

User Exit Reference Guide
Release 8.5

CA Gen

Third Edition

This Documentation, which includes embedded help systems and electronically distributed materials (hereinafter referred to as
the “Documentation”), is for your informational purposes only and is subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be disclosed
by you or used for any purpose other than as may be permitted in (i) a separate agreement between you and CA governing
your use of the CA software to which the Documentation relates; or (ii) a separate confidentiality agreement between you and
CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your
employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced
copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2015 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA Technologies products:

■ CA Gen

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

■ Online and telephone contact information for technical assistance and customer
services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs

Documentation Changes

The following documentation updates have been made since the last release of this
documentation:

■ ABRT_xcall_ws_url_exit —CALL EXTERNAL Web Service URL Exit (see
page 817)—Added new user exit.

■ ABRT_xcall_ws_gentype_truncate_exit —CALL EXTERNAL Data Truncation (see
page 744)—Added new user exit.

■ ServerError Method—Detects an error during the processing of a synchronous
client to server flow (see page 669)-Added a new parameter description.

■ WebServiceMethodCallExit (see page 829)-Added new user exit.

Contents 5

Contents

Chapter 1: Introduction 19

Overview .. 19

User Exits .. 19

Visual Studio Support ... 19

64-bit Windows Support .. 20

User Exits Collections ... 20

User Exit General Information.. 21

Chapter 2: Windows C User Exits 25

Windows Blockmode User Exits ... 26

DBCOMMIT—Database Commit Exit .. 27

DBCONNCT—Database Connection User Exit ... 29

DBDISCNT—Database Disconnect Exit .. 32

TIRDLCT—Dialect Exit .. 33

TIRDRTL—Default Retry Limit Exits ... 35

TIRHELP—Help Interface Exit .. 37

TIRMTQB—Message Table Exit ... 40

TIRSECR—Security Check Interface Exit .. 43

TIRSYSID—System ID Exit .. 46

TIRTERMA—User Termination Exit ... 47

TIRTIAR—Database Error Message Exit .. 49

TIRUPDB—MBCS Uppercase Translation Exit ... 50

TIRUPPR—Uppercase Translation Exit .. 52

TIRURTL—Ultimate Retry Limit Exit .. 54

TIRUSRID—User ID Exit ... 55

TIRYYX—Date Exit ... 57

Windows GUI Client User Exits ... 58

C4COMMIT—Database Commit Exit (Windows) .. 60

C4CONNECT—Database Connection Exit (Windows) ... 61

C4DISCONNECT—Database Disconnect Exit (Windows) ... 63

C4ERRMSG—Database Message Exit (Windows) ... 65

C4ROLLBACK—Database Rollback Exit (Windows) ... 66

C4SQLLEN—Database SQLCA Length Exit (Windows) ... 68

WRASYNCSRVERROR—Asynchronous Flow Server Failure Exit (Windows).. 69

WRDEFAULTYEAR—Century Default Exit (Windows) ... 73

WRDRTL—Default Retry Limit Exit (Windows) ... 74

6 User Exit Reference Guide

WRGLB—Globalization Exit (Windows) .. 76

WRSECDECRYPT—Client Decryption Exit (Windows).. 78

WRSECENCRYPT—Client Side Encryption Exit (Windows) .. 80

WRSECTOKEN—Client Security Token Exit (Windows) ... 83

WRSRVRERROR—Server Flow Error Exit (Windows) ... 87

WRSTRNCM—String Comparison Exit (Windows) .. 90

WRSYSID—System ID Exit (Windows) ... 91

WRTERMID—Terminal ID Exit (Windows)... 93

WRUPPR—Uppercase Translation Exit (Windows) ... 94

WRURTL—Ultimate Retry Limit Exit (Windows) ... 96

WRUSRID—User ID Exit (Windows) .. 97

Windows Client Middleware User Exits ... 99

Client Manager - Windows User Exits ... 99

Communications Bridge - Windows User Exits ... 123

Common System Utilities - Windows User Exits ... 142

TCP/IP - Windows User Exits ... 144

WebSphere MQ Client Transport - Windows User Exits ... 150

ECI - Windows User Exits ... 163

Tuxedo... 167

Web Services - Windows User Exits .. 175

Windows Servers User Exits .. 179

Windows Server Middleware User Exits ... 199

Windows C Proxy User Exits .. 205

Chapter 3: UNIX and Linux User Exits 215

UNIX and Linux Blockmode User Exits ... 216

DBCOMMIT—Database Commit Exit .. 217

DBCONNCT—Database Connection User Exit ... 218

DBDISCNT—Database Disconnect Exit .. 220

TIRDLCT—Dialect Exit .. 221

TIRDRTL—Default Retry Limit Exits ... 222

TIRHELP—Help Interface Exit .. 224

TIRMTQB—Message Table Exit ... 227

TIRSECR—Security Check Interface Exit .. 230

TIRSYSID—System ID Exit .. 232

TIRTERMA—User Termination Exit ... 234

TIRTIAR—Database Error Message Exit .. 235

TIRUPDB—MBCS Uppercase Translation Exit ... 237

TIRUPPR—Uppercase Translation Exit .. 239

TIRURTL—Ultimate Retry Limit Exit .. 240

TIRUSRID—User ID Exit ... 241

Contents 7

TIRYYX—Date Exit ... 243

UNIX/Linux Client Middleware User Exits .. 244

Common System Utilities - UNIX and Linux User Exits .. 244

TCP/IP - Windows User Exits ... 246

WebSphere MQ Client Transport - Windows User Exits ... 252

Tuxedo... 264

UNIX and Linux Server User Exits ... 272

SRVRERROR—Server to Server Error Exit .. 273

TIRDCRYP—Server Decryption Exit ... 276

TIRELOG—Server Error Logging and Error Token Creation Exit .. 278

TIRNCRYP—Server Encryption Exit.. 280

TIRSECV—Security Validation Exit ... 282

TIRXINFO—Locale Information Exit... 285

TIRXLAT—National Language Translation Exit .. 287

UNIX and Linux Asynchronous Daemon User Exits .. 290

AEFSECEX—Asynchronous Daemon Security Exit ... 290

UNIX/Linux Server Middleware User Exits ... 292

WebSphere MQ Server Transport - UNIX and Linux User Exits .. 292

Tuxedo - UNIX and Linux User Exits ... 298

CI_S_POST_END—Tuxedo After Transaction Termination Exit .. 299

CI_S_POST_SVRDONE—Tuxedo After Server Shutdown Exit ... 300

CI_S_POST_SVRINIT—Tuxedo After Server Initialization Exit ... 301

CI_S_POST_BEGIN—Tuxedo After Begin Transaction Exit .. 303

CI_S_PRE_END—Tuxedo Prior to Transaction Termination Exit ... 304

CI_S_USER_DATA_IN—Tuxedo Inbound Flow Data Access Exit ... 306

CI_WS_DPC_URL_Exit — Web Services DPC URL User Exit .. 307

CI_S_USER_DATA_OUT—Tuxedo Outbound Flow Data Access Exit ... 309

Web Services - UNIX and Linux User Exits .. 310

CI_WS_DPC_URL_Exit—Web Services DPC User Exit ... 311

UNIX and Linux C Proxy User Exits ... 313

WRSECTOKEN—Client Security Token Exit ... 313

WRSECENCRYPT—Client Side Encryption Exit .. 317

WRSECDECRYPT—Client Decryption Exit .. 320

Chapter 4: z/OS User Exits 323

Changes to User Exits ... 323

z/OS Blockmode User Exits—CICS .. 325

TIRCDPTX—Dynamic Plan TSQ Processing Exit ... 325

TIRCRTRX—Default Retry Limit Exit .. 327

TIRTIARX—DB2 Message Exit .. 329

TIRCURTX—Ultimate Retry Limit Exit .. 331

8 User Exit Reference Guide

TIRSYSIX—System ID Exit .. 332

TIRUSRIX—User ID Exit .. 334

TIRSECRX—Security Interface Exit .. 336

TIRQCNTX—TSQ Profile Manager Exit .. 339

TIRDATX—Date and Time Services Exit ... 341

TIRDEVC—Device Characteristics Exit ... 347

TIRDLCTX—User Dialect Exit ... 351

TIRUPPRX—Uppercase Translation Exit .. 352

TIRYYX—Two-Digit Year Input Edit Exit ... 354

TIRTERMA—Termination Exit ... 356

TIRHELPX—Help Interface Exit .. 364

TIRIEX—Enhanced Map Input Edit Exit ... 367

TIRIEXS – Standard Map Input Edit Exit .. 368

z/OS Blockmode User Exits—IMS ... 375

TIRTIARX—DB2 Message Exit .. 375

TIRIRTRX—Default Retry Limit Exit ... 377

TIRIURTX—Ultimate Retry Limit Exit ... 379

TIRSYSIX—System ID Exit .. 381

TIRUSRIX—User ID Exit .. 382

TIRSECRX—Security Interface Exit .. 384

TIRDATX—Date and Time Services Exit ... 387

TIRDEVI—Device Characteristics Exit .. 394

TIRDLCTX—User Dialect Exit ... 398

TIRUPPRX—Uppercase Translation Exit .. 400

TIRYYX—Two-Digit Year Input Edit Exit ... 402

TIRTERMA—Termination Exit ... 403

TIRMTQB—Runtime Message Table Exit .. 411

TIRIDTRX—IMS Server Debug LTERM ... 413

TIRIEX—Enhanced Map Input Edit Exit ... 414

TIRIEXS – Standard Map Input Edit Exit .. 415

z/OS Blockmode User Exits—TSO... 422

TIRTIARX—DB2 Message Exit .. 422

TIRIRTRX—Default Retry Limit Exit ... 424

TIRIURTX—Ultimate Retry Limit Exit ... 426

TIRSYSIX—System ID Exit .. 428

TIRUSRIX—User ID Exit .. 429

TIRSECRX—Security Interface Exit .. 431

TIRDATX—Date and Time Services Exit ... 434

TIRDEVT—Device Characteristics Exit ... 440

TIRDLCTX—User Dialect Exit ... 444

TIRUPPRX—Uppercase Translation Exit .. 446

TIRYYX—Two-Digit Year Input Edit Exit ... 447

Contents 9

TIRMTQB—Runtime Message Table Exit .. 449

TIRTERMA—Termination Exit ... 451

TIRIEX—Enhanced Map Input Edit Exit ... 458

TIRIEXS – Standard Map Input Edit Exit .. 459

TIRIURTX—Ultimate Retry Limit Exit ... 466

z/OS Middleware User Exits—CICS TCP/IP Direct Connect Exits.. 468

TIRSLEXT—CICS Sockets Server Listener Exit .. 469

TIRSLTMX—CICS Sockets Server Listener TIMEOUT Exit ... 473

z/OS Middleware User Exits—IMS TCP/IP Direct Connect Exits .. 477

TIRxxTD—TCP/IP Destination ID Exit ... 477

TIRxxTDC—TCP/IP Decryption Exit .. 480

TIRxxTSC—TCP/IP Security Exit ... 482

z/OS Middleware User Exits – WebSphere MQ CICS ... 486

WebSphere MQ Transaction Dispatcher for CICS (TDC) Exit .. 486

z/OS Server User Exits—CICS ... 490

TIRTIARX—DB2 Message Exit .. 490

TIRCDPTX—Dynamic Plan TSQ Processing Exit ... 493

TIRSRTRX—Default Retry Limit Exit Processing .. 495

TIRSURTX—Server Ultimate Retry Limit Exit ... 495

TIRSYSIX—System ID Exit .. 495

TIRUSRIX—User ID Exit .. 497

TIRSECRX—Security Interface Exit .. 498

TIRQCNTX—TSQ Profile Manager Exit .. 501

TIRUPPRX—Uppercase Translation Exit .. 503

TIRXINFO—National Language Information Exit ... 505

TIRSECVX—Server Client Security Validation Exit ... 506

TIRDCRYX—Server Decryption Exit ... 509

TIRNCRYX—Server Encryption Exit ... 513

TIRELOGX—Server Error Logging and Error Token Creation Exit .. 516

TIRALLOX—Server-to-Server Allocate Conversation Exit .. 518

TIRPTOKX—Server-to-Server Security Token CA Generation Exit ... 521

TIRCSGNX—Server TCP/IP Signon Exit .. 523

TIRPROUX—Server-to-Server Routing Exit .. 525

TIRSIPEX—CICS Sockets Server Exit ... 527

TIRMQPX—MQ SERIES Put Function Exit .. 530

z/OS Server User Exits—IMS .. 532

TIRTIARX—DB2 Message Exit .. 532

TIRALLOX—Server-to-Server Allocate Conversation Exit .. 534

TIRPROUX—Server-to-Server Routing Exit .. 536

z/OS Batch User Exits ... 539

TIRTIARX—DB2 Message Exit .. 539

TIRBRTRX—Default Retry Limit Exit .. 541

10 User Exit Reference Guide

TIRBURTX—Ultimate Retry Limit Exit .. 544

TIRRETCX—Batch Return Code Override Exit ... 545

TIRTERBX—Batch Termination Exit ... 546

Customizing and Installing z/OS User Exits .. 549

MKUEXITS—Make COBOL Runtimes (User Exits DLLs) ... 550

MKCRUN—Make C Runtimes - TIRCRUNC (CICS) and TIRCRUNI (IMS) ... 551

MKUECTCP—Make CICS TCP/IP Exits (TIRSLEXT and TIRSLTMX) .. 553

MKUEITCP—Make IMS TCP/IP Exits (TIRxxTD, TIRxxTDC, and TIRxxTSC) ... 554

Chapter 5: NonStop User Exits 557

NonStop Blockmode User Exits .. 557

TIRDLCT—Dialect Exit .. 558

TIRDRTL—Default Retry Limit Exits ... 560

TIRHELP—Help Interface Exit .. 562

TIRMTQB—Message Table Exit ... 565

TIRSECR—Security Check Interface Exit .. 569

TIRSYSID—System ID Exit .. 572

TIRTERMA—User Termination Exit ... 574

TIRUPDB—MBCS Uppercase Translation Exit ... 576

TIRUPPR—Uppercase Translation Exit .. 578

TIRURTL—Ultimate Retry Limit Exit .. 579

TIRUSRID—User ID Exit ... 581

TIRYYX—Date Exit ... 583

NonStop Server User Exits .. 585

TIRDCRYP—Server Decryption Exit ... 586

TIRELOG—Server Error Logging and Error Token Creation Exit .. 589

TIRNCRYP—Server Encryption Exit.. 592

TIRSECV—Security Validation Exit ... 595

TIRXINFO—Locale Information Exit... 598

TIRXLAT—National Language Translation Exit .. 600

USEREXIT—NonStop RSC/MP Distributed Processing Flow Data Access Exit ... 603

Chapter 6: Web Generation User Exits 611

CompareExit—Web Generation Compare Exit .. 611

Source Code .. 611

Purpose ... 611

CompareTo Method—Compares Two Decimals ... 611

CompareTo Method—Compares Two Characters .. 612

CompareTo Method—Compares Two Doubles .. 612

CompareTo Method—Compares Two Floats .. 613

CompareTo Method—Compares Two Integers .. 614

Contents 11

CompareTo Method—Compares Two Longs .. 614

CompareTo Method—Compares Two Objects ... 615

CompareTo Method—Compares Two Shorts ... 616

CompareTo Method—Compares Two Strings .. 617

CompareTo Method—Compares two strings(upto the indicated length) .. 617

CompareTo Method—Compares Two DateTime instances .. 618

Rebuilding the Exit .. 619

DataConversionExit–Web Generation Data Conversion Exit ... 620

Source Code .. 620

Purpose ... 620

modifyInputString Method—Modifies Input String .. 620

modifyOutputString Method—Modifies Output String .. 620

Rebuilding the Exit .. 621

LowerCaseExit– Web Generation Lower Case Exit .. 622

Source Code .. 622

Purpose ... 622

LowerCase Method—Converts String to Lower Case ... 622

Rebuilding the Exit .. 623

UpperCaseExit–Web Generation Upper Case Exit ... 623

Source Code .. 623

Purpose ... 623

UpperCase Method—Converts string to Upper Case ... 623

Rebuilding the Exit .. 624

EJBRMIContextExit–Web Generation EJB RMI Context Exit .. 624

Source Code .. 624

Purpose ... 625

getInstance Method—Retrieves an instance of the exit class .. 625

Rebuilding the Exit .. 625

EJBRMIDynamicCoopFlowExit–Web Generation EJB RMI Dynamic Coop Flow Exit .. 626

Source Code .. 626

Purpose ... 626

getInstance Method—Retrieves an instance of EJBRMIDynamicCoopFlowExit class 626

FreeInstance Method—De-allocates the object obtained with GetInstance() ... 627

ProcessException Method—Indicates whether to retry the operation or to throw an exception 628

init Method—Initializes the current instance internally from the GetInstance () .. 629

getInitialFactory Method—Retrieve the initial factory classname ... 630

getProviderURL Method—Retrieves the providerURL ... 630

getUserObject Method—Retrieves a User Object .. 630

Rebuilding the Exit .. 631

EJBRMISecurityExit–Web Generation EJB RMI Security Exit .. 631

Source Code .. 631

Purpose ... 631

12 User Exit Reference Guide

getInstance Method—Allocates a security object that contains all of the security information 632

FreeInstance Method—De-allocates the object obtained with GetInstance ... 632

validate Method—Verifies the security object is correct ... 633

getObject Method—Passess the original security object to a Server ... 633

SecurityType Property—Specifies the type of security ... 634

Rebuilding the Exit .. 634

TCPIPDynamicCoopFlowExit–Web Generation TCPIP Dynamic CoopFlow Exit ... 635

Source Code .. 635

Purpose ... 635

getInstance Method—Obtains an instance of TCPIPDynamicCoopFlowExit class .. 635

FreeInstance Method—De-allocates the object obtained with GetInstance ... 636

ProcessException Method—Indicates whether to retry the operation or to throw an exception 637

init Method—Initializes the current instance internally from the GetInstance .. 638

getHostName Method—Retrieves the hostname .. 639

getPort Method—Retrieves the port .. 639

geClientPersistence Method—Retrieves the client socket connection persistence state 640

Rebuilding the Exit .. 640

WindowManagerCfgExit–Web Generation Window Manager Configuration ... 641

Source Code .. 641

Purpose ... 641

URL mapURL Method—Maps the passed URL, load module name and procedure step name 641

Rebuilding the Exit .. 642

ContextLookupExit–Web Generation Context Look Up ... 642

Source Code .. 642

Purpose ... 642

lookup Method—Retrieves an instance of the named context object ... 642

Rebuilding the Exit .. 643

CFBDynamicMessageSecurityExit–Web Generation CFB Dynamic Message Security Exit 643

Source Code .. 643

Purpose ... 644

CFBDynamicMessageSecurityExit Constructor—Provides the default caching mechanism 644

GetInstance Method—Obtains an instance of CFBDynamicMessageSecurityExit class 644

FreeInstance Method—De-allocates the object obtained with GetInstance ... 645

getSecurityToken Method—Allows the user to pass back a security token ... 646

Init Method—Initializes the current instance internally from the GetInstance.. 646

getSecurityType Method—Specifies the type of security ... 647

useCMSecurity Method—Specifies whether the Client Manager/Comm Bridge to use the userID and
password ... 648

Rebuilding the Exit .. 648

CFBDynamicMessageEncodingyExit–Web Generation CFB Dynamic Message Encoding Exit 649

Source Code .. 649

Purpose ... 649

Contents 13

serverEncoding Method—Retrieves the message text encoding for the named host and transaction 649

Rebuilding the Exit .. 650

CFBDynamicMessageEncryptionExit–Web Generation CFB Dynamic Message Encryption Exit 650

Source Code .. 650

Purpose ... 650

CFBDynamicMessageEncryptionExit Constructor—Provides the default caching mechanism 650

GetInstance Method—Obtains an instance of CFBDynamicMessageEncryptionExit class and initializes
it .. 651

FreeInstance Method—De-allocates the object obtained with GetInstance ... 652

encryptData Method—Allows the user to encrypt the data portion of the message 652

Init Method—Initializes the current instance internally from the GetInstance.. 653

Rebuilding the Exit .. 654

CFBDynamicMessageDecryptionExit–Web Generation CFB Dynamic Message Decryption 654

Source Code .. 654

Purpose ... 654

CFBDynamicMessageDecryptionExit Constructor—Provides the default caching mechanism 654

Method ... 655

FreeInstance Method—De-allocates the object obtained with GetInstance ... 655

decryptData Method—Decrypts the data portion of the message .. 656

Init Method—Initializes the current instance internally from the GetInstance.. 657

doDecryption Method—Specifies whether decryption should be done .. 657

Rebuilding the Exit .. 658

DefaultYearExit–Web Generation Default Year Exit .. 658

Source Code .. 658

Purpose ... 658

GetDefaultYear Method—Implements a customer-specified algorithm addressing Year-2000 concerns 659

Rebuilding the Exit .. 659

LocaleExit–Java Locale Exit ... 660

Source Code .. 660

Purpose ... 660

getLocalCurrencySymbol Method—Supplies the currency symbol to the generated JAVA application 660

getLocalThousandsSep Method—Supplies the thousand separator to the generated JAVA application 661

getLocalDecimalSeparator Method—Supplies the decimal point to the generated JAVA application 661

getLocalDateSeparator Method—Supplies the date separator character to the generated JAVA
application... 662

getLocalTimeSep Method—Supplies the time separator character to the generated JAVA application 663

getLocalDateOrder Method—Supplies the date order definition to the generated JAVA application 663

Rebuilding the Exit .. 664

RetryLimitExit–Web Generation Retry Limit Exit ... 665

Source Code .. 665

Purpose ... 665

14 User Exit Reference Guide

getUltimateRetryLimit Method—Retrieves the Integer containing absolute upper limit to the number
of times a procedure step can be retried .. 665

getDefaultRetryLimit Method—Retrieves the Integer containing default retry limit number of times a
procedure step can be retried .. 666

Rebuilding the Exit .. 666

SessionIDExit–Web Generation Session ID Exit.. 666

Source Code .. 666

Purpose ... 667

getSystemId Method—Retrieves the String containing the value for the LOCAL_SYSTEM_ID attributes 667

getUserId Method—Retrieves the String containing the value for the USER_ID attributes............................. 667

getTerminalId Method—Retrieves the String containing the value for the TERMINAL_ID attributes 668

Rebuilding the Exit .. 668

SrvrErrorExit–Web Generation Server Error Exit ... 669

Source Code .. 669

Purpose ... 669

ServerError Method—Detects an error during the processing of a synchronous client to server flow 669

append Method—Formats errors with messages unique to your application ... 671

Method ... 672

Rebuilding the Exit .. 672

UserExit–Web Generation User Exit .. 673

Source Code .. 673

Purpose ... 673

Default Behavior ... 673

startUp Method—Instantiates the UserExit class with its properties initialized .. 673

getCurrencySign Method—Retrieves the currency sign value for the current UserExit object 675

getThousandsSeparator Method—Retrieves the Thousand Separator value for the current UserExit
object .. 675

getDecimalSeparator Method—Retrieves the Decimal Separator value for the current UserExit object 676

getDateSeparator Method—Retrieves the Date Separator value for the current UserExit object 676

getTimeSeparator Method—Retrieves the Time Separator value for the current UserExit object 676

getDateOrder Method—Retrieves the Date Order value for the current UserExit object 677

getMessageFile Method—Retrieves the two letter key to select the message file ... 677

getSystemId Method—Retrieves the system ID string attribute .. 678

getUserId Method—Retrieves the userID string attribute ... 678

getTerminalId Method—Retrieves the terminal ID string attribute ... 679

getDialectName Method—Retrieves the current dialect name for the load module 679

GetDefaultYear Method—Implements a customer-specified algorithm addressing Year-2000 concerns 679

padAndTrim Method—Trims and pads the given string with the specified arguments 680

Rebuilding the Exit .. 681

WSDynamicCoopFlowExit–Web Service Dynamic Coop Flow Exit ... 681

Source Code .. 681

Purpose ... 681

Contents 15

getInstance Method—Retrieves an Instance of WSDynamicCoopFlowExit Class .. 682

freeInstance Method—De-allocates the Object Obtained with GetInstance() .. 683

processException Method—Indicates Whether to Retry the Operation or to Throw an Exception 684

init Method—Initializes the Current Instance Internally from the getInstance () .. 685

getBaseURL Method—Retrieves the baseURL .. 686

getContextType Method—Retrieves the contextType ... 686

Chapter 7: Web View User Exits 689

WVDefaultYearExit–WebView Default Year Exit .. 689

Source Code .. 689

Purpose ... 689

Rebuilding the Exit .. 689

WVLocaleExit–WebView Locale Exit .. 689

Source Code .. 689

Purpose ... 690

getLocalCurrencySymbol Method—Supplies the currency symbol to the generated JAVA application 690

getLocalThousandsSep Method—Supplies the thousand separator to the generated JAVA application 690

getLocalDecimalSeparator Method—Supplies the decimal point to the generated JAVA application 691

getLocalDateSeparator Method—Supplies the date separator character to the generated JAVA
application... 692

getLocalTimeSep Method—Supplies the time separator character to the generated JAVA application 692

getLocalDateOrder Method—Supplies the date order definition to the generated JAVA application 693

Rebuilding the Exit .. 694

WVRetryLimitExit–WebView Retry Limit Exit .. 695

Source Code .. 695

Purpose ... 695

getUltimateRetryLimit Method—Retrieves the Integer containing absolute upper limit 695

getDefaultRetryLimit Method—Retrieves the Integer containing default retry limit 695

Rebuilding the Exit .. 696

WVSessionIDExit–WebView Session ID Exit ... 696

Source Code .. 696

Purpose ... 696

getSystemId Method—Retrieves the String containing the value for the LOCAL_SYSTEM_ID attributes 697

getUserId Method—Retrieves the String containing the value for the USER_ID attributes............................. 697

getTerminalId Method—Retrieves the String containing the value for the TERMINAL_ID attributes 697

Rebuilding the Exit .. 698

WVSrvrErrorExit–WebView Server Error Exit ... 698

Source Code .. 698

Purpose ... 699

ServerError Method—Detects an error during the processing of a synchronous client to server flow 699

Method ... 700

16 User Exit Reference Guide

Method ... 701

Rebuilding the Exit .. 702

WVUserExit–WebView User Exit .. 702

Source Code .. 702

Purpose ... 702

Default Behavior ... 702

startUp Method—Instantiates the UserExit class with its properties initialized .. 703

getCurrencySign Method—Retrieves the currency sign value for the current UserExit object 704

getThousandsSeparator Method—Retrieves the Thousand Separator value for the current UserExit
object .. 705

getDecimalSeparator Method—Retrieves the Decimal Separator value for the current UserExit object 705

getDateSeparator Method—Retrieves the Date Separator value for the current UserExit object 705

getTimeSeparator Method—Retrieves the Time Separator value for the current UserExit object 706

getDateOrder Method—Retrieves the Date Order value for the current UserExit object 706

getMessageFile Method—Retrieves the two letter key to select the message file ... 706

getSystemId Method—Retrieves the system ID string attribute .. 707

getUserId Method—Retrieves the user ID string attribute .. 708

getTerminalId Method—Retrieves the terminal ID string attribute ... 708

getDialectName Method—Retrieves the current dialect name for the load module 708

GetDefaultYear Method—Implements of a customer-specified algorithm addressing Year-2000
concerns .. 709

padAndTrim Method—Trims and pads the given string with the specified arguments 709

Rebuilding the Exit .. 710

Chapter 8: .NET User Exits 711

ASP.NET Web Client User Exits... 711

com.ca.gen.exits.amrt.DefaultYearExit–C# Default Year Exit ... 711

com.ca.gen.exits.amrt.LocaleExit–C# Locale Exit .. 712

com.ca.gen.exits.amrt.RetryLimitExit–C# Retry Limit Exit .. 717

com.ca.gen.exits.amrt.SessionIdExit–C# Session ID Exit ... 718

com.ca.gen.exits.amrt.SrvrErrorExit–C# Server Error Exit .. 720

com.ca.gen.exits.amrt.UserExit–C# User Exit ... 724

Exits in <CAGen-root>\.net\exits\src\Common.cs file Used by CA Gen ASP.NET Web Clients and CA Gen
.NET Servers ... 732

com.ca.gen.exits.common.CompareExit – C# Compare Exit .. 732

com.ca.gen.exits.common.LowerCaseExit – C# Lower Case Exit .. 741

com.ca.gen.exits.common.UpperCaseExit – C# Upper Case Exit .. 742

com.ca.gen.exits.common.WebServiceMethodCallExit- C # CALL EXTERNAL User Exit 743

Exits in <CAGen-root>\.net\exits\src\msgobj Directory Used by CA Gen ASP.NET Web Clients and CA Gen
.NET Servers ... 747

com.ca.gen.exits.msgobj.cfb.CFBDynamicMessageDecryptionExit – C# CFB Dynamic Message
Decryption ... 748

Contents 17

com.ca.gen.exits.msgobj.cfb.CFBDynamicMessageEncodingyExit – C# CFB Dynamic Message Encoding
Exit... 751

com.ca.gen.exits.msgobj.cfb.CFBDynamicMessageEncryptionExit – C# CFB Dynamic Message
Encryption Exit .. 753

com.ca.gen.exits.msgobj.cfb.CFBDynamicMessageSecurityExit – C# CFB Dynamic Message Security
Exit... 757

CA Gen .NET Servers ... 762

com.ca.gen.exits.scrt.AuthorizationExit – C# Server Authorization Exit ... 762

com.ca.gen.exits.scrt.SecurityValidationExit – C# Server Security Validation Exit ... 764

com.ca.gen.exits.scrt.LocaleExit – C# Server Locale Exit .. 767

com.ca.gen.exits.scrt.RetryLimitExit – C# Server Retry Limit Exit ... 771

com.ca.gen.exits.scrt.SrvrErrorExit – C# Server Error Exit .. 772

com.ca.gen.exits.scrt.UserExit – C# Server User Exit .. 774

C# Server Middleware User Exits ... 777

com.ca.gen.exits.coopflow.net.NETDynamicCoopFlowExit–C# NET Dynamic CoopFlow Exit 777

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA
Gen .NET Servers .. 783

com.ca.gen.exits.coopflow.complus.COMPLUSDynamicCoopFlowExit–C# COM PLUS Dynamic Coop
Flow Exit .. 783

com.ca.gen.exits.coopflow.complus.COMPLUSDynamicCoopFlowSecurityExit–C# COMPLUS Dynamic
Coop Flow Security Exit ... 788

com.ca.gen.exits.coopflow.mqs.MQSDynamicCoopFlowExit–C# MQSeries Dynamic Coop Flow Exit 791

com.ca.gen.exits.coopflow.net.NETDynamicCoopFlowSecurityExit–C# NET Dynamic Coop Flow
Security Exit ... 799

com.ca.gen.exits.coopflow.tcpip.TCPIPDynamicCoopFlowExit–C# TCPIP Dynamic Coop Flow Exit 802

com.ca.gen.exits.coopflow.ws.WSDynamicCoopFlowExit – C# WS Dynamic Coop Flow Exit 808

Chapter 9: Browser User Exits 815

Customize userOnLoad in ASP.NET Mode .. 815

Customize userOnLoad in HTML Mode for Web View ... 816

Chapter 10: Action Block Runtime User Exit 817

Windows Action Block Runtime User Exits .. 817

ABRT_xcall_ws_url_exit —CALL EXTERNAL Web Service URL Exit ... 817

ABRT_xcall_ws_gentype_truncate_exit —CALL EXTERNAL Data Truncation ... 819

UNIX and Linux Action Block Runtime User Exits ... 823

ABRT_xcall_ws_url_exit —CALL EXTERNAL Web Service URL Exit ... 823

ABRT_xcall_ws_gentype_truncate_exit —CALL EXTERNAL Data Truncation ... 825

Java Action Block Runtime User Exits ... 829

WebServiceMethodCallExit ... 829

Chapter 1: Introduction 19

Chapter 1: Introduction

Overview

All the user exits in CA Gen are grouped in this section.

This section is intended for programmers and application developers working on
building applications. It is assumed that these users have knowledge about the set of
user exits that are invoked from the execution environments in which their applications’
components are deployed.

User Exits

CA Gen generated applications invoke a number of CA Gen supplied routines at
execution time to perform various functions. Most of these routines are provided as
DLLs or shared libraries and cannot be modified by the user. However, some routines
have been implemented as user exits.

A user exit is modifiable source code that you can customize to fit your specific needs.
The user exits can be as simple or as complex as you require. The source modules as
delivered are referred to as default exits because the logic they contain is executed if no
modifications are made. The source for the default exits are in the CA Gen installation
directory.

Visual Studio Support

CA Gen supports compiling generated C applications on Windows using Visual Studio
2010.

The %GENxx%Gen\VS100 folder contains a collection of files that support Visual Studio
2010. A set of user exit rebuild procedures is also present in the %GENxx%Gen\VS100
folder and must be used to rebuild any necessary Visual Studio 2010 designated user
exits.

CA Gen supports compiling generated C applications on Windows using Visual Studio
2012.

The %GENxx%Gen\VS110 folder contains a collection of files that support Visual Studio
2012. A set of user exit rebuild procedures is also present in the %GENxx%Gen\VS110
folder and must be used to rebuild any necessary Visual Studio 2012 designated user
exits.

64-bit Windows Support

20 User Exit Reference Guide

64-bit Windows Support

CA Gen supports compiling and executing generated C Blockmode and server
applications as 64-bit images on Windows using Visual Studio. The
%GENxx%Gen\VSabc\amd64 folder contains a collection of files that support 64-bit
Windows. A set of user exit rebuild procedures is also available in the
%GENxx%Gen\VSabc\amd64 folder and must be used to rebuild any necessary 64-bit
designated user exits.

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with VS100
for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the current release
of CA Gen. For the current release number, see the Release Notes.

User Exits Collections

CA Gen provides a large number of user exits that span a number of components and
are written in several languages. Below is the collection of the various sets of user exits
that will be documented within this guide.

Windows User Exits

Windows C User Exits

Blockmode Runtime User Exits

GUI Runtime User Exits

Client Middleware User Exits

Server Runtime User Exits

Server Middleware User Exits

C Proxy User Exits

Windows Java User Exits

Windows .Net User Exits

UNIX/Linux User Exits

Blockmode Runtime User Exits

Client Middleware User Exits

Server Runtime User Exits

Asynchronous Daemon User Exits

Server Middleware User Exits

C Proxy User Exits

User Exit General Information

Chapter 1: Introduction 21

z/OS User Exits

Blockmode Runtime User Exits

Middleware User Exits

Server Runtime User Exits

NonStop User Exits

Blockmode Runtime User Exits

Server Runtime User Exits

Web Generation User Exits

Web View User Exits

.NET User Exits

Browser User Exits

User Exit General Information

After the desired user exit source file has been located, make a backup copy of the file,
then edit the file and save it back to its original name and location.

Important! Do not modify the package name. Doing so will cause the exit to be
unrecognized at runtime.

Because the user exit source files are saved to their original locations, it may be useful
to save the original and modified sources in a configuration management system to
prevent the changes from being lost should a new installation overwrite the source file.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes.

User Exit General Information

22 User Exit Reference Guide

Note: Throughout this document, steps are provided to execute several Windows user
exit rebuild procedures. Before executing these procedures, verify that the required
compiler or linker environment variables are initialized. The Microsoft Visual Studio
supplies two batch scripts (when working with Visual Studio) that must be run from
within the command window to set these variables.

For Visual Studio, these batch scripts may be referenced through the supplied
environment variables VSabcCOMNTOOLS and VCINSTALLDIR as follows:

For 32-bit or 64-bit build environments:

“%VSabcCOMNTOOLS%VSVARS32.BAT”

In addition for 64-bit build environments only:

“%VCINSTALLDIR%VCVARSALL.BAT” x64

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with VS100
for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the current release
of CA Gen. For the current release number, see the Release Notes.

In the following chapters, each user exit is documented as follows:

User Exit Name and Title

Acts as heading for User Exit

Functional Usage

Displays calling format, including format, and return variable

Source Code

Indicates name of the source code filename

Purpose

Details the purpose of the user exit

Arguments

Lists a table with arguments and descriptions

Return Code

Lists a table with return codes and descriptions

Default Behavior

Describes how the user exit behaves when delivered (unmodified)

User Exit General Information

Chapter 1: Introduction 23

Building on Target System

Describes how to rebuild the user exit

Related User Exits

Displays a list of related user exits

Chapter 2: Windows C User Exits 25

Chapter 2: Windows C User Exits

There are several sets of user exits to support the variety of C applications that run on
the Windows platform. Batch files are provided to assist in building the runtime user
exits for each runtime environment listed in the following sections.

The following table lists the sets of runtime user exits available on the Windows
platform.

User Exit Set Provided As

Blockmode Runtime AEUXITxxN.DLL,
AECDB2xxN.DLL,
AECODBxxN.DLL,
AECORAxxN.DLL

GUI Runtime WRExx0N.DLL,
STUBDB2N.EXE,
STUBODBN.EXE,
STUBORAN.EXE

Client Middleware

 Client Manager CMICXxxN.DLL,
CIDExxN.DLL,
DECRExxN.DLL,
IEFDIRN.DLL,
RSCUXxxN.DLL

 Communications Bridge CIDExxN.DLL,
DECRExxN.DLL,
ECIUXxxN.DLL,
RSCUXxxN.DLL,
TCPUXxxN.DLL

 Common System Utilities (CSU) CSUVNxxN.DLL

 TCP/IP as Transport TCPCXxxN.DLL

 WebSphere MQ as Transport MQSCXxxN.DLL

 ECI as Transport ECICXxxN.DLL

 Tuxedo as Transport TXWCXxxN.DLL,
TXCXxxN.DLL

 Web Services as Transport WSCXxxN.DLL

Windows Blockmode User Exits

26 User Exit Reference Guide

User Exit Set Provided As

Server Runtime AEUEXITxxN.DLL,
AECDB2xxN.DLL,
AECODBxxN.DLL,
AECORAxxN.DLL

Asynchronous Daemon AEFSECEX.EXE

Server Middleware

 WebSphere MQ as Transport MQSSXxxN.DLL

C Proxy PREXxxN.DLL

Windows Blockmode User Exits

The following table summarizes the functions available through the user exits for
generated blockmode applications:

Name Description

DBCOMMIT Database Commit User Exit. There is one user exit routine for each
supported database: ODBC, Oracle, and DB2.

DBCONNCT Database Connection User Exit. There is one user exit routine for
each supported database: ODBC, Oracle, and DB2.

DBDISCNT Database Disconnect User Exit. There is one user exit routine for
each supported database: ODBC, Oracle, and DB2.

TIRDCRYP Runtime Cooperative Communications Decryption User Exit

TIRDLCT Dialect User Exit

TIRDRTL Default Retry Limit User Exit

TIRELOG Server Error Logging Exit

TIRHELP Help Interface User Exit

TIRNCRYP Cooperative Runtime Communications Encryption User Exit

TIRMTQB Message Table User Exit

TIRSECR Security Interface User Exit

TIRSECV Cooperative Runtime Communications Client Security Validation
User

TIRSERRX Server to Server Error Exit

TIRSYSID System ID User Exit

TIRTERMA User Termination User Exit

Windows Blockmode User Exits

Chapter 2: Windows C User Exits 27

Name Description

TIRTIAR Database Error Message User Exit. There is one user exit routine
for each supported database: ODBC, Oracle and DB2.

TIRUPDB MBCS Uppercase Translation User Exit

TIRUPPR Uppercase Translation User Exit

TIRURTL Ultimate Retry Limit User Exit

TIRUSRID User ID User Exit

TIRXLAT National Language Translation Exit

TIRYYX Date User Exit

Note: The database user exits DBCONNCT, DBCOMMIT, DBDISCNT, and TIRTIAR are
rebuilt into individual DLLs (AECDB2xxN.DLL, AECODBxxN.DLL, AECORAxxN.DLL) using
the command procedure %GENxx%Gen\VSabc\mkdbs.bat when using Visual Studio
32-bit and %GENxx%Gen\VSabc\amd64\mkdbs.bat when using Visual Studio 64-bit.

Blockmode runtime user exits are rebuilt into the DLL AEUEXITxxN.DLL using the
command procedure %Genxx%Gen\VSabc\mkexits.bat for Visual Studio 32-bit or
%Genxx%Gen\VSabc\amd64\mkexits.bat for Visual Studio 64-bit. This is the same DLL
that is used with Server applications.

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with VS100
for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the current release
of CA Gen. For the current release number, see the Release Notes.

Details for the preceding user exits follow in a separate section for each.

DBCOMMIT Database Commit Exit

void dbcommit (

int rc)

Source Code

For Db2: TIRDB2.PPC

For ODBC: TIRODBC.C

For Oracle: TIRORA.PPC

Windows Blockmode User Exits

28 User Exit Reference Guide

Purpose

Use the Database Commit User Exit to customize the commit logic for a particular
database. The default processing of this user exit provides a simple database commit.

There exists a Database Commit User Exit for each supported DBMS: ODBC, Oracle and
DB2.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

rc Input Type of commit to perform

Return Code

None

Default Behavior

By default, these modules perform a standard database commit statement.

Building on Windows

The Database Connection User Exit is built as part of the dynamic link libraries
AECDB2xxN.DLL, AECODBxxN.DLL and AECORAxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates the platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKDBS.BAT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

Windows Blockmode User Exits

Chapter 2: Windows C User Exits 29

3. Run MKDBS.BAT, passing the DBMS as the parameter. The DBMS is one of the
following:

■ DB2

■ ODBC

■ ORACLE

■ ORACLE 10

Note: For more information about building the Blockmode Runtime Database DLLs, see
the Windows Implementation Toolset User Guide.

Related User Exits

DBCONNCT, DBDISCNT, TIRTIAR

DBCONNCT Database Connection User Exit

int dbconnect (

char *user,

char *pswd)

Source Code

For Db2: TIRDCONN.SQC

For ODBC: TIRCODBC.C

For Oracle: TIROCONN.PC

Windows Blockmode User Exits

30 User Exit Reference Guide

Purpose

Use the Database Connection User Exit to customize the connection to the particular
database. This user exit enhances database security. The default processing of this user
exit provides a simple database connection.

There exists a Database Connect User Exit for each supported DBMS: ODBC, Oracle and
DB2.

The default method for CA Gen to acquire DBMS connection information for blockmode
applications is for the AEF to locate the trancode in the AEENV file. Connection
information includes the username, password, and database name. Each person that
executes the application must have read access to the AEENV file that contains the
connection information.

Database Description Host Variable Declared Type

Oracle user ID uid VARCHAR(32)

Oracle Password pwd VARCHAR(32)

DB2 user ID uid char(9)

DB2 Password pwd char(9)

DB2 database name dbname char(9)

ODBC user ID uid char(20)

ODBC Password pwd char(20)

ODBC database name dbname char(31)

We recommend leaving the call to dbid() unchanged, and adding logic immediately
before the database connect statements to populate the appropriate variables. Ensure
that you add all code that the DBMS requires. For example, verify arr and len elements
are populated correctly for VARCHAR. We also recommend that all AEENV files contain
character strings as place holders for the database connection information. These
character strings do not have to contain valid connection information.

For greater security, add a call to an encryption routine.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*user Input Pointer to DBMS userid

Windows Blockmode User Exits

Chapter 2: Windows C User Exits 31

Name I/O Description

*pswd Input Pointer to DBMS password for userid

Return Code

Integer representing success or failure of database connection.

Default Behavior

By default, these modules read the database connect information from the AEENV file
and use the information in the database connect statement.

Building on Windows

The Database Connection User Exit is built as part of the dynamic link libraries
AECDB2xxN.DLL, AECODBxxN.DLL and AECORAxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKDBS.BAT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKDBS.BAT, passing the DBMS as the parameter. The DBMS is one of the
following:

DB2

ODBC

ORACLE

Note: For more information about building the Blockmode Runtime Database DLLs, see
the Windows Implementation Toolset User Guide.

Related User Exits

DBCOMMIT, DBDISCNT

Windows Blockmode User Exits

32 User Exit Reference Guide

DBDISCNT Database Disconnect Exit

int dbdiscnt()

Source Code

For Db2: TIRDB2.PPC

For ODBC: TIRODBC.C

For Oracle: TIRORA.PPC

Purpose

Use the Database Disconnect User Exits to customize the database disconnect. The
default processing of these users exits provides simple database disconnect.

There exists a Database Disconnect User Exit for each supported DBMS: ODBC, Oracle
and DB2.

Arguments

None

Return Code

Integer representing success or failure of database disconnection.

Default Behavior

By default, these modules perform a standard database disconnect statement.

Windows Blockmode User Exits

Chapter 2: Windows C User Exits 33

Building on Windows

The Database Connection User Exit is built as part of the dynamic link libraries
AECDB2xxN.DLL, AECODBxxN.DLL and AECORAxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKDBS.BAT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit, where abc is the supported
version of Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKDBS.BAT, passing the DBMS as the parameter. The DBMS is one of the
following:

DB2

ODBC

ORACLE

Note: For more information about building the Blockmode Runtime Database DLL’s, see
the Windows Implementation Toolset User Guide.

Related User Exits

DBCONNCT, DBCOMMIT

TIRDLCT Dialect Exit

void TIRDLCT (

char *rp1,

char *rp2,

struct dialect_cmcb *tirdlct_cmcb)

Source Code

TIRDLCT

Windows Blockmode User Exits

34 User Exit Reference Guide

Purpose

TIRDLCT supplies the current user's dialect to the application and is useful only for
multilingual applications. For multilingual support, the user is responsible for modifying
this module to return the appropriate dialect. The dialect returned should be defined
using the Design selection on the CA Gen action bar. If it is not, the application's default
dialect is used.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*rp1 Input A pointer to a parameter control block.
Reserved for runtime internal use only.

*rp2 Input A pointer to a parameter control block.
Reserved for runtime internal use only.

*tirdlct_cmcb Input/Output A pointer to a structure containing the
following items:

tirdlct_userid Input An 8-byte character array containing the
current user id as provided by TIRUSRID.

tirdlct_terminal_id Input An 8-byte character array containing the
current terminal id.

tirdlct_system_id Input An 8-byte character array containing the
current system id as provided by
TIRSYSID.

tirdlct_return_dialect Input An 8-byte character array containing the
returned dialect.

Return Code

None

Default Behavior

TIRDLCT returns a dialect value of DEFAULT.

Windows Blockmode User Exits

Chapter 2: Windows C User Exits 35

Building on Windows

The Dialect User Exit is built as part of the dynamic link library AEUEXITxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKEXITS.BAT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit where abc is the supported
version of Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITS.BAT.

Related User Exits

TIRUSRID, TIRSYSID

TIRDRTL Default Retry Limit Exits

int tirdrtl (

char retry_flag)

Source Code

TIRDRTL.C

Purpose

TIRDRTL lets you override the CA Gen-defined default value for the TRANSACTION
RETRY LIMIT system attribute. TRANSACTION RETRY LIMIT will be initialized to this value
at the beginning of each new transaction. This value can subsequently be modified by a
SET TRANSACTION RETRY LIMIT statement in an action diagram.

TRANSACTION RETRY LIMIT is used to specify the maximum number of times to retry a
transaction when one of the following events occurs:

■ A RETRY TRANSACTION action diagram statement executes.

Windows Blockmode User Exits

36 User Exit Reference Guide

■ A deadlock or timeout occurs trying to access a database, and there is no WHEN
DATABASE DEADLOCK OR TIMEOUT statement for that entity action statement.

In these cases, uncommitted database updates are rolled back, and an attempt is made
to execute the application again. After the number of retries, as indicated by the
TRANSACTION RETRY COUNT system attribute, reaches TRANSACTION RETRY LIMIT or
the value specified by the Ultimate Retry Limit User Exit (see TIRURTL), no more retries
can occur, and the application fails with a runtime error.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

retry_flag Input Flag to indicate whether or not to set a retry limit.

Return Code

Integer containing the retry limit.

Default Behavior

If the Default Retry Limit User Exit is not used, TRANSACTION RETRY LIMIT will be
initialized to 10 for all target environments. If the Default Retry Limit User Exit is used, it
must not return a value greater than that specified in the Ultimate Retry Limit User Exit.

Building on Windows

The Default Retry User Exit is built as part of the dynamic link library AEUEXITxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

Windows Blockmode User Exits

Chapter 2: Windows C User Exits 37

2. Change your current directory to that directory which contains the batch file
MKEXITS.BAT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit where abc is the supported
version of Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITS.BAT.

Related User Exits

TIRURTL

TIRHELP Help Interface Exit

void TIRHELP (

char *rp1,

char *rp2,

struct tirhelp *in_tirhelp_cmcb,

char *in_tirhelp_return_message,

char *in_environment_list,

char *in_application_list,

struct scmgr *in_scmgr_cmcb)

Source Code

TIRHELP.C

Purpose

TIRHELP is called when a HELP or PROMPT command is entered. From TIRHELP, a help
system can be invoked to provide application help information.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved
for runtime internal use only.

*rp2 Input A pointer to a parameter control block. Reserved
for runtime internal use only.

Windows Blockmode User Exits

38 User Exit Reference Guide

Name I/O Description

*in_tirhelp_cmcb Input/Output A pointer to a structure containing the following
items:

tirhelp_request_code Input/Output A 2-byte character array containing the type of
help requested.

tirhelp_return_code Output A 2-byte character array containing the return
code.

tirhelp_mapname Input An 8-byte character array containing the
mapname.

tirhelp_data_filler Unused An 8-byte character array used as a structure filler.

tirhelp_trancode Input An 8-byte character array containing the trancode.

tirhelp_userid Input An 8-byte character array containing the user id.

tirhelp_terminal_id Input An 8-byte character array containing the terminal
id.

tirhelp_printer_id Input An 8-byte character array containing the printer id.

tirhelp_dialect Input An 8-byte character array containing the dialect.

tirhelp_message_table Input An 8-byte character array containing the message
table. This value is passed to TIRMTQB.

tirhelp_filler Unused A 16-byte character array used as a structure filler.

tirhelp_last_command Input An 80-byte character array containing the last
command.

tirhelp_last_message Input An 80-byte character array containing the last
message.

tirhelp_screen_helpid Output A 44-byte character array containing the help
identifier for the screen.

tirhelp_field_helpid Output A 44-byte character array containing the help
identifier for the field.

tirhelp_field_token1 Input A 3-byte character array containing a field token.

tirhelp_field_token2 Input A 3-byte character array containing a second field
token

tirhelp_field_len Input A 3-byte character array containing the field
length.

tirhelp_field_value Input A 256-byte character array containing the value of
the field.

tirhelp_field_protect Input A single character containing a field protection flag.

tirhelp_field_intens Input A single character containing a field intensity flag.

Windows Blockmode User Exits

Chapter 2: Windows C User Exits 39

Name I/O Description

in_tirhelp_return_message Output An 80-byte character array representing the
returned help message. By default, this message is
returned from a call to TIRMTQB.

in_environment_list Input A pointer to an environment control block.
Reserved for runtime internal use only.

in_application_list Input A pointer to an application control block. Reserved
for runtime internal use only.

in_scmgr_cmcb Input/Output A pointer to a screen management control block.

Return Code

None

Default Behavior

The TIRHELP routine will return a message indicating no help is available.

Building on Windows

The Help Interface User Exit is built as part of the dynamic link library AEUEXITxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates the platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKEXITS.BAT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITS.BAT.

Related User Exits

TIRMTQB

Windows Blockmode User Exits

40 User Exit Reference Guide

TIRMTQB Message Table Exit

void TIRMTQB(char *rp1,

char *rp2,

char *msg_tbl_name,

short *msgnum,

struct PARMMSG *prm);

Source Code

TIRMTQB.C

Purpose

This message table exit is called by the runtime when a system-level message is to be
displayed. The user can customize the wording of the messages within this exit.
Additional tables can also be defined to support other dialects.

The default table includes an entry for each CA Gen runtime error message. Each entry
includes the following information:

■ Message Number—The message number is permanently assigned by CA Gen. Each
message has a unique number.

■ Message Text—The message text is the actual words that appear on the application
screen when an error occurs. The message text, and any variable values that can be
appended, is truncated if it exceeds the length of the error message line defined for
the application screen. The error message line is a maximum of 80 characters of
which 12 are reserved for the message number.

If the message number is not in the table, TIRMTQB returns a default message.

Runtime Error Table

The Runtime Error Message Table includes an entry for each runtime error message.
Each table entry includes the following information:

■ Message type— a message number is not found in the table, or when you return to
a transaction screen after a fatal error or a Dialog Manager error occurs. Valid
message types are shown in the following list:

■ Default message— a message number is not found in the table, or when you return
to a transaction screen after a fatal error or a Dialog Manager error occurs.

■ Dialog Manager error—Occurs when the Dialog Manager is unable to communicate
with the system. This is a fatal error beyond the control of CA Gen. An error in the
load module packaging or in the configuration specifications causes a Dialog
Manager error. Error handling is the same as for a fatal error.

Windows Blockmode User Exits

Chapter 2: Windows C User Exits 41

■ Fatal error— a CA Gen application abnormal program ending. If a condition occurs
at runtime that the generated code cannot handle, the system issues a fatal error.
An error message screen displays the appropriate error messages.

■ Function error—Occurs if a CA Gen-supported function receives invalid input or
produces invalid output. CA Gen-supplied functions manipulate characters,
numbers, dates, and times.

■ Screen edit error—A non-fatal error that occurs when an input or output value for a
field does not match the expected value, the range, type, or format defined for the
field during model development. This type of message is displayed on your
transaction screen. You can correct the error and continue with the transaction.

■ Unformatted input error—Occurs when the unformatted input contains invalid
parameters, delimiters, or both. Unformatted input is a list of parameters
associated with a clear screen transaction code.

■ Message number—Each message has a unique number that is permanently
assigned by CA Gen.

■ Message text—The message text consists of the actual words that appear on the
application screen when an error occurs. Because of the length of the message
identifier, the message text is limited to 68 characters for an 80-character screen.
The message text and appended variables are truncated if they exceed the length of
the error message line defined for the application screen.

■ Suffix—(If applicable) The suffix contains variable values, such as return codes,
permitted values, or the values in error.

Runtime Error Handling

Runtime errors are handled by the Dialog Manager. Runtime errors are non-fatal, such
as screen edit, or fatal errors.

If a non-fatal error such as invalid user input occurs, the Dialog Manager displays an
error message on the transaction screen. You can correct the error and continue
processing the transaction.

If an application fails because of a fatal error, transaction processing terminates, and the
error processing is as follows:

■ The Dialog Manager performs all necessary rollbacks of the databases.

■ CA Gen displays an error message screen that lists the appropriate runtime error
messages.

■ Pressing Enter from the error message screen causes CA Gen applications to
terminate execution.

Windows Blockmode User Exits

42 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for runtime
internal use only.

*rp2 Input A pointer to a parameter control block. Reserved for runtime
internal use only.

*msg_tbl_name Input A character string containing the name of the table to be
used for extraction of the message text. Currently one table
named DEFAULT is supported by the CA Gen runtime.

*msgnum Input A short value containing the message number corresponding
to the text to be fetched.

*prm Input/ Output A pointer to a PARMMSG structure to contain the returned
message text information. This structure, defined in
tirmtq.h, has the following definition:

PARMLEN A short value containing the total length of PARMNO +
PARMTXT.

PARMNO Output An 11-byte character array containing the message number
formatted in a standard style.

PARMTXT Output A string containing the text corresponding to the error
message number. The string can be up to 245 bytes,
including the terminating NULL.

filler Unused Two unused filler characters

Return Code

None

Default Behavior

The table in the default exit is used to retrieve runtime error message text.

Windows Blockmode User Exits

Chapter 2: Windows C User Exits 43

Building on Windows

The Message Table User Exit is built as part of the dynamic link library AEUEXITxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates the platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKEXITS.BAT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITS.BAT.

Related User Exits

None

TIRSECR Security Check Interface Exit

void TIRSECR(char * rp1,

char * rp2,

struct security_cmcb * in_tirsecr_cmcb);

Source Code

TIRSECR.C

Purpose

The Dialog Manager calls the Security Check Interface Exit when a transaction is started
and before execution of a dialog flow. This allows transaction-level security checking to
be implemented. The following data is provided by the dialog manager of each load
module for use in checking security authorization:

■ System ID (as provided by the System ID Exit, TIRSYSID)

■ User ID (as provided by the User ID Exit, TIRUSRID)

Windows Blockmode User Exits

44 User Exit Reference Guide

■ Trancode

■ Terminal ID

■ Load module name

■ Procedure step name

If the user defined security check passes, TIRSECR should move a value of spaces to the
return code. If the security check fails, a non-blank value should be moved to the return
code with a message describing the violation inserted into the tirsecr_failure_msg
buffer. The current dialect in effect on the client is passed in using tirsecr_dialect.

When the dialog manager receives control, it proceeds with the transaction if the return
code is spaces, or issues an error if it is not.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*rp2 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*in_tirsecr_cmcb Input/Output A pointer to a structure containing the following items:

tirsecr_userid Input An 8-byte character array containing the security user
ID as provided by the TIRUSRID user exit

tirsecr_trancode Input An 8-byte character array containing the current
transaction code.

tirsecr_terminal_id Input An 8-byte character array containing the current
terminal ID.

tirsecr_system_id Input An 8-byte character array containing the current
system ID as returned by the TIRSYSID user exit.

tirsecr_load_module Input An 8-byte character array containing the name of the
executing load module calling this exit.

tirsecr_pstep_name Input A 32-byte character array containing the name of
procedure step being executed.

tirsecr_dialect Input A 32-byte character array containing the dialect in
effect on the client.

Windows Blockmode User Exits

Chapter 2: Windows C User Exits 45

Name I/O Description

tirsecr_return_code Output A 2-character array representing the success or failure
of this exit processing. TIRSECR_ALL_OK defined as two
spaces implies success, any other value implies failure.
If none spaces are return, tirfail will be passed the
tirsecr_failure_msg message.

tirsecr_failure_msg Output An 80-byte character array used in conjunction with a
failing return code in tirsecr_return_code. This exit can
insert an error message into this array that will be
passed by the Dialog manager to the tirfail user exit.

Return Code

None directly. For more information, see tirsecr_return_code structure member.

Default Behavior

The default exit will return a status code of spaces, indicating no security violation was
detected.

Building on Windows

The Security Check User Exit is built as part of the dynamic link library AEUEXITxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates the platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKEXITS.BAT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITS.BAT.

Related User Exits

TIRUSRID, TIRSYSID

Windows Blockmode User Exits

46 User Exit Reference Guide

TIRSYSID System ID Exit

void TIRSYSID (char *rp1;

char *rp2;

char *system_id);

Source Code

TIRSYSID.C

Purpose

TIRSYSID supplies the system ID to the application.

The purpose of TIRSYSID is to implement application logic that lets you implement one
model on multiple platforms, and perform processing appropriate for the platform. The
system ID is also one of the parameters passed to the Security Interface Exit (TIRSECR).

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved
for runtime internal use only.

*rp2 Input A pointer to a parameter control block. Reserved
for runtime internal use only.

*system_id Output An 8-byte character array representing the system
identifier where the server application is executing.

Return Code

None

Default Behavior

By default, TIRSYSID calls the runtime routine DEFSYSID. This routine returns a default
system ID, the value of which depends on the platform on which the application is
executing.

Under Windows if the environment variable IEF_SYSID is set, the first 8 characters of
this variable are used. Otherwise, "WIN" is returned.

Windows Blockmode User Exits

Chapter 2: Windows C User Exits 47

Building on Windows

The System ID User Exit is built as part of the dynamic link library AEUEXITxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKEXITS.BAT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITS.BAT.

Related User Exits

TIRSECR

TIRTERMA User Termination Exit

void TERTERMA (

char *rp1,

char *rp2,

struct term_pb *pb)

Source Code

TIRTERMA.C

Purpose

TIRTERMA is called when an application fails. Modification of TIRTERMA lets the user
customize the handling of runtime errors.

Windows Blockmode User Exits

48 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*rp1 Input A pointer to a parameter control block.
Reserved for runtime internal use only.

*rp2 Input A pointer to a parameter control block.
Reserved for runtime internal use only.

*pb Input/ Output A pointer to a PARMMSG structure to contain
the termination information. This structure is
defined in tirterma.h.

Return Code

None

Default Behavior

The default processing for TIRTERMA returns a status code of spaces, indicating to use
standard error handling.

Building on Windows

The User Termination User Exit is built as part of the dynamic link library
AEUEXITxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKEXITS.BAT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITS.BAT.

Windows Blockmode User Exits

Chapter 2: Windows C User Exits 49

Related User Exits

None

TIRTIAR Database Error Message Exit

void TIRTIAR (

char *sqlca,

short *ml,

char *mb,

int maxLength)

Source Code

For Db2: TIRDB2.PPC

For ODBC: TIRODBC.C

For Oracle: TIRORA.PPC

Purpose

Use the Database Error Message User Exit to customize the error message received
from the database commit. The default processing of this user exit provides a simple
database error message.

There exists a Database Error Message User Exit for each supported DBMS: ODBC,
Oracle and DB2.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*sqlca Input Pointer to SQLCA structure

*ml Output Pointer to error message length

*mb Output Pointer to error message buffer

maxLength Input Maximum length of error message that can be written to error
message buffer

Return Code

None

Windows Blockmode User Exits

50 User Exit Reference Guide

Default Behavior

By default, these modules provide the error message returned by the database commit.

Building on Windows

The Database Connection User Exit is built as part of the dynamic link libraries
AECDB2xxN.DLL, AECODBxxN.DLL and AECORAxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKDBS.BAT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKDBS.BAT, passing the DBMS as the parameter. The DBMS is one of the
following:

DB2

ODBC

ORACLE

Note: For more information about building the Blockmode Runtime Database DLLs, see
the Windows Implementation Toolset User Guide.

Related User Exits

DBCOMMIT

TIRUPDB MBCS Uppercase Translation Exit

void TIRUPDB (

char *rp1,

char *rp2,

char *tbl_name,

long *len,

char *xlate_data)

Windows Blockmode User Exits

Chapter 2: Windows C User Exits 51

Source Code

TIRUPDB.C

Purpose

TIRUPDB is called to uppercase multi-byte text. The user can modify the mechanism
used to uppercase multi-byte text with this user exit.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*rp2 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*tbl_name Input A pointer to a translation table name.

*len Input/Output Length of text to convert to uppercase.

*xlate_data Input/Output A pointer to the text to be uppercased.

Return Code

None

Default Behavior

The default translation uses MBCS functions to perform uppercase translation based
upon the active system code page. However, the system designer, programmer, may
add code to recognize dialects and perform any lower to upper functionality desired. In
that case, insure that the default behavior still uses the MBCS libraries.

Windows Blockmode User Exits

52 User Exit Reference Guide

Building on Windows

The MBCS Uppercase Translation User Exit is built as part of the dynamic link library
AEUEXITxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKEXITS.BAT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITS.BAT.

Related User Exits

TIRUPPR

TIRUPPR Uppercase Translation Exit

void TIRUPPR (

char *rp1,

char *rp2,

char *tbl_name,

long *len,

char *xlate_data)

Source Code

TIRUPPR.C

Purpose

TIRUPPR is called to uppercase multi-byte text. The user can modify the mechanism
used to uppercase multi-byte text with this user exit.

Windows Blockmode User Exits

Chapter 2: Windows C User Exits 53

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for runtime internal use
only.

*rp2 Input A pointer to a parameter control block. Reserved for runtime internal use
only.

*tbl_name Input A pointer to a translation table name.

*len Input/Output Length of text to convert to uppercase.

*xlate_data Input/Output A pointer to the text to be uppercased.

Return Code

None

Default Behavior

The default translation uses MBCS functions to perform uppercase translation based
upon the active system code page. However, the system designer, programmer, may
add code to recognize dialects and perform any lower to upper functionality desired. In
that case, insure that the default behavior still uses the MBCS libraries.

Building on Windows

The Uppercase Translation User Exit is built as part of the dynamic link library
AEUEXITxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

Windows Blockmode User Exits

54 User Exit Reference Guide

2. Change your current directory to that directory which contains the batch file
MKEXITS.BAT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITS.BAT.

Related User Exits

TIRUPDB

TIRURTL Ultimate Retry Limit Exit

long tirurtl ()

Source Code

TIRURTL.C

Purpose

TIRURTL lets you specify a maximum value for the TRANSACTION RETRY LIMIT system
attribute. This value can never be exceeded by a SET TRANSACTION RETRY LIMIT
statement in an action diagram, or by the Default Retry Limit User Exit.

After the number of retries, as indicated by the TRANSACTION RETRY COUNT system
attribute, reaches either TRANSACTION RETRY LIMIT or the value specified by the
Ultimate Retry Limit User Exit, no more retries can occur, and the application fails with a
runtime error.

Arguments

None

Return Code

Long containing the retry limit.

Default Behavior

If the Ultimate Retry Limit User Exit is not used, the maximum value of TRANSACTION
RETRY LIMIT will be 99 for all target environments. The Ultimate Retry Limit User Exit
can be modified to return a value of zero to suppress all retry attempts.

Windows Blockmode User Exits

Chapter 2: Windows C User Exits 55

Building on Windows

The Ultimate Retry User Exit is built as part of the dynamic link library AEUEXITxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates the platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKEXITS.BAT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITS.BAT.

Related User Exits

TIRDRTL

TIRUSRID User ID Exit

void TIRUSRID (char *rp1;

char *rp2;

char *filler_parm;

char *user_id);

Source Code

TIRUSRID.C

Purpose

TIRUSRID is used to supply the user's ID to the application. The user ID is one of the
parameters passed to the Security Interface Exit (TIRSECR).

Windows Blockmode User Exits

56 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for runtime internal use
only.

*rp2 Input A pointer to a parameter control block. Reserved for runtime internal use
only.

*filler_parm Input A pointer to a parameter control block. Reserved for runtime internal use
only.

*user_id Output A pointer to an 8-byte character array into which the user ID can be returned.

Return Code

None

Default Behavior

The default action taken by this module is to call runtime routine DEFUSRID which
returns a default user ID, the value of which depends on the platform on which the
system is executing.

Building on Windows

The User ID User Exit is built as part of the dynamic link library AEUEXITxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKEXITS.BAT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITS.BAT.

Windows Blockmode User Exits

Chapter 2: Windows C User Exits 57

Related User Exits

TIRSECR

TIRYYX Date Exit

void TIRYYX (

struct tiryyx_param_block *pb)

Source Code

TIRYYX.C

Purpose

TIRYYX is used to process two-digit or yy-style date input and to set the century part
using any fixed-window, sliding-window, or other algorithm of choice, when using CA
Gen in the standard map generation mode.

Internally, CA Gen handles four digit year dates correctly assuming the user application
uses the yyyy edit pattern throughout. If the user interface is designed to accept a
two-digit date entry, and defaulting to the current century is not acceptable, use this
exit to implement logic to get the required behavior for defaulting the century part of
the date.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*pb Input/Output A pointer to a tiryyx structure containing the following items:

return_code Output A 4-byte character array containing the current year

current_year Input A 4-byte character array containing the current year.

edit_year Input/Output A 4-byte character array containing the edit year.

Return Code

None

Default Behavior

The default user exit behavior does not perform any processing and returns.

Windows GUI Client User Exits

58 User Exit Reference Guide

Building on Windows

The Date User Exit is built as part of the dynamic link library AEUEXITxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKEXITS.BAT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITS.BAT.

Related User Exits

None

Windows GUI Client User Exits

The following table summarizes the functions available through the GUI runtime user
exits:

Name User Exit Description

C4COMMIT Database Commit User Exit. There is one user exit
routine for each supported database: ODBC, Oracle and
DB2.

C4CONNECT Database Connect User Exit. There is one user exit
routine for each supported database: ODBC, Oracle and
DB2.

C4DISCONNECT Database Disconnect User Exit. There is one user exit
routine for each supported database: ODBC, Oracle and
DB2.

Windows GUI Client User Exits

Chapter 2: Windows C User Exits 59

Name User Exit Description

C4ERRMSG Database Message User Exit. There is one user exit
routine for each supported database: ODBC, Oracle and
DB2.

C4ROLLBACK Database Rollback User Exit. There is one user exit
routine for each supported database: ODBC, Oracle and
DB2.

C4SQLLEN Database SQLCA Len User Exit. There is one user exit
routine for each supported database: ODBC, Oracle, and
DB2.

WRASYNCSRVRERROR Client/Server Asynchronous Flow Server Failure Exit

WRDEFAULTYEAR Century Default Exit

WRDRTL Default Retry Limit Exit

WRGLB Globalization Exit

WRSECDECRYPT Client/Server Decryption Exit

WRSECENCRYPT Client/Server Encryption Exit

WRSECTOKEN Client Security Token User Exit

WRSRVRERROR Client/Server Flow Failure Exit

WRSTRNCM String Comparison User Exit

WRSYSID System ID Exit

WRTERMID Terminal ID Exit

WRUPPR Uppercase Translation Exit

WRURTL Ultimate Retry Limit Exit

WRUSRID User ID Exit

Note: The database user exits C4CONNECT, C4DISCONNECT, C4COMMIT, C4ROLLBACK,
C4ERRMSG, and C4SQLLEN are rebuilt into individual stub executables using the make
procedures stubdb2n.mak (Db2), stuboran.mak (Oracle), and stubodbn.mak (ODBC)
found in %GENxx%Gen\VSabc for Visual Studio.

GUI runtime user exits are rebuilt into the DLL WRExx0N.DLL using the command
procedure %GENxx%Gen\VSabc\mkexitsn.bat for Visual Studio.

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with VS100
for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the current release
of CA Gen. For the current release number, see the Release Notes.

Details for the preceding user exits follow in a separate section for each.

Windows GUI Client User Exits

60 User Exit Reference Guide

C4COMMIT Database Commit Exit (Windows)

int C4COMMIT (

char *buff,

char *gblSqlca)

Source Code

For Db2: STUBDB2N.SQC

For ODBC: STUBODBN.C

For Oracle: STUBORAN.SQC

Purpose

Use the Database Commit User Exit to customize the database commit.

There exists a Database Commit User Exit for each supported DBMS: ODBC, Oracle and
DB2.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*buff Output Pointer to buffer that contains any error message that was
obtained while performing the database commit.

*glbSqlca Output Pointer to SQLCA structure.

Return Code

Integer representing success or failure of database commit.

Default Behavior

The default processing of this user exit provides a simple database commit.

Windows GUI Client User Exits

Chapter 2: Windows C User Exits 61

Building on Windows

After modifying the user exit, use the make procedure stubdb2n.mak (Db2),
stuboran.mak (Oracle), or stubodbn.mak (ODBC) in %GENxx%Gen\VSabc for Visual
Studio to precompile, compile, and link the stub executable so that all applications have
access to the new logic.

Note: xx refers to the current release of CA Gen and abc refers to the supported version
of Visual Studio. For the current release number and the the supported version of Visual
Studio, see the Release Notes.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
(%GENxx%Gen\VSabc for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run nmake –nologo –s –f stubdbmsn.mak all

where dbms is either ‘db2’, ‘ora’ or ‘odb’

Additional qualifiers may be available for each DBMS. See the comments section of each
.mak file.

Related User Exits

C4CONNECT, C4DISCONNECT, C4ROLLBACK, C4ERRMSG, C4SQLLEN

C4CONNECT Database Connection Exit (Windows)

int C4CONNECT (

char *szDatabase,

char *buff,

char *gblSqlca,

HINSTANCE hResDll)

Source Code

For Db2: STUBDB2N.SQC

For ODBC: STUBODBN.C

For Oracle: STUBORAN.SQC

Windows GUI Client User Exits

62 User Exit Reference Guide

Purpose

Use the Database Connection User Exit to customize the connection to the particular
database. This user exit enhances database security. The default processing of this user
exit provides a simple database connection.

There exists a Database Connect User Exit for each supported DBMS: ODBC, Oracle and
DB2.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*szDatabase Input Pointer to a database structure containing the userid,
password and database name.

*buff Output Pointer to buffer that contains any error message that
was obtained while performing the database connection.

*glbSqlca Output Pointer to SQLCA structure.

hResDll Input Pointer to Resource DLL in order to obtain error
messages.

Return Code

Integer representing success or failure of database connection.

Default Behavior

The default action here is for the connect function to call into the existing GDIC function
to get the current connect information. It is possible to have the user change the
database name during the GDIC function so the database name should be checked after
the return from GDIC.

Building on Windows

After modifying the user exit, use the make procedure stubdb2n.mak (Db2),
stuboran.mak (Oracle), or stubodbn.mak (ODBC) in %GENxx%Gen\VSabc for Visual
Studio to precompile, compile, and link the stub executable so that all applications have
access to the new logic.

Note: xx refers to the current release of CA Gen and abc refers to the supported version
of Visual Studio. For the current release number and the the supported version of Visual
Studio, see the Release Notes.

Windows GUI Client User Exits

Chapter 2: Windows C User Exits 63

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
(%GENxx%Gen\VSabc for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run nmake –nologo –s –f stubdbmsn.mak all

where dbms is either ‘db2’, ‘ora’ or ‘odb’

Additional qualifiers may be available for each DBMS. See the comments section of each
.mak file.

Related User Exit

C4DISCONNECT, C4COMMIT, C4ROLLBACK, C4ERRMSG, C4SQLLEN

C4DISCONNECT Database Disconnect Exit (Windows)

int C4DISCONNECT (

char *name,

char *buff,

char *gblSqlca)

Source Code

For Db2: STUBDB2N.SQC

For ODBC: STUBODBN.C

For Oracle: STUBORAN.SQC

Purpose

Use the Database Disconnection User Exit to customize the database disconnect.

There exists a Database Connect User Exit for each supported DBMS: ODBC, Oracle and
DB2.

Windows GUI Client User Exits

64 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*name Input Pointer to the database name.

*buff Output Pointer to buffer that contains any error message that was
obtained while performing the database disconnect.

*glbSqlca Output Pointer to SQLCA structure.

Return Code

Integer representing success or failure of database disconnection.

Default Behavior

The default processing of this user exit provides a simple database disconnection.

Building on Windows

After modifying the user exit, use the make procedure stubdb2n.mak (Db2),
stuboran.mak (Oracle), or stubodbn.mak (ODBC) in %GENxx%Gen\VSabc for Visual
Studio to precompile, compile, and link the stub executable so that all applications have
access to the new logic.

Note: xx refers to the current release of CA Gen and abc refers to the supported version
of Visual Studio. For the current release number and the the supported version of Visual
Studio, see the Release Notes.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
(%GENxx%Gen\VSabc for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run nmake –nologo –s –f stubdbmsn.mak all

where dbms is either ‘db2’, ‘ora’ or ‘odb’

Additional qualifiers may be available for each DBMS. See the comments section of each
.mak file.

Windows GUI Client User Exits

Chapter 2: Windows C User Exits 65

Related User Exits

C4CONNECT, C4COMMIT, C4ROLLBACK, C4ERRMSG, C4SQLLEN

C4ERRMSG Database Message Exit (Windows)

int C4ERRMSG (

char *inmsg,

char *outmsg,

char *sblSqlca)

Source Code

For Db2: STUBDB2N.SQC

For ODBC: STUBODBN.C

For Oracle: STUBORAN.SQC

Purpose

Use the Database Message User Exit to customize the database error messaging.

There exists a Database Message User Exit for each supported DBMS: ODBC, Oracle and
DB2.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*inmsg Input Pointer to incoming error message.

*outmsg Output Pointer to outgoing error message.

*glbSqlca Input Pointer to SQLCA structure.

Return Code

Integer representing success or failure of database error retrieval.

Default Behavior

The default processing of this user exit provides a simple database error message
management.

Windows GUI Client User Exits

66 User Exit Reference Guide

Building on Windows

After modifying the user exit, use the make procedure stubdb2n.mak (Db2),
stuboran.mak (Oracle), or stubodbn.mak (ODBC) in %GENxx%Gen\VSabc for Visual
Studio to precompile, compile, and link the stub executable so that all applications have
access to the new logic.

Note: xx refers to the current release of CA Gen and abc refers to the supported version
of Visual Studio. For the current release number and the the supported version of Visual
Studio, see the Release Notes.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
(%GENxx%Gen\VSabc for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run nmake –nologo –s –f stubdbmsn.mak all

where dbms is either ‘db2’, ‘ora’ or ‘odb’

Additional qualifiers may be available for each DBMS. See the comments section of each
.mak file.

Related User Exits

C4CONNECT, C4DISCONNECT, C4COMMIT, C4ROLLBACK, C4SQLLEN

C4ROLLBACK Database Rollback Exit (Windows)

int C4ROLLBACK (

char *buff,

char *gblSqlca)

Source Code

For Db2: STUBDB2N.SQC

For ODBC: STUBODBN.C

For Oracle: STUBORAN.SQC

Windows GUI Client User Exits

Chapter 2: Windows C User Exits 67

Purpose

Use the Database Rollback User Exit to customize the database rollback.

There exists a Database Rollback User Exit for each supported DBMS: ODBC, Oracle and
DB2.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*buff Output Pointer to buffer that contains any error message that
was obtained while performing the database rollback.

*glbSqlca Output Pointer to SQLCA structure.

Return Code

Integer representing success or failure of database rollback.

Default Behavior

The default processing of this user exit provides a simple database rollback.

Building on Windows

After modifying the user exit, use the make procedure stubdb2n.mak (Db2),
stuboran.mak (Oracle), or stubodbn.mak (ODBC) in %GENxx%Gen\VSabc for Visual
Studio to precompile, compile, and link the stub executable so that all applications have
access to the new logic.

Note: xx refers to the current release of CA Gen and abc refers to the supported version
of Visual Studio. For the current release number and the the supported version of Visual
Studio, see the Release Notes.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
(%GENxx%Gen\VSabc for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

Windows GUI Client User Exits

68 User Exit Reference Guide

3. Set Microsoft Visual Studio compiler environment variables.

4. Run nmake –nologo –s –f stubdbmsn.mak all

where dbms is either ‘db2’, ‘ora’ or ‘odb’

Additional qualifiers may be available for each DBMS. See the comments section of each
.mak file.

Related User Exits

C4CONNECT, C4DISCONNECT, C4COMMIT, C4ERRMSG, C4SQLLEN

C4SQLLEN Database SQLCA Length Exit (Windows)

int C4SQLLEN ()

Source Code

For Db2: STUBDB2N.SQC

For ODBC: STUBODBN.C

For Oracle: STUBORAN.SQC

Purpose

Use the Database SQLCA Length User Exit to customize the database sqlca length.

There exists a Database SQLCA Length User Exit for each supported DBMS: ODBC, Oracle
and DB2.

Arguments

None

Return Code

Integer representing success or failure of database SQLCA length retrieval.

Default Behavior

The default processing of this user exit provides the length of the SQLCA structure of the
current DBMS.

Windows GUI Client User Exits

Chapter 2: Windows C User Exits 69

Building on Windows

After modifying the user exit, use the make procedure stubdb2n.mak (Db2),
stuboran.mak (Oracle), or stubodbn.mak (ODBC) in %GENxx%Gen\VSabc for Visual
Studio to precompile, compile, and link the stub executable so that all applications have
access to the new logic.

Note: xx refers to the current release of CA Gen and abc refers to the supported version
of Visual Studio. For the current release number and the the supported version of Visual
Studio, see the Release Notes.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
(%GENxx%Gen\VSabc for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run nmake –nologo –s –f stubdbmsn.mak all

where dbms is either ‘db2’, ‘ora’ or ‘odb’

Additional qualifiers may be available for each DBMS. See the comments section of each
.mak file.

Related User Exit

C4CONNECT, C4DISCONNECT, C4COMMIT, C4ROLLBACK, C4ERRMSG

WRASYNCSRVERROR Asynchronous Flow Server Failure Exit (Windows)

int WRASYNCSRVRERROR (char statementType,

long requestId,

char *viewLabel,

char responseScope,

int failureType,

char *failureCommand,

ErrorList errorList,

ErrorToken errorToken);

Source Code

WREXITN.C

Windows GUI Client User Exits

70 User Exit Reference Guide

Purpose

This user exit is invoked when an error is detected during the processing of an
asynchronous client to server flow. The parameter failureType describes the origin of
this error.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

statementType Input This character represents which of the
supported asynchronous action statements
was being processed at the time of the flow
failure. Valid Values are:

E: USE ASYNC: Response Type Notify

P: USE ASYNC: Response Type Poll

N: USE ASYNC: Response Type No Response

G: GET ASYNC RESPONSE: non blocking,
WHEN PENDING clause has not been coded

B: GET ASYNC RESPONSE: blocking, WHEN
PENDING clause has been coded

C: CHECK ASYNC RESPONSE

I: IGNORE ASYNC RESPONSE

requestId Input A long value containing a unique request
identifier contained within the ASYNC
REQUEST View corresponding to the
IDENTIFIED BY clause of the statement
currently being executed. This value is
returned from the supporting runtime using
the flow initiating USE ASYNC statement
execution.

*viewLabel Input A character pointer to the label attribute of
the CA Gen action diagram statement has
associated Async Request View.

responseScope Input The response scope as defined within a USE
ASYNC statement. Only valid if the current
action diagram statement is a USE ASYNC.
Valid values are:

 "G"—the response scope is global to the
client executable.

 "P"—the response scope is limited to the
executing procedure step.

Windows GUI Client User Exits

Chapter 2: Windows C User Exits 71

Name I/O Description

failureType Input An integer value describing the source of
the failure. The value can be one of the
following:

"CFBUILD" is an error in the construction or
parsing of a client/server flow message or
response.

"XFAL" identifies an error during the server
procedures action block execution.

"XERR" identifies a communications error
occurring somewhere between construction
of a message or response, and the
deciphering of that message by the partner
in this flow.

"XASY," if a USE ASYNC statement is being
processed, identifies a communications
error occurring somewhere between
construction of a message or response, and
the deciphering of that message by the
partner in this flow. If a GET ASYNC
RESPONSE, CHECK ASYNC RESPONSE, or
IGNORE ASYNC RESPONSE is being
processed, this fail type indicates the
Request Id within the view identified by the
"viewLabel" is invalid.

*failureCommand Output A character array, containing a maximum of
9 characters including the terminating
NULL. This array can be populated with a
command used to reinvoke the failing
procedure step. This command is only used
when returning from the exit with a
FailAction of "serverFailedRestart." It will be
ignored for any other FailAction.

errorList Input/Output An array of characters representing
message strings constructed by and
normally displayed using the ErrorReport
dialog to describe the failure. Each message
string is null terminated. Newline characters
for formatting are also present as required.
The complete list is terminated by
more-than-one contiguous null character.
On a "serverFailedDisplay" return, errorList,
as modified in this exit, will be displayed in
the ErrorReport dialog. errorList has a
maximum length of 2048 bytes.

Windows GUI Client User Exits

72 User Exit Reference Guide

Name I/O Description

errorToken Input An array of characters, errorToken is only
used with XFAL messages. errorToken can
contain a token constructed by the Error
Logging exit (TIRELOG) linked with the
server load module describing the server
action block failure. errorToken has a
maximum length of 4097 bytes.

Return Code

The following table gives a brief description of each of the return codes.

Return Code Description

serverFailedDisplay This return value does not let the standard error report
display if an appropriate WHEN clause has been coded for
the executing action diagram statement. Execution will
return to the calling procedure step.

serverFailedRestart This return value suppresses the standard error report and
reinvokes the client procedure step that originated the
dialog flow. In the case of a failing "procedure step usage,"
the parent procedure step is returned to at the statement
immediately following the Use. In both cases, if
failureCommand is set it is used as the system command
when reinvoking or returning to the client procedure step.
For flows designed to return the server's exit state to the
client, the exit state set when reinvoking or returning to
the client procedure step will be the last value set by the
client.

serverFailedTerminate This return value will suppress the standard error report
dialog, will not attempt to return to the client procedure
step, and will redisplay the client window.

Default Behavior

The default return value of “serverFailedDisplay” does not let the standard error report
display if an appropriate WHEN clause has been coded for the executing action diagram
statement.

Windows GUI Client User Exits

Chapter 2: Windows C User Exits 73

Builidng on Windows

The Asynchronous Server Flow Error User Exit is built as part of the dynamic link library
WRExx0N.DLL

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKEXITSN.BAT (%GENxx%Gen\VSabc for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITSN.BAT.

Related User Exits

The following are related user exits:

■ TIRELOG

■ WRSRVRERROR

WRDEFAULTYEAR Century Default Exit (Windows)

int WRDEFAULTYEAR (

int inYear,

int current Year)

Source Code

WREXITN.C

Purpose

WRDEFAULTYEAR() is invoked when a date or timestamp field receives input and the
field's edit pattern specifies a 2-character year value. The current year and the input
year are passed to WRDEFAULTYEAR().

Windows GUI Client User Exits

74 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

inYear Input Integer containing the 2 or 4 digit year.

currentYear Input Integer containing the current year.

Return Code

Integer containing the 4 digit year.

Default Behavior

By default, the current hundred-year value is added to the 2-character year value and
returned.

Building on Windows

The Century Default User Exit is built as part of the dynamic link library WRExx0N.DLL,
where xx is the CA Gen release number and N indicates platform. A prerequisite for
building the DLL, you must have Microsoft's Visual C++ compiler installed on your
system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKEXITSN.BAT (%GENxx%Gen\VSabc for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITSN.BAT.

Related User Exits

TIRYYX

WRDRTL Default Retry Limit Exit (Windows)

long WRDRTL ()

Windows GUI Client User Exits

Chapter 2: Windows C User Exits 75

Source Code

WREXITN.C

Purpose

WRDRTL lets users override the CA Gen-defined default value for the TRANSACTION
RETRY LIMIT system attribute. TRANSACTION RETRY LIMIT is initialized to this value at
the beginning of each new transaction. A SET TRANSACTION RETRY LIMIT statement in
an action diagram might modify this value.

TRANSACTION RETRY LIMIT specifies the maximum number of times to retry a
transaction when one of the following events occurs:

■ A RETRY TRANSACTION action diagram statement executes.

■ A deadlock or timeout occurs trying to access a database, and there is no WHEN
DATABASE DEADLOCK OR TIMEOUT statement for that entity action statement.

In these cases, uncommitted database updates are rolled back, and an attempt is made
to execute the application again. After the number of retries, as indicated by the
TRANSACTION RETRY COUNT system attribute, reaches TRANSACTION RETRY LIMIT or
the value specified by the Ultimate Retry Limit Exit , the application fails with a runtime
error.

Arguments

None

Return Code

Long containing the retry limit.

Default Behavior

If the Default Retry Limit User Exit is not used, TRANSACTION RETRY LIMIT will be
initialized to 10 for all target environments. If the Default Retry Limit User Exit is used, it
must not return a value greater than that specified in the Ultimate Retry Limit User Exit.

Building on Windows

The Default Retry Limit User Exit is built as part of the dynamic link library
WRExx0N.DLL, where xx is the CA Gen release number and N indicates platform. A
prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

Windows GUI Client User Exits

76 User Exit Reference Guide

2. Change your current directory to that directory which contains the batch file
MKEXITSN.BAT (%GENxx%Gen\VSabc for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITSN.BAT.

Related User Exits

WRURTL, TIRDRTL

WRGLB Globalization Exit (Windows)

int WRGLB (

char *rp1,

char *rp2,

char *separator,

char *decimal,

char *currency,

char *datesep,

char *timesep,

char *dateorder)

Source Code

WREXITN.C

Purpose

WRGLB supplies runtime information to the GUI, such as the numeric thousands
separator character, the numeric decimal point character, the currency symbol, the date
separator character, and the date order.

The numeric characters are used when editing numeric fields for output. The characters
should correspond to the edit pattern in the model. For example, if the edit pattern in
"@ZZZ.ZZZ,99", the WRGLB exit should specify "@" as the currency symbol, "." as the
thousands separator, and "," as the decimal point.

Date and time information is used only for date and time fields where the model does
not specify the edit pattern. In these cases, the GUI runtime uses this information to
build a default edit pattern using the information provided by the WRGLB exit. For
example, if the WRGLB exit specifies the date separator as "-" (a dash) and the date
order is yymmdd, then the default date edit pattern is yy-mm-dd.

Windows GUI Client User Exits

Chapter 2: Windows C User Exits 77

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for runtime
internal use only.

*rp2 Input A pointer to a parameter control block. Reserved for runtime
internal use only.

*separator Input/Output A pointer to the thousands separator symbol.

*decimal Input/Output A pointer to the decimal symbol.

*currency Input/Output A pointer to the currency symbol.

*datesep Input/Output A pointer to the date separator symbol.

*timesep Input/Output A pointer to the time separator symbol.

*dateorder Input/Output A pointer to the date order

Return Code

Integer representing the success (1) or failure (0) of the call to WRGLB.

Default Behavior

By default, WRGLB returns the thousands separator, decimal point, date separator, time
separator and date order passed in but always copy the Dollar sign to the currency.

Building on Windows

The Globalization User Exit is built as part of the dynamic link library WRExx0N.DLL,
where xx is the CA Gen release number and N indicates platform. A prerequisite for
building the DLL, you must have Microsoft's Visual C++ compiler installed on your
system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKEXITSN.BAT (%GENxx%Gen\VSabc for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITSN.BAT.

Windows GUI Client User Exits

78 User Exit Reference Guide

Related User Exits

None

WRSECDECRYPT Client Decryption Exit (Windows)

int WRSECDECRYPT (long maxViewLen,

long *encryptViewLen,

unsigned char *encryptView,

char *failureMsg)

Source Code

WREXITN.C

Purpose

The Client Side Decryption exit is called by the GUI runtime when an encrypted response
buffer is received from a target server.

The user provides a decryption algorithm that manipulates the data pointed to by
encryptView. The encryptViewLen, on input contains the number of bytes available into
which the encrypted buffer area can be decrypted. The process of decryption cannot
result in a decrypted buffer area that exceeds maxViewLen. If decryption is performed
by this exit, EncryptViewLen must be updated with the length of the decrypted result.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

maxViewLen Input A long field that contains the maximum available buffer space
(in bytes) that the decrypted data can occupy.

*encryptViewLen Input/Output On input, EncryptViewLen is the current buffer space (in
bytes) of the encrypted data. On output, EncryptViewLen
should be updated to contain the length of the decrypted
data. The length of the decrypted result cannot exceed
maxViewLen.

*encryptView Input/Output A pointer to the starting location of the data eligible for being
decrypted. The decrypted data must be copied back into this
same memory location.

Windows GUI Client User Exits

Chapter 2: Windows C User Exits 79

Name I/O Description

*failureMsg Input/Output The pointer to an 80-character array that can receive a user
provided null terminated error message string. The string
pointed to by the failureMsg pointer will be incorporated into
an error message that is displayed by the GUI runtime.

Return Code

The following table gives a brief description of each of the return codes.

Return Code Description

DecryptionNotUsed Indicates to the runtime that the user exit did not perform
any decryption of the encrypted data buffer.

DecryptionUsed Indicates to the runtime that the user exit successfully
performed the decryption of the provided encrypted data.

DecryptionFailure Indicates to the runtime that an error was encountered by
the user exit and that the decryption processing has failed
The error indication and message string returned using the
failureMsg argument will be returned to the GUI Runtime.
The GUI runtime will pop up an error message display
indicating the failed request.

Default Behavior

The WRSECDECRYPT user exit, as delivered with CA Gen, will return DecryptionNotUsed.

Building on Windows

The Client Decryption User Exit is built as part of the dynamic link library WRExx0N.DLL,
where xx is the CA Gen release number and N indicates platform. A prerequisite for
building the DLL, you must have Microsoft's Visual C++ compiler installed on your
system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKEXITSN.BAT (%GENxx%Gen\VSabc for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITSN.BAT.

Windows GUI Client User Exits

80 User Exit Reference Guide

Related User Exits

The following are related user exits:

■ TIRDCRYP

■ WRSECENCRYPT

WRSECENCRYPT Client Side Encryption Exit (Windows)

int WRSECENCRYPT (char *trancode,

char *nextLocation,

char *clientUserid,

long maxViewLen,

long *encryptViewLen,

unsigned char *encryptView,

char *failureMsg)

Source Code

WREXITN.C

Purpose

The Client Side Encryption exit is called by the GUI runtime to provide the opportunity
to encrypt a cooperative flow request from Window Manager applications. The data in
the Common Format Buffer (CFB) that is eligible to be encrypted include the
cooperative flow’s view data and optional security offset area.

The user provides an encryption algorithm that consists of manipulating the data
pointed to by encryptView. The encryptViewLen, on input contains the number of bytes
eligible for being encrypted. The process of encryption cannot result in an encrypted
buffer area that exceeds maxViewLen. If encryption is performed by this exit,
EncryptViewLen must be updated with the length of the encrypted result. Additionally,
this exit must return the EncryptionUsed return code value.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*trancode Input A pointer to a character array that contains the trancode
associated with the synchronous or asynchronous cooperative
flow being processed by the GUI runtime.

Windows GUI Client User Exits

Chapter 2: Windows C User Exits 81

Name I/O Description

*nextLocation Input A pointer to a character array that contains the Next Location
associated with the synchronous or asynchronous cooperative
flow being processed by the GUI runtime.

*clientUserid Input A pointer to a character array that contains the value of the of
the CLIENT_USER_ID variable associated with the flow being
processed by the GUI runtime synchronous or asynchronous
cooperative flow processing. The CLIENT_USESRID variable is
optionally set by Action Language coded within the GUI client
generated code.

MaxViewLen Input A long field that contains the maximum available buffer space (in
bytes) that the encrypted data can occupy.

*encryptViewLen Input/Output A pointer to a long field. On input, EncryptViewLen is the length
of the current buffer space (in bytes) of the data eligible for
being encrypted. On output, EncryptViewLen should be updated
to contain the length of the encrypted data. The length of the
encrypted result cannot exceed maxViewLen.

*encryptView Input/Output A character pointer to the starting location of the data eligible
for being encrypted. The encrypted data must be copied to this
same memory location.

*failureMsg Input/Output The pointer to an 80-character array that can receive a user
provided null terminated error message string. The string
pointed to by the failureMsg pointer will be incorporated into an
error message that is displayed by the GUI runtime.

Return Code

The following table gives a brief description of each of the return codes.

Return Code Description

EncryptionNotUsed Indicates to the runtime that the user exit did not
perform any encryption to the provided data
buffer.

EncryptionUsed Indicates to the runtime that the user exit did
perform encryption on the provided data. The
runtime marks the CFB as being encrypted. An
encrypted CFB will trigger the decryption
counterpart user exit to be invoked by the target
server manager. The server side decryption user
exit is TIRDCRYP.

Windows GUI Client User Exits

82 User Exit Reference Guide

Return Code Description

EncryptionFailure Indicates to the runtime that an error was
encountered by the user exit and that the
processing of the associated request has failed. The
error indication and message string returned using
the failureMsg argument would be returned to the
GUI runtime. The GUI runtime will pop up an error
message display indicating the failed request.

Default Behavior

The WRSECENCRYPT user exit, as delivered with CA Gen, will return EncryptionNotUsed.

Building on Windows

The Client Encryption User Exit is built as part of the dynamic link library WRExx0N.DLL,
where xx is the CA Gen release number and N indicates platform. A prerequisite for
building the DLL, you must have Microsoft's Visual C++ compiler installed on your
system.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKEXITSN.BAT (%GENxx%Gen\VSabc for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITSN.BAT.

Related User Exits

The following are related user exits:

■ TIRNCRYP

■ WRSECDECRYPT

Windows GUI Client User Exits

Chapter 2: Windows C User Exits 83

WRSECTOKEN Client Security Token Exit (Windows)

int WRSECTOKEN (char *clientUserid,

char *clientPassword,

char *trancode,

char *nextLocation,

BOOL *bClntMgrSecurity,

long *tokenLen,

char *token,

char *failureMsg)

Source Code

WREXITN.C

Purpose

The Client Side Security Exit is invoked by the GUI runtime to let a user influence how
client security data is processed by the GUI runtime code involved in servicing a
cooperative flow. Specifically, this exit influences if the Common Format Buffer (CFB)
request will contain a security offset and if that data populated in the security offset
should be used by other runtime components such as the Client Manager or
Communications Bridge when servicing the cooperative flow request.

The trancode and nextLocation variables are provided as input. These input values can
be used by the user exit code to determine what return code value should be specified.

In addition to the return code value, this exit has the option of returning some fields as
output data to the calling runtime code.

For more information about the input and output fields of this exit routine, see
Arguments. For a description on what the invoking GUI runtime will do because of
receiving one of the expected return values, see Return Codes.

Windows GUI Client User Exits

84 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*clientUserid Input/Output A pointer to a character array that contains the value of the
of the CLIENT_USER_ID variable associated with the flow
being processed by the GUI runtime synchronous or
asynchronous cooperative flow processing. The
CLIENT_USER_ID variable is optionally set by Action
Language coded within the GUI client generated code. The
data area pointed to by this argument can be modified by
this user exit. The value placed into the referenced data
area cannot exceed 64 bytes.

*clientPassword Input/Output A pointer to a character array that contains the value of the
of the CLIENT_PASSWORD variable associated with the
flow being processed by the GUI runtime synchronous or
asynchronous cooperative flow operation. The
CLIENT_PASSWORD variable is optionally set by Action
Language coded within the GUI client generated code. The
data area pointed to by this argument can be modified by
this user exit. The value placed into the referenced data
area cannot exceed 64 bytes.

*trancode Input A pointer to a character array that contains the trancode
associated with the flow being processed by the GUI
runtime synchronous or asynchronous cooperative flow
operation.

*nextLocation Input A pointer to a character array that contains the Next
Location variable associated with the flow being processed
by the GUI runtime synchronous or asynchronous
cooperative flow operation.

*bClntMgrSecurity Output A pointer to an integer Boolean field that can be set to
either TRUE or FALSE. The value of this field only has
meaning if this user exit returns SecurityUsedEnhanced.
TRUE indicates that the security data (Client User ID and
Client Password) that is added to the security offset of the
associated CFB should be used as the source of the UserID
and Password by the Client Manager or Communications
Bridge.

Windows GUI Client User Exits

Chapter 2: Windows C User Exits 85

Name I/O Description

*tokenLen Input/Output On input, tokenLen is a pointer to a long integer field that
contains the maximum length of the allocated token
character buffer. The maximum token length is dependent
on the available space remaining during the construction of
the CFB.

On return from the exit, the long integer pointed to by
tokenLen should contain the actual length of data returned
in the character array, which is pointed to by the token
argument.

Note: The use of a token is optional, and therefore, setting
the long integer pointed to by tokenLen to zero indicates
that a token is not specified by the user exit. The length
value returned by this field only has meaning if this user
exit returns SecurityUsedEnhanced.

*token Input/Output On input, token is a pointer to a character array that will
accept a user specified security token. The use of a user
specified security token is optional. The token data that is
provided by this user exit will be provided to the server
side TIRSECV security user exit. The security token returned
by this field only has meaning if this user exit returns
SecurityUsedEnhanced.

*failureMsg Input/Output The pointer to an 80-character array that can receive a user
provided null terminated error message string. The string
pointed to by the failureMsg pointer will be incorporated
into an error message that is displayed by the GUI runtime.

Return Code

The following table gives a brief description of each of the return codes.

Return Code Description

SecurityNotUsed Indicates to the runtime that the CLIENT_USER_ID,
CLIENT_PASSWORD, and security token will NOT be used
to populate any part of the cooperative flow request. The
client side security variables will not be added to the CFB
by the GUI runtime.

Windows GUI Client User Exits

86 User Exit Reference Guide

Return Code Description

SecurityUsedStandard Indicates to the runtime that at most eight (8) bytes of
the CLIENT_USER_ID and at most eight (8) bytes of the
CLIENT_PASSWORD data will be set into the CFB header.
The associated request buffer will not contain a CFB
Security Offset area, and will therefore, not contain a
security token. Additionally, by not making use of the CFB
Security Offset area, the Client User ID and Client
Password values are not eligible for being encrypted.

SecurityUsedEnhanced Indicates to the runtime that the CLIENT_USER_ID,
CLIENT_PASSWORD, and the optional Security Token
should be added to the CFB by way of the CFB Security
Offset. Additionally, at most (8) bytes of the Client User ID
value will be set into the CFB header.

SecurityError Indicates to the runtime that an error was encountered
by the user exit and that the processing of the associated
request has failed. The error indication and message
string returned using the failureMsg argument would be
returned to the GUI runtime. The GUI runtime will popup
an error message display indicating the failed request.

Default Behavior

The WRSECTOKEN user exit, as delivered with CA Gen, will return SecurityNotUsed. In
addition, although not necessary, the user exit will set the long integer pointed to by the
tokenLen pointer to zero, and set the Boolean field pointed to by the bClntMgrSecurity
pointer to False.

Building on Windows

The Client Security Token User Exit is built as part of the dynamic link library
WRExx0N.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates the platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

Windows GUI Client User Exits

Chapter 2: Windows C User Exits 87

2. Change your current directory to that directory which contains the batch file
MKEXITSN.BAT (%GENxx%Gen\VSabc for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITSN.BAT.

Related User Exits

The following are related user exits:

■ TIRSECV

■ WRSECENCRYPT

■ WRSECDECRYPT

WRSRVRERROR Server Flow Error Exit (Windows)

int WRSRVRERROR (int failureType,

char *failureCommand,

ErrorList errorList,

ErrorToken errorToken)

Source Code

WREXITN.C

Purpose

This user exit is invoked when an error is detected during the processing of a
synchronous client to server flow. The parameter failureType describes the origin of this
error.

