

User Guide
r17

CA IDMS™ Server

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time. This
Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or
duplicated, in whole or in part, without the prior written consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2009 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA Technologies products:

■ CA IDMS™ Server

■ CA IDMS™

■ CA IDMS™ Visual DBA (CA IDMS VDBA)

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Contents 5

Contents

Chapter 1: Introduction 11

Who Should Use this Document .. 11

Components ... 11

ODBC and JDBC Drivers ... 12

Server Architecture ... 14

Chapter 2: Preparing for Installation 19

Mainframe Software Prerequisites .. 19

z/OS Software Prerequisites... 19

Linux Software Prerequisites .. 20

Windows Software Prerequisites ... 20

CAICCI/PC .. 20

ODBC Driver Manager ... 21

Java Runtime Environment .. 21

Installing the Java Runtime Environment ... 22

Delivery of Components ... 22

Chapter 3: Setting Up Your System 23

Installing the Host Component .. 23

Setting Up CA IDMS Server ... 24

Defining the CA IDMS System Using CAICCI ... 25

Defining a CCI Line .. 25

Creating the CASERVER Task ... 26

Defining the CA IDMS System Using TCP/IP ... 27

Updating the System Startup JCL .. 27

Defining a TCP/IP Line ... 27

Creating the IDMSJSRV Task ... 28

Setting Up Database Access ... 29

Setting Up SQL Access ... 29

Utilizing Page Groups .. 30

Setting Up SQL Access to Non-SQL Databases .. 30

Setting up Catalog Views ... 35

Passing Auditing Information to CA IDMS .. 36

Supplying Accounting Information .. 37

Using Accounting Information .. 37

Setting the External Identity ... 38

6 User Guide

Auditing the External Identity ... 39

Handling Invalid Numeric Data... 41

Pseudo-Conversational Processing .. 42

Configuring Secure Sockets .. 43

Certificates on the Client System .. 44

Certificates on the Server .. 44

Certificate Administration ... 44

Configuring Timeouts ... 45

Reply Timeouts .. 46

Idle Timeouts... 49

Other Timeouts ... 50

Chapter 4: Installing the Client on Windows 53

Preparing to Install CA IDMS Server ... 53

Uninstalling Previous Versions .. 54

Installing CA IDMS Server on Windows .. 54

Chapter 5: Configuring the Client on Windows 57

Configuring Windows Applications .. 57

Configuring CAICCI/PC .. 58

Configuring CA IDMS Server ... 58

Defining Data Sources .. 58

Adding a New Data Source .. 59

Saving the Data Source Definition .. 61

Testing the Data Source Definition ... 62

Editing the Data Source Definition .. 62

Setting Advanced Data Source Options ... 63

Default Connection Attributes .. 64

Other Options ... 67

Performance Considerations for ODBC Options ... 68

Setting System Default Data Source Options ... 70

Setting Up a Server ... 71

Options .. 72

Connection Options .. 72

Advanced Options ... 73

Deleting a Server .. 73

Setting Advanced Server Options ... 74

DDS Routing .. 74

Setting System Default Server Options .. 77

Logging Errors and Trace Information .. 78

Log File Options ... 79

Contents 7

Setting SSL Options .. 81

Certificate Stores .. 82

Setting Language Options .. 83

Using the International Tab .. 83

Selecting, Creating, and Editing CECP Translation Tables ... 84

Using a Custom Conversion DLL ... 90

Enabling a Custom Conversion DLL ... 90

Developing a Custom Conversion DLL ... 90

Configuring the JDBC Server ... 91

Server Options... 91

Log and Trace Options .. 92

Remote Server .. 92

Property File Information ... 93

Chapter 6: Using the Client on Windows 95

ODBC Driver Connect Dialogs ... 95

Connecting to a Predefined Data Source ... 95

Connecting Dynamically to a Data Source Not Previously Defined.. 96

Connection Options .. 98

Configuring JDBC Applications to Use CA IDMS Server .. 99

Using the JDBC Server on Windows ... 99

Chapter 7: Installing the Client on z/OS 101

Installation Process .. 101

Installing the Client Components for UNIX System Services .. 101

Step 1: Load the Installation Files ... 101

Step 2: Allocate the HFS .. 102

Step 3: Create the Installation Directory in the HFS ... 102

Step 4: Copy and Extract the TAR File ... 103

Step 5: Copy the Sample JCL Files (Optional) .. 103

Chapter 8: Configuring the Client on z/OS 105

Configuring CA IDMS .. 105

Specifying Environment Variables ... 106

Specifying Environment Variables for IPv6 ... 107

Editing the Configuration File.. 108

Other Configuration File Information ... 110

Properties File Information .. 110

8 User Guide

Chapter 9: Using the Client on z/OS 111

Configuring Applications to Use CA IDMS Server ... 111

Controlling the JDBC Server ... 112

Monitoring the JDBC Server ... 114

Chapter 10: Using the Java Client on Any Platform 117

Installing CA IDMS Server on Other Platforms ... 117

Using the JDBC Driver ... 118

Using the JDBC Server .. 119

Chapter 11: ODBC Programmer Reference 123

Debugging User Sessions .. 123

Error Messages .. 123

ODBC Conformance Levels ... 124

API Conformance Levels .. 124

SQL Conformance Levels ... 126

SQL Database Type Mapping Between ODBC and CA IDMS .. 128

CA IDMS to ODBC Data Type Mapping.. 128

ODBC to CA IDMS Data Type Mapping.. 129

Driver-Specific Data Types .. 130

SQLDriverConnect Connection String Format .. 130

Supported Attribute Keywords and Attribute Values ... 131

Driver-Specific Connection and Statement Attributes ... 132

Supported Isolation and Lock Levels .. 132

Bulk Insert Support ... 133

Retrieving Network Set Information .. 133

Procedures ... 134

Using Procedures .. 134

Using Named Parameters ... 136

Using Table Procedures ... 137

Describe Input .. 138

Using Describe Input ... 138

Positioned Updates .. 140

Using Positioned Updates ... 140

Developing a Custom Conversion DLL ... 142

Chapter 12: JDBC Programmer Reference 151

JDBC Conformance ... 151

SQL Conformance .. 152

Contents 9

Database Type Mapping between JDBC and CA IDMS ... 152

CA IDMS to JDBC Data Type Mapping ... 152

JDBC to CA IDMS Data Type Mapping ... 153

DriverManager ... 154

IDMS URL Format .. 154

DriverPropertyInfo .. 156

DataSource Connection Parameters .. 157

IdmsDataSource .. 158

IdmsConnectionPoolDataSource .. 161

JDBC Connection Options Summary ... 162

WebSphere Application Server DataStoreHelper ... 163

Setting the External Identity ... 163

Distributed Transactions .. 163

Using Distributed Transactions with JDBC .. 163

Using SQL Transaction and Session Commands .. 164

Batch Updates .. 165

Using Batch Updates ... 165

Procedures ... 167

Using Named Parameters ... 167

Result Sets ... 168

Scrollable Result Sets ... 168

JDBC Result Sets and Row Sets ... 168

CA IDMS Result Sets .. 170

Positioned Updates .. 172

HibernateDialect .. 172

Sample Programs ... 173

IdmsJcf .. 173

IdmsExample ... 174

IdmsJdbcDataStoreHelper... 174

Sample SSL Scripts .. 175

Appendix A: Windows Registry Information 177

Registry Information .. 177

HKEY_LOCAL_MACHINE\Software\ODBC\ODBCINST.INI ... 178

HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI... 178

HKEY_LOCAL_MACHINE\Software\CA\CA IDMS Server ... 185

HKEY_CURRENT_USER\Software\ODBC\ODBC.INI ... 197

HKEY_CURRENT_USER\Software\CA\CA IDMS Server ... 198

Appendix B: Configuration File Information 199

Configuration Information ... 199

10 User Guide

Environment Variables .. 199

Sections ... 200

Appendix C: Properties File Information 213

Setting CA IDMS Server Options as Properties ... 213

JDBC Driver Options .. 214

JDBC Server Options .. 214

Global Options .. 215

Index 217

Chapter 1: Introduction 11

Chapter 1: Introduction

CA IDMS Server provides open access to data stored in CA IDMS databases, letting you
maintain existing corporate databases and make your data available to new
client-server and web-based applications. CA IDMS Server provides support for dynamic
SQL using both the ODBC and JDBC application program interfaces.

Note: Unless specifically designated, Windows refers to any supported Microsoft
Windows operating environment.

This section contains the following topics:

Who Should Use this Document (see page 11)
Components (see page 11)

Who Should Use this Document

This guide assumes you are a new user of CA IDMS Server with experience using
Windows or z/OS, and have familiarity with CA IDMS and database access.

Use this document if you are a database administrator or system administrator, an
ODBC or JDBC application developer, or the end user of an application using CA IDMS
Server to access a CA IDMS database.

■ If you are a database administrator or end user, use this document to define data
sources to access CA IDMS data from a client application.

■ System administrators should use this document to set up a CA IDMS system for
access by CA IDMS Server.

■ If you are an application developer, use this document to understand how the
ODBC and JDBC Application Program Interfaces (APIs) requests are implemented by
CA IDMS Server.

Components

CA IDMS Server consists of both host and client components.

■ The host component is installed on your Central Version (CV) and performs license
verification to permit access to the CV from the client components.

■ The client components include the ODBC driver, the JDBC driver, the JDBC server,
the native SQL client interface, and, on Windows, CAICCI/PC. These components
have a client relationship with CA IDMS but from an application perspective, they
form part of the application server.

Components

12 User Guide

ODBC and JDBC Drivers

The ODBC and JDBC drivers translate industry standard SQL requests into the form used
by the native client interface. The native interface implements the same protocol used
by CA IDMS online and batch applications written in COBOL and ADS. It communicates
with CA IDMS from Windows and z/OS Unix System Services (USS) using CAICCI or
TCP/IP. CAICCI uses TCP/IP for Windows clients and Cross Memory Services for z/OS
clients.

ODBC Driver

The ODBC driver can be used on the Windows platform and implements the ODBC 3.5
specification. It also provides the functions defined in the ODBC 2.5 specification to
continue support for older applications.

The ODBC driver always calls the native CA IDMS SQL client interface directly. The native
interface uses CAICCI/PC to communicate with any supported release of CA IDMS
running on z/OS or z/VSE. This is referred to as the CCI Protocol in this document. It can
also use TCP/IP to communicate directly with CA IDMS r17, or later, referred to as the
IDMS protocol.

JDBC Driver

You can use the JDBC driver on Java 1.6 (or later) platforms, including those on
Windows, z/OS, Linux, and UNIX. The JDBC driver implements the JDBC 4.0 specification.

There are four types of JDBC drivers that differ in the way they communicate with the
database and whether they use native code on the client platform:

■ Type 1 JDBC driver—Uses an ODBC driver to communicate with the database.
ODBC drivers are always implemented in native code. The JDBC-ODBC Bridge is a
basic Type 1 driver that is rarely used now that database specific drivers are
available.

■ Type 2 JDBC driver—Invokes the native client interface to communicate with the
database.

Components

Chapter 1: Introduction 13

■ Type 3 JDBC driver—Uses a generic network protocol to communicate with a
middleware server that invokes the native client interface to communicate with the
database. It uses no native code on the client platform.

■ Type 4 JDBC driver—Communicates directly with the database using its proprietary
protocol. It uses no native code on the client platform.

The CA IDMS Server JDBC driver is a universal driver that can function as a Type 2, 3, or
4 driver on supported platforms depending only on the connection parameters
specified.

The JDBC driver can be used as a Type 2 driver on Windows and z/OS. It calls the native
SQL client interface, which can use CAICCI to communicate with any supported release
of CA IDMS running on z/OS or VSE. CAICCI uses TCP/IP from Windows and cross
memory services on z/OS.

The JDBC driver can be used as a Type 3 driver on any Java platform. It uses TCP/IP to
communicate with the JDBC server, which can run on any Java platform. When the JDBC
server runs on Windows or z/OS, it can invoke the native SQL client interface and CAICCI
to communicate with any supported release of CA IDMS running on z/OS or VSE. The
JDBC server can use TCP/IP from any Java platform to communicate directly with CA
IDMS r16 SP2 or later running on z/OS, VSE, or z/VM.

The JDBC driver can be used as a Type 4 driver on any Java platform. It uses TCP/IP to
communicate directly with CA IDMS r16 SP2 or later running on z/OS, VSE, or z/VM.

Components

14 User Guide

Server Architecture

The following diagram illustrates the way in which the CA IDMS Server software
components fit together when the client platform is Windows:

Both the ODBC and JDBC drivers are supported for Windows applications, represented
here by the web server. The Windows client and CA IDMS communicate using TCP/IP. In
this diagram the combination of the web server, Servlet, and ASP boxes represent the
applications. CA IDMS Server also supports traditional ODBC and JDBC client-server
applications.

Components

Chapter 1: Introduction 15

The following diagram illustrates how the CA IDMS Server software components fit
together when the client platform is z/OS:

The JDBC driver is supported for z/OS applications, represented here by the web server.
The z/OS client and host components communicate using Cross Memory Services.

The host components are the same whether the native client is installed on Windows or
z/OS.

Components

16 User Guide

The following diagram illustrates how the CA IDMS Server JDBC driver software
components fit together from any Java platform when used with CA IDMS r16 SP2 or
later:

The Type 4 JDBC driver and JDBC Server communicate from any Java platform directly to
the CV using TCP/IP.

Components

Chapter 1: Introduction 17

The following diagram illustrates how the CA IDMS Server ODBC driver software
components fit together from Windows when used with CA IDMS r17 or later:

The Wire Protocol ODBC driver communicates from Windows directly to the CV using
TCP/IP.

More Information

We recommend that you refer to the following documents when setting up your CA
IDMS system to work with CA IDMS Server:

■ CA IDMS Installation and Maintenance – z/OS Guide

■ CA IDMS System Generation Guide

■ CA IDMS System Operations Guide

■ CA IDMS Database Administration Guide

Components

18 User Guide

■ CA IDMS Database SQL Option Reference Guide

■ CA IDMS Database SQL Option Programming Guide

■ CA IDMS DML Reference - COBOL Guide

■ CA Common Services documentation

Information about ODBC is available from the Microsoft website. Information about
JDBC is available from Sun Microsystems' JavaSoft website: http://www.java.sun.com

http://www.java.sun.com/
http://www.java.sun.com/

Chapter 2: Preparing for Installation 19

Chapter 2: Preparing for Installation

This section contains the following topics:

Mainframe Software Prerequisites (see page 19)
z/OS Software Prerequisites (see page 19)
Linux Software Prerequisites (see page 20)
Windows Software Prerequisites (see page 20)
Java Runtime Environment (see page 21)
Delivery of Components (see page 22)

Mainframe Software Prerequisites

CA IDMS Server requires the installation of the CA IDMS SQL option. The host
component of CA IDMS Server is delivered on the CA IDMS installation media. CA IDMS
r16 SP2, or later, is required to use the Type 4 JDBC driver and distributed transactions.
CA IDMS r17, or later, is required to use the Wire Protocol ODBC driver. See the CA
IDMS Installation and Maintenance Guide for more information about installing CA
IDMS Server on the mainframe.

Use of the ODBC or JDBC driver with the CCI protocol requires the installation of the CA
Common Services components CAIENF (Event Notification Facility) and CAICCI (Common
Communications Interface) on the mainframe. For information about installing CAIENF
and CAICCI on the mainframe, see your CA Common Services documentation.

Note: The CA Common Services components are not required to use the Type 4 JDBC
driver or Wire Protocol ODBC driver.

z/OS Software Prerequisites

The JDBC driver and JDBC server run in the UNIX System Services (USS) environment on
z/OS. They must be installed and set up on the mainframe. The IBM SDK for z/OS Java 2
Technology Edition V1.6 or later must also be installed and available in the USS
environment. TCP/IP must be installed and configured correctly to use the JDBC server.
For more information about installing USS, TCP/IP, and the SDK, see IBM's
documentation.

Linux Software Prerequisites

20 User Guide

Use of Secure Sockets Layer (SSL) with CAICCI requires r2.1, or later, of CAICCI which is
part of CA Common Services r11 SP6. For more information, see the CA Common
Services documentation.

Use of SSL with the JDBC Type 4 driver or ODBC Wire Protocol driver requires z/OS r1.7,
or later, and Application Transparent - Transport Layer Security (AT-TLS). For more
information, see PIB QI83006 on http://ca.com/support.

Linux Software Prerequisites

The Java Runtime Environment (JRE) 1.6, or later, is required to use the CA IDMS Server
client on Linux and other platforms.

Windows Software Prerequisites

The CA IDMS Server client requires Microsoft Windows XP SP2, Windows Server 2003
SP1, Windows Vista, Windows Server 2008, or Windows 7. Java 1.6 or later is required
for JDBC support. CAICCI/PC and the ODBC Driver Manager are required to use the
ODBC driver. Both 32 and 64 bit editions of Windows are supported.

CAICCI/PC

CAICCI/PC provides a common interface between CA IDMS Server and the TCP/IP
protocol. CAICCI/PC r2.1 and higher supports SSL when communicating with an
SSL-enabled mainframe CCITCP address space on z/OS. CAICCI/PC is distributed on the
CA Common Services tape for your mainframe operating system. The 32-bit version
CAICCI/PC is included on the CA IDMS Server installation CD as part of the CA IDMS
Server installation for the Windows 32-bit editions. The 64-bit version of CAICCI/PC is
installed automatically with the 64-bit ODBC driver on Windows 64-bit editions.

CAICCI/PC must be installed to use ODBC with versions of CA IDMS prior to r17 or to use
JDBC with versions of CA IDMS prior to r16 SP2. It is not necessary to install CAICCI/PC
on client workstations which use the ODBC Wire Protocol or JDBC Type 3 or Type 4
drivers.

Note: For more information about CAICCI/PC, see the appropriate CA Common Services
manual.

http://www.ca.com/support
http://www.ca.com/support

Java Runtime Environment

Chapter 2: Preparing for Installation 21

ODBC Driver Manager

The ODBC Driver Manager provides the link between ODBC-enabled applications and
ODBC drivers and is required by the ODBC driver.

The ODBC Driver Manager is not required to use the JDBC driver, but it may be
convenient to use the ODBC Administrator included with it to define connection
information used by the Type 2 JDBC driver.

The ODBC Driver Manager is installed automatically by many Microsoft products,
including Windows, Office, and Internet Explorer. It is also included in the Microsoft
Data Access Components (MDAC), along with ActiveX Data Objects, the OLE DB Provider
for ODBC, and updated ODBC drivers for Microsoft SQL Server, Microsoft Access, and
Oracle. Additional information about ODBC and MDAC is available from the Microsoft
website.

The latest version of MDAC can be downloaded (at no cost) directly from the Microsoft
website (www.microsoft.com).

Java Runtime Environment

A Java Virtual Machine (JVM) is an interpreter that executes Java programs, which are
stored on disk as class files. CA IDMS Server r17 conforms to the JDBC 4.0 specification
and requires a Java 1.6 or later JVM.

The JVM is delivered in the Java Runtime Environment (JRE). The JRE is suitable for
deploying applications. A Java Software Development Kit (JDK) is required to develop
applications. The JDK includes the JRE and is available from Sun Microsystems. The JRE is
available as a free download from Sun Microsystems (www.java.sun.com) and IBM
(www.ibm.com).

The Microsoft Java VM supports Java 1.1 and JDBC 1.2. It cannot run class files compiled
with Java 1.2 or later. The class file format is incompatible and necessary run-time
classes are missing. For these reasons, the Microsoft Java VM is not compatible with CA
IDMS Server r17.

The Sun Java Plug-In is required to use the JDBC driver with applets running in Internet
Explorer. The Java Plug-In is installed with the Sun JRE.

Note: For detailed information about CA IDMS Server conformance to the JDBC
standard, see the chapter "JDBC Programmer Reference." Additional information about
JDBC and Java is available from Sun Microsystems' website: http://www.java.sun.com

http://www.java.sun.com/
http://www.java.sun.com/

Delivery of Components

22 User Guide

Installing the Java Runtime Environment

The Type 4 JDBC driver performs all data conversion on the client platform, using the
character converter classes provided by the Java Runtime Environment (JRE). The JRE
includes converter classes for most of the character encodings in use around the world.
However, by default, the JRE installer installs only European language support on
machines that support only European languages. The mainframe encodings based on
EBCDIC, such as Cp037, are not included.

The JDBC driver includes built-in support for Cp037 and Cp1047. For other mainframe
character sets, include the complete set of character encodings when installing the JRE
by selecting the Custom option and then Support for Additional Languages.

This is generally not necessary when using the JRE included with the Java Software
Development Kit (JDK), which includes charsets.jar.

Note: For details on managing SSL certificates and keystores for JDBC Type 3 and 4
drivers, see Sun's documentation on JSSE, the Java Secure Sockets Extension.

Delivery of Components

Delivery of the software components utilized by CA IDMS Server is shown in the
following table:

Software Component Base Product Installation Medium

CA IDMS Server
ODBC and JDBC drivers

CA IDMS Server CA IDMS Server CD

CAICCI/PC CA Common Services Base product tape or
CA IDMS Server CD

CAICCI and CAIENF CA Common Services Base product tape

CA IDMS CA IDMS CA IDMS tape

CA IDMS Server
(host component)

CA IDMS Server CA IDMS tape

ODBC Driver Manager MDAC Download

Java Virtual Machine JRE or JDK Download

Chapter 3: Setting Up Your System 23

Chapter 3: Setting Up Your System

This chapter describes the mainframe procedures necessary to establish
communications between Windows applications and CA IDMS using CA IDMS Server,
and provides information to help you access existing CA IDMS databases. Also included
is a description of how network records appear to SQL, and information about numeric
data and pseudo-conversational processing.

This section contains the following topics:

Installing the Host Component (see page 23)
Setting Up CA IDMS Server (see page 24)
Defining the CA IDMS System Using CAICCI (see page 25)
Defining the CA IDMS System Using TCP/IP (see page 27)
Setting Up Database Access (see page 29)
Passing Auditing Information to CA IDMS (see page 36)
Handling Invalid Numeric Data (see page 41)
Pseudo-Conversational Processing (see page 42)
Configuring Secure Sockets (see page 43)
Configuring Timeouts (see page 45)

Installing the Host Component

CA IDMS Server is licensed on the mainframe. For CA IDMS r17 and earlier it is enabled
by linking an object module, RHDCD0LB with the CAICCI line driver, RHDCD0LV, and the
CA IDMS Server listener, IDMSJSRV. The object module is delivered on the CA IDMS tape
for r15.0 and later.

Setting Up CA IDMS Server

24 User Guide

Setting Up CA IDMS Server

Each CV to be accessed by CA IDMS server must be generated with the following
definitions:

■ A CCI line to use the ODBC driver or JDBC driver with the CCI protocol.

■ A CASERVER task for the CCI line

■ A TCP/IP line to use the ODBC or JDBC deriver with the IDMS TCP/IP protocol.

■ A listener PTERM for the TCP/IP line

■ An IDMSJSRV task for the TCP/IP line

■ A PTERM/LTERM pair for each concurrent connection on each line

■ The SQL definitions in the catalog area of the dictionary associated with the CA
IDMS database

■ The startup JCL may also need to be modified for the TCP/IP line.

The following sections describe the procedure to define the CA IDMS system generation
parameters to support communications using CA IDMS Server.

The examples in this chapter assume that CA IDMS Server is used to access two sample
CA IDMS systems, System 81 and System 82, from a PC.

An Inventory dictionary, INVDICT, is associated with System 81. Associated with System
82 is BENEDICT, a Benefits dictionary. INVDICT and BENEDICT contain the definitions of
the tables to be accessed from the PC. Data source definitions on the PC refer to the
mainframe dictionary names.

Note: For detailed information about these system generation statements and how to
use the system generation compiler, see the CA IDMS System Generation Guide. For
detailed information about configuring and maintaining CA IDMS systems including
startup JCL, see the CA IDMS System Operations Guide.

Defining the CA IDMS System Using CAICCI

Chapter 3: Setting Up Your System 25

Defining the CA IDMS System Using CAICCI

CAICCI provides communication between mainframes or between mainframes and PCs.
CAICCI r2.1 and higher provides Secure Sockets Layer (SSL) support for the ODBC and
JDBC drivers. The following diagram illustrates the sample CA IDMS system network
using CAICCI:

Defining a CCI Line

A CAICCI line connects a CV with the CAICCI network. Define a CAICCI line in each CA
IDMS system to be accessed by CA IDMS Server.

Add one CAICCI line, plus a physical terminal (PTERM) and logical terminal (LTERM) pair
for each concurrent connection with the CA IDMS system.

Each ODBC or JDBC connection uses one PTERM/LTERM pair. For example, if you have a
single PC running a World Wide Web server application, and you want to support
concurrent access to CA IDMS by 25 World Wide Web browser clients, define 25
PTERM/LTERM pairs.

Defining the CA IDMS System Using CAICCI

26 User Guide

Example:

The following example defines a CAICCI line for System 81. The LINE, PTERM, and LTERM
statements define a CAICCI line with two physical terminals, allowing two PC users to be
logged on to System 81 at the same time:

ADD SYSTEM 81

 SYSTEM ID IS SYST0081.

ADD LINE CCILINE

 TYPE IS CCI.

ADD PTERM PTECCI01

 TYPE IS BULK.

ADD LTERM LTECCI01

 PTERM IS PTECCI01.

ADD PTERM PTECCI02

 TYPE IS BULK.

ADD LTERM LTECCI02

 PTERM IS PTECCI02.

Creating the CASERVER Task

The TASK statement defines a task and its characteristics, including the code used to
invoke the task. The default task code is CASERVER. You can override the default task
code if you want to control resources per user or to apply additional security.

The CASERVER task code is similar to the RHDCNP3S task code, which controls the
resource limits and time-out values for CA IDMS external user sessions.

To define a CASERVER task code

1. From the system-generation compiler, enter this command:

DISPLAY TASK RHDCNP3S AS SYNTAX.

The system-generation compiler displays the definition of the RHDCNP3S task code.

2. Erase the DISPLAY TASK statement at the top of the screen.

3. Change the name of the task code, RHDCNP3S, to CASERVER (or the task code name
you have chosen). Modify the task definition to add the INTERNAL parameter, if it is
not already there, and to set an appropriate value, in seconds, for the EXTERNAL
WAIT parameter for your users (for example, set 1800 for a 30-minute wait).

Note: If you do not define a CASERVER task code, CA IDMS uses the RHDCNP3S task
code to define the characteristics for a CA IDMS Server session.

Defining the CA IDMS System Using TCP/IP

Chapter 3: Setting Up Your System 27

Defining the CA IDMS System Using TCP/IP

TCP/IP provides direct connection between a client system using the JDBC type 4 driver
and CA IDMS r16 SP2 or later, or using the ODBC wire protocol driver and CA IDMS r17
or later. The following diagram illustrates the sample CA IDMS system network using
TCP/IP:

Updating the System Startup JCL

For DNS functions to operate correctly, a SYSTCPD card must be added to the central
version JCL.

Defining a TCP/IP Line

Define a TCP/IP line in each CA IDMS system to be accessed by CA IDMS Server.

Add one TCP/IP line, a listener PTERM, plus a physical terminal (PTERM) and logical
terminal (LTERM) pair for each concurrent connection with the CA IDMS system.

Define the listener PTERM/LTERM pair for the built-in server program, IDMSJSRV. This
PTERM must specify the RHDCNP3J task defined during installation, SYSTEM mode, and
the port used by the driver. The default port used by the drivers and registered with the
Internet Assigned Number Authority (IANA) for CA IDMS is 3709. This can be used if only
a single DC/UCF system is used on the host machine. Otherwise, a recommended
convention is to append the system number to 37. The listener PTERM should also
specify a secured task.

Each JDBC or ODBC connection uses one PTERM/LTERM pair.

Defining the CA IDMS System Using TCP/IP

28 User Guide

Example:

The following example defines a TCP/IP line for System 81. The LINE, PTERM, and LTERM
statements define a TCP/IP line with 100 physical terminals, allowing 100 concurrent
JDBC or ODBC connections.

ADD LINE TCPIP

 TYPE IS SOCKET

 MODULE RHDCD1IP.

ADD PTERM TCPJSRV

 TYPE IS LISTENER

 PORT IS 3781

 TASK IS RHDCNP3J

 MODE IS SYSTEM

 PARM IS 'TASK=IDMSJSRV'.

ADD LTERM TCLJSRV

 PTERM IS TCPJSRV.

ADD PTERM TCP0001

 TYPE IS BULK

 REPEAT COUNT IS 99.

ADD LTERM TCL0001

 PTERM IS TCP0001.

The TCP/IP line can support SSL using the AT-TLS facility of z/OS 1.7 and later. For more
information, see PIB QI83006 on supportconnect.ca.com.

Creating the IDMSJSRV Task

You must grant execute authority on task RHDCNP3J to group PUBLIC or all groups
because the line driver invokes it before the user id and password are received.
Alternatively, you can turn off security for task RHDCNP3J by including an entry in the
SRTT.

The task specified in the listener PTERM definition PARM string can be restricted to
specific users or groups. IDMSJSRV is a sample task that is similar to the RHDCNP3J task
that can be secured. You can also define and secure a different task code and override it
at runtime.

Note: For more information about securing tasks, see the CA IDMS Security
Administration Guide.

Setting Up Database Access

Chapter 3: Setting Up Your System 29

Setting Up Database Access

The ODBC and JDBC drivers use dynamic SQL to access a CA IDMS database from an
ODBC or JDBC application. Both the SQL Option and the host component of CA IDMS
Server must be installed on the CV. The database can be defined using the Schema
compiler or SQL Data Description Language (DDL). In either case, you must include the
appropriate SQL definitions in the dictionary associated with the CA IDMS system. The
SQL definitions reside in the catalog area of the dictionary.

Setting Up SQL Access

The following suggestions are useful when setting up SQL access to CA IDMS databases:

■ To access a non-SQL-defined database using SQL, define an SQL schema that
identifies the network schema and the segment where the data is stored. The
network schema must conform to the rules described throughout this chapter.

■ If the application does not qualify table references with schema names, define one
or more CA IDMS/DC profiles that set a default schema name. You may need to ask
your Database Administrator (DBA) for assistance.

■ To limit the size of the list of tables returned by the driver metadata functions,
create an Accessible Tables View that returns a subset of the default view, and set it
as an option for a specific data source. Using such a view of accessible tables can
generate a more meaningful list of tables for each user and improve performance.

■ Define views in the catalog to provide easy access to non-SQL-defined databases or
application-specific data. For example, consider using a view when joining tables
using the set-name condition. However, if you choose to do so, remember that
views created by joining two or more tables cannot be updated.

■ Implement table procedures to provide easy access to non-SQL-defined databases
or application-specific data. For example, consider using a table procedure to
navigate a complicated network database. Table procedures can also be used to
update databases.

Setting Up Database Access

30 User Guide

Utilizing Page Groups

A page group is a physical database definition attribute set by the database
administrator during database definition. The catalog and the target database can be in
different page groups. Unless the Mixed Page Group feature of CA IDMS is activated,
tables from mixed page groups cannot be accessed with a single request. Additionally,
once a table from one page group has been accessed, a COMMIT command must be
issued before a table from a different page group can be accessed.

To use data sources defining data from mixed page groups:

■ Define a different data source and a different Accessible Tables View for each page
group when the catalog contains definitions of tables from mixed page groups. Each
Accessible Tables View should include tables from a single page group so that the
end user cannot accidentally access mixed page groups after a table list function is
performed.

■ Use the Automatic Commit option when accessing tables in different page groups.

Note: Automatic Commit is enabled by default, and can be disabled using an ODBC
or JDBC function.

Mixed page groups are supported starting with CA IDMS r14.1, so these restrictions do
not apply when the data source is on a 14.1 or later system and the Mixed Page Group
Binds feature has been activated.

Note: For more information about using page groups, see the CA IDMS Database
Administration Guide - Volume 1.

Setting Up SQL Access to Non-SQL Databases

This section reviews the transformations used by the SQL engine when reading
definitions of non-SQL records. When using SQL to access non-SQL records, the entity
names coded in the SQL syntax must follow the conventions described in the following
sections.

Setting Up Database Access

Chapter 3: Setting Up Your System 31

Accessing Non-SQL Records Using SQL Statements

To reference an SQL table in SQL statements, code the table name preceded by a
schema name qualifier. For example, in this statement:

SELECT * FROM DEMOSCH.SAMPLE

SAMPLE is the table name and DEMOSCH is the SQL schema in which it is defined.

The combination of schema name and table name allows the SQL compiler to look up
the definition of the table in the SQL catalog.

To access a non-SQL record from an SQL statement, code the record name in the same
way. Define an SQL schema that maps to the corresponding non-SQL schema, and use
the SQL schema name to qualify all subsequent references to non-SQL records in SQL
DML statements. For example:

CREATE SCHEMA SQLNET

FOR NONSQL SCHEMA PRODDICT.CUSTSCHM;

SELECT * FROM SQLNET."ORDER-REC";

Note: For more information about defining SQL schemas, see the CA IDMS Database
SQL Option Reference Guide for syntax and information about accessing non-SQL
databases and CA IDMS Database Administration Guide for process-related information.

Transforming Non-SQL Record and Set Names

Non-SQL record and set names may contain embedded hyphens, which are allowed in
the naming conventions for non-SQL schemas, but not in the naming conventions for
SQL schemas. To use record and set names with embedded hyphens in an SQL
statement, enclose the names in double quotes, for example, "CUST-REC-123."

Transforming Non-SQL Element Names

In non-SQL element names, CA IDMS automatically transforms embedded hyphens to
underscores when they are referenced through SQL. For example, to access the
CUST-NUMBER element in a non-SQL record, you must code CUST_NUMBER in an SQL
statement.

Setting Up Database Access

32 User Guide

Creating SQL Synonyms

When a FOR LANGUAGE SQL synonym is defined for a non-SQL record, CA IDMS uses
the element synonyms for all SQL access. SQL synonyms are used only for element
names.

Defining SQL synonyms for non-SQL records is sometimes the only way to overcome
column name limitations within SQL. Some non-SQL element names do not make
satisfactory SQL column names, even after hyphens are changed to underscores. For
example, if a non-SQL element name begins with a numeric character, you must still use
double quotes around the element name. For example, to access 123-ORD-NUM, you
would code "123_ORD_NUM" in an SQL statement.

Elements that cannot be Transformed

Group elements, REDEFINES elements, FILLERS, and OCCURS DEPENDING ON elements
are not available for access by SQL. To the SQL user, it is as if these elements were not
defined in the non-SQL record. The subordinate elements of a group definition are
available for access, as are the base elements to which a REDEFINES is directed.

Setting Up Database Access

Chapter 3: Setting Up Your System 33

Fixed OCCURS Element Definitions

Although OCCURS…DEPENDING ON declarations are not available for SQL access, fixed
OCCURS definitions are available. To the SQL user, a fixed OCCURS element appears as
one column for each occurrence of the element. The column name for each occurrence
is the original element name followed by an underscore and an occurrence number. If
the element is declared with multiple OCCURS levels, the corresponding column names
contain one underscore and one occurrence number for each dimension of the OCCURS
declaration.

For example, the element definition BUD-AMT OCCURS 12 TIMES generates the
following column names:

BUD_AMT_01, BUD_AMT_02, BUD_AMT_03...BUD_AMT_12.

Note: The occurrence number attached to the column name must be large enough to
accommodate the largest subscript from the corresponding element definition.

The base element name, combined with the appended occurrence information, cannot
have more than 32 characters. If it does, you must define an SQL synonym for the
non-SQL record.

Although the CA IDMS SQL implementation allows 32-character column names, other
SQL implementations restrict column names to 18 characters. Some ODBC client
software, in particular, may require SQL synonyms for non-SQL records to limit the size
of the transformed column names to 18 characters.

Note: Another way to define shorter names is to create a view of the record and specify
view column names.

Setting Up Database Access

34 User Guide

Defining Keys

To access a control-key definition (of a CALC, INDEX, or sorted set) using SQL, the
control-key definition must not include a FILLER element. If it does, change the non-SQL
record definition, assigning a name other than FILLER to the elements in question.

Additionally, the control-key definition cannot incorporate the subordinate elements of
a group level REDEFINES when these elements are smaller in size than the base element
being redefined, as in the following example:

02 ELEM1 PIC X(8).

02 ELEM1REDEF REDEFINES ELEM1.

03 ELEM1A PIC S9(8) COMP.

03 ELEM1B PIC S9(8) COMP.

An error occurs if ELEM1A and ELEM1B are used in the control key definition, because
they are smaller than the element they redefine (although combined they are equal to
ELEM1). When this condition occurs, change the redefining group, which contains the
smallest subordinate elements, into the base-element definition. Use the base-element
definition in the control key specification. For example, ELEM1REDEF should be the
base-element definition in the sample above, and ELEM1 should be coded so that it
redefines ELEM1REDEF.

Note: For more information about accessing non-SQL-defined databases using SQL, see
the CA IDMS Database SQL Option Reference Guide.

Setting Up Database Access

Chapter 3: Setting Up Your System 35

Defining Sets as Referential Constraints

Because members of sets usually do not contain foreign keys that reference the owner
record, the set specification statement can be used to include the set name in the join
criteria for two non-SQL records. For example:

SELECT M.NAME FROM OWNER O, MEMBER M

 WHERE O.NAME='BILL' AND "OWNER-MEMBER"

■ The schema compiler SET definition PRIMARY KEY and FOREIGN KEY options can be
used to define primary and foreign keys for non-SQL records. Adding foreign keys to
set definitions provides several advantages for applications that use SQL and can
enhance the compatibility of CA IDMS with tools that build SQL applications.

■ Referential integrity is enforced when SQL is used to update non SQL records.

