

User Guide
r11.5

CA Hyper-Buf® VSAM Buffer
Optimizer

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2011 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA Technologies products:

■ CA Hyper-Buf® VSAM Buffer Optimizer (CA Hyper-Buf)

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Contents 5

Contents

Chapter 1: Introduction 9

Dynamic VSAM Buffering ... 9

VSAM Buffering and Performance ... 10

Buffering Basics ... 10

VSAM Disk Data Structures ... 10

VSAM Control Intervals and Buffering .. 11

Application Interface ... 11

Non-Shared Resources (NSR) ... 12

BUFFERSPACE .. 12

Problems Related to Static Buffering .. 13

General Purpose Buffers ... 15

Specifying BUFFERSPACE at OPEN Time ... 16

Dynamic Environments ... 16

Dynamic Buffering ... 17

Local Shared Resources (LSR) ... 18

JCL Requirements ... 19

Chapter 2: Using CA Hyper-Buf 21

CA Hyper-Buf Advantages .. 21

Controlling Dynamic Buffering ... 22

Processing Considerations .. 23

Processing Constraints .. 23

Fine Tuning .. 24

Dynamic Buffering Control Statements.. 24

Processing Constraints .. 25

Method of Operation .. 26

Establishing the MODE .. 27

Excluded OPENs ... 28

Level Selectors .. 29

Level Descriptions ... 30

Specifying LEVEL Selectors ... 31

SMSCLASS Level Selectors ... 31

DCLASS: Associating Constraints with SMS Data Class ... 32

MCLASS: Associating Constraints with SMS Management Class .. 33

SCLASS: Associating Constraints with SMS Storage Class ... 33

CLUSTER LEVEL Selector .. 33

6 User Guide

JOB LEVEL Selector .. 34

PROGRAM LEVEL Selector ... 34

PROGRAM/DDNAME Combined Selector ... 35

Chapter 3: Constraint Control Statements 37

Specifying Constraint Control Statements ... 37

Sample Control Stream ... 38

Constraint Merging ... 38

Constraint Specifications ... 40

Constraint Descriptions .. 41

ACBOVR: Overriding ACB Specified Buffer Values ... 41

AMPOVR: Overriding AMP Specified Buffer Values .. 41

CICS: Restricting Buffering for the CICS Environment ... 43

CUSHION: Reserving Storage Below 16M ... 43

DEFER: Deferring WRITEs .. 44

DEFINE: Creating a Named Constraint Prototype ... 45

DSNSHARE: Share VSAM Control Block Structure ... 45

DYNAMIC: Controlling Dynamic Region Sizing .. 46

EXCLDD: Globally Exclude a DDNAME ... 46

FIX: Page Fixing LSR Buffers and IOBs ... 46

HIPERSPACE: Backing LSR Buffers in HIPERSPACE ... 47

LSR: Converting Non-Shared Requests to Local Shared .. 49

LSRFORCE: Bypassing ACB Inspection and Data Set Content .. 50

MAXBUFND: Specifying Maximum Target BUFND .. 50

MAXBUFNI: Specifying Maximum Target BUFNI ... 51

MAXBUFNO: Specifying Maximum Target QSAM Buffers... 51

MAXBUFSP: Specifying Maximum Target Buffer Space .. 51

MINBUFND: Specifying Minimum Target BUFND ... 52

MINBUFNI: Specifying Minimum Target BUFNI .. 52

MINBUFNO: Specifying Minimum Target QSAM Buffers .. 52

MINBUFSP: Specifying Minimum Target Buffer Space .. 53

MSGLEVEL: Controlling Displayed Messages .. 53

NONSWAP: Mark Address Space Non-Swappable .. 54

NOSTATS: Remove STATS Constraint That Results From Merge Processing .. 55

NSR: Restricting Conversion to Local Shared Resources ... 55

QSAM: Enable/Disable QSAM Buffering ... 56

RANDOM: Overriding ACB Specified Processing Options ... 56

RMODE31: Specifying VSAM Buffer and Control Block... 56

RUNMODE: CA Hyper-Buf Mode of Operation ... 58

SEQUENTIAL: Overriding ACB Specified Processing Options .. 59

SHRPOOL: Requesting a Specific Shared Resource Pool ... 60

Contents 7

SIS: Setting Sequential Insert Strategy .. 62

SMFID: Specifying SMF Recording Record ID .. 62

STATS: Requesting CLOSE Statistics .. 63

SWAP: Do Not Mark Address Space Non-Swappable ... 63

SYSTEM_DEFAULTS - Establishing Default Parameters ... 64

TEST: Forcing TEST Mode .. 64

TRACKS: Specify Multi-track Buffering .. 64

UNFIX: Keeping LSR Buffers and IOBs Pageable .. 64

USE: Invoking a Constraint Prototype ... 65

Chapter 4: ISPF Dialogs 67

CA Hyper-Buf Primary Menu .. 67

Menu Options ... 68

Information Panel: Display Current Release Information .. 69

Panel Options .. 69

Constraints Panel: Displaying the Currently Active Constraints ... 70

Panel Description .. 70

Modeling Panel: Specifying Level Selectors ... 71

Panel Description .. 71

Activate Selection Panel: Validate, Activate, or Refresh .. 74

Panel Description .. 74

Chapter 5: Batch Utility Programs 77

GVBVALD—Validate CA Hyper-Buf Control Stream ... 77

GVBDBFON—Activate CA Hyper-Buf .. 77

GVBDBOFF—Deactivate CA Hyper-Buf .. 78

GVBREFR—Refresh Constraints ... 78

GVBSTAT—Display Current Status of CA Hyper-Buf... 79

GVBISIT—Determine if CA Hyper-Buf is Active .. 79

GVREPORT SMF Reporting Utility ... 80

Report Fields ... 81

SMF Record Description .. 85

Feature Implementation Guidelines .. 85

JCL Field Descriptions .. 85

GVREPORT Sample Report Construct ... 86

GVBDB001—Disable or Enable CA Hyper-Buf .. 87

Chapter 6: Sample Control Streams 89

Specifying Defaults Only ... 89

Adding Specific Selection Criteria ... 90

8 User Guide

Sample Test Controls .. 92

Temporarily Suspend Buffering .. 93

Glossary 95

Index 97

Chapter 1: Introduction 9

Chapter 1: Introduction

CA Hyper-Buf improves VSAM buffer space allocation to reduce response time, elapsed
job time, and I/O rate. This manual serves as a guide to the buffering procedures and
facilities used by VSAM to accelerate processing and provide maximum performance.

CA Hyper-Buf chooses proper buffer sizes by dynamically analyzing the data set
environment. CA Hyper-Buf computes buffer spaces based on the following factors:

■ Hardware construction

■ DASD type and track capacity

■ Available virtual storage

■ File access pattern

■ File definition parameters

■ File sizes

■ Data and index CI sizes

■ User customization parameters

Dynamic buffering is typically ineffective or impractical for jobs like CICS that open
multiple files. What works for batch can keep CICS from coming up or otherwise
negatively affect CICS performance. CA Hyper-Buf has special algorithms for tuning CICS
buffer space. By coding one rule for any CICS partition, you can tune CICS to select
optimum buffer space for online processing.

This section contains the following topics:

Dynamic VSAM Buffering (see page 9)
VSAM Buffering and Performance (see page 10)
Non-Shared Resources (NSR) (see page 12)
Local Shared Resources (LSR) (see page 18)
JCL Requirements (see page 19)

Dynamic VSAM Buffering

Buffering affects VSAM performance. Optimum buffering leads to improved
performance, which results in shorter online response times, increased batch
throughput, and shorter batch turnaround times. Improper buffering causes job
backlogs, missed deadlines, and irate terminal operators.

This chapter presents an overview of the buffering techniques used by VSAM and
explains how proper buffering accelerates VSAM processing.

VSAM Buffering and Performance

10 User Guide

VSAM Buffering and Performance

VSAM manages disk accesses on behalf of application programs. To do this, VSAM
reserves blocks of virtual storage called buffers, which are used as staging areas for data
that is on its way to or from disk.

Buffering Basics

The basic unit of data transfer between DASD and a buffer is a control interval (CI). At
least one CI is read from or written to disk with each physical I/O operation. VSAM never
transfers less than one CI. In certain instances, VSAM can transfer several CIs with a
single I/O request by chaining several CCWs together into a single channel program. By
reading or writing several CIs with a single I/O, fewer I/Os are required to process the
data. This reduction in I/O results in improved performance.

Each CI usually contains more than one logical record. In this respect, CIs are similar to
disk blocks that are used by non-VSAM access methods. Some CIs can contain hundreds
of logical records, others can contain only a few records. Still other CIs can contain a
single logical record, or even a portion of a logical record in the case of spanned records.
A diagram of a control interval and its internal structure is shown below.

VSAM Disk Data Structures

In the VSAM Control Interval diagram, the fields marked LRx represent Logical Records
contained in the control interval. The fields marked RDFx represent Record Definition
Fields. The last field, marked CIDF, represents the Control Interval Definition Field. The
shaded area marked FREESPACE is space that is currently unused in this control interval.

The RDFs and CIDF are VSAM control fields that are contained in almost every control
interval. These fields are wasted space in the sense that they contain no useful
application data. However, these fields contain critical VSAM information, and are
required.

Note: RDFs exist only in CIs that contain logical records. An empty CI does not contain
any RDFs. Even empty CIs contain a CIDF, except CIs within a Linear Data Set (LDS). LDS
clusters contain only application data; there are no CIDFs or RDFs in any LDS CI.

VSAM Buffering and Performance

Chapter 1: Introduction 11

VSAM Control Intervals and Buffering

KSDS files contain two types of control intervals. The first type of control interval is the
data control interval, which contains the logical records and VSAM control information
as shown in the VSAM Control Interval diagram in the section Buffering Basics (see
page 10). The other type of CI is the index control interval. The index CIs contain index
entries which point to other index CIs or to data CIs. These indexes allow VSAM to
retrieve records randomly by a field in the record which is called a key. VSAM maintains
index CIs transparently on behalf of the application programs.

All data CIs for a particular cluster are the same size. All index CIs for a particular cluster
are also the same size, although the data control intervals for a particular cluster can be
a different size than the index control intervals for the same cluster. For example, a
particular KSDS can be defined with 4K data CIs and 1K index CIs.

Each virtual storage buffer is the same size as the control interval for which it is built.
For example, a KSDS file with an index CI size of 1K and a data CI size of 4K requires
some number of 1K buffers for index control interval I/O, and some number of 4K
buffers to be used exclusively for data CI I/O.

Application Interface

The application program is usually interested in logical records and not control intervals.
VSAM manages the control intervals on behalf of the application by:

■ Finding the control interval that contains the requested logical record. For keyed
requests against a KSDS file, VSAM first searches the index. This processing usually
requires at least one I/O operation, and sometimes multiple I/Os. These I/Os use
the buffers that were allocated for the index CIs.

■ Retrieving the data control interval. The preceding step found where the record
resides; now VSAM must actually read that data CI. This processing usually requires
at least one I/O operation, and can require several I/Os in the case of spanned
records. These I/Os use the data buffers.

■ Deblocking the requested logical record. Applications are usually written to handle
a single logical record at a time - not an entire CI. Once VSAM reads the entire data
CI into a buffer, VSAM then finds the desired logical record and extracts just that
record for the application.

■ Passing the logical record back to the application or inserting the logical record into
the control interval for a write request. Once the record is located, it is usually
moved to an application program work area (move mode processing).

Note: The first and second items can require several I/Os to the DASD. Some of these
I/Os can be avoided if the required control intervals are already resident in virtual
storage buffers.

Non-Shared Resources (NSR)

12 User Guide

Extra Buffers

Increasing the number of buffers available to VSAM increases the probability of finding
data in a buffer. Records already in a buffer are usually accessed without requiring any
I/O, meaning fewer I/Os and I/O waits, shorter elapsed times, reduced I/O path
contention, and faster response times for online applications.

Non-Shared Resources (NSR)

With NSR buffering, VSAM acquires a private pool of buffers for each file when it is
opened. The storage allocated to these buffers is reserved for I/O from/to this file for
the entire time that the file is open. At CLOSE time, these buffers are released back to
the system.

VSAM provides parameters which allow you to specify the number of buffers assigned
to a cluster. The VSAM buffer parameters are BUFFERSPACE, BUFND, and BUFNI.

BUFFERSPACE

The BUFFERSPACE parameter specifies the number of bytes of virtual storage reserved
for buffers when the file is opened. VSAM open processing GETMAINs BUFFERSPACE
bytes of storage. VSAM then subdivides this block of storage into individual data buffers
and, if the file is a KSDS, index buffers. The following diagram shows BUFFERSPACE bytes
of storage subdivided into six index and three data buffers.

Non-Shared Resources (NSR)

Chapter 1: Introduction 13

For KSDS files using NSR buffering, VSAM subdivides the BUFFERSPACE area into some
number of buffers for data control intervals, and some number for index control
intervals. The actual number of each type depends upon the number of bytes available
for buffers (BUFFERSPACE), the ACB MACRF options specified at OPEN time (DIR, SEQ, or
both), and the CI sizes of the data and index components.

Specifying BUFFERSPACE

You can specify BUFFERSPACE in three places.

■ By IDCAMS BUFFERSPACE when you define a cluster

■ On a DD card, using the AMP parameter

■ In the ACB that is used to access the cluster

Note: The first method assigns buffer space prior to the actual use of the file at the time
of the cluster definition. The other two methods assign buffer space when the cluster is
actually opened.

Problems Related to Static Buffering

Specifying BUFFERSPACE at DEFINE time, or BUFFERSPACE, BUFND, or BUFNI at
execution time using the AMP DD parameter or the ACB, is a static form of buffering. It
is static because the values are not dynamically adjusted for any changes in the
environment.

As a file grows, or as new applications process the cluster, or as modifications are made
to the types of accesses made by existing applications, the numbers that were specified
remain as originally assigned. You must monitor and adjust these parameters manually
as the environment changes if optimum performance is desired. The only way that you
can adjust these parameters in a dynamic production environment is by continuously
monitoring each and every program and cluster. Whenever anything changes, you
readjust the number of buffers manually.

Static buffering allows you to tune VSAM for good performance. If you can determine
how a particular application accesses a particular file, and then determine an optimum
number of data and index buffers for this application to process this cluster. You can
tune VSAM for the best possible performance, as long as nothing ever changes.

Examples of Static Buffering:

For example, if an application processes a KSDS file randomly, extra index buffers can
reduce the number of I/Os required to search the index component. Buffering the
entire index set avoids all read I/Os to the index set, except the first I/O for each index
set control interval. Buffering the index set significantly improves the performance of
this random application (faster online response times, reduced I/O path congestion,
shorter elapsed time for batch, and so forth.)

Non-Shared Resources (NSR)

14 User Guide

Assume that a KSDS file has three index levels and that an application accessing this
KSDS is currently using the default buffer space (two data buffers, one index buffer) to
randomly retrieve logical records. Each retrieval requires at least four I/Os to the disk.

A random access request to a KSDS file requires VSAM to search the index structure to
find the key of the requested logical record. VSAM always starts this search with the
high level index record. If the high level index record is not already available in virtual
storage, VSAM must perform one I/O to read it into an index buffer (first I/O). Since this
example assumes a three level index, the first matching-or-greater key that is
encountered in the high level index record points to another index record in the middle
level of the index.

VSAM must next search this middle level index control interval. This requires an I/O
(second I/O), since this second level index control interval is not already in a buffer.

Since we are using the default buffer space in this example, we have only one index
buffer, which VSAM filled with the high level index record on the previous I/O. So VSAM
must read the middle level index control interval into the only index buffer over the top
of the high level index control interval currently resident there. The first
matching-or-greater key that VSAM finds in this middle control interval points to a
bottom level index control interval, called a sequence set control interval, which must
now be read into the only index buffer (third I/O) overlaying the middle level record that
is currently in residence.

The first matching-or-greater key encountered in the sequence set record points to the
data control interval that contains the logical record that was requested by the
application (if it exists at all). This data control interval must now be read into a data
control interval buffer which requires at least one I/O, and possibly more if the data
record is SPANNED (fourth and subsequent I/Os).

This same process is repeated for each logical record that is accessed randomly by this
application. The next random request requires the high level index CI, which causes an
I/O, since the copy of the high level index record (obtained by the first I/O) has been
overlaid by the subsequent index I/Os, and is no longer resident.

This means that:

■ An application waits for at least four I/Os to complete for each logical record
accessed. This includes the possibility of up to four waits for a busy I/O path
(channel/controller/device), four seeks, four device latencies, and four data
transfers, and includes all of the processor cycles required to drive 4 I/Os and to
process four I/O interrupts (control block validation, page fixing, channel program
construction, SVC overhead, interrupt handler, pagefree, SRBs, and so forth).
Online response time and batch throughput suffers because of this additional I/O
and processing. This application tends to be I/O bound, and spends most of its time
waiting for I/Os to complete, instead of performing the desired processing of the
data!

Non-Shared Resources (NSR)

Chapter 1: Introduction 15

■ The disk(s) on which this cluster is defined is busy performing up to four I/Os for
each logical record accessed. Device congestion slows down not only the
application causing the excessive I/O, but all applications using files on this disk.

■ The controller, head of string, and channel are also busy, adding to overall system
performance degradation. The I/O subsystem (IOCP) can be forced to delay I/O
requests by queuing or suspending them until a path or device is available.

Increasing the number of index buffers reduces the number of I/Os required for each
randomly accessed logical record. VSAM finds more of the index control intervals in a
buffer and avoids index set I/Os. To reduce the number of index I/Os to a minimum
requires as many index buffers as there are index set records, plus one per string for
sequence set record buffering.

To buffer the entire index set manually, you must first determine how many index set
control intervals exist in the index component, then specify that many index buffers plus
one per string in the BUFNI parameter through the ACB, or on the DD card in the AMP
parameter. This specification allows

VSAM to keep an 'index set cache' in main storage and to avoid all of the read I/Os to
the index set (except the first I/O for each control interval which is required to make
that CI resident in a buffer). This improves online response times, reduces path
congestion, and reduces batch turnaround times for applications that access this file
randomly.

You can specify buffers using the BUFFERSPACE, BUFNI, and BUFND parameters. You
can specify some of these parameters at DEFINE time (BUFFERSPACE only), at execution
time using the ACB, or on the DD card in the AMP parameter.

General Purpose Buffers

It is difficult, if not impossible, to select a buffer space at DEFINE time that optimizes the
performance of the wide range of applications and access patterns that are found in a
production environment. Most files have several applications accessing them, including
sequential backups and reorgs, audits, random online inquiries, and batch reports. Each
of these applications has a different accessing pattern, which requires buffering
adjustments to perform optimally. While specifying a larger buffer space in the catalog
usually improves performance, it does not result in the best possible performance for
each application that accesses a file. Some applications are better served by the
catalogued buffer space than others. Also, the specified buffer space can waste virtual
storage, possibly causing VSAM to allocate more index buffers than are required to
buffer the entire index set. These excess buffers are not useful, and the virtual storage
thus tied up could be put to better use elsewhere.