Windows GUI Client User Exits

88 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

failureType Input An integer value describing the source of the failure. It's
value can be one of the following:

"CFBUILD" is an error in the construction or parsing of a
client/server flow message or response.

"XFAL" identifies an error during the server procedures
action block execution.

"XERR" identifies a communications error occurring
somewhere between construction of a message or response,
and the deciphering of that message by the partner in this
flow.

*failureCommand Output A character array, containing a maximum of 9 characters
including the terminating NULL. This array can be populated
with a command used to reinvoke the failing procedure step.
This command is only used when returning from the exit
with a FailAction of "serverFailedRestart." It will be ignored
for any other FailAction.

errorList Input/Output An array of characters representing message strings
constructed by and normally displayed using the ErrorReport
dialog to describe the failure. Each message string is null
terminated. Newline characters for formatting are also
present as required. The complete list is terminated by
more-than-one contiguous null character. On a
"serverFailedDisplay" return, errorList, as modified in this
exit, will be displayed in the ErrorReport dialog; errorList has
a maximum length of 2048 bytes.

errorToken Input An array of characters, errorToken is only used with XFAL
messages; errorToken can contain a token constructed by
the Error Logging exit (TIRELOG) linked with the server load
module describing the server action block failure;
errorToken has a maximum length of 4097 bytes.

Windows GUI Client User Exits

Chapter 2: Windows C User Exits 89

Return Code

The following table gives a brief description of each of the return codes.

Return Code Description

serverFailedDisplay This return value causes the standard error report
dialog to be displayed, with return to the previous
window.

serverFailedRestart This return value suppresses the standard error report
and reinvokes the client procedure step that originated
the dialog flow. In the case of a failing "procedure step
usage," the parent procedure step is returned to at the
statement immediately following the Use. In both
cases, if failureCommand is set it is used as the system
command when reinvoking or returning to the client
procedure step. For flows designed to return the
server's exit state to the client, the exit state set when
reinvoking or returning to the client procedure step will
be the last value set by the client.

serverFailedTerminate This return value will suppress the standard error
report dialog, will not attempt to return to the client
procedure step, and will redisplay the client window.

Default Behavior

The default return value of serverFailedDisplay causes the standard error report dialog
to be displayed, with return to the previous client window.

Building on Windows

The Server Flow Error User Exit is built as part of the dynamic link library WRExx0N.DLL,

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates the platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

Windows GUI Client User Exits

90 User Exit Reference Guide

2. Change your current directory to that directory which contains the batch file
MKEXITSN.BAT (%GENxx%Gen\VS for Visual Studio).

Note: xx refers to the current release of CA Gen. abc refers to the supported
version of Visual Studio. For the current release number and the supported version
of Visual Studio, see the Release Notes.

3. Run MKEXITSN.BAT.

Related User Exits

The following are related user exits:

■ TIRELOG

■ WRASYNCSRVRERROR

WRSTRNCM String Comparison Exit (Windows)

int WRSTRNCM (

char *arg1,

char *arg2,

size_t len)

Source Code

WREXITN.C

Purpose

WRSTRNCM is called to compare two strings when the standard C language strncmp is
not sufficient to deal with.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*arg1 Input A pointer to a string to be compared.

*arg2 Input A pointer to a second string to be compared.

Len Input Length of comparison.

Return Code

Integer containing comparison result. Returns 0 of strings match, returns a positive
value if arg1 is greater than arg1, or returns a negative value if arg2 is greater than arg1.

Windows GUI Client User Exits

Chapter 2: Windows C User Exits 91

Default Behavior

The default is to call the Windows function "strncmp".

Building on Windows

The String Comparison User Exit is built as part of the dynamic link library WRExx0N.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates the platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKEXITSN.BAT (%GENxx%Gen\VSabc for Visual Studio 2010).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITSN.BAT.

Related User Exits

None

WRSYSID System ID Exit (Windows)

int WRSYSID (

char *rp1,

char *rp2,

char *systemid)

Source Code

WREXITN.C

Purpose

WRSYSID supplies the value for the LOCAL_SYSTEM_ID attribute. LOCAL_SYSTEM_ID can
be placed on a window during window design. The value can be up to 8 characters in
length.

Windows GUI Client User Exits

92 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*rp2 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*systemid Output A pointer to the system id.

Return Code

None

Default Behavior

The default value supplied is "WIN32."

Building on Windows

The System ID User Exit is built as part of the dynamic link library WRExx0N.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates the platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKEXITSN.BAT (%GENxx%Gen\VSabc for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITSN.BAT.

Related User Exits

WRUSRID, TIRSYSID

Windows GUI Client User Exits

Chapter 2: Windows C User Exits 93

WRTERMID Terminal ID Exit (Windows)

int WRTERMID (

char *rp1,

char *rp2,

char *termid)

Source Code

WREXITN.C

Purpose

WRTERMID supplies the value for the TERMINAL_ID attribute. TERMINAL_ID can be
placed on a window during window design, and referenced by statements in a PrAD. The
value can be up to 8 characters in length.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for runtime
internal use only.

*rp2 Input A pointer to a parameter control block. Reserved for runtime
internal use only.

*termid Output A pointer to the terminal id.

Return Code

None

Default Behavior

The default value is "DOMAIN".

Windows GUI Client User Exits

94 User Exit Reference Guide

Building on Windows

The Terminal ID User Exit is built as part of the dynamic link library WRExx0N.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKEXITSN.BAT (%GENxx%Gen\VSabc for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITSN.BAT.

Related User Exits

None

WRUPPR Uppercase Translation Exit (Windows)

int WRUPPR (

char *rp1,

char * rp2,

char *data)

Source Code

WREXITN.C

Purpose

WRUPPR is called when the runtime needs to use uppercase in a string.

Windows GUI Client User Exits

Chapter 2: Windows C User Exits 95

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*rp2 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*data Input/Output A pointer to the text to be uppercased.

Return Code

None

Default Behavior

The default is to call the Windows function "CharUpper," which handles uppercase
characters.

Building on Windows

The Uppercase Translation User Exit is built as part of the dynamic link library
WRExx0N.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKEXITSN.BAT (%GENxx%Gen\VSabc for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITSN.BAT.

Related User Exits

TIRUPPR

Windows GUI Client User Exits

96 User Exit Reference Guide

WRURTL Ultimate Retry Limit Exit (Windows)

long WRURTL ()

Source Code

WREXITN.C

Purpose

WRURTL specifies the maximum value for the TRANSACTION RETRY LIMIT system
attribute. A SET TRANSACTION RETRY LIMIT statement in an action diagram and Default
Retry Limit Exit cannot exceed this value.

Note: For more information about using the TRANSACTION RETRY LIMIT system
attribute, see Default Retry Limit Exit (WRDRTL) (see page 74).

After the number of retries, as indicated by the TRANSACTION RETRY COUNT system
attribute, reaches TRANSACTION RETRY LIMIT or the value specified by the Ultimate
Retry Limit Exit, the application fails with a runtime error .

Arguments

None

Return Code

Long containing the retry limit.

Default Behavior

If the Ultimate Retry Limit User Exit is not used, the maximum value of TRANSACTION
RETRY LIMIT will be 99 for all target environments. The Ultimate Retry Limit User Exit
can be modified to return a value of zero to suppress all retry attempts.

Windows GUI Client User Exits

Chapter 2: Windows C User Exits 97

Building on Windows

The Ultimate Retry Limit User Exit is built as part of the dynamic link library
WRExx0N.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKEXITSN.BAT (%GENxx%Gen\VSabc for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITSN.BAT.

Related User Exits

WRDRTL, TIRURTL

WRUSRID User ID Exit (Windows)

int WRUSRID (

char *rp1,

char *rp2,

char *userid)

Source Code

WREXITN.C

Purpose

WRUSRID supplies the value for the USER_ID attribute. USER_ID can be placed on a
window during window design, and referenced by statements in a PrAD. The value can
be up to 8 characters in length.

Windows GUI Client User Exits

98 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*rp2 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*userid Output A pointer to the user id.

Return Code

None

Default Behavior

The default value is "USERID".

Building on Windows

The User ID User Exit is built as part of the dynamic link library WRExx0N.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKEXITSN.BAT (%GENxx%Gen\VSabc for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITSN.BAT.

Related User Exits

WRSYSID, TIRUSRID

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 99

Windows Client Middleware User Exits

Client Manager - Windows User Exits

All supplied Client Manager user exits are written using the C programming language.
The following table briefly describes the Client Manager Exits:

Client Manager: Language: C

User Exit Name Source Code Description

CI_CM_DPC_FLOW_COMPLETE_COMM_ERROR cicmclx.c Handle communications error
while processing a synchronous
cooperative flow request.

CI_CM_ID cicmclx.c Client Manager unique ID
(supports the use of
Multi-Instance Client Manager).
Used by the Client Manager
application.

CIDE_INIT cidexit.c Conversation Instance
Data—Initialize. Used to disable or
enable subsequent CIDE_PROC
calls.

CIDE_PROC cidexit.c Conversation Instance
Data—Process. Used to modify
certain fields of the Conversation
Instance data (for example UserId
and Password), prior to the
conversation supporting a
cooperative flow being created.

DECRYPT decrexit.c Decrypt CFB from GUI client if the
data in Enhanced Security is to be
used and the target server
environment has a derived
Security_Level of Remote and the
CFB encryption flag indicates the
CFB has been encrypted.

IEFDP_CLEANUPDIR iefdir.c Client Manager Directory
Services—Cleanup Allows for
deallocation of resources, which
can have been allocated to
support directory services.

Windows Client Middleware User Exits

100 User Exit Reference Guide

Client Manager: Language: C

User Exit Name Source Code Description

IEFDP_INITDIR iefdir.c Client Manager Directory
Services—Initialize (disable or
enable subsequent Directory
services calls)

IEFDP_SEARCHDIR iefdir.c Client Manager Directory
Services—Search Implementation
of the transaction server search
algorithm.

RSCUSERENTRY iorscclx.cxx This exit supports multiple APIs
that allow inspection and
modification of user data and
application data before it is sent to
a target server on HP NonStop.
User and application data received
from the target server can also be
inspected or modified before
forwarding to the client
application.

Details for the preceding user exits follow in a separate section for each.

CI_CM_DPC_FLOW_COMPLETE_COMM_ERROR Client Manager Communications Error Exit
(Windows)

intCI_CM_DPC_Flow_Complete_Comm_Error (

int numberOfAttempts,

unsigned long resonCode)

Source Code

CICMCLX.C

Purpose

Control is passed to this exit if the Client Manager encounters a communications error
while processing a synchronous cooperative flow request.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 101

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

numberOfAttempts Input This integer represents the number of attempts that
will be made for a particular reason code.

reasonCode Input This integer represents the error that was
encountered.

Return Code

Return Code Description

RETRY_OK Retry the processing of the cooperative flow.

RETRY_NOT_OK Terminate processing of the cooperative flow.

Default Behavior

Returns a value of RETRY_NOT_OK.

Building the Exit

The CI_CM_DPC_Flow_Complete_Comm_Error exit is built as a part of the dynamic link
library CMICXxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft’s Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
CCMEXIT.NT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F CCMEXIT.NT CLEAN.

Windows Client Middleware User Exits

102 User Exit Reference Guide

5. Run NMAKE /F CCMEXIT.NT.

6. Copy the CMICXxxN.DLL user exit into the Client Manager’s install directory.

Related User Exits

None

CI_CM_ID Client Manager ID Exit (Windows)

char * ci_cm_id(void);

Source Code

CICMCLX.C

Purpose

To support multiple instances of the Client Manager, you must modify the Client
Manager ID user exit. This user exit lets a unique Windows IPC API mailslot name be
created for each instance of the Client Manager that executes in a multi-user
environment. Those clients expecting to connect to this same Client Manager instance
must also use this unique mailslot name used by a given Client Manager instance. The
matching of mailslot naming is accomplished because both the Client Manager and the
Client Manager cooperative flow runtime code will utilize the same Multi-Instance user
exit dll.

To enable the multi-instance capability of the Client Manager, the customer must
modify this exit routine. Any mechanism for determining unique strings logged on user
basis can be used.

Note: For more information about multi-instance Client Managers, see the Distributed
Processing—Client Manager User Guide.

After modification, both the CA Gen client, using the client manager cooperative flow
runtime dll, and the Client Manager, use this user exit.

Arguments

None

Return Code

Returns a unique string identifier used to create/identify a Client Manager’s mailslot on
a Windows workstation.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 103

Default Behavior

Returns a value of TIRCLNTS.

Building the Exit

The ci_cm_id exit is built as a part of the dynamic link library CMICXxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft’s Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
CCMEXIT.NT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F CCMEXIT.NT CLEAN.

5. Run NMAKE /F CCMEXIT.NT.

6. Copy the CMICXxxN.DLL user exit into the Client Manager’s install directory.

Steps to Validate Successful Incorporation of the CMICXnnN.DLL

Prior to incorporating the modified exit, follow these steps:

1. Start the Client Manager.

2. Set Client Manager Logging Level to Trace, using the Client Manager's Setup dialog
(that is, from the Client Manager's main menu select File, Setup). Save the
configuration change and exit the Client Manager.

3. Restart the Client Manager.

4. Browse the Client Manager Log. Look for the log file record containing the name of
the client queue. The default Client Manager mailslot name will contain the
following string: .\mailslot\TIRCLNTS.QUE

5. Stop the Client Manager.

Windows Client Middleware User Exits

104 User Exit Reference Guide

6. After modifying and rebuilding the modified user exit dll, restart the Client
Manager.

7. Browse the Client Manager Log. The client queue displayed should be of the form:
.\mailslot\xxxxxxxx.QUE, where xxxxxxxx is the string value returned from the
modified user exit. This string should be unique to each instance of the Client
Manager that is expected to run.

After modification, both the Client Manager instance and all of the CA Gen clients
expecting to connect to this instance of the Client Manager must use this user exit.

Related User Exits

None

CIDE_INIT Conversation Instance Data Initialize Exit (Windows)

int CIDE_INIT (void);

Source Code

CIDEXIT.C

Purpose

For those transports that use UserID and Password as part of their protocol (currently
LU6.2) a set of user exit functions is provided to facilitate any required adjustments of
the UserID and Password prior to being sent to the transport layer. The CPI/C API
performs the ASCII to EBCDIC translation of the UserID and Password as part of its
conversation protocol. There are two entry points associated with this user exit:

This, the first entry point, is invoked only once, during initialization of the Client
Manager transport support code. Future calls to the CIDE_PROC user exit will be
enabled or disabled depending upon the return value from this exit.

Arguments

None

Return Code

The following table gives a brief description of each of the return codes:

Return Code Description

CIDExitDisabled The default exit implementation disables all future calls into
this exit. The CIDE_PROC user exit will never be invoked.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 105

Return Code Description

CIDExitEnabled Return this value to enable subsequent processing of the
Conversation Instance Data Exit entry point, .CIDE_PROC.

Default Behavior

This exit by default disables all future calls into the CIDE_PROC user exit.

Building the Exit

The Conversation Instance Data User exit is built as a part of the dynamic link library
CIDExxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MAKECID.BAT (%GENxx%Gen\VSabc\samples\ClientManager for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Execute the bat file: MAKECID.BAT.

4. Copy the CIDExxN.DLL user exit into the Client Manager installation directory.

Related User Exits

CIDE_PROC

CIDE_PROC Conversation Instance Data Process Exit (Windows)

void CIDE_PROC (unsigned short LocalCodePage,

unsigned short RemoteCodePage,

unsigned short DataCodePage,

unsigned char * TranCode,

unsigned char * UserId,

unsigned char * Password);

Windows Client Middleware User Exits

106 User Exit Reference Guide

Source Code

CIDEXIT.C

Purpose

For those transports that use UserID and Password as part of their protocol (currently
LU6.2) a set of user exit functions is provided to facilitate any required adjustments of
the UserID and Password prior to being sent to the transport layer. The CPI/C API
performs the ASCII to EBCDIC translation of the UserID and Password as part of its
conversation protocol. There are two functions associates with this user exit:

This second entry point lets you modify the UserID and Password fields before they are
passed to the transport protocol layer. This can be used for codepage translation of the
UserID and Password, if required by the DPS, prior to the cooperative flow.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

LocalCodePage Input CodePage value associated with the client workstation

RemoteCodePage Input CodePage value associated with the target server (value as
defined in the .srv file)

DataCodePage Input CodePage value associated with the following data items
host name

*TranCode Input Pointer to a null terminated string containing the
conversation instance trancode value

*UserId Input/Output Pointer to a null terminated string containing the
conversation instance user ID value.

Modifications are propagated to the cooperative flow
request.

*Password Input/Output Pointer to a null terminated string containing the
conversation instance password value. Modifications are
propagated to the cooperative flow request.

Return Code

None

Default Behavior

CIDE_PROC is not invoked.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 107

Building the Exit

The Conversation Instance Data User exit is built as a part of the dynamic link library
CIDExxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MAKECID.BAT (%GENxx%Gen\VSabc\samples\ClientManager for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Execute the bat file: MAKECID.BAT.

4. Copy the CIDExxN.DLL user exit into the Client Manager installation directory.

Related User Exits

CIDE_INIT

DECRYPT Cooperative Flow Decryption Exit (Windows)

int DECRYPT (long maxViewLen,

long *encryptViewLen,

unsigned char *encryptView,

char *failureMsg);

Source Code

DECREXIT.C

Windows Client Middleware User Exits

108 User Exit Reference Guide

Purpose

The CFB data transmitted from a DPC application can optionally be encrypted. A flag
byte in the CFB header notifies the receiver of the CFB that the CFB has been encrypted.
It is the receiver's responsibility to decrypt the CFB prior to using it.

The runtime's WRSECTOKEN user exit controls if and where within the CFB the client
application's security data is placed. If the WRSECTOKEN user exit returns
SecurityUsedEnhanced, the client's security data will be placed in the security offset
section of the CFB. This portion of the CFB can optionally be encrypted by the client
runtime's WRSECENCRPT user exit.

If the derived security level of the selected target server is Remote, the Client Manager
can need to decrypt the CFB to access the security data placed into the security offset
section of the CFB.

The Client Manager will invoke its DECRYPT user exit if each of the following conditions
is met:

1. The derived security level of the selected target server is Remote. Remote indicates
that the Client Manager will attempt to associate security data for flows that target
this server.

2. The CFB Being processed is an Enhanced CFB indicating that the CFB contains a
security offset area.

3. The CFB's bClntMgrSecurity flag is set. This flag is set by the client runtime if the
client's WRSECTOKEN user exit sets its bClntMgrSecurity argument to TRUE. This
CFB flag informs the Client Manager that it should use the security data contained
within the security offset area of the CFB rather than the security data it maintains
as part of its configuration.

4. The CFB has been encrypted by the client runtime. The DPC encrypts the CFB using
the WRSECENCRYPT user exit. If the client encrypts the CFB, then the Client
Manager must decrypt the CFB to extract the security data from the security offset
area.

Client Manager's DECRYPT user exit will not be invoked if:

■ The target server's derived security level is None.

■ The CFB being processed by the Client Manager is a Standard CFB. In this case, the
CFB does not contain a security offset.

■ The CFB being processed is not encrypted.

Note: For more information about security configuration, see the Distributed
Processing—Client Manager User Guide.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 109

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

MaxViewLen Input A long field that contains the maximum available buffer
space (in bytes) that the decrypted data can occupy.

*EncryptViewLen Input/Output Input: the current buffer space (in bytes) of the encrypted
data.

Output: Len should be updated to contain the length of the
decrypted data. The length of the decrypted result cannot
exceed maxViewLen.

*EncryptView Input/Output A pointer to a conversion work area.

Input: The work area contains the encrypted data.

Output: This exit must update the work area to contain the
decrypted version of the encrypted data.

*failureMsg Output A pointer to an 80-character array that can receive a user
provided null terminated error message string. The string
pointed to by the failureMsg pointer will be incorporated
into error text returned to the DP client.

Return Code

The following table gives a brief description of each of the return codes:

Return Code Description

DecryptionNotUsed Indicates to the runtime that the user exit did not perform
any decryption of the data provided. This is the default
return value.

DecryptionUsed Indicates to the runtime that the user exit successfully
performed the decryption of the provided data.

DecryptionFailure Indicates to the runtime that an error was encountered by
the user exit and that the decryption processing has failed.
The error indication and message string returned using the
failureMsg argument will be returned to the DP client
associated with the failed request.

Default Behavior

The DECRYPT user exit, as delivered, does not perform decryption and will return
DecryptionNotUsed.

Windows Client Middleware User Exits

110 User Exit Reference Guide

Building the Exit

The Decrypt exit is built as a part of the dynamic link library DECRExxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MAKEDECR.BAT (%GENxx%Gen\VSabc\samples\ClientManager for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Execute the bat file: MAKEDECR.BAT.

4. Copy the DECRExxN.DLL user exit into the Client Manager installation directory.

Related User Exits

The following are related user exits:

■ WRSECTOKEN

■ WRSECENCRYPT

IEFDP_CLEANUPDIR Directory Services Cleanup Exit (Windows)

void IEFDP_CleanUpDir (void);

Source Code

IEFDIR.C

Purpose

The Directory Services User Exit is the Client Manager's implementation of Transaction
routing. Transaction routing is a conceptual process that lets cooperative flow data be
routed from a Distributed Process Client (DPC) to a programmatically determined
Distributed Process Server (DPS). The Distributed Processing—Client Manager User
Guide discusses transaction routing and directory services in detail.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 111

IEFDP_CleanUpDir is called when Client Manager is terminating. It takes no arguments
and does not return a value. In the sample code, IEFDP_CleanUpDir is used to free any
resources allocated on behalf of the Client Manager. IEFDP_CleanUpDir is the last
directory service function called by the Client Manager.

Arguments

None

Return Code

None

Default Behavior

The Client Manager Directory Services transaction routing is disabled.

Building the Exit

The Directory Services exit is built as a part of the dynamic link library IEFDIRN.DLL. A
prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
IEFDIRN.MAK (%GENxx%Gen\VSabc\samples\ClientManager for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F IEFDIRN.MAK CLEAN.

5. Run NMAKE /F IEFDIRN.MAK.

6. Copy the IEFDIRN.DLL user exit into the Client Manager installation directory.

Note: Because the Directory Services user exit dll name is configurable using the Client
Manager setup dialog, the dll file does not have to be named IEFDIRN.DLL. If the dll is
renamed, the IEFDIRN.MAK file must be modified accordingly.

Windows Client Middleware User Exits

112 User Exit Reference Guide

Related User Exits

The following are related user exits:

■ IEFDP_InitDir

■ IEFDP_SearchDir

IEFDP_INITDIR Directory Services Initialize Exit (Windows)

unsigned long IEFDP_InitDir (void* iniFile);

Source Code

IEFDIR.C

Purpose

The Directory Services User Exit is the Client Manager's implementation of Transaction
routing. Transaction routing is a conceptual process that lets cooperative flow data be
routed from a Distributed Process Client (DPC) to a programmatically determined
Distributed Process Server (DPS). The Distributed Processing—Client Manager User
Guide discusses transaction routing and directory services in detail.

This initialization interface is called once and does the Client Manager call the first
directory service function. In the supplied sample implementation, this routine reads
the transaction code to server mapping information from the iefdir.trn file.

Note: For more information about updating the IEFDIR.TRN file, see the section
Directory Services DLL Functions in the Distributed Processing—Client Manager User
Guide.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

* iniFile Input A void pointer, pointing to a NULL terminated string containing the name of
the Client Manager initialization file. (By default IEFCMN.INI).

Return Code

The following table gives a brief description of each of the return codes.

Return Code Description

Zero (0) Indicates that the initialization was successful.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 113

Return Code Description

Non Zero If a non-zero value is returned to the Client Manager, the Client
Manager will assume that the directory services capability is not
available.

Default Behavior

The Client Manager Directory Services transaction routing is disabled.

Building the Exit

The Directory Services exit is built as a part of the dynamic link library IEFDIRN.DLL. A
prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
IEFDIRN.MAK (%GENxx%Gen\VSabc\samples\ClientManager for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F IEFDIRN.MAK CLEAN.

5. Run NMAKE /F IEFDIRN.MAK.

6. Copy the IEFDIRN.DLL user exit into the Client Manager installation directory.

Note: Because the Directory Services user exit dll name is configurable using the Client
Manager setup dialog, it need not be called IEFDIRN.DLL. If the dll is to be renamed, the
IEFDIRN.MAK file will need to be modified accordingly.

Related User Exits

The following are related user exits:

■ IEFDP_SearchDir

■ IEFDP_CleanUpDir

IEFDP_SEARCHDIR Directory Services Search Exit (Windows)

void* IEFDP_SearchDir (void *parms);

Windows Client Middleware User Exits

114 User Exit Reference Guide

Source Code

IEFDIR.C

Purpose

The Directory Services User Exit is the Client Manager's implementation of Transaction
routing. Transaction routing is a conceptual process that lets cooperative flow data be
routed from a Distributed Process Client (DPC) to a programmatically determined
Distributed Process Server (DPS).

Note: For more information about transaction routing and directory services, see the
Distributed Processing—Client Manager User Guide.

This exit is used to return a target system name to the Client Manager. This exit takes a
single argument which points to two (2) NULL terminated strings. The first string is the
transaction code and the second string is NextLocation data provided by the application.
IEFDP_SearchDir should return a NULL value to the Client Manager if an appropriate
target system cannot be found. If NextLocation data is provided, the sample program
assumes that it contains a target system name.

Each time IEFDP_SearchDir is called, the sample code determines if the iefdir.trn input
file has changed. If it has, the binary search tree is refreshed.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*parms Input A void pointer, pointing to 2 NULL terminated
strings. The first string contains a transaction code,
the string immediately following the first string's
terminating NULL is the NEXTLOCATION provided
by the application.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 115

Return Codes

The return code is briefly described next.

void * A pointer to a string containing one of the following:

■ The NEXTLOCATION string if it was provided to this exit by the
application.

■ A target system name as obtained from the implementation of this
interface. In this illustration, the target system name is obtained from
the IEFDIR.TRN file.

■ A NULL of an appropriate target system name cannot be found.

Note: The sample implementation of this exit will attempt to remove trailing spaces
from the string pointed to by this void *. Thus, this pointer should not refer to read-only
memory. You can modify this exit's sample function clipString(), located in iefdir.c if
required to accommodate the void * pointing to read-only memory.

Default Behavior

The Client Manager Directory Services transaction routing is disabled.

Building the Exit

The Directory Services exit is built as a part of the dynamic link library IEFDIRN.DLL. A
prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
IEFDIRN.MAK (%GENxx%Gen\VSabc\samples\ClientManager for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F IEFDIRN.MAK CLEAN.

5. Run NMAKE /F IEFDIRN.MAK.

6. Copy the IEFDIRN.DLL user exit into the Client Manager installation directory.

Note: Because the Directory Services user exit dll name is configurable using the Client
Manager setup dialog, it need not be called IEFDIRN.DLL. If the dll is to be renamed, the
IEFDIRN.MAK file will need to be modified accordingly.

Windows Client Middleware User Exits

116 User Exit Reference Guide

Related User Exits

The following are related user exits:

■ IEFDP_InitDir

■ IEFDP_CleanUpDir

RSCUSERENTRY Entry Point for Accessing APIs for User/Application Data Targeting HP
NonStop Servers (Windows)

int RSCUserEntry(pTRANSHANDLE const transHandle, int sending);

Source Code

IORCSCLX.CXX

Purpose

The RSCUserEntry user exit supports multiple APIs that let you inspect and modify user
data and application data before it is sent to the target server. User and application data
received from the target server can also be inspected or modified before forwarding to
the client application.

Note: The size of the CA Gen data buffer cannot be modified. Data integrity must be
maintained by the user exit.

Each user exit API may be called just before sending data to the target server and again
just after receiving data from the target server. This enables use of the APIs for such
purposes as encrypting/decrypting transaction data, adding custom non Gen data to the
buffer sent to the server side, and performing customized auditing.

More information:

API Functions (see page 136)

APIs

The following table describes of each of the APIs supported by the Remote Server Call
interface, RSCUserEntry:

API Name Description

GetMessageSize Returns the length of the message area for the current
request or response message.

GetUserData Returns the user data associated with the current request
or response message.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 117

API Name Description

SetUserData Copies the passed in buffer into the user data area
associated with the current request or response message.

GetIEFData Returns the CA Gen data (and its length) contained within
the current receive or response message.

SetIEFData Modifies the CA Gen data contained within the buffer used
for the current receive or response message.

Return Code

This user exit returns True if the API function succeeds, or returns False if the API
function fails.

Default Behavior

The RSCUserEntry is invoked only when the user exit .dll file is configured using the
Client Manager RSC/MP Configuration Details dialog.

Building the Exit

The RSC/MP User exit is built as a part of the dynamic link library RSCUXxxN.dll.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes.

The Microsoft's Visual C++ compiler should be installed on the system where you build
the .dll.

Follow these steps:

1. Launch a Command Prompt window.

2. Change to the directory that contains the makefile IORSCUX.NT
(%GENxx%Gen\VSabc\samples\ClientManager for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F IORCSUX.NT.

5. Copy the RSCUXxxN.DLL user exit into the Client Bridge installation directory.

Related User Exits

USEREXIT—RSC/MP Server Side User Exit

Windows Client Middleware User Exits

118 User Exit Reference Guide

API Functions

This section provides information about how to use the API Functions of the
RSCUserEntry user exit.

Function Format

int GetMessageSize(pTRANSHANDLE transHandle, short * msgSize)

Purpose

The GetMessageSize API function returns the size of the current message buffer. This
includes the NonStop RSC/MP header, Gen data, and user data.

If the second parameter passed into the main entry point, RSCUserEntry(), is 1 this
signifies the exit is being called just prior sending the request message to the target
server. The message size returned will be that of the message about to be sent to the
server.

If the second parameter passed into the main entry point, RSCUserEntry(), is 0 this
signifies the exit is being called just after the response message has been received from
the target server. The message size returned will be that of the message just received
from the server.

Arguments

The following table describes the arguments for the GetMessageSize API Function:

Name I/O Description

transHandle Input The transaction handle for this session. This value is passed
into the RSCUserEntry entry point by the Gen runtime. This
value must not be changed.

msgSize Output A pointer to a short where the total size of the current
message is stored.

Return Code

The following table describes each return code for the GetMessageSize API function:

Return Code Description

0 The API function succeeded.

Nonzero An invalid transHandle was detected.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 119

Default Behavior

When enabled, the default RSCUserEntry user exit calls this API after receiving a
response from the server, prior to forwarding it to the client.

Function Format

int GetUserData(pTRANSHANDLE transHandle, unsigned char * data, short * length)

Purpose

Returns the user data area associated with the current message. If the second
parameter passed into the main entry point, RSCUserEntry(), is 1 then this signifies the
exit is being called just before sending the request message to the target server. The
user data returned is the data previously set by the client, if any.

If the second parameter passed into the main entry point, RSCUserEntry(), is 0 then this
signifies the exit is being called just after the response message has been received from
the target server. The user data returned will be that previously set by the server, if any.

Arguments

The following table describes the arguments for the GetMessageSize API Function:

Name I/O Description

transHandle Input The transaction handle for this session. This value is passed
into the RSCUserEntry entry point by the Gen runtime. This
value must not be changed.

* data Input/ Output A pointer to a buffer area where the runtime is to copy the
user data.

Note: It is the caller’s responsibility to ensure adequate
memory has been allocated to contain the user data
contained in the current message.

* length Output A pointer to a short that will contain the actual size of the
data copied.

Return Code

The following table describes each return code for the GetUserData API function.

Return Code Description

0 The API function succeeded.

Nonzero An invalid transHandle was detected.

Windows Client Middleware User Exits

120 User Exit Reference Guide

Default Behavior

If enabled, the default RSCUserEntry user exit calls this API after having received a
response from the server, prior to forwarding it to the client.

Function Format

int SetUserData(pTRANSHANDLE transHandle, unsigned char * data, short * length)

Purpose

Copies the passed in buffer into the user data area associated with the current message.
C–104 Distributed Processing-Overview Guide

If the second parameter passed into the main entry point, RSCUserEntry(), is 1 then this
signifies the exit is being called just prior sending the request message to the target
server. The buffer data will be copied into the current message’s user data area prior to
the message being sent to the target server.

If the second parameter passed into the main entry point, RSCUserEntry(), is 0 then this
signifies the exit is being called just after the response message has been received from
the target server. Calling this API at this time will effectively have no influence on the
current message.

Arguments

The following table describes the arguments for the SetUserData API Function:

Name I/O Description

transHandle Input The transaction handle for this session. This value is passed
into the RSCUserEntry entry point by the Gen runtime. This
value must not be changed.

* data Input/ Output A pointer to a buffer area that is copied into the current
message’s user data area.

length Output The length of the data buffer pointed to by the data
parameter.

Return Code

The following table describes each return code for the SetUserData API function:

Return Code Description

0 The API function succeeded.

Nonzero An invalid transHandle was detected.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 121

Default Behavior

If enabled, the default RSCUserEntry user exit calls this API prior to the request being
sent to the server.

Function Format

int GetIEFData(pTRANSHANDLE transHandle, short sending, unsigned char * data, short

* length)

Purpose

Returns a copy of the client data associated with the current message.

If the second parameter passed into the main entry point, RSCUserEntry(), is 1 the this
signifies the exit is being called just prior sending the request message to the target
server. The client data returned will be that which will be forwarded on to the server.

If the second parameter passed into the main entry point, RSCUserEntry(), is 0 then this
signifies the exit is being called just after the response message has been received from
the target server. The data returned will be that which will be forwarded on to the
client.

Arguments

The following table describes the arguments for the SetUserData API Function:

Name I/O Description

transHandle Input The transaction handle for this session. This value is passed
into the RSCUserEntry entry point by the Gen runtime. This
value must not be changed.

Sending Output This value must be set the same as the second parameter
passed into RSCUserEntry() by the runtime.

* data Input/ Output A pointer to a buffer area where the runtime is to copy the
client data.

Note: It is the caller’s responsibility to ensure that adequate
memory has been allocated to contain the client data copied
from the current message.

* length Output A pointer to a short that will contain the actual size of the
data copied.

Windows Client Middleware User Exits

122 User Exit Reference Guide

Return Code

Return Code

The following table describes each return code for the SetUserData API function:

Return Code Description

0 The API function succeeded.

Nonzero An invalid transHandle was detected.

Default Behavior

If enabled, the default RSCUserEntry user exit calls this API just before sending the
request to the server and calls it again just after the response has been returned from
the server.

Function Format

int SetIEFData(pTRANSHANDLE transHandle, short sending, unsigned char * data)

Purpose

Copies the passed in buffer into the client data area associated with the current
message.

If the second parameter passed into the main entry point, RSCUserEntry(), is 1, then this
signifies that the user exit is being called just before sending the request message to the
target server. The buffer data will be copied into the current message’s client data area
prior to the message being forwarded to the target server.

If the second parameter passed into the main entry point, RSCUserEntry(), is 0, then this
signifies that the user exit is being called just after the response message has been
received from the target server. The buffer data will be copied into the current
message’s client data area prior to the message being forwarded to the client.

Arguments

Name I/O Description

transHandle Input The transaction handle for this session. This value is passed
into the RSCUserEntry entry point by the Gen runtime. This
value must not be changed.

Sending Output This value must be set the same as the second parameter
passed into RSCUserEntry() by the runtime.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 123

Name I/O Description

* data Input/ Output A pointer to a buffer area that is copied into the current
message’s client data area. The number of bytes copied will
correspond to the client data size as know by the runtime. It is
the caller's responsibility to maintain the integrity of the client
data structure and size.

Return Code

The following table gives a brief description of each of the return code values:

Return Code Description

0 Indicates that the API completed successfully.

Nonzero Indicates that the API detected an invalid transHandle.

Default Behavior

If enabled, the default user exit calls this API just before sending the request to the
server and again just after the response has been returned from the server.

Communications Bridge - Windows User Exits

All supplied Communications Bridge user exits are written using the C programming
language. The following table briefly describes each of the exits:

Comm. Bridge: Language: C

User Exit Name Source Code Description

CIDE_INIT cidexit.c Conversation Instance Data exit -
Initialize This exit disables or enables
subsequent CIDE_PROC calls.

CIDE_PROC cidexit.c Conversation Instance Data
exit—Process This exit lets modification
of certain fields of the Conversation
Instance data (for example UserId and
Password), prior to the conversation
supporting a cooperative flow being
created.

Windows Client Middleware User Exits

124 User Exit Reference Guide

Comm. Bridge: Language: C

User Exit Name Source Code Description

DECRYPT decrexit.c This exit will decrypt the CFB from a
client if the data in the CFB's Enhanced
Security offset area is to be used and
the target server environment has a
derived Security_Level of Remote and if
the CFB has been encrypted.

ECI_CLIENT_EXIT ioeciclx.c This exit is called to permit overriding
the name of the target CICS System (as
it is known to the CICS Universal Client),
the specified ECI timeout value, and the
specified CICS Mirror Transaction
associated with the request.

GETTCPHOSTNAME inetipux.c Allows disabling the host name lookup
that maps a connected client's IP
address to a host name string.

RSCUSERENTRY iorscclx.cxx This exit supports multiple APIs that
allow inspection and modification of
user data and application data before it
is sent to a target server on HP
NonStop. User and application data
received from the target server can also
be inspected or modified before
forwarding to the client application.

Details of the preceding user exits follow. Each one is described in a separate section.

CIDE_INIT Conversation Instance Data User Exit (Windows)

int CIDE_INIT (void);

Source Code

CIDEXIT.C

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 125

Purpose

For those transports that use UserID and Password as part of their protocol (currently
LU6.2) a set of user exit functions is provided to facilitate any required adjustments of
the UserID and Password prior to being sent to the transport layer. The CPI/C API
performs the ASCII to EBCDIC translation of the UserID and Password as part of its
conversation protocol. There are two entry points associated with this user exit:

This, the first, entry point is invoked only once, during initialization of the Client
Manager transport support code. Future calls to the CIDE_PROC user exit will be
enabled or disabled depending upon the return value from this exit.

Arguments

None

Return Code

The following table gives a brief description of each of the return codes:

Return Code Description

CIDExitDisabled The default exit implementation disables all future calls into
this exit. The CIDE_PROC user exit will never be invoked.

CIDExitEnabled Return this value to enable subsequent processing of the
Conversation Instance Data Exit entry point, .CIDE_PROC.

Default Behavior

This exit by default disables all future calls into the CIDE_PROC user exit.

Windows Client Middleware User Exits

126 User Exit Reference Guide

Building the Exit

The Conversation Instance Data User exit is built as a part of the dynamic link library
CIDExxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MAKECID.BAT (%GENxx%Gen\VSabc\samples\CommBridge for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Execute the bat file: MAKECID.BAT

4. Copy the CIDExxN.DLL user exit into the Comm. Bridge installation directory

Related User Exits

None

CIDE_PROC Conversation Instance Data Process Exit (Windows)

void CIDE_PROC (unsigned short LocalCodePage,

unsigned short RemoteCodePage,

unsigned short DataCodePage,

unsigned char * TranCode,

unsigned char * UserId,

unsigned char * Password);

Source Code

CIDEXIT.C

Purpose

The two user exit functions are provided to facilitate any required translation of the
UserID and Password prior to being sent to the transport layer. This second entry point
lets you modify the UserID and Password fields before they are passed to the transport
protocol layer. This can be used for codepage translation of the UserID and Password, if
required by the DPS, prior to the cooperative flow.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 127

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

LocalCodePage Input CodePage value associated with the client workstation

RemoteCodePage Input CodePage value associated with the target server (value as
defined in the .srv file)

DataCodePage Input CodePage value associated with the following data items
 host name

*TranCode Input Pointer to a null terminated string containing the
conversation instance trancode value

*UserId Input/Output Pointer to a null terminated string containing the
conversation instance user ID value. Modifications made to
the field pointed to by UserId are propagated to the CFB
associated with the cooperative flow request.

*Password Input/Output Pointer to a null terminated string containing the
conversation instance password value. Modifications made
to the field pointed to by Password are propagated to the
CFB associated with the cooperative flow request.

Return Code

None

Default Behavior

CIDE_INIT by default disables all calls into CIDE_PROC .

Windows Client Middleware User Exits

128 User Exit Reference Guide

Building the Exit

The Conversation Instance Data Process User exit is built as a part of the dynamic link
library CIDExxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MAKECID.BAT (%GENxx%Gen\VSabc\samples\CommBridge for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Execute the bat file: MAKECID.BAT

4. Copy the CIDExxN.DLL user exit into the Comm. Bridge installation directory

Related User Exits

None

DECRYPT Cooperative Flow Decryption Exit (Windows)

int DECRYPT (long maxViewLen,

long *encryptViewLen,

unsigned char *encryptView,

char *failureMsg);

Source Code

DECREXIT.C

Purpose

The CFB data transmitted from a DPC application can optionally be encrypted. A flag
byte in the CFB header notifies the receiver of the CFB that the CFB has been encrypted.
It is the receiver's responsibility to decrypt the CFB prior to using it.

With respect to the Comm. Bridge, the data in the CFB will only need to be decrypted if
the security data located in the security offset section is to be used when sending the
cooperative flow request to a target server. The Comm. Bridge uses the CMUseSecure
CFB flag to determine if the data in the security offset should be used.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 129

The CMUseSecure flag is set by the client runtime if its invocation of the client side
security exit returns a TRUE for the bClntMgrSecurity flag. Therefore, the following
considerations must be met before the Comm. Bridge invokes its decryption user exit:

1. The CFB's CMUseSecure flag is set, indicating that the requesting client requires the
Comm. Bridge use the security data it placed into the security offset section when
handling the cooperative flow.

2. The CFB encryption flag byte indicates that it has been encrypted.

If the preceding conditions are met, the Comm. Bridge must invoke its decryption user
exit.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

MaxViewLen Input A long field that contains the maximum available buffer
space (in bytes) that the decrypted data can occupy.

*EncryptViewLen Input/ Output Input: the current buffer space (in bytes) of the encrypted
data.

Output: Len should be updated to contain the length of the
decrypted data. The length of the decrypted result cannot
exceed maxViewLen.

*EncryptView Input/ Output A character pointer to a buffer containing view data. On
input, the buffer contains the encrypted data. On output,
this exit should ensure the buffer contains the decrypted
version of the encrypted data.

*failureMsg Output A pointer to an 80-character array that can receive a user
provided null terminated error message string. The string
pointed to by the failureMsg pointer will be incorporated
into error text returned to the DP client.

Return Code

The following table gives a brief description of each of the return codes.

Return Code Description

DecryptionNotUsed Indicates to the runtime that the user exit did not
perform any decryption of the data provided. This is the
default return value.

Windows Client Middleware User Exits

130 User Exit Reference Guide

Return Code Description

DecryptionUsed Indicates to the runtime that the user exit successfully
performed the decryption of the provided data.

DecryptionFailure Indicates to the runtime that an error was encountered
by the user exit and that the decryption processing has
failed. The error indication and message string returned
using the failureMsg argument will be returned to the
DP client associated with the failed request.

Default Behavior

The DECRYPT user exit, as delivered, does not perform decryption and will return
DecryptionNotUsed.

Building the Exit

The Decrypt exit is built as a part of the dynamic link library DECRExxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MAKEDECR.BAT (%GENxx%Gen\VSabc\samples\CommBridge for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Execute the bat file: MAKEDECR.BAT

4. Copy the DECRExxN.DLL user exit into the Comm. Bridge installation directory

Related User Exits

The following are related user exits:

■ TIRELOG

■ WRSRVRERROR

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 131

ECI_CLIENT_EXIT ECI Communications Interface Exit (Windows)

short eci_client_exit(char * pTranCode,

short * pECITimeOut,

char * pECITpn,

char * pSysName);

Source Code

IOECICLX.C

Purpose

A Comm. Bridge can be configured to use ECI as its server side transport. The ECI
runtime lets applications target one or more CICS regions. This user exit is called from
the Comm. Bridge's ECI runtime DLL prior to it invoking the CICS ExternalCall() API.
Invoking this exit lets the ECI runtime's default behavior be customized. The name of the
target CICS region, the ECI timeout value and the TP Name to use when processing the
request can all be customized within this exit. If the ECI TPN is specified by this exit, the
name specified must be associated with the CICS Mirror application DFHMIRS.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

* pTranCode Input A pointer to a character array containing the transaction
code name associated in the model with the target server
procedure step. Some users can wish to set the ECI TPN
to the value pointed to by this input argument.

* pECITimeOut Input/Output Input: pointer to a signed short containing the default
timeout value. 0 (zero) seconds indicates no timeout.

Output: the signed short field pointed to by this pointer is
used as the eci_timeout value specified
in the ECI_PARMS structure used by the CICS
ExternalCall() API call.

* pECITpn Input/Output Input: A pointer to a NULL 4-byte character array. Output:
A NULL character array results in CPMI being used as the
ECI TPN on the CICS ExternalCall(). A non-NULL 4-byte
character array contains the eci_tpn value that will be
specified in the ECI_PARMS structure used by the CICS
ExternalCall() API call .

Windows Client Middleware User Exits

132 User Exit Reference Guide

Name I/O Description

* pSysName Input/Output Input: Pointer to a character array containing a default
CICS System name.

Output: The memory area pointed to by this address will
contain the name of the CICS system to be used on the
ECI API call. The character array is defined to receive a
null terminated string whose maximum length is
CICS_ECI_SYSTEM_MAX+1.

Return Code

The following table gives a brief description of each of the return codes.

Return Code Description

0 (Zero) The operation of the exit completed OK

!= 0 (Non zero) An error occurred during the processing of the exit.

Default Behavior

The default user exit returns a zero. The default behavior does not attempt to modify
any of the customizable fields.

Building the Exit

The eci_client_exit is built as a part of the dynamic link library ECIUXxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
IOECIUX.NT (%GENxx%Gen\VSabc for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 133

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F IOECIUX.NT CLEAN.

5. Run NMAKE /F IOECIUX.NT.

Related User Exits

None

GETTCPHOSTNAME Host Name Lookup Exit (Windows)

void GetTCPHostName (sockaddr_storage sock_addr,

char * hostName,

int maxHostNameLen);

Source Code

INETIPUX.C

Purpose

This user exit is used to disable the domain name server (DNS) host name lookup for
clients that connect to a Comm. Bridge. Host name lookup is normally performed when
adding a client's host name to the Client Name list on the Comm. Bridge main window.
In general, it is usually easier to deal with a client's host name than it is its IP address. By
default, the Comm. Bridge will attempt to display its client connections using their host
names.

The host name lookup is accomplished by calling the system routine getnameinfo(). In
certain network environments, the time required to obtain a host name from an IP
address can be excessive, especially when the domain name server is behind a firewall.
The time to resolve the host name from its IP address is overhead expended when a
client connects to the Comm. Bridge. The client can see this overhead as its server
application taking longer than expect to return its response.

This exit gives a mechanism whereby the getnameinfo() call can return either a text host
name or an IP address. If the IP address of the client is returned then the IP address is
displayed in the Client Name list.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

In Input A socket sockaddr_storage structure containing the IP address
for which a textual hostname is to be provided.

Windows Client Middleware User Exits

134 User Exit Reference Guide

Name I/O Description

*hostName Output A pointer to a character array updated by this exit with the
hostname corresponding to the sockaddr_storage structure
content.

maxHostNameLen Input An integer value containing the maximum length of the
character array pointed to by the hostName argument.

Return Code

None

Default Behavior

A getnameinfo() function call is issued to lookup a given clients IP address and to obtain
its text hostname equivalent.

Building the Exit

The GetTCPHostName exit is built as a part of the dynamic link library TCPUXxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
INETIPUX.NT (%GENxx%Gen\VSabc for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F INETIPUX.NT CLEAN.

5. Run NMAKE /F INETIPUX.NT.

Related User Exits

None

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 135

RSCUSERENTRY Client Side RSC/MP Distributed Processing Flow Data Access Exit, Targeting
HP NonStop Servers (Windows)

int RSCUserEntry(pTRANSHANDLE const transHandle, int sending);

Source Code

IORSCCLX.CXX

Purpose

The RSCUserEntry user exit supports multiple APIs that allow inspection and
modification of user data and application data before it is sent to the target server. User
and application data received from the target server can also be inspected or modified
before forwarding to the client application.

Note: The size of the CA Gen data buffer cannot be modified. Data integrity must be
maintained by the user exit.

Each user exit API may be called just before sending data to the target server and again
just after receiving data from the target server. This enables use of the APIs for such
purposes as encrypting/decrypting transaction data, adding custom data that is not
applicable to CA Gen to the buffer sent to the server side, and performing customized
auditing.

More information:

API Functions (see page 136)

APIs

The following table describes each API supported by the Remote Server Call interface,
RSCUserEntry.

API Name Description

GetMessageSize Returns the length of the message area for the current
request or response message.

GetUserData Returns the user data associated with the current request or
response message.

SetUserData Copies the passed in buffer into the user data area associated
with the current request or response message.

GetIEFData Returns the CA Gen data (and its length) contained within the
current receive or response message.

Windows Client Middleware User Exits

136 User Exit Reference Guide

API Name Description

SetIEFData Modifies the CA Gen data contained within the buffer used for
the current receive or response message.

Note: For more information about the API functions for the RSCUserEntry user exit, see
API Functions (see page 136).

Return Code

This exit should return True if the operation performed succeeds or returns False if the
operation fails.

Default Behavior

RSCUserEntry is invoked only when the user exit .dll file is configured using the Client
Manager RSC/MP Configuration Details dialog. The sample exit supplied contains code
which is commented out, thus no operations are performed.

Building the Exit

Build the RSC/MP user exit to make the functionality provided by the APIs accessible.
The Microsoft Visual C++ compiler should be installed on the system where you build
the .dll. The exit is built as a part of the dynamic link library, RSCUXxxN.dll; the xx is the
CA Gen release number.

Follow these steps:

1. Launch a Command Prompt window.

2. Change to the directory that contains the makefile IORSCUX.NT. (By default, this file
is in the CA Gen installation's sample\CommBridge subdirectory.)

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F IORSCUX.NT.

5. Copy the RSCUXxxN.DLL user exit into the Comm Bridge installation directory.

Related User Exits

USEREXIT—The RSC/MP Server Side User Exit

API Functions

This section provides information about how to use the API Functions of the
RSCUserEntry user exit.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 137

Function Format

int GetMessageSize(pTRANSHANDLE transHandle, short * msgSize)

Purpose

The GetMessageSize API function returns the size of the current message buffer. This
includes the NonStop RSC/MP header, Gen data, and user data.

If the second parameter passed into the main entry point, RSCUserEntry(), is 1 then this
signifies that the exit is being called just prior sending the request message to the target
server. The message size returned will be that of the message about to be sent to the
server.

If the second parameter passed into the main entry point, RSCUserEntry(), is 0 then this
signifies that the exit is being called just after the response message has been received
from the target server. The message size returned is that of the message just received
from the server.

Arguments

The following table describes the arguments for the GetMessageSize API Function:

Name I/O Description

transHandle Input The transaction handle for this session. This value is passed into the
RSCUserEntry entry point user exit by the CA Gen runtime. This value
must not be changed.

msgSize Output A pointer to a short where the total size of the current message is
stored.

Return Code

The following table describes each return code for the GetMessageSize API function.

Return Code Description

0 The API function succeeded.

Nonzero An invalid transHandle was detected.

Default Behavior

When enabled, the sample RSCUserEntry user exit calls this API after receiving a
response from the server, prior to forwarding it to the client.

Windows Client Middleware User Exits

138 User Exit Reference Guide

Function Format

int GetUserData(pTRANSHANDLE transHandle, unsigned char * data, short * length)

Purpose

Returns the user data area associated with the current message. If the second
parameter passed into the main entry point, RSCUserEntry(), is 1 then this signifies that
the exit is being called just before sending the request message to the target server. The
user data returned is the data previously set by the client, if any.

If the second parameter passed into the main entry point, RSCUserEntry(), is 0 then this
signifies that the exit is being called just after the response message has been received
from the target server. The user data returned is that previously set by the server, if any.

Arguments

The following table describes the arguments for the GetUserData API Function:

Name I/O Description

transHandle Input The transaction handle for this session. This value is passed
into the RSCUserEntry entry point user exit by the CA Gen
runtime. This value must not be changed.

* data Input/Output A pointer to a buffer area where the runtime is to copy the
user data.

Note: It is the caller's responsibility to ensure adequate
memory has been allocated to contain the user data
contained in the current message.

* length Output A pointer to a short that will contain the actual size of the
data copied.

Return Code

The following table describes each return code for the GetUserData API function:

Return Code Description

0 The API function succeeded.

Nonzero An invalid transHandle was detected.

Default Behavior

If enabled, the sample RSCUserEntry user exit calls this API after having received a
response from the server, before forwarding it to the client.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 139

Function Format

int SetUserData(pTRANSHANDLE transHandle, unsigned char * data, short * length)

Purpose

Copies the passed in buffer into the user data area associated with the current message.

If the second parameter passed into the main entry point, RSCUserEntry(), is 1 this
signifies that the exit is being called just prior to sending the request message to the
target server. The buffer data will be copied into the current message’s user data area
prior to the message being sent to the target server.

If the second parameter passed into the main entry point, RSCUserEntry(), is 0 this
signifies that the exit is being called just after the response message has been received
from the target server. The user data returned is that previously set by the server, if any.

Arguments

The following table describes the arguments for the SetUserData API Function:

Name I/O Description

transHandle Input The transaction handle for this session. This value is passed
into the RSCUserEntry entry point by the Gen runtime. This
value must not be changed.

* data Output A pointer to a buffer area that is copied into the current
message’s user data area.

length Output The length of the data buffer pointed to by the data
parameter

Return Code

The following table describes each return code for the SetUserData API function:

Return Code Description

0 The API function succeeded.

Nonzero An invalid transHandle was detected.

Default Behavior

If enabled, the sample RSCUserEntry user exit calls the SetUserData API prior to the
request being sent to the server.

Windows Client Middleware User Exits

140 User Exit Reference Guide

Function Format

int GetIEFData(pTRANSHANDLE transHandle, short sending, unsigned char * data, short

* length)

Purpose

Returns a copy of the client data associated with the current message.

If the second parameter passed into the main entry point, RSCUserEntry(), is 1 then this
signifies the exit is being called just prior sending the request message to the target
server. The client data returned will be that which will be forwarded on to the server.

If the second parameter passed into the main entry point, RSCUserEntry(), is 0 then this
signifies the exit is being called just after the response message has been received from
the target server. The data returned will be that which will be forwarded on to the
client.

The following table describes the arguments for the SetUserData API Function:

Name I/O Description

transHandle Input The transaction handle for this session. This value is passed
into the RSCUserEntry entry point by the Gen runtime. This
value must not be changed.

Sending Output This value must be set the same as the second parameter
passed into RSCUserEntry() by the runtime.

* data Input/Output A pointer to a buffer area where the runtime is to copy the
client data.

Note: It is the caller’s responsibility to ensure that adequate
memory has been allocated to contain the client data copied
from the current message.

* length Output A pointer to a short that will contain the actual size of the
data copied.

The following table describes each return code for the SetUserData API function:

Return Code Description

0 The API function succeeded.

Nonzero An invalid transHandle was detected.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 141

Default Behavior

If enabled, the sample RSCUserEntry user exit calls the SetUserData API just before
sending the request to the server and calls the API again just after the server sends a
response.

Function Format

int SetIEFData(pTRANSHANDLE transHandle, short sending, unsigned char * data)

Purpose

Copies the passed in buffer into the client data area associated with the current
message.

If the second parameter passed into the main entry point, RSCUserEntry(), is 1, then this
signifies that the user exit is being called just before sending the request message to the
target server. The buffer data will be copied into the current message’s client data area
prior to the message being forwarded to the target server.

If the second parameter passed into the main entry point, RSCUserEntry(), is 0, then this
signifies that the user exit is being called just after the response message has been
received from the target server. The buffer data will be copied into the current
message’s client data area prior to the message being forwarded to the client.

Arguments

The following table describes the arguments for the SetUserData API Function:

Name I/O Description

transHandle Input The transaction handle for this session. This value is passed
into the RSCUserEntry entry point by the Gen runtime. This
value must not be changed.

Sending Output This value must be set the same as the second parameter
passed into RSCUserEntry() by the runtime.

* data Input/Output A pointer to a buffer area that is copied into the current
message’s client data area. The number of bytes copied will
correspond to the client data size as know by the runtime. It is
the caller’s responsibility to maintain the integrity of the client
data structure and size.

Windows Client Middleware User Exits

142 User Exit Reference Guide

Return Code

The following table gives a brief description of each of the return code values:

Return Code Description

0 Indicates that the API completed successfully.

Nonzero Indicates that the API detected an invalid transHandle.

Default Behavior

If enabled, the default user exit calls this API just before sending the request to the
server and again just after the response has been returned from the server.

Common System Utilities - Windows User Exits

All supplied Common System Utilities (CSU) user exits are written using the C++
programming language. The following table briefly describes the Common System
Utilities Exits:

Common System Utilities: Language: C++

User Exit Name Source Code Description

CSUGETLIBRARYVERSIONNAME csuglvn.cxx Provide a mapping of specified
name to version specific name of
Library DLL’s

Details for the preceding user exits follow in a separate section for each.

CSUGETLIBRARYVERSIONNAME Version Name mapping Exit

void CSUGetLibraryVersionName (char *name,

char *retName,

long maxRetNameLen)

Source Code

CSUGLVN.CXX

Purpose

This exit provides a mapping of specified name to version specific name if one exists,
otherwise the specific name value is returned. This mapping is used when Library DLL’s
are dynamically loaded during cooperative processing.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 143

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*name Input Pointer to a character string containing a null
terminated name to be converted to a version
name.

*retName Output Pointer to a character string to receive the
version name.

maxRetNameLen Input Long containing the maximum length of the
returning version name.

Return Code

None

Default Behavior

The default mapping table is used.

Building on Windows

The Windows CSU Library Version Name exit is built as part of the dynamic link library
CSUVNxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates the platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
CSUGLVN.NT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F CSUGLVN.NT.

Windows Client Middleware User Exits

144 User Exit Reference Guide

Related User Exits

None

TCP/IP - Windows User Exits

All supplied TCP/IP Transport user exits are written using the C programming language.
The following table briefly describes the TCP/IP Exits:

TCP/IP Transport: Language: C

User Exit Name Source Code Description

CI_TCP_DPC_DIRSERV_EXIT citcpclx.c TCP/IP Directory Services User Exit

CI_TCP_DPC_HANDLECOMM_COMPLETE citcpclx.c Verifies that a data has been processed
successfully (a valid send/receive has
occurred).

CI_TCP_DPC_SETUPCOMM_COMPLETE citcpclx.c Verifies that connection to target server is
successful.

Details for the preceding user exits follow in a separate section for each.

CI_TCP_DPC_DIRSERV_EXIT TCPIP DPC Directory Services Exit

Void CI_TCP_DPC_DirServ_Exit (char *hostName,

char *servName,

char *nextLoc,

char *trancode,

char *procName,

char *modelName);

Source Code

CITCPCLX.C

Purpose

The provided sample TCPIP DPC Directory Services exit is an implementation of
Transaction routing. Transaction routing is a conceptual process that lets cooperative
flow data be routed from a Distributed Process Client (DPC) to a programmatically
determined Distributed Process Server (DPS). The supplied sample exit looks for the
hostname or IP address and port number or service name in environment variables. The
user is free to implement whatever functionality can be required.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 145

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*hostName Input/ Output The hostname where the target server environment resides
according to the configured client.

*servName Input/ Output The port number or service name on the target server
environment the client is to connect to.

*nextLoc Input Next Location system attribute as set using CA Gen action
diagram statements.

*trancode Input The target Procedure Step transaction code being processed

*procName Input The name of the flow's target Procedure Step.

*modelName Input The name of the model containing the target Procedure Step.

Return Code

None

Default Behavior

If the environment variables expected by the sample implementation of this exit are not
defined the hostname and service name values defined during the packaging of the
cooperative model will be used.

Windows Client Middleware User Exits

146 User Exit Reference Guide

Building on Windows

The Windows TCP/IP DPC Directory Services exit is built as part of the dynamic link
library TCPCXxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
CTCPEXIT.NT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F CTCPEXIT.NT.

Related User Exits

None

CI_TCP_DPC_HANDLECOMM_COMPLETE TCP/IP DPC Handle Comm Complete Exit

int CI_TCP_DPC_handleComm_Complete(int completionCode,

int numberOfAttempts,

unsigned long reasonCode)

Source Code

CITCPCLX.C

Purpose

The processing of a given cooperative flow is broken up into two large grain activities.
This, the second is handleComm, which is invoked to send/receive data over an already
active connection. This exit is invoked at the completion of the handleComm processing
to expose that processing results. The handleComm will either be successful (indicated
by the input parameter completionCode having a value of HANDLECOMM_OK) or not
successful (indicated by the completionCode parameter having a value of
HANDLECOMM_NOT_OK).

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 147

The return from this exit indicates if the processing of the cooperative flow should
continue (zero lets the process continue, non-zero causes the processing of the flow to
be terminated).Therefore, if a completionCode of HANDLECOMM_OK is received as
input, the return value from this exit should be set to zero to let the processing of the
flow continue.

If the completionCode has a value of HANDLECOMM_NOT_OK, this exit has the
opportunity to indicate if the handleComm processing should be attempted by returning
a value of zero (0).The number of flow attempts is passed into this exit using the
numberOfAttempts parameter. Thus, this exit can control the number of retry attempts
by testing the value of numberOfAttempts and returning one (1) when the number of
retries has reached a predetermined threshold.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

completionCode Input An integer value representing the result of a handleComm operation.
The value will be either HANDLECOMM_OK or
HANDLECOMM_NOT_OK

numberOfAttempts Input An integer value representing the number of times a handleComm
operation has been attempted. This number will be incremented
each time handleComm fails.

reasonCode Input An unsigned long value providing the error number as reported by
the underlying TCP/IP transport layer. This error code can be used by
this exit to determine if a retry is feasible.

Return Code

The following table gives a brief description of each of the return codes.

Return Code Description

zero (0) Indicates processing of the flow should continue, retrying the
flow processing if not already successful.

non-zero Causes the processing of the flow to be terminated.

Default Behavior

The default implementation of this exit lets the flow processing be attempted twice. If
the flow is not successful after two attempts, the flow processing is terminated and an
appropriate error response is returned to the DP client.

Windows Client Middleware User Exits

148 User Exit Reference Guide

Building on Windows

The Windows TCP/IP DPC Comm Complete exit is built as part of the dynamic link library
TCPCXxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
CTCPEXIT.NT (by default, the CA Gen installation directory).

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F CTCPEXIT.NT.

Related User Exits

CI_TCP_DPC_SETUPCOMM_COMPLETE

CI_TCP_DPC_SETUPCOMM_COMPLETE TCP/IP DPC Setup Comm Complete Exit

int CI_TCP_DPC_setupComm_Complete (int completionCode,

int numberOfAttempts,

unsigned long reasonCode);

Source Code

CITCPCLX.C

Purpose

The processing of a given cooperative flow is broken up into two large grain activities.
The first is setupComm, which is invoked to insure a connection to the target server is
available. This exit is invoked at the completion of the setupComm processing to expose
that processing results. The setupComm will either be successful (indicated by the input
parameter completionCode having a value of SETUPCOMM_OK) or not successful
(indicated by the completionCode parameter having a value of SETUPCOMM_NOT_OK).

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 149

The return from this exit indicates if the processing of the cooperative flow should
continue (zero lets the process continue, non-zero causes the processing of the flow to
be terminated). If the completionCode has a value of SETUPCOMM_NOT_OK, this exit
has the opportunity to indicate if the setupComm processing should be attempted by
returning a value of zero(0). The number of connection retries attempted is passed into
this exit using the numberOfAttempts parameter. Thus, this exit can control the number
of retry attempts by testing the value of numberOfAttempts and returning one (1) when
the number of retries has reached a predetermined threshold.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

completionCode Input An integer value representing the result of a setupComm
operation. The value will be either SETUPCOMM_OK or
SETUPCOMM_NOT_OK

numberOfAttempts Input An integer value representing the number of times a setupComm
has been attempted. This number will be incremented each time
setupComm fails.

reasonCode Input An unsigned long value providing the error number as reported by
the underlying TCP/IP transport layer. This error code can be used
by this exit to determine if a retry is feasible.

Return Code

The following table gives a brief description of each of the return codes:

Return Code Description

zero (0) Indicates processing of the flow should continue, retrying the
connection if not already established.

non-zero Causes the processing of the flow to be terminated.

Default Behavior

The default implementation of this exit lets the connection be attempted twice. If the
connection is not established after two attempts, the flow processing is terminated and
an appropriate error response is returned to the DP client.

Windows Client Middleware User Exits

150 User Exit Reference Guide

Building on Windows

The Windows DPC Setup Comm Complete exit is built as part of the dynamic link library
TCPCXxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
CTCPEXIT.NT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F CTCPEXIT.NT.

Related User Exits

CI_TCP_DPC_HANDLECOMM_COMPLETE

WebSphere MQ Client Transport - Windows User Exits

All supplied WebSphere MQ Client Transport user exits are written using the C
programming language. The following table briefly describes the WebSphere MQ Exits:

WebSphere MQ Transport: Language: C

User Exit Name Source Code Description

CI_MQS_DPC_EXIT cimqclex.c MQ Directory Services Exit

CI_MQS_DPC_HANDLECOMM_COMPLETE cimqclex.c Verifies that a data has been
processed successfully (a valid
send/receive has occurred).

CI_MQS_DPC_SETREPORTOPTIONS cimqclex.c Used to override report options set
by the runtime.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 151

WebSphere MQ Transport: Language: C

User Exit Name Source Code Description

CI_MQS_DPC_SETUPCOMM_COMPLETE cimqclex.c Verifies that connection to target
server is successful.

CI_MQS_DYNAMICQNAME_EXIT cimqclex.c Provide Queue Name that will be
used when opening a dynamic
queue.

CI_MQS_MQSHUTDOWNTEST cimqclex.c Determine if queue should be
removed and thus disconnected.

Details for the preceding user exits follow in a separate section for each.

CI_MQS_DPC_EXIT MQSeries DPC Directory Services Exit

Void CI_MQS_DPC_Exit (char *qMgr,

char *rqMgr,

char *pQ,

char *rQ,

long *timeout,

short *closePQ,

short *closeGQ,

char *nextLoc,

char *trancode,

char *procName,

char *modelName);

Source Code

CIMQCLEX.C

Purpose

The provided sample WebSphere MQ DPC Directory Services exit is an implementation
of Transaction routing. Transaction routing is a conceptual process that lets cooperative
flow data be routed from a Distributed Process Client (DPC) to a programmatically
determined Distributed Process Server (DPS). The current cooperative request's local
queue manager, remote queue manager, put and reply queue names can be overridden
using this exit. Additionally a get timeout value as well as put/get queue disposition
after a flow has completed, can be customized.

Windows Client Middleware User Exits

152 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*qMgr Input/Output The name of the local queue manager. By default, the application
obtains this information from the model during generation. This exit
can override this name.

*rqMgr Input/Output The name of the remote queue manager. This value is NULL by default.

This exit can override this name.

*pQ Input/Output A character string containing the name of the Put queue. By default,
the application obtains this information from the model during
generation.

This exit can override this name.

*rQ Input/Output A character string containing the name of the reply-to queue. This can
be either a local queue or a model queue name. By default, the
application obtains the value

"SYSTEM.DEFAULT.MODEL.QUEUE" from the model during generation.

This exit can override this name.

*timeout Input/Output A long value representing the timeout value, in milliseconds, for the
Get queue. By default, this has the value MQWI_UNLIMITED for an
unlimited waiting period.

This exit can override this name.

*closePQ Input/Output A short value which controls whether the client closes the Put queue
after the flow is complete. Valid values are CLOSE_QUEUE or
NO_CLOSE_QUEUE. The default value, NO_CLOSE_QUEUE, specifies
the Put queue is not to be closed.

This exit can override this name.

*closeGQ Input/Output A short value which controls whether the client closes the Get queue
after the flow is complete.

 Valid values are CLOSE_QUEUE or NO_CLOSE_QUEUE. The default
value, NO_CLOSE_QUEUE, specifies the Get queue is not to be closed.

This exit can override this name.

*nextLoc Input A character string containing the Next Location system attribute as set
using CA Gen action diagram statements.

*trancode Input An 8-byte character array containing the target Procedure Step
transaction code being processed.

*procName Input A character string containing the name of the flow's target Procedure
Step.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 153

Name I/O Description

*modelName Input A character string containing the name of the model containing the
flow's target Procedure Step.

Return Code

None

Default Behavior

The supplied sample does not implement dynamic transaction routing. For more
information about default values for the various parameters, see Arguments.

Building on Windows

The Windows WebSphere MQ DPC Directory Services exit is built as part of the dynamic
link library MQSCXxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
CMQSEXIT.NT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F CMQSEXIT.NT.

Related User Exits

None

CI_MQS_DPC_HANDLECOMM_COMPLETE Handle Comm Retry Count Exit

int CI_MQS_DPC_handleComm_Complete(int completionCode,

int numberOfAttempts,

unsigned long reasonCode);

Windows Client Middleware User Exits

154 User Exit Reference Guide

Source Code

CIMQCLEX.C

Purpose

The processing of a given cooperative flow is broken up into two large grain activities.
The second is handleComm, which is invoked to send/receive data over an already
active connection. This exit is invoked at the completion of the handleComm processing
to expose that processing results. The handleComm will either be successful (indicated
by the input parameter completionCode having a value of HANDLECOMM_OK) or not
successful (indicated by the completionCode parameter having a value of
HANDLECOMM_NOT_OK).

The return from this exit indicates if the processing of the cooperative flow should
continue (zero lets the process continue, non-zero causes the processing of the flow to
be terminated). Therefore, if a completion code of HANDLECOMM_OK is received as
input, the return value from this exit should be set to zero to let the processing of the
flow continue.

If the completionCode has a value of HANDLECOMM_NOT_OK, this exit has the
opportunity to indicate if the handleComm processing should be attempted by returning
a value of zero (0). The number of flow attempts is passed into this exit using the
numberOfAttempts parameter. Thus, this exit can control the number of retry attempts
by testing the value of numberOfAttempts and returning one (1) when the number of
retries has reached a predetermined threshold.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

completionCode Input An integer value representing the result of a handleComm
operation. The value will be either HANDLECOMM_OK or
HANDLECOMM_NOT_OK

numberOfAttempts Input An integer value representing the number of times a handleComm
operation has been attempted. This number will be incremented
each time handleComm fails.

reasonCode Input An unsigned long value providing the error number as reported by
the underlying WebSphere MQ transport layer. This error code can
be used by this exit to determine if a retry is feasible.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 155

Return Code

The following table gives a brief description of each of the return codes.

Return Code Description

zero (0) Indicates processing of the flow should continue, retrying the
flow processing if not already successful.

non-zero Causes the processing of the flow to be terminated.

Default Behavior

The default implementation of this exit lets the flow processing be attempted twice. If
the flow is not successful after two attempts, the flow processing is terminated and an
appropriate error response is returned to the DP client.

Building on Windows

The Windows WebSphere MQ Handle Comm Retry Count exit is built as part of the
dynamic link library MQSCXxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
CMQSEXIT.NT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F CMQSEXIT.NT.

Related User Exits

CI_MQS_DPC_SETUPCOMM_COMPLETE

Windows Client Middleware User Exits

156 User Exit Reference Guide

CI_MQS_DPC_SETREPORTOPTIONS Override Put Queue Report Options Exit Description

void CI_MQS_DPC_setReportOptions(MQLONG * reportOptions);

Source Code

CIMQCLEX.C

Purpose

This exit can be used to override the set of report options defined for the WebSphere MQ Put Message Descriptor
prior to the issuance of an MQPUT() operation.

The report options set by the runtime are described in the following table:

Report Option Description

MQRO_EXCEPTION This type of report can be generated
when an exception occurs. For
instance if a message is sent to
another queue manager and the
message cannot be delivered to the
specified destination queue.

MQRO_EXPIRATION An expiration report. The queue
manager generates this type of
report if the message is discarded
prior to delivery to an application
because its expiry time has passed.

MQRO_PASS_MSG_ID If a report is generated, the MsgId of
the current message being
processed is to be copied to the
MsgId of the report message.

MQRO_COPY_MSG_ID_TO_CORREL_ID Indicates the correlation ID of the
report generated should equal the
message ID of the request originally
issued.

MQRO_DEAD_LETTER_Q This option causes the original
message to be placed on the
dead-letter queue when an
exception occurs

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 157

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*reportOptions Input/ Output A pointer to a long value representing the currently defined
report options to be used in the Put Message Descriptor.

Return Code

None

Default Behavior

The runtime specified report options are left unchanged.

Building on Windows

The Windows WebSphere MQ Override Put Queue Report Options exit is built as part of
the dynamic link library MQSCXxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
CMQSEXIT.NT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F CMQSEXIT.NT.

Related User Exits

None

Windows Client Middleware User Exits

158 User Exit Reference Guide

CI_MQS_DPC_SETUPCOMM_COMPLETE Setup Comm Retry Count Exit

int CI_MQS_DPC_setupComm_Complete(int completionCode,

int numberOfAttempts,

unsigned long reasonCode);

Source Code

CIMQCLEX.C

Purpose

The processing of a given cooperative flow is broken up into two large grain activities.
The first is setupComm, which is invoked to insure a connection to the target server is
available. This exit is invoked at the completion of the setupComm processing to expose
that processing results. The setupComm will either be successful (indicated by the input
parameter completionCode having a value of SETUPCOMM_OK) or not successful
(indicated by the completionCode parameter having a value of SETUPCOMM_NOT_OK).

The return from this exit indicates if the processing of the cooperative flow should
continue (zero lets the process continue, non-zero causes the processing of the flow to
be terminated). If the completionCode has a value of SETUPCOMM_NOT_OK, this exit
has the opportunity to indicate if the setupComm processing should be attempted by
returning a value of zero (0). The number of connection retries attempted is passed into
this exit using the numberOfAttempts parameter. Thus, this exit can control the number
of retry attempts by testing the value of numberOfAttempts and returning one (1) when
the number of retries has reached a predetermined threshold.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

completionCode Input An integer value representing the result of a setupComm
operation. The value will be either SETUPCOMM_OK or
SETUPCOMM_NOT_OK.

numberOfAttempts Input An integer value representing the number of times a setupComm
has been attempted. This number will be incremented each time
setupComm fails.

reasonCode Input An unsigned long value providing the error number as reported by
the underlying WebSphere MQ transport layer. This error code
can be used by this exit to determine if a retry is feasible.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 159

Return Code

The following table gives a brief description of each of the return codes:

Return Code Description

zero (0) Indicates processing of the flow should continue, retrying the
connection if not already established.

non-zero Causes the processing of the flow to be terminated.

Default Behavior

The default implementation of this exit lets the connection be attempted twice. If the
connection is not established after two attempts, the flow processing is terminated and
an appropriate error response is returned to the DP client.

Building on Windows

The Windows WebSphere MQ Setup Comm Retry Count exit is built as part of the
dynamic link library MQSCXnnN.DLL, where xx is the CA Gen release number and N
indicates platform. A prerequisite for building the DLL, you must have Microsoft's Visual
C++ compiler installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
CMQSEXIT.NT (by default, the CA Gen installation directory).

3. Set Microsoft Visual Studio compiler environment variables.

4. Run nmake /f CMQSEXIT.NT.

Related User Exits

CI_MQS_DPC_HANDLECOMM_COMPLETE

CI_MQS_DYNAMICQNAME_EXIT Dynamic Queue Name Override Exit

void CI_MQS_DynamicQName_Exit (char *dynamicQName);

Source Code

CIMQCLEX.C

Windows Client Middleware User Exits

160 User Exit Reference Guide

Purpose

The Dynamic Queue Name exit lets you override the queue name that will be used when
opening a dynamic queue. The resulting Dynamic Queue will obtain its attributes from
the specified WebSphere MQ Model Queue name. The passed in work area can be
modified by placing a null terminated string of the value to be used as the dynamic
queue name, including the use of valid WebSphere MQ pattern characters used to name
dynamic queues.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*dynamicQName Input/ Output A pointer to a character buffer, of length
MQ_Q_NAME_LENGTH+1 (48 +1), that contains the
default name of the dynamic queue as built by the
WebSphere MQ runtime (for example
username.processid.threadid).

Return Code

None

Default Behavior

The dynamic queue name is not modified.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 161

Building on Windows

The Windows WebSphere MQ Dynamic Queue Name Override exit is built as part of the
dynamic link library MQSCXxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
CMQSEXIT.NT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F CMQSEXIT.NT.

Related User Exits

None

CI_MQS_MQSHUTDOWNTEST MQSeries Queue Disconnect Exit

Int CI_MQS_MQShutdownTest()

Source Code

CIMQCLEX.C

Purpose

This exit can be used to modify the behavior of the normal put/get queue disposition
after successful completion of a cooperative flow. Normal disposition will leave the
connection valid with the put and get queues open, ready to handle subsequent flows.
This exit can override that behavior and cause the queues and connection to be closed
after each flow has completed.

Arguments

None

Windows Client Middleware User Exits

162 User Exit Reference Guide

Return Code

The following table gives a brief description of each of the return codes:

Return Code Description

NO_REMOVE_QUEUE The default return value. The connection and put/get
queues will remain open, available for subsequent
flows.

REMOVE_QUEUE After a completed flow the connection is dropped,
the put/get queues will be closed.

Default Behavior

A value of NO_REMOVE_QUEUE is returned, the connection and put/get queues remain
open and available for subsequent flows.

Building on Windows

The Windows WebSphere MQ Queue Disconnect exit is built as part of the dynamic link
library MQSCXxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. Nindicates platform.

A prerequisite for building the DLL, you must have Microsoft Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
CMQSEXIT.NT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F CMQSEXIT.NT.

Related User Exits

None

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 163

ECI - Windows User Exits

All supplied ECI Transport user exits are written using the C programming language. The
following table briefly describes the ECI Exits:

ECI Transport: Language: C

User Exit Name Source Code Description

CI_ECI_GET_SYSTEM_NAME cieciclx.c Provide name of the target CICS System

CI_ECI_GET_TPN cieciclx.c Provide the specified CICS Mirror
Transaction associated with the request

Details for the preceding user exits follow in a separate section for each.

CI_ECI_GET_SYSTEM_NAME Get ECI System Name Exit (Windows)

short ci_eci_get_system_name (char * pTranCode,

char * pNextLoc,

char * pProcName,

char * pModelName,

char * pSysName);

Source Code

CIECICLX.C

Purpose

The Get ECI System Name exit is an implementation of Transaction routing for ECI.
Transaction routing is a conceptual process that lets cooperative flow data be routed
from a Distributed Process Client (DPC) to a programmatically determined Distributed
Process Server (DPS). This exit is called from the ECI cooperative flow runtime, prior to
invoking the ci_eci_get_tpn() exit and prior to invoking CICS_ExternalCall() API. This exit
is called to obtain the name of the target CICS System (as it is known to the CICS
Universal Client).

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*pTranCode Input A pointer to an 8-character array containing the transaction code
to be invoked using the ECI call.

Windows Client Middleware User Exits

164 User Exit Reference Guide

Name I/O Description

*pNextLoc Input A pointer to a character array containing the Next Location system
attribute as set within the DP client using CA Gen action diagram
statements.

*pProcName Input A pointer to a character array containing the target Procedure
Step name.

*pModelName Input A pointer to a character array containing the model name
containing the target Procedure Step.

*pSysName Input/Output A Pointer to a character array on input that can contain a CICS
System name if previously supplied by the commcfg.ini file. The
memory area pointed to by this address contains the name of the
CICS system to be used on the ECI API call. This exit can override
the passed in system name. The character array is defined to
receive a null terminated string of max length
CICS_ECI_SYSTEM_MAX+1 (8 +1).

Return Code

The following table gives a brief description of each of the return codes:

Return Code Description

zero (0) If the character array pointed to by the pSysName has been
populated with a CICS system name.

non-zero If the CICS system name is undetermined and will result in the
eci_system_name to not be populated when the ECI
CoopFlow issues the CICS_ExternalCall().

Default Behavior

The default operation of this exit will, if the system name is populated on input, return a
0 (indicating the supplied CICS system name is to be used). If the system name is not
populated on input, the exit returns the default system name, as is returned by the
CICS_EciListSystems() call (assuming the CICS_EciListSystems() call returns
ECI_NO_ERROR).

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 165

Building on Windows

The Windows ECI Get ECI System Name exit is built as part of the dynamic link library
ECICXxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
CECIEXIT.NT (%GENxx%Gen\VSabc for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F CECIEXIT.NT.

Related User Exits

CI_ECI_GET_TPN—Get ECI Mirror Transaction Exit

CI_ECI_GET_TPN Get ECI Mirror Transaction Exit (Windows)

void ci_eci_get_tpn (char * pTranCode,

char * pNextLoc,

char * pProcName,

char * pModelName,

char * pSysName,

char * pTpn);

Source Code

CIECICLX.C

Purpose

The Get ECI Mirror Transaction exit lets you override the name of the CICS ECI Mirror
Transaction used for the current request. Several request identifying data items are
passed into the exit to allow flow-by-flow customization of the Mirror Transaction. This
exit is called from the ECI cooperative flow runtime, after invoking the
ci_eci_get_system_name() exit and prior to invoking CICS_ExternalCall() API.

Windows Client Middleware User Exits

166 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*pTranCode Input A pointer to an 8-character array containing the transaction
code to be invoked using the ECI call.

*pNextLoc Input A pointer to a character array containing the Next Location
system attribute as set within the DP client using CA Gen action
diagram statements.

*pProcName Input A pointer to a character array containing the target Procedure
Step name.

*pModelName Input A pointer to a character array containing the model name
containing the target Procedure Step.

*pSysName Input A Pointer to a character array containing the CICS System name
which is the target of the request. This value can have been
previously customized using the ci_eci_get_system_name user
exit.

*pTpn Input/Output A pointer to a four-character array containing the CICS ECI
Mirror Transaction name. This exit by default will set this
argument to CPMI. If the array is set to contain NULLs, CPMI
will also be used for the Mirror Transaction.

Return Code

None

Default Behavior

The default operation of this exit will set the name of the Mirror Transaction to CPMI. If
the array pointed to by pTpn is set to NULLs, the Mirror Transaction will also default to
CPMI.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 167

Building on Windows

The Windows ECI Get ECI System Name exit is built as part of the dynamic link library
ECICXxxN.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
CECIEXIT.NT (%GENxx%Gen\VSabc for Visual Studio).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run nmake /f CECIEXIT.NT.

Related User Exits

CI_ECI_GET_SYSTEM_NAME—Get ECI System Name Exit

Tuxedo

All supplied Tuxedo Transport user exits are written using the C programming language.
The following table briefly describes the Tuxedo Exits:

Tuxedo Transport: Language: C

User Exit Name Source Code Description

CI_C_SEC_SET cictuxwsx.c Set User Supplied Security Data Into The Security Data
Fields Located In Tuxedo Tpinit

CI_C_USER_DATA_IN cictuxwsx.c Gives You The Opportunity To Inspect Or Modify The
Cooperative Flow Request Buffer On Return From The
Target Tuxedo Service. Invoked On Return From The
Tpcall For Those Clients Connecting To Tuxedo Servers
Residing On A Separate Host. Additionally, This Exit Allows
The Client To Disconnect From The Server Following Each
Flow

Windows Client Middleware User Exits

168 User Exit Reference Guide

Tuxedo Transport: Language: C

User Exit Name Source Code Description

CI_C_USER_DATA_IN cictuxx.c Gives You The Opportunity To Inspect Or Modify The
Cooperative Flow Request Buffer On Return From The
Target Tuxedo Service. Invoked On Return From The
Tpcall For Those Clients Connecting To Tuxedo Servers
Residing On A Separate Host. Additionally, This Exit Allows
The Client To Disconnect From The Server Following Each
Flow (used For Server To Server Flows)

CI_C_USER_DATA_OUT cictuxwsx.c Gives You The Opportunity To Inspect Or Modify The
Cooperative Flow Request Buffer Prior To Tuxedo Sending
The Request To The Target Tuxedo Service. Invoked Prior
To The Tpcall For Those Clients Connecting To Tuxedo
Servers Residing On A Separate Host

CI_C_USER_DATA_OUT cictuxx.c Gives You The Opportunity To Inspect Or Modify The
Cooperative Flow Request Buffer Prior To Tuxedo Sending
The Request To The Target Tuxedo Service. Invoked Prior
To The Tpcall For Those Clients Connecting To Tuxedo
Servers Residing On A Separate Host (used For Server To
Server Flows)

CI_EVENT_HANDLER cictuxwsx.c Provides ability to handle events

Note that both cictuxwsx.c and cictuxx.c have essentially the same user exits. The
difference is that the user exits in cictuxwsx.c are used for client/server flows, while the
user exits in cictuxx.c are used for server to server flows.

Details for the preceding user exits follow in a separate section for each.

CI_C_SEC_SET Tuxedo Cooperative Flow Security Exit

int ci_c_sec_set (CIPROCSTEP *procstep,

char *clientUserid,

char *clientPassword,

int *tperr)

Source Code

CICTUXWSX.C

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 169

Purpose

The ci_c_sec_set exit is the first user exit that is invoked on a client Tuxedo cooperative
flow, and is specifically related to security. ci_c_sec_set() contains the call to tpinit() and
is called for each flow so that, if required, each flow can establish a different user
context (that is, tpinit() is invoked for each flow). You need to invoke the corresponding
tpterm in ci_c_user_data_in() to achieve the described behavior.

ci_c_sec_set() is called from a Windows Client only. A Tuxedo server-to-server flow does
not invoke ci_c_sec_set().

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*procstep Input A pointer to a CA Gen CIPROCSTEP structure, which contains
information, related to the currently executing procedure step.
Model name and Next Location data can be extracted from this
structure. This parameter is unused in the supplied sample exit.

*clientUserid Input CA Gen current CLIENT_USER_ID system attribute, if
SecurityUsedEnhanced is set in the WRSECTOKEN user exit. NULL
string otherwise.

*clientPassword Input CA Gen current CLIENT_PASSWORD system attribute if
SecurityUsedEnhanced is set in the WRSECTOKEN user exit. NULL
string otherwise.

*tperr Output If the function returns -1 as the return code, tperr should contain a
valid tperrno value indicating the cause of the Tuxedo ATMI call
failure.

Return Code

The following table gives a brief description of each of the return codes:

Return Code Description

zero (0) If no error was encountered within the exit.

non-zero If one of the ATMI functions within user, the exit fails.

Windows Client Middleware User Exits

170 User Exit Reference Guide

Default Behavior

The clientUserId and clientPassword are used for user name and the data field of the
TPINIT structure respectively. TPINIT structure is used for the Tuxedo login. If
SecurityUsedEnhanced is returned from the WRSECTOKEN user exit, clientUserid and
clientPassword contain a pointer to a valid CA Gen CLIENT_USER_ID and
CLIENT_PASSWORD system attributes, which are used for the Tuxedo login. Otherwise,
the pointers point to a Null string.

Building on Windows

The client Windows Tuxedo Cooperative Flow Security exit is built as part of the
dynamic link library TXWCXxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
CTUXEXIT.NT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F CTUXEXIT.NT.

Related User Exits

CI_EVENT_HANDLER

CI_C_USER_DATA_IN Tuxedo Inbound Flow Data Access Exit

void ci_c_user_data_in(char ** tuxSvcOutputBuffer)

Source Code

CICTUXWSX.C, CICTUXX.C

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 171

Purpose

The ci_c_user_data_in exit is called immediately after the Tuxedo tpcall API returns. It
provides access to the inbound View32 buffer on returning from the target server.
tuxSvcOutputBuffer points to the reply buffer, which contains a CA Gen procedure, step
structure and export view (back to back).

If required, a call to the Tuxedp tpterm API can be added inside ci_c_user_data_in to
force association for each flow with a discrete user environment and privileges (see
ci_c_sec_set).

ci_c_user_data_in() is called from both a Windows Client and Server to Server flows,
hence the two source files.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

**tuxSvcOutputBuffer Input A pointer to a buffer containing a Tuxedo allocated
buffer, which contains procedure step and view data for
the flow in progress. This is the buffer returned back from
the Tuxedo tpcall() API (inbound View32).

Return Code

None

Default Behavior

The default behavior is to not modify the received data.

Windows Client Middleware User Exits

172 User Exit Reference Guide

Building on Windows

The client Windows Tuxedo Inbound Flow Data Access exit is built as part of the
dynamic link library TXWCXxxN.DLL. as well as the dynamic link library TXCXxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft’s Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
CTUXEXIT.NT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F CTUXEXIT.NT.

Related User Exits

CI_C_USER_DATA_OUT—Tuxedo Outbound Flow Data Access Exit

CI_C_USER_DATA_OUT Tuxedo Outbound Flow Data Access Exit

void ci_c_user_data_out(char ** tuxSvcInputBuffer , long * svcFlags);

Source Code

CICTUXWSX.C, CICTUXX.C

Purpose

The ci_c_user_data_out() function is the second user exit that is invoked on a
cooperative flow. It provides access to the outbound View32 buffer, and an opportunity
to add more attributes to the flags parameter of the subsequent Tuxedo tpcall API.
tuxSvcInputBuffer is a request buffer containing a CA Gen procedure step structure
followed by its import views as back-to-back data items. svcFlags are added to the tpcall
flags parameter. Both are passed to the tpcall.

ci_c_user_data_out() is called from both a Windows Client and Server to Server flows,
hence the two source files.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 173

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

**tuxSvcInputBuffer Input/
Output

A pointer to a buffer containing a Tuxedo allocated buffer, which
contains procedure step and view data for the flow in progress.

*svcFlags Output A pointer to a long value to which can be stored extra flags to be
appended to the standard value passed as the flags parameter to
the Tuxedo tpcall() API.

Return Code

None

Default Behavior

The flow data and flags parameter passed to tpcall() are not modified.

Building on Windows

The client Windows Tuxedo Outbound Flow Data Access exit is built as part of the
dynamic link library TXWCXxxN.DLL, as well as the dynamic link library TXCXxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
CTUXEXIT.NT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F CTUXEXIT.NT.

Windows Client Middleware User Exits

174 User Exit Reference Guide

Related User Exits

CI_C_USER_DATA_IN—Tuxedo Inbound Flow Data Access Exit

CI_EVENT_HANDLER Tuxedo Event Handler Exit

void TUXCALL ci_event_handler(char * s, long len, long flag);

Source Code

CICTUXWSX.C

Purpose

The ci_event_handler() function is called in ci_c_sec_set() to respond to the runtime
failure from the call to TPINIT().

ci_event_handler() is called from a Windows Client only. A Tuxedo server-to-server flow
does not invoke ci_c_sec_set() and therefore does not invoke ci_event_handler().

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*s Input A pointer to a buffer containing a Tuxedo error
message.

Len Input A long value containing the length of the error
message.

Flag Input A long value containing an error flag.

Return Code

None

Default Behavior

CI_EVENT_HANDLER does no work.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 175

Building on Windows

The client Windows Tuxedo event handler exit is built as part of the dynamic link library
TXWCXxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
CTUXEXIT.NT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F CTUXEXIT.NT.

Related User Exits

CI_C_SEC_SET

Web Services - Windows User Exits

All supplied Web Services Middleware user exits are written using the C programming
language. The following table briefly describes the Web Services Exits:

Web Services Middleware: Language: C

User Exit Name Source Code Description

CI_WS_DPC_Exit ciwsclx.c Programmatic runtime override of
parameters (base URL and context type) for
Web Service destination.

CI_WS_DPC_URL_Exit ciwsclx.c Programmatic runtime override of URL for
Web Service destination.

Details for the preceding user exits follow in a separate section for each.

Windows Client Middleware User Exits

176 User Exit Reference Guide

CI_WS_DPC_Exit Web Services DPC User Exit (Windows)

void CI_WS_DPC_Exit(char *baseURL,

size_t baseURLMaxLen,

char *contextType,

size_t contextTypeMaxLen,

char *modelName,

char *modelShortName,

char *trancode,

char *trancodeAlt,

char *procName,

char *procNameAlt,

char *nextLoc)

Purpose

This exit will be called from the C Web Services CoopFlow prior to performing a Web
Service connection. It gives the user an opportunity to modify the Web Service endpoint
destination by overriding the base URL and the context type.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*baseURL Input/Output Scheme, Domain and Port of a Web Service end point URL

baseURLMaxLen Input Maximum length of baseURL

*contextType Input/Output Part of the path of a CA Gen Web Service end point URL

contextTypeMaxLen

Input Maximum length of contextType

*modelName Input Name of the model containing the target Procedure Step

*modelShortName

Input Short name of the model containing the target Procedure
Step

*tranCode Input Transaction code of the target Procedure Step being
processed

*tranCodeAlt Input Alternative name for the transaction code of the target
Procedure Step being processed

*procName Input Name of the target Procedure Step to be called

*procNameAlt Input Alternative name of the target Procedure Step to be called

*nextLoc

Input Next Location system attribute as set using CA Gen action
diagram statements

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 177

Return Code

None

Default Behavior

If the base URL and the context Type variables expected by the sample implementation
of this exit are not defined, the default values that are defined during the packaging of
the cooperative model or overrides from commcfg.ini are used.

Building on Windows

The Windows Web Services DPC user exit is built as part of the dynamic link library
WSCXxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
CWSEXIT.NT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F CWSEXIT.NT.

Related User Exits

None

Windows Client Middleware User Exits

178 User Exit Reference Guide

CI_WS_DPC_URL_Exit Web Services DPC URL User Exit (Windows)

void CI_WS_DPC_URL_Exit(char *url,

size_t urlMaxLen,

char *modelName,

char *modelShortName,

char *trancode,

char *trancodeAlt,

char *procName,

char *procNameAlt,

char *nextLoc)

Purpose

This exit will be called from the C Web Services CoopFlow prior to performing a Web
Service connection. It gives the user an opportunity to modify the Web Service endpoint
destination URL.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*url Input/Output Web Service end point URL

urlMaxLen Input Maximum length of Web Service end point URL

*modelName Input Name of the model containing the target Procedure Step

*modelShortName

Input Short name of the model containing the target Procedure
Step

*tranCode Input Transaction code of the target Procedure Step being
processed

*tranCodeAlt Input Alternative name for the transaction code of the target
Procedure Step being processed

*procName Input Name of the target Procedure Step to be called

*procNameAlt Input Alternative name of the target Procedure Step to be called

*nextLoc Input Next Location system attribute as set using CA Gen action
diagram statements

Return Code

None

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 179

Default Behavior

If the URL value is not modified in this user exit, its value prior to calling this exit is used.

Building on Windows

The Windows Web Services DPC User exit is built as part of the dynamic link library
WSCXxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
CWSEXIT.NT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F CWSEXIT.NT.

Related User Exits

None

Windows Servers User Exits

The following table summarizes the functions available through the user exits for
generated server applications:

Name Description

DBCOMMIT Database commit User Exit. There is one user exit routine for
each supported database: ODBC, Oracle, and DB2.

DBCONNCT Database connection User Exit. There is one user exit routine for
each supported database: ODBC, Oracle, and DB2.

DBDISCNT Database disconnect User Exit. There is one user exit routine for
each supported database: ODBC, Oracle, and DB2.

Windows Client Middleware User Exits

180 User Exit Reference Guide

Name Description

SRVRERROR Server to Server Error User Exit (Server Only)

TIRDCRYP Decrypt User Exit (Server Only)

TIRDLCT Dialect User Exit

TIRDRTL Default Retry Limit User Exit

TIRELOG Server Error Logging User Exit (Server Only)

TIRHELP Help Interface User Exit

TIRMTQB Message Table User Exit

TIRNCRYP Encrypt User Exit (Server Only)

TIRSECR Security Interface User Exit

TIRSECV Server Security Validation User Exit (Server Only)

TIRSYSID System ID User Exit

TIRTERMA User Termination User Exit

TIRTIAR Database error message User Exit. There is one user exit routine
for each supported database: ODBC, Oracle and DB2.

TIRUPDB MBCS Uppercase Translation User Exit

TIRUPPR Uppercase Translation User Exit

TIRURTL Ultimate Retry Limit User Exit

TIRUSRID User ID User Exit

TIRXINFO Locale Information User Exit (Server Only)

TIRXLAT National Language Translation User Exit (Server Only)

TIRYYX Date User Exit

Note: The database user exits DBCONNCT, DBCOMMIT, DBDISCNT and TIRTIAR are
rebuilt into individual DLL’s (AECDB2xxN.DLL, AECODBxxN.DLL, AECORAxxN.DLL) using
the command procedure mkdbs.bat in %GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit.

Server runtime user exits are rebuilt into the DLL AEUEXITxxN.DLL using the command
procedure mkexits.bat found in %GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit. This is the same DLL that is used
with Blockmode applications.

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with VS100
for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the current release
of CA Gen. For the current release number, see the Release Notes.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 181

Because a large number of these user exits have already been documented in the
section Windows Blockmode User Exits, only the user exits that are specific to server
applications will be detailed in the following subsections.

SRVRERROR Server to Server Error Exit (Windows)

int SRVRERROR (char * from,

char * to,

char * errLst,

int dtp,

int failureType,

char * failureCommand,

ErrorToken errorToken);

Source Code

TIRSERRX.C

Purpose

This exit is invoked by the calling server when errors occur at the destination server,
during a server-to-server flow. This exit can influence the default runtime error behavior
in how the detected error is handled. When the NOTPROPAGATE_ERR is returned, the
calling procedure step continues the execution, ignoring the fact that an error has
occurred in the destination procedure step. When PROPAGATE_ERR is returned, an
error message is created and then returned to the calling procedure step.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*from Input A character string pointing to the name of the source or
calling procedure step

*to Input A character string pointing to the name of the target or
called procedure step

*errLst Input A character string pointing to the destination server's XFAIL
message. This message buffer can contain multiple new
line terminated strings. The initial portion of the buffer is
formatted to fit a 24 line by 80-character screen format.
Additional free form data can follow the 24 x 80 lines, up to
the maximum of 2048 bytes.

dtp Input An integer value of 1 if the to procedure step is a
distributed transaction participant, 0 if otherwise

Windows Client Middleware User Exits

182 User Exit Reference Guide

Name I/O Description

failureType Input An enumerated value representing a failure code

CFBUILD = 0 - implies the calling procedure step failed to
build/parse the message bound for the destination
procedure step

XFAIL = 1 - implies the destination procedure step
execution failed

XERR = 2 - implies a communication error between the
calling and destination procedure steps

*failureCommand Input/Output A command that the destination procedure step can return
to the calling procedure step. A maximum of 8 chars plus
NULL.

errorToken Input/Output This parameter is only used with XFAL messages.
errorToken can contain a token constructed by the Error
Logging exit (TIRELOG) at the target or called procedure
step. (4096 +1 bytes)

Return Code

The following table gives a brief description of each of the return codes.

Return Code Description

0 - PROPAGATE_ERR The error is processed normally within the
calling procedure step.

1-NOTPROPAGATE_ERR The calling procedure step continues the
execution ignoring the fact that error occurs in
the destination procedure step.

Default Behavior

Errors are propagated to the calling procedure step. An error message is created and
returned to the calling procedure step.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 183

Building on Windows

The Server to Server Error User Exit is built as part of the dynamic link library
AEUEXITxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKEXITS.BAT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITS.BAT.

Related User Exits

None

TIRDCRYP Server Decryption Exit (Windows)

void TIRDCRYP(unsigned char * rp1,

unsigned char * rp2,

TIRDCRYP_cmcb * pTIRDCRYP_cmcb);

Source Code

TIRDCRYP.C

Purpose

TIRDCRYP is called by the Server Manager after it detects that the client has sent an
encrypted cooperative buffer. The Server Manager constructs a work buffer containing
the concatenated View Data and Client Security sections. The user is responsible for
decrypting the area pointed to by pDataBuffer for IBufferSize bytes.

The inputs pDataBuffer and IDecryptMaxSize as well as the outputs IBufferSize
return_code and failure_msg are fields within a structure pointed to by the
pTIRDCRYP_cmcb parameter.

Windows Client Middleware User Exits

184 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*rp2 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*pTIRDCRYP_cmcb Input/Output A pointer to a structure containing the following items:

lDecryptMaxSize Input A long field that contains the maximum available buffer
space (in bytes) that the decrypted data can occupy.

lBufferSize Input/Output On input, IBufferSize is the current buffer space (in bytes)
of the encrypted data.

On output, IBuffferSize should be updated by this exit to
contain the length of the decrypted data. The length of
the decrypted result cannot exceed lDecryptMaxSize.

*pDataBuffer Input/Output On input, a pointer to the starting location of the
encrypted View Data and Client Security sections within
the CFB work buffer.

On output, this exit should ensure this same data area
contains the unencrypted versions of the input data. The
length of this decrypted result cannot exceed
lDecryptMaxSize.

return_code Output A two-character array returning the results of the
decryption attempt. The following values are supported:

DECRYPTION_USED—defined as " "

DECRYPTION_SIZE_EXCEEDED_MAX—defined as "01"

DECRYPTION_NOT_USED—defined as "02"

DECRYPTION_APPLICATION_ERROR—defined as "03"

*failureMsg Output The pointer to an 80-character array, to be populated by
the exit that can receive a null terminated error message
string. The string pointed to by the failureMsg pointer will
be incorporated into an error message that is returned
back to the client. Used in conjunction with a return code
of DECRYPTION_APPLICATION_ERROR.

Return Code

None directly, see the preceding return_code (see page 182) structure member.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 185

Default Behavior

Decryption of the data buffer is not attempted.