■ Standard SQL predicates can be used in join statements.

■ Standard JDBC and ODBC foreign key metadata APIs can be used to discover
relationships between non-SQL records accessed using SQL.

■ The foreign key columns must be elements in the member record. If these elements
are added to an existing record, you must restructure the database, populate the
foreign key fields, and recompile network applications that reference the member
record.

■ Network applications that STORE or CONNECT members in the set must update the
foreign keys to maintain referential integrity. You can use subschema views that do
not include the added fields to minimize changes to programs that do not access
the foreign keys.

Note: For more information about modifying set definitions, see the CA IDMS Database
Administration Guide.

Setting up Catalog Views

Both ODBC and JDBC provide metadata APIs that return information about schemas,
tables, columns, and indexes from the SQL catalog. CA IDMS Server uses table
procedures and views in the SYSCA schema to access catalog information. Typically,
these are installed into the catalog when CA IDMS is installed. Additional views may
require definition, depending on the version of CA IDMS you use.

Passing Auditing Information to CA IDMS

36 User Guide

SYSCA.ODBC_INDEX

This table procedure is used to return index and CALC key information for network
records as well as SQL tables. The ODBC driver uses this table procedure to implement
the SQLStatistics, SQLSpecialColumns, SQLPrimaryKeys, and SQLForeignKeys functions. If
this table procedure is not installed, the ODBC driver queries the catalog SYSTEM.INDEX
and SYSTEM.INDEXKEY tables, and returns information only for SQL defined tables.

The JDBC driver uses this table procedure to implement the corresponding
DatabaseMetaData.getIndexInfo, getBestRowIdentifer, getPrimaryKeys,
getExportedKeys, getImportedKeys, and getCrossReference methods. This table
procedure is required for JDBC support.

This table procedure is defined for all releases since Genlevel 9506 of CA IDMS 12.01.

SYSCA.ACCESSIBLE_ SCHEMAS

This view returns a list of schemas containing tables accessible to the user. It is used by
the JDBC driver to implement the DatabaseMetaData.getSchemas method, and is
required for JDBC support. The ODBC driver does not use this view. This view is defined
for releases after CA IDMS r15.0.

SYSCA.ACCESSIBLE_PROCS

This view returns a list of procedures. It is used by the JDBC driver to implement the
DatabaseMetaData.getProcedures method and by the ODBC driver SQLProcedures
function. This view is defined for CA IDMS r16.0 and later.

Defining Catalog Views

These views are added to the catalog when you upgrade CA IDMS and follow the
instructions for upgrading the catalog. DDL to create them is also provided in the file
accviews.txt, which is installed in the Java subdirectory on Windows, and the product
installation root directory on other platforms. These views should be defined in all
catalogs that are accessed using CA IDMS Server.

Passing Auditing Information to CA IDMS

You can use CA IDMS Server to pass auditing information from the client to the CA IDMS
system. This auditing information includes be site-defined accounting information
supplied when the application connects to the database and the user identity as is it
known to the application, which may be different from the user id used to sign on to CA
IDMS.

Passing Auditing Information to CA IDMS

Chapter 3: Setting Up Your System 37

Supplying Accounting Information

You can supply as many as 32 bytes of accounting information using one of the following
methods:

■ Enter the value in the Account field of the ODBC DriverConnect dialog.

■ Pass the value as a connection attribute with the key ACCT to the ODBC
SQLDriverConnect function.

■ Pass the value as a DriverPropertyInfo object with the key acct to the JDBC
DriverManager.getConnection method.

■ Pass the value as an IdmsDataSource property.

The first character of accounting information must be a space or the information must
be ignored.

Note:

■ For information about the ODBC DriverConnect dialog, see the chapter "Using the
Client on Windows."

■ For information about the ODBC SQLDriverConnect connection string, see the
chapter "ODBC Programmer Reference."

■ For information about the JDBC DriverManager getConnection method, see the
chapter "JDBC Programmer Reference."

Using Accounting Information

The supplied accounting information is passed to the back end, and is stored in an area
accessible from the PTE for use by accounting and security exits.

For example, the information could be used by either exit 4 or 5 to change header
information in the statistics block described by #STRDS.

The following table describes how the accounting data can be found:

Field Name Control Block Comments

TCELTEA TCE Points to the LTE. Determine whether it is a
CAICCI-related LTE (type is LTEBULK).

LTEPTEA LTE Points to the PTE.

PTELACCT PTE Points to a 32-byte accounting information area. This
area must be binary zeros if no accounting
information was passed from the PC or if the front
end is not a PC.

Passing Auditing Information to CA IDMS

38 User Guide

When using the Type 4 JDBC driver with CA IDMS r16 SP2 or later, you can add this
information to the user profile at sign on. Define a system or user profile attribute and
specify the ACCT=profile-key-name option in the listener PTERM definition. This allows
SQL statements to access the accounting information using the PROFILE function.
Procedures written in COBOL or CA ADS can use the IDMSIN01 GETPROF callable service
to access the accounting information.

Note:

■ For more information about programs invoked by user exits, see the CA IDMS
System Operations Guide.

■ For more information about field names in various IDMS control blocks, see the CA
IDMS DSECT Reference Guide.

■ For information about defining the listener for the Type 4 JDBC driver, see the
"Setting Up Your System" chapter and the CA IDMS System Generation Guide.

Example

The following is sample code for locating accounting information:

USING TCE,R9

L R5,TCELTEA Get the LTE

USING LTE,R5

CLI LTETYP,LTEBULK Is this a BULK type

BNE RETURN No....Return

L R6,LTEPTEA Get the PTE address

USING PTE,R6

L R7,PTELACCT R7 points to 32-byte area

Setting the External Identity

The user of a web-based application is typically an external user or customer who logs
on to the application using an identity manager such as CA SiteMinder. The external
user identity used to sign on to the web application is generally not the user ID used to
access the back end database. Instead, a generic user ID associated with the application
is used by all connections initiated by the application. CA IDMS Server and CA IDMS can
record the external user identity in the journal when a transaction is started. This
provides an end-to-end audit trail that correlates database activity with the external
users who initiate each transaction.

Passing Auditing Information to CA IDMS

Chapter 3: Setting Up Your System 39

When running in an application server managed by CA SiteMinder, the JDBC driver gets
the external identity from the SiteMinder Application Server Agent when a new
transaction is started. If this identity has changed since the last transaction, the driver
sends it to CA IDMS.

You can set an external user identity in a standalone JDBC application using the
IdmsConnection setIdentity method. You can set the external user identity in an ODBC
application using the SQLSetConnectAttr function with the
IDMS_ATTR_EXTERNAL_IDENTITY attribute type.

Notes:

■ For more information about CA SiteMinder and CA IDMS prerequisites, see the
chapter "Preparing for Installation."

■ For more information about enabling identity auditing, see the chapter "JDBC
Programmer Reference."

■ For more information about using other identity managers, see the appendix
"Properties File Information."

■ For more information about driver-specific attributes, see the chapter “ODBC
Programmer Reference."

Auditing the External Identity

When an external identity has been set for the user session, CA IDMS includes its value
along with actual user ID in the BGIN transaction journal record. Journal reports can be
used to audit this information.

Passing Auditing Information to CA IDMS

40 User Guide

Journal Analyzer Chronological Event Report

The report for the BGIN record includes the external user identity, if present.

--------EVENT--------- ----------IDENT--------- ---QUIESCE LVL/USER/EXT ID –-

TIME TYPE DURATION RUN UNIT PROGRAM

hh:mm:ss BGIN 1633 JAVAPROG ONL X

JREPORT 000

Supports a REC card that allows the use of the external identity as selection criteria
when running existing JREPORTs.

JREPORT 008

Displays the external identity information when reporting the BGIN record.

BGIN TECHDC30 12/27/05 20.07.13.56 529276 170604 ….

 USER ID EXTERNAL ID

 ABBWI01 BILL2007

JREPORT 010

Lists the user ID, external identity, date, time, program name, and run unit id. This
provides enough information to run JREPORT 008 with SELECT criteria to provide
details on any activity involving a particular user.

REPORT NO. 10 IDMS JOURNAL REPORTS R16.0

 JREPORT 010 EXTERNAL USER IDENTITY JOURNAL REPORT

 USER EXT TRANSACT PROGRAM LOCAL LOCAL

 ID ID IDX NAME DATE TIME

 ABBWI01 JACK2006 5 IDMSJDBC 12/22/05 14.19.29.66

 USER ID NOT CAPTURED EXT ID NOT CAPTURED 6 IDMSDDDL 12/22/05 14.19.29.67

 ABBWI01 EXT ID NOT CAPTURED 7 RHDCRUAL 12/22/05 14.19.29.68

 NO USER SIGNON 8 RHDCRUAL 12/22/05 14.19.29.69

 ABBWI01 SUSIE666 9 JAVAPROG 12/22/05 14.19.29.70

 C750009 RECORDS WRITTEN FOR REPORT 10 -- 8

Note: For more information about running and interpreting journal reports, see the CA
IDMS Reports Guide and the CA IDMS Journal Analyzer User Guide.

Handling Invalid Numeric Data

Chapter 3: Setting Up Your System 41

Handling Invalid Numeric Data

One of the most useful features of CA IDMS is its ability to access network records using
SQL. These network records are often redefined and have multiple formats, causing
problems when data in a record occurrence is not in the correct format for the type of
the SQL column derived from the network schema record definition. In particular,
decimal fields are sometimes redefined as character fields. They can contain spaces, low
values, or other data that is not a valid packed or zoned decimal value. This violates the
data integrity provided by the CA IDMS SQL Option, which ensures that data stored in an
SQL table is valid for the column type.

In this situation, an application like the Online Command Facility (OCF), with direct
access to the fetch buffer returned by CA IDMS, can display a special indicator for the
value (for example, a string of asterisks). Interfaces like ODBC and JDBC, however, are
expected to convert the data to the format requested by the application, and data
integrity is assumed.

CA IDMS Server provides an Invalid Decimal option to handle this situation, allowing the
client to specify what the ODBC and JDBC drivers should return to the application when
invalid data is received from CA IDMS. Options are:

Return Error

(Default) Drivers return an error to the application. The ODBC driver returns
SQL_ERROR to the application, which can use the SQLError function to retrieve the
associated error message. The JDBC driver returns a SQLException containing the
error message. No value is returned in the output buffer provided by the
application.

Return Null

The drivers attempt to return NULL for the column value. The ODBC driver sets the
length/indicator value to SQL_NULL_DATA. It returns an error if the pointer to the
length/ indicator buffer supplied by the application is 0. The JDBC driver returns
either 0 or null, as specified by the ResultSet.getXXX method, or true for
ResultSet.wasNull. The drivers attempt to return NULL even if the column in the
result set is NOT NULL.

Return 0

The driver always returns zero. This can be useful when the application does not
provide a length/indicator buffer for a column that is NOT NULL.

Ignore

The value returned to the application is undefined. This option is provided for
compatibility with previous versions of the ODBC driver, and is not supported by
the JDBC driver.

The ODBC driver prints a message to the log when tracing is enabled, no matter which
option is selected.

Pseudo-Conversational Processing

42 User Guide

The Return Null option does not work if the application does not check for a NULL value
when the result set column is defined as NOT NULL. By default, an SQL column returned
for a network record is treated as NOT NULL because there is no NULL indicator field in
the database. Since a result set column that is an expression does allow NULL values,
one solution is to enclose the column name in a VALUE scalar function, as in the
following example:

SELECT VALUE(WARD_TOTAL_0430) FROM EMPDEMO."HOSPITAL-CLAIM"

This forces CA IDMS to build a result set that includes a NULL indicator for the
WARD-TOTAL-430 field in the HOSPITAL-CLAIM network record, and the drivers report
that the column allows NULL values.

It may be convenient to define views on network records that wrap DECIMAL and
NUMERIC columns in VALUE functions, at least when the database is known to contain
invalid data.

Pseudo-Conversational Processing

CA IDMS Server uses pseudo-conversational processing to minimize resource use on the
CA IDMS system. The ODBC and JDBC drivers support pseudo-conversational processing
by automatically issuing an internal SUSPEND command, which causes the current task
to end, freeing resources on the CA IDMS CV.

By default, pseudo-conversational processing is optimized for interactive applications, in
which a user enters a command and then works with the results for a while before
entering another command, similar to the way an on-line application would be used.
The drivers suspend the connection and end the task after most SQL commands.

You can customize this behavior can be by selecting a "suspend strategy" that specifies a
set of suspend options appropriate for a particular type of application. These suspend
strategies are:

■ Interactive—Intended for use by applications with a user interface, in which
database activity and user input are intermixed. The driver suspends the connection
when the transaction is committed. This is the default strategy for ODBC and
non-pooled JDBC connections.

■ Service—Intended for use by JDBC applications that run in an application server
that pools connections and allocates them temporarily to units of work that that
access the database one or more times without waiting for user input. The driver
suspends only when it determines that the connection is idle. This is the default for
pooled JDBC connections. It is of limited use for ODBC applications, since the ODBC
driver manager does not notify the driver when a connection is returned to the idle
pool.

Configuring Secure Sockets

Chapter 3: Setting Up Your System 43

■ Batch—Intended for use by applications access the database many times and
terminate without waiting for user input. The driver does not use
pseudo-conversational processing at all.

■ Custom—Intended for compatibility with previous releases. The driver's behavior is
determined by the options specified in the Windows registry, or equivalently, in the
USS configuration file or Java properties file. These options are documented in the
appendices.

The following table shows the detailed suspend options that correspond to each
strategy, 0 = disabled, 1 = enabled, X = either:

Option Strategy

 INT SER BAT CUS

ConnectSuspend 0 1 0 X

CloseCommit 1 1 0 X

CommitSuspend 1 0 0 X

FetchSuspend 0 0 0 X

Configuring Secure Sockets

You may need to install certificates to use SSL with both the ODBC and JDBC drivers.
Certificates are used to prove the identity of one or both parties in a secure socket
connection. Certificates are stored in a database called a keystore by the Java
implementation of SSL. Other implementations may use different terms for the
certificate database, for example, mainframe security systems call it a keyring.

The SSL software used within the IDMS ODBC driver does not use a keyring or a keystore
per-se, but simply requires you to name both the Client and Server certificate, as well as
a common certificate directory where all signing certificates must reside.

A certificate that has been signed by a recognized Certificate Authority (CA) is
automatically trusted by the SSL implementation.

Configuring Secure Sockets

44 User Guide

Certificates on the Client System

If your server does not have a certificate signed by a Certificate Authority, you must
install the server's certificate as a trusted certificate in the client keystore. If your server
requires client authentication, you must install the client certificate in the client
keystore.

Sample certificates have been provided in the CA IDMS Server 'certificates' sub-directory
that you can use for both Server and Client authentication. The certificates are:

■ JSRVCERT—Server Certificate

■ JCLICERT—Client Certificate

Several different versions (or formats) of these certificates have been included for use
with the ODBC driver, JDBC Driver, and for importing on the mainframe. The file
extensions for these versions are:

■ .PEM—(Privacy Enhanced Mail) Base64 encoded certificates. These certificates are
suitable for use with the ODBC Driver when used with the 'IDMS' communicatios
protocol.

■ .CERTDER.CER—Public-Key Infrastructure (X.509), or PKIX, certificates. These
certificates are suitable for use with the JDBC Driver.

■ .CER - DER encoded PKCS#12 package certificates. These certificates were used to
create the '.PEM'-format certificates, and are suitable for importing onto the
keyring on the mainframe.

All certificates contain encoded data and should always be transmitted in BINARY mode.

Certificates on the Server

You must install the server certificate in the server's certificate database (keystore,
keyring, or equivalent). If your server requires client authentication and your client does
not have a certificate signed by a recognized CA, you must install the client certificate as
a trusted certificate in the server's keystore or keyring.

Certificate Administration

You can administer certificates on the client and server by using the tools described in
this section.

Configuring Timeouts

Chapter 3: Setting Up Your System 45

JDBC Driver

Use the keytool utility supplied with the JDK tools to maintain the Java keystore file for
standalone Java applications using the JDBC driver and for the JDBC server. Define
system properties on the Java command line to specify the keystore at run time. For
more information, see the JDK Tools documentation on java.sun.com. Refer to the
vendor's documentation on how to specify the keystore file when running a Java
application in an application server such as Websphere or Weblogic.

ODBC Driver

All certificates used by the CA IDMS ODBC driver must be in PEM format. If you wish to
use your own certificates (generated on the mainframe for example), then you can use
the openssl utility to convert your certificate from PKCS12DER format to PEM format.
The openssl utility is provided with the CA IDMS Server installation, and can be found in
the CA IDMS Server installation directory. An example of the openssl command to
perform this conversion follows:

openssl pkcs12 -in C:\temp\PKC12DER.CER -out C:\temp\PKC12DER.PEM

For more information about the use of the OpenSSL utility, see the OpenSSL site:
http://www.openssl.org/docs/apps/openssl.html

Mainframe

Use your security system's commands to maintain the keyring and configuration policy
for AT-TLS. If you chose to use the sample certificates provided with the CA IDMS Server
installation, then those certificates need to be uploaded and installed on your
mainframe security system. The certificates with the “.CER” extension are suitable for
this purpose. All certificates contain encoded data and should always be transmitted in
BINARY mode.

Configuring Timeouts

Timeouts can be configured for each component used with CA IDMS Server, including
the application server, CAICCI/PC, the ODBC and JDBC drivers, the JDBC server, and CA
IDMS. The ODBC and JDBC drivers also support setting timeouts at runtime. Although
there seem to be a large number of timeout settings, they can be grouped into three
types:

■ Reply Timeouts limit how long the client waits for a reply from the server after
making a request.

■ Idle Timeouts limit how long the server waits for the client to make a request.

■ Other Timeouts are used to tune socket connections.

http://www.openssl.org/docs/apps/openssl.html
http://www.openssl.org/docs/apps/openssl.html

Configuring Timeouts

46 User Guide

This section describes these timeouts and how they are related. On Windows, timeouts
are generally defined in the registry, using the CAICCI/PC and ODBC administrator
applications. See the appropriate CA Common Services manual or chapter "Configuring
the Client on Windows" for information on using these applications. Detailed
descriptions of each setting are included in the appendix "Windows Registry
Information." On z/OS, timeouts are defined in the caidms.cfg configuration file. For
detailed information on these settings, see the appendix "Configuration File
Information." Certain timeouts can also be set in the caidms.properties Java properties
file. For information on these settings, see the appendix "Properties File Information."

Reply Timeouts

Reply timeouts are necessary to prevent a client from waiting indefinitely for a reply
from the server. When an error occurs that prevents the server from responding, the
client receives an error after the timeout expires, and can retry the request or report
the error. If a timeout is not set or is set too high, the application thread never regains
control, and it may be necessary to terminate the entire application. When connection
pooling is in use this can cause unusable connections to remain in the pool.

The optimal length of the reply timeouts depends on the type of application. Short
queries and updates can use a relatively short timeout. Queries that require scanning
large databases require longer timeouts, especially if they include SORT BY or ORDER BY
clauses, which cause CA IDMS to retrieve the entire result set before returning the first
row.

Note: Reply timeouts should be longer the further away from the server they are set, to
allow the client to handle timeout errors more accurately and efficiently.

For ODBC or the JDBC type 2 driver, a reply timeout can be set globally within
CAICCI/PC, for a specific CA IDMS CV in the Server servername definition, or at run time.
This timeout is used by CAICCI/PC on Windows or the CCI service of ENF on z/OS
(referred to as CAICCI/ENF). For JDBC type 3 and type 4 drivers, a reply timeout can be
set globally using the IdmsConnectionOptions WaitTimeOut property, or at run time.
This timeout is used as the default socket timeout. Reply timeouts can also be set for
the JDBC Server and for the CASERVER and IDMSJSRV tasks.

CAICCI/PC

On Windows, you can use the TCP/IP tab of the CAICCI/PC Configuration dialog to set
the default Reply Wait timeout for all connections. This value is the timeout for the
sockets that are used to communicate with the CCITCP address space on the mainframe.

The default is -1, which causes CAICCI/PC to wait indefinitely. Typical values range from
30 to 300 seconds.

Configuring Timeouts

Chapter 3: Setting Up Your System 47

Server servername Definition

You can use the Server servername definition to specify the reply timeout used by
CAICCI for a specific data source or group of data sources that connect to the same CV.
It is supported on Windows and on z/OS.

On Windows, use the CA IDMS Server ODBC Administrator Server tab to set the Wait
Timeout. The setting is passed to CAICCI/PC when the connection is established, and
overrides the CAICCI/PC setting. Setting the value to 0 causes the CAICCI/PC value to be
used.

On z/OS, you can define WaitTimeOut in a Server servername section in the caidms.cfg
configuration file. This value is used with CAICCI/ENF, and is not a socket timeout. The
default is 0, which causes CAICCI/ENF to wait indefinitely. Unlike the Windows setting,
there is no global default setting.

ODBC Driver

An ODBC application can set the Server servername definition timeout for specific
connection using the DRIVER, DICT, NODE, and WAIT keywords with the
SQLDriverConnect API. This overrides the CAICCI/PC Reply Timeout setting. A
connection established this way does not use a Data Source or Server servername
definition in the registry.

Note: For more information, see the chapter "ODBC Programmer Reference."

JDBC Driver

A JDBC application can set the reply timeout for specific Connection or Statement object
using the methods specified by the JDBC API.

The application can use the DriverManager.setLoginTimeout method to set the reply
timeout for JDBC Connections established using the DriverManager.

The application can use the DataSource.setLoginTimeout method to set the reply
timeout for all connections established using a specific DataSource. Application servers
may provide administrative tools to maintain these properties.

Configuring Timeouts

48 User Guide

The IdmsConnectOptions LoginTimeout or WaitTimeOut properties can be set to define
the default system login timeout.

A JDBC application can also use the Statement.setQueryTimeout method to set the reply
timeout for all SQL requests made using a specific Statement object. The
IdmsConnectOptions QueryTimeout or WaitTimeOut properties can be set to define the
default system query timeout.

For the JDBC type 2 driver, setting a reply timeout to a non-zero value using any of these
methods overrides the reply wait timeout set for CAICCI/PC on Windows and sets the
timeout for CAICCI/ENF on z/OS. For the JDBC type 3 and type 4 drivers, the reply
timeout is used as the socket timeout. In this case, a value of zero means that the reply
timeout is disabled and the driver waits forever.

Note: For more information, see the chapter "JDBC Programmer Reference."

JDBC Server

When the JDBC driver is used with the JDBC Server, the reply timeout specified using
one of the JDBC methods is incremented slightly and used as the timeout value for
socket requests from the JDBC driver to the JDBC server.

If the connection was made without a data source defined in the registry or
configuration file, the original loginTimeout value is passed to the JDBC server and used
as the default for CAICCI/ENF.

If the connection is made using a data source defined in the registry or configuration file
for the JDBC Server, the value of the Server servername section WaitTimeOut is used as
the default for CAICCI/ENF. In this case the loginTimeout is used only for the socket
connection from the JDBC driver to the JDBC Server, and should be set at least as high as
the WaitTimeOut setting.

The original queryTimeout value is passed to the JDBC server and overrides the default
for CAICCI/ENF no matter how it was set.

When an intermediate JDBC Server is used, as might be done to support applets from a
web server running on Linux, the reply timeout for socket requests from the
intermediate server to the server where the native SQL client runs should be specified
on the intermediate server.

On Windows, use the CA IDMS Server ODBC Administrator Proxy tab to set the Reply
Timeout for the JDBC Server. On z/OS and Linux, you can define ReplyTimeOut in the
Proxy section in the caidms.cfg configuration file. You can define this option in the
caidms.properties file on all platforms. The intermediate server reply timeout is used
only for the socket connection between the two JDBC servers, and should be longer
than the reply timeout set in the Server servername section on the destination JDBC
Server.

Configuring Timeouts

Chapter 3: Setting Up Your System 49

CASERVER and IDMSJSRV Task

In CA IDMS, you can define the INACTIVE INTERVAL on the CASERVER and IDMSJSRV
task definitions to specify how long the task waits for a resource (this can be modified
dynamically using the DCMT VARY TASK STALL INTERVAL command). This setting defines
how long the task waits for a specific resource, such as a database record. This value
often defaults to a SYSTEM setting and should be shorter than any client reply timeout
setting. There is no timeout that can be set to specify how long the task should wait for
the overall request to be satisfied (because the task is busy satisfying the request and is
not waiting).

Idle Timeouts

Idle timeouts are necessary to prevent a server from waiting indefinitely for a request
from a client, which unnecessarily ties up resources. When the timeout is exceeded, the
server assumes that the client no longer needs the connection, possibly because of an
error, and frees connection resources in an orderly fashion. This includes closing any
connections to a server closer to the CV. Properly configured idle timeouts are
particularly important for efficient connection pooling. The optimal length of the idle
timeouts depends on the type of application or application server.

Note: Idle timeouts should generally be shorter the further away from the server they
are set, to allow the servers to handle timeout errors more accurately and efficiently.
Depending on how heavily loaded the servers are, the differences may be relatively
large.

Idle timeouts can be specified for the application server's connection pool, the JDBC
driver, the JDBC Server, and the CASERVER and IDMSJSRV tasks.

Application Servers

Application servers typically provide administrative tools to maintain idle timeouts for
connections in their pool. When the timeout is exceeded, the application server closes
the connection and removes it from the pool.

Application servers might support global timeouts in an implementation specific way or
might honor the timeout properties specified in a ConnectionPoolDataSource object.
The IdmsConnectionPoolDataSource class supports the maxIdleTime and propertyCycle
properties as recommended in the JDBC 4.0 specification. The effective idle time for an
application server that uses these or equivalent properties could be as large as the sum
of the two intervals. The Type 4 JDBC driver uses these properties to adjust the
RESOURCE TIMEOUT INTERVAL of the task automatically. You may need to specify the
equivalent idle time property in both the application server's
ConnectionPoolDataSource implementation and as a custom property for the
IdmsConnectionPoolDataSource that it references.

Configuring Timeouts

50 User Guide

Note: Not all application servers use these properties.

The idle timeout set for a pooled connection should be shorter than the idle timeouts
set closer to the CV, possibly by as much as 300 to 600 seconds.

JDBC Server

You can specify the interval that the JDBC server waits for a request from the JDBC
driver. When this interval is exceeded, the JDBC server assumes that an error has
occurred, releases the SQL session with CA IDMS, and closes the socket connection with
the JDBC driver. If the application attempts to use the connection after this, the JDBC
driver returns a SQLException indicating that a communications error has occurred.

On Windows, you can use the CA IDMS Server ODBC Administrator Proxy tab to set the
Wait Timeout for the JDBC Server. On z/OS and Linux, you can define WaitTimeOut in
the Proxy section in the caidms.cfg configuration file. You can define this option in the
caidms.properties file on all platforms. The idle timeout for the JDBC server should be
longer than the timeout set for the application server and shorter than the timeouts set
for the CASERVER or IDMSJSRV task.

CASERVER and IDMSJSRV Task

You can specify two idle timeouts for the CASERVER and IDMSJSRV tasks:

RESOURCE TIMEOUT INTERVAL

Specifies how long an idle connection persists before terminating the connection if
no task is active.

EXTERNAL WAIT

Specifies how long an idle connection persists before terminating the task and
connection when a task is active.

When the application server's connection pool implementation recognizes the
IdmsConnectionPoolDataSource or the IdmsXADataSource, the RESOURCE TIMEOUT
INTERVAL should be longer than the maxIdleTime or equivalent application server
property. When the application server uses the DriverManager of IdmsDataSource to
get a connection, both of these should be longer than timeouts set in the application
server and JDBC server.

Other Timeouts

You can use other timeouts to tune the way CA IDMS Server uses TCP/IP sockets.

Configuring Timeouts

Chapter 3: Setting Up Your System 51

CAICCI/PC

On Windows, you can use the CAICCI/PC Properties TCP/IP tab to set two additional
timeout values.

Ready to Receive

Specifies how long CAICCI/PC waits for subsequent TCP/IP packets after receiving
the initial reply packet. Unless the network is extremely congested these usually
arrive very quickly, and this timeout is seldom exceeded. The default value is '-1',
which causes CAICCI/PC to wait indefinitely. This rarely causes problems, but a
value of 60 seconds is reasonable to ensure that no reply can cause the application
thread to hang.

Ready to Send

Specifies how long CAICCI/PC waits to send data on a socket. Since sockets are full
duplex, there is almost never any wait at all. The default setting of 60 seconds is
generally acceptable.

These timeouts are not needed when using the Type 4 JDBC driver.

JDBC Server

When the JDBC server does socket I/O, the thread is blocked and cannot check for
events such as server shutdown. You can specify the internal timeout interval that the
JDBC server uses when reading from a socket or waiting for a connection request. When
this interval is exceeded, the JDBC server checks for shutdown and other events, then
resumes reading from the socket unless an idle or reply timeout has expired.

This timeout is set by as the SocketTimeOut value in the Proxy section of the registry on
Windows and the caidms.cfg configuration file on z/OS. It can also be specified in the
caidms.properties file on all platforms. The default setting of 60 seconds is generally
acceptable.

Chapter 4: Installing the Client on Windows 53

Chapter 4: Installing the Client on Windows

Instructions are provided for the installation of CA IDMS Server on Windows for use with
the ODBC driver, the Type 2 JDBC driver, and the JDBC server. Although the complete CA
IDMS Server installation is not required for applications that use only the Type 3 or Type
4 JDBC drivers, installing the product is recommended for convenient access to the user
documentation, the Javadoc that describes the JDBC implementation, and the Java
Command Facility (JCF) demo program.

Note: For more information about procedures for using these driver types without the
full installation, see the chapter "Using the Java Client."

This section contains the following topics:

Preparing to Install CA IDMS Server (see page 53)
Installing CA IDMS Server on Windows (see page 54)

Preparing to Install CA IDMS Server

The following must be installed before you install CA IDMS Server:

■ CAICCI/PC, required to use the ODBC driver with CA IDMS releases prior to r17 and
the JDBC driver with CA IDMS releases prior to r16 SP2.

■ ODBC Driver Manager and Administrator, required to use the ODBC driver or Type 2
JDBC driver

■ Java Runtime Environment (JRE) 1.6 or later, required to use the JDBC driver

Obtain the following information from your CA IDMS system administrator:

■ The name of the dictionary containing the definitions of the tables you access.

■ For the CCI protocol you need the node name of the system on which the dictionary
resides and the host name and port for CCITCP (the default port is 1202).

■ For the IDMS protocol you need the host name and port for the CA IDMS system

■ The task code defined for CA IDMS Server. The default for the CCI protocol is
CASERVER and the default for the IDMS protocol is IDMSJSRV.

You must use a user ID with administrative privileges when installing CA IDMS Server
and CAICCI/PC.

For your convenience, the complete CAICCI/PC installation is included in the CCI
directory on the CA IDMS Server CD. It can be installed from the CA IDMS Server Product
Explorer that starts automatically when the CD is inserted, or after double-clicking
Setup.exe on the CD's setup directory.

Installing CA IDMS Server on Windows

54 User Guide

Uninstalling Previous Versions

CA IDMS Server r17 can be installed on the same machine without uninstalling a prior
version and the installer does not automatically uninstall the previous release. Existing
data sources continue to use the version of CA IDMS Server used to create them. You
should uninstall the prior release and remove its data sources after you have tested
your applications with CA IDMS Server r17.

You can use uninst40.bat or uninst41.bat to uninstall CA IDMS Server r4 or r4.1. You can
find these files in the product directory, typically, \CA_APPSW\CAID. You might need to
edit the file before running it.

You can use the Windows Control Panel Add/Remove Programs applet to uninstall CA
IDMS Server r4.2 or later. In previous versions, the default location for the CA IDMS log
file was the CA IDMS Server directory. Log files are not deleted by the uninstall process
and must be deleted manually.

Installing CA IDMS Server on Windows

To install CA IDMS Server on Windows

1. Sign on with a user ID that has administrative authority.

2. To allow shared components to be updated properly, exit all Windows applications,
including Microsoft Office tool bars, before beginning the installation of CA IDMS
Server.

3. Insert the CA IDMS Server CD into your CD-ROM drive. The CA Product Explorer
begins automatically. If it does not, right-click on the CD icon in the My Computer
window and select Auto Start.

4. Select the Install CA IDMS Server option.

5. Before copying the files from the installation disk onto your system, the Installer
displays the readme.txt file, containing information unavailable when this
document was prepared.

Installing CA IDMS Server on Windows

Chapter 4: Installing the Client on Windows 55

6. Choose one of the following installation options:

■ Select Typical to install both the ODBC driver and the JDBC driver

■ Select Compact to install the ODBC driver only

■ Select Custom to choose which driver to install

Note: The ODBC driver is always selected, because it installs components also used
by the JDBC driver.

7. User-defined settings such as data sources and options which were created for an
earlier release of CA IDMS Server are not compatible with r17. The CA IDMS Data
Source Utility provides a way of converting these settings to make them usable.
The utility is started automatically by the installer. Several conversion options are
available:

■ No Conversion means that no data source conversion takes place. This is the
default. Data sources for r17 must then be entered manually by the user after
installation is complete, using the CA IDMS ODBC Administrator.

■ Convert in Place changes existing data sources to use the r17 driver. These data
sources no longer work with the prior release of CA IDMS Server.

■ Create Copies with Prefix copies the data sources to new data sources that use
the r17 driver, named with a prefix that you can specify.. The existing data
sources are not changed.

■ Global Defaults copies options settings from the prior release.

■ JDBC Server copies settings for the JDBC server from the prior release.

Note: For more information about defining data sources, see the chapter "Configuring
the Client on Windows."

Chapter 5: Configuring the Client on Windows 57

Chapter 5: Configuring the Client on
Windows

An ODBC data source specifies the information needed to connect to a database from
an ODBC application. The Type 2 JDBC driver can also use ODBC data source definitions
to access CA IDMS databases by specifying the data source name as part of the JDBC
URL or as a property in an IdmsDataSource object. The JDBC driver does not use the
ODBC driver at runtime.

This section contains the following topics:

Configuring Windows Applications (see page 57)
Configuring CAICCI/PC (see page 58)
Configuring CA IDMS Server (see page 58)
Defining Data Sources (see page 58)
Setting Advanced Data Source Options (see page 63)
Setting System Default Data Source Options (see page 70)
Setting Up a Server (see page 71)
Deleting a Server (see page 73)
Setting Advanced Server Options (see page 74)
Setting System Default Server Options (see page 77)
Logging Errors and Trace Information (see page 78)
Setting SSL Options (see page 81)
Certificate Stores (see page 82)
Setting Language Options (see page 83)
Using a Custom Conversion DLL (see page 90)
Configuring the JDBC Server (see page 91)
Property File Information (see page 93)

Configuring Windows Applications

CA IDMS Server and CAICCI/PC attempt to write messages to a log file when an error
occurs. The user ID used to run applications must have write access to the directories
where these log files are written. This includes applications that run as Windows
services, such as the Microsoft Internet Information Server (IIS).

Configuring CAICCI/PC

58 User Guide

Configuring CAICCI/PC

When you use the ODBC and Type 2 JDBC drivers you must specify the host name or
TCP/IP address. You must specify the host for CAICCI to use the ODBC and Type 2 JDBC
drivers. You can also specify the port, socket timeouts, and enable tracing for CAICCI.

Use the CAICCI Configurator to configure CAICCI with settings that apply to all data
sources or you can use the CA IDMS Server ODBC Administrator to configure CAICCI for
a specific data source. You must have administrative authority to run the CAICCI
Configurator which is started from the CAICCI Menu. At run time the user ID used to run
applications must have write access to the directory specified for the trace file. For
detailed information about CAICCI error messages as they relate to CA IDMS Server and
troubleshooting tips, see PIB QI43460 on supportconnect.ca.com.

SSL support for ODBC and JDBC type 2 drivers is provided by CAICCI and must be
configured using the CAICCI Configurator.

Note: For detailed information about setting the CAICCI/PC options, see the CA
Common Services documentation.

Configuring CA IDMS Server

Use the CA IDMS Server ODBC Administrator to define data sources. Start the ODBC
Administrator from the CA IDMS menu. The CA IDMS Server ODBC Administrator
provides a context-sensitive online Help facility. Click Help on any tab to obtain Help
about that dialog.

You can also use the ODBC Administrator to set default data source options, language
options, and configure the JDBC server. If you are using User Account Control (UAC) on
Windows Vista, you must have administrative authority to set these options. They must
be grayed out if you are not permitted to set them.

Defining Data Sources

You can define new data sources as User or System data sources. User data sources are
available only to the user who defined them. System data sources are available to all
users and services of the machine. Typically, data sources meant to be used by Windows
services must be defined as System data sources. You must have administrative
authority to define a system data source.

Defining Data Sources

Chapter 5: Configuring the Client on Windows 59

Adding a New Data Source

When adding a new data source, you must specify the type of data source, and include
the name of the dictionary where the SQL tables are defined as well as the node name
of the CV containing the dictionary. Use the ODBC Data Source Administrator to begin
the process of adding a new data source.

To access the ODBC Data Source Administrator, select Start, Programs, CA, CA IDMS
Server, ODBC Administrator. Note that on 64-bit Windows, there might be shortcuts to
both 32-bit and 64-bit versions of the ODBC Administrator.

The ODBC Data Source Administrator dialog lists the names of each defined data source,
followed by the database driver in parentheses. If no Data Source Name (DSN) is listed,
click the User DSN or System DSN tab and click Add to invoke the Create New Data
Source dialog.

The Create New Data Source dialog lists all installed drivers. Select CA-IDMS and click
Finish. The CA IDMS Server ODBC Administrator dialog appears:

The Data Source tab of the CA IDMS Server ODBC Administrator dialog lets you define a
new data source or modify the dictionary or server of an existing data source. You must
supply the following essential information to define a new data source or modify.