Non-Shared Resources (NSR)

16 User Guide

Specifying BUFFERSPACE at OPEN Time

To optimize performance, you must specify buffer space at OPEN time.

This allows you to tailor the buffer space to suit each particular application and to
optimize VSAM performance for the processing that each application performs.

If you calculate that ten index buffers are required to hold the entire index set in storage
for a particular file (assume one high level index control interval, eight middle levels,
and one sequence set buffer for single string access), you can then modify each and
every job stream that accesses this file randomly for optimum performance. Simply
specify BUFNI=10 in the AMP parameter on every DD card in every job (test and
production) that references this file. These modifications take some time if there are
many jobs that access this file, but the end result is optimum performance.

This is static tuning. It works, but you must monitor all of your VSAM files and
applications regularly to be sure that performance is optimized. What happens to
performance when the file grows to 12 index set records and four index levels? You
must go back and adjust all of the BUFNI and BUFND values to reflect the current
environment.

Dynamic Environments

The static tuning performed above falls apart as the file grows. As the file grows, the
number of index records increases along with the increase in data. The specification of
10 index buffers no longer optimizes the buffering for this file because of the growth.
Performance gradually degrades as applications require more and more index I/Os to
randomly retrieve logical records. Performance with BUFNI=10 is better than with the
default buffer space. These extra buffers are put to good use, but performance is no
longer optimum.

To optimize performance after such changes occur, you must recalculate the number of
index set records and update all of the DD statements in all of the job streams to include
the new optimum BUFNI value. This procedure takes some time, but the result is good
performance.

Similar performance problems occur when an application is modified to perform skip
sequential or purely sequential processing instead of just random processing. You must
monitor and adjust buffers to keep up with the changes that occur to both files and
applications.

Non-Shared Resources (NSR)

Chapter 1: Introduction 17

For sequentially processed files, extra data buffers are beneficial, and extra index
buffers generally do little to improve performance. For sequential applications that add
a significant number of logical records to a file, extra index buffers may improve
performance. As records are added sequentially to the file, VSAM must update the
index as CIs are added or split. Since changing one level of the index can require changes
to other higher levels, VSAM may require access to several index CIs to keep the index
updated. In this case, I/Os can be reduced by adding extra index buffers.

You can decide to set BUFND to a value that allows VSAM to perform full track I/O, thus
reducing the number of I/Os and the elapsed time required to process this file
sequentially.

What happens if the cluster is moved to another device type or, again, if the application
is modified and now performs skip sequential (or maybe even truly random) processing?
The answer is simple: recalculate the BUFND, and possibly BUFNI, and modify every job
stream (yet again) to specify the new values.

Static buffering, while better than default buffering, is a far from perfect solution in a
dynamic, real world environment.

Dynamic Buffering

CA Hyper-Buf determines the optimum number of buffers for a particular file and
application accessing that file at the last possible moment, at OPEN time. CA Hyper-Buf
inspects the file and determines the number of index levels, number of index set
records, data control intervals per track, and the options specified for this particular
OPEN (random, sequential, skip sequential). CA Hyper-Buf then allocates the optimum
number of buffers, within constraints established by your installation. Each application
has the number of buffers optimized for that application using that file, in whatever
state the file happens to be at the time of the OPEN.

CA Hyper-Buf is automatic and requires no changes to your application programs, DD
statements, or catalogs. As your files or applications change, CA Hyper-Buf automatically
adjusts buffer space for optimum performance. The changes are transparent in every
way, with the exception of improved online response times and higher batch
throughput.

CA Hyper-Buf is dynamic buffering instead of static buffering. Values are adjusted
automatically as the environment changes, all transparently to the applications and
users.

Local Shared Resources (LSR)

18 User Guide

Local Shared Resources (LSR)

With LSR buffering, several aspects of VSAM processing are different than with NSR
buffering. LSR buffers are tuned for random access, and can dramatically reduce I/Os for
random access applications.

As you have seen, NSR buffering can reduce I/Os for sequential processing by
transferring multiple CIs with a single I/O operation, effectively pre-staging data for the
sequential process. Since the sequential process (predictably) requires the read-ahead
data, performance is enhanced.

There is no pre-staging of data when LSR buffers are used. Therefore, applications that
perform significant amounts of sequential processing should avoid using LSR buffers.
Since there is no read-ahead with LSR, sequential applications generally require more
I/Os with LSR than with NSR buffers.

For random applications, LSR can dramatically improve performance over NSR buffering.
With NSR, you can expect to perform at least 1 index I/O (for the sequence set) and 1
data I/O for each random access request. With LSR, you can effectively avoid all index
I/O, after the first I/O for each CI to make it resident - an effective I/O reduction of 50
percent.

Additionally, with LSR you can defer writes for CIs that can be updated multiple times
within a short period of time (with NSR, each CI is written back to disk every time data in
the CI is altered; therefore, the in-storage copy of a single CI can be written to disk
several times when a transaction changes fields in several records that reside in the CI).

The LSR buffers act as a main storage cache of records, both index and data. Records
that are referenced frequently tend to remain in storage, and the application will avoid
I/O for each record that is found in this cache.

To further reduce I/O, relatively large quantities of LSR data can be staged in hiperspace.
Data in a hiperspace can be accessed synchronously without any paging, I/O or interrupt
overhead.

JCL Requirements

Chapter 1: Introduction 19

JCL Requirements

Guidelines to assist you in preparing your JCL are provided in this manual. The sample
code provided in this document is intended for use as a reference aid only and no
warranty of any kind is made as to completeness or correctness for your specific
installation.

You can copy and modify these samples for your specific requirements. The libraries
listed for searching must include the following in the order shown:

1. User libraries you may have defined

2. Product base libraries

3. CA Common Services for z/OS base libraries

Chapter 2: Using CA Hyper-Buf 21

Chapter 2: Using CA Hyper-Buf

This chapter provides information on the functions, constraints, utilities, and control
statements used in the dynamic buffering process. CA Hyper-Buf dynamic buffering can
be enabled or disabled at any time. You enable CA Hyper-Buf by running batch program
GVBDBFON. You disable CA Hyper-Buf by running batch program GVBDBOFF.

There are sample job streams and procedures for these programs contained in the
distribution CBS3JCL and CBS3PROC data sets. CA Hyper-Buf can also be enabled and
disabled using the TSO interface. A full description of GVBDBFON and GVBDBOFF is
included later in this manual.

This section contains the following topics:

CA Hyper-Buf Advantages (see page 21)
Controlling Dynamic Buffering (see page 22)
Dynamic Buffering Control Statements (see page 24)
Excluded OPENs (see page 28)
Level Selectors (see page 29)
Specifying LEVEL Selectors (see page 31)

CA Hyper-Buf Advantages

VSAM continues to be the most common file organization used in z/OS shops apart from
relational databases such as IBM's DB2 and IMS, Advantage CA-Datacom, Advantage
CA-IDMS and ADABAS. COBOL programs reading and writing VSAM files are a mainstay
of your in-house written applications. These applications will continue to be used for
many years to come and CA Hyper-Buf provides fully optimized access to VSAM data
without manual tuning of VSAM parameters.

The buffering procedures and facilities used by VSAM to accelerate processing and
provide maximum performance include the following:

■ Dynamic VSAM buffering affects VSAM performance. Optimum buffering leads to
improved performance, which results in shorter online response times, increased
batch throughput, and shorter batch turnaround times. Improper buffering causes
job backlogs, missed deadlines, and frustrated personnel.

■ VSAM manages disk accesses on behalf of application programs. To do this, VSAM
reserves blocks of virtual storage called buffers, which are used as staging areas for
data that is on its way to or from disk.

Controlling Dynamic Buffering

22 User Guide

Controlling Dynamic Buffering

CA Hyper-Buf allows you to place constraints upon the dynamic buffering process.
Constraints are limits that you set. These limits are honored by the CA Hyper-Buf buffer
calculation routines.

Through constraints you can include, exclude, and control the dynamic buffering
process for specific SMS classes, jobs, programs, clusters, and program/ddname pairs.
You can also place limits on the amount of virtual storage that CA Hyper-Buf is allowed
to use for buffers, and you can establish acceptable ranges for most of the buffering
variables.

You specify these constraints in a sequential file that is read by GVBDBFON when CA
Hyper-Buf is initialized on your system. These controls are discussed in greater detail
later in this manual.

You can also modify the constraints at any time by running the GVBREFR utility using
either batch or the ISPF panels. This utility allows you to alter the constraints that apply
without stopping and restarting CA Hyper-Buf.

Controlling Dynamic Buffering

Chapter 2: Using CA Hyper-Buf 23

Processing Considerations

There are times when you may want to benchmark performance with and without CA
Hyper-Buf. You may have an application that uses large tables or arrays and you
therefore wish to limit the amount of virtual storage that is dedicated to buffers. You
may have applications that you specifically want to 'detune' so that they do not
compete with other important jobs (possibly online or other time critical processing).
Finally, you have yet other jobs that require the best possible performance.

For these reasons, you must be able to control how dynamic buffering functions in your
environment. To provide control over all aspects of dynamic buffering, you can specify
CA Hyper-Buf constraints at any of several levels. You can specify limits for particular
clusters or set only overall system defaults. Alternatively, you can specify exactly the
buffering to be performed for selected jobs, and let all non-selected clusters abide by
the default values that you specify. These controls are not required. CA Hyper-Buf
automatically optimizes buffers for you without requiring you to supply controls. The
controls are provided so that you can modify the automatic buffering process because
of the above or other reasons.

Your control over the dynamic buffering process is as general or as specific as you want
it to be. Setting system default limits requires only a few control statements in the
GVBDBFON control stream.

You can specify only the system defaults at first and let dynamic buffering work for you.
Later, you can decide to select a few specific jobs, clusters, and programs that warrant
individual attention and specify constraints that are customized specifically for them.

You can view the results of your constraints upon the buffering process by modeling the
buffering process. This facility is provided by the ISPF dialogues that are supplied with
this product.

Note: CA Hyper-Buf should not be run simultaneously with other VSAM or QSAM
buffering products.

Processing Constraints

CA Hyper-Buf implements several levels of control at which you can specify constraints.
These levels (from least specific to most specific) are as follows:

■ SYSTEM defaults

■ SMS CLASS NAMES

■ CLUSTER NAME

■ JOBNAME

Dynamic Buffering Control Statements

24 User Guide

■ PROGRAM NAME

■ PROGRAM/DDNAME pairs

Within each of the above levels, you can impose constraints on CA Hyper-Buf.
Constraints include the maximum allowable amount of virtual storage that can be used
at OPEN time for buffers, the minimum amount of virtual storage that you want left
available in the region below 16M after the OPEN completes, the maximum number of
data and index buffers that CA Hyper-Buf can select for an OPEN, and so forth, all of
which is explained later in Chapter 3, "Constraint Control Statements."

Most of the constraints are available at each of the above levels. Any constraints that
are restricted in any way are documented with the restrictions explicitly mentioned.
This means that you can adjust the constraints for specific clusters, jobs, and programs if
you wish, or you can set only the system level constraints that apply to all OPENs.

The system level constraints are used as the default for any OPEN constraints that are
not specified at any of the other levels. If you do not supply a system default for any
constraint, CA Hyper-Buf creates a default for you.

Fine Tuning

You may have specific applications that are extremely time critical or possibly
applications that run in the ever shrinking night batch window. In these circumstances,
you can increase the amount of virtual storage available for buffering to decrease the
elapsed time for these jobs.

At other times, you may have important work that you do not want to interrupt, and
you want to restrict the amount of buffering for any 'less important' jobs. Restricting
buffering can detune these other jobs and reduce their CPU consumption, leaving more
computing resources for the more important job(s). These detuned jobs consume
approximately the same amount of CPU time, but over a longer elapsed time. These
jobs become more I/O bound, which leaves more processor time for other jobs.

You can accomplish both tuning and detuning through the constraint control
statements.

Dynamic Buffering Control Statements

You can exert as much or as little control as you wish over the buffering process. You
exercise this control at initialization time through control statements supplied to
GVBDBFON, the CA Hyper-Buf initialization program, and by refreshing the constraints
using the GVBREFR utility after CA Hyper-Buf is initialized on your system. You can also
exercise this same control using the TSO interface.

Dynamic Buffering Control Statements

Chapter 2: Using CA Hyper-Buf 25

You control the dynamic buffering process by placing control statements in the
GVBDBFON or GVBREFR SYSIN stream. These controls allow you to select both specific
and generic instances of OPENs and to affect the number of buffers selected at OPEN
time by dynamic buffering. You can specify exact numbers of buffers, set limits that CA
Hyper-Buf will not exceed, or exempt entirely selected jobs clusters, and programs from
the dynamic buffering process. The amount of control you exert at each and every level
is up to you, and is optional.

There are several types of control statements available. These types are
SYSTEM_DEFAULTS, MODE group controls, LEVEL selectors, and CONSTRAINT
specifications. This section of the manual supplies an overview of the constraint
capabilities, and the details of the SYSTEM_DEFAULTS, MODE control, and LEVEL
selectors. The constraints are described in detail in the next chapter.

Processing Constraints

You control the CA Hyper-Buf dynamic buffering using CNTLFILE control statements
supplied to GVBDBFON when you initialize the system, or to GVBREFR after CA
Hyper-Buf is initialized on your system. The general format of the control file is as
follows:

SYSTEM_DEFAULTS
 (list of system default constraints)
 . . .
 . . .
MODE=(INCLUDE | EXCLUDE)
 CLUSTER=ABC
 (list of cluster ABC constraints)
 JOB=PAY+
 (list of constraints for job names beginning with 'PAY')
 (other mode control group constraints)
 . . .
 . . .
MODE=(EXCLUDE | INCLUDE)
 (other mode control group constraints)
 . . .

Indentation of the various control statements is optional. Controls are indented in these
examples to facilitate visual perception of the hierarchy of the rules. The indentation
does not affect the hierarchy. The hierarchy is fixed by CA Hyper-Buf.

There are two modes available, INCLUDE and EXCLUDE. EXCLUDE mode specifies levels
which are exempt from CA Hyper-Buf control and follows normal VSAM buffer selection.
INCLUDE specifies levels eligible for buffer modification by CA Hyper-Buf.

Dynamic Buffering Control Statements

26 User Guide

Within these two modes, you can specify LEVEL selectors. These allowable level
selectors are shown below:

■ CLUSTER=name

■ SMSclass=name

■ JOB=name

■ PROGRAM=name

■ DDNAME=name

The name fields represent constraint variables that are matched to the corresponding
OPEN variables for each VSAM OPEN. For example, the JOBNAME of the job that is
issuing the OPEN is compared to all of the JOB= level selectors by the CA Hyper-Buf
OPEN intercept routine. Any constraints that are specified at a matching level affect the
CA Hyper-Buf buffer calculations.

Within each of the levels you can specify buffering CONSTRAINTS. Constraints include
maximum allowable BUFFERSPACE, BUFNI, and BUFND and corresponding minimum
allowable values for BUFFERSPACE, BUFNI, and BUFND, as well as other tunable values.
The constraints associated with each matched level selector are merged into a
composite constraint table by the CA Hyper-Buf OPEN intercept routine.

All controls can be specified in free form. Only positions 1-72 of each control record are
scanned for control information. Numeric fields, when required, can be suffixed by the
letter K to indicate multiplication by 1024. For example, specifying 60K is equivalent to
specifying 61440.

You must specify command/operand pairs on the same record. You cannot specify
MAXBUFSP on one record, followed by 60K on the next record, and expect MAXBUFSP
to be set to 60K. Both fields of the control must be on the same logical record of the
control file. You can specify as many records as required to contain all of your controls.

Method of Operation

Certain types of OPENs cannot be buffered by CA Hyper-Buf. The excluded types of
OPENs are:

■ LSR/GSR OPENs. These are excluded because the buffers for these types of files are
allocated before the ACB is opened. CA Hyper-Buf cannot affect the number of the
pre-allocated buffers.

Note: CA Hyper-Buf can convert NSR requests to LSR, if requested, in which case
CA Hyper-Buf does control LSR buffering).

■ UBF. These are ACBs that specify user buffering. Since the application controls these
buffers, CA Hyper-Buf has no control over the number of buffers allocated.

Dynamic Buffering Control Statements

Chapter 2: Using CA Hyper-Buf 27

■ Improved Control Interval Access (ICI).

■ Control Blocks in Common (CBIC).

■ Innovation's IAM type files are bypassed.

After you initialize CA Hyper-Buf, all VSAM OPENs that are not excluded by the above
restrictions are screened by the CA Hyper-Buf OPEN intercept routine. This intercept
routine compares the cluster name, SMS class names, job name, program name, and
program/dd name combinations against the LEVEL selectors that you supplied to CA
Hyper-Buf at initialization time. Any constraints attached to any matching level selector
are merged into a composite constraint table.

The composite constraint table is built by the OPEN intercept routine. This table is a
composite of all of the constraints associated with all matching LEVEL selectors. As each
of the LEVELs is checked by the OPEN intercept routine, the constraints associated with
each matching level are merged into the composite constraint table.

If no matching LEVEL selectors are found (you did not code any matching CLUSTER,
SMSclass, JOB, PROGRAM, or PROGRAM/DDNAME LEVEL selectors), or any constraint
not specified in any matching LEVEL selectors (for example, only JOB matched, but you
did not specify MAXBUFSP at the JOB level), the corresponding SYSTEM DEFAULT values
are used in the composite constraint table.

Note that LEVEL SELECTORS are independent entities. Independent entities mean that a
particular level selector is never owned or controlled by any other level selector. The
only exception to this rule is the DDNAME selector which is owned by the PROGRAM
level selector that precedes it.

After CA Hyper-Buf checks all levels and merges all of the constraints specified at each
matching level, CA Hyper-Buf uses the resulting composite constraint table, along with
the CI size(s), number of index levels and index set records, and OPEN options (random,
sequential, mixed), to determine the optimum number of index and data buffers for this
particular OPEN.

Establishing the MODE

There are two modes available, INCLUDE mode and EXCLUDE mode. You can specify the
MODE by including one or more MODE control statements in the GVBDBFON or
GVBREFR SYSIN stream. Also, there is a SYSTEM default mode available through the
DEFAULTMODE system constraint.

Once you specify a particular mode, that mode remains in effect until you specify
another mode card in the control stream (see the sample GVBDBFON and GVBREFR
SYSIN streams in Chapter 5, "Batch Utility Programs").