Building on Windows

The Server Decryption User Exit is built as part of the dynamic link library
AEUEXITxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKEXITS.BAT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITS.BAT.

Related User Exits

The following are related user exits:

■ TIRNCRYP

■ WRSECENCRYPT

TIRELOG Server Error Logging and Error Token Creation Exit (Windows)

void TIRELOG(char * rp1,

char * rp2,

TIRELOG_CMCB * pTIRELOG_cmcb));

Source Code

TIRELOG.C

Purpose

This exit serves two purposes:

■ Error logging at the server

Windows Client Middleware User Exits

186 User Exit Reference Guide

■ Creation of an error token for transmitting to the client

This exit is called by the server to handle server errors that are encountered during the
execution of a distributed processing server that cannot be handled by the runtime or
generated code, and normally result in the termination of the application. For example,
prior to the execution of a server procedure step, the server extracts view data from the
client message and places it in the target procedure step's view. If this extraction fails
because of a mismatch between the client definition and the server definition an error
response message is created and returned to the client.

The default implementation of this exit returns to the caller without logging the error. It
is up to the developer of this user exit to determine what information should be logged
and how it should be logged. Some users can choose to log only certain errors; others
can choose to log all errors. On some systems, the log can be implemented as a file. To
log a server error, simply format the information you wish to log and write it to a file. On
other systems, the log can be implemented using system-specific features such as a CICS
temporary storage queue (TSQ) as found on z/OS.

To create an error token, move text data to the area pointed to by the elog_error_token
member of the TIRELOG_CMCB structure passed into this exit. The error token area is
4097 bytes and must be null-terminated. The error token, which goes through codepage
translation when it is transmitted to the client, can be used on the client to customize
how the error is handled.

For example, you can modify this exit to return an error token of "RETRY" whenever a
certain database contention error occurs. This error token is passed to the client
error-handling exit (WRSRVRERROR or WRASYNCSRVRERROR), which makes the final
decision on how to handle the error. You can modify the client error-handling exit to
reinvoke the flow or USE whenever the error token is "RETRY." This server error-logging
exit is called after the error response message is created but before it is transmitted to
the client.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for
runtime internal use only

*rp2 Input A pointer to a parameter control block. Reserved for
runtime internal use only

*pTIRELOG_cmcb Input/Output A pointer to a TIRELOG_CMCB structure containing
the following items:

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 187

Name I/O Description

elog_fail_type Input A character designating the type of failure detected
defined as:(lable - defined value)

EPROFD - 'P' profile error

EPROFI - 'I' profile error

EEXEC - 'E' execution error

ESERVER- 'D' server manager error

EUSER 'U' user requested abend

void *elog_sqlca Input A pointer to a saved sql data area

*elog_globdata Input A pointer to the server's globdata area

elog_number_of_lines Input An integer containing the number of text lines
contained within the elog_error_text buffer

elog_error_text Input A pointer to a buffer of screen formatted text. This
data, formatted by the server runtime, contains up
to 24 lines of 80 characters each.

*elog_error_token Input/Output A character pointer to an error token area that can
contain up to 4097 bytes, this includes the required
null terminator. This exit is responsible for
populating this data area if needed.

Return Code

None directly, see the preceding pTIRELOG_cmcb structure.

Default Behavior

The default action is to return without logging the error.

Windows Client Middleware User Exits

188 User Exit Reference Guide

Building on Windows

The Server Error Logging User Exit is built as part of the dynamic link library
AEUEXITxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKEXITS.BAT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITS.BAT.

Related User Exits

The following are related user exits:

■ WRSRVRERROR

■ WRASYNCSRVRERROR

TIRNCRYP Server Encryption Exit (Windows)

void TIRNCRYP(unsigned char * rp1,

unsigned char * rp2,

TIRNCRYP_cmcb * pTIRNCRYP_cmcb);

Source Code

TIRNCRYP.C

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 189

Purpose

After a server procedure step executes, the server manager can call TIRNCRYP to
encrypt the server response to the client. The server manager makes a copy of the
unencrypted cooperative buffer pending transmission back to the client. The inputs
pDataBuffer, IBufferSize, IEncryptMaxSize trancode and client_userid as well as the
outputs return_code, and failure_msg are fields with a structure pointed to by
pTIRNCRYP_cmcb. The user is responsible for encrypting the data area pointed to by the
pDataBuffer member of the TIRNCRYP_cmcb structure.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*rp2 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*pTIRNCRYP_cmcb Input/Output A pointer to a structure containing the following items:

pDataBuffer Input/Output On input, a pointer to the starting location of the View
Data and Client Security sections within the CFB work
buffer.

On output this same data area should be populate by
this exit with the encrypted versions of the input data.
The length of the encrypted result cannot exceed
lEncryptMaxSize.

lBufferSize Input/Output On input, lBufferSize is the current buffer space (in
bytes) of the unencrypted data.

On output, IBuffferSize should be updated by this exit to
contain the length of the encrypted data. The length of
the encrypted result cannot exceed lEncryptMaxSize.

lEncryptMaxSize Input A long field that contains the maximum available buffer
space (in bytes) that the encrypted data can occupy.

trancode Input Transaction code currently being processed. . This value
can be used in conjunction with client userid and
NextLocation to determine if encryption is desired.

client_userid Input Client user ID. This value can be used in conjunction
with trancode and NextLocation to determine if
encryption is desired.

Windows Client Middleware User Exits

190 User Exit Reference Guide

Name I/O Description

pNextLocation Input Next Location value as set by the server application
using CA Gen action diagram statements. This value can
be used in conjunction with trancode and client userid
to determine if encryption is desired.

return_code Output A two-character array returning the results of the
decryption attempt. The following values are supported:

ENCRYPTION_USED—defined as " "

ENCRYPTION_SIZE_EXCEEDED_MAX—defined as "01"

ENCRYPTION_NOT_USED—defined as "02"

EnCRYPTION_APPLICATION_ERROR—defined as "03"

*failureMsg Output The pointer to an 80-character array, to be populated by
the exit that can receive a null terminated error
message string. The string pointed to by the failureMsg
pointer will be incorporated into an error message that
is returned back to the client. Used in conjunction with a
return code of ENCRYPTION_APPLICATION_ERROR.

Return Code

None directly, see the preceding return_code structure member.

Default Behavior

The default logic of this user exit is to return ENCRYPTION_NOT_USED.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 191

Building on Windows

The Server Encryption User Exit is built as part of the dynamic link library
AEUEXITxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKEXITS.BAT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITS.BAT.

Related User Exits

The following are related user exits:

■ TIRDCRYP

■ WRSECDECRYPT

TIRSECV Security Validation Exit (Windows)

void TIRSECV(char *rp1,

char *rp2,

unsigned char Enhanced_Security_Flag,

PTIRSECV_cmcb pTIRSECV_cmcb);

Source Code

TIRSECV.C

Windows Client Middleware User Exits

192 User Exit Reference Guide

Purpose

This security exit is called for every cooperative flow, regardless of the security type
used. To facilitate security validation a flag indicating whether the security data is for a
standard or enhanced buffer has been added. This exit is intended to provide the
opportunity to validate enhanced security data while at the same time not impacting
those using standard security. To this effect, the default code provided handles two
possible conditions:

■ For buffers containing standard security the client userid, client password, and
security token fields are expected to be blank. The default behavior is for the exit to
return SECURITY_USED, thus indicating that the request is authorized. The exit must
be modified to return SECURITY_APPLICATION_ERROR if the intent is that all buffers
contain enhanced security data.

■ For buffers containing enhanced security the client userid, client password, and
security token fields can or cannot contain data. The default behavior is for the exit
to return SECURITY_NOT_USED, this indicating that no validation processing was
attempted. The exit must be modified to validate the security data and set the
relevant return code (return SECURITY_USED for an authorized user and
SECURITY_APPLICATION_ERROR for a non authorized user). When returning
SECURITY_APPLICATION_ERROR, this exit can provide an optional failure message,
using the failure_msgbuffer contained within the TIRSECV_cmcb structure that will
be presented to the client.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*rp2 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

Enhanced_Security_Flag Input A single character denoting if the CFB has been
created to support enhanced security. A value of Y
denotes enhanced security,

*pTIRSECV_cmcb Input A pointer to a structure containing the following
values:

client_userid Input A 64-byte character array containing a user ID if the
CFB uses enhanced security. For a CFB containing
standard security this parameter is expected to be
blank.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 193

Name I/O Description

client_password Input A 64-byte character array containing a password if
the CFB uses enhanced security. For a CFB containing
standard security this parameter is expected to be
blank.

lSecurityTokenLen Input A long value representing the length of the
pSecurityToken, if any.

pSecurityToken Input A pointer to a security token if the CFB uses
enhanced security. For a CFB containing standard
security this parameter is expected to be blank.

trancode Input An 8-byte character array containing the transaction
code

return_code Input/Output A 2-byte character array containing a value denoting
success for failure of this exit. Valid values are:

SECURITY_USED - defined as " "

SECURITY_NOT_USED—defined as "02"

SECURITY_APPLICATION_ERROR—defined as "03"

failure_msg Input/Output The pointer to an 80-character array that can be
populated by this exit with a null terminated error
message string. The string pointed to by this
parameter will be incorporated into an error message
that is returned back to the client. Used in
conjunction with a return code of
SECURITY_APPLICATION_ERROR.

Return Code

None directly, see the preceding return_code structure member.

Default Behavior

The default logic of this user exit is to return SECURITY_NOT_USED, which is considered
an error if this user exit is actually called since the Server Manager requested Client
Security validation.

Windows Client Middleware User Exits

194 User Exit Reference Guide

Building on Windows

The Security Validation User Exit is built as part of the dynamic link library
AEUEXITxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKEXITS.BAT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITS.BAT.

Related User Exits

WRSECTOKEN

TIRXINFO Locale Information Exit (Windows)

void TIRXINFO (char *osId,

char *codePage,

long *padChar);

Source Code

TIRXLAT.C

Purpose

This exit provides information about the codepage environment of the executing server
process. An osId, codepage ID, and default padding character are returned. The runtime
uses the osId and codePage returned as parameters passed into the TIRXLAT user exit.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 195

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*osId Output A pointer to character buffer to contain an OS ID (9 bytes, 8 characters
plus NULL terminator). This value will be passed to TIRXLAT as the
outOS parameter for inbound transactions and as the inOS parameter
for outbound transactions. The current default value is MBCS. This
should not be confused with an identifier of the underlying operating
system on which the server is executing.

*codePage Output A pointer to character buffer to contain a codepage ID (9 bytes, 8
characters plus NULL terminator). This value will be passed to TIRXLAT
as the outCodePage parameter for inbound transactions and as the
inCodePage parameter for outbound transactions. The default value, as
returned from this exit, is hard coded into the generated server
manager at code generation time. This value will depend upon the
platform used to generate the server manager. If the server manager is
generated on a Windows platform the value will be 1252, if generated
on a UNIX platform using CSE its value will be 819.

*padChar Output A pointer to a long value, not currently used for Windows or UNIX
servers.

Return Code

None

Default Behavior

The string returned for osId is currently hard coded to a value of MBCS. The value for
CodePage is obtained from the server manager. The CodePage number is created during
the server manager code generation process. The padChar value is currently unused.

Windows Client Middleware User Exits

196 User Exit Reference Guide

Building on Windows

The Locale Information User Exit is built as part of the dynamic link library
AEUEXITxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKEXITS.BAT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITS.BAT.

Related User Exits

TIRXLAT

TIRXLAT National Language Translation Exit (Windows)

void TIRXLAT (char *inBuf;

long *inLen;

char *inCodePage;

char *inOS;

char *outBuf;

long *outLen;

char *outCodePage;

char *outOS;

long *outPadChar;

char *workArea;

long *outCharCnt;

long *outByteCnt);

Source Code

TIRXLAT.C

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 197

Purpose

TIRXLAT allows the conversion of textual data based on from/to codepage and operating
system information. View data that is passed between the client and server is translated
from the client's code page to the server's code page, and vice versa. TIRXLAT uses the
client's code page value, which is passed from the client to the server, and the host's
code page value to locate a translation table.

This exit is used to translating both the data received from that client and the data to be
sent to the client.

When translating data received from the client, the in* parameters correspond to the
client data, the out* parameters correspond to the data presented to the server.

When translating data to be sent to the client the in* parameters correspond to the
server data to be sent, the out* parameters correspond to the data presented to the
client.

If a suitable translation table is not found, the data will be passed back without
translation. The user can replace a translation table to customize their environment.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*inBuf Input A character pointer to the input buffer to translate

*inLen Input A pointer to a long value which is the length inBuf

*inCodePage Input A character pointer to the codepage ID of inBuf (8 bytes +
1 NULL).

*inOS Input A character pointer to the OS ID of inBuf (8 bytes + 1
NULL).

*outBuf Input/Output A character pointer to the buffer in which to place the
translated text

*outLen Input A pointer to a long value that is the length of the data
pointed to by outBuf.

*outCodePage Input A character pointer to the codepage ID corresponding to
the output buffer, outBuf.

*outOS Input A character pointer to the OS ID corresponding to the
output buffer, outBuf.

Windows Client Middleware User Exits

198 User Exit Reference Guide

Name I/O Description

*outPadChar Input A pointer to a long value which is the padding character
to use, 0 if no padding to be done in the output buffer,
outBuf.

*workArea Input A character pointer to a 100-byte scratch work area.

*outCharCnt Input/Output A pointer to a long value which is the number of
characters placed into the output buffer, outBuf.

*outByteCnt Input/Output A pointer to a long value which is the number of bytes
placed into the output buffer, outBuf.

Return Code

None

Default Behavior

If a suitable translation table is found, the data will be translated from the inCodePage
to the outCodePage. If a suitable translate table is not found the data is passed back
without translation.

Building on Windows

The National Translation User Exit is built as part of the dynamic link library
AEUEXITxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the batch file
MKEXITS.BAT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Run MKEXITS.BAT.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 199

Related User Exits

TIRXINFO

Windows Server Middleware User Exits

WebSphere MQ Server Transport - Windows User Exits

All supplied WebSphere MQ Server Transport user exits are written using the C
programming language. The following table briefly describes the WebSphere MQ Exits:

WebSphere MQ Transport: Language: C

User Exit Name Source Code Description

CI_MQS_DPC_SETUPCOMM_COMPLETE cimqsvex.c Verifies that connection to target server is
successful.

CI_MQS_DPS_EXIT cimqsvex.c MQ Directory Services Exit

CI_MQS_DYNAMICQNAME_EXIT cimqsvex.c Provide Queue Name that will be used when
opening a dynamic queue.

Details for the preceding user exits follow in a separate section for each.

CI_MQS_DPC_SETREPORTOPTIONS Override Put Queue Report Options Exit (Windows)

void CI_MQS_DPC_setReportOptions(MQLONG *reportOptions);

Source Code

CIMQSVEX.C

Purpose

This exit can be used to override the set of report options defined for the WebSphere
MQ Put Message Descriptor prior to the issuance of an MQPUT() operations.

The report options set by the runtime are described in the following table:

Report Option Description

MQRO_EXCEPTION This type of report can be generated when an
exception occurs. For instance if a message is sent to
another queue manager and the message cannot be
delivered to the specified destination queue.

Windows Client Middleware User Exits

200 User Exit Reference Guide

Report Option Description

MQRO_EXPIRATION An Expiration report. This type of report is generated
by the queue manager if the message is discarded
prior to delivery to an application because its expiry
time has passed.

MQRO_PASS_MSG_ID If a report is generated, the MsgId of the current
message being processed is to be copied to the
MsgId of the report message.

MQRO_COPY_MSG_ID_TO_CO
RREL_ID

Indicates the correlation ID of the report generated
should equal the message ID of the request originally
issued.

MQRO_DEAD_LETTER_Q This option causes the original message to be placed
on the dead-letter queue when an exception occurs.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*reportOptions Input/Output A pointer to a long value representing the currently
defined report options to be used in the Put Message
Descriptor.

Return Code

None

Default Behavior

The runtime specified report options are left unchanged.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 201

Building on Windows

The WebSphere MQ Override Put Queue Report Options exit is built as part of the
dynamic link library MQSSXxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
SMQSEXIT.NT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F SMQSEXIT.NT.

Related User Exits

None

CI_MQS_DPS_EXIT MQSeries DPS Directory Services Exit (Windows)

void CI_MQS_DPS_Exit (char *qMgr,

char *srvQname,

long *numRequests,

long *getMsgTO,

char *serverName);

Source Code

CIMQSVEX.C

Purpose

The provided sample WebSphere MQ DPS Directory Services exit is an implementation
of Transaction routing. Transaction routing is a conceptual process that lets cooperative
flow data be routed from a Distributed Process Server (DPS) to a programmatically
determined Distributed Process Server (DPS). This exit can use the input serverName,
which is the server load module name calling this exit, to programmatically modify the
output parameters.

Windows Client Middleware User Exits

202 User Exit Reference Guide

The current cooperative request's local queue manager and put queue names can be
overridden using this exit. Additionally a Get queue timeout value as well as a
parameter specifying the servers multiple transaction behavior can be customized.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*qMgr Input/Output A character string containing the name of the local queue
manager. By default, the application obtains this information
from the model during generation. This exit can override this
name.

*srvQName Input/Output A character string containing the name of the put queue
connecting to the local queue manager. By default, the
application obtains this information from the model during
generation.

This exit can override this name.

*numRequests Input/Output Specifies the number of transactions the server calling this
exit can execute prior to the server shutting down. A
mechanism to limit the number of transactions a server can
execute.

Default: -1, no limit to the number of transactions that can be
serviced.

*getMsgTO Input/Output A long value representing the reply timeout applied to the get
queue associated with the current flow request.

Default: The default value is MQWI_UNLIMITED
(-1), wait indefinitely. If set, the number represents
milliseconds.

This exit can override this name.

*serverName Input A character string containing the name of the server load
module executing this exit.

Return Code

None

Default Behavior

The supplied sample does not implement dynamic transaction routing. For more
information about default values for the various parameters, see the preceding
Arguments section.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 203

Building on Windows

The WebSphere MQ DPS Directory Services exit is built as part of the dynamic link
library MQSSXxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
SMQSEXIT.NT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F SMQSEXIT.NT.

Related User Exits

None

CI_MQS_DYNAMICQNAME_EXIT Dynamic Queue Name Override Exit (Windows)

void CI_MQS_DynamicQName_Exit (char *dynamicQName);

Source Code

CIMQSVEX.C

Purpose

The Dynamic Queue Name exit allows override of the queue name that will be used
when opening a dynamic queue. The resulting Dynamic Queue will obtain its attributes
from the specified WebSphere MQ Model Queue name. The passed in dynamicQName
area can be modified by placing a null terminated string of the value to be used as the
dynamic queue name, including the use of valid WebSphere MQ pattern characters
used to name dynamic queues.

Windows Client Middleware User Exits

204 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*dynamicQName Input/Output A pointer to a character buffer, of length
MQ_Q_NAME_LENGTH+1 (48 +1), that contains the
default name of the dynamic queue as built by the
WebSphere MQ runtime (that is,
username.processid.threadid).

Return Code

None

Default Behavior

The dynamic queue name is not modified.

Building on Windows

The WebSphere MQ DPS Dynamic Queue Name Override exit is built as part of the
dynamic link library MQSSXxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
SMQSEXIT.NT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F SMQSEXIT.NT.

Related User Exits

None

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 205

Windows C Proxy User Exits

The following table summarizes the functions available through the user exits for C
Proxy applications:

C Proxy: Language: C

User Exit Name Source Code Description

WRSECTOKEN proxyxit.c Client Security Token Exit

WRSECENCRYPT proxyxit.c Client/Server Encryption Exit

WRSECDECRYPT proxyxit.c Client/Server Decryption Exit

C Proxy user exits are rebuilt into the DLL PREXxxN.DLL using the command procedure
proxyxit.nt in %GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit.

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with VS100
for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the current release
of CA Gen. For the current release number, see the Release Notes.

WRSECTOKEN Client Security Token Exit (Windows)

int WRSECTOKEN (char *clientUserid,

char *clientPassword,

char *trancode,

char *nextLocation,

BOOL *bClntMgrSecurity,

long *tokenLen,

char *token,

char *failureMsg)

Source Code

PROXYXIT.C

Purpose

The Client Side Security Exit is invoked by the proxy runtime to let a user influence how
client security data is processed by the proxy runtime code involved in servicing a
cooperative flow. Specifically, this exit influences if the Common Format Buffer (CFB)
request will contain a security offset and if that data populated in the security offset
should be used by other runtime components such as the Client Manager or
Communications Bridge when servicing the cooperative flow request.

The trancode and nextLocation variables are provided as input. These input values can
be used by the user exit code to determine what return code value should be specified.

Windows Client Middleware User Exits

206 User Exit Reference Guide

In addition to the return code value, this exit has the option of returning some fields as
output data to the calling runtime code.

For more information about the input and output fields of this exit routine, see
Arguments. For a description on what the invoking proxy runtime will do because of
receiving one of the expected return values, see Return Codes.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*clientUserid Input/Output A pointer to a character array that contains the value of the
proxy ClientUserid attribute. This user exit can set this
value by modifying the data area pointed to by this
argument. The value assigned by this user exit cannot
exceed 64 bytes.

*clientPassword Input/Output A pointer to a character array that contains the value of the
proxy ClientPassword attribute. This user exit can set this
value by modifying the data area pointed to by this
argument. The value assigned by this user exit cannot
exceed 64 bytes.

*trancode Input A pointer to a character array that contains the trancode
associated with the flow being processed by the proxy
runtime synchronous or asynchronous cooperative flow
operation.

*nextLocation Input A pointer to a character array that contains the Next
Location variable associated with the flow being processed
by the proxy runtime synchronous or asynchronous
cooperative flow operation.

*bClntMgrSecurity Output A pointer to an integer Boolean field that can be set to
either TRUE or FALSE. The value of this field only has
meaning if this user exit returns SecurityUsedEnhanced.
TRUE indicates that the security data (Client User ID and
Client Password) that is added to the security offset of the
associated CFB should be used as the source of the UserID
and Password by the Client Manager or Communications
Bridge.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 207

Name I/O Description

*tokenLen Input/Output On input, tokenLen is a pointer to a long integer field that
contains the maximum length of the allocated token
character buffer. The maximum token length is dependent
on the available space remaining during the construction of
the CFB.

On return from the exit, the long integer pointed to by
tokenLen should contain the actual length of data returned
in the character array, which is pointed to by the token
argument.

Note: The use of a token is optional, and therefore, setting
the long integer pointed to by tokenLen to zero indicates
that a token is not specified by the user exit. The length
value returned by this field only has meaning if this user
exit returns SecurityUsedEnhanced.

*token Input/Output On input, token is a pointer to a character array that will
accept a user specified security token. The use of a user
specified security token is optional. The token data that is
provided by this user exit will be provided to the server
side TIRSECV security user exit. The security token returned
by this field only has meaning if this user exit returns
SecurityUsedEnhanced.

*failureMsg Input/Output The pointer to an 80-character array that can receive a user
provided null terminated error message string. The string
pointed to by the failureMsg pointer will be incorporated
into an error message that is displayed by the proxy
runtime.

Return Code

The following table gives a brief description of each of the return codes:

Return Code Description

SecurityNotUsed Indicates to the runtime that the CLIENT_USER_ID,
CLIENT_PASSWORD, and security token will NOT be used
to populate any part of the cooperative flow request. The
client side security variables will not be added to the CFB
by the proxy runtime.

Windows Client Middleware User Exits

208 User Exit Reference Guide

Return Code Description

SecurityUsedStandard Indicates to the runtime that at most eight (8) bytes of
the CLIENT_USER_ID and at most eight (8) bytes of the
CLIENT_PASSWORD data will be set into the CFB header.
The associated request buffer will not contain a CFB
Security Offset area, and will therefore, not contain a
security token. Additionally, by not making use of the CFB
Security Offset area, the Client User ID and Client
Password values are not eligible for being encrypted.

SecurityUsedEnhanced Indicates to the runtime that the CLIENT_USER_ID,
CLIENT_PASSWORD, and the optional Security Token
should be added to the CFB by way of the CFB Security
Offset. Additionally, at most (8) bytes of the Client User ID
value will be set into the CFB header.

SecurityError Indicates to the runtime that an error was encountered
by the user exit and that the processing of the associated
request has failed. The error indication and message
string returned using the failureMsg argument would be
returned to the proxy runtime. The proxy runtime will
popup an error message display indicating the failed
request.

Default Behavior

The WRSECTOKEN user exit, as delivered with CA Gen, will return SecurityNotUsed. In
addition, although not necessary, the user exit will set the long integer pointed to by the
tokenLen pointer to zero, and set the Boolean field pointed to by the bClntMgrSecurity
pointer to False.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 209

Building on Windows

The C Proxy Decryption exit is built as part of the dynamic link library PREXxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
PROXYXIT.NT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F PROXYXIT.NT.

Related User Exits

The following are related user exits:

■ TIRSECV

■ WRSECENCRYPT

■ WRSECDECRYPT

WRSECENCRYPT Client Side Encryption Exit (Windows)

int WRSECENCRYPT (char *trancode,

char *nextLocation,

char *clientUserid,

long maxViewLen,

long *encryptViewLen,

unsigned char *encryptView,

char *failureMsg)

Source Code

PROXYXIT.C

Windows Client Middleware User Exits

210 User Exit Reference Guide

Purpose

The Client Side Encryption exit is called by the proxy runtime to provide the opportunity
to encrypt a cooperative flow request from C Proxy applications. The data in the
Common Format Buffer (CFB) that is eligible to be encrypted include the cooperative
flow’s view data and optional security offset area.

The user provides an encryption algorithm that consists of manipulating the data
pointed to by encryptView. The encryptViewLen, on input contains the number of bytes
eligible for being encrypted. The process of encryption cannot result in an encrypted
buffer area that exceeds maxViewLen. If encryption is performed by this exit,
EncryptViewLen must be updated with the length of the encrypted result. Additionally,
this exit must return the EncryptionUsed return code value.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*trancode Input A pointer to a character array that contains the trancode
associated with the synchronous or asynchronous cooperative
flow being processed by the proxy runtime.

*nextLocation Input A pointer to a character array that contains the Next Location
associated with the synchronous or asynchronous cooperative
flow being processed by the proxy runtime.

*clientUserid Input A pointer to a character array that contains the value of the of
the CLIENT_USER_ID variable associated with the flow being
processed by the proxy runtime synchronous or asynchronous
cooperative flow processing. The CLIENT_USESRID variable is
optionally set by Action Language coded within the C Proxy code.

MaxViewLen Input A long field that contains the maximum available buffer space (in
bytes) that the encrypted data can occupy.

*encryptViewLen Input/Output A pointer to a long field. On input, EncryptViewLen is the length
of the current buffer space (in bytes) of the data eligible for
being encrypted. On output, EncryptViewLen should be updated
to contain the length of the encrypted data. The length of the
encrypted result cannot exceed maxViewLen.

*encryptView Input/Output A character pointer to the starting location of the data eligible
for being encrypted. The encrypted data must be copied to this
same memory location.

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 211

Name I/O Description

*failureMsg Input/Output The pointer to an 80-character array that can receive a user
provided null terminated error message string. The string
pointed to by the failureMsg pointer will be incorporated into an
error message that is displayed by the proxy runtime.

Return Code

The following table gives a brief description of each of the return codes.

Return Code Description

EncryptionNotUsed Indicates to the runtime that the user exit did not perform any
encryption to the provided data buffer.

EncryptionUsed Indicates to the runtime that the user exit did perform encryption
on the provided data. The runtime marks the CFB as being
encrypted. An encrypted CFB will trigger the decryption
counterpart user exit to be invoked by the target server manager.
The server side decryption user exit is TIRDCRYP.

EncryptionFailure Indicates to the runtime that an error was encountered by the user
exit and that the processing of the associated request has failed.
The error indication and message string returned using the
failureMsg argument would be returned to the proxy runtime. The
proxy runtime will pop up an error message display indicating the
failed request.

Default Behavior

The WRSECENCRYPT user exit, as delivered with CA Gen, will return EncryptionNotUsed.

Windows Client Middleware User Exits

212 User Exit Reference Guide

Building on Windows

The C Proxy Security Token exit is built as part of the dynamic link library PREXxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
PROXYXIT.NT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F PROXYXIT.NT.

Related User Exits

The following are related user exits:

■ TIRNCRYP

■ WRSECDECRYPT

WRSECDECRYPT Client Decryption Exit (Windows)

int WRSECDECRYPT (long maxViewLen,

long *encryptViewLen,

unsigned char *encryptView,

char *failureMsg)

Source Code

PROXYXIT.C

Windows Client Middleware User Exits

Chapter 2: Windows C User Exits 213

Purpose

The Client Side Decryption exit is called by the proxy runtime when an encrypted
response buffer is received from a target server.

The user provides a decryption algorithm that manipulates the data pointed to by
encryptView. The encryptViewLen, on input contains the number of bytes available into
which the encrypted buffer area can be decrypted. The process of decryption cannot
result in a decrypted buffer area that exceeds maxViewLen. If decryption is performed
by this exit, EncryptViewLen must be updated with the length of the decrypted result.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

maxViewLen Input A long field that contains the maximum available buffer space
(in bytes) that the decrypted data can occupy.

*encryptViewLen Input/Output On input, EncryptViewLen is the current buffer space (in
bytes) of the encrypted data. On output, EncryptViewLen
should be updated to contain the length of the decrypted
data. The length of the decrypted result cannot exceed
maxViewLen.

*encryptView Input/Output A pointer to the starting location of the data eligible for being
decrypted. The decrypted data must be copied back into this
same memory location.

*failureMsg Input/Output The pointer to an 80-character array that can receive a user
provided null terminated error message string. The string
pointed to by the failureMsg pointer will be incorporated into
an error message that is displayed by the proxy runtime.

Return Code

The following table gives a brief description of each of the return codes.

Return Code Description

DecryptionNotUsed Indicates to the runtime that the user exit did not perform
any decryption of the encrypted data buffer.

DecryptionUsed Indicates to the runtime that the user exit successfully
performed the decryption of the provided encrypted data.

Windows Client Middleware User Exits

214 User Exit Reference Guide

Return Code Description

DecryptionFailure Indicates to the runtime that an error was encountered by
the user exit and that the decryption processing has failed
The error indication and message string returned using the
failureMsg argument will be returned to the proxy
Runtime. The proxy runtime will pop up an error message
display indicating the failed request.

Default Behavior

The WRSECDECRYPT user exit, as delivered with CA Gen, will return DecryptionNotUsed.

Building on Windows

The C Proxy Encryption exit is built as part of the dynamic link library PREXxxN.DLL.

Note:xx refers to the current release of CA Gen. For the current release number, see the
Release Notes. N indicates platform.

A prerequisite for building the DLL, you must have Microsoft's Visual C++ compiler
installed on your system.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
PROXYXIT.NT (%GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit).

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F PROXYXIT.NT.

Related User Exits

The following are related user exits:

■ TIRDCRYP

■ WRSECENCRYPT

Chapter 3: UNIX and Linux User Exits 215

Chapter 3: UNIX and Linux User Exits

There are several sets of user exits to support the variety of C applications that run on
the UNIX and Linux platforms. Scripts are provided to assist in building the runtime user
exits for each runtime environment listed in the following sections.

The following table lists the sets of C user exits available on the UNIX and Linux
platforms:

User Exit Set Provided As

Blockmode Runtime libae_userexits_c.*, libae_db2.*, libae_ora.*

Client Middleware

 Common System Utilities (CSU) libcsuvn.xx.*

 TCP/IP as Transport libtcpcx.xx.*

 WebSphere MQ as Transport libmqscx.xx.*

 Tuxedo as Transport libtxwcx.xx.*, libtxcx.xx.*

 Web Services as Transport libwscx.xx.*

Server Runtime libae_userexits_c.*, libae_db2.*, libae_ora.*

Asynchronous Daemon aefsecex

Server Middleware

 WebSphere MQ as Transport libmqssx.xx.*

 Tuxedo as Transport libtxsx.xx.*

C Proxy libprex.xx.*

Note: * refers to the shared library extension. Each UNIX and LINUX system has
different file extensions for shared libraries. Refer to your CA Gen installation for the
shared library extension used.

UNIX and Linux Blockmode User Exits

216 User Exit Reference Guide

UNIX and Linux Blockmode User Exits
The following table summarizes the functions available through the user exits for
generated blockmode applications:

Name Description

DBCOMMIT Database Commit User Exit. There is one user exit routine for each
supported database: Oracle, and DB2.

DBCONNCT Database Connection User Exit. There is one user exit routine for
each supported database: Oracle, and DB2.

DBDISCNT Database Disconnect User Exit. There is one user exit routine for
each supported database: Oracle, and DB2.

TIRDLCT Dialect User Exit

TIRDRTL Default Retry Limit User Exit

TIRHELP Help Interface User Exit

TIRMTQB Message Table User Exit

TIRSECR Security Interface User Exit

TIRSYSID System ID User Exit

TIRTERMA User Termination User Exit

TIRTIAR Database error message User Exit. There is one user exit routine
for each supported database: Oracle and DB2.

TIRUPDB MBCS Uppercase Translation User Exit

TIRUPPR Uppercase Translation User Exit

TIRURTL Ultimate Retry Limit User Exit

TIRUSRID User ID User Exit

TIRYYX Date User Exit

Note: The database user exits DBCONNCT, DBCOMMIT, DBDISCNT, and TIRTIAR are
rebuilt into individual shared libraries (libae_db2.*, libae_ora.*) using the script
$IEFH/make/mkdbs.

Blockmode runtime user exits are rebuilt into the shared library libae_userexits_c.*
using the script $IEFH/make/mkexits. This is the same shared library that is used with
Server applications.

Details for the preceding user exits follow in a separate section for each.

UNIX and Linux Blockmode User Exits

Chapter 3: UNIX and Linux User Exits 217

DBCOMMIT Database Commit Exit

void dbcommit (

int rc)

Source Code

For Db2: tirdb2.ppc

For Oracle: tirora.ppc

Purpose

Use the Database Commit User Exit to customize the commit logic for a particular
database. The default processing of this user exit provides a simple database commit.

There exists a Database Commit User Exit for each supported DBMS: Oracle and DB2.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

rc Input Type of commit to perform

Return Code

None

Default Behavior

By default, these modules perform a standard database commit statement.

Building on UNIX/Linux

The Database Commit User Exit is built as part of the shared library libae_db2.* and/or
libae_ora.*, where * is the shared library suffix depending on the UNIX system. As a
prerequisite for building the shared library, you must have correct C/C++ compiler
installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

UNIX and Linux Blockmode User Exits

218 User Exit Reference Guide

3. Run mkdbs.

4. You will be prompted for the DBMS choice and a version choice if the DBMS is
Oracle (the currently supported version is the default).

The DBMS user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

DBCONNCT, DBDISCNT, TIRTIAR

DBCONNCT Database Connection User Exit

int dbconnect (

char *user,

char *pswd)

Source Code

For Db2: tirdconn.sqc

For Oracle: tiroconn.sqc

Purpose

Use the Database Connection User Exit to customize the connection to the particular
database. This user exit enhances database security. The default processing of this user
exit provides a simple database connection.

There exists a Database Connect User Exit for each supported DBMS: Oracle and DB2.

The default method for CA Gen to acquire DBMS connection information for blockmode
applications is for the AEF to locate the trancode in the AEENV file. Connection
information includes the username, password, and database name. Each person that
executes the application must have read access to the AEENV file that contains the
connection information.

Database Description Host Variable Declared Type

Oracle user ID uid VARCHAR(32)

Oracle Password pwd VARCHAR(32)

DB2 user ID uid char(9)

DB2 Password pwd char(9)

DB2 database name dbname char(9)

UNIX and Linux Blockmode User Exits

Chapter 3: UNIX and Linux User Exits 219

We recommend leaving the call to dbid() unchanged, and adding logic immediately
before the database connect statements to populate the appropriate variables. Ensure
that you add all code that the DBMS requires. For example, verify arr and len elements
are populated correctly for VARCHAR. We also recommend that all AEENV files contain
character strings as place holders for the database connection information. These
character strings do not have to contain valid connection information.

For greater security, add a call to an encryption routine.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*user Input Pointer to DBMS userid

*pswd Input Pointer to DBMS password for userid

Return Code

Integer representing success or failure of database connection.

Default Behavior

By default, these modules read the database connect information from the AEENV file
and use the information in the database connect statement.

Building on UNIX/Linux

The Database Connection User Exit is built as part of the shared library libae_db2.*
and/or libae_ora.*, where * is the shared library suffix depending on the UNIX system.
As a prerequisite for building the shared library, you must have correct C/C++ compiler
installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run mkdbs.

4. You will be prompted for the DBMS choice and a version choice if the DBMS is
Oracle (the currently supported version is the default).

The DBMS user exit shared library will be built in the $IEFH/lib directory.

UNIX and Linux Blockmode User Exits

220 User Exit Reference Guide

Related User Exits

DBCOMMIT, DBDISCNT

DBDISCNT Database Disconnect Exit

int dbdiscnt()

Source Code

For Db2: tirdb2.ppc

For Oracle: tirora.ppc

Purpose

Use the Database Disconnect User Exits to customize the database disconnect. The
default processing of these users exits provides simple database disconnect.

There exists a Database Disconnect User Exit for each supported DBMS: Oracle and DB2.

Arguments

None

Return Code

Integer representing success or failure of database disconnection.

Default Behavior

By default, these modules perform a standard database disconnect statement.

Building on UNIX/Linux

These user exits are built as part of the shared library libae_db2.* and/or libae_ora.*,
where * is the shared library suffix depending on the UNIX system. As a prerequisite for
building the shared library, you must have correct C/C++ compiler installed on your
system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

UNIX and Linux Blockmode User Exits

Chapter 3: UNIX and Linux User Exits 221

3. Run mkdbs.

4. You will be prompted for the DBMS choice and a version choice if the DBMS is
Oracle (the currently supported version is the default).

The DBMS user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

DBCONNCT, DBCOMMIT

TIRDLCT Dialect Exit

void TIRDLCT (

char *rp1,

char *rp2,

struct dialect_cmcb *tirdlct_cmcb)

Source Code

TIRDLCT

Purpose

TIRDLCT supplies the current user's dialect to the application and is useful only for
multilingual applications. For multilingual support, the user is responsible for modifying
this module to return the appropriate dialect. The dialect returned should be defined
using the Design selection on the CA Gen action bar. If it is not, the application's default
dialect is used.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*rp1 Input A pointer to a parameter control block.
Reserved for runtime internal use only.

*rp2 Input A pointer to a parameter control block.
Reserved for runtime internal use only.

*tirdlct_cmcb Input/Output A pointer to a structure containing the
following items:

tirdlct_userid Input An 8-byte character array containing the
current user id as provided by TIRUSRID.

UNIX and Linux Blockmode User Exits

222 User Exit Reference Guide

Name I/O Description

tirdlct_terminal_id Input An 8-byte character array containing the
current terminal id.

tirdlct_system_id Input An 8-byte character array containing the
current system id as provided by
TIRSYSID.

tirdlct_return_dialect Input An 8-byte character array containing the
returned dialect.

Return Code

None

Default Behavior

TIRDLCT returns a dialect value of DEFAULT.

Building on UNIX/Linux

The Dialect User Exit is built as part of the shared library libae_userexits_c.*, where * is
the shared library suffix depending on the UNIX system. As a prerequisite for building
the shared library, you must have correct C/C++ compiler installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run mkexits.

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

TIRUSRID, TIRSYSID

TIRDRTL Default Retry Limit Exits

int tirdrtl (

char retry_flag)

Source Code

TIRDRTL.C

UNIX and Linux Blockmode User Exits

Chapter 3: UNIX and Linux User Exits 223

Purpose

TIRDRTL lets you override the CA Gen-defined default value for the TRANSACTION
RETRY LIMIT system attribute. TRANSACTION RETRY LIMIT will be initialized to this value
at the beginning of each new transaction. This value can subsequently be modified by a
SET TRANSACTION RETRY LIMIT statement in an action diagram.

TRANSACTION RETRY LIMIT is used to specify the maximum number of times to retry a
transaction when one of the following events occurs:

■ A RETRY TRANSACTION action diagram statement executes.

■ A deadlock or timeout occurs trying to access a database, and there is no WHEN
DATABASE DEADLOCK OR TIMEOUT statement for that entity action statement.

In these cases, uncommitted database updates are rolled back, and an attempt is made
to execute the application again. After the number of retries, as indicated by the
TRANSACTION RETRY COUNT system attribute, reaches TRANSACTION RETRY LIMIT or
the value specified by the Ultimate Retry Limit User Exit (see TIRURTL), no more retries
can occur, and the application fails with a runtime error.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

retry_flag Input Flag to indicate whether or not to set a retry limit.

Return Code

Integer containing the retry limit.

Default Behavior

If the Default Retry Limit User Exit is not used, TRANSACTION RETRY LIMIT will be
initialized to 10 for all target environments. If the Default Retry Limit User Exit is used, it
must not return a value greater than that specified in the Ultimate Retry Limit User Exit.

UNIX and Linux Blockmode User Exits

224 User Exit Reference Guide

Building on UNIX/Linux

The Default Retry User Exit is built as part of the shared library libae_userexits_c.*,
where * is the shared library suffix depending on the UNIX system. As a prerequisite for
building the shared library, you must have correct C/C++ compiler installed on your
system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run mkexits.

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

TIRURTL

TIRHELP Help Interface Exit

void TIRHELP (

char *rp1,

char *rp2,

struct tirhelp *in_tirhelp_cmcb,

char *in_tirhelp_return_message,

char *in_environment_list,

char *in_application_list,

struct scmgr *in_scmgr_cmcb)

Source Code

TIRHELP.C

Purpose

TIRHELP is called when a HELP or PROMPT command is entered. From TIRHELP, a help
system can be invoked to provide application help information.

UNIX and Linux Blockmode User Exits

Chapter 3: UNIX and Linux User Exits 225

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved
for runtime internal use only.

*rp2 Input A pointer to a parameter control block. Reserved
for runtime internal use only.

*in_tirhelp_cmcb Input/Output A pointer to a structure containing the following
items:

tirhelp_request_code Input/Output A 2-byte character array containing the type of
help requested.

tirhelp_return_code Output A 2-byte character array containing the return
code.

tirhelp_mapname Input An 8-byte character array containing the
mapname.

tirhelp_data_filler Unused An 8-byte character array used as a structure filler.

tirhelp_trancode Input An 8-byte character array containing the trancode.

tirhelp_userid Input An 8-byte character array containing the user id.

tirhelp_terminal_id Input An 8-byte character array containing the terminal
id.

tirhelp_printer_id Input An 8-byte character array containing the printer id.

tirhelp_dialect Input An 8-byte character array containing the dialect.

tirhelp_message_table Input An 8-byte character array containing the message
table. This value is passed to TIRMTQB.

tirhelp_filler Unused A 16-byte character array used as a structure filler.

tirhelp_last_command Input An 80-byte character array containing the last
command.

tirhelp_last_message Input An 80-byte character array containing the last
message.

tirhelp_screen_helpid Output A 44-byte character array containing the help
identifier for the screen.

tirhelp_field_helpid Output A 44-byte character array containing the help
identifier for the field.

tirhelp_field_token1 Input A 3-byte character array containing a field token.

UNIX and Linux Blockmode User Exits

226 User Exit Reference Guide

Name I/O Description

tirhelp_field_token2 Input A 3-byte character array containing a second field
token

tirhelp_field_len Input A 3-byte character array containing the field
length.

tirhelp_field_value Input A 256-byte character array containing the value of
the field.

tirhelp_field_protect Input A single character containing a field protection flag.

tirhelp_field_intens Input A single character containing a field intensity flag.

in_tirhelp_return_message Output An 80-byte character array representing the
returned help message. By default, this message is
returned from a call to TIRMTQB.

in_environment_list Input A pointer to an environment control block.
Reserved for runtime internal use only.

in_application_list Input A pointer to an application control block. Reserved
for runtime internal use only.

in_scmgr_cmcb Input/Output A pointer to a screen management control block.

Return Code

None

Default Behavior

The TIRHELP routine will return a message indicating no help is available.

Building on UNIX/Linux

The Help Interface User Exit is built as part of the shared library libae_userexits_c.*,
where * is the shared library suffix depending on the UNIX system. As a prerequisite for
building the shared library, you must have correct C/C++ compiler installed on your
system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run mkexits.

The user exit shared library will be built in the $IEFH/lib directory.

UNIX and Linux Blockmode User Exits

Chapter 3: UNIX and Linux User Exits 227

Related User Exits

TIRMTQB

TIRMTQB Message Table Exit

void TIRMTQB(char *rp1,

char *rp2,

char *msg_tbl_name,

short *msgnum,

struct PARMMSG *prm);

Source Code

TIRMTQB.C

Purpose

This message table exit is called by the runtime when a system-level message is to be
displayed. The user can customize the wording of the messages within this exit.
Additional tables can also be defined to support other dialects.

The default table includes an entry for each CA Gen runtime error message. Each entry
includes the following information:

■ Message Number—The message number is permanently assigned by CA Gen. Each
message has a unique number.

■ Message Text—The message text is the actual words that appear on the application
screen when an error occurs. The message text, and any variable values that can be
appended, is truncated if it exceeds the length of the error message line defined for
the application screen. The error message line is a maximum of 80 characters of
which 12 are reserved for the message number.

If the message number is not in the table, TIRMTQB returns a default message.

Runtime Error Table

The Runtime Error Message Table includes an entry for each runtime error message.
Each table entry includes the following information:

■ Message type— a message number is not found in the table, or when you return to
a transaction screen after a fatal error or a Dialog Manager error occurs. Valid
message types are shown in the following list:

■ Default message— a message number is not found in the table, or when you return
to a transaction screen after a fatal error or a Dialog Manager error occurs.

UNIX and Linux Blockmode User Exits

228 User Exit Reference Guide

■ Dialog Manager error—Occurs when the Dialog Manager is unable to communicate
with the system. This is a fatal error beyond the control of CA Gen. An error in the
load module packaging or in the configuration specifications causes a Dialog
Manager error. Error handling is the same as for a fatal error.

■ Fatal error— a CA Gen application abnormal program ending. If a condition occurs
at runtime that the generated code cannot handle, the system issues a fatal error.
An error message screen displays the appropriate error messages.

■ Function error—Occurs if a CA Gen-supported function receives invalid input or
produces invalid output. CA Gen-supplied functions manipulate characters,
numbers, dates, and times.

■ Screen edit error—A non-fatal error that occurs when an input or output value for a
field does not match the expected value, the range, type, or format defined for the
field during model development. This type of message is displayed on your
transaction screen. You can correct the error and continue with the transaction.

■ Unformatted input error—Occurs when the unformatted input contains invalid
parameters, delimiters, or both. Unformatted input is a list of parameters
associated with a clear screen transaction code.

■ Message number—Each message has a unique number that is permanently
assigned by CA Gen.

■ Message text—The message text consists of the actual words that appear on the
application screen when an error occurs. Because of the length of the message
identifier, the message text is limited to 68 characters for an 80-character screen.
The message text and appended variables are truncated if they exceed the length of
the error message line defined for the application screen.

■ Suffix—(If applicable) The suffix contains variable values, such as return codes,
permitted values, or the values in error.

Runtime Error Handling

Runtime errors are handled by the Dialog Manager. Runtime errors are non-fatal, such
as screen edit, or fatal errors.

If a non-fatal error such as invalid user input occurs, the Dialog Manager displays an
error message on the transaction screen. You can correct the error and continue
processing the transaction.

If an application fails because of a fatal error, transaction processing terminates, and the
error processing is as follows:

■ The Dialog Manager performs all necessary rollbacks of the databases.

■ CA Gen displays an error message screen that lists the appropriate runtime error
messages.

■ Pressing Enter from the error message screen causes CA Gen applications to
terminate execution.

UNIX and Linux Blockmode User Exits

Chapter 3: UNIX and Linux User Exits 229

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for runtime
internal use only.

*rp2 Input A pointer to a parameter control block. Reserved for runtime
internal use only.

*msg_tbl_name Input A character string containing the name of the table to be
used for extraction of the message text. Currently one table
named DEFAULT is supported by the CA Gen runtime.

*msgnum Input A short value containing the message number corresponding
to the text to be fetched.

*prm Input/ Output A pointer to a PARMMSG structure to contain the returned
message text information. This structure, defined in
tirmtq.h, has the following definition:

PARMLEN A short value containing the total length of PARMNO +
PARMTXT.

PARMNO Output An 11-byte character array containing the message number
formatted in a standard style.

PARMTXT Output A string containing the text corresponding to the error
message number. The string can be up to 245 bytes,
including the terminating NULL.

filler Unused Two unused filler characters

Return Code

None

Default Behavior

The table in the default exit is used to retrieve runtime error message text.

UNIX and Linux Blockmode User Exits

230 User Exit Reference Guide

Building on UNIX/Linux

The Message Table User Exit is built as part of the shared library libae_userexits_c.*,
where * is the shared library suffix depending on the UNIX system. As a prerequisite for
building the shared library, you must have correct C/C++ compiler installed on your
system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run mkexits.

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

None

TIRSECR Security Check Interface Exit

void TIRSECR(char * rp1,

char * rp2,

struct security_cmcb * in_tirsecr_cmcb);

Source Code

TIRSECR.C

Purpose

The Dialog Manager calls the Security Check Interface Exit when a transaction is started
and before execution of a dialog flow. This allows transaction-level security checking to
be implemented. The following data is provided by the dialog manager of each load
module for use in checking security authorization:

■ System ID (as provided by the System ID Exit, TIRSYSID)

■ User ID (as provided by the User ID Exit, TIRUSRID)

■ Trancode

■ Terminal ID

UNIX and Linux Blockmode User Exits

Chapter 3: UNIX and Linux User Exits 231

■ Load module name

■ Procedure step name

If the user defined security check passes, TIRSECR should move a value of spaces to the
return code. If the security check fails, a non-blank value should be moved to the return
code with a message describing the violation inserted into the tirsecr_failure_msg
buffer. The current dialect in effect on the client is passed in using tirsecr_dialect.

When the dialog manager receives control, it proceeds with the transaction if the return
code is spaces, or issues an error if it is not.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*rp2 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*in_tirsecr_cmcb Input/Output A pointer to a structure containing the following items:

tirsecr_userid Input An 8-byte character array containing the security user
ID as provided by the TIRUSRID user exit

tirsecr_trancode Input An 8-byte character array containing the current
transaction code.

tirsecr_terminal_id Input An 8-byte character array containing the current
terminal ID.

tirsecr_system_id Input An 8-byte character array containing the current
system ID as returned by the TIRSYSID user exit.

tirsecr_load_module Input An 8-byte character array containing the name of the
executing load module calling this exit.

tirsecr_pstep_name Input A 32-byte character array containing the name of
procedure step being executed.

tirsecr_dialect Input A 32-byte character array containing the dialect in
effect on the client.

tirsecr_return_code Output A 2-character array representing the success or failure
of this exit processing. TIRSECR_ALL_OK defined as two
spaces implies success, any other value implies failure.
If none spaces are return, tirfail will be passed the
tirsecr_failure_msg message.

UNIX and Linux Blockmode User Exits

232 User Exit Reference Guide

Name I/O Description

tirsecr_failure_msg Output An 80-byte character array used in conjunction with a
failing return code in tirsecr_return_code. This exit can
insert an error message into this array that will be
passed by the Dialog manager to the tirfail user exit.

Return Code

None directly. For more information, see tirsecr_return_code structure member.

Default Behavior

The default exit will return a status code of spaces, indicating no security violation was
detected.

Building on UNIX/Linux

The Security Check User Exit is built as part of the shared library libae_userexits_c.*,
where * is the shared library suffix depending on the UNIX system. As a prerequisite for
building the shared library, you must have correct C/C++ compiler installed on your
system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run mkexits.

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

TIRUSRID, TIRSYSID

TIRSYSID System ID Exit

void TIRSYSID (char *rp1;

char *rp2;

char *system_id);

Source Code

TIRSYSID.C

UNIX and Linux Blockmode User Exits

Chapter 3: UNIX and Linux User Exits 233

Purpose

TIRSYSID supplies the system ID to the application.

The purpose of TIRSYSID is to implement application logic that lets you implement one
model on multiple platforms, and perform processing appropriate for the platform. The
system ID is also one of the parameters passed to the Security Interface Exit (TIRSECR).

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved
for runtime internal use only.

*rp2 Input A pointer to a parameter control block. Reserved
for runtime internal use only.

*system_id Output An 8-byte character array representing the system
identifier where the server application is executing.

Return Code

None

Default Behavior

By default, TIRSYSID calls the runtime routine DEFSYSID. This routine returns a default
system ID, the value of which depends on the platform on which the application is
executing.

Under UNIX/Linux if the environment variable IEF_SYSID is set the first 8 characters of
this variable are used. Otherwise, “UNIX“ is returned.

UNIX and Linux Blockmode User Exits

234 User Exit Reference Guide

Building on UNIX/Linux

The System ID User Exit is built as part of the shared library libae_userexits_c.*, where *
is the shared library suffix depending on the UNIX system. As a prerequisite for building
the shared library, you must have correct C/C++ compiler installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run mkexits.

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

TIRSECR

TIRTERMA User Termination Exit

void TERTERMA (

char *rp1,

char *rp2,

struct term_pb *pb)

Source Code

TIRTERMA.C

Purpose

TIRTERMA is called when an application fails. Modification of TIRTERMA lets the user
customize the handling of runtime errors.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*rp1 Input A pointer to a parameter control block.
Reserved for runtime internal use only.

*rp2 Input A pointer to a parameter control block.
Reserved for runtime internal use only.

UNIX and Linux Blockmode User Exits

Chapter 3: UNIX and Linux User Exits 235

Name I/O Description

*pb Input/ Output A pointer to a PARMMSG structure to contain
the termination information. This structure is
defined in tirterma.h.

Return Code

None

Default Behavior

The default processing for TIRTERMA returns a status code of spaces, indicating to use
standard error handling.

Building on UNIX/Linux

The User Termination User Exit is built as part of the shared library libae_userexits_c.*,
where * is the shared library suffix depending on the UNIX system. As a prerequisite for
building the shared library, you must have correct C/C++ compiler installed on your
system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run mkexits.

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

None

TIRTIAR Database Error Message Exit

void TIRTIAR (

char *sqlca,

short *ml,

char *mb,

int maxLength)

UNIX and Linux Blockmode User Exits

236 User Exit Reference Guide

Source Code

For Db2: tirdb2.ppc

For Oracle: tirora.ppc

Purpose

Use the Database Error Message User Exit to customize the error message received
from the database commit. The default processing of this user exit provides a simple
database error message.

There exists a Database Error Message User Exit for each supported DBMS: Oracle and
DB2.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*sqlca Input Pointer to SQLCA structure

*ml Output Pointer to error message length

*mb Output Pointer to error message buffer

maxLength Input Maximum length of error message that can be written to error
message buffer

Return Code

None

Default Behavior

By default, these modules provide the error message returned by the database commit.

UNIX and Linux Blockmode User Exits

Chapter 3: UNIX and Linux User Exits 237

Building on UNIX/Linux

The Database Error Message User Exit is built as part of the shared library libae_db2.*
and/or libae_ora.*, where * is the shared library suffix depending on the UNIX system.
As a prerequisite for building the shared library, you must have correct C/C++ compiler
installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run mkdbs.

4. You will be prompted for the DBMS choice and a version choice if the DBMS is
Oracle (the currently supported version is the default).

The DBMS user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

DBCOMMIT

TIRUPDB MBCS Uppercase Translation Exit

void TIRUPDB (

char *rp1,

char *rp2,

char *tbl_name,

long *len,

char *xlate_data)

Source Code

TIRUPDB.C

Purpose

TIRUPDB is called to uppercase multi-byte text. The user can modify the mechanism
used to uppercase multi-byte text with this user exit.

UNIX and Linux Blockmode User Exits

238 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*rp2 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*tbl_name Input A pointer to a translation table name.

*len Input/Output Length of text to convert to uppercase.

*xlate_data Input/Output A pointer to the text to be uppercased.

Return Code

None

Default Behavior

The default translation uses MBCS functions to perform uppercase translation based
upon the active system code page. However, the system designer, programmer, may
add code to recognize dialects and perform any lower to upper functionality desired. In
that case, insure that the default behavior still uses the MBCS libraries.

Building on UNIX/Linux

The MBCS Uppercase Translation User Exit is built as part of the shared library
libae_userexits_c.*, where * is the shared library suffix depending on the UNIX system.
As a prerequisite for building the shared library, you must have correct C/C++ compiler
installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run mkexits.

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

TIRUPPR

UNIX and Linux Blockmode User Exits

Chapter 3: UNIX and Linux User Exits 239

TIRUPPR Uppercase Translation Exit

void TIRUPPR (

char *rp1,

char *rp2,

char *tbl_name,

long *len,

char *xlate_data)

Source Code

TIRUPPR.C

Purpose

TIRUPPR is called to uppercase multi-byte text. The user can modify the mechanism
used to uppercase multi-byte text with this user exit.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for runtime internal use
only.

*rp2 Input A pointer to a parameter control block. Reserved for runtime internal use
only.

*tbl_name Input A pointer to a translation table name.

*len Input/Output Length of text to convert to uppercase.

*xlate_data Input/Output A pointer to the text to be uppercased.

Return Code

None

Default Behavior

The default translation uses MBCS functions to perform uppercase translation based
upon the active system code page. However, the system designer, programmer, may
add code to recognize dialects and perform any lower to upper functionality desired. In
that case, insure that the default behavior still uses the MBCS libraries.

UNIX and Linux Blockmode User Exits

240 User Exit Reference Guide

Building on UNIX/Linux

The Uppercase Translation User Exit is built as part of the shared library
libae_userexits_c.*, where * is the shared library suffix depending on the UNIX system.
As a prerequisite for building the shared library, you must have correct C/C++ compiler
installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run mkexits.

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

TIRUPDB

TIRURTL Ultimate Retry Limit Exit

long tirurtl ()

Source Code

TIRURTL.C

Purpose

TIRURTL lets you specify a maximum value for the TRANSACTION RETRY LIMIT system
attribute. This value can never be exceeded by a SET TRANSACTION RETRY LIMIT
statement in an action diagram, or by the Default Retry Limit User Exit.

After the number of retries, as indicated by the TRANSACTION RETRY COUNT system
attribute, reaches either TRANSACTION RETRY LIMIT or the value specified by the
Ultimate Retry Limit User Exit, no more retries can occur, and the application fails with a
runtime error.

Arguments

None

Return Code

Long containing the retry limit.

UNIX and Linux Blockmode User Exits

Chapter 3: UNIX and Linux User Exits 241

Default Behavior

If the Ultimate Retry Limit User Exit is not used, the maximum value of TRANSACTION
RETRY LIMIT will be 99 for all target environments. The Ultimate Retry Limit User Exit
can be modified to return a value of zero to suppress all retry attempts.

Building on UNIX/Linux

The Ultimate Retry User Exit is built as part of the shared library libae_userexits_c.*,
where * is the shared library suffix depending on the UNIX system. As a prerequisite for
building the shared library, you must have correct C/C++ compiler installed on your
system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run mkexits.

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

TIRDRTL

TIRUSRID User ID Exit

void TIRUSRID (char *rp1;

char *rp2;

char *filler_parm;

char *user_id);

Source Code

TIRUSRID.C

Purpose

TIRUSRID is used to supply the user's ID to the application. The user ID is one of the
parameters passed to the Security Interface Exit (TIRSECR).

UNIX and Linux Blockmode User Exits

242 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for runtime internal use
only.

*rp2 Input A pointer to a parameter control block. Reserved for runtime internal use
only.

*filler_parm Input A pointer to a parameter control block. Reserved for runtime internal use
only.

*user_id Output A pointer to an 8-byte character array into which the user ID can be returned.

Return Code

None

Default Behavior

The default action taken by this module is to call runtime routine DEFUSRID which
returns a default user ID, the value of which depends on the platform on which the
system is executing.

Building on UNIX/Linux

The User ID User Exit is built as part of the shared library libae_userexits_c.*, where * is
the shared library suffix depending on the UNIX system. As a prerequisite for building
the shared library, you must have correct C/C++ compiler installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run mkexits.

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

TIRSECR

UNIX and Linux Blockmode User Exits

Chapter 3: UNIX and Linux User Exits 243

TIRYYX Date Exit

void TIRYYX (

struct tiryyx_param_block *pb)

Source Code

TIRYYX.C

Purpose

TIRYYX is used to process two-digit or yy-style date input and to set the century part
using any fixed-window, sliding-window, or other algorithm of choice, when using CA
Gen in the standard map generation mode.

Internally, CA Gen handles four digit year dates correctly assuming the user application
uses the yyyy edit pattern throughout. If the user interface is designed to accept a
two-digit date entry, and defaulting to the current century is not acceptable, use this
exit to implement logic to get the required behavior for defaulting the century part of
the date.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*pb Input/Output A pointer to a tiryyx structure containing the following items:

return_code Output A 4-byte character array containing the current year

current_year Input A 4-byte character array containing the current year.

edit_year Input/Output A 4-byte character array containing the edit year.

Return Code

None

Default Behavior

The default user exit behavior does not perform any processing and returns.

UNIX/Linux Client Middleware User Exits

244 User Exit Reference Guide

Building on UNIX/Linux

The Date User Exit is built as part of the shared library libae_userexits_c.*, where * is
the shared library suffix depending on the UNIX system. As a prerequisite for building
the shared library, you must have correct C/C++ compiler installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run mkexits.

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

None

UNIX/Linux Client Middleware User Exits

Common System Utilities - UNIX and Linux User Exits

All supplied Common System Utilities (CSU) user exits are written using the C++
programming language. The following table briefly describes the Common System
Utilities Exits:

Common System Utilities: Language: C++

User Exit Name Source Code Description

CSUGETLIBRARYVERSIONNAME csuglvn.cxx Provide a mapping of specified name to version
specific name of Shared Libraries.

Details for the preceding user exits follow in a separate section for each.

CSUGETLIBRARYVERSIONNAME Version Name mapping Exit

void CSUGetLibraryVersionName (char *name,

char *retName,

long maxRetNameLen)

Source Code

CSUGLVN.CXX

UNIX/Linux Client Middleware User Exits

Chapter 3: UNIX and Linux User Exits 245

Purpose

This exit provides a mapping of specified name to version specific name if one exists,
otherwise the specific name value is returned. This mapping is used when shared
libraries are dynamically loaded during cooperative processing.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*name Input Pointer to a character string containing a null
terminated name to be converted to a version
name.

*retName Output Pointer to a character string to receive the
version name.

maxRetNameLen Input Long containing the maximum length of the
returning version name.

Return Code

None

Default Behavior

The default mapping table is used.

Building on UNIX/Linux

The CSU Library Version Name User Exit is built as part of the shared library
libcsuvn.xx.*, where * is the shared library suffix depending on the UNIX system. As a
prerequisite for building the shared library, you must have correct C/C++ compiler
installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

UNIX/Linux Client Middleware User Exits

246 User Exit Reference Guide

3. Run make /f csuglvn.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

Linux: lin

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

None

TCP/IP - Windows User Exits

All supplied TCP/IP Transport user exits are written using the C programming language.
The following table briefly describes the TCP/IP Exits:

TCP/IP Transport: Language: C

User Exit Name Source Code Description

CI_TCP_DPC_DIRSERV_EXIT citcpclx.c TCP/IP Directory Services User Exit

CI_TCP_DPC_HANDLECOMM_COMPLETE citcpclx.c Verifies that a data has been processed
successfully (a valid send/receive has
occurred).

CI_TCP_DPC_SETUPCOMM_COMPLETE citcpclx.c Verifies that connection to target server is
successful.

Details for the preceding user exits follow in a separate section for each.

CI_TCP_DPC_DIRSERV_EXIT TCPIP DPC Directory Services Exit

Void CI_TCP_DPC_DirServ_Exit (char *hostName,

char *servName,

char *nextLoc,

char *trancode,

char *procName,

char *modelName);

Source Code

CITCPCLX.C

UNIX/Linux Client Middleware User Exits

Chapter 3: UNIX and Linux User Exits 247

Purpose

The provided sample TCPIP DPC Directory Services exit is an implementation of
Transaction routing. Transaction routing is a conceptual process that lets cooperative
flow data be routed from a Distributed Process Client (DPC) to a programmatically
determined Distributed Process Server (DPS). The supplied sample exit looks for the
hostname or IP address and port number or service name in environment variables. The
user is free to implement whatever functionality can be required.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*hostName Input/ Output The hostname where the target server environment resides
according to the configured client.

*servName Input/ Output The port number or service name on the target server
environment the client is to connect to.

*nextLoc Input Next Location system attribute as set using CA Gen action
diagram statements.

*trancode Input The target Procedure Step transaction code being processed

*procName Input The name of the flow's target Procedure Step.

*modelName Input The name of the model containing the target Procedure Step.

Return Code

None

Default Behavior

If the environment variables expected by the sample implementation of this exit are not
defined the hostname and service name values defined during the packaging of the
cooperative model will be used.

UNIX/Linux Client Middleware User Exits

248 User Exit Reference Guide

Building on UNIX/Linux

The TCP/IP DPC Directory Services User Exit is built as part of the shared library
libtcpcx.xx.*, where * is the shared library suffix depending on the UNIX system. As a
prerequisite for building the shared library, you must have correct C/C++ compiler
installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run make /f ctcpexit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

Linux: lin

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

None

CI_TCP_DPC_HANDLECOMM_COMPLETE TCP/IP DPC Handle Comm Complete Exit

int CI_TCP_DPC_handleComm_Complete(int completionCode,

int numberOfAttempts,

unsigned long reasonCode)

Source Code

CITCPCLX.C

Purpose

The processing of a given cooperative flow is broken up into two large grain activities.
This, the second is handleComm, which is invoked to send/receive data over an already
active connection. This exit is invoked at the completion of the handleComm processing
to expose that processing results. The handleComm will either be successful (indicated
by the input parameter completionCode having a value of HANDLECOMM_OK) or not
successful (indicated by the completionCode parameter having a value of
HANDLECOMM_NOT_OK).

UNIX/Linux Client Middleware User Exits

Chapter 3: UNIX and Linux User Exits 249

The return from this exit indicates if the processing of the cooperative flow should
continue (zero lets the process continue, non-zero causes the processing of the flow to
be terminated).Therefore, if a completionCode of HANDLECOMM_OK is received as
input, the return value from this exit should be set to zero to let the processing of the
flow continue.

If the completionCode has a value of HANDLECOMM_NOT_OK, this exit has the
opportunity to indicate if the handleComm processing should be attempted by returning
a value of zero (0).The number of flow attempts is passed into this exit using the
numberOfAttempts parameter. Thus, this exit can control the number of retry attempts
by testing the value of numberOfAttempts and returning one (1) when the number of
retries has reached a predetermined threshold.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

completionCode Input An integer value representing the result of a handleComm operation.
The value will be either HANDLECOMM_OK or
HANDLECOMM_NOT_OK

numberOfAttempts Input An integer value representing the number of times a handleComm
operation has been attempted. This number will be incremented
each time handleComm fails.

reasonCode Input An unsigned long value providing the error number as reported by
the underlying TCP/IP transport layer. This error code can be used by
this exit to determine if a retry is feasible.

Return Code

The following table gives a brief description of each of the return codes.

Return Code Description

zero (0) Indicates processing of the flow should continue, retrying the
flow processing if not already successful.

non-zero Causes the processing of the flow to be terminated.

Default Behavior

The default implementation of this exit lets the flow processing be attempted twice. If
the flow is not successful after two attempts, the flow processing is terminated and an
appropriate error response is returned to the DP client.

UNIX/Linux Client Middleware User Exits

250 User Exit Reference Guide

Building on UNIX/Linux

The TCP/IP DPC Comm Complete User Exit is built as part of the shared library
libtcpcx.xx.*, where * is the shared library suffix depending on the UNIX system. As a
prerequisite for building the shared library, you must have correct C/C++ compiler
installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run make /f ctcpexit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

Linux: lin

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

CI_TCP_DPC_SETUPCOMM_COMPLETE

CI_TCP_DPC_SETUPCOMM_COMPLETE TCP/IP DPC Setup Comm Complete Exit

int CI_TCP_DPC_setupComm_Complete (int completionCode,

int numberOfAttempts,

unsigned long reasonCode);

Source Code

CITCPCLX.C

Purpose

The processing of a given cooperative flow is broken up into two large grain activities.
The first is setupComm, which is invoked to insure a connection to the target server is
available. This exit is invoked at the completion of the setupComm processing to expose
that processing results. The setupComm will either be successful (indicated by the input
parameter completionCode having a value of SETUPCOMM_OK) or not successful
(indicated by the completionCode parameter having a value of SETUPCOMM_NOT_OK).

UNIX/Linux Client Middleware User Exits

Chapter 3: UNIX and Linux User Exits 251

The return from this exit indicates if the processing of the cooperative flow should
continue (zero lets the process continue, non-zero causes the processing of the flow to
be terminated). If the completionCode has a value of SETUPCOMM_NOT_OK, this exit
has the opportunity to indicate if the setupComm processing should be attempted by
returning a value of zero(0). The number of connection retries attempted is passed into
this exit using the numberOfAttempts parameter. Thus, this exit can control the number
of retry attempts by testing the value of numberOfAttempts and returning one (1) when
the number of retries has reached a predetermined threshold.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

completionCode Input An integer value representing the result of a setupComm
operation. The value will be either SETUPCOMM_OK or
SETUPCOMM_NOT_OK

numberOfAttempts Input An integer value representing the number of times a setupComm
has been attempted. This number will be incremented each time
setupComm fails.

reasonCode Input An unsigned long value providing the error number as reported by
the underlying TCP/IP transport layer. This error code can be used
by this exit to determine if a retry is feasible.

Return Code

The following table gives a brief description of each of the return codes:

Return Code Description

zero (0) Indicates processing of the flow should continue, retrying the
connection if not already established.

non-zero Causes the processing of the flow to be terminated.

Default Behavior

The default implementation of this exit lets the connection be attempted twice. If the
connection is not established after two attempts, the flow processing is terminated and
an appropriate error response is returned to the DP client.

UNIX/Linux Client Middleware User Exits

252 User Exit Reference Guide

Building on UNIX/Linux

The DPC Setup Comm Complete User Exit is built as part of the shared library
libtcpcx.xx.*, where * is the shared library suffix depending on the UNIX system. As a
prerequisite for building the shared library, you must have correct C/C++ compiler
installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run make /f ctcpexit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

Linux: lin

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

CI_TCP_DPC_HANDLECOMM_COMPLETE

WebSphere MQ Client Transport - Windows User Exits

All supplied WebSphere MQ Client Transport user exits are written using the C
programming language. The following table briefly describes the WebSphere MQ Exits:

WebSphere MQ Transport: Language: C

User Exit Name Source Code Description

CI_MQS_DPC_EXIT cimqclex.c MQ Directory Services Exit

CI_MQS_DPC_HANDLECOMM_COMPLETE cimqclex.c Verifies that a data has been
processed successfully (a valid
send/receive has occurred).

CI_MQS_DPC_SETREPORTOPTIONS cimqclex.c Used to override report options set
by the runtime.

CI_MQS_DPC_SETUPCOMM_COMPLETE cimqclex.c Verifies that connection to target
server is successful.

UNIX/Linux Client Middleware User Exits

Chapter 3: UNIX and Linux User Exits 253

WebSphere MQ Transport: Language: C

User Exit Name Source Code Description

CI_MQS_DYNAMICQNAME_EXIT cimqclex.c Provide Queue Name that will be
used when opening a dynamic
queue.

CI_MQS_MQSHUTDOWNTEST cimqclex.c Determine if queue should be
removed and thus disconnected.

Details for the preceding user exits follow in a separate section for each.

CI_MQS_DPC_EXIT MQSeries DPC Directory Services Exit

Void CI_MQS_DPC_Exit (char *qMgr,

char *rqMgr,

char *pQ,

char *rQ,

long *timeout,

short *closePQ,

short *closeGQ,

char *nextLoc,

char *trancode,

char *procName,

char *modelName);

Source Code

CIMQCLEX.C

Purpose

The provided sample WebSphere MQ DPC Directory Services exit is an implementation
of Transaction routing. Transaction routing is a conceptual process that lets cooperative
flow data be routed from a Distributed Process Client (DPC) to a programmatically
determined Distributed Process Server (DPS). The current cooperative request's local
queue manager, remote queue manager, put and reply queue names can be overridden
using this exit. Additionally a get timeout value as well as put/get queue disposition
after a flow has completed, can be customized.

UNIX/Linux Client Middleware User Exits

254 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*qMgr Input/Output The name of the local queue manager. By default, the application
obtains this information from the model during generation. This exit
can override this name.

*rqMgr Input/Output The name of the remote queue manager. This value is NULL by default.

This exit can override this name.

*pQ Input/Output A character string containing the name of the Put queue. By default,
the application obtains this information from the model during
generation.

This exit can override this name.

*rQ Input/Output A character string containing the name of the reply-to queue. This can
be either a local queue or a model queue name. By default, the
application obtains the value

"SYSTEM.DEFAULT.MODEL.QUEUE" from the model during generation.

This exit can override this name.

*timeout Input/Output A long value representing the timeout value, in milliseconds, for the
Get queue. By default, this has the value MQWI_UNLIMITED for an
unlimited waiting period.

This exit can override this name.

*closePQ Input/Output A short value which controls whether the client closes the Put queue
after the flow is complete. Valid values are CLOSE_QUEUE or
NO_CLOSE_QUEUE. The default value, NO_CLOSE_QUEUE, specifies
the Put queue is not to be closed.

This exit can override this name.

*closeGQ Input/Output A short value which controls whether the client closes the Get queue
after the flow is complete.

 Valid values are CLOSE_QUEUE or NO_CLOSE_QUEUE. The default
value, NO_CLOSE_QUEUE, specifies the Get queue is not to be closed.

This exit can override this name.

*nextLoc Input A character string containing the Next Location system attribute as set
using CA Gen action diagram statements.

*trancode Input An 8-byte character array containing the target Procedure Step
transaction code being processed.

*procName Input A character string containing the name of the flow's target Procedure
Step.

UNIX/Linux Client Middleware User Exits

Chapter 3: UNIX and Linux User Exits 255

Name I/O Description

*modelName Input A character string containing the name of the model containing the
flow's target Procedure Step.

Return Code

None

Default Behavior

The supplied sample does not implement dynamic transaction routing. For more
information about default values for the various parameters, see Arguments.

Building on UNIX/Linux

The Websphere MQ DPC Directory Services User Exit is built as part of the shared library
libmqscx.xx.*, where * is the shared library suffix depending on the UNIX system. As a
prerequisite for building the shared library, you must have correct C/C++ compiler
installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run make /f cmqsexit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

Linux: lin

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

None

CI_MQS_DPC_HANDLECOMM_COMPLETE Handle Comm Retry Count Exit

int CI_MQS_DPC_handleComm_Complete(int completionCode,

int numberOfAttempts,

unsigned long reasonCode);

UNIX/Linux Client Middleware User Exits

256 User Exit Reference Guide

Source Code

CIMQCLEX.C

Purpose

The processing of a given cooperative flow is broken up into two large grain activities.
The second is handleComm, which is invoked to send/receive data over an already
active connection. This exit is invoked at the completion of the handleComm processing
to expose that processing results. The handleComm will either be successful (indicated
by the input parameter completionCode having a value of HANDLECOMM_OK) or not
successful (indicated by the completionCode parameter having a value of
HANDLECOMM_NOT_OK).

The return from this exit indicates if the processing of the cooperative flow should
continue (zero lets the process continue, non-zero causes the processing of the flow to
be terminated). Therefore, if a completion code of HANDLECOMM_OK is received as
input, the return value from this exit should be set to zero to let the processing of the
flow continue.

If the completionCode has a value of HANDLECOMM_NOT_OK, this exit has the
opportunity to indicate if the handleComm processing should be attempted by returning
a value of zero (0). The number of flow attempts is passed into this exit using the
numberOfAttempts parameter. Thus, this exit can control the number of retry attempts
by testing the value of numberOfAttempts and returning one (1) when the number of
retries has reached a predetermined threshold.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

completionCode Input An integer value representing the result of a handleComm
operation. The value will be either HANDLECOMM_OK or
HANDLECOMM_NOT_OK

numberOfAttempts Input An integer value representing the number of times a handleComm
operation has been attempted. This number will be incremented
each time handleComm fails.

reasonCode Input An unsigned long value providing the error number as reported by
the underlying WebSphere MQ transport layer. This error code can
be used by this exit to determine if a retry is feasible.

UNIX/Linux Client Middleware User Exits

Chapter 3: UNIX and Linux User Exits 257

Return Code

The following table gives a brief description of each of the return codes.

Return Code Description

zero (0) Indicates processing of the flow should continue, retrying the
flow processing if not already successful.

non-zero Causes the processing of the flow to be terminated.

Default Behavior

The default implementation of this exit lets the flow processing be attempted twice. If
the flow is not successful after two attempts, the flow processing is terminated and an
appropriate error response is returned to the DP client.

Building on UNIX/Linux

The Websphere MQ DPC Handle Comm Retry Count User Exit is built as part of the
shared library libmqscx.xx.*, where * is the shared library suffix depending on the UNIX
system. As a prerequisite for building the shared library, you must have correct C/C++
compiler installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run make /f cmqsexit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

Linux: lin

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

CI_MQS_DPC_SETUPCOMM_COMPLETE

CI_MQS_DPC_SETREPORTOPTIONS Override Put Queue Report Options Exit Description

void CI_MQS_DPC_setReportOptions(MQLONG * reportOptions);

UNIX/Linux Client Middleware User Exits

258 User Exit Reference Guide

Source Code

CIMQCLEX.C

Purpose

This exit can be used to override the set of report options defined for the WebSphere MQ Put Message Descriptor
prior to the issuance of an MQPUT() operation.

The report options set by the runtime are described in the following table:

Report Option Description

MQRO_EXCEPTION This type of report can be generated
when an exception occurs. For
instance if a message is sent to
another queue manager and the
message cannot be delivered to the
specified destination queue.

MQRO_EXPIRATION An expiration report. The queue
manager generates this type of
report if the message is discarded
prior to delivery to an application
because its expiry time has passed.

MQRO_PASS_MSG_ID If a report is generated, the MsgId of
the current message being
processed is to be copied to the
MsgId of the report message.

MQRO_COPY_MSG_ID_TO_CORREL_ID Indicates the correlation ID of the
report generated should equal the
message ID of the request originally
issued.

MQRO_DEAD_LETTER_Q This option causes the original
message to be placed on the
dead-letter queue when an
exception occurs

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*reportOptions Input/ Output A pointer to a long value representing the currently defined
report options to be used in the Put Message Descriptor.

UNIX/Linux Client Middleware User Exits

Chapter 3: UNIX and Linux User Exits 259

Return Code

None

Default Behavior

The runtime specified report options are left unchanged.

Building on UNIX/Linux

The Websphere MQ Override Put Queue Report Options User Exit is built as part of the
shared library libmqscx.xx.*, where * is the shared library suffix depending on the UNIX
system. As a prerequisite for building the shared library, you must have correct C/C++
compiler installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run make /f cmqsexit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

Linux: lin

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

None

CI_MQS_DPC_SETUPCOMM_COMPLETE Setup Comm Retry Count Exit

int CI_MQS_DPC_setupComm_Complete(int completionCode,

int numberOfAttempts,

unsigned long reasonCode);

Source Code

CIMQCLEX.C

UNIX/Linux Client Middleware User Exits

260 User Exit Reference Guide

Purpose

The processing of a given cooperative flow is broken up into two large grain activities.
The first is setupComm, which is invoked to insure a connection to the target server is
available. This exit is invoked at the completion of the setupComm processing to expose
that processing results. The setupComm will either be successful (indicated by the input
parameter completionCode having a value of SETUPCOMM_OK) or not successful
(indicated by the completionCode parameter having a value of SETUPCOMM_NOT_OK).

The return from this exit indicates if the processing of the cooperative flow should
continue (zero lets the process continue, non-zero causes the processing of the flow to
be terminated). If the completionCode has a value of SETUPCOMM_NOT_OK, this exit
has the opportunity to indicate if the setupComm processing should be attempted by
returning a value of zero (0). The number of connection retries attempted is passed into
this exit using the numberOfAttempts parameter. Thus, this exit can control the number
of retry attempts by testing the value of numberOfAttempts and returning one (1) when
the number of retries has reached a predetermined threshold.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

completionCode Input An integer value representing the result of a setupComm
operation. The value will be either SETUPCOMM_OK or
SETUPCOMM_NOT_OK.

numberOfAttempts Input An integer value representing the number of times a setupComm
has been attempted. This number will be incremented each time
setupComm fails.

reasonCode Input An unsigned long value providing the error number as reported by
the underlying WebSphere MQ transport layer. This error code
can be used by this exit to determine if a retry is feasible.

Return Code

The following table gives a brief description of each of the return codes:

Return Code Description

zero (0) Indicates processing of the flow should continue, retrying the
connection if not already established.

non-zero Causes the processing of the flow to be terminated.

UNIX/Linux Client Middleware User Exits

Chapter 3: UNIX and Linux User Exits 261

Default Behavior

The default implementation of this exit lets the connection be attempted twice. If the
connection is not established after two attempts, the flow processing is terminated and
an appropriate error response is returned to the DP client.

Building on UNIX/Linux

The Websphere MQ DPC Setup Comm Retry Count User Exit is built as part of the shared
library libmqscx.xx.*, where * is the shared library suffix depending on the UNIX system.
As a prerequisite for building the shared library, you must have correct C/C++ compiler
installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run make /f cmqsexit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

Linux: lin

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

CI_MQS_DPC_HANDLECOMM_COMPLETE

CI_MQS_DYNAMICQNAME_EXIT Dynamic Queue Name Override Exit

void CI_MQS_DynamicQName_Exit (char *dynamicQName);

Source Code

CIMQCLEX.C

Purpose

The Dynamic Queue Name exit lets you override the queue name that will be used when
opening a dynamic queue. The resulting Dynamic Queue will obtain its attributes from
the specified WebSphere MQ Model Queue name. The passed in work area can be
modified by placing a null terminated string of the value to be used as the dynamic
queue name, including the use of valid WebSphere MQ pattern characters used to name
dynamic queues.

UNIX/Linux Client Middleware User Exits

262 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*dynamicQName Input/ Output A pointer to a character buffer, of length
MQ_Q_NAME_LENGTH+1 (48 +1), that contains the
default name of the dynamic queue as built by the
WebSphere MQ runtime (for example
username.processid.threadid).

Return Code

None

Default Behavior

The dynamic queue name is not modified.

Building on UNIX/Linux

The Websphere MQ Dynamic Queue Name Override User Exit is built as part of the
shared library libmqscx.xx.*, where * is the shared library suffix depending on the UNIX
system. As a prerequisite for building the shared library, you must have correct C/C++
compiler installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run make /f cmqsexit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

Linux: lin

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

None

UNIX/Linux Client Middleware User Exits

Chapter 3: UNIX and Linux User Exits 263

CI_MQS_MQSHUTDOWNTEST MQSeries Queue Disconnect Exit

Int CI_MQS_MQShutdownTest()

Source Code

CIMQCLEX.C

Purpose

This exit can be used to modify the behavior of the normal put/get queue disposition
after successful completion of a cooperative flow. Normal disposition will leave the
connection valid with the put and get queues open, ready to handle subsequent flows.
This exit can override that behavior and cause the queues and connection to be closed
after each flow has completed.

Arguments

None

Return Code

The following table gives a brief description of each of the return codes:

Return Code Description

NO_REMOVE_QUEUE The default return value. The connection and put/get
queues will remain open, available for subsequent
flows.

REMOVE_QUEUE After a completed flow the connection is dropped,
the put/get queues will be closed.

Default Behavior

A value of NO_REMOVE_QUEUE is returned, the connection and put/get queues remain
open and available for subsequent flows.

UNIX/Linux Client Middleware User Exits

264 User Exit Reference Guide

Building on UNIX/Linux

The Websphere MQ Queue Disconnect User Exit is built as part of the shared library
libmqscx.xx.*, where * is the shared library suffix depending on the UNIX system. As a
prerequisite for building the shared library, you must have correct C/C++ compiler
installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run make /f cmqsexit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

Linux: lin

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

None

Tuxedo

All supplied Tuxedo Transport user exits are written using the C programming language.
The following table briefly describes the Tuxedo Exits:

Tuxedo Transport: Language: C

User Exit Name Source Code Description

CI_C_SEC_SET cictuxwsx.c Set User Supplied Security Data Into The Security Data
Fields Located In Tuxedo Tpinit

CI_C_USER_DATA_IN cictuxwsx.c Gives You The Opportunity To Inspect Or Modify The
Cooperative Flow Request Buffer On Return From The
Target Tuxedo Service. Invoked On Return From The
Tpcall For Those Clients Connecting To Tuxedo Servers
Residing On A Separate Host. Additionally, This Exit Allows
The Client To Disconnect From The Server Following Each
Flow

UNIX/Linux Client Middleware User Exits

Chapter 3: UNIX and Linux User Exits 265

Tuxedo Transport: Language: C

User Exit Name Source Code Description

CI_C_USER_DATA_IN cictuxx.c Gives You The Opportunity To Inspect Or Modify The
Cooperative Flow Request Buffer On Return From The
Target Tuxedo Service. Invoked On Return From The
Tpcall For Those Clients Connecting To Tuxedo Servers
Residing On A Separate Host. Additionally, This Exit Allows
The Client To Disconnect From The Server Following Each
Flow (used For Server To Server Flows)

CI_C_USER_DATA_OUT cictuxwsx.c Gives You The Opportunity To Inspect Or Modify The
Cooperative Flow Request Buffer Prior To Tuxedo Sending
The Request To The Target Tuxedo Service. Invoked Prior
To The Tpcall For Those Clients Connecting To Tuxedo
Servers Residing On A Separate Host

CI_C_USER_DATA_OUT cictuxx.c Gives You The Opportunity To Inspect Or Modify The
Cooperative Flow Request Buffer Prior To Tuxedo Sending
The Request To The Target Tuxedo Service. Invoked Prior
To The Tpcall For Those Clients Connecting To Tuxedo
Servers Residing On A Separate Host (used For Server To
Server Flows)

CI_EVENT_HANDLER cictuxwsx.c Provides ability to handle events

Note that both cictuxwsx.c and cictuxx.c have essentially the same user exits. The
difference is that the user exits in cictuxwsx.c are used for client/server flows, while the
user exits in cictuxx.c are used for server to server flows.

Details for the preceding user exits follow in a separate section for each.

CI_C_SEC_SET Tuxedo Cooperative Flow Security Exit

int ci_c_sec_set (CIPROCSTEP *procstep,

char *clientUserid,

char *clientPassword,

int *tperr)

Source Code

CICTUXWSX.C

UNIX/Linux Client Middleware User Exits

266 User Exit Reference Guide

Purpose

The ci_c_sec_set exit is the first user exit that is invoked on a client Tuxedo cooperative
flow, and is specifically related to security. ci_c_sec_set() contains the call to tpinit() and
is called for each flow so that, if required, each flow can establish a different user
context (that is, tpinit() is invoked for each flow). You need to invoke the corresponding
tpterm in ci_c_user_data_in() to achieve the described behavior.

ci_c_sec_set() is called from a Windows Client only. A Tuxedo server-to-server flow does
not invoke ci_c_sec_set().

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*procstep Input A pointer to a CA Gen CIPROCSTEP structure, which contains
information, related to the currently executing procedure step.
Model name and Next Location data can be extracted from this
structure. This parameter is unused in the supplied sample exit.

*clientUserid Input CA Gen current CLIENT_USER_ID system attribute, if
SecurityUsedEnhanced is set in the WRSECTOKEN user exit. NULL
string otherwise.

*clientPassword Input CA Gen current CLIENT_PASSWORD system attribute if
SecurityUsedEnhanced is set in the WRSECTOKEN user exit. NULL
string otherwise.

*tperr Output If the function returns -1 as the return code, tperr should contain a
valid tperrno value indicating the cause of the Tuxedo ATMI call
failure.

Return Code

The following table gives a brief description of each of the return codes:

Return Code Description

zero (0) If no error was encountered within the exit.

non-zero If one of the ATMI functions within user, the exit fails.

UNIX/Linux Client Middleware User Exits

Chapter 3: UNIX and Linux User Exits 267

Default Behavior

The clientUserId and clientPassword are used for user name and the data field of the
TPINIT structure respectively. TPINIT structure is used for the Tuxedo login. If
SecurityUsedEnhanced is returned from the WRSECTOKEN user exit, clientUserid and
clientPassword contain a pointer to a valid CA Gen CLIENT_USER_ID and
CLIENT_PASSWORD system attributes, which are used for the Tuxedo login. Otherwise,
the pointers point to a Null string.

Building on UNIX/Linux

The Tuxedo Cooperative Flow Security User Exit is built as part of the shared library
libtxwcx.xx.*, where * is the shared library suffix depending on the UNIX system. As a
prerequisite for building the shared library, you must have correct C/C++ compiler
installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run make /f ctuxexit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

Linux: lin

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

CI_EVENT_HANDLER

CI_C_USER_DATA_IN Tuxedo Inbound Flow Data Access Exit

void ci_c_user_data_in(char ** tuxSvcOutputBuffer)

Source Code

CICTUXWSX.C, CICTUXX.C

UNIX/Linux Client Middleware User Exits

268 User Exit Reference Guide

Purpose

The ci_c_user_data_in exit is called immediately after the Tuxedo tpcall API returns. It
provides access to the inbound View32 buffer on returning from the target server.
tuxSvcOutputBuffer points to the reply buffer, which contains a CA Gen procedure, step
structure and export view (back to back).

If required, a call to the Tuxedp tpterm API can be added inside ci_c_user_data_in to
force association for each flow with a discrete user environment and privileges (see
ci_c_sec_set).

ci_c_user_data_in() is called from both a Windows Client and Server to Server flows,
hence the two source files.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

**tuxSvcOutputBuffer Input A pointer to a buffer containing a Tuxedo allocated
buffer, which contains procedure step and view data for
the flow in progress. This is the buffer returned back from
the Tuxedo tpcall() API (inbound View32).

Return Code

None

Default Behavior

The default behavior is to not modify the received data.

Building on UNIX/Linux

The Tuxedo Inbound Flow Data Access User Exit is built as part of the shared library
libtxwcx.xx.*, as well as the shared library libtxcx.xx.*, where * is the shared library
suffix depending on the UNIX system. As a prerequisite for building the shared library,
you must have correct C/C++ compiler installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

UNIX/Linux Client Middleware User Exits

Chapter 3: UNIX and Linux User Exits 269

3. Run make /f ctuxexit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

Linux: lin

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

CI_C_USER_DATA_OUT—Tuxedo Outbound Flow Data Access Exit

CI_C_USER_DATA_OUT Tuxedo Outbound Flow Data Access Exit

void ci_c_user_data_out(char ** tuxSvcInputBuffer , long * svcFlags);

Source Code

CICTUXWSX.C, CICTUXX.C

Purpose

The ci_c_user_data_out() function is the second user exit that is invoked on a
cooperative flow. It provides access to the outbound View32 buffer, and an opportunity
to add more attributes to the flags parameter of the subsequent Tuxedo tpcall API.
tuxSvcInputBuffer is a request buffer containing a CA Gen procedure step structure
followed by its import views as back-to-back data items. svcFlags are added to the tpcall
flags parameter. Both are passed to the tpcall.

ci_c_user_data_out() is called from both a Windows Client and Server to Server flows,
hence the two source files.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

**tuxSvcInputBuffer Input/
Output

A pointer to a buffer containing a Tuxedo allocated buffer, which
contains procedure step and view data for the flow in progress.

*svcFlags Output A pointer to a long value to which can be stored extra flags to be
appended to the standard value passed as the flags parameter to
the Tuxedo tpcall() API.

UNIX/Linux Client Middleware User Exits

270 User Exit Reference Guide

Return Code

None

Default Behavior

The flow data and flags parameter passed to tpcall() are not modified.

Building on UNIX/Linux

The Tuxedo Outbound Flow Data Access User Exit is built as part of the shared library
libtxwcx.xx.*, as well as the shared library libtxcx.xx.*, where * is the shared library
suffix depending on the UNIX system. As a prerequisite for building the shared library,
you must have correct C/C++ compiler installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run make /f ctuxexit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

Linux: lin

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

CI_C_USER_DATA_IN—Tuxedo Inbound Flow Data Access Exit

CI_EVENT_HANDLER Tuxedo Event Handler Exit

void TUXCALL ci_event_handler(char * s, long len, long flag);

Source Code

CICTUXWSX.C

UNIX/Linux Client Middleware User Exits

Chapter 3: UNIX and Linux User Exits 271

Purpose

The ci_event_handler() function is called in ci_c_sec_set() to respond to the runtime
failure from the call to TPINIT().

ci_event_handler() is called from a Windows Client only. A Tuxedo server-to-server flow
does not invoke ci_c_sec_set() and therefore does not invoke ci_event_handler().

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*s Input A pointer to a buffer containing a Tuxedo error
message.

Len Input A long value containing the length of the error
message.

Flag Input A long value containing an error flag.

Return Code

None

Default Behavior

CI_EVENT_HANDLER does no work.

Building on UNIX/Linux

The Tuxedo Event Handler User Exit is built as part of the shared library libtxwcx.xx.*,
where * is the shared library suffix depending on the UNIX system. As a prerequisite for
building the shared library, you must have correct C/C++ compiler installed on your
system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

UNIX and Linux Server User Exits

272 User Exit Reference Guide

3. Run make /f ctuxexit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

Linux: lin

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

CI_C_SEC_SET

UNIX and Linux Server User Exits
The following table summarizes the functions available through the user exits for
generated server applications:

Name Description

DBCOMMIT Database Commit User Exit. There is one user exit routine for each supported database:
Oracle, and DB2.

DBCONNCT Database Connection User Exit. There Is One User Exit Routine For Each Supported
Database: Oracle, And Db2.

DBDISCNT Database Disconnect User Exit. There is one user exit routine for each supported
database: Oracle, and DB2.

SRVRERROR Server to Server Error User Exit (Server Only)

TIRDCRYP Decrypt User Exit (Server Only)

TIRDLCT Dialect User Exit

TIRDRTL Default Retry Limit User Exit

TIRELOG Server Error Logging User Exit (Server Only)

TIRHELP Help Interface User Exit

TIRMTQB Message Table User Exit

TIRNCRYP Encrypt User Exit (Server Only)

TIRSECR Security Interface User Exit

TIRSECV Server Security Validation User Exit (Server Only)

TIRSYSID System ID User Exit

TIRTERMA User Termination User Exit

UNIX and Linux Server User Exits

Chapter 3: UNIX and Linux User Exits 273

Name Description

TIRTIAR Database error message User Exit. There is one user exit routine for each supported
database: Oracle and DB2.

TIRUPDB MBCS Uppercase Translation User Exit

TIRUPPR Uppercase Translation User Exit

TIRURTL Ultimate Retry Limit User Exit

TIRUSRID User ID User Exit

TIRXINFO Locale Information User Exit (Server Only)

TIRXLAT National Language Translation User Exit (Server Only)

TIRYYX Date User Exit

Note: The database user exits DBCONNCT, DBCOMMIT, DBDISCNT and TIRTIAR are
rebuilt into individual shared libraries (libae_db2.*, libae_ora.*) using the script
$IEFH/make/mkdbs.

Server runtime user exits are rebuilt into the shared library libae_userexits_c.* using the
script $IEFH/make/mkexits. This is the same shared library that is used with Blockmode
applications.

Since a large number of these user exits have already been documented in the section
UNIX/Linux Blockmode User Exits, only the user exits that are specific to server
applications will be detailed in the following subsections.

Details for the preceding user exits follow in a separate section for each.

SRVRERROR Server to Server Error Exit

int SRVRERROR (char * from,

char * to,

char * errLst,

int dtp,

int failureType,

char * failureCommand,

ErrorToken errorToken);

Source Code

tirserrx.c

UNIX and Linux Server User Exits

274 User Exit Reference Guide

Purpose

This exit is invoked by the calling server when errors occur at the destination server,
during a server-to-server flow. This exit can influence the default runtime error behavior
in how the detected error is handled. When the NOTPROPAGATE_ERR is returned, the
calling procedure step continues the execution, ignoring the fact that an error has
occurred in the destination procedure step. When PROPAGATE_ERR is returned, an
error message is created and then returned to the calling procedure step.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*from Input A character string pointing to the name of the source or calling
procedure step

*to Input A character string pointing to the name of the target or called
procedure step

*errLst Input A character string pointing to the destination server's XFAIL
message. This message buffer can contain multiple new line
terminated strings. The initial portion of the buffer is formatted
to fit a 24 line by 80-character screen format. Additional free
form data can follow the 24 x 80 lines, up to the maximum of
2048 bytes.

dtp Input An integer value of 1 if the to procedure step is a distributed
transaction participant, 0 if otherwise

failureType Input An enumerated value representing a failure code

CFBUILD = 0 - implies the calling procedure step failed to
build/parse the message bound for the destination procedure
step

XFAIL = 1 - implies the destination procedure step execution
failed

XERR = 2 - implies a communication error between the calling
and destination procedure steps

*failureCommand Input/Output A command that the destination procedure step can return to
the calling procedure step. A maximum of 8 chars plus NULL.

errorToken Input/Output This parameter is only used with XFAL messages. errorToken
can contain a token constructed by the Error Logging exit
(TIRELOG) at the target or called procedure step. (4096 +1
bytes)

UNIX and Linux Server User Exits

Chapter 3: UNIX and Linux User Exits 275

Return Code

The following table gives a brief description of each of the return codes:

Return Code Description

0 - PROPAGATE_ERR The error is processed normally within the calling
procedure step.

1-NOTPROPAGATE_ERR The calling procedure step continues the execution
ignoring the fact that error occurs in the destination
procedure step.

Default Behavior

Errors are propagated to the calling procedure step. An error message is created and
returned to the calling procedure step.

Building on UNIX/Linux

This user exit is built as part of the shared library or archive library libae_userexits_c.*,
where * is the shared library suffix or archive library depending on the UNIX system. As
a prerequisite for building the shared library or archive library, you must have correct
C/C++ compiler installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run make /f stuxexit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

Linux: lin

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

None

UNIX and Linux Server User Exits

276 User Exit Reference Guide

TIRDCRYP Server Decryption Exit

void TIRDCRYP(unsigned char * rp1,

unsigned char * rp2,

TIRDCRYP_cmcb * pTIRDCRYP_cmcb);

Source Code

tirdcryp.c

Purpose

TIRDCRYP is called by the Server Manager after it detects that the client has sent an
encrypted cooperative buffer. The Server Manager constructs a work buffer containing
the concatenated View Data and Client Security sections. The user is responsible for
decrypting the area pointed to by pDataBuffer for IBufferSize bytes.

The inputs pDataBuffer and IDecryptMaxSize as well as the outputs IBufferSize
return_code and failure_msg are fields within a structure pointed to by the
pTIRDCRYP_cmcb parameter.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*rp2 Input A pointer to a parameter control block. Reserved for
runtime internal use only

*pTIRELOG_cmcb Input/Output A pointer to a TIRELOG_CMCB structure containing the
following items:

lDecryptMaxSize Input A long field that contains the maximum available buffer
space (in bytes) that the decrypted data can occupy.

lBufferSize Input/Output On input, IBufferSize is the current buffer space (in bytes)
of the encrypted data.

On output, IBuffferSize should be updated by this exit to
contain the length of the decrypted data. The length of
the decrypted result cannot exceed lDecryptMaxSize.

UNIX and Linux Server User Exits

Chapter 3: UNIX and Linux User Exits 277

Name I/O Description

*pDataBuffer Input/Output On input, a pointer to the starting location of the
encrypted View Data and Client Security sections within
the CFB work buffer.

On output, this exit should ensure this same data area
contains the unencrypted versions of the input data. The
length of this decrypted result cannot exceed
lDecryptMaxSize.

return_code Output A two-character array returning the results of the
decryption attempt. The following values are supported:

DECRYPTION_USED—defined as " "

DECRYPTION_SIZE_EXCEEDED_MAX—defined as "01"

DECRYPTION_NOT_USED—defined as "02"

DECRYPTION_APPLICATION_ERROR—defined as "03"

*failureMsg Output The pointer to an 80-character array, to be populated by
the exit that can receive a null terminated error message
string. The string pointed to by the failureMsg pointer will
be incorporated into an error message that is returned
back to the client. Used in conjunction with a return code
of DECRYPTION_APPLICATION_ERROR.

Return Code

None directly, see the preceding return_code structure member.

Default Behavior

Decryption of the data buffer is not attempted.

Building on UNIX/Linux

The Server Decryption User Exit is built as part of the shared library libae_userexits_c.*,
where * is the shared library suffix depending on the UNIX system. As a prerequisite for
building the shared library, you must have correct C/C++ compiler installed on your
system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run mkexits.

The user exit shared library will be built in the $IEFH/lib directory.

UNIX and Linux Server User Exits

278 User Exit Reference Guide

Related User Exits

The following are related user exits:

■ TIRNCRYP

■ WRSECENCRYPT

TIRELOG Server Error Logging and Error Token Creation Exit

void TIRELOG(char * rp1,

char * rp2,

TIRELOG_CMCB * pTIRELOG_cmcb));

Source Code

tirelog.c

Purpose

This exit serves two purposes:

■ Error logging at the server

■ Creation of an error token for transmitting to the client

This exit is called by the server to handle server errors that are encountered during the
execution of a distributed processing server that cannot be handled by the runtime or
generated code, and normally result in the termination of the application. For example,
prior to the execution of a server procedure step, the server extracts view data from the
client message and places it in the target procedure step's view. If this extraction fails
because of a mismatch between the client definition and the server definition an error
response message is created and returned to the client.

