
	Unit testing
	Integration Testing
	Acceptance Testing

	Underlying Issues and Key Considerations
	Data Definition and Database Design
	Advantages of Separating Information
	Definition of Information

	3: Building a Prototype
	Three-Stage Approach
	Stage I: Building the Basic Prototype
	Prototype Can Be Developed Quickly
	Activities to Perform
	How to Compile the Application (ADSA)
	Compiling the Maps
	How to Produce Prototype Screens

	Compiling the Dialogs (ADSC)
	Compile a Dialog for Each Map
	Considerations

	User Review

	Stage II: Adding Process Logic and Data Retrieval
	ADSA Enhancements
	Adding Features

	Populating the Dictionary
	Three necessary components

	CA IDMS Mapping Facility Enhancements
	ADSC Enhancements

	Stage III: Refining the Maps and Processes

	4: Designing Maps
	Attributes of Successful Maps
	Determining Success of an Application

	Design Standards for a Dialog Map
	Dialog Map Standards

	Online Mapping Procedures
	Choosing Menu Maps
	Available Menu Map Types
	System-Defined Menu Maps
	Designer's options

	User-Defined Menu Maps
	Altering Map Methods
	Reformat the System-Defined Menu
	Regenerating the System-Defined Menu
	Design a Menu/Dialog

	Designing Dialog Maps
	Design Dialog Questions
	Standardizing Formats
	Sample Template for an Application Screen

	5: Designing Dialogs
	Overview
	What is a dialog?
	Dialog Characteristics
	Dialog Level
	Developer's Role
	Aspects Influenced

	Dialog Status
	Dialog Types
	Sequence of Dialog Execution

	Dialog Control
	Passing control to another dialog

	Design Considerations
	Record Buffer Management
	What Affects Record Buffer Management
	Record Buffer Allocation
	NEW COPY Records

	Working Storage Areas
	Queue and Scratch Areas
	Queue Records
	Scratch Records

	Global Records
	Selected Fields
	AGR-MODE Field Examples
	Using the AGR-MODE-field (example 1)
	Using the AGR-MODE field (example 2)
	Mapping to Screens

	Dialogs That Issue Navigational DML
	Database Currencies: How Currency is Maintained
	The Effects of Control Commands

	Extended Run Units
	Longterm Locks
	Record Buffer Management for Logical Records

	6: Naming Conventions
	Overview
	Naming Application Entities
	Sample Naming Conventions
	Assigning Names

	Naming Database Information Entities
	Sample Glossary of Naming Tokens
	Available Naming Conventions

	7: Performance Considerations
	Overview
	System Generation Parameters
	ADSO Statement Parameters
	PROGRAM Statement Parameters
	TASK Statement Parameters
	Allocating Primary and Secondary Storage Pools
	How Storage is Managed
	Layout of the Record Buffer Block
	Size Considerations

	Setting the Fast Mode Threshold
	Record Buffers

	Specifying the Number of Internal and External Run Units

	Resource Management
	Application Resource Use
	Monitoring Resource Consumption
	Tools
	Task Processing Support
	Task Resource Structure
	Variable Storage Pool
	Program Pool Storage
	Database Locks
	Disk I/O
	Monitor Terminal I/O
	CPU Usage

	Conserving Resources
	Storage Protection
	Buffer Sizes in Multiples of 4084 Bytes
	Benefits of Storage Limit
	Size of Subschemas
	Number of Dialog Levels
	Size of the Application
	Making Frequently Called Programs Resident
	Freeing the Resources of an Inactive Terminal

	A: Application Concepts
	Overview
	Application Components
	The Structure of an CA ADS Application
	Functions
	Available Types
	Available System Functions

	Responses

	Dialog Features
	Dialog Components
	Dialog Procedures

	Control Commands
	The Flow of Control

	Glossary
	Index