Excluded OPENs

28 User Guide

The MODE is specified simply as MODE=INCLUDE or MODE=EXCLUDE. Each LEVEL
selector belongs to the MODE control statement that precedes it, or the system default
mode if there is no MODE established prior to the level selector. All LEVEL selectors that
follow a MODE control up to the next MODE control (or the end of file) are called a
mode control group. The mode control group is an INCLUDE mode control group, if the
owning mode card specifies INCLUDE; otherwise the group is an EXCLUDE mode control
group.

At VSAM OPEN time, the intercept routine compares the cluster name, SMS class
name(s), job name, program name, and the program/dd name combinations of the
OPEN issuer against a table that was built from your control statements at initialization
time, or modified at refresh time. If a matching LEVEL SELECTOR is found in any
EXCLUDE mode control group, this OPEN is not dynamically buffered. The OPEN
intercept routine passes control directly to normal VSAM OPEN. Any constraints
associated with an excluded level selector are ignored.

Excluded OPENs

An explicitly coded matching EXCLUDE is always honored. For example, if the job name
and cluster name are both in an INCLUDE mode control group, but the program name is
in an EXCLUDE mode control group, this OPEN is NOT dynamically buffered. Any explicit
matching EXCLUDE always takes precedence over all other constraints.

If you specify MODE=EXCLUDE then list several CLUSTER level selectors, all of the
clusters named are exempt from dynamic buffering. Normal VSAM buffering is in effect
for those clusters and not dynamic buffering. This is true regardless of which job or
program might access these clusters.

If there are no matching LEVEL statements found in any INCLUDE or EXCLUDE mode
control group at OPEN time, the SYSTEM default mode prevails. The SYSTEM mode is
the default mode and is specified by the DEFAULTMODE control statement in the
SYSTEM constraints section of the initialization control stream.

Assume that DEFAULTMODE=EXCLUDE is specified in the system defaults and you have
several CLUSTER level selectors specified after a MODE=INCLUDE control, but none of
the CLUSTERs that were specified matches the cluster currently being opened. This
cluster is exempt from dynamic buffering (assuming no matches are found on job or
program names). Because no match was found in the INCLUDE mode control groups,
the default mode prevails.

The default mode in this case is EXCLUDE, so dynamic buffering is not in effect for this
OPEN. The DEFAULTMODE=EXCLUDE does not override explicitly coded LEVEL controls
in an include mode control group. Default mode is used only when no matching level
selectors are found.

Level Selectors

Chapter 2: Using CA Hyper-Buf 29

ACCBIAS, a subparameter of the AMP parameter, is used to specify the type of System
Managed Buffering used by a file. Because System Managed Buffering is a facility of
IBM's System Managed Storage CA Hyper-Buf will not provide dynamic buffering when
this parameter is specified. However, you will receive message GVB676I denoting this
condition.

If the data set being opened is determined to be controlled by Innovation Data
Processing's IAM, message GVB677I is issued and the data set is not processed by CA
Hyper-Buf.

Level Selectors

Within each mode control group, you can specify as many level selectors as you wish.
Level selectors 'belong' to the previous MODE control statement or the DEFAULTMODE
control statement if no previous MODE statements exist in the input stream. All of the
level controls that belong to a particular MODE card are called a mode control group.

The level controls that you can specify are SMS class, CLUSTER, JOB, PROGRAM, and
PROGRAM/DDNAME pairs. Any OPEN that matches any LEVEL selector(s) included
within an EXCLUDE mode control group is exempt from dynamic buffering.

At OPEN time, the intercept routine initializes a constraint table with the system default
values. Then each of the control levels is searched for any matches (job level searched
using current job name, and so forth). The constraints associated with each matching
control level entry are merged into the constraint table, which overlays any data that
may have already existed for that particular constraint (like maximum buffer space).

After all of the levels have been searched, the resulting constraint table, called the
composite constraint table, is passed to the dynamic buffering calculation routines. This
composite table governs the calculation of buffers for this OPEN.

Level Selectors

30 User Guide

Level Descriptions

Each of the levels is checked in the following order:

■ SYSTEM_DEFAULTS. The lowest priority specification. Any constraint(s) specified on
any matching level selector will override corresponding values specified here. The
values specified here are used only if none of the matching level selectors specify a
corresponding constraint. For example, the SYSTEM_DEFAULT specified value for
MAXBUFSP is used only if no matching level selector specifies MAXBUFSP.

■ SMS classes (SCLASS, MCLASS, DCLASS), from low to high precedence.

This is the least specific level that you can specify (except for the system defaults).
Many clusters may be defined in each class. Each cluster defined in a particular class
can be accessed by several jobs, each of which is composed of several job steps.
Each of these job step programs performs a different type of processing against the
cluster. Therefore, limits specified at the SMS class level are not specific, but
general guidelines for dynamic buffering to observe, unless overridden by a more
specific level selector match.

■ CLUSTER. This level is only slightly more specific than SMS storage, management,
or data class. Many jobs can access this cluster. Each job can have several steps or
programs that may access this cluster. All of these programs and jobs perform
different types of processing against this cluster. Therefore, limits specified at the
cluster level are only slightly more specific than SMS classes.

■ JOBNAME. This is more specific than cluster. A job can be composed of several
steps, and some or all of these steps can process different clusters. Each program is
probably related to the others in that they are all probably part of the same
application system (such as, payroll) and may or may not perform similar
processing. For example, step one of a job might randomly update a master file.
Step two of the same job might sequentially copy that same master file to tape.

■ PROGRAM name. More specific than job name. A particular program may access
more than one VSAM file, with different types of processing for each file. For
example, one of the clusters may be a master file which is processed randomly, and
another cluster a journal file that is processed sequentially.

Both the program name on the EXEC card and the program name on the CDE are
checked.

Specifying LEVEL Selectors

Chapter 2: Using CA Hyper-Buf 31

■ DDNAME combined with program name. This is the most specific level available. A
particular program (for instance, the PAYROLL program) always performs the same
type of processing against the cluster that is allocated by a particular DD card (such
as, the PAYMSTR DD). This is true regardless of which cluster is named on that DD
card, or which job is running this program. For example, a PAYROLL program may be
used by a service bureau to create paychecks for many customers. Each customer
has a separate master file, so this program is run many times, each time with a
different cluster specified on the PAYMSTR DD card.

However, these clusters are all similar in that each has the same record layout (if
not, the payroll program would certainly encounter problems), record length(s),
and key specification, and so forth. The processing is approximately the same. The
payroll program might read sequentially through the file and update year-to-date
values in the records as it creates the paychecks. This is true for any PAYMSTR DD
cluster.

Specifying LEVEL Selectors

A level selector controls the scope of the constraint card(s) which follow it. Also, the
LEVEL selectors determine the precedence of the rules (for example, which constraints
override which other constraints).

This section discusses the available LEVEL selectors and explains their use.

SMSCLASS Level Selectors

The level selector allows you to associate constraints with specific SMS classes. Any
clusters that are defined with specified classes acquire the constraints associated with
the matching classes.

The SMSCLASS level is actually composed of three individual sub-levels. The three SMS
level selectors are (from low to high precedence):

■ SCLASS for SMS storage class

■ MCLASS for SMS management class

■ DCLASS for SMS data class

Specifying LEVEL Selectors

32 User Guide

You specify the SMS level selectors as:

DCLASS=DOGS
(constraints for any cluster defined in the DOGS dataclass)

MCLASS=BARK
(constraints for any cluster defined in the BARK management class)

DCLASS=BITE
(constraints for any cluster defined in the BITE data class)

Note that a cluster can belong to none, one, two, or all three SMS classes. All matching
SMS class constraints are merged for each cluster.

You can specify constraints for as many SMS classes as you may have defined in your
shop. You can even define SMS class constraints for SMS classes that you have not yet
defined on your system, but plan to.

If you code SMS constraints, and SMS is not active on your system when you activate CA
Hyper-Buf, you get a warning message to alert you to this fact. The warning does not
affect CA Hyper-BufCA Hyper-Buf safely ignored - although you may want to start the
SMS subsystem, if that is your intention.

The SMS class names that you specify can be generic or full class name specifiers.
Generic names are discussed more fully on page 2-15 for Clusters.

DCLASS: Associating Constraints with SMS Data Class

Restriction: Valid only on z/OS systems with SMS installed and active. This option
generates a warning if specified in a non-SMS environment.

You can assign constraints to an SMS data class. Any constraints that you specify are
implemented for any cluster that is defined with that data class.

DCLASS=SMSdataclassname
 ...(any constraints you wish)

In this example, SMSdataclassname is the name of an existing or future data class. All
DCLASS constraints should be defined within an INCLUDE mode control group, unless
you want the DCLASS to force exclusion.

See related topics MCLASS and SCLASS in this section.

Specifying LEVEL Selectors

Chapter 2: Using CA Hyper-Buf 33

MCLASS: Associating Constraints with SMS Management Class

Restriction: Valid only on z/OS systems with SMS installed and active. This option
generates a warning if specified in a non-SMS environment.

You can assign constraints to an SMS management class. Any constraints that you
specify are implemented for any cluster that is defined with that class.

MCLASS=SMSmgmtclassname{
 ...(any constraints you wish)

In this example, SMSmgmtclassname is the name of an existing or future management
class. All MCLASS constraints should be defined within an INCLUDE mode control group,
unless you want the DCLASS to force exclusion.

See related topics DCLASS and SCLASS in this section.

SCLASS: Associating Constraints with SMS Storage Class

Restriction: Valid only on z/OS systems with SMS installed and active. This option
generates a warning if specified in a non-SMS environment.

You can assign constraints to an SMS storage class. Any constraints that you specify are
implemented for any cluster that is defined with that class.

SCLASS=SMSstorclassname
 ...(any constraints you wish)

In this example, SMSstorclassname is the name of an existing or future storage class. All
SCLASS constraints should be defined within an INCLUDE mode control group, unless
you want the SCLASS to force exclusion.

See related topics DCLASS and MCLASS in this section.

CLUSTER LEVEL Selector

The CLUSTER level selector allows you to target specific or generic clusters. You specify
the CLUSTER level selector as:

CLUSTER=PAYROLL.MASTER+
(constraints for any 'PAYROLL.MASTER' file)

The cluster name can be a full cluster name (all characters) or a generic cluster name.

Specifying LEVEL Selectors

34 User Guide

Generic names specify the first fragment of the name, followed by a plus sign to indicate
a variable number of "don't care" characters (but at least one character). For example
CLUSTER=PAY+ matches all four character or longer cluster names that start with the
first three characters PAY. This specification includes clusters with names like
PAYROLL.MASTER.FILE, PAY.AUDIT.TRAIL, and PAY.HISTORY.FILE as well as others.

Note: The fragment specified for a generic name can be any portion of the name. For
example, you do not have to 'break' a cluster name fragment at the end of a qualifier.

JOB LEVEL Selector

The JOB level selector allows you to select specific JOBs, either by specifying a full JOB
name or a generic job name ending with a plus sign. See the CLUSTER LEVEL Selector
section for a description of generic names. The following is an example:

JOB=P1225+
(constraints for any 6 character
or longer job name that starts with 'P1225')

PROGRAM LEVEL Selector

The PROGRAM level selector allows you to target specific or generic programs. Generic
program names are specified the same way as generic clusters. The following example
selects program A225772, no matter which JOB is executing that program, or which
clusters the program accesses.

PROGRAM=A225772

(constraints for program A225772)

Both the program name on the EXEC JCL card and the program name on the current CDE
are matched against the PROGRAM constraints. CA Hyper-Buf can then apply
constraints to programs that are invoked by the job step (EXEC card) and programs that
are invoked later using LINK, ATTACH, or XCTL. You can invoke different constraints for a
SORT that is LINKed. This allows SORT to have different constraints from the rest of the
job step.

Specifying LEVEL Selectors

Chapter 2: Using CA Hyper-Buf 35

The matching EXEC constraints are merged with the CDE constraints by CA Hyper-Buf.
Any constraints that are specified on the matching CDE program name overrides the
corresponding constraints for the EXEC program, if any.

This feature does not allow CA Hyper-Buf to detect a program that has been loaded,
then called. LOADed programs leave no trace of when they are entered or exited, so CA
Hyper-Buf cannot determine which routine is actually in control at the time of the OPEN
or CLOSE. In this case, the LOADed/CALLed program has exactly the same constraints as
the caller.

PROGRAM/DDNAME Combined Selector

Following a PROGRAM control statement, you can specify one or more DDNAME
selectors that are associated with that program. For example, you can list some or all of
the DDNAMEs (for VSAM files) that this program uses. If you assume that program
A225772 requires a VSAM input file on the MASTER DD card and a VSAM output file on
the OUTPUT DD CARD, you could specify these DD statements following the PROGRAM
selector.

PROGRAM=A225772

 (overall constraints for program A225772)

 DDNAME=MASTER

 (specific constraints for file attached to MASTER DD card)

 DDNAME=OUTPUT

 (specific constraints for file attached to OUTPUT DD card)

 DDNAME=INPUT

 (specific constraints for file attached to INPUT DD card)

Note: These ddname constraints apply only to program A225772.

You do not have to specify all of the DD statements that the program uses. You can
specify only those DD statements for which you desire values other than the composite
values assigned.

Because of the constraint merge, any constraints specified following a DDNAME level
selector override any duplicate constraints at the program, job, and cluster levels.

Chapter 3: Constraint Control Statements 37

Chapter 3: Constraint Control Statements

Constraint control statements allow you to control the buffering process. You can
specify very restrictive rules, which limit the effects of dynamic buffering, or you can
allow dynamic buffering a free hand in determining the number of buffers to allocate.
You can be conservative with some level selectors and liberal with others. The amount
of control exercised is entirely up to you. You can even choose not to code any
constraints and allow the SYSTEM_DEFAULTS to prevail for every VSAM OPEN.

This section contains the following topics:

Specifying Constraint Control Statements (see page 37)
Constraint Descriptions (see page 41)

Specifying Constraint Control Statements

The constraints are described in the following section. Almost all of these constraints
can be specified following any LEVEL selector and will apply to that specific LEVEL
selector. Any constraints that are restricted to particular LEVELs are documented as
such.

Specifying Constraint Control Statements

38 User Guide

Sample Control Stream

You can think of constraints as being owned by or attached to the preceding level
selector. This means that you can specify MAXBUFSP (or any other constraint) for JOBs,
CLUSTERs, PROGRAMs, or PROGRAM/DD combinations. See the following control
stream example:

SYSTEM_DEFAULTS * defaults
 MINBUFNI=5
 MAXBUFND=20
 MINBUFND=5 MAXBUFSP=81920
 MINBUFSP=12K
 DEFAULTMODE=EXCLUDE
 STATS

MODE=INCLUDE * Begin INCLUDE MODE CONTROL GROUP
 CLUSTER=PAY+ * CLUSTER level selector constraints
 MAXBUFSP=70K MAXBUFND=28
 MINBUFNI=8
 CLUSTER=PAYROLL.MASTER.FILE * CLUSTER level and constraints
 MAXBUFSP=40960 MAXBUFND=8
 MINBUFNI=3
 MAXBUFNI=6
 PROGRAM=F28945 * PROGRAM level and constraints
 MAXBUFSP=32768
 DDNAME=MSTRIN * DDNAME and constraints
 MAXBUFSP=60K

Constraint Merging

The sample control stream in the previous section shows that cluster
PAYROLL.MASTER.FILE and program F28945 will both be dynamically buffered because
they are contained within an INCLUDE mode control group (assuming that no other
EXCLUDE level matches, which takes precedence). When cluster PAYROLL.MASTER.FILE
is OPENed, CA Hyper-Buf looks at the OPEN options (random, sequential, and so forth)
and cluster information (index set records, CI sizes, device type, and so forth). Then CA
Hyper-Buf determines an optimum number of buffers that does not exceed a total of
40960 bytes of virtual storage, has no more than eight data buffers, and has at least
three index buffers.

Specifying Constraint Control Statements

Chapter 3: Constraint Control Statements 39

These numbers are determined by simulating the actual checking done by CA Hyper-Buf.

1. The composite constraint table is initialized with the system defaults:
MAXBUFND=20, MAXBUFSP=81920, and so forth, including all of the system default
values that are specified.

2. The CLUSTER selectors are compared against the cluster currently being opened.
Cluster PAYROLL.MASTER.FILE matches a cluster specification exactly, and the
corresponding constraints are merged into the composite table. The composite
table now contains MAXBUFND=8 (overlaid) and MAXBUFSP=40960 (overlaid), in
addition to the original default values.

Notice that the cluster does not match on the generic PAY+ level selector. At each
level, CA Hyper-Buf chooses the selector that best matches the parameter.

3. CA Hyper-Buf compares the job selectors, and any matching entry constraints are
merged into the composite table.

4. CA Hyper-Buf compares the program level selectors, and any matching entry
constraints are merged into the composite table. Finally, program/ddname
selectors are examined for matches, and the constraints are merged.

In this example, the maximum allowable number of index buffers is not specified on any
matching level selector; only the minimum allowable. Since there is no specification
made for the maximum index buffers, the system default value of STRNO + (number of
index set records) is put into the composite table. Moreover, the cluster specifies no
other minimum values, so all of the system default minimums are still in effect.

When any VSAM file is opened, each of the instance parameters (SMS class, cluster
name, job name, program name, program/ddname) is compared against the
corresponding LEVEL selectors. If a match is found, the constraints associated with the
matching LEVEL selector are merged into a composite constraint table for this OPEN.

This merging of constraints is necessary because JOB F28945 may open cluster
PAYROLL.MASTER.FILE, and both of these LEVEL selectors matches, and each level has
different constraints. The merge procedure sets MAXBUFSP=32768 (overlaid),
MAXBUFND=8, and MAXBUFNI=6 for this OPEN.

If a matching DD entry is encountered, the composite constraint table is again modified.
If the cluster PAYROLL.MASTER.FILE is on the MSTRIN DD card, MAXBUFSP is overlaid
with 60K. The resulting composite constraint table is: all minimum values are the same
as system defaults (except MINBUFNI, which is 3) and the maximums are
MAXBUFSP=61440 and MAXBUFND=8.

After all LEVEL selectors are searched and matching LEVEL constraints are merged, the
resulting composite constraint table governs the selection of buffers.

Specifying Constraint Control Statements

40 User Guide

Constraint Specifications

Most of the constraints allow you to specify a maximum value and a corresponding
minimum value. For example, you can specify both a maximum and a minimum
allowable buffer space. CA Hyper-Buf implements a value that falls between the
specified high and low values, as long as it does not conflict with other constraints.

If you specify MINBUFND=10, MAXBUFND=50, and MAXBUFSP=60K, CA Hyper-Buf uses
between 10 and 50 data buffers, as long as the resultant buffer space does not exceed
60K.