The default implementation of this exit returns to the caller without logging the error. It
is up to the developer of this user exit to determine what information should be logged
and how it should be logged. Some users can choose to log only certain errors; others
can choose to log all errors. On some systems, the log can be implemented as a file. To
log a server error, simply format the information you wish to log and write it to a file. On
other systems, the log can be implemented using system-specific features such as a CICS
temporary storage queue (TSQ) as found on z/OS.

To create an error token, move text data to the area pointed to by the elog_error_token
member of the TIRELOG_CMCB structure passed into this exit. The error token area is
4097 bytes and must be null-terminated. The error token, which goes through codepage
translation when it is transmitted to the client, can be used on the client to customize
how the error is handled.

UNIX and Linux Server User Exits

Chapter 3: UNIX and Linux User Exits 279

For example, you can modify this exit to return an error token of "RETRY" whenever a
certain database contention error occurs. This error token is passed to the client
error-handling exit (WRSRVRERROR or WRASYNCSRVRERROR), which makes the final
decision on how to handle the error. You can modify the client error-handling exit to
reinvoke the flow or USE whenever the error token is "RETRY." This server error-logging
exit is called after the error response message is created but before it is transmitted to
the client.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for
runtime internal use only

*rp2 Input A pointer to a parameter control block. Reserved for
runtime internal use only

*pTIRELOG_cmcb Input/Output A pointer to a TIRELOG_CMCB structure containing the
following items:

elog_fail_type Input A character designating the type of failure detected
defined as:(lable - defined value)

EPROFD - 'P' profile error

EPROFI - 'I' profile error

EEXEC - 'E' execution error

ESERVER - 'D' server manager error

EUSER - 'U' user requested abend

void *elog_sqlca Input A pointer to a saved sql data area

*elog_globdata Input A pointer to the server's globdata area

elog_number_of_lines Input An integer containing the number of text lines contained
within the elog_error_text buffer

elog_error_text Input A pointer to a buffer of screen formatted text. This data,
formatted by the server runtime, contains up to 24 lines
of 80 characters each.

*elog_error_token Input/Output A character pointer to an error token area that can
contain up to 4097 bytes, this includes the required null
terminator. This exit is responsible for populating this
data area if needed.

Return Code

None directly, see the preceding pTIRELOG_cmcb structure.

UNIX and Linux Server User Exits

280 User Exit Reference Guide

Default Behavior

The default action is to return without logging the error.

Building on UNIX/Linux

The Server Error Logging User Exit is built as part of the shared library
libae_userexits_c.*, where * is the shared library suffix depending on the UNIX system.
As a prerequisite for building the shared library, you must have correct C/C++ compiler
installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run mkexits.

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

The following are related user exits:

■ WRSRVRERROR

■ WRASYNCSRVRERROR

TIRNCRYP Server Encryption Exit

void TIRNCRYP(unsigned char * rp1,

unsigned char * rp2,

TIRNCRYP_cmcb * pTIRNCRYP_cmcb);

Source Code

tirncryp.c

Purpose

After a server procedure step executes, the server manager can call TIRNCRYP to
encrypt the server response to the client. The server manager makes a copy of the
unencrypted cooperative buffer pending transmission back to the client. The inputs
pDataBuffer, IBufferSize, IEncryptMaxSize trancode and client_userid as well as the
outputs return_code, and failure_msg are fields with a structure pointed to by
pTIRNCRYP_cmcb. The user is responsible for encrypting the data area pointed to by the
pDataBuffer member of the TIRNCRYP_cmcb structure.

UNIX and Linux Server User Exits

Chapter 3: UNIX and Linux User Exits 281

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*rp2 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*pTIRNCRYP_cmcb Input/Output A pointer to a structure containing the following items:

pDataBuffer Input/Output On input, a pointer to the starting location of the View
Data and Client Security sections within the CFB work
buffer.

On output this same data area should be populate by
this exit with the encrypted versions of the input data.
The length of the encrypted result cannot exceed
lEncryptMaxSize.

lBufferSize Input/Output On input, lBufferSize is the current buffer space (in
bytes) of the unencrypted data.

On output, IBuffferSize should be updated by this exit to
contain the length of the encrypted data. The length of
the encrypted result cannot exceed lEncryptMaxSize.

lEncryptMaxSize Input A long field that contains the maximum available buffer
space (in bytes) that the encrypted data can occupy.

trancode Input Transaction code currently being processed. . This value
can be used in conjunction with client userid and
NextLocation to determine if encryption is desired.

client_userid Input Client user ID. This value can be used in conjunction
with trancode and NextLocation to determine if
encryption is desired.

pNextLocation Input Next Location value as set by the server application
using CA Gen action diagram statements. This value can
be used in conjunction with trancode and client userid
to determine if encryption is desired.

return_code Output A two-character array returning the results of the
decryption attempt. The following values are supported:

ENCRYPTION_USED—defined as " "

ENCRYPTION_SIZE_EXCEEDED_MAX—defined as "01"

ENCRYPTION_NOT_USED—defined as "02"

EnCRYPTION_APPLICATION_ERROR—defined as "03"

UNIX and Linux Server User Exits

282 User Exit Reference Guide

Name I/O Description

*failureMsg Output The pointer to an 80-character array, to be populated by
the exit that can receive a null terminated error
message string. The string pointed to by the failureMsg
pointer will be incorporated into an error message that
is returned back to the client. Used in conjunction with a
return code of ENCRYPTION_APPLICATION_ERROR.

Return Code

None directly, see the preceding return_code structure member.

Default Behavior

The default logic of this user exit is to return ENCRYPTION_NOT_USED.

Building on UNIX/Linux

The Server Encryption User Exit is built as part of the shared library libae_userexits_c.*,
where * is the shared library suffix depending on the UNIX system. As a prerequisite for
building the shared library, you must have correct C/C++ compiler installed on your
system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run mkexits.

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

The following are related user exits:

■ TIRDCRYP

■ WRSECDECRYPT

TIRSECV Security Validation Exit

void TIRSECV(char *rp1,

char *rp2,

unsigned char Enhanced_Security_Flag,

PTIRSECV_cmcb pTIRSECV_cmcb);

UNIX and Linux Server User Exits

Chapter 3: UNIX and Linux User Exits 283

Source Code

tirsecv.c

Purpose

This security exit is called for every cooperative flow, regardless of the security type
used. To facilitate security validation a flag indicating whether the security data is for a
standard or enhanced buffer has been added. This exit is intended to provide the
opportunity to validate enhanced security data while at the same time not impacting
those using standard security.

To this effect, the default code provided handles two possible conditions:

■ For buffers containing standard security the client userid, client password, and
security token fields are expected to be blank. The default behavior is for the exit to
return SECURITY_USED, thus indicating that the request is authorized. The exit must
be modified to return SECURITY_APPLICATION_ERROR if the intent is that all buffers
contain enhanced security data.

■ For buffers containing enhanced security the client userid, client password, and
security token fields can or cannot contain data. The default behavior is for the exit
to return SECURITY_NOT_USED, this indicating that no validation processing was
attempted. The exit must be modified to validate the security data and set the
relevant return code (return SECURITY_USED for an authorized user and
SECURITY_APPLICATION_ERROR for a non authorized user). When returning
SECURITY_APPLICATION_ERROR, this exit can provide an optional failure message,
using the failure_msgbuffer contained within the TIRSECV_cmcb structure that will
be presented to the client.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*rp2 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

Enhanced_Security_Flag Input A single character denoting if the CFB has been
created to support enhanced security. A value of Y
denotes enhanced security,

*pTIRSECV_cmcb Input A pointer to a structure containing the following
values:

UNIX and Linux Server User Exits

284 User Exit Reference Guide

Name I/O Description

client_userid Input A 64-byte character array containing a user ID if the
CFB uses enhanced security. For a CFB containing
standard security this parameter is expected to be
blank.

client_password Input A 64-byte character array containing a password if
the CFB uses enhanced security. For a CFB containing
standard security this parameter is expected to be
blank.

lSecurityTokenLen Input A long value representing the length of the
pSecurityToken, if any.

pSecurityToken Input A pointer to a security token if the CFB uses
enhanced security. For a CFB containing standard
security this parameter is expected to be blank.

trancode Input An 8-byte character array containing the transaction
code

return_code Input/Output A 2-byte character array containing a value denoting
success for failure of this exit. Valid values are:

SECURITY_USED - defined as " "

SECURITY_NOT_USED—defined as "02"

SECURITY_APPLICATION_ERROR—defined as "03"

failure_msg Input/Output The pointer to an 80-character array that can be
populated by this exit with a null terminated error
message string. The string pointed to by this
parameter will be incorporated into an error message
that is returned back to the client. Used in
conjunction with a return code of
SECURITY_APPLICATION_ERROR.

Return Code

None directly, see the preceding return_code structure member.

Default Behavior

The default logic of this user exit is to return SECURITY_NOT_USED, which is considered
an error if this user exit is actually called since the Server Manager requested Client
Security validation.

UNIX and Linux Server User Exits

Chapter 3: UNIX and Linux User Exits 285

Building on UNIX/Linux

The Security Validation User Exit is built as part of the shared library libae_userexits_c.*,
where * is the shared library suffix depending on the UNIX system. As a prerequisite for
building the shared library, you must have correct C/C++ compiler installed on your
system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run mkexits.

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

WRSECTOKEN

TIRXINFO Locale Information Exit

void TIRXINFO (char *osId,

char *codePage,

long *padChar);

Source Code

tirxlat.c

Purpose

This exit provides information about the codepage environment of the executing server
process. An osId, codepage ID, and default padding character are returned. The runtime
uses the osId and codePage returned as parameters passed into the TIRXLAT user exit.

UNIX and Linux Server User Exits

286 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*osId Output A pointer to character buffer to contain an OS ID (9 bytes, 8 characters
plus NULL terminator). This value will be passed to TIRXLAT as the
outOS parameter for inbound transactions and as the inOS parameter
for outbound transactions. The current default value is MBCS. This
should not be confused with an identifier of the underlying operating
system on which the server is executing.

*codePage Output A pointer to character buffer to contain a codepage ID (9 bytes, 8
characters plus NULL terminator). This value will be passed to TIRXLAT
as the outCodePage parameter for inbound transactions and as the
inCodePage parameter for outbound transactions. The default value, as
returned from this exit, is hard coded into the generated server
manager at code generation time. This value will depend upon the
platform used to generate the server manager. If the server manager is
generated on a Windows platform the value will be 1252, if generated
on a UNIX platform using CSE its value will be 819.

*padChar Output A pointer to a long value, not currently used for Windows or UNIX
servers.

Return Code

None

Default Behavior

The string returned for osId is currently hard coded to a value of MBCS. The value for
CodePage is obtained from the server manager. The CodePage number is created during
the server manager code generation process. The padChar value is currently unused.

UNIX and Linux Server User Exits

Chapter 3: UNIX and Linux User Exits 287

Building on UNIX/Linux

The Locale Information User Exit is built as part of the shared library libae_userexits_c.*,
where * is the shared library suffix depending on the UNIX system. As a prerequisite for
building the shared library, you must have correct C/C++ compiler installed on your
system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run mkexits.

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

TIRXLAT

TIRXLAT National Language Translation Exit

void TIRXLAT (char *inBuf;

long *inLen;

char *inCodePage;

char *inOS;

char *outBuf;

long *outLen;

char *outCodePage;

char *outOS;

long *outPadChar;

char *workArea;

long *outCharCnt;

long *outByteCnt);

Source Code

tirxlat.c

UNIX and Linux Server User Exits

288 User Exit Reference Guide

Purpose

TIRXLAT allows the conversion of textual data based on from/to codepage and operating
system information. View data that is passed between the client and server is translated
from the client's code page to the server's code page, and vice versa. TIRXLAT uses the
client's code page value, which is passed from the client to the server, and the host's
code page value to locate a translation table.

This exit is used to translating both the data received from that client and the data to be
sent to the client.

When translating data received from the client, the in* parameters correspond to the
client data, the out* parameters correspond to the data presented to the server.

When translating data to be sent to the client the in* parameters correspond to the
server data to be sent, the out* parameters correspond to the data presented to the
client.

If a suitable translation table is not found, the data will be passed back without
translation. The user can replace a translation table to customize their environment.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*inBuf Input A character pointer to the input buffer to translate

*inLen Input A pointer to a long value which is the length inBuf

*inCodePage Input A character pointer to the codepage ID of inBuf (8 bytes +
1 NULL).

*inOS Input A character pointer to the OS ID of inBuf (8 bytes + 1
NULL).

*outBuf Input/Output A character pointer to the buffer in which to place the
translated text

*outLen Input A pointer to a long value that is the length of the data
pointed to by outBuf.

*outCodePage Input A character pointer to the codepage ID corresponding to
the output buffer, outBuf.

*outOS Input A character pointer to the OS ID corresponding to the
output buffer, outBuf.

UNIX and Linux Server User Exits

Chapter 3: UNIX and Linux User Exits 289

Name I/O Description

*outPadChar Input A pointer to a long value which is the padding character
to use, 0 if no padding to be done in the output buffer,
outBuf.

*workArea Input A character pointer to a 100-byte scratch work area.

*outCharCnt Input/Output A pointer to a long value which is the number of
characters placed into the output buffer, outBuf.

*outByteCnt Input/Output A pointer to a long value which is the number of bytes
placed into the output buffer, outBuf.

Return Code

None

Default Behavior

If a suitable translation table is found, the data will be translated from the inCodePage
to the outCodePage. If a suitable translate table is not found the data is passed back
without translation.

Building on UNIX/Linux

The National Language Translation User Exit is built as part of the shared library
libae_userexits_c.*, where * is the shared library suffix depending on the UNIX system.
As a prerequisite for building the shared library, you must have correct C/C++ compiler
installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run mkexits.

The user exit shared library will be built in the $IEFH/lib directory.

Note: If snplog() output is desired the exit must be compiled with –DDEBUGON or the
"#define snplog(a,b,c)" statement within the exit must be commented out.

Related User Exits

TIRXINFO

UNIX and Linux Asynchronous Daemon User Exits

290 User Exit Reference Guide

UNIX and Linux Asynchronous Daemon User Exits

The following table summarizes the functions available through the user exits for the
Asynchronous Daemon:

Asynchronous Daemon: Language: C

User Exit Name Source Code Description

AEFSECEX aefsecex.c Security Validation executable
invoked by the Asynchronous
Daemon

Details for the preceding user exits follow in a separate section for each.

AEFSECEX Asynchronous Daemon Security Exit

Source Code

aefsecex.c

Purpose

This exit is implemented as a stand-alone utility providing security validation support for
the Transaction Enabler environment. The AEF Async Daemon passes the current flow’s
transaction code, User Id and Password to the aefsecex exit. The default
implementation of this security process checks the user ID against the password file.
This processing applies only to buffers not containing enhanced security data. For
enhanced security CFBs it is assumed that the DPSs provide their own security using the
server’s Client Security Validation exit (TIRSECV) invoked by the server runtime. This
security exit is enabled by providing the “-l” (lowercase L) option when starting the
Asynchronous Daemon, AEFAD. AEFAD will execute the exit if enabled/required.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

transaction name Input The transaction code for the flow being processed.

user id Input User Id from the header area of the CFB.

password Input Password from the header area of the CFB.

UNIX and Linux Asynchronous Daemon User Exits

Chapter 3: UNIX and Linux User Exits 291

Return Code

The following table gives a brief description of each of the return codes:

Return Code Description

0 Security check succeeded

1 User ID not allowed

2 User ID was not found

3 Password is invalid

4 User ID is not authorized

5 Security system is unavailable

6 User ID has been suspended

7 User ID needs to reregister

8 Security timeout

9 Security internal error

Default Behavior

No security checking is performed; the exit is never executed.

Building on UNIX/Linux

The Asynchronous Daemon Security User Exit is built as a standalone executable,
aefsecex. A prerequisite for building the executable, you must have correct C/C++
compiler installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run mksecex.

To utilize the aefsecex

The security exit is enabled by providing the ‘-l’ (lowercase L) flag when starting the
Asynchronous Daemon.

The aefsecex executable will be built in the $IEFH/bin directory.

UNIX/Linux Server Middleware User Exits

292 User Exit Reference Guide

Related User Exits

None

UNIX/Linux Server Middleware User Exits

WebSphere MQ Server Transport - UNIX and Linux User Exits

All supplied WebSphere MQ Server Transport user exits are written using the C
programming language. The following table briefly describes the WebSphere MQ Exits:

WebSphere MQ Transport: Language: C

User Exit Name Source Code Description

CI_MQS_DPS_EXIT cimqsvex.c MQ Directory Services Exit

CI_MQS_DPC_SETREPORTOPTIONS cimqsvex.c Used to override report options set by
the runtime.

CI_MQS_DYNAMICQNAME_EXIT cimqsvex.c Provide Queue Name that will be used
when opening a dynamic queue.

Details for the preceding user exits follow in a separate section for each.

CI_MQS_DPC_SETREPORTOPTIONS Override Put Queue Report Options Exit

void CI_MQS_DPC_setReportOptions(MQLONG *reportOptions);

Source Code

cimqsvex.c

UNIX/Linux Server Middleware User Exits

Chapter 3: UNIX and Linux User Exits 293

Purpose

This exit can be used to override the set of report options defined for the WebSphere
MQ Put Message Descriptor prior to the issuance of an MQPUT() operations.

The report options set by the runtime are described in the following table:

Report Option Description

MQRO_EXCEPTION This type of report can be
generated when an exception
occurs. For instance if a message is
sent to another queue manager
and the message cannot be
delivered to the specified
destination queue.

MQRO_EXPIRATION An Expiration report. This type of
report is generated by the queue
manager if the message is
discarded prior to delivery to an
application because its expiry time
has passed.

MQRO_PASS_MSG_ID If a report is generated, the MsgId
of the current message being
processed is to be copied to the
MsgId of the report message.

MQRO_COPY_MSG_ID_TO_CORREL_ID Indicates the correlation ID of the
report generated should equal the
message ID of the request
originally issued.

MQRO_DEAD_LETTER_Q This option causes the original
message to be placed on the
dead-letter queue when an
exception occurs.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*reportOptions Input/Output A pointer to a long value representing the currently
defined report options to be used in the Put Message
Descriptor.

UNIX/Linux Server Middleware User Exits

294 User Exit Reference Guide

Return Code

None

Default Behavior

The runtime specified report options are left unchanged.

Building on UNIX/Linux

The Websphere MQ DPS Override Put Queue Report Options User Exit is built as part of
the shared library libmqssx.xx.*, where * is the shared library suffix depending on the
UNIX system. As a prerequisite for building the shared library, you must have correct
C/C++ compiler installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run make /f smqsexit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

Linux: lin

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

None

CI_MQS_DPS_EXIT MQSeries DPS Directory Services Exit

void CI_MQS_DPS_Exit (char *qMgr,

char *srvQname,

long *numRequests,

long *getMsgTO,

char *serverName);

Source Code

cimqsvex.c

UNIX/Linux Server Middleware User Exits

Chapter 3: UNIX and Linux User Exits 295

Purpose

The provided sample WebSphere MQ DPS Directory Services exit is an implementation
of Transaction routing. Transaction routing is a conceptual process that lets cooperative
flow data be routed from a Distributed Process Server (DPS) to a programmatically
determined Distributed Process Server (DPS). This exit can use the input serverName,
which is the server load module name calling this exit, to programmatically modify the
output parameters.

The current cooperative request's local queue manager and put queue names can be
overridden using this exit. Additionally a Get queue timeout value as well as a
parameter specifying the servers multiple transaction behavior can be customized.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*qMgr Input/Output A character string containing the name of the local queue
manager. By default, the application obtains this information
from the model during generation. This exit can override this
name.

*srvQName Input/Output A character string containing the name of the put queue
connecting to the local queue manager. By default, the
application obtains this information from the model during
generation.

This exit can override this name.

*numRequests Input/Output Specifies the number of transactions the server calling this
exit can execute prior to the server shutting down. A
mechanism to limit the number of transactions a server can
execute.

Default: -1, no limit to the number of transactions that can be
serviced.

*getMsgTO Input/Output A long value representing the reply timeout applied to the get
queue associated with the current flow request.

Default: The default value is MQWI_UNLIMITED
(-1), wait indefinitely. If set, the number represents
milliseconds.

This exit can override this name.

*serverName Input A character string containing the name of the server load
module executing this exit.

UNIX/Linux Server Middleware User Exits

296 User Exit Reference Guide

Return Code

None

Default Behavior

The supplied sample does not implement dynamic transaction routing. For more
information about default values for the various parameters, see the preceding
Arguments section.

Building on UNIX/Linux

The Websphere MQ DPS Directory Services User Exit is built as part of the shared library
libmqssx.xx.*, where * is the shared library suffix depending on the UNIX system. As a
prerequisite for building the shared library, you must have correct C/C++ compiler
installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run make /f smqsexit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

Linux: lin

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

None

CI_MQS_DYNAMICQNAME_EXIT Dynamic Queue Name Override Exit

void CI_MQS_DynamicQName_Exit (char *dynamicQName);

Source Code

cimqsvex.c

UNIX/Linux Server Middleware User Exits

Chapter 3: UNIX and Linux User Exits 297

Purpose

The Dynamic Queue Name exit allows override of the queue name that will be used
when opening a dynamic queue. The resulting Dynamic Queue will obtain its attributes
from the specified WebSphere MQ Model Queue name. The passed in dynamicQName
area can be modified by placing a null terminated string of the value to be used as the
dynamic queue name, including the use of valid WebSphere MQ pattern characters
used to name dynamic queues.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*dynamicQName Input/Output A pointer to a character buffer, of length
MQ_Q_NAME_LENGTH+1 (48 +1), that contains the
default name of the dynamic queue as built by the
WebSphere MQ runtime (that is,
username.processid.threadid).

Return Code

None

Default Behavior

The dynamic queue name is not modified.

Building on UNIX/Linux

The Websphere MQ DPS Dynamic Queue Name Override User Exit is built as part of the
shared library libmqssx.xx.*, where * is the shared library suffix depending on the UNIX
system. As a prerequisite for building the shared library, you must have correct C/C++
compiler installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

Tuxedo - UNIX and Linux User Exits

298 User Exit Reference Guide

3. Run make /f smqsexit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

Linux: lin

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

None

Tuxedo - UNIX and Linux User Exits

All supplied Tuxedo Transport Server user exits are written using the C programming
language. The following table briefly describes the Tuxedo Exits:

Tuxedo Transport: Language: C

User Exit Name Source Code Description

CI_S_POST_END Cistuxx.c Gives You The Opportunity To Inspect Or Modify The View32
Buffer Representation Of The Export View Of The Target
Procedure Step After The Transaction Ends, And Before It Is Sent
Back To The Invoking Client.

CI_S_POST_SRVDONE Cistuxx.c Gives You The Opportunity To Perform Cleanup Actions After
Server Shutdown.

CI_S_POST_SVRINIT Cistuxx.c Gives You The Opportunity To Perform Actions During Server
Initialization (boot).

CI_S_POST-BEGIN Cixtuxx.c Gives You The Opportunity To Inspect Or Modify The
Cooperative Flow Request Buffer After The Call To The Tuxedo
Tpbegin Call.

CI_S_PRE_END Cistuxx.c Gives You The Opportunity To Inspect Or Modify The View32
Buffer Representation Of The Export View Of The Target
Procedure Step Before The Transaction Ends, And Before It Is
Sent Back To The Invoking Client.

CI_S_USER_DATA_IN Cistuxx.c Gives You The Opportunity To Inspect Or Modify The
Cooperative Flow Request Buffer Prior To Passing It Onto The
Target Tuxedo Service.

CI_S_USER_DATA_OUT cistuxx.c Gives you the opportunity to inspect or modify the cooperative
flow return buffer after leaving the target Tuxedo service.

Tuxedo - UNIX and Linux User Exits

Chapter 3: UNIX and Linux User Exits 299

Details for the preceding user exits follow in a separate section for each.

CI_S_POST_END Tuxedo After Transaction Termination Exit

void ci_s_post_end(void * returnBuff, void * globdata)

Source Code

cistuxx.c

Purpose

The ci_s_post_end user exit is invoked after a global transaction ends. The exit provides
access to the View32 buffer representation of the export view of the target procedure
step before it is sent back to the invoking client. The exit also provides access to the
server runtime global data structure.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*returnBuff Input /Output A pointer to the View32 buffer that will be returned to
the invoking client.

*globdata Input/Output A pointer to the server runtime global data structure.

Return Code

None

Default Behavior

The exit does not modify any data.

Tuxedo - UNIX and Linux User Exits

300 User Exit Reference Guide

Building on UNIX/Linux

The Tuxedo After Transaction Termination User Exit is built as part of the shared library
libtxsx.xx.*, where * is the shared library suffix depending on the UNIX system. As a
prerequisite for building the shared library, you must have correct C/C++ compiler
installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run make /f stuxexit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

Linux: lin

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

CI_S_PRE_END

CI_S_POST_SVRDONE Tuxedo After Server Shutdown Exit

void ci_s_post_srvdone()

Source Code

cistuxx.c

Purpose

The ci_s_post_svrdone is invoked when the server application shuts down. Any clean up
procedures can be performed in this function.

Arguments

None

Return Code

None

Tuxedo - UNIX and Linux User Exits

Chapter 3: UNIX and Linux User Exits 301

Default Behavior

The exit does not modify any data.

Building on UNIX/Linux

The Tuxedo After Server Shutdown User Exit is built as part of the shared library
libtxsx.xx.*, where * is the shared library suffix depending on the UNIX system. As a
prerequisite for building the shared library, you must have correct C/C++ compiler
installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run make /f stuxexit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

Linux: lin

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

CI_S_POST_SRVINIT

CI_S_POST_SVRINIT Tuxedo After Server Initialization Exit

void ci_s_post_srvinit(int argc, char ** argv)

Source Code

cistuxx.c

Purpose

The ci_s_post_svrinit user exit is invoked by the server runtime during server
initialization (boot). The server application command line argument and argument count
are passed as parameters to the function. The function can be used to do whatever
initialization process is required. If the return is -1, the initialization has failed, the server
application discontinues its activity and quits immediately. If the function returns 0, the
initialization is successful.

Tuxedo - UNIX and Linux User Exits

302 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

argc Input Argument count

**argv Input A pointer to a set of command line arguments

Return Code

The following table gives a brief description of each of the return codes.

Return Code Description

zero (0) Success

non-zero failure

Default Behavior

The exit does not modify any data.

Building on UNIX/Linux

The Tuxedo After Server Initialization User Exit is built as part of the shared library
libtxsx.xx.*, where * is the shared library suffix depending on the UNIX system. As a
prerequisite for building the shared library, you must have correct C/C++ compiler
installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run make /f stuxexit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

Linux: lin

The user exit shared library will be built in the $IEFH/lib directory.

Tuxedo - UNIX and Linux User Exits

Chapter 3: UNIX and Linux User Exits 303

Related User Exits

CI_S_POST_SVRDONE

CI_S_POST_BEGIN Tuxedo After Begin Transaction Exit

void ci_s_post_begin(TPSVCINFO * svc, void * globdata)

Source Code

cistuxx.c

Purpose

The ci_s_post_begin user exit is invoked after a global transaction is initiated (after a call
to the Tuxedo tpbegin API). This exit provides access to the TPSVCINFO structure. (For
more information about TPSVCINFO, see the Tuxedo User Guide.) TPSVCINFO contains
the View32 request buffer from the client as well as the designated service name for the
target procedure step. The exit also provides access to the global data structure of the
server runtime.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*svc Input /Output A pointer to TPSVCINFO structure.

*globdata Input/Output A pointer to the server runtime global data structure.

Return Code

None

Default Behavior

The exit does not modify any data.

Tuxedo - UNIX and Linux User Exits

304 User Exit Reference Guide

Building on UNIX/Linux

The Tuxedo After Begin Transaction User Exit is built as part of the shared library
libtxsx.xx.*, where * is the shared library suffix depending on the UNIX system. As a
prerequisite for building the shared library, you must have correct C/C++ compiler
installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run make /f stuxexit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

Linux: lin

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

CI_S_PRE_END

CI_S_POST_END

CI_S_PRE_END Tuxedo Prior to Transaction Termination Exit

void ci_s_pre_end(void * returnBuff, void * globdata)

Source Code

cistuxx.c

Purpose

The ci_s_pre_end user exit is invoked just prior to terminating a global transaction. This
exit provides access to the View32 buffer representation of the export view of the target
procedure step before it is sent back to the invoking client. This exit also provides access
to the server runtime global data structure. The transaction context still exists at the
point that this exit is invoked.

Tuxedo - UNIX and Linux User Exits

Chapter 3: UNIX and Linux User Exits 305

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*returnBuff Input /Output A pointer to the View32 response buffer that is returned
to the invoking client.

*globdata Input/Output A pointer to the server runtime global data structure.

Return Code

None

Default Behavior

The exit does not modify any data.

Building on UNIX/Linux

The Tuxedo Prior to Transaction Termination User Exit is built as part of the shared
library libtxsx.xx.*, where * is the shared library suffix depending on the UNIX system. As
a prerequisite for building the shared library, you must have correct C/C++ compiler
installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run make /f stuxexit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

Linux: lin

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

CI_S_POST_END

Tuxedo - UNIX and Linux User Exits

306 User Exit Reference Guide

CI_S_USER_DATA_IN Tuxedo Inbound Flow Data Access Exit

void ci_s_user_data_in(TPSVCINFO * svc, void * globdata)

Source Code

cistuxx.c

Purpose

The ci_s_user_data_in user exit is invoked by the server runtime upon service
invocation and before the execution; control is passed to the dialog manager from the
server runtime. The exit provides access to the TPSVCINFO structure. (For more
information about TPSVCINFO, see the Tuxedo User Guide.) TPSVCINFO contains the
View32 request buffer from the client and the designated service name for the target
procedure step. The exit also provides access to the global data structure of the server
runtime.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*svc Input /Output A pointer to TPSVCINFO structure.

*globdata Input/Output A pointer to the server runtime global data structure.

Return Code

None

Default Behavior

The exit does not modify any data.

Building on UNIX/Linux

The Tuxedo Inbound Flow Data Access User Exit is built as part of the shared library
libtxsx.xx.*, where * is the shared library suffix depending on the UNIX system. As a
prerequisite for building the shared library, you must have correct C/C++ compiler
installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

Tuxedo - UNIX and Linux User Exits

Chapter 3: UNIX and Linux User Exits 307

3. Run make /f stuxexit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

Linux: lin

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

CI_S_USER_DATA_OUT

CI_WS_DPC_URL_Exit Web Services DPC URL User Exit

void CI_WS_DPC_URL_Exit(char *url,

size_t urlMaxLen,

char *modelName,

char *modelShortName,

char *trancode,

char *trancodeAlt,

char *procName,

char *procNameAlt,

char *nextLoc

Purpose

This exit will be called from the C Web Services CoopFlow prior to performing a Web
Service connection. It gives the user an opportunity to modify the Web Service endpoint
destination URL.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*url

Input/Output Web Service end point URL

urlMaxLen Input Maximum length of Web Service end
point URL

*modelName Input Name of the model containing the target
Procedure Step

Tuxedo - UNIX and Linux User Exits

308 User Exit Reference Guide

Name I/O Description

*modelShortName Input Short name of the model containing the
target Procedure Step

*tranCode Input Transaction code of the target Procedure
Step being processed

*tranCodeAlt Input Alternative name for the transaction
code of the target Procedure Step being
processed

*procName Input Name of the target Procedure Step to be
called

*procNameAlt Input Alternative name of the target
Procedure Step to be called

*nextLoc Input Next Location system attribute as set
using CA Gen action diagram statements

Return Code

None

Default Behavior

If the URL value is not modified in this user exit, its value prior to calling this exit is used.

Building on UNIX/Linux

The Web Services DPC user exit is built as part of the shared library libwscx.xx.*, where
* is the shared library suffix depending on the UNIX system. As a prerequisite for
building the shared library, you must have the correct C/C++ compiler installed on your
system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run make /f cwsexit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

The user exit shared library will be built in the $IEFH/lib directory.

Tuxedo - UNIX and Linux User Exits

Chapter 3: UNIX and Linux User Exits 309

Related User Exits

None

CI_S_USER_DATA_OUT Tuxedo Outbound Flow Data Access Exit

void ci_s_user_data_out(void * returnBuff, void * globdata);

Source Code

cistuxx.c

Purpose

The ci_s_user_data_out user exit is invoked before execution of the called Pstep
completes. The exit provides access to the View32 buffer representation of the export
view of the target procedure step before it is sent back to the invoking client. The exit
also provides access to the server runtime global data structure.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*returnBuff Input/ Output A pointer to the View32 buffer that will be
returned to the invoking client.

*globdata Input/Output A pointer to the server runtime global data
structure.

Return Code

None

Default Behavior

The exit does not modify any data.

Web Services - UNIX and Linux User Exits

310 User Exit Reference Guide

Building on UNIX/Linux

The Tuxedo Outbound Flow Data Access User Exit is built as part of the shared library
libtxsx.xx.*, where * is the shared library suffix depending on the UNIX system. As a
prerequisite for building the shared library, you must have correct C/C++ compiler
installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run make /f stuxexit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

Linux: lin

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

CI_S_USER_DATA_IN

Web Services - UNIX and Linux User Exits

All supplied Web Services Middleware user exits are written using the C programming
language. The following table briefly describes the Web Services Exits:

Web Services Middleware: Language: C

User Exit Name Source Code Description

CI_WS_DPC_Exit ciwsclx.c Programmatic runtime override of parameters
(base URL and context type) for Web Service
destination.

CI_WS_DPC_URL_
Exit

ciwsclx.c Programmatic runtime override of URL for Web
Service destination

Web Services - UNIX and Linux User Exits

Chapter 3: UNIX and Linux User Exits 311

CI_WS_DPC_URL_Exit Web Services DPC User Exit

void CI_WS_DPC_Exit(char *baseURL,

size_t baseURLMaxLen,

char *contextType,

size_t contextTypeMaxLen,

char *modelName,

char *modelShortName,

char *trancode,

char *trancodeAlt,

char *procName,

char *procNameAlt,

char *nextLoc)

Purpose

This exit will be called from the C Web Services CoopFlow prior to performing a Web
Service connection. It gives the user an opportunity to modify the Web Service endpoint
destination by overriding the base URL and the context type.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*baseURL Input/Output Scheme, Domain and Port of a Web
Service end point URL

baseURLMaxLen Input Maximum length of baseURL

*contextType Input/Output Part of the path of a CA Gen Web Service
end point URL

contextTypeMaxLe
n

Input Maximum length of contextType

*modelName Input Name of the model containing the target
Procedure Step

*modelShortName Input Short name of the model containing the
target Procedure Step

*tranCode Input Transaction code of the target Procedure
Step being processed

*tranCodeAlt Input Alternative name for the transaction code
of the target Procedure Step being
processed

Web Services - UNIX and Linux User Exits

312 User Exit Reference Guide

Name I/O Description

*procName Input Name of the target Procedure Step to be
called

*procNameAlt Input Alternative name of the target Procedure
Step to be called

*nextLoc Input Next Location system attribute as set
using CA Gen action diagram

Return Code

None

Default Behavior

If the base URL and the context Type variables expected by the sample implementation
of this exit are not defined, the default values that are defined during the packaging of
the cooperative model or overrides from commcfg.ini are used.

Building on UNIX/Linux

The Web Services DPC user exit is built as part of the shared library libwscx.xx.*, where
* is the shared library suffix depending on the UNIX system. As a prerequisite for
building the shared library, you must have the correct C/C++ compiler installed on your
system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run make /f cwsexit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

None

UNIX and Linux C Proxy User Exits

Chapter 3: UNIX and Linux User Exits 313

UNIX and Linux C Proxy User Exits

The following table summarizes the functions available through the user exits for C
Proxy applications:

C Proxy: Language: C

User Exit Name Source Code Description

WRSECDECRYPT proxyxit.c Client/Server Decryption Exit

WRSECENCRYPT proxyxit.c Client/Server Encryption Exit

WRSECTOKEN proxyxit.c Client Security Token Exit

Details for the preceding user exits follow in a separate section for each.

WRSECTOKEN Client Security Token Exit

int WRSECTOKEN (char *clientUserid,

char *clientPassword,

char *trancode,

char *nextLocation,

BOOL *bClntMgrSecurity,

long *tokenLen,

char *token,

char *failureMsg)

Source Code

proxyxit.c

Purpose

The Client Side Security Exit is invoked by the proxy runtime to let a user influence how
client security data is processed by the proxy runtime code involved in servicing a
cooperative flow. Specifically, this exit influences if the Common Format Buffer (CFB)
request will contain a security offset and if that data populated in the security offset
should be used by other runtime components such as the Client Manager or
Communications Bridge when servicing the cooperative flow request.

The trancode and nextLocation variables are provided as input. These input values can
be used by the user exit code to determine what return code value should be specified.

UNIX and Linux C Proxy User Exits

314 User Exit Reference Guide

In addition to the return code value, this exit has the option of returning some fields as
output data to the calling runtime code.

Note: For more information about the input and output fields of this exit routine, see
Arguments. For a description on what the invoking proxy runtime will do because of
receiving one of the expected return values, see Return Codes.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*clientUserid Input/Output A pointer to a character array that contains the value of the
proxy ClientUserid attribute. This user exit can set this
value by modifying the data area pointed to by this
argument. The value assigned by this user exit cannot
exceed 64 bytes.

*clientPassword Input/Output A pointer to a character array that contains the value of the
proxy ClientPassword attribute. This user exit can set this
value by modifying the data area pointed to by this
argument. The value assigned by this user exit cannot
exceed 64 bytes.

*trancode Input A pointer to a character array that contains the trancode
associated with the flow being processed by the proxy
runtime synchronous or asynchronous cooperative flow
operation.

*nextLocation Input A pointer to a character array that contains the Next
Location variable associated with the flow being processed
by the proxy runtime synchronous or asynchronous
cooperative flow operation.

*bClntMgrSecurity Output A pointer to an integer Boolean field that can be set to
either TRUE or FALSE. The value of this field only has
meaning if this user exit returns SecurityUsedEnhanced.
TRUE indicates that the security data (Client User ID and
Client Password) that is added to the security offset of the
associated CFB should be used as the source of the UserID
and Password by the Client Manager or Communications
Bridge.

UNIX and Linux C Proxy User Exits

Chapter 3: UNIX and Linux User Exits 315

Name I/O Description

*tokenLen Input/Output On input, tokenLen is a pointer to a long integer field that
contains the maximum length of the allocated token
character buffer. The maximum token length is dependent
on the available space remaining during the construction of
the CFB.

On return from the exit, the long integer pointed to by
tokenLen should contain the actual length of data returned
in the character array, which is pointed to by the token
argument.

Note: The use of a token is optional, and therefore, setting
the long integer pointed to by tokenLen to zero indicates
that a token is not specified by the user exit. The length
value returned by this field only has meaning if this user
exit returns SecurityUsedEnhanced.

*token Input/Output On input, token is a pointer to a character array that will
accept a user specified security token. The use of a user
specified security token is optional. The token data that is
provided by this user exit will be provided to the server
side TIRSECV security user exit. The security token returned
by this field only has meaning if this user exit returns
SecurityUsedEnhanced.

*failureMsg Input/Output The pointer to an 80-character array that can receive a user
provided null terminated error message string. The string
pointed to by the failureMsg pointer will be incorporated
into an error message that is displayed by the proxy
runtime.

Return Code

The following table gives a brief description of each of the return codes.

Return Code Description

SecurityNotUsed Indicates to the runtime that the CLIENT_USER_ID,
CLIENT_PASSWORD, and security token will NOT be
used to populate any part of the cooperative flow
request. The client side security variables will not be
added to the CFB by the proxy runtime.

UNIX and Linux C Proxy User Exits

316 User Exit Reference Guide

Return Code Description

SecurityUsedStandard Indicates to the runtime that at most eight (8) bytes
of the CLIENT_USER_ID and at most eight (8) bytes of
the CLIENT_PASSWORD data will be set into the CFB
header. The associated request buffer will not
contain a CFB Security Offset area, and will therefore,
not contain a security token. Additionally, by not
making use of the CFB Security Offset area, the Client
User ID and Client Password values are not eligible
for being encrypted.

SecurityUsedEnhanced Indicates to the runtime that the CLIENT_USER_ID,
CLIENT_PASSWORD, and the optional Security Token
should be added to the CFB by way of the CFB
Security Offset. Additionally, at most (8) bytes of the
Client User ID value will be set into the CFB header.

SecurityError Indicates to the runtime that an error was
encountered by the user exit and that the processing
of the associated request has failed. The error
indication and message string returned using the
failureMsg argument would be returned to the proxy
runtime. The proxy runtime will popup an error
message display indicating the failed request.

Default Behavior

The WRSECTOKEN user exit, as delivered with CA Gen, will return SecurityNotUsed. In
addition, although not necessary, the user exit will set the long integer pointed to by the
tokenLen pointer to zero, and set the Boolean field pointed to by the bClntMgrSecurity
pointer to False.

Building on UNIX/Linux

The C Proxy Security Token User Exit is built as part of the shared library libprex.xx.*,
where * is the shared library suffix depending on the UNIX system. As a prerequisite for
building the shared library, you must have correct C/C++ compiler installed on your
system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

UNIX and Linux C Proxy User Exits

Chapter 3: UNIX and Linux User Exits 317

3. Run make /f proxyxit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

Linux: lin

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

The following are related user exits:

■ TIRSECV

■ WRSECENCRYPT

■ WRSECDECRYPT

WRSECENCRYPT Client Side Encryption Exit

int WRSECENCRYPT (char *trancode,

char *nextLocation,

char *clientUserid,

long maxViewLen,

long *encryptViewLen,

unsigned char *encryptView,

char *failureMsg)

Source Code

proxyxit.c

Purpose

The Client Side Encryption exit is called by the proxy runtime to provide the opportunity
to encrypt a cooperative flow request from C Proxy applications. The data in the
Common Format Buffer (CFB) that is eligible to be encrypted include the cooperative
flow’s view data and optional security offset area.

The user provides an encryption algorithm that consists of manipulating the data
pointed to by encryptView. The encryptViewLen, on input contains the number of bytes
eligible for being encrypted. The process of encryption cannot result in an encrypted
buffer area that exceeds maxViewLen. If encryption is performed by this exit,
EncryptViewLen must be updated with the length of the encrypted result. Additionally,
this exit must return the EncryptionUsed return code value.

UNIX and Linux C Proxy User Exits

318 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*trancode Input A pointer to a character array that contains the trancode
associated with the synchronous or asynchronous cooperative
flow being processed by the proxy runtime.

*nextLocation Input A pointer to a character array that contains the Next Location
associated with the synchronous or asynchronous cooperative
flow being processed by the proxy runtime.

*clientUserid Input A pointer to a character array that contains the value of the of
the CLIENT_USER_ID variable associated with the flow being
processed by the proxy runtime synchronous or asynchronous
cooperative flow processing. The CLIENT_USESRID variable is
optionally set by Action Language coded within the C Proxy code.

MaxViewLen Input A long field that contains the maximum available buffer space (in
bytes) that the encrypted data can occupy.

*encryptViewLen Input/Output A pointer to a long field. On input, EncryptViewLen is the length
of the current buffer space (in bytes) of the data eligible for
being encrypted. On output, EncryptViewLen should be updated
to contain the length of the encrypted data. The length of the
encrypted result cannot exceed maxViewLen.

*encryptView Input/Output A character pointer to the starting location of the data eligible
for being encrypted. The encrypted data must be copied to this
same memory location.

*failureMsg Input/Output The pointer to an 80-character array that can receive a user
provided null terminated error message string. The string
pointed to by the failureMsg pointer will be incorporated into an
error message that is displayed by the proxy runtime.

Return Code

The following table gives a brief description of each of the return codes.

Return Code Description

EncryptionNotUsed Indicates to the runtime that the user exit did not
perform any encryption to the provided data buffer.

UNIX and Linux C Proxy User Exits

Chapter 3: UNIX and Linux User Exits 319

Return Code Description

EncryptionUsed Indicates to the runtime that the user exit did
perform encryption on the provided data. The
runtime marks the CFB as being encrypted. An
encrypted CFB will trigger the decryption counterpart
user exit to be invoked by the target server manager.
The server side decryption user exit is TIRDCRYP.

EncryptionFailure Indicates to the runtime that an error was
encountered by the user exit and that the processing
of the associated request has failed. The error
indication and message string returned using the
failureMsg argument would be returned to the proxy
runtime. The proxy runtime will pop up an error
message display indicating the failed request.

Default Behavior

The WRSECENCRYPT user exit, as delivered with CA Gen, will return EncryptionNotUsed.

Building on UNIX/Linux

The C Proxy Encryption User Exit is built as part of the shared library libprex.xx.*, where
* is the shared library suffix depending on the UNIX system. As a prerequisite for
building the shared library, you must have correct C/C++ compiler installed on your
system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run make /f proxyxit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

Linux: lin

The user exit shared library will be built in the $IEFH/lib directory.

UNIX and Linux C Proxy User Exits

320 User Exit Reference Guide

Related User Exits

The following are related user exits:

■ TIRNCRYP

■ WRSECDECRYPT

WRSECDECRYPT Client Decryption Exit

int WRSECDECRYPT (long maxViewLen,

long *encryptViewLen,

unsigned char *encryptView,

char *failureMsg)

Source Code

proxyxit.c

Purpose

The Client Side Decryption exit is called by the proxy runtime when an encrypted
response buffer is received from a target server.

The user provides a decryption algorithm that manipulates the data pointed to by
encryptView. The encryptViewLen, on input contains the number of bytes available into
which the encrypted buffer area can be decrypted. The process of decryption cannot
result in a decrypted buffer area that exceeds maxViewLen. If decryption is performed
by this exit, EncryptViewLen must be updated with the length of the decrypted result.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

maxViewLen Input A long field that contains the maximum available buffer space
(in bytes) that the decrypted data can occupy.

*encryptViewLen Input/Output On input, EncryptViewLen is the current buffer space (in
bytes) of the encrypted data. On output, EncryptViewLen
should be updated to contain the length of the decrypted
data. The length of the decrypted result cannot exceed
maxViewLen.

*encryptView Input/Output A pointer to the starting location of the data eligible for being
decrypted. The decrypted data must be copied back into this
same memory location.

UNIX and Linux C Proxy User Exits

Chapter 3: UNIX and Linux User Exits 321

Name I/O Description

*failureMsg Input/Output The pointer to an 80-character array that can receive a user
provided null terminated error message string. The string
pointed to by the failureMsg pointer will be incorporated into
an error message that is displayed by the proxy runtime.

Return Code

The following table gives a brief description of each of the return codes.

Return Code Description

DecryptionNotUsed Indicates to the runtime that the user exit did not perform
any decryption of the encrypted data buffer.

DecryptionUsed Indicates to the runtime that the user exit successfully
performed the decryption of the provided encrypted data.

DecryptionFailure Indicates to the runtime that an error was encountered by
the user exit and that the decryption processing has failed
The error indication and message string returned using the
failureMsg argument will be returned to the proxy Runtime.
The proxy runtime will pop up an error message display
indicating the failed request.

Default Behavior

The WRSECDECRYPT user exit, as delivered with CA Gen, will return DecryptionNotUsed.

Building on UNIX/Linux

The C Proxy Decryption User Exit is built as part of the shared library libprex.xx.*, where
* is the shared library suffix depending on the UNIX system. As a prerequisite for
building the shared library, you must have correct C/C++ compiler installed on your
system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

UNIX and Linux C Proxy User Exits

322 User Exit Reference Guide

3. Run make /f proxyxit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

Linux: lin

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

The following are related user exits:

■ TIRDCRYP

■ WRSECENCRYPT

Chapter 4: z/OS User Exits 323

Chapter 4: z/OS User Exits

Changes to User Exits

In CA Gen Release 8.5, each user exit is its own stand-alone DLL. To eliminate the need
to regenerate or re-link applications built with CA Gen Release 8.5 and to enable those
applications to use the DLL user exits, the code in the previous release user exits invokes
the new DLLs that contain the user exit code.

Note: Although the need to regenerate or relink applications built with CA Gen Release
8.5 has been eliminated, the customized user exits for those applications will need to be
included in the equivalent user exit in CA Gen Release 8.5 and built as a user exit DLL
using member MKUEXITS in the CEHBSAMP dataset.

Note: IMS server applications that use trace facilities must be re-linked to use the new
TIRIDTRZ user exit DLL, called TIRIDTRM in previous releases.

The following table lists the old name, the new name, and the DLL name for each user
exit.

 Old User Exit Name New User Exit Name DLL Name

Source Member Exit - PGM Source Member Exit - PGM

TIRALLOC TIRALLOC TIRALLOX TIRALLOX TIRALLOZ

TIRBRTRY TIRBRTRY TIRBRTRX TIRBRTRX TIRBRTRZ

TIRBURTL TIRBURTL TIRBURTX TIRBURTX TIRBURTZ

TIRCDPTS TIRCDPTS TIRCDPTX TIRCDPTX TIRCDPTZ

TIRCROUT TIRPROUT TIRCROUX TIRPROUX TIRCROUZ

TIRCRTRY TIRCRTRY TIRCRTRX TIRCRTRX TIRCRTRZ

TIRCSGN TIRCSGN TIRCSGNX TIRCSGNX TIRCSGNZ

TIRCSYS TIRSYSID TIRCSYSX TIRSYSIX TIRCSYSZ

TIRCURTL TIRCURTL TIRCURTX TIRCURTX TIRCURTZ

TIRCUSR TIRUSRID TIRCUSRX TIRUSRIX TIRCUSRZ

TIRDATX TIRDATX TIRDATX TIRDATX TIRDATXZ

TIRDCRYP TIRDCRYP TIRDCRYX TIRDCRYX TIRDCRYZ

TIRDEVC TIRDEVC TIRDEVC TIRDEVC TIRDEVCZ

Changes to User Exits

324 User Exit Reference Guide

 Old User Exit Name New User Exit Name DLL Name

Source Member Exit - PGM Source Member Exit - PGM

TIRDEVI TIRDEVI TIRDEVI TIRDEVI TIRDEVIZ

TIRDEVT TIRDEVT TIRDEVT TIRDEVT TIRDEVTZ

TIRDLCT TIRDLCT TIRDLCTX TIRDLCTX TIRDLCTZ

TIRELOG TIRELOG TIRELOGX TIRELOGX TIRELOGZ

TIRHELP TIRHELP TIRHELPX TIRHELPX TIRHELPZ

TIRIDTRM TIRIDTRM TIRIDTRX TIRIDTRX TIRIDTRZ

TIRIEX TIRIEX TIRIEX TIRIEX TIRIEXZ

TIRIROUT TIRPROUT TIRIROUX TIRPROUX TIRIROUZ

TIRIRTRY TIRIRTRY TIRIRTRX TIRIRTRX TIRIRTRZ

TIRISYS TIRSYSID TIRISYSX TIRSYSIX TIRISYSZ

TIRIURTL TIRIURTL TIRIURTX TIRIURTX TIRIURTZ

TIRIUSR TIRUSRID TIRIUSRX TIRUSRIX TIRIUSRZ

TIRMQTDX TIRMQTDX TIRMQTDX TIRMQTDX TIRMQTDZ

TIRMTQB TIRMTQB TIRMTQB2 TIRMTQB TIRMTQBZ

TIRNCRYP TIRNCRYP TIRNCRYX TIRNCRYX TIRNCRYZ

TIRPTOKN TIRPTOKN TIRPTOKX TIRPTOKX TIRPTOKZ

TIRQCNTL TIRQCNTL TIRQCNTX TIRQCNTX TIRQCNTZ

TIRRETCD TIRRETCD TIRRETCX TIRRETCX TIRRETCZ

TIRSECR TIRSECR TIRSECRX TIRSECRX TIRSECRZ

TIRSECV TIRSECV TIRSECVX TIRSECVX TIRSECVZ

TIRSIPEX TIRSIPEX TIRSIPEX TIRSIPEX TIRSIPEZ

TIRSRTRY TIRSRTRY TIRSRTRX TIRSRTRX TIRSRTRZ

TIRSURTL TIRSURTL TIRSURTX TIRSURTX TIRSURTZ

TIRTERMB TIRTERMB TIRTERBX TIRTERBX TIRTERBZ

TIRTERMA TIRTERMA TIRTERMA TIRTERMA TIRTERAZ

TIRTERMB TIRTERMB TIRTERBX TIRTERBX TIRTERBZ

TIRTIAR TIRTIAR TIRCTIAX TIRTIARX TIRCTIAZ

TIRTIAR TIRTIAR TIRITIAX TIRTIARX TIRITIAZ

TIRTSYS TIRSYSID TIRTSYSX TIRSYSIX TIRTSYSZ

z/OS Blockmode User Exits CICS

Chapter 4: z/OS User Exits 325

 Old User Exit Name New User Exit Name DLL Name

Source Member Exit - PGM Source Member Exit - PGM

TIRUPPR TIRUPPR TIRUPPRX TIRUPPRX TIRUPPRZ

TIRXINFO TIRXINFO TIRXINFO TIRXINFO TIRXINFZ

TIRYYX TIRYYX TIRYYX TIRYYX TIRYYXZ

z/OS Blockmode User Exits CICS

These user exits are used by CA Gen Blockmode, that is 3270, generated applications.
Some of these exits are used by applications targeting CICS only, IMS only or TSO only,
while for others the same exit is used by applications in more than one target. This
information is indicated in the exit itself.

TIRCDPTX Dynamic Plan TSQ Processing Exit

z/OS Dialog Managers use the CA Gen Dynamic Plan TSQ Processing Exit.

Source Code

This exit is used by CICS applications only. The source code for this exit is in CA Gen
CEHBSAMP library, in member TIRCDPTX. The sample exit provided is written in COBOL
and uses standard OS Linkage.

The Linkage Parameter list used by TIRCDPTX is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 Q-NAME PIC X(8).

01 ACTION-CODE PIC 9.

01 GLOBDATA size 3645 bytes.

Purpose

This exit is called when the delete of the TSQ used by the Dynamic Plan Exit (TIRC$EXT)
fails because the TSQ does not exist. It is used to return a flag to control how the
runtime handles the missing TSQ condition.

z/OS Blockmode User Exits CICS

326 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input This is DFHEIBLK automatically
included if translated.

RUNTIME-PARM2 input This is DFHCOMMAREA
automatically included if Translated.

Q-NAME input The name of the TSQ which we
expected to find, but is missing.

ACTION-CODE input/output A 1 byte numeric field indicating
how the runtime should handle the
missing TSQ condition:

1 – Abend and rollback.

2 – Send an error message to CICS
CSSL output and terminate
normally, without a rollback.

3 – Send an error message to CICS
CSSL output and terminate without
an abend but with a rollback.

4 – Ignore the condition and
terminate without an abend or
rollback.

GLOBDATA input Global data, used internally.

Return Code

No explicit return code is set by the user exit.

Default Processing

The default processing of this exit is to return an ACTION-CODE of 2 which causes the
runtime to handle the condition encountered by the CICS API command that deletes the
TSQ, send a message to the CICS CSSL output and continue processing without rolling
back any database changes done by the application.

Customizing the Exit

Copy the TIRCDPTX exit to one of your libraries and modify ACTION-CODE to return a
value other than 2.

z/OS Blockmode User Exits CICS

Chapter 4: z/OS User Exits 327

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None

TIRCRTRX Default Retry Limit Exit

z/OS Dialog Managers use the CA Gen Default Retry Limit Exit.

Source Code

This exit is used by CICS applications only. The source code for this exit is in CA Gen
CEHBSAMP library, in member TIRCRTRX. The sample exit provided is written in COBOL
and uses standard OS Linkage.

The Linkage Parameter list used by TIRCRTRX is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 RETRY-TIMES PIC S9(4) COMP.

01 GLOBDATA size 3645 bytes.

Purpose

This exit is called at the beginning of a CA Gen CICS blockmode application to enable the
defined default value for the TRANSACTION RETRY LIMIT system attribute to be
modified. The TRANSACTION RETRY LIMIT is initialized to this value at the beginning of
each new transaction. This value may subsequently be modified by a SET TRANSACTION
RETRY LIMIT statement in an action diagram.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input This is DFHEIBLK automatically included if
translated.

RUNTIME-PARM2 input This is DFHCOMMAREA automatically
included if Translated.

z/OS Blockmode User Exits CICS

328 User Exit Reference Guide

Name I/O Description

RETRY-TIMES input/
output

The maximum number of times the
transaction execution is retried.

GLOBDATA input Global data, used internally.

Return Code

No explicit return code is set by the user exit.

Default Processing

If the Default Retry Limit Exit is not modified the TRANSACTION RETRY LIMIT is initialized
to 10. If the Default Retry Limit Exit is used, it must not return a value greater than that
specified in the Ultimate Retry Limit Exit.

Customizing the Exit

The TRANSACTION RETRY LIMIT is initialized to this value at the beginning of each new
transaction. This value may subsequently be modified by a SET TRANSACTION RETRY
LIMIT statement in an action diagram.

The TRANSACTION RETRY LIMIT is used to specify the maximum number of times a
transaction is retried when one of the following events occurs:

■ A RETRY TRANSACTION action diagram statement executes.

■ A deadlock or timeout occurs trying to access a database, and no WHEN DATABASE
DEADLOCK OR TIMEOUT statement was provided for that entity action statement.

In either of these cases, any uncommitted database updates are rolled back, and an
attempt is then be made to execute the application again. Once the number of retries,
as indicated by the TRANSACTION RETRY COUNT system attribute, reaches either
TRANSACTION RETRY LIMIT or the value specified by the Ultimate Retry Limit Exit, no
more retries can occur, and the application will fails with a runtime error if the last retry
attempt was unsuccessful.

Modify the copied exit as needed.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exit

TIRCURTX

z/OS Blockmode User Exits CICS

Chapter 4: z/OS User Exits 329

TIRTIARX DB2 Message Exit

z/OS Dialog Managers use the CA Gen DB2 Message Exit.

Source Code

The source code for the version of the exit used by CICS application is in CA Gen
CEHBSAMP library, in member TIRCTIAX. The sample exit provided is written in COBOL
and uses standard OS Linkage.

The Linkage Parameter list used by TIRTIARX is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 TIRFAIL-SQLCA PIC X.

01 TIRTIAR-ERRORS PIC X.

01 TIRTIAR-TEXT-LEN PIC X.

01 GLOBDATA size 3645 bytes.

Purpose

The DB2 Message Exit is used by all applications targeting DB2 database on z/OS. The
TIRFAIL subroutine of the Dialog Server calls the DB2 Message exit, TIRTIARX, whenever
an unrecoverable DB2 failure occurs. TIRTIARX then calls the subroutine DSNTIAR to
convert the SQL code into text. The messages returned by DSNTIAR are then merged
with the runtime error messages.

TIRTIARX exit must be a DLL in order to be invoked by Gen applications, even by those
using Compatibility option. DSNTIAR and DSNTIAC are provided by IBM as non-DLL
modules. Therefore they need to be invoked by via TIRLGLOD.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input This is DFHEIBLK automatically
included if translated.

RUNTIME-PARM2 input This is DFHCOMMAREA automatically
included if translated.

TIRFAIL-SQLCA input SQLCA

TIRTIAR-ERRORS input/output Error message lines.

TIRTIAR-TEXT-LEN input Length of error message.

GLOBDATA input Global data, used internally.

z/OS Blockmode User Exits CICS

330 User Exit Reference Guide

Return Code

No explicit return code is set by the user exit.

Default Behavior

As provided by CA Gen, the default exit dynamically calls DSNTIAR and is compatible
with prior releases. However the sample code also contains examples of how to call
DSNTIAR or DSNTIAC statically.

The call to TIRTIARX is made when TIRFAIL is building the table of messages and occurs
prior to calling the default termination exit. For more information, see the Online
Termination Exit and Batch Termination Exit.

Customizing the DB2 Message Exit

Copy the default exit to one of your own libraries. The member name is TIRCTIAX. The
default exit includes example code for the four possible combinations of calls. There are
dynamic and static calls of both DSNTIAR and of DSNTIAC. Simply comment out the
default call and remove the comments from the one you want to use.

To statically call DSNTIAR or DSNTIAC, link the routine into the TIRCTIAZ DLL not the Gen
application.

To dynamically call DSNTIAR or DSNTIAC build this routine as a non-DLL stand-alone
executable and provide a CICS program definition (PPT) for it. This means that you need
PPT definitions if you use the default TIRTIARX module. If TIRTIARX is customized to call
DSNTIAC instead of DSNTIAR see IBM's CICS and/or DB2 documentation about using
DSNTIAC.

When you have completed your modifications, install your exit.

Note: DSNTIAC is shipped as source code and must be assembled. If you intend to use it,
see your DB2 or CICS systems programmer to ensure that is has been assembled and
that a load module is available. If not, either the install of the application module will fail
with an unresolved module at the time of the link if your call is static, or you will abend
at runtime if your call is dynamic.

Building on z/OS

For more information about installing this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None.

z/OS Blockmode User Exits CICS

Chapter 4: z/OS User Exits 331

TIRCURTX Ultimate Retry Limit Exit

z/OS Dialog Managers for CICS blockmode applications use the CA Gen Ultimate Retry
Limit Exit.

Source Code

The source code for this exit is in CA Gen CEHBSAMP library, in member TIRCURTX. The
sample exit provided is written in COBOL and uses standard OS Linkage.

The Linkage Parameter list used by TIRCURTX is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 ULTIMATE-RETRY-LIMIT PIC S9(9) COMP.

01 GLOBDATA size 3645 bytes.

Purpose

The Ultimate Retry Limit Exit is used by all applications targeting DB2 database on z/OS.
The Ultimate Retry Limit Exit allows the user to specify a maximum value for the
TRANSACTION RETRY LIMIT system attribute. This value may never be exceeded, either
by a SET TRANSACTION RETRY LIMIT statement in an action diagram, or by the Default
Retry Limit Exit.

For an explanation of when and how the TRANSACTION RETRY LIMIT system attribute is
used see Default Retry Limit Exit.

This exit provides a safeguard in case the system attribute TRANSACTION RETRY LIMIT is
set to an excessive value by an action diagram. Once the number of retries, as indicated
by the TRANSACTION RETRY COUNT system attribute, reaches either TRANSACTION
RETRY LIMIT or the value specified by the Ultimate Retry Limit Exit, no more retries can
occur, and the application will fail with a runtime error if the last retry attempt was
unsuccessful.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input This is DFHEIBLK automatically
included if translated.

RUNTIME-PARM2 input This is DFHCOMMAREA
automatically included if
translated.

z/OS Blockmode User Exits CICS

332 User Exit Reference Guide

Name I/O Description

ULTIMATE-RETRY-LIMIT input/output The absolute limit which is
defaulted to 99.

GLOBDATA input Global data, used internally.

Return Code

No explicit return code is set by the user exit.

Default Processing

If the Ultimate Retry Limit Exit is not modified, the maximum value of TRANSACTION
RETRY LIMIT will be 99. The Ultimate Retry Limit Exit may be modified to return a value
of zero to suppress all retry attempts.

Customizing the Exit

Copy the TIRCURTX exit to one of your libraries and modify the Ultimate-Retry-Limit to
the appropriate value.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None.

TIRSYSIX System ID Exit

z/OS Dialog Managers use the CA Gen System Identification Exit.

Source Code

The source code for this exit is in CA Gen CEHBSAMP library in member TIRCSYSX. The
sample exit provided is written in COBOL and uses standard OS Linkage.

z/OS Blockmode User Exits CICS

Chapter 4: z/OS User Exits 333

The Linkage Parameter list used by TIRSYSIX is as follows:

01 LOCAL-SYSTEM-ID PIC X(8).

01 GLOBDATA size 3645 bytes

This exit contains CICS API calls, which require it to be processed by the Translator. The
Translator automatically includes data structures for DFHEIBLK and DFHCOMMAREA in
the place of RUNTIME-PARM1 and RUNTIME-PARM2 thus RUNTIME-PARMx are not
specified.

Purpose

This exit is called by all CICS applications.The purpose of TIRSYSIX is to enable logic that
lets the same application be implemented on multiple systems and perform processing
specific to each system targeted.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

DFHEIBLK input Automatically included by the Translator.

DFHCOMMAREA input Automatically included by the Translator.

LOCAL-SYSTEM-ID output The identifier of the system where the
application is executing.

GLOBDATA input Global data, used internally.

Return Code

No explicit return code is set by the user exit.

Default Processing

The default processing of the exit is to issue the CICS Assign Sysid command to retrieve
the system ID. If successful, the retrieved ID is returned; otherwise, the literal CICS is
returned.

Customizing the Exit

Copy the TIRCSYSX member to one of your libraries and modify to populate the
LOCAL-SYSTEM-ID as required by the application.

z/OS Blockmode User Exits CICS

334 User Exit Reference Guide

Building on z/OS

For more information about installing this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

The following are related user exits:

■ TIRALLOX

■ TIRPROUX

TIRUSRIX User ID Exit

z/OS Dialog Managers use the CA Gen User Identification Exit.

Source Code

The source code for this exit is in CA Gen CEHBSAMP library in member TIRCUSRX. The
sample exit provided is written in COBOL and uses standard OS Linkage.

The Linkage Parameter list used by TIRUSRIX is as follows:

01 FILLER-PARM PIC X.

01 TIRUSRID-PARM.

05 IET-USER-ID PIC X(8).

05 IET-USER-ID2 PIC X(8).

01 GLOBDATA size 3645 bytes.

This exit contains CICS API calls, which require it to be processed by the Translator. The
Translator automatically includes data structures for DFHEIBLK and DFHCOMMAREA in
the place of RUNTIME-PARM1 and RUNTIME-PARM2 thus RUNTIME-PARMx are not
specified.

Purpose

This exit is called by all CICS applications.The purpose of TIRUSRIX is to obtain the userid
and terminal ID of the executing application so that these values can be used as part of
the key for the DB2 Profile Table and in the application itself.

z/OS Blockmode User Exits CICS

Chapter 4: z/OS User Exits 335

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

DFHEIBLK input Automatically included by the Translator.

DFHCOMMAREA input Automatically included by the Translator.

FILLER-PARM input Not used.

TIRUSRID-PARM

output

A pointer to a structure containing the following
items:

IET-USER-ID output The userid to be used
in the application.

IET-USER-ID2 output The ID to be used as
part of the Profile
Table key.

Return Code

No explicit return code value is set by the user exit.

Default Processing

There are two possible implementations for this exit.

The default processing of the exit is coded for applications that execute with a terminal
facility, these are blockmode and servers that use SNA and ECI. In this case, the exit
checks that the terminal ID and user ID values are present and these values are
returned. If only the terminal ID is present, its value is returned as both terminal ID and
user ID. If there is no terminal ID value, the CICS Task ID is returned as both terminal ID
and user ID.

The exit also contains sample code that can be used for applications that execute
without a terminal facility, these are servers that use TCP/IP and MQSeries. For these
applications, if the user ID and terminal ID are present the exit returns these values. If
only the user ID is present, it is returned and the CICS Task ID is returned for the
terminal ID. If only the terminal ID is present, its value is returned for both fields. If
neither user ID nor terminal ID is present, the CICS Task ID is returned for both.

z/OS Blockmode User Exits CICS

336 User Exit Reference Guide

Customizing the Exit

Copy the TIRUSRIX to one of your libraries and modify to populate either IET-USER-ID or
IET-USER-ID2 as required by the application.

Note: IET-USER-ID is used by the application as its User Identifier while IET-USER-ID2 is
used as part of the Key to the RPROF (Profile Manager) Table.

Building on z/OS

For more information about installing this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

TIRSECRX

TIRSECRX Security Interface Exit

z/OS Dialog Managers use the CA Gen Security Interface Exit.

Source Code

The sample source for this exit can be found in CA Gen CEHBSAMP library, in member
TIRSECRX. The sample exit provided is written in COBOL and uses standard OS Linkage.

The Linkage Parameter list used by this exit is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 TIRSECR-CMCB.

03 TIRSECR-USERID PIC X(8).

03 TIRSECR-TRANCODE PIC X(8).

03 TIRSECR-TERMINAL-ID PIC X(8).

03 TIRSECR-SYSTEM-ID PIC X(8).

03 TIRSECR-LOAD-MODULE PIC X(8).

03 TIRSECR-PSTEP-NAME PIC X(32).

03 TIRSECR-DIALECT PIC X(32).

03 TIRSECR-RETURN-CODE PIC XX.

03 TIRSECR-FAILURE-MSG PIC X(80).

01 GLOBDATA size 3645 bytes.

z/OS Blockmode User Exits CICS

Chapter 4: z/OS User Exits 337

Purpose

This exit is used by all CICS applications. The purpose of the TIRSECRX exit is to allow
transaction-level security checking to be implemented. The Dialog Manager calls the
Security Interface Exit when a transaction is started and before execution of a dialog
flow. This allows transaction-level security checking to be implemented. After it has
been enabled, the Dialog Manager executes the security interface exit automatically, at
the relevant points, without any intervention by a programmer, when invoking any load
modules in a business system.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input This is DFHEIBLK automatically
included if translated.

RUNTIME-PARM2 input This is DFHCOMMAREA
automatically included if
translated.

TIRSECR-CMCB input/ output A structure containing the
following items:

TIRSECR-USERID input The userid under
which this
transaction is
executing, as
provided by the
TIRUSRIX exit.

TIRSECR-TRANCODE input The load module
transaction code.

 TIRSECR-TERMINAL-ID input The terminal ID
used by this
transaction, spaces
if this is a
non-terminal
transaction.

TIRSECR-SYSTEM-ID input The system ID
where this
transaction is
executing, as
provided by the
TIRSYSIX exit.

z/OS Blockmode User Exits CICS

338 User Exit Reference Guide

Name I/O Description

TIRSECR-LOAD-MODULE input The load module
name.

 TIRSECR-PSTEP-NAME input The Procedure Step
name.

TIRSECR-DIALECT input The dialect used by
this application.

TIRSECR-RETURN-CODE output A 2-byte character
field returning the
result of the
security check. The
following values are
supported:

SPACES—TIRSECR-A
LL-OK

Anything
else—failure

TIRSECR-FAILURE-MSG output An 80-byte
character field, to
be populated by this
exit, to describe the
failure with a
message of choice.

Return Code

Update TIRSECR-RETURN-CODE with the relevant value.

Default Processing

The default processing of this exit is to do no security checking and to return
TIRSECR-ALL-OK as the return code.

Customizing the Exit

Copy the TIRSECRX exit to one of your libraries and modify to perform security checking
as required by the application. Ensure that TIRSECR-RETURN-CODE is set to spaces when
the security check is successful or some other value to indicate failure. If a message
describing the violation is returned in TIRSECR-FAILURE-MSG, the Dialog Manager will
pass it to TIRTERMA.

z/OS Blockmode User Exits CICS

Chapter 4: z/OS User Exits 339

Building on z/OS

For information about installing this exit, see MKUEXITS in Customizing and Installing
z/OS User Exits.

Related User Exits

The following are related user exits:

■ TIRUSRIX

■ TIRSECVX

■ TIRELOGX

■ TIRTERMA

TIRQCNTX TSQ Profile Manager Exit

z/OS Dialog Managers use the CA Gen TSQ Profile Manager Exit.

Source Code

The source code for this exit is in the Gen CEHBSAMP library in member TIRQCNTX. The
sample exit provided is written in COBOL and uses standard OS Linkage.

The parameter list used by TIRQCNTX is as follows

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 TIRQCNTL-CMCB.

 05 TIRQCNTL-QUEUE-NAME PIC X(8).

 05 TIRQCNTL-STORAGE-TYPE PIC X.

01 GLOBDATA size 3645 bytes.

Purpose

This exit is used by CICS applications only. The purpose of the TIRQCNTX is to allow the
user to override the name of the queue used for the temporary storage queue profile
and the type of storage used for the queue.

z/OS Blockmode User Exits CICS

340 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input This is DFHEIBLK automatically
included if translated.

RUNTIME-PARM2 input This is DFHCOMMAREA
automatically included if
translated.

TIRQCNTL-QUEUE-NAME input/ output Name of the temporary storage
queue used for the profile
manager.

TIRQCNTL-STORAGE-TYPE input/ output Type of storage where the queue
will reside.

GLOBDATA input Global data, used internally.

Return Code

No explicit return code is set by the user exit.

Default Processing

The default action for the exit is to leave the TSQ Profile Manager queue name , that
consists of an internal application ID and the LTERM ID, unchanged and set the default
storage type to MAIN.

Customizing the Exit

Copy the TIRQCNTX exit to one of your libraries and modify as required. The exit does
not use CICS commands so it does not need to be translated for CICS and it specifies the
RUNTIME-PARM1 and RUNTIME-PARM2 in both the Linkage Section and the Procedure
Division statement. Ensure these are removed if CICS API calls are added.

The TIRQCNTL-QUEUE-NAME needs to be unique per CICS region.

The TIRQCNTL-STORAGE-TYPE can be set to either USE-AUXILIARY-STORAGE instead of
USE-MAIN-STORAGE.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

z/OS Blockmode User Exits CICS

Chapter 4: z/OS User Exits 341

Related User Exits

None.

TIRDATX Date and Time Services Exit

z/OS Dialog Managers use the CA Gen Date and Time Services Exit.The Date and Time
Services Exit can be used to intercept, adjust, or validate system dates and times. This
exit is provided to allow user modification and customization of date and time
processing.

Source Code

The source code for this exit is in the Gen CEHBSAMP library in member TIRDATX. The
sample exit provided is written in Assembler and uses standard OS Linkage.

The parameter list used by TIRDATX is as follows:

PARMRT1 DS A

PARMRT2 DS A

PARMCMCB DS A

PARMWORK DS A

PARMGDTA DS A

Purpose

This exit is only used by Gen applications that use Standard Mapping facilities, not by
Enhanced Map.This exit receives control for some but not all date and time services.
Only services that acquire, or manipulate the date and time, where that date or time
was acquired from the system, or where validation is involved, invoke this exit.

This exit is not invoked for the following conditions:

■ Services involving conversion from one form to another does not invoke this exit.

■ If some error condition exists. For example, if the clock is not set, the date and time
services return the error directly to the requester and do not call this exit.

z/OS Blockmode User Exits CICS

342 User Exit Reference Guide

■ For validation, if the value is not valid, the failure is returned to the requester and
the exit is not called.

■ If this exit changes a date or time and requests re-validation, and the value is in
error, the error is returned to the requester and the exit is not called.

Note: If the date and time is modified by the exit, the exit must indicate this by
returning the appropriate return code. Return codes that are invalid (not one of the
listed values) will be ignored and the processing is as if the exit returned zero (0).
Therefore it is imperative that you not take advantage of any behavioral aspects not
explicitly documented here or in the sample code since future releases could change the
operation.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

PARMRT1 input This is DFHEIBLK automatically included
if translated.

PARMRT2 input This is DFHCOMMAREA automatically
included if translated.

PARMCMCB input/ output Address of the Date Communication
Control Block

PARMWORK input/ output Address of a 256 byte workarea

PARMGDTA input Address of GLOBDATA

Return Code

Only some of the date and time services functions are available to this exit, these are
indicated by the value of the DREQ field. Before returning this exit must restore
registers 0-14 to their values on entry and update register 15 with the return code that
controls how the date and time services functions continue processing.The return code
varies depending on the request, as follows:

DREQ - Service Request DREQVAL

■ 0—Use the system date/time as stored in DCMCB. The exit has not modified
these values and accepts them as they are.

■ 4—The exit has modified the date/time stored in the DCMCB and requests that
the validation be re-executed for these values.

Note: The exit will be called again after validation is complete.

z/OS Blockmode User Exits CICS

Chapter 4: z/OS User Exits 343

■ 8—The exit has modified the date/time stored in the DCMCB and does not
require the values be re-validated. The modified values are returned to the
requester.

■ 12—The exit requests that the date/time service fail the request. This is
returned to the service requester as if the date and/or time were invalid.

DREQ - Service Request DREQSD, DREQAS, DREQVTS, and DREQST

■ 0—Use the system date/time as stored in DCMCB.

■ 4—The exit requests the date, time, or timestamp value be recomputed. If the
exit has modified any of these values, the modifications are discarded and the
values computed from the system clock. For DREQAS, the DINC value
represents the number of days to be added to the date. The exit is called again
after the date and time have been recomputed.

■ 8—The exit has modified the date/time stored in the DCMCB and does not
require the date/time services recompute the associated values. The modified
and unmodified values are returned to the service requester unchanged.

■ 12—The exit requests that the date/time service fail the request. This is the
same as if the clock was not set or was damaged.

Default Processing

Sample Code

Sample code has been provided as commented out blocks of code. This is as an
example only. To use the sample code, you must remove the comments. Sections
that are specific to a particular system, such as CICS, are indicated by comments
preceding and following the code. Common code that should be used by both
examples is also indicated.

The sample code provides the ability to respond to request code 1 (get system date)
and request code 7 (get current timestamp). The date information is read from TSQ
or a file and is used to change the year, month, and day. The timestamp
information (hours, minutes, seconds, microseconds) is read and left unchanged.

z/OS Blockmode User Exits CICS

344 User Exit Reference Guide

Delivery Configuration

As configured, the sample code will read the required date from a CICS temporary
storage queue when generated for CICS. This exit can also obtain values from DB2
table lookups.

To use this facility, you must change the source code to set a local variable as
appropriate. If CICS is True (CICS mode), process using the CICS Translator and
assembler. If CICS is False, use the assembler but do not use the CICS Translator.

Registers

Register 14 contains the address that control is to be returned to, and Register 13
contains the address of a savearea set up for the exit’s usage. All registers must be
saved on entry. Register 15 must be updated with the return code and all other
registers must be restored on return.

Customizing the Exit

You can customize the exit to perform your specific needs. The following paragraphs
provide guidelines to be observed when modifying this exit. Be sure to read all notes
provided with the sample code for the latest information on using this exit.

Testing the DREQ Field

The exit must test the DREQ field of the Date CMCB to determine the service
request made of the Date/Time routine. This is used to customize the exit based on
your needs. For example, if you wish to perform local validation of dates only, the
request of interest is DREQVAL. For all other requests, the exit must return a zero.

Service Requests Intercepted by the Date and Time Services Exit

The service requests intercepted by this exit are:

■ DREQVAL—Request date and/or time validation

■ DREQSD—Return the current system date and time

■ DREQAS—Add a specified increment to the date value

■ DREQST—Return the current timestamp

■ DREQVTS—Validate the timestamp provided

■ DREQST—Return the current system timestamp

z/OS Blockmode User Exits CICS

Chapter 4: z/OS User Exits 345

Modifying Date and Time

If the exit is used to modify date or time, the exit must modify the appropriate
fields for the service request. Different service requests use different areas of the
Date CMCB as their input, and place their output in various fields.

I/O Format

The format of input and output data are indicated in the CMCB fields DDATEF and
DTIMEF. These values should be examined to determine the format of the data to
be stored, or to be used as input by the exit.Fields in the Date CMCB

Other fields in the CMCB have various meanings and formats as described in the
following paragraphs.

DDATE

This field contains the binary date value. It is treated as a signed decimal number
and converted to binary. The format is specified by the field DDATEF and cannot be
changed. This field can be in one of the following formats:

■ YYYYMMDD—Four digit year, two digit month, and two digit day

■ YYMMDD—Two digit year (the century is omitted), two digit month, and two
digit day

■ CYYMMDD—One digit century code, two digit year, two digit month, and two
digit day

Note: The one digit century code (C) is a number from 0 to 9, inclusive. The century
ranges that can be represented are from 1600 to 2599, inclusive. The century codes
are:

0 = 19XX, 1 = 20XX, 2= 21XX, 3 = 22XX, 4 = 23XX,

5 = 24XX, 6 = 25XX, 7 = 16XX, 8 = 17XX, 9 = 18XX.

DDATEF

This field contains an indicator of the format of the DDATE field’s content and
cannot be changed.

DTIME

This field contains the binary time value. The time is treated as a signed decimal
number with the format HHMMSSTH, or HHMMSST, or HHMMSS with the following
conventions:

■ HH—Hours

■ MM—Minutes

■ SS—Seconds

z/OS Blockmode User Exits CICS

346 User Exit Reference Guide

■ T—Tenths of seconds

■ H—Hundredths of seconds

The format used is specified by the DTIMEF field.

DTIMEF

This field contains an indicator of the format of the DTIME field’s content and
cannot be changed.

DTSTAMP

This field contains the zoned decimal time stamp value in a fixed format of
YYYYMMDDHHMISSNNNNNN with the following conventions:

■ YYYY—Four-digit year

■ MM—Two-digit month

■ DD—Two-digit day

■ MI—Two-digit minutes

■ SS—Two-digit seconds

■ NNNNNN—Six-digit microseconds

DINC

This field contains a signed binary increment to be added to the date value in
DDATE when DREQAS service is requested. It is unused in all other cases. A negative
value will result in a date.

The following table describes service requests and the fields they use:

Service Request
(DREQ)

Input Output Applicable Notes

DREQVAL DDATE, DTIME 1, 4, 5

DREQSD DDATE, DTIME 2, 5

DREQAS DDATE, DTIME,
DINC

DDATE, DTIME 2, 5

DREQVTS DTSTAMP 4, 5

DREQST DTSTAMP, DDATE,

DTIME

2, 3, 5

z/OS Blockmode User Exits CICS

Chapter 4: z/OS User Exits 347

Note:

1. Date and/or Time validation can be skipped if the appropriate field is set to zero.
For example, if DDATE is zero, then the Date validation is skipped.

2. Initial processing obtains the current date and time using the system clock and
adjusts the value based on the time zone adjustment. If the request is DREQAS,
then the DINC value is added to the number of days prior to computing the
Gregorian date, and then the DDATE / DTIME fields are computed. If the exit
requests that the values be reprocessed, any modification that the exit made to the
DDATE / DTIME fields is discarded and the values recomputed from the system
clock. DINC can be altered if the request was DREQAS.

3. If the request is DREQST, then the system time stamp values are computed from
the clock values.

4. Validation returns a code to the requester indicating the validity of the
date/time/time stamp. If the value is valid, the exit is called or recalled if the exit
requested the validation be reprocessed.

5. The formats of input and output data are indicated in the CMCB fields DDATEF and
DTIMEF. These values should be examined to determine the format of the data to
be stored, or to be used as input by the exit.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None

TIRDEVC Device Characteristics Exit

z/OS Dialog Managers use the CA Gen Device Characteristics Exit.

z/OS Blockmode User Exits CICS

348 User Exit Reference Guide

Source Code

The source code for this exit is in the Gen CEHBSAMP library in member TIRDEVC. The
sample exit provided is written in Assembler and uses standard OS Linkage.

The parameter list used by TIRDEVC is as follows:

PARMRT1 DS A

PARMRT2 DS A

EXTATTRA DS A

DEVUSER DS A

DIALECT DS A

GLOBDATA DS A

Purpose

This exit is only used by Gen applications that use Standard Mapping facilities, not by
Enhanced Map. The Device Characteristics exit, TIRDEVC, is called every time a message
is sent from or received by an application. This exit provides the runtime data stream
processing routines for the definition of the specific device characteristics.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

DFHEIBLK input Automatically included by the
Translator.

DFHCOMMAREA input Automatically included by the
Translator.

Parm 3 input/ output Device Characteristics

DEVCAP input/ output TMOHDLCT (dialect)/workarea

GDTA input/ output Address of GLOBDATA

TMOHDLCT is a pointer to the eight-character dialect name as returned from the User
Dialect exit, TIRDLCTX. This value represents the current selected dialect. The default
exit returns a default dialect value for this parameter.

The DEVCAP is a pointer to a 256-byte structure defined for the return of the device
attributes.

z/OS Blockmode User Exits CICS

Chapter 4: z/OS User Exits 349

Return Code

The Device Characteristic structure contains the returned device characteristics. The
fields in this structure are as follows:

EXTPARM

Returned Device Capabilities

MAXROWR DS H (24/32/43/27) maximum number of screen rows

MAXCOLR DS H (80/132) maximum number of screen columns

EXTDSR DS CL1 (0/255) 0= No Extended Data Stream support

EXTCLRR DS CL1 (0/255) 0= Base Color, 255 = Extended Color

EXTHIGHR DS CL1 (0/255) 0= No Highlight, 255 = Highlighting

EXTGRID DS CL1 (0/255) 0= No Grid Line, 255 = Grid Line

EXTDBCS DS CL1 (0/255) 0= No DBCS DISPLAY or ENTRY

EXTSCS8 DS CL1 (0/255) 0= No DBCS Set F8, SCS’8’ for DBCS

XMIXENT DS CL1 (0/255) 0= No Mixed (SBCS/DBCS) entry

XINEDIT DS CL1 (0/255) 0= No INPUT EDITING ATTRIBUTE support

XOUTXLAT DS A Pointer to 256 byte Output Translate Table

XINPXLAT DS A Pointer to 256 byte Input Translate Table

 DS CL235 Filler MUST BE ZERO

Default Processing

The maximum row and column values are derived from the 3270 model type. At this
time, CA Gen supports only IBM 3270 model 2 (24 x 80).

Extended Data Stream support and other extended attribute capabilities of the terminal
are derived from query or any other user defined method of retrieving the terminal
status. If Extended data stream is not enabled, then no extended data stream functions
are built into the outbound data stream. If Double Byte Character Support (DBCS) is not
enabled, then no DBCS data is placed in the outbound data stream. If MIXENT is not
enabled, all mixed entry fields are built as Single Byte Character Support (SBCS) only
fields in the data stream.

Additional information is available in the vendor documentation on National Language
Support (NLS).

z/OS Blockmode User Exits CICS

350 User Exit Reference Guide

Translate Tables

The output (OUTXLAT) and input (INPXLAT) tables are standard 256 byte translate tables
in a format suitable for the translate (TR) operations code (op code). OUTXLAT is used
when the current device does not support the same code page as the application and
encyclopedia. This means that a difference exists in the code points for the encyclopedia
and application database and the code points for the device. The translate table needs
to convert the code points in the output data stream to the correct code points for the
current device to display the correct glyphs. INPXLAT is used when data is received from
the terminal to convert the code points back to the appropriate values for the
application database and encyclopedia.

If the device supports the same code page as the application and database, then
OUTXLAT and INPXLAT should be set to ZERO (0) to suppress any code point
conversion.

For example, if the current device is a Japanese 557x terminal supporting code page 930
(uppercase Roman only) and the application prompts contain lower case Roman letters,
the translate tables must perform inbound and outbound translations.

Outbound, the translate table performs monocasing (from lowercase to uppercase), and
translates the application database code points to the device code points. This displays
the correct glyphs on the device.

Inbound, the translate table translates the device code points to the application
database and encyclopedia code points for proper storage. This prevents corruption of
the data in the database.

To accomplish the translation process in the preceding example, set OUTXLAT to point
to a table that converts lowercase code points to uppercase. Set INPXLAT to a table that
translates device Katakana back into the code point values needed in the application
database.

Customizing the Exit

Copy the default exit from the CA Gen sample library to a separate library. The member
name is TIRDEVC. You can customize this exit to accept input from the User Dialect exit
(TIRDLCTX) to change the code page during production.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

TIRDLCTX

z/OS Blockmode User Exits CICS

Chapter 4: z/OS User Exits 351

TIRDLCTX User Dialect Exit

z/OS Dialog Managers use the CA Gen User Dialect Exit.

Source Code

The source code for this exit is in the CA Gen CEHBSAMP library member TIRDLCTX. The
sample exit provided is written in COBOL and uses standard OS Linkage.

The Linkage Parameter list used by this exit is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 TIRDLCT-CMCB.

 03 TIRDLCT-USERID PIC X(8).

 03 TIRDLCT-TERMINAL-ID PIC X(8).

 03 TIRDLCT-SYSTEM-ID PIC X(8).

 03 TIRDLCT-RETURN-DIALECT PIC X(8).

01 GLOBDATA size 3645 bytes.

Purpose

This exit is used by all applications. The purpose of the TIRDLCTX exit is to supply the
current user’s dialect to the application. It is meaningful for multilingual applications.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input This is DFHEIBLK automatically included if
translated.

RUNTIME-PARM2 input This is DFHCOMMAREA automatically
included if translated.

TIRDLCT-CMCB input/ output A structure containing the following
items:

TIRDLCT-USERID input The userid under which
this transaction is
executing, as provided by
the TIRUSRIX exit.

z/OS Blockmode User Exits CICS

352 User Exit Reference Guide

Name I/O Description

TIRDLCT-TERMINAL-ID input The terminal ID used by
this transaction, spaces if
this is a non-terminal
transaction.

 TIRDLCT-SYSTEM-ID input The system ID where this
transaction is executing, as
provided by the TIRSYSIX
exit.

TIRDLCT-RETURN-DIALECT input The dialect used by this
application.

Return Code

No explicit return code is set by the user exit.

Default Processing

The default processing of this exit is to return a dialect name of DEFAULT.

Customizing the Exit

Copy the default exit from the CA Gen CEHBSAMP library to one of your libraries. The
member name is TIRDLCTX. For multilingual support, modify this module to return the
appropriate dialect for a user. The dialect returned is the one selected using the Dialect
Definition option of the Design Toolset. If none is selected or returned, the default
dialect is used.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

TIRDEVC

TIRUPPRX Uppercase Translation Exit

z/OS Dialog Managers use the CA Gen Uppercase Translation Exit. This exit is also called
the Lower-to-Uppercase Conversion Exit.

z/OS Blockmode User Exits CICS

Chapter 4: z/OS User Exits 353

Source Code

This exit is used by single byte and double byte applications. When used by double byte
applications an alternate entry point TIRUPDBx is used. The source code for this for this
exit is in CA Gen CEHBSAMP library in member TIRUPPRX. The sample exit is written in
COBOL and uses OS linkage.

The Parameter list used by TIRUPPRX is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 XLATE-TABLE-NAME PIC X(8).

01 XLATE-LEN PIC S9(4) COMP.

01 XLATE-DATA PIC X(4096).

01 GLOBDATA size 3645 bytes.

Purpose

The purpose of the Uppercase Translation User Exit is to translate character input from
lowercase to uppercase. It contains a table of paired lower and uppercase characters.
This exit is called by the Dialog Manager to translate the lower caser trancode to upper
case, by the TIRFUPPR Function to translate the designated data to upper case and by
the Standard Map runtime to translate the identified input data to upper case.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input This is DFHEIBLK automatically included
if translated.

RUNTIME-PARM2 input This is DFHCOMMAREA automatically
included if translated.

XLATE-TABLE-NAME input Name of the translation table to be used.

XLATE-LEN input Length of data to be translated.

XLATE-DATA input/output Data to be translated.

GLOBDATA input Global data, used internally.

Return Code

No explicit return code value is defined for this exit.

z/OS Blockmode User Exits CICS

354 User Exit Reference Guide

Default Processing

The default processing of this exit is to convert lower case characters to upper case
using a table named DEFAULT that contains the English character set(A-Z).

Customizing the Exit

Copy the default exit from the CA Gen CEHBSAMP library to one of your own libraries.
The member name is TIRUPPRX.

The exit supports both single byte and double byte languages. Adding support for DBCS
is done in the same way as for single byte.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None.

TIRYYX Two-Digit Year Input Edit Exit

z/OS Dialog Managers use CA Gen Two-Digit Year Input Exit.

Source Code

The source code for this exit is in the CA Gen CEHBSAMP library member TIRYYX. The
sample exit provided is written in Assembler and uses standard OS Linkage.

The parameter list used by TIRYYX is as follows:

EXTCB DS A

WORKAREA DS A

GLOBDATA DS A

Purpose

This exit is used by CA Gen Standard Map applications only. The purpose of the TIRYYX
exit is to process two-digit or YY-style date input and set the century part using any
chosen algorithm to implement logic to handle the century part of the date.

z/OS Blockmode User Exits CICS

Chapter 4: z/OS User Exits 355

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

EXITCB input Address of the Date Communication
Control Block

WORKAREA input Address of a 256 byte workarea

GLOBDATA input Address of GLOBDATA

Return Code

Before returning this exit must restore registers 0-14 to their values on entry and
update register 15 with a value of 4 to indicate that the YY modified by the exit should
be used. Any other value, including 0, indicates the original values passed to the exit are
acceptable to continue processing.

Default Processing

The exit contains sample code for 2 algorithms but neither are executed. By default the
exit returns a value of 0, indicating that no changes were done by the exit.

Customizing the Exit

Copy the TIRYYX exit to one of your libraries.

Internally, CA Gen handles four-digit year dates correctly assuming the user application
uses a YYYY edit pattern throughout. If the user interface is designed to accept a
two-digit date entry, and defaulting to the current century is not acceptable, use this
exit to implement logic to get the required behavior for defaulting the century part of
the date. The exit is called to process either a DATE or TIMESTAMP field which utilizes a
2-digit year (YY) in the edit pattern associated with the field. An indicator is set in the
exit control block to indicate if the value is a date or timestamp.

Modify the exit to use one of the provided algorithms or add your own as required by
your applications.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

z/OS Blockmode User Exits CICS

356 User Exit Reference Guide

Related User Exits

None.

TIRTERMA Termination Exit

The CA Gen Termination Exit is called by z/OS Dialog Managers when a fatal runtime
error is encountered.

Source Code

TIRTERMA Termination Exit is used by all non-cooperative applications targeting z/OS.
The source code is in CA Gen CEHBSAMP library, in member TIRTERMA. The sample exit
provided is written in COBOL and uses standard OS Linkage.

The parameters passed between the fail routine and the termination exits are defined
via structure TERM-EXIT-PARM-LIST. This structure is included via copy member
CBLTERM, which is also in the CEHBSAMP library.

The Linkage Parameter list used by TIRTERMA is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 TERM-EXIT-PARM-LIST structure defined in CBLTERM.

01 GLOBDATA size 3645 bytes.

Purpose

The purpose of the TIRTERMA exit is to control how fatal runtime errors are handled by
the Dialog Manager.

Runtime errors are either fatal or non-fatal errors. When a non-fatal error occurs, such
as invalid user input, the Dialog Manager displays an error message on the transaction
screen. You can correct the error and continue processing the transaction.

When a fatal error occurs, transaction processing is terminated. The Dialog Manager
executes a fail routine that backs out changes by performing the necessary rollbacks of
the databases. The fail routine then calls a termination exit that determines what
diagnostic (error) information is displayed and where it is displayed.

z/OS Blockmode User Exits CICS

Chapter 4: z/OS User Exits 357

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input This is DFHEIBLK automatically
included if translated.

RUNTIME-PARM2 input This is DFHCOMMAREA automatically
included if translated.

TERM-EXIT-PARM-LIST input/ output Structure of parameters for
termination and failure routine. The
items in this structure are described in
the CBLTERM Field Definitions.
Description of these fields follow.

GLOBDATA input Global data, used internally.

The structure TERM-EXIT-PARM-LIST is defined via copy member CBLTERM. Two items
in this structure control processing. These items are:TERM-STATUS-CODE

When TIRFAIL calls TIRTERMA, TERM-STATUS-CODE is used to control what TIRFAIL does
next.

The following table provides a description of each TERM-STATUS-CODE value:

Value Description

’ ’ (space) or 0 (zero) TIRFAIL displays the message and redisplays the previous
screen with TERM-DEFAULT-MSG in the error message field.

1 This value indicates that TIRTIRMA has handled the messages
and will not display them. It will, however, redisplay the
previous screen with TERM-DEFAULT-MSG in the error
message field.

2 Thisvalue indicates that TIRTIRMA has handled everything.
TIRFAIL does not display the messages and does not redisplay
the previous screen.

z/OS Blockmode User Exits CICS

358 User Exit Reference Guide

TERM-FAIL-TYPE

The following table contains a description of TERM-FAIL-TYPE errors:

Error Value Description

TERM-FAIL-DB2 P A DB2 error occurred while accessing the
RPROF (profile) table.

TERM-FAIL-IEC I An internal Gen error occurred in the Dialog
Manager.

TERM-FAIL-EXEC E A database error occurred in an action block
or procedure.

TERM-FAIL-DIALOG D A non-database error occurred in the Dialog
Manager.

TERM-FAIL-TSQ Q An error occurred while accessing the CICS
temporary storage queue profile table.

Remaining Fields

The remaining CBLTERM fields are described in the table:

Field Description

TERM-ERROR-ACTION-NAME Contains the name of the action block.

TERM-DEFAULT-MSG This is an output field that by default
contains the following message:

TIRM000E: SYSTEM ERROR OCCURRED -
CONTACT SUPPORT

The message can be changed in the
termination exit to anything meaningful
to the user. For online procedures with a
screen, the message is visible in the
error message field when the screen is
redisplayed.

TERM-SYSTEM-PRINTER Printer TERMID if the action block
executed a PRINTER TERMINAL IS
statement.

TERM-ERROR-ENCOUNTERED-SW Indicates the message:

TIRM037E: ** A FATAL ERROR HAS BEEN
ENCOUNTERED **

z/OS Blockmode User Exits CICS

Chapter 4: z/OS User Exits 359

Field Description

TERM-VIEW-OVERFLOW-SW Indicates the message:

TIRM037E: ** FATAL VIEW OVERFLOW
HAS BEEN ENCOUNTERED **

TERM-ACTION-ID Is appended to the message:

TIRM034E: LAST OR CURRENT
DATABASE STATEMENT = ...

TERM-ATTRIBUTE-ID Is appended to the message:

TIRM040E: PERMITTED VALUES
MISMATCH, FIELD = F ...

TERM-STATUS-FLAG Produces the message:

TIRM038E: ** FATAL DATABASE ERROR
HAS BEEN ENCOUNTERED **

TERM-LAST-STATUS Is appended to the message:

TIRM039E: DB LAST STATUS = ...

TERM-TRACE-PTR This field is documented in online help
under the error message TIRM039E.

TERM-LAST-STATEMENTNUM Is appended to the message:

TIRM035E: CURRENT STATEMENT BEING
PROCESSED = ...

TERM-CURR-AB-ID Is appended to the message:

TIRM032E: LAST OR CURRENT ACTION
BLOCK ID = ...

TERM-CURR-AB-NAME Is appended to the message:

TIRM033E: LAST OR CURRENT ACTION
BLOCK NAME = ...

TERM-EABPCB-CNT,

TERM-EABPCB-ENTRY,

TERM-EABPCB-PTR

These fields describe PCB pointers. The
first is the IO-PCB, the second is the
ALTERNATE-IOPCB; the last is a database
pointer.

z/OS Blockmode User Exits CICS

360 User Exit Reference Guide

Field Description

TERM-SQLCA-PTR Pointer to the SQLCA. To address the
fields in SQLCA, first define it in the
Linkage Section. Use the following
example:

MY-SQLCA

FILLER

MY-SQL-CODE

FILLER

Then add a SET statement at the
beginning of the procedure division as
shown :

SET ADDRESS OF MY-SQLCA TO
TERM-SQLCA-PTR

TERM-IEF-COMMAND The special field of COMMAND.

TERM-IEF-TRANCODE The special field of TRANCODE.

TERM-EXIT-STATE The exit state number.

TERM-EXIT-INFOMSG The exit state message.

TERM-USER-ID The special field of USERID.

TERM-TERMINAL-ID The special field of TERMID.

TERM-PRINTER-ID Represents the ID of the system printer.

TERM-DIALOG-MESSAGENUM The message number is the
FAIL-MSG-NO set be the Dialog
Manager. See the Messages Guide for
the message represented by the error
code displayed.

TERM-OUTPUT-MESSAGE Before TIRFAIL calls TIRTERMA, it
prepares a table of messages that will
display on return from the exit if the
TERM-STATUS-CODE is a space or a zero.
These messages are available to the exit.
The last line with a message is followed
by a line of all spaces.

TERM-DIALECT-NAME The current dialect

z/OS Blockmode User Exits CICS

Chapter 4: z/OS User Exits 361

Field Description

TERM-FAILURE-MESSAGE-TEXT The text of the failure message. This
may be moved to TERM-DEFAULT-MSG
if you want it displayed on the
application screen instead of the
message:

TIRM000E: SYSTEM ERROR OCCURRED -
CONTACT SUPPORT

Return Code

TIRTERMA can return three valid status codes to the fail routine. They are used to
control what screens will be displayed to the user. For example, if you want to replace
the CA Gen error screen with your own and then return to the application screen, and
you can modify the code to return the application screen, you can modify the code to
return status code 1.

The following table provides a description:

Status Code Error Message Screen
Displayed

Application Screen
Displayed

1 No Yes

2 No No

0, blank or other (except 1
or 2)

Yes Yes

The skeleton exit contains example code for each of these status codes with the code
for ‘1’ and ‘2’ commented out.

Default Processing

If a runtime error occurs and the default termination exit is used, processing is as
follows:

1. The Dialog Manager performs all necessary rollbacks. This is done regardless of the
termination exit used.

2. The Dialog Manager fail routine calls the default termination exit. It returns to the
fail routine without doing anything, which causes the default termination logic in
the fail routine to be used.

z/OS Blockmode User Exits CICS

362 User Exit Reference Guide

3. The CA Gen fail routine displays an error screen that lists the appropriate CA Gen
runtime error messages. See the following error message screen:

TIRM030E: APPLICATION FAILED ** UPDATES HAVE BEEN BACKED OUT

TIRM031E: FAILING PROCEDURE EXIT DATA FOLLOWS

TIRM032E: LAST OR CURRENT ACTION BLOCK ID = 507774696

TIRM033E: LAST OR CURRENT ACTION BLOCK NAME = ABADDEMP

TIRM034E: LAST OR CURRENT DATABASE STATEMENT =

TIRM035E: CURRENT STATEMENT BEING PROCESSED = 10

TIRM037E: ** A FATAL ERROR HAS BEEN ENCOUNTERED **

TIRM046E: *** TRANSACTION PROCESSING TERMINATED

TIRM044E: *** PRESS PA2 TO CONTINUE ***

4. When you press PA2 (NEXT PAGE key) from the error message screen, CA Gen
displays the last screen for the transaction that was being processed when the error
occurred.