Defining Data Sources

60 User Guide

Options

The ODBC and Type 2 JDBC drivers use the following information:

Data Source

Specifies the data source name. To add a new data source, enter a character string
of up to 32 characters in this field. Use a combination of letters, numbers, spaces,
or special characters. When modifying an existing data source, the name cannot be
changed.

Dictionary

(Optional) Specifies the DBNAME or segment name of the dictionary containing the
definitions of the tables you want to access. This name must be defined in the
DBNAME table on the CA IDMS system identified by the server name. The default is
the first eight characters of the Data Source.

Server

Specifies a user-defined name which represents the CA IDMS system you want to
access. Enter a new 1-to-32 character name or select an existing name from the
pull-down list. This field is required. 'Server' is a logical construct, which contains
various options needed to access your IDMS CV.

Default Schema

Specifies the name of the default SQL Schema. This is an optional 1-to-18 character
field. When specified, this field is used as the schema qualifier for all SQL table
references that do not contain an explicit schema qualifier. The default is blank
(unspecified).

Program Name

Specifies a program name that are associated with the task on the CA IDMS system.
This name is recorded in the CA IDMS journal and allows you to correlate a
database update to a specific application. The default Program Name is IDMSODBC.

Defining Data Sources

Chapter 5: Configuring the Client on Windows 61

Advanced Options

Advanced Data Source options can be specified at both the Data Source level (by clicking
the "Current" button) as well as at the System level (by clicking the "System" button).
Options specified at the Data Source level override options specified at the System level.
Details on these options are covered in the sections "Setting Advanced Data Source
Options" and "Setting System Default Data Source Options."

Saving the Data Source Definition

After you have created your data source definition, click OK to save the definition to the
registry, close the CA IDMS Server ODBC Administrator dialog, and return to the Data
Sources dialog. To save the definition without closing the CA IDMS Server ODBC
Administrator, click Apply. Click Cancel to return to the Data Sources dialog without
saving the definition.

Defining Data Sources

62 User Guide

Testing the Data Source Definition

You can verify that your data source is defined correctly, and that CA IDMS Server is
installed correctly, using the Test Connect application. Click Test to invoke the CA IDMS
Test Connect dialog:

The DSN identified in the ODBC Administrator appears in the Data Source field, and
cannot be changed. In the User ID field, enter a valid user ID for the CA IDMS system. If
required for the system, supply a password in the Password field and click Connect. The
test program connects to the data source using the ODBC driver.

Editing the Data Source Definition

Once you have saved your data source definition, you might find it necessary to edit or
update the information. To edit a data source definition, access the Microsoft ODBC
Administrator and select the data source to be edited. Click Configure to invoke the CA
IDMS Server ODBC Administrator dialog. Edit the information and click Apply or OK.

Setting Advanced Data Source Options

Chapter 5: Configuring the Client on Windows 63

Setting Advanced Data Source Options

The Advanced Data Source Options panel is reached by clicking on the "Current" button
from the Data Source tab. The Data Source name appears at the top of the dialog.

Options specified at the Data Source level override options specified at the System level
(see the section entitled "Setting System Default Data Source Options"). All drop-down
boxes specifying the value "<SYSTEM DEFAULT>" default to the setting specified at the
System level. Likewise, numeric fields having a value of 0 also default to the System level
setting. To enable the setting of the checkbox-style options, check the "Override System
Defaults" box in the "Other Options" section. A detailed description of each option
follows:

Setting Advanced Data Source Options

64 User Guide

Default Connection Attributes

Access Mode

Specifies the default setting for the access mode connection attribute, which is
defined by both ODBC and JDBC. An application can use the ODBC or JDBC
interfaces to set and query this attribute at run-time. Options are:

■ READ WRITE—Allows applications to read and update the database.

■ READ ONLY—Allows applications to read the database. This option is
recommended, unless you intend to update data in the CA IDMS database. This
option can be set and queried by the application using the
SQLSetConnectOption and SQLGetConnectOption functions.

■ <SYSTEM DEFAULT>—Indicates that the System-level setting for this option
should be used.

If no specification is made at both the Data Source and the System level, then a
runtime default of "READ WRITE" is used.

Transaction Isolation

Specifies the degree to which your transactions impact, and are impacted by, other
users accessing the same data for the ODBC driver. Choose one of the following:

■ READ COMMITTED—Prevents access to data updated by another user, before
it has been committed. This corresponds to the CURSOR STABILITY option of
the SQL SET TRANSACTION statement, and is the default setting.

■ READ UNCOMMITTED—Permits only retrieval operations to be executed by
the user; update requests are rejected. This option can only be selected in
conjunction with a Read Only Access Mode, and corresponds to the TRANSIENT
READ option on the SET TRANSACTION statement.

■ <SYSTEM DEFAULT>—Indicates that the System-level setting for this option
should be used.

If no specification is made at both the Data Source and the System level, then a
runtime default of "READ COMMITTED" is used.

This option can be set and queried by the application using the
SQLSetConnectOption and SQLGetConnectOption functions.

Note: For more information about the SET TRANSACTION statement, see the CA
IDMS Database SQL Option Reference Guide.

Commit Behavior

Specifies the way in which COMMIT operations affect cursors in the ODBC and JDBC
drivers. Choose one of the following options:

■ CLOSE AND DELETE CURSORS—Forces the application to prepare and execute
the next statement.

Setting Advanced Data Source Options

Chapter 5: Configuring the Client on Windows 65

■ CLOSE CURSORS—Allows applications to execute a statement without calling
prepare again. This is the default setting.

■ PRESERVE CURSORS—Maintains cursors in the same position as before the
Commit operation, allowing applications to execute or fetch without preparing
the statement again.

■ <SYSTEM DEFAULT>—Indicates that the System-level setting for this option
should be used.

If no specification is made at either the Data Source or the System level, then a
runtime default of "CLOSE CURSORS" is used.

This is a CA IDMS Server extension allowing you to optimize ODBC usage by
different applications. An ODBC application can use the SQLGetInfo function to
query this setting. A JDBC application can use the GetResultSetHoldability method.

Invalid Decimal Action

Specifies how the CA IDMS ODBC and JDBC drivers handle invalid packed or zoned
decimal data in a result set column. This option is useful when accessing network
databases, where records may be redefined so that decimal fields can contain
non-numeric data. Options are:

■ RETURN ERROR—The drivers return an error to the application. The ODBC
driver returns SQL_ERROR to the application, which can use the SQLError
function to retrieve the associated error message. The JDBC driver throws a
SQLException containing the error message. No value is returned in the output
buffer provided by the application.

■ RETURN NULL—The drivers attempt to return NULL for the column value. The
ODBC driver does this by setting the length/indicator value to SQL_NULL_DATA.
It returns an error if the pointer to the length/value indicator supplied by the
application is 0. The JDBC driver returns either 0 or null as specified by the
ResultSet getter method, and returns true for the ResultSet wasNull method.
Note that the drivers attempt to return NULL even if the column in the result
set is defined as NOT NULL.

■ RETURN 0—The driver always returns 0. This can be useful when the
application does not provide the length/indicator value for a column that is
NOT NULL.

■ IGNORE—The value returned to the application is undefined. This option is
provided for compatibility with previous versions of the ODBC driver. It is not
supported by the JDBC driver.

■ <SYSTEM DEFAULT>—Indicates that the System-level setting for this option
should be used.

If not specified for a data source or as the system default, the default is RETURN
ERROR. The ODBC driver prints a warning message to the log when tracing is
enabled, no matter which option is selected.

Setting Advanced Data Source Options

66 User Guide

Suspend Strategy

Specifies how the CA IDMS ODBC and JDBC drivers use SQL SUSPEND and COMMIT
requests to optimize task resource usage on the CA IDMS system. These strategies
replace detailed suspend and commit options that were set in the Windows registry
directly for prior releases. The strategies are:

■ INTERACTIVE—Select this setting when the Data Source is to be used with an
interactive ("fat client") application, such as Visual Express or Visual DBA. The
drivers SUSPEND after each COMMIT.

■ SERVICE—Select this setting when the Data Source is to be used as a service,
such as an applications that uses a pooled connection in an application server
(WebSphere, Weblogic, etc). The drivers SUSPEND when the connection is
returned to the idle pool.

■ BATCH—Select this setting when the Data Source is to be used by a batch-type
application, where pseudo-conversational processing is not used. The drivers
do not SUSPEND at all.

■ CUSTOM—Select this setting when you need to specify detailed suspend and
commit options in the registry. This setting should only be used by advanced
users, or under the direction of CA Technical Support, and requires manual
editing of the Windows Registry.

■ <SYSTEM DEFAULT>—Indicates that the System-level setting for this option
should be used.

If no specification is made at either the Data Source or the System level, then a
runtime default of "CUSTOM" is used. Note that if no detailed options have been
specified this is equivalent to "INTERACTIVE." Refer to Chapter 3, "Setting Up Your
CA IDMS System", and the "Windows Registry Information" Appendix for
information about using the detailed options.

Fetch Row Count

Specifies the number of database rows to be fetched in a single database request.
CA IDMS supports a BULK FETCH feature than can improve performance by fetching
multiple rows with a single database request. This option specifies the default value
for the number of rows that the driver attempts to fetch. An application can use
ODBC and JDBC interfaces to set and query this value at run-time. Valid values are 0
to 30000. The drivers use a smaller value if the value specified would require a
buffer larger than the Fetch Buffer Size.

When the value is 0 for a data source, the drivers use the system default, if any. If
the system default is also 0, the drivers compute the number of rows that fit in the
fetch buffer.

The default is usually appropriate for most applications.

Setting Advanced Data Source Options

Chapter 5: Configuring the Client on Windows 67

Fetch Buffer Size

Specifies the maximum size of the fetch buffer. The drivers adjust the number of
rows to fit in the buffer if necessary. Valid values are 0 to 1048576, although the
maximum when using CCI is 30000.

When the value is 0 for a data source, the drivers use the system default, if any.
When the system default is also 0 the drivers use 30000 for the CCI communications
protocol and 64000 for the IDMS communications protocol.

The default is usually appropriate for most applications.

Other Options

Override System Defaults

If enabled, you can override all of the flag-type settings within the "Other Options"
section of the Data Source Options panel. This allows you to establish
Data-Source-specific settings for these options.

Cache SQL Tables

Specifies that the ODBC driver caches table lists returned by the SQLTables
function. This option improves performance by reducing the amount of time it
takes to retrieve a list of tables, but does not always provide the most current view
of existing tables. When selected, the ODBC driver uses the cached result to process
repeated SQLTables requests. The ODBC driver flushes the cache whenever you
turn off this option, change the request parameters, change the name of the
Accessible Tables view, or disconnect from a session.

Enable Ensure

Enables the ENSURE parameter of the ODBC SQLStatistics function.

The ENSURE parameter of the SQLStatistics function call usually causes the ODBC
driver to issue an UPDATE STATISTICS command to CA IDMS SQL against the named
table. For large tables, this can cause deadlocks or communication timeout errors.
The default, disabling the Ensure option, is recommended unless a specific
application requires otherwise.

Fetch Real as Double

Forces the ODBC driver to return single precision floating point numbers as double
precision to avoid the rounding that can occur when numbers are passed from the
mainframe to the PC.

Note: Some loss of precision is unavoidable when converting between the floating
point formats, because different numbers of bits are used to encode the exponent
and mantissa.

Setting Advanced Data Source Options

68 User Guide

Prompt for Account

Causes the SQLDriverConnect function to display a dialog if the optional Account
parameter is not passed on the connection string.

Use Accessible Tables View Name

When enabled, you can enter the name of a view to use for the ODBC SQLTables
function and JDBC getTables method, instead of using the catalog tables directly.
Use this field to specify the default view, SYSCA.ACCESSIBLE_TABLES, or define a
different view in the catalog and enter it in this field.

When a catalog contains a large number of table definitions, performance can be
improved by specifying a view name, to create a tailored view of the tables of
interest to the end user. For example, the SYSCA.ACCESSIBLE_TABLES view returns
only those tables to which the user has Select authority. You can also limit tables
based on schema or authorization. In addition, this feature is useful when security
requirements do not allow direct access to the catalog tables.

If you specify a different name, be sure that it contains at least the same columns as
SYSCA.ACCESSIBLE_TABLES, although it can contain additional columns.

The view definition must include the following columns:

■ SCHEMA (CHAR(18)

■ TABLE (CHAR(18))

■ TYPE (CHAR(1))

Click Apply or OK to save changes to the defaults in the registry. Click Cancel to
close the dialog without saving any new changes.

Note: For more information about the SYSCA.ACCESSIBLE_TABLES view, see the CA
IDMS Database SQL Option Reference Guide.

Performance Considerations for ODBC Options

The following ODBC options can affect the performance of the ODBC driver:

Cache SQL Tables

Reduces the time it takes to retrieve a list of tables, but does not always provide the
most current view of existing tables.

Setting Advanced Data Source Options

Chapter 5: Configuring the Client on Windows 69

Enable Ensure

Prevents the SQLStatistics function from issuing commands to update table
statistics when disabled.

Use Accessible Tables View

Specifies the name of a view, so that only a list of the tables of interest to the end
user is returned.

Note: For more information about the various ODBC functions mentioned in the
previous descriptions, see Microsoft's documentation for ODBC software.

Setting System Default Data Source Options

70 User Guide

Setting System Default Data Source Options

The System Default Data Source Options panel is reached by clicking on the "System"
button from the Data Source tab. Changes to these options apply to all data sources on
the Windows system. For this reason, if you are using UAC on Windows Vista, you must
have administrative authority to set these options.

The fields on the System Default Data Source Options panel are identical to those on the
Advanced Data Source Options panel. For a description of each option, see the section
entitled "Setting Advanced Data Source Options" earlier in this chapter.

Setting Up a Server

Chapter 5: Configuring the Client on Windows 71

Setting Up a Server

Use the Server tab to specify additional information needed to connect to a CA IDMS
system. Depending on the Communications Protocol selected, you may override certain
default CAICCI connection options on this tab. The Type 3 and Type 4 JDBC drivers do
not use the Server definition. A Server definition can be shared by multiple data sources.
Like data sources, there are two types of servers, system and user.

A system server can be used by any data source. It is created when a new name is
entered into the Server field of the Data Source tab for a system data source. If you are
using UAC on Windows Vista, you must have administrative authority to define a system
server.

A user server can only be used by the user's data sources. It is created when adding or
editing a user data source by typing a new name in the Server field of the Data Source
tab source or modifying an existing system server. When a user server is copied from an
existing system server, the system server remains unchanged.

Setting Up a Server

72 User Guide

Options

The following fields are present under the Options section:

Name

Displays the selected Server name, from the Data Source tab. The name cannot be
changed here.

Node Name

Specifies the Node Name of the system containing the tables you want to access.
This is the System ID specified in the system generation parameters. This field is
optional, and defaults to the first eight characters of the server name, which must
be in upper case, if nothing is specified.

Delete Button

Deletes the server definition and close the dialog.

Connection Options

Communications Protocol

Specifies how the CA IDMS ODBC Driver (or Type 2 JDBC Driver) communicates with
CA IDMS. Options are:

■ IDMS—The drivers use the CA IDMS TCP/IP feature to communicate directly
with the CA IDMS system. CA IDMS r17, or later, is required.

■ CCI—The drivers use the CA Common Services CCI feature to communicate
with the CA IDMS system. This is the default, and is supported for all releases of
CA IDMS.

SSL

Enables secure communications between the ODBC and Type 2 JDBC drivers and CA
IDMS when using the IDMS communications protocol. Use the SSL tab to configure
SSL options.

You can enable SSL for the Type 3 and Type 4 JDBC drivers using a special format of
the URL or a IdmsDataSource object, and configure it using utilities supplied with
the Java Run-time Environment.

You must use your mainframe security system to configure AT-TLS (Application
Transparent Transport Level Security) to enable and configure SSL on z/OS when
communicating directly with CA IDMS. SSL is not currently supported when
communicating with z/VSE backend systems.

You can enable and configure SSL for the CCI communications protocol with the
CAICCI Configuration application on Windows. You must also configure the CCITCP
address space on z/OS to use SSL.

Deleting a Server

Chapter 5: Configuring the Client on Windows 73

Host Name

Specifies the DNS name or TCP/IP address of the CCI server or the CA IDMS system.
The Communication Protocol setting determines how the Host Name is used.

When used with CCI, this value overrides the default CCI server name specified
using the CCI Configurator for this ODBC server only, and allows concurrent access
to multiple CCI servers.

Port

Specifies the TCP/IP port of the CCI server or the CA IDMS Listener The
Communication Protocol setting determines how the Host Name is used.

When used with CCI, this overrides the default CCI server port specified using the
CCI Configurator for this ODBC server only. Enter 0 to use the default value set by
CCI, which is normally 1202.

Wait Timeout

Specifies the number of seconds to wait for a reply from the server. This setting
overrides the Reply Wait Timeout specified using the CAICCI/PC Properties dialog
for this Server only. When this limit is exceeded, a communications error is returned
and the connection can no longer be used. If multithreading is enabled, the
application can continue processing other connections. Choose one of the following
options:

■ Enter 0 to use the default value set by CAICCI/PC

■ Enter –1 to specify an indefinite wait (this is interpreted as the largest positive
integer)

■ Enter a specific time, in seconds

Advanced Options

Advanced Server options can be specified at both the Server level (by clicking the
"Current" button) as well as at the System level (by clicking the "System" button).
Options specified at the Server level override options specified at the System level.
Details on these options are covered in the sections entitled "Setting Advanced Server
Options" and "Setting System Default Server Options."

Deleting a Server

Click the Delete key on the Server tab. When the "Are you sure…?" confirmation dialog
box appears, click Yes.

Setting Advanced Server Options

74 User Guide

Setting Advanced Server Options

The Advanced Server Options panel is reached by clicking on the "Current" button from
the Server tab. The Server name appears at the top of the dialog.

Options specified at the Server level override options specified at the System level (see
the section entitled "Setting System Default Server Options"). All numeric fields having
a value of 0 default to the System level setting. A detailed description of each option
follows:

DDS Routing

Via Node

Used for DDS node hopping within CA IDMS. This option identifies the DDS node
that is used when establishing a connection with the IDMS CV.

This is an optional parameter. When specified, the Via Node must be defined in the
RESOURCE name table on the CA IDMS system. Use this option when the
destination CV does not directly communicate with CCI.

Setting Advanced Server Options

Chapter 5: Configuring the Client on Windows 75

CA IDMS Task Settings

Task Code

Specifies an alternate Task Code to be used for statistics and limit checking. The
value you enter must be defined to the CA IDMS system using the TASK system
generation statement. If no value is entered, the default Task Code of CASERVER is
used.

Buffer Length

Specifies the size of the buffer used by the CA IDMS Server listener for TCPIP send
and receive requests. This value overrides the BUFFLEN value specified for the CA
IDMS Server listener using the PTERM system generation statement.

This is optional. When set to 0, the System Default for all servers value is used, if
any.

External Wait

Specifies the number of seconds that the CA IDMS Server listener waits for a
request from the client when a task is active. This value overrides the EXTERNAL
WAIT INTERVAL specified for the TASK when enabled by specifying TIMEOUT=-1 in
the CA IDMS Server listener PTERM definition.

This is optional. When set to 0, the System Default for all servers value is used, if
any. For more information about TASK and PTERM System Generation statements
see the CA IDMS Server System Generation guide.

Resource Interval

Specifies the number of seconds that the CA IDMS Server listener waits for a
request from the client when no task is active. This value overrides the RESOURCE
INTERVAL specified for the TASK when enabled by specifying TIMEOUT=-1 in the CA
IDMS Server listener PTERM definition.

This is optional. When set to 0, the System Default for all servers value is used, if
any.

Setting Advanced Server Options

76 User Guide

ASCII-EBCDIC Conversion

By default, CA IDMS Server translates between ASCII and EBCDIC using US English code
pages. You can change this behavior and use conversion tables for other languages.
Country Extended Code Pages or CECP, can be used to convert single byte character
sets. CECP conversion table names can be specified for either your entire system or for a
specific Server.

Check the CECP button to specify a CECP table for your Server. This enables the
“Conversion Table File” option, allowing you to specify a CECP conversion file.

Edit

Brings up the CA IDMS Code Page Editor, where you can modify the conversion
tables to meet your specific requirements.

Browse

Brings up a standard “Browse” window where you can select a conversion table file.

See Chapter 4 for more information about CECP and other Internationalization
options, as well as the section entitled “Setting Language Options” later in this
chapter.

Setting System Default Server Options

Chapter 5: Configuring the Client on Windows 77

Setting System Default Server Options

The System Default Server Options panel is reached by clicking on the "System" button
from the Server tab. Changes to these options apply to all Servers on the Windows
system. For this reason, if you are using UAC on Windows Vista, you must have
administrative authority to set these options.

The fields on the System Default Server Options panel are identical to those on the
Advanced Server Options panel. For a description of each option, see the section
entitled "Setting Advanced Server Options" earlier in this chapter.

Logging Errors and Trace Information

78 User Guide

Logging Errors and Trace Information

CA IDMS Server writes messages for some types of errors to a log file. Specify the name
and directory of this log file using the Log Options tab. You can also use this tab to
override default log file specification and options, or to enable tracing of JDBC, ODBC,
SQL, and internal function calls.

If you are using UAC on Windows Vista, you do not have the authority to update Logging
and Trace parameters without signing on as an administrator. Alternately, you can
remain signed on as a standard user, but right-click the ODBC Administrator executable
and select Run as Administrator.

Log options affect all data sources. For example, if you specify a log file name, all trace
entries are written to the specified file. You cannot specify different log options for
different data sources. A detailed description of each option follows:

Logging Errors and Trace Information

Chapter 5: Configuring the Client on Windows 79

Log File Options

Log File

Specify the name of the log file for messages indicating the status of the database
connection. The log file must be in a directory available for write access by all users.
The log file name cannot be set or queried at runtime. The default log file name is
caidms.log. If you omit path information in the file name, CA IDMS Server creates
the file in the directory recommended by Microsoft for common application data as
follows:

Non-Vista:

\Documents and Settings\All Users\ApplicationData\CA\IDMS Server

Vista:

\ProgramData\CA\CA IDMS Server

Max Size

Specifies the maximum size (in bytes) of the log file when the log file rollover
feature is enabled. The default is zero, which indicates no maximum size.

Max Count

Specifies the maximum number of log files. When this is greater than zero, the
driver appends a numeric suffix to the "Log File Name." When the log file exceeds
Max Size this number is incremented and a new log file is created. When the Max
Count value is exceeded the driver re-uses the lowest log file name. The default is
zero, which disables the log file rollover feature.

Both Max Size and Max Count must be greater than zero to enable the log file
rollover feature.

Append To Current Log File

This option causes new information to be appended to the existing log file. If this
option is chosen, care should be taken to clean out file information that is no longer
needed.

Typically, tracing is enabled only to research a problem in conjunction with
Technical Support. Select the check boxes under Client Trace Options as requested
by Technical Support to collect trace information. Note that if Max Size and Max
Count are greater than zero, this option is not available.

Logging Errors and Trace Information

80 User Guide

Client Trace Options

Client trace options control tracing on the PC, as follows:

ODBC

Enables tracing of calls to the ODBC driver.

JDBC

Enables tracing of calls to the JDBC driver.

SQL

Enables tracing of calls to the native SQL client interface.

DLL

Enables tracing of the DLL initialization function.

DTS

Enables tracing of calls to the Data Transport Services (DTS) interface.

DTS CCI

Enables tracing of calls from DTS to CAICCI.

DTS JCLI

Enables tracing of calls to the CA IDMS TCPIP interface.

FDE

Enables tracing of Format Descriptor Element (FDE) conversion calls.

FDE GEN

Usage is reserved.

UTIL

Enables tracing of internal utility calls.

Setting SSL Options

Chapter 5: Configuring the Client on Windows 81

Setting SSL Options

CA IDMS Server uses Secure Socket Layer, or SSL, to provide secure communications
between the Windows client and the Mainframe server. The SSL Options tab applies
only to the IDMS communications protocol. Use the CAICCI Configuration application to
configure SSL for the CCI protocol.

The following options apply to all Servers that use the IDMS protocol. Note that you
must use the Server tab to enable the use of SSL for a connection. For more information
about enabling SSL for a Server, see the section entitled "Setting Up a Server" earlier in
this chapter.

Certificate Stores

82 User Guide

Certificate Stores
Client Certificate

Specifies the fully qualified name of the client certificate file. This file is typically
generated on the mainframe and transmitted to the Windows client. Use of this
field is optional. A client certificate is only needed if client authentication is
required for all SSL connections. See your Network Security Administrator to
determine the security configuration at your site. All certificate files must be in
PEM format.

Browse

Displays a Browse dialog where you can select the client certificate file.

Server Certificate

Specifies the fully qualified name of the server certificate file. This file contains one
or more "trusted" certificates that terminate the certificate chain. A certificate in
this file can identify the server itself or be a signing certificate. A certificate for a
server is typically generated on the mainframe and transmitted to the Windows
client. All SSL connections require either a Server Certificate or one or more signing
certificates. All certificate files must be in PEM format.

Browse

Displays a Browse dialog where you can select the server certificate file.

Certificate Directory

Specifies the name of the certificate directory. This directory can contain individual
certificates (in PEM format), and is searched for the resolution of signing
certificates.

Browse

Displays a standard Browse window where you can select the certificate directory.

Password

Identifies the password used for the client certificate.

This is an optional field and is only necessary when a client certificate is specified.

Setting Language Options

Chapter 5: Configuring the Client on Windows 83

Setting Language Options

When CA IDMS Server transfers character data between the host system and a PC it
uses translation tables based on English as spoken in the United States (U.S. English).
You can override the default and create a customized translation table if your host
system or PC uses code pages based on another language.

If you are using UAC on Windows Vista, you do not have the authority to update
Language Options without signing on as an administrator. Alternately, you can remain
signed on as a standard user, but right-click the ODBC Administrator executable and
select "Run as Administrator."

The Type 2 JDBC driver first converts Unicode to the local character encoding for
Windows. This data is then converted to mainframe format by the native SQL interface.
The Type 3 and Type 4 JDBC drivers convert Unicode directly to mainframe format, and
these options are not used.

Using the International Tab

Use the International tab to select the Country Extended Code Page (CECP) or Double
Byte Character Set (DBCS) used to translate character data transferred between the PC
and the host.

Under ASCII-EBCDIC Conversion, select one of the following options:

Default

Specifies the use of the default conversion tables.

CECP

Enables the CECP options in the Country Extended Code Pages box.

DBCS

Enables the DBCS options in the Double Byte Character Set box.

Custom

Enables Custom Conversion options.

Setting Language Options

84 User Guide

Selecting, Creating, and Editing CECP Translation Tables

Under ASCII–EBCDIC Conversion, select CECP to enable the CECP options to convert data
transferred between CA IDMS and the application. Under Country Extended Code Pages,
select the file containing the conversion tables.

To select a translation table, enter the name of the table file in the Conversion Table File
field or click Browse to select from the list of available files.

Click Edit to activate the Translation Editor to create or edit a translation table.

Setting Language Options

Chapter 5: Configuring the Client on Windows 85

Creating or Editing a Translation Table

From the menu bar, select File, Open to open an existing translation table.

For a new or existing translation table, select Edit, Code Pages to access the CA IDMS
Country Extended Code Page Selection dialog. This dialog lets you select the code pages
to use for your translation table.

The Host Code Page list includes the following Code Pages for the EBCDIC character set
on the mainframe:

037 English (U.S.)

English and most other European languages

273 German, Austrian

German and Austrian German

277 Norwegian

Norwegian

278 Finnish, Swedish

Finnish and Swedish

280 Italian

Italian

Setting Language Options

86 User Guide

284 Spanish

Spanish

285 English (U.K.)

English and most European languages

297 French (AZERTY)

French, using the AZERTY keyboard

500 Belgian, Swiss

Belgian, Swiss French, and Swiss German

The PC Code Page list box includes the following Code Pages for the ASCII character set:

437 English (U.S.)

English and most other European languages

850 Multilingual (Latin I)

Most languages using the Latin alphabet

852 Slavic (Latin II)

Slavic languages using the Latin alphabet

860 Portuguese

English and Portuguese

863 Canadian-French

English and French Canadian

865 Nordic

Scandinavian languages (Swedish, Norwegian)

Customizing a Translation Table

After creating a translation table, you may need to add EBCDIC/ASCII conversions that
are not supported in the standard code pages. The Translation Table Editor provides two
edit windows: one for the ASCII to EBCDIC translation table and the other for the EBCDIC
to ASCII translation table. To activate either window, select the appropriate option from
the Edit menu.

Each window displays a table of 256 hexadecimal values. Each entry in the table
represents the output character set code value indexed by the input character set code
value.

Setting Language Options

Chapter 5: Configuring the Client on Windows 87

For example, the following window represents the ASCII to EBCDIC translation table for
Canadian French on the PC and U.S. English on the host machine. The ASCII value for a
space (' ') in the Canadian French code page is 20 (in hexadecimal). The corresponding
EBCDIC value for a space in the U.S. English code page is 40.

The generated tables convert control codes between their ASCII and EBCDIC
equivalents, where possible. (Releases prior to CA IDMS Server r4.0 converted all control
codes to x'00' or null bytes.)

To customize the table, use the mouse or keyboard to select a hexadecimal value and
replace it with another. The editor ignores all characters except the numbers 0 through
9 and letters A - F (including lowercase). Use the mouse to move the cursor or use the
following keystrokes:

Key Moves Cursor

Arrow keys One digit in the direction of the arrow

Home To beginning of row

End To end of row

PageUp To top row

PageDown To bottom row

Enter Beginning of next row

Ctrl+Left Arrow, Right Arrow Left or right one entry

Ctrl+Home, End Beginning or end of table

Setting Language Options

88 User Guide

Saving a Translation Table

To save a translation table, choose Save from the File menu. To save a translation table
under a new name, select File, Save As. The default file extension for translation table
files is .tab.

Included Tables

Several code page conversion tables are provided with this release and are installed in
the CA IDMS Server directory. These files are identified by the extension .tab and
contain tables used at runtime to convert between ASCII and EBCDIC. These tables are:

Table Converts

cp037.tab Host code page 037 to ANSI 8859-1. The Type 3 and Type 4 JDBC
drivers use this conversion table when the Cp037 converter
requested by the host is not available.

cp1047.tab Host code page 1047 to ANSI 8859-1. The Type 3 and Type 4 JDBC
drivers use this conversion table when the Cp1047 converter
requested by the host is not available.

danish.tab Host code page 037 to pc code page 850. Control codes are
converted to their corresponding values.

h237ansi.tab Host code page 237 (Austrian/German) to ANSI. Control codes are
converted from EBCDIC to x'01' and from ASCII to x'00'.

sgeransi.tab Siemens German to ANSI. Control codes are converted from
EBCDIC to x'01' and from ASCII to x'00'.

swedish.tab Host code page 037 to pc code page 850. Control codes are
converted to their corresponding values.

Setting Language Options

Chapter 5: Configuring the Client on Windows 89

Enabling DBCS Processing

DBCS options enable the conversion of multi-byte character data exchanged by CA IDMS
Server and the CA IDMS system. Under ASCII-EBCDIC Conversion, select the DBCS
option.

Under Double Byte Character Set, set the following options:

Conversion Table Type

Allows you to select the types of DBCS used by your CA IDMS system from a drop
down menu.

Conversion Table Path

Specifies the path of the subdirectory containing the DBCS conversion tables.
Typically, the default is accepted.

Enable Half Width Katakana

Enables half width Katakana support when DBCS is enabled when this box is
checked. All lowercase characters in CHAR and VARCHAR data are treated as half
width Katakana. This does not affect GRAPHIC, VARGRAPHIC, and mixed data within
SO and SI in CHAR and VARCHAR types. Only uppercase Roman text can be
transferred between the mainframe and the PC when this option is enabled.

Using a Custom Conversion DLL

90 User Guide

Using a Custom Conversion DLL

A Custom Conversion DLL is used to convert character data exchanged by CA IDMS
Server and the CA IDMS system. This can be useful when the ASCII - EBCDIC conversions
cannot be specified by modifying the CECP tables. The following sections describe
implementation information for a Custom Conversion DLL.

Enabling a Custom Conversion DLL

On the International tab, under ASCII-EBCDIC Conversion, select Custom.

Under Custom Conversion, in the Conversion DLL Name field, specify the name of the
Custom Conversion DLL. Include the path if the DLL is not in a directory that is searched
automatically by Windows, such as the SYSTEM32 subdirectory or a directory specified
in the PATH.

Developing a Custom Conversion DLL

You can develop a custom conversion DLL in any language that supports the Microsoft
Windows DLL calling conventions. See the ODBC Programmer's Reference for
information about implementing a custom conversion DLL.

Configuring the JDBC Server

Chapter 5: Configuring the Client on Windows 91

Configuring the JDBC Server

Use the CA IDMS Server ODBC Administrator to configure the JDBC server to allow
access to CA IDMS from client programs using the type 3 JDBC driver. Neither the JDBC
driver nor the JDBC server actually uses ODBC at runtime. To configure the JDBC server,
select any CA IDMS data source from the CA IDMS Server ODBC Administrator, and then
click the JDBC Server tab.

If you are using UAC on Windows Vista, you do not have the authority to update JDBC
Server parameters without signing on as an administrator. Alternately, you can remain
signed on as a standard user, but right-click the ODBC Administrator executable and
select "Run as Administrator."

Server Options

Port

Specify the TCP/IP port which the JDBC server uses to listen for connection
requests. JDBC applications should specify this value in the Uniform Resource
Locator (URL) that identifies the database. The default is 3709.

Note: For information about the URL recognized by the JDBC driver, see the "JDBC
Programmer Reference" appendix.

Configuring the JDBC Server

92 User Guide

Wait Timeout

The number of seconds the JDBC server waits for a request from the JDBC driver.
When this value is exceeded, the JDBC server considers the connection to have
failed. The default setting, 0, causes the JDBC server to wait indefinitely.

Reply Timeout

Specifies the number of seconds the JDBC server waits for a response from CA
IDMS. When this value is exceeded, the JDBC server considers the connection to
have failed. The default setting, 0, causes the JDBC server to wait indefinitely.

Log and Trace Options

Log Connection Events

Enables logging of connection requests and terminations by the JDBC server to the
Windows Application Event Log. By default, only startup, shutdown, and error
events are logged. This option is deprecated, and kept for compatibility with earlier
versions of CA IDMS Server.

Trace Internal Calls

Enables tracing of debugging information to the CA IDMS Server log file. Only
internal method calls made by the Java code are traced. Use the Log Options tab to
enable tracing of native method calls.

Snap Native Buffers

Enables display of the data buffers sent and received by the JDBC server in the CA
IDMS Server log file.

Remote Server

It is possible to route JDBC connections to another JDBC server before communicating
with CA IDMS. You can also route connections directly to a CA IDMS r16 SP2 or later
system. This can be useful when security requirements prevent the machine on which
the web server is running from directly connecting to the mainframe.

Host Name

Specifies the DNS name or IP address of the remote JDBC server machine. For CA
IDMS r16 SP2 or later, this could also be the DNS name or TCP/IP address associated
with the IDMS system's TCPIP line.

Port

Specifies the listener port of the remote JDBC server. The default is 3709.

Property File Information

Chapter 5: Configuring the Client on Windows 93

Property File Information

You can also specify options for the JDBC driver and JDBC server in the
caidms.properties file, which has the same format on all platforms.

Note: For more information, see the appendix "Properties File Information."

Chapter 6: Using the Client on Windows 95

Chapter 6: Using the Client on Windows

This chapter covers the elements of data source connection, and how to use the
DriverConnect dialogs to connect to data sources. These dialogs are implemented in the
ODBC driver.

This section contains the following topics:

ODBC Driver Connect Dialogs (see page 95)
Connecting to a Predefined Data Source (see page 95)
Connecting Dynamically to a Data Source Not Previously Defined (see page 96)
Configuring JDBC Applications to Use CA IDMS Server (see page 99)
Using the JDBC Server on Windows (see page 99)

ODBC Driver Connect Dialogs

Many ODBC applications use the DriverConnect dialogs to connect to data sources. If
your application uses them, the CA IDMS DriverConnect dialogs let you connect to an
existing data source, or, in some cases, to connect dynamically to a data source that has
not been previously defined.

Although the JDBC driver uses the same types of information, it does not display any
dialogs, leaving the collection of such information to the JDBC application.

Note: For more information about connecting to a data source using JDBC, see the
chapter "JDBC Programmer Reference."

Connecting to a Predefined Data Source

Many applications use the Select Data Source dialog to connect to a data source that
has been previously defined using the ODBC Administrator dialog. In the Select Data
Source dialog, select the desired data source from a list of defined sources and click OK.

The CA IDMS DriverConnect dialog appears, with the name of the data source identified
in the Data Source field. This field cannot be changed.

Connecting Dynamically to a Data Source Not Previously Defined

96 User Guide

Enter your user ID and password, and, optionally, an account, if your site requires it, in
the fields on the CA IDMS DriverConnect dialog. Click OK to connect to the specified
data source.

Connecting Dynamically to a Data Source Not Previously
Defined

Some applications let you connect to a data source dynamically without first adding or
defining the data source. If your application supports this, the CA IDMS DriverConnect
dialog appears.

Connecting Dynamically to a Data Source Not Previously Defined

Chapter 6: Using the Client on Windows 97

Supply the data source connection information to be in effect for the duration of the
session. This information is similar to some of the data source definition information
specified with the ODBC Administrator dialog. Detailed information for each of the fields
is listed below:

Dictionary

Specifies the DBNAME or segment name of the dictionary containing the definitions
of the tables you want to access. This name must be defined in the DBNAME table
on the CA IDMS system identified by the server name.