Note: The index component also uses part of this buffer space, so you may not actually
have 60K of data buffers).

Any user specified MINxxx constraints are validated by the CA Hyper-Buf OPEN intercept
routine. The user specified MINxxx constraints are compared with the minimum VSAM
allowable values. If the user specified values are less than the VSAM allowed minimum
values, the user values are increased to the VSAM minimum.

For example, if an ACB specifies STRNO=4 and is associated with a cluster that has a 4K
data CI size and a 2K index CI size, the true minimum allowable VSAM buffer space (NSR)
for this file is 28K. If the user has specified MINBUFSP=12K, the CA Hyper-Buf OPEN
intercept routine overrides the user value, and use 22K as the MINBUFSP value.

If any minimum constraint value exceeds the corresponding maximum constraint value
(after the constraint merge is complete), the maximum constraint is increased to the
value of the minimum constraint. For example, if after all constraint merging is
complete, MAXBUFSP=40K and MINBUFSP=60K, then MAXBUFSP is increased to 60K,
which is the MINBUFSP value.

In most cases, you do not need to specify any minimum values. CA Hyper-Buf calculates
an optimum number of buffers, without exceeding any maximum value that you have
specified. For example, assume that the composite constraints are MAXBUFSP=52K,
MAXBUFND=8, data CI size is 10K, and no index buffers are required (for example, an
ESDS file). CA Hyper-Buf can assign five data buffers for a total of 50K buffer space
(depending upon devicetype, OPEN options, and so forth), which is as close to
MAXBUFSP as possible with this particular file. Specifying a minimum value has no effect
in this case.

Constraint Descriptions

Chapter 3: Constraint Control Statements 41

Consider setting minimums if you specify SEQUENTIAL, RANDOM, or CICS constraints for
any level. For example, if you specify the SEQUENTIAL processing constraint for a KSDS
because access is predominantly sequential, CA Hyper-Buf acquires only one index
buffer per string and as many data buffers as reasonable. This processing is optimized
for sequential processing. If the application also has some amount of random
processing, you may be able to improve performance by increasing the number of index
buffers. You can ensure that more index buffers are allocated by specifying a larger
MINBUFNI.

Each constraint is associated with the LEVEL SELECTOR that precedes it in the control
stream.

Constraint Descriptions

A description of each of the constraints follows.

Defaults shown are values that are used if you have not specified anything for this
constraint. These values are internal CA Hyper-Buf defaults that are used if you do not
specify any other values.

ACBOVR: Overriding ACB Specified Buffer Values

Default: No ACBOVR

The ACBOVR constraint specifies whether CA Hyper-Buf overrides ACB buffer values.
Specifying ACBOVR causes CA Hyper-Buf to ignore ACB specified values for BUFNI,
BUFND, and BUFSP.

If ACBOVR is not specified, ACB values are honored by CA Hyper-Buf, and all calculated
CA Hyper-Buf values are discarded.

AMPOVR: Overriding AMP Specified Buffer Values

Default: AMPOVR=NO

The AMPOVR constraint specifies whether CA Hyper-Buf is to override user coded AMP
parameters that are supplied on the DD card. Specify AMPOVR=key to control the way
that CA Hyper-Buf treats user specified AMP values.

Allowable values for key are:

■ FORCE

■ GREATER

Constraint Descriptions

42 User Guide

■ NO

■ MAX

AMPOVR=FORCE causes CA Hyper-Buf to always override AMP specified values. Any
values specified in the AMP parameter on the associated DD card are ignored, and the
OPEN proceeds with the CA Hyper-Buf calculated values for BUFNI, BUFND, and
BUFFERSPACE.

AMPOVR=GREATER causes CA Hyper-Buf to override AMP specified values only if the CA
Hyper-Buf calculated buffer space exceeds the AMP specified buffer space (or the buffer
space calculated using the AMP values, if buffer space is not specified explicitly in the
AMP parameter). If the CA Hyper-Buf buffer space is greater, OPEN continues with the
CA Hyper-Buf values for BUFNI, BUFND, and BUFFERSPACE, and the AMP values are
discarded. If the AMP buffer space is greater, the AMP values are used for this OPEN,
and the CA Hyper-Buf values are discarded.

AMPOVR=NO (or if AMPOVR is not specified at all) causes all CA Hyper-Buf values to be
discarded if any AMP values are specified on the DD card.

AMPOVR=MAX causes the OPEN intercept routine to compare the CA Hyper-Buf
calculated values of BUFNI, BUFND, and BUFFERSPACE against the corresponding AMP
values. In each case, the larger value is selected, and used for this OPEN. The MAXBUFSP
parameter is ignored if MAX is coded for AMPOVR. The larger values of the BUFNI and
BUFND parameters are used regardless of the resulting buffer space.

Note: MAX differs from the GREATER option, because the GREATER option uses either
the AMP values or the CA Hyper-Buf calculated values, depending upon the comparison
of the two buffer space values. This could result in a reduction of BUFNI, BUFND, or
both.

For example, the user can specify BUFND=10 in the AMP parameter on the DD card of a
file that is processed randomly. If the cluster is a KSDS, 4K data and 4K index, and
specifies STRNO=1, the implied AMP buffer space is 45,056 (10 x 4K + 1 x 4K). The CA
Hyper-Buf calculated values can be BUFND=2, BUFNI=18, BUFSP=81920.

If AMPOVR=GREATER is specified, the OPEN intercept uses the CA Hyper-Buf calculated
values, since the CA Hyper-Buf buffer space is greater than the AMP buffer space. This
causes a decrease in the BUFND value (from 10 to 2) and an increase in the BUFNI value
(from 1 to 18) compared with the AMP specified values. The extra index and fewer data
buffers is consistent with random processing, and performance should be improved,
even though the data buffers are decreased.

In this same situation, AMPOVR=MAX results in BUFND=10, BUFNI=18, BUFSP=114,688.
The larger values of BUFNI and BUFND are retained, and the new buffer space is
calculated. The user specified MAXBUFSP is ignored in this calculation.

Constraint Descriptions

Chapter 3: Constraint Control Statements 43

If AMP is not coded on a DD card, CA Hyper-Buf calculates buffers for INCLUDE mode
OPENs.

ACCBIAS, a subparameter of the AMP parameter, is used to specify the type of System
Managed Buffering used by a file. Because System Managed Buffering is a facility of
IBM's System Managed Storage CA Hyper-Buf will not provide dynamic buffering when
this parameter is specified. However, you will receive message GVB676I denoting this
condition.

CICS: Restricting Buffering for the CICS Environment

Restriction: Must follow a PROGRAM level selector.

Default: No CICS

The CICS constraint may be applied to any PROGRAM level selector. This constraint
alters the algorithm which determines how many buffers to use for a file which is
opened for mixed mode (random and sequential) processing. Without this constraint
specified, both the random and sequential options would be weighed equally when
determining the number of buffers to assign. With this constraint, the random option is
assigned a higher weight than the sequential option.

This makes better use of virtual storage in an online system environment (like CICS)
when both random and sequential requests are issued for a file, but the random
requests are much more frequent than the sequential requests.

This constraint has no effect on any files that are using shared resources.

CUSHION: Reserving Storage Below 16M

Default: CUSHION=100K

CUSHION allows you to guarantee that some virtual storage is left below the 16M line in
your region for non-buffering purposes. Dynamic buffering tries to guarantee that at
least CUSHION bytes remain in the region after the buffers are allocated for OPEN.
Specify as:

CUSHION=value

If any LEVEL selector does not specify the CUSHION constraint, the SYSTEM default
CUSHION value is used.

If you do not supply a SYSTEM default CUSHION, 100K is used as the cushion.

See the related constraint DYNAMIC: Controlling Dynamic Region Sizing (see page 46).

Constraint Descriptions

44 User Guide

DEFER: Deferring WRITEs

Restriction: DEFER requires LSR to be effective. You can specify DEFER even if you do
not specify LSR, and no error is generated. CA Hyper-Buf may convert strictly random
access OPENs to use LSR buffers, and GVBDBFON cannot tell at initialization time how
any particular cluster is accessed. If you specify DEFER when LSR is not in effect, normal
VSAM buffer writes occur, and DEFER is ignored.

Default: No DEFER

Normally, VSAM writes buffered CIs to disk immediately when any data in the CI is
altered. This is true for alterations caused by record insertions and record updates,
including deletes.

Applications that insert or alter many logical records that reside in the same CI may
avoid multiple WRITEs of the same CI by specifying DEFER.

DEFER causes VSAM to update the CI in the buffer and not write it to the disk until
either the application forces a write (CLOSE, WRTBFR, and so forth) or until the buffer is
required for a new CI to be read into storage.

This option can drastically reduce the number of I/O operations required to update a file
randomly if the updates are clustered around specific keys in the file. This reduction in
I/O can significantly improve the elapsed times for jobs that make multiple updates to
the same CI.

Implications to Consider Before Using DEFER

Since it can be a long time (relative to CPU speeds) before the buffer is actually written
to disk, it is possible that you will lose some data if the application abends or the
processor dies (from a power failure, IPL, and so forth). In these situations, there may be
data that has been updated in the buffer and not yet written to disk at the time of the
failure. These updates may be lost.

If your processor never fails and your programs (including the operating system and its
components) never abend, then you have no exposure. The less stable your system is,
the greater your exposure.

For these reasons, you can exclude critical files (like journal and log files) from DEFER
processing. If you do not request DEFER, normal write-as-you-go logic is used.

Constraint Descriptions

Chapter 3: Constraint Control Statements 45

DEFINE: Creating a Named Constraint Prototype

The DEFINE keyword allows you to assign a name to a group of constraints. This group
of constraints can be invoked multiple times following the definition of the prototype.

The format of the DEFINE command is:

DEFINE=name

 (any constraints you wish)

The field name is the name that you wish to assign to the group of constraints. This
name can be any alphanumeric characters. The maximum length allowed for a name is
44 characters.

You specify the USE keyword to invoke a prototype. See related topic USE: Invoking a
Constraint Prototype (see page 65).

The constraints specified for a prototype definition can include the USE keyword. The
name specified on any USE statements must have been previously defined. DEFINEs can
be nested 16 deep in this way.

This example assigns any constraints that you specify to the name name. These
constraints may be referred to in later SMS class, JOB, PROGRAM, DDNAME, or CLUSTER
levels.

Note: If the DEFINE occurs in an EXCLUDE mode control group, invoking this prototype
EXCLUDEs the current level. Therefore, you should always define a prototype inside an
INCLUDE mode control group, unless your intention is to create a synonym for EXCLUDE.

DSNSHARE: Share VSAM Control Block Structure

Default: DSNSHARE=YES

Option: DSNSHARE=NO

Specify YES to share VSAM control block structure. YES causes different DDs pointing to
the same cluster to use the same VSAM control block structure, including buffers. This
can reduce I/Os and allow updates performed by one DD to be available immediately by
the other.

DSNSHARE=NO does not share VSAM control block structure.

Constraint Descriptions

46 User Guide

DYNAMIC: Controlling Dynamic Region Sizing

Default: DYNAMIC=YES

Option: DYNAMIC=NO

Use the DYNAMIC keyword to control CA Hyper-Buf region size adjustment capabilities.
If you specify DYNAMIC=YES, CA Hyper-Buf adjusts the region size by the amount of
buffer space that CA Hyper-Buf allocates. This avoids X78 and X0A abends associated
with region sizes that are too small, and avoids clusters that are not buffered because of
the CUSHION. This option allows for larger buffer spaces, without forcing you to alter
existing REGION parameters on your jobs.

DYNAMIC=NO disables dynamic region sizing.

EXCLDD: Globally Exclude a DDNAME

Restriction: The EXCLDD constraint may only be specified in SYSTEM_DEFAULTS.

Use the EXCLDD constraint to direct CA Hyper-Buf to bypass processing desired
DDNAMEs. Up to 150 EXCLDD statements can be specified.

The EXCLDD keyword allows you to globally exclude a DDNAME.

The format of the EXCLDD command is:

EXCLDD=DDNAME

The DDNAME can also be specified as DDNAME+ which would match any DDNAME
starting with 'DDNAME'.

FIX: Page Fixing LSR Buffers and IOBs

Restriction: The FIX constraint is effective only if specified for an OPEN that uses LSR
buffering. Since CA Hyper-Buf attempts to use LSR processing for random access OPENs
as a default, this parameter cannot be validated for applicability by GVBDBFON or the
ACTIVATE function (ISPF). No error message is generated, but if FIX is specified for a
cluster that does not use LSR buffering, FIX is ignored.

Default: UNFIX

The FIX constraint allows you to page fix VSAM LSR buffers and IOBs. This specification
eliminates page faults during VSAM processing and may improve performance.

Constraint Descriptions

Chapter 3: Constraint Control Statements 47

This option may also degrade performance in a severely storage constrained
environment. If your system is already thrashing, do not use the FIX option, as this
commits even more real storage.

FIX is the default for buffers that are backed in expanded storage (HIPERSPACE
constraint specified) if the address space is also non-swappable (SWAP not specified).
See the HIPERSPACE constraint description in the section HIPERSPACE: Backing LSR
Buffers in HIPERSPACE (see page 47) for further information.

There are no operands for FIX. You can find an example of the FIX constraint in the
section UNFIX: Keeping LSR Buffers and IOBs Pageable (see page 64).

See the section UNFIX: Keeping LSR Buffers and IOBs Pageable (see page 64) for more
information about the UNFIX parameter.

HIPERSPACE: Backing LSR Buffers in HIPERSPACE

Restriction: Only buffers that are a multiple of 4K are eligible for backing in expanded
storage. If the LSR pool contains some buffers that are a multiple of 4K and some that
are not, only the buffers that are a multiple of 4K are backed in expanded storage. If
none of the buffers are a multiple of 4K, no buffers are backed in expanded storage.

IPERSPACE is only effective if specified for a file that is using LSR buffering. Files that are
strictly RANDOM use LSR processing, as will files that specify the LSR or SHRPOOL
constraints. Since GVBDBFON cannot determine how a file is used, it cannot validate the
use of HIPERSPACE. Therefore, you can specify HIPERSPACE anywhere (for example, no
error message generated). However, the specification is effective only if LSR is in effect.

Default: HIPERSPACE=1

Option: HIPERSPACE=0 (turns off feature)

The HIPERSPACE control specifies that the LSR pool associated with this OPEN is to be
backed in expanded storage. Access to expanded storage is slower than access to main
memory, but much faster than access to DASD. By backing LSR buffers in HIPERSPACE,
large quantities of data can be accessed without I/O.

Constraint Descriptions

48 User Guide

The HIPERSPACE control specifies a multiplier that is used to determine the number of
buffers that are allocated in expanded storage. CA Hyper-Buf attempts to allocate
(multiplier x LSR buffers) HIPERSPACE buffers for this OPEN. The multiplier ranges from
1 to 32,767.

. . .

CLUSTER=A.Z,
 SHRPOOL=5, * Could also be LSR, or merged at a lower level
 HIPERSPACE=10
. . .

These constraints associate cluster A.Z with LSR pool 5. The LSR buffers are backed in
expanded storage (HIPERSPACE). The number of buffers that are allocated in expanded
storage are ten times the number of buffers that are allocated in the LSR pool.

This calculation is performed for each size buffer that is allocated to the LSR pool. For
example, if the LSR pool 5 contains twelve 4K buffers, five 8K buffers, and two 16K
buffers, and HIPERSPACE=10 is specified, then there are 10*12=120 4K buffers, 10*5=50
8K buffers, and 10*2=20 16K buffers allocated in expanded storage for this LSR pool.

HIPERSPACE backing of buffers in expanded storage creates a cache of data that can be
accessed without an I/O to DASD. This can significantly reduce the number of I/Os
required to process a cluster. If the requested data is resident in a HIPERSPACE buffer, it
is moved synchronously to the requester's address space instead of being read
asynchronously from DASD.

The data that is cached in HIPERSPACE buffers is not paged out. If the address space is
swapped out, the data in the HIPERSPACE buffers must be rebuilt when the address
space is swapped back in. The cache is lost each time the address space is swapped out.
Therefore, swap-outs defeat the intended purpose of the cache, which is to reduce I/O.
You should allow address spaces using HIPERSPACE buffers to be non-swappable for
maximum performance.

CA Hyper-Buf automatically makes any address space using HIPERSPACE
non-swappable, and automatically page fixes the LSR buffer pool. This is recommended
for the above performance reasons. If for any reason you want to use HIPERSPACE and
wish the address space to remain swappable, specify the SWAP constraint in addition to
the HIPERSPACE constraint. This is not recommended for performance reasons, so be
careful when you use this option in conjunction with the HIPERSPACE option.

Constraint Descriptions

Chapter 3: Constraint Control Statements 49

A further explanation of the SWAP constraint can be found in the section SWAP: Do Not
Mark Address Space Non-Swappable (see page 63). If you force the address space
swappable, VSAM is forced to rebuild the expanded storage cache of CIs each time the
address space is swapped back into storage. The HIPERSPACE data is not swapped out
and back in with the application. If you do not want the LSR buffers page fixed, specify
UNFIX.

Additionally, there may be insufficient expanded storage available to allocate as many
buffers as requested. In this situation, you can obtain less HIPERSPACE buffers than
requested, and you might not obtain any. Processing continues without (or with
reduced) HIPERSPACE buffer backing.

LSR: Converting Non-Shared Requests to Local Shared

Resources

Note: Specifying LSR forces CA Hyper-Buf to assign an LSR buffer pool, unless
SEQUENTIAL processing is the only type of processing indicated in the ACB, or if a higher
precedence LEVEL SELECTOR specifies NSR. Since LSR buffering does not perform initial
positioning for sequential access, do not specify LSR for mixed mode applications that
do not perform their own positioning. It is safer to specify LSR on a PROGRAM or
DDNAME constraint than on a CLUSTER constraint, since many different applications can
access a cluster, and some of the applications may perform some sequential processing.

CA Hyper-Buf automatically promotes random-only OPENs (for example, ACBs which
specify only random processing in the ACB MACRF) to use LSR buffering, unless a
matching level selector specifies NSR explicitly. You should force LSR only if a
predominantly random application specifies mixed-mode processing (for example, both
random and sequential in the ACB MACRF) in the ACB, and performs its own positioning
for all requests.

Restriction: LSR buffering does not support chained RPLs, and does not perform any
positioning for sequential applications. These conditions are not detectable at OPEN
time.

Do not specify LSR buffering for any applications that do not establish a position in the
file before processing records sequentially. If applications that worked before CA
Hyper-Buf was activated fail with positioning errors after CA Hyper-Buf is activated,
make sure that LSR processing was not requested for this application, or override the
LSR constraint by specifying NSR at the PROGRAM/DDNAME level.