If you are using the Testing Facility, the PA2 key is the ISPF NEXT PAGE key you
defined on the Test Environment Panel.

5. CA Gen recovers all data in the import views at the time the error occurred.
Therefore, all user input is recovered and displayed upon the screen. Screen fields
that are only in the export view may or may not be populated, depending on when
the error occurred.

6. An error message appears in the system error message area defined for the screen.
This message is distinct from the runtime error messages displayed on the error
message screen. The default error message is:

SYSTEM ERROR OCCURRED - CONTACT SUPPORT.

See the following illustration for an example of an application screen that is
displayed after an error has occurred.

z/OS Blockmode User Exits CICS

Chapter 4: z/OS User Exits 363

7. The transaction is terminated, but the application remains active and the user can
continue with another transaction as shown in the following screen:

IEFSLSB CORPORATE MANAGEMENT

 EMPLOYEE MAINTENANCE

EMPLOYEE NUMBER: 123456 NAME: MICHAEL
WILSON

COST CENTER: 123 DEPARTMENT: 4

EMPLOYMENT DATE: 082596 STATUS: E

SALARY: 1234

ADDRESS: 7250 MICHIGAN PHONE: (214)
555-1414

CITY/STATE/ZIP: PARIS, TEXAS 73000 BIRTH DATE:
051067

F02=HELP F05=MAINMENU F07=ADDEMP2

TIRM000E: SYSTEM ERROR OCCURRED - CONTACT SUPPORT

Customizing the Exit

Copy Member TIRTERMA from the CA Gen CEHBSAMP library to one of your libraries.

Unlike the other user exits, the skeleton exit is not the source for the default exit in the
load library. In prior releases of CA Gen, the termination exit was written in Assembler
Language and named TIRTERM. The default exit TIRTERMA in the load library calls
TIRTERM for compatibility with prior releases.

When you have completed your modifications, install the exit.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None.

z/OS Blockmode User Exits CICS

364 User Exit Reference Guide

TIRHELPX Help Interface Exit

TIRHELPX is a runtime exit containing code for the flow to the application Help business
system. TIRHELPX is written in COBOL. The same sample exit is included in various z/OS
Runtime DLLs, each used by the specific target environment.

Sample code is included as comments. Until modified, TIRHELPX displays the message:

No help available.

If the TIRHELPX sample code is used (by removing the comment characters), the
following occurs:

1. TIRHELPX checks the flags and determines which procedure in the application help
business system (field description, screen description, or permitted values) to flow
to.

2. TIRHELPX then calls TIRMSG, which performs the transfer to the target procedure.

3. After the help procedures have completed and the exit is entered, a SET NEXTTRAN
TO CONCAT(TRIM(input tirhelp trancode) is performed to return to the calling
application.

Source Code

TBD

Purpose

The Dialog Manager invokes the Help exit whenever a command equals HELP or
PROMPT (or a synonym translates to HELP or PROMPT).

TIRHELPX handles these commands as shown in the following table:

Condition Screen Message

HELP command issued while the cursor is
not on a field

No help available for this screen

HELP command issued while the cursor is
on a field

No help available for this field

PROMPT command issued while the
cursor is not on an enterable field

Prompt is valid only for enterable fields

PROMPT command issued while the
cursor is on an enterable field

No Prompt data available for this field

z/OS Blockmode User Exits CICS

Chapter 4: z/OS User Exits 365

CA Gen provided code, to invoke the application help system, is included in this module
as comments. The comments may be uncommented and used as an example of how to
invoke a user-supplied help system.

By customizing TIRHELPX, you can access a help system that is:

■ A user-written system

■ An application developed using CA Gen, with the features of unformatted input and
PAD NEXT TRAN providing flows

■ A third-party help system

Direct use of the Central Encyclopedia as tables for a help system is not supported.
However, data needed for the tables of a help system could be extracted using the
Public Interface.

CA Gen supports invocation of a help system for both screen and field levels. In addition,
you can restart the original application with field data from the help system.

Arguments

TBD

Return Code

The following table lists the return codes and the action taken by the Dialog Manager:

Return Code Action Taken by Dialog Manager

NM Transaction terminated and screen not redisplayed (TIRHELPX
handles help display).

WM Screen redisplayed with error message (transaction terminates
normally).

F Termination exit invoked to display severe error messages (fatal
errors).

When you have completed your modifications, install the exit.

Default Processing

As provided by CA Gen, the Help exit merely redisplays the screen with a message
indicating no help or prompt data is available.

z/OS Blockmode User Exits CICS

366 User Exit Reference Guide

Customizing the Exit

Copy the default exit from the CA Gen CEHBSAMP library to one of your libraries. The
member name is TIRHELPX. The skeleton includes sample code, as comments, for
invoking the CA Gen Help system. This code may be uncommented for use with that
system, or used as an example for invoking other help applications.

The Dialog Manager provides an error message parameter to the Help exit and a
parameter list that contains the following information:

■ Screen help identifier (helpid). This identifier is specified at the workstation level
during screen design. The helpid can be a key into a DB2 table, for instance. For an
explanation of the screen help identifier see the Design Guide.

■ Current transaction code, screen name, user ID, terminal ID, printer ID, and current
dialect.

■ Last displayed message and command before requesting help.

If the cursor is on a field that has a field help identifier (helpid), the Dialog Manager also
provides the following information:

■ Field help identifier (helpid). This identifier is specified at the workstation level
during screen design. For an explanation of the screen help identifier see the Design
Guide.

■ Current, edited values of the field as it appears on the screen, screen length of the
field, and a token identifier for the field. These may be passed to the help system
and used to replace the contents of the field upon return from the help system.

TIRHELPX calls User Exit TIRMTQB. TIRMTQB finds a message number in the runtime
error message table and returns the corresponding message and its length. If the
message number is not in the table, TIRMTQB returns a default message. For more
information, see Runtime Message Table Exit in this chapter.

TIRHELPX can use the provided data to invoke a user-written help system. TIRHELPX
must set a return code to instruct the Dialog Manager which action to take. The Dialog
Manager can either terminate the transaction and not redisplay the screen, or redisplay
the screen with the contents of the message parameter as the screen’s error message.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None.

z/OS Blockmode User Exits CICS

Chapter 4: z/OS User Exits 367

TIRIEX Enhanced Map Input Edit Exit

TIRIEX is provided so that the user can modify the standard CA Gen input editing
function for the enhanced map generation mode.

Source Code

This exit is used by Enhanced Map Screens only. The source code for this exit is in CA
Gen CEHBSAMP library, in member TIRIEX. The sample exit provided is written in
Assembler and uses standard OS Linkage.

The Linkage Parameter list used by TIRIEX is as follows:

ARG_RT1 DS A I/O PCB OR EIB

ARG_RT2 DS A ALT I/O PCB OR COMMAREA

ARG_IEX_COMMAREA DS A PTR TO IEX COMM AREA

ARG_PATTR_DESC DS A PTR TO ATTRIBUTE DESCRIPTOR

ARG_PFIELD_DESC DS A PTR TO FIELD DESCRIPTOR

ARG_PIMAGE_DESC DS A PTR TO IMAGE DESCRIPTOR

ARG_PEP_DESC DS A PTR TO EDIT PATTERN DESC

ARG_PWORK DS A PTR TO 4K WORK AREA

ARGGDTA DS A GLOBDATA

Purpose

TIRIEX is provided so that the user can modify the standard Gen input editing function
for the enhanced map generation mode. The following types of data are inputs for this
exit:

■ Date

■ Time

■ Time Stamp

■ Numeric Data

■ Text

■ Picture (Numeric Text)

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

ARG_RT1 input/ output Address of the IEB

ARG_RT2 input/ output Address of COMMAREA

z/OS Blockmode User Exits CICS

368 User Exit Reference Guide

Name I/O Description

ARG_IEX_COMMAREA input/ output Address of the exit control block

ARG_PATTR_DESC input/ output Address of attribute descriptor

ARG_PFIELD_DESC input/ output Address of the field descriptor

ARG_PIMAGE_DESC input/ output Address of the image descriptor

ARG_PEP_DESC input/ output Address of the edit pattern descriptor

ARG_PWORK input/ output Reentrant work area

ARGGDTA input/ output Address of Globdata

Return Code

No explicit return code is set by the user exit.

Default Processing

The Default Input Edit Exit does not perform any processing.

Customizing the Exit

Modify the exit to perform the specific desired functions using the instructions in the
exit source code file.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

TIRIEXS Standard Map Input Edit Exit

The TIRIEXS exit is called by any blockmode application containing Standard Map
screens.

z/OS Blockmode User Exits CICS

Chapter 4: z/OS User Exits 369

Source Code

The sample source for this exit can be found in member TIRIEXS in the CA Gen
CEHBSAMP library. The sample exit is written in COBOL and uses standard OS Linkage.

The Linkage Parameter list used by this exit is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 TIRIEXS-CMCB.

 03 TIRIEXS-RETURN-CODE PIC X.

 88 RC-ACCEPT VALUE '0'.

 88 RC-REJECT VALUE '1'.

 88 RC-REPROCESS VALUE '2'.

 88 RC-EXIT-VALUE VALUE '3'.

 88 RC-ERASE VALUE '4'.

 03 TIRIEXS-STATUS-CODE1 PIC X.

 88 SC-OK VALUE ' '.

 88 SC-FAIL-PENDING VALUE 'F'.

 03 TIRIEXS-STATUS-CODE2 PIC X.

 88 SC-FIRST-PASS VALUE '1'.

 88 SC-REENTER VALUE '2'.

 03 TIRIEXS-ERROR-MSG-NUMBER PIC S9(4) COMP

 03 INPUT-VALUE PIC X(256).

 03 INPUT-VALUE-CHAR

 REDEFINES INPUT-VALUE

 OCCURS 256 TIMES PIC X.

 03 FIELD-LENGTH PIC 9(4).

z/OS Blockmode User Exits CICS

370 User Exit Reference Guide

 03 FIELD-FILL-CHAR PIC X(2).

 03 FIELD-BEGIN-ROWCOL PIC 9(8).

 03 FIELD-END-ROWCOL PIC 9(8).

 03 ATTRIBUTE-VALUE PIC X(256).

 03 ATTRIBUTE-VALUE-CHAR

 REDEFINES ATTRIBUTE-VALUE

 OCCURS 256 TIMES PIC X.

 03 ATTRIBUTE-LENGTH PIC 9(4).

 03 ATTRIBUTE-TYPE PIC X.

 88 ATTR-TEXT VALUE 'T'.

 88 ATTR-VARCHAR VALUE 'V'.

 88 ATTR-NUMERIC VALUE 'N'.

 03 ATTRIBUTE-DECIMAL-PLACES PIC 9(2).

 03 ATTRIBUTE-CASE-SENSITIVE PIC X.

 03 MAPNAME PIC X(8).

 03 MODNAME PIC X(8).

 03 DIALECT-NAME PIC X(8).

 03 DECIMAL-INDICATOR PIC X.

 03 THOUSANDS-INDICATOR PIC X.

 03 CURRENCY-INDICATOR PIC X.

 03 TXT-ORIENTATION PIC X.

 03 NUM-ORIENTATION PIC X.

 03 EDIT-PATTERN-CLASS PIC X.

 88 EPAT-ALPHANUMERIC VALUE 'T'.

 88 EPAT-NUMERIC VALUE 'N'.

z/OS Blockmode User Exits CICS

Chapter 4: z/OS User Exits 371

 88 EPAT-DATE VALUE 'D'.

 88 EPAT-TIME VALUE 'M'.

 88 EPAT-TIMESTAMP VALUE 'Q'.

 88 EPAT-NONE VALUE ' '.

 03 FILLER PIC X(100).

01 GLOBDATA size 3645 bytes.

Purpose

TIRIEXS is provided to allow customization of the input editing behavior for Standard
Map screens. This exit is used by any blockmode application containing Standard Map
screens and is called for each input screen field.

Arguments

The following table gives a brief description of each of the arguments.

Name Input/
Output

Description

RUNTIME-PARM1 input DFHEIBLK (CICS)

I/O PCB (IMS)

Emulated I/O PCB (TSO)

RUNTIME-PARM2 input DFHCOMMAREA (CICS)

Alternate I/O PCB (IMS)

Emulated Alt I/O PCB (TSO)

TIRIEXS-CMCB input/output A structure containing the following
items:

z/OS Blockmode User Exits CICS

372 User Exit Reference Guide

Name Input/
Output

Description

TIRIEXS-RETURN-CODE output The return value indicating what
action the exit wants the runtimes to
take for the current screen field.

RC-ACCEPT - The exit took no action
for the current screen field and
accepts the results of Gen's
validation. Normal processing will
continue.

RC-REJECT - The exit requests that the
value input in the current screen field
be marked in error. This return code
should only be used for screen fields
that have an edit pattern defined or
for screen fields mapped to view
attributes that are mandatory or that
have permitted values defined.

RC-REPROCESS - The exit modified
the value that was input in the
current screen field (INPUT-VALUE)
and requests that this modified input
value be revalidated.

RC-EXIT-VALUE - The exit modified
the value that was stored in the view
attribute mapped to the current
screen field (ATTRIBUTE-VALUE) and
requests that this modified attribute
value replace the value that was
determined by Gen. This modified
attribute value will not be
revalidated.

RC-ERASE - The exit requests that the
value input in the current screen field
be erased.

This return code should not be used
for screen fields mapped to
mandatory view attributes.

z/OS Blockmode User Exits CICS

Chapter 4: z/OS User Exits 373

Name Input/
Output

Description

TIRIEXS-STATUS-CODE1 input The status of the validation
performed by Gen for the current
screen field.

SC-OK - The current screen field's
value is considered to be valid by
Gen's validation routines.

SC-FAIL-PENDING - The current
screen field's value is considered to
be invalid by Gen's validation
routines.

TIRIEXS-STATUS-CODE2 input The processing status of the current
screen field.

SC-FIRST-PASS - This indicates this is
the first time the exit has been called
for the current screen field.

SC-REENTER - This indicates the exit
has been called previously for the
current screen field and the exit
requested that the field be
reprocessed (RC-REPROCESS).

TIRIEXS-ERROR-MSG-NUMBER input The error message number
determined by Gen's validation
routines prior to calling the exit.

INPUT-VALUE input/output The value entered in the current
screen field. This value should be
modified by the exit if the exit returns
RC-REPROCESS.

FIELD-LENGTH input The length of the current screen field.

FIELD-FILL-CHAR input The fill character defined for current
screen field.

FIELD-BEGIN-ROWCOL input The beginning row and column of the
current screen field.

FIELD-END-ROWCOL input The ending row and column of the
current screen field.

ATTRIBUTE-VALUE input/output The value to be stored in the view
attribute mapped to the current
screen field. This value should be
modified by the exit if the exit returns
RC-EXIT-VALUE.

z/OS Blockmode User Exits CICS

374 User Exit Reference Guide

Name Input/
Output

Description

ATTRIBUTE-LENGTH input The length of the view attribute
mapped to the current screen field.

ATTRIBUTE-TYPE input The datatype of the view attribute
mapped to the current screen field.

ATTR-TEXT - A fixed-length text
attribute.

ATTR-VARCHAR - A varying-length
text attribute.

ATTR-NUMERIC - A numeric attribute.

ATTRIBUTE-DECIMAL-PLACES input The number of decimal places
defined for the view attribute
mapped to the current screen field.

ATTRIBUTE-CASE-SENSITIVE input The case sensitivity property defined
for the view attribute mapped to the
current screen field.

MAPNAME input The name of the current screen.

MODNAME input The modname of the current screen.

DIALECT-NAME input The name of the dialect used by the
current screen.

DECIMAL-INDICATOR input The character used to represent the
decimal place in the current dialect.

THOUSANDS-INDICATOR input The character used to represent the
thousands separator in the current
dialect.

CURRENCY-INDICATOR input The character used to represent the
currency symbol in the current
dialect.

TXT-ORIENTATION input The orientation of text fields in the
current dialect.

NUM-ORIENTATION input The orientation of numeric fields in
the current dialect.

z/OS Blockmode User Exits IMS

Chapter 4: z/OS User Exits 375

Name Input/
Output

Description

EDIT-PATTERN-CLASS input The edit pattern class for the current
screen field.

EPAT-ALPHANUMERIC - An
alphanumeric edit pattern.

EPAT-NUMERIC - A numeric edit
pattern.

EPAT-DATE - A date edit pattern.

EPAT-TIME - A time edit pattern.

EPAT-TIMESTAMP - A timestamp edit
pattern.

EPAT-NONE - No edit pattern is
defined for the current screen field.

FILLER input Filler, for future use

GLOBDATA input Global data, used internally

Return Code

Update TIRIEXS-RETURN-CODE with the relevant value.

Default Processing

The default processing of this exit is to take no action for the current screen field and
return RC-ACCEPT in TIRIEXS-RETURN-CODE.

Customizing the Exit

Copy the TIRIEXS exit to one of your libraries and modify the exit to perform the desired
input editing behavior.

Building on z/OS

For information about installing this exit, see MKUEXITS in Customizing and Installing
z/OS User Exits.

z/OS Blockmode User Exits IMS

TIRTIARX DB2 Message Exit

z/OS Dialog Managers use the CA Gen DB2 Message Exit.

z/OS Blockmode User Exits IMS

376 User Exit Reference Guide

Source Code

The source code for the version of the exit used by IMS application is in CA Gen
CEHBSAMP library, in member TIRITIAX. The sample exit provided is written in COBOL
and uses standard OS Linkage.

The Linkage Parameter list used by TIRTIARX is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 TIRFAIL-SQLCA PIC X.

01 TIRTIAR-ERRORS PIC X.

01 TIRTIAR-TEXT-LEN PIC X.

01 TIRTIAR-WORKAREA PIC X.

01 GLOBDATA structure size 3645 bytes.

Purpose

The DB2 Message Exit is used by all applications targeting DB2 database on z/OS. The
TIRFAIL subroutine of the Dialog Manager calls the DB2 Message exit, TIRTIARX,
whenever an unrecoverable DB2 failure occurs. TIRTIARX then calls the subroutine
DSNTIAR to convert the SQL code into text. The messages returned by DSNTIAR are then
merged with the runtime error messages.

TIRTIARX can be customized to statically link DSNTIAR with the executable load module
rather than dynamically linking it.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input This is IO-PCB automatically included if
translated.

RUNTIME-PARM2 input This is ALT-IO-PCB automatically included if
translated.

TIRFAIL-SQLCA input SQLCA

TIRTIAR-ERRORS input/output Error message lines.

TIRTIAR-TEXT-LEN input Length of one error message line.

TIRTIAR-WORKAREA input Workarea.

GLOBDATA input Global data, used internally.

z/OS Blockmode User Exits IMS

Chapter 4: z/OS User Exits 377

Return Code

No explicit return code is set by the user exit.

Default Behavior

As provided by CA Gen, the default exit dynamically calls DSNTIAR and is compatible
with prior releases. However the sample code also contains examples of how to call
DSNTIAR or DSNTIAC statically.

The call to TIRTIARX is made when TIRFAIL is building the table of messages and occurs
prior to calling the default termination exit. For more information, see the Online
Termination Exit and Batch Termination Exit.

Customizing the DB2 Message Exit

Copy the default exit to one of your own libraries. The member name for IMS is
TIRITIAX. The default exit includes example code for the two possible combinations of
calls. There are dynamic and static calls of DSNTIAR. Simply comment out the default
call and remove the comments from the one you want to use.

When you have completed your modifications, install your exit.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None.

TIRIRTRX Default Retry Limit Exit

z/OS Dialog Managers for IMS and IEFAE blockmode applications use the CA Gen Default
Retry Limit Exit.

Source Code

This exit is used by IMS and IEFAE blockmode applications only. The source code for this
exit is in CA Gen CEHBSAMP library, in member TIRIRTRX. The sample exit provided is
written in COBOL and uses standard OS Linkage.

z/OS Blockmode User Exits IMS

378 User Exit Reference Guide

The Linkage Parameter list used by TIRIRTRX is as follows:

01 RUNTIME-PARM1 PIC X

01 RUNTIME-PARM2 PIC X.

01 RETRY-TIMES PIC S9(4) COMP.

01 GLOBDATA size 3645 bytes.

Purpose

This exit is called at the beginning of a CA Gen IMS or IEFAE blockmode application to
enable the defined default value for the TRANSACTION RETRY LIMIT system attribute to
be modified.

TRANSACTION RETRY LIMIT will be initialized to this value at the beginning of each new
transaction. This value may subsequently be modified by a SET TRANSACTION RETRY
LIMIT statement in an action diagram. TRANSACTION RETRY LIMIT is used to specify the
maximum number of times a transaction is to be retried when one of the following
events occurs:

■ A RETRY TRANSACTION action diagram statement executes.

■ A deadlock or timeout occurs trying to access a database, and no WHEN DATABASE
DEADLOCK OR TIMEOUT statement was provided for that entity action statement.
(This is not applicable for z/OS transactions running under IMS. An application
running under IMS that encounters a deadlock or timeout will be terminated
immediately by IMS itself, even if it has a WHEN DATABASE DEADLOCK OR
TIMEOUT statement provided.)

In either of these cases, any uncommitted database updates will be rolled back, and an
attempt will then be made to execute the application again. Once the number of retries,
as indicated by the TRANSACTION RETRY COUNT system attribute, reaches either
TRANSACTION RETRY LIMIT or the value specified by the Ultimate Retry Limit Exit, no
more retries can occur, and the application will fail with a runtime error if the last retry
attempt was unsuccessful.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input This is IO-PCB automatically included if
translated.

RUNTIME-PARM2 input This is ALT-IO-PCB automatically
included if translated.

RETRY-TIMES input/ output The maximum number of times the
transaction execution is retried.

z/OS Blockmode User Exits IMS

Chapter 4: z/OS User Exits 379

Name I/O Description

GLOBDATA input Global data, used internally.

Return Code

No explicit return code is set by the user exit.

Default Processing

The default processing of this exit is not to modify the Default Retry Limit Exit, that is set
to 10. If the Default Retry Limit Exit is used, it must not return a value greater than that
specified in the Ultimate Retry Limit Exit.

Customizing the Exit

Modify the source code to set the RETRY-TIMES to the number of retries the
applications should use.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None.

TIRIURTX Ultimate Retry Limit Exit

z/OS Dialog Managers for IMS blockmode applications use the CA Gen Ultimate Retry
Limit Exit.

Source Code

The source code for this exit is in CA Gen CEHBSAMP library in member TIRIURTX. The
sample exit is written in COBOL and uses standard OS linkage.

The Linkage Parameter list used by TIRIURTX is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 ULTIMATE-RETRY-LIMIT PIC S9(9) COMP.

01 GLOBDATA size 3645 bytes.

z/OS Blockmode User Exits IMS

380 User Exit Reference Guide

Purpose

The Ultimate Retry Limit Exit is used by all applications targeting DB2 database on z/OS.
The Ultimate Retry Limit Exit allows the user to specify a maximum value for the
TRANSACTION RETRY LIMIT system attribute. This value may never be exceeded, either
by a SET TRANSACTION RETRY LIMIT statement in an action diagram, or by the Default
Retry Limit Exit.

For an explanation of when and how the TRANSACTION RETRY LIMIT system attribute is
used see Default Retry Limit Exit in this chapter.

This exit provides a safeguard in case the system attribute TRANSACTION RETRY LIMIT is
set to an excessive value by an action diagram. Once the number of retries, as indicated
by the TRANSACTION RETRY COUNT system attribute, reaches either TRANSACTION
RETRY LIMIT or the value specified by the Ultimate Retry Limit Exit, no more retries can
occur, and the application will fail with a runtime error if the last retry attempt was
unsuccessful.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 Input This is IO-PCB automatically included if
translated.

RUNTIME-PARM2 Input This is ALT-IO-PCB automatically included
if translated.

ULTIMATE-RETRY-LIMIT Input/
output

The absolute limit which is defaulted to 99.

GLOBDATA Input Global data, used internally.

Return Code

No explicit return code is set by the user exit.

Default Processing

If the Ultimate Retry Limit Exit is not modified, the maximum value of TRANSACTION
RETRY LIMIT will be 99. The Ultimate Retry Limit Exit may be modified to return a value
of zero to suppress all retry attempts.

z/OS Blockmode User Exits IMS

Chapter 4: z/OS User Exits 381

Customizing the Exit

Copy TIRIURTX exit to one of your libraries or directories. For TSO and IEFAE; applies
only when RETRY TRANSACTION statement executes.

Modify the copied exit as needed. When you have completed your modifications, install
the exit as described in Customizing and Installing z/OS User Exits.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None.

TIRSYSIX System ID Exit

z/OS Dialog Managers use the CA Gen System Identification Exit.

Source Code

The source code for this exit is in CA Gen CEHBSAMP library in member TIRTSYSX. The
sample exit provided is written in COBOL and uses standard OS Linkage.

The Linkage Parameter list used by TIRSYSIX is as follows:

LINKAGE SECTION.

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 LOCAL-SYSTEM-ID PIC X(8)

Purpose

This exit is called by all IMS applications.The purpose of TIRSYSIX is to enable logic that
lets the same application be implemented on multiple systems and perform processing
specific to each system targeted.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

IO-PCB input Automatically included if translated.

z/OS Blockmode User Exits IMS

382 User Exit Reference Guide

Name I/O Description

ALT-IO-PCB input Automatically included if translated.

LOCAL-SYSTEM-ID output The identifier of the system where the
application is executing.

Return Code

No explicit return code is set by the user exit.

Default Processing

The literal IMS is returned.

Customizing the Exit

Copy the TIRCSYSX member to one of your libraries and modify to populate the
LOCAL-SYSTEM-ID as required by the application.

Building on z/OS

For more information about installing this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

The following are related user exits:

■ TIRALLOX

■ TIRPROUX

TIRUSRIX User ID Exit

z/OS Dialog Managers use the CA Gen User Identification Exit.

Source Code

The source code for this exit is in CA Gen CEHBSAMP library in member TIRIUSRX. The
sample exit provided is written in COBOL and uses standard OS Linkage.

z/OS Blockmode User Exits IMS

Chapter 4: z/OS User Exits 383

The Linkage Parameter list used by TIRIUSRX is as follows:

01 IO-PCB.

03 IO-PCB-LTERM PIC X(8).

03 FILLER PIC X(2).

03 IO-PCB-STATUS PIC X(2).

03 IO-PCB-INPUT-PREF.

05 IO-PCB-DATE PIC S9(7) COMP SYNC.

05 IO-PCB-TIME PIC S9(7) COMP SYNC.

05 IO-PCB-MSG-SEQ PIC S9(7) COMP.

03 IO-PCB-MAPNAME PIC X(8).

03 IO-PCB-USER-ID.

05 IO-PCB-USER-ID-C1 PIC X.

05 FILLER PIC X(7).

01 ALT-IO-PCB PIC X.

01 FILLER-PARM PIC X.

01 TIRUSRID-PARM.

05 IET-USER-ID PIC X(8).

05 IET-USER-ID2 PIC X(8).

Purpose

This exit is called by all IMS applications. The purpose of TIRUSRIX is to obtain the userid
and terminal ID of the executing application so that these values can be used as part of
the key for the DB2 Profile Table and in the application itself.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

I/O-PCB input This is IO-PCB automatically included if translated.

ALT-IO-PCB input This is ALT-IO-PCB automatically included if
translated.

FILLER-PARM input Not used.

TIRUSRID-PARM output A pointer to a structure containing the following
items:

 IET-USER-ID output The userid to be
used in the
application.

IET-USER-ID2 output The ID to be used
as part of the
Profile Table key.

z/OS Blockmode User Exits IMS

384 User Exit Reference Guide

Return Code

No explicit return code value is set by the user exit.

Default Processing

If the user ID from the IO-PCB is valid the exit returns its value for both fields otherwise
the terminal ID from the IO-PCB is returned for both fields.

Customizing the Exit

Copy the TIRUSRIX to one of your libraries and modify to populate either IET-USER-ID or
IET-USER-ID2 as required by the application.

Note: IET-USER-ID is used by the application as its User Identifier while IET-USER-ID2 is
used as part of the Key to the RPROF (Profile Manager) Table.

Building on z/OS

For more information about installing this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

TIRSECRX

TIRSECRX Security Interface Exit

z/OS Dialog Managers use the CA Gen Security Interface Exit.

Source Code

The sample source for this exit can be found in CA Gen CEHBSAMP library, in member
TIRSECRX. The sample exit provided is written in COBOL and uses standard OS Linkage.

z/OS Blockmode User Exits IMS

Chapter 4: z/OS User Exits 385

The Linkage Parameter list used by this exit is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 TIRSECR-CMCB.

03 TIRSECR-USERID PIC X(8).

03 TIRSECR-TRANCODE PIC X(8).

03 TIRSECR-TERMINAL-ID PIC X(8).

03 TIRSECR-SYSTEM-ID PIC X(8).

03 TIRSECR-LOAD-MODULE PIC X(8).

03 TIRSECR-PSTEP-NAME PIC X(32).

03 TIRSECR-DIALECT PIC X(32).

03 TIRSECR-RETURN-CODE PIC XX.

03 TIRSECR-FAILURE-MSG PIC X(80).

01 GLOBDATA size 3645 bytes.

Purpose

This exit is used by all IMS applications. The purpose of the TIRSECRX exit is to allow
transaction-level security checking to be implemented. The Dialog Manager calls the
Security Interface Exit when a transaction is started and before execution of a dialog
flow. This allows transaction-level security checking to be implemented. After it has
been enabled, the Dialog Manager executes the security interface exit automatically, at
the relevant points, without any intervention by a programmer, when invoking any load
modules in a business system.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input This is IO-PCB automatically included if
translated.

RUNTIME-PARM2 input This is ALT-IO-PCB automatically included if
translated.

TIRSECR-CMCB input/ output A structure containing the following items:

TIRSECR-USERID input The userid under which this
transaction is executing, as
provided by the TIRUSRIX exit.

TIRSECR-TRANCODE input The load module transaction
code.

 TIRSECR-TERMINAL-ID input The terminal ID used by this
transaction, spaces if this is a
non-terminal transaction.

z/OS Blockmode User Exits IMS

386 User Exit Reference Guide

Name I/O Description

TIRSECR-SYSTEM-ID input The system ID where this
transaction is executing, as
provided by the TIRSYSIX exit.

TIRSECR-LOAD-MODULE input The load module name.

 TIRSECR-PSTEP-NAME input The Procedure Step name.

TIRSECR-DIALECT input The dialect used by this
application.

TIRSECR-RETURN-CODE output A 2-byte character field
returning the result of the
security check. The following
values are supported:

SPACES—TIRSECR-ALL-OK

Anything else—failure

TIRSECR-FAILURE-MSG output An 80-byte character field, to
be populated by this exit, to
describe the failure with a
message of choice.

Return Code

Update TIRSECR-RETURN-CODE with the relevant value.

Default Processing

The default processing of this exit is to do no security checking and to return
TIRSECR-ALL-OK as the return code.

Customizing the Exit

Copy the TIRSECRX exit to one of your libraries and modify to perform security checking
as required by the application. Ensure that TIRSECR-RETURN-CODE is set to spaces when
the security check is successful or some other value to indicate failure. If a message
describing the violation is returned in TIRSECR-FAILURE-MSG, the Dialog Manager will
pass it to TIRTERMA.

Building on z/OS

For information about installing this exit, see MKUEXITS in Customizing and Installing
z/OS User Exits.

z/OS Blockmode User Exits IMS

Chapter 4: z/OS User Exits 387

Related User Exits

The following are related user exits:

■ TIRUSRIX

■ TIRSECVX

■ TIRELOGX

■ TIRTERMA

TIRDATX Date and Time Services Exit

z/OS Dialog Managers use the CA Gen Date and Time Services Exit.The Date and Time
Services Exit can be used to intercept, adjust, or validate system dates and times. This
exit is provided to allow user modification and customization of date and time
processing.

Source Code

The source code for this exit is in the Gen CEHBSAMP library in member TIRDATX. The
sample exit provided is written in Assembler and uses standard OS Linkage.

The parameter list used by TIRDATX is as follows:

PARMRT1 DS A

PARMRT2 DS A

PARMCMCB DS A

PARMWORK DS A

PARMGDTA DS A

Purpose

This exit receives control for some but not all date and time services. Only services that
acquire, or manipulate the date and time, where that date or time was acquired from
the system, or where validation is involved, invoke this exit.

This exit is not invoked for the following conditions:

■ Services involving conversion from one form to another does not invoke this exit.

■ If some error condition exists. For example, if the clock is not set, the date and time
services return the error directly to the requester and do not call this exit.

z/OS Blockmode User Exits IMS

388 User Exit Reference Guide

■ For validation, if the value is not valid, the failure is returned to the requester and
the exit is not called.

■ If this exit changes a date or time and requests re-validation, and the value is in
error, the error is returned to the requester and the exit is not called.

Note: If the date and time is modified by the exit, the exit must indicate this by
returning the appropriate return code. Return codes that are invalid (not one of the
listed values) will be ignored and the result is as if the exit returned zero (0). Therefore it
is imperative that you not take advantage of any behavioral aspects not explicitly
documented here or in the sample code since future releases could change the
operation.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

PARMRT1 input This is IO-PCB automatically included if
translated.

PARMRT2 input This is ALT-IO-PCB automatically
included if translated.

PARMCMCB input/ output Address of the Date Communication
Control Block

PARMWORK input/ output Address of a 256 byte workarea

PARMGDTA input Address of GLOBDATA

Return Code

Only some of the date and time services functions are available to this exit, these are
indicated by the value of the DREQ field. Before returning this exit must restore
registers 0-14 to their values on entry and update register 15 with the return code that
controls how the date and time services functions continue processing.The return code
varies depending on the request, as follows:

DREQ - Service Request DREQVAL

■ 0—Use the system date/time as stored in DCMCB. The exit has not modified
these values and accepts them as they are.

■ 4—The exit has modified the date/time stored in the DCMCB and requests that
the validation be re-executed for these values.

Note: The exit will be called again after validation is complete.

z/OS Blockmode User Exits IMS

Chapter 4: z/OS User Exits 389

■ 8—The exit has modified the date/time stored in the DCMCB and does not
require the values be re-validated. The modified values are returned to the
requester.

■ 12—The exit requests that the date/time service fail the request. This is
returned to the service requester as if the date and/or time were invalid.

DREQ - Service Request DREQSD, DREQAS, DREQVTS, and DREQST

■ 0—Use the system date/time as stored in DCMCB.

■ 4—The exit requests the date, time, or timestamp value be recomputed. If the
exit has modified any of these values, the modifications are discarded and the
values computed from the system clock. For DREQAS, the DINC value
represents the number of days to be added to the date. The exit is called again
after the date and time have been recomputed.

■ 8—The exit has modified the date/time stored in the DCMCB and does not
require the date/time services recompute the associated values. The modified
and unmodified values are returned to the service requester unchanged.

■ 12—The exit requests that the date/time service fail the request. This is the
same as if the clock was not set or was damaged.

Default Processing

Sample Code

Sample code has been provided as commented out blocks of code. This is as an
example only. To use the sample code, you must remove the comments. Sections
that are specific to a particular system, such as IMS, are indicated by comments
preceding and following the code. Common code that should be used by both
examples is also indicated.

The sample code provides the ability to respond to request code 1 (get system date)
and request code 7 (get current timestamp). The date information is read from a
file and is used to change the year, month, and day. The timestamp information
(hours, minutes, seconds, microseconds) is read and left unchanged.

z/OS Blockmode User Exits IMS

390 User Exit Reference Guide

Delivery Configuration

As configured, the sample code will read the required date from a file when
generated for IMS. This exit can also obtain values from DB2 table lookups.

To use this facility, you must change the source code to set a local variable as
appropriate. If IMS mode, use the assembler but do not use the preprocessor.

Registers

Register 14 contains the address that control is to be returned to, and Register 13
contains the address of a save area set up for the exit’s usage. All registers must be
saved on entry. Register 15 must be updated with the return code and all other
registers must be saved and restored on return.

Customizing the Exit

You can customize the exit to perform your specific needs. The following paragraphs
provide guidelines to be observed when modifying this exit. Be sure to read all notes
provided with the sample code for the latest information on using this exit.

DREQ Service Request

This exit uses operating system standard linkage. On return, registers 0 - 14 must be
restored to their values on entry. Register 15 contains a return code to control the
processing of the date and time services. The service request code is indicated in
the Date CMCB field, DREQ. The return codes and service requests are discussed
later in this section.

I/O Format

The format of input and output data are indicated in the CMCB fields DDATEF and
DTIMEF. These values should be examined to determine the format of the data to
be stored, or to be used as input by the exit.

z/OS Blockmode User Exits IMS

Chapter 4: z/OS User Exits 391

Fields in the Date CMCB

Other fields in the CMCB have various meanings and formats as described in the
following paragraphs.

DDATE

This field contains the binary date value. It is treated as a signed decimal number
and converted to binary. The format is specified by the field DDATEF and cannot be
changed. This field can be in one of the following formats:

■ YYYYMMDD—Four digit year, two digit month, and two digit day

■ YYMMDD—Two digit year (the century is omitted), two digit month, and two
digit day

■ CYYMMDD—One digit century code, two digit year, two digit month, and two
digit day

Note: The one digit century code (C) is a number from 0 to 9, inclusive. The century
ranges that can be represented are from 1600 to 2599, inclusive. The century codes
are: 0 = 19XX, 2 = 20XX, 3 = 22XX, 4 = 23XX, 5 = 24XX, 6 = 25XX, 7 = 16XX, 8 = 17XX,
and 9 = 18XX.

DDATEF

This field contains an indicator of the format of the DDATE field’s content and
cannot be changed.

DTIME

This field contains the binary time value. The time is treated as a signed decimal
number with the format HHMMSSTH, or HHMMSST, or HHMMSS with the following
conventions:

■ HH—Hours

■ MM—Minutes

■ SS—Seconds

■ T—Tenths of seconds

■ H—Hundredths of seconds

The format used is specified by the DTIMEF field.

z/OS Blockmode User Exits IMS

392 User Exit Reference Guide

DTIMEF

This field contains an indicator of the format of the DTIME field’s content and
cannot be changed.

DTSTAMP

This field contains the zoned decimal time stamp value in a fixed format of
YYYYMMDDHHMISSNNNNNN with the following conventions:

■ YYYY—Four-digit year

■ MM—Two-digit month

■ DD—Two-digit day

■ MI—Two-digit minutes

■ SS—Two-digit seconds

■ NNNNNN—Six-digit microseconds

DINC

This field contains a signed binary increment to be added to the date value in
DDATE when DREQAS service is requested. It is unused in all other cases. A negative
value will result in a date prior to the base date.

Testing the DREQ Field

The exit must test the DREQ field of the Date CMCB to determine the service
request made of the Date/Time routine. This is used to customize the exit based on
your needs. For example, if you wish to perform local validation of dates only, the
request of interest is DREQVAL. For all other requests, the exit must return a zero.

Modifying Date and Time

If the exit is used to modify date or time, the exit must modify the appropriate
fields for the service request. Different service requests use different areas of the
Date CMCB as their input, and place their output in various fields.

Service Requests Intercepted by the Date and Time Services Exit

The service requests intercepted by this exit are:

■ DREQVAL—Request date and/or time validation

■ DREQSD—Return the current system date and time

■ DREQAS—Add a specified increment to the date value

■ DREQST—Return the current timestamp

■ DREQVTS—Validate the timestamp provided

■ DREQST—Return the current system timestamp

z/OS Blockmode User Exits IMS

Chapter 4: z/OS User Exits 393

DREQ Return Codes

The return codes and their meanings vary for the different service requests
indicated in the DREQ field. Refer to the following paragraphs for the request,
return codes and meaning.

DREQ - Service Request DREQVAL

■ 0—Use the system date/time as stored in DCMCB. The exit has not modified
these values and accepts them as they are.

■ 4—The exit has modified the date/time stored in the DCMCB and requests that
the validation be re-executed for these values. Note that the exit will be called
again after validation is complete.

■ 8—The exit has modified the date/time stored in the DCMCB and does not
require the values be re-validated. The modified values are returned to the
requester.

■ 12—The exit requests that the date/time service fail the request. This is
returned to the service requester as if the date and/or time were invalid.

■ DREQ - Service Request DREQSD, DREQAS, DREQVST, and DREQST

■ 0—Use the system date/time as stored in DCMCB.

■ 4—The exit requests the date, time, or timestamp value be recomputed. If the
exit has modified any of these values, the modifications are discarded and the
values computed from the system clock. For DREQAS, the DINC value
represents the number of days to be added to the date. The exit is called again
after the date and time have been recomputed.

■ 8—The exit has modified the date/time stored in the DCMCB and does not
require the date/time services recompute the associated values. The modified
and unmodified values are returned to the service requester unchanged.

■ 12—The exit requests that the date/time service fail the request. This is the
same as if the clock was not set or was damaged. The following table describes
service requests and the fields they use:

Service Request
(DREQ)

Input Output Applicable Notes

DREQVAL DDATE, DTIME 1, 4, 5

DREQAS DDATE, DTIME,
DINC

DDATE, DTIME 2, 5

DREQVTS DREQSD DDATE, DTIME 2, 5

DREQST DTSTAMP, DDATE,

DTIME

2, 3, 5

z/OS Blockmode User Exits IMS

394 User Exit Reference Guide

Note:

1. Date and/or Time validation can be skipped if the appropriate field is set to zero.
For example, if DDATE is zero, then the Date validation is skipped.

2. Initial processing obtains the current date and time using the system clock and
adjusts the value based on the time zone adjustment. If the request is DREQAS,
then the DINC value is added to the number of days prior to computing the
Gregorian date, and then the DDATE / DTIME fields are computed. If the exit
requests that the values be reprocessed, any modification that the exit made to the
DDATE / DTIME fields is discarded and the values recomputed from the system
clock. DINC can be altered if the request was DREQAS.

3. If the request is DREQST, then the system time stamp values are computed from
the clock values.

4. Validation returns a code to the requester indicating the validity of the
date/time/time stamp. If the value is valid, the exit is called or recalled if the exit
requested the validation be reprocessed.

5. The formats of input and output data are indicated in the CMCB fields DDATEF and
DTIMEF. These values should be examined to determine the format of the data to
be stored, or to be used as input by the exit.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None

TIRDEVI Device Characteristics Exit

z/OS Dialog Managers use the CA Gen Device Characteristics Exit.

z/OS Blockmode User Exits IMS

Chapter 4: z/OS User Exits 395

Source Code

The source code for this exit is in the Gen CEHBSAMP library in member TIRDEVI. The
sample exit provided is written in Assembler and uses standard OS Linkage.

The parameter list used by TIRDEVI is as follows:

PARMRT1 DS A

PARMRT2 DS A

EXTATTRA DS A

DEVUSER DS A

DIALECT DS A

GLOBDATA DS A

Purpose

This exit is only used by Gen applications that use Standard Mapping facilities, not by
Enhanced Map.The Device Characteristics exit, TIRDEVI, is called every time a message is
sent from or received by an application. This exit provides the runtime data stream
processing routines for the definition of the specific device characteristics.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

IO-PCB Input Automatically included by the
Translator

ALT-IO-PCB Input Automatically included by the
Translator

DEVCAP Input/ output Device Characteristics

Parm 4 Input/ output TMOHDLCT (dialect)/workarea

GDTA Input Address of GLOBDATA

TMOHDLCT is a pointer to the eight-character dialect name as returned from the User
Dialect exit, TIRDLCTX. This value represents the current selected dialect. The default
exit returns a default dialect value for this parameter.

The DEVCAP is a pointer to a 256-byte structure defined for the return of the device
attributes.

z/OS Blockmode User Exits IMS

396 User Exit Reference Guide

Return Code

The Device Characteristic structure contains the returned device characteristics. The
fields in this structure are as follows:

EXTPARM

Returned Device Capabilities

MAXROWR DS H (24/32/43/27) maximum number of screen rows

MAXCOLR DS H (80/132) maximum number of screen columns

EXTDSR DS CL1 (0/255) 0= No Extended Data Stream support

EXTCLRR DS CL1 (0/255) 0= Base Color, 255 = Extended Color

EXTHIGHR DS CL1 (0/255) 0= No Highlight, 255 = Highlighting

EXTGRID DS CL1 (0/255) 0= No Grid Line, 255 = Grid Line

EXTDBCS DS CL1 (0/255) 0= No DBCS DISPLAY or ENTRY

EXTSCS8 DS CL1 (0/255) 0= No DBCS Set F8, SCS’8’ for DBCS

XMIXENT DS CL1 (0/255) 0= No Mixed (SBCS/DBCS) entry

XINEDIT DS CL1 (0/255) 0= No INPUT EDITING ATTRIBUTE support

XOUTXLAT DS A Pointer to 256 byte Output Translate Table

XINPXLAT DS A Pointer to 256 byte Input Translate Table

 DS CL235 Filler MUST BE ZERO

Default Processing

The maximum row and column values are derived from the 3270 model type. At this
time, CA Gen supports only IBM 3270 model 2 (24 x 80).

Extended Data Stream support and other extended attribute capabilities of the terminal
are derived from query or any other user defined method of retrieving the terminal
status. If Extended data stream is not enabled, then no extended data stream functions
are built into the outbound data stream. If Double Byte Character Support (DBCS) is not
enabled, then no DBCS data is placed in the outbound data stream. If MIXENT is not
enabled, all mixed entry fields are built as Single Byte Character Support (SBCS) only
fields in the data stream.

Additional information is available in the vendor documentation on National Language
Support (NLS).

z/OS Blockmode User Exits IMS

Chapter 4: z/OS User Exits 397

Translate Tables

The output (OUTXLAT) and input (INPXLAT) tables are standard 256 byte translate tables
in a format suitable for the translate (TR) operations code (op code). OUTXLAT is used
when the current device does not support the same code page as the application and
encyclopedia. This means that a difference exists in the code points for the encyclopedia
and application database and the code points for the device. The translate table needs
to convert the code points in the output data stream to the correct code points for the
current device to display the correct glyphs. INPXLAT is used when data is received from
the terminal to convert the code points back to the appropriate values for the
application database and encyclopedia.

If the device supports the same code page as the application and database, then
OUTXLAT and INPXLAT should be set to ZERO (0) to suppress any code point
conversion.

For example, if the current device is a Japanese 557x terminal supporting code page 930
(uppercase Roman only) and the application prompts contain lower case Roman letters,
the translate tables must perform inbound and outbound translations.

Outbound, the translate table performs monocasing (from lowercase to uppercase), and
translates the application database code points to the device code points. This displays
the correct glyphs on the device.

Inbound, the translate table translates the device code points to the application
database and encyclopedia code points for proper storage. This prevents corruption of
the data in the database.

To accomplish the translation process in the preceding example, set OUTXLAT to point
to a table that converts lowercase code points to uppercase. Set INPXLAT to a table that
translates device Katakana back into the code point values needed in the application
database.

Customizing the Exit

Copy the default exit from the CA Gen sample library to a separate library. The member
name is TIRDEVI. You can customize this exit to accept input from the User Dialect exit
(TIRDLCTX) to change the code page during production.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

TIRDLCTX

z/OS Blockmode User Exits IMS

398 User Exit Reference Guide

TIRDLCTX User Dialect Exit

z/OS Dialog Managers use the CA Gen User Dialect Exit.

Source Code

The source code for this exit is in the CA Gen CEHBSAMP library member TIRDLCTX. The
sample exit provided is written in COBOL and uses standard OS Linkage.

The Linkage Parameter list used by this exit is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 TIRDLCT-CMCB.

 03 TIRDLCT-USERID PIC X(8).

 03 TIRDLCT-TERMINAL-ID PIC X(8).

 03 TIRDLCT-SYSTEM-ID PIC X(8).

 03 TIRDLCT-RETURN-DIALECT PIC X(8).

01 GLOBDATA size 3645 bytes.

Purpose

This exit is used by all applications. The purpose of the TIRDLCTX exit is to supply the
current user’s dialect to the application. It is meaningful for multilingual applications.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input This is IO-PCB
automatically included if
translated.

RUNTIME-PARM2 input This is ALT-IO-PCB
automatically included if
translated.

TIRDLCT-CMCB input/ output A structure containing the
following items:

z/OS Blockmode User Exits IMS

Chapter 4: z/OS User Exits 399

Name I/O Description

TIRDLCT-USERID input The userid
under which
this
transaction is
executing, as
provided by
the TIRUSRIX
exit.

TIRDLCT-TERMINAL-ID input The terminal
ID used by this
transaction,
spaces if this is
a non-terminal
transaction.

 TIRDLCT-SYSTEM-ID input The system ID
where this
transaction is
executing, as
provided by
the TIRSYSIX
exit.

TIRDLCT-RETURN-DIALECT input The dialect
used by this
application.

Return Code

No explicit return code is set by the user exit.

Default Processing

The default processing of this exit is to return a dialect name of DEFAULT.

Customizing the Exit

Copy the default exit from the CA Gen CEHBSAMP library to one of your libraries. The
member name is TIRDLCTX. For multilingual support, modify this module to return the
appropriate dialect for a user. The dialect returned is the one selected using the Dialect
Definition option of the Design Toolset. If none is selected or returned, the default
dialect is used.

z/OS Blockmode User Exits IMS

400 User Exit Reference Guide

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

TIRDEVI

TIRUPPRX Uppercase Translation Exit

z/OS Dialog Managers use the CA Gen Uppercase Translation Exit. This exit is also called
the Lower-to-Uppercase Conversion Exit.

Source Code

This exit is used by single byte and double byte applications. When used by double byte
applications an alternate entry point TIRUPDBx is used. The source code for this for this
exit is in CA Gen CEHBSAMP library in member TIRUPPRX. The sample exit is written in
COBOL and uses OS linkage.

The Parameter list used by TIRUPPRX is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 XLATE-TABLE-NAME PIC X(8).

01 XLATE-LEN PIC S9(4) COMP.

01 XLATE-DATA PIC X(4096).

01 GLOBDATA size 3645 bytes.

Purpose

The purpose of the Uppercase Translation User Exit is to translate character input from
lowercase to uppercase. It contains a table of paired lower and uppercase characters.
This exit is called by the Dialog Manager to translate the lower caser trancode to upper
case, by the TIRFUPPR Function to translate the designated data to upper case and by
the Standard Map runtime to translate the identified input data to upper case.

z/OS Blockmode User Exits IMS

Chapter 4: z/OS User Exits 401

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input This is IO-PCB automatically included if
translated.

RUNTIME-PARM2 input This is ALT-IO-PCB automatically included
if translated.

XLATE-TABLE-NAME input Name of the translation table to be used.

XLATE-LEN input Length of data to be translated.

XLATE-DATA input/output Data to be translated.

GLOBDATA input Global data, used internally.

Return Code

No explicit return code value is defined for this exit.

Default Processing

The default processing of this exit is to convert lower case characters to upper case
using a table named DEFAULT that contains the English character set(A-Z).

Customizing the Exit

Copy the default exit from the CA Gen CEHBSAMP library to one of your own libraries.
The member name is TIRUPPRX.

The exit supports both single byte and double byte languages. Adding support for DBCS
is done in the same way as for single byte.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None.

z/OS Blockmode User Exits IMS

402 User Exit Reference Guide

TIRYYX Two-Digit Year Input Edit Exit

z/OS Dialog Managers use CA Gen Two-Digit Year Input Exit.

Source Code

The source code for this exit is in the CA Gen CEHBSAMP library member TIRYYX. The
sample exit provided is written in Assembler and uses standard OS Linkage.

The parameter list used by TIRYYX is as follows:

EXTCB DS A

WORKAREA DS A

GLOBDATA DS A

Purpose

This exit is used by CA Gen Standard Map applications only. The purpose of the TIRYYX
exit is to process two-digit or YY-style date input and set the century part using any
chosen algorithm to implement logic to handle the century part of the date.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

EXITCB input Address of the Date Communication
Control Block

WORKAREA input Address of a 256 byte workarea

GLOBDATA input Address of GLOBDATA

Return Code

Before returning this exit must restore registers 0-14 to their values on entry and
update register 15 with a value of 4 to indicate that the YY modified by the exit should
be used. Any other value, including 0, indicates the original values passed to the exit are
acceptable to continue processing.

Default Processing

The exit contains sample code for 2 algorithms but neither are executed. By default the
exit returns a value of 0, indicating that no changes were done by the exit.

z/OS Blockmode User Exits IMS

Chapter 4: z/OS User Exits 403

Customizing the Exit

Copy the TIRYYX exit to one of your libraries.

Internally, CA Gen handles four-digit year dates correctly assuming the user application
uses a YYYY edit pattern throughout. If the user interface is designed to accept a
two-digit date entry, and defaulting to the current century is not acceptable, use this
exit to implement logic to get the required behavior for defaulting the century part of
the date. The exit is called to process either a DATE or TIMESTAMP field which utilizes a
2-digit year (YY) in the edit pattern associated with the field. An indicator is set in the
exit control block to indicate if the value is a date or timestamp.

Modify the exit to use one of the provided algorithms or add your own as required by
your applications.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None.

TIRTERMA Termination Exit

The CA Gen Termination Exit is called by z/OS Dialog Managers when a fatal runtime
error is encountered.

Source Code

TIRTERMA Termination Exit is used by all non-cooperative applications targeting z/OS.
The source code is in CA Gen CEHBSAMP library, in member TIRTERMA. The sample exit
provided is written in COBOL and uses standard OS Linkage.

The parameters passed between the fail routine and the termination exits are defined
via structure TERM-EXIT-PARM-LIST. This structure is included via copy member
CBLTERM, which is also in the CEHBSAMP library.

The Linkage Parameter list used by TIRTERMA is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 TERM-EXIT-PARM-LIST structure defined in CBLTERM.

01 GLOBDATA size 3645 bytes.

z/OS Blockmode User Exits IMS

404 User Exit Reference Guide

Purpose

The purpose of the TIRTERMA exit is to control how fatal runtime errors are handled by
the Dialog Manager.

Runtime errors are either fatal or non-fatal errors. When a non-fatal error occurs, such
as invalid user input, the Dialog Manager displays an error message on the transaction
screen. You can correct the error and continue processing the transaction.

When a fatal error occurs, transaction processing is terminated. The Dialog Manager
executes a fail routine that backs out changes by performing the necessary rollbacks of
the databases. The fail routine then calls the termination exit that determines what
diagnostic (error) information is displayed and where it is displayed.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input This is DFHEIBLK automatically included if
translated.

RUNTIME-PARM2 input This is DFHCOMMAREA automatically
included if translated.

TERM-EXIT-PARM-LIST input/ output Structure of parameters for termination
and failure routine. The items in this
structure are described in the CBLTERM
Field Definitions. Description of these
fields follow.

GLOBDATA input Global data, used internally.

The structure TERM-EXIT-PARM-LIST is defined via copy member CBLTERM. Two items
in this structure control processing. These items are:TERM-STATUS-CODE

When TIRFAIL calls TIRTERMA, TERM-STATUS-CODE is used to control what TIRFAIL does
next.

The following table provides a description of each TERM-STATUS-CODE value:

Value Description

’ ’ (space) or 0 (zero) TIRFAIL displays the message and redisplays the previous
screen with TERM-DEFAULT-MSG in the error message field.

z/OS Blockmode User Exits IMS

Chapter 4: z/OS User Exits 405

Value Description

1 This value indicates that TIRTIRMA has handled the messages
and will not display them. It will, however, redisplay the
previous screen with TERM-DEFAULT-MSG in the error
message field.

2 Thisvalue indicates that TIRTIRMA has handled everything.
TIRFAIL does not display the messages and does not redisplay
the previous screen.

TERM-FAIL-TYPE

The following table contains a description of TERM-FAIL-TYPE errors:

Error Value Description

TERM-FAIL-DB2 P A DB2 error occurred while accessing the
RPROF (profile) table.

TERM-FAIL-IEC I An internal Gen error occurred in the
Dialog Manager.

TERM-FAIL-EXEC E A database error occurred in an action
block or procedure.

TERM-FAIL-DIALOG D A non-database error occurred in the
Dialog Manager.

TERM-FAIL-TSQ Q An error occurred while accessing the CICS
temporary storage queue profile table.

Remaining Fields

The remaining CBLTERM fields are described in the table:

Field Description

TERM-ERROR-ACTION-NAME Contains the name of the action block.

z/OS Blockmode User Exits IMS

406 User Exit Reference Guide

Field Description

TERM-DEFAULT-MSG This is an output field that by default
contains the following message:

TIRM000E: SYSTEM ERROR OCCURRED -
CONTACT SUPPORT

The message can be changed in the
termination exit to anything meaningful to
the user. For online procedures with a
screen, the message is visible in the error
message field when the screen is
redisplayed.

TERM-SYSTEM-PRINTER Printer TERMID if the action block
executed a PRINTER TERMINAL IS
statement.

TERM-ERROR-ENCOUNTERED-SW Indicates the message:

TIRM037E: ** A FATAL ERROR HAS BEEN
ENCOUNTERED **

TERM-VIEW-OVERFLOW-SW Indicates the message:

TIRM037E: ** FATAL VIEW OVERFLOW HAS
BEEN ENCOUNTERED **

TERM-ACTION-ID Is appended to the message:

TIRM034E: LAST OR CURRENT DATABASE
STATEMENT = ...

TERM-ATTRIBUTE-ID Is appended to the message:

TIRM040E: PERMITTED VALUES
MISMATCH, FIELD = F ...

TERM-STATUS-FLAG Produces the message:

TIRM038E: ** FATAL DATABASE ERROR
HAS BEEN ENCOUNTERED **

TERM-LAST-STATUS Is appended to the message:

TIRM039E: DB LAST STATUS = ...

TERM-TRACE-PTR This field is documented in online help
under the error message TIRM039E.

TERM-LAST-STATEMENTNUM Is appended to the message:

TIRM035E: CURRENT STATEMENT BEING
PROCESSED = ...

TERM-CURR-AB-ID Is appended to the message:

TIRM032E: LAST OR CURRENT ACTION
BLOCK ID = ...

z/OS Blockmode User Exits IMS

Chapter 4: z/OS User Exits 407

Field Description

TERM-CURR-AB-NAME Is appended to the message:

TIRM033E: LAST OR CURRENT ACTION
BLOCK NAME = ...

TERM-EABPCB-CNT,

TERM-EABPCB-ENTRY,

TERM-EABPCB-PTR

These fields describe PCB pointers. The
first is the IO-PCB, the second is the
ALTERNATE-IOPCB; the last is a database
pointer.

TERM-SQLCA-PTR Pointer to the SQLCA. To address the fields
in SQLCA, first define it in the Linkage
Section. Use the following example:

MY-SQLCA

FILLER

MY-SQL-CODE

FILLER

Then add a SET statement at the beginning
of the procedure division as shown :

SET ADDRESS OF MY-SQLCA TO
TERM-SQLCA-PTR

TERM-IEF-COMMAND The special field of COMMAND.

TERM-IEF-TRANCODE The special field of TRANCODE.

TERM-EXIT-STATE The exit state number.

TERM-EXIT-INFOMSG The exit state message.

TERM-USER-ID The special field of USERID.

TERM-TERMINAL-ID The special field of TERMID.

TERM-PRINTER-ID Represents the ID of the system printer.

TERM-DIALOG-MESSAGENUM The message number is the FAIL-MSG-NO
set be the Dialog Manager. See the
Messages Guide for the message
represented by the error code displayed.

TERM-OUTPUT-MESSAGE Before TIRFAIL calls TIRTERMA, it prepares
a table of messages that will display on
return from the exit if the
TERM-STATUS-CODE is a space or a zero.
These messages are available to the exit.
The last line with a message is followed by
a line of all spaces.

z/OS Blockmode User Exits IMS

408 User Exit Reference Guide

Field Description

TERM-DIALECT-NAME The current dialect

TERM-FAILURE-MESSAGE-TEXT The text of the failure message. This may
be moved to TERM-DEFAULT-MSG if you
want it displayed on the application screen
instead of the message:

TIRM000E: SYSTEM ERROR OCCURRED -
CONTACT SUPPORT

Return Code

TIRTERMA can return three valid status codes to the fail routine. They are used to
control what screens will be displayed to the user. For example, if you want to replace
the CA Gen error screen with your own and then return to the application screen, and
you can modify the code to return the application screen, you can modify the code to
return status code 1.

The following table provides a description:

Status Code Error Message Screen
Displayed

Application Screen
Displayed

1 No Yes

2 No No

0, blank or other (except 1
or 2)

Yes Yes

The skeleton exit contains example code for each of these status codes with the code
for ‘1’ and ‘2’ commented out.

Default Processing

If a runtime error occurs and the default termination exit is used, processing is as
follows:

1. The Dialog Manager performs all necessary rollbacks. This is done regardless of the
termination exit used.

2. The Dialog Manager fail routine calls the default termination exit. It returns to the
fail routine without doing anything, which causes the default termination logic in
the fail routine to be used.

z/OS Blockmode User Exits IMS

Chapter 4: z/OS User Exits 409

3. The CA Gen fail routine displays an error screen that lists the appropriate CA Gen
runtime error messages. See the following error message screen:

TIRM030E: APPLICATION FAILED ** UPDATES HAVE BEEN BACKED OUT

TIRM031E: FAILING PROCEDURE EXIT DATA FOLLOWS

TIRM032E: LAST OR CURRENT ACTION BLOCK ID = 507774696

TIRM033E: LAST OR CURRENT ACTION BLOCK NAME = ABADDEMP

TIRM034E: LAST OR CURRENT DATABASE STATEMENT =

TIRM035E: CURRENT STATEMENT BEING PROCESSED = 10

TIRM037E: ** A FATAL ERROR HAS BEEN ENCOUNTERED **

TIRM046E: *** TRANSACTION PROCESSING TERMINATED

TIRM044E: *** PRESS PA2 TO CONTINUE ***

4. When you press PA2 (NEXT PAGE key) from the error message screen, CA Gen
displays the last screen for the transaction that was being processed when the error
occurred.

If you are using the Testing Facility, the PA2 key is the ISPF NEXT PAGE key you
defined on the Test Environment Panel.

5. CA Gen recovers all data in the import views at the time the error occurred.
Therefore, all user input is recovered and displayed upon the screen. Screen fields
that are only in the export view may or may not be populated, depending on when
the error occurred.

6. An error message appears in the system error message area defined for the screen.
This message is distinct from the runtime error messages displayed on the error
message screen. The default error message is:

SYSTEM ERROR OCCURRED - CONTACT SUPPORT.

See the following illustration for an example of an application screen that is
displayed after an error has occurred.

z/OS Blockmode User Exits IMS

410 User Exit Reference Guide

7. The transaction is terminated, but the application remains active and the user can
continue with another transaction as shown in the following screen:

IEFSLSB CORPORATE MANAGEMENT

 EMPLOYEE MAINTENANCE

EMPLOYEE NUMBER: 123456 NAME: MICHAEL
WILSON

COST CENTER: 123 DEPARTMENT: 4

EMPLOYMENT DATE: 082596 STATUS: E

SALARY: 1234

ADDRESS: 7250 MICHIGAN PHONE: (214)
555-1414

CITY/STATE/ZIP: PARIS, TEXAS 73000 BIRTH DATE:
051067

F02=HELP F05=MAINMENU F07=ADDEMP2

TIRM000E: SYSTEM ERROR OCCURRED - CONTACT SUPPORT

Customizing the Exit

Copy Member TIRTERMA from the CA Gen CEHBSAMP library to one of your libraries.

Unlike the other user exits, the skeleton exit is not the source for the default exit in the
load library. In prior releases of CA Gen, the termination exit was written in Assembler
Language and named TIRTERM. The default exit TIRTERMA in the load library calls
TIRTERM for compatibility with prior releases.

When you have completed your modifications, install the exit.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None.

z/OS Blockmode User Exits IMS

Chapter 4: z/OS User Exits 411

TIRMTQB Runtime Message Table Exit

The Runtime Message Table Exit is called whenever a runtime error message is to be
displayed. It contains a table of the default CA Gen runtime error messages.

Source Code

The sample exit provided is written in COBOL and uses standard OS Linkage.

The Linkage Parameter list used by TIRMTQB is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 MSG-TABLE-NAME PIC X(8).

01 MSG-NUMBER PIC S9(4) COMP.

01 RETURN-MSG.

 03 RETURN-MSG-LENGTH PIC S9(4) COMP.

 03 RETURN-MSG-ID.

 05 FILLER PIC X(4).

 05 RETURN-MSG-NUM PIC 999.

 05 FILLER PIC X(4).

 03 RETURN-MSG-TEXT PIC X(245).

 01 GLOBDATA size 3645 bytes.

Purpose

This message table exit is called by the runtime when a system-level message is to be
displayed. The user can customize the wording of the messages within this exit.
Additional tables can also be defined to support other dialects.

The default table includes an entry for each CA Gen runtime error message. Each entry
includes the following information:

■ Message Number—The message number is permanently assigned by CA Gen. Each
message has a unique number.

■ Message Text—The message text is the actual words that appear on the application
screen when an error occurs. The message text, and any variable values that can be
appended, is truncated if it exceeds the length of the error message line defined for
the application screen. The error message line is a maximum of 80 characters of
which 12 are reserved for the message number.

If the message number is not in the table, TIRMTQB returns a default message.

z/OS Blockmode User Exits IMS

412 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input IO-PCB

RUNTIME-PARM2 input ALT-IO-PCB

MSG-TABLE-NAME

MSG-NUMBER

RETURN-MSG-LENGTH

FILLER

RETURN-MSG-NUM

RETURN-MSG-TEXT

GLOBDATA input Global data, used internally.

Return Code

TBD

Default Processing

The table in the default exit is used to retrieve runtime error message text.

Customizing the Exit

Copy the default exit from the CA Gen CEHBSAMP library to one of your libraries. The
member name is TIRMTQB2. The text of the messages can be customized the way you
want. Additional tables can be coded to support runtime error messages in other
dialects for multilingual applications. The table name to be used for a given dialect is
specified using the System Defaults option of the Design toolset.

When you have completed your modifications, install the exit.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None.

z/OS Blockmode User Exits IMS

Chapter 4: z/OS User Exits 413

TIRIDTRX IMS Server Debug LTERM

IMS Server Debug LTERM Information User Exit

Source Code

TBD

Purpose

Obtain information about the LTERM to be used for trace data produced by the new
dynamic runtime module TIRIRUNC.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

IO-PCB Input/ Output IO-PCB

ALT-IO-PCB Input/ Output ALT-IO-PCB

TIRTMXSZ Input/ Output max hex bytes of trace data that are stored
(display/printed)

TIRTLTRM Input/ Output LTERM where trace data is sent to

TIRTMODN Input/ Output MFS MODNAME of LTERM

Return Code

TIRTMXSZ exit returns zero; TIRTLTRM returns spaces; and TIRTMODN returns MFS
mode name DFS.EDT.

Default Processing

TBD

Customizing the Exit

TBD

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

z/OS Blockmode User Exits IMS

414 User Exit Reference Guide

Related User Exits

None.

TIRIEX Enhanced Map Input Edit Exit

TIRIEX is provided so that the user can modify the standard CA Gen input editing
function for the enhanced map generation mode.

Source Code

This exit is used by Enhanced Map Screens only. The source code for this exit is in CA
Gen CEHBSAMP library, in member TIRIEX. The sample exit provided is written in
Assembler and uses standard OS Linkage.

The Linkage Parameter list used by TIRIEX is as follows:

ARG_RT1 DS A I/O PCB OR EIB

ARG_RT2 DS A ALT I/O PCB OR COMMAREA

ARG_IEX_COMMAREA DS A PTR TO IEX COMM AREA

ARG_PATTR_DESC DS A PTR TO ATTRIBUTE DESCRIPTOR

ARG_PFIELD_DESC DS A PTR TO FIELD DESCRIPTOR

ARG_PIMAGE_DESC DS A PTR TO IMAGE DESCRIPTOR

ARG_PEP_DESC DS A PTR TO EDIT PATTERN DESC

ARG_PWORK DS A PTR TO 4K WORK AREA

ARGGDTA DS A GLOBDATA

Purpose

TIRIEX is provided so that the user can modify the standard Gen input editing function
for the enhanced map generation mode. The following types of data are inputs for this
exit:

■ Date

■ Time

■ Time Stamp

■ Numeric Data

■ Text

■ Picture (Numeric Text)

z/OS Blockmode User Exits IMS

Chapter 4: z/OS User Exits 415

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

ARG_RT1 input/ output IO-PCB

ARG_RT2 input/ output ALT-IO-PCB

ARG_IEX_COMMAREA input/ output Address of the exit control block

ARG_PATTR_DESC input/ output Address of attribute descriptor

ARG_PFIELD_DESC input/ output Address of the field descriptor

ARG_PIMAGE_DESC input/ output Address of the image descriptor

ARG_PEP_DESC input/ output Address of the edit pattern
descriptor

ARG_PWORK input/ output Reentrant work area

ARGGDTA input/ output Address of Globdata

Return Code

No explicit return code is set by the user exit.

Default Processing

The Default Input Edit Exit does not perform any processing.

Customizing the Exit

Modify the exit to perform the specific desired functions using the instructions in the
exit source code file.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

TIRIEXS Standard Map Input Edit Exit

The TIRIEXS exit is called by any blockmode application containing Standard Map
screens.

z/OS Blockmode User Exits IMS

416 User Exit Reference Guide

Source Code

The sample source for this exit can be found in member TIRIEXS in the CA Gen
CEHBSAMP library. The sample exit is written in COBOL and uses standard OS Linkage.

The Linkage Parameter list used by this exit is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 TIRIEXS-CMCB.

 03 TIRIEXS-RETURN-CODE PIC X.

 88 RC-ACCEPT VALUE '0'.

 88 RC-REJECT VALUE '1'.

 88 RC-REPROCESS VALUE '2'.

 88 RC-EXIT-VALUE VALUE '3'.

 88 RC-ERASE VALUE '4'.

 03 TIRIEXS-STATUS-CODE1 PIC X.

 88 SC-OK VALUE ' '.

 88 SC-FAIL-PENDING VALUE 'F'.

 03 TIRIEXS-STATUS-CODE2 PIC X.

 88 SC-FIRST-PASS VALUE '1'.

 88 SC-REENTER VALUE '2'.

 03 TIRIEXS-ERROR-MSG-NUMBER PIC S9(4) COMP

 03 INPUT-VALUE PIC X(256).

 03 INPUT-VALUE-CHAR

 REDEFINES INPUT-VALUE

 OCCURS 256 TIMES PIC X.

 03 FIELD-LENGTH PIC 9(4).

z/OS Blockmode User Exits IMS

Chapter 4: z/OS User Exits 417

 03 FIELD-FILL-CHAR PIC X(2).

 03 FIELD-BEGIN-ROWCOL PIC 9(8).

 03 FIELD-END-ROWCOL PIC 9(8).

 03 ATTRIBUTE-VALUE PIC X(256).

 03 ATTRIBUTE-VALUE-CHAR

 REDEFINES ATTRIBUTE-VALUE

 OCCURS 256 TIMES PIC X.

 03 ATTRIBUTE-LENGTH PIC 9(4).

 03 ATTRIBUTE-TYPE PIC X.

 88 ATTR-TEXT VALUE 'T'.

 88 ATTR-VARCHAR VALUE 'V'.

 88 ATTR-NUMERIC VALUE 'N'.

 03 ATTRIBUTE-DECIMAL-PLACES PIC 9(2).

 03 ATTRIBUTE-CASE-SENSITIVE PIC X.

 03 MAPNAME PIC X(8).

 03 MODNAME PIC X(8).

 03 DIALECT-NAME PIC X(8).

 03 DECIMAL-INDICATOR PIC X.

 03 THOUSANDS-INDICATOR PIC X.

 03 CURRENCY-INDICATOR PIC X.

 03 TXT-ORIENTATION PIC X.

 03 NUM-ORIENTATION PIC X.

 03 EDIT-PATTERN-CLASS PIC X.

 88 EPAT-ALPHANUMERIC VALUE 'T'.

 88 EPAT-NUMERIC VALUE 'N'.

z/OS Blockmode User Exits IMS

418 User Exit Reference Guide

 88 EPAT-DATE VALUE 'D'.

 88 EPAT-TIME VALUE 'M'.

 88 EPAT-TIMESTAMP VALUE 'Q'.

 88 EPAT-NONE VALUE ' '.

 03 FILLER PIC X(100).

01 GLOBDATA size 3645 bytes.

Purpose

TIRIEXS is provided to allow customization of the input editing behavior for Standard
Map screens. This exit is used by any blockmode application containing Standard Map
screens and is called for each input screen field.

Arguments

The following table gives a brief description of each of the arguments.

Name Input/
Output

Description

RUNTIME-PARM1 input DFHEIBLK (CICS)

I/O PCB (IMS)

Emulated I/O PCB (TSO)

RUNTIME-PARM2 input DFHCOMMAREA (CICS)

Alternate I/O PCB (IMS)

Emulated Alt I/O PCB (TSO)

TIRIEXS-CMCB input/output A structure containing the following
items:

z/OS Blockmode User Exits IMS

Chapter 4: z/OS User Exits 419

Name Input/
Output

Description

TIRIEXS-RETURN-CODE output The return value indicating what
action the exit wants the runtimes to
take for the current screen field.

RC-ACCEPT - The exit took no action
for the current screen field and
accepts the results of Gen's
validation. Normal processing will
continue.

RC-REJECT - The exit requests that the
value input in the current screen field
be marked in error. This return code
should only be used for screen fields
that have an edit pattern defined or
for screen fields mapped to view
attributes that are mandatory or that
have permitted values defined.

RC-REPROCESS - The exit modified
the value that was input in the
current screen field (INPUT-VALUE)
and requests that this modified input
value be revalidated.

RC-EXIT-VALUE - The exit modified
the value that was stored in the view
attribute mapped to the current
screen field (ATTRIBUTE-VALUE) and
requests that this modified attribute
value replace the value that was
determined by Gen. This modified
attribute value will not be
revalidated.

RC-ERASE - The exit requests that the
value input in the current screen field
be erased.

This return code should not be used
for screen fields mapped to
mandatory view attributes.

z/OS Blockmode User Exits IMS

420 User Exit Reference Guide

Name Input/
Output

Description

TIRIEXS-STATUS-CODE1 input The status of the validation
performed by Gen for the current
screen field.

SC-OK - The current screen field's
value is considered to be valid by
Gen's validation routines.

SC-FAIL-PENDING - The current
screen field's value is considered to
be invalid by Gen's validation
routines.

TIRIEXS-STATUS-CODE2 input The processing status of the current
screen field.

SC-FIRST-PASS - This indicates this is
the first time the exit has been called
for the current screen field.

SC-REENTER - This indicates the exit
has been called previously for the
current screen field and the exit
requested that the field be
reprocessed (RC-REPROCESS).

TIRIEXS-ERROR-MSG-NUMBER input The error message number
determined by Gen's validation
routines prior to calling the exit.

INPUT-VALUE input/output The value entered in the current
screen field. This value should be
modified by the exit if the exit returns
RC-REPROCESS.

FIELD-LENGTH input The length of the current screen field.

FIELD-FILL-CHAR input The fill character defined for current
screen field.

FIELD-BEGIN-ROWCOL input The beginning row and column of the
current screen field.

FIELD-END-ROWCOL input The ending row and column of the
current screen field.

ATTRIBUTE-VALUE input/output The value to be stored in the view
attribute mapped to the current
screen field. This value should be
modified by the exit if the exit returns
RC-EXIT-VALUE.

z/OS Blockmode User Exits IMS

Chapter 4: z/OS User Exits 421

Name Input/
Output

Description

ATTRIBUTE-LENGTH input The length of the view attribute
mapped to the current screen field.

ATTRIBUTE-TYPE input The datatype of the view attribute
mapped to the current screen field.

ATTR-TEXT - A fixed-length text
attribute.

ATTR-VARCHAR - A varying-length
text attribute.

ATTR-NUMERIC - A numeric attribute.

ATTRIBUTE-DECIMAL-PLACES input The number of decimal places
defined for the view attribute
mapped to the current screen field.

ATTRIBUTE-CASE-SENSITIVE input The case sensitivity property defined
for the view attribute mapped to the
current screen field.

MAPNAME input The name of the current screen.

MODNAME input The modname of the current screen.

DIALECT-NAME input The name of the dialect used by the
current screen.

DECIMAL-INDICATOR input The character used to represent the
decimal place in the current dialect.

THOUSANDS-INDICATOR input The character used to represent the
thousands separator in the current
dialect.

CURRENCY-INDICATOR input The character used to represent the
currency symbol in the current
dialect.

TXT-ORIENTATION input The orientation of text fields in the
current dialect.

NUM-ORIENTATION input The orientation of numeric fields in
the current dialect.

z/OS Blockmode User Exits TSO

422 User Exit Reference Guide

Name Input/
Output

Description

EDIT-PATTERN-CLASS input The edit pattern class for the current
screen field.

EPAT-ALPHANUMERIC - An
alphanumeric edit pattern.

EPAT-NUMERIC - A numeric edit
pattern.

EPAT-DATE - A date edit pattern.

EPAT-TIME - A time edit pattern.

EPAT-TIMESTAMP - A timestamp edit
pattern.

EPAT-NONE - No edit pattern is
defined for the current screen field.

FILLER input Filler, for future use

GLOBDATA input Global data, used internally

Return Code

Update TIRIEXS-RETURN-CODE with the relevant value.

Default Processing

The default processing of this exit is to take no action for the current screen field and
return RC-ACCEPT in TIRIEXS-RETURN-CODE.

Customizing the Exit

Copy the TIRIEXS exit to one of your libraries and modify the exit to perform the desired
input editing behavior.

Building on z/OS

For information about installing this exit, see MKUEXITS in Customizing and Installing
z/OS User Exits.

z/OS Blockmode User Exits TSO

TIRTIARX DB2 Message Exit

z/OS Dialog Managers use the CA Gen DB2 Message Exit.

z/OS Blockmode User Exits TSO

Chapter 4: z/OS User Exits 423

Source Code

The DB2 Message Exit is used by all applications targeting DB2 database on z/OS. The
source code for this exit’s TSO application is in CA Gen CEHBSAMP library, in member
TIRITIAX. The sample exit provided is written in COBOL and uses standard OS Linkage.

LINKAGE SECTION

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 TIRFAIL-SQLCA PIC X.

01 TIRTIAR-ERRORS PIC X.

01 TIRTIAR-TEXT-LEN PIC X.

01 TIRTIAR-WORKAREA PIC X.

01 GLOBDATA size 3645 bytes.

Purpose

The TIRFAIL subroutine of the Dialog Manager calls the DB2 Message exit, TIRTIARX,
whenever an unrecoverable DB2 failure occurs. TIRTIARX then calls the subroutine
DSNTIAR to convert the SQL code into text. The messages returned by DSNTIAR are then
merged with the runtime error messages.

TIRTIARX exit must be a DLL in order to be invoked by Gen applications, even by those
using Compatibility option. DSNTIAR and DSNTIAC are provided by IBM as non-DLL
modules. Therefore they need to be invoked by via TIRLGLOD.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input Emulated IO-PCB

RUNTIME-PARM2 input Emulated ALT-IO-PCB

TIRFAIL-SQLCA input SQLCA

TIRTIAR-ERRORS input Error message lines.

TIRTIAR-TEXT-LEN input Length of one error message line.

TIRTIAR-WORKAREA input Workarea.

GLOBDATA input Global data, used internally.

Return Code

No explicit return code is set by the user exit.

z/OS Blockmode User Exits TSO

424 User Exit Reference Guide

Default Behavior

As provided by CA Gen, the default exit dynamically calls DSNTIAR and is compatible
with prior releases. However the sample code also contains examples of how to call
DSNTIAR or DSNTIAC statically.

The call to TIRTIARX is made when TIRFAIL is building the table of messages and occurs
prior to calling the default termination exit. For more information, see the Online
Termination Exit and Batch Termination Exit.

Customizing the DB2 Message Exit

Copy the default exit to one of your own libraries. The member name for IMS is
TIRITIAX. The default exit includes example code for the two possible combinations of
calls. There are dynamic and static calls of DSNTIAR. Simply comment out the default
call and remove the comments from the one you want to use.

When you have completed your modifications, install your exit.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None.

TIRIRTRX Default Retry Limit Exit

z/OS Dialog Managers for TSO and IEFAE blockmode applications use the CA Gen Default
Retry Limit Exit.

Source Code

This exit is used by IMS and IEFAE blockmode applications only. The source code for this
exit is in CA Gen CEHBSAMP library, in member TIRIRTRX. The sample exit provided is
written in COBOL and uses standard OS Linkage.

The Linkage Parameter list used by TIRIRTRX is as follows:

01 RUNTIME-PARM1 PIC X

01 RUNTIME-PARM2 PIC X.

01 RETRY-TIMES PIC S9(4) COMP.

01 GLOBDATA size 3645 bytes.

z/OS Blockmode User Exits TSO

Chapter 4: z/OS User Exits 425

Purpose

This exit is called at the beginning of a CA Gen IMS or IEFAE blockmode application to
enable the defined default value for the TRANSACTION RETRY LIMIT system attribute to
be modified.

TRANSACTION RETRY LIMIT will be initialized to this value at the beginning of each new
transaction. This value may subsequently be modified by a SET TRANSACTION RETRY
LIMIT statement in an action diagram. TRANSACTION RETRY LIMIT is used to specify the
maximum number of times a transaction is to be retried when one of the following
events occurs:

■ A RETRY TRANSACTION action diagram statement executes.

■ A deadlock or timeout occurs trying to access a database, and no WHEN DATABASE
DEADLOCK OR TIMEOUT statement was provided for that entity action statement.
(This is not applicable for z/OS transactions running under IMS. An application
running under IMS that encounters a deadlock or timeout will be terminated
immediately by IMS itself, even if it has a WHEN DATABASE DEADLOCK OR
TIMEOUT statement provided.)

In either of these cases, any uncommitted database updates will be rolled back, and an
attempt will then be made to execute the application again. Once the number of retries,
as indicated by the TRANSACTION RETRY COUNT system attribute, reaches either
TRANSACTION RETRY LIMIT or the value specified by the Ultimate Retry Limit Exit, no
more retries can occur, and the application will fail with a runtime error if the last retry
attempt was unsuccessful.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input Emulated IO-PCB

RUNTIME-PARM2 input Emulated ALT-IO-PCB

RETRY-TIMES input/ output The maximum number of times the
transaction execution is retried.

GLOBDATA input Global data, used internally.

Return Code

No explicit return code is set by the user exit.

z/OS Blockmode User Exits TSO

426 User Exit Reference Guide

Default Processing

The default processing of this exit is not to modify the Default Retry Limit Exit, that is set
to 10. If the Default Retry Limit Exit is used, it must not return a value greater than that
specified in the Ultimate Retry Limit Exit.

Customizing the Exit

Modify the source code to set the RETRY-TIMES to the number of retries the
applications should use.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None.

TIRIURTX Ultimate Retry Limit Exit

Ultimate Retry Limit Exit for TSO.

Source Code

The source code for this exits is in CA Gen CEHBSAMP library in member TIRCURTX. The
sample exit is written in COBOL and uses standard OS linkage.

The Linkage Parameter list used by TIRCURTX is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 ULTIMATE-RETRY-LIMIT PIC S9(9) COMP.

01 GLOBDATA size 3645 bytes

Purpose

The Ultimate Retry Limit Exit is used by all applications targeting DB2 database on z/OS.
The Ultimate Retry Limit Exit allows the user to specify a maximum value for the
TRANSACTION RETRY LIMIT system attribute. This value may never be exceeded, either
by a SET TRANSACTION RETRY LIMIT statement in an action diagram, or by the Default
Retry Limit Exit.

z/OS Blockmode User Exits TSO

Chapter 4: z/OS User Exits 427

For an explanation of when and how the TRANSACTION RETRY LIMIT system attribute is
used see Default Retry Limit Exit in this chapter.

This exit provides a safeguard in case the system attribute TRANSACTION RETRY LIMIT is
set to an excessive value by an action diagram. Once the number of retries, as indicated
by the TRANSACTION RETRY COUNT system attribute, reaches either TRANSACTION
RETRY LIMIT or the value specified by the Ultimate Retry Limit Exit, no more retries can
occur, and the application will fail with a runtime error if the last retry attempt was
unsuccessful.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 Input/
output

Emulated IO-PCB

RUNTIME-PARM2 Input/
output

Emulated ALT-IO-PCB

ULTIMATE-RETRY-LIMIT Input/
output

The absolute limit which is defaulted to
99

GLOBDATA Input Global data, used internally.

Return Code

No explicit return code is set by the user exit.

Default Processing

If the Ultimate Retry Limit Exit is not modified, the maximum value of TRANSACTION
RETRY LIMIT will be 99. The Ultimate Retry Limit Exit may be modified to return a value
of zero to suppress all retry attempts.

Customizing the Exit

Copy TIRIURTX exit to one of your libraries or directories. For TSO and IEFAE; applies
only when RETRY TRANSACTION statement executes.

Modify the copied exit as needed. When you have completed your modifications, install
the exit as described in Customizing and Installing z/OS User Exits.

z/OS Blockmode User Exits TSO

428 User Exit Reference Guide

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None.

TIRSYSIX System ID Exit

z/OS Dialog Managers use the CA Gen System Identification Exit.

Source Code

The source code for this exit is in CA Gen CEHBSAMP library in member TIRTSYSX. The
sample exit provided is written in COBOL and uses standard OS Linkage.

The Linkage Parameter list used by TIRSYSIX is as follows:

LINKAGE SECTION.

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 LOCAL-SYSTEM-ID PIC X(8)

Purpose

The purpose of TIRSYSIX is to enable logic that lets the same application be
implemented on multiple systems and perform processing specific to each system
targeted.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input Emulated IO-PCB

RUNTIME-PARM2 input Emulated ALT-IO-PCB

LOCAL-SYSTEM-ID output The identifier of the system where the
application is executing.

Return Code

No explicit return code is set by the user exit.

z/OS Blockmode User Exits TSO

Chapter 4: z/OS User Exits 429

Default Processing

The literal TSO is returned.

Customizing the Exit

TIRSYSIX can be modified to populate the LOCAL-SYSTEM-ID as required by the
application.

Building on z/OS

For more information about installing this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

The following are related user exits:

■ TIRALLOX

■ TIRPROUX

TIRUSRIX User ID Exit

z/OS Dialog Managers use the CA Gen User Identification Exit.

Source Code

The source code for this exit is in CA Gen CEHBSAMP library in member TIRIUSRX. The
sample exit provided is written in COBOL and uses standard OS Linkage.

z/OS Blockmode User Exits TSO

430 User Exit Reference Guide

The Linkage Parameter list used by TIRIUSRX is as follows:

01 IO-PCB.

03 IO-PCB-LTERM PIC X(8).

03 FILLER PIC X(2).

03 IO-PCB-STATUS PIC X(2).

03 IO-PCB-INPUT-PREF.

05 IO-PCB-DATE PIC S9(7) COMP SYNC.

05 IO-PCB-TIME PIC S9(7) COMP SYNC.

05 IO-PCB-MSG-SEQ PIC S9(7) COMP.

03 IO-PCB-MAPNAME PIC X(8).

03 IO-PCB-USER-ID.

05 IO-PCB-USER-ID-C1 PIC X.

05 FILLER PIC X(7).

01 ALT-IO-PCB PIC X.

01 FILLER-PARM PIC X.

01 TIRUSRID-PARM.

05 IET-USER-ID PIC X(8).

05 IET-USER-ID2 PIC X(8).

Purpose

The purpose of TIRUSRIX is to obtain the userid and terminal ID of the executing
application so that these values can be used as part of the key for the DB2 Profile Table
and in the application itself.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input Emulated IO-PCB

RUNTIME-PARM2 input Emulated ALT-IO-PCB

FILLER-PARM input Not used.

TIRUSRID-PARM output A pointer to a structure containing the
following items:

 IET-USER-ID output The userid to be
used in the
application.

 IET-USER-ID2 output The ID to be used
as part of the
Profile Table key.

z/OS Blockmode User Exits TSO

Chapter 4: z/OS User Exits 431

Name I/O Description

Return Code

No explicit return code value is set by the user exit.

Default Processing

If the user ID from the IO-PCB is valid the exit returns its value for both fields otherwise
the terminal ID from the IO-PCB is returned for both fields.

Customizing the Exit

Copy the TIRUSRIX to one of your libraries and modify to populate either IET-USER-ID or
IET-USER-ID2 as required by the application.

Note: IET-USER-ID is used by the application as its User Identifier while IET-USER-ID2 is
used as part of the Key to the RPROF (Profile Manager) Table.

Building on z/OS

For more information about installing this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

TIRSECRX

TIRSECRX Security Interface Exit

z/OS Dialog Managers use the CA Gen Security Interface Exit.

Source Code

The sample source for this exit can be found in CA Gen CEHBSAMP library, in member
TIRSECRX. The sample exit provided is written in COBOL and uses standard OS Linkage.

z/OS Blockmode User Exits TSO

432 User Exit Reference Guide

The Linkage Parameter list used by this exit is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 TIRSECR-CMCB.

03 TIRSECR-USERID PIC X(8).

03 TIRSECR-TRANCODE PIC X(8).

03 TIRSECR-TERMINAL-ID PIC X(8).

03 TIRSECR-SYSTEM-ID PIC X(8).

03 TIRSECR-LOAD-MODULE PIC X(8).

03 TIRSECR-PSTEP-NAME PIC X(32).

03 TIRSECR-DIALECT PIC X(32).

03 TIRSECR-RETURN-CODE PIC XX.

03 TIRSECR-FAILURE-MSG PIC X(80).

01 GLOBDATA size 3645 bytes.

Purpose

This exit is called by both cooperative and non-cooperative applications to allow
transaction-level security checking to be implemented.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input Emulated IO-PCB

RUNTIME-PARM2 input Emulated ALT-IO-PCB

TIRSECR-CMCB input/ output A structure containing the
following items:

TIRSECR-USERID input The userid
under which
this
transaction is
executing, as
provided by
the TIRUSRIX
exit.

TIRSECR-TRANC
ODE

input The load
module
transaction
code.

z/OS Blockmode User Exits TSO

Chapter 4: z/OS User Exits 433

Name I/O Description

 TIRSECR-TERMIN
AL-ID

input The terminal
ID used by this
transaction,
spaces if this is
a non-terminal
transaction.

TIRSECR-SYSTEM
-ID

input The system ID
where this
transaction is
executing, as
provided by
the TIRSYSIX
exit.

TIRSECR-LOAD-
MODULE

input The load
module name.

 TIRSECR-PSTEP-
NAME

input The Procedure
Step name.

TIRSECR-DIALEC
T

input The dialect
used by this
application.

TIRSECR-RETUR
N-CODE

output A 2-byte
character field
returning the
result of the
security check.
The following
values are
supported:

SPACES—TIRSE
CR-ALL-OK

Anything
else—failure

TIRSECR-FAILUR
E-MSG

output An 80-byte
character field,
to be
populated by
this exit, to
describe the
failure with a
message of
choice.

z/OS Blockmode User Exits TSO

434 User Exit Reference Guide

Return Code

Update TIRSECR-RETURN-CODE with the relevant value.

Default Processing

The default processing of this exit is to do no security checking and to return
TIRSECR-ALL-OK as the return code.

Customizing the Exit

Copy the TIRSECRX exit to one of your libraries and modify to perform security checking
as required by the application. Ensure that TIRSECR-RETURN-CODE is set to spaces when
the security check is successful or some other value to indicate failure. If a message
describing the violation is returned in TIRSECR-FAILURE-MSG, the Dialog Manager will
pass it to TIRTERMA.

Building on z/OS

For information about installing this exit, see MKUEXITS in Customizing and Installing
z/OS User Exits.

Related User Exits

The following are related user exits:

■ TIRUSRIX

■ TIRSECVX

■ TIRELOGX

■ TIRTERMA

TIRDATX Date and Time Services Exit

z/OS Dialog Managers use the CA Gen Date and Time Services Exit.The Date and Time
Services Exit can be used to intercept, adjust, or validate system dates and times. This
exit is provided to allow user modification and customization of date and time
processing.

Source Code

The source code for this exit is in the Gen CEHBSAMP library in member TIRDATX. The
sample exit provided is written in Assembler and uses standard OS Linkage.

z/OS Blockmode User Exits TSO

Chapter 4: z/OS User Exits 435

The parameter list used by TIRDATX is as follows:

PARMRT1 DS A

PARMRT2 DS A

PARMCMCB DS A

PARMWORK DS A

PARMGDTA DS A

Purpose

This exit receives control for some but not all date and time services. Only services that
acquire, or manipulate the date and time, where that date or time was acquired from
the system, or where validation is involved, invoke this exit.

This exit is not invoked for the following conditions:

■ Services involving conversion from one form to another does not invoke this exit.

■ If some error condition exists. For example, if the clock is not set, the date and time
services return the error directly to the requester and do not call this exit.

■ For validation, if the value is not valid, the failure is returned to the requester and
the exit is not called.

■ If this exit changes a date or time and requests re-validation, and the value is in
error, the error is returned to the requester and the exit is not called.

Note: If the date and time is modified by the exit, the exit must indicate this by
returning the appropriate return code. Return codes that are invalid (not one of the
listed values) will be ignored and the result is as if the exit returned zero (0). Therefore it
is imperative that you not take advantage of any behavioral aspects not explicitly
documented here or in the sample code since future releases could change the
operation.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

PARMRT1 input/ output EIB or IO PCB

PARMRT2 input/ output COMMAREA or Alt IO PCB

PARMCMCB input/ output Address of the Date Communication
Control Block

PARMWORK input/ output Address of a 256 byte workarea

PARMGDTA input/ output Address of GLOBDATA

z/OS Blockmode User Exits TSO

436 User Exit Reference Guide

Return Code

Default Processing

Sample Code

Sample code has been provided as commented out blocks of code. This is as an
example only. To use the sample code, you must remove the comments. Sections
that are specific to a particular system, such as TSO, are indicated by comments
preceding and following the code. Common code that should be used by both
examples is also indicated.

The sample code provides the ability to respond to request code 1 (get system date)
and request code 7 (get current timestamp). The date information is read from a
file and is used to change the year, month, and day. The timestamp information
(hours, minutes, seconds, microseconds) is read and left unchanged.

Delivery Configuration

As configured, the sample code that will read the required date from a file when
generated for TSO. This exit can also obtain values from DB2 table lookups.

To use this facility, you must change the source code to set the variable as
appropriate. For TSO mode, use the assembler but do not use the preprocessor.

Registers

Register 14 contains the address that control is to be returned to, and Register 13
contains the address of a savearea set up for the exit’s usage. All other registers
must be saved and restored on return.

Customizing the Exit

You can customize the exit to perform your specific needs. The following paragraphs
provide guidelines to be observed when modifying this exit. Be sure to read all notes
provided with the sample code for the latest information on using this exit.

DREQ Service Request

This exit uses operating system standard linkage. On return, registers 0 - 14 must be
restored to their values on entry. Register 15 contains a return code to control the
processing of the date and time services. The service request code is indicated in
the Date CMCB field, DREQ. The return codes and service requests are discussed
later in this section.

I/O Format

The format of input and output data are indicated in the CMCB fields DDATEF and
DTIMEF. These values should be examined to determine the format of the data to
be stored, or to be used as input by the exit.

z/OS Blockmode User Exits TSO

Chapter 4: z/OS User Exits 437

Fields in the Date CMCB

Other fields in the CMCB have various meanings and formats as described in the
following paragraphs.

DDATE

This field contains the binary date value. It is treated as a signed decimal number
and converted to binary. The format is specified by the field DDATEF and cannot be
changed. This field can be in one of the following formats:

■ YYYYMMDD—Four digit year, two digit month, and two digit day

■ YYMMDD—Two digit year (the century is omitted), two digit month, and two
digit day

■ CYYMMDD—One digit century code, two digit year, two digit month, and two
digit day

Note: The one digit century code (C) is a number from 0 to 9, inclusive. The century
ranges that can be represented are from 1600 to 2599, inclusive. The century codes
are: 0 = 19XX, 2 = 20XX, 3 = 22XX, 4 = 23XX, 5 = 24XX, 6 = 25XX, 7 = 16XX, 8 = 17XX,
and 9 = 18XX.

DDATEF

This field contains an indicator of the format of the DDATE field’s content and
cannot be changed.

DTIME

This field contains the binary time value. The time is treated as a signed decimal
number with the format HHMMSSTH, or HHMMSST, or HHMMSS with the following
conventions:

■ HH—Hours

■ MM—Minutes

■ SS—Seconds

■ T—Tenths of seconds

■ H—Hundredths of seconds

The format used is specified by the DTIMEF field.

z/OS Blockmode User Exits TSO

438 User Exit Reference Guide

DTIMEF

This field contains an indicator of the format of the DTIME field’s content and
cannot be changed.

DTSTAMP

This field contains the zoned decimal time stamp value in a fixed format of
YYYYMMDDHHMISSNNNNNN with the following conventions:

■ YYYY—Four-digit year

■ MM—Two-digit month

■ DD—Two-digit day

■ MI—Two-digit minutes

■ SS—Two-digit seconds

■ NNNNNN—Six-digit microseconds

DINC

This field contains a signed binary increment to be added to the date value in
DDATE when DREQAS service is requested. It is unused in all other cases. A negative
value will result in a date prior to the base date.

Testing the DREQ Field

The exit must test the DREQ field of the Date CMCB to determine the service
request made of the Date/Time routine. This is used to customize the exit based on
your needs. For example, if you wish to perform local validation of dates only, the
request of interest is DREQVAL. For all other requests, the exit must return a zero.

Modifying Date and Time

If the exit is used to modify date or time, the exit must modify the appropriate
fields for the service request. Different service requests use different areas of the
Date CMCB as their input, and place their output in various fields.

Service Requests Intercepted by the Date and Time Services Exit

The service requests intercepted by this exit are:

■ DREQVAL—Request date and/or time validation

■ DREQSD—Return the current system date and time

■ DREQAS—Add a specified increment to the date value

■ DREQST—Return the current timestamp

■ DREQVTS—Validate the timestamp provided

■ DREQST—Return the current system timestamp

z/OS Blockmode User Exits TSO

Chapter 4: z/OS User Exits 439

DREQ Return Codes

The return codes and their meanings vary for the different service requests
indicated in the DREQ field. Refer to the following paragraphs for the request,
return codes and meaning.

DREQ - Service Request DREQVAL

■ 0—Use the system date/time as stored in DCMCB. The exit has not modified
these values and accepts them as they are.

■ 4—The exit has modified the date/time stored in the DCMCB and requests that
the validation be re-executed for these values. Note that the exit will be called
again after validation is complete.

■ 8—The exit has modified the date/time stored in the DCMCB and does not
require the values be re-validated. The modified values are returned to the
requester.

■ 12—The exit requests that the date/time service fail the request. This is
returned to the service requester as if the date and/or time were invalid.

■ DREQ - Service Request DREQSD, DREQAS, DREQVST, and DREQST

■ 0—Use the system date/time as stored in DCMCB.

■ 4—The exit requests the date, time, or timestamp value be recomputed. If the
exit has modified any of these values, the modifications are discarded and the
values computed from the system clock. For DREQAS, the DINC value
represents the number of days to be added to the date. The exit is called again
after the date and time have been recomputed.

■ 8—The exit has modified the date/time stored in the DCMCB and does not
require the date/time services recompute the associated values. The modified
and unmodified values are returned to the service requester unchanged.

■ 12—The exit requests that the date/time service fail the request. This is the
same as if the clock was not set or was damaged. The following table describes
service requests and the fields they use:

Service Request
(DREQ)

Input Output Applicable Notes

DREQVAL DDATE, DTIME 1, 4, 5

DREQAS DDATE, DTIME,
DINC

DDATE, DTIME 2, 5

DREQVTS DREQSD DDATE, DTIME 2, 5

DREQST DTSTAMP, DDATE,

DTIME

2, 3, 5

z/OS Blockmode User Exits TSO

440 User Exit Reference Guide

Note:

1. Date and/or Time validation can be skipped if the appropriate field is set to zero.
For example, if DDATE is zero, then the Date validation is skipped.

2. Initial processing obtains the current date and time using the system clock and
adjusts the value based on the time zone adjustment. If the request is DREQAS,
then the DINC value is added to the number of days prior to computing the
Gregorian date, and then the DDATE / DTIME fields are computed. If the exit
requests that the values be reprocessed, any modification that the exit made to the
DDATE / DTIME fields is discarded and the values recomputed from the system
clock. DINC can be altered if the request was DREQAS.

3. If the request is DREQST, then the system time stamp values are computed from
the clock values.

4. Validation returns a code to the requester indicating the validity of the
date/time/time stamp. If the value is valid, the exit is called or recalled if the exit
requested the validation be reprocessed.

5. The formats of input and output data are indicated in the CMCB fields DDATEF and
DTIMEF. These values should be examined to determine the format of the data to
be stored, or to be used as input by the exit.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None

TIRDEVT Device Characteristics Exit

Device Characteristics exit for TSO

Source Code

TIRDEVT exit is written in IBM Macro Assembly so it can use system service calls that are
not available through COBOL.