Node Name

Specifies the Node Name of the system containing the tables you want to access.
This is the SYSTEMID specified in the system generation parameters.

User ID

Specifies a valid user ID for the CA IDMS system.

Password

Specifies a password field if your system requires it.

Task Code

Specifies an alternate Task Code to be used for statistics and limit checking. The
value you enter must be defined to the CA IDMS system using the TASK system
generation statement. If no value is entered, the default Task Code of CASERVER is
used.

Account

Specifies your account, if your site requires it.

Connecting Dynamically to a Data Source Not Previously Defined

98 User Guide

Connection Options

Specify the following options in the Connection Options section:

Communications Protocol

Specifies the Communications interface to be used for the connection. The options
are:

■ IDMS—To establish Wire Protocol connection directly to CA IDMS

■ CCI—To establish a connection to CA IDMS via CCITCP and CCIENF

Host Name

Specifies the name or TCP/IP address of either:

■ The CA IDMS CV (where the IDMSJSRV listener is running)

■ The CAICCI host server, overriding the default CAICCI Server name for this
connection only.

The value specified must depend upon the Communications Protocol you select.

Port

Specifies the TCP/IP port of either:

■ The IDMSJSRV listener running on your CA IDMS CV

■ The CAICCI host server, overriding the default CAICCI Server port for this
connection only. Enter 0 to use the default value set by CAICCI, typically 1202.

The value specified must depend upon the Communications Protocol you select.

Wait Timeout

Specifies the number of seconds to wait for a reply from the server. This setting
overrides the Reply Wait Timeout specified for this Server only. When this limit is
exceeded, a communications error is returned and the connection can no longer be
used. If multithreading is enabled, the application can continue processing other
connections. Options are:

■ Enter 0 to indicate the use of the default value set by CAICCI

■ Enter –1 to indicate an indefinite wait (the largest positive integer)

■ Enter a specific time, in seconds

Note: This data source exists only for the duration of the connection.

Configuring JDBC Applications to Use CA IDMS Server

Chapter 6: Using the Client on Windows 99

Configuring JDBC Applications to Use CA IDMS Server

JDBC-enabled applications running on Windows must be able to find the CA IDMS Server
executable files, which include both Java classes and native DLLs. Both the startup
executable for the Java VM and the native SQL client interface DLLs are installed in the
WINDOWS\SYSTEM32 directory, and are always effectively in the PATH. The CLASSPATH
must point to idmsjdbc.jar, which is installed in the \Program Files\CA\IDMS
Server\Java\lib directory. The sample batch files set this. It is also useful to include a
classes subdirectory, such as the \Program Files\CA\IDMS Server\Java\classes, for the
caidms.properties file and any updated class files provided by Technical Support.

When running standalone Java applications, the SSL keystore file must be specified to
the Java VM. When running Java applications in application servers such as Websphere
or Weblogic, see the vendor's documentation on how to specify the keystore file.

Applications can connect to a database using the JDBC DriverManager class with a URL
or using a JNDI server with an IdmsDataSource object.

For an applet to use the JDBC driver, the classes must be accessible to web pages
accessed from the web server, and the subdirectory containing idmsjdbc.jar should be
defined to the web server. For the Microsoft IIS, define a virtual directory pointing to
this directory.

Using the JDBC Server on Windows

The JDBC server is installed automatically when the JDBC driver is installed and when
using applets must be installed on the same machine as the web server.

The URL used by the applet or other client application identifies the address of the JDBC
server. An ODBC data source included in the URL must be a system data source to be
recognized by the JDBC server.

Note: For a description of the URL recognized by the JDBC driver, see the chapter "JDBC
Programmer Reference."

The Windows version of the JDBC server service wrapper, jsrv.exe, is installed in the
Java\bin\Win32 subdirectory. This version invokes the JVM using the Java command (as
provided by the JRE or Java Development Kit (JDK) from Sun Microsystems).
Configuration settings are maintained in the registry, and can be updated using the CA
IDMS ODBC Administrator.

You can start and stop the JDBC server from the CA IDMS Server submenu, which you
access from your Start menu.

Using the JDBC Server on Windows

100 User Guide

The Windows version of the JDBC server is controlled like the z/OS and Linux versions. A
batch file, jsrv.bat, is installed in the Java\bin subdirectory. This batch file sets the
classpath to the idmsjdbc.jar file, and should be run from the Java directory, using one
of the following commands:

jsrv start

Starts the JDBC server as a background process

jsrv stop

Stops the JDBC server

jsrv suspend

Suspends the JDBC server

jsrv resume

Resumes the JDBC server

jsrv status

Checks the JDBC server status

jsrv debug

Starts the JDBC server as a foreground process

The NT Service version of the JDBC server is no longer supported because it requires the
Microsoft Java VM, which is not compatible with newer versions of Java.

Note: For more information, see Controlling the JDBC Server in the chapter "Using the
Client on z/OS." For more detailed command information, see Using the JDBC Driver in
the chapter "Using the Java Client."

Chapter 7: Installing the Client on z/OS 101

Chapter 7: Installing the Client on z/OS

This chapter and the "Configuring the Client on z/OS" and "Using the Client on z/OS"
chapters describe the installation and use of CA IDMS Server in the Unix System Services
(USS) environment on z/OS for use with the Type 2 JDBC driver and the JDBC server.

This section contains the following topics:

Installation Process (see page 101)
Installing the Client Components for UNIX System Services (see page 101)

Installation Process

CA IDMS Server for z/OS is distributed on the CA IDMS Server r16.1 CD. The installation
process consists of three parts:

1. Copy the distribution files from the directory on the CA IDMS Server r16.1 CD to any
directory on your hard disk

2. Upload the distribution files to z/OS using FTP.

3. Build and populate the CA IDMS Server HFS directory structure.

This part of the installation process is performed with a series of commands
entered into the OMVS shell. The user ID used to perform some of the steps may
need to be authorized to allocate data sets on SMS packs, or to set up a new OMVS
group and owner, depending on the steps performed.

CA IDMS Server for z/OS calls CAICCI directly, and does not use the OMVS interface,
libcci.so.

Installing the Client Components for UNIX System Services

The procedure to install the CA IDMS Server client components for UNIX System
Services involves steps performed in Windows and in z/OS.

Step 1: Load the Installation Files

Copy file "hfs.tar", within directory "zos" on the CA IDMS Server r16.1 CD, to a directory
on your hard disk.

Installing the Client Components for UNIX System Services

102 User Guide

Step 2: Allocate the HFS

An HFS must be established to store the CA IDMS Database Server Option executables
and configuration files. CA IDMS Server requires approximately 2 MB in the HFS during
the installation. Log files created at runtime may require additional space, and can be
allocated in a separate HFS devoted to temporary files.

You can install CA IDMS Server into an existing HFS if space is available, or you can set
up a new HFS specifically for CA IDMS Server. Only users with OMVS superuser authority
can allocate and mount a new HFS. If you decide to set up a new HFS, you can also
establish a new OMVS UID and GID to serve as the owner and administrator of the CA
IDMS Server HFS files. Consult with your site Security Administrator for assistance in
performing this step.

Step 3: Create the Installation Directory in the HFS

Under OMVS, create the CA IDMS Server installation directory in the HFS, referred to
here as /idmsdir. If you allocated a new HFS, the OMVS superuser must perform the
following steps:

1. Create a mount point and mount the new HFS

2. Declare the owning group and user for the mount point

3. Set up initial file permissions

4. Execute the following commands, invoked by entering the TSO OMVS command:

mkdir -m 775 /idmsdir

/samples/mountx /idmsdir IDMSSRV.HFS

chown ISADMIN:ISGROUP /idmsdir

Note: File permission bits are set to 775, indicating that only the owning user or
users connected to the owning group, can update this directory. All other users
have only read and execute authority.

To make this mount permanent, update the BPXPRMxx member in SYS1.PARMLIB
and add a mount entry. The following is an example of the statement to add:

MOUNT FILESYSTEM('HFSDSN')

MOUNTPOINT('/idmsdir')

TYPE(HFS) MODE(RDWR)

HFSDSN

Specifies the name of the CA IDMS Server HFS data set.

idmsdir

Specifies the name of the CA IDMS Server installation directory.

Installing the Client Components for UNIX System Services

Chapter 7: Installing the Client on z/OS 103

Step 4: Copy and Extract the TAR File

Perform the following steps to populate the CA IDMS Server HFS:

1. In Windows, use FTP to copy file "hfs.tar" which was downloaded in Step 1 to the
CA IDMS Server HFS directory, as defined in Step 2. Ensure that you specify BINARY
mode on this transfer.

2. In OMVS, extract the CA IDMS Server subdirectories and files by positioning yourself
in the CA IDMS Server directory, and using the following command:

pax –rvf hfs.tar

Note: The hfs.tar file is not used after this step and can be deleted from the HFS to save
space.

Step 5: Copy the Sample JCL Files (Optional)

Several MVS jobstreams have been included on the CA IDMS Server HFS under directory
"sampjcl" as follows:

jsrvresu

Resumes execution of the IDMS Java Server

jsrvstop

Stops the IDMS Java Server

jsrvstrt

Starts the IDMS Java Server

jsrvsusp

Suspends execution of the IDMS Java Server

■ A file called "jobcard" has also been included which should be tailored to your
site-specific requirements and copied at the beginning of each jobstream. The
jobcard file has a symbolic variable called IDMSDIR that must be set to the USS
directory name where you installed your CA IDMS Server software. This directory
name must begin with a forward slash (/) and be fully qualified.

■ You can copy all of these files into an MVS PDS using whatever means is easiest for
you to facilitate the control of the IDMS Java Server from an MVS batch job.

Chapter 8: Configuring the Client on z/OS 105

Chapter 8: Configuring the Client on z/OS

This chapter describes how to configure CA IDMS Server in the z/OS UNIX System
Services (USS) environment for use by JDBC-enabled applications. The information in
this chapter is particularly relevant to the use of the JDBC server. It describes the
environment variable settings and configuration file information needed to access a CA
IDMS database. It assumes that you are familiar with the z/OS USS shell and HFS.

This section contains the following topics:

Configuring CA IDMS (see page 105)
Properties File Information (see page 110)

Configuring CA IDMS

CA IDMS Server is installed into a subdirectory in the HFS. This subdirectory, specified
when the product is installed, is referred to in this document as /idmsdir. Its structure is
as follows:

/idmsdir

Specifies the default location for the configuration file and example SQL script.

/idmsdir/bin

Specifies shell scripts to run the JDBC server and sample Java applications.

/idmsdir/bin/mvs

Specifies compiled executable files, including the JDBC server service wrapper.

/idmsdir/classes

Specifies the caidms.properties file and the IdmsExample sample application. It is
also used for classes supplied as part of an APAR and additional helper classes
provided by CA.

/idmsdir/lib

Specifies the Java archive files (including the JDBC driver and JDBC server).

/idmsdir/lib/mvs

Specifies the shared object libraries used to implement the native methods and
client interfaces.

Configuring CA IDMS

106 User Guide

/idmsdir/sampjcl

Specifies the sample jobstreams for starting and stopping the CA IDMS Server from
MVS. These jobs should be copied to an MVS PDS and customized to meet your site
requirements. The sample job card member should be customized and included in
each of the jobstreams.

/idmsdir/src

Specifies the sample Java source code.

For more information about configuring CA IDMS Server for use with applets and
JDBC-enabled applications running on other platforms, see the Using the JDBC Driver
topic in the chapter "Using the Java Client on Any Platform."

Specifying Environment Variables

You must specify the locations of the executables, DLLs, and Java class files for a z/OS
application to use CA IDMS Server in the USS environment. Set the standard UNIX
environment variables to specify these locations:

PATH

Specifies the locations of executable files.

LIBPATH

Specifies the locations of DLL files.

CLASSPATH

Specifies the locations of Java class files.

For example, to run a JDBC application that uses the JDBC driver, these variables could
be set as follows:

set PATH=$JAVA_HOME/bin:$PATH

export PATH

set LIBPATH=/idmsdir/mvs:$LIBPATH

export LIBPATH

set CLASSPATH=/idmsdir/classes:/idmsdir/lib/idmsjdbc.jar:$CLASSPATH

export CLASSPATH

Configuring CA IDMS

Chapter 8: Configuring the Client on z/OS 107

In this case, $JAVA_HOME identifies the directory where Java is installed, and /idmsdir
represents the directory chosen when CA IDMS Server was installed. Note that it is not
necessary to include the /idmsdir/bin directory in the PATH to run a Java application. It
is not necessary to set the PATH, LIBPATH, and CLASSPATH environment variables when
using the supplied shell scripts to run the JDBC server. These environment variables are
automatically set in the shell scripts installed in the /idmsdir/bin directory, equivalent to
the following:

set PATH=$JAVA_HOME/bin/idmsdir/bin:$PATH

export PATH

set LIBPATH=/idmsdir/lib/mvs:$LIBPATH

export LIBPATH

set CLASSPATH=/idmsdir/classes:/idmsdir/lib/idmsjsrv.jar:$CLASSPATH

export CLASSPATH

Note: The shell scripts assume that JAVA_HOME has been set, typically in a user profile.

Optional environment variables specific to CA IDMS Server include:

IDMS_CFG_PATH

Specifies the configuration file name or path.

IDMS_CFG_RELOAD

Forces reloading of the configuration file.

Important! When invoking Unix scripts and programs using the BPXBATCH utility, it is
possible to set environment variables using the STDENV DD statement. This is
particularly useful when scheduled batch jobs are used to automate startup and
shutdown of the JDBC server.

Specifying Environment Variables for IPv6

Special considerations apply to using IPv6 with the JDBC server:

■ Customers who run multiple TCP/IP stacks must set stack affinity to the appropriate
IPv6 stack using the _BPXK_SETIBMOPT_TRANSPORT environment variable. In this
instance you must also code the appropriate host name or IP address in the Host
parameter of the configuration file as detailed in "Configuring the JDBC Server"
topic in this chapter.

■ It may be necessary to define a new TCPIP.DATA file which provides a
special DNS Resolver configuration for IPv6 hosts and addresses. This file must be
specified using the RESOLVER_CONFIG environment variable.

Configuring CA IDMS

108 User Guide

For example, prior to starting the JDBC server, the following statements can be run as
part of a user signon profile. Alternatively, they can be included at the beginning of the
CA-IDMS Server .idms_wrapper script located in the CA IDMS Server bin subdirectory, in
which case they must be run when the JDBC server is started with the supplied shell
script.

export JAVA_HOME="your-jvm 1.6 location here"
export _BPXK_SETIBMOPT_TRANSPORT="your-ipv6-proc-name-here"

export RESOLVER_CONFIG="//'your.tcpipv6.data.file.here'"

Editing the Configuration File

The configuration file contains data source definitions, CA IDMS system access path
information, global option settings, and JDBC server options, corresponding to the
information maintained in the registry on the Windows platform. The file is formatted
as a text file with sections containing lists of key-value pair parameters, similar to a
Windows .ini file. You must edit this file manually for z/OS.

The default file name is caidms.cfg. CA IDMS Server first looks for this file in the current
directory. If it is not there, CA IDMS Server looks in the installation directory. You can
use the IDMS_CFG_PATH environment variable to specify a different name or directory.

For example, to locate the caidms.cfg file in the application directory /idmsdir:

set IDMS_CFG_PATH=/idmsdir/

export IDMS_CFG_PATH

For performance reasons, the configuration file is cached in memory the first time the
libidmsutil.so DLL is loaded into a process. Therefore, changes to the configuration file
may not take effect for a running process until the process is quiesced and restarted. For
the JDBC Server, use the suspend and resume commands documented in the chapter on
"Using the Client on z/OS." For testing and other implementations where performance is
not critical, the cached configuration file can be refreshed more frequently or caching
can be turned off completely using the IDMS_CFG_RELOAD environment variable, or
with the CacheConfig option. For more information, see the appendix "Configuration
File Information."

Configuring CA IDMS

Chapter 8: Configuring the Client on z/OS 109

Data Source Definitions

A JDBC-enabled application can connect to a CA IDMS database using the
DriverManager class with a URL or using JNDI with an IdmsDataSource object. Either
technique can reference a data source name similar to an ODBC data source. This DSN is
defined in the configuration file, where it is associated with the dictionary name of the
catalog defining the SQL schema, a node name identifying the CA IDMS system, and
other optional information.

The following sample illustrates a data source definition defined in the configuration
file:

[APPLDICT]

Dictionary=APPLDICT

Server=SYST0001

[Server SYST0001]

Resource=SYST0001

AlternateTask=CASERVER

This syntax lets you use meaningful names for the data source and server names. Using
an explicit server section lets you specify optional information for a CA IDMS system.
When using all default values, this is equivalent to the following minimal data source
definition:

[APPLDICT]

Server=SYST0001

Bracket characters "[" and "]" may be difficult to use on 3270 terminals or emulators.
The dollar character "$" can be used as a substitute as seen in the following example:

$APPLDICT$

Server=SYST0001

You can also specify this information using DriverPropertyInfo objects or in the
IdmsDataSource itself, instead of in the configuration file.

Note: For a complete description of the connection information, see the chapter "JDBC
Programmer Reference."

Properties File Information

110 User Guide

Configuring the JDBC Server

The JDBC server can be customized with settings in the [Proxy] section of the
configuration file as described in the "Configuration File Information" appendix. The
following options are often specified on z/OS:

Host

Forces the JDBC server to listen for connection requests on a specific TCP/IP stack.
This is not needed when the host has only one stack.

Port

Specifies the correct port in the URL by client applications if the port is changed
from the default (3709).

Encoding

Specifies the default platform encoding (CP1047) on z/OS OMVS. CP037 is a
standard IBM encoding supported by the Sun and IBM Java implementations and is
the default set in the configuration file when the product is installed. The JDBC
driver includes built-in support for these encodings. Other mainframe character
converter classes may not be available on all platforms. Since character conversion
can be offloaded to the client when the character conversion classes are available,
performance may be improved by specifying an encoding that can be done on the
client.

WaitTimeOut

(Recommended) Specifies how long the JDBC server waits for the next request from
a connected client.

Other Configuration File Information

You can specify global options, including the location of the CA IDMS log (trace) file,
trace flags for debugging, and character set encoding in the [Options] section of the
configuration file.

Note: For detailed information about all options and settings in the configuration file,
see the appendix "Configuration File Information."

Properties File Information

You can specify settings used by the JDBC driver and JDBC server in the
caidms.properties file, which has the same format on all platforms. This includes many
settings in the Options section, and all settings in the Proxy section. Options used by the
native libraries must be specified in the configuration file.

Note: For more information, see the appendix "Properties File Information."

Chapter 9: Using the Client on z/OS 111

Chapter 9: Using the Client on z/OS

This chapter describes how to use CA IDMS Server in the USS environment on z/OS. CA
IDMS Server supports JDBC-enabled applications running in the USS environment and
client applications running on other platforms.

The JDBC driver always runs on the same platform as the client application. Applications
running on z/OS use the JDBC driver on z/OS. The Type 2 JDBC driver uses the native SQL
client interface to access the CA IDMS system through CAICCI/ENF. The Type 4 JDBC
driver uses TCP/IP to communicate directly with CA IDMS r16 SP2 or later.

Remote client applications use a local (from the application's point of view) copy of the
JDBC driver, which uses TCP/IP to communicate with the JDBC server on z/OS. The JDBC
server acts as a proxy server, calling the native client interface on behalf of the Type 3
JDBC driver. Remote applications can also use the Type 4 JDBC driver to connect directly
to CA IDMS r16 SP2 or later.

Important! Applications running on z/OS do not need the JDBC server to communicate
with a CA IDMS system.

This section contains the following topics:

Configuring Applications to Use CA IDMS Server (see page 111)
Controlling the JDBC Server (see page 112)
Monitoring the JDBC Server (see page 114)

Configuring Applications to Use CA IDMS Server

JDBC-enabled applications running on z/OS must be able to find the CA IDMS Server
executable files, which include both Java classes and native DLLs. The PATH, LIBPATH,
and CLASSPATH environment variables provide this information.

JDBC-enabled applets and applications running on other platforms need only the JDBC
driver. The native DLLs are not used on the remote system. The JDBC Driver,
idmsjdbc.jar, can be downloaded from the web server with the applet, or can be
installed in a directory named in the CLASSPATH environment variable on the remote
system.

Note: For more information, see the chapter "Using the Java Client."

You can specify settings used by the JDBC driver and JDBC server in the
caidms.properties file, which has the same format on all platforms. This includes many
settings in the Options section, and all settings in the Proxy section. Options used by the
native libraries must be specified in the configuration file. See the appendix "Properties
File Information" for more information.

Controlling the JDBC Server

112 User Guide

For an applet to use the JDBC driver, the classes must be accessible to web pages
accessed from the web server. These classes are installed in a standard Java archive file,
idmsjdbc.jar. The subdirectory containing this file should be defined to the web server.
For the IBM HTTP Server, an entry similar to the following can be added to the
httpd.conf file:

pass /idmsdir /idmsdir/lib

Note: For more information about setting the required environment variables and
defining data sources, see the chapter "Configuring the Client on z/OS." For information
about the URL format, DriverPropertyInfo objects, and DataSource objects used by the
JDBC driver, see the chapter "JDBC Programmer Reference."

Controlling the JDBC Server

Use the JDBC Service wrapper to control the JDBC server with batch jobs or shell
commands. Four batch jobs are included in the sampjcl sub-directory of the CA IDMS
Server HFS (referred to as /idmsdir):

jsrvstrt

Starts the JDBC server.

jsrvstop

Stops the JDBC server.

jsrvsusp

Suspends the JDBC server.

jsrvresu

Resumes the JDBC server.

These files can be customized and copied to an MVS PDS to facilitate job submission
from MVS.

These jobs use BPXBATCH to run the corresponding shell scripts. The JDBC server
process inherits the CPU time limit from the job that runs BPXBATCH to start it (member
JSRVSTRT in the /sampjcl sub-directory). Set the CLASS and TIME parameters
appropriately for the length of time that you plan to keep the JDBC server running.

Each example job has been coded so that the PARM parameter of the EXEC
PGM=BPXBATCH statement specifies "nohup" and "& sleep 1." This is an IBM
recommendation for running shell commands in batch. For more information, see the
z/OS UNIX System Services User's Guide.

You can control the JDBC server with shell commands in the following format:

jsrv <command> [<jsrv options>] [-jvm] [<java options>]

Controlling the JDBC Server

Chapter 9: Using the Client on z/OS 113

The following commands are used to control the JDBC server:

jsrv start

Starts the JDBC server as a background process.

jsrv stop

Stops the JDBC server.

jsrv suspend

Suspends the JDBC server.

jsrv resume

Resumes the JDBC server.

jsrv status

Checks the JDBC server status.

jsrv debug

Starts the JDBC server as a foreground process.

jsrv usage

Displays usage information.

These commands are designed to run from the home directory of the CA IDMS Server
installation and therefore must be prefixed with "bin/", such as bin/jsrv start. The
commands invoke a shell script that sets the required environment variables (described
earlier in the chapter "Configuring the Client on z/OS") and runs the JDBC server service
wrapper. The service wrapper starts the Java VM and passes control to the JDBC server
entry point. You can also enter the commands in the following form: jsrv.start, jsrv.stop,
and so on.

You can override the run-time options from the configuration file by specifying them on
the command line.

All options that follow "-jvm" are passed unchanged to the Java VM to allow
specification of Java tuning and debugging options.

When started in normal mode, the JDBC server forks a new process and detaches from
the terminal. All tracing and debugging is written to the log file specified in the
configuration file. When started in debug mode, the JDBC server runs in the foreground
and stays attached to the terminal. Pressing Enter shuts down the JDBC server. Tracing
output can be displayed on the terminal, redirected to the standard output, or written
to the trace file. Messages to the system log can also be echoed on the standard output.

Note: For detailed information about the command line options, see Using the JDBC
Server in the chapter "Using the Java Client." For more information about customizing
the sample JCL, see the chapter "Installing the Client on z/OS."

Monitoring the JDBC Server

114 User Guide

Monitoring the JDBC Server

The JDBC server sends status messages to the system log or operator console. These
messages have a standard format to facilitate monitoring with CA Common Services and
other system management products. These messages are identified by message
number, which conforms to the standard z/OS message format, PPPNNNNS as follows:

PPP

Specifies a product-specific prefix, such as "UJS."

NNNN

Specifies a message number, such as "0000-9999."

S

Specifies the severity level. The following are valid values:

■ E (Error)

■ W (Warning)

■ I (Information)

■ D (Debugging)

The destination and level of messages written are controlled by settings in the
configuration file.

Messages sent include the following:

■ UJS0001I - Server started

■ UJS0002I - Server stopped

■ UJS0003D - Server stopping

■ UJS0004D - Server waiting for connection

■ UJS0005I - Server suspended

■ UJS0006I - Server resumed

■ UJS0101I - Client thread started

■ UJS0102I - Client thread stopped

■ UJS0103D - Client thread stopping

■ UJS0104I - Client thread to remote server

■ UJS0105D - Client thread loaded class

Monitoring the JDBC Server

Chapter 9: Using the Client on z/OS 115

■ UJS0200E - General error

■ UJS0201E - Socket I/O error

■ UJS0202E - Packet protocol error

Because the message text can include additional information, only the message number
should be used to identify specific events.

Note: For more information, see the appendix "Configuration File Information."

Chapter 10: Using the Java Client on Any Platform 117

Chapter 10: Using the Java Client on Any
Platform

Versions of CA IDMS Server that use native code are available for z/OS and Windows.
The JDBC driver and JDBC server can also be used on other platforms that support Java
1.6 (or later) and TCP/IP.

This chapter provides information on how to install and use the JDBC driver and server
on any Java platform, including Windows, z/OS, and Linux, without installing the native
client interface. The procedures are especially suited to the use of the Type 3 or Type 4
JDBC drivers with J2EE application servers.

This section contains the following topics:

Installing CA IDMS Server on Other Platforms (see page 117)
Using the JDBC Driver (see page 118)
Using the JDBC Server (see page 119)

Installing CA IDMS Server on Other Platforms

The CA IDMS Server JDBC driver can be installed on any platform by copying archive files
from the CA IDMS Server CD, extracting the needed class or jar files, and setting the
CLASSPATH environment variable to point to them. The CA IDMS Server CD contains the
following archive files in the \java directory:

idmsjdbc.tar

Compiled class files, archived in jar files.

samples.tar

Sample Java source files, shell scripts, and input files.

Use the tar utility, or an equivalent such as pax, to extract the needed files on UNIX or
Linux. On most platforms and Linux/386, the files can be copied directly from the \java
directory on the CA IDMS Server CD. The tar files are supplied as a convenience, the
individual jar files included in this directory can be copied directly, if desired.

The javadoc files are found in \doc\javadoc_idms.zip, and there is also a link in the
HTML Bookshelf.

Using the JDBC Driver

118 User Guide

Using the JDBC Driver

Applications, application servers, and servlets running on platforms other than Windows
or z/OS can use the JDBC driver to communicate with a CA IDMS system. CA IDMS
Server need not be installed or configured on these platforms. No native methods are
used. The JDBC driver uses TCP/IP to communicate directly with the JDBC server running
on Windows or z/OS, or directly to CA IDMS r16 SP2 or later. The JDBC server does not
need to run on the application platform.

Configuration settings are specified in the caidms.properties file, because the native
configuration file is not available. Trace information can be written to a container
managed DataSource log or to a file specified in the properties file.

To use the JDBC driver on other platforms

1. Extract or copy the JDBC driver, idmsjdbc.jar, to the client machine. For example, on
UNIX, assuming you have copied the archive idmsjdbc.tar to the /classes directory:

cd /classes

tar –xovf idmsjdbc.tar idmsjdbc.jar

2. Update the CLASSPATH environment variable to point to the JDBC driver directory
and Java archive file.

For example, on Windows:

set CLASSPATH=c:\classes;c:\classes\idmsjdbc.jar;%CLASSPATH%

On UNIX:

set CLASSPATH=/classes:/classes/idmsjdbc.jar:$CLASSPATH

Note: J2EE application servers have various ways of defining JDBC drivers and
specifying how to access the driver jar file. Consult the documentation provided
with the application server for details.

3. Specify the system where the JDBC server or CA IDMS r16 SP2 or later is running as
part of the URL or the data source object used to connect to the database. For
example:

jdbc:idms://hostname/datasource

Note: For more information about the URL format, the Connection Parameters, and
IDMS Data Source definition, see the chapter "JDBC Programmer Reference."

Using the JDBC Server

Chapter 10: Using the Java Client on Any Platform 119

Using the JDBC Server

The JDBC server can be used as a command line application to support web servers
running on platforms other than Windows and z/OS. The JDBC server application is
provided as a Java archive file, and is actually the same file used by the JDBC server
service on z/OS. Because the native code has not been ported to all platforms, certain
limitations apply:

■ The service wrapper is not supported. Start and stop the JDBC server by running the
JVM, specifying the main class file. It can be run as a background process.

■ The configuration file is not supported. Instead, specify options in the properties file
or on the command line.

■ The native log file is not supported, but trace information can be written to stdout
or a file specified in the properties file. Log messages are sent to stderr instead of
the syslog daemon.

■ The native SQL client is not supported. Connections are routed to CA IDMS using a
remote JDBC server running on Windows, z/OS, or directly to CA IDMS r16 SP2 or
later which is treated as a remote server.

To use the JDBC server as a command line application

1. Extract the JDBC server Java archive file, idmsjsrv.jar, on the client machine. For
example, on UNIX, assuming you have copied the archive to the /classes directory:

cd /classes

tar –xovf idmsjdbc.tar idmsjsrv.jar

2. Update the CLASSPATH environment variable to point to the JDBC server directory
and Java archive file. For example:

set CLASSPATH=/classes:/classes/idmsjsrv.jar:$CLASSPATH

3. Start the JDBC server with a command similar to:

java ca.idms.proxy.ProxyMain start –h host 1>out 2>err &

The parameters are as follows:

host

Specifies the DNS name or TCP/IP address of the Windows or z/OS machine
where the native JDBC server is running, or for CA IDMS r16 SP2 or later, the
DNS name or TCP/IP address associated with the TCPIP line of the IDMS
system.

out

Specifies the name of the trace file, and err specifies the name of the log file.

4. Stop the JDBC server with:

java ca.idms.proxy.ProxyMain stop

Using the JDBC Server

120 User Guide

Options equivalent to those specified in the configuration file on z/OS or using the ODBC
Administrator on Windows are specified in the properties file or on the command line:

Options Description

-? Prints this information

-h host Host listener name or IP address

-p port Host listener IP port

-q count Host listener queue length

-r host Remote host name or IP address

-s port Remote IP port

-c Enables control by remote client

-e encoding Overrides platform encoding

-u Specifies Unicode fallback encoding

-w seconds Client wait timeout interval

-t seconds Server reply timeout interval

-b seconds Socket blocking timeout interval

-v [level] Syslog message level (level = 10 if not specified)

-l level Trace log message level

-d option [option] Enables debugging with the following trace options, where
option can be:

■ trace—debug tracing

■ native—native trace

■ snap—object display

■ buffer—native buffer display

■ object—native object display

-k Enables SSL client support

-a Requires SSL client certificate

-y Enables SSL to remote JDBC Server or CA IDMS r16 SP2 or
later

-i class [class] Includes class in trace

-x class [class] Excludes class from trace

Using the JDBC Server

Chapter 10: Using the Java Client on Any Platform 121

Note: For detailed information about these options, see the appendices "Configuration
File Information" and "Properties File Information."

Chapter 11: ODBC Programmer Reference 123

Chapter 11: ODBC Programmer Reference

The ODBC interface allows a Windows application to access different databases using
SQL, without specifically targeting any particular database. A module called an ODBC
driver is used to link an application to a specific database.

The ODBC interface was developed by Microsoft and is aligned closely with the
international-standard ISO Call-Level Interface.

This section contains the following topics:

Debugging User Sessions (see page 123)
ODBC Conformance Levels (see page 124)
SQL Database Type Mapping Between ODBC and CA IDMS (see page 128)
SQLDriverConnect Connection String Format (see page 130)
Driver-Specific Connection and Statement Attributes (see page 132)
Supported Isolation and Lock Levels (see page 132)
Bulk Insert Support (see page 133)
Retrieving Network Set Information (see page 133)
Procedures (see page 134)
Describe Input (see page 138)
Positioned Updates (see page 140)

Debugging User Sessions

CA IDMS Server writes messages to the log file specified on the Log and Trace Options
tab of the CA IDMS Server Option ODBC Administrator dialog. These messages relay the
status of the PC-to-mainframe database connection. Common messages relate to a
user's authorization to sign on to the database, CCI timeouts, and unsuccessful
connections because the CV is down.

Error Messages

Error messages returned by the ODBC driver have one of the following formats,
depending on the component in which the error is detected:

[CA][IDMS ODBC Driver]Message text...

or

[CA][IDMS ODBC Driver][IDMS]Message text...

The ODBC driver generates the first type of message when it detects an error condition.
The second type of message is generated as a result of an error detected within the
ODBC data source, which includes CAICCI, the CV, and the network components.

ODBC Conformance Levels

124 User Guide

ODBC Conformance Levels

CA IDMS Server conforms to the ODBC 3.5 standard. It also provides the functions
defined in the ODBC 2.5 specification to continue support for older applications.

Unless otherwise noted, all descriptions of ODBC in this document refer to ODBC 3.5.
Microsoft ODBC documentation specifies ODBC conformance in two areas: ODBC API
conformance and ODBC SQL conformance. A driver must support all functionality in a
conformance level in order to claim conformance to that level, but is not restricted from
supporting some of the functionality of higher levels. ODBC defines functions that allow
an application to determine the functionality supported by a driver in detail, including
the API and SQL conformance levels, specific API function, data type, and scalar function
support.

API Conformance Levels

The ODBC 3.5 API includes three conformance levels:

Core API

The Core API provides the minimum services to support dynamic SQL, including
connection establishment and termination, SQL statement execution, retrieval of
results, and transaction control. The features in the Core level correspond to those
defined in the ISO CLI specification and to the non-optional features defined in the
X/Open CLI specification.

Level 1

Supports Core functionality plus an extended set of features.

Level 2

Supports Core API and Level 1 functionality, as well as an extended set of features.

The conformance of an ODBC driver is based on its ability to support functions,
descriptor fields, and attributes of statement and connection objects. For more
information, see the ODBC Programmer's Guide, available from Microsoft.

Core API

The CA IDMS Server ODBC driver supports all Core 3.5 API functions, descriptor fields
and statement attributes. It supports all connection attributes with the exception of the
following:

SQL_ATTR_TRANSLATE_LIB

ODBC Conformance Levels

Chapter 11: ODBC Programmer Reference 125

Level 1 API

The CA IDMS Server ODBC driver supports the following Level 1 API functions, descriptor
fields and attributes.

Functions:

■ SQLMoreResults

■ SQLPrimaryKeys

■ SQLProcedureColumns

■ SQLProcedures

Descriptor Fields:

■ SQL_DESC_BASE_TABLE_NAME

■ SQL_DESC_ROWVER

■ SQL_DESC_SCHEMA_NAME

■ SQL_DESC_TABLE_NAME

Connection Attributes:

■ SQL_ATTR_AUTOCOMMIT

■ SQL_ATTR_TXN_ISOLATION

Statement Attributes:

■ SQL_ATTR_MAX_LENGTH

■ SQL_ATTR_MAX_ROWS

■ SQL_ATTR_ROW_OPERATION_PTR

Level 2 API

The CA IDMS Server ODBC driver supports the following Level 2 API functions, descriptor
fields and attributes.

■ Functions:SQLDescribeParam

■ SQLForeignKeys

Descriptor Fields:

■ SQL_DESC_LABEL

■ SQL_DESC_PARAMETER_TYPE

ODBC Conformance Levels

126 User Guide

Connection Attributes:

■ SQL_ATTR_CONNECTION_TIMEOUT

■ SQL_ATTR_LOGIN TIMEOUT

Statement Attributes:

■ SQL_ATTR_CONCURRENCY

■ SQL_ATTR_ENABLE_AUTO_IPD

■ SQL_ATTR_QUERY_TIMEOUT

SQL Conformance Levels

ODBC 3.5 defines a minimum SQL grammar, which is a subset of the entry level of the
ISO/IEC 9075 (or ANSI X3.135-1992) standard, commonly referred to as SQL-92. ODBC
drivers must support at least this minimum grammar. A driver and its underlying DBMS
may also implement additional features to comply with conformance levels of the
SQL-92 standard itself: entry, intermediate or full. Applications can query a driver's
capabilities using the SQLGetInfo function.

CA IDMS Server conforms to the SQL-92 entry level, but also supports some higher-level
features as well. For more information, refer to Appendix A of the CA IDMS SQL
Reference Guide.

In some instances, CA IDMS SQL syntax differs from the SQL-92 standard, as shown in
the following table.

ODBC Conformance Levels

Chapter 11: ODBC Programmer Reference 127

SQL Statement Comments

CREATE TABLE clauses: ■ DEFAULT—CA IDMS supports WITH
DEFAULT, and allows default values of
NULL, 0, or blank.

■ UNIQUE—CA IDMS does not support
specification of uniqueness
constraints at column or table level. A
unique index can be defined to
provide the same effect.

■ PRIMARY KEY—CA IDMS does not
support specification of a primary key
at column or table level. A unique
index can be defined to provide the
same effect.

■ REFERENCES—CA IDMS does not
support specification of referential
constraints on the CREATE TABLE
statement, at column or table level.
CREATE CONSTRAINT statement can
be used to define referential
constraints.

■ CHECK—CA IDMS does not support
specification of CHECK constraints at
column level. CHECK constraints can
be specified at table level.