Do not specify LSR for applications that use chained RPLs. If the file is processed
randomly, and CA Hyper-Buf automatically promotes the OPEN to use LSR buffering,
override CA Hyper-Buf by requesting NSR for any programs that use chained RPLs.

Constraint Descriptions

50 User Guide

Default: LSR for strictly random (ACB specified) processing, else NSR.

The LSR constraint requests that CA Hyper-Buf promote NSR OPEN requests to LSR
requests. This option is designed for files which are processed randomly.

There are no operands associated with the LSR control.

Prior to DFP 2, VSAM supports only one LSR buffer pool per address space. DFP 2 added
LSR pools per address space.

The LSR control is not pool specific. In environments that support multiple LSR pools, the
LSR constraint requests that CA Hyper-Buf select an appropriate LSR pool for this file. If
you want to assign a specific LSR pool, use the SHRPOOL control instead of the LSR
control. An explanation of SHRPOOL is in the section SHRPOOL: Requesting a Specific
Shared Resource Pool (see page 60). If you specify both SHRPOOL and LSRPOOL, the
option that is specified last in the constraint list is used.

CA Hyper-Buf does not assign LSR pools to files that cannot use LSR buffering because of
VSAM restrictions. Such files include files that are being loaded ('initial load' mode or
'create' mode), files that are opened with REUSE, and so forth. In these cases, the LSR
constraint is ignored by CA Hyper-Buf.

LSRFORCE: Bypassing ACB Inspection and Data Set Content

The LSRFORCE keyword can be used at the system-default level, or any other sublevel.
This keyword bypasses ACB inspection and data set content (number of records),
checking, and forces the data set to be considered for LSR processing. LSRFORCE does
not force the data set into a pool that has already been built by a prior open. If the High
Used RBA value is zero, the file is not forced into LSR. Use of the keyword is not
recommended, as it can lead to abends with empty files getting placed into LSR.

MAXBUFND: Specifying Maximum Target BUFND

MAXBUFND allows you to specify the maximum allowable number of data buffers for
any particular OPEN. Dynamic buffering does not exceed this value, unless this value is
less than (1+strno). You specify MAXBUFND as:

MAXBUFND=value

If you do not specify MAXBUFND for any given LEVEL selector, the SYSTEM default is
used.

If you do not supply a SYSTEM default MAXBUFND, or if you specify MAXBUFND=0, (2
tracks of data buffers + STRNO +1) is used as MAXBUFND.

Constraint Descriptions

Chapter 3: Constraint Control Statements 51

MAXBUFNI: Specifying Maximum Target BUFNI

This parameter limits the maximum number of index buffers that are allocated for any
OPEN. Dynamic buffering allocates no more than MAXBUFNI index buffers. The
following shows an example:

MAXBUFNI=value

The SYSTEM default applies to any LEVEL selector that does not specify a MAXBUFNI.

If you do not supply a SYSTEM default value, or if you specify MAXBUFNI=0, (index set
number) + (strno) is used as MAXBUFNI.

MAXBUFNO: Specifying Maximum Target QSAM Buffers

Default: MAXBUFNO=(230K/BLKSIZE)

The MAXBUFNO constraint specifies the maximum number of buffers that CA Hyper-Buf
can assign to any OPEN request. CA Hyper-Buf tuning algorithms do not exceed this
value. MAXBUFNO can be specified at any LEVEL selector.

MAXBUFSP: Specifying Maximum Target Buffer Space

Default: MAXBUFSP=128K

The MAXBUFSP constraint specifies the maximum amount of virtual storage that
dynamic buffering can use to create buffers for a file. The sum of (data CI size * bufnd) +
(index CI size * bufni) does not exceed this value for any particular OPEN, unless
MAXBUFSP is not at least equal to ((1+strno) * (data CI size)) plus ((strno) * (index CI
size)). You specify MAXBUFSP as:

MAXBUFSP=value

Value is validated by the CA Hyper-Buf OPEN intercept routine and must be at least as
large as the VSAM calculated minimum allowable buffer space. If the specified value is
smaller, CA Hyper-Buf increases your specified value to the VSAM minimum.

If you do not provide any MAXBUFSP value for a particular LEVEL selector, the SYSTEM
default value is used.

Constraint Descriptions

52 User Guide

MINBUFND: Specifying Minimum Target BUFND

Default: STRNO+1

You can guarantee that you have at least (value) data buffers by specifying a value for
MINBUFND. Dynamic buffering selects at least MINBUFND data buffers, unless this
value exceeds MAXBUFSP. Specify as:

MINBUFND=value

The SYSTEM default applies to any LEVEL selector that does not specify MINBUFND.

If you do not specify a SYSTEM default MINBUFND, (strno+1) is used as MINBUFND. If
your MINBUFND is less than this value, it is overridden, because strno+1 is the minimum
allowable value for any NSR OPEN. (LSR requires a minimum of 3 buffers for each size
buffer in the pool, regardless of the number of files/index levels, and so forth.)

MINBUFNI: Specifying Minimum Target BUFNI

Default: STRNO

MINBUFNI allows you to specify a minimum number of index buffers. Each KSDS that is
OPENed receives at least MINBUFNI index buffers. Specify as:

MINBUFNI=value

If any particular LEVEL selector does not specify a MINBUFNI, then the SYSTEM default
MINBUFNI is used.

If you do not specify a SYSTEM default value for MINBUFNI, (strno) is used for
MINBUFNI. If your specification is less than (strno), it is overridden, because the
minimum number of index buffers allowed by VSAM is (strno).

MINBUFNO: Specifying Minimum Target QSAM Buffers

Default: MINBUFNO=10

The MINBUFNO constraints allow you to specify a minimum number of buffers for
QSAM files. CA Hyper-Buf buffering algorithms use at least MINBUFNO buffers. This
allows you to set a performance floor for all of your processing.

MINBUFNO can be specified at all LEVEL selectors.

Constraint Descriptions

Chapter 3: Constraint Control Statements 53

MINBUFSP: Specifying Minimum Target Buffer Space

Default: MINBUFNI * index CI size + MINBUFND * data CI size

The MINBUFSP parameter allows you to make sure that at least MINBUFSP bytes are
used for buffers. You specify MINBUFSP as:

MINBUFSP=value

If no matching LEVEL selector specifies MINBUFSP, the SYSTEM default is used.

If you do not specify a system default, MINBUFNI and MINBUFND values are used to
calculate the minimum buffer space. If you have not specified either MINBUFNI or
MINBUFND, the default value(s) are used for the missing specifications.

If you do specify a MINBUFSP, it is validated against the 'true' VSAM minimum of
((1+strno) * (data CI size)) plus ((strno) * (index CI size)). This is the absolute minimum
allowed by VSAM and overrides your specified MINBUFSP if yours is smaller.

MSGLEVEL: Controlling Displayed Messages

Default: MSGLEVEL=0

The MSGLEVEL constraint controls which messages are displayed by CA Hyper-Buf
during OPEN and CLOSE processing. You specify MSGLEVEL as a numeric quantity; for
instance, MSGLEVEL=5. Only one number can be specified on each MSGLEVEL control.

The MSGLEVEL number is interpreted as follows:

0

display only critical errors (default)

1

BUFFERSPACE

2

(reserved)

3

EXCLUSIONS

4

(reserved)

Constraint Descriptions

54 User Guide

5

BYPASSES

6

(reserved)

7

SELECTIONS

8

(reserved)

9

(reserved)

10

DEBUGGING

All messages associated with MSGLEVELs less than or equal to your specified MSGLEVEL
are displayed. For example, if you specify MSGLEVEL=5, all messages for levels 0 through
5 are displayed. Specifying MSGLEVEL=10 displays all possible messages.

All MSGLEVEL information is displayed by WTO and appears on the job log for each job.
These messages can also appear on the operator console if not inhibited by message
suppression facilities.

NONSWAP: Mark Address Space Non-Swappable

Default: SWAP, unless user specified HIPERSPACE.

The NONSWAP parameter requests that CA Hyper-Buf make the address space
non-swappable. This parameter should be reserved for critical jobs since non-swappable
jobs are exempt from normal SRM load balancing, and can cause overall system
degradation if used indiscriminately.

The address space is not marked non-swappable until the cluster that specifies
NONSWAP is opened. If that cluster is never opened, the address space is not made
non-swappable. The address space is not marked swappable when the file is closed. The
step remains non-swappable from the time of the OPEN until the step terminates.

The NONSWAP control has no operands. Simply add NONSWAP to any other constraints
that you specify for any cluster, job, program, or program/ddname combination.

Constraint Descriptions

Chapter 3: Constraint Control Statements 55

NOSTATS: Remove STATS Constraint That Results From Merge Processing

You can remove a STATS constraint that may have 'filtered down' during the merge
process by specifying the NOSTATS constraint.

For more information, see the section STATS: Requesting CLOSE Statistics (see page 63).

NSR: Restricting Conversion to Local Shared Resources

Default: NSR, unless random processing specified in ACB.

The NSR control has no operands and forces CA Hyper-Buf to use NSR buffering. NSR
buffering can benefit mixed-mode files (for example, both random and sequential or
skip sequential) if a substantial amount of the processing is sequential. If neither LSR nor
NSR is specified, the default action is as follows:

OPEN FOR SEQUENTIAL PROCESSING - NSR BUFFERING
OPEN FOR MIXED PROCESSING - NSR BUFFERING
OPEN FOR RANDOM PROCESSING - LSR BUFFERING

CICS Requirements: If you request CICS files to be buffered by including the DFHSIP
program, the DFHCSD, DFHRSD, DFHLCS, and DFHGCD files must be specified with NSR.
IBM does not support these files in an LSR-buffered environment. The following shows a
sample using NSR:

MODE=INCLUDE

 PROGRAM=DFHSIP

 DDNAME=DFHCSD NSR

 DDNAME=DFHRSD NSR

 DDNAME=DFHLCD NSR

 DDNAME=DFHGCD NSR

Constraint Descriptions

56 User Guide

QSAM: Enable/Disable QSAM Buffering

Default: QSAM=YES

The QSAM constraint allows you to enable and disable QSAM buffering at any LEVEL
selector. Specify as follows:

QSAM=x

where x is:

YES to enable QSAM buffering for this LEVEL

NO to disable QSAM buffering for this LEVEL

RANDOM: Overriding ACB Specified Processing Options

Restriction: RANDOM must follow a DDNAME level selector. RANDOM can be used for
applications that perform mostly RANDOM processing, but specify DYNAMIC in the file
definition.

Selecting DDNAME and specifying RANDOM forces the dynamic buffering routines to
select buffers as if RANDOM had been specified in the file definition instead of
DYNAMIC. This results in more index buffers, which should improve random accesses.

There are no operands for RANDOM.

RMODE31: Specifying VSAM Buffer and Control Block

Residency

Default: RMODE31=NONE

The RMODE31 parameter allows you to specify the residency of the VSAM control
blocks and buffers. You can allocate buffers above the line and control blocks below,
both above, both below, or control blocks above and buffers below. (The latter is useful
for 24 bit applications that use LOCATE mode processing).

Constraint Descriptions

Chapter 3: Constraint Control Statements 57

RMODE31 has an operand that designates which areas are to be allocated above 16M.
The following example shows the possibilities:

. . .

RMODE31=CB * VSAM Control blocks above 16M

. . .

. . .

RMODE31=BUFF * VSAM Buffers above 16M

. . .

. . .

RMODE31=ALL * Both buffers and control blocks above

. . .

. . .

RMODE31=NONE * Both allocated as specified in the ACB

. . .

. . .

RMODE31=ALL can be specified in SYSTEM_DEFAULTS. If you make this the default,
however, make sure that you include PROGRAM constraints that specify
RMODE31=NONE for any AMODE 24 applications that use either LOCATE mode
processing or that access VSAM control blocks directly. Failure to exempt these
applications from areas above 16M will result in S0C4 abends.

If you specify RMODE31=ALL in SYSTEM_DEFAULTS and experience S0C4/5 abends in
jobs that used to run successfully, add a PROGRAM level selector with RMODE31=NONE
in any INCLUDE mode control group so that all areas are below 16M for this program.

IDCAMS accesses (at least sometimes) the VSAM control blocks and is (at this time) an
AMODE=24 program. If you specify RMODE31=ALL in the SYSTEM_DEFAULTS, include a
PROGRAM=IDCAMS RMODE31=NONE in one of your INCLUDE MODE control groups.

There is no special direct relationship between COBOL1 or COBOL2 programs and the
HYPERBUF RMODE31 constraint.

Constraint Descriptions

58 User Guide

If data is accessed in the VSAM buffers or control blocks directly and the constraints
specify RMODE31=ALL there may be problems. There should only be problems with
respect to data in the buffers if LOCATE mode processing is performed by the program.
Otherwise, specifying RMODE31=ALL or BUFF in the constraints should be possible.
HYPERBUF controls the location of these resources at open time and is transparent to
the application. If the program attempts to look at something in the buffer or control
block that is above the line and if the program is running in 24-bit mode, an SOC4 abend
could occur. Test the program with each constraint to see if this happens. It does not
matter if the COBOL1 or COBOL2 program is running in 24-bit mode as long as it is not
accessing data in the buffer or control blocks directly. You may be able to run the
program with RMODE31=ALL/BUFF.

RUNMODE: CA Hyper-Buf Mode of Operation

Default: RUNMODE=FULL

Specifications: RUNMODE=FULL RUNMODE=RESTRICTED

Restriction: This constraint can only be specified at the system-default level.

The RUNMODE keyword is used to restrict what job steps get analyzed by CA Hyper-Buf.
The normal setting, RUNMODE=FULL, allows the constraint table to be applied to every
job step and task step on the system in which CA Hyper-Buf is active. RUNMODE=FULL is
the default.

RUNMODE=RESTRICTED

This specification forces CA Hyper-Buf to look for a specific DD statement to be in a job
step or task step before the constraints are applied to the job or task. The following DD
statement must be coded in each step to be analyzed if RUNMODE=RESTRICTED is
active:

//CAHBINCL DD DUMMY

If RUNMODE=RESTRICTED is specified and the CAHBINCL DD statement is not present,
CA Hyper-Buf will not do any analysis of this job/task step.

The RUNMODE=RESTRICTED parameter is implemented so that CA Hyper-Buf testing
can be performed on an individual job/task basis. Such restriction might prove useful to
the systems programmer while evaluating new constraints on a test system.

RUNMODE=FULL

This specification allows CA Hyper-Buf to run in the normal mode. Each job or task step
will have the constraint table applied to it, looking for matches or exclusions as the table
may dictate.

Constraint Descriptions

Chapter 3: Constraint Control Statements 59

Excluding CA Hyper-Buf from a Step While in RUNMODE=FULL

There may be situations where it is desired to exclude CA Hyper-Buf processing from a
particular step. Some examples are specialized monitor programs, such as high speed
check reading applications. There could be other instances as well where you would not
want the CA Hyper-Buf analyzer in the address space for a particular step. This can be
accomplished by including the following DD statement in the job/task step you wish to
exclude from CA Hyper-Buf analysis.

//CAHBEXCL DD DUMMY

On the first open of a step, the CAHBEXCL DD statement is searched for, and if found,
turns off any CA Hyper-Buf processing for that job/task step.

SEQUENTIAL: Overriding ACB Specified Processing Options

Restriction: Can be specified only following a DDNAME level selector. There are some
vendor supplied (and possibly in-house) applications that misrepresent the type of
processing that they actually perform. This is usually the result of a general purpose I/O
routine that is called by several different but related programs.

This common I/O module specifies all possible OPEN options to be ready for any
possible type of request. For example, there are some vendor supplied COBOL
applications that specify DYNAMIC file access in the I/O module, but one or more of the
programs that call this I/O module are purely SEQUENTIAL (or purely RANDOM).

For applications that actually use SEQUENTIAL processing but specify DYNAMIC file
processing, additional performance can be gained by specifying SEQUENTIAL in a LEVEL
selector that matches that application.

Constraint Descriptions

60 User Guide

For example, if you have purchased a vendor supplied MRP, payroll, or other package
that uses SEQUENTIAL processing, but was written with DYNAMIC specified in the file
declaration, you should select that application (by program name/ddname) and specify
SEQUENTIAL, as shown below.

 . . .

. . .

PROGRAM=MRP0001

 DDNAME=ORDERS

 SEQUENTIAL

. . . .

This forces the dynamic buffering calculation to be performed as if the OPEN was purely
SEQUENTIAL. This usually results in more data buffers, which improves performance for
the sequential processing.

Specifying SEQUENTIAL overrides the automatic assignment of random files to LSR
pools.

There are no operands for SEQUENTIAL.

SHRPOOL: Requesting a Specific Shared Resource Pool

Multiple LSR pools are supported in some environments. DFP2 pools are supported in
some environments. DFP2 allows eight LSR pools (pools 0 through 7), and DFP3 allows
256 LSR pools (pools 1 through 255). DFP3 further subdivides each LSR pool into
separate data and index sub-pools.

The SHAREPOOL control allows you to assign a specific LSR buffer pool to a particular
OPEN request. You can group several different files into the same LSR pool, for example.
You can specify which files share a pool by using the SHAREPOOL control.

The SHAREPOOL control has a single operand. The operand is the pool number that you
wish to be associated with this OPEN request. The specified pool must be in the range
{1,...,MAX} where MAX is the maximum pool number allowed in your environment.

Constraint Descriptions

Chapter 3: Constraint Control Statements 61

Specify SHRPOOL=0 only if you want to remove a pool specific selection that results
from a constraint merge, for example:

. . . .

. . . .

CLUSTER=A.B.C

 SHRPOOL=3,

. . .

. . .

CLUSTER=D.E.F

 SHRPOOL=3

. . . .

. . . .

PROGRAM=XYZ

 DDNAME=LOG * Assume this DD points to Cluster A.B.C

 SHRPOOL=0 * WILL NOT use SHRPOOL 3 - pool will be chosen

 * by CA-Hyper-Buf

. . . .

. . . .

The example shows that clusters A.B.C and D.E.F normally share the same LSR pool (Pool
3), if both happen to be opened in the same job step. However, if PROGRAM XYZ OPENs
CLUSTER A.B.C on DDNAME LOG, SHRPOOL 3 is not automatically assigned. In this case,
the file is dynamically assigned an unused LSR pool. This can be any LSR pool that is not
assigned to another file, including pool 3, if that pool is unassigned.

CA Hyper-Buf attempts to determine which pools are assigned for each address space at
the time of the first OPEN for that address space. Any pools that do not appear to be
used are eligible for assignment by the LSR control. CA Hyper-Buf assigns the highest
available unassigned LSR pool. Each subsequent LSR OPEN uses a lower number pool.
Pools that are explicitly assigned by SHAREPOOL are skipped in this selection process.