On entry, register 1 addresses an OS-standard argument list, consisting of five
arguments. These are as follows:

1. Address of emulated IO-PCB.

2. Address of emulated ALT-IO-PCB.

z/OS Blockmode User Exits TSO

Chapter 4: z/OS User Exits 441

3. Address of the device capabilities information data area to be modified by this exit
and returned to the caller.

4. The address of an 8-byte field containing the name of the current dialect.

5. GLOBDATA

Purpose

The Device Characteristics exit, TIRDEV, is called every time a message is sent from or
received by an application. This exit provides the runtime data stream processing
routines for the definition of the specific device capabilities.

Arguments

Five pointer parameters are passed when this routine is called. The parameters for TSO
are defined in the following table.

Name I/O Description

Parm 1 Input/output emulated IO-PCB

Parm 2 Input/output emulated ALT-IO-PCB

Parm 3 Input/output Return characteristic

Parm 4 Input/output TMOHDLCT (dialect)

Parm 5 Input/output GLOBDATA

TMOHDLCT is a pointer to the eight-character dialect name as returned from the User
Dialect exit, TIRDLCTX. This value represents the current selected dialect. The default
exit returns a default dialect value for this parameter.

The RETURN CHARACTERISTIC is a pointer to a 256-byte structure defined by CA Gen for
return of the device capabilities

Return Code

The RETURN CHARACTERISTIC structure returns the device capabilities. The fields in this
structure are as follows:

EXTPARM

Returned Device Capabilities

MAXROWR DS H (24/32/43/27) maximum number of screen rows

MAXCOLR DS H (80/132) maximum number of screen columns

EXTDSR DS CL1 (0/255) 0= No Extended Data Stream support

z/OS Blockmode User Exits TSO

442 User Exit Reference Guide

EXTPARM

Returned Device Capabilities

EXTCLRR DS CL1 (0/255) 0= Base Color, 255 = Extended Color

EXTHIGHR DS CL1 (0/255) 0= No Highlight, 255 = Highlighting

EXTGRID DS CL1 (0/255) 0= No Grid Line, 255 = Grid Line

EXTDBCS DS CL1 (0/255) 0= No DBCS DISPLAY or ENTRY

EXTSCS8 DS CL1 (0/255) 0= No DBCS Set F8, SCS’8’ for DBCS

XMIXENT DS CL1 (0/255) 0= No Mixed (SBCS/DBCS) entry

XINEDIT DS CL1 (0/255) 0= No INPUT EDITING ATTRIBUTE support

XOUTXLAT DS A Pointer to 256 byte Output Translate Table

XINPXLAT DS A Pointer to 256 byte Input Translate Table

 DS CL235 Filler MUST BE ZERO

Default Processing

The maximum row and column values are derived from the 3270 model type. At this
time, CA Gen supports only IBM 3270 model 2 (24 x 80).

Extended Data Stream support and other extended attribute capabilities of the terminal
are derived from query or any other user defined method of retrieving the terminal
status. If Extended data stream is not enabled, then no extended data stream functions
are built into the outbound data stream. If Double Byte Character Support (DBCS) is not
enabled, then no DBCS data is placed in the outbound data stream. If MIXENT is not
enabled, all mixed entry fields are built as Single Byte Character Support (SBCS) only
fields in the data stream.

Additional information is available in the vendor documentation on National Language
Support (NLS).

z/OS Blockmode User Exits TSO

Chapter 4: z/OS User Exits 443

Translate Tables

The output (OUTXLAT) and input (INPXLAT) tables are standard 256 byte translate tables
in a format suitable for the translate (TR) operations code (op code). OUTXLAT is used
when the current device does not support the same code page as the application and
encyclopedia. This means that a difference exists in the code points for the encyclopedia
and application database and the code points for the device. The translate table needs
to convert the code points in the output data stream to the correct code points for the
current device to display the correct glyphs. INPXLAT is used when data is received from
the terminal to convert the code points back to the appropriate values for the
application database and encyclopedia.

If the device supports the same code page as the application and database, then
OUTXLAT and INPXLAT should be set to ZERO (0) to suppress any code point
conversion.

For example, if the current device is a Japanese 557x terminal supporting code page 930
(uppercase Roman only) and the application prompts contain lower case Roman letters,
the translate tables must perform inbound and outbound translations.

Outbound, the translate table performs monocasing (from lowercase to uppercase), and
translates the application database code points to the device code points. This displays
the correct glyphs on the device.

Inbound, the translate table translates the device code points to the application
database and encyclopedia code points for proper storage. This prevents corruption of
the data in the database.

To accomplish the translation process in the preceding example, set OUTXLAT to point
to a table that converts lowercase code points to uppercase. Set INPXLAT to a table that
translates device Katakana back into the code point values needed in the application
database.

Customizing the Exit

Copy the default exit from the CA Gen sample library to a separate library. The member
name is TIRDEVT. You can customize this exit to accept input from the User Dialect exit
(TIRDLCTX) to change the code page during production.

When you have completed your modifications, install the exit as described in the section
on customizing user exits.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

z/OS Blockmode User Exits TSO

444 User Exit Reference Guide

Related User Exits

None.

TIRDLCTX User Dialect Exit

z/OS Dialog Managers use the CA Gen User Dialect Exit.

Source Code

The source code for this exit is in the CA Gen CEHBSAMP library member TIRDLCTX. The
sample exit provided is written in COBOL and uses standard OS Linkage.

The Linkage Parameter list used by this exit is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 TIRDLCT-CMCB.

 03 TIRDLCT-USERID PIC X(8).

 03 TIRDLCT-TERMINAL-ID PIC X(8).

 03 TIRDLCT-SYSTEM-ID PIC X(8).

 03 TIRDLCT-RETURN-DIALECT PIC X(8).

01 GLOBDATA size 3645 bytes.

Purpose

This exit is used by all applications. The purpose of the TIRDLCTX exit is to supply the
current user’s dialect to the application. It is meaningful for multilingual applications.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input This is DFHEIBLK automatically included if
translated.

RUNTIME-PARM2 input This is DFHCOMMAREA automatically
included if translated.

TIRDLCT-CMCB input/ output A structure containing the following
items:

z/OS Blockmode User Exits TSO

Chapter 4: z/OS User Exits 445

Name I/O Description

TIRDLCT-USERID input The userid under which
this transaction is
executing, as provided by
the TIRUSRIX exit.

TIRDLCT-TERMINAL-ID input The terminal ID used by
this transaction, spaces if
this is a non-terminal
transaction.

 TIRDLCT-SYSTEM-ID input The system ID where this
transaction is executing, as
provided by the TIRSYSIX
exit.

TIRDLCT-RETURN-DIALECT input The dialect used by this
application.

Return Code

No explicit return code is set by the user exit.

Default Processing

The default processing of this exit is to return a dialect name of DEFAULT.

Customizing the Exit

Copy the default exit from the CA Gen CEHBSAMP library to one of your libraries. The
member name is TIRDLCTX. For multilingual support, modify this module to return the
appropriate dialect for a user. The dialect returned is the one selected using the Dialect
Definition option of the Design Toolset. If none is selected or returned, the default
dialect is used.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

TIRDEVC

z/OS Blockmode User Exits TSO

446 User Exit Reference Guide

TIRUPPRX Uppercase Translation Exit

z/OS Dialog Managers use the CA Gen Uppercase Translation Exit. This exit is also called
the Lower-to-Uppercase Conversion Exit.

Source Code

This exit is used by single byte and double byte applications. When used by double byte
applications an alternate entry point TIRUPDBx is used. The source code for this for this
exit is in CA Gen CEHBSAMP library in member TIRUPPRX. The sample exit is written in
COBOL and uses OS linkage.

The Parameter list used by TIRUPPRX is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 XLATE-TABLE-NAME PIC X(8).

01 XLATE-LEN PIC S9(4) COMP.

01 XLATE-DATA PIC X(4096).

01 GLOBDATA size 3645 bytes.

Purpose

The purpose of the Uppercase Translation User Exit is to translate character input from
lowercase to uppercase. It contains a table of paired lower and uppercase characters.
This exit is called by the Dialog Manager to translate the lower caser trancode to upper
case, by the TIRFUPPR Function to translate the designated data to upper case and by
the Standard Map runtime to translate the identified input data to upper case.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input This is DFHEIBLK automatically included
if translated.

RUNTIME-PARM2 input This is DFHCOMMAREA automatically
included if translated.

XLATE-TABLE-NAME input Name of the translation table to be used.

XLATE-LEN input Length of data to be translated.

XLATE-DATA input/output Data to be translated.

GLOBDATA input Global data, used internally.

z/OS Blockmode User Exits TSO

Chapter 4: z/OS User Exits 447

Return Code

No explicit return code value is defined for this exit.

Default Processing

The default processing of this exit is to convert lower case characters to upper case
using a table named DEFAULT that contains the English character set(A-Z).

Customizing the Exit

Copy the default exit from the CA Gen CEHBSAMP library to one of your own libraries.
The member name is TIRUPPRX.

The exit supports both single byte and double byte languages. Adding support for DBCS
is done in the same way as for single byte.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None.

TIRYYX Two-Digit Year Input Edit Exit

z/OS Dialog Managers use CA Gen Two-Digit Year Input Exit.

Source Code

The source code for this exit is in the CA Gen CEHBSAMP library member TIRYYX. The
sample exit provided is written in Assembler and uses standard OS Linkage.

The parameter list used by TIRYYX is as follows:

EXTCB DS A

WORKAREA DS A

GLOBDATA DS A

z/OS Blockmode User Exits TSO

448 User Exit Reference Guide

Purpose

This exit is used by CA Gen Standard Map applications only. The purpose of the TIRYYX
exit is to process two-digit or YY-style date input and set the century part using any
chosen algorithm to implement logic to handle the century part of the date.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

EXITCB input Address of the Date Communication
Control Block

WORKAREA input Address of a 256 byte workarea

GLOBDATA input Address of GLOBDATA

Return Code

Before returning this exit must restore registers 0-14 to their values on entry and
update register 15 with a value of 4 to indicate that the YY modified by the exit should
be used. Any other value, including 0, indicates the original values passed to the exit are
acceptable to continue processing.

Default Processing

The exit contains sample code for 2 algorithms but neither are executed. By default the
exit returns a value of 0, indicating that no changes were done by the exit.

Customizing the Exit

Copy the TIRYYX exit to one of your libraries.

Internally, CA Gen handles four-digit year dates correctly assuming the user application
uses a YYYY edit pattern throughout. If the user interface is designed to accept a
two-digit date entry, and defaulting to the current century is not acceptable, use this
exit to implement logic to get the required behavior for defaulting the century part of
the date. The exit is called to process either a DATE or TIMESTAMP field which utilizes a
2-digit year (YY) in the edit pattern associated with the field. An indicator is set in the
exit control block to indicate if the value is a date or timestamp.

Modify the exit to use one of the provided algorithms or add your own as required by
your applications.

z/OS Blockmode User Exits TSO

Chapter 4: z/OS User Exits 449

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None.

TIRMTQB Runtime Message Table Exit

The Runtime Message Table Exit is called whenever a runtime error message is to be
displayed. It contains a table of the default CA Gen runtime error messages.

Source Code

The sample exit provided is written in COBOL and uses standard OS Linkage.

The Linkage Parameter list used by TIRMTQB is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 MSG-TABLE-NAME PIC X(8).

01 MSG-NUMBER PIC S9(4) COMP.

01 RETURN-MSG.

 03 RETURN-MSG-LENGTH PIC S9(4) COMP.

 03 RETURN-MSG-ID.

 05 FILLER PIC X(4).

 05 RETURN-MSG-NUM PIC 999.

 05 FILLER PIC X(4).

 03 RETURN-MSG-TEXT PIC X(245).

 01 GLOBDATA size 3645 bytes.

Purpose

This message table exit is called by the runtime when a system-level message is to be
displayed. The user can customize the wording of the messages within this exit.
Additional tables can also be defined to support other dialects.

The default table includes an entry for each CA Gen runtime error message. Each entry
includes the following information:

■ Message Number—The message number is permanently assigned by CA Gen. Each
message has a unique number.

z/OS Blockmode User Exits TSO

450 User Exit Reference Guide

■ Message Text—The message text is the actual words that appear on the application
screen when an error occurs. The message text, and any variable values that can be
appended, is truncated if it exceeds the length of the error message line defined for
the application screen. The error message line is a maximum of 80 characters of
which 12 are reserved for the message number.

If the message number is not in the table, TIRMTQB returns a default message.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input Emulated IO-PCB

RUNTIME-PARM2 input Emulated ALT-IO-PCB

MSG-TABLE-NAME

MSG-NUMBER

RETURN-MSG-LENGTH

FILLER

RETURN-MSG-NUM

RETURN-MSG-TEXT

GLOBDATA input Global data, used internally.

Return Code

TBD

Default Processing

The table in the default exit is used to retrieve runtime error message text.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None.

z/OS Blockmode User Exits TSO

Chapter 4: z/OS User Exits 451

TIRTERMA Termination Exit

The CA Gen Termination Exit is called by z/OS Dialog Managers when a fatal runtime
error is encountered.

Source Code

TIRTERMA Termination Exit is used by all non-cooperative applications targeting z/OS.
The source code is in CA Gen CEHBSAMP library, in member TIRTERMA. The sample exit
provided is written in COBOL and uses standard OS Linkage.

The parameters passed between the fail routine and the termination exits are defined
via structure TERM-EXIT-PARM-LIST. This structure is included via copy member
CBLTERM, which is also in the CEHBSAMP library.

The Linkage Parameter list used by TIRTERMA is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 TERM-EXIT-PARM-LIST structure defined in CBLTERM.

01 GLOBDATA size 3645 bytes.

Purpose

Runtime errors are handled by the Dialog Manager.

Runtime errors are either fatal or non-fatal errors. When a non-fatal error occurs, such
as invalid user input, the Dialog Manager displays an error message on the transaction
screen. You can correct the error and continue processing the transaction.

When a fatal error occurs, transaction processing is terminated. The Dialog Manager
executes a fail routine that backs out changes by performing the necessary rollbacks of
the databases. The fail routine then calls a termination exit that determines what
diagnostic (error) information is displayed and where it is displayed.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input/
output

This is the DFHEIBLK which is automatically
included if translated.

RUNTIME-PARM2 input/
output

This is the DFHCOMMAREA which is
automatically included if translated.

z/OS Blockmode User Exits TSO

452 User Exit Reference Guide

Name I/O Description

TERM-EXIT-PARM-LIST input/
output

Structure of parameters for termination and
failure routine. The items in this structure are
described in the below section called CBLTERM
Field Definitions.

GLOBDATA input Global data, used internally.

CBLTERM Field Definitions

The structure TERM-EXIT-PARM-LIST is defined via in copy member CBLTERM. The items
in this structure are as follows:

TERM-STATUS-CODE

When TIRFAIL calls TIRTERM(A/B), TERM-STATUS-CODE is used to control what TIRFAIL
does next.

The following table provides a description of each TERM-STATUS-CODE value:

Value Description

’ ’ (space) or 0 (zero) TIRFAIL displays the message and redisplays the previous
screen with TERM-DEFAULT-MSG in the error message field.

1 This value indicates that TIRTIRM(A/B) has handled the
messages and will not display them. It will, however, redisplay
the previous screen with TERM-DEFAULT-MSG in the error
message field.

2 Thisvalue indicates that TIRTIRM(A/B) has handled everything.
TIRFAIL does not display the messages and does not redisplay
the previous screen.

TERM-FAIL-TYPE

The following table contains a description of TERM-FAIL-TYPE errors:

Error Value Decription

TERM-FAIL-DB2 P A DB2 error occurred while accessing the RPROF
(profile) table.

TERM-FAIL-IEC I An AllFusion Gen error occurred in the Dialog Manager.

TERM-FAIL-EXEC E A database error occurred in an action block or
procedure.

z/OS Blockmode User Exits TSO

Chapter 4: z/OS User Exits 453

Error Value Decription

TERM-FAIL-DIALOG D A non-database error occurred in the Dialog Manager.

TERM-FAIL-TSQ Q An error occurred while accessing the CICS temporary
storage queue profile table.

Remaining Fields

The remaining CBLTERM fields are described in the table:

Field Description

TERM-ERROR-ACTIONNAME Contains the name of the action block.

TERM-DEFAULT-MSG This is an output field that by default contains the
following message:

TIRM000E: SYSTEM ERROR OCCURRED - CONTACT
SUPPORT

The message can be changed in the termination exit
to anything meaningful to the user. For online
procedures with a screen, the message is visible in the
error message field when the screen is redisplayed.

TERM-SYSTEM-PRINTER TERM-SYSTEM-PRINTER is valued with the printer
TERMID if the action block executed a PRINTER
TERMINAL IS statement.

TERM-ERRORENCOUNTERED-S
W

Indicates the message:

TIRM037E: ** A FATAL ERROR HAS BEEN
ENCOUNTERED **

TERM-VIEW-OVERFLOW-SW Indicates the message:

TIRM037E: ** FATAL VIEW OVERFLOW HAS BEEN
ENCOUNTERED **

TERM-ACTION-ID Is appended to the message:

TIRM034E: LAST OR CURRENT DATABASE STATEMENT
= ...

TERM-ATTRIBUTE-ID Is appended to the message:

TIRM040E: PERMITTED VALUES MISMATCH, FIELD = F
...

TERM-STATUS-FLAG Produces the message:

TIRM038E: ** FATAL DATABASE ERROR HAS BEEN
ENCOUNTERED **

TERM-LAST-STATUS Is appended to the message:

TIRM039E: DB LAST STATUS = ...

z/OS Blockmode User Exits TSO

454 User Exit Reference Guide

Field Description

TERM-TRACE-PTR This field is documented in online help under the
error message TIRM039E.

TERM-LAST-STATEMENTNUM Is appended to the message:

TIRM035E: CURRENT STATEMENT BEING PROCESSED
= ...

TERM-CURR-AB-ID Is appended to the message:

TIRM032E: LAST OR CURRENT ACTION BLOCK ID = ...

TERM-CURR-AB-NAME Is appended to the message:

TIRM033E: LAST OR CURRENT ACTION BLOCK NAME =
...

TERM-EABPCB-CNT,

TERM-EABPCB-ENTRY,

TERM-EABPCB-PTR

These fields describe PCB pointers. The first is the
IO-PCB, the second is the ALTERNATE-IOPCB; the last
is a database pointer.

TERM-SQLCA-PTR The following is a pointer to the SQLCA. The address
fields of the SQLCA, first define it in linkage. Use the
following example:

MY-SQLCA

FILLER

MY-SQL-CODE

FILLER

Then add a SET statement at the beginning of the
procedure division as shown :

SET ADDRESS OF MY-SQLCA TO TERM-SQLCA-PTR

TERM-IEF-COMMAND The special field of COMMAND.

TERM-IEF-TRANCODE The special field of TRANCODE.

TERM-EXIT-STATE The exit state number.

TERM-EXIT-INFOMSG The exit state message.

TERM-USER-ID The special field of USERID.

TERM-TRMINAL-ID The special field of TERMID.

TERM-PRINTER-ID Represents the ID of the system printer.

TERM-DIALOG-MESSAGENUM The message number is the FAIL-MSG-NO set be the
Dialog Manager. See the Messages Guide for the
message represented by the error code displayed.

z/OS Blockmode User Exits TSO

Chapter 4: z/OS User Exits 455

Field Description

TERM-OUTPUT-MESSAGE Prior to calling the termination exit, TIRFAIL, prepares
a table of messages that it will display on return from
the exit if the TERM-STATUSCODE is a space or a zero.
These messages are available to the exit. The last line
with a message is followed by a line of all spaces.

TERM-DIALECT-NAME The current dialect

TERM-FAILURE-MESSAGETEXT The text of the failure message. This may be moved to
TERM-DEFAULT-MSG if you want it displayed on the
application screen instead of the message:

TIRM000E: SYSTEM ERROR OCCURRED - CONTACT
SUPPORT

Return Code

TIRTERMA can return three valid status codes to the fail routine. They are used to
control what screens will be displayed to the user. For example, if you want to replace
the CA Gen error screen with your own and then return to the application screen, and
you can modify the code to return the application screen, you can modify the code to
return status code 1.

The following table provides a description:

Status Code Error Message Screen
Displayed

Application Screen
Displayed

1 No Yes

2 No No

0, blank, other (except 1
or 2)

Yes Yes

The skeleton exit contains example code for each of these status codes with the code
for ‘1’ and ‘2’ commented out.

Default Processing

If a runtime error occurs and the default termination exit is used, processing is as
follows:

1. The Dialog Manager performs all necessary rollbacks. This is done regardless of the
termination exit used.

2. The Dialog Manager fail routine calls the default termination exit. It returns to the
fail routine without doing anything, which causes the default termination logic in
the fail routine to be used.

z/OS Blockmode User Exits TSO

456 User Exit Reference Guide

3. The CA Gen fail routine displays an error screen that lists the appropriate CA Gen
runtime error messages. See the following error message screen:

TIRM030E: APPLICATION FAILED ** UPDATES HAVE BEEN BACKED OUT

TIRM031E: FAILING PROCEDURE EXIT DATA FOLLOWS

TIRM032E: LAST OR CURRENT ACTION BLOCK ID = 507774696

TIRM033E: LAST OR CURRENT ACTION BLOCK NAME = ABADDEMP

TIRM034E: LAST OR CURRENT DATABASE STATEMENT =

TIRM035E: CURRENT STATEMENT BEING PROCESSED = 10

TIRM037E: ** A FATAL ERROR HAS BEEN ENCOUNTERED **

TIRM046E: *** TRANSACTION PROCESSING TERMINATED

TIRM044E: *** PRESS PA2 TO CONTINUE ***

4. When you press PA2 (NEXT PAGE key) from the error message screen, CA Gen
displays the last screen for the transaction that was being processed when the error
occurred.

If you are using the Testing Facility, the PA2 key is the ISPF NEXT PAGE key you
defined on the Test Environment Panel.

5. CA Gen recovers all data in the import views at the time the error occurred.
Therefore, all user input is recovered and displayed upon the screen. Screen fields
that are only in the export view may or may not be populated, depending on when
the error occurred.

6. An error message appears in the system error message area defined for the screen.
This message is distinct from the runtime error messages displayed on the error
message screen. The default error message is:

SYSTEM ERROR OCCURRED - CONTACT SUPPORT.

See the following illustration for an example of an application screen that is
displayed after an error has occurred.

z/OS Blockmode User Exits TSO

Chapter 4: z/OS User Exits 457

7. The transaction is terminated, but the application remains active and the user can
continue with another transaction as shown in the following screen:

IEFSLSB CORPORATE MANAGEMENT

 EMPLOYEE MAINTENANCE

EMPLOYEE NUMBER: 123456 NAME: MICHAEL
WILSON

COST CENTER: 123 DEPARTMENT: 4

EMPLOYMENT DATE: 082596 STATUS: E

SALARY: 1234

ADDRESS: 7250 MICHIGAN PHONE: (214)
555-1414

CITY/STATE/ZIP: PARIS, TEXAS 73000 BIRTH DATE:
051067

F02=HELP F05=MAINMENU F07=ADDEMP2

TIRM000E: SYSTEM ERROR OCCURRED - CONTACT SUPPORT

Customizing the Exit

Copy Member TIRTERMA from the CA Gen CEHBSAMP library to one of your libraries.

Unlike the other user exits, the skeleton exit is not the source for the default exit in the
load library. In prior releases of CA Gen, the termination exit was written in Assembler
Language and named TIRTERM. The default exit TIRTERMA in the load library calls
TIRTERM for compatibility with prior releases.

When you have completed your modifications, install the exit.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None.

z/OS Blockmode User Exits TSO

458 User Exit Reference Guide

TIRIEX Enhanced Map Input Edit Exit

TIRIEX is provided so that the user can modify the standard CA Gen input editing
function for the enhanced map generation mode.

Source Code

This exit is used by Enhanced Map Screens only. The source code for this exit is in CA
Gen CEHBSAMP library, in member TIRIEX. The sample exit provided is written in
Assembler and uses standard OS Linkage.

The Linkage Parameter list used by TIRIEX is as follows:

ARG_RT1 DS A I/O PCB OR EIB

ARG_RT2 DS A ALT I/O PCB OR COMMAREA

ARG_IEX_COMMAREA DS A PTR TO IEX COMM AREA

ARG_PATTR_DESC DS A PTR TO ATTRIBUTE DESCRIPTOR

ARG_PFIELD_DESC DS A PTR TO FIELD DESCRIPTOR

ARG_PIMAGE_DESC DS A PTR TO IMAGE DESCRIPTOR

ARG_PEP_DESC DS A PTR TO EDIT PATTERN DESC

ARG_PWORK DS A PTR TO 4K WORK AREA

ARGGDTA DS A GLOBDATA

Purpose

TIRIEX is provided so that the user can modify the standard Gen input editing function
for the enhanced map generation mode. The following types of data are inputs for this
exit:

■ Date

■ Time

■ Time Stamp

■ Numeric Data

■ Text

■ Picture (Numeric Text)

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

ARG_RT1 input/ output Emulated IO-PCB

ARG_RT2 input/ output Emulated ALT-IO-PCB

z/OS Blockmode User Exits TSO

Chapter 4: z/OS User Exits 459

Name I/O Description

ARG_IEX_COMMAREA input/ output Address of the exit control block

ARG_PATTR_DESC input/ output Address of attribute descriptor

ARG_PFIELD_DESC input/ output Address of the field descriptor

ARG_PIMAGE_DESC input/ output Address of the image descriptor

ARG_PEP_DESC input/ output Address of the edit pattern descriptor

ARG_PWORK input/ output Reentrant work area

ARGGDTA input/ output Address of Globdata

Return Code

No explicit return code is set by the user exit.

Default Processing

The Default Input Edit Exit does not perform any processing.

Customizing the Exit

Modify the exit to perform the specific desired functions using the instructions in the
exit source code file.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

TIRIEXS Standard Map Input Edit Exit

The TIRIEXS exit is called by any blockmode application containing Standard Map
screens.

z/OS Blockmode User Exits TSO

460 User Exit Reference Guide

Source Code

The sample source for this exit can be found in member TIRIEXS in the CA Gen
CEHBSAMP library. The sample exit is written in COBOL and uses standard OS Linkage.

The Linkage Parameter list used by this exit is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 TIRIEXS-CMCB.

 03 TIRIEXS-RETURN-CODE PIC X.

 88 RC-ACCEPT VALUE '0'.

 88 RC-REJECT VALUE '1'.

 88 RC-REPROCESS VALUE '2'.

 88 RC-EXIT-VALUE VALUE '3'.

 88 RC-ERASE VALUE '4'.

 03 TIRIEXS-STATUS-CODE1 PIC X.

 88 SC-OK VALUE ' '.

 88 SC-FAIL-PENDING VALUE 'F'.

 03 TIRIEXS-STATUS-CODE2 PIC X.

 88 SC-FIRST-PASS VALUE '1'.

 88 SC-REENTER VALUE '2'.

 03 TIRIEXS-ERROR-MSG-NUMBER PIC S9(4) COMP

 03 INPUT-VALUE PIC X(256).

 03 INPUT-VALUE-CHAR

 REDEFINES INPUT-VALUE

 OCCURS 256 TIMES PIC X.

 03 FIELD-LENGTH PIC 9(4).

z/OS Blockmode User Exits TSO

Chapter 4: z/OS User Exits 461

 03 FIELD-FILL-CHAR PIC X(2).

 03 FIELD-BEGIN-ROWCOL PIC 9(8).

 03 FIELD-END-ROWCOL PIC 9(8).

 03 ATTRIBUTE-VALUE PIC X(256).

 03 ATTRIBUTE-VALUE-CHAR

 REDEFINES ATTRIBUTE-VALUE

 OCCURS 256 TIMES PIC X.

 03 ATTRIBUTE-LENGTH PIC 9(4).

 03 ATTRIBUTE-TYPE PIC X.

 88 ATTR-TEXT VALUE 'T'.

 88 ATTR-VARCHAR VALUE 'V'.

 88 ATTR-NUMERIC VALUE 'N'.

 03 ATTRIBUTE-DECIMAL-PLACES PIC 9(2).

 03 ATTRIBUTE-CASE-SENSITIVE PIC X.

 03 MAPNAME PIC X(8).

 03 MODNAME PIC X(8).

 03 DIALECT-NAME PIC X(8).

 03 DECIMAL-INDICATOR PIC X.

 03 THOUSANDS-INDICATOR PIC X.

 03 CURRENCY-INDICATOR PIC X.

 03 TXT-ORIENTATION PIC X.

 03 NUM-ORIENTATION PIC X.

 03 EDIT-PATTERN-CLASS PIC X.

 88 EPAT-ALPHANUMERIC VALUE 'T'.

 88 EPAT-NUMERIC VALUE 'N'.

z/OS Blockmode User Exits TSO

462 User Exit Reference Guide

 88 EPAT-DATE VALUE 'D'.

 88 EPAT-TIME VALUE 'M'.

 88 EPAT-TIMESTAMP VALUE 'Q'.

 88 EPAT-NONE VALUE ' '.

 03 FILLER PIC X(100).

01 GLOBDATA size 3645 bytes.

Purpose

TIRIEXS is provided to allow customization of the input editing behavior for Standard
Map screens. This exit is used by any blockmode application containing Standard Map
screens and is called for each input screen field.

Arguments

The following table gives a brief description of each of the arguments.

Name Input/
Output

Description

RUNTIME-PARM1 input DFHEIBLK (CICS)

I/O PCB (IMS)

Emulated I/O PCB (TSO)

RUNTIME-PARM2 input DFHCOMMAREA (CICS)

Alternate I/O PCB (IMS)

Emulated Alt I/O PCB (TSO)

TIRIEXS-CMCB input/output A structure containing the following
items:

z/OS Blockmode User Exits TSO

Chapter 4: z/OS User Exits 463

Name Input/
Output

Description

TIRIEXS-RETURN-CODE output The return value indicating what
action the exit wants the runtimes to
take for the current screen field.

RC-ACCEPT - The exit took no action
for the current screen field and
accepts the results of Gen's
validation. Normal processing will
continue.

RC-REJECT - The exit requests that the
value input in the current screen field
be marked in error. This return code
should only be used for screen fields
that have an edit pattern defined or
for screen fields mapped to view
attributes that are mandatory or that
have permitted values defined.

RC-REPROCESS - The exit modified
the value that was input in the
current screen field (INPUT-VALUE)
and requests that this modified input
value be revalidated.

RC-EXIT-VALUE - The exit modified
the value that was stored in the view
attribute mapped to the current
screen field (ATTRIBUTE-VALUE) and
requests that this modified attribute
value replace the value that was
determined by Gen. This modified
attribute value will not be
revalidated.

RC-ERASE - The exit requests that the
value input in the current screen field
be erased.

This return code should not be used
for screen fields mapped to
mandatory view attributes.

z/OS Blockmode User Exits TSO

464 User Exit Reference Guide

Name Input/
Output

Description

TIRIEXS-STATUS-CODE1 input The status of the validation
performed by Gen for the current
screen field.

SC-OK - The current screen field's
value is considered to be valid by
Gen's validation routines.

SC-FAIL-PENDING - The current
screen field's value is considered to
be invalid by Gen's validation
routines.

TIRIEXS-STATUS-CODE2 input The processing status of the current
screen field.

SC-FIRST-PASS - This indicates this is
the first time the exit has been called
for the current screen field.

SC-REENTER - This indicates the exit
has been called previously for the
current screen field and the exit
requested that the field be
reprocessed (RC-REPROCESS).

TIRIEXS-ERROR-MSG-NUMBER input The error message number
determined by Gen's validation
routines prior to calling the exit.

INPUT-VALUE input/output The value entered in the current
screen field. This value should be
modified by the exit if the exit returns
RC-REPROCESS.

FIELD-LENGTH input The length of the current screen field.

FIELD-FILL-CHAR input The fill character defined for current
screen field.

FIELD-BEGIN-ROWCOL input The beginning row and column of the
current screen field.

FIELD-END-ROWCOL input The ending row and column of the
current screen field.

ATTRIBUTE-VALUE input/output The value to be stored in the view
attribute mapped to the current
screen field. This value should be
modified by the exit if the exit returns
RC-EXIT-VALUE.

z/OS Blockmode User Exits TSO

Chapter 4: z/OS User Exits 465

Name Input/
Output

Description

ATTRIBUTE-LENGTH input The length of the view attribute
mapped to the current screen field.

ATTRIBUTE-TYPE input The datatype of the view attribute
mapped to the current screen field.

ATTR-TEXT - A fixed-length text
attribute.

ATTR-VARCHAR - A varying-length
text attribute.

ATTR-NUMERIC - A numeric attribute.

ATTRIBUTE-DECIMAL-PLACES input The number of decimal places
defined for the view attribute
mapped to the current screen field.

ATTRIBUTE-CASE-SENSITIVE input The case sensitivity property defined
for the view attribute mapped to the
current screen field.

MAPNAME input The name of the current screen.

MODNAME input The modname of the current screen.

DIALECT-NAME input The name of the dialect used by the
current screen.

DECIMAL-INDICATOR input The character used to represent the
decimal place in the current dialect.

THOUSANDS-INDICATOR input The character used to represent the
thousands separator in the current
dialect.

CURRENCY-INDICATOR input The character used to represent the
currency symbol in the current
dialect.

TXT-ORIENTATION input The orientation of text fields in the
current dialect.

NUM-ORIENTATION input The orientation of numeric fields in
the current dialect.

z/OS Blockmode User Exits TSO

466 User Exit Reference Guide

Name Input/
Output

Description

EDIT-PATTERN-CLASS input The edit pattern class for the current
screen field.

EPAT-ALPHANUMERIC - An
alphanumeric edit pattern.

EPAT-NUMERIC - A numeric edit
pattern.

EPAT-DATE - A date edit pattern.

EPAT-TIME - A time edit pattern.

EPAT-TIMESTAMP - A timestamp edit
pattern.

EPAT-NONE - No edit pattern is
defined for the current screen field.

FILLER input Filler, for future use

GLOBDATA input Global data, used internally

Return Code

Update TIRIEXS-RETURN-CODE with the relevant value.

Default Processing

The default processing of this exit is to take no action for the current screen field and
return RC-ACCEPT in TIRIEXS-RETURN-CODE.

Customizing the Exit

Copy the TIRIEXS exit to one of your libraries and modify the exit to perform the desired
input editing behavior.

Building on z/OS

For information about installing this exit, see MKUEXITS in Customizing and Installing
z/OS User Exits.

TIRIURTX Ultimate Retry Limit Exit

Ultimate Retry Limit Exit for TSO.

z/OS Blockmode User Exits TSO

Chapter 4: z/OS User Exits 467

Source Code

The source code for this exit is in CA Gen CEHBSAMP library in member TIRIURTX. The
sample exit is written in COBOL and uses standard OS linkage.

The Linkage Parameter list used by TIRIURTX is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 ULTIMATE-RETRY-LIMIT PIC S9(9) COMP.

01 GLOBDATA size 3645 bytes.

Purpose

The Ultimate Retry Limit Exit is used by all applications targeting DB2 database on z/OS.
The Ultimate Retry Limit Exit allows the user to specify a maximum value for the
TRANSACTION RETRY LIMIT system attribute. This value may never be exceeded, either
by a SET TRANSACTION RETRY LIMIT statement in an action diagram, or by the Default
Retry Limit Exit.

For an explanation of when and how the TRANSACTION RETRY LIMIT system attribute is
used see Default Retry Limit Exit in this chapter.

This exit provides a safeguard in case the system attribute TRANSACTION RETRY LIMIT is
set to an excessive value by an action diagram. Once the number of retries, as indicated
by the TRANSACTION RETRY COUNT system attribute, reaches either TRANSACTION
RETRY LIMIT or the value specified by the Ultimate Retry Limit Exit, no more retries can
occur, and the application will fail with a runtime error if the last retry attempt was
unsuccessful.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 Input Emulated IO-PCB

RUNTIME-PARM2 Input Emulated ALT-IO-PCB

ULTIMATE-RETRY-LIMIT Input/
output

The absolute limit which is defaulted to
99

GLOBDATA Input Global data, used internally.

Return Code

No explicit return code is set by the user exit.

z/OS Middleware User Exits CICS TCP/IP Direct Connect Exits

468 User Exit Reference Guide

Default Processing

If the Ultimate Retry Limit Exit is not modified, the maximum value of TRANSACTION
RETRY LIMIT will be 99. The Ultimate Retry Limit Exit may be modified to return a value
of zero to suppress all retry attempts.

Customizing the Exit

Copy TIRIURTX exit to one of your libraries or directories. For TSO and IEFAE; applies
only when RETRY TRANSACTION statement executes.

Modify the copied exit as needed. When you have completed your modifications, install
the exit as described in Customizing and Installing z/OS User Exits.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None.

z/OS Middleware User Exits CICS TCP/IP Direct Connect Exits

The CA Gen CICS TCP/IP Direct Connect product consisting of the TILSTNR and
TICONMGR has been stabilized and the CICS Sockets Server Listener, TISRVLIS,
implementation and the CICS Multi Socket Server Listener are provided.

The following table describes the Assembler exits invoked by the Sockets Server Listener
program:

CICS TCP/IP Direct Connect (TISRVLIS): Language: Assembler

User Exit Name Source Code Description

TIRSLEXT CEG8SAMP/TIRSLEXT CICS Sockets Server Listener
exit

TIRSLTMX CEG8SAMP/TIRSLTMX CICS Sockets Server Listener
Timeout exit

Details of the preceding user exits follow. Each one is described in a separate section

z/OS Middleware User Exits CICS TCP/IP Direct Connect Exits

Chapter 4: z/OS User Exits 469

TIRSLEXT CICS Sockets Server Listener Exit

The CA Gen CICS Sockets Server Listener Exit is used by the z/OS CICS user-written
Listener programs TISRVLIS and TISRVMSL, the CA Gen TCP/IP implementations.

Note: The TIRSLEXT exit routine is invoked by CICS Sockets Server Listener program
TISRVLIS and the CICS Multi Sockets Server Listener program TISRVMSL. The TIRSLEXT
exit is not invoked by CA Gen servers.

Source Code

The source code for this exit is in CA Gen CEG8SAMP library, in member TIRSLEXT. The
sample exit provided is written in ASSEMBLER and is invoked by TISRVLIS using an EXEC
CICS LINK API call.

Data used and returned by TIRSLEXT is passed in the COMMAREA as follows:

1. ASCII transaction code

2. EBCDIC transaction code

3. ASCII userid

4. EBCDIC userid

5. ASCII client code page

6. EBCDIC client code page

7. EBCDIC password

8. Enhanced Security Flag

9. Enhanced Type Flag

10. Check Flag

11. Security Flag

12. Client Port

13. Client IP Address

14. CICS System Id

15. Listener GIVESOCKET/TAKESOCKET TIMEOUT - Seconds

16. Listener GIVESOCKET/TAKESOCKET TIMEOUT – Microseconds

17. Server Termid

18. EXRC

The parameters are listed in the Arguments section.

z/OS Middleware User Exits CICS TCP/IP Direct Connect Exits

470 User Exit Reference Guide

Purpose

The user ID passed in the commarea section of the data is translated from the client's
ASCII to the server's EBCDIC code page. In addition, the exit provides the opportunity to
do the following:

■ Modify the user ID supplied by the client application before it is translated.

■ Validate the supplied, optionally modified, and translated security data through an
External Security Manager.

■ Verify that an enhanced security buffer exists.

■ Perform customer-specific security authorization.

■ Use the Port and IP Address data for customer-specific activities.

■ Provide a System ID to use to transaction route the server via the SYSID operand of
the EXEC CICS START API call.

■ Modify the value entered for the GIVTIME parameter in the EZACONFG file. This
value is used to populate the TIMEOUT Seconds parameter of the SELECT Sockets
API call used by the Listener to wait for the socket to be taken (using the
GIVESOCKET/TAKESOCKET process) by the server.

■ Provide a value to populate the TIMEOUT Microseconds parameter of the SELECT
Sockets API call used by the Listener to wait for the socket to be taken by the
server.

■ Provide a CICS TERMID to be used to start the server transaction.

■ Set the Check flag so that the servers are started with the NOCHECK parameter.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

ASCTRAN input The server load module ASCII transaction
code.

EBDTRAN input The server load module EBCDIC transaction
code.

ASCUID input The ASCII userid as supplied by the client.

EBDUID output The EBCDIC translated version of the ASCII
userid sent by the client, modified if
required.

ASCCOPG input The ASCII code page as supplied by the
client.

z/OS Middleware User Exits CICS TCP/IP Direct Connect Exits

Chapter 4: z/OS User Exits 471

Name I/O Description

EBDCODPG input The EBCDIC code page as supplied by the
client.

EBDPSW input The EBCDIC password as supplied by the
client.

ENHSCFLG input A flag indicating the presence of enhanced
security data.

ENHTPFLG input A flag indicating if the security data is
encrypted.

CHECKFLG input/output A flag indicating whether to use the
NOCHECK parameter.

RESERVED none Reserved.

SECFLAG output A flag indicating the result of the security
validation. The following values are
supported:

ZERO - SFUIDAUT (USERID-IS-AUTHORIZED)

709 – ECTYPINV
(ENCRYPTION-FLAG-NOT-SET)

902 - SFINVUID (INVALID-USER-ID)

903 - SFINVPSW (INVALID-PSWD)

904 - SFNTAUTF (NOT-AUTHORIZED-FOR-
FUNCTION)

905 - SFSYSUNV (SYSTEM-UNAVAILABLE)

906 - SFUIDSUS (USERID-SUSPENDED)

907 - SFPSWEXP (PSWD-EXPIRED)

908 - SFERROR (INTERNAL-ERROR)

PORT input The TCP/IP Port of the client.

IPADDR input The TCP/IP Address of the client.

CICS output CICS System Id to route the server to.

LGVTIMS input/output The Listener GIVESOCKET/TAKESOCKET
TIMEOUT value in seconds

LGVTIMM input/output The Listener GIVESOCKET/TAKESOCKET
TIMEOUT value in microseconds

STERMID output CICS TERMID to be used in the server START

EXRC output Return code field that is not used

z/OS Middleware User Exits CICS TCP/IP Direct Connect Exits

472 User Exit Reference Guide

Return Code

No explicit return code value is provided by the TIRSLEXT exit. CICS provides information
about the return from the CICS Program Link that indicates if TIRSLEXT exists and its
execution was successful. In addition, the values contained in the parameter list
addressed by the COMMAREA are returned.

Default Processing

The default processing of this exit is to translate the ASCII user ID to EBCDIC and set the
Security Flag to USERID-IS-AUTHORIZED. In addition the exit will return the value
received as input for the Listener GIVESOCKET/TAKESOCKET TIMEOUT – Seconds and
the CHECKFLG.

Customizing the Exit

This is an exit for TISRVLIS and TISRVMSL, not the server application. The exit is invoked
after TISRVLIS or TISRVMSL obtains a copy of the cooperative buffer header sent by each
client request and extracts the data required to start the server.

The ASCII user ID, as supplied by the client, can be modified by those users that include
special characters (excluding A-Z and 0-9) in their user ID fields. This ASCII user ID is then
translated to EBCDIC in the exit. If conversion of the security data to uppercase is
required, it can be done in this exit.

The variable 'CICS' can be set to the SYSID of the CICS region where the server is to be
routed to. If the value of the variable 'CICS' returned to TISRVLIS is the same as the
SYSID of the CICS region where TISRVLIS or TISRVMSL is executing, the EXEC CICS START
API command will not specify the SYSID parameter (a local START). If the value of the
variable 'CICS' returned is different, the returned value of the variable 'CICS' is used in
the START.

The Sockets Server implementation lets the server be routed to a CICS region different
from the one where the TISRVLIS or TISRVMSL listener is executing. Routing may be
invoked by using the SYSID where the server is to execute, as described above, or by
using Distributed Routing. Distributed Routing may be implemented via the DSRTPGM
program or the CICS transaction definition.

The CICS Sockets Interface must be active in the CICS region the server is routed to but
an active listener is not required in that CICS region.

This exit includes sample code that can be used to validate the user ID and password,
the presence of enhanced security data, the presence of encrypted data, or the
presence of encrypted and enhanced security data, to modify the Listener
Givesocket/Takesocket Timeout value, the value of the STERMID and the value of the
CHECKFLG.

z/OS Middleware User Exits CICS TCP/IP Direct Connect Exits

Chapter 4: z/OS User Exits 473

On input, the Listener GIVESOCKET/TAKESOCKET Timeout – Seconds value is the value
entered for the GIVTIME parameter in the EZACONFG file. This value is used to populate
the TIMEOUT Seconds parameter of the SELECT Sockets API call used by the Listener to
wait for the socket to be taken (using the GIVESOCKET/TAKESOCKET process) by the
server. Since the EZACONFG file does not capture the equivalent Microseconds value,
the only opportunity to provide a value for this parameter is in this exit.

If the STERMID variable is updated with a CICS Terminal ID, the Server START TRANSID
will include the TERMID parameter. Note that in this case the USERID will not be
specified and a server started this way will inherit the USERID of the Listener.

Use the STERMID option if you are migrating from TICONMGR and used this feature in
that implementation. The TIRCSGN user exit is provided for the same reason.

On input, the CHECKFLG is set to Y which means to start the server transaction with
CHECK. If you wish a remotely started transaction to be started with NOCHECK, set the
flag to N. You can also use the EDBTRAN to decide the value of the flag.

Modify the exit to execute the desired validation code.

Building on z/OS

For information about installing the exit, see MKUECTCP in Customizing and Installing
z/OS User Exits.

Ensure the new TIRSLEXT module is made available in the DFHRPL concatenation and if
applicable issue a NEW COPY command for the TIRSLEXT program in CICS. The Socket
Server Listener does not need to be stopped and restarted to use the new version of
TIRSLEXT.

Related User Exits

■ TIRSLTMX

■ TIRSIPEX

TIRSLTMX CICS Sockets Server Listener TIMEOUT Exit

The CA Gen CICS Sockets Server Listener Timeout Exit is used by the z/OS CICS
user-written Listener program TISRVLIS and TISRVMSL, the CA Gen TCP/IP
implementation.

Note: The TIRSLTMX exit routine is invoked by CICS Sockets Server Listener program
TISRVLIS and TIRSRVMSL. The TIRSLTMX exit is not invoked by CA Gen servers.

z/OS Middleware User Exits CICS TCP/IP Direct Connect Exits

474 User Exit Reference Guide

Source Code

The source code for this exit is in the CA Gen CEG8SAMP library, in member TIRSLTMX.
The sample exit provided is written in ASSEMBLER and is invoked by TISRVLIS using an
EXEC CICS LINK API call.

Data used and returned by TIRSLTMX is passed in the COMMAREA as follows:

1. TISRVLIS EBCDIC transaction code

2. CICS APPLID

3. Listener ACCEPT TIMEOUT – Seconds

4. Listener ACCEPT TIMEOUT – Microseconds

5. Listener READ TIMEOUT – Seconds

6. Listener READ TIMEOUT – Microseconds

7. Listener ERROR TIMEOUT – Seconds, error processing

8. Listener ERROR TIMEOUT – Microseconds, error processing

9. Include IP ADDRESS FLAG – flag to add IP address to error message

Purpose

This exit can be used to customize the Listener's SELECT API Calls timeout value that
controls the wait time involved with accepting new connections (ACCEPT), reading input
data, and reading data for error processing. The corresponding values entered in the
EZACONFG file are passed to this exit in the seconds field. These values can remain as
they are or can be modified. In addition an extra value may be provided at the
microsecond level.

The exit provides the opportunity to do the following tasks:

■ Modify the value entered for the ACCTIME parameter in the EZACONFG file. This
value is used to populate the TIMEOUT Seconds parameter of the SELECT Sockets
API call used by the listener to wait for new connections.

■ Provide the value to populate the TIMEOUT Microseconds parameter of the SELECT
Sockets API call used by the listener to wait for new connections.

■ Modify the value entered for the REATIME parameter in the EZACONFG file. This
value is used by the listener to populate the TIMEOUT Seconds parameter of the
SELECT Sockets API call used by the TISRVLIS listener when first reading input data.
In the TISRVMSL listener, it is used as a wait time.

■ Provide the value to populate the TIMEOUT Microseconds parameter of the SELECT
Sockets API call used by the listener when first reading input data.

■ Modify the value used by the Listener to populate the TIMEOUT Seconds parameter
of the SELECT Sockets API call used by the listener when reading input data to
process error conditions that require sending an error response to the client.

z/OS Middleware User Exits CICS TCP/IP Direct Connect Exits

Chapter 4: z/OS User Exits 475

■ Modify the value used by the Listener to populate the TIMEOUT Microseconds
parameter of the SELECT Sockets API call used by the listener when reading input
data to process error conditions that require sending an error response to the
client.

■ Modify the value to turn on including the IP Address in some of the socket and CICS
error messages.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

SLTRANID input The Listener EBCDIC transaction code.

CICSAPPL input APPLID of the CICS where Listener runs.

ACCTOUTS input/output The Listener ACCEPT TIMEOUT value in
seconds

ACCTOUTM input/output The Listener ACCEPT TIMEOUT value in
microseconds

REATOUTS input/output The Listener READ TIMEOUT value in
seconds

REATOUTM input/output The Listener READ TIMEOUT value in
microseconds

ERRTOUTS input/output The Listener ERROR TIMEOUT value in
seconds, used in error processing

ERRTOUTM input/output The Listener ERROR TIMEOUT value in
microseconds, used in error processing

IPADRFLG input/output The IP address flag

Return Code

No explicit return code value is provided by the TIRSLTMX exit. CICS provides
information about the return from the CICS Program Link that indicates if TIRSLTMX
exists and its execution was successful. In addition, the values contained in the
parameter list addressed by the COMMAREA are returned.

Default Processing

The default processing of this exit is to check if the TISRVLIS trancode matches the
EIBTRNID and return.

z/OS Middleware User Exits CICS TCP/IP Direct Connect Exits

476 User Exit Reference Guide

Customizing the Exit

This is an exit for the TISRVLIS or TISRVMSL listener programs, not the server
application. The exit is invoked before TISRVLIS or TISRVMSL accepts a connection from
a client and has access to the data sent by the client.

The SLTRANID and the CICSAPPL can be used to decide if the TIMEOUT values provided
by the EZACONFG file to be used by the Listener suffice or must be changed.

The Listener Accept TIMEOUT Seconds, as received by this exit contains the value
specified in the EZACONFG file for the ACCTIME parameter. This value can be changed,
including zeroed out. In addition, if a value smaller than 1 second is required the
Listener Accept TIMEOUT Microseconds variable can be used.

The Listener Read TIMEOUT Seconds, as received by this exit contains the value
specified in the EZACONFG file for the REATIME parameter. This value can be changed,
including zeroed out. In addition, if a value smaller than 1 second is required the
Listener Read TIMEOUT Microseconds variable can be used.

When an error condition is encountered that requires the Listener to send an error
message to the client, the Listener must first read all the data present at the socket
before sending the error message. Part of this read involves a SELECT Sockets API call.
The ERRTOUTS and ERRTOUTM values provided in this exit are used to make up this
TIMEOUT parameter. The ERRTOUTS value passed to this exit on input is the value
specified in the listener code and is zero seconds. The listener code sets the ERROR
TIMEOUT - Microseconds to 50. The only opportunity to provide a value for these
parameters is in this exit.

The IP Address Flag is set in this exit to turn on the writing of the IP Address as part of
some of the socket and CICS error messages. The default is N—do not write the IP
Address.

This exit includes sample code that can be used to set the various TIMEOUT parameters
as required. Modify the exit to execute the desired code.

Building on z/OS

For information about installing the exit, see MKUECTCP in Customizing and Installing
z/OS User Exits.

Ensure the new TIRSLTMX module is made available in the DFHRPL concatenation and if
applicable issue a NEW COPY command for the TIRSLTMX in CICS. Stop and restart the
Sockets Server Listener to pick up the changes.

Related User Exits

■ TIRSLEXT

■ TIRSIPEX

z/OS Middleware User Exits IMS TCP/IP Direct Connect Exits

Chapter 4: z/OS User Exits 477

z/OS Middleware User Exits IMS TCP/IP Direct Connect Exits

The CA Gen IMS TCP/IP Direct Connect product provides the following set of user exits.
These exits are implemented in Assembler. The following table briefly describes each of
the exits:

IMS TCP/IP Direct Connect (CAGRITCP): Language: Assembler

User Exit Name Source Code Description

TIRxxTD CEG9SAMP/TIRxxTD IMS TCP/IP Destination ID
exit

TIRxxTDC CEG9SAMP/TIRxxTDC IMS TCP/IP Decryption exit

TIRxxTSC CEG9SAMP/TIRxxTSC IMS TCP/IP Security exit

Note: The xx in the name denotes the IMS release that was used to assemble the exit.
Currently, IMS 10, 11, 12, and 13 are supported.

Details of the preceding user exits follow. Each one is described in a separate section.

TIRxxTD TCP/IP Destination ID Exit

The CA Gen TCP/IP Destination ID Exit is used by the z/OS IMS Connect User Message
Exit CAGRITCP/TIRxxTCP. CAGRITCP is a component of the TCP/IP Direct Connect Option
for IMS.

Note: The name TIRxxTCP is used to provide multiple copies of the CAGRITCP exit, each
for a different version of IMS Connect. The selected TIRxxTCP exit must be renamed to
CAGRITCP before deployment in IMS Connect. The TIRxxTD exit routine is invoked by
IBM's z/OS IMS Connect Product. The TIRxxTD exit is not invoked by CA Gen code.

Note: The xx in the name denotes the IMS release that was used to assemble the exit.

Source Code

The source code for this exit is in CA Gen CEG9SAMP library, in member TIRxxTD where
xx is 10, 11, 12, or 13. The sample exit provided is written in ASSEMBLER and uses
standard OS Linkage.

On entry, register usage is as follows:

Register 1—parameter list, mapped to DSECT DESTAREA.

Register 13—address of save area.

z/OS Middleware User Exits IMS TCP/IP Direct Connect Exits

478 User Exit Reference Guide

Register 14—caller's return address.

Register 15—this exit entry address.

The parameter list used by TIRxxTD is passed in Register 1 as a list of addresses, the last
one being indicated by the high-order bit being set on. Each address in the list addresses
one argument as follows:

1. Exit Interface Block XIB

2. Client's IP Address

3. Client's Port

4. IMS transaction code

5. User ID as supplied by the Client

6. RACF Groupid

7. Datastore (IMS region) name

8. IMS LTERM

9. Return Code

10. Reason Code

Purpose

This exit is used to provide the name of the IMS region, called Datastore by IMS
Connect, of where the request is being sent and the name of an LTERM to be used. The
extra data is available for information purposes only.

Arguments

The following table gives a brief description of each argument.

Name I/O Description

DESXIB input Address of the Exit Interface Block (XIB).

DESIPAD input Address of the Client's IP Address.

DESPORT input Address of the Client's Port.

DESTRNCD input Address of the IMS transaction code.

DESUSRID input Address of the userid supplied by the client,
translated to EBCDIC.

DESGRPID input Address of the RACF Groupid.

DESDSTID output Address of the Datastore (IMS region).

z/OS Middleware User Exits IMS TCP/IP Direct Connect Exits

Chapter 4: z/OS User Exits 479

Name I/O Description

DESLTERM output Address of the IMS LTERM.

DESRC output Address of the return code. The return code can
be:

0 indicates success

2 indicates no active datastore found in XIBDS,

4 indicates other failure

DESRSC output Address of the reason code, not used.

Return Code

Register 15 should be set to a value consistent with the value set in the field pointed to
by DESRC.

Default Processing

The default processing of this exit is to return the first active datastore name in the
XIBDS (XIB Data Store) control block and create an LTERM consisting of the first four
bytes of the IMS trancode plus the first four bytes of the client's IP Address. Sets the
return code pointed to by DESRC to zero.

This module returns control to the caller using the address passed to it at entry in
Register 14. All registers except Register 15 are restored.

Customizing the Exit

This exit can take the data passed to it to determine what IMS region to use for the
request being processed and the LTERM to be used.

Ensure DESRC points to the relevant return code. Return control to the caller using the
value passed in Register 14 at entry. All registers except Register 15 must be restored.
Results are unpredictable if invalid data is returned. Register 15 should contain the
return code.

Note: Be sure to use the source that corresponds to your IMS release.

Building on z/OS

For information about installing the exit, see MKUEITCP in Customizing and Installing
z/OS User Exits.

z/OS Middleware User Exits IMS TCP/IP Direct Connect Exits

480 User Exit Reference Guide

Related User Exits

The following are related user exits:

■ TIRxxTDC

■ TIRxxTSC

TIRxxTDC TCP/IP Decryption Exit

The CA Gen TCP/IP Decryption Exit is used by the z/OS IMS Connect User Message Exit
CAGRITCP/TIRxxTCP. CAGRITCP is a component of the TCP/IP Direct Connect Option for
IMS.

Note: The name TIRxxTCP is used to provide multiple copies of the CAGRITCP exit, each
for a different version of IMS Connect. The selected TIRxxTCP exit must be renamed to
CAGRITCP prior to deployment in IMS Connect. The TIRxxTDC exit routine is invoked by
IBM's z/OS IMS Connect Product. The TIRxxTDC exit is not invoked by CA Gen code.

Note: The xx in the name denotes the IMS release that was used to assemble the exit.

Source Code

The source code for this exit is in CA Gen CEG9SAMP library, in member TIRxxTDC where
xx is 10, 11, 12, or 13. The sample exit provided is written in ASSEMBLER and uses
standard OS Linkage.

On entry register usage is as follows:

Register 1 - parameter list, mapped to DSECT DCRPAREA.

Register 13 - address of save area.

Register 14 - caller's return address.

Register 15 - this exit entry address.

The parameter list used by TIRxxTDC is passed in Register 1 as a list of addresses, the
last one being indicated by the high-order bit being set on. Each address in the list
addresses one argument as follows:

1. Start of Encrypted buffer

2. Encrypted data length

3. Maximum buffer length

4. Return Code

5. Reason Code

z/OS Middleware User Exits IMS TCP/IP Direct Connect Exits

Chapter 4: z/OS User Exits 481

Purpose

This exit is called by TIRxxTCP when it detects that the client sent an encrypted
cooperative buffer. This exit can be used to decrypt the area pointed to by DCNCRDAT
using the length pointed to by DCNCRDTL. The maximum size of the decrypted data
cannot exceed the length pointed to by DCMAXDTL.

The decrypted data is not passed on to the server, instead it is used by TIRxxTCP to
extract the cooperative buffer security data to populate the OTMA Security Header and
OTMA User Header as determined by SECOTMA flag set by the TIRxxTSC exit.

Arguments

The following table gives a brief description of each argument.

Name I/O Description

DCNCRDAT input Address of the start of the encrypted buffer.

DCNCRDTL input Address of the length of encrypted data.

DCMAXDTL input Address of the maximum length available for
decrypted data.

DCRC output Address of the return code. The return code can
be:

0 indicates success

1 indicates exceeded maximum size

2 indicates encryption not used

3 indicates application error

4 indicates other failure

DCRSC output Address of the reason code. The reason code can
be:

2 indicating not used

Return Code

Register 15 should be set to a value consistent with the value set in the field pointed to
by DCRSC.

Default Processing

This exit is invoked only when the received cooperative request is encrypted. The
default action of this exit is to issue a return code of not used in DCRC and a reason code
of not used in DCRSC, to indicate a problem.

z/OS Middleware User Exits IMS TCP/IP Direct Connect Exits

482 User Exit Reference Guide

This module returns control to the caller using the address passed to it at entry in
Register 14. All registers except Register 15 are restored.

Register 15 contains the return code of 2.

Customizing the Exit

Modify the exit to invoke the required decrypt algorithm, set the return, and reason
codes accordingly. The decrypted data returned cannot exceed the value pointed to by
DCMAXDTL. Ensure DCRC points to the relevant return code. Return control to the caller
using the value passed in Register 14 at entry. All registers except Register 15 must be
restored. Results are unpredictable if invalid data is returned.

Note: Be sure to use the source that corresponds to your IMS release.

Building on z/OS

For information about installing the exit, see MKUEITCP in Customizing and Installing
z/OS User Exits.

Related User Exits

The following are related user exits:

■ TIRxxTD

■ TIRxxTSC

TIRxxTSC TCP/IP Security Exit

The CA TCP/IP CA Gen Security Exit is used by the z/OS IMS Connect User Message Exit
CAGRITCP/TIRxxTCP. CAGRITCP is a component of the TCP/IP Direct Connect Option for
IMS.

Note: The name TIRxxTCP is used to provide multiple copies of the CAGRITCP exit, each
for a different version of IMS Connect. The selected TIRxxTCP exit must be renamed to
CAGRITCP before deployment in IMS Connect. The TIRxxTSC exit routine is invoked by
IBM's z/OS IMS Connect Product. The TIRxxTSC exit is not invoked by CA Gen code.

Note: The xx in the name denotes the IMS release that was used to assemble the exit.

Source Code

The source code for this exit is in CA Gen CEG9SAMP library, in member TIRxxTSC where
xx is 10, 11, 12, or 13. The sample exit provided is written in ASSEMBLER and uses
standard OS Linkage.

z/OS Middleware User Exits IMS TCP/IP Direct Connect Exits

Chapter 4: z/OS User Exits 483

On entry register usage is as follows:

Register 1 - parameter list, mapped to DSECT SECAREA.

Register 13 - address of save area.

Register 14 - caller's return address.

Register 15 - this exit entry address.

The parameter list used by TIRxxTSC is passed in Register 1 as a list of addresses, the last
one being indicated by the high-order bit being set on. Each address in the list addresses
one argument as follows:

1. OTMA Security Flag

2. Client's IP Address

3. Client's Port

4. IMS transaction code

5. Client Code Page

6. Data Type

7. Exit Interface Block XIB

8. Length of user data

9. CFB Userid

10. CFB Password

11. RACF Groupid

12. Return Code

13. Reason Code

Purpose

This exit is used to enable the selection of security type for the OTMA Headers being
formatted by the TIRxxTCP IMS Connect User Message exit. The TIRxxTSC exit is passed
to various items that can be used to determine the appropriate security type or the exit
can do security checking itself and return the appropriate values to match the required
OTMA security.

z/OS Middleware User Exits IMS TCP/IP Direct Connect Exits

484 User Exit Reference Guide

Arguments

The following table gives a brief description of each argument.

Name I/O Description

SECOFLG output Address of OTMA security flag.

SECIPAD input Address of the Client's IP Address.

SECPORT input Address of the Client's Port.

SECTRNCD input Address of the IMS transaction code.

SECCODPG input Address of the Client Code Page.

SECDTKEY input Address of data type. The data type can be:

0 for ASCII or 1 for EBCDIC.

It is 1 since the security data has been translated.

SECXIB input Address of the Exit Interface Block (XIB)

SECDATL input Address of the length of the security data.

SECUID input Address of the userid as supplied by the Client.

SECPSW input Address of the password as supplied by the Client.

SECGRPID output Address of the RACF Groupid.

SECRC output Address of the return code. The return code can
be:

0 indicates success

2 indicates security not used

3 indicates application error

4 indicates other failure

SECRSC output Address of the reason code, not used.

Return Code

Register 15 should be set to a value consistent with the value set in the field pointed to
by SECRC.

Default Processing

The default processing of this exit sets the OTMA security flag pointed to by SECOFLG to
OSECNON for none and sets the return code pointed to by SECRC to zero.

This module returns control to the caller using the address passed to it at entry in
Register 14. All registers except Register 15 are restored.

z/OS Middleware User Exits IMS TCP/IP Direct Connect Exits

Chapter 4: z/OS User Exits 485

Customizing the Exit

This exit can use the data passed to it to determine what the SECOTMA variable should
be set to. This variable needs to match the OTMASE parameter configured for OTMA in
the IMS region.

Set SECOTMA to F or C to cause TIRxxTCP to populate the OTMA Security Header with
provided user ID, group ID, or token and the OTMA User Header Passticket with the
provided password.

Set SECOTMA to N to cause TIRxxTCP to not populate the OTMA Security and User
Headers with security data.

The security data used is the user ID and password provided in the security offset of the
cooperative buffer if enhanced security is used, the user ID and password provided in
the cooperative buffer header if standard security is used and blanks if none is provided.
However if SECOTMA is set to a value other than N and no security data is provided the
IMS Connect User is used as the user ID, no password will be provided and this can
result in a failure from OTMA with a reason code of SECFNPUI, which will be interpreted
as an XERR with a code of 0902, message 'Security: Invalid User ID'.

With the changes to support IPv6 the length of the TCP/IP IP Address has changed. The
SECIPAD parameter contains the address of an IP Address that is 4 bytes in length for
IPv4 implementations and is 16 bytes in length for IPv6 implementations. This is further
represented in the SECIP DSECT.

Modify the exit as required. Ensure SECRC points to the relevant return code. Return
control to the caller using the value passed in Register 14 at entry. All registers except
Register 15 must be restored. Results are unpredictable if invalid data is returned.
Register 15 should contain the return code.

Note: Be sure to use the source that corresponds to your IMS release.

Building on z/OS

For information about installing the exit, see MKUEITCP in Customizing and Installing
z/OS User Exits.

Related User Exits

The following are related user exits:

■ TIRxxTD

■ TIRxxTDC

z/OS Middleware User Exits WebSphere MQ CICS

486 User Exit Reference Guide

z/OS Middleware User Exits WebSphere MQ CICS

WebSphere MQ Transaction Dispatcher for CICS (TDC) Exit

The CA Gen WebSphere MQ Transaction Dispatcher product provides the following user
exit. This exit is implemented in COBOL. The following table briefly describes this exit:

WebSphere MQ TDC: Language: COBOL

User Exit Name Source Code Description

TIRMQTDZ CEHESAMP/TIRMQTDX TDC Parameter exit

Details of the preceding user exit follow, described in a separate section.

TIRMQTDX WebSphere MQ Transaction Dispatcher for CICS Parameter Exit

The Parameter Exit for the CA Gen WebSphere MQ Transaction Dispatcher for CICS
(TDC) option is used by z/OS WebSphere MQ servers.

For each trigger event that initiates the TDC, the TDC sends a copy of the parameter list
to the TDX (TIRMQTDX) in the DFHCOMMAREA. The TDX sends the list back to the TDC
including any parameter modifications programmed into the TDX. The TDC accepts the
parameter list without checking for invalid entries.

Note: The TDX is responsible for validating any parameter changes. If you change the
default behavior of the exit, ensure that it passes a correct parameter, because the TDC
does not validate parameters it receives from the TDX.

Source Code

The sample source for this exit can be found in CA Gen CEHBSAMP library, in member
TIRMQTDX. The sample exit provided is written in COBOL and uses standard OS Linkage.

z/OS Middleware User Exits WebSphere MQ CICS

Chapter 4: z/OS User Exits 487

The Linkage Parameter list provided is as follows:

01 DFHCOMMAREA.

03 TDC-CICS-SYSID PIC X(4).

03 TDC-MQS-QUEUENAME PIC X(48).

03 TDC-PARMLIST.

05 TDC-MAX-MPL PIC S9(8) COMP.

05 TDC-Q-CHECK-FREQ PIC S9(8) COMP.

05 TDC-Q-DEPTH-PER PIC S9(8) COMP.

05 TDC-SLOW-AT-MXT PIC S9(8) COMP.

05 TDC-SLOW-INTERVAL PIC S9(8) COMP.

05 TDC-MQGET-WAITTIME PIC S9(8) COMP.

05 TDC-OVERIDE-USERID PIC X(8).

05 TDC-VSAM-DDNAME PIC X(8).

05 TDC-CICS-MSGDEST PIC X(4).

05 TDC-REQID-PREFIX PIC X(2).

05 TDC-TSQ-KEY-PREFIX PIC X(2).

05 TDC-SECURITY-MODE PIC X(1).

05 TDC-MESSAGE-LEVEL PIC X(1).

05 TDC-TEMPSTOR-METHOD PIC X(1).

05 TDC-REPTOQM-SELECT PIC X(1).

05 TDC-TASK-TABLE-MAX PIC S9(8).

05 TDC-CHILD-MQGET-WAIT PIC S9(8).

05 TDC-RESERVED PIC X(4).

03 TDC-PROCESS-OBJ-UA PIC X(128).

Purpose

This exit contains parameters that are used by the MQSeries TDC program TIRMQTDC.
These parameters can be modified to influence how the parent TDC process behaves.

Arguments

The following table gives a brief description of each of the arguments.

 Name I/O Description

DFHCOMMAREA input/output CICS Communication area with the following contents.

TDC-CICS-SYSID input CICS SYSID for this invocation. Do not modify.

TDC-MQS-QUEUENAME input Name of MQ Queue being processed. Do not modify.

TDC-PARMLIST input/output Parameter list structure with the following items:

TDC-MAX-MPL input/output Limits the total number of child TDC processes that the TDC spawns
against the MQS queue during heavy loads.

Default: 5

The valid range is 1 through the CICS MXT value. Remember that
WebSphere MQ dispatches on a maximum of 8 TCBs.

z/OS Middleware User Exits WebSphere MQ CICS

488 User Exit Reference Guide

 Name I/O Description

TDC-Q-CHECK-FREQ input/output Sets the number of messages the TDC processes before checking
queue depth. Accepts a numeric value.

Default: 10

The valid range is 1 through 4095

TDC-Q-DEPTH-PER input/output Sets the queue depth threshold at which the TDC spawns a child
TDC process.

Default: 20

The valid range is 1 through 4095.

TDC-SLOW-AT-MXT input/output Enter slowdown mode when active tasks reach CICS MXT minus
TDC-SLOW-AT-MXT.

The TDC enters slowdown mode if it detects a Short-On-Storage
condition, or if the current active task count exceeds CICS MXT
minus the TDC-SLOW-AT-MXT value. The TDC exits slowdown mode
whenever these conditions are resolved.

Note: Setting TDC-SLOW-AT-MXT high may severely affect response
time.

Default: 20

The valid range is 1 through CICS MXT value.

TDC-SLOW-INTERVAL input/output Defines the amount of time that the TDC waits between starting
server managers while in slowdown mode, in seconds.

Default: 2

The valid range is 1 through 359999.

TDC-MQGET-WAITTIME input/output Determines the persistence of the parent TDC, the length of time
the TDC holds the MQS queue open waiting for a message to arrive,
in milliseconds. Setting this to a high value reduces triggering and
transaction overhead, but the task remains suspended on the task
chain for the duration if no messages are available. This value
affects only the parent invocation of the TDC. Spawned child TDCs
wait for messages for one second regardless of this setting.

Default: 5000

The valid range is 0 through 268435455 milliseconds

TDC-OVERIDE-USERID input/output Override user ID for CA Gen transactions. The default is blank, but
you can set it to any valid user ID.

If you use this parameter, set the TDC-SECURITY-MODE parameter
to O.

TDC-VSAM-DDNAME input/output VSAM file DDNAME. By default, this parameter is TITDTEMP, but
you can set it to any CICS-supported 8 character name.

Used when the TDC-TEMPSTOR-METHOD parameter is set to V.

z/OS Middleware User Exits WebSphere MQ CICS

Chapter 4: z/OS User Exits 489

 Name I/O Description

TDC-CICS-MSGDEST input/output Controls where the TDC directs status messages.

Default: CSSL

The valid range is any CICS-supported eight characters DDNAME.

TDC-REQID-PREFIX input/output 2-byte REQID prefix (Start REQID) that supports any CICS-supported
two characters. By default, the value is SQ.

TDC-TSQ-KEY-PREFIX input/output 2-byte temporary storage prefix that supports any CICS-supported
two characters. By default, the value is RQ.

Used when the TDC-TEMPSTOR-METHOD parameter is set to M or
A.

TDC-SECURITY-MODE input/output Security mode for CA Gen transactions started by the TDC. Accepts
the following values:

D—(default) CA Gen transactions inherit the user ID of the
dispatcher transaction.

C—CA Gen transactions are started with the user ID supplied in the
message. The user ID of the dispatcher must be an authorized
surrogate for the message user ID. Clients must be using at least
Advantage Gen 6.5 or later.

O—CA Gen transactions are started with the user ID supplied by the
value in the TDC-OVERIDE-USERID parameter. The user ID of the
dispatcher must be an authorized surrogate for the user ID supplied
in the TDC-OVERIDE-USERID parameter.

Note: For more information about these modes, see the Distributed
Processing – WebSphere MQ User Guide.

TDC-TEMPSTOR-METHOD input/output Sets the temporary storage method. Accepts the following values:

M—(default) Use CICS main temporary storage (TSQ).

A—Use auxiliary temporary storage method (TSQ).

V—Use VSAM file control (SDT recommended). If you set this
parameter to V, you also need to set TDC-VSAM-DDNAME.

TDC-REPTOQM-SELECT input/output Use Client Specified (C) or Local (L) Manager for Reply to Queue.

Client Specified is the default.

TDC-TASK-TABLE-MAX input/output Maximum table occurence for started servers.

TDC-CHILD-MQGET-WAIT input/output Time to keep the child queue open.

TDC-RESERVED input Reserved for future use.

TDC-PROCESS-OBJ-UA input Copy of the 128-byte process definition user area associated with a
queue and passed into the trigger record.

Not modifiable. The TDC cannot use this area, but the exit may read
a value placed in the user area for input during an installation.

z/OS Server User Exits CICS

490 User Exit Reference Guide

Return Code

No explicit return code value is provided by the TIRMQTDX. CICS provides information
about the return from the CICS Program Link that indicates if TIRMQTDX exists and its
execution was successful. In addition, the values contained in the parameter list are
returned.

Default Processing

The default processing of this exit is to return without modifying any of TDC parameters.

Customizing the Exit

This program is invoked during the parent TIRMQTDC invocation process. The
parameter list, TDC-PARMLIST, can be modified to influence the behavior of program
TIRMQTDC. Additionally the CICS Sysid, the name of the MQS Queue being processed,
and a copy of the process Object User Area are supplied. The CICS Sysid and the MQ
Queue name must not be modified.

The parameter list provided in the Commarea contains the default values on entry.
These values can be altered as required but care must be taken to insure that a valid
parameter list is returned to TIRMQTDC. Results are unpredictable if invalid values are
inserted in the Commarea.

Note: For more information about the TDC, see the Distributed Processing—WebSphere
MQ User Guide.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None.

z/OS Server User Exits CICS

TIRTIARX DB2 Message Exit

z/OS Server Managers use the CA Gen DB2 Message Exit.

z/OS Server User Exits CICS

Chapter 4: z/OS User Exits 491

Source Code

The source code for the version of the exit used by CICS application is in CA Gen
CEHBSAMP library, in member TIRCTIAX. The sample exit provided is written in COBOL
and uses standard OS Linkage.

The Linkage Parameter list used by TIRTIARX is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 TIRFAIL-SQLCA PIC X.

01 TIRTIAR-ERRORS PIC X.

01 TIRTIAR-TEXT-LEN PIC X.

01 GLOBDATA size 3645 bytes.

Purpose

The DB2 Message Exit is used by all applications targeting DB2 database on z/OS. The
TIRFAIL subroutine of the Dialog Server calls the DB2 Message exit, TIRTIARX, whenever
an unrecoverable DB2 failure occurs. TIRTIARX then calls the subroutine DSNTIAR to
convert the SQL code into text. The messages returned by DSNTIAR are then merged
with the runtime error messages.

TIRTIARX exit must be a DLL in order to be invoked by Gen applications, even by those
using Compatibility option. DSNTIAR and DSNTIAC are provided by IBM as non-DLL
modules. Therefore they need to be invoked by via TIRLGLOD.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input This is DFHEIBLK automatically included by the
Translator.

RUNTIME-PARM2 input This is DFHCOMMAREA automatically
included by the Translator.

TIRFAIL-SQLCA input Pointer to SQLCA

TIRTIAR-ERRORS input Pointer to TIRTIAR-ERRORS structure

TIRTIAR-TEXT-LEN input Length of one text line

GLOBDATA input Global data, used internally.

z/OS Server User Exits CICS

492 User Exit Reference Guide

Return Code

No explicit return code is set by the user exit.

Default Behavior

As provided by CA Gen, the default exit dynamically calls DSNTIAR and is compatible
with prior releases. However the sample code also contains examples of how to call
DSNTIAR or DSNTIAC statically.

The call to TIRTIARX is made when TIRFAIL is building the table of messages and occurs
prior to calling the default termination exit. For more information, see the Online
Termination Exit and Batch Termination Exit.

Customizing the DB2 Message Exit

Copy the default exit to one of your own libraries. The member name is TIRCTIAX. The
default exit includes example code for the four possible combinations of calls. There are
dynamic and static calls of both DSNTIAR and of DSNTIAC. Simply comment out the
default call and remove the comments from the one you want to use.

To statically call DSNTIAR or DSNTIAC, link the routine into the TIRCTIAZ DLL not the Gen
application.

To dynamically call DSNTIAR or DSNTIAC build this routine as a non-DLL stand-alone
executable and provide a CICS program definition (PPT) for it. This means that you need
PPT definitions if you use the default TIRTIARX module. If TIRTIARX is customized to call
DSNTIAC instead of DSNTIAR see IBM's CICS and/or DB2 documentation about using
DSNTIAC.

When you have completed your modifications, install your exit.

Note: DSNTIAC is shipped as source code and must be assembled. If you intend to use it,
see your DB2 or CICS systems programmer to ensure that is has been assembled and
that a load module is available. If not, either the install of the application module will fail
with an unresolved module at the time of the link if your call is static, or you will abend
at runtime if your call is dynamic.

Building on z/OS

For more information about installing this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None.

z/OS Server User Exits CICS

Chapter 4: z/OS User Exits 493

TIRCDPTX Dynamic Plan TSQ Processing Exit

z/OS Server Managers use the CA Gen Dynamic Plan TSQ Processing Exit.

Source Code

This exit is used by CICS applications only. The source code for this exit is in CA Gen
CEHBSAMP library, in member TIRCDPTX. The sample exit provided is written in COBOL
and uses standard OS Linkage.

The Linkage Parameter list used by TIRCDPTX is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 Q-NAME PIC X(8).

01 ACTION-CODE PIC 9.

01 GLOBDATA size 3645 bytes.

Purpose

This exit is called when the delete of the TSQ used by the Dynamic Plan Exit (TIRC$EXT)
fails because the TSQ does not exist. It is used to return a flag to control how the
runtime handles the missing TSQ condition.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input This is DFHEIBLK automatically
included if translated.

RUNTIME-PARM2 input This is DFHCOMMAREA
automatically included if Translated.

Q-NAME input The name of the TSQ which we
expected to find, but is missing.

z/OS Server User Exits CICS

494 User Exit Reference Guide

Name I/O Description

ACTION-CODE input/output A 1 byte numeric field indicating
how the runtime should handle the
missing TSQ condition:

1 – Abend and rollback.

2 – Send an error message to CICS
CSSL output and terminate
normally, without a rollback.

3 – Send an error message to CICS
CSSL output and terminate without
an abend but with a rollback.

4 – Ignore the condition and
terminate without an abend or
rollback.

GLOBDATA input Global data, used internally.

Return Code

No explicit return code is set by the user exit.

Default Processing

The default processing of this exit is to return an ACTION-CODE of 2 which causes the
runtime to handle the condition encountered by the CICS API command that deletes the
TSQ, send a message to the CICS CSSL output and continue processing without rolling
back any database changes done by the application.

Customizing the Exit

Copy the TIRCDPTX exit to one of your libraries and modify ACTION-CODE to return a
value other than 2.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None

z/OS Server User Exits CICS

Chapter 4: z/OS User Exits 495

TIRSRTRX Default Retry Limit Exit Processing

z/OS Server Managers for CICS cooperative applications use the CA Gen Default Retry
Limit Exit.

TIRSURTX Server Ultimate Retry Limit Exit

TBD

Purpose

The Ultimate Retry Limit Exit allows the user to specify a maximum value for the
TRANSACTION RETRY LIMIT system attribute. This value may never be exceeded, either
by a SET TRANSACTION RETRY LIMIT statement in an action diagram, or by the Default
Retry Limit Exit.

For an explanation of when and how the TRANSACTION RETRY LIMIT system attribute is
used see Default Retry Limit Exit.

Once the number of retries, as indicated by the TRANSACTION RETRY COUNT system
attribute, reaches either TRANSACTION RETRY LIMIT or the value specified by the
Ultimate Retry Limit Exit, no more retries can occur, and the application will fail with a
runtime error if the last retry attempt was unsuccessful.

TIRSYSIX System ID Exit

z/OS Dialog Managers use the CA Gen System Identification Exit.

Source Code

The source code for this exit is in CA Gen CEHBSAMP library in member TIRCSYSX. The
sample exit provided is written in COBOL and uses standard OS Linkage.

The Linkage Parameter list used by TIRSYSIX is as follows:

01 LOCAL-SYSTEM-ID PIC X(8).

01 GLOBDATA size 3645 bytes

This exit contains CICS API calls, which require it to be processed by the Translator. The
Translator automatically includes data structures for DFHEIBLK and DFHCOMMAREA in
the place of RUNTIME-PARM1 and RUNTIME-PARM2 thus RUNTIME-PARMx are not
specified.

z/OS Server User Exits CICS

496 User Exit Reference Guide

Purpose

The purpose of TIRSYSIX is to enable logic that lets the same application be
implemented on multiple systems and perform processing specific to each system
targeted.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

DFHEIBLK input Automatically included by the Translator.

DFHCOMMAREA input Automatically included by the Translator.

LOCAL-SYSTEM-ID output The identifier of the system where the
application is executing.

GLOBDATA input Global data, used internally.

Return Code

No explicit return code is set by the user exit.

Default Processing

The default processing of the exit is to issue the CICS Assign Sysid command to retrieve
the system ID. If successful, the retrieved ID is returned; otherwise, the literal CICS is
returned.

Customizing the Exit

Copy the TIRCSYSX member to one of your libraries and modify to populate the
LOCAL-SYSTEM-ID as required by the application.

Building on z/OS

For more information about installing this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

The following are related user exits:

■ TIRALLOX

■ TIRPROUX

z/OS Server User Exits CICS

Chapter 4: z/OS User Exits 497

TIRUSRIX User ID Exit

z/OS Dialog Managers use the CA Gen User Identification Exit.

Source Code

The source code for this exit is in CA Gen CEHBSAMP library in member TIRCUSRX. The
sample exit provided is written in COBOL and uses standard OS Linkage.

The Linkage Parameter list used by TIRUSRIX is as follows:

01 FILLER-PARM PIC X.

01 TIRUSRID-PARM.

05 IET-USER-ID PIC X(8).

05 IET-USER-ID2 PIC X(8).

01 GLOBDATA size 3645 bytes.

This exit contains CICS API calls, which require it to be processed by the Translator. The
Translator automatically includes data structures for DFHEIBLK and DFHCOMMAREA in
the place of RUNTIME-PARM1 and RUNTIME-PARM2 thus RUNTIME-PARMx are not
specified.

Purpose

The purpose of TIRUSRIX is to obtain the userid and terminal ID of the executing
application so that these values can be used as part of the key for the DB2 Profile Table
and in the application itself.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

DFHEIBLK input Automatically included by the Translator.

DFHCOMMAREA input Automatically included by the Translator.

FILLER-PARM input Not used.

TIRUSRID-PARM

output

A pointer to a structure containing the following
items:

IET-USER-ID output The userid to be used
in the application.

IET-USER-ID2 output The ID to be used as
part of the Profile
Table key.

z/OS Server User Exits CICS

498 User Exit Reference Guide

Return Code

No explicit return code value is set by the user exit.

Default Processing

There are two possible implementations for this exit.

The default processing of the exit is coded for applications that execute with a terminal
facility, these are blockmode and servers that use SNA and ECI. In this case, the exit
checks that the terminal ID and user ID values are present and these values are
returned. If only the terminal ID is present, its value is returned as both terminal ID and
user ID. If there is no terminal ID value, the CICS Task ID is returned as both terminal ID
and user ID.

The exit also contains sample code that can be used for applications that execute
without a terminal facility, these are servers that use TCP/IP and MQSeries. For these
applications, if the user ID and terminal ID are present the exit returns these values. If
only the user ID is present, it is returned and the CICS Task ID is returned for the
terminal ID. If only the terminal ID is present, its value is returned for both fields. If
neither user ID nor terminal ID is present, the CICS Task ID is returned for both.

Customizing the Exit

Copy the TIRUSRIX to one of your libraries and modify to populate either IET-USER-ID or
IET-USER-ID2 as required by the application.

Note: IET-USER-ID is used by the application as its User Identifier while IET-USER-ID2 is
used as part of the Key to the RPROF (Profile Manager) Table.

Building on z/OS

For more information about installing this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

TIRSECRX

TIRSECRX Security Interface Exit

z/OS Dialog Managers use the CA Gen Security Interface Exit.

z/OS Server User Exits CICS

Chapter 4: z/OS User Exits 499

Source Code

The sample source for this exit can be found in CA Gen CEHBSAMP library, in member
TIRSECRX. The sample exit provided is written in COBOL and uses standard OS Linkage.

The Linkage Parameter list used by this exit is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 TIRSECR-CMCB.

03 TIRSECR-USERID PIC X(8).

03 TIRSECR-TRANCODE PIC X(8).

03 TIRSECR-TERMINAL-ID PIC X(8).

03 TIRSECR-SYSTEM-ID PIC X(8).

03 TIRSECR-LOAD-MODULE PIC X(8).

03 TIRSECR-PSTEP-NAME PIC X(32).

03 TIRSECR-DIALECT PIC X(32).

03 TIRSECR-RETURN-CODE PIC XX.

03 TIRSECR-FAILURE-MSG PIC X(80).

01 GLOBDATA size 3645 bytes.

Purpose

This exit is called by both cooperative and non-cooperative applications to allow
transaction-level security checking to be implemented.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input This is DFHEIBLK automatically
included if translated.

RUNTIME-PARM2 input This is DFHCOMMAREA
automatically included if
translated.

TIRSECR-CMCB input/ output A structure containing the
following items:

TIRSECR-USERID input The userid under
which this
transaction is
executing, as
provided by the
TIRUSRIX exit.

z/OS Server User Exits CICS

500 User Exit Reference Guide

Name I/O Description

TIRSECR-TRANCODE input The load module
transaction code.

 TIRSECR-TERMINAL-ID input The terminal ID
used by this
transaction, spaces
if this is a
non-terminal
transaction.

TIRSECR-SYSTEM-ID input The system ID
where this
transaction is
executing, as
provided by the
TIRSYSIX exit.

TIRSECR-LOAD-MODULE input The load module
name.

 TIRSECR-PSTEP-NAME input The Procedure Step
name.

TIRSECR-DIALECT input The dialect used by
this application.

TIRSECR-RETURN-CODE output A 2-byte character
field returning the
result of the
security check. The
following values are
supported:

SPACES—TIRSECR-A
LL-OK

Anything
else—failure

TIRSECR-FAILURE-MSG output An 80-byte
character field, to
be populated by this
exit, to describe the
failure with a
message of choice.

Return Code

Update TIRSECR-RETURN-CODE with the relevant value.

z/OS Server User Exits CICS

Chapter 4: z/OS User Exits 501

Default Processing

The default processing of this exit is to do no security checking and to return
TIRSECR-ALL-OK as the return code.

Customizing the Exit

This exit is called by both cooperative and non-cooperative applications.

The cooperative Server Manager calls the Security Interface Exit when a transaction is
started. The Server Manager also calls TIRSECVX to provide application-level security. On
a Server-to-Server flow, both exits are also invoked. The TIRSECRX exit can be used to
check if the current application has authority to invoke the target server trancode.

For cooperative applications, the TIRSECR-USERID is the userid the server transaction is
executing under which may or may not be different from the CLIENT_USER_ID sent by
the client application.

Modify the exit to perform security checking as required by the application. Ensure that
TIRSECR-RETURN-CODE is set to spaces when the security check is successful or some
other value to indicate failure. If a message describing the violation is returned in
TIRSECR-FAILURE-MSG, the Server Manager will pass it to TIRELOGX.

Building on z/OS

For information about installing this exit, see MKUEXITS in Customizing and Installing
z/OS User Exits.

Related User Exits

The following are related user exits:

■ TIRUSRIX

■ TIRSECVX

■ TIRELOGX

■ TIRTERMA

TIRQCNTX TSQ Profile Manager Exit

z/OS Dialog Managers use the CA Gen TSQ Profile Manager Exit.

Source Code

The source code for this exit is in the Gen CEHBSAMP library in member TIRQCNTX. The
sample exit provided is written in COBOL and uses standard OS Linkage.

z/OS Server User Exits CICS

502 User Exit Reference Guide

The parameter list used by TIRQCNTX is as follows

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 TIRQCNTL-CMCB.

 05 TIRQCNTL-QUEUE-NAME PIC X(8).

 05 TIRQCNTL-STORAGE-TYPE PIC X.

01 GLOBDATA size 3645 bytes.

Purpose

This exit is used by CICS applications only. The purpose of the TIRQCNTX is to allow the
user to override the name of the queue used for the temporary storage queue profile
and the type of storage used for the queue.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input This is DFHEIBLK automatically
included if translated.

RUNTIME-PARM2 input This is DFHCOMMAREA
automatically included if
translated.

TIRQCNTL-QUEUE-NAME input/ output Name of the temporary storage
queue used for the profile
manager.

TIRQCNTL-STORAGE-TYPE input/ output Type of storage where the queue
will reside.

GLOBDATA input Global data, used internally.

Return Code

No explicit return code is set by the user exit.

Default Processing

The default action for the exit is to leave the TSQ Profile Manager queue name , that
consists of an internal application ID and the LTERM ID, unchanged and set the default
storage type to MAIN.

z/OS Server User Exits CICS

Chapter 4: z/OS User Exits 503

Customizing the Exit

Copy the TIRQCNTX exit to one of your libraries and modify as required. The exit does
not use CICS commands so it does not need to be translated for CICS and it specifies the
RUNTIME-PARM1 and RUNTIME-PARM2 in both the Linkage Section and the Procedure
Division statement. Ensure these are removed if CICS API calls are added.

The TIRQCNTL-QUEUE-NAME needs to be unique per CICS region.

The TIRQCNTL-STORAGE-TYPE can be set to either USE-AUXILIARY-STORAGE instead of
USE-MAIN-STORAGE.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None.

TIRUPPRX Uppercase Translation Exit

z/OS Dialog Managers use the CA Gen Uppercase Translation Exit. This exit is also called
the Lower-to-Uppercase Conversion Exit.

Source Code

This exit is used by single byte and double byte applications. When used by double byte
applications an alternate entry point TIRUPDBx is used. The source code for this for this
exit is in CA Gen CEHBSAMP library in member TIRUPPRX. The sample exit is written in
COBOL and uses OS linkage.

The Parameter list used by TIRUPPRX is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 XLATE-TABLE-NAME PIC X(8).

01 XLATE-LEN PIC S9(4) COMP.

01 XLATE-DATA PIC X(4096).

01 GLOBDATA size 3645 bytes.

z/OS Server User Exits CICS

504 User Exit Reference Guide

Purpose

The purpose of the Uppercase Translation User Exit is to translate character input from
lowercase to uppercase. It contains a table of paired lower and uppercase characters.
This exit is called by the Dialog Manager to translate the lower caser trancode to upper
case, by the TIRFUPPR Function to translate the designated data to upper case and by
the Standard Map runtime to translate the identified input data to upper case.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input This is DFHEIBLK automatically included
if translated.

RUNTIME-PARM2 input This is DFHCOMMAREA automatically
included if translated.

XLATE-TABLE-NAME input Name of the translation table to be used.

XLATE-LEN input Length of data to be translated.

XLATE-DATA input/output Data to be translated.

GLOBDATA input Global data, used internally.

Return Code

No explicit return code value is defined for this exit.

Default Processing

The default processing of this exit is to convert lower case characters to upper case
using a table named DEFAULT that contains the English character set(A-Z).

Customizing the Exit

Copy the default exit from the CA Gen CEHBSAMP library to one of your own libraries.
The member name is TIRUPPRX.

The exit supports both single byte and double byte languages. Adding support for DBCS
is done in the same way as for single byte.

z/OS Server User Exits CICS

Chapter 4: z/OS User Exits 505

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None.

TIRXINFO National Language Information Exit

z/OS servers use the CA Gen National Language Information Exit.

Source Code

The source code for this exit can be found in CA Gen CEHBSAMP library, in member
TIRXINFO. The sample exit provided is written in Assembler and uses standard OS
Linkage.

The Linkage Parameter list used by this exit is as follows:

OSID DS A

CODEPGID DS A

PADCHAR DS A

Purpose

This exit defines the Code Page Id used to select the National Language translate tables
from the list of provided GXTables for all cooperative applications. It also provides the
Pad Character applicable to the selected Code Page Id and the Operating System.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

OSID output Pointer to the Operating System.

CODEPGID output Pointer to the Code Page identifier.

PADCHAR output Pointer to the Pad Character.

Return Code

None, the modified values are returned.

z/OS Server User Exits CICS

506 User Exit Reference Guide

Default Processing

The Operating System is set to MVS, the Code Page is set to 037 (US EBCDIC) and the
Pad Character is set to hex '40' (blank) which is the relevant pad character for code page
037.

Customizing the Exit

The values contained in variables DEFOPSYS, DEFCODEP and DEFPADCH are loaded into
the XINFPARM DSECT which is the Parmlist returned by this exit. Modify the DEFCODEP
and DEFPADCH values to indicate the required Code Page and relevant Pad Character.
Ensure that for z/OS the DEFOPSYS is set to MVS.

Related User Exits

None

TIRSECVX Server Client Security Validation Exit

z/OS servers use the CA Gen Server Client Security Validation Exit.

Source Code

The sample source for this exit can be found in CA Gen CEHBSAMP library, in member
TIRSECV. The sample exit provided is written in COBOL and uses standard OS Linkage.

The Linkage Parameter list used by this exit is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 ENHANCED-SECURITY-FLAG PIC X.

01 TIRSECV-CMCB.

03 CLIENT-USERID PIC X(64).

03 CLIENT-PASSWORD PIC X(64).

03 SECURITY-TOKEN-LEN PIC 9(09) COMP.

03 SECURITY-TOKEN-PTR POINTER.

03 TIRSECV-TRANCODE PIC X(08).

03 TIRSECV-RETURN-CODE PIC X(02).

03 TIRSECV-FAILURE-MSG PIC X(80).

z/OS Server User Exits CICS

Chapter 4: z/OS User Exits 507

Purpose

This exit is called for every cooperative flow. To facilitate security validation, a flag
indicating whether the security data is for a standard or enhanced buffer has been
added to the exit’s Parameter List.

The Server Manager calls TIRSECV to allow the Enhanced Security data supplied by the
client application to be validated. This exit is intended to provide the opportunity to
validate Enhanced Security data. The default code in the exit can be used by applications
designed to use Standard Security.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input Under CICS, this is CICS EXEC
Interface

Block - DFHEIBLK.

RUNTIME-PARM2 input Under CICS, this is
DFHCOMMAREA.

ENHANCED-SECURITYFLAG input A 1-byte field indicating whether

Enhanced Security is intended for
this

request.

TIRSECV-CMCB input/

output

A structure containing the
following

items:

CLIENT-USERID input A 64-byte field containing a copy
of the

Userid sent by the client.

CLIENT-PASSWORD input A 64-byte field containing a copy
of the

Password sent by the client.

SECURITY-TOKEN-LEN input The length of the security token
sent by

the client.

SECURITY-TOKEN-PTR input A pointer to a security token sent
by the

client.

z/OS Server User Exits CICS

508 User Exit Reference Guide

Name I/O Description

TIRSECV-TRANCODE input The server load module
transaction code.

TIRSECV-RETURNCODE output A 2-byte character field returning
the

result of the validation attempt.
The

following values are supported:

SECURITY-USED—defined as
SPACES

SECURITY-NOT-USED—defined as
"02"

SECURITY-APPLICATION-ERROR—

defined as "03"

TIRSECV-FAILURE-MSG output An 80-byte character field, to be

populated by this exit, to describe
the

failure with a message of choice.
This

failure message will be
incorporated into

an error message that is returned
back

to the client. Used in conjunction
with a

return code of
SECURITY-APPLICATIONERROR.

Return Code

See TIRSECV-RETURN-CODE in Arguments.

z/OS Server User Exits CICS

Chapter 4: z/OS User Exits 509

Default Processing

To provide the opportunity to validate security data while at the same time not
impacting those using standard security. The default processing provided for this exit
handles 2 possible conditions:

For buffers containing Standard Security data the Client-Userid, Client- Password and
Security Token fields are expected to be blank. The default processing is for the exit to
return Security-Used, thus indicating that the request is authorized.

For buffers containing Enhanced Security data the Client-Userid, Client-Password and
Security Token fields can or cannot contain data. The default processing is for the exit to
return Security-Not-Used, thus indicating that no validation processing was attempted.

Customizing the Exit

The exit returns Security-Used when it assumes Standard Security is used. If the intent is
to use Enhanced Security, modify the exit to return SECURITYAPPLICATION-ERROR.

The exit returns Security-Not-Used when it assumes Enhanced Security is used. Modify
the exit to validate the security data and set the relevant return code. Return
SECURITY-USED for an authorized user and SECURITYAPPLICATION-ERROR for a
non-authorized user.

When a return code of SECURITY-APPLICATION-ERROR is used an optional failure
message can be supplied that will be presented to the client. Optionally, the Security
Token can be used for authentication.

Building on z/OS

For information about installing the exit, see MKUEXITS in Customizing and Installing
z/OS User Exits.

Related User Exits

WRSECTOKEN

TIRDCRYX Server Decryption Exit

The CA Gen Server Decryption Exit is used by z/OS servers.

Source Code

The sample source for this exit can be found in CA Gen CEHBSAMP library, in member
TIRDCRYX. The sample exit provided is written in COBOL and uses standard OS Linkage.

z/OS Server User Exits CICS

510 User Exit Reference Guide

The Linkage Parameter list used by this exit is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 TIRDCRYP-CMCB.

03 DATA-BUFFER-PTR POINTER.

03 BUFFER-SIZE PIC 9(09) COMP.

03 DECRYPTION-MAX-SIZE PIC 9(09) COMP.

03 TIRDCRYP-RETURN-CODE PIC X(02).

03 FAILURE-MSG PIC X(80).

Purpose

TIRDCRYX is called by the Server Manager after it detects that the client has sent an
encrypted cooperative buffer. The user is responsible for decrypting the area pointed to
by DATA-BUFFER-PTR for the length BUFFER-SIZE bytes. Maximum size of the decrypted
data cannot exceed DECRYPTION-MAX-SIZE.

Note: Encryption/decryption of the request and response cooperative buffers are
mutually exclusive - encryption/decryption of the request buffer does not necessitate
that the same be done to the response buffer and vice-versa.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input Under CICS, this is CICS EXEC Interface Block - DFHEIBLK.

RUNTIME-PARM2 input Under CICS, this is DFHCOMMAREA.

TIRDCRYP-CMCB input/
output

A pointer to a structure containing the following items:

z/OS Server User Exits CICS

Chapter 4: z/OS User Exits 511

Name I/O Description

 DATA-BUFFER-PTR input/ output On input, a pointer to the
starting location of the
encrypted View Data and
Client Security sections
within the CFB work
buffer.

On output, a pointer to
the starting location of
the area that now
contains the unencrypted
version of the input data.
The length of this
decrypted data cannot
exceed
DECRYPTION-MAX-SIZE.

BUFFER-SIZE input/ output On input, BUFFER-SIZE is
the current buffer size (in
bytes) of the encrypted
data.

On output, BUFFER-SIZE
should be updated by
this exit to contain the
length of the decrypted
data. The length of the
decrypted data cannot
exceed
DECRYPTION-MAX-SIZE.

DECRYPTION- MAX-SIZE input A field that contains the
maximum available
buffer space (in bytes)
that the decrypted data
can occupy.

z/OS Server User Exits CICS

512 User Exit Reference Guide

Name I/O Description

TIRDCRYP-RETURN-CODE output A 2-byte character field
returning the result of
the decryption attempt.
The following values are
supported:

DECRYPTION-USED—defi
ned as SPACES

DECRYPTION-SIZE-EXCEE
DED-MAX—defined as 01

DECRYPTION-NOT-USED
—defined as 02

DECRYPTION-APPLICATIO
N-ERROR—defined as 03

FAILURE-MSG output An 80-byte character
field, to be populated by
this exit, to describe the
failure with a message of
choice. This failure
message will be
incorporated into an
error message that is
returned back to the
client. Used in
conjunction with a return
code of
DECRYPTION-APPLICATIO
N-ERROR.

Return Code

See TIRDCRYP-RETURN-CODE in the preceding Arguments section.

Default Processing

The decryption user exit is only invoked if an encrypted buffer is received. By default,
this user exit sets the return code of decryption-not-used, indicating an error. If the
client sends an encrypted buffer, this exit needs to be modified to properly decrypt the
data.

z/OS Server User Exits CICS

Chapter 4: z/OS User Exits 513

Customizing the Exit

This exit is invoked when the cooperative buffer received from the client contains
encrypted data. Decrypt the data pointed to DATA-BUFFER-PTR for the length
BUFFER-SIZE bytes using the appropriate decryption algorithm. Ensure the
DATA-BUFFER-PTR points to the location of the decrypted data and that the
BUFFER-SIZE is updated with the correct data length. The maximum size of the
decrypted data cannot exceed DECRYPTION-MAX-SIZE. Set the return code to
DECRYPTION-USED.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

WRSECENCRYPT

TIRNCRYX Server Encryption Exit

The CA Gen Server Encryption Exit is used by z/OS servers.