DROP TABLE RESTRICT—CA IDMS supports CASCADE,
but does not support the RESTRICT
keyword. The absence of CASCADE implies
RESTRICT.

GRANT UPDATE (column-list) REFERENCES
(column-list)

CA IDMS does not support column level
security. CA IDMS driver removes the
column list and grants UPDATE to all
columns of the table.

REVOKE CASCADE/RESTRICT—CA IDMS does not
support the CASCADE and RESTRICT
options on REVOKE.

SQL Database Type Mapping Between ODBC and CA IDMS

128 User Guide

CA IDMS supports:

ISO/IEA/ANSI standard outer join syntax beginning with r17; prior to this outer joins
were supported only with the CA IDMS proprietary PRESERVE parameter. If an outer
join is coded within an escape sequence, the ODBC driver converts the escape sequence
to spaces and pass the statement unchanged to CA IDMS. Scalar functions in escape
sequences are supported in the same manner. SQL statements submitted in batch jobs
are not supported.

CA IDMS supports data types that map to all ODBC data types.

SQL Database Type Mapping Between ODBC and CA IDMS

The following tables describe how ODBC data types map to CA IDMS database data
types. The tables organize the data types by SQL conformance level. You can also use
the SQLGetTypeInfo ODBC function to return detailed information about the mapping of
ODBC and CA IDMS data types.

CA IDMS to ODBC Data Type Mapping

The following chart shows how CA IDMS data types map to ODBC data types:

CA IDMS Data Type ODBC Data Type

BINARY SQL_BINARY

CHAR SQL_CHAR

CHARACTER VARYING (VARCHAR synonym) SQL_VARCHAR

DATE SQL_TYPE_DATE

DECIMAL SQL_DECIMAL

DOUBLE PRECISION* SQL_DOUBLE

FLOAT* SQL_FLOAT

GRAPHIC (DBCS Disabled) SQL_BINARY

GRAPHIC (DBCS Enabled) CAID_GRAPHIC

INTEGER SQL_INTEGER

LONGINT SQL_BIGINT

NUMERIC SQL_NUMERIC

REAL* SQL_REAL

SMALLINT SQL_SMALLINT

SQL Database Type Mapping Between ODBC and CA IDMS

Chapter 11: ODBC Programmer Reference 129

CA IDMS Data Type ODBC Data Type

TIME SQL_TYPE_TIME

TIMESTAMP SQL_TYPE_TIMESTAMP

UNSIGNED DECIMAL SQL_DECIMAL

UNSIGNED NUMERIC SQL_NUMERIC

VARCHAR SQL_VARCHAR

VARGRAPHIC (DBCS Enabled) CAID_VARGRAPHIC

VARGRAPHIC (DBCS Disabled) SQL_BINARY

Note: * Floating point conversion subject to rounding errors due to format differences.

ODBC to CA IDMS Data Type Mapping

The following chart shows how ODBC data types map to CA IDMS data types:

ODBC Data Type CA IDMS Data Type

CAID_GRAPHIC - DBCS Enabled GRAPHIC

CAID_VARGRAPHIC - DBCS Enabled VARGRAPHIC

SQL_BINARY BINARY

SQL_LONGVARBINARY BINARY

SQL_CHAR CHAR

SQL_TYPE_DATE DATE

SQL_DECIMAL DECIMAL

SQL_DOUBLE DOUBLE PRECISION

SQL_FLOAT* DOUBLE PRECISION

SQL_GUID CHAR

SQL_REAL* REAL

SQL_INTEGER INTEGER

SQL_BIGINT LONGINT

SQL_NUMERIC NUMERIC

SQL_BIT SMALLINT

SQL_SMALLINT SMALLINT

SQLDriverConnect Connection String Format

130 User Guide

ODBC Data Type CA IDMS Data Type

SQL_TINYINT SMALLINT

SQL_TYPE_TIME TIME

SQL_TYPE_TIMESTAMP TIMESTAMP

SQL_LONGVARCHAR VARCHAR

SQL_VARCHAR VARCHAR

All Interval Types CHAR

Note: * Floating point conversion subject to rounding errors due to format differences.

Driver-Specific Data Types

When DBCS processing is enabled, the CA IDMS GRAPHIC and VARGRAPHIC data types
are mapped to driver-specific ODBC SQL data types, as allowed by the ODBC 3.5
specification. These types are defined as CAID_GRAPHIC and CAID_VARGRAPHIC in the
CAIDOOPT.H header file which is installed in the CA IDMS Server directory. These data
types are returned by SQLColumns, SQLDescribeCol, and SQLColAttributes, and they
should be used with SQLBindParameter to define input parameters for GRAPHIC and
VARGRAPHIC columns.

Since most applications are not specifically designed to handle DBCS data as defined by
CA IDMS, these types are treated in the same manner as SQL_CHAR and SQL_VARCHAR.
The default C type for both is SQL_C_CHAR, and the precision is specified in bytes.

Note: The length on CA IDMS is specified in DBCS characters, which is half the precision
specified using the ODBC driver.

When DBCS is not enabled, GRAPHIC and VARGRAPHIC are both mapped to
SQL_BINARY, with a default C type of SQL_C_BINARY and precision equal to the length
in bytes.

SQLDriverConnect Connection String Format

CA IDMS Server supports additional keywords for the SQLDriverConnect connection
string.

The connection string takes one of the following forms:

DSN=data_source_name;[;attribute=value[;attribute=value]...]

DRIVER={CA-IDMS}[;attribute=value[;attribute=value]...]

SQLDriverConnect Connection String Format

Chapter 11: ODBC Programmer Reference 131

Supported Attribute Keywords and Attribute Values

The following table provides a summary of the connection string attribute keywords and
attribute values supported on the SQLDriverConnect function. This table includes both
the keywords defined as part of the Microsoft ODBC specification and those defined as
extensions for CA IDMS Server. These keywords correspond to the fields in the
DriverConnect dialogs as well as to the information used to define data sources and
servers in the ODBC Administrator.

Keyword Defined By Attribute Value

DSN Microsoft Data source name

DRIVER Microsoft Driver name (cannot use with DSN)

DICT CA Dictionary name (use with DRIVER only)

NODE CA Node name (use with DRIVER only)

TASK CA Alternate task code (use with DRIVER only)

UID Microsoft User ID

PWD Microsoft Password

ACCT CA Account information, if used

CCINAME CA CAICCI host server name or IP address (optional,
use with DRIVER only). Presence of this option
dictates the use of the 'CCI' communications
protocol. Either an IPv4 or an IPv6 address can
be specified.

CCIPORT CA CAICCI host server port (optional, use with
DRIVER only). This option is required when the
CCINAME option is specified.

WAIT CA CAICCI reply wait timeout (optional, use with
DRIVER only)

HOST CA DNS host name or IP address of the target IDMS
CV (optional, use with DRIVER only). Presence
of this option dictates the use of the 'IDMS'
communications protocol. Either an IPv4 or an
IPv6 address can be specified.

PORT CA TCPIP port number of the IDMSJSRV listener
(optional, use with DRIVER only). This option is
required when the HOST option is specified.

SSL CA Secure Sockets Layer indicator (optional, use
with DRIVER only)

PROGRAM CA Program name (optional, use with DRIVER only)

Driver-Specific Connection and Statement Attributes

132 User Guide

The following is an example of a connection string for CA IDMS Server:

DSN=CA IDMS database;UID=JELKA01;PWD=XYZZY;ACCT=R45-87

Note: For more information, see the following:

■ Microsoft ODBC Programmer's Reference for more information about calling
the SQLDriverConnect function.

■ Online help and the chapter "Using the Client on Windows" for more
information about the DriverConnect dialog.

■ The chapter "Configuring the Client on Windows" for more information about
attribute values.

Driver-Specific Connection and Statement Attributes

The ODBC options that can be specified for a data source using the ODBC Administrator
can also be specified during program execution using SQLSetConnectAttr and
SQLSetStmtAttr.

You can use SQLSetConnectAttr to set the External Identity when connected to CA IDMS
with the IDMS wire protocol. The External Identity is sent to CA IDMS when the next
transaction starts if it has changed.

These options and their values are defined in IDMSATTR.H, installed in the CA IDMS
Server directory.

Supported Isolation and Lock Levels

Transaction isolation is set with the SQLSetConnectOption ODBC API function. The
default transaction isolation can be set using the ODBC Administrator. The ability to set
the default transaction isolation is an IDMS extension. The ODBC driver supports the
following two transaction isolation levels:

SQL_READ_COMMITTED

(Default) Corresponds to the SET TRANSACTION CURSOR STABILITY CA IDMS SQL
Statement.

SQL_READ_UNCOMMITTED

Corresponds to the SET TRANSACTION TRANSIENT READ CA IDMS SQL Statement.

Bulk Insert Support

Chapter 11: ODBC Programmer Reference 133

Bulk Insert Support

CA IDMS Server supports the ODBC 3.5 Core and Level 1 API functions listed in the API
Conformance Levels section earlier in this appendix. The functions SQLSetStmtAttr and
SQLMoreResults can be used to facilitate Bulk Inserts. To ensure that the ODBC driver
takes advantage of the CA IDMS INSERT…BULK feature, use parameter markers ('?') in
the VALUES clause of the INSERT statement. Do not use a combination of parameter
markers and constant values.

Retrieving Network Set Information

You can use the SQLExecuteDirect function with the following syntax to return
information about network sets used to join network records accessed as SQL tables.

$SETS owner table table

The parameters are as follows:

owner

Specifies the name of the SQL schema containing the names of the dictionary and
network schema where the records are defined. This value applies to all tables and
appears to the ODBC application as the TABLE_OWNER returned by SQLTables.

table

Specifies the name of a record in the network schema. Enter from zero to two table
arguments. Each table argument must be unique and must be defined in the same
network schema. This value appears to the ODBC application as the TABLE_NAME
returned by SQLTables.

The owner and table name arguments are case-sensitive. The following list identifies the
contents of the result set, which depends on what you specify for the table arguments:

■ If you specify no table arguments, the result set contains a list of all sets in the
network schema referenced by owner

■ If you specify one table argument, the result set contains a list of all sets in the
network schema referenced by owner in which table is either the owner or a
member

■ If you specify two table arguments, the result set contains a list of all sets in the
network schema referenced by owner between the two tables, where either is the
owner or member

Procedures

134 User Guide

The result columns are described in the following table. All columns are defined as
VARCHAR(18):

SET_NAME

Network set name

SCHEMA_NAME

SQL schema name (ODBC owner)

OWNER_NAME

Network owner record name (ODBC table)

MEMBER_NAME

Network owner record name (ODBC table)

Procedures

CA IDMS supports procedures and table procedures. CA IDMS procedures are used like
procedures supported by other data bases. A table procedure is a CA IDMS extension
that is used like a table.

Using Procedures

An application uses the SQL CALL statement to invoke a procedure.

Get Procedure Metadata

The application can get information about procedures using the following functions:

SQLGetInfo

Returns information about how CA IDMS supports procedures:

■ SQL_ACCESSIBLE_PROCEDURES - The result is "Y" for for CA IDMS r15.0 or
later.

■ SQL_BATCH_SUPPORT – The result includes the BS_SELECT_PROC bit when
connected to an r17, or later IDMS CV, to indicate that procedures can include
statements that return result sets. Note that the result also includes the
BS_ROW_COUNT_PROC bit when connected to an r15, or later IDMS CV, to
indicate that procedures can include statements that return row counts.

■ SQL_BATCH_ROW_COUNT – The result must be 0 to indicate that row counts
are not returned to the calling application for procedure invocations.

Procedures

Chapter 11: ODBC Programmer Reference 135

SQLProcedures

Gets a list of the procedures defined in the SQL catalog.

The PROCEDURE_TYPE column in the result set is always SQL_PT_PROCEDURE,
which indicates that the procedure does not return a value.

The result set includes 3 additional columns, which are partially defined by ODBC,
but "reserved for future use":

Name Number Type

NUM_INPUT_PARMS 4 SMALLINT

NUM_OUTPUT_PARMS 5 SMALLINT

NUM_RESULT_SETS 6 SMALLINT

The NUM_RESULT_SETS column indicates the maximum number of result sets that
can be returned from a procedure.

SQLProcedureColumns

Gets the parameter descriptions for one or more procedures from the SQL catalog.
The COLUMN_TYPE for all parameters is SQL_PARAM_INPUT_OUTPUT.

Prepare the Statement

The application uses the SQLPrepare function to specify the SQL CALL statement to the
ODBC driver. The driver converts the standard ODBC escape sequence to CA IDMS
format.

Get Parameter Descriptions

The application can use the SQLNumParams and SQLDescribeParam or SQL
GetDescriptor functions to determine the type and size of each input parameter for a
prepared CALL statement.

Bind Parameters

The application uses the SQLBindParameter or SQLSetDescriptor functions to specify the
type and buffer for each parameter. Even though all parameters are actually
SQL_PARAM_INPUT_OUTPUT, the driver allows an application to bind the parameters
as SQL_PARAM_INPUT or SQL_PARAM_OUTPUT. If a parameter is bound as
SQL_PARAM_INPUT or SQL_PARAM_INPUT_OUTPUT, the buffer must contain the input
value or NULL when the statement is executed. If a parameter is bound as
SQL_PARAM_OUTPUT the driver assumes a NULL value.

Procedures

136 User Guide

Execute the Statement

The application uses SQLExecute to execute the CALL statement. The driver OPENs a
cursor for the internal result set used to return output parameters and issues a FETCH to
return the first row. Note that this is the only row in the result set for procedures. The
driver returns output parameter values into the buffers specified by SQLBindParameter.
If the procedure returned one or more result sets, the driver opens a received cursor on
the first one.

Get the Results

CA IDMS r17, or later, supports procedures that return result sets. The application uses
the following functions to navigate though any returned result sets:

SQLNumResultCols

This function can be used to determine if a procedure returned one or more result
sets. After the statement that calls a procedure is executed the function returns
the number of columns in the first result set (not the number of output
parameters). If there are no returned result sets it returns 0. After
SQLGetMoreResults is called it returns the number of columns in the current result
set.

SQLMoreResults

Closes the current returned result set and opens the next result set returned by the
procedure, if any.

The application uses the normal result set functions to retrieve the column data values.

Using Named Parameters

ODBC applications can use the parameter names defined in the CA IDMS CREATE
PROCEDURE statement when binding parameter values. This technique simplifies
parameter binding for procedures with large numbers of parameters, particularly if
default values can be used.

The named parameter feature for ODBC is used differently than it is usedfor JDBC
because of ODBC use of structures known as descriptors. An application must first bind
a data buffer to a parameter marker ('?') in the SQL string using an ordinal index. This
process creates an implementation parameter descriptor (IPD). The parameter name
can then be set in the IPD to provide the correlation between the IPD and the
parameter in the CA IDMS procedure. Because of this correlation, named parameters do
not have to be bound in any particular order, and a parameter can be skipped
completely if an acceptable default value has been defined in the procedure.

Procedures

Chapter 11: ODBC Programmer Reference 137

An application uses the following functions for named parameters:

SQLPrepare

Prepares the SQL CALL statement with one or more parameter markers.

SQLBindParameter

Binds a data buffer and data type information associated with a parameter marker.

SQLGetStmtAttr

Obtains the handle for the IPD associated with a bound parameter.

SQLSetDescField

Sets the SQL_DESC_NAME field in an IPD with the appropriate parameter name
from the CREATE PROCEDURE statement.

SQLExecute

Calls the procedure and returns output values.

Note that attempting mix unnamed ordinal parameters with named parameters causes
an error. If automatic IPD population is used by the application, the IPDs is already in the
order of the parameters specified in the CREATE PROCEDURE statement, and named
parameters are ignored. Automatic IPD population is enabled by calling
SQLSetConnectAttr to set SQL_ATTR_ENABLE_AUTO_IPD to SQL_TRUE. This feature is
commonly used by ad-hoc query tools for determining parameter metadata.

For more information, see the Microsoft's ODBC Programmer's Guide.

Using Table Procedures

An application normally uses a table procedure as if it were a table or view, by executing
SQL SELECT, INSERT, UPDATE, and DELETE statements. The effect of these statements
depends on how the table procedure is implemented. If an application uses a CALL
statement to invoke a table procedure, only the first row of the result set is returned.
You can alter this behavior if required for compatibility with an existing application.

Catalog Data

Both types of procedures are represented as rows in the SYSTEM.TABLE catalog table.
The default SYSCA.ACCESSIBLE_PROCS view returns only procedures defined with the
CREATE PROCEDURE syntax (table type = 'R'). You can customize the view to return
table procedures by modifying the filter clause to include type 'P' as well as type 'R'.

Describe Input

138 User Guide

Describe Input

The ODBC driver supports DESCRIBE INPUT for prepared statements when connected to
a CA IDMS r14.0 or later system. The driver supports delayed parameter binding, which
allows input parameter types to be changed when a prepared statement is re-executed
without requiring that the statement be prepared again.

Using Describe Input

This feature is exposed to the application using the ODBC SQLDescribeParam function.
The following is a summary of how a user written application program uses this feature
with CA IDMS Server and describes how the ODBC driver processes the related ODBC
APIs.

Prepare the Statement

An application uses SQLPrepare to specify the SQL statement to the ODBC driver. The
driver caches the syntax and scans it to determine the type of command, counts
parameter markers, and translates any ODBC escape sequences. To enhance
performance, it does not PREPARE the statement on the server immediately.

Get Input Parameter Descriptions

The application can use the SQLNumParams function to determine the number of input
parameters. This function does not require the driver to PREPARE the statement on the
server.

The application can use the SQLDescribeParam function to determine the type and size
of each input parameter. If the server is r12.0, the driver returns the "default
parameter" description, usually VARCHAR. In this case, the driver does not need to
PREPARE the statement on the server. If the server is r14.0 or later, the driver PREPAREs
the statement on the server with the DESCRIBE INPUT option and returns the parameter
description. This allows the application to get an accurate description of the parameter.
However, it may result in an additional converse with the server for a query statement
because the OPEN cannot be piggybacked onto the PREPARE until the statement is
actually executed.

Describe Input

Chapter 11: ODBC Programmer Reference 139

Bind Input Parameters

The application uses SQLBindParameter to specify the type of each parameter and the
buffer that contains its value when the statement is executed. An application would
usually specify the same type attributes that were returned by SQLDescriberParam. If a
parameter's attributes are changed in a way that is incompatible with the previous
definition and the server is r12.0, the driver must PREPARE the statement again before
executing it. This is transparent to the application, but may cause an additional converse
with the server. The driver does not need to PREPARE the statement again if the server
is r14.0 or later.

If the application calls the ODBC SQLDescribeParam function subsequent to
SQLBindParameter, then the results returned reflect the column definitions as they exist
in the CA IDMS catalog, rather than that of a prior SQLBindParameter call.

Execute the Statement

The application uses SQLExecute to cause the driver to EXECUTE the statement or OPEN
the cursor for a query. If the statement has not been PREPAREd yet, or a parameter has
been changed for r12.0, the driver must PREPARE the statement first. If the statement is
a query, the driver may piggyback an OPEN on this PREPARE converse.

For r14.0 or later, the application can change the contents of bound parameter buffers
and re-execute the prepared statement repeatedly without requiring the driver to
PREPARE the statement again.

CA IDMS discards all prepared statements when the transaction is committed. When
auto commit is enabled, statements must be prepared each time they are executed. The
driver does this transparently by caching the SQL syntax. An application can avoid this
by disabling auto commit or setting the commit behavior to SQL_CB_PRESERVE, as
described for the ODBC Positioned Updates feature.

Get Output Column Descriptions

The application uses the SQLNumResultCols function to determine the number of result
set columns. It uses the SQLDescribeCol function to determine the type and size of each
column in the result set.

An application usually calls these functions after executing the statement with
SQLExecute or SQLExecuteDirect.

If the application calls them after SQLPrepare but before SQLExecute, the driver
PREPAREs the statement on the server. If the server is r12.0, the driver uses the default
parameter type for any input parameters; otherwise, the driver uses the DESCRIBE
INPUT option. This may result in an additional converse with the server.

Positioned Updates

140 User Guide

Positioned Updates

The ODBC driver supports positioned UPDATE and DELETE commands when connected
to a CA IDMS r14.0 or later system. This supports a more efficient native
implementation than the one implemented in the ODBC Cursor Library supplied by
Microsoft, which simulates positioned updates.

When using positioned updates, the BULK FETCH and piggybacked OPEN, CLOSE, and
COMMIT optimizations are not used because they would interfere with cursor currency.

Using Positioned Updates

The following is a summary of how a user written application program uses this feature
with CA IDMS Server. This differs from the description in the ODBC documentation,
which actually describes how to use the ODBC cursor library to simulate positioned
updates. To ensure that the ODBC driver manager invokes the CA IDMS Server ODBC
driver directly, the application program should not enable the ODBC Cursor Library
when using this feature. Note that it is disabled by default.

Disable AutoCommit if Necessary

The default behavior for ODBC is to execute a COMMIT after each statement. The
default behavior for CA IDMS is to close any open cursors when a transaction is
committed, which would allow only a single positioned update for a cursor. To avoid
this, the application must disable the automatic commit or change the CA IDMS commit
behavior.

SQLGetInfo

The application uses this function to get SQL_CURSOR_COMMIT_BEHAVIOR. If the
value is not SQL_CB_PRESERVE, the application should disable AutoCommit.

SQLSetConnectAttr

The application uses this function to disable the SQL_AUTOCOMMIT option.

If the application does not disable the AutoCommit option at runtime, use the CA IDMS
ODBC Administrator to set the COMMIT BEHAVIOR option to PRESERVE CURSORS. This
causes the ODBC driver to issue a COMMIT CONTINUE when committing a transaction,
which preserves cursor currency.

Positioned Updates

Chapter 11: ODBC Programmer Reference 141

Set Cursor Concurrency

The application allocates a statement handle for the query statement and must set
cursor concurrency to allow updates. The default cursor concurrency is
SQL_CONCUR_READ_ONLY, which causes the CA IDMS ODBC driver to optimize the calls
to the database for retrieval, using BULK FETCH and piggybacked CLOSE options.

SQLSetStmtAttr

The application uses this function to set the SQL_ATTR_CONCURRENCY attribute to
SQL_CONCUR_LOCK. This causes the driver to generate calls to the CV that allow
the cursor to support positioned updates. If the statement has already been
prepared, it is prepared again to use the specified concurrency. If it has already
been executed, an error is returned.

Specify a Cursor Name

The application program must specify a cursor name or get a name generated by the
driver.

SQLSetCursorName

The application uses this to specify an explicit cursor name. As an extension to the
ODBC specification, this function sets the cursor concurrency to
SQL_CONCUR_LOCK if needed. If the statement has already been prepared, it is
prepared again to use the specified cursor name. If it has already been executed, an
error is returned.

SQLGetCursorName

If the application has specified an explicit cursor name, this returns the application
specified name. If the application has not specified a cursor name, this returns a
name generated in accordance with the ODBC specification if cursor concurrency
has been set to SQL_CONCUR_LOCK, and returns an error HY015 otherwise. This is
according to the ODBC 2.x specification; an ODBC 3.x driver always returns a cursor
name. This function can be called after the statement has been executed.

Positioned Updates

142 User Guide

Execute the Query

The application executes an updatable query expression, using the SQLPrepare and
SQLExecute or SQLExecuteDirect functions. An updateable query has the form:

SELECT query-expression FOR UPDATE [OF column-list]

CA IDMS requires the FOR UPDATE clause for a positioned update; it is optional for a
positioned delete. The application program must include this clause. The ODBC driver
does not scan the syntax for it and does not generate an error if the clause is present
when the cursor concurrency is set to SQL_CONCUR_READ_ONLY. See the CA IDMS
Database SQL Option Reference Guide for detailed documentation on updateable query
expressions.

The application program uses the SQLFetch function to position the cursor on the
desired row. The CA IDMS Server ODBC driver disables the BULK FETCH and piggybacked
CLOSE optimizations to ensure that the cursor is positioned on the row that is returned
to the application.

Execute the Update

The application program allocates a second statement handle that it uses to execute the
positioned UPDATE or DELETE statement, which specifies the cursor name, as shown in
the following:

■ UPDATE table-name SET value-list WHERE CURRENT OF cursor-name

■ DELETE FROM table-name WHERE CURRENT OF cursor-name

CA IDMS returns an error if no cursor name has been implicitly or explicitly specified .

Developing a Custom Conversion DLL

A custom conversion DLL replaces the DLL used by CA IDMS Server to handle DBCS. This
DLL is dynamically loaded when it is first used, and called for each character field sent to
or received from the CA IDMS system. This includes SQL syntax, input parameters,
output data, and some internal control blocks.

A custom conversion DLL can be written in any language that supports the Microsoft
Windows DLL calling conventions. It must be thread safe.

Positioned Updates

Chapter 11: ODBC Programmer Reference 143

API Reference

The following section describes the API that the conversion DLL must implement, and
how CA IDMS Server uses each function in the API.

A custom conversion DLL must implement each function described here. The function
prototypes and constants are defined in cadbcs.h, installed in the CA IDMS Server
directory. This header file includes additional functions used by other CA products.
Because CA IDMS Server does not use them, they are not documented here.

DBCSAlloc

Syntax

UINT DBCSAlloc(HANDLE * hDBCS)

Description

Allocates the environment needed to do character conversion. This is the first call
made to the conversion DLL, which must return a handle to the environment. CA
IDMS Server uses this handle for all subsequent calls.

Arguments

hDBCS

Buffer for environment handle.

Returns

■ DBCS_SUCCESS—Function completed successfully

■ DBCS_NO_MEMORY—Unable to allocate memory

■ DBCS_INVALID_HANDLE—hDBCS is Null

DBCSInit

Syntax

UINT DBCInit(HANDLE hDBCS, UNIT fType, LPSTR lpPath)

Description

Initializes the conversion environment. For real DBCS processing, this specifies
particular DBCS conversion tables. The custom conversion DLL can perform any
initialization not completed in DBCSAlloc, or it can just return.

Positioned Updates

144 User Guide

Arguments

hDBCS

Environment handle

fType

Conversion type, 1 for a custom DLL

lpPath

Path to translation tables

Returns

■ DBCS_SUCCESS—Completed successfully

■ DBCS_NO_MEMORY—Unable to allocate memory

■ DBCS_INVALID_HANDLE—hDBCS is Null

■ DBCS_TRANS_NOT_SUPPORTED

■ DBCS_FILE_NOT_FOUND

SetDBCSOption

Syntax

UINT SetDBCSOption(HANDLE hDBCS, BYTE nOption, BOOL bFlag)

Description

Sets conversion options.

Arguments

hDBCS

Environment handle.

nOption

Option type:

■ DBCS_KATAKANA

■ DBCS_NULL_TERMINATED

■ DBCS_PAD_SPACES

bFlag

True to enable, False to disable

Returns

■ DBCS_SUCCESS—Completed successfully

■ DBCS_NO_MEMORY—Unable to allocate memory

■ DBCS_INVALID_HANDLE—hDBCS is Null

Positioned Updates

Chapter 11: ODBC Programmer Reference 145

GetDBCSLength

Syntax

UINT GetDBCSLength(HANDLE hDBCS, LPSTR sBuffer, LPSTR nBufferLen, UINT

 fType, UNIT * nLength)

Description

Computes the converted data length.

Arguments

hDBCS

Environment handle.

sBuffer

Input buffer

nBufferLen

Input buffer length

fType

Input data format:

■ DBCS_MF (EBCDIC)

■ DBCS_PC (ASCII)

nLength

Buffer for converted length

Returns

■ DBCS_SUCCESS—Completed successfully

■ DBCS_NO_MEMORY—Unable to allocate memory

■ DBCS_INVALID_HANDLE— hDBCS is Null

■ DBCS_ERR_PARM—Invalid parameter passed

Positioned Updates

146 User Guide

DBCStoPC

Syntax

UINT DBCStoPC(HANDLE hDBCS, LPSTR sInBuffer, UINT nInBufferLen, LPSTR

 sOutBuffer, UINT nOutBufferLen, UINT fType, UINT * nLength)

Description

Converts the input buffer from EBCDIC to ASCII. The caller must allocate the output
buffer and provide an output field for the converted length. Because CA IDMS
Server always sets the DBCS_NULL_TERMINATED option to False, the DLL should
not null terminate the converted data.

Arguments

hDBCS

Environment handle

sBuffer

Input buffer

nBufferLen

Input buffer length

nInBufferLen

Input buffer length

sOutBuffer

Output buffer

nOutBufferLen

Output buffer length

fType

SQL data type:

■ DBCS_CHAR (includes VARCHAR)

■ DBCS_GRAPHIC (includes VARGRAPHIC)

nLength

Buffer for converted length

Returns

■ DBCS_SUCCESS—Completed successfully

■ DBCS_NO_MEMORY—Unable to allocate memory

■ DBCS_INVALID_HANDLE—hDBCS is Null

■ DBCS_ERR_PARM—Invalid parameter passed

■ DBCS_TRUNCATION—Converted data was truncated

Positioned Updates

Chapter 11: ODBC Programmer Reference 147

DBCStoMF

Syntax

UINT DBCStoMF(HANDLE hDBCS, LPSTR sInBuffer, UINT nInBufferLen, LPSTR

 sOutBuffer, UINT nOutBufferLen, UINT fType, UINT * nLength)

Description

Converts the input buffer from ASCII to EBCDIC. The caller must allocate the output
buffer and provide an output field for the converted length. The DBCS_PAD_SPACES
option indicates whether the data is fixed or variable length. When True, the DLL
should pad the converted data with spaces (in EBCDIC).

Arguments

hDBCS

Environment handle.

sBuffer

Input buffer

nBufferLen

Input buffer length

nInBufferLen

Input buffer length

sOutBuffer

Output buffer

nOutBufferLen

Output buffer length

fType

SQL data type:

■ DBCS_CHAR (includes VARCHAR)

■ DBCS_GRAPHIC (includes VARGRAPHIC)

nLength

Buffer for converted length

Returns

■ DBCS_SUCCESS—Completed successfully

■ DBCS_NO_MEMORY—Unable to allocate memory

■ DBCS_INVALID_HANDLE—hDBCS is Null

■ DBCS_ERR_PARM—Invalid parameter passed

■ DBCS_TRUNCATION—Converted data was truncated

Positioned Updates

148 User Guide

DBCSEnd

Syntax

UINT DBCEnd(HANDLE hDBCS)

Description

Terminates the DBCS environment. CA IDMS Server calls this function before
unloading the DLL, which should free all resources for the DBCS environment
specified by the handle.

Arguments

hDBCS

Environment handle.

Returns

■ DBCS_SUCCESS—Completed successfully

■ DBCS_INVALID_HANDLE—hDBCS is Null

■ DBCS_FREE_ERROR—Unable to free memory

How CA IDMS Server Uses the API

CA IDMS Server calls the custom conversion DLL functions as follows:

DLL Function Description

DBCSAlloc Called before any other processing is done.

DBCSInit Called after DBCSAlloc and before any other processing.
CA IDMS Server passes the DBCS type, arbitrarily set to 1,
and path specified on the CA IDMS International tab as
parameters. These can be ignored.

SetDBCSOption ■ Called before DBCStoMF and DBCStoPC with the
DBCS_KATAKANA option. False when Katakana is not
enabled, and can be ignored.

■ Called before DBCStoPC with the
DBCS_NULL_TERMINATE option. Always False, as the
ODBC driver sets the null terminator on all character
data.

■ Called before DBCStoPC with the DBCS_PAD_SPACES
option. This option is 1 (TRUE) when the SQL data
type is CHAR, 0 (FALSE) when it is VARCHAR.

GetDBCSLength Called before DBCStoMF when the ASCII string is SQL
syntax.

DBCStoPC Called for each field converted from EBCDIC to ASCII.

Positioned Updates

Chapter 11: ODBC Programmer Reference 149

DLL Function Description

DBCStoMF Called for each field converted from ASCII to EBCDIC.

DBCSEnd Called before unloading the DLL.

Chapter 12: JDBC Programmer Reference 151

Chapter 12: JDBC Programmer Reference

The JDBC interface allows Java applications to access different databases without
specifically targeting any particular database. A set of classes called a JDBC driver is used
to link an application to a specific database. The JDBC interface was developed by Sun
Microsystems based on ODBC 2.5, and like ODBC, is consistent with the X/OPEN Call
Level Interface (CLI).

This appendix provides information useful to developers of Java applications intended
to access CA IDMS databases. A general familiarity with Java and JDBC is assumed.

The javadoc generated from the JDBC driver source code contains additional
information about the CA IDMS implementation of JDBC. This HTML format
documentation is installed in the CA IDMS Server directory and can be accessed from
the CA IDMS Server menu.

This section contains the following topics:

JDBC Conformance (see page 151)
Database Type Mapping between JDBC and CA IDMS (see page 152)
DriverManager (see page 154)
DataSource Connection Parameters (see page 157)
Distributed Transactions (see page 163)
Batch Updates (see page 165)
Procedures (see page 167)
Scrollable Result Sets (see page 168)
Positioned Updates (see page 172)
HibernateDialect (see page 172)
Sample Programs (see page 173)
Sample SSL Scripts (see page 175)

JDBC Conformance

CA IDMS Server conforms to the JDBC 4.0 specification, which is included in Java 1.6 or
later. Unless otherwise noted, all descriptions of JDBC in this document refer to JDBC
1.6.

Database Type Mapping between JDBC and CA IDMS

152 User Guide

SQL Conformance

To be JDBC compliant, a JDBC driver must support ANSI SQL-92 Entry Level. This is
consistent with ODBC 3.0. With a few minor exceptions, CA IDMS conforms to the ANSI
SQL-92 entry level standard. Both the ODBC and JDBC drivers pass most SQL statements
to the CV essentially unchanged, other than converting escape sequences into CA IDMS
equivalents.

Note: For more information about SQL conformance, see the chapter "ODBC
Programmer Reference."

Database Type Mapping between JDBC and CA IDMS

The following tables describe how JDBC data types map to CA IDMS database data
types. Java applications can use the DatabaseMetaData.getTypeInfo method to return
detailed information about the mapping of JDBC and CA IDMS data types.

CA IDMS to JDBC Data Type Mapping

The following chart shows how CA IDMS types map to JDBC data types when data is
returned in a result set:

CA IDMS Data Type JDBC Data Type

SMALLINT SMALLINT

INTEGER INTEGER

LONGINT BIGINT

REAL REAL

FLOAT REAL (Precision < 25).

FLOAT FLOAT (Precision > 24).

DOUBLE PRECISION DOUBLE

DECIMAL DECIMAL

UNSIGNED DECIMAL DECIMAL

NUMERIC NUMERIC

UNSIGNED NUMERIC NUMERIC

CHAR CHAR

GRAPHIC CHAR (DBCS must be enabled)

Database Type Mapping between JDBC and CA IDMS

Chapter 12: JDBC Programmer Reference 153

CA IDMS Data Type JDBC Data Type

VARCHAR VARCHAR

VARGRAPHIC VARCHAR (DBCS must be enabled)

BINARY BINARY

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP

JDBC to CA IDMS Data Type Mapping

The following chart shows how JDBC data types map to CA IDMS types when a
parameter value is set.

JDBC Data Type CA IDMS Data Type

BIT SMALLINT

TINYINT SMALLINT

SMALLINT SMALLINT

INTEGER INTEGER

BIGINT LONGINT

REAL REAL

FLOAT DOUBLE PRECISION

DOUBLE DOUBLE PRECISION

DECIMAL DECIMAL

NUMERIC NUMERIC

CHAR CHAR

VARCHAR VARCHAR

LONGVARCHAR VARCHAR

BINARY BINARY

VARBINARY BINARY

LONGVARBINARY BINARY

DATE DATE

TIME TIME

DriverManager

154 User Guide

JDBC Data Type CA IDMS Data Type

TIMESTAMP TIMESTAMP

DriverManager

This section describes the information needed to connect to a CA IDMS database using
the JDBC DriverManager, including the URL formats and DriverProperties recognized by
the JDBC driver.

IDMS URL Format

A URL is used to locate a resource on the Internet. A URL always begins with a protocol
followed by a colon, such as http: or ftp:, and the rest of the string is defined by the
protocol. In keeping with the Internet orientation of Java and JDBC, URLs are used to
identify databases. The JDBC specification defines conventions for the format of JDBC
URLs. Each JDBC driver defines the actual format of the URLs that it recognizes. The
general format of a JDBC URL is:

protocol: subprotocol: subname

protocol is always jdbc. subprotocol and subname are defined by the JDBC driver.

The CA IDMS Server JDBC driver recognizes three URLs with subprotocol idms. The
location of the native SQL client interface and the data source or dictionary name are
specified by the subname.

jdbc:idms:database

Specifies the format used when the JDBC driver runs on the same machine as the
native SQL client interface, that is, as a Type 2 driver. The JDBC driver calls the
native interface directly.

DriverManager

Chapter 12: JDBC Programmer Reference 155

jdbc:idms://hostname:port/database

Specifies the format used when the JDBC driver runs on a different machine than
the native SQL client interface, that is, as a Type 3 or Type 4 driver. The Type 3 JDBC
driver communicates with the JDBC server, which calls the native interface directly.
hostname is the DNS name or IP address of the web server machine on which the
JDBC server is running, and port is the IP port that was specified as the JDBC server
listener. CA IDMS r16 SP2 or later supports direct connections from the Type 4 JDBC
driver to the CV. hostname is the DNS name or IP address of the machine where the
CV is running, and port is the IP port that was specified for the listener PTERM.

jdbc:idms:ssl://hostname:port/database

Specifies the format used when the JDBC driver runs on a different machine than
the native SQL client. In this case, the Secure Sockets Layer protocol is used for all
communications between the driver and the CV (the driver acting as type 4), or
between the driver and a JDBC Server (the driver acting as a type 3).