Constraint Descriptions

62 User Guide

Note: Dynamically allocated data sets may not yet be allocated at the time of the first
OPEN. Any files that are dynamically allocated after the first OPEN in an address space
may be forced to use a pool other than the SHAREPOOL specified pool, if the
SHAREPOOL specified pool is already allocated to another LSR file.

If all available LSR pools are already assigned, the LSR option is ignored, and the file is
opened with NSR buffering.

SIS: Setting Sequential Insert Strategy

Normally, VSAM splits full CIs in half (at nearest logical record boundary) when required
to make room for records that are inserted randomly into a KSDS file. This philosophy
works well for truly random insertions.

Many applications randomly insert clusters of records instead of single records. These
applications randomly position to a desired key in the file then insert several logical
records in ascending key sequence, then randomly position and insert another cluster of
records.

Since these files are opened with random access specified in the ACB, VSAM normally
uses random insert strategy, which splits full CIs in half, as described above.

or an application that performs random clustered insertions, each CI split causes
approximately one extra I/O for every (number of records in a CI)/2 whenever a CI split
occurs. For example, if a CI holds ten records (average), then random insertion of these
clustered records causes approximately one extra I/O for every five insertions. If many
clustered inserts occur in the same control area, these inserts also cause CA splits, each
of which causes potentially hundreds of I/Os.

Sequential insert strategy can avoid many of these CI and CA splits and the associated
I/Os, if your inserts are mostly clustered, as described above.

SIS has no operands.

SMFID: Specifying SMF Recording Record ID

Default: None

The SMFID constraint allows you to specify the SMF record ID for SMF statistics
recording. If you do not specify an SMFID, no SMF recording is performed.

If you select an SMFID, it must be a valid user SMF record ID. The value must be
between 127 and 256. You should make sure that the number you choose does not
conflict with any other SMF record IDs in your system. If you select an 'in use' SMF
record ID, reporting programs will not produce desired results.

Constraint Descriptions

Chapter 3: Constraint Control Statements 63

To produce SMF records, you must select an SMFID and activate SMF recording for that
record ID.

SMFID can be specified anyplace in the control file, but only the last SMFID value
specified is used for all SMF records. Specify SMID=0 at any level to suppress SMF
recording for that specific level.

STATS: Requesting CLOSE Statistics

Default: NOSTATS

The STATS constraint requests CA Hyper-Buf to display file statistics at CLOSE time.
STATS can be specified at any level. The statistics are displayed only for CLOSEs that
match a level selector which specifies STATS. The statistics are displayed on the job log.

The STATS constraint requires no operands. You can specify STATS independently of
MSGLEVEL. You can specify STATS to be displayed whether CA Hyper-Buf modifies the
buffers for an OPEN.

You can use STATS to 'benchmark' CA Hyper-Buf performance. For example, you can run
two identical job streams with two different job names. One of the jobnames should be
buffered by CA Hyper-Buf; the other job name should be EXCLUDED. STATS should be
specified for both jobs, or as the SYSTEM_DEFAULT. By running these 'parallel' jobs, you
can see the difference in EXCP caused by CA Hyper-Buf by comparing the job logs after
they complete execution.

Also see the related constraint NOSTATS in the section NOSTATS: Remove STATS
Constraint That Results From Merge Processing (see page 55).

SWAP: Do Not Mark Address Space Non-Swappable

Default: SWAP, unless user specified HIPERSPACE

Normally, CA Hyper-Buf automatically asserts NONSWAP if HIPERSPACE is requested. If
you want HIPERSPACE backing of buffers but do not want the address space marked
non-swappable, you can specify SWAP in addition to HIPERSPACE. See the description of
HIPERSPACE in the section HIPERSPACE: Backing LSR Buffers in HIPERSPACE (see
page 47) for further information.

The SWAP constraint can also be used to override a NONSWAP constraint that is in
effect from a higher LEVEL constraint merge. SWAP does not actually force the address
space swappable. It merely inhibits CA Hyper-Buf from marking the address space
non-swappable. Jobs that are non-swappable because of external factors (such as being
named in the PPT) are not affected by the SWAP constraint.

There are no operands associated with the Constraint SWAP control.

Constraint Descriptions

64 User Guide

SYSTEM_DEFAULTS - Establishing Default Parameters

All of the constraints can be assigned a default value. The default value is the value that
is used for any constraints that are not specified on a matching level selector. These
default values are assigned in the SYSTEM_DEFAULTS section of the GVBDBFON SYSIN
file. The SYSTEM_DEFAULTS section begins with the SYSTEM_DEFAULTS command. This
command can be abbreviated as SYSTEM.

All of the constraints (except for the above noted restrictions) can be specified in the
SYSTEM_DEFAULTS section. Any constraint values assigned in this section will become
the default values for those constraints. Any constraints that you do not assign a default
value will have a value assigned to them by the OPEN intercept routine. The OPEN
assigned values are discussed under each of the constraint topics earlier in this manual.

TEST: Forcing TEST Mode

When TEST mode is asserted in the constraints, CA Hyper-Buf performs all buffering
calculations, but does not actually implement the calculated buffer space. The
calculated values are displayed if MSGLEVEL is 1 or greater.

The calculated buffers are displayed following message GVB668I, which identifies the
values as being TEST values. These values are only displayed and not implemented for
this OPEN. Normal VSAM buffering is in effect, and the buffers are determined strictly
from AMP, ACB, and catalog parameters by VSAM, as though CA Hyper-Buf was not
active at all.

TRACKS: Specify Multi-track Buffering

Specify this value as TRACKS=n, where n is the number of tracks, up to 1 cylinder. The
TRACKS constraint forces CA Hyper-Buf to allocate enough buffers to hold the number
of tracks specified in n. This constraint can be used for both QSAM and VSAM.

Note: The TRACKS value can cause CA Hyper-Buf to exceed MAXBUFSP/NO/NO.

UNFIX: Keeping LSR Buffers and IOBs Pageable

Restriction: Applies only to LSR buffers. See the FIX restrictions in the section FIX: Page
Fixing LSR Buffers and IOBs (see page 46) for further information.

Specify the UNFIX constraint to override the fixing of buffers for HIPERSPACE or LSR
buffering or to override a FIX constraint that results from the constraint merge process.

Constraint Descriptions

Chapter 3: Constraint Control Statements 65

See the following control stream for an example:

 CLUSTER=PAYROLL.MASTER.FILE

 SHRPOOL=5 * Could also be LSR

 FIX

 . . .

. . .

 PROGRAM=PAYROLL

 UNFIX

In this example, any program that opens PAYROLL.MASTER.FILE will have page fixed
buffers for that cluster. The only exception is if the cluster is opened by PROGRAM
PAYROLL, in which case the buffers are not page fixed.

USE: Invoking a Constraint Prototype

The USE keyword allows you to invoke a previously defined constraints prototype. The
format of the USE keyword is:

(any level selector or DEFINE)

(optional constraints)

USE=name

(optional overrides of prototype values)

The name variable must select a prototype that has been previously defined. The USE
keyword is equivalent to specifying all of the constraints that are specified in the named
prototype definition.

Constraint Descriptions

66 User Guide

The following example shows a prototype definition and two invocations of the defined
prototype:

SYSTEM_DEFAULTS

 (any defaults)

MODE=INCLUDE

DEFINE=PRODZ * Define prototype named PRODZ

 MAXBUFND=60 MINBUFND=25
 LSR
 MINBUFNI=20 MAXBUFNI=50
 HIPERSPACE DEFER SHRPOOL=3
 MSGLEVEL=6
 ...
 ... (other constraints)
 ...

JOB=PAYROLL
 USE=PRODZ *Invoke all PRODZ constraints
 MAXBUFND=80 *Override PRODZ MAXBUFND

PROGRAM=XYZ+
 USE=PRODZ *Invoke prototype PRODZ with no overrides

...

Chapter 4: ISPF Dialogs 67

Chapter 4: ISPF Dialogs

You can use the ISPF dialogs to monitor and control CA Hyper-Buf. Each dialog is
described in detail in this chapter.

Chapter 5, "Batch Utility Programs" describes the batch utilities that perform the same
functions as these dialogs. You can use either the batch utilities or the dialogs.

This section contains the following topics:

CA Hyper-Buf Primary Menu (see page 67)
Information Panel: Display Current Release Information (see page 69)
Constraints Panel: Displaying the Currently Active Constraints (see page 70)
Modeling Panel: Specifying Level Selectors (see page 71)
Activate Selection Panel: Validate, Activate, or Refresh (see page 74)

CA Hyper-Buf Primary Menu

------------------CA-Hyper-Buf for MVS Version 11.05.00-------------09:27

OPTION ===>

 CA-Hyper-Buf is currently ACTIVE

I Info - Display information about CA-Hyper-Buf

C Constraints - Show currently active constraints

M Model - Model using current constraints

Authorized functions:

A Activate - Activate, Refresh, or Validate

D Deactivate - Deactivate CA-Hyper-Buf

Enter END command to return to the previous menu or X to exit

Copyright (c) 2011 CA.

CA Hyper-Buf Primary Menu

68 User Guide

Menu Options

This menu is the main entry point into the CA Hyper-Buf ISPF dialogs.

From this menu, you can select:

I

Displays information about the currently installed version of CA Hyper-Buf. A
complete description of this function is included in the description of the
information panel.

C

Displays the constraints that are currently active on your system. If CA Hyper-Buf is
not active, no constraints are shown. Further details are available in the description
of the ACTIVE CONSTRAINTS panel.

M

Models user specified combinations of selectors and displays the resulting
composite constraints. Further information is available in the description of the
composite constraints panel.

A

Validates, activates, or refreshes constraints. Full details are supplied in the
description of the ACTIVATE panel. (Authorized function.)

D

Deactivates CA Hyper-Buf after requesting confirmation. (Authorized function.)

Information Panel: Display Current Release Information

Chapter 4: ISPF Dialogs 69

Information Panel: Display Current Release Information

------------------CA-Hyper-Buf for MVS Version 11.05.00-------------------

OPTION ===>

 Current Status - ACTIVE Loaded at 80AF3D98

 Initialized on FRI, 23 JAN 04 at 16.24.35 by GVBDBFON Refreshed on FRI,
23 JAN 04 at 16.24.35 by GVBDBFON

 Csect Ver Date Time Loaded from.

 GVBDYNBF 110000 040106 1233 (CSA)

 GVBDYN2 110000 040106 1233 CAI.CBS3LINK

 VBDBFON 110000 040106 1233 CAI.CBS3LINK

 GVBDBOFF 110000 040106 1233 CAI.CBS3LINK

 GVBREFR 110000 040106 1235 CAI.CBS3LINK

*************************** BOTTOM OF DATA ********************************

Panel Options

This panel is displayed when you select option I from the main menu. The following
information is displayed on this panel:

1. The current status of CA Hyper-Buf on this system. This field displays either ACTIVE
or INACTIVE. In this sample panel, CA Hyper-Buf is currently ACTIVE.

2. The address of the OPEN intercept routine. This field is displayed only if CA
Hyper-Buf is currently ACTIVE.

3. The date and time CA Hyper-Buf was initialized, and the date and time of the most
recent REFRESH.

4. The assembly date and time for several key CA Hyper-Buf CSECTs. If you call
technical support with any questions, they may ask you for this information.

5. Where each module was found. This allows you to verify that no old modules are
found in libraries concatenated ahead of the desired release modules. If CA
Hyper-Buf is active, module GVBDYNBF shows that it was loaded from (CSA). In this
case, the assembly date and times are extracted from the currently active OPEN
intercept module that is loaded in CSA. The actual library that this module was
loaded from is not displayed.

Constraints Panel: Displaying the Currently Active Constraints

70 User Guide

Constraints Panel: Displaying the Currently Active Constraints

------------------CA-Hyper-Buf for MVS Version 11.05.00-------------------

OPTION ===>

 Active constraints: SYS_DEFAULTS

 MAZBUFSP=128K

 DFLTMODE=INCLUDE

 ACBOVR

 MSGLEVEL=10

 STATS

 HIPERSPC=1

 DYNREG=YES

 DEFINE=DRAT

 MAXBUFSP=500K

 MSGLEVEL=10

 STATS

 ACBOVR

 AMPOVR=MAX

 MINBUFNI=27

 SCLASS=SPECIAL

Panel Description

This panel is displayed when you select option C from the main menu. The currently
active constraints are displayed only if CA Hyper-Buf is active.

These constraints are displayed in the same order that CA Hyper-Buf searches the
constraints at OPEN time. This is generally not the order in which the constraints were
read at initialization time. Also, since the constraints are extracted from CA Hyper-Buf
control blocks, your comments do not appear in this output.

Modeling Panel: Specifying Level Selectors

Chapter 4: ISPF Dialogs 71

Unless you have a very small constraints file, more than one screen is required to
display all of the constraints. You can scroll through all of the constraints by using the
ISPF scroll keys.

Level Selectors that are EXCLUDED are shown with an 'X' in the first column of the
display.

Modeling Panel: Specifying Level Selectors

------------------CA-Hyper-Buf for MVS Version 11.05.00-------------------

OPTION ===>

 Display composite constraints for the following OPEN: Jobname ===>

 Cluster ===>

 Program ===>

 DDname ===>

 Datacls ===>

 Mgmtcls ===>

 Storcls ===>

 Constraints: ===> ACTIVE (specify DSNAME or ACTIVE)

 Enter END command to return to the previous menu or X to exit

Panel Description

This panel allows you to model specific level selectors. You can specify selected JOB,
CLUSTER, PROGRAM, DD, and SMS class information for the modeling routine. The
modeling program compares these parameters against the constraints file, and displays
the composite constraints for this combination of level selectors.

If you supply a cluster name, but do not specify any SMS class information, the modeling
program obtains the SMS class information for that cluster from the catalog, and uses
those values in determining the composite constraints. If you specify any SMS
parameters, your specifications will override the corresponding values obtained from
the catalog.

Modeling Panel: Specifying Level Selectors

72 User Guide

You can also supply the name of a file that contains the constraints to be used for the
modeling process. You specify this file in the Constraints: ===> input field.

If you specify ACTIVE in the constraints input field, the modeling process uses the
currently active constraints. In this case, CA Hyper-Buf must be active on your system.
The resulting composite constraints are the same as those generated by the OPEN
intercept routine for the same combination of level selectors.

If you supply a file name in the constraints input field, the modeling process uses that
file to determine the composite constraints. This does not affect CA Hyper-Buf in any
way. The constraints file specified here is used only for the modeling process.

Sample Panel 1: Following is an example of a completed Modeling Parameters Selection
panel.

This example selects JOB AFS32762, executing PROGRAM GVRESTOR, opening CLUSTER
SAPLX.TEST.CLUSTER on DDNAME FILEIN. When you press Enter, CA Hyper-Buf
calculates and displays the composite constraints for this OPEN.

------------------CA-Hyper-Buf for MVS Version 11.05.00------------------

OPTION ===>

 Display composite constraints for the following OPEN:

 Jobname ===> AFS32762

 Cluster ===> SAPLX.TEST.CLUSTER

 Program ===> GVRESTOR

 DDname ===> FILEIN

 Datacls ===>

 Mgmtcls ===>

 Storcls ===>

 Constraints: ===> ACTIVE (specify DSNAME or ACTIVE)

 Enter END command to return to the previous menu or X to exit

Modeling Panel: Specifying Level Selectors

Chapter 4: ISPF Dialogs 73

Sample Panel 2: This panel displays the output produced from the previous panel using
composite constraints.

----------------- CA-Hyper-Buf for MVS Version 11.05.00 ---- Row 1 to 1

OPTION ===>
 SCROLL=

 Composite constraints:

 MAXBUFSP=384K

 MAXBUFND=20

 MAXBUFNI=30

 MINBUFSP=32K

 MINBUFND=10

 MINBUFNI=15

 CUSHION=200K

 DFLTMODE=INCLUDE

 ACBOVR

 MSGLEVEL=10

 STATS

 DEFER

 RMODE31=ALL

 TRACKS=16

 QSAM=YES

 RUNMODE=RESTRICTED

******************************* Bottom of data ************************

Activate Selection Panel: Validate, Activate, or Refresh

74 User Guide

Activate Selection Panel: Validate, Activate, or Refresh

------------------CA-Hyper-Buf for MVS Version 11.05.00------------------

OPTION ===>

 CA-Hyper-Buf is currently ACTIVE

 V - Validate this constraints file

 A - Activate CA-Hyper-Buf or Refresh with these constraints

Constraints file ===> SAPLX.VSAMOPT.OBJ(TSTCNTL)

Enter END command to return to the previous menu or X to exit

Panel Description

This panel performs authorization checking to determine if you are authorized to
perform this function.

This panel is displayed when you select A from the main menu.

Activate Selection Panel: Validate, Activate, or Refresh

Chapter 4: ISPF Dialogs 75

You can specify a constraints file in the Constraints file ===> input field, then select 'V' to
validate, or 'A' to activate (if CA Hyper-Buf is not currently active) or refresh (if CA
Hyper-Buf is currently active).

If there are any errors in the constraints file, the activate/refresh is not successful. In
this case, the following screen is displayed. (This is the same screen that is displayed by
the validate function).

------------------CA-Hyper-Buf for MVS Version 11.05.00--------------ROW 1 OF
204

OPTION ===>

 Current status - ACTIVE

 Constraints file - SAPLX.VSAMOPT.OBJ(TSTCNTL)

 Returned - 000

...:....1....:....2....:....3....:....4....:...5....:....6....:....7....:

NOSTAE

 SYSTEM_CONSTRAINTS

 MSGLEVEL=10

 STATS

 ACBOV

 DEFAULTMODE=INCLUDE

 MODE=INCLUDE

 MCLASS=FRSTCLAS

 MAXBUFNI=42 MINBUFNI=30

 MAXBUFND=60 MINBUFND=50

 MAXBUFSP=1024K

Chapter 5: Batch Utility Programs 77

Chapter 5: Batch Utility Programs

This section contains the following topics:

GVBVALD—Validate CA Hyper-Buf Control Stream (see page 77)
GVBDBFON—Activate CA Hyper-Buf (see page 77)
GVBDBOFF—Deactivate CA Hyper-Buf (see page 78)
GVBREFR—Refresh Constraints (see page 78)
GVBSTAT—Display Current Status of CA Hyper-Buf (see page 79)
GVBISIT—Determine if CA Hyper-Buf is Active (see page 79)
GVREPORT SMF Reporting Utility (see page 80)
Feature Implementation Guidelines (see page 85)
GVREPORT Sample Report Construct (see page 86)
GVBDB001—Disable or Enable CA Hyper-Buf (see page 87)

GVBVALD—Validate CA Hyper-Buf Control Stream

GVBVALD is a utility program that validates your control statements. You can run this
job to check the validity of your defaults, level selectors, and constraints before you
initialize CA Hyper-Buf on your machine.