Source Code

The sample source for this exit can be found in CA Gen CEHBSAMP library, in member
TIRNCRYX. The sample exit provided is written in COBOL and uses standard OS Linkage.

The Linkage Parameter list used by this exit is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 TIRNCRYP-CMCB.

03 DATA-BUFFER-PTR POINTER.

03 BUFFER-SIZE PIC 9(09) COMP.

03 ENCRYPTION-MAX-SIZE PIC 9(09) COMP.

03 TIRNCRYP-TRANCODE PIC X(08).

03 CLIENT-USERID PIC X(64).

03 NEXT-LOCATION-PTR POINTER.

03 TIRNCRYP-RETURN-CODE PIC X(02).

03 FAILURE-MSG PIC X(80).

z/OS Server User Exits CICS

514 User Exit Reference Guide

Purpose

TIRNCRYX is called by the Server Runtime to allow encryption of the cooperative buffer
before the response is sent to the client. The user is responsible for encrypting the data
pointed to by DATA-BUFFER-PTR for the length BUFFER-SIZE bytes. The maximum size of
the encrypted data cannot exceed ENCRYPTION-MAX-SIZE.

Note: Encryption/decryption of the request and response cooperative buffers are
mutually exclusive—encryption/decryption of the request buffer does not necessitate
that the same be done to the response buffer and vice-versa.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input Under CICS, this is CICS EXEC Interface
Block - DFHEIBLK.

RUNTIME-PARM2 input Under CICS, this is DFHCOMMAREA.

TIRNCRYP-CMCB input/output A pointer to a structure containing the
following items:

DATA-BUFFER-PTR input/ output On input, a pointer to the starting
location of the View Data and Client
Security sections within the CFB work
buffer.

On output, a pointer to the starting
location of the area that now contains the
encrypted version of the input data. The
length of this encrypted data cannot
exceed ENCRYPTION-MAX-SIZE.

BUFFER-SIZE input/ output On input, BUFFER-SIZE is the current
buffer size (in bytes) of the data to be
encrypted.

On output, BUFFER-SIZE should be
updated by this exit to contain the length
of the encrypted data. The length of the
encrypted data cannot exceed
ENCRYPTION-MAX-SIZE.

ENCRYPTION-MAX-SIZE input A field that contains the maximum
available buffer space (in bytes) that the
encrypted data can occupy.

TIRNCRYP-TRANCODE input A field that contains the trancode
identifying the target server.

z/OS Server User Exits CICS

Chapter 4: z/OS User Exits 515

Name I/O Description

CLIENT-USERID input A field containing the userid originally
sent by the client.

NEXT-LOCATION-PTR input Not used.

TIRNCRYP-RETURN-COD
E

output A 2-byte character field returning the
result of the encryption attempt. The
following values are supported:

ENCRYPTION-USED—defined as SPACES

ENCRYPTION-SIZE-EXCEEDED-MAX—defin
ed as 01

ENCRYPTION-NOT-USED—defined as 02

ENCRYPTION-APPLICATION-ERROR—defin
ed as 03

FAILURE-MSG output An 80-byte character field, to be
populated by this exit, to describe the
failure with a message of choice. This
failure message will be incorporated into
an error message that is returned back to
the client. Used in conjunction with a
return code of
ENCRYPTION-APPLICATION-ERROR.

Return Code

See TIRNCRYP-RETURN-CODE in the preceding Arguments section.

Default Processing

Encryption of the data buffer is not attempted. The TIRNCRYP-RETURN-CODE is set to
ENCRYPTION-NOT-USED.

Customizing the Exit

This exit is always invoked by the server runtime before the response is sent to the
client. The exit must update TIRNCRYP-RETURN-CODE field to indicate whether the data
is encrypted. The data that can be encrypted buffer pointed to by DATA-BUFFER-PTR
with length BUFFER-SIZE bytes. Ensure that DATA-BUFFER-PTR points to the location of
the encrypted data and that BUFFER-SIZE is updated with the correct data length. The
maximum size of the encrypted data cannot exceed ENCRYPTION-MAX-SIZE

Building on z/OS

For information about installing this exit, see MKUEXITS in Customizing and Installing
z/OS User Exits.

z/OS Server User Exits CICS

516 User Exit Reference Guide

Related User Exits

WRSECDECRYPT

TIRELOGX Server Error Logging and Error Token Creation Exit

The CA Gen Server Error Logging and Error Token Creation Exit is used by z/OS servers.

Source Code

The sample source for this exit can be found in CA Gen CEHBSAMP library, in member
TIRELOGX. The sample exit provided is written in COBOL and uses standard OS Linkage.

The Linkage Parameter list used by this exit is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 ELOG-EXIT-PARM-LIST.

03 ELOG-FAIL-TYPE PIC X.

03 ELOG-SQLCA.

05 ELOG-SQLCA-ADR PIC S9(9) COMP.

05 ELOG-SQLCA-PTR REDEFINES ELOG-SQLCA-ADR POINTER.

03 ELOG-GLOBDATA.

05 ELOG-GLOBDATA-ADR PIC S9(9) COMP.

05 ELOG-GLOBDATA-PTR REDEFINES ELOG-GLOBDATA-ADR POINTER.

03 ELOG-ERROR.

05 ELOG-NUMBER-OF-LINES PIC S9(9) COMP.

05 ELOG-ERROR-TEXT PIC X(80) OCCURS 31.

03 ELOG-ERROR-TOKEN.

 05 ELOG-ERROR-TOKEN-ADR PIC X(4).

 05 ELOG-ERROR-TOKEN-PTR REDEFINES ELOG-ERROR-TOKEN-ADR POINTER.

Purpose

The server error handling routine calls TIRELOGX before the error response is returned
to the client to let the server log the error locally or/and create an error token to be
sent to the client.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input Under CICS, this is CICS EXEC Interface Block -
DFHEIBLK.

z/OS Server User Exits CICS

Chapter 4: z/OS User Exits 517

RUNTIME-PARM2 input Under CICS, this is DFHCOMMAREA.

LOG-EXIT-PARM-LIST input/
output

A structure containing the following items:

ELOG-FAIL-TYPE input The type of error.

ELOG-SQLCA input A pointer to SQLCA.

ELOG-GLOBDATA input A pointer to GLOBDATA.

ELOG-ERROR input A structure with the following items:

ELOG-NUMBER-
OF-LINES

input

The number
of error
messages
used.

ELOG-ERROR-TEXT
input/
outpu
t

A table of
80-byte error
messages.

ELOG-ERROR-TOKEN output A pointer to the error token, maximum
length 4096 bytes.

Return Code

No explicit return code value. This exit can optionally return data contained in area
pointed to by ELOG-ERROR-TOKEN-PTR.

Default Processing

Return without any action.

Customizing the Exit

This exit can be used to enable the server to log the error and create an error token to
be sent to the client. Either of these actions can be done separate from each other.

Server Error Logging—The error information provided in ELOG-ERROR can be used to log
a message on the server platform.

Error Token Creation—The error information provided in ELOG-ERROR can be used to
create a text message. A pointer to this message must be provided in
ELOG-ERROR-TOKEN. The message is translated to the code page used by the client and
can be processed by the Client/Server Flow Server Failure Exit or Client/Server
Asynchronous Flow Server Failure Exit to customize how the error is handled.

z/OS Server User Exits CICS

518 User Exit Reference Guide

Building on z/OS

For more information about installing the exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

The following are related user exits:

■ WRSRVRERROR

■ WRASYNCSRVRERROR

TIRALLOX Server-to-Server Allocate Conversation Exit

z/OS servers use the CA Gen Server-to-Server Allocate Conversation Exit.

Source Code

The sample source for this exit can be found in CA Gen CEHBSAMP library, in member
TIRALLOX. The sample exit provided is written in COBOL and uses standard OS Linkage.

The Linkage Parameter list used by this exit is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 GLOBDATA size 3645 bytes

01 SERVER-CONNECTION-DATA PIC X(256).

01 ASYNCH-FLAG PIC X(01).

01 PSTEP-TRANCODE PIC X(08).

01 PSTEP-LOADMOD PIC X(08).

01 ALLOCATE-PARTNER-NAME PIC X(08).

01 ALLOCATE-PROFILE-NAME PIC X(08).

01 WAIT-TRAN-TIMEOUT PIC S9(7) COMP-3.

01 MAIN-OR-AUX-STORAGE PIC X(01).

01 LOCAL-RMT-FLAG PIC X(01).

01 TIRALLOX-RETURN PIC X(02).

01 FAIL-MESSAGE PIC X(75).

Purpose

For a Server-to-Server flow, CA Gen's server runtime invokes the TIRALLOX user exit to
set the type of Server-to-Server flow and obtain the relevant parameters required by
each type. There are two distinct types: local or remote.

z/OS Server User Exits CICS

Chapter 4: z/OS User Exits 519

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input This is CICS EXEC Interface Block -
DFHEIBLK.

RUNTIME-PARM2 input This is DFHCOMMAREA.

GLOBDATA input Global data, used internally.

SERVER-CONNECTION-DATA input Name of target host where the
target server is to execute as
specified by the TIRPROUX exit.

ASYNCH-FLAG input Flag indicating Asynchronous
request. Not used.

PSTEP-TRANCODE Input Target server transaction ID.

PSTEP-LOADMOD Input Target server load module name.

ALLOCATE-PARTNER-NAME output Partner name to be used in the
SNA allocate command.

ALLOCATE-PROFILE-NAME output Profile name to be used in the SNA
allocate command.

WAIT-TRAN-TIMEOUT output A packed field to specify the
amount of time (HHMMSS) after
which the CICS Server-to-Server
flow is considered non-responsive.

MAIN-OR-AUX-STORAGE output A flag indicating where to write the
cooperative buffer for local CICS
Server-to-Server requests. Values
can be M for Main Storage or A for
Auxiliary Storage.

LOCAL-RMT-FLAG output Flag to indicate whether this is for
a local or remote CICS
Server-to-Server request.

TIRALLOX-RETURN output A 2-byte character field indicating
result of the exit. The following
values are supported:

SPACES—successful

 NON-SPACES—failure

z/OS Server User Exits CICS

520 User Exit Reference Guide

Name I/O Description

FAIL-MESSAGE output A 75-byte character field that if
populated will be returned to the
client.

Return Code

See TIRALLOX-RETURN in the preceding Arguments section.

Default Processing

For CICS applications the default processing of this exit is to use, the Server Connection
Data passed from the TIRPROUX exit to populate the ALLOCATE-PARTNER-NAME while
the ALLOCATE-PROFILE-NAME is set to spaces. The TIRSYSIX exit is called to obtain the
name of the system the current application is executing in and if that matches the
ALLOCATE-PARTNER-NAME a Local request is assumed, otherwise a Server-to-Server
Remote request is issued. The WAIT-TRAN-TIMEOUT is set to 1 minute and CICS Main
Storage is selected as the location of the TSQ used for the cooperative buffer.

Customizing the Exit

This exit is used by the server runtime to enable changing the parameters required to
issue the Server-to-Server request. TIRALLOX-RETURN must be set to spaces to indicate
success or non-space to indicate failure. In case of failure, the FAIL-MESSAGE can be
populated with a message that will be returned to the client.

The CICS implementation differentiates between a Local and Remote requests.

A Local request means both servers will execute in the same CICS region. The method
used for this implementation is to call user exit TIRCQNAM, issue a CICS Start command
to start the target server transaction passing it the name of a TSQ containing the
cooperative buffer, issue a CICS Post ECB with an interval of WAIT-TRAN-TIMEOUT and a
CICS Wait ECB. User exit TIRCQNAM provides a customized name for the TSQ used in
the CICS Start command and located as specified in MAIN-OR-AUX-STORAGE parameter.

Modify the MAIN-OR-AUX-STORAGE or the WAIT-TRAN-TIMEOUT as required by the
application. Note that the WAIT-TRAN-TIMEOUT value should be large enough to enable
all activity of the Server-to-Server flow to complete.

z/OS Server User Exits CICS

Chapter 4: z/OS User Exits 521

A Remote request means each server executes in a different CICS region using an APPC
(LU6.2) connection between the two CICS. A CICS Allocate Sysid command using the
ALLOCATE-PARTNER-NAME as the Sysid is used to allocate the conversation followed by
a CICS Connect Process and CICS Send using the Convid returned by the Allocate. The
ALLOCATE-PROFILE-NAME becomes DFHCICSA if left blank. Modify the
ALLOCATE-PARTNER-NAME or ALLOCATE-PROFILE-NAME as required by the application.
The CICS APPC definitions need to be in place, the Profile must include the name of the
VTAM Logmode Table as the MODENAME and the Connections must be ACQUIRED prior
to the CICS Allocate being issued.

Building on z/OS

For more information about installing this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

The following are related user exits:

■ TIRPROUX

■ TIRPTOKX

■ TIRSYSIX

■ TIRCQNAM

TIRPTOKX Server-to-Server Security Token CA Generation Exit

z/OS servers use the CA Gen Server-to-Server Security Token CA Generation Exit.

Source Code

The sample source for this exit can be found in CA Gen CEHBSAMP library, in member
TIRPTOKX. The sample exit provided is written in COBOL and uses standard OS Linkage.

The Linkage Parameter list used by this exit is as follows:

01 RUNTIME-PARM1 PIC X(01).

01 RUNTIME-PARM2 PIC X(01).

01 GLOBDATA size 3645 bytes.

01 TEMP-BUFFER PIC X(32768).

01 USE-SECR-FLAG PIC S9(04) COMP.

01 TOKEN-SIZE PIC S9(09) COMP.

01 FAIL-MESSAGE PIC X(75).

z/OS Server User Exits CICS

522 User Exit Reference Guide

Purpose

Server-to-Server Runtime calls TIRPTOKX to enable the generation of a Security Token to
be placed in the security section of the cooperative buffer to be sent to the target
server.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input Under CICS, this is CICS EXEC Interface
Block -DFHEIBLK.

RUNTIME-PARM2 input Under CICS, this is DFHCOMMAREA.

GLOBDATA input Global data, used internally.

TEMP-BUFFER input Buffer for storing Token

USE-SECR-FLAG output Security Flag. The following values are
supported:

-1 indicating SECURITY NOT USED

+0 indicating SECURITY USED, OK

+1 indicating SECURITY ERROR

TOKEN-SIZE output Size of generated Token

FAIL-MESSAGE output A 75-byte character field that if
populated will be returned to the client.

Return Code

See USE-SECR-FLAG in the preceding Arguments section.

Default Processing

The TIRPTOKX exit sets the USE-SECR-FLAG to NOT USED (-1) and the TOKEN-SIZE to
zero.

Customizing the Exit

This exit can be customized to return a security-token in TEMP-BUFFER with its length in
TOKEN-SIZE. If modified the USE-SECR-FLAG must also be updated to indicate SECURITY
USED, OK, or SECURITY ERROR as applicable. The runtime will take the TOKEN-SIZE and
the generated Token together with the current application's system attributes
CLIENT-USERID and CLIENT-PASSWORD and create a Security Offset in the cooperative
buffer for the Server-to-Server request.

z/OS Server User Exits CICS

Chapter 4: z/OS User Exits 523

Building on z/OS

For more information about installing the exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

TIRALLOX

TIRCSGNX Server TCP/IP Signon Exit

The CA Gen Server Signon Exit is used by z/OS Servers that use TCP/IP Direct Connect
Option for CICS. The server calls this exit, but not TICONMGR.

Source Code

The source code for this exit is in CA Gen CEHBSAMP library, in member TIRCSGNX. The
sample exit provided is written in COBOL and uses standard OS Linkage.

The Linkage Parameter list used by this exit is as follows:

01 RUNTIME-PARM1 PIC X(01).

01 RUNTIME-PARM2 PIC X(01).

01 TIRCSGN-RETURN PIC X(02).

01 SGN-USERID PIC X(08).

Purpose

TCP/IP servers started with a terminal ID parameter are intended to use this exit, but
not the userid parameter to obtain the client userid. This is for applications that have
been designed to have special knowledge of where to obtain the required information.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input CICS DFHEIBLK, automatically included if
translated.

RUNTIME-PARM2 input CICS DFHCOMMAREA, automatically
included if translated.

z/OS Server User Exits CICS

524 User Exit Reference Guide

Name I/O Description

TIRCSGN-RETURN output A 2-byte character field indicating result of
the exit. The following values are
supported:

SPACES—Successful

NON-SPACES—Failure

SGN-USERID input The userid as provided by the client
application.

Return Code

See TIRCSGN-RETURN in the preceding Arguments section.

Default Processing

This exit moves spaces to TIRCSGN-RETURN and returns.

Customizing the Exit

TCP/IP Direct Connect CICS servers run as CICS non-terminal tasks started using the CICS
START command with the USERID option. This USERID option specifies the userid sent
by the client application. However, TCP/IP Direct Connect CICS servers can be started as
CICS terminal tasks by using CICS START command with the TERMID option when a value
for a terminal is provided in the Server Termid parameter of the CICS Sockets Server
Listener Exit TIRSLEXT. The userid and termid are mutually exclusive options of the CICS
START command and these applications run under the userid provided by CICS to
TISRVLIS Listener.

This exit provides the opportunity for servers designed with knowledge of where to
obtain the client security data to be able to obtain and use this data.

The exit is intended to use the SGN-USERID. The server will not pick up any changes to
its value.

Building on z/OS

It is strongly recommended that this exit not be modified so the TCP/IP Servers execute
without a terminal ID but with a userid.

For more information about installing the exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None

z/OS Server User Exits CICS

Chapter 4: z/OS User Exits 525

TIRPROUX Server-to-Server Routing Exit

z/OS servers use the CA Gen Server-to-Server Routing Exit.

Source Code

The source code for this exit is in CA Gen CEHBSAMP library, in member TIRCROUX. The
sample exit provided is written in COBOL and uses standard OS Linkage.

The Linkage Parameter list used by TIRCROUX is as follows:

01 GLOBDATA structure size 3645

bytes.

01 PSTEP-NAME PIC X(32).

01 PSTEP-TRANCODE PIC X(08).

01 PSTEP-LOADMOD PIC X(08).

01 ROUTR-OUT-TRANCODE PIC X(08).

01 ROUTR-OUT-LOADMOD PIC X(08).

01 ROUTR-OUT-SVR-CONNECT-DATA PIC X(256).

01 ROUTR-OUT-ASYNCH-FLAG PIC X(01).

01 ROUTR-OUT-RET-CODE PIC X(02).

01 FAIL-MESSAGE PIC X(75).

This exit contains CICS API calls that require it to be processed by the Translator. The
Translator automatically includes data structures for DFHEIBLK and DFHCOMMAREA in
the place of RUNTIME-PARM1 and RUNTIME-PARM2 thus RUNTIME-PARMx are not
specified.

Purpose

Server-to-Server Runtime calls TIRPROUX to let the target server node name, trancode
and load module name be specified.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input Under CICS, this is CICS
EXEC Interface Block
DFHEIBLK.

RUNTIME-PARM2 input Under CICS, this is
DFHCOMMAREA.

GLOBDATA input Global data, used
internally.

z/OS Server User Exits CICS

526 User Exit Reference Guide

Name I/O Description

PSTEP-NAME input Target server procedure
step name.

PSTEP-TRANCODE input Target server transaction
ID.

PSTEP-LOADMOD input Target server load module
name.

ROUTR-OUT-TRANCODE output Modified target server
transaction ID.

ROUTR-OUT-LOADMOD output Modified target server
load module name.

ROUTR-OUT-SVR-CONNECT-DATA output Name of target node
where target server is to
execute.

ROUTR-OUT-ASYNCH-FLAG output Flag indicating
Asynchronous request.
Not used.

ROUTR-OUT-RET-CODE output A 2-byte character field
indicating whether the
exit was successful. The
following values are
supported:

SPACES—successful

NON-SPACES—failure

FAIL-MESSAGE output A 75-byte character field
that if populated will be
returned to the client.

Return Code

See TIRSECV-RETURN-CODE in the preceding Arguments section.

Default Processing

The CICS implementation calls TIRSYSIX user exit to obtain the Sysid and returns it as the
ROUTR-OUT-SVR-CONNECT-DATA (server node name) and spaces as the
ROUTR-OUT-TRANCODE and ROUTR-OUT-LOADMOD names.

z/OS Server User Exits CICS

Chapter 4: z/OS User Exits 527

Customizing the Exit

CICS

The CICS implementation of this exit can be modified to update the
ROUTR-OUT-SVR-CONNECT-DATA, the ROUTR-OUT-TRANCODE, and
ROUTR-OUT-LOADMOD as required.

IMS

The IMS implementation of this exit can be modified to update the
ROUTR-OUT-SVR-CONNECT-DATA, the ROUTR-OUT-TRANCODE, and
ROUTR-OUT-LOADMOD as required. The ROUTR-OUT-SVR-CONNECT-DATA is used by
the TIRALLOC exit as the SERVER-CONNECTION-DATA.

Building on z/OS

For more information about installing the exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

The following are related user exits:

■ TIRALLOC

■ TIRPTOKX

■ TIRSYSIX

TIRSIPEX CICS Sockets Server Exit

The CA Gen CICS Sockets Server Exit is used by the z/OS CICS servers started by the CICS
Socket Server Listener program TISRVLIS, the CA Gen TCP/IP implementation.

The exit is used to allow customization of various variables used by the server when
processing a request.

Source Code

The source code for this exit is in CA Gen CEHBSAMP library, in member TIRSIPEX. The
sample exit provided is written in COBOL and uses standard OS Linkage.

z/OS Server User Exits CICS

528 User Exit Reference Guide

The parameter list used by TIRSIPEX is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 SIP-TS-PREFIX PIC X(03).

01 DEST-ERR PIC X(04).

01 DEST-INFO PIC X(04).

01 SELECT-TIMEOUT-SECS PIC 9(08) BINARY.

01 SELECT-TIMEOUT-MICROSEC PIC 9(08) BINARY.

01 ERROR-IP-FLAG PIC X(1).

01 TIRSIPEX-RC PIC X(02).

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

RUNTIME-PARM1 input/ output In CICS, this becomes DFHEIBLK,
which is automatically included if
translated

RUNTIME-PARM2 input/ output In CICS, this becomes
DFHCOMMAREA which is
automatically included if translated

SIP-TS-PREFIX input/ output Prefix to be used for the temporary
storage queue (TSQ) to hold the
Socket Descriptor. This should be a
local TSQ.

DEST-ERR input/ output Name of transient data queue (TDQ)
used to report error messages.
Messages will be suppressed if the
queue does not exist.

DEST-INFO input/ output Name of transient data queue (TDQ)
used to report informational
messages. Messages will be
suppressed if the queue does not
exist.

SELECT-TIMEOUT- SECS input/ output Number of seconds the Sockets API
SELECT call will wait to timeout.

SELECT-TIMEOUT- MICROSEC input/ output Number of micro seconds the Sockets
API SELECT call will wait to timeout.

z/OS Server User Exits CICS

Chapter 4: z/OS User Exits 529

Name I/O Description

ERROR-IP-FLAG output A 1-byte flag that tells the server
whether to add the IP address to
some error messages:

N – do not add

Y - add

TIRSIPEX-RC output A two-byte character field indicating
result of the exit. The following
values are supported:

SPACES – Successful

NON-SPACES – Failure

Return Code

See TIRSIPEX-RC in the preceding Arguments section.

Default Processing

The default processing of this exit sets SIP-TS-PREFIX to SIP, DEST-ERR to CSSL,
DEST-INFO to TISL, SELECT-TIMEOUT-SECS to zero, SELECT-TIMEOUT-MICROSEC to 100
microseconds, ERROR-IP-FLAG to N, and TIRSIPEX-RC to spaces.

Customizing the Exit

This exit does not use CICS commands so it does not need to be translated for CICS and
it specifies RUNTIME-PARM1 and RUNTIME-PARM2 in both the Linkage Section and the
Procedure Division statement.

The SIP-TS-PREFIX parameter is used in conjunction with the CICS taskid to make up the
name of a unique TSQ used by the server. This TSQ should be local and is required
during the execution of each server. If changed, this parameter must be unique per CICS
region.

The DEST-ERR parameter provides the name of a transient data queue (TDQ) where
error messages are written to. If changed, ensure this TDQ exists to obtain these
required messages.

The DEST-INFO parameter provides the name of a transient data queue (TDQ) where
informational messages are written to. If this TDQ does not exist the informational
messages will be suppressed.

z/OS Server User Exits CICS

530 User Exit Reference Guide

The SELECT-TIMEOUT-SECS and SELECT-TIMEOUT-MICROSEC parameters combine to
become the TIMEOUT parameter of the Socket SELECT call. This SELECT call is used to
determine if the socket contains data to be retrieved before doing a Socket RECV call or
Socket READ call.

The ERROR-IP-FLAG parameter is used to tell the server runtime whether to add the IP
address to the some socket and CICS error messages. The default is to not add the IP
address.

Modify the parameters as required by the application.

Building on z/OS

For information about installing the exit, see MKUEXITS in Customizing and Installing
z/OS User Exits.

Related User Exits

The following are related user exits:

■ TIRSLEXT

■ TIRSLTMX

TIRMQPX MQ SERIES Put Function Exit

The CA Gen MQ Series Server Exit is used by the z/OS CICS and IMS servers started by
the MQ Series. The exit is used to allow customization of syncpoint variable used by the
server in the processing of the request.

Source Code

The source code for this exit is in CA Gen CEHBSAMP library, in member TIRMQPX. The
sample exit provided is written in COBOL and uses standard OS Linkage.

The Linkage Parameter list used by TIRMQPX is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 TRANCODE PIC X(08).

01 SYNCPOINT-FLAG PIC X(1).

Purpose

This exit can be used to customize the server runtime MQPUT function to do a syncpoint
instead of no syncpoint. The default processing is to do no syncpoint.

z/OS Server User Exits CICS

Chapter 4: z/OS User Exits 531

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

RUNTIME-PARM1 input/ output In CICS, this becomes DFHEIBLK, which is
automatically included if translated

RUNTIME-PARM2 input/ output In CICS, this becomes DFHCOMMAREA
which is automatically included if
translated

TRANCODE input/ output The server trancode

SYNCPOINT-FLAG input/ output Flag set to either Y or N. Default is N

Return Code

There is no explicit return code value provided by the TIRMQPX exit.

Default Processing

The default processing of this exit sets SYNCPOINT-FLAG to N.

Customizing the Exit

This exit does not use CICS commands so it does not need to be translated for CICS and
it specifies RUNTIME-PARM1 and RUNTIME-PARM2 in both the Linkage Section and the
Procedure Division statement.

The TRANCODE parameter can be used to decide if the MQPUT function should specify
SYNCPOINT instead of NO-SYNCPOINT.

The SYNCPOINT-FLAG parameter should be set to Y if MQPUT should use SYNCPOINT.

Modify the parameters as required by the application.

Building on z/OS

You will need to use the MKORUNX jcl in the CEHBSAMP library.

Related User Exits

None

z/OS Server User Exits IMS

532 User Exit Reference Guide

z/OS Server User Exits IMS

TIRTIARX DB2 Message Exit

z/OS Server Managers use the CA Gen DB2 Message Exit.

Source Code

The source code for the version of the exit used by IMS application is in CA Gen
CEHBSAMP library, in member TIRITIAX. The sample exit provided is written in COBOL
and uses standard OS Linkage.

The Linkage Parameter list used by TIRTIARX is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 TIRFAIL-SQLCA PIC X.

01 TIRTIAR-ERRORS PIC X.

01 TIRTIAR-TEXT-LEN PIC X.

01 TIRTIAR-WORKAREA PIC X.

01 GLOBDATA structure size 3645 bytes.

Purpose

The DB2 Message Exit is used by all applications targeting DB2 database on z/OS. The
TIRFAIL subroutine of the Dialog Manager calls the DB2 Message exit, TIRTIARX,
whenever an unrecoverable DB2 failure occurs. TIRTIARX then calls the subroutine
DSNTIAR to convert the SQL code into text. The messages returned by DSNTIAR are then
merged with the runtime error messages.

TIRTIARX can be customized to statically link DSNTIAR with the executable load module
rather than dynamically linking it.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input This is IO-PCB automatically included if
translated.

z/OS Server User Exits IMS

Chapter 4: z/OS User Exits 533

Name I/O Description

RUNTIME-PARM2 input This is ALT-IO-PCB automatically
included if translated.

TIRFAIL-SQLCA input SQLCA

TIRTIAR-ERRORS input/output Error message lines.

TIRTIAR-TEXT-LEN input Length of one error message line.

TIRTIAR-WORKAREA input Workarea

GLOBDATA input Global data, used internally.

Return Code

No explicit return code is set by the user exit.

Default Behavior

As provided by CA Gen, the default exit dynamically calls DSNTIAR and is compatible
with prior releases. However the sample code also contains examples of how to call
DSNTIAR or DSNTIAC statically.

The call to TIRTIARX is made when TIRFAIL is building the table of messages and occurs
prior to calling the default termination exit. For more information, see the Online
Termination Exit and Batch Termination Exit.

Customizing the DB2 Message Exit

Copy the default exit to one of your own libraries. The member name for IMS is
TIRITIAX. The default exit includes example code for the two possible combinations of
calls. There are dynamic and static calls of DSNTIAR. Simply comment out the default
call and remove the comments from the one you want to use.

When you have completed your modifications, install your exit.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None.

z/OS Server User Exits IMS

534 User Exit Reference Guide

TIRALLOX Server-to-Server Allocate Conversation Exit

z/OS servers use the CA Gen Server-to-Server Allocate Conversation Exit.

Source Code

The sample source for this exit can be found in CA Gen CEHBSAMP library, in member
TIRALLOX. The sample exit provided is written in COBOL and uses standard OS Linkage.

The Linkage Parameter list used by this exit is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 GLOBDATA size 3645 bytes

01 SERVER-CONNECTION-DATA PIC X(256).

01 ASYNCH-FLAG PIC X(01).

01 PSTEP-TRANCODE PIC X(08).

01 PSTEP-LOADMOD PIC X(08).

01 ALLOCATE-PARTNER-NAME PIC X(08).

01 ALLOCATE-PROFILE-NAME PIC X(08).

01 WAIT-TRAN-TIMEOUT PIC S9(7) COMP-3.

01 MAIN-OR-AUX-STORAGE PIC X(01).

01 LOCAL-RMT-FLAG PIC X(01).

01 TIRALLOX-RETURN PIC X(02).

01 FAIL-MESSAGE PIC X(75).

Purpose

For a Server-to-Server flow, CA Gen's server runtime invokes the TIRALLOX user exit to
set the type of Server-to-Server flow and obtain the relevant parameters required by
each type. There are two distinct types: local or remote.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input This is the I/O PCB.

RUNTIME-PARM2 input This is Alternate I/O PCB.

GLOBDATA input Global data, used internally.

SERVER-CONNECTION-DATA input Name of target host where the
target server is to execute as
specified by the TIRPROUX exit.

z/OS Server User Exits IMS

Chapter 4: z/OS User Exits 535

Name I/O Description

ASYNCH-FLAG input Flag indicating Asynchronous
request. Not used.

PSTEP-TRANCODE Input Target server transaction ID.

PSTEP-LOADMOD Input Target server load module name.

ALLOCATE-PARTNER-NAME output Partner name to be used in the
SNA allocate command.

ALLOCATE-PROFILE-NAME output Profile name to be used in the SNA
allocate command.

WAIT-TRAN-TIMEOUT output A packed field to specify the
amount of time (HHMMSS) after
which the Server-to-Server flow is
considered non-responsive.

MAIN-OR-AUX-STORAGE output A flag indicating where to write the
cooperative buffer for local
Server-to-Server requests. Values
can be M for Main Storage or A for
Auxiliary Storage.

LOCAL-RMT-FLAG output Flag to indicate whether this is for
a local or remote Server-to-Server
request.

TIRALLOX-RETURN output A 2-byte character field indicating
result of the exit. The following
values are supported:

SPACES—successful

 NON-SPACES—failure

FAIL-MESSAGE output A 75-byte character field that if
populated will be returned to the
client.

Return Code

See TIRALLOX-RETURN in the preceding Arguments section.

Default Processing

For IMS applications the default processing of this exit is to use, the Server Connection
Data passed from the TIRPROUX exit to populate the ALLOCATE-PARTNER-NAME. This is
the target server trancode.

All the other parameters are ignored.

z/OS Server User Exits IMS

536 User Exit Reference Guide

Customizing the Exit

This exit is used by the server runtime to enable changing the parameters required to
issue the Server-to-Server request. TIRALLOX-RETURN must be set to spaces to indicate
success or non-space to indicate failure. In case of failure, the FAIL-MESSAGE can be
populated with a message that will be returned to the client.

The IMS implementation does not use the LOCAL-RMT_FLAG to identify the request as
local or remote. Instead, it uses the CPI-C services of APPC/IMS and APPC/MVS as the
communication mechanism for Server-to-Server requests and obtains the required
information from the CPI-C Side Information File. This file is a VSAM KSDS data set with
the Server Trancode name as key to the Symbolic Destination Entry. The Symbolic
Destination Entry contains the PARTNER_LU name (the server node name), MODENAME
(VTAM Logmode Table) and the TPNAME (trancode) required by APPC. If the
PARTNER_LU is blank, the request is considered local, and APPC targets the same
system as the current application, otherwise it uses the PARTNER_LU as the server node
name for the Remote request. Modify the ALLOCATE-PARTNER-NAME as required by
the application and configure the CPI-C Side Info File accordingly. IBM provides utility
ATBSDFMU to customize the Side Info File.

Note: For more information about APPC/MVS, see the IBM Guide.

Building on z/OS

For more information about installing this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

The following are related user exits:

■ TIRPROUX

■ TIRPTOKX

■ TIRSYSIX

■ TIRCQNAM

TIRPROUX Server-to-Server Routing Exit

z/OS servers use the CA Gen Server-to-Server Routing Exit.

Source Code

The source code for this exit is in CA Gen CEHBSAMP library, in member TIRIROUX. The
sample exit provided is written in COBOL and uses standard OS Linkage.

z/OS Server User Exits IMS

Chapter 4: z/OS User Exits 537

The Linkage Parameter list used by TIRIROUX is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 GLOBDATA size 3645 bytes.

01 PSTEP-NAME PIC X(32).

01 PSTEP-TRANCODE PIC X(08).

01 PSTEP-LOADMOD PIC X(08).

01 ROUTR-OUT-TRANCODE PIC X(08).

01 ROUTR-OUT-LOADMOD PIC X(08).

01 ROUTR-OUT-SVR-CONNECT-DATA PIC X(256).

01 ROUTR-OUT-ASYNCH-FLAG PIC X(01).

01 ROUTR-OUT-RET-CODE PIC X(02).

01 FAIL-MESSAGE PIC X(75).

Purpose

Server-to-Server Runtime calls TIRPROUX to let the target server node name, trancode
and load module name be specified.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input This is the I/O PCB.

RUNTIME-PARM2 input This is Alternate I/O PCB.

GLOBDATA input Global data, used
internally.

PSTEP-NAME input Target server procedure
step name.

PSTEP-TRANCODE input Target server transaction
ID.

PSTEP-LOADMOD input Target server load module
name.

ROUTR-OUT-TRANCODE output Modified target server
transaction ID.

ROUTR-OUT-LOADMOD output Modified target server
load module name.

ROUTR-OUT-SVR-CONNECT-DATA output Name of target node
where target server is to
execute.

z/OS Server User Exits IMS

538 User Exit Reference Guide

Name I/O Description

ROUTR-OUT-ASYNCH-FLAG output Flag indicating
Asynchronous request.
Not used.

ROUTR-OUT-RET-CODE output A 2-byte character field
indicating whether the
exit was successful. The
following values are
supported:

SPACES—successful

NON-SPACES—failure

FAIL-MESSAGE output A 75-byte character field
that if populated will be
returned to the client.

Return Code

See TIRSECV-RETURN-CODE in the preceding Arguments section.

Default Processing

The IMS implementation returns the Server Trancode as the
ROUTR-OUT-SVR-CONNECT-DATA and spaces as the ROUTR-OUT-TRANCODE and
ROUTR-OUT-LOADMOD names.

Customizing the Exit

The IMS implementation of this exit can be modified to update the
ROUTR-OUT-SVR-CONNECT-DATA, the ROUTR-OUT-TRANCODE, and
ROUTR-OUT-LOADMOD as required. The ROUTR-OUT-SVR-CONNECT-DATA is used by
the TIRALLOC exit as the SERVER-CONNECTION-DATA.

Building on z/OS

For more information about installing the exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

The following are related user exits:

■ TIRALLOC

■ TIRPTOKX

■ TIRSYSIX

z/OS Batch User Exits

Chapter 4: z/OS User Exits 539

z/OS Batch User Exits

TIRTIARX DB2 Message Exit

z/OS Batch Managers use the CA Gen DB2 Message Exit.

Source Code

The source code for the version of the exit used by Batch application is in CA Gen
CEHBSAMP library, in member TIRITIAX. The sample exit provided is written in COBOL
and uses standard OS Linkage.

The Linkage Parameter list used by TIRTIARX is as follows:

01 RUNTIME-PARM1 PIC X.

01 RUNTIME-PARM2 PIC X.

01 TIRFAIL-SQLCA PIC X.

01 TIRTIAR-ERRORS PIC X.

01 TIRTIAR-TEXT-LEN PIC X.

01 TIRTIAR-WORKAREA PIC X.

01 GLOBDATA structure size 3645 bytes.

Purpose

The DB2 Message Exit is used by all applications targeting DB2 database on z/OS. The
TIRFAIL subroutine of the Dialog Manager calls the DB2 Message exit, TIRTIARX,
whenever an unrecoverable DB2 failure occurs. TIRTIARX then calls the subroutine
DSNTIAR to convert the SQL code into text. The messages returned by DSNTIAR are then
merged with the runtime error messages.

TIRTIARX can be customized to statically link DSNTIAR with the executable load module
rather than dynamically linking it.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input This is IO-PCB automatically
included if translated.

z/OS Batch User Exits

540 User Exit Reference Guide

Name I/O Description

RUNTIME-PARM2 input This is ALT-IO-PCB automatically
included if translated.

TIRFAIL-SQLCA input SQLCA

TIRTIAR-ERRORS input/output Error message lines.

TIRTIAR-TEXT-LEN input Length of one error message line.

TIRTIAR-WORKAREA input Workarea.

GLOBDATA input Global data, used internally.

Return Code

No explicit return code is set by the user exit.

Default Behavior

As provided by CA Gen, the default exit dynamically calls DSNTIAR and is compatible
with prior releases. However the sample code also contains examples of how to call
DSNTIAR or DSNTIAC statically.

The call to TIRTIARX is made when TIRFAIL is building the table of messages and occurs
prior to calling the default termination exit. For more information, see the Online
Termination Exit and Batch Termination Exit.

Customizing the DB2 Message Exit

Copy the default exit to one of your own libraries. The member name for batch is
TIRITIAX. The default exit includes example code for the two possible combinations of
calls. There are dynamic and static calls of DSNTIAR. Simply comment out the default
call and remove the comments from the one you want to use.

When you have completed your modifications, install your exit.

z/OS Batch User Exits

Chapter 4: z/OS User Exits 541

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None.

TIRBRTRX Default Retry Limit Exit

z/OS Batch Managers for Batch applications use the CA Gen Default Retry Limit Exit.

Source Code

The source code for this exit is in CA Gen CEHBSAMP library, in member TIRBRTRX. The
sample exit provided is written in COBOL and uses standard OS Linkage.

The Linkage Parameter list used by TIRBRTRX is as follows:

01 RETRY-TIMES PIC S9(4) COMP.

Purpose

This exit is called at the beginning of a CA Gen Batch application to enable the defined
default value for the TRANSACTION RETRY LIMIT system attribute to be modified.

TRANSACTION RETRY LIMIT will be initialized to this value at the beginning of each new
execution. This value may subsequently be modified by a SET TRANSACTION RETRY
LIMIT statement in an action diagram.

TRANSACTION RETRY LIMIT is used to specify the maximum number of times a
transaction is to be retried when one of the following events occurs:

■ A RETRY TRANSACTION action diagram statement executes.

z/OS Batch User Exits

542 User Exit Reference Guide

■ A deadlock or timeout occurs trying to access a database, and no WHEN DATABASE
DEADLOCK OR TIMEOUT statement was provided for that entity action statement.
(This is not applicable for z/OS transactions running under IMS or IEFAE. An
application running under IMS that encounters a deadlock or timeout will be
terminated immediately by IMS itself, even if it has a WHEN DATABASE DEADLOCK
OR TIMEOUT statement provided.)

In either of these cases, any uncommitted database updates will be rolled back, and an
attempt will then be made to execute the application again. Once the number of retries,
as indicated by the TRANSACTION RETRY COUNT system attribute, reaches either
TRANSACTION RETRY LIMIT or the value specified by the Ultimate Retry Limit Exit, no
more retries can occur, and the application will fail with a runtime error if the last retry
attempt was unsuccessful.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

ULTIMATE-RETRY-LIMIT input/
output

Absolute number of retries allowed in a
batch appliation.

Return Code

No explicit return code is set by the user exit.

This exit is called at the beginning of a CA Gen CICS blockmode application to enable the
defined default value for the TRANSACTION RETRY LIMIT system attribute to be
modified. The TRANSACTION RETRY LIMIT will be initialized to this value at the
beginning of each new transaction. This value may subsequently be modified by a SET
TRANSACTION RETRY LIMIT statement in an action diagram.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

RUNTIME-PARM1 input This is DFHEIBLK
automatically included by
the Translator.

RUNTIME-PARM2 input This is DFHCOMMAREA
automatically included by
the Translator.

z/OS Batch User Exits

Chapter 4: z/OS User Exits 543

Name I/O Description

RETRY-TIMES input/ output The maximum number of
times the transaction
execution is retried.

GLOBDATA input Global data, used internally.

Return Code

No explicit return code is set by the user exit.

Default Processing

If the Default Retry Limit Exit is not modified the TRANSACTION RETRY LIMIT will be
initialized to 10 for all target environments. If the Default Retry Limit Exit is used, it must
not return a value greater than that specified in the Ultimate Retry Limit Exit.

Customizing the Exit

The TRANSACTION RETRY LIMIT will be initialized to this value at the beginning of each
new transaction. This value may subsequently be modified by a SET TRANSACTION
RETRY LIMIT statement in an action diagram.

The TRANSACTION RETRY LIMIT is used to specify the maximum number of times a
transaction is to be retried when one of the following events occurs:

■ A RETRY TRANSACTION action diagram statement executes.

■ A deadlock or timeout occurs trying to access a database, and no WHEN DATABASE
DEADLOCK OR TIMEOUT statement was provided for that entity action statement.

In either of these cases, any uncommitted database updates will be rolled back, and an
attempt will then be made to execute the application again. Once the number of retries,
as indicated by the TRANSACTION RETRY COUNT system attribute, reaches either
TRANSACTION RETRY LIMIT or the value specified by the Ultimate Retry Limit Exit, no
more retries can occur, and the application will fail with a runtime error if the last retry
attempt was unsuccessful.

Modify the copied exit as needed. When you have completed your modifications, install
the exit as described in Customizing and Installing z/OS User Exits.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

z/OS Batch User Exits

544 User Exit Reference Guide

Related User Exit

TIRBURTX

TIRBURTX Ultimate Retry Limit Exit

Ultimate Retry Limit Exit for batch applications.

Source Code

LINKAGE SECTION.

01 ULTIMATE-RETRY-LIMIT PIC S9(9) COMP.

Purpose

The Ultimate Retry Limit Exit allows the user to specify a maximum value for the
TRANSACTION RETRY LIMIT system attribute. This value may never be exceeded, either
by a SET TRANSACTION RETRY LIMIT statement in an action diagram, or by the Default
Retry Limit Exit.

For an explanation of when and how the TRANSACTION RETRY LIMIT system attribute is
used see Default Retry Limit Exit in this chapter.

Once the number of retries, as indicated by the TRANSACTION RETRY COUNT system
attribute, reaches either TRANSACTION RETRY LIMIT or the value specified by the
Ultimate Retry Limit Exit, no more retries can occur, and the application will fail with a
runtime error if the last retry attempt was unsuccessful.

Default Processing

If the Ultimate Retry Limit Exit is not used, the maximum value of TRANSACTION RETRY
LIMIT will be 99 for all target environments. The Ultimate Retry Limit Exit may be
modified to return a value of zero to suppress all retry attempts for that environment.

Customizing the Exit

Copy TIRBURTX exit to one of your libraries or directories. Modify the copied exit as
needed. When you have completed your modifications, install the exit as described in
the Customizing and Installing z/OS User Exits.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

z/OS Batch User Exits

Chapter 4: z/OS User Exits 545

TIRRETCX Batch Return Code Override Exit

TBD

Source Code

TBD

Purpose

The Batch Return Code Override Exit allows the user to override the CA Gen defined
COBOL return code in batch job steps. It is called by the Batch Manager at the end of
each job step, and by program TIRIOVFI.

The COBOL return code is used by CA Gen to implement transfer dialog flows in batch
jobs. Due to the implications of the return code on job step execution, be sure you
understand the behavior of JCL condition codes before modifying this exit.

The return code may be safely overridden if either:

■ There is only one procedure step executed by the job, or

■ All exit states in the job’s procedure steps cause a transfer either to the same
procedure step (self-referencing flow) or to the next procedure step (no job steps
are bypassed).

Under these conditions, all steps in the job are executed in order and the condition code
may be safely set to another value (e. g., zero). If this is not the case, you must
restructure the batch procedure or modify the JCL to prevent improper attempted
execution of the job steps. An attempt to execute a job step without the proper control
data in the TIRIOVF file will result in an ABEND.

Note that return codes are not used in the TSO testing of batch applications.
Overflowing the return code will have no effect on the TSO testing of batch procedures.

Arguments

TBD

Return Code

TBD

Default Processing

The default exit takes no action.

z/OS Batch User Exits

546 User Exit Reference Guide

Customizing the Exit

Copy the default exit from the sample library to one of your own libraries. The member
name is TIRRETCX. The COBOL return code is passed to the exit as a parameter along
with the names of the procedure step just completed and the load module in which it is
packaged. For transfers, the names of the destination procedure step and load module
are also provided.

Modify the copied exit as needed. When you have completed your modifications, install
the exit as described in the section on customizing user exits in this chapter.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

TBD

TIRTERBX Batch Termination Exit

TBD

Source Code

TBD

Purpose

Batch runtime errors are handled by the Batch Manager that is a part of every CA Gen
generated batch load module.

When an error occurs, the batch job is terminated. The Batch Manager executes a fail
routine that backs out changes by performing the necessary rollbacks of the databases.
The fail routine then calls a termination exit that determines what diagnostic (error)
information is written to the error file.

Arguments

TBD

Return Code

TBD

z/OS Batch User Exits

Chapter 4: z/OS User Exits 547

Default Processing

If a batch runtime error occurs and the default batch termination exit is used,
processing is as follows:

1. The Batch Manager performs all necessary rollbacks. This is done regardless of the
termination exit used.

2. The Batch Manager fail routine calls the default termination exit. It returns to the
fail routine without doing anything, which causes the default termination logic in
the fail routine to be used.

3. The fail routine writes runtime error messages to an error message file with the
DDNAME TIRERRF.

An example of an error message file is shown in the following figure.

4. The batch job abends with a user code of 100 (U0100).

Customizing the Exit

Copy member TIRTERBX from the CA Gen CEHBSAMP library to a separate library. The
status code returned from TIRTERBX is used to control abend processing as shown in the
following table:

Status Code Returned
to TIRTERBX

TIRFAIL Writes Messages to
Error File

TIRFAIL Abends Job with
U0100

0 Yes Yes

1 No Yes

2 No No

(blank) Yes Yes

z/OS Batch User Exits

548 User Exit Reference Guide

CA Gen batch jobs usually handle errors by first writing error messages to a file and then
abending with a code of U0100. Upon entry to TIRTERBX, the TERM-STATUS-CODE is
blank. By setting this field to 1, you can override the error message processing but
TIRFAIL still abends the job with a code of U0100. You can override the message
processing and control the abend of the job by setting the TERM-STATUS-CODE to 2.

Important! If you set TERM-STATUS-CODE to 1 or 2, CA Gen does not write error
messages to a file. You should implement your own routine to write error messages to a
file so that you can see the nature of any errors that occur. Be sure to include the use of
DSNTIAR for display of DB2 messages. If you set TERM-STATUS-CODE to 2, you are
responsible for abending the job.

One way of doing this is to code:

CALL ’TIRABEND’ USING ABEND-CODE

where ABEND-CODE is defined as:

01 ABEND-CODE PIC S9(9) COMP VALUE +100

The termination exit source contains example code for each of these status codes, with
the code for 1 and 2 commented out. The parameters passed between the fail routine
and the termination exit are defined in copy member CBLTERM, which is also in the
CEHBSAMP library.

When you have completed your modifications, install the exit as described earlier in the
section on customizing user exits in this chapter.

Building on z/OS

For more information about how to install this exit, see MKUEXITS in Customizing and
Installing z/OS User Exits.

Related User Exits

None.

Customizing and Installing z/OS User Exits

Chapter 4: z/OS User Exits 549

Customizing and Installing z/OS User Exits

The easiest way to customize a user exit is to copy and modify the code supplied by CA.
Always read the source code of the exit as well as the additional information included in
comment lines. These lines are placed where you would need to enter code to
customize the exit for a specific need or function.

The steps involved in customizing any user exit are as follows:

■ Copy the default exit from the CA Gen CEHBSAMP library to one of your libraries.

■ Add the desired new code to the copied exit. Do not change the 'Program ID' (entry
point) or argument list passed to the exit.

Most user exits are called with RUNTIME-PARM1 and RUNTIME-PARM2 as the first two
parameters. Under IMS, the RUNTIME-PARM parameters are mapped to the IO-PCB and
ALT-IOPCB, respectively. If an exit is modified to use the IO-PCB and/or the ALT-IOPCB,
remember to remove the corresponding RUNTIME-PARM from the LINKAGE SECTION
and the PROCEDURE DIVISION USING statement.

Under CICS, the RUNTIME-PARM parameters are mapped to the CICS EXEC Interface
Block (EIB) and the COMMAREA, respectively. If an exit is modified to use DFHEIBLK
and/or DFHCOMMAREA remember to remove the corresponding RUNTIME-PARM from
the LINKAGE SECTION and the PROCEDURE DIVISION USING statement. In addition,
remove these parameters if the modified exit is processed by the CICS translator as the
CICS translator automatically includes a reference to DFHEIBLK and DFHCOMMAREA.

Information about the presence and use of RUNTIME-PARM parameters is included in
the CEHBSAMP member for each exit and is covered in this chapter if relevant.

The remaining parameters are unique to each exit and should not be modified.

Ensure the new runtime modules are placed in the proper data sets as follows:

■ CICS – in the CICS DFHRPL concatenation and is New Copied into CICS.

■ IMS – in the steplib concatenation.

As delivered, the Exits contain no SQL and no DBRMs. If a User Exit calls another routine
that does database access, you need to add that routine's DBRM to the installation
control file so the routine can be found. The best way to accomplish this is to modify the
Installation CLIST, TICINSTX, so that it adds the DBRM to the DBRM list.

Customizing and Installing z/OS User Exits

550 User Exit Reference Guide

The following table identifies the z/OS JCL procedures used to compile and bind each of
the z/OS Server Manager User Exits into their respective DLLs. These JCL procedures are
located in the CA Gen CEHBSAMP library.

Each DLL may contain other user exits that are not directly in support of the processing
of a z/OS Distributed Processing Server (DPS). Additionally, the list of z/OS user exits
may also be used to support z/OS blockmode and batch operation.

JCL Procedure DPS User Exit
Name

Description

MKUEXITS Incorporates customized user exits into the
corresponding z/OS DLLs. The user exits
names and corresponding z/OS DLL names
can be found in the table in Changes to User
Exits (see page 323).

MKCRUN TIRXINFO Incorporates customized user exits into the
following z/OS DLLs:

TIRCRUNC

TIRCRUNI

Details of the preceding JCL procedures follow. Each one is described in a separate
section.

MKUEXITS Make COBOL Runtimes (User Exits DLLs)

MKUEXITS is a JCL Procedure that can be used to change the user exits used by the CA
Gen Dynamic runtime DLLs listed in the table in Changes to User Exits (see page 323).
These Dynamic runtime DLLs are used by z/OS blockmode applications and servers.

Source Code

The source code for this procedure is in CA Gen CEHBSAMP library, in member
MKUEXITS.

Purpose

This procedure is used to modify the COBOL user exits used by the COBOL CA Gen
Dynamic runtime DLLs.

Arguments

This procedure does not contain any arguments.

Customizing and Installing z/OS User Exits

Chapter 4: z/OS User Exits 551

Return Code

Return code is not applicable.

Default Processing

The default processing of the JCL procedure is as follows:

■ The CROBJLIB step creates a temporary dataset for the objlib.

■ The user exit (ex. TIRALLOX) step invokes the COBOL compile proc to compile the
modified user exit(s). Each user exit contained in a COBOL runtime DLL has a
compile step.

■ The COMPILE step compiles the user exit member(s) for inclusion in the runtime
DLL.

■ The linkedit step (that is, LKTERMA, LKMTQB, ….) links the user exit objects into a
new user exit COBOL runtime DLL (that is, TIRTERMAZ, TIRMTQBZ, …).

Customizing the Exit

There can only be one user exit runtime DLL (that is, TIRTERAZ, TIRMTQBZ…) in the
specific target region (CICS, IMS, TSO, BATCH). There are notes in the sample procedure
with specific information about customizing the JCL. Various steps in the procedure can
be modified.

■ Not all user exits need to be modified and replaced. If a user exit compile step is
removed, then the corresponding REPLACE and INCLUDE statements must be
removed for the same user exit(s).

■ Ensure that the data set pointed to the SYSLMOD statements for linkedit steps (that
is, LKTERMA, LKMTQB, ….) are of type Library since the user exit runtime DLLs are a
Program Object (format 3).

Building on z/OS

This is a JCL procedure that after modification can be submitted to produce the
customized user exit runtime DLLS (that is, TIRTERAZ, TIRMTQBZ, ….) COBOL runtime
DLLs containing user exits. A Condition Code of zero is expected for each step.

MKCRUN Make C Runtimes - TIRCRUNC (CICS) and TIRCRUNI (IMS)

MKCRUN is a JCL Procedure that can be used to change the code page used by the CA
Gen Dynamic runtime DLLs TIRCRUNC and TIRCRUNI. This Dynamic runtime is only used
by z/OS servers.

Note: This procedure replaces procedure MKTIRE used by previous releases of CA Gen
to build TIRENTC and TIRENTI. In addition, CA Gen DLLs TIRCRUNC and TIRCRUNI replace
CA Gen runtimes TIRENTC and TIRENTI respectively.

Customizing and Installing z/OS User Exits

552 User Exit Reference Guide

Source Code

The source code for this procedure is in CA Gen CEHBSAMP library, in member
MKCRUN.

Purpose

This procedure is used to modify the code page used by the CA Gen Dynamic runtime
DLLs.

Arguments

This procedure does not contain any arguments.

Return Code

Return code is not applicable.

Default Processing

The default processing of the JCL procedure is as follows:

■ The CA Gen step builds the list of translation code page pairs to be used by the CA
Gen Runtimes. The first three code page pairs are the CA Gen default, the USA
EBCDIC – ASCII, and the AMERICAN EBCDIC - MICROSOFT ASCII translation tables.
These three code page pairs are always required so they must not be deleted,
however the comments on the lines must be removed before the step is executed.
A number of other code page pairs are listed, each of which is used for specific NLS
translation. Update the list to keep only those code page pairs required, ensuring
that any comments are removed.

■ The TIRXINFO step assembles the user exit TIRXINFO. The source for user exit
TIRXINFO can be found in CEHBSAMP.

■ The GXTABLE step assembles the table produce in the GEN step.

■ The LKCICS step links the subroutines modified in the previous steps into a new
TIRCRUNC runtime DLL.

■ The LKIMS step links the subroutines modified in the previous steps into a new
TIRCRUNI runtime DLL.

■ The LKCICSD step links the subroutines modified into a new TIRCRUNC debug
runtime DLL.

■ The LKIMSD step links the subroutines modified into a new TIRCRUNI debug
runtime DLL.

Customizing and Installing z/OS User Exits

Chapter 4: z/OS User Exits 553

Customizing the Exit

There can only be one TIRCRUNC DLL in a CICS region and one TIRCRUNI DLL in an IMS
system. There are notes in the sample procedure with specific information about
customizing the JCL. Various steps in the procedure can be modified:

■ Code Page pairs can be added to the GEN Step. Ensure that the comments next to
the code page pairs are removed before executing the procedure.

■ The DEFCODEP and the DEFPADCH can be set to the required values in the
TIRXINFO exit. More information about this exit is covered under TIRXINFO exit in
this section.

■ Ensure that the data set pointed to the SYSLMOD statements for steps LKCICS and
LKIMS are of type Library since TIRCRUNC and TIRCRUNI are Program Objects
(format 3).

■ Optionally steps LKCICSD and LKIMSD can be executed to customize the debug
versions of TIRCRUNC and TIRCRUNI respectively. Again, ensure the SYSLMOD
statements points to a Library.

Building on z/OS

This is a JCL procedure that after modification can be submitted to produce the
customized TIRCRUNC or TIRCRUNI runtime DLLs. A Condition Code of zero is expected
for each step.

MKUECTCP Make CICS TCP/IP Exits (TIRSLEXT and TIRSLTMX)

MKUECTCP is a JCL Procedure that can be used to change the user exits used by the CA
Gen CICS TCP/IP Listener.

Source Code

The source code for this procedure is in CA Gen CEG8SAMP library, in member
MKUECTCP.

Purpose

This procedure is used to modify the Assembler user exits used by the CICS TCP/IP
Listener.

Arguments

This procedure does not contain any arguments.

Customizing and Installing z/OS User Exits

554 User Exit Reference Guide

Return Code

Return code is not applicable.

Default Processing

The default processing of the JCL procedure is as follows:

■ The CROBJLIB step creates a temporary dataset for the objlib.

■ The user exit (ex. TIRSLEXT) step invokes the Assembler proc to assemble the
modified user exit(s). Each user exit has an assemble step.

■ The LKSLEXT step links the user exit object into a new TIRSLEXT Assembler runtime
exit for the CICS Listener.

■ The LKSLTMX step links the user exit object(s) into a new TIRSLTMX Assembler
runtime exit CICS Listener.

Customizing the Exit

There can only be one TIRSLEXT and TIRSLTMX exit in the CICS region. There are notes in
the sample procedure with specific information about customizing the JCL. Various steps
in the procedure can be modified.

■ Not all user exits need to be modified and replaced. If a user exit compile step is
removed, then the corresponding REPLACE and INCLUDE statements must be
removed for the same user exit(s).

■ Ensure that the data set pointed to the SYSLMOD statements for steps LKSLEXT and
LKSLTMX are of type Library.

Building on z/OS

This is a JCL procedure that after modification can be submitted to produce the
customized TIRSLEXT and TIRSLTMX CICS TCP/IP user exits. A Condition Code of zero is
expected for each step.

MKUEITCP Make IMS TCP/IP Exits (TIRxxTD, TIRxxTDC, and TIRxxTSC)

MKUEITCP is a JCL Procedure that can be used to change the user exits used by the CA
Gen IMS TCP/IP exits. These exits are used by the CA Gen IMS connect exits TIRxxTCP,
where xx represents the IMS Connect version.

Source Code

The source code for this procedure is in CA Gen CEG9SAMP library, in member
MKUEITCP.

Customizing and Installing z/OS User Exits

Chapter 4: z/OS User Exits 555

Purpose

This procedure is used to modify the Assembler user exits called by Gen's IMS TCP/IP
exit provided for IMS Connect.

Arguments

This procedure does not contain any arguments.

Return Code

Return code is not applicable.

Default Processing

The default processing of the JCL procedure is as follows:

■ The CROBJLIB step creates a temporary dataset for the objlib.

■ The user exit (ex. TIR10TD) step invokes the Assembler proc to assemble the
modified user exit(s). Each user exit has an assemble step.

■ The LKG10TCP step links the user exit object(s) into a new TIR10TCP Assembler
runtime exit for IMS 10.

■ The LKG11TCP step links the user exit object(s) into a new TIR11TCP Assembler
runtime exit for IMS 11.

■ The LKG12TCP step links the user exit object(s) into a new TIR12TCP Assembler
runtime exit for IMS 12.

■ The LKG13TCP step links the user exit object(s) into a new TIR13TCP Assembler
runtime exit for IMS 13.

Customizing the Exit

There can only be one CAGRITCP in IMS Connect so only the link step that corresponds
to the version of IMS Connect being run in your shop should be executed. There are
notes in the sample procedure with specific information about customizing the JCL.
Various steps in the procedure can be modified.

■ Not all user exits need to be modified and replaced. If a user exit compile step is
removed, then the corresponding REPLACE and INCLUDE statements must be
removed for the same user exit(s).

■ Ensure that the data set pointed to the SYSLMOD statements for steps TIR10TCP,
TIR11TCP, TIR12TCP, and TIR13TCP are of type Library.

■ Rename the customized TIRxxTCP exit to CAGRITCP before deploying in IMS
Connect.

Customizing and Installing z/OS User Exits

556 User Exit Reference Guide

Building on z/OS

This is a JCL procedure that after modification can be submitted to produce the
customized TIR10TCP, TIR11TCP, TIR12TCP, and TIR13TCP IMS TCP/IP exit containing
user exits. A Condition Code of zero is expected for each step. Rename the customized
TIRxxTCP exit to CAGRITCP before deploying in IMS Connect.

Chapter 5: NonStop User Exits 557

Chapter 5: NonStop User Exits

There are several sets of user exits to support the variety of C applications that run on
the NonStop platform. Scripts are provided to assist in building the runtime user exits
for each runtime environment listed in the following sections.

The following table lists the sets of C user exits available on the NonStop platform.

User Exit Set Provided As

Blockmode Runtime UEXITCO

Server Runtime UEXITCO, DPSUECO

NonStop Blockmode User Exits
The following table summarizes the functions available through the user exits for
generated blockmode applications:

Name Description

TIRDLCT Dialect User Exit

TIRDRTL Default Retry Limit User Exit

TIRHELP Help Interface User Exit

TIRMTQB Message Table User Exit

TIRSECR Security Interface User Exit

TIRSYSID System ID User Exit

TIRTERMA User Termination User Exit

TIRUPDB MBCS Uppercase Translation User Exit

TIRUPPR Uppercase Translation User Exit

TIRURTL Ultimate Retry Limit User Exit

TIRUSRID User ID User Exit

TIRYYX Date User Exit

NonStop Blockmode User Exits

558 User Exit Reference Guide

All blockmode runtime user exits are provided in both source and object format (in the
object library UEXITCO), and are rebuilt using the TACL macro MKEXITS which can be
found in the subvolume where the IT has been installed. Details on the use of the
MKEXITS macro can be found in the NonStop Implementation Toolset User Guide.

The UEXITCO user exit object library is the same one that is used with server
applications.

Details for the preceding user exits follow in a separate section for each.

TIRDLCT Dialect Exit

void TIRDLCT (

char *rp1,

char *rp2,

struct dialect_cmcb *tirdlct_cmcb)

Source Code

TIRDLCT

Purpose

TIRDLCT supplies the current user's dialect to the application and is useful only for
multilingual applications. For multilingual support, the user is responsible for modifying
this module to return the appropriate dialect. The dialect returned should be defined
using the Design selection on the CA Gen action bar. If it is not, the application's default
dialect is used.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*rp1 Input A pointer to a parameter control block.
Reserved for runtime internal use only.

*rp2 Input A pointer to a parameter control block.
Reserved for runtime internal use only.

*tirdlct_cmcb Input/Output A pointer to a structure containing the
following items:

tirdlct_userid Input An 8-byte character array containing the
current user id as provided by TIRUSRID.

NonStop Blockmode User Exits

Chapter 5: NonStop User Exits 559

Name I/O Description

tirdlct_terminal_id Input An 8-byte character array containing the
current terminal id.

tirdlct_system_id Input An 8-byte character array containing the
current system id as provided by
TIRSYSID.

tirdlct_return_dialect Input An 8-byte character array containing the
returned dialect.

Return Code

None

Default Behavior

TIRDLCT returns a dialect value of DEFAULT.

Building on NonStop

The Dialect User Exit is built as part of the object library UEXITCO. As a prerequisite for
building the object library, you must have correct C compiler installed on your system.

Follow these steps:

1. Launch a terminal session

2. Change your current volume to where the IT was installed

3. Run MKEXITS

4. MKEXITS will prompt for confirmation about the source and object code locations
used to build the exits. Press enter to accept the default values, otherwise enter
new $<volume>.<subvolume> locations at the prompts. After these locations are
confirmed, the main menu is displayed. Use this menu to perform the following
actions:

Action Description

X To extract the exits' source code from their archived file (UEXITSC).
Source will be placed into the source location.

E To invoke the EDIT editor.

T To invoke the TEDIT editor.

A To compile all user exits.

R To link and install compiled user exits into the UEXITCO library

NonStop Blockmode User Exits

560 User Exit Reference Guide

Action Description

D Links and installs compiled distributed processing server user exits into
the DPSUECO library

P To access the Peruse facility

O To change the output location

S To change the source and object location settings

Q To exit MKEXITS

Related User Exits

TIRUSRID, TIRSYSID

TIRDRTL Default Retry Limit Exits

int tirdrtl (

char retry_flag)

Source Code

TIRDRTL.C

Purpose

TIRDRTL lets you override the CA Gen-defined default value for the TRANSACTION
RETRY LIMIT system attribute. TRANSACTION RETRY LIMIT will be initialized to this value
at the beginning of each new transaction. This value can subsequently be modified by a
SET TRANSACTION RETRY LIMIT statement in an action diagram.

TRANSACTION RETRY LIMIT is used to specify the maximum number of times to retry a
transaction when one of the following events occurs:

■ A RETRY TRANSACTION action diagram statement executes.

■ A deadlock or timeout occurs trying to access a database, and there is no WHEN
DATABASE DEADLOCK OR TIMEOUT statement for that entity action statement.

In these cases, uncommitted database updates are rolled back, and an attempt is made
to execute the application again. After the number of retries, as indicated by the
TRANSACTION RETRY COUNT system attribute, reaches TRANSACTION RETRY LIMIT or
the value specified by the Ultimate Retry Limit User Exit (see TIRURTL), no more retries
can occur, and the application fails with a runtime error.

NonStop Blockmode User Exits

Chapter 5: NonStop User Exits 561

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

retry_flag Input Flag to indicate whether or not to set a retry limit.

Return Code

Integer containing the retry limit.

Default Behavior

If the Default Retry Limit User Exit is not used, TRANSACTION RETRY LIMIT will be
initialized to 10 for all target environments. If the Default Retry Limit User Exit is used, it
must not return a value greater than that specified in the Ultimate Retry Limit User Exit.

Building on NonStop

The Default Retry User Exit is built as part of the object library UEXITCO. As a
prerequisite for building the object library, you must have correct C compiler installed
on your system.

Follow these steps:

1. Launch a terminal session

2. Change your current volume to where the IT was installed

3. Run MKEXITS

4. MKEXITS will prompt for confirmation about the source and object code locations
used to build the exits. Press enter to accept the default values, otherwise enter
new $<volume>.<subvolume> locations at the prompts. After these locations are
confirmed, the main menu is displayed. Use this menu to perform the following
actions:

Action Description

X To extract the exits' source code from their archived file (UEXITSC).
Source will be placed into the source location.

E To invoke the EDIT editor.

T To invoke the TEDIT editor.

A To compile all user exits.

R To link and install compiled user exits into the UEXITCO library

NonStop Blockmode User Exits

562 User Exit Reference Guide

Action Description

D Links and installs compiled distributed processing server user exits into
the DPSUECO library

P To access the Peruse facility

O To change the output location

S To change the source and object location settings

Q To exit MKEXITS

Related User Exits

TIRURTL

TIRHELP Help Interface Exit

void TIRHELP (

char *rp1,

char *rp2,

struct tirhelp *in_tirhelp_cmcb,

char *in_tirhelp_return_message,

char *in_environment_list,

char *in_application_list,

struct scmgr *in_scmgr_cmcb)

Source Code

TIRHELP.C

Purpose

TIRHELP is called when a HELP or PROMPT command is entered. From TIRHELP, a help
system can be invoked to provide application help information.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved
for runtime internal use only.

*rp2 Input A pointer to a parameter control block. Reserved
for runtime internal use only.

NonStop Blockmode User Exits

Chapter 5: NonStop User Exits 563

Name I/O Description

*in_tirhelp_cmcb Input/Output A pointer to a structure containing the following
items:

tirhelp_request_code Input/Output A 2-byte character array containing the type of
help requested.

tirhelp_return_code Output A 2-byte character array containing the return
code.

tirhelp_mapname Input An 8-byte character array containing the
mapname.

tirhelp_data_filler Unused An 8-byte character array used as a structure filler.

tirhelp_trancode Input An 8-byte character array containing the trancode.

tirhelp_userid Input An 8-byte character array containing the user id.

tirhelp_terminal_id Input An 8-byte character array containing the terminal
id.

tirhelp_printer_id Input An 8-byte character array containing the printer id.

tirhelp_dialect Input An 8-byte character array containing the dialect.

tirhelp_message_table Input An 8-byte character array containing the message
table. This value is passed to TIRMTQB.

tirhelp_filler Unused A 16-byte character array used as a structure filler.

tirhelp_last_command Input An 80-byte character array containing the last
command.

tirhelp_last_message Input An 80-byte character array containing the last
message.

tirhelp_screen_helpid Output A 44-byte character array containing the help
identifier for the screen.

tirhelp_field_helpid Output A 44-byte character array containing the help
identifier for the field.

tirhelp_field_token1 Input A 3-byte character array containing a field token.

tirhelp_field_token2 Input A 3-byte character array containing a second field
token

tirhelp_field_len Input A 3-byte character array containing the field
length.

tirhelp_field_value Input A 256-byte character array containing the value of
the field.

tirhelp_field_protect Input A single character containing a field protection flag.

tirhelp_field_intens Input A single character containing a field intensity flag.

NonStop Blockmode User Exits

564 User Exit Reference Guide

Name I/O Description

in_tirhelp_return_message Output An 80-byte character array representing the
returned help message. By default, this message is
returned from a call to TIRMTQB.

in_environment_list Input A pointer to an environment control block.
Reserved for runtime internal use only.

in_application_list Input A pointer to an application control block. Reserved
for runtime internal use only.

in_scmgr_cmcb Input/Output A pointer to a screen management control block.

Return Code

None

Default Behavior

The TIRHELP routine will return a message indicating no help is available.

Building on NonStop

The Help Interface User Exit is built as part of the object library UEXITCO. As a
prerequisite for building the object library, you must have correct C compiler installed
on your system.

Follow these steps:

1. Launch a terminal session

2. Change your current volume to where the IT was installed

3. Run MKEXITS

4. MKEXITS will prompt for confirmation about the source and object code locations
used to build the exits. Press enter to accept the default values, otherwise enter
new $<volume>.<subvolume> locations at the prompts. After these locations are
confirmed, the main menu is displayed. Use this menu to perform the following
actions:

Action Description

X To extract the exits' source code from their archived file (UEXITSC).
Source will be placed into the source location.

E To invoke the EDIT editor.

T To invoke the TEDIT editor.

A To compile all user exits.

NonStop Blockmode User Exits

Chapter 5: NonStop User Exits 565

Action Description

R To link and install compiled user exits into the UEXITCO library

D Links and installs compiled distributed processing server user exits into
the DPSUECO library

P To access the Peruse facility

O To change the output location

S To change the source and object location settings

Q To exit MKEXITS

Related User Exits

TIRMTQB

TIRMTQB Message Table Exit

void TIRMTQB(char *rp1,

char *rp2,

char *msg_tbl_name,

short *msgnum,

struct PARMMSG *prm);

Source Code

TIRMTQB.C

Purpose

This message table exit is called by the runtime when a system-level message is to be
displayed. The user can customize the wording of the messages within this exit.
Additional tables can also be defined to support other dialects.

The default table includes an entry for each CA Gen runtime error message. Each entry
includes the following information:

■ Message Number—The message number is permanently assigned by CA Gen. Each
message has a unique number.

■ Message Text—The message text is the actual words that appear on the application
screen when an error occurs. The message text, and any variable values that can be
appended, is truncated if it exceeds the length of the error message line defined for
the application screen. The error message line is a maximum of 80 characters of
which 12 are reserved for the message number.

If the message number is not in the table, TIRMTQB returns a default message.

NonStop Blockmode User Exits

566 User Exit Reference Guide

Runtime Error Table

The Runtime Error Message Table includes an entry for each runtime error message.
Each table entry includes the following information:

■ Message type— a message number is not found in the table, or when you return to
a transaction screen after a fatal error or a Dialog Manager error occurs. Valid
message types are shown in the following list:

■ Default message— a message number is not found in the table, or when you return
to a transaction screen after a fatal error or a Dialog Manager error occurs.

■ Dialog Manager error—Occurs when the Dialog Manager is unable to communicate
with the system. This is a fatal error beyond the control of CA Gen. An error in the
load module packaging or in the configuration specifications causes a Dialog
Manager error. Error handling is the same as for a fatal error.

■ Fatal error— a CA Gen application abnormal program ending. If a condition occurs
at runtime that the generated code cannot handle, the system issues a fatal error.
An error message screen displays the appropriate error messages.

■ Function error—Occurs if a CA Gen-supported function receives invalid input or
produces invalid output. CA Gen-supplied functions manipulate characters,
numbers, dates, and times.

■ Screen edit error—A non-fatal error that occurs when an input or output value for a
field does not match the expected value, the range, type, or format defined for the
field during model development. This type of message is displayed on your
transaction screen. You can correct the error and continue with the transaction.

■ Unformatted input error—Occurs when the unformatted input contains invalid
parameters, delimiters, or both. Unformatted input is a list of parameters
associated with a clear screen transaction code.

■ Message number—Each message has a unique number that is permanently
assigned by CA Gen.

■ Message text—The message text consists of the actual words that appear on the
application screen when an error occurs. Because of the length of the message
identifier, the message text is limited to 68 characters for an 80-character screen.
The message text and appended variables are truncated if they exceed the length of
the error message line defined for the application screen.

■ Suffix—(If applicable) The suffix contains variable values, such as return codes,
permitted values, or the values in error.

NonStop Blockmode User Exits

Chapter 5: NonStop User Exits 567

Runtime Error Handling

Runtime errors are handled by the Dialog Manager. Runtime errors are non-fatal, such
as screen edit, or fatal errors.

If a non-fatal error such as invalid user input occurs, the Dialog Manager displays an
error message on the transaction screen. You can correct the error and continue
processing the transaction.

If an application fails because of a fatal error, transaction processing terminates, and the
error processing is as follows:

■ The Dialog Manager performs all necessary rollbacks of the databases.

■ CA Gen displays an error message screen that lists the appropriate runtime error
messages.

■ Pressing Enter from the error message screen causes CA Gen applications to
terminate execution.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for runtime
internal use only.

*rp2 Input A pointer to a parameter control block. Reserved for runtime
internal use only.

*msg_tbl_name Input A character string containing the name of the table to be
used for extraction of the message text. Currently one table
named DEFAULT is supported by the CA Gen runtime.

*msgnum Input A short value containing the message number corresponding
to the text to be fetched.

*prm Input/ Output A pointer to a PARMMSG structure to contain the returned
message text information. This structure, defined in
tirmtq.h, has the following definition:

PARMLEN A short value containing the total length of PARMNO +
PARMTXT.

PARMNO Output An 11-byte character array containing the message number
formatted in a standard style.

PARMTXT Output A string containing the text corresponding to the error
message number. The string can be up to 245 bytes,
including the terminating NULL.

NonStop Blockmode User Exits

568 User Exit Reference Guide

Name I/O Description

filler Unused Two unused filler characters

Return Code

None

Default Behavior

The table in the default exit is used to retrieve runtime error message text.

Building on NonStop

The Message Table User Exit is built as part of the object library UEXITCO. As a
prerequisite for building the object library, you must have correct C compiler installed
on your system.

Follow these steps:

1. Launch a terminal session

2. Change your current volume to where the IT was installed

3. Run MKEXITS

4. MKEXITS will prompt for confirmation about the source and object code locations
used to build the exits. Press enter to accept the default values, otherwise enter
new $<volume>.<subvolume> locations at the prompts. After these locations are
confirmed, the main menu is displayed. Use this menu to perform the following
actions:

Action Description

X To extract the exits' source code from their archived file (UEXITSC).
Source will be placed into the source location.

E To invoke the EDIT editor.

T To invoke the TEDIT editor.

A To compile all user exits.

R To link and install compiled user exits into the UEXITCO library

D Links and installs compiled distributed processing server user exits into
the DPSUECO library

P To access the Peruse facility

O To change the output location

S To change the source and object location settings

NonStop Blockmode User Exits

Chapter 5: NonStop User Exits 569

Action Description

Q To exit MKEXITS

Related User Exits

None

TIRSECR Security Check Interface Exit

void TIRSECR(char * rp1,

char * rp2,

struct security_cmcb * in_tirsecr_cmcb);

Source Code

TIRSECR.C

Purpose

The Dialog Manager calls the Security Check Interface Exit when a transaction is started
and before execution of a dialog flow. This allows transaction-level security checking to
be implemented. The following data is provided by the dialog manager of each load
module for use in checking security authorization:

■ System ID (as provided by the System ID Exit, TIRSYSID)

■ User ID (as provided by the User ID Exit, TIRUSRID)

■ Trancode

■ Terminal ID

■ Load module name

■ Procedure step name

If the user defined security check passes, TIRSECR should move a value of spaces to the
return code. If the security check fails, a non-blank value should be moved to the return
code with a message describing the violation inserted into the tirsecr_failure_msg
buffer. The current dialect in effect on the client is passed in using tirsecr_dialect.

When the dialog manager receives control, it proceeds with the transaction if the return
code is spaces, or issues an error if it is not.

NonStop Blockmode User Exits

570 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*rp2 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*in_tirsecr_cmcb Input/Output A pointer to a structure containing the following items:

tirsecr_userid Input An 8-byte character array containing the security user
ID as provided by the TIRUSRID user exit

tirsecr_trancode Input An 8-byte character array containing the current
transaction code.

tirsecr_terminal_id Input An 8-byte character array containing the current
terminal ID.

tirsecr_system_id Input An 8-byte character array containing the current
system ID as returned by the TIRSYSID user exit.

tirsecr_load_module Input An 8-byte character array containing the name of the
executing load module calling this exit.

tirsecr_pstep_name Input A 32-byte character array containing the name of
procedure step being executed.

tirsecr_dialect Input A 32-byte character array containing the dialect in
effect on the client.

tirsecr_return_code Output A 2-character array representing the success or failure
of this exit processing. TIRSECR_ALL_OK defined as two
spaces implies success, any other value implies failure.
If none spaces are return, tirfail will be passed the
tirsecr_failure_msg message.

tirsecr_failure_msg Output An 80-byte character array used in conjunction with a
failing return code in tirsecr_return_code. This exit can
insert an error message into this array that will be
passed by the Dialog manager to the tirfail user exit.

Return Code

None directly. For more information, see tirsecr_return_code structure member.

NonStop Blockmode User Exits

Chapter 5: NonStop User Exits 571

Default Behavior

The default exit will return a status code of spaces, indicating no security violation was
detected.

Building on NonStop

The Security Check User Exit is built as part of the object library UEXITCO. As a
prerequisite for building the object library, you must have correct C compiler installed
on your system.

Follow these steps:

1. Launch a terminal session

2. Change your current volume to where the IT was installed

3. Run MKEXITS

4. MKEXITS will prompt for confirmation about the source and object code locations
used to build the exits. Press enter to accept the default values, otherwise enter
new $<volume>.<subvolume> locations at the prompts. After these locations are
confirmed, the main menu is displayed. Use this menu to perform the following
actions:

Action Description

X To extract the exits' source code from their archived file (UEXITSC).
Source will be placed into the source location.

E To invoke the EDIT editor.

T To invoke the TEDIT editor.

A To compile all user exits.

R To link and install compiled user exits into the UEXITCO library

D Links and installs compiled distributed processing server user exits into
the DPSUECO library

P To access the Peruse facility

O To change the output location

S To change the source and object location settings

Q To exit MKEXITS

Related User Exits

TIRUSRID, TIRSYSID

NonStop Blockmode User Exits

572 User Exit Reference Guide

TIRSYSID System ID Exit

void TIRSYSID (char *rp1;

char *rp2;

char *system_id);

Source Code

TIRSYSID.C

Purpose

TIRSYSID supplies the system ID to the application.

The purpose of TIRSYSID is to implement application logic that lets you implement one
model on multiple platforms, and perform processing appropriate for the platform. The
system ID is also one of the parameters passed to the Security Interface Exit (TIRSECR).

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved
for runtime internal use only.

*rp2 Input A pointer to a parameter control block. Reserved
for runtime internal use only.

*system_id Output An 8-byte character array representing the system
identifier where the server application is executing.

Return Code

None

Default Behavior

By default, TIRSYSID calls the runtime routine DEFSYSID. This routine returns a default
system ID, the value of which depends on the platform on which the application is
executing.

Under UNIX/Linux if the environment variable IEF_SYSID is set the first 8 characters of
this variable are used. Otherwise, “UNIX“ is returned.

NonStop Blockmode User Exits

Chapter 5: NonStop User Exits 573

Building on NonStop

The System ID User Exit is built as part of the object library UEXITCO. As a prerequisite
for building the object library, you must have correct C compiler installed on your
system.

Follow these steps:

1. Launch a terminal session

2. Change your current volume to where the IT was installed

3. Run MKEXITS

4. MKEXITS will prompt for confirmation about the source and object code locations
used to build the exits. Press enter to accept the default values, otherwise enter
new $<volume>.<subvolume> locations at the prompts. After these locations are
confirmed, the main menu is displayed. Use this menu to perform the following
actions:

Action Description

X To extract the exits' source code from their archived file (UEXITSC).
Source will be placed into the source location.

E To invoke the EDIT editor.

T To invoke the TEDIT editor.

A To compile all user exits.

R To link and install compiled user exits into the UEXITCO library

D Links and installs compiled distributed processing server user exits into
the DPSUECO library

P To access the Peruse facility

O To change the output location

S To change the source and object location settings

Q To exit MKEXITS

Related User Exits

TIRSECR

NonStop Blockmode User Exits

574 User Exit Reference Guide

TIRTERMA User Termination Exit

void TERTERMA (

char *rp1,

char *rp2,

struct term_pb *pb)

Source Code

TIRTERMA.C

Purpose

TIRTERMA is called when an application fails. Modification of TIRTERMA lets the user
customize the handling of runtime errors.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*rp1 Input A pointer to a parameter control block.
Reserved for runtime internal use only.

*rp2 Input A pointer to a parameter control block.
Reserved for runtime internal use only.

*pb Input/ Output A pointer to a PARMMSG structure to contain
the termination information. This structure is
defined in tirterma.h.

Return Code

None

Default Behavior

The default processing for TIRTERMA returns a status code of spaces, indicating to use
standard error handling.

NonStop Blockmode User Exits

Chapter 5: NonStop User Exits 575

Building on NonStop

The Termination User Exit is built as part of the object library UEXITCO. As a prerequisite
for building the object library, you must have correct C compiler installed on your
system.

Follow these steps:

1. Launch a terminal session

2. Change your current volume to where the IT was installed

3. Run MKEXITS

4. MKEXITS will prompt for confirmation about the source and object code locations
used to build the exits. Press enter to accept the default values, otherwise enter
new $<volume>.<subvolume> locations at the prompts. After these locations are
confirmed, the main menu is displayed. Use this menu to perform the following
actions:

Action Description

X To extract the exits' source code from their archived file (UEXITSC).
Source will be placed into the source location.

E To invoke the EDIT editor.

T To invoke the TEDIT editor.

A To compile all user exits.

R To link and install compiled user exits into the UEXITCO library

D Links and installs compiled distributed processing server user exits into
the DPSUECO library

P To access the Peruse facility

O To change the output location

S To change the source and object location settings

Q To exit MKEXITS

Related User Exits

None

NonStop Blockmode User Exits

576 User Exit Reference Guide

TIRUPDB MBCS Uppercase Translation Exit

void TIRUPDB (

char *rp1,

char *rp2,

char *tbl_name,

long *len,

char *xlate_data)

Source Code

TIRUPDB.C

Purpose

TIRUPDB is called to uppercase multi-byte text. The user can modify the mechanism
used to uppercase multi-byte text with this user exit.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*rp2 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*tbl_name Input A pointer to a translation table name.

*len Input/Output Length of text to convert to uppercase.

*xlate_data Input/Output A pointer to the text to be uppercased.

Return Code

None

Default Behavior

The default translation uses MBCS functions to perform uppercase translation based
upon the active system code page. However, the system designer, programmer, may
add code to recognize dialects and perform any lower to upper functionality desired. In
that case, insure that the default behavior still uses the MBCS libraries.

NonStop Blockmode User Exits

Chapter 5: NonStop User Exits 577

Building on NonStop

All the user exits in this section are built as part of the object library UEXITCO unless
specified otherwise. As a prerequisite for building the object library, you must have
correct C compiler installed on your system.

Follow these steps:

1. Launch a terminal session

2. Change your current volume to where the IT was installed

3. Run MKEXITS

4. MKEXITS will prompt for confirmation about the source and object code locations
used to build the exits. Press enter to accept the default values, otherwise enter
new $<volume>.<subvolume> locations at the prompts. After these locations are
confirmed, the main menu is displayed. Use this menu to perform the following
actions:

Action Description

X To extract the exits' source code from their archived file (UEXITSC).
Source will be placed into the source location.

E To invoke the EDIT editor.

T To invoke the TEDIT editor.

A To compile all user exits.

R To link and install compiled user exits into the UEXITCO library

D Links and installs compiled distributed processing server user exits into
the DPSUECO library

P To access the Peruse facility

O To change the output location

S To change the source and object location settings

Q To exit MKEXITS

Related User Exits

TIRUPPR

NonStop Blockmode User Exits

578 User Exit Reference Guide

TIRUPPR Uppercase Translation Exit

void TIRUPPR (

char *rp1,

char *rp2,

char *tbl_name,

long *len,

char *xlate_data)

Source Code

TIRUPPR.C

Purpose

TIRUPPR is called to uppercase multi-byte text. The user can modify the mechanism
used to uppercase multi-byte text with this user exit.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for runtime internal use
only.

*rp2 Input A pointer to a parameter control block. Reserved for runtime internal use
only.

*tbl_name Input A pointer to a translation table name.

*len Input/Output Length of text to convert to uppercase.

*xlate_data Input/Output A pointer to the text to be uppercased.

Return Code

None

Default Behavior

The default translation uses MBCS functions to perform uppercase translation based
upon the active system code page. However, the system designer, programmer, may
add code to recognize dialects and perform any lower to upper functionality desired. In
that case, insure that the default behavior still uses the MBCS libraries.

NonStop Blockmode User Exits

Chapter 5: NonStop User Exits 579

Building on NonStop

The Uppercase Translation User Exit is built as part of the object library UEXITCO. As a
prerequisite for building the object library, you must have correct C compiler installed
on your system.

Follow these steps:

1. Launch a terminal session

2. Change your current volume to where the IT was installed

3. Run MKEXITS

4. MKEXITS will prompt for confirmation about the source and object code locations
used to build the exits. Press enter to accept the default values, otherwise enter
new $<volume>.<subvolume> locations at the prompts. After these locations are
confirmed, the main menu is displayed. Use this menu to perform the following
actions:

Action Description

X To extract the exits' source code from their archived file (UEXITSC).
Source will be placed into the source location.

E To invoke the EDIT editor.

T To invoke the TEDIT editor.

A To compile all user exits.

R To link and install compiled user exits into the UEXITCO library

D Links and installs compiled distributed processing server user exits into
the DPSUECO library

P To access the Peruse facility

O To change the output location

S To change the source and object location settings

Q To exit MKEXITS

Related User Exits

TIRUPDB

TIRURTL Ultimate Retry Limit Exit

long tirurtl ()

NonStop Blockmode User Exits

580 User Exit Reference Guide

Source Code

TIRURTL.C

Purpose

TIRURTL lets you specify a maximum value for the TRANSACTION RETRY LIMIT system
attribute. This value can never be exceeded by a SET TRANSACTION RETRY LIMIT
statement in an action diagram, or by the Default Retry Limit User Exit.

After the number of retries, as indicated by the TRANSACTION RETRY COUNT system
attribute, reaches either TRANSACTION RETRY LIMIT or the value specified by the
Ultimate Retry Limit User Exit, no more retries can occur, and the application fails with a
runtime error.

Arguments

None

Return Code

Long containing the retry limit.

Default Behavior

If the Ultimate Retry Limit User Exit is not used, the maximum value of TRANSACTION
RETRY LIMIT will be 99 for all target environments. The Ultimate Retry Limit User Exit
can be modified to return a value of zero to suppress all retry attempts.

Building on NonStop

The Ultimate Retry User Exit is built as part of the object library UEXITCO. As a
prerequisite for building the object library, you must have correct C compiler installed
on your system.

Follow these steps:

1. Launch a terminal session

2. Change your current volume to where the IT was installed

3. Run MKEXITS

NonStop Blockmode User Exits

Chapter 5: NonStop User Exits 581

4. MKEXITS will prompt for confirmation about the source and object code locations
used to build the exits. Press enter to accept the default values, otherwise enter
new $<volume>.<subvolume> locations at the prompts. After these locations are
confirmed, the main menu is displayed. Use this menu to perform the following
actions:

Action Description

X To extract the exits' source code from their archived file (UEXITSC).
Source will be placed into the source location.

E To invoke the EDIT editor.

T To invoke the TEDIT editor.

A To compile all user exits.

R To link and install compiled user exits into the UEXITCO library

D Links and installs compiled distributed processing server user exits into
the DPSUECO library

P To access the Peruse facility

O To change the output location

S To change the source and object location settings

Q To exit MKEXITS

Related User Exits

TIRDRTL

TIRUSRID User ID Exit

void TIRUSRID (char *rp1;

char *rp2;

char *filler_parm;

char *user_id);

Source Code

TIRUSRID.C

Purpose

TIRUSRID is used to supply the user's ID to the application. The user ID is one of the
parameters passed to the Security Interface Exit (TIRSECR).

NonStop Blockmode User Exits

582 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for runtime internal use
only.

*rp2 Input A pointer to a parameter control block. Reserved for runtime internal use
only.

*filler_parm Input A pointer to a parameter control block. Reserved for runtime internal use
only.

*user_id Output A pointer to an 8-byte character array into which the user ID can be returned.

Return Code

None

Default Behavior

The default action taken by this module is to call runtime routine DEFUSRID which
returns a default user ID, the value of which depends on the platform on which the
system is executing.

Building on NonStop

The User ID User Exit is built as part of the object library UEXITCO. As a prerequisite for
building the object library, you must have correct C compiler installed on your system.

Follow these steps:

1. Launch a terminal session

2. Change your current volume to where the IT was installed

3. Run MKEXITS

4. MKEXITS will prompt for confirmation about the source and object code locations
used to build the exits. Press enter to accept the default values, otherwise enter
new $<volume>.<subvolume> locations at the prompts. After these locations are
confirmed, the main menu is displayed. Use this menu to perform the following
actions:

Action Description

X To extract the exits' source code from their archived file (UEXITSC).
Source will be placed into the source location.

NonStop Blockmode User Exits

Chapter 5: NonStop User Exits 583

Action Description

E To invoke the EDIT editor.

T To invoke the TEDIT editor.

A To compile all user exits.

R To link and install compiled user exits into the UEXITCO library

D Links and installs compiled distributed processing server user exits into
the DPSUECO library

P To access the Peruse facility

O To change the output location

S To change the source and object location settings

Q To exit MKEXITS

Related User Exits

TIRSECR

TIRYYX Date Exit

void TIRYYX (

struct tiryyx_param_block *pb)

Source Code

TIRYYX.C

Purpose

TIRYYX is used to process two-digit or yy-style date input and to set the century part
using any fixed-window, sliding-window, or other algorithm of choice, when using CA
Gen in the standard map generation mode.

Internally, CA Gen handles four digit year dates correctly assuming the user application
uses the yyyy edit pattern throughout. If the user interface is designed to accept a
two-digit date entry, and defaulting to the current century is not acceptable, use this
exit to implement logic to get the required behavior for defaulting the century part of
the date.

NonStop Blockmode User Exits

584 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*pb Input/Output A pointer to a tiryyx structure containing the following items:

return_code Output A 4-byte character array containing the current year

current_year Input A 4-byte character array containing the current year.

edit_year Input/Output A 4-byte character array containing the edit year.

Return Code

None

Default Behavior

The default user exit behavior does not perform any processing and returns.

Building on NonStop

The Date User Exit is built as part of the object library UEXITCO. As a prerequisite for
building the object library, you must have correct C compiler installed on your system.

Follow these steps:

1. Launch a terminal session

2. Change your current volume to where the IT was installed

3. Run MKEXITS

4. MKEXITS will prompt for confirmation about the source and object code locations
used to build the exits. Press enter to accept the default values, otherwise enter
new $<volume>.<subvolume> locations at the prompts. After these locations are
confirmed, the main menu is displayed. Use this menu to perform the following
actions:

Action Description

X To extract the exits' source code from their archived file (UEXITSC).
Source will be placed into the source location.

E To invoke the EDIT editor.

T To invoke the TEDIT editor.

A To compile all user exits.

NonStop Server User Exits

Chapter 5: NonStop User Exits 585

Action Description

R To link and install compiled user exits into the UEXITCO library

D Links and installs compiled distributed processing server user exits into
the DPSUECO library

P To access the Peruse facility

O To change the output location

S To change the source and object location settings

Q To exit MKEXITS

Related User Exits

None

NonStop Server User Exits
The following table summarizes the functions available through the user exits for
generated server applications:

Name Description

SRVRERROR Server to Server Error User Exit (Server Only)

TIRDCRYP Decrypt User Exit (Server Only)

TIRDLCT Dialect User Exit

TIRDRTL Default Retry Limit User Exit

TIRELOG Server Error Logging User Exit (Server Only)

TIRHELP Help Interface User Exit

TIRMTQB Message Table User Exit

TIRNCRYP Encrypt User Exit (Server Only)

TIRSECR Security Interface User Exit

TIRSECV Server Security Validation User Exit (Server Only)

TIRSYSID System ID User Exit

TIRTERMA User Termination User Exit

TIRUPDB MBCS Uppercase Translation User Exit

TIRUPPR Uppercase Translation User Exit

TIRURTL Ultimate Retry Limit User Exit

NonStop Server User Exits

586 User Exit Reference Guide

Name Description

TIRUSRID User ID User Exit

TIRXINFO Locale Information User Exit (Server Only)

TIRXLAT National Language Translation User Exit (Server Only)

TIRYYX Date User Exit

USEREXIT Distributed Processing Flow Data Access User Exit (Server Only)

All server runtime user exits are provided in both source and object format (in the
object library UEXITCO and DPSUECO), and are rebuilt using the TACL macro MKEXITS
which can be found in the subvolume where the IT has been installed. Details on the use
of the MKEXITS macro can be found in the NonStop Implementation Toolset User Guide.

The UEXITCO user exit object library is the same one that is used with blockmode
applications.

Details for the preceding user exits follow in a separate section for each.

TIRDCRYP Server Decryption Exit

void TIRDCRYP(unsigned char * rp1,

unsigned char * rp2,

TIRDCRYP_cmcb * pTIRDCRYP_cmcb);

Source Code

tirdcryp.c

Purpose

TIRDCRYP is called by the Server Manager after it detects that the client has sent an
encrypted cooperative buffer. The Server Manager constructs a work buffer containing
the concatenated View Data and Client Security sections. The user is responsible for
decrypting the area pointed to by pDataBuffer for IBufferSize bytes.

The inputs pDataBuffer and IDecryptMaxSize as well as the outputs IBufferSize
return_code and failure_msg are fields within a structure pointed to by the
pTIRDCRYP_cmcb parameter.

NonStop Server User Exits

Chapter 5: NonStop User Exits 587

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*rp2 Input A pointer to a parameter control block. Reserved for
runtime internal use only

*pTIRELOG_cmcb Input/Output A pointer to a TIRELOG_CMCB structure containing the
following items:

lDecryptMaxSize Input A long field that contains the maximum available buffer
space (in bytes) that the decrypted data can occupy.

lBufferSize Input/Output On input, IBufferSize is the current buffer space (in bytes)
of the encrypted data.

On output, IBuffferSize should be updated by this exit to
contain the length of the decrypted data. The length of
the decrypted result cannot exceed lDecryptMaxSize.

*pDataBuffer Input/Output On input, a pointer to the starting location of the
encrypted View Data and Client Security sections within
the CFB work buffer.

On output, this exit should ensure this same data area
contains the unencrypted versions of the input data. The
length of this decrypted result cannot exceed
lDecryptMaxSize.

return_code Output A two-character array returning the results of the
decryption attempt. The following values are supported:

DECRYPTION_USED—defined as " "

DECRYPTION_SIZE_EXCEEDED_MAX—defined as "01"

DECRYPTION_NOT_USED—defined as "02"

DECRYPTION_APPLICATION_ERROR—defined as "03"

*failureMsg Output The pointer to an 80-character array, to be populated by
the exit that can receive a null terminated error message
string. The string pointed to by the failureMsg pointer will
be incorporated into an error message that is returned
back to the client. Used in conjunction with a return code
of DECRYPTION_APPLICATION_ERROR.

Return Code

None directly, see the preceding return_code structure member.

NonStop Server User Exits

588 User Exit Reference Guide

Default Behavior

Decryption of the data buffer is not attempted.

Building on NonStop

The Server Decryption User Exit is built as part of the object library UEXITCO. As a
prerequisite for building the object library, you must have correct C compiler installed
on your system.

Follow these steps:

1. Launch a terminal session

2. Change your current volume to where the IT was installed

3. Run MKEXITS

4. MKEXITS will prompt for confirmation about the source and object code locations
used to build the exits. Press enter to accept the default values, otherwise enter
new $<volume>.<subvolume> locations at the prompts. After these locations are
confirmed, the main menu is displayed. Use this menu to perform the following
actions:

Action Description

X To extract the exits' source code from their archived file (UEXITSC).
Source will be placed into the source location.

E To invoke the EDIT editor.

T To invoke the TEDIT editor.

A To compile all user exits.

R To link and install compiled user exits into the UEXITCO library

D Links and installs compiled distributed processing server user exits into
the DPSUECO library

P To access the Peruse facility

O To change the output location

S To change the source and object location settings

Q To exit MKEXITS

NonStop Server User Exits

Chapter 5: NonStop User Exits 589

Related User Exits

The following are related user exits:

■ TIRNCRYP

■ WRSECENCRYPT

TIRELOG Server Error Logging and Error Token Creation Exit

void TIRELOG(char * rp1,

char * rp2,

TIRELOG_CMCB * pTIRELOG_cmcb));

Source Code

tirelog.c

Purpose

This exit serves two purposes:

■ Error logging at the server

■ Creation of an error token for transmitting to the client

This exit is called by the server to handle server errors that are encountered during the
execution of a distributed processing server that cannot be handled by the runtime or
generated code, and normally result in the termination of the application. For example,
prior to the execution of a server procedure step, the server extracts view data from the
client message and places it in the target procedure step's view. If this extraction fails
because of a mismatch between the client definition and the server definition an error
response message is created and returned to the client.

The default implementation of this exit returns to the caller without logging the error. It
is up to the developer of this user exit to determine what information should be logged
and how it should be logged. Some users can choose to log only certain errors; others
can choose to log all errors. On some systems, the log can be implemented as a file. To
log a server error, simply format the information you wish to log and write it to a file. On
other systems, the log can be implemented using system-specific features such as a CICS
temporary storage queue (TSQ) as found on z/OS.

To create an error token, move text data to the area pointed to by the elog_error_token
member of the TIRELOG_CMCB structure passed into this exit. The error token area is
4097 bytes and must be null-terminated. The error token, which goes through codepage
translation when it is transmitted to the client, can be used on the client to customize
how the error is handled.

NonStop Server User Exits

590 User Exit Reference Guide

For example, you can modify this exit to return an error token of "RETRY" whenever a
certain database contention error occurs. This error token is passed to the client
error-handling exit (WRSRVRERROR or WRASYNCSRVRERROR), which makes the final
decision on how to handle the error. You can modify the client error-handling exit to
reinvoke the flow or USE whenever the error token is "RETRY." This server error-logging
exit is called after the error response message is created but before it is transmitted to
the client.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for
runtime internal use only

*rp2 Input A pointer to a parameter control block. Reserved for
runtime internal use only

*pTIRELOG_cmcb Input/Output A pointer to a TIRELOG_CMCB structure containing the
following items:

elog_fail_type Input A character designating the type of failure detected
defined as:(lable - defined value)

EPROFD - 'P' profile error

EPROFI - 'I' profile error

EEXEC - 'E' execution error

ESERVER - 'D' server manager error

EUSER - 'U' user requested abend

void *elog_sqlca Input A pointer to a saved sql data area

*elog_globdata Input A pointer to the server's globdata area

elog_number_of_lines Input An integer containing the number of text lines contained
within the elog_error_text buffer

elog_error_text Input A pointer to a buffer of screen formatted text. This data,
formatted by the server runtime, contains up to 24 lines
of 80 characters each.

*elog_error_token Input/Output A character pointer to an error token area that can
contain up to 4097 bytes, this includes the required null
terminator. This exit is responsible for populating this
data area if needed.