Important! The database can be an ODBC data source name or the dictionary name of
the catalog containing the table definitions. When database is an ODBC data source
name, the actual dictionary and physical connection information are resolved by the
native SQL client interface, and must be defined on the system where the native code
runs. When database is a dictionary name, the physical connection information is
specified by DriverPropertyInfo objects.

When using JDBC driver types 3 and 4 with an IPv6 destination, it is still possible to code
the hostname parameter in the URL with either a DNS name or an IP address. The DNS
name is specified in the same way as it would be for an IPv4 destination. The IP address
for an IPv6 destination must be enclosed in square brackets as shown in the following
example.

jdbc:idms://[fec0::a:9:67:115:66]:3730/appldict

DriverManager

156 User Guide

DriverPropertyInfo

JDBC DriverPropertyInfo objects are analogous to the connection attributes used by the
ODBC SQLDriverConnect and SQLBrowseConnect functions. For the JDBC driver, they
are used to specify user ID, password, and optional accounting information. They can
also be used to specify physical connection information, allowing an application to
connect to a CA IDMS database without requiring the definition of an ODBC style data
source. CA IDMS Server supports the following driver properties:

account

Specifies accounting information. An optional feature that may be used by the CA
IDMS system. A user exit must be installed on the DC system to process the
information. See the chapter "Passing Accounting Information to CA IDMS" for
more information.

ccihost

Specifies the DNS name or IP address of the CAICCI host server, for use by the
native SQL client interface. Ignored unless node is specified. Typically, the default is
used.

cciport

Overrides the default IP port of the CAICCI host server. Ignored unless ccihost is
specified. Typically, the default is used.

csuspend

Specifies that when set to true, the JDBC driver suspends the SQL session and
pseudo converse immediately after connecting to the database. The default for a
non-pooled connection is false.

defschem

Specifies the name of the default SQL Schema. This is an optional 1-to-18 character
field. When specified, this field is used as the schema qualifier for all SQL table
references that do not contain an explicit schema qualifier. The default is blank
(unspecified).

ewait

Sets the external wait interval for the task. This property effectively becomes the
socket timeout and overrides the value specified for the task definition. It is used
only by the Type 4 JDBC driver.

node

Specifies the DC NODE name, which identifies the CV containing the database.
Using this property allows a connection to be established without defining an ODBC
style data source. Use of this property implies that the subname contains a
DICTNAME, and the driver does not search the registry or configuration file.

DataSource Connection Parameters

Chapter 12: JDBC Programmer Reference 157

password

Specifies the password associated with the user ID. Required to connect to a
secured CV.

program

Sets the program name for stand-alone applications when used with the
DriverManager.getConnection(String url, Properties info).

rsint

Sets the resource interval for the task. This property overrides the value specified
for the task definition. It is used only by the Type 4 JDBC driver.

sbuflen

Sets the default data buffer size for IDMSJSRV. This property overrides the value
specified in the listener PTERM PARM string. It is used only by the Type 4 JDBC
driver.

ssl

When set to true, specifies that the JDBC driver obtains a secure socket for all
communication to an IDMS CV or a JDBC proxy server.

strace

Sets the IDMSJSRV trace flags as defined in CSACFLG1 and CSACFLG2 as directed by
CA IDMS Technical Support.

task

Overrides the default DC TASK code that invokes the internal CA IDMS Server
interfaces.

user

Specifies that a user ID is required to sign onto CA IDMS.

via

Specifies the NODE name of an intermediate CV that is used to route requests to
the target system. Used when a physical connection cannot be established directly
to the CV containing the SQL database. Ignored unless node is specified.

DataSource Connection Parameters

This section describes the information used to connect to a CA IDMS database using a
JDBC DataSource, including the CA IDMS Server implementation classes and their
properties.

DataSource Connection Parameters

158 User Guide

IdmsDataSource

The IdmsDataSource class implements the JDBC DataSource interface. It is used with an
application server provided Java Naming and Directory Interface (JNDI) naming service
to establish a connection to a CA IDMS database.

IdmsDataSource properties conform to the Java Beans naming conventions and are
implicitly defined by public "setter" and "getter" methods. For example, the
"description" property, which is required for all DataSource implementations, is set
using the setDescription(String) method. The application server may use the
java.lang.reflection methods to discover DataSource properties and provide an interface
to set them, or may simply require that they are defined in some configuration file.

IdmsDataSource properties are used to specify the connection parameters. These
properties are the equivalent of the DriverPropertyInfo attributes described in the
previous section and can be used to completely define the parameters needed to
connect to a database. Like a URL, an IdmsDataSource object can also reference an
"ODBC" style data source name, where the connection parameters are defined in the
registry on Windows, the configuration file on z/OS or Linux, or in the Java properties
file.

accountInfo

Specifies optional accounting information. See the DriverPropertyInfo attribute
descriptions.

connectSuspend

Specifies that when set to true, the JDBC driver suspends the SQL session and
pseudo converses immediately after connecting to the database. The default for a
non-pooled connection is false.

DataSource Connection Parameters

Chapter 12: JDBC Programmer Reference 159

databaseName

Identifies the database on the CA IDMS CV. When nodeName is specified, the driver
interprets this property as the DICTNAME of the catalog in which the tables are
defined and assumes that the IdmsDataSource contains all information needed to
connect to the CV. When nodeName is not specified, the driver interprets this
property as the name of an ODBC style data source containing connection
information. The networkProtocol property can be used to override this behavior.

dataSourceName

Specifies a logical data source name. Container provided DataSource
implementations use this to name the ConnectionPoolDataSource object. The
IdmsDataSource implementation does not use this internally.

defaultSchema

Specifies the name of the default SQL Schema. This is an optional 1-to-18 character
field. When specified, this field is used as the schema qualifier for all SQL table
references that do not contain an explicit schema qualifier. The default is blank
(unspecified).

description

Specifies a data source description. This property is required of all DataSource
implementations.

externalWait

Overrides the external wait interval for the server task invoked by the Type 4 driver.
This effectively becomes the socket timeout.

identityAudited

Enables end-to-end auditing of the external user identity provided by an identity
manager such as CA SiteMinder.

networkProtocol

Specifies how the JDBC driver communicates with the CV:

■ CCI can be specified on Windows or z/OS when the native client interface is
installed. It causes the driver to function as a Type 2 driver, using CAICCI/PC on
Windows or CAICCI/ENF on z/OS to communicate with the CV.

■ TCP can be specified on any platform. It causes the driver to function as a Type
3 driver when connected to the JDBC Server or as a Type 4 driver when
connected directly to CA IDMS.

■ IDMS can be specified on any platform. It provides a hint to the driver that it
connects directly to CA IDMS as a Type 4 driver. When IDMS is specified, the
driver ignores the nodeName and viaName properties and always interprets
the databaseName as the DICTNAME.

DataSource Connection Parameters

160 User Guide

nodeName

Specifies the NODE name that identifies the CV containing the database. This
property should be used to define a Type 2 connection without defining an ODBC
style data source. Use of this property implies that the databaseName is a
DICTNAME.

password

Specifies the password for the default user ID. The application can override this
when the connection is established. For security, the getPassword method does not
return the value.

portNumber

Specifies the TCP/IP port number of the CCITCP address space, JDBC Server, or CA
IDMS CV, depending on the value of networkProtocol.

programName

Sets an external application name to be used as the CA IDMS program name for all
connections created by this data source. The first eight characters of this name are
written to the journal.

resourceInterval

Overrides the resource interval for the server task invoked by the Type 4 driver.

roleName

Supported for compatibility with other DataSource implementations. The
IdmsDataSource implementation does not use this internally.

serverLength

Overrides the default data buffer size specified in the listener PTERM PARM string
for the Type 4 driver server interface, IDMSJSRV.

serverName

Specifies the DNS name or TCP/IP address of the server. The driver uses the value
of networkProtocol to interpret this property:

■ When networkProtocol is CCI, this property refers to the mainframe where the
CCITCP address space is running when the driver is running on Windows and is
ignored when the JDBC driver is running on z/OS.

■ When network protocol is TCP, this property refers to the machine where the
JDBC server is running, which can be on any platform.

■ When network protocol is IDMS, this property refers to the machine where the
CA IDMS CV is running.

serverTrace

Sets the IDMSJSRV trace flags as defined in CSACFLG1 and CSACFLG2 as directed by
CA IDMS Technical Support. Used only with the Type 4 driver.

DataSource Connection Parameters

Chapter 12: JDBC Programmer Reference 161

ssl

Specifies that when set to true, the JDBC driver requests a secure socket for all
communication to a CA IDMS CV or a JDBC proxy server.

taskCode

Overrides the TASK code. See the DriverPropertyInfo attribute descriptions.

user

Specifies a default user ID to sign on to CA IDMS. The application can override this
when the connection is established.

viaNodeName

Specifies the NODE name of an intermediate CV used to route the connection to the
destination CV for a Type 2 driver connection. Valid only if nodeName is specified.
See the DriverPropertyInfo attribute descriptions.

IdmsConnectionPoolDataSource

The IdmsConnectionPoolDataSource class implements the JDBC
ConnectionPoolDataSource interface. It is used with an application server that provides
container managed connection pooling to establish a pooled connection to a CA IDMS
database.

An application server typically provides visible DataSource implementation that
references a ConnectionPoolDataSource and is exposed to the application as a standard
DataSource. Connection pooling is completely transparent to the application.

IdmsConnectionPoolProperties are used by the application server connection pool
manager to administer the pool of connections for a particular data source.

connectSuspend

Specifies the default for a pooled connection is true.

initialPoolSize

Specifies the number of connections that the pool manager should initially allocate.

maxIdleTime

Specifies the interval in seconds that a pooled connection can be idle before it is
closed. When set, it increases the resourceInterval value for a Type 4 connection to
the value specified plus the value of propertyCycle property. This aligns the task
resource interval with the application server idle time so that the CA IDMS system
does not terminate an idle pooled connection due to inactivity.

maxPoolSize

Specifies the maximum number of connections that the pool manager should
allocate.

DataSource Connection Parameters

162 User Guide

maxStatements

Specifies the maximum statement pool size. Note that CA IDMS/DB provides an
internal statement caching feature in releases 16.0 and later.

minPoolSize

Specifies the minimum number of available connections that pool manager should
maintain.

This property (or the corresponding property within an application server's
connection pool definition) should always be set to 0. This avoids potential
timeout-related problems between the JDBC connections and their associated tasks
and sessions on the CA IDMS/DC system.

propertyCycle

Indicates the interval in seconds the pool manager should wait before enforcing
these policies.

Note: For more information about deploying and using DataSource and
ConnectionPoolDataSource objects to connect to a database, see JDBC 4.0 Specification,
available at www.java.sun.com. Detailed information for these interfaces is included in
the JDK "javadoc," available in the same place, and detailed information about the CA
IDMS Server implementations methods is included in the installed "javadoc" (and also
on the CD in /doc/javadoc.zip).

JDBC Connection Options Summary

As described in the previous sections, there are numerous ways to define CA IDMS
Server connection information. Commonly used options are:

■ When using the JDBC driver with a Servlet, EJB, or other application running in an
application server, all information can be defined in an IdmsDataSource, or more
likely, an IdmsConnectionPoolDataSource or IdmsXADatasource object, and
accessed using the container's JNDI implementation. It is not necessary to define an
ODBC style data source.

■ When using the Type 2 JDBC driver in a standalone Java application on Windows or
z/OS, a JNDI implementation is generally not available, and it is usually most
convenient to reference an ODBC style data source in a CA IDMS URL, accessed
using the DriverManager. The ODBC style data source is defined in the registry on
Windows and the configuration file on the mainframe.

■ When using the Type 3 JDBC driver in an applet or standalone application that
connects through the JDBC server, it is usually most convenient to reference an
ODBC style data source defined on the machine where the JDBC server invokes the
native client interface.

Distributed Transactions

Chapter 12: JDBC Programmer Reference 163

WebSphere Application Server DataStoreHelper

Clients using CA IDMS Server as a JDBC provider within WebSphere Application Server
version 7.0 and later can use the supplied
com.ca.idms.was.IdmsJdbcDataStoreHelper class instead of the IBM-supplied
com.ibm.websphere.rsadapter.GenericDataStoreHelper. This class is contained within
the idmsjdbc.jar file and provides CA IDMS specific data source settings.

Setting the External Identity

Standalone JDBC applications can manually set an external user identity to be recorded
in the journal similar to the audit trail provided for applications managed by CA
SiteMinder.

IdmsConnection.setIdentity(String identity)

This method is a CA IDMS extension to JDBC that can be invoked to set the external
identity at any time after the connection is established. This specified identity is
recorded in the journal at the start of the next transaction and remains in effect until
changed or set to null. This method cannot be used with pooled connections.

Distributed Transactions

The CA IDMS Server JDBC driver supports distributed transactions when connected to
CA IDMS r16 SP2 or later.

When an application enlists in a global transaction, CA IDMS creates a new internal SQL
session in addition to the SQL sessions created for the local transaction and to execute
DatabaseMetaData methods.

Using Distributed Transactions with JDBC

The JDBC driver supports the Java Transaction API (JTA), which is a mapping of the Open
Group XA Specification and works with J2EE Compliant Transaction Managers. The JDBC
driver implements the XADataSource, XAConnection, and XAResource interfaces defined
by the JDBC 4.0 Specification.

A Java application uses these interfaces to create, enlist in, and commit or rollback a
distributed (or global) transaction. Alternatively, a Java application can be deployed in a
J2EE application server using declarative syntax that defines transaction attributes used
by application server to manage the distributed transaction. In either case, the JTA
compliant Transaction Manager invokes methods provided by the JDBC driver.
Application servers provide tools to define Data Source objects for use with distributed
transactions.

Distributed Transactions

164 User Guide

The JDBC 4.0 Specification and detailed API documentation are available at
http://java.sun.com.

Messages returned by CA IDMS, such as those that are returned in the SQLCA, are
returned in the exception that is thrown when an error occurs.

Using SQL Transaction and Session Commands

JDBC provides an explicit API to control sessions and transactions. Using the equivalent
SQL statements directly is not recommended and has implementation defined results.

COMMIT and ROLLBACK

COMMIT and ROLLBACK are ANSI standard statements used to control transaction
boundaries:

■ COMMIT [CONTINUE|RELEASE]

■ ROLLBACK [RELEASE]

■ RELEASE

If an application executes these statements while the connection is associated with the
local transaction, the driver sends them to CA IDMS and attempts to determine the
state of the transaction and SQL session. Applications should use the equivalent JDBC
Connection commit and rollback methods instead of executing these commands.

If an application executes these statements while the connection is associated with a
global transaction, the JDBC driver returns an error. The application or transaction
manager must use the commit and rollback methods defined by the Java Transaction
Architecture (JTA) to complete the transaction.

SET SESSION

The SET SESSION statement is a CA IDMS SQL extension used to set options and default
transaction attributes for the SQL session. JDBC applications can set the following SQL
session options:

■ SET SESSION CHECK SYNTAX SQL89|FIPS|EXTENDED

■ SET SESSION CURRENT SCHEMA schema-name|NULL

■ SET SESSION SQL CACHING ON|OFF|DEFAULT

Batch Updates

Chapter 12: JDBC Programmer Reference 165

CA IDMS treats these options as user session options when they are executed in an
XAConnection and applies them to the SQL session for the local transaction as well as
the SQL sessions for any global transactions. It also propagates the options to any
subordinate sessions used by procedures and table procedures.

JDBC applications should not set the following options directly:

■ SET SESSION CURSOR STABILITY|TRANSIENT READ

■ SET SESSION READ ONLY|READ WRITE

JDBC applications should use the Connection setReadOnly and setTransactionIsolation
methods to set transaction options instead so that the driver can maintain transaction
attributes internally.

According to the JDBC specification, the behavior of these methods is implementation
defined when the connection is associated with a global transaction. In this case, the CA
IDMS JDBC driver applies the transaction options only to the current transaction branch.

SET TRANSACTION

The SET TRANSACTION statement is a CA IDMS SQL extension used to set the current
transaction attributes:

■ SET TRANSACTION CURSOR STABILITY|TRANSIENT READ

■ SET TRANSACTION READ ONLY|READ WRITE

The transaction attributes are reset to the default, which can be specified by the SET
SESSION statement. JDBC applications should use the Connection setReadOnly and
setTransaction Isolations methods instead of executing these commands.

Batch Updates

The JDBC driver supports batched update commands. Applications can specify a number
of SQL DML or DDL commands for execution in a single request. It provides compatibility
required by J2EE and supports the CA IDMS bulk insert feature for improved
performance.

Using Batch Updates

An application uses the following methods to perform batch updates:

addBatch

Adds an SQL statement or set of parameter values to the batch.

Batch Updates

166 User Guide

clearBatch

Deletes SQL statements or parameters from the batch.

executeBatch

Executes the SQL statements in the batch.

Complete documentation for JDBC is available from Sun, IBM, and other sources. The
JDBC 4.0 Specification contains an example of how an application would use this
feature. The following sections describe CA IDMS specific considerations for this feature.

Statement.executeBatch(String sql)

The CA IDMS client/server interface generally supports execution of a single SQL
statement per communication request (although certain transaction and session
commands can be piggybacked on the main request for performance). Because CA IDMS
does not currently support batch input natively, the JDBC driver caches batched
statements and executes them individually.

PreparedStatement.executeBatch()

The JDBC driver uses the CA IDMS bulk input feature to execute INSERT statements. This
allows an INSERT statement to be executed with multiple sets of parameter values in a
single request. The number of sets of parameter values is limited by the maximum fetch
buffer size. Because CA IDMS does not currently support bulk input for UPDATE and
DELETE commands, the JDBC driver caches the parameter values and executes these
commands individually for each set of values.

CallableStatement.executeBatch()

According to the JDBC specification, using OUT or INOUT parameters with procedures
should cause an exception to be thrown. Because CA IDMS treats all procedure
parameters as INOUT, an exception is thrown only if the application has specified a
parameter as OUT or INOUT using the registerOutParameter method.

BatchUpdateException

When one or more errors occur processing a batch update command, the JDBC driver
throws a single BatchUpdateException. An SQLException is generated for each error that
occurs during the processing of the batch and chained to the BatchUpdateException in
the order that the statements were added to the batch. Each SQLException identifies
the statement with a message in the form:

"Batch element #: original message text"

Procedures

Chapter 12: JDBC Programmer Reference 167

Procedures

The JDBC driver supports specifying procedure parameters by name instead of ordinal.
When connected to CA IDMS r17 or later it supports procedures that return result sets.

Using Named Parameters

A CallableStatement object, used for calling SQL procedures, can support binding of
parameters using the parameter names defined in CA IDMS by the CREATE PROCEDURE
statement. This technique is an alternative to identifying each parameter by an ordinal
index corresponding to a parameter marker ('?') in the SQL CALL statement. Named
parameters are useful for procedures which have large numbers of parameters,
particularly if default values can be used. Parameters can be bound in any order; a
parameter can also be skipped completely if an acceptable default value has been
defined in the procedure.

To use named parameters, an SQL CALL statement is prepared which contains markers
for necessary parameters, for example:

CallableStatement cstmt = conn.prepareCall("{ CALL MYPROC(?, ?, ?) })";

Each parameter used as IN or INOUT is then bound to a value using the setXXX method
that is appropriate for the parameter's data type. Each parameter used as OUT must be
registered using the registerOutputParameter method and specifying the expected data
type. The parameter names for both types of methods must have been defined in the
CREATE PROCEDURE statement in CA IDMS.

cstmt.setString("INPARM", "First");

cstmt.setString("IOPARM", "Second");

cstmt.registerOutParameter("OUTPARM", java.sql.types.STRING);

After the statement has been executed, INOUT and OUT parameters can be retrieved
using the parameter names:

String io = cstmt.getString("IOPARM");

String out = cstmt.getString("OUTPARM");

Named parameter binding cannot be mixed with ordinal binding on the same
CallableStatement object; an SQLException is thrown if this is attempted.

For more information about named parameters, see the Java documentation for the
Java Platform API Specification or the JDBC 4.0 Specification.

Scrollable Result Sets

168 User Guide

Result Sets

CA IDMS r17, or later, supports procedures that return result sets.

When connected to a CA IDMS r17 system, or later, the JDBC driver supports multiple
open result sets, and the DatabaseMetaData supportsMultipleResultSets and
supportMultipleOpenResults methods both return true.

The result set returned by the DatabaseMetaData.getProcedures method contains 3
additional columns. JDBC indicates that these are "reserved for future use", consistent
with the equivalent result set defined by ODBC.

Name Number Type

NUM_INPUT_PARMS 4 SMALLINT

NUM_OUTPUT_PARMS 5 SMALLINT

NUM_RESULT_SETS 6 SMALLINT

The NUM_RESULT_SETS column indicates the maximum number of result sets that can
be returned from a procedure. The value is NULL for CA IDMS r16 or earlier.

The Statement.getMoreResultSet(int) method supports all three values of the
argument:

■ KEEP_CURRENT_RESULT

■ CLOSE_CURRENT_RESULT

■ CLOSE ALL RESULTS

Scrollable Result Sets

JDBC Result Sets and Row Sets

The JDBC java.sql.ResultSet interface defines an object used to manipulate an SQL
cursor. It provides methods to position the cursor, access columns within the current
row, and update values in the table.

The type attribute indicates how the current row is positioned for the result set,
whether it is scrollable or not, and the visibility of changes made by other transactions
or cursors. There are three types:

TYPE_FORWARD_ONLY—the cursor can only move forward.

Scrollable Result Sets

Chapter 12: JDBC Programmer Reference 169

TYPE_SCROLL_INSENSITIVE—the cursor can move forward, backward, or to a specific
row. The values in the result set are fixed when the cursor is opened or the rows are
first retrieved, depending on the database implementation, and do not generally reflect
changes made by other transactions.

TYPE_SCROLL_SENSITIVE—the cursor can move forward, backward, or to a specific row.
The values in result set generally do reflect changes made by other transactions.

The concurrency attribute indicates if the result set is updateable. An updateable result
set provides methods that can be used to change values in the table, and is an
alternative to using SQL positioned update statements. There are two concurrency
options:

CONCUR_READ_ONLY—the current row cannot be updated directly.

CONCUR_UPDATABLE—the current row can be updated using JDBC methods instead of
SQL statements.

These attributes are independent, which means there are six possible combinations.

A JDBC driver provides an implementation of the ResultSet interface. At a minimum a
driver must support a forward only, read only result set. Any additional capabilities are
optional.

The JDBC javax.sql.RowSet interface extends the ResultSet interface with methods that
support the JavaBeans component model. The javax.sql.rowset package includes a set of
specialized row set interfaces that provide additional capabilities. These include the
javax.sql.rowset.JdbcRowSet, wraps a JDBC ResultSet and maintains a connection to the
database, and the javax.sql.rowset.CachedRowSet, which caches column values and can
be disconnected from the database.

Row sets are designed to be implemented on top of the JDBC methods, and JDBC drivers
are not required to implement them. A row set implementation can support type and
concurrency options beyond those supported by the JDBC drivers result set
implementation. Starting with Java 1.5, the Java Run Time Environment (JRE) includes a
Reference Implementation (RI) of the javax.sql.rowset package.

The JDBC API documentation (javadoc) contains detailed descriptions of the classes and
methods that support this feature. The JDBC Specification also contains examples of
how an application would use a scrollable or updateable result set.

Scrollable Result Sets

170 User Guide

CA IDMS Result Sets

The CA IDMS Server r17 JDBC driver supports TYPE_FORWARD_ONLY and
TYPE_SCROLL_INSENSITIVE result sets. It supports the concurrency option
CONCUR_READ_ONLY.

Although the CA IDMS JDBC driver does not directly support TYPE_SCROLL_SENSITIVE
and CONCUR_ UPDATABLE result sets, these options are available when used with an
appropriate javax.sql.RowSet implementation.

TYPE_SCROLL_INSENSITIVE

The driver implements TYPE_SCROLL_INSENSITIVE result sets with a memory based
client-side cache. Values are added to the result set as the rows are fetched, and
are not are not changed to reflect changes by other transactions or other
statements within the same transaction when the application positions the cursor
on a cached row.

The Reference Implementation of the javax.sql.JdbcRowSet interface,
com.sun.rowset.JdbcRowSetImpl, is included in the Java 1.6 run time library. When
used with an IdmsResultSet object it supports a row set that is
TYPE_SCROLL_INSENSITIVE and CONCUR_READ_ONLY.

TYPE_SCROLL_SENSITIVE and CONCUR_UPDATABLE

The Reference Implementation of the javax.sql.CachedRowSet interface,
com.sun.rowset.CachedRowSetImpl, is included in the Java 1.6 run time library.
When used with an IdmsResultSet object it can support a row set that is
TYPE_SCROLL_SENSITIVE and CONCUR_UPDATABLE (or any combination of type
and concurrency).

There are some restrictions on the use of this feature.

The query statement used for a CONCUR_UPDATABLE row set must satisfy the CA
IDMS criteria for an updateable cursor:

■ Only one table can be specified in the FROM clause.

■ The query cannot contain derived or aggregate columns.

■ The query cannot contain UNION, ORDER BY, or GROUP BY.

■ The query must select all NOT NULL columns that have no default.

■ The query statement used for a TYPE_SCROLL_SENSITIVE result set must satisfy
a subset of these criteria:

Scrollable Result Sets

Chapter 12: JDBC Programmer Reference 171

■ The query cannot contain derived or aggregate columns.

■ The query cannot contain UNION, ORDER BY, or GROUP BY.

Note that the driver does not detect that the query cannot be used for the
requested type or concurrency. If the RowSet implementation detects this, it
demotes the result set to a supported type or concurrency.

The query statement should not include a FOR UPDATE clause. This does not
prevent deadlocks and can result in a less efficient access strategy when the clause
does not specify specific columns.

A CA IDMS cursor can move forward only. An application can fetch multiple rows in
a single request to improve performance. When an application uses this BULK
FETCH feature, CA IDMS considers the last row in the buffer to be current of cursor,
and only this row has a read lock. CA IDMS has no way to specify that the current
row should have an update lock. The FOR UPDATE clause only affects the access
path generated by the optimizer, not the locking strategy.

The application cannot use a scrollable or updateable row set for positioned
updates.

Since the driver uses a memory-based cache, applications should not use a
TYPE_SCROLL_INSENSITIVE result set or row set for large result sets.
TYPE_SCROLL_SENSITIVE row sets can be used for fairly large result sets but may
perform more slowly in applications that access a high percentage of the fetched
rows.

When the fetch direction hint for a statement or result set is set to
FETCH_REVERSE, the driver considers the result set holdability to be
CLOSE_CURSORS_AT_COMMIT, no matter what has been set for other statements.
The driver attempts to use COMMIT instead of COMMIT CONTINUE in order to
reduce resource use and contention in CA IDMS.

See the CA IDMS javadoc, installed in the HTNL Bookshelf for detailed information on
the CA IDMS JDBC method implementations.

Positioned Updates

172 User Guide

Positioned Updates

The JDBC driver supports positioned updates and deletes in dynamic SQL, when
connected to a CA IDMS r14.0 or later system. For prior releases, the ResultSet
setCursorName and getCursorName methods are implemented only to conform to the
JDBC specification, and are not used internally.

To use positioned updates and deletes, you must specify the FOR UPDATE clause in the
SQL query statement as follows:

SELECT ... FROM ... WHERE ... FOR UPDATE [OF column-name...]

If only a subset of the columns in the result set needs to be updated, it is advisable to
use the "OF column-name..." clause. Otherwise, CA IDMS/DB uses an area sweep to
read the table, even when the table is indexed.

To optimize performance, the JDBC driver usually attempts to fetch more than one row
at a time. Because row currency is at the last row, issuing a positioned update or delete
would not have the expected effect. Specifying the FOR UPDATE clause or setting a
cursor name using setCursorName(String) directs the driver to fetch one row at a time.

In general (to improve performance), we recommend that you turn auto-commit OFF
when using Positioned Updates. CA IDMS discards all prepared statements when the
transaction is committed. When auto-commit is enabled, you need to prepare
statements each time they are executed. An application can avoid this overhead by
either:

■ Disabling auto-commit, or

■ Setting the cursor behavior to SQL_CB_PRESERVE (ODBC).

HibernateDialect

Hibernate is an open-source software product available from Red Hat that provides an
Object-Relational Mapping (ORM) and persistence solution for Java developers. With
Hibernate, developers are able to work with data as Java objects rather than as the rows
and columns of a relational database. Developers generally do not have to code JDBC
calls or SQL statements and do not have to be concerned with the syntax and behavior
of a particular DBMS. A special Java class known as a dialect, unique to a particular
DBMS, specifies the data types, functions and features supported by the DBMS.

CA IDMS Server provides a dialect, IDMSDialect.class, which is included in the
idmsjdbc.jar file. To use it, add the jar file to the classpath definition and set the
following properties in the hibernate.cfg.xml file:

Sample Programs

Chapter 12: JDBC Programmer Reference 173

Hibernate Property Setting for IDMS Dialect

dialect com.ca.idms.hibernate.IDMSDialect

connection.driver_class ca.idms.jdbc.IdmsJdbcDriver

Sample Programs

Two simple SQL query utilities are included as sample programs distributed with CA
IDMS Server. Neither requires installation. You can copy the class files to the client
machine along with the JDBC driver.

The sample programs are installed in the src, lib, and classes subdirectories of the
installation directory on Windows and z/OS. They are also provided in the file
/java/samples.tar on the CA IDMS Server r16.1 CD.

IdmsJcf

This can be thought of as a simple Java version of OCF, providing a Graphical User
Interface (GUI) query facility. It can be run as an application or an applet on any machine
supporting the Swing classes. Both source code and compiled class files are installed, as
well as a sample HTML page to invoke it as an applet. On the Windows platform, a
shortcut is added to the CA IDMS Server menu to run it as an application.

To run to the CA IDMS JCF applet demo in a web browser, the JDBC server must be
running on the web server. Because JdbcTest is the default data source, consider
defining a data source called JdbcTest.

This sample is installed in the CA IDMS Server installation directory:

/idmsdir/src/ca/idms/jcf/IdmsJcf.java

Source code, entry point and UI

/idmsdir/src/ca/idms/jcf/JdbcTable.java

Source code, JDBC calls

/idmsdir/src/idmsjcf.html

Sample web page to invoke as applet

/idmsdir/lib/idmsjcf.jar

Compiled IdmsJcf classes

Sample Programs

174 User Guide

For UNIX and Linux systems, where there is no automated installation process, these
files can be found on the CA IDMS Server CD in these locations:

■ \java\samples.tar

■ \Server\Windows32\program files\CA\CA IDMS Server\Java\idmsjcf.html

IdmsExample

This can be thought of as a simple Java version of BCF. It reads a series of SQL
commands from a text file and writes the results to the standard output. Since it has no
GUI, it can be run from any command line interface, including a 3270 terminal on z/OS.
Both source code and a compiled class file are installed, along with a shell script to
invoke it, and a sample SQL input file. The script and sample input file contain
documentation on the command line options.

This sample is installed in the CA IDMS Server installation directory:

/idmsdir/src/example/IdmsExample.java

Source code

/idmsdir/example.sql

Sample SQL input file

/idmsdir/bin/example

Shell script to run IdmsExample.class

/idmsdir/classes/example/IdmsExample.class

Compiled sample program

IdmsJdbcDataStoreHelper

The helper class for WebSphere Application Server is also supplied as a sample, installed
in the CA IDMS Server installation directory:

/idmsdir/src/com/ca/idms/was/IdmsJdbcDataStoreHelper.java

Sample SSL Scripts

Chapter 12: JDBC Programmer Reference 175

Sample SSL Scripts

Several sample scripts have been provided to assist you in testing the SSL feature when
using a type 3 JDBC connection through the CA-IDMS Java Server running on Unix
Systems Services (USS). These scripts are samples only and may need to be tailored to
your specific installation. The scripts, their descriptions, and locations are listed
following:

USS (within directory "/idmsdir/sampssl"):

■ GenServerKey – Generates the Server Key

■ ListAllSSLCerts – Lists all Certificates in the Keystore

■ ExportServerSSLCert – Exports the Server Key

■ SSLStart – Starts the Java Server

■ SSLStatus – Checks the Java Server status

■ SSLStop – Stops the Java Server

Windows (within directory "/idmsdir/sampssl"):

■ GenClientKey.bat – Creates the Client keystore

■ ImportSSLCert.bat – Imports the Server Certificate

■ ListSSLCert.bat – Lists the Server Certificates

■ Jcf_SSL_Testing.bat – Starts the JCF demo app.

The following procedure can be used to create and populate your keystores, and to start
both the Java Server and the JCF Demo facility using the appropriate parameters. The
JCF Demo application is used to test the SSL feature.

Within OMVS:

1. Ensure that both the HOME and JAVA_HOME environment variables have been
properly set for your environment.

2. Copy the contents of the "sampssl"" sub-directory into the CA IDMS Server main
directory. All script invocations should occur from the CA IDMS Server main
directory.

3. Run the GenServerKey script.

4. Run the ListAllSSLCerts script.

5. Run the ExportServerSSLCert script.

6. Edit the caidms.cfg file and set SSL=1 within the Proxy section.

Sample SSL Scripts

176 User Guide

7. Run the SSLStart script.

8. Run the SSLStatus script.

9. FTP the file created in Step 1e (named "idsslsrv.cer") to the "sampssl" sub-directory
on Windows. This file must be transferred in binary mode.

10. Within Windows:

11. Update your PATH environment variable to include the JAVA/BIN directory for your
JRE or JSDK installation.

12. Open a Command Prompt window and issue a Change Directory (CD) command to
go to the "sampssl" sub-directory for your CA IDMS Server installation.

13. Run the GenClientKey.bat script

14. Run the ImportSSLCert.bat script

15. Run the ListSSLCert.bat script

16. Run the Jcf_SSL_Testing.bat script

17. Establish a JDBC Type 3 SSL connection to your IDMS data source, making sure to
specify "ssl" within the connection URL. For example:

jdbc:idms:ssl://host-name:port/data-source-name

Once you are done with your testing, stop the Java Server running under USS. To do
so, run the SSLStop script within OMVS.

Appendix A: Windows Registry Information 177

Appendix A: Windows Registry Information

The registry is a database used by Windows to store system and application
information.

This section contains the following topics:

Registry Information (see page 177)

Registry Information

This section describes the information stored in the registry and used by CA IDMS
Server. This information is provided to help you identify problems that may arise with
CA IDMS Server. The registry information is maintained using the ODBC Administrator,
available from the Control Panel. Unlike ini files, it cannot be edited directly, but it can
be edited using the registry editor provided by Microsoft. Only advanced users should
attempt to edit the registry directly, since an error can disable not only CA IDMS Server,
but also Windows itself.

The registry is structured as a hierarchical database, with keys, sub-keys, and values.
Two of the top level keysare used by the ODBC Driver Manager and the CA IDMS Server
drivers. HKEY_LOCAL_MACHINE contains information about hardware and software
common to all users of the machine. HKEY_CURRENT_USER contains preferences and
application settings for the current user. A sub-key is analogous to a directory path and
is specified in a similar fashion. The following are the sub-keys used by ODBC and CA
IDMS:

■ HKEY_LOCAL_MACHINE\Software\ODBC\ODBCINST.INI

■ HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI

■ HKEY_LOCAL_MACHINE\Software\CA\CA IDMS Server

■ HKEY_CURRENT_USER\Software\ODBC\ODBC.INI

■ HKEY_CURRENT_USER\Software\ CA\CA IDMS Server

Under each of these keys are sub-keys corresponding to the section names used in ini
files. At the lowest level are value names, corresponding to the key names used in ini
files, and the values themselves. The remainder of this appendix describes the
information in these sub-keys.

Registry Information

178 User Guide

HKEY_LOCAL_MACHINE\Software\ODBC\ODBCINST.INI

This section contains information about the ODBC drivers installed on the machine. The
CA IDMS Server installer program adds the information for the ODBC driver using the
Microsoft ODBC installer DLL when the product is installed. The following is a summary
of these values. Refer to the Microsoft ODBC reference for more detailed information

Subkey Value Name Description

ODBC Core UsageCount Driver manager usage count

ODBC Drivers CA IDMS Each installed ODBC driver has an entry.
Value name is the driver name. Value data is
installed.

CA IDMS Each installed driver has a sub-key, whose
name is the name of the driver.

 APILevel Driver ODBC API conformance level.

 ConnectFunctions Connect functions supported by driver.

 Driver Driver DLL name and path.

 DriverODBCVer Version of ODBC supported by driver.

 FileExtns Not used for CA IDMS Server.

 FileUsage Not used for CA IDMS Server.

 Setup Driver setup DLL name and path.

 SQLLevel Driver SQL conformance level.

 UsageCount Driver usage count

Default Driver Name of ODBC driver for the default data
source.

HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI

This section contains information about system data sources, which are available to all
users of the system, as well as system services. The ODBC.INI key contains the following
sub-keys and values:

Subkey Value Name Description

ODBC Data
Sources

DSN Each data source has an entry. Value Name is
the data source name. Value Data is the driver
name. For CA IDMS Server, this is CA IDMS.

Registry Information

Appendix A: Windows Registry Information 179

Subkey Value Name Description

DSN Each data source has a sub-key whose name is
the data source name.

 Driver Driver DLL name and path, copied from the
ODBCINST.INI key.

 Dictionary DBNAME or segment name of the CA IDMS
dictionary defined in the DBNAME table on the
target CV. Value comes from the CA IDMS
Server ODBC Administrator dialog Dictionary
field. The default is the first eight characters of
data source name.

 Server Server name that specifies how to connect to
the CA IDMS system.

DefaultSchema Optional default schema name.

Options Advanced options, defined below.

Default Default data source can contain the same
values as other data source definitions.