Sample JCL member GVBVALD is provided in the CAISAMP library.

Note: The CNTLFILE DD may point to any 80-byte LRECL, RECFM=FB data set that
contains the control statements that you want to validate.

Output contains a listing of the control statements, along with any error messages that
may be produced. The return code is set to non-zero if any errors occur.

Note: GVBVALD must be executed from an APF authorized library.

GVBDBFON—Activate CA Hyper-Buf

GVBDBFON is the batch program that initializes CA Hyper-Buf.

Sample JCL member GVBDBFON is provided in the CAISAMP library.

Note: The DD statements for the first step are described earlier in the section
concerning GVBVALD.

GVBDBOFF—Deactivate CA Hyper-Buf

78 User Guide

The DD statements for the GVBDBFON step are as follows:

■ CNTLFILE points to the control stream that was validated in the VALD step.

■ SYSPRINT for output messages.

In this example, GVBVALD is placed in front of GVBDBFON to make sure that there are
no errors in the control statements. If GVBVALD detects any errors, GVBDBFON is
skipped, ensuring that the controls supplied to GVBDBFON are error free.

Starting GVBDBFON with an invalid control stream does not cause any damage to your
system since GVBDBFON also validates the control statements. However, an invalid
control statement(s) can cause some minor fragmentation of CSA. Therefore, you
should always run GVBVALD to validate input to GVBDBFON.

GVBDBFON reads and validates the control statements as it builds the constraint table
in CSA and then loads the OPEN intercept into CSA. From that point in time until you
deactivate CA Hyper-Buf, all VSAM OPENs are screened by the CA Hyper-Buf OPEN
intercept routine. Any OPENs that match your level selectors are dynamically buffered
or excluded, as described earlier in this manual.

GVBDBOFF—Deactivate CA Hyper-Buf

This program deactivates CA Hyper-Buf. You can run this program at any time to remove
CA Hyper-Buf from your system.

Sample JCL member GVBDBOFF is provided in the CAISAMP library.

Note: GVBDBOFF requires no input.

After you run this job, OPENs are no longer screened by the OPEN intercept routine.

You can restart dynamic buffering at any time after GVBDBOFF completes by running
GVBDBFON again, or by the ACTIVATE ISPF panel, if you are authorized to do so.

GVBREFR—Refresh Constraints

This program changes the constraints in effect without stopping and restarting CA
Hyper-Buf. Supply the new constraints to GVBREFR using the SYSIN file. Normal
constraint validation and verification are performed by GVBREFR.

Sample JCL member GVBREFR is provided in the CAISAMP library.

Note: As with GVBDBFON, you should validate the constraints prior to invoking
GVBREFR to avoid CSA fragmentation.

GVBSTAT—Display Current Status of CA Hyper-Buf

Chapter 5: Batch Utility Programs 79

GVBSTAT—Display Current Status of CA Hyper-Buf

This program displays the current status of CA Hyper-Buf, and displays assembly
date/times for key CA Hyper-Buf modules.

If CA Hyper-Buf is active when GVBSTAT runs, the address of the OPEN intercept
routine, the time that CA Hyper-Buf was initialized, the time of the last (most recent)
refresh, and other key information is displayed. The assembly date and time for
GVBDYNBF is taken from the copy that is currently loaded in the CSA, if CA Hyper-Buf is
already active. All other modules are loaded from the JOBLIB/STEPLIB/LINKLIST to
determine the assembly date and times, and the results are displayed.

If CA Hyper-Buf is not active when GVBSTAT runs, all modules are loaded to determine
the assembly date and time.

Sample JCL member GVBSTAT is provided in the CAISAMP library.

Note: No input control statements are required for GVBSTAT. You can test the release
levels of multiple copies of CA Hyper-Buf by adding a JOBLIB/STEPLIB that points to the
library to be tested. If you do not supply JOBLIB/STEPLIB, or if the modules do not reside
in the JOBLIB/STEPLIB libraries, the first copy of each module in LINKLST is
tested/displayed.

Output is displayed on the SYSPRINT DD. GVBSTAT sets the return code to 8 if CA
Hyper-Buf is not active. This value can be tested by the COND= parameter on
subsequent job steps.

GVBISIT—Determine if CA Hyper-Buf is Active

Program GVBISIT detects CA Hyper-Buf if it is active on your system. You can use
GVBISIT to verify that CA Hyper-Buf is active for jobs that require CA Hyper-Buf, and that
it is inactive for any jobs that you want to run when CA Hyper-Buf is down.

GVBISIT does not require any input or output files. The only output is the return code
passed back to OS/390 in R15. If CA Hyper-Buf is inactive when GVBISIT runs, the return
code in R15 is set to zero. If CA Hyper-Buf is active, R15 is set to eight.

For example, you may decide to remove all of the old release CA Hyper-Buf modules
before you install a new version. This is only safe to do if CA Hyper-Buf is not active,
since OPEN processing when CA Hyper-Buf is active LOADs some of these modules, and
removing them while CA Hyper-Buf is active can cause your SYS1.DUMP data sets to fill
up (your jobs still run, but each OPEN triggers another dump).

In this case, you can insert GVBISIT at the beginning of the clean-up job and use the
return code to 'skip' the delete step if CA Hyper-Buf is active.

GVREPORT SMF Reporting Utility

80 User Guide

If you have a job that runs too long without CA Hyper-Buf active, you can use the same
return code to skip the step if CA Hyper-Buf is not active and issue the appropriate
messages. This way, you can make sure that the job runs only if CA Hyper-Buf is active.

Sample JCL member GVBISIT is provided in the CBS3JCL library.

GVREPORT SMF Reporting Utility

The GVREPORT SMF Reporting utility is designed as an aid to clients in the planning,
implementation, and tuning of the files that are selected to be buffered by CA
Hyper-Buf. Seven reports are provided that cause most tasks to be accomplished
readily. However, GVREPORT is designed to allow customized reports to be created.

The following reports are provided as a set of tools to begin the reporting and tuning
process:

■ JOB INFORMATION

■ DATA COMPONENT

■ LSR DATA COMPONENT

■ LSR INDEX COMPONENT

■ NSR INDEX COMPONENT

■ MISC FIELDS

Clients can alter the reports at anytime to build a customized report to satisfy individual
site requirements.

Reports are defined using simple field title constructs such as the following command
statements:

■ Report

■ Title

■ Subtitle

■ Field

■ Fields

■ Select

Samples are provided in the CBS3OPTN data set on the install tape. The member name
is GVREPORT. The seven reports are stacked in a single member and require relocation
to separate members before they can be executed.

GVREPORT SMF Reporting Utility

Chapter 5: Batch Utility Programs 81

Report Fields

SMFJOBNM

Job name

SMFSTPNM

Step name

SMFPRGNM

Program name

SMFCDENM

CDE Program name

SMFDDNM

DDNAME

SMFXXDTE

SMF date

SMFXXTME

SMF time

SMFMRFU

User's ACB MACRF

SMFMRFH

Hyper-Buf ACB MACRF

SMFDCISZ

Data CISIZE

SMFDBFNU

Users BUFND

SMFDBFNH

Hbufs BUFND

SMFDEXCP

Data component EXCPS

SMFDPXCP

Data component path EXCP

SMFRETRV

Records retrieved

GVREPORT SMF Reporting Utility

82 User Guide

SMFINSER

Records inserted

SMFDELTS

Records deleted

SMFUPDTS

Records updated

SMFCISPL

CI splits

SMFCASPL

CA splits

SMFLSDLA

LSR lookasides - Data

SMFLSDBR

LSR buffer reads - Data

SMFLSDNW

LSR non user writes - Data

SMFLSDUW

LSR user writes - Data

SMFLSDNM

LSR pool ID - Data

SMFLSDHB

Hyperspace buffers - Data

SMFLSIEX

Index EXCP count - LSR

SMFLSIPX

Index path EXCP count - LSR

SMFLSIBU

USERS BUFNI - LSR

SMFLSIBH

HBUFS BUFNI - LSR

SMFLSICI

Index CISIZE - LSR S

GVREPORT SMF Reporting Utility

Chapter 5: Batch Utility Programs 83

MFLSILA

Index lookasides - LSR

SMFLSIBR

Index buffer reads – LSR

 SMFLSINW

Index non user writes - LSR

SMFLSIUW

Index user writes - LSR

SMFLSINM

Index LSR pool ID

SMFLSIHB

Hyperspace buffers - Index

SMFIBFNU

 User BUFNI - NSR

SMFIBFNH

HBUF BUFNI - NSR

SMFICISZ

Index CISIZE - NSR

SMFIEXCP

Index ECXPs - NSR

SMFIPXCP

Index path ECXPs - NSR

SMFXXSID

MVS system ID

The SMFXXRTY in the constructs example is the hex value of the value in the SMFID=
parameter defined in the CA Hyper-Buf Constraint Table. (See the section SMFID:
Specifying SMF Recording Record ID (see page 62))

SELECT SMFXXRTY EQ X'81' (Example only)

The X'81' equates to 129. (Example only)

GVREPORT SMF Reporting Utility

84 User Guide

SMFHBREL

CA Hyper-Buf release from which the SMF data was collected. The SMFHBREL in the
construct example is the release level of CA Hyper-Buf.

SMFHBREL EQ X'00110000'

This translates to r11

SMFFLAG2

Include/exclude flag

SMFMRFU1

USERS ACB MACRF1

SMFMRFU2

USERS ACB MACRF2

SMFMRFU3

USERS ACB MACRF3

SMFMRFH1

HBUFS ACB MACRF1

SMFMRFH2

HBUFS ACB MACRF2

SMFMRFH3

HBUFS ACB MACRF3

SMFCLTYP

Cluster type

BUFSPACE

Buffer space

INRECNUM

Input record number

RECLEN

Input record length

SMFDCISZ

 Data CISIZE

SMFLSICI

 Index CISIZE - LSR

Feature Implementation Guidelines

Chapter 5: Batch Utility Programs 85

SMF Record Description

The layout of the SMF data that CA Hyper-Buf creates is documented in member
GVBSMFR in the CBS3SAMP library. You can use this macro to map the fields into an
assembler program. Before you assemble your program, copy the macro to an
appropriate macro library, or copy the macro in its entirety to the front of the program
you are going to assemble.

Feature Implementation Guidelines

To implement this feature, you must first update the CONSTRAINT file used for CA
Hyper-Buf startup. Update the SMFID= field with the SMF record type selected for CA
Hyper-Buf by your installation. The reports can be processed once the SMF records are
collected.

Sample JCL member GVREPJOB is provided in the CBS3JCL library.

JCL Field Descriptions

SMFIN

The data set that contains the SMF records pulled from SMF data using the record
type indicated in the SMFID parameter. The value of the SMFID parameter is a user
selected value that must be over 127. This field is detailed in the in the section
SMFID: Specifying SMF Recording Record ID (see page 62).

SMFID=129 (Example only)

SMF records are generated for each VSAM OPEN and CLOSE intercepted by CA
Hyper-Buf. This generates a lot of SMF records and should be monitored closely.
Once a sufficient record collection has been determined, copy the SMF records
from the SYS1.MANx file to a file that can be used by CA Hyper-Buf. Using IBM's
IFASMFDP utility is acceptable but any SMF copy utility will function as long as the
record format is not altered.

GVRSYSIN

This DD is used to reference the data set that contains the report constructs.
Member GVREPORT in the CBS3OPTN library contains seven preset reports.

The SMFXXRTY in the constructs example is the Hex value of the value in the
SMFID= statement in the CA Hyper-Buf Constraint Table.

SELECT SMFXXRTY EQ X'81' (Example only)

The X'81' equates to 129. (Example only)

GVREPORT Sample Report Construct

86 User Guide

GVREPORT Sample Report Construct

The following is a working report sample. There are seven separate reports in the
GVREPORT sample provided in the CBS3OPTN library. Each report should be broken out
into separate reports.

OPTIONS DATEFORM(MM/DD/YY) TIMEFORM(HH:MM:SS) UPPERCASE SORTNAME(SORT) -

 TRACE

TITLES ('HYPERBUF SMF REPORT - JOB INFORMATION')

REPORT GVBSMF42 INFILE(SMFIN)

FIELDS INRECNUM SMFFLAG1 -

 SMFJOBNM SMFSTPNM SMFPRGNM SMFCDENM SMFDDNM -

 SMFXXDTE SMFXXTME SMFMRFU SMFMRFH

FIELD SMFDSN (LENGTH(41))

SELECT SMFXXRTY EQ X'81' AND SMFHBREL EQ X'00110000'

RUN

The RUN statement engages the report. The RUN statement is the key to running the
previous report constructs. Once a RUN statement is discovered, no other statements
are processed.

■ The SMFXXRTY EQ X'81' denotes SMF record type 129 (Example only)

■ The SMFHBREL EQ X'00110000' denotes the current version of CA Hyper-Buf
executing on the system the SMF records were cut.

Continuation characters are required when continuing a selected field construct to a
new line as seen in the following example.

FIELDS INRECNUM SMFFLAG1 -

 SMFJOBNM SMFSTPNM SMFPRGNM SMFCDENM SMFDDNM -

 SMFXXDTE SMFXXTME SMFMRFU SMFMRFH

The FIELDS criteria construct has several report fields selected. The (-) dash at the end of
each line denotes a continued field. Once the dash is no longer used, the field construct
is complete.

GVBDB001—Disable or Enable CA Hyper-Buf

Chapter 5: Batch Utility Programs 87

The TITLE field construct is taken as a literal. Any characters or spaces within the
parenthesis and quotes are considered a literal and simply placed into the report
heading as is. No continuation characters are used for this construct.

The SELECT construct allows simple logic choices to be made. An example of this type of
logic is looking for version specific information and the correct SMF record type.

SELECT SMFXXRTY EQ X'81' AND SMFHBREL EQ X'00110000'

The field SMFXXRTY EQ X'81' notifies GVREPORT to select only those SMF records that
match SMF record type X'81' (TYPE 129-Example only).

The field SMFHBREL EQ X'00110000' notifies GVREPORT to select only those SMF
records that have a CA Hyper-Buf r11 identifier.

Since the AND logic is used, the SMF record selected must be TYPE 129 (Example only)
and created by CA Hyper-Buf r11 or the record is passed up for selection.

Note: No ANDOR logic exists for GVREPORT at this time.

GVBDB001—Disable or Enable CA Hyper-Buf

There might be times where you wish to suspend CA Hyper-Buf processing, and then
resume processing later. GVBDB001 facilitates this without unloading CA Hyper-Buf
from memory. GVBDB001 is a

batch utility program that disables CA Hyper-Buf without removing it from the system.
Use the "disable" parameter on the execute statement to suspend processing. Once
disabled, the "enable" parameter on the execute statement resumes CA Hyper-Buf
processing.

Sample JCL member GVBDB001 in the CBS3JCL library illustrates the use of the program.

Note: The directive for GVBDB001 is supplied via parameter information on the execute
statement. "PARM=DISABLE" suspends processing while retaining the intercepts and
constraints file in memory. "PARM=ENABLE" will resume CA Hyper-Buf processing. The
SYSPRINT DD statement is required for any messages. If any errors occur, a non zero
return code will be returned.

Chapter 6: Sample Control Streams 89

Chapter 6: Sample Control Streams

This section contains the following topics:

Specifying Defaults Only (see page 89)
Adding Specific Selection Criteria (see page 90)
Sample Test Controls (see page 92)
Temporarily Suspend Buffering (see page 93)

Specifying Defaults Only

The following control stream specifies only the system default values. CA Hyper-Buf
attempts to optimize all OPENs within these default constraints.

SYSTEM_DEFAULTS * begin defaults

 MAXBUFSP=100K * maximum per file

 MAXBUFND=12 * maximum per file

 MAXBUFNI=8 * maximum per file

 CUSHION=100K * leave this much after OPEN

 DEFAULTMODE=INCLUDE * all included

The above sample control stream restricts the maximum buffer space for any single file
to 102400 bytes (100K). Also, the maximum allowable number of data buffers is 12, and
the maximum allowable number of index buffers is 8. Since no minimums are specified,
the system values are chosen as the minimums: (strno) index buffers, (strno+1) data
buffers, and the default MINBUFSP value is the amount of buffer space required by
MINBUFNI index buffers and MINBUFND data buffers.

All OPENs use these same rules since DEFAULTMODE=INCLUDE. The only OPENs that do
not abide by these rules are those which cannot be buffered by CA Hyper-Buf. See the
section Method of Operation (see page 26) for a description of excluded OPENs. Since
there are no EXCLUDE mode controls, there are no exclusions.

Adding Specific Selection Criteria

90 User Guide

Adding Specific Selection Criteria

In this example, notice that the control statements are free form. Some of the
constraint controls are specified on the same line or on the same logical record as their
owning level selector. Others are specified on separate lines. Some have a single
constraint per line; others have multiple constraints on the same line. All of these
specifications are valid.

SYSTEM * begin defaults

 MAXBUFSP=100K * maximum per file

 MAXBUFND=12 * maximum per file

 MAXBUFNI=8 * maximum per file

 CUSHION=100K * leave this much after OPEN

 DEFAULTMODE=INCLUDE * all included

 * unless excluded

CLUSTER=PAY+

 MAXBUFSP=100K MAXBUFND=22 *** override defaults

PROGRAM=PAYBACK MAXBUFSP=100K

 CUSHION=150K

 DDNAME=INMSTR MAXBUFND=40

JOB=P56673

 MAXBUFSP=32K MAXBUFND=5

CLUSTER=PAYROLL.MASTER.FILE

 MAXBUFNI=12

MODE=EXCLUDE * the following are

 * exempt from buffering

 JOB=A2276

 PROGRAM=DFH+

Adding Specific Selection Criteria

Chapter 6: Sample Control Streams 91

In addition, notice that the JOB, CLUSTER, and PROGRAM level selectors are specified in
whatever order is convenient for you. The order that the constraints are checked is
determined by the defined hierarchy of the LEVEL SELECTORS, not by the order in which
you specify the selectors. You can group all CLUSTER levels together, or group all levels
pertaining to a particular application system together. The composite constraint table is
the same in either case.

Moreover, since the LEVEL SELECTORS are independent entities, the
CLUSTER=PAYROLL.MASTER.FILE level selector constraints apply to any job or program
that opens this cluster (assuming that no explicit EXCLUDE is coded); not just to
JOB=P56683.

This control stream specifies the same defaults as the previous example. However, the
clusters, jobs, and programs that are listed before the MODE=EXCLUDE card are
dynamically buffered (unless accessed by job A2276 or programs that start with DFH,
which are the only EXCLUDE MODE selectors). The overrides specified with the
selectors will override the default constraint values when matched at OPEN time.