Data Source Advanced Options

The following advanced options reside under the Data Source Name (DSN) sub-key.
Note that integer values be stored as a registry type of REG SZ when set under a data
source name sub-key in the registry. Commonly used options are set in the CA IDMS
Server ODBC Administrator Data Source tab Advanced Options dialog. Rarely used
options can be set by editing the registry.

Value Name Value

AccessibleTables 0|1

AccountPrompt 0|1

CacheSQLTables 0|1

CatalogTable view_name

CallSelect 0|1

CloseCommit 0|1 (ODBC Driver)

CloseCommit 0|1 (JDBC Driver)

CommitBehavior 0|1|2

ConnectSuspend 0|1

DefaultParmType integer_value

Registry Information

180 User Guide

Value Name Value

DefaultSchema schema_name

DescribeExtended 0|1

EnableEnsure 0|1

FetchDouble 0|1

FetchRows integer_value

FetchSize integer_value

FetchSuspend 0|1

FetchSuspendClose 0|1

IgnoreDTC 0|1

InvalidDecimal integer_value

LoginTimeout integer_value

PoolSuspendActive 0|1

PreservePrepared 0|1

QueryTimeout integer_value

ReadOnly 0|1

SuspendStrategy 0|1|2|3

TxnIsolation 1|2

WaitTimeOut integer_value

Values

AccessibleTables=0|1

When set to 1, the ODBC and JDBC drivers use the SYSCA.ACCESSIBLE_TABLES view,
or another view defined by you, for the SQLTables function and getTables method.
A setting of 0 disables this option. This value is set from the Use Accessible Tables
View Name field.

AccountPrompt=0|1

Directs the ODBC driver to prompt for information if the ACCT keyword is not
supplied in the connection string passed to SQLDriverConnect. For more
information, see the appendix "Passing Accounting Information to CA IDMS."

Registry Information

Appendix A: Windows Registry Information 181

CacheSQLTables=0|1

When set to 1, the ODBC driver caches the table list returned from an SQLTables
call. A value of 0 disables this option. This value is set from the Cache SQL Tables
option.

CallSelect=0|1

A value of 1 specifies that the ODBC and JDBC drivers should treat all SQL CALL
statements as SELECT statements. This means that all parameters are returned in a
result set. All procedures are essentially treated as TABLE PROCEDUREs, which can
be useful to solve compatibility problems with some applications. The default is 0,
which allows the use of the CallableStatement methods with an SQL CALL
statement. This feature is deprecated and should not be used with new
applications.

CatalogTable=view_name

Specifies the name of the view that the ODBC and JDBC drivers use for the
SQLTables function and getTables method, if other than the default view name. This
value is set from the Use Accessible Tables View Name field.

CloseCommit=0|1 (ODBC Driver)

When enabled, CA IDMS Server sends a COMMIT following a CLOSE when
auto-commit is off. The default value is 1, enabled. This option is also considered
enabled when auto-commit is on. The COMMIT (or COMMIT CONTINUE) is usually
piggybacked onto the FETCH or CLOSE request when no other cursors are open and
no updates are pending. This can also be specified in a specific Data Source section.

Default value: 1 (enabled)

CloseCommit=0|1 (JDBC Driver)

When enabled, CA IDMS Server sends a COMMIT following a CLOSE operation. The
default value is 0, disabled. This option is only in affect when auto-commit is on.
The COMMIT (or COMMIT CONTINUE) is usually piggybacked onto the FETCH or
CLOSE request when no other cursors are open and no updates are pending. This
option can also be specified in a specific Data Source section.

Default value: 0 (disabled)

Registry Information

182 User Guide

CommitBehavior=0|1|2

Specifies the way a COMMIT operation affects cursors in CA IDMS. This also
determines the value returned by the ODBC SQLGetInfo function for the
SQL_CURSOR_COMMIT_BEHAVIOR option and the JDBC default
ResultSetHoldability. This value is set from the Commit Behavior field. Values are:

■ 0—Specifies SQL_CB_DELETE, which is equivalent to
ResultSet.CLOSE_CURSORS_AT_COMMIT. All open cursors are closed, and all
prepared statements are deleted. Specified by selecting Close and Delete
Cursors in the Commit Behavior field.

■ 1—Specifies SQL_CB_CLOSE, which is equivalent to
ResultSet.CLOSE_CURSORS_AT_COMMIT. All open cursors are closed, but
prepared statements are not deleted. Specified by selecting Close Cursors in
the Commit Behavior field.

■ 2—Specifies SQL_CB_PRESERVE, which is equivalent to
ResultSet.HOLD_CURSORS_OVER_COMMIT. All cursors remain open, and their
position is preserved. Prepared statements are not deleted. Specified by
selecting Preserve Cursors in the Commit Behavior field.

CommitSuspend=0|1

Causes the driver to issue a SUSPEND after each COMMIT. The default is 1, enabled.
SuspendStrategy should generally be used instead of this option. The
SuspendStrategy must be set to 3 (CUSTOM) to use this option.

ConnectSuspend=0|1

Causes the JDBC driver to issue a SUSPEND and end the task immediately after it
establishes a connection. ODBC does not provide a way for the driver to be notified
of this event. The default for a pooled connection is 1, otherwise it is 0.
SuspendStrategy should generally be used instead of this option. The
SuspendStrategy must be set to 3 (CUSTOM) to use this option.

Registry Information

Appendix A: Windows Registry Information 183

DefaultParmType=integer_value

Specifies an ODBC SQL data type, as defined in the ODBC sql.h header file, that is
used as the default type when an ODBC function requiring the SQL statement to be
prepared is executed before all input parameters are bound. Recommended values
are:

■ 1—SQL_CHAR

■ 4—SQL_INTEGER

■ 5—SQL_SMALLINT

This feature is deprecated, CA IDMS and the drivers support DESCRIBE INPUT.

DefaultSchema=schema_name

Specifies the name of the default SQL Schema. This is an optional 1-to-18 character
field. When specified, this field is used as the schema qualifier for all SQL table
references that to do not contain an explicit schema qualifier. The default is blank
(unspecified)

DescribeExtended=0|1

When set to 1, the driver requests extended column descriptor information from a
CA IDMS r17 system, including the names of the schema and table. The default for
CA IDMS r17 SP0 is 0, for r17 SP1 it is 1. This is ignored for prior releases.

EnableEnsure=0|1

When set to 1, the ODBC driver honors the ENSURE parameter of the SQLStatistics
function call. A setting of 0 disables this option. This value is set from the Enable
Ensure field.

FetchDouble=0|1

When set to 1, CA IDMS converts single precision floating point numbers to double
precision floating point before returning them to CA IDMS Server. This value is set
from the Fetch Real as Double field.

FetchRows=integer_value

Specifies the number of database rows CA IDMS Server fetches at a time. The
default is 0, which causes the driver to request the number of rows that fits in a
fetch buffer of the size specified by the FetchSize registry. This value is set from the
Fetch Row Count field.

FetchSize=integer_value

Specifies the maximum size that the JDBC driver attempts to use for a FETCH buffer.
The default is 64,000 when using the IDMS native TCP/IP interface. The default and
maximum is 29,000 when using CAICCI/PC. This should generally be left at the
default setting. This value is set from the Fetch Row Size field.

Registry Information

184 User Guide

FetchSuspend=0|1

When enabled, CA IDMS Server causes a SUSPEND to be piggybacked onto each
BULK FETCH, ending the IDMS-DC task. The default is 0, disabled. SuspendStrategy
should generally be used instead of this option. The SuspendStrategy must be set to
3 (CUSTOM) to use this option.

FetchSuspendClose=0|1

In prior releases caused a conditional SUSPEND to be piggybacked onto each FETCH.
The SUSPEND was done only if the cursor reached the end. This option is no longer
supported; the CloseCommit and CommitSuspend options specify the equivalent
behavior.

IgnoreDTC=0|1

A value of 1 specifies that the CA IDMS Server ODBC driver ignores requests for
distributed transactions with Microsoft's Distributed Transaction Coordinator (DTC).
This option should normally be set to 0.

InvalidDecimal=0|1|2|3

Specifies how the ODBC and JDBC drivers handle invalid packed or zoned decimal
data returned in a result set column. This value is set from the invalid Decimal
Action field. Options are:

■ 0—Return error, the default

■ 1—Return NULL

■ 2—Return 0

■ 3—Ignore, ODBC only

LoginTimeout=integer_value

Specifies the system loginTimeout used when the JDBC DriverManager or
DataSource setLoginTimeout is set to 0.

PoolSuspendActive=0|1

In prior releases caused a pooled connection to be treated like a non-pooled
connection. This is no longer supported, the CommitSuspend option specifies the
equivalent behavior.

PreservePrepared=0|1

Attempt to preserve prepared statements when the ODBC cursor commit behavior
is preserve or JDBC result set holdability is enabled. The default is 0, disabled, which
maximizes concurrency between transactions. The CA IDMS SQL statement caching
feature can be used to minimize the overhead of re-preparing statements.

Registry Information

Appendix A: Windows Registry Information 185

QueryTimeout

Specifies the default reply timeout for SQL requests which use a Java Statement
object when using the JDBC driver.

ReadOnly=0|1

Specifies the default access mode for the ODBC and JDBC drivers. A setting of 0
specifies Read Write. A setting of 1 specifies Read Only. This value is set from the
Access Mode field.

SuspendStrategy=0|1|2|3

Specifies how the driver uses pseudo-conversational processing. This value is set
from the Suspend Strategy field, and is equivalent to specifying the detailed
suspend options, as described in Chapter 3, "Setting Up Your CA IDMS System."
Values are:

■ 0—INTERACTIVE, the default.

■ 1—SERVICE, suspend when idle.

■ 2—BATCH, never suspend.

■ 3—CUSTOM, defined by the detailed options.

TxnIsolation=1|2

Specifies the degree to which your transactions impact, and are impacted by, other
users accessing the same data. A setting of 1 specifies Read Uncommitted, 2
specifies the default setting, Read Committed. This value is set from the Transaction
Isolation field.

WaitTimeOut

Specifies the default system reply timeout for the JDBC driver.

HKEY_LOCAL_MACHINE\Software\CA\CA IDMS Server

This section contains all global data source and server options, as well as server
definitions and system services. The following subkeys can be contained within this key:

Servers

Associates a server name with an ODBC driver name.

Server server_name

Specifies how to connect to the CA IDMS system and advanced communications
option settings.

Registry Information

186 User Guide

Options

Specifies global options..

Proxy

Contains information used to configure the JDBC server.

DBCS Types

The DBCS Types subkey identifies the languages that have DBCS support. The values
are added when CA IDMS Server is installed.

Version

Contains the current version number for the latest installed release of IDMS Server.

Servers

The Servers sub-key lists all server_names defined using the CA IDMS Server ODBC
Administrator dialog. Each server_name has the value "CA IDMS", the name of the ODBC
driver.

Server server_name

The Server server_name sub-key contains information describing a CA IDMS system. The
server_name part of the sub-key specifies a server name listed in the Servers section
and referenced by a Data Source definition.

The following values describe how to connect to a CA IDMS system:

Value Name Value

AccessType I|C

CciServerName cci_name

CciServerPort integer_value

Host host_name

Port integer_value

Resource node_name

SSL 0|1

WaitTimeOut integer_value

Registry Information

Appendix A: Windows Registry Information 187

Values

AccessType=Access_Type

Specifies how the CA IDMS ODBC Driver (or Type 2 JDBC Driver) communicates with
CA IDMS. Valid values are:

■ I - The drivers use the CA IDMS TCP/IP feature to communicate directly with
the CA IDMS system. CA IDMS r17, or later, is required.

■ C - The drivers use the CA Common Services CCI feature to communicate with
the CA IDMS system. This is the default, and is supported for all releases of CA
IDMS.

CciServerName=cci_name

Identifies the DNS name or IP address where the CCITCP Server is running. If not
specified, the default server defined for CAICCI is used.

CciServerPort=cci_port

(Optional) Specifies the IP port identifying the CCITCP Server on the node defined
by cci_name. If not specified, the default port defined for CAICCI is used. This is
usually 1202, and typically should not be specified here.

Host=host_name

Identifies the DNS name or IP address where the IDMS CV is running. This option is
only used when the IDMS Communications Protocol is selected (AccessType='I').

Port=port

Specifies the TCP/IP port of the CA IDMS Listener running under CV. This option is
only used when the IDMS Communications Protocol is selected (AccessType='I').

Resource=node_name

(Optional) Specifies the value of SYSTEMID. This is specified in the SYSTEM
statement of the system generation of the target system. If a node_name is not
specified, CA IDMS Server uses the first eight characters of the server_name to
identify the target system. This option is only used when the CCI option is selected
(AccessType='C').

SSL=0|1

Enables Secure Socket Layer (SSL) connections between the ODBC and Type 2 JDBC
drivers and CA IDMS when using the IDMS communications protocol.

WaitTimeOut=integer_value

Specifies the number of seconds CAICCI waits for a response from the CA IDMS
system. When this interval is exceeded, CA IDMS Server considers the connection to
have failed. Set this to 0 to cause CAICCI to use the default value specified with the
CAICCI/PC Properties dialog.

Registry Information

188 User Guide

Server Advanced Options

The following advanced server options reside under the 'Server server_name' sub-key.

Value Name Value

AlternateTask task_code

AsciiEbcdicTables translation_table_name

BufferLength integer_value

ExternalWait integer_value

Node via_node_name

ResourceInterval integer_value

Version 0|1

Values

AlternateTask=task_code

Identifies an alternate task defining the resource limits and timeout values for a
session. The default is CASERVER. The task must be defined as a task on the CA
IDMS system generation TASK statement. This value comes from the Task Code field
on the Server tab of the CA IDMS Server ODBC Administrator dialog. For more
information about resource limits for external user sessions, see CA IDMS System
Generation and CA IDMS System Operations.

AsciiEbcdicTables=translation_table_name

Specifies the name of the CECP translation table selected to convert EBCDIC data on
the server to ASCII data on the PC, and vice versa. The value comes from the
International tab of the CA IDMS Server ODBC Administrator dialog.

BufferLength= integer_value

Specifies the size of the buffer used by the CA IDMS Server listener for TCPIP send
and receive requests. This value comes from the "Buffer Length" field on the
Advanced Server Options tab of the CA IDMS Server ODBC Administrator dialog.

ExternalWait=integer_value

Specifies the number of seconds that the CA IDMS Server listener waits for a
request from the client when a task is active. This value overrides the EXTERNAL
WAIT INTERVAL specified for the TASK when enabled by specifying TIMEOUT=-1 in
the CA IDMS Server listener PTERM definition.

This is optional. When set to 0, the System Default for all servers value is used, if
any. For more information about TASK and PTERM System Generation statements
see the CA IDMS Server System Generation guide.

Registry Information

Appendix A: Windows Registry Information 189

Node=via_node_name

Specifies the node with which CAICCI establishes a connection. The system
identified by via_node_name must contain a RESOURCE table entry for the system
identified by node name. Use this option when the system containing your tables
does not directly communicate with CAICCI.

ResourceInterval=integer_value

Specifies the number of seconds that the CA IDMS Server listener waits for a
request from the client when no task is active. This value overrides the RESOURCE
INTERVAL specified for the TASK when enabled by specifying TIMEOUT=-1 in the CA
IDMS Server listener PTERM definition. When set to 0, the System Default for all
servers value is used, if any.

Version=0|1

Specifies the version of the CA IDMS Server mainframe component installed on the
CA IDMS CV.

■ 0—Indicates Version 4.2 or earlier.

■ 1—Indicates Version 4.3 or later. This is the default setting.

Version 4.3 or later of the CA IDMS Server mainframe component supports
password encryption using a proprietary algorithm. When this option is set to 1, the
password is encrypted prior to being transmitted over the network and is decrypted
by the CCI line driver in the CV. This encryption process is discrete and is not
affected by any other encryption applied by technologies such as SSL. CA IDMS
releases 14.0 SP4, 14.1 SP4 and all subsequent releases contain a Version 4.3 or
later mainframe component and therefore support a setting of 1. For older CA IDMS
releases, set this option to 0 to specify Version 4.2 or earlier.

Options

The Options sub-key contains global options, including default data source and server
options, log options, and internationalization options. The default options are
documented in the Data Source and Server sections.

Global Options are set with the Options, Log Options, and International tabs of the CA
IDMS Server ODBC Administrator. Options that are rarely used can be set by editing the
registry.

Value Name Value

cadcdc32.dll dll_name

DbcsPath dbcs_path

DbcsType dbcs_type

JcliTraceWs 0|1

Registry Information

190 User Guide

Value Name Value

JdbcTraceID 0|1

LogFile log_file_name

LogFileCount integer_value

LogFileSize integer_value

LoginTimeout integer_value

LogOptions log_option_values

MultiThread 0|1

Path path_name

QueryTimeout integer_value

SSLCertDir certificate_directory_name

SSLClientCert client_certificate_file_name

SSLPassword client_certificate_password (encrypted)

SSLServerCert server_certificate_file_name

XxxxTrace

 CmTrace integer_value

 DnsTrace integer_value

 DtsTrace integer_value

 FdeTrace integer_value

 JcliTrace integer_value

 JdbcTrace integer_value

 OdbcTrace integer_value

 SQLTrace integer_value

 UtilTrace integer_value

WaitTimeOut integer_value

Registry Information

Appendix A: Windows Registry Information 191

Values

cadcdc32.dll=dll_name

Specifies the name of a user-supplied customized character conversion DLL, used by
the native client interface to convert between ASCII and EBCDIC. The name can be
qualified with a path. DbcsType must be set to a non-zero value, typically 1, to
enable the use of the specified DLL.

DbcsPath=dbcs_path

Specifies the path to the DBCS translation tables, typically the direction specified
when CA IDMS Server is installed.

DbcsType=dbcs_type

Specifies the integer value identifying the DBCS Language, as defined by the DBCS
Types subkey.

JcliTraceWs=0|1

Enables Windows socket trace. This option is not exposed in the IDMS ODBC
Administrator application and should only be set under the direction of CA
Technical Support.

JdbcTraceId=0|1

Causes the JDBC driver to prefix each line written to the JDBC log writer with the
current timestamp and thread name. This can be useful to identify CA IDMS output
in a JDBC DataSource.logWriter trace managed by an application server. The default
is 0, disabled.

LogFile=log_file_name

Specifies the name of the log file, if other than the default log name. This value
comes from the Log File field on the Log Options tab of the CA IDMS Server ODBC
Administrator dialog.

LogFileCount=integer_value

Specifies the maximum number of archive log and enables the log file rollover
feature when the LogFileSize value is greater than zero. The default is 0, which
indicates a single log file. This value comes from the File Count field on the Log
Options tab of the CA IDMS Server ODBC Administrator dialog.

LogFileSize=64-bit integer_value

Specifies the maximum size (in bytes) of the log file when the log file rollover
feature is enabled. The default is zero, which indicates no maximum size. This
value comes from the Log File field on the Log Options tab of the CA IDMS Server
ODBC Administrator dialog.

Registry Information

192 User Guide

LoginTimeout=integer_value

Specifies the system loginTimeout used when the JDBC DriverManager or
DataSource setLoginTimeout is set to 0.

LogOptions=log_option_values

Specifies log options as a bit mask. The bit flag, 0x0001, appends information to the
existing log file, if any.

MultiThread=0|1

Specifies whether CA IDMS Server processes ODBC connections or multiple threads
concurrently. A setting of 1 enables multithreaded access, a setting of 0 disables it.
The default is 1.

Path=path_name

Specifies the directory where files used by CA IDMS Server are installed.

QueryTimeout

Specifies the default reply timeout for SQL requests which use a Java Statement
object when using the JDBC driver.

SSLCertDir=certificate_directory_name

Specifies the name of the certificate directory. This directory can contain individual
certificates (in PEM format), and is searched for the resolution of signing
certificates.

SSLClientCert=client_certificate_file_name

Specifies the fully qualified name of the client certificate file. This file is typically
generated on the mainframe and transmitted to the Windows client. Use of this
field is optional. A client certificate is only needed if client authentication is
required for all SSL connections. All certificate files must be in PEM format.

SSLPassword=client_certificate_password

Identifies the password used for the client certificate. This is an optional field and is
only necessary when a client certificate is specified. The SSLPassword field is
encrypted before it is written to the registry. Users should not attempt to modify
this field outside of the CA IDMS ODBC Administrator application.

SSLServer Cert=server_certificate_file_name

Specifies the fully qualified name of the client certificate file. This file is typically
generated on the mainframe and transmitted to the Windows client. Use of this
field is optional. A client certificate is only needed if client authentication is
required for all SSL connections. All certificate files must be in PEM format.

Registry Information

Appendix A: Windows Registry Information 193

XxxxTrace=integer_value

Specifies the flag bits used to control tracing. Technical Support uses these trace
flags to resolve CA IDMS Server problems. The integer_value must be in the range
of 0, which signifies all options off, to 65535, which signifies all options on. This
value can be specified as a decimal or hexadecimal integer.

WaitTimeOut

Specifies the default system reply timeout for the JDBC driver.

Descriptions of the individual bit flags are as follows:

■ CmTrace (IDMSTD0D.DLL):

– 0x0001 // trace CCI and internal function calls

– 0x0002 // elapsed CCI call timings

■ DnsTrace (IDMSTD0D.DLL):

– 0x0010 // snap unconverted send data

– 0x0020 // snap converted send data

– 0x0040 // snap received data

– 0x0080 // snap converted received

■ DtsTrace (IDMSTD0D.DLL):

– 0x0002 // trace external calls

– 0x0004 // trace events

– 0x0008 // trace events

– 0x0010 // snap user data arrays

– 0x0020 // trace events

– 0x0040 // snap PCE

– 0x0080 // snap LCE

■ FdeTrace (IDMSFDE.DLL):

– 0x0001 // trace external generate calls (for precompiler)

– 0x0002 // trace external convert calls

– 0x0004 // trace external ASCII-EBCDIC conversion calls

– 0x0010 // trace internal calls

– 0x0100 // snap format descriptors

– 0x1000 // snap input (unconverted) data

– 0x2000 // snap output (converted) data

Registry Information

194 User Guide

■ JcliTrace (IDMSJCLI.DLL):

– 0x0001 // trace internal function calls

– 0x0002 // time all socket sends/recvs

– 0x0004 // trace all socket calls

– 0x0008 // trace ssl calls

– 0x0010 // snap all send & receive buffs

– 0x0020 // snap conversion functions

– 0x0040 // Snap SSL packets

■ JdbcTrace (ca.idms.*)—Any non-zero value enables tracing

■ OdbcTrace (IDMSODBC.DLL):

– 0x0002 // Trace internal functions

– 0x0004 // Trace function parms

– 0x0008 // Trace thread locks

– 0x0010 // Snap SQL syntax

– 0x0100 // Snap environment block

– 0x0200 // Snap connection block

– 0x0400 // Snap statement block

– 0x0800 // Snap SQLDA

■ SqlTrace (IDMSQCLI.DLL):

– 0x0002 // Time SQL calls

– 0x0004 // Snap SQL SQLSID

– 0x0008 // Snap SQL DSICB

– 0x0010 // Snap SQL SQLCA

– 0x0020 // Snap SQL SQLCIB

– 0x0040 // Snap SQL SQLPIB

– 0x0080 // Snap SQL parm buffer

– 0x0100 // Snap SQL tuple buffer

– 0x0200 // Snap SQL input SQLDA

– 0x0400 // Snap SQL output SQLDA

– 0x0800 // Snap SQL syntax string

– 0x4000 // Trace server calls

– 0x8000 // Snap server interface blocks

Registry Information

Appendix A: Windows Registry Information 195

■ UtilTrace (IDMSUTIL.DLL):

– 0x0001 // Trace external calls

– 0x0002 // Trace internal calls

– 0x0004 // Trace DllEntry calls

The ODBC Administrator is usually used to enable and disable tracing. Because tracing
can add overhead and affect performance, it should be disabled under normal
circumstances.

Proxy

The Proxy subkey contains information used to configure the JDBC server, and has the
following values:

Value Name Value

Backlog integer_value

ClientAuth 0|1

Encoding character _encoding_name

Host host_name

LogLevel integer_value

LogTrace integer_value

Port integer_value

RemoteHost host_name

RemotePort integer_value

RemoteSSL 0|1

ReplyTimeOut integer_value

Snap 0|1

SocketTimeOut integer_value

SSL 0|1

Trace 0|1

Unicode 0|1

WaitTimeOut integer_value

Registry Information

196 User Guide

Values

Backlog=integer_value

Specifies the maximum length of the listener queue. When this is exceeded,
connections are refused. This is not the maximum number of client connections
that can be supported. The default is 50.

ClientAuth=0|1

Enables client authentication when the JDBC driver connects to this proxy server
using SSL.

Encoding=character_encoding_name

Specifies the character encoding that the JDBC server requests the JDBC driver to
use when sending and receiving character data. If not specified, the default
encoding for the JVM is requested. The character encoding class must be accessible
to the JDBC driver when invoked by the client application or applet.

Host=host_name

Specifies the DNS name or IP address the JDBC binds to when listening for client
connection requests. This can be used to force the JDBC server to listen for
connection requests on a specific TCP/IP protocol stack on a multi-homed host (a
machine with multiple TCP/IP stacks). The default is to listen on all available stacks.

LogLevel=integer_value

Specifies the level of messages sent to the Windows Event Log.

■ 0—Disable messages

■ 4—Error messages

■ 6—Warning messages

■ 8—Information messages, including start and stop events. This is the default.

■ 10—Verbose information messages, including client start and stop events.

■ 12—Debugging messages, not including general trace output.

LogTrace=integer_value

Specifies the level of log messages sent to the trace file. Options are identical to
LogLevel options.

Port=integer_value

The IP port the JDBC server listens on for connection requests. The default value is
3709.

RemoteHost=host_name

(Optional) Specifies the DNS name or IP address of a CA IDMS system (r16 SP2 or
later), or another JDBC server used to forward packets to the CA IDMS system.

Registry Information

Appendix A: Windows Registry Information 197

RemotePort=integer_value

Specifies the IP port address of the remote host. If used, the default value is 3709.

RemoteSSL=0|1

Enables SSL when communicating with another proxy server.

ReplyTimeOut=integer_value

Specifies the number of seconds the JDBC server will wait for a response from the
CA IDMS system. The default, 0, causes the JDBC server to wait indefinitely.

Snap=0|1

Enables display of data buffers sent and received in the log file.

SocketTimeOut=integer_value

Specifies the number of seconds the JDBC server waits, or blocks when reading data
from a socket. While a socket is being read, the thread is blocked, and is not able to
recognize an event that stops the thread. When this interval expires, the thread
checks if the JDBC server is still running, and, if so, issues another read on the
socket. It continues until the wait or reply timeout has expired. A high value reduces
JDBC server overhead. A low value allows the server to respond to shutdown events
more quickly. Setting this to 0 causes the thread to block forever, and is not
recommended. The default is 60 seconds.

SSL=0|1

Enables Secure Socket Layer (SSL) connections between this proxy server and a
JDBC driver client.

Trace=0|1

Enables tracing of internal function calls. Output is written to the log file.

Unicode=0|1

Enables the use of Unicode for character encoding when the JDBC driver is unable
to use the requested encoding. The default value, 0, specifies the use of UTF-8,
which is supported by all Java platforms.

WaitTimeOut=integer_value

Specifies the number of seconds the JDBC server will wait for a request from the
JDBC driver. The default, 0, causes the JDBC server to wait indefinitely.

HKEY_CURRENT_USER\Software\ODBC\ODBC.INI

This section contains information about user data sources available only to the currently
signed-on users of the system.

Use the ODBC Administrator to maintain this information. The structure of the
information under this key is the same as the ODBC.INI sub-key of
HKEY_LOCAL_MACHINE.

Registry Information

198 User Guide

HKEY_CURRENT_USER\Software\CA\CA IDMS Server

This section contains information about user servers available only to the currently
signed-on users of the system. The following sub-keys can be contained within this key:

Servers

Associates a server name with an ODBC driver name.

Server server_name

Defines each server's database access path information.

The structure of the information under these keys is the same as system servers
defined as sub-keys of HKEY_LOCAL_MACHINE.

Appendix B: Configuration File Information 199

Appendix B: Configuration File Information

CA IDMS Server uses a text file to store configuration information on z/OS. This file
contains database definitions, server definitions, global options, and JDBC server
options on z/OS. This file is similar in format to a Windows .ini file. Information used by
the native interfaces must be specified in the configuration file. Information used by the
Java code can be specified in the configuration file or in the properties file.

Note: For more information, see the appendix "Properties File Information."

This section contains the following topics:

Configuration Information (see page 199)

Configuration Information

Data is organized into sections, identified by square brackets (for example,
[section_name]). Within each section, parameters are defined by key-value pairs,
delimited by an equal sign (for example, key=value). A comment is indicated by a
semicolon (;).

Because many 3270 devices and emulators do not support square brackets ([]), you can
use dollar signs ($) or percent symbols (%) instead. The closing symbol is also optional.

Environment Variables

IDMS_CFG_PATH=path_name

By default, the configuration file is named caidms.cfg and is located in the CA IDMS
Server installation directory. The IDMS_CFG_PATH environment variable can be
used to specify a different file or directory.

IDMS_CFG_RELOAD=0|1

For optimal performance on z/OS, the configuration file is copied into a memory file
when the libidmsutil.so DLL is initially loaded into a process. When the
IDMS_CFG_RELOAD environment variable is set to 1 the configuration file is
reloaded from the file system each time libidmsutil.so is loaded. This overrides the
CacheConfig option set in the configuration file itself. The default value is 0.

Configuration Information

200 User Guide

Sections

The configuration file includes the following sections:

[datasource_name]

Defines the SQL catalog and CA IDMS system for each database. This information is
used by the native libraries. Database specific options used by the JDBC driver can
also be specified in this section.

[Server server_name]

Defines access information for each CA IDMS system. This information is used by
the nativeclient interface.

[Options]

Contains global options, including data source defaults and log options. This
information is used by the JDBC driver and server and by the native client interface.

[Proxy]

Contains information used by the JDBC server.

Datasource

The [datasource_name] section identifies CA IDMS databases, and can be specified in
the JDBC URL or the IdmsDataSource databaseName property. A datasource_name
section may contain the following key-values:

AccessibleTables=0|1

Enables the use of an alternate view for the getTables method. The default is 1, a
setting of 0 disables this option. The view name is specified with the CatalogTable
key.

CallSelect=0|1

A value of 1 specifies that the ODBC and JDBC drivers should treat all SQL CALL
statements as SELECT statements. This means that all parameters are returned in a
result set. All procedures are essentially treated as TABLE PROCEDUREs, which can
be useful to solve compatibility problems with some applications. The default is 0,
which allows the use of the CallableStatement methods with an SQL CALL
statement. This feature is deprecated and should not be used with new
applications.

Configuration Information

Appendix B: Configuration File Information 201

CatalogTable=view_name

Specifies the name of the view that the JDBC driver uses for the getTables method,
when AccessibleTables=1. If not specified the driver uses the
SYSCA.ACCESSIBLE_TABLES view.

CloseCommit=0|1 (ODBC Driver)

When enabled, CA IDMS Server sends a COMMIT following a CLOSE when
auto-commit is off. The default value is 1, enabled. This option is also considered
enabled when auto-commit is on. The COMMIT (or COMMIT CONTINUE) is usually
piggybacked onto the FETCH or CLOSE request when no other cursors are open and
no updates are pending. This can also be specified in a specific Data Source section.

Default value: 1 (enabled)

CloseCommit=0|1 (JDBC Driver)

When enabled, CA IDMS Server sends a COMMIT following a CLOSE operation. The
default value is 0, disabled. This option is only in effect when auto-commit is on.
The COMMIT (or COMMIT CONTINUE) is usually piggybacked onto the FETCH or
CLOSE request when no other cursors are open and no updates are pending. This
option can also be specified in a specific Data Source section.

Default value: 0 (disabled)

CommitBehavior=0|2

Specifies the default as ResultSetHoldability, which is the way a COMMIT operation
affects cursors in CA IDMS. The values set in the configuration file map to the JDBC
ResultSet values as follows:

■ 0—ResultSet.CLOSE_CURSORS_AT_COMMIT. All open cursors are closed and all
prepared statements are deleted (although the SQL statement is cached in the
Statement object and prepared again if needed).

■ 2—ResultSet.HOLD_CURSORS_OVER_COMMIT. All cursors remain open and
their position is preserved. Prepared statements are not deleted

These values are consistent with those used to the set
SQL_CURSOR_COMMIT_BEHAVIOR for ODBC (on Windows the ODBC and JDBC
drivers use the same option in the registry). The JDBC driver interprets a value of 1
as 0.

Configuration Information

202 User Guide

CommitSuspend=0|1

Causes the driver to issue a SUSPEND after each COMMIT. The default is 1, enabled.
SuspendStrategy should generally be used instead of this option. Only when the
SuspendStrategy is set (or defaults) to “Custom” will the CommitSuspend option be
in effect.

ConnectSuspend=0|1

Causes the JDBC driver to issue a SUSPEND and end the task immediately after it
establishes a connection. The default for a pooled connection is 1, otherwise it is 0.
SuspendStrategy should generally be used instead of this option. Only when the
SuspendStrategy is set (or defaults) to “Custom” will the ConnectSuspend option be
in effect.

Dictionary=dict_name

Specifies the name of the dictionary containing the SQL schema definitions for the
tables or network records to be accessed. This name is defined in the DBNAME
table on the target CA IDMS system. The default value is the first eight characters of
the datasource_name.

DefaultSchema=schema_name

Specifies the name of the default SQL Schema. This is an optional 1-to-18 character
field. When specified, this field is used as the schema qualifier for all SQL table
references that do not contain an explicit schema qualifier. The default is blank
(unspecified).

DescribeExtended=0|1

When set to 1, the driver requests extended column descriptor information from a
CA IDMS r17 system, including the names of the schema and table. The default for
CA IDMS r17 SP0 is 0, for r17 SP1 it is 1. This is ignored for prior releases.

FetchRows=integer_value

Specifies the default value for the JDBC statement object fetchSize property. This is
the number of rows that the JDBC driver requests from CA IDMS for each BULK
FETCH. The value can be set and queried at run time using the JDBC setFetchSize
and getFetchSize methods. When set to 0, the default, the JDBC driver attempts to
fetch as many rows as will fit in a buffer of size specified by the FetchSize option.

Note: The name of this option in the configuration file does not correspond exactly
to the JDBC object properties in order to remain compatible with previous versions
of CA IDMS Server.

FetchSuspend=0|1

When enabled, CA IDMS Server causes a SUSPEND to be piggybacked onto each
BULK FETCH, ending the IDMS-DC task. The default is 0, disabled. SuspendStrategy
should generally be used instead of this option. Only when the SuspendStrategy is
set (or defaults) to “Custom” will the FetchSuspend option be in effect.

Configuration Information

Appendix B: Configuration File Information 203

FetchSuspendClose=0|1

In prior releases caused a conditional SUSPEND to be piggybacked onto each FETCH.
The SUSPEND was done only if the cursor reached the end. This is no longer
supported; the CloseCommit and CommitSuspend options specify the equivalent
behavior.

InvalidDecimal=0|1|2

Specifies how the JDBC driver is to handle invalid packed or zoned decimal data
returned in a result set column. Options are as follows:

0—Return error. This is the default setting

1—Return NULL

2—Return 0

LoginTimeout=integer_value

Specifies the system loginTimeout used when the JDBC DriverManager or
DataSource setLoginTimeout is set to 0.

PoolSuspendActive=0|1

In prior releases caused a pooled connection to be treated like a non-pooled
connection. This is no longer supported, the CommitSuspend option specifies the
equivalent behavior.

PreservePrepared=0|1

Attempt to preserve prepared statements when JDBC result set holdability is
enabled. The default is 0, disabled, which maximizes concurrency between
transactions. The CA IDMS SQL statement caching feature can be used to minimize
the overhead of re-preparing statements.

QueryTimeout=integer_value

Specifies the default reply timeout for SQL requests which use a Java Statement
object when using the JDBC driver.

ReadOnly=0|1

Specifies the default access mode for the JDBC driver. A setting of 0 specifies Read
Write. A setting of 1 specifies Read Only.

Configuration Information

204 User Guide

Server=server_name

(Required) Specify the CV used to access the data. This name can be a NODE Name
or a user-defined Server name, referring to a Server server_name section
containing additional connection information.

A datasource_name section can also contain database specific options, described in
the Options section. Default values that apply to all data sources can be set in the
Options section.

SuspendStrategy=0|1|2|3

Specifies how the driver uses pseudo-conversational processing. This value is set
from the Suspend Strategy field, and is equivalent to specifying the detailed
suspend options, as described in Chapter 3, "Setting Up Your CA IDMS System."
Values are as follows:

0—INTERACTIVE, the default.

1—SERVICE, suspend when idle.

2—BATCH, never suspend.

3—CUSTOM, defined by the detailed options.

TxnIsolation=1|2

Specifies the degree to which your transactions impact, and are impacted by, other
users accessing the same data. A setting of 1 specifies Read Uncommitted, 2
specifies the default setting, Read Committed.

WaitTimeOut=integer_value

Specifies the default system reply timeout for the JDBC driver.

Configuration Information

Appendix B: Configuration File Information 205

Server server_name

The [Server server_name] section contains information describing a CA IDMS system.
The Server server_name section can contain the following parameters:

AlternateTask=task_code

Identifies an alternate task defining the resource limits and timeout values for a
session. The default is CASERVER. The task named must be defined as a task on the
CA IDMS system generation TASK statement. For more information about resource
limits for external user sessions, see the CA IDMS System Generation and CA IDMS
System Operations guides.

Node=via_node_name

Specifies an intermediate node to route the connection to the target system. The
system identified by via node must contain a RESOURCE table entry for the system
identified by node name. Use this option when the system containing the tables to
be accessed does not directly communicate with CAICCI.