If cluster PAYROLL.MASTER.FILE is opened by job X33876 which executes program
H55667, MAXBUFNI is 12 (override), MAXBUFSP is 60K (default), and MAXBUFND is 12
(default). These are the limits honored by CA Hyper-Buf at OPEN time.

In another example, assume that job A2276 or program DFHSIP OPEN this same file. In
this case, no dynamic buffering occurs. Both the job and program names match an
EXCLUDE mode control group entry, which takes precedence over all other controls.

Finally, if job P56673, program PAYBACK, OPENs PAYROLL.MASTER.FILE on the INMSTR
DD card, the following occurs:

■ The composite constraint table is initialized with the system default values

■ MAXBUFSP=100K, MAXBUFND=12, MAXBUFNI=8, CUSHION=100K.

■ Cluster selectors are compared against the cluster name. A match occurs, so any
specified constraints are overridden. Result: MAXBUFSP=100K, MAXBUFND=12,
MAXBUFNI=12, CUSHION=100K.

■ JOB selectors are compared against the job name. Again, a match. Result:
MAXBUFSP=32K, MAXBUFND=5, MAXBUFNI=12, CUSHION=100K.

■ The PROGRAM selectors are compared against the program name. Again, a match.
Result: MAXBUFSP=100K, MAXBUFND=5, MAXBUFNI=12, CUSHION=150K.

■ The DDNAME selectors are compared against the ddname. Result:
MAXBUFSP=100K, MAXBUFND=40, MAXBUFNI=12, CUSHION=150K.

The above example is not intended to demonstrate numbers that you might want to use
in your controls. These numbers were chosen to demonstrate the process that CA
Hyper-Buf uses to set the limits that are in effect for any particular OPEN. You can
specify any values that you choose for any of the jobs, programs, and clusters in your
shop.

Sample Test Controls

92 User Guide

Sample Test Controls

The sample test control shown below is supplied in the CBS3OPTN library as member
GVBSTART. You can modify these controls to test your installation of CA Hyper-Buf.

SYSTEM_CONSTRAINTS * THESE WILL APPLY IF

 MAXBUFSP=200K MINBUFSP=60K * NO OVERRIDES OCCUR

 MAXBUFND=75 MINBUFND=10 * IN THE FOLLOWING

 MAXBUFNI=25 MINBUFNI=6 * CONTROL STATEMENTS

 CUSHION=100K * LEAVE 100K FREE
 STATS * ISSUE CLOSE STATS

 RMODE31=NONE * DON'T MOVE BUFFS, CBS
 * ABOVE 16M, UNLESS
 * SPECIFICALLY REQUESTED
 * BELOW (ACTUALLY, THIS
 * IS THE DEFAULT IF
 * NOTHING SPECIFIED)
 MSGLEVEL=1 * ISSUE OPEN MESSAGE
 DFLTMODE=EXCLUDE * IF NOT IN INCLUDES,
 * DON'T DO ANYTHING
********* END DEFAULTS *****************

MODE=INCLUDE * START INCLUDE GROUP
 *
JOB=ABC+ * ABC??? JOBNAMES WILL
 STATS * BE BUFFERED WITH
 MSGLEVEL=10 * ABOVE 'DEFAULT'S
 * WITH CLOSE STATS
 * AND 'FULL' MESSAGES
 *
JOB=TEST+ * ALL 'TESTXXXX' JOBS
 MAXBUFSP=120K MAXBUFND=15 * WILL BE BUFFERED
 MAXBUFNI=20 STATS * WITH SELECTED OVERRIDES
 MSGLEVEL=10 *
 *
******* END 'INCLUDE' MODE CONTROL GROUP *****

MODE=EXCLUDE * BEGIN 'EXCLUDE' MODE
 * CONTROL GROUP
PROGRAM=DFH+ * IF YOU INCLUDE DFHSIP,
 * ADD A DDNAME FOR DFHCSD,
 * DFHRSD, DFHLCS, AND DFHGCD
 * WITH THE NSR CONSTRAINT

These controls cause all jobs to be excluded except for jobs that have names that begin
with the letters ABC or TEST. This is because the default mode is EXCLUDE, and the
INCLUDE mode control group specifies generic job names ABC+ and TEST+.

Programs that have names that begin with the characters DFH are excluded. This is true
even if the job name begins with ABC or TEST.

Temporarily Suspend Buffering

Chapter 6: Sample Control Streams 93

Jobs that begin with the characters ABC have the following constraints at OPEN time:

■ MAXBUFSP=200K MINBUFSP=60K MAXBUFND=75

■ MINBUFND=10

■ MAXBUFNI=25

■ MINBUFNI=6

■ CUSHION=100K

■ RMODE31=NONE (all from defaults) STATS (from both default and JOB)
MSGLEVEL=10 (from JOB level selector)

Jobs that begin with the characters TEST have the following constraints at OPEN time:

■ MINBUFSP=60K MINBUFND=10

■ MINBUFNI=6

■ CUSHION=100K

■ RMODE31=NONE (all from defaults) STATS (from both default and JOB)

and from JOB level elector:

■ MAXBUFSP=120K

■ MAXBUFND=15

■ MAXBUFNI=20

■ MSGLEVEL=10

You can alter the generic names in this member to represent test jobs in your shop. To
activate this member, change CBS3PROC member GVBDBFON to read the CBS3OPTN
member GVBSTART by specifying M=GVBSTART on the PROC statement.

See the explanation of program GVBDBFON in the section GVBDBFON - Activate
CA-Hyper-Buf (see page 77) for further details.

Temporarily Suspend Buffering

The following control stream temporarily suspends buffering by CA Hyper-Buf.

SYSTEM_DEFAULTS * begin defaults

 DEFAULTMODE=EXCLUDE * all excluded

Temporarily Suspend Buffering

94 User Guide

This control stream may be supplied to GVBREFR to suspend buffering by CA Hyper-Buf,
or specified in the ISPF refresh panel. This control stream sets DEFAULTMODE to
EXCLUDE. Since no INCLUDE mode control groups are specified, all OPEN's are excluded.

You can resume CA Hyper-Buf buffering at a later time by running GVBREFR with a full
set of constraints.

Glossary 95

Glossary

Constraint

Constraints are control statements that are supplied to GVBDBFON. The constraint
controls place limits on the buffering performed by CA Hyper-Buf. This allows each
installation to establish boundaries for the buffering variables which are honored by the
CA Hyper-Buf buffer space calculation routine.

Level Selector

A level selector is a control statement in the GVBDBFON control stream. Each level
selector determines the scope of the constraints which follow the selector. The valid
level selectors are SMSCLASS, CLUSTER, JOB, PROGRAM, and PROGRAM/DDNAME.

LSR (Local Shared Resources)

A buffering scheme used by VSAM that allows multiple files to 'share' buffers and
control blocks. (See also 'NSR').

MODE control

A MODE control is a control statement in the GVBDBFON control stream. Each MODE
control starts a new mode control group and determines if the new group is an INCLUDE
group or an EXCLUDE group.

MODE control group

A MODE control group is a group of control statements in the GVBDBFON control
stream. Each group is delimited by MODE control statements. Each MODE control
starts a new mode control group and determines the type of processing specified by the
controls in this group. This mode control group is terminated at the next MODE control
statement, or the end of the control stream, whichever comes first.

NSR (Non Shared Resources)

A buffering scheme used by VSAM that allocates separate buffers and control blocks for
the exclusive use of each file that is OPENed. See also LSR.

UBF (User Buffering)

An option available to assembler language programs only, which allows the application
to maintain control of the buffering process. CA Hyper-Buf cannot alter the number of
buffers that these applications create.

Index 97

Index

A

ACBOVR
Overriding ACB Specified Buffer Values • 41

Activate Selection Panel
Validate, Activate, or Refresh • 74

Adding Specific Selection Criteria • 90
AMPOVR

Overriding AMP Specified Buffer Values • 41
Application Interface • 11

B

Batch Utility Programs • 77
Buffering Basics • 10
BUFFERSPACE • 12

C

CA Hyper-Buf Advantages • 21
CA Hyper-Buf Primary Menu • 67
CA Technologies Product References • 3
CICS

Restricting Buffering for the CICS Environment •
43

CLUSTER LEVEL Selector • 33
Constraint • 95
Constraint Control Statements • 37
Constraint Descriptions • 41
Constraint Merging • 38
Constraint Specifications • 40
Constraints Panel

Displaying the Currently Active Constraints • 70
Contact CA Technologies • 3
Controlling Dynamic Buffering • 22
CUSHION

Reserving Storage Below 16M • 43

D

DCLASS
Associating Constraints with SMS Data Class • 32

DEFER
Deferring WRITEs • 44

DEFINE
Creating a Named Constraint Prototype • 45

DSNSHARE
Share VSAM Control Block Structure • 45

DYNAMIC
Controlling Dynamic Region Sizing • 46

Dynamic Buffering • 17
Dynamic Buffering Control Statements • 24
Dynamic Environments • 16
Dynamic VSAM Buffering • 9

E

Establishing the MODE • 27
EXCLDD

Globally Exclude a DDNAME • 46
Excluded OPENs • 28
Excluding CA Hyper-Buf from a Step While in

RUNMODE=FULL • 59
Extra Buffers • 12

F

Feature Implementation Guidelines • 85
Fine Tuning • 24
FIX

Page Fixing LSR Buffers and IOBs • 46

G

General Purpose Buffers • 15
GVBDB001—Disable or Enable CA Hyper-Buf • 87
GVBDBFON—Activate CA Hyper-Buf • 77
GVBDBOFF—Deactivate CA Hyper-Buf • 78
GVBISIT—Determine if CA Hyper-Buf is Active • 79
GVBREFR—Refresh Constraints • 78
GVBSTAT—Display Current Status of CA Hyper-Buf •

79
GVBVALD—Validate CA Hyper-Buf Control Stream •

77
GVREPORT Sample Report Construct • 86
GVREPORT SMF Reporting Utility • 80

H

HIPERSPACE
Backing LSR Buffers in HIPERSPACE • 47

I

Information Panel
Display Current Release Information • 69

Introduction • 9

98 User Guide

ISPF Dialogs • 67

J

JCL Field Descriptions • 85
JCL Requirements • 19
JOB LEVEL Selector • 34

L

Level Descriptions • 30
Level Selector • 95
Level Selectors • 29
Local Shared Resources (LSR) • 18
LSR

Converting Non-Shared Requests to Local Shared
• 49

LSR (Local Shared Resources) • 95
LSRFORCE

Bypassing ACB Inspection and Data Set Content •
50

M

MAXBUFND
Specifying Maximum Target BUFND • 50

MAXBUFNI
Specifying Maximum Target BUFNI • 51

MAXBUFNO
Specifying Maximum Target QSAM Buffers • 51

MAXBUFSP
Specifying Maximum Target Buffer Space • 51

MCLASS
Associating Constraints with SMS Management

Class • 33
Menu Options • 68
Method of Operation • 26
MINBUFND

Specifying Minimum Target BUFND • 52
MINBUFNI

Specifying Minimum Target BUFNI • 52
MINBUFNO

Specifying Minimum Target QSAM Buffers • 52
MINBUFSP

Specifying Minimum Target Buffer Space • 53
MODE control • 95
MODE control group • 95
Modeling Panel

Specifying Level Selectors • 71
MSGLEVEL

Controlling Displayed Messages • 53

N

Non-Shared Resources (NSR) • 12
NONSWAP

Mark Address Space Non-Swappable • 54
NOSTATS

Remove STATS Constraint That Results From
Merge Processing • 55

NSR
Restricting Conversion to Local Shared Resources

• 55
NSR (Non Shared Resources) • 95

P

Panel Description • 70, 71, 74
Panel Options • 69
Problems Related to Static Buffering • 13
Processing Considerations • 23
Processing Constraints • 23, 25
PROGRAM LEVEL Selector • 34
PROGRAM/DDNAME Combined Selector • 35

Q

QSAM
Enable/Disable QSAM Buffering • 56

R

RANDOM
Overriding ACB Specified Processing Options • 56

Report Fields • 81
RMODE31

Specifying VSAM Buffer and Control Block • 56
RUNMODE

CA Hyper-Buf Mode of Operation • 58
RUNMODE=FULL • 58
RUNMODE=RESTRICTED • 58

S

Sample Control Stream • 38
Sample Control Streams • 89
Sample Test Controls • 92
SCLASS

Associating Constraints with SMS Storage Class •
33

SEQUENTIAL
Overriding ACB Specified Processing Options • 59

SHRPOOL
Requesting a Specific Shared Resource Pool • 60

Index 99

SIS
Setting Sequential Insert Strategy • 62

SMF Record Description • 85
SMFID

Specifying SMF Recording Record ID • 62
SMSCLASS Level Selectors • 31
Specifying BUFFERSPACE • 13
Specifying BUFFERSPACE at OPEN Time • 16
Specifying Constraint Control Statements • 37
Specifying Defaults Only • 89
Specifying LEVEL Selectors • 31
STATS

Requesting CLOSE Statistics • 63
SWAP

Do Not Mark Address Space Non-Swappable • 63
SYSTEM_DEFAULTS - Establishing Default Parameters

• 64

T

Temporarily Suspend Buffering • 93
TEST

Forcing TEST Mode • 64
TRACKS

Specify Multi-track Buffering • 64

U

UBF (User Buffering) • 95
UNFIX

Keeping LSR Buffers and IOBs Pageable • 64
USE

Invoking a Constraint Prototype • 65
Using CA Hyper-Buf • 21

V

VSAM Buffering and Performance • 10
VSAM Control Intervals and Buffering • 11
VSAM Disk Data Structures • 10

	CA Hyper-Buf VSAM Buffer Optimizer User Guide
	CA Technologies Product References
	Contact CA Technologies
	Contents
	1: Introduction
	Dynamic VSAM Buffering
	VSAM Buffering and Performance
	Buffering Basics
	VSAM Disk Data Structures
	VSAM Control Intervals and Buffering
	Application Interface
	Extra Buffers

	Non-Shared Resources (NSR)
	BUFFERSPACE
	Specifying BUFFERSPACE

	Problems Related to Static Buffering
	General Purpose Buffers
	Specifying BUFFERSPACE at OPEN Time
	Dynamic Environments
	Dynamic Buffering

	Local Shared Resources (LSR)
	JCL Requirements

	2: Using CA Hyper-Buf
	CA Hyper-Buf Advantages
	Controlling Dynamic Buffering
	Processing Considerations
	Processing Constraints
	Fine Tuning

	Dynamic Buffering Control Statements
	Processing Constraints
	Method of Operation
	Establishing the MODE

	Excluded OPENs
	Level Selectors
	Level Descriptions

	Specifying LEVEL Selectors
	SMSCLASS Level Selectors
	DCLASS: Associating Constraints with SMS Data Class
	MCLASS: Associating Constraints with SMS Management Class
	SCLASS: Associating Constraints with SMS Storage Class
	CLUSTER LEVEL Selector
	JOB LEVEL Selector
	PROGRAM LEVEL Selector
	PROGRAM/DDNAME Combined Selector

	3: Constraint Control Statements
	Specifying Constraint Control Statements
	Sample Control Stream
	Constraint Merging
	Constraint Specifications

	Constraint Descriptions
	ACBOVR: Overriding ACB Specified Buffer Values
	AMPOVR: Overriding AMP Specified Buffer Values
	CICS: Restricting Buffering for the CICS Environment
	CUSHION: Reserving Storage Below 16M
	DEFER: Deferring WRITEs
	DEFINE: Creating a Named Constraint Prototype
	DSNSHARE: Share VSAM Control Block Structure
	DYNAMIC: Controlling Dynamic Region Sizing
	EXCLDD: Globally Exclude a DDNAME
	FIX: Page Fixing LSR Buffers and IOBs
	HIPERSPACE: Backing LSR Buffers in HIPERSPACE
	LSR: Converting Non-Shared Requests to Local Shared
	LSRFORCE: Bypassing ACB Inspection and Data Set Content
	MAXBUFND: Specifying Maximum Target BUFND
	MAXBUFNI: Specifying Maximum Target BUFNI
	MAXBUFNO: Specifying Maximum Target QSAM Buffers
	MAXBUFSP: Specifying Maximum Target Buffer Space
	MINBUFND: Specifying Minimum Target BUFND
	MINBUFNI: Specifying Minimum Target BUFNI
	MINBUFNO: Specifying Minimum Target QSAM Buffers
	MINBUFSP: Specifying Minimum Target Buffer Space
	MSGLEVEL: Controlling Displayed Messages
	NONSWAP: Mark Address Space Non-Swappable
	NOSTATS: Remove STATS Constraint That Results From Merge Processing
	NSR: Restricting Conversion to Local Shared Resources
	QSAM: Enable/Disable QSAM Buffering
	RANDOM: Overriding ACB Specified Processing Options
	RMODE31: Specifying VSAM Buffer and Control Block
	RUNMODE: CA Hyper-Buf Mode of Operation
	RUNMODE=RESTRICTED
	RUNMODE=FULL
	Excluding CA Hyper-Buf from a Step While in RUNMODE=FULL

	SEQUENTIAL: Overriding ACB Specified Processing Options
	SHRPOOL: Requesting a Specific Shared Resource Pool
	SIS: Setting Sequential Insert Strategy
	SMFID: Specifying SMF Recording Record ID
	STATS: Requesting CLOSE Statistics
	SWAP: Do Not Mark Address Space Non-Swappable
	SYSTEM_DEFAULTS - Establishing Default Parameters
	TEST: Forcing TEST Mode
	TRACKS: Specify Multi-track Buffering
	UNFIX: Keeping LSR Buffers and IOBs Pageable
	USE: Invoking a Constraint Prototype

	4: ISPF Dialogs
	CA Hyper-Buf Primary Menu
	Menu Options

	Information Panel: Display Current Release Information
	Panel Options

	Constraints Panel: Displaying the Currently Active Constraints
	Panel Description

	Modeling Panel: Specifying Level Selectors
	Panel Description

	Activate Selection Panel: Validate, Activate, or Refresh
	Panel Description

	5: Batch Utility Programs
	GVBVALD--Validate CA Hyper-Buf Control Stream
	GVBDBFON--Activate CA Hyper-Buf
	GVBDBOFF--Deactivate CA Hyper-Buf
	GVBREFR--Refresh Constraints
	GVBSTAT--Display Current Status of CA Hyper-Buf
	GVBISIT--Determine if CA Hyper-Buf is Active
	GVREPORT SMF Reporting Utility
	Report Fields
	SMF Record Description

	Feature Implementation Guidelines
	JCL Field Descriptions

	GVREPORT Sample Report Construct
	GVBDB001--Disable or Enable CA Hyper-Buf

	6: Sample Control Streams
	Specifying Defaults Only
	Adding Specific Selection Criteria
	Sample Test Controls
	Temporarily Suspend Buffering

	Glossary
	Index