Resource=node_name

Identifies the value of SYSTEMID as specified in the system generation parameters
of the target system. If a node name is not specified, CA IDMS Server uses the first
eight characters of server_name to identify the target system.

Version=0|1

Specifies the version of the CA IDMS Server mainframe component installed on the
CA IDMS CV.

0—Indicates Version 4.2 or earlier.

1—Indicates Version 4.3 or later. This is the default setting.

Note: Version 4.3 or later of the CA IDMS Server mainframe component supports
password encryption using a proprietary algorithm. When this option is set to 1, the
password is encrypted prior to being transmitted over the network. This encryption
process is not affected by any other encryption applied by technologies such as SSL.
All currently supported releases of CA IDMS releases 14.0 SP4, 14.1 SP4 and all
subsequent releases contain a Version 4.3 or later mainframe component and
therefore support a setting of 1. For CA IDMS releases prior to 14.0 SP4, set this
option to 0.

Configuration Information

206 User Guide

Options

The [Options] section contains global options, including path information, logging
options, and debugging flags. Other than the log and trace options, most can also be
specified for a specific data source. The Options section can contain the following
parameters:

CacheConfig=0|1

Enables or disables caching of the configuration file in memory. The default value is
1, enabled. The IDMS_CFG_RELOAD environment value can be used to override this
setting when necessary to refresh the cache. This is a global option.

DefaultSchema=schema_name

Specifies the name of the default SQL Schema. This is an optional 1-to-18 character
field. When specified, this field is used as the schema qualifier for all SQL table
references that do not contain an explicit schema qualifier. The default is blank
(unspecified).

FetchSize=integer_value

Specifies the maximum size that the JDBC driver attempts to use for a FETCH buffer.
The default is 64,000. Depending on the platform and implementation of the CAICCI
interface, a smaller buffer may be used. This usually is left at the default setting.
Specifying too large a value may cause the Java Virtual Machine to run out of
memory.

Note: The name of this option in the configuration file does not correspond exactly
to the JDBC object properties in order to remain compatible with previous versions
of CA IDMS Server.

LogFile=log_file_path

Specifies the location and name of the log file. A path name should be specified as
an absolute path, for example, /idmsdir/log/caidms.log. If the LogFile value ends in
a '/', the default file name of caidms.log is appended to the path.

LogFileCount=integer_value

Specifies the maximum number of archive log files to keep. If a value greater than
zero is specified, the LogFileSize value must also be greater than zero. The default
is 0, which indicates a single log file.

LogFilePid=0|1

When set to 1, the process id is appended to the log file name to make it unique.
The default is 0, disabled. In z/OS UNIX System Services, the log file cannot be
shared among different processes. This option allows a common configuration file
to be used by multiple processes, but still allowing each process to have a unique
log file name.

Configuration Information

Appendix B: Configuration File Information 207

LogFileSize=integer_value

Specifies the maximum size, in bytes, of the active log file. If a value greater than
zero is specified, then the LogFileCount value must also be greater than zero. The
default is zero, which indicates no maximum size.

LogOptions=integer_value

Specifies log options as a bitmask. The bit flags are:

■ 0x0010—Display 8-byte thread ID in trace (z/OS)

■ 0x0020—Send messages to the system log (SYSLOG). This is the default

■ 0x0040—Send messages to the system console (z/OS)

LoginTimeout=integer_value

Specifies the system loginTimeout used when the JDBC DriverManager or
DataSource setLoginTimeout is set to 0.

JdbcTraceId=0|1

Causes the JDBC driver to prefix each line written to the JDBC log writer with the
current timestamp and thread name. This can be useful to identify CA IDMS output
in a JDBC DataSource.logWriter trace managed by an application server. The default
is 0, disabled.

QueryTimeout=integer_value

Specifies the default reply timeout for SQL requests which use a Java Statement
object when using the JDBC driver.

WaitTimeOut=integer_value

Specifies the default system reply timeout for the JDBC driver.

XxxxTrace=integer_value

Specifies the flag bits used to control tracing. Customer Support uses these flags to
diagnose CA IDMS Server problems. The integer_value is a bit mask used to specify
individual trace options. A setting of 0 turns all options off, and a setting of 65535,
or 0xFFFF, turns all options on. Specify this value as a decimal or hexadecimal
integer. Descriptions of the bit flags are as follows:

■ CmTrace (libtd0d.so):

– 0x0001—Trace CAICCI and internal function calls

– 0x0002—Elapsed CAICCI call timings

– 0x0004—Snap control blocks

– 0x0008—Debug #CAICCI calls on z/OS

– 0x0010—Trace signon failures

Configuration Information

208 User Guide

■ DnsTrace (libtd0d.so):

– 0x0010—Snap unconverted send data

– 0x0020—Snap converted send data

– 0x0040—Snap received data

– 0x0080—Snap converted received

■ DtsTrace (libtd0d.so):

– 0x0002—Trace external calls

– 0x0004—Trace events

– 0x0008—Trace events

– 0x0010—Snap user data arrays

– 0x0020—Trace events

– 0x0040—Snap PCE

– 0x0080—Snap LCE

■ JdbcTrace (idmsjdbc.jar)—Any non-zero value enables tracing

■ SqlTrace (libcli.so):

– 0x0002—Time SQL calls

– 0x0004—Snap SQL SQLSID

– 0x0008—Snap SQL DSICB

– 0x0010—Snap SQL SQLCA

– 0x0020—Snap SQL SQLCIB

– 0x0040—Snap SQL SQLPIB

– 0x0080—Snap SQL parm buffer

– 0x0100—Snap SQL tuple buffer

– 0x0200—Snap SQL input SQLDA

– 0x0400—Snap SQL output SQLDA

– 0x0800—Snap SQL syntax string

– 0x4000—Trace server calls

– 0x8000—Snap server interface blocks

■ UtilTrace (libutil.so):

– 0x0001—Trace external calls

– 0x0002—Trace internal calls

Configuration Information

Appendix B: Configuration File Information 209

Proxy

The [Proxy] section contains information used to configure the JDBC server. It can
contain the following parameters:

Backlog=integer_value

Specifies the maximum length of the listener queue. When this length is exceeded,
new connections are refused. This is not the maximum number of client
connections that can be supported. The default is 50.

ClientAuth=0|1

Requires a client certificate when JDBC driver clients connect to this proxy server
using SSL.

Encoding=character_encoding_name

Specifies the character encoding that the JDBC server requests the JDBC driver to
use when sending and receiving character data. If not specified, the default
encoding for the JVM is requested. The character encoding class must be accessible
to the JDBC driver when invoked by the client application or applet.

In Java, all character data is represented internally as Unicode. Ultimately this data
must be converted to the native platform encoding used by CA IDMS, a variant of
EBCDIC specified by the code page. The Java platform includes classes to convert
between Unicode and the various character encodings. The encodings supported by
a particular Java implementation depend on the vendor.

In the absence of documentation, it might be possible to determine the encodings
supported by converted classes supplied with the Java implementation. These are
generally named ByteToCharxxxxx.class and CharToBytexxxxxx.class, where xxxxxx
is the encoding name. A minimal subset of the converter classes is installed in the
base library for the Java Run Time Environment, jre/lib/rt.jar. Additional converter
classes are included with the international version of the Java 2 Platform, installed
in the same subdirectory, but the actual filenames vary by release. For Java 1.4 the
international converter classes are in charsets.jar.

Configuration Information

210 User Guide

Host=host_name

Specifies the DNS name or IP address the JDBC binds to when it listens for client
connection requests. This can be used to force the JDBC server to listen for
connection requests on a specific TCP/IP protocol stack on a multi-homed host (a
machine with multiple TCP/IP stacks). The default is to listen on all available stacks.

LogLevel=integer_value

Specifies the level of messages sent to the system log or console. Choose one of the
following options:

■ 0—Disable messages

■ 4—Error messages

■ 6—Warning messages

■ 8—Information messages, including start and stop events. This is the default.

■ 10—Verbose information messages, including client start and stop events

■ 12—Debugging messages, not including general trace output.

LogTrace=integer_value

Specifies the level of log messages sent to the trace file. Options are identical to the
options for LogLevel.

Port=port

Specifies the IP port that the JDBC server listens on for connection requests. The
default is 3709.

RemoteControl=0|1

Enables a remote client to control the JDBC server; to SUSPEND, RESUME, or STOP
it. The default value, 0, allows remote clients only to check the STATUS of the JDBC
server.

RemoteHost=host_name

(Optional) Specifies the DNS name or IP address of a CA IDMS system (r16 SP2 or
later), or another JDBC server used to forward packets to the CA IDMS system.

RemotePort=port

Specifies the IP port address of the remote host. The default value is 3709.

RemoteSSL=0|1

Enables SSL when communicating with another proxy server.

ReplyTimeOut=integer_value

Specifies the number of seconds that the JDBC server waits for a response from the
CA IDMS system. The default, 0, causes the JDBC server to wait indefinitely.

Configuration Information

Appendix B: Configuration File Information 211

SSL=0|1

Enables Secure Socket Layer (SSL) connections between this proxy server and a
JDBC driver client.

Snap=0|1

Enables display of data buffers, sent and received, in the log file.

SocketTimeOut=integer_value

Specifies the number of seconds the JDBC server waits, or blocks, when reading
data from a socket. While a socket is being read, the thread is blocked, and is not
able to recognize an event that stops the thread. When this interval expires, the
thread checks if the JDBC server is still running, and, if so, issues another read on
the socket, continuing until the wait or reply timeout has expired. A high value
reduces JDBC server overhead, while a low value allows the server to respond to
shutdown events more quickly. Setting this to 0 causes the thread to block forever,
and is not recommended. The default is 60 seconds.

Trace=0|1

Enables tracing of internal function calls. Output is written to the log file.

Unicode=0|1

Enables the use of Unicode as the character encoding when the JDBC driver is
unable to use the requested encoding. The default value, 0, specifies the use of
UTF-8, which is supported by all Java platforms.

WaitTimeOut=integer_value

Specifies the number of seconds that the JDBC server waits for a request from the
JDBC driver before assuming the connection has been terminated. The default, 0,
causes the JDBC server to wait indefinitely. It is usually best to set a timeout value
to drop the connection when the client has been inactive for some reasonable time
interval. For example, set this value to 1800 to specify a timeout of 30 minutes.

Appendix C: Properties File Information 213

Appendix C: Properties File Information

CA IDMS Server can use a standard Java properties file for configuration information on
all platforms. A Java properties file is simply a text file where each property consists of a
key name and value, separated by an equal sign (=). Comments can be included by
prefacing them with a pound sign (#).

The properties file can include JDBC driver and JDBC server options which previously
could be specified only in the configuration file. This allows Java options to be specified
in a consistent format on all platforms, including those where the native methods are
not implemented. Because the native methods do not use Java properties files, options
that they use must be specified in the registry or configuration file.

The default name of the properties file is caidms.properties. You can override this name
by specifying a system property, ca.idms.properties=filename. The Java class loader
loads the file using the same rules for loading classes, so the properties file must be
located in a directory included in the CLASSPATH. If more than one properties file exists,
the first one found in the CLASSPATH directory list is loaded.

A sample properties file is installed in the product installation directory.

This section contains the following topics:

Setting CA IDMS Server Options as Properties (see page 213)

Setting CA IDMS Server Options as Properties

Any option that can be specified in the registry or configuration file can be specified in
the properties file, or even as a system property. There are also options that can only
be specified as properties. To specify a configuration file option in the properties file,
prefix the key name with the section name. To specify a property as a system property,
prefix it with ca.idms.

For example, you can enable the global JDBC trace in caidms.cfg on z/OS using the
following:

[Options]

JdbcTrace=1

Setting CA IDMS Server Options as Properties

214 User Guide

This can also be specified in the caidms.properties file as:

Options.JdbcTrace=1

Or it can be specified as a system property as an argument to the java launcher with:

-Dca.idms.Options.JdbcTrace=1

An option value specified in the registry or configuration file overrides the value
specified in the properties file, which in turn overrides the value specified as a system
property.

JDBC Driver Options

Options used by the JDBC driver can be specified in the [Options] or [datasource_name]
section of the registry or configuration file, or prefixed with "Options." or a
datasource_name in the properties file.

Note: For more information about these options, see the appendices "Windows Registry
Information" or "Configuration File Information," or the installed javadoc for the
ca.idms.jdbc.IdmsConnectOptions class.

JDBC Server Options

Options used by the JDBC server can be specified in the [Proxy] section of the registry or
configuration file, or prefixed with "Proxy." in the properties file.

Note: For more information about these options, see appendices "Windows Registry
Information" or "Configuration File Information," or the installed javadoc for the
ca.idms.proxy.ProxyOptions class.

Setting CA IDMS Server Options as Properties

Appendix C: Properties File Information 215

Global Options

Options that can only be specified in the properties file include:

■ cecp.network

■ exclude

■ include

■ reload

■ snap

■ snap.bytes

■ snap.native

■ snap.object

■ snap.sql

■ trace

■ trace.file

■ trace.life

■ trace.native

■ trace.product

Note: For more information about these options, see the installed javadoc for the
ca.idms.io.TraceObject package.

The following property can be set in the properties file to enable the JDBC driver to get
the external identity from compatible identity managers other than CA Siteminder.

security.principal.class=<java.security.Principal_class_name>

A compatible identity manager provides an implementation of the java.security.
Principal interface that represents the user identity and can be accessed using the
javax.security.auth.Subject.getPrincipal method.

Note: For more information about the cecp.network option see the installed javadoc for
the ca.idms.io.NativeCodePage class. Use of the cecp.network option causes IDMS
Server to use CECP before the server-specified network encoding. This allows for the use
of a customized set of code page tables using IDMS Server's CECP support.

Index 217

Index

A

Access Mode option • 206
Accessible tables view • 30
AccessibleTables option • 214
Accounting information • 37

passing to CA IDMS • 37
using • 37

Adding data sources • 59
Alternate task code, defining • 26
API conformance levels • 124, 125, 143

Core API • 124
JDBC driver • 143
Level 1 • 125
Level 2 • 125
ODBC driver • 124

application servers • 49
idle timeout • 49

ASCII data • 83, 85
code pages for • 85
translating • 83

Attributes • 131
supported keywords and values • 131

B

Backlog server option • 214
batch updates • 165
Bit flags • 206
Bulk • 133, 206

Fetch Row Count • 206
Insert support • 133

C

CA IDMS • 19, 24, 25, 27, 58, 95, 96, 128, 132, 152
configuring • 58
data type mapping and JDBC • 152
data type mapping and ODBC • 128
defining system generation parameters • 24
defining using CAICCI • 25
defining using TCPIP • 27
DriverConnect dialog • 95, 96
isolation and lock levels • 132
mainframe software requirements • 19
to JDBC data type mapping • 152
to ODBC data type mapping • 128

CA IDMS Server • 14, 53, 83, 101
Architecture • 14
installing client on z/OS • 101
language options • 83
Windows installation prerequisites • 53

CAICCI • 12, 25, 58
configurator • 58
defining • 25
line, defining • 25

CAICCI/PC • 19, 20, 25, 46, 51
defining to an CA IDMS system • 25
installing • 20
mainframe requirements • 19
other timeouts • 51
Properties dialog • 46

caidms.properties • 213
CAIENF facility • 19
CallSelect option • 214
CASERVER task • 26, 49, 50, 53

code • 26, 53
definition, reply timeout • 49
idle timeout • 50

Catalog views • 35
CatalogTable option • 214
CCI line in system generation • 25
CECP translation tables • 86
Certificate administration • 44
Character data, translating • 83
Client certificates • 44
Client components for UNIX System Services • 101

installing • 101
Client configuration on Windows • 57
CloseCommit option • 206, 214
Code page • 85

for host • 85
for PC • 85

COMMIT • 164
CommitBehavior option • 214
components of CA IDMS Server • 11
Configuration file • 108, 199, 200, 205, 206, 209

editing • 108
environmental variables • 199
information • 199
sections • 200, 205, 206, 209

datasource_name • 200

218 User Guide

Options • 206
Proxy • 209
Server server_name • 205

Configuring • 45, 57, 58, 91, 99, 110, 111
applications • 99
applications to use CA IDMS Server • 111
CA IDMS • 58
JDBC server • 91, 110
timeouts • 45
web server to use CA IDMS Server • 111
Windows Applications • 57

Configuring the Client on Windows • 57
Conformance levels • 124, 125, 126, 143, 151

API • 124, 143
Core API • 124
Level 1 API • 125
Level 2 API • 125
SQL • 126

Connecting dynamically to a data source • 96
ConnectionPoolDataSource object • 49
ConnectSuspend option • 206, 214
Control-key definition • 34
Controlling the JDBC server • 112
Core API conformance level • 124

supported functions • 124
Country Extended Code Page • 85

for host languages • 85
for PC languages • 85

Creating translation tables • 85
Custom Conversion DLL • 90, 142

developing • 90, 142
enabling • 90

Customizing • 86, 110
JDBC server • 110
translation tables • 86

D

Data sources • 54, 58, 59, 61, 62, 95, 96, 109
adding • 54, 59
connecting to, not previously defined • 96
connecting to, predefined • 95
defining • 109
editing • 62
maintaining • 61
testing connection for • 62
types • 58

Data type • 128, 152
CA IDMS • 128, 152

mapping • 128, 152
Data, converting • 83

language options • 83
Database access • 29, 30

and page groups • 30
setting up • 29

DatabaseMetaData methods, executing • 163
DataSource connection parameters • 157
DataSource.setLoginTimeout • 47
DBCS • 89

processing • 89
DBCSAlloc DLL function • 148
DBCSEnd DLL function • 148
DBCSInit DLL function • 148
DBCStoMF DLL function • 148
DBCStoPC DLL function • 148
DCMT VARY TASK STALL INTERVAL command • 49
Debugging user sessions • 91, 123

error messages • 123
Default • 213

properties file name, caidms.properties • 213
Defining • 25, 26, 27, 28

CAICCI line • 25
CASERVER task code • 26
IDMSJSRV task code • 28
TCPIP line • 27

DICT keyword • 47
distributed transactions • 163
Double Byte Character Set processing • 89
DRIVER keyword • 47
DriverManager.setLoginTimeout • 47
DriverPropertyInfo • 156
Driver-Specific connect options • 132
Driver-specific data types • 130
Dynamic positioned updates • 172

E

EBCDIC data • 83, 85
code pages for • 85
translating • 83

Editing • 62, 85, 86, 108
configuration file • 108
data source definition • 62
translation tables • 85, 86

Encoding • 110, 209, 214
configuration file information • 209
configuring JDBC server • 110
server option • 214

Index 219

Environmental variables • 106, 107, 199
specifying • 106
specifying for IPv6 • 107

exclude global option • 215
External identity • 38, 40, 163

auditing • 40
BGIN record • 40
journal analyzer chronological event report •

40
setting • 38, 163
string • 163

EXTERNAL WAIT • 26, 50
idle timeout • 50
parameter, on Task statement • 26

F

FetchRows option • 214
FetchSize option • 206
FetchSuspend and FetchSuspendClose options • 206
FetchSuspend option • 214
FetchSuspendClose option • 214
Fixed OCCURS element definitions • 33
Functions • 124, 125

Core API • 124
Level 1 API • 125
Level 2 API • 125

G

getCrossReference • 36
GetDBCSLength DLL function • 148
getExportedKeys • 36
getPrimaryKeys • 36
global options • 215

H

Handling invalid numeric data • 41
HFS • 102, 103

allocating • 102
copy and extract the TAR file • 103
creating the installation directory • 102

Host • 23, 85, 214
code page • 85
Component • 23
server option • 214

Hyphens • 31
in record and set names • 31
in record element names • 31

I

idle timeout • 45, 49, 50
application servers • 49
CASERVER task • 50
default • 49
explained • 49
EXTERNAL WAIT • 50
IDMSJSRV task • 50
JDBC server • 50
RESOURCE TIMEOUT INTERVAL • 50

IDMS URL format • 154
IdmsConnectionPoolDataSource class • 49, 161
IdmsDataSource class • 158
IdmsExample applet on Linux • 174
IDMSJSRV task • 28, 49, 50

code • 28
definition, reply timeout • 49
idle timeout • 50

INACTIVE INTERVAL parameter, on Task statement •
26

include global option • 215
Included tables • 88
Installation • 54, 99, 101

Compact option • 54
Custom option • 54
Custom option • 99
loading files • 101
Typical option • 54
Typical option • 99

Installing • 99, 101
client components for UNIX System Services •

101
JDBC server • 99

Installing CA IDMS Server • 19, 20, 53, 54, 117
CAICCI/PC • 20
mainframe software prerequisites • 19
on other platforms • 117
on Windows • 54
Windows prerequisites • 53
z/OS software prerequisites • 19

INTERNAL parameter, on Task statement • 26
Invalid Decimal option • 41, 61, 206
IPv6 • 107

Environmental variables • 107
specifying • 107

Isolation level, CA IDMS • 132

220 User Guide

J

Java • 21, 213
properties file, standard • 213
Runtime Environment • 21
Virtual Machine • 21

JDBC connection options • 162
JDBC driver • 12, 47, 118, 143, 151, 152, 214

conformance levels • 143, 151, 152
API • 143
SQL • 152

data type mapping • 152
option • 214

AccessibleTables • 214
CallSelect • 214
CatalogTable • 214
CloseCommit • 214
CommitBehavior • 214
ConnectSuspend • 214
FetchRows • 214
FetchSuspend • 214
FetchSuspendClose • 214
JdbcTrace • 214
JdbcTraceId • 214
PoolSuspendActive • 214
ReadOnly • 214
ServerTrace • 214
TxnIsolation • 214

overview • 151
reply timeout • 47
types • 12
using • 118

JDBC server • 48, 50, 51, 91, 99, 110, 112, 114, 119,
214
configuring • 91, 110
controlling • 112
idle timeout • 50
installing • 99
monitoring • 114
options • 214
other timeouts • 51
reply timeout • 48
using • 119

JDBC to CA IDMS data type mapping • 153
JDBC-ODBC Bridge • 12
JdbcTrace option • 214
JdbcTraceId option • 214
JRE • 21
jsrv • 99, 112

debug command • 112
ebug • 99
resume • 99
resume command • 112
start command • 99, 112
status • 99
status command • 112
stop • 99
stop command • 112
suspend • 99
suspend command • 112
usage command • 112

JSRVRESU batch job • 112
JSRVSTOP batch job • 112
JSRVSTRT batch job • 112
JSRVSUSP batch job • 112
JVM • 21

K

Keys and subkeys • 177

L

Level 1 API conformance level, supported functions •
125

Level 2 API conformance level, supported functions •
125

Line, defining a CCI • 25
Linux • 174

IdmsExample applet • 174
Listener queue • 209

maximum length • 209
Lock level, CA IDMS • 132
Log file • 91, 123, 206, 209

to debug user sessions • 91, 123, 209
Logging • 206

options • 206
LoginTimeout • 206
LogLevel server option • 214
LogTrace server option • 214

M

Maintaining data sources • 61
Messages, in log file • 91, 123, 206, 209
MF Version option • 187, 205
Monitoring the JDBC server • 114
Multithreading • 61

Index 221

N

Navigational DML database access • 29, 31
setting up • 29
using SQL statements • 31

Network set information • 133
retrieving • 133

NODE keyword • 47
Non-SQL database record • 31, 33

element name • 31, 33
length • 33
transforming • 31

name, transforming • 31
Non-SQL database set name, transforming • 31

O

ODBC • 138, 140
DESCRIBE INPUT • 138
Positioned Updates • 140

ODBC Administrator dialog • 59, 61, 62, 91
data source • 59, 61, 62

adding • 59
maintaining • 61
testing connections • 62

Data Source tab • 59
JDBC Server tab • 91

ODBC CALLed Procedures • 134
ODBC driver • 12, 47, 123, 124, 125, 126, 128

conformance levels • 124, 125, 126
API • 124
Core API • 124
Level 1 API • 125
Level 2 API • 125
SQL grammar • 126

data type mapping • 128
overview of • 123
reply timeout • 47
supported API functions • 124, 125

ODBC Driver Manager • 21
ODBC to CA IDMS data type mapping • 129
other timeouts • 45, 50, 51

CAICCI/PC • 51
JDBC Server • 51

P

Page groups, and database access • 30
Personal computer • 85

code pages • 85

Platforms, using other • 117
PoolSuspendActive option • 206, 214
Port server option • 214
Positioned updates and deletes • 172
pseudo-conversational processing • 42

R

Read Committed/Uncommitted option • 206
Read Only/Write access mode • 206
ReadOnly option • 214
Record • 31, 32, 33

accessing using SQL • 31
element name • 31, 33

length • 33
transforming non-SQL • 31

element, unavailable • 32
name, transforming non-SQL • 31

Referential constraints • 35
defining foreign keys • 35
defining primary keys • 35
defining sets • 35
integrity • 35

Registry information • 177
RELEASE • 164
reload global option • 215
Remote JDBC server • 91, 209
RemoteControl server option • 214
RemoteHost server option • 214
RemotePort server option • 214
reply timeout • 45, 46, 47, 48, 49

CASERVER task definition • 49
description • 46
IDMSJSRV task definition • 49
JDBC driver • 47
JDBC Server • 48
ODBC driver • 47
Server servername definition • 47
setting the default • 46

ReplyTimeOut server option • 214
RESOURCE TIMEOUT INTERVAL • 50

idle timeout • 50
Retrieving network set information • 133
RHDCNP3J task code • 28
RHDCNP3S task code • 26
ROLLBACK • 164
Row, bulk fetch • 206

222 User Guide

S

Sample Programs • 173, 174, 175
IdmsExample • 174
IdmsJcf • 173
SSL scripts • 175

Secure sockets • 43, 44
certificate administration • 44
client certificates • 44
configuring • 43
server certificates • 44

Server • 14
architecture • 14

Server certificates • 44
Server option • 214

Backlog • 214
Encoding • 214
Host • 214
JDBC • 214
LogLevel • 214
LogTrace • 214
Port • 214
RemoteControl • 214
RemoteHost • 214
RemotePort • 214
ReplyTimeOut • 214
Snap • 214
SocketTimeOut • 214
Trace • 214
Unicode • 214
WaitTimeOut • 214

Server Server_name subkey • 186
Server servername definition • 47

reply timeout • 47
Servers subkey • 186
ServerTrace option • 214
Set name, transforming • 31
SET SESSION • 164
SET TRANSACTION • 165
Set up for • 24, 53

CA IDMS Server on the mainframe • 24
CASERVER task • 53

SetDBCSOption DLL function • 148
Setting • 46, 213

options as properties • 213
reply timeout default • 46

Setting up • 29, 30, 35
catalog views • 35
database access • 29

SQL access • 29
SQL to non-SQL database access • 30

Snap • 214, 215
global option • 215
server option • 214

snap.bytes global option • 215
snap.native global option • 215
snap.object global option • 215
Socket • 209

reading data from • 209
SocketTimeOut server option • 214
Software requirements, mainframe • 19

CA IDMS • 19
SQL • 29, 30, 32, 95, 126, 152

conformance levels • 126, 152
Data Sources dialog • 95
database access • 29, 30

setting up • 29, 30
synonym, for non-SQL records • 32

SQLDriverConnect API • 47
SQLDriverConnect connection string format • 130
SQLForeighKeys • 36
SQLPrimaryKeys • 36
SQLSpecialColumns • 36
SQLStatistics • 36
standard Java properties file • 213
Statement.setQueryTimeout • 47
Subkeys • 186

Server Server_name • 186
Servers • 186

Supported attribute • 131
keywords • 131
values • 131

SYSCA.ACCESSIBLE_ SCHEMAS • 36
SYSCA.ACCESSIBLE_TABLES • 30

utilizing page groups • 30
SYSCA.ODBC_INDEX • 36
system generation parameters, defining • 24

T

Tables, accessible • 30
Task code • 26, 53, 187, 205

defining • 26
for set up • 53

TCPIP • 27
defining line • 27
defining the CA IDMS system • 27

Testing • 62

Index 223

connections to data sources • 62
timeouts • 45
Trace • 91, 206, 209, 214, 215

global option • 215
options • 91, 206, 209
server option • 214

trace.file global option • 215
trace.life global option • 215
trace.native global option • 215
trace.product global option • 215
Transaction Isolation • 132

levels • 132
Translation editor • 86

keystrokes • 86
Translation tables • 85, 86, 88

CECP • 86
creating • 85
customizing • 86
editing • 85
included • 88
saving • 88

TxnIsolation option • 214

U

Unicode • 110, 209, 214
encoding, configuring JDBC server • 110
proxy configuration • 209
server option • 214

Uninstalling previous versions • 54
URL format • 154
Use Accessible Tables View • 30

option • 30
User session • 91, 123

debugging • 91, 123
Using the JDBC server • 99, 119

on Windows • 99

V

Version option • 187, 205
View • 30

SYSCA_ACCESSIBLE_TABLES • 30

W

WAIT keyword • 47
WaitTimeOut server option • 214
WebSphere Application Server DataStoreHelper •

163
Windows • 54, 57, 99, 177

installation • 54
registry • 177
support, contacting • 3
using the JDBC server on • 99

Z

z/OS • 19, 101
client installation • 101
software prerequisites • 19

	CA IDMS Server User Guide
	CA Technologies Product References
	Contact CA Technologies
	Contents
	1: Introduction
	Who Should Use this Document
	Components
	ODBC and JDBC Drivers
	ODBC Driver
	JDBC Driver

	Server Architecture
	More Information

	2: Preparing for Installation
	Mainframe Software Prerequisites
	z/OS Software Prerequisites
	Linux Software Prerequisites
	Windows Software Prerequisites
	CAICCI/PC
	ODBC Driver Manager

	Java Runtime Environment
	Installing the Java Runtime Environment

	Delivery of Components

	3: Setting Up Your System
	Installing the Host Component
	Setting Up CA IDMS Server
	Defining the CA IDMS System Using CAICCI
	Defining a CCI Line
	Creating the CASERVER Task

	Defining the CA IDMS System Using TCP/IP
	Updating the System Startup JCL
	Defining a TCP/IP Line
	Creating the IDMSJSRV Task

	Setting Up Database Access
	Setting Up SQL Access
	Utilizing Page Groups
	Setting Up SQL Access to Non-SQL Databases
	Accessing Non-SQL Records Using SQL Statements
	Transforming Non-SQL Record and Set Names
	Transforming Non-SQL Element Names
	Creating SQL Synonyms
	Elements that cannot be Transformed
	Fixed OCCURS Element Definitions
	Defining Keys
	Defining Sets as Referential Constraints

	Setting up Catalog Views
	SYSCA.ODBC_INDEX
	SYSCA.ACCESSIBLE_SCHEMAS
	SYSCA.ACCESSIBLE_PROCS
	Defining Catalog Views

	Passing Auditing Information to CA IDMS
	Supplying Accounting Information
	Using Accounting Information
	Example

	Setting the External Identity
	Auditing the External Identity
	Journal Analyzer Chronological Event Report

	Handling Invalid Numeric Data
	Pseudo-Conversational Processing
	Configuring Secure Sockets
	Certificates on the Client System
	Certificates on the Server
	Certificate Administration
	JDBC Driver
	ODBC Driver
	Mainframe

	Configuring Timeouts
	Reply Timeouts
	CAICCI/PC
	Server servername Definition
	ODBC Driver
	JDBC Driver
	JDBC Server
	CASERVER and IDMSJSRV Task

	Idle Timeouts
	Application Servers
	JDBC Server
	CASERVER and IDMSJSRV Task

	Other Timeouts
	CAICCI/PC
	JDBC Server

	4: Installing the Client on Windows
	Preparing to Install CA IDMS Server
	Uninstalling Previous Versions

	Installing CA IDMS Server on Windows

	5: Configuring the Client on Windows
	Configuring Windows Applications
	Configuring CAICCI/PC
	Configuring CA IDMS Server
	Defining Data Sources
	Adding a New Data Source
	Options
	Advanced Options

	Saving the Data Source Definition
	Testing the Data Source Definition
	Editing the Data Source Definition

	Setting Advanced Data Source Options
	Default Connection Attributes
	Other Options
	Performance Considerations for ODBC Options

	Setting System Default Data Source Options
	Setting Up a Server
	Options
	Connection Options
	Advanced Options

	Deleting a Server
	Setting Advanced Server Options
	DDS Routing
	CA IDMS Task Settings
	ASCII-EBCDIC Conversion

	Setting System Default Server Options
	Logging Errors and Trace Information
	Log File Options
	Client Trace Options

	Setting SSL Options
	Certificate Stores
	Setting Language Options
	Using the International Tab
	Selecting, Creating, and Editing CECP Translation Tables
	Creating or Editing a Translation Table
	Customizing a Translation Table
	Saving a Translation Table
	Included Tables
	Enabling DBCS Processing

	Using a Custom Conversion DLL
	Enabling a Custom Conversion DLL
	Developing a Custom Conversion DLL

	Configuring the JDBC Server
	Server Options
	Log and Trace Options
	Remote Server

	Property File Information

	6: Using the Client on Windows
	ODBC Driver Connect Dialogs
	Connecting to a Predefined Data Source
	Connecting Dynamically to a Data Source Not Previously Defined
	Connection Options

	Configuring JDBC Applications to Use CA IDMS Server
	Using the JDBC Server on Windows

	7: Installing the Client on z/OS
	Installation Process
	Installing the Client Components for UNIX System Services
	Step 1: Load the Installation Files
	Step 2: Allocate the HFS
	Step 3: Create the Installation Directory in the HFS
	Step 4: Copy and Extract the TAR File
	Step 5: Copy the Sample JCL Files (Optional)

	8: Configuring the Client on z/OS
	Configuring CA IDMS
	Specifying Environment Variables
	Specifying Environment Variables for IPv6
	Editing the Configuration File
	Data Source Definitions
	Configuring the JDBC Server

	Other Configuration File Information

	Properties File Information

	9: Using the Client on z/OS
	Configuring Applications to Use CA IDMS Server
	Controlling the JDBC Server
	Monitoring the JDBC Server

	10: Using the Java Client on Any Platform
	Installing CA IDMS Server on Other Platforms
	Using the JDBC Driver
	Using the JDBC Server

	11: ODBC Programmer Reference
	Debugging User Sessions
	Error Messages

	ODBC Conformance Levels
	API Conformance Levels
	Core API
	Level 1 API
	Level 2 API

	SQL Conformance Levels

	SQL Database Type Mapping Between ODBC and CA IDMS
	CA IDMS to ODBC Data Type Mapping
	ODBC to CA IDMS Data Type Mapping
	Driver-Specific Data Types

	SQLDriverConnect Connection String Format
	Supported Attribute Keywords and Attribute Values

	Driver-Specific Connection and Statement Attributes
	Supported Isolation and Lock Levels
	Bulk Insert Support
	Retrieving Network Set Information
	Procedures
	Using Procedures
	Get Procedure Metadata
	Prepare the Statement
	Get Parameter Descriptions
	Bind Parameters
	Execute the Statement
	Get the Results

	Using Named Parameters
	Using Table Procedures
	Catalog Data

	Describe Input
	Using Describe Input
	Prepare the Statement
	Get Input Parameter Descriptions
	Bind Input Parameters
	Execute the Statement
	Get Output Column Descriptions

	Positioned Updates
	Using Positioned Updates
	Disable AutoCommit if Necessary
	Set Cursor Concurrency
	Specify a Cursor Name
	Execute the Query
	Execute the Update

	Developing a Custom Conversion DLL
	API Reference
	DBCSAlloc
	DBCSInit
	SetDBCSOption
	GetDBCSLength
	DBCStoPC
	DBCStoMF
	DBCSEnd
	How CA IDMS Server Uses the API

	12: JDBC Programmer Reference
	JDBC Conformance
	SQL Conformance

	Database Type Mapping between JDBC and CA IDMS
	CA IDMS to JDBC Data Type Mapping
	JDBC to CA IDMS Data Type Mapping

	DriverManager
	IDMS URL Format
	DriverPropertyInfo

	DataSource Connection Parameters
	IdmsDataSource
	IdmsConnectionPoolDataSource
	JDBC Connection Options Summary
	WebSphere Application Server DataStoreHelper
	Setting the External Identity
	IdmsConnection.setIdentity(String identity)

	Distributed Transactions
	Using Distributed Transactions with JDBC
	Using SQL Transaction and Session Commands
	COMMIT and ROLLBACK
	SET SESSION
	SET TRANSACTION

	Batch Updates
	Using Batch Updates
	Statement.executeBatch(String sql)
	PreparedStatement.executeBatch()
	CallableStatement.executeBatch()
	BatchUpdateException

	Procedures
	Using Named Parameters
	Result Sets

	Scrollable Result Sets
	JDBC Result Sets and Row Sets
	CA IDMS Result Sets

	Positioned Updates
	HibernateDialect
	Sample Programs
	IdmsJcf
	IdmsExample
	IdmsJdbcDataStoreHelper

	Sample SSL Scripts

	A: Windows Registry Information
	Registry Information
	HKEY_LOCAL_MACHINE\Software\ODBC\ODBCINST.INI
	HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI
	Data Source Advanced Options
	Values

	HKEY_LOCAL_MACHINE\Software\CA\CA IDMS Server
	Servers
	Server server_name
	Values

	Server Advanced Options
	Values

	Options
	Values

	Proxy
	Values

	HKEY_CURRENT_USER\Software\ODBC\ODBC.INI
	HKEY_CURRENT_USER\Software\CA\CA IDMS Server

	B: Configuration File Information
	Configuration Information
	Environment Variables
	Sections
	Datasource
	Server server_name
	Options
	Proxy

	C: Properties File Information
	Setting CA IDMS Server Options as Properties
	JDBC Driver Options
	JDBC Server Options
	Global Options

	Index