Return Code

None directly, see the preceding pTIRELOG_cmcb structure.

NonStop Server User Exits

Chapter 5: NonStop User Exits 591

Default Behavior

The default action is to return without logging the error.

Building on NonStop

The Server Error Logging User Exit is built as part of the object library UEXITCO. As a
prerequisite for building the object library, you must have correct C compiler installed
on your system.

Follow these steps:

1. Launch a terminal session

2. Change your current volume to where the IT was installed

3. Run MKEXITS

4. MKEXITS will prompt for confirmation about the source and object code locations
used to build the exits. Press enter to accept the default values, otherwise enter
new $<volume>.<subvolume> locations at the prompts. After these locations are
confirmed, the main menu is displayed. Use this menu to perform the following
actions:

Action Description

X To extract the exits' source code from their archived file (UEXITSC).
Source will be placed into the source location.

E To invoke the EDIT editor.

T To invoke the TEDIT editor.

A To compile all user exits.

R To link and install compiled user exits into the UEXITCO library

D Links and installs compiled distributed processing server user exits into
the DPSUECO library

P To access the Peruse facility

O To change the output location

S To change the source and object location settings

Q To exit MKEXITS

NonStop Server User Exits

592 User Exit Reference Guide

Related User Exits

The following are related user exits:

■ WRSRVRERROR

■ WRASYNCSRVRERROR

TIRNCRYP Server Encryption Exit

void TIRNCRYP(unsigned char * rp1,

unsigned char * rp2,

TIRNCRYP_cmcb * pTIRNCRYP_cmcb);

Source Code

tirncryp.c

Purpose

After a server procedure step executes, the server manager can call TIRNCRYP to
encrypt the server response to the client. The server manager makes a copy of the
unencrypted cooperative buffer pending transmission back to the client. The inputs
pDataBuffer, IBufferSize, IEncryptMaxSize trancode and client_userid as well as the
outputs return_code, and failure_msg are fields with a structure pointed to by
pTIRNCRYP_cmcb. The user is responsible for encrypting the data area pointed to by the
pDataBuffer member of the TIRNCRYP_cmcb structure.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*rp2 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*pTIRNCRYP_cmcb Input/Output A pointer to a structure containing the following items:

NonStop Server User Exits

Chapter 5: NonStop User Exits 593

Name I/O Description

pDataBuffer Input/Output On input, a pointer to the starting location of the View
Data and Client Security sections within the CFB work
buffer.

On output this same data area should be populate by
this exit with the encrypted versions of the input data.
The length of the encrypted result cannot exceed
lEncryptMaxSize.

lBufferSize Input/Output On input, lBufferSize is the current buffer space (in
bytes) of the unencrypted data.

On output, IBuffferSize should be updated by this exit to
contain the length of the encrypted data. The length of
the encrypted result cannot exceed lEncryptMaxSize.

lEncryptMaxSize Input A long field that contains the maximum available buffer
space (in bytes) that the encrypted data can occupy.

trancode Input Transaction code currently being processed. . This value
can be used in conjunction with client userid and
NextLocation to determine if encryption is desired.

client_userid Input Client user ID. This value can be used in conjunction
with trancode and NextLocation to determine if
encryption is desired.

pNextLocation Input Next Location value as set by the server application
using CA Gen action diagram statements. This value can
be used in conjunction with trancode and client userid
to determine if encryption is desired.

return_code Output A two-character array returning the results of the
decryption attempt. The following values are supported:

ENCRYPTION_USED—defined as " "

ENCRYPTION_SIZE_EXCEEDED_MAX—defined as "01"

ENCRYPTION_NOT_USED—defined as "02"

EnCRYPTION_APPLICATION_ERROR—defined as "03"

*failureMsg Output The pointer to an 80-character array, to be populated by
the exit that can receive a null terminated error
message string. The string pointed to by the failureMsg
pointer will be incorporated into an error message that
is returned back to the client. Used in conjunction with a
return code of ENCRYPTION_APPLICATION_ERROR.

Return Code

None directly, see the preceding return_code structure member.

NonStop Server User Exits

594 User Exit Reference Guide

Default Behavior

The default logic of this user exit is to return ENCRYPTION_NOT_USED.

Building on NonStop

The Server Encryption User Exit is built as part of the object library UEXITCO. As a
prerequisite for building the object library, you must have correct C compiler installed
on your system.

Follow these steps:

1. Launch a terminal session

2. Change your current volume to where the IT was installed

3. Run MKEXITS

4. MKEXITS will prompt for confirmation about the source and object code locations
used to build the exits. Press enter to accept the default values, otherwise enter
new $<volume>.<subvolume> locations at the prompts. After these locations are
confirmed, the main menu is displayed. Use this menu to perform the following
actions:

Action Description

X To extract the exits' source code from their archived file (UEXITSC).
Source will be placed into the source location.

E To invoke the EDIT editor.

T To invoke the TEDIT editor.

A To compile all user exits.

R To link and install compiled user exits into the UEXITCO library

D Links and installs compiled distributed processing server user exits into
the DPSUECO library

P To access the Peruse facility

O To change the output location

S To change the source and object location settings

Q To exit MKEXITS

NonStop Server User Exits

Chapter 5: NonStop User Exits 595

Related User Exits

The following are related user exits:

■ TIRDCRYP

■ WRSECDECRYPT

TIRSECV Security Validation Exit

void TIRSECV(char *rp1,

char *rp2,

unsigned char Enhanced_Security_Flag,

PTIRSECV_cmcb pTIRSECV_cmcb);

Source Code

tirsecv.c

Purpose

This security exit is called for every cooperative flow, regardless of the security type
used. To facilitate security validation a flag indicating whether the security data is for a
standard or enhanced buffer has been added. This exit is intended to provide the
opportunity to validate enhanced security data while at the same time not impacting
those using standard security.

To this effect, the default code provided handles two possible conditions:

■ For buffers containing standard security the client userid, client password, and
security token fields are expected to be blank. The default behavior is for the exit to
return SECURITY_USED, thus indicating that the request is authorized. The exit must
be modified to return SECURITY_APPLICATION_ERROR if the intent is that all buffers
contain enhanced security data.

■ For buffers containing enhanced security the client userid, client password, and
security token fields can or cannot contain data. The default behavior is for the exit
to return SECURITY_NOT_USED, this indicating that no validation processing was
attempted. The exit must be modified to validate the security data and set the
relevant return code (return SECURITY_USED for an authorized user and
SECURITY_APPLICATION_ERROR for a non authorized user). When returning
SECURITY_APPLICATION_ERROR, this exit can provide an optional failure message,
using the failure_msgbuffer contained within the TIRSECV_cmcb structure that will
be presented to the client.

NonStop Server User Exits

596 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*rp1 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

*rp2 Input A pointer to a parameter control block. Reserved for
runtime internal use only.

Enhanced_Security_Flag Input A single character denoting if the CFB has been
created to support enhanced security. A value of Y
denotes enhanced security,

*pTIRSECV_cmcb Input A pointer to a structure containing the following
values:

client_userid Input A 64-byte character array containing a user ID if the
CFB uses enhanced security. For a CFB containing
standard security this parameter is expected to be
blank.

client_password Input A 64-byte character array containing a password if
the CFB uses enhanced security. For a CFB containing
standard security this parameter is expected to be
blank.

lSecurityTokenLen Input A long value representing the length of the
pSecurityToken, if any.

pSecurityToken Input A pointer to a security token if the CFB uses
enhanced security. For a CFB containing standard
security this parameter is expected to be blank.

trancode Input An 8-byte character array containing the transaction
code

return_code Input/Output A 2-byte character array containing a value denoting
success for failure of this exit. Valid values are:

SECURITY_USED - defined as " "

SECURITY_NOT_USED—defined as "02"

SECURITY_APPLICATION_ERROR—defined as "03"

NonStop Server User Exits

Chapter 5: NonStop User Exits 597

Name I/O Description

failure_msg Input/Output The pointer to an 80-character array that can be
populated by this exit with a null terminated error
message string. The string pointed to by this
parameter will be incorporated into an error message
that is returned back to the client. Used in
conjunction with a return code of
SECURITY_APPLICATION_ERROR.

Return Code

None directly, see the preceding return_code structure member.

Default Behavior

The default logic of this user exit is to return SECURITY_NOT_USED, which is considered
an error if this user exit is actually called since the Server Manager requested Client
Security validation.

Building on NonStop

The Server Security Validation User Exit is built as part of the object library UEXITCO. As
a prerequisite for building the object library, you must have correct C compiler installed
on your system.

Follow these steps:

1. Launch a terminal session

2. Change your current volume to where the IT was installed

3. Run MKEXITS

4. MKEXITS will prompt for confirmation about the source and object code locations
used to build the exits. Press enter to accept the default values, otherwise enter
new $<volume>.<subvolume> locations at the prompts. After these locations are
confirmed, the main menu is displayed. Use this menu to perform the following
actions:

Action Description

X To extract the exits' source code from their archived file (UEXITSC).
Source will be placed into the source location.

E To invoke the EDIT editor.

T To invoke the TEDIT editor.

A To compile all user exits.

NonStop Server User Exits

598 User Exit Reference Guide

Action Description

R To link and install compiled user exits into the UEXITCO library

D Links and installs compiled distributed processing server user exits into
the DPSUECO library

P To access the Peruse facility

O To change the output location

S To change the source and object location settings

Q To exit MKEXITS

Related User Exits

WRSECTOKEN

TIRXINFO Locale Information Exit

void TIRXINFO (char *osId,

char *codePage,

long *padChar);

Source Code

tirxlat.c

Purpose

This exit provides information about the codepage environment of the executing server
process. An osId, codepage ID, and default padding character are returned. The runtime
uses the osId and codePage returned as parameters passed into the TIRXLAT user exit.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*osId Output A pointer to character buffer to contain an OS ID (9 bytes, 8 characters
plus NULL terminator). This value will be passed to TIRXLAT as the
outOS parameter for inbound transactions and as the inOS parameter
for outbound transactions. The current default value is MBCS. This
should not be confused with an identifier of the underlying operating
system on which the server is executing.

NonStop Server User Exits

Chapter 5: NonStop User Exits 599

Name I/O Description

*codePage Output A pointer to character buffer to contain a codepage ID (9 bytes, 8
characters plus NULL terminator). This value will be passed to TIRXLAT
as the outCodePage parameter for inbound transactions and as the
inCodePage parameter for outbound transactions. The default value, as
returned from this exit, is hard coded into the generated server
manager at code generation time. This value will depend upon the
platform used to generate the server manager. If the server manager is
generated on a Windows platform the value will be 1252, if generated
on a UNIX platform using CSE its value will be 819.

*padChar Output A pointer to a long value, not currently used for Windows or UNIX
servers.

Return Code

None

Default Behavior

The string returned for osId is currently hard coded to a value of MBCS. The value for
CodePage is obtained from the server manager. The CodePage number is created during
the server manager code generation process. The padChar value is currently unused.

Building on NonStop

The Locale Information User Exit is built as part of the object library UEXITCO. As a
prerequisite for building the object library, you must have correct C compiler installed
on your system.

Follow these steps:

1. Launch a terminal session

2. Change your current volume to where the IT was installed

3. Run MKEXITS

4. MKEXITS will prompt for confirmation about the source and object code locations
used to build the exits. Press enter to accept the default values, otherwise enter
new $<volume>.<subvolume> locations at the prompts. After these locations are
confirmed, the main menu is displayed. Use this menu to perform the following
actions:

Action Description

X To extract the exits' source code from their archived file (UEXITSC).
Source will be placed into the source location.

NonStop Server User Exits

600 User Exit Reference Guide

Action Description

E To invoke the EDIT editor.

T To invoke the TEDIT editor.

A To compile all user exits.

R To link and install compiled user exits into the UEXITCO library

D Links and installs compiled distributed processing server user exits into
the DPSUECO library

P To access the Peruse facility

O To change the output location

S To change the source and object location settings

Q To exit MKEXITS

Related User Exits

TIRXLAT

TIRXLAT National Language Translation Exit

void TIRXLAT (char *inBuf;

long *inLen;

char *inCodePage;

char *inOS;

char *outBuf;

long *outLen;

char *outCodePage;

char *outOS;

long *outPadChar;

char *workArea;

long *outCharCnt;

long *outByteCnt);

Source Code

tirxlat.c

NonStop Server User Exits

Chapter 5: NonStop User Exits 601

Purpose

TIRXLAT allows the conversion of textual data based on from/to codepage and operating
system information. View data that is passed between the client and server is translated
from the client's code page to the server's code page, and vice versa. TIRXLAT uses the
client's code page value, which is passed from the client to the server, and the host's
code page value to locate a translation table.

This exit is used to translating both the data received from that client and the data to be
sent to the client.

When translating data received from the client, the in* parameters correspond to the
client data, the out* parameters correspond to the data presented to the server.

When translating data to be sent to the client the in* parameters correspond to the
server data to be sent, the out* parameters correspond to the data presented to the
client.

If a suitable translation table is not found, the data will be passed back without
translation. The user can replace a translation table to customize their environment.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*inBuf Input A character pointer to the input buffer to translate

*inLen Input A pointer to a long value which is the length inBuf

*inCodePage Input A character pointer to the codepage ID of inBuf (8 bytes +
1 NULL).

*inOS Input A character pointer to the OS ID of inBuf (8 bytes + 1
NULL).

*outBuf Input/Output A character pointer to the buffer in which to place the
translated text

*outLen Input A pointer to a long value that is the length of the data
pointed to by outBuf.

*outCodePage Input A character pointer to the codepage ID corresponding to
the output buffer, outBuf.

*outOS Input A character pointer to the OS ID corresponding to the
output buffer, outBuf.

NonStop Server User Exits

602 User Exit Reference Guide

Name I/O Description

*outPadChar Input A pointer to a long value which is the padding character
to use, 0 if no padding to be done in the output buffer,
outBuf.

*workArea Input A character pointer to a 100-byte scratch work area.

*outCharCnt Input/Output A pointer to a long value which is the number of
characters placed into the output buffer, outBuf.

*outByteCnt Input/Output A pointer to a long value which is the number of bytes
placed into the output buffer, outBuf.

Return Code

None

Default Behavior

If a suitable translation table is found, the data will be translated from the inCodePage
to the outCodePage. If a suitable translate table is not found the data is passed back
without translation.

Building on NonStop

The National Language Translation User Exit is built as part of the object library
UEXITCO. As a prerequisite for building the object library, you must have correct C
compiler installed on your system.

Follow these steps:

1. Launch a terminal session

2. Change your current volume to where the IT was installed

3. Run MKEXITS

4. MKEXITS will prompt for confirmation about the source and object code locations
used to build the exits. Press enter to accept the default values, otherwise enter
new $<volume>.<subvolume> locations at the prompts. After these locations are
confirmed, the main menu is displayed. Use this menu to perform the following
actions:

Action Description

X To extract the exits' source code from their archived file (UEXITSC).
Source will be placed into the source location.

E To invoke the EDIT editor.

NonStop Server User Exits

Chapter 5: NonStop User Exits 603

Action Description

T To invoke the TEDIT editor.

A To compile all user exits.

R To link and install compiled user exits into the UEXITCO library

D Links and installs compiled distributed processing server user exits into
the DPSUECO library

P To access the Peruse facility

O To change the output location

S To change the source and object location settings

Q To exit MKEXITS

Related User Exits

TIRXINFO

USEREXIT NonStop RSC/MP Distributed Processing Flow Data Access Exit

Void USEREXIT(short MsgFlow);

Source Code

dpsuetdm

Purpose

The USEREXIT server side user exit is called twice for each distributed processing flow
and supports multiple APIs. By serving as the main entry point for five APIs, USEREXIT
enables inspection and modification of the user data and application data that moves
between a Distributed Processing Client (DPC) and a Distributed Processing Server
(DPS). USEREXIT is called the first time just after request data has been received from
the client. The second call occurs just before the response data is returned to the client.

You can use the set of APIs that USEREXIT supports encrypting and decrypting
transaction data, adding custom data that is not generated from CA Gen to the buffer
sent to the client side, performing customized auditing, and so on.

Note: The size of the CA Gen data buffer cannot be modified. Data integrity must be
maintained by the user exit.

This user exit is available only on the NonStop server platform.

NonStop Server User Exits

604 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

MsgFlow Input Indicates the direction of the data stream

available for inspection/modification.

Possible values are:

0 - Request message coming from the Client.

1 - Response message going back to the Client.

APIs

USEREXIT is an entry point that supports the use of the following APIs:

Name Description

GET_MESSAGE_SIZE Returns the length of the message area for the current
request or response message.

GET_USER_DATA Returns the user data associated with the current
request or response message.

SET_USER_DATA Copies data from the passed in buffer into the user data
area associated with the current request or response
message.

GET_IEF_DATA Returns the Gen data (and its length) contained within
the current request or response message.

SET_IEF_DATA Copies data from the passed in buffer into the Gen data
area associated with the current request or response
message.

Each API supported by USEREXIT is described in the following sections.

Return Code

None

Default Behavior

USEREXIT is called twice for each DPS flow. The user exit is called for the first time just
after a request buffer is received from the client. Just before the response buffer is sent
back to the client, the user exit is called again.

NonStop Server User Exits

Chapter 5: NonStop User Exits 605

Building on NonStop

The Distributed Process Flow Data Access User Exit is built as part of the object library
DPSUECO. As a prerequisite for building the object library, you must have correct C
compiler installed on your system.

Follow these steps:

1. Launch a terminal session

2. Change your current volume to where the IT was installed

3. Run MKEXITS

4. MKEXITS will prompt for confirmation about the source and object code locations
used to build the exits. Press enter to accept the default values, otherwise enter
new $<volume>.<subvolume> locations at the prompts. After these locations are
confirmed, the main menu is displayed. Use this menu to perform the following
actions:

 Action Description

X To extract the exits' source code from their archived file (UEXITSC).
Source will be placed into the source location.

E To invoke the EDIT editor.

T To invoke the TEDIT editor.

A To compile all user exits.

R To link and install compiled user exits into the UEXITCO library

D Links and installs compiled distributed processing server user exits into
the DPSUECO library

P To access the Peruse facility

O To change the output location

S To change the source and object location settings

Q To exit MKEXITS

Related User Exits

Client Manager/Communications Bridge user exit RSCUserEntry().

API Functions

The APIs described in the following sections can only be called from within the context
of the NonStop user exit, USEREXIT().

NonStop Server User Exits

606 User Exit Reference Guide

Function Format

short GET_MESSAGE_SIZE(short * msgSize)

Purpose

GET_MESSAGE_SIZE returns the size of the current CA Gen message buffer. The
reported message buffer size includes the NonStop RSC/MP header, CA Gen data, and
user data.

When a MsgFlow parameter of 0 is passed into the main entry point, USEREXIT(), this
indicates that the user exit is being called just after the response message is received
from the requesting client. The message size returned is that of the message just
received from the client.

When a MsgFlow parameter of 1 is passed into the main entry point, this indicates that
the user exit is being called just before sending the response message to the requesting
client. The message size returned is that of the message about to be sent to the client.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

* msgSize Output A pointer to a short where the total size of the current message is
stored.

Return Code

The following table gives a brief description of the return code value.

Return Value Description

Non zero The size of the CA Gen message buffer.

Default Behavior

If enabled, USEREXIT() calls the GET_MESSAGE_SIZE API after receiving a request from
the client.

Function Format

short GET_USER_DATA(char * data, short length)

NonStop Server User Exits

Chapter 5: NonStop User Exits 607

Purpose

Returns the user data area associated with the current Gen message.

When a MsgFlow parameter of 0 is passed into the main entry point, USEREXIT(), this
indicates that the user exit is being called just after the response message is received
from the requesting client. The message size returned is that of the message just
received from the client.

When a MsgFlow parameter of 1 is passed into the main entry point, this indicates that
the user exit is being called just before sending the response message to the requesting
client. The message size returned is that of the message about to be sent to the client.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

* data Input/Output A pointer to a buffer area where the runtime is to copy the user data.

Note: It is the caller’s responsibility to ensure that adequate memory
has been allocated to contain the user data contained in the current
message.

Length Input The size of the data buffer being passed in.

Return Code

The following table gives a brief description of the return code value.

Return Value Description

Non zero The actual number of bytes copied into the data buffer

Zero Indicates there was no user-data available

Negative Indicates that the an error occurred

Default Behavior

If enabled, the USEREXIT() calls the GET_MESSAGE_DATA API after the request message
is received from the client.

Function Format

short SET_USER_DATA(char * data, short length)

NonStop Server User Exits

608 User Exit Reference Guide

Purpose

Copies the passed in buffer data into the user data area associated with the current Gen
message.

If the MsgFlow parameter passed into the main entry point, USEREXIT(), is 0, this
signifies that the user exit is being called just after the request message has been
received from the client.

If the MsgFlow parameter passed into the main entry point, USEREXIT(), is 1, this
signifies that the user exit is being called just before sending the response message to
the client. The buffer data will be copied into the current message’s user data area
before the message is sent to the requesting client.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

* data Input/Output A pointer to a buffer area that is copied into the current message’s
user data area.

length Input The length of the data buffer pointed to by the “data” parameter

Return Code

The following table gives a brief description of the return code value.

Return Value Description

0 Indicates that the data was copied successfully

Non zero Indicates that the an error occurred

Default Behavior

If enabled, USEREXIT() calls the SET_USER_DATA API after the request message is
received from the client.

Function Format

short GET_IEF_DATA(unsigned char * data, short length)

NonStop Server User Exits

Chapter 5: NonStop User Exits 609

Purpose

Returns a copy of the CA Gen data associated with the current CA Gen message.

If the MsgFlow parameter passed into the main entry point, USEREXIT(), is 0, this
signifies that the user exit is being called just after the request message has been
received from the client.

If the MsgFlow parameter passed into the main entry point, USEREXIT(), is 1, this
signifies that the user exit is being called just before sending the response message to
the client. The buffer data will be copied into the current message’s user data area
before the message is sent to the requesting client.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

* data Input/Output A pointer to a buffer area where a copy the Gen data will be written
to.

length Input The size of the buffer being passed.

Return Code

The following table gives a brief description of the return code value.

Return Value Description

Non zero Indicates the actual number of bytes copied into the passed in
data buffer.

Negative Indicates that the an error occurred.

Default Behavior

If enabled, the USEREXIT() calls the GET_IEF_DATA API after the request is received
from the client.

Function Format

short SET_IEF_DATA(unsigned char * data, short length)

NonStop Server User Exits

610 User Exit Reference Guide

Purpose

Copies the passed in buffer into the Gen data area associated with the current message.

If the MsgFlow parameter passed into the main entry point, USEREXIT(), is 0, this
signifies that the user exit is being called just after the request message has been
received from the client.

If the MsgFlow parameter passed into the main entry point, USEREXIT(), is 1, this
signifies that the user exit is being called just before sending the response message to
the client. The buffer data will be copied into the current message’s user data area
before the message is sent to the requesting client.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

* data Input/Output A pointer to a buffer area that is copied into the current message’s
Gen data area.

length Input The size of the data buffer to be copied.

Return Code

The following table gives a brief description of the return code value.

Return Value Description

Zero Indicates the passed in data was successfully copied

Non zero Indicates that the an error occurred

Default Behavior

If enabled, USEREXIT() calls this API after the request is received from the client.

Chapter 6: Web Generation User Exits 611

Chapter 6: Web Generation User Exits

User exits are available with the various communication packages used.

Note: For more information about Java user exits used in a distributed processing
environment, see the Distributed Processing – Overview Guide.

CompareExit Web Generation Compare Exit

Source Code

CompareExit.java

Purpose

CompareExit is a runtime class used to compare various classes/types with each other.

CompareTo Method Compares Two Decimals

public static int CompareTo(decimal parm1, decimal parm2)

Purpose

Compares two decimals and returns a negative if the first instance is less than the
second; a positive if the first instance is greater than the second; 0 if the two instances
are equal.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

parm1 Input a decimal to be compared with

parm2 Input a decimal to be compared to

CompareExit Web Generation Compare Exit

612 User Exit Reference Guide

Return Code

A negative, zero, or a positive integer as this object is less than, equal to, or greater than
the specified object.

Default Behavior

Delegate the comparison to Java CompareTo() method.

CompareTo Method Compares Two Characters

public static int CompareTo(char parm1, char parm2)

Purpose

Compares two chars and returns a negative if the first instance is less than the second; a
positive if the first instance is greater than the second; 0 if the two instances are equal.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

parm1 Input a char to be compared with

parm2 Input a char to be compared to

Return Code

A negative, zero, or a positive integer as this object is less than, equal to, or greater than
the specified object.

Default Behavior

Delegate the comparison to Java CompareTo() method.

CompareTo Method Compares Two Doubles

public static int CompareTo(double parm1, double parm2)

CompareExit Web Generation Compare Exit

Chapter 6: Web Generation User Exits 613

Purpose

Compares two doubles and returns a negative if the first instance is less than the
second; a positive if the first instance is greater than the second; 0 if the two instances
are equal.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

parm1 Input a double to be compared with

parm2 Input a double to be compared to

Return Code

A negative, zero, or a positive integer as this object is less than, equal to, or greater than
the specified object.

Default Behavior

Delegate the comparison to Java CompareTo() method.

CompareTo Method Compares Two Floats

public static int CompareTo(float parm1, float parm2)

Purpose

Compares two floats and returns a negative if the first instance is less than the second; a
positive if the first instance is greater than the second; 0 if the two instances are equal.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

parm1 Input a float to be compared with

parm2 Input a float to be compared to

CompareExit Web Generation Compare Exit

614 User Exit Reference Guide

Return Code

A negative, zero, or a positive integer as this object is less than, equal to, or greater than
the specified object.

Default Behavior

Delegate the comparison to Java CompareTo() method.

CompareTo Method Compares Two Integers

public static int CompareTo(int parm1, int parm2)

Purpose

Compares two ints and returns a negative if the first instance is less than the second; a
positive if the first instance is greater than the second; 0 if the two instances are equal.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

parm1 Input an int to be compared with

parm2 Input an int to be compared to

Return Code

A negative, zero, or a positive integer as this object is less than, equal to, or greater than
the specified object.

Default Behavior

Delegate the comparison to Java CompareTo() method.

CompareTo Method Compares Two Longs

public static int CompareTo(long parm1, long parm2)

Purpose

Compares two longs and returns a negative if the first instance is less than the second; a
positive if the first instance is greater than the second; 0 if the two instances are equal.

CompareExit Web Generation Compare Exit

Chapter 6: Web Generation User Exits 615

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

parm1 Input a long to be compared with

parm2 Input a long to be compared to

Return Code

A negative, zero, or a positive integer as this object is less than, equal to, or greater than
the specified object.

Default Behavior

Delegate the comparison to Java CompareTo() method.

CompareTo Method Compares Two Objects

public static int CompareTo(object parm1, object parm2)

Purpose

Compares two objects and returns a negative if the first instance is less than the second;
a positive if the first instance is greater than the second; 0 if the two instances are
equal.

For comparison purposes, nulls are considered equal and a null compared to a non-null
is always less than the non-null value.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

parm1 Input an object to be compared with

parm2 Input an object to be compared to

CompareExit Web Generation Compare Exit

616 User Exit Reference Guide

Return Code

A negative, zero or a positive integer as this object is less than, equal to, or greater than
the specified object.

Also this method may throw the InvalidCastException if the object does not implement
a 'int CompareTo(Object)' interface like the Comparable interface.

Default Behavior

Depending on the type of parameters, this method delegate the comparison to
CompareTo(parm1, parm2) methods defined in this class. If the type of the parameters
does not match any of CompareTo(parm1, parm2) method, the method uses .NET
Reflection mechanism to find the appropriate CompareTo method for the given types.

CompareTo Method Compares Two Shorts

public static int CompareTo(short parm1, short parm2)

Purpose

Compares two shorts and returns a negative if the first instance is less than the second;
a positive if the first instance is greater than the second; 0 if the two instances are
equal.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

parm1 Input a short to be compared with

parm2 Input a short to be compared to

Return Code

A negative, zero, or a positive integer as this object is less than, equal to, or greater than
the specified object.

Default Behavior

Delegate the comparison to Java CompareTo() method.

CompareExit Web Generation Compare Exit

Chapter 6: Web Generation User Exits 617

CompareTo Method Compares Two Strings

public static int CompareTo(string parm1, string parm2)

Purpose

Compares two strings and returns a negative if the first instance is less than the second;
a positive if the first instance is greater than the second; 0 if the two instances are
equal.

The lengths do not have to be identical, they will still compare as long as characters in
the extra length area of the larger string are spaces.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

parm1 Input a string to be compared with

parm2 Input a string to be compared to

Return Code

A negative, zero, or a positive integer as this object is less than, equal to, or greater than
the specified object.

Default Behavior

The default behavior of this method is as follows.

Check null for both parameters.

Trim the space from strings.

Delegate the comparison to Java CompareTo() method.

CompareTo Method Compares two strings(upto the indicated length)

public static int CompareTo(string parm1, string parm2 , int length)

CompareExit Web Generation Compare Exit

618 User Exit Reference Guide

Purpose

Compares two strings and returns a negative if the first instance is less than the second;
a positive if the first instance is greater than the second; 0 if the two instances are
equal. Only the characters up to the indicated length are compared. All characters after
that point are ignored.

The lengths do not have to be identical, they will still compare as long as characters in
the extra length area of the larger string are spaces.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

parm1 Input a string to be compared with

parm2 Input a string to be compared to

length Input an int to indicate the length of the strings to
compare

Return Code

A negative, zero, or a positive integer as this object is less than, equal to, or greater than
the specified object.

Default Behavior

The default behavior of this method is as follows.

Check null for both parameters.

Trim the given strings to the specified length.

Delegate the comparison to Java CompareTo() method.

CompareTo Method Compares Two DateTime instances

public static int CompareTo(DateTime parm1, DateTime parm2)

Purpose

Compares two DateTime instances and returns a negative if the first instance is less than
the second; a positive if the first instance is greater than the second; 0 if the two
instances are equal.

CompareExit Web Generation Compare Exit

Chapter 6: Web Generation User Exits 619

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

parm1 Input a DateTime to be compared with

parm2 Input a DateTime to be compared to

Return Code

A negative, zero, or a positive integer as this object is less than, equal to, or greater than
the specified object.

Default Behavior

Delegate the comparison to Java CompareTo() method.

Rebuilding the Exit

This exit is compiled into a Java class file. The Java development environment J2SE 1.6 or
greater must be installed on your system.

Follow these steps:

1. Launch an MS/DOS Command window.

2. Ensure the CLASSPATH environment variable contains a reference to the CA Gen
CSU jar file, CSUxx.JAR, where xx is the CA Gen release number.

3. Change your current directory to that which contains the java source file.

Typically this will be in the CA Gen install area, within the
CLASSES\COM\CA\GENxx\EXITS\common subdirectory, where xx is the current CA
Gen release number.

4. Run JAVAC CompareExit.java.

5. Reassemble and redeploy the resulting .class file for use with the appropriate
applications.

DataConversionExit Web Generation Data Conversion Exit

620 User Exit Reference Guide

DataConversionExit Web Generation Data Conversion Exit

Source Code

DataConversionExit.java

Purpose

These exit classes allows users to access data and modify it. This user-exit can be used to
modify data saved to and retrieved from a database. It currently handles Strings only.
This is sometimes required for some languages where strings stored in a database may
need to be presented differently for display. For example DB2 accessed via JDBC can
save and retrieve different results from DB2 accessed on the mainframe if the latter is
set to an encoding different from that of the JVM.

modifyInputString Method Modifies Input String

public final static String modifyInputString (String parmString)

Purpose

It is used to modify strings before they are ultimately saved to a database.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

parmString Input String to be modified before it is saved.

Return Code

String representing the modified version is returned.

Default Behavior

By default, the strings passed in, are returned unchanged.

modifyOutputString Method Modifies Output String

String modifyOutputString (String parmString)

DataConversionExit Web Generation Data Conversion Exit

Chapter 6: Web Generation User Exits 621

Purpose

It is used to modify strings after they are retrieved from a database.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

parmString Input String to be modified before it is retrieved.

Return Code

String representing the modified version is returned.

Default Behavior

By default, the strings passed in, are returned unchanged.

Rebuilding the Exit

This exit is compiled into a Java class file. The Java development environment J2SE 1.6 or
greater must be installed on your system.

Follow these steps:

1. Launch an MS/DOS Command window.

2. Ensure the CLASSPATH environment variable contains a reference to the CA Gen
CSU jar file, CSUxx.JAR, where xx is the CA Gen release number.

3. Change your current directory to that which contains the java source file.

Typically this will be in the CA Gen install area, within the
CLASSES\COM\CA\GENxx\EXITS\common subdirectory, where xx is the current CA
Gen release number.

4. Run JAVAC CompareExit.java.

5. Reassemble and redeploy the resulting .class file for use with the appropriate
applications.

LowerCaseExit Web Generation Lower Case Exit

622 User Exit Reference Guide

LowerCaseExit Web Generation Lower Case Exit

Source Code

LowerCaseExit.java

Purpose

LowerCaseExit is a runtime class used to lowercase the given string.

LowerCase Method Converts String to Lower Case

public static string LowerCase(string inStr)

Purpose

LowerCase is a used to convert a given string to lowercase, returning a string as well.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

inStr Input String to be lowercased.

Return Code

String representing the lower cased version is returned.

Default Behavior

By default, the String.toLowerCase() is used which in turn will call
Character.toLowerCase() using default locale for the JVM.

UpperCaseExit Web Generation Upper Case Exit

Chapter 6: Web Generation User Exits 623

Rebuilding the Exit

This exit is compiled into a Java class file. The Java development environment J2SE 1.6 or
greater must be installed on your system.

Follow these steps:

1. Launch an MS/DOS Command window.

2. Ensure the CLASSPATH environment variable contains a reference to the CA Gen
CSU jar file, CSUxx.JAR, where xx is the CA Gen release number.

3. Change your current directory to that which contains the java source file.

Typically this will be in the CA Gen install area, within the
CLASSES\COM\CA\GENxx\EXITS\common subdirectory, where xx is the current CA
Gen release number.

4. Run JAVAC CompareExit.java.

5. Reassemble and redeploy the resulting .class file for use with the appropriate
applications.

UpperCaseExit Web Generation Upper Case Exit

Source Code

UpperCaseExit.java

Purpose

UpperCaseExit is a runtime class used to lowercase the given string.

UpperCase Method Converts string to Upper Case

public static string UpperCase(string inStr)

Purpose

UpperCase is a used to convert a given string to uppercase, returning a string as well.

EJBRMIContextExit Web Generation EJB RMI Context Exit

624 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

inStr Input a string to be uppercased

Return Code

A string representing the uppercased version of this object.

Default Behavior

By default, the String.toUpperCase() is used which in turn will call
Character.toUpperCase() using default locale for the JVM.

Rebuilding the Exit

This exit is compiled into a Java class file. The Java development environment J2SE 1.6 or
greater must be installed on your system.

Follow these steps:

1. Launch an MS/DOS Command window.

2. Ensure the CLASSPATH environment variable contains a reference to the CA Gen
CSU jar file, CSUxx.JAR, where xx is the CA Gen release number.

3. Change your current directory to that which contains the java source file.

Typically this will be in the CA Gen install area, within the
CLASSES\COM\CA\GENxx\EXITS\common subdirectory, where xx is the current CA
Gen release number.

4. Run JAVAC CompareExit.java.

5. Reassemble and redeploy the resulting .class file for use with the appropriate
applications.

EJBRMIContextExit Web Generation EJB RMI Context Exit

Source Code

EJBRMIContextExit.java

EJBRMIContextExit Web Generation EJB RMI Context Exit

Chapter 6: Web Generation User Exits 625

Purpose

This class will be called from the EJBRMIContext prior to obtaining an InitialContext.

getInstance Method Retrieves an instance of the exit class

EJBRMIContextExit getInstance(Object runtimeObject)

Purpose

This method will be called to retrieve an instance of the exit class.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

runtimeobject Input Object to be retrieved.

Return Code

Return an instance of the exit class.

Default Behavior

By default, a new instance is created for each request if one does not already exist in the
free array.

Rebuilding the Exit

This exit is compiled into a Java class file. The Java development environment J2SE 1.6 or
greater must be installed on your system.

Follow these steps:

1. Launch an MS/DOS Command window.

2. Ensure the CLASSPATH environment variable contains a reference to the CA Gen
CSU jar file, CSUxx.JAR, where xx is the CA Gen release number.

3. Change your current directory to that which contains the java source file.

Typically this will be in the CA Gen install area, within the
CLASSES\COM\CA\GENxx\EXITS\common subdirectory, where xx is the current CA
Gen release number.

EJBRMIDynamicCoopFlowExit Web Generation EJB RMI Dynamic Coop Flow Exit

626 User Exit Reference Guide

4. Run JAVAC CompareExit.java.

5. Reassemble and redeploy the resulting .class file for use with the appropriate
applications.

EJBRMIDynamicCoopFlowExit Web Generation EJB RMI
Dynamic Coop Flow Exit

Source Code

EJBRMIDynamicCoopFlowExit.java

Purpose

This class will be called prior to performing an EJBRMI connection from the
EJBRMIDynamicCoopFlow. The class will be instantiated with various data and methods
will be called to override that data.

getInstance Method Retrieves an instance of EJBRMIDynamicCoopFlowExit
class

public static EJBRMIDynamicCoopFlowExit getInstance(String newInitialFactory,

String newProviderURL,

String newNextLocation,

String newProgramID,

String newTranCode,

String newProcedureName,

String newProcedureSourceName,

String newModelName,

String newModelShortName,

String newJavaContext,

String newJavaPackage,

Object runtimeObject)

Purpose

This method is invoked at the beginning of performing a EJBRMI connection from the
EJBRMIDynamicCoopFlow. This method obtains an instance of
EJBRMIDynamicCoopFlowExit class and initializes it with the specified parameters.

EJBRMIDynamicCoopFlowExit Web Generation EJB RMI Dynamic Coop Flow Exit

Chapter 6: Web Generation User Exits 627

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

newInitialFactory Input String containing Initial Factory

newProviderURL Input String containing Provider URL

newNextLocation Input String containing Next Location

newProgramID Input String containing Program ID

newTranCode Input String containing TranCode

newProcedureName Input String containing Procedure Name

newProcedureSourceName Input String containing Procedure Source
Name

newModelName Input String containing Model Name

newModelShortName Input String containing Model ShortName

newJavaContext Input String containing Java Context

runtimeobject Input Object to be retrieved

Return Code

This method returns the initialized EJBRMIDynamicCoopFlowExit object.

Default Behavior

The method uses a simple caching mechanism to obtain a instance of
EJBRMIDynamicCoopFlowExit class and initializes it with the private method Init() in the
class. Then the method returns the initialized object.

FreeInstance Method De-allocates the object obtained with GetInstance()

public void FreeInstance()

Purpose

At the end of performing a TCPIP connection from the EJBRMIDynamicCoopFlow, This
method will be invoked to de-allocate the object obtained with GetInstance().

Arguments

None

EJBRMIDynamicCoopFlowExit Web Generation EJB RMI Dynamic Coop Flow Exit

628 User Exit Reference Guide

Return Code

None

Default Behavior

The default behavior of the method is simply returning the current instance into free
instance array to be used for next GetInstance() invocation.

ProcessException Method Indicates whether to retry the operation or to throw
an exception

public bool ProcessException(int attempts,

CSUException e)

Purpose

This method will be invoked whenever the EJBRMI Coopflow fails to either instantiate
the remote object or the server call fails.

Use this exit to indicate whether to retry the operation or to throw an exception.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

attempts Input Integer containing the number of attempts

e Input CSU Exception

Return Code

The method returns true to retry the flow and false to go ahead and process/throw the
exception.

Default Behavior

By default, the method returns false in any case. Also if tracing is enabled, the given
exception object is recorded in the trace.

EJBRMIDynamicCoopFlowExit Web Generation EJB RMI Dynamic Coop Flow Exit

Chapter 6: Web Generation User Exits 629

init Method Initializes the current instance internally from the GetInstance ()

public static EJBRMIDynamicCoopFlowExit init(String newInitialFactory,

String newProviderURL,

String newNextLocation,

String newProgramID,

String newTranCode,

String newProcedureName,

String newProcedureSourceName,

String newModelName,

String newModelShortName,

String newJavaContext,

String newJavaPackage,

Object runtimeObject)

Purpose

This private method is invoked internally from the GetInstance () to initialize the current
instance.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

newInitialFactory Input String containing Initial Factory

newProviderURL Input String containing Provider URL

newNextLocation Input String containing Next Location

newProgramID Input String containing Program ID

newTranCode Input String containing TranCode

newProcedureName Input String containing Procedure Name

newProcedureSourceName Input String containing Procedure Source
Name

newModelName Input String containing Model Name

newModelShortName Input String containing Model ShortName

newJavaContext Input String containing Java Context

runtimeobject Input Object to be retrieved

Return Code

None

EJBRMIDynamicCoopFlowExit Web Generation EJB RMI Dynamic Coop Flow Exit

630 User Exit Reference Guide

Default Behavior

The default behavior of the method is to simply duplicate the specified parameter to the
corresponding instance value.

getInitialFactory Method Retrieve the initial factory classname

String getInitialFactory()

Purpose

This method will be called to retrieve the initial factory classname to be used for the
EJBRMI communications.

Arguments

None

Default Behavior

Return the value set by the constructor.

getProviderURL Method Retrieves the providerURL

String getProviderURL()

Purpose

This method will be called to retrieve the providerURL to be used during the EJBRMI
communications.

Arguments

None

Default Behavior

Return the value set by the constructor.

getUserObject Method Retrieves a User Object

String getUserObject()

EJBRMISecurityExit Web Generation EJB RMI Security Exit

Chapter 6: Web Generation User Exits 631

Purpose

This method will be called to retrieve a User Object to be passed during the EJBRMI
communications.

Arguments

None

Default Behavior

The default value is to return a null.

Rebuilding the Exit

This exit is compiled into a Java class file. The Java development environment J2SE 1.6 or
greater must be installed on your system.

Follow these steps:

1. Launch an MS/DOS Command window.

2. Ensure the CLASSPATH environment variable contains a reference to the CA Gen
CSU jar file, CSUxx.JAR, where xx is the CA Gen release number.

3. Change your current directory to that which contains the java source file.

Typically this will be in the CA Gen install area, within the
CLASSES\COM\CA\GENxx\EXITS\common subdirectory, where xx is the current CA
Gen release number.

4. Run JAVAC CompareExit.java.

5. Reassemble and redeploy the resulting .class file for use with the appropriate
applications.

EJBRMISecurityExit Web Generation EJB RMI Security Exit

Source Code

EJBRMISecurityExit.java

Purpose

This class will be called from the EJBRMIContext.

EJBRMISecurityExit Web Generation EJB RMI Security Exit

632 User Exit Reference Guide

getInstance Method Allocates a security object that contains all of the security
information

String getInstance(String user, String pass, String next, String tran, Object object)

Purpose

The get Instance method allocates a security object that contains all of the security
information that should be passed from the client to the server. This object must
include the user runtime object (or enough information to reconstruct it) as well.
Because, the security object will be passed in place of the user runtime object in the
Request object.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

user Input String containing the userID

pass Input String containing the password

Next Input String containing the next location

Tran Input String containing the tranCode

object Input runtimeObject

Default Behavior

The method uses a simple caching mechanism to obtain a instance of EJBRMI
SecurityExit class and initializes it. Then the method returns the initialized object.

FreeInstance Method De-allocates the object obtained with GetInstance

public void FreeInstance()

Purpose

This method will be invoked to de-allocate the object obtained with GetInstance().

Arguments

None

EJBRMISecurityExit Web Generation EJB RMI Security Exit

Chapter 6: Web Generation User Exits 633

Return Code

None

Default Behavior

The default behavior of the method is simply returning the current instance into free
instance array to be used for next GetInstance() invocation.

validate Method Verifies the security object is correct

public Object validate(Object object)

Purpose

The validate method is used by the server wrapper script to verify that the security
object is correct for the server and to extract the user runtime data from the security
object.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

object Input Security Object

Default Behavior

Always returns a reference to the user runtime data.

getObject Method Passess the original security object to a Server

public String getObject()

Purpose

The get Object method is used by a server to pass the original security object when
making an EJBRMI flow to another server.

Arguments

None

EJBRMISecurityExit Web Generation EJB RMI Security Exit

634 User Exit Reference Guide

Default Behavior

By default, the method returns newly instantiated Object class instance.

SecurityType Property Specifies the type of security

public byte SecurityType

Purpose

This read-only byte property contains the value to specify what type of security should
be used. The valid return values are:

■ EJBRMISecurityExit.SECURITY_NO

■ EJBRMISecurityExit.SECURITY_STANDARD

■ EJBRMISecurityExit.SECURITY_ENHANCED

Default Behavior

The default behavior is returning the value:

EJBRMISecurityExit.SECURITY_NO

Rebuilding the Exit

This exit is compiled into a Java class file. The Java development environment J2SE 1.6 or
greater must be installed on your system.

Follow these steps:

1. Launch an MS/DOS Command window.

2. Ensure the CLASSPATH environment variable contains a reference to the CA Gen
CSU jar file, CSUxx.JAR, where xx is the CA Gen release number.

3. Change your current directory to that which contains the java source file.

Typically this will be in the CA Gen install area, within the
CLASSES\COM\CA\GENxx\EXITS\common subdirectory, where xx is the current CA
Gen release number.

4. Run JAVAC CompareExit.java.

5. Reassemble and redeploy the resulting .class file for use with the appropriate
applications.

TCPIPDynamicCoopFlowExit Web Generation TCPIP Dynamic CoopFlow Exit

Chapter 6: Web Generation User Exits 635

TCPIPDynamicCoopFlowExit Web Generation TCPIP Dynamic
CoopFlow Exit

Source Code

TCPIPDynamicCoopFlowExit.java

Purpose

The methods in this class will be called prior to performing a TCPIP connection from the
TCPIPDynamicCoopFlow. The class will be instantiated with various data and methods
will be called to override that data.

getInstance Method Obtains an instance of TCPIPDynamicCoopFlowExit class

public static TCPIPDynamicCoopFlowExit getInstance(String newHostName,

Integer newPort,

boolean newClntPersist,

String newNextLocation,

String newProgramID,

String newTranCode,

String newProcedureName,

String newProcedureSourceName,

String newModelName,

String newModelShortName,

String newJavaContext,

String newJavaPackage,

Object runtimeObject)

Purpose

This method is invoked at the beginning of performing a TCPIP connection from the
TCPIPDynamicCoopFlow. This method obtains an instance of
TCPIPDynamicCoopFlowExit class and initializes it with the specified parameters.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

newHostName Input String containing HostName

TCPIPDynamicCoopFlowExit Web Generation TCPIP Dynamic CoopFlow Exit

636 User Exit Reference Guide

Name I/O Description

newPort Input String containing Port Number

newClntPersist Input Boolean containing Client
Persistence

newNextLocation Input String containing Next Location

newProgramID Input String containing Program ID

newTranCode Input String containing TranCode

newProcedureName Input String containing Procedure Name

newProcedureSourceName Input String containing Procedure Source
Name

newModelName Input String containing Model Name

newModelShortName Input String containing Model ShortName

newJavaContext Input String containing Java Context

new JavaPackage Input String containing Java Package

Runtimeobject Input Object to be retrieved

Return Code

This method returns the initialized TCPIPDynamicCoopFlowExit object.

Default Behavior

The method uses a simple caching mechanism to obtain an instance of
TCPIPDynamicCoopFlowExit class and initializes it with the private method Init() in the
class. Then the method returns the initialized object.

FreeInstance Method De-allocates the object obtained with GetInstance

public void FreeInstance()

Purpose

At the end of performing a TCPIP connection from the TCPIPDynamicCoopFlow, This
method will be invoked to de-allocate the object obtained with GetInstance().

Arguments

None

TCPIPDynamicCoopFlowExit Web Generation TCPIP Dynamic CoopFlow Exit

Chapter 6: Web Generation User Exits 637

Return Code

None

Default Behavior

The default behavior of the method is simply returning the current instance into free
instance array to be used for next GetInstance () invocation.

ProcessException Method Indicates whether to retry the operation or to throw
an exception

public bool ProcessException(int attempts,

CSUException e)

Purpose

This method will be invoked whenever the TCPIP Coopflow fails to either instantiate the
remote object or the server call fails.

Use this exit to indicate whether to retry the operation or to throw an exception.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

attempts Input Integer containing the number of attempts

e Input CSU Exception

Return Code

The method returns true to retry the flow and false to go ahead and process/throw the
exception.

Default Behavior

By default, the method returns false in any case. Also if tracing is enabled, the given
exception object is recorded in the trace.

TCPIPDynamicCoopFlowExit Web Generation TCPIP Dynamic CoopFlow Exit

638 User Exit Reference Guide

init Method Initializes the current instance internally from the GetInstance

private void init(String newHostName,

Integer newPort,

boolean newClntPersist,

String newNextLocation,

String newProgramID,

String newTranCode,

String newProcedureName,

String newProcedureSourceName,

String newModelName,

String newModelShortName,

String newJavaContext,

String newJavaPackage,

Object runtimeObject)

Purpose

This private method is invoked internally from the GetInstance () to initialize the current
instance.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

newHostName Input String containing HostName

newPort Input String containing Port Number

newClntPersist Input Boolean containing Client
Persistence

newNextLocation Input String containing Next Location

newProgramID Input String containing Program ID

newTranCode Input String containing TranCode

newProcedureName Input String containing Procedure Name

newProcedureSourceName Input String containing Procedure Source
Name

newModelName Input String containing Model Name

newModelShortName Input String containing Model ShortName

newJavaContext Input String containing Java Context

new JavaPackage Input String containing Java Package

TCPIPDynamicCoopFlowExit Web Generation TCPIP Dynamic CoopFlow Exit

Chapter 6: Web Generation User Exits 639

Name I/O Description

Runtimeobject Input Object to be retrieved

Return Code

None

Default Behavior

The default behavior of the method is to simply duplicate the specified parameter to the
corresponding instance value.

getHostName Method Retrieves the hostname

String getHostName()

Purpose

This method will be called to retrieve the hostname to be used for the TCPIP
communications.

Arguments

None

Default Behavior

Return the value set by the constructor.

getPort Method Retrieves the port

String getPort()

Purpose

This method will be called to retrieve the port to be used for the TCPIP communications.

Arguments

None

Default Behavior

Return the value set by the constructor.

TCPIPDynamicCoopFlowExit Web Generation TCPIP Dynamic CoopFlow Exit

640 User Exit Reference Guide

geClientPersistence Method Retrieves the client socket connection persistence
state

String geClientPersistence()

Purpose

This method will be called to retrieve the client socket connection persistence state for
the TCPIP communications. A value of "true" indicates a persistent client socket
connection. A value of "false" indicates a non persistent client socket connection where
the client socket connection is closed after the response is received from the server.

Arguments

None

Default Behavior

Return the value set by the constructor.

Rebuilding the Exit

This exit is compiled into a Java class file. The Java development environment J2SE 1.6 or
greater must be installed on your system.

Follow these steps:

1. Launch an MS/DOS Command window.

2. Ensure the CLASSPATH environment variable contains a reference to the CA Gen
CSU jar file, CSUxx.JAR, where xx is the CA Gen release number.

3. Change your current directory to that which contains the java source file.

Typically this will be in the CA Gen install area, within the
CLASSES\COM\CA\GENxx\EXITS\common subdirectory, where xx is the current CA
Gen release number.

4. Run JAVAC CompareExit.java.

5. Reassemble and redeploy the resulting .class file for use with the appropriate
applications.

WindowManagerCfgExit Web Generation Window Manager Configuration

Chapter 6: Web Generation User Exits 641

WindowManagerCfgExit Web Generation Window Manager
Configuration

Source Code

WindowManagerCfgExit.java

Purpose

This user exit class is used during Cross-Context Flows. It maps the cross context URL of
a load module before flowing or calling a procedure step contained within that load
module. The exit allows designers to assign server locations dynamically for load
modules of an application. This exit will be called every time a new Procedure Step is
accessed, either through Flows or USE PROCEDURE STEP. The URL to the load module
which contains the destination Procedure Step is determined by the CA Gen loader.
When the URL references a different load module than the current load module, this
exit is called to allow overriding the URL mapping location, determined during Assembly
of the application. The exit may use any technique (that can be coded in a Java Servlet)
to map the passed URL, load module name, and Procedure Step name to another URL.

URL mapURL Method Maps the passed URL, load module name and procedure
step name

URL mapURL (URL url, String loadModuleName, String ProcedureStepName)

Purpose

Maps the passed URL, load module name and procedure step name to a different URL
as needed.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

url Input URL

loadModuleName Input Name of the Load Module

ProcedureStepName Input Name of the Procedure Step

ContextLookupExit Web Generation Context Look Up

642 User Exit Reference Guide

Default Behavior

By default, the URL passed in is returned.

Rebuilding the Exit

This exit is compiled into a Java class file. The Java development environment J2SE 1.6 or
greater must be installed on your system.

Follow these steps:

1. Launch an MS/DOS Command window.

2. Ensure the CLASSPATH environment variable contains a reference to the CA Gen
CSU jar file, CSUxx.JAR, where xx is the CA Gen release number.

3. Change your current directory to that which contains the java source file.

Typically this will be in the CA Gen install area, within the
CLASSES\COM\CA\GENxx\EXITS\common subdirectory, where xx is the current CA
Gen release number.

4. Run JAVAC CompareExit.java.

5. Reassemble and redeploy the resulting .class file for use with the appropriate
applications.

ContextLookupExit Web Generation Context Look Up

Source Code

ContextLookupExit.java

Purpose

This class will be called from the EJBRMIContext prior to obtaining an InitialContext.

lookup Method Retrieves an instance of the named context object

public staticObject lookup (Context ctx, String name)

Purpose

This method will be called to retrieve an instance of the named context object.

CFBDynamicMessageSecurityExit Web Generation CFB Dynamic Message Security Exit

Chapter 6: Web Generation User Exits 643

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

ctx Input Context

name Input Name of the Object

Default Behavior

Returns the named object for the current context.

Rebuilding the Exit

This exit is compiled into a Java class file. The Java development environment J2SE 1.6 or
greater must be installed on your system.

Follow these steps:

1. Launch an MS/DOS Command window.

2. Ensure the CLASSPATH environment variable contains a reference to the CA Gen
CSU jar file, CSUxx.JAR, where xx is the CA Gen release number.

3. Change your current directory to that which contains the java source file.

Typically this will be in the CA Gen install area, within the
CLASSES\COM\CA\GENxx\EXITS\common subdirectory, where xx is the current CA
Gen release number.

4. Run JAVAC CompareExit.java.

5. Reassemble and redeploy the resulting .class file for use with the appropriate
applications.

CFBDynamicMessageSecurityExit Web Generation CFB
Dynamic Message Security Exit

Source Code

CFBDynamicMessageSecurityExit.java

CFBDynamicMessageSecurityExit Web Generation CFB Dynamic Message Security Exit

644 User Exit Reference Guide

Purpose

This class will be called from the CFBDynamicMessage.

CFBDynamicMessageSecurityExit Constructor Provides the default caching
mechanism

private CFBDynamicMessageSecurityExit()

Purpose

The default constructor for this class is private and is only invoked from the
GetInstance() method to provide the default caching mechanism.

Arguments

None

Return Code

This constructor returns The CFBDynamicMessageSecurityExit object.

Default Behavior

This constructor returns The CFBDynamicMessageSecurityExit object.

GetInstance Method Obtains an instance of CFBDynamicMessageSecurityExit
class

public static CFBDynamicMessageSecurityExit

GetInstance (string newUserid,

string newPassword,

string newTranCode,

string newNextLocation, Object runtimeObject)

Purpose

This method obtains an instance of CFBDynamicMessageSecurityExit class and initializes
it with the private Init().

CFBDynamicMessageSecurityExit Web Generation CFB Dynamic Message Security Exit

Chapter 6: Web Generation User Exits 645

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

newUserid Input String containing the new userID

newPassword Input String containing the new password

newTranCode Input String containing the new tranCode

newNextLocation Input String containing the new nextLocation

object Input runtimeObject

Return Code

This method returns the initialized CFBDynamicMessageSecurityExit object.

Default Behavior

The method uses a simple caching mechanism to obtain an instance of
CFBDynamicMessageSecurityExit class and initializes it with the private method Init() in
the class. Then the method returns the initialized object.

FreeInstance Method De-allocates the object obtained with GetInstance

public void FreeInstance()

Purpose

This method will be invoked to de-allocate the object obtained with GetInstance().

Arguments

None

Return Code

None

Default Behavior

The default behavior of the method is simply returning the current instance into free
instance array to be used for next GetInstance() invocation.

CFBDynamicMessageSecurityExit Web Generation CFB Dynamic Message Security Exit

646 User Exit Reference Guide

getSecurityToken Method Allows the user to pass back a security token

public byte [] getSecurityToken(int maxLength)

Purpose

This method is used to allow the user to pass back a security token to be passed in the
enhanced security mode.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

maxLength Input Integer parameter indicates the largest byte array
that can be returned.

Return Code

The return value is the byte array containing a security token.

Default Behavior

By default a 0 length array is returned.

To indicate an error condition, throw a CSUException. That is, throw new
CSUException("CFBDynamicMessageSecurityExit:GetInstance","error message")).

Init Method Initializes the current instance internally from the GetInstance

private void Init(string newUserid,

string newPassword,

string newTranCode,

string newNextLocation, Object runtimeObject)

Purpose

This private method is invoked internally from the GetInstance () to initialize the current
instance.

CFBDynamicMessageSecurityExit Web Generation CFB Dynamic Message Security Exit

Chapter 6: Web Generation User Exits 647

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

newUserid Input String containing the new userID

newPassword Input String containing the new password

newTranCode Input String containing the new tranCode

newNextLocation Input String containing the new nextLocation

runtimeObject Input runtimeObject

Return Code

None

Default Behavior

The default behavior of the method is assigning the specified argument to instance field.

getSecurityType Method Specifies the type of security

public byte getSecurityType

Purpose

Returns the value to specify what type of security should be used.

The valid return values are:

CFBDynamicMessageSecurityExit.SECURITY_NO

CFBDynamicMessageSecurityExit.SECURITY_STANDARD

CFBDynamicMessageSecurityExit.SECURITY_ENHANCED

Default Behavior

The default behavior is returning the value:

CFBDynamicMessageSecurityExit.SECURITY_NO

CFBDynamicMessageSecurityExit Web Generation CFB Dynamic Message Security Exit

648 User Exit Reference Guide

useCMSecurity Method Specifies whether the Client Manager/Comm Bridge to
use the userID and password

public bool useCMSecurity

Purpose

This returns the value to specify whether the Client Manager/Comm Bridge to use the
userID and password values for enhanced security validation or the standard Client
Manager/Comm Bridge target server security configuration.

If true is returned, the Client Manager/Comm Bridge uses the userID and password
values for enhanced security validation.

If false is returned, the Client Manager/Comm Bridge uses the standard Client
Manager/Comm Bridge target server security configuration.

Default Behavior

The default behavior is returning the false.

Rebuilding the Exit

This exit is compiled into a Java class file. The Java development environment J2SE 1.6 or
greater must be installed on your system.

Follow these steps:

1. Launch an MS/DOS Command window.

2. Ensure the CLASSPATH environment variable contains a reference to the CA Gen
CSU jar file, CSUxx.JAR, where xx is the CA Gen release number.

3. Change your current directory to that which contains the java source file.

Typically this will be in the CA Gen install area, within the
CLASSES\COM\CA\GENxx\EXITS\common subdirectory, where xx is the current CA
Gen release number.

4. Run JAVAC CompareExit.java.

5. Reassemble and redeploy the resulting .class file for use with the appropriate
applications.

CFBDynamicMessageEncodingyExit Web Generation CFB Dynamic Message Encoding Exit

Chapter 6: Web Generation User Exits 649

CFBDynamicMessageEncodingyExit Web Generation CFB
Dynamic Message Encoding Exit

Source Code

CFBDynamicMessageEncodingExit.java

Purpose

This class will be called from the CFBDynamicMessage.

serverEncoding Method Retrieves the message text encoding for the named
host and transaction

public static String serverEncoding(String tran, String encoding)

Purpose

This method will be called to retrieve the message text encoding for the named host
and transaction.

The runtimes will always call ServerCodePage to find the correct encoding for each
transaction on each server before building the common format message to be sent.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

tran Input transaction name associated with this request

encoding Input default character encoding for the request

Return Code

This method will be called to retrieve the message text encoding for the named host
and transaction.

CFBDynamicMessageEncryptionExit Web Generation CFB Dynamic Message Encryption Exit

650 User Exit Reference Guide

Default Behavior

The default behavior returns the default encoding. This behavior may be change to
return any valid encoding number. The tran argument may be used to select different
encodings for each transaction.

Rebuilding the Exit

This exit is compiled into a Java class file. The Java development environment J2SE 1.6 or
greater must be installed on your system.

Follow these steps:

1. Launch an MS/DOS Command window.

2. Ensure the CLASSPATH environment variable contains a reference to the CA Gen
CSU jar file, CSUxx.JAR, where xx is the CA Gen release number.

3. Change your current directory to that which contains the java source file.

Typically this will be in the CA Gen install area, within the
CLASSES\COM\CA\GENxx\EXITS\common subdirectory, where xx is the current CA
Gen release number.

4. Run JAVAC CompareExit.java.

5. Reassemble and redeploy the resulting .class file for use with the appropriate
applications.

CFBDynamicMessageEncryptionExit Web Generation CFB
Dynamic Message Encryption Exit

Source Code

CFBDynamicMessageEncryptionExit.java

Purpose

This class will be called from the CFBDynamicMessage to encrypt message.

CFBDynamicMessageEncryptionExit Constructor Provides the default caching
mechanism

private CFBDynamicMessageEncryptionExit()

CFBDynamicMessageEncryptionExit Web Generation CFB Dynamic Message Encryption Exit

Chapter 6: Web Generation User Exits 651

Purpose

The default constructor for this class is private and is only invoked from the
GetInstance() method to provide the default caching mechanism.

Arguments

None

Return Code

This constructor returns The CFBDynamicMessageEncryptionExit object.

Default Behavior

This constructor returns The CFBDynamicMessageEncryptionExit object.

GetInstance Method Obtains an instance of CFBDynamicMessageEncryptionExit
class and initializes it

public static CFBDynamicMessageEncryptionExit

GetInstance(string newTranCode,

string newNextLocation,

string newUserid,Object runtimeObject)

Purpose

This method obtains an instance of CFBDynamicMessageEncryptionExit class and
initializes it with the private Init().

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

newTranCode Input String containing the new tranCode

newNextLocation Input String containing the new nextLocation

newUserid Input String containing the new userID

runtimeObject Input Object

Return Code

This method returns the initialized CFBDynamicMessageEncryptionExit object.

CFBDynamicMessageEncryptionExit Web Generation CFB Dynamic Message Encryption Exit

652 User Exit Reference Guide

Default Behavior

The method uses a simple caching mechanism to obtain an instance of
CFBDynamicMessageEncryptionExit class and initializes it with the private method Init()
in the class. Then the method returns the initialized object.

FreeInstance Method De-allocates the object obtained with GetInstance

public void FreeInstance()

Purpose

This method will be invoked to de-allocate the object obtained with GetInstance().

Arguments

None

Return Code

None

Default Behavior

The default behavior of the method is simply returning the current instance into free
instance array to be used for next GetInstance() invocation.

encryptData Method Allows the user to encrypt the data portion of the message

public byte [] encryptData(byte [] data, int maxLength)

Purpose

This method is used to allow the user to encrypt the data portion of the message.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

Data Input The byte array to be encrypted.

maxLength Input Integer parameter indicates the largest byte array
that can be returned.

CFBDynamicMessageEncryptionExit Web Generation CFB Dynamic Message Encryption Exit

Chapter 6: Web Generation User Exits 653

Return Code

The return value is the byte array containing the encrypted data.

Default Behavior

By default the byte array passed in is unchanged and no real encryption occurs. The user
should code their own algorithm to encrypt the data.

The byte array passed in can be modified in place and then returned, or if needed a local
byte array can be allocated (larger or smaller if needed), populated and returned.

To indicate an error condition, throw a CSUException. That is, throw new
CSUException("CFBDynamicMessageEncryptionExit:GetInstance", "error message")).

Init Method Initializes the current instance internally from the GetInstance

private void Init(string newTranCode,

string newNextLocation,

string newUserid,object runtimeObject)

Purpose

This private method is invoked internally from the GetInstance () to initialize the current
instance.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

newTranCode Input String containing the new tranCode

newNextLocation Input String containing the new nextLocation

newUserid Input String containing the new userID

runtimeObject Input Object

Return Code

None

Default Behavior

The default behavior of the method is assigning the specified argument to instance field.

CFBDynamicMessageDecryptionExit Web Generation CFB Dynamic Message Decryption

654 User Exit Reference Guide

Rebuilding the Exit

This exit is compiled into a Java class file. The Java development environment J2SE 1.6 or
greater must be installed on your system.

Follow these steps:

1. Launch an MS/DOS Command window.

2. Ensure the CLASSPATH environment variable contains a reference to the CA Gen
CSU jar file, CSUxx.JAR, where xx is the CA Gen release number.

3. Change your current directory to that which contains the java source file.

Typically this will be in the CA Gen install area, within the
CLASSES\COM\CA\GENxx\EXITS\common subdirectory, where xx is the current CA
Gen release number.

4. Run JAVAC CompareExit.java.

5. Reassemble and redeploy the resulting .class file for use with the appropriate
applications.

CFBDynamicMessageDecryptionExit Web Generation CFB
Dynamic Message Decryption

Source Code

CFBDynamicMessageDecryptionExit.java

Purpose

This class will be called after a CFB message has been received from a server.

CFBDynamicMessageDecryptionExit Constructor Provides the default caching
mechanism

private CFBDynamicMessageDecryptionExit()

Purpose

The default constructor for this class is private and is only invoked from the
GetInstance() method to provide the default caching mechanism.

CFBDynamicMessageDecryptionExit Web Generation CFB Dynamic Message Decryption

Chapter 6: Web Generation User Exits 655

Arguments

None

Return Code

This constructor returns the CFBDynamicMessageDecryptionExit object.

Default Behavior

This constructor returns the CFBDynamicMessageDecryptionExit object.

Method

public static CFBDynamicMessageDecryptionExit GetInstance(Object runtimeObject)

Purpose

This method will be invoked after a CFB message has been received from a server. This
method obtains an instance of FBDynamicMessageDecryptionExit class and initializes it
with the private Init().

Arguments

The following table gives a brief description of the argument.

Name I/O Description

runtimeObject Input runtimeObject

Return Code

This method returns the initialized CFBDynamicMessageDecryptionExit object.

Default Behavior

The method uses a simple caching mechanism to obtain an instance of
CFBDynamicMessageDecryptionExit class and initializes it with the private method Init()
in the class. Then the method returns the initialized object.

FreeInstance Method De-allocates the object obtained with GetInstance

public void FreeInstance()

CFBDynamicMessageDecryptionExit Web Generation CFB Dynamic Message Decryption

656 User Exit Reference Guide

Purpose

This method will be invoked to de-allocate the object obtained with GetInstance().

Arguments

None

Return Code

None

Default Behavior

The default behavior of the method is simply returning the current instance into free
instance array to be used for next GetInstance() invocation.

decryptData Method Decrypts the data portion of the message

public byte [] decryptData(byte [] data, int maxLength)

Purpose

This method is used to allow the user to decrypt the data portion of the message.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

Data Input The byte array to be decrypted.

maxLength Input Integer parameter indicates the largest byte array
that can be returned.

Return Code

The return value is the byte array containing the decrypted data.

CFBDynamicMessageDecryptionExit Web Generation CFB Dynamic Message Decryption

Chapter 6: Web Generation User Exits 657

Default Behavior

By default the byte array passed in is unchanged and no real decryption occurs. The user
should code their own algorithm to decrypt the data.

The byte array passed in can be modified in place and then returned, or if needed a local
byte array can be allocated (larger or smaller if needed), populated and returned.

To indicate an error condition, throw a CSUException. That is, throw new
CSUException("CFBDynamicMessageDecryptionExit:GetInstance","error message")).

Init Method Initializes the current instance internally from the GetInstance

private void Init(Object runtimeObject)

Purpose

This private method is invoked internally from the GetInstance () to initialize the current
instance.

Arguments

The following table gives a brief description of the argument.

Name I/O Description

runtimeObject Input runtimeObject

Return Code

None

Default Behavior

The default behavior of the method is nothing.

doDecryption Method Specifies whether decryption should be done

byte doDecryption()

Arguments

None

DefaultYearExit Web Generation Default Year Exit

658 User Exit Reference Guide

Purpose

This method is used to specify whether decryption should be done. The valid return
values are: DECRYPTION_NO (default) and DECRYPTION_YES

Default Behavior

By default, DECRYPTION_NO is returned.

Rebuilding the Exit

This exit is compiled into a Java class file. The Java development environment J2SE 1.6 or
greater must be installed on your system.

Follow these steps:

1. Launch an MS/DOS Command window.

2. Ensure the CLASSPATH environment variable contains a reference to the CA Gen
CSU jar file, CSUxx.JAR, where xx is the CA Gen release number.

3. Change your current directory to that which contains the java source file.

Typically this will be in the CA Gen install area, within the
CLASSES\COM\CA\GENxx\EXITS\common subdirectory, where xx is the current CA
Gen release number.

4. Run JAVAC CompareExit.java.

5. Reassemble and redeploy the resulting .class file for use with the appropriate
applications.

DefaultYearExit Web Generation Default Year Exit

Source Code

DefaultYearExit.java

Purpose

This exit class allows the implementation of a customer-specified algorithm addressing
Year-2000 concerns.

DefaultYearExit Web Generation Default Year Exit

Chapter 6: Web Generation User Exits 659

GetDefaultYear Method Implements a customer-specified algorithm addressing
Year-2000 concerns

public static int GetDefaultYear(int inYear, int currentYear)

Purpose

GetDefaultYear () is invoked when input editing occurs on a date or timestamp field, and
the edit pattern specifies a two character year value. The 4-digit current year and the
2-digit input year are passed to GetDefaultYear (). By default, the current hundred year
value is merely added to the two character year value and returned. This method allows
the implementation of a customer-specified algorithm addressing Year-2000 concerns.

The default algorithm returns the current hundred years appended with two digit input
year. The private method ImputeCenturies() enables an alternative algorithm,
implementing a sliding range of hundred year values based on the input decade.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

inYear Input Integer containing the 2 or 4 digit year

currentYear Input Integer containing the current year

Return Code

Integer containing the four digit year.

Default Behavior

By default, the current hundred-year value is added to the two character year value and
returned.

Rebuilding the Exit

This exit is compiled into a Java class file. The Java development environment J2SE 1.6 or
greater must be installed on your system.

Follow these steps:

1. Launch an MS/DOS Command window.

2. Ensure the CLASSPATH environment variable contains a reference to the CA Gen
CSU jar file, CSUxx.JAR, where xx is the CA Gen release number.

LocaleExit Java Locale Exit

660 User Exit Reference Guide

3. Change your current directory to that which contains the java source file.

Typically this will be in the CA Gen install area, within the
CLASSES\COM\CA\GENxx\EXITS\common subdirectory, where xx is the current CA
Gen release number.

4. Run JAVAC CompareExit.java.

5. Reassemble and redeploy the resulting .class file for use with the appropriate
applications.

LocaleExit Java Locale Exit

Source Code

LocaleExit.java

Purpose

This exit class provides a set of methods that are called at application startup to load
customer-specific values for locale editing of displayed application data. Each method
provided by this exit is called with the default input, derived from the dialect specified
during application design, and should return the appropriate localized value.

getLocalCurrencySymbol Method Supplies the currency symbol to the
generated JAVA application

public static char getLocalCurrencySymbol(char def)

Purpose

getLocalCurrencySymbol() supplies the currency symbol to the generated JAVA
application. The currency symbol is used when editing numeric fields, which includes
currency symbol. For example, if the edit pattern is “@ZZZ.ZZZ,99”, the
getLocalCurrencySymbol() should specify “@” as the currency symbol.

Arguments

The following table gives a brief description of the argument.

Name I/O Description

def Input Character containing the default currency symbol

LocaleExit Java Locale Exit

Chapter 6: Web Generation User Exits 661

Return Code

Character containing the localized currency symbol.

Default Behavior

By default, Dollar sign ($) is returned.

getLocalThousandsSep Method Supplies the thousand separator to the
generated JAVA application

public static char getLocalThousandsSep(char def)

Purpose

getLocalThousandsSep () supplies the thousand separator to the generated JAVA
application. The thousand separator is used when editing numeric fields, which includes
the thousand separator. For example, if the edit pattern is “@ZZZ.ZZZ,99”, the
getLocalThousandsSep () should specify “.” as the thousand separator.

Arguments

The following table gives a brief description of the argument.

Name I/O Description

def Input Character containing the default thousands
separator.

Return Code

Character containing the localized thousands separator.

Default Behavior

By default, thousand separator passed in is returned.

getLocalDecimalSeparator Method Supplies the decimal point to the generated
JAVA application

public static char getLocalDecimalSeparator(char def)

LocaleExit Java Locale Exit

662 User Exit Reference Guide

Purpose

getLocalDecimalSep () supplies the decimal point to the generated JAVA application. The
decimal point is used when editing numeric fields, which includes decimal point. For
example, if the edit pattern is “@ZZZ.ZZZ,99”, the getLocalDecimalSep () should specify
“,” as the decimal point.

Arguments

The following table gives a brief description of the argument.

Name I/O Description

def Input Character containing the default decimal separator

Return Code

Character containing the localized decimal separator.

Default Behavior

By default, decimal separator passed in is returned.

getLocalDateSeparator Method Supplies the date separator character to the
generated JAVA application

public static char getLocalDateSeparator(char def)

Purpose

getLocalDateSep () supplies the date separator character to the generated JAVA
application. The date separator character is used only for date and time fields where the
model does not specify the edit pattern. In these cases, the JAVA runtime uses this
information to build a default edit pattern using the information provided by the
getLocalDateSep(). For example, if the getLocalDateSep() specifies the date separator as
"-" (a dash) and the date order is yymmdd, then the default date edit pattern is
yy-mm-dd.

Arguments

The following table gives a brief description of the argument.

Name I/O Description

def Input Character containing the default date separator.

LocaleExit Java Locale Exit

Chapter 6: Web Generation User Exits 663

Return Code

Character containing the localized date separator.

Default Behavior

By default, date separator passed in is returned.

getLocalTimeSep Method Supplies the time separator character to the
generated JAVA application

public static char getLocalTimeSep(char def)

Purpose

getLocalTimeSep () supplies the time separator character to the generated JAVA
application. The time separator character is used only for date and time fields where the
model does not specify the edit pattern. In these cases, the JAVA runtime uses this
information to build a default edit pattern using the information provided by the
getLocalTimeSep (). For example, if the getLocalTimeSep () specifies the date separator
as ":" (a colon) then the default date edit pattern is yy:mm:dd.

Arguments

The following table gives a brief description of the argument.

Name I/O Description

def Input Character containing the default time separator.

Return Code

Character containing the localized time separator.

Default Behavior

By default, time separator passed in is returned.

getLocalDateOrder Method Supplies the date order definition to the generated
JAVA application

public static char getLocalDateOrder(char def)

LocaleExit Java Locale Exit

664 User Exit Reference Guide

Purpose

getLocalDateOrder () supplies the date order definition to the generated JAVA
application. The date order definition is used only for date and time fields where the
model does not specify the edit pattern. In these cases, the JAVA runtime uses this
information to build a default edit pattern using the information provided by the
getLocalDateOrder (). For example, if the date separator is "-" (a dash) and
getLocalDateOrder () specifies the date order as LocaleExit.DATEORDER_YMD or ‘2’,
then the default date edit pattern is yy-mm-dd.

Arguments

The following table gives a brief description of the argument.

Name I/O Description

def Input Character containing the default date order.

The following definition or character can be
specified.

LocaleExit.DATEORDER_MDY or ‘0’

The date order is “MMDDYY”.

LocaleExit.DATEORDER_DMY or ‘1’

The date order is “DDMMYY”.

LocaleExit.DATEORDER_YDM or ‘2’

The date order is “YYDDMM”.

Return Code

Character containing the localized date order.

Default Behavior

By default, date order passed in is returned.

Rebuilding the Exit

This exit is compiled into a Java class file. The Java development environment J2SE 1.6 or
greater must be installed on your system.

Follow these steps:

1. Launch an MS/DOS Command window.

2. Ensure the CLASSPATH environment variable contains a reference to the CA Gen
CSU jar file, CSUxx.JAR, where xx is the CA Gen release number.

RetryLimitExit Web Generation Retry Limit Exit

Chapter 6: Web Generation User Exits 665

3. Change your current directory to that which contains the java source file.

Typically this will be in the CA Gen install area, within the
CLASSES\COM\CA\GENxx\EXITS\common subdirectory, where xx is the current CA
Gen release number.

4. Run JAVAC CompareExit.java.

5. Reassemble and redeploy the resulting .class file for use with the appropriate
applications.

RetryLimitExit Web Generation Retry Limit Exit

Source Code

RetryLimitExit.java

Purpose

This exit class provides configuration of the number of times a procedure step can be
retried when the application has requested a “retry transaction”, or when a deadlock
condition on the database has been detected.

getUltimateRetryLimit Method Retrieves the Integer containing absolute upper
limit to the number of times a procedure step can be retried

public static int getUltimateRetryLimit()

Purpose

This method is called by the Java runtime to get the Integer containing absolute upper
limit to the number of times a procedure step can be retried. This exit provides a
safeguard in case the system attribute "transaction retry limit" is set to an excessive
value by an action diagram. This exit defines the upper bound to the retry limit value
which can never be exceeded.

Arguments

None

Default Behavior

By default, “99” is returned.

SessionIDExit Web Generation Session ID Exit

666 User Exit Reference Guide

getDefaultRetryLimit Method Retrieves the Integer containing default retry
limit number of times a procedure step can be retried

public static int getDefaultRetryLimit()

Purpose

This method is called by the Java runtime to get the Integer containing default retry limit
to the number of times a Procedure step can be retried in the event that the system
attribute "Transaction retry limit" is not set by an action diagram.

Arguments

None

Default Behavior

By default, “10” is returned.

Rebuilding the Exit

This exit is compiled into a Java class file. The Java development environment J2SE 1.6 or
greater must be installed on your system.

Follow these steps:

1. Launch an MS/DOS Command window.

2. Ensure the CLASSPATH environment variable contains a reference to the CA Gen
CSU jar file, CSUxx.JAR, where xx is the CA Gen release number.

3. Change your current directory to that which contains the java source file.

Typically this will be in the CA Gen install area, within the
CLASSES\COM\CA\GENxx\EXITS\common subdirectory, where xx is the current CA
Gen release number.

4. Run JAVAC CompareExit.java.

5. Reassemble and redeploy the resulting .class file for use with the appropriate
applications.

SessionIDExit Web Generation Session ID Exit

Source Code

SessionIDExit.java

SessionIDExit Web Generation Session ID Exit

Chapter 6: Web Generation User Exits 667

Purpose

This exit class is used for CA Gen system attributes.

getSystemId Method Retrieves the String containing the value for the
LOCAL_SYSTEM_ID attributes

public static String getSystemId()

Purpose

This method is called by the Java runtime to get the String containing the value for the
LOCAL_SYSTEM_ID attributes. LOCAL_SYSTEM_ID can be placed on a window during
window design. The value can be up to 8 characters in length.

Arguments

None

Default Behavior

By default, “WIN32” is returned.

getUserId Method Retrieves the String containing the value for the USER_ID
attributes

public static String getUserId()

Purpose

This method is called by the Java runtime to get the String containing the value for the
USER_ID attributes. USER_ID can be placed on a window during window design, and
referenced by statements in a PrAD. The value can be up to 8 characters in length.

Arguments

None

Default Behavior

By default, “USERID” is returned.

SessionIDExit Web Generation Session ID Exit

668 User Exit Reference Guide

getTerminalId Method Retrieves the String containing the value for the
TERMINAL_ID attributes

public static String getTerminalId()

Purpose

This method is called by the Java runtime to get the String containing the value for the
TERMINAL_ID attributes. TERMINAL_ID can be placed on a window during window
design, and referenced by statements in a PrAD. The value can be up to 8 characters in
length.

Arguments

None

Default Behavior

By default, “DOMAIN” is returned.

Rebuilding the Exit

This exit is compiled into a Java class file. The Java development environment J2SE 1.6 or
greater must be installed on your system.

Follow these steps:

1. Launch an MS/DOS Command window.

2. Ensure the CLASSPATH environment variable contains a reference to the CA Gen
CSU jar file, CSUxx.JAR, where xx is the CA Gen release number.

3. Change your current directory to that which contains the java source file.

Typically this will be in the CA Gen install area, within the
CLASSES\COM\CA\GENxx\EXITS\common subdirectory, where xx is the current CA
Gen release number.

4. Run JAVAC CompareExit.java.

5. Reassemble and redeploy the resulting .class file for use with the appropriate
applications.

SrvrErrorExit Web Generation Server Error Exit

Chapter 6: Web Generation User Exits 669

SrvrErrorExit Web Generation Server Error Exit

Source Code

SrvrErrorExit.java

Purpose

This user exit provides methods that are invoked when an error is detected during the
processing of a client to server flow.

ServerError Method Detects an error during the processing of a synchronous
client to server flow

public static int ServerError(int failureType, StringBuffer failureCommand, StringBuffer
errorList)

Purpose

ServerError() is invoked when an error is detected during the processing of a
synchronous client to server flow. The parameter failureType describes the origin of this
error and the formatted error message is returned in errorList.

Arguments

The following table gives a brief description of the arguments.

Name I/O Description

failureType Input An integer value describing the source of the
failure. It's value can be one of the following:

"CFBUILD" is an error in the construction or
parsing of a client/server flow message or
response.

"XFAL" identifies an error during the server
procedures action block execution.

"XERR" identifies a communications error
occurring somewhere between construction of a
message or response, and the deciphering of
that message by the partner in this flow.

SrvrErrorExit Web Generation Server Error Exit

670 User Exit Reference Guide

Name I/O Description

failureComman
d

Output This character array can be populated with a
command used to reinvoke the failing procedure
step. This parameter is only used when returning
from the exit with a FailAction of
"serverFailedRestart". It will be ignored for any
other FailAction.

errorList Input/Output An array of characters representing message
strings constructed by and normally displayed
using the ErrorReport dialog to describe the
failure. Each message string is null terminated.
Newline characters for formatting are also
present as required. The complete list is
terminated by more-than-one contiguous null
character. On a "serverFailedDisplay" return,
errorList, as modified in this exit, will be
displayed in the ErrorReport dialog; errorList has
a maximum length of 2048 bytes.

Return Code

The following table gives a brief description of each of the return codes.

Return Code Description

FAILEDDISPLAY This return value causes the standard error report
dialog to be displayed, with return to the previous
window.

FAILEDRESTART This return value suppresses the standard error
report and reinvokes the client procedure step that
originated the dialog flow. In the case of a failing
"procedure step usage," the parent procedure step
is returned to at the statement immediately
following the Use. For flows designed to return the
server's exit state to the client, the exit state set
when reinvoking or returning to the client
procedure step will be the last value set by the
client.

FAILEDTERMINATE This return value will suppress the standard error
report dialog, will not attempt to return to the
client procedure step, and will redisplay the client
window.

SrvrErrorExit Web Generation Server Error Exit

Chapter 6: Web Generation User Exits 671

Return Code Description

FAILEDDISPLAYCUSTOM This return value will cause a custom error report
dialog to be displayed with NO FORMATTING. The
dialog returns to the previous window as in
previous releases.

Default Behavior

The default return value of FAILEDDISPLAY causes the standard error report dialog to be
displayed, with return to the previous client window.

append Method Formats errors with messages unique to your application

public static boolean append(StringBuffer msgOut, int messageNumber, String [] parms,

String dialect)

Purpose

This method formats errors with messages unique to your application instead of utilizing
Gen error message formatting.

Arguments

The following table gives a brief description of the arguments.

Name I/O Description

msgOut Input/Output Output buffer to append.

msgNumber Input/Output The number of the message in
csumessages.properties

Parms Input/Output The array of parameters for substitution into the
message

Dialect Input Specifies the dialect

Return Code

True if appends, false otherwise.

Default Behavior

By default, false is returned.

SrvrErrorExit Web Generation Server Error Exit

672 User Exit Reference Guide

Method

public static boolean append(StringBuffer msgOut, String message)

Purpose

This method formats errors with messages unique to your application instead of utilizing
CA Gen error message formatting.

Arguments

The following table gives a brief description of the arguments.

Name I/O Description

msgOut Input/Output Output buffer to append.

message Input/Output Message to append.

Return Code

True if appends, false otherwise.

Default Behavior

By default, false is returned.

Rebuilding the Exit

This exit is compiled into a Java class file. The Java development environment J2SE 1.6 or
greater must be installed on your system.

Follow these steps:

1. Launch an MS/DOS Command window.

2. Ensure the CLASSPATH environment variable contains a reference to the CA Gen
CSU jar file, CSUxx.JAR, where xx is the CA Gen release number.

3. Change your current directory to that which contains the java source file.

Typically this will be in the CA Gen install area, within the
CLASSES\COM\CA\GENxx\EXITS\common subdirectory, where xx is the current CA
Gen release number.

4. Run JAVAC CompareExit.java.

5. Reassemble and redeploy the resulting .class file for use with the appropriate
applications.

UserExit Web Generation User Exit

Chapter 6: Web Generation User Exits 673

UserExit Web Generation User Exit

Source Code

UserExit.java

Purpose

UserExit class managing interaction with user customized exits.

Default Behavior

Default Values are:

Name Value

CurrencySign LocaleExit.DEF_CURR

ThousandsSeparator LocaleExit.DEF_THOU

DecimalSeparator LocaleExit.DEF_DECI

DateSeparator LocaleExit.DEF_DATE

TimeSeparator LocaleExit.DEF_TIME

DateOrder LocaleExit.DEF_ORDER

MessageFile Uninitialized

DialectName Uninitialized

startUp Method Instantiates the UserExit class with its properties initialized

startUp (char thousands, char decimal, String message, String dialect)

Purpose

This constructor instantiates the UserExit class with its properties initialized.

UserExit Web Generation User Exit

674 User Exit Reference Guide

Arguments

The following table gives a brief description of the arguments.

Name I/O Description

thousands Input Character that contains the initial thousands
separator.

decimal Input Character that contains the initial decimal point.

message Input Two letter string that contains the initial
message file selection key.

dialect Input The dialect value that matches the value defined
in the model.

Return Code

The UserExit object with the initialized property values based on the given arguments.

Default Behavior

The following values are initialized.

Name Value

CurrencySign Return value of invoking
LocaleExit.getLocalCurrencySymbol() with
the initialized value of “CurrencySign “.

ThousandsSeparator Return value of invoking
LocaleExit.getLocalThousandsSep() with
the specified thousands arguments.

DecimalSeparator Return value of invoking
LocaleExit.getLocalDecimalSep() with the
specified decimal arguments

DateSeparator Return value of invoking

LocaleExit.getLocalDateSep() with the
initialized value of “DateSeparator”.

TimeSeparator Return value of invoking

LocaleExit.getLocalTimeSep() with the
initialized value of “TimeSeparator”.

DateOrder Return value of invoking

LocaleExit.getLocalDateOrder() with the
initialized value of “DateOrder”.

UserExit Web Generation User Exit

Chapter 6: Web Generation User Exits 675

Name Value

MessageFile The specified message argument.

DialectName The specified Dialect argument with space
padded to 8 characters.

getCurrencySign Method Retrieves the currency sign value for the current
UserExit object

public char getCurrencySign()

Purpose

This method is invoked to get the currency sign value for the current UserExit object.

Arguments

The following table gives a brief description of the arguments.

Name I/O Description

str Input String that is passed in

length Input integer containing the length of the string

padchar Input Char containing the pad character

Default Behavior

The default behavior is returning the value initialized.

getThousandsSeparator Method Retrieves the Thousand Separator value for the
current UserExit object

public char getThousandsSeparator()

Purpose

This method is invoked to get the Thousand Separator value for the current UserExit
object.

Default Behavior

The default behavior is returning the value initialized.

UserExit Web Generation User Exit

676 User Exit Reference Guide

getDecimalSeparator Method Retrieves the Decimal Separator value for the
current UserExit object

public char getDecimalSeparator()

Purpose

This method is invoked to get the Decimal Separator value for the current UserExit
object.

Default Behavior

The default behavior is returning the value initialized.

getDateSeparator Method Retrieves the Date Separator value for the current
UserExit object

public char getDateSeparator()

Purpose

This method is invoked to get the Date Separator value for the current UserExit object.

Default Behavior

The default behavior is returning the value initialized.

getTimeSeparator Method Retrieves the Time Separator value for the current
UserExit object

public char getTimeSeparator()

Purpose

This method is invoked to get the Time Separator value for the current UserExit object.

Default Behavior

The default behavior is returning the value initialized.

UserExit Web Generation User Exit

Chapter 6: Web Generation User Exits 677

getDateOrder Method Retrieves the Date Order value for the current UserExit
object

public char getDateOrder()

Purpose

This method is invoked to get the Date Order value for the current UserExit object. The
following are the possible values.

Symbol Value Description

LocaleExit.DATEORDER_MDY 0 The date order is “MMDDYY”. This value is also specified
with LocaleExit.DEF_ORDER.

LocaleExit.DATEORDER_DMY 1 The date order is “DDMMYY”.

LocaleExit.DATEORDER_YDM 2 The date order is “YYDDMM”.

Default Behavior

The default behavior is returning the value initialized.

getMessageFile Method Retrieves the two letter key to select the message file

public string getMessageFile()

Purpose

This method is invoked to get the two letter key to select the message file. The following
table contains association between key and message file.

Key Message Filename

WR ief_Error.js

AR ief_Error_ar.js

DA ief_Error_da.js

DU ief_Error_du.js

FI ief_Error_fi.js

FR ief_Error_fr.js

GE ief_Error_ge.js

HB ief_Error_hb.js

UserExit Web Generation User Exit

678 User Exit Reference Guide

Key Message Filename

IT ief_Error_it.js

JA ief_Error_ja.js

KO ief_Error_ko.js

NO ief_Error_no.js

SP ief_Error_sp.js

SW ief_Error_sw.js

<none> ief_Error.js

Default Behavior

The default behavior is returning the value initialized.

getSystemId Method Retrieves the system ID string attribute

static public string getSystemId()

Purpose

This method is invoked to get the system ID string attribute.

Default Behavior

The default behavior is returning the value in the property SessionIdExit.SystemId with
its value padded to 8 characters with space.

getUserId Method Retrieves the userID string attribute

static public string getUserId()

Purpose

This method is invoked to get the userID string attribute.

Default Behavior

The default behavior is returning the value in the property SessionIdExit.UserId with its
value padded to 8 characters with space.

UserExit Web Generation User Exit

Chapter 6: Web Generation User Exits 679

getTerminalId Method Retrieves the terminal ID string attribute

static public string getTerminalId()

Purpose

This method is invoked to get the terminal ID string attribute.

Default Behavior

The default behavior is returning the value in the property SessionIdExit. TerminalId
with its value is padded to 8 characters with space.

getDialectName Method Retrieves the current dialect name for the load module

static public string getDialectName()

Purpose

This method is invoked to get the current dialect name for the load module.

Default Behavior

The default behavior is returning the value initialized.

GetDefaultYear Method Implements a customer-specified algorithm addressing
Year-2000 concerns

public static int GetDefaultYear (int inYear, int currentYear)

Purpose

GetDefaultYear () is invoked when input editing occurs on a date or timestamp field, and
the edit pattern specifies a 2 character year value. The 4-digit current year and the
2-digit input year are passed to GetDefaultYear (). By default, the current hundred year
value is merely added to the 2 character year value and returned. This method allows
the implementation of a customer-specified algorithm addressing Year-2000 concerns.

The default algorithm returns the current hundred years appended with two digit input
year. The private method ImputeCenturies() enables an alternative algorithm,
implementing a sliding range of hundred year values based on the input decade.

UserExit Web Generation User Exit

680 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

inYear Input Integer containing the 2 or 4 digit year.

currentYear Input Integer containing the current year.

Return Code

Integer containing the 4 digit year.

Default Behavior

By default, this method invokes DefaultYearExit.GetDefaultYear(inYear, currentYear)
with the given argument to this method and the return value is from the invoked
method.

padAndTrim Method Trims and pads the given string with the specified
arguments

private static String padAndTrim (String str, int length, char padChar)

Purpose

This method in used internally to trim and pad the given string with the specified
arguments.

Arguments

The following table gives a brief description of the arguments.

Name I/O Description

str Input String that is passed in

length Input integer containing the length
of the string

padchar Input Char containing the pad
characte

WSDynamicCoopFlowExit Web Service Dynamic Coop Flow Exit

Chapter 6: Web Generation User Exits 681

Return Code

The passed in string is padded and trimmed and returned.

Default Behavior

The passed in string is padded and trimmed and returned.

Rebuilding the Exit

This exit is compiled into a Java class file. The Java development environment J2SE 1.6 or
greater must be installed on your system.

Follow these steps:

1. Launch an MS/DOS Command window.

2. Ensure the CLASSPATH environment variable contains a reference to the CA Gen
CSU jar file, CSUxx.JAR, where xx is the CA Gen release number.

3. Change your current directory to that which contains the java source file.

Typically this will be in the CA Gen install area, within the
CLASSES\COM\CA\GENxx\EXITS\common subdirectory, where xx is the current CA
Gen release number.

4. Run JAVAC CompareExit.java.

5. Reassemble and redeploy the resulting .class file for use with the appropriate
applications.

WSDynamicCoopFlowExit Web Service Dynamic Coop Flow
Exit

Source Code

WSDynamicCoopFlowExit.java

Purpose

This class is called prior to performing a Web Service connection from the
WSDynamicCoopFlow. The class is instantiated with various data.

WSDynamicCoopFlowExit Web Service Dynamic Coop Flow Exit

682 User Exit Reference Guide

getInstance Method Retrieves an Instance of WSDynamicCoopFlowExit Class

public static WSDynamicCoopFlowExit getInstance(String newInitialFactory,

String newProviderURL,

String newNextLocation,

String newProgramID,

String newTranCode,

String newProcedureName,

String newProcedureSourceName,

String newModelName,

String newModelShortName,

String newJavaContext,

String newJavaPackage,

Object runtimeObject)

Purpose

This method is invoked at the beginning of performing a Web Service connection from
the WSDynamicCoopFlow. This method obtains an instance of WSDynamicCoopFlowExit
class and initializes it with the specified parameters.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

newBaseURL Input String containing Base URL

newContextType Input String containing Context Type

newNextLocation Input String containing Next Location

newProgramID Input String containing Program ID

newTranCode Input String containing TranCode

newProcedureName Input String containing Procedure Name

newProcedureSource
Name

Input String containing Procedure Source Name

WSDynamicCoopFlowExit Web Service Dynamic Coop Flow Exit

Chapter 6: Web Generation User Exits 683

Name I/O Description

newModelName Input String containing Model Name

newModelShortName Input String containing Model ShortName

newJavaContext Input String containing Java Context

runtimeobject Input Object to be retrieved

Return Code

This method returns the initialized WSDynamicCoopFlowExit object.

Default Behavior

The method uses a simple caching mechanism to obtain an instance of
WSDynamicCoopFlowExit class and initializes it with the private method Init() in the
class. Then the method returns the initialized object.

freeInstance Method De-allocates the Object Obtained with GetInstance()

public void freeInstance()

Purpose

At the end of performing a Web Service coopflow from the WSDynamicCoopFlow, this
method is invoked to de-allocate the object obtained with GetInstance().

Arguments

None

Return Code

None

Default Behavior

The default behavior of the method is simply returning the current instance into free
instance array to be used for next GetInstance() invocation.

WSDynamicCoopFlowExit Web Service Dynamic Coop Flow Exit

684 User Exit Reference Guide

processException Method Indicates Whether to Retry the Operation or to Throw
an Exception

public boolean processException(int attempts,

CSUException e)

Purpose

This method will be invoked whenever an exception has occurred performing a Web
Service operation. Use this exit to indicate whether to retry the operation or to throw
an exception.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

attempts Input Integer containing the number of attempts

E Input CSU Exception

Return Code

The method returns true to retry the flow and false to go ahead and process/throw the
exception.

Default Behavior

By default, the method returns false in any case. Also if tracing is enabled, the given
exception object is recorded in the trace.

WSDynamicCoopFlowExit Web Service Dynamic Coop Flow Exit

Chapter 6: Web Generation User Exits 685

init Method Initializes the Current Instance Internally from the getInstance ()

public static WSDynamicCoopFlowExit init(String newInitialFactory,

String newBaseURL,

String newContextType,

String newNextLocation,

String newProgramID,

String newTranCode,

String newProcedureName,

String newProcedureSourceName,

String newModelName,

String newModelShortName,

String newJavaContext,

String newJavaPackage,

Object runtimeObject)

Purpose

This private method is invoked internally from the getInstance() to initialize the current
instance.

Arguments

The following table gives a brief description of each of the arguments:

Name I/O Description

newBaseURL Input String containing Base URL

newContextType Input String containing Context Type

newNextLocation Input String containing Next Location

newProgramID Input String containing Program ID

newTranCode Input String containing TranCode

newProcedureName Input String containing Procedure Name

newProcedureSourceName Input String containing Procedure Source Name

newModelName Input String containing Model Name

newModelShortName
I
n
p
u
t

String containing Model ShortName

newJavaContext Input String containing Java Context

WSDynamicCoopFlowExit Web Service Dynamic Coop Flow Exit

686 User Exit Reference Guide

Name I/O Description

runtimeobject Input Object to be retrieved

Return Code

None

Default Behavior

The default behavior of the method is to simply assign the specified parameter to the
corresponding instance value.

getBaseURL Method Retrieves the baseURL

String getBaseURL()

Purpose

This method will be called to retrieve the providerURL to be used during the Web
Service communications.

Arguments

None

Default Behavior

Return the value set by the getInstance.

getContextType Method Retrieves the contextType

String getContextType()

Purpose

This method will be called to retrieve the contextType to be used during the Web
Service communications.

Arguments

None

WSDynamicCoopFlowExit Web Service Dynamic Coop Flow Exit

Chapter 6: Web Generation User Exits 687

Default Behavior

Return the value set by the getInstance.

Rebuilding the Exit

This exit is compiled into a Java class file. The Java development environment Java
Platform SE 1.6 or higher must be installed on your system.

Follow these steps:

1. Launch an MS/DOS Command window.

2. Ensure the CLASSPATH environment variable contains a reference to the CA Gen
CSU jar file, CSUxx.JAR.

Note: xx refers to the current release of CA Gen. For the current release number,
see the Release Notes.

3. Change your current directory to that which contains the java source file.

Typically this will be in the CA Gen install area, within the
CLASSES\COM\CA\GENxx\EXITS\coopflow\ws subdirectory.

Note: xx refers to the current release of CA Gen. For the current release number,
see the Release Notes.

4. Run javac WSDynamicCoopFlowExit.java.

5. Reassemble and redeploy the resulting .class file for use with the appropriate
applications.

Chapter 7: Web View User Exits 689

Chapter 7: Web View User Exits

WVDefaultYearExit WebView Default Year Exit

Source Code

WVDefaultYearExit.java

Purpose

This exit class allows the implementation of a customer-specified algorithm addressing
Year-2000 concerns.

Rebuilding the Exit

This exit is compiled into a Java class file. The Java development environment J2SE 1.6 or
greater must be installed on your system.

Follow these steps:

1. Launch an MS/DOS Command window.

2. Ensure the CLASSPATH environment variable contains a reference to the CA Gen
CSU jar file, CSUxx.JAR, where xx is the CA Gen release number.

3. Change your current directory to that which contains the java source file.

Typically this will be in the CA Gen install area, within the
CLASSES\COM\CA\GENxx\EXITS\WEBVIEW\EXITS subdirectory, where xx is the
current CA Gen release number.

4. Run JAVAC WVDefaultYearExit.java.

5. Reassemble and redeploy the resulting .class file for use with the appropriate
applications.

WVLocaleExit WebView Locale Exit

Source Code

WVLocaleExit.java

WVLocaleExit WebView Locale Exit

690 User Exit Reference Guide

Purpose

This exit class provides a set of methods that are called at application startup to load
customer-specific values for locale editing of displayed application data. Each method
provided by this exit is called with the default input, derived from the dialect specified
during application design, and should return the appropriate localized value.

getLocalCurrencySymbol Method Supplies the currency symbol to the
generated JAVA application

public static char getLocalCurrencySymbol(char def)

Purpose

getLocalCurrencySymbol() supplies the currency symbol to the generated JAVA
application. The currency symbol is used when editing numeric fields, which includes
currency symbol. For example, if the edit pattern is “@ZZZ.ZZZ,99”, the
getLocalCurrencySymbol() should specify “@” as the currency symbol.

Arguments

The following table gives a brief description of the arguments.

Name I/O Description

def Input Character containing the default currency symbol.

Return Code

Character containing the localized currency symbol.

Default Behavior

By default, Dollar sign ($) is returned.

getLocalThousandsSep Method Supplies the thousand separator to the
generated JAVA application

public static char getLocalThousandsSep(char def)

WVLocaleExit WebView Locale Exit

Chapter 7: Web View User Exits 691

Purpose

getLocalThousandsSep () supplies the thousand separator to the generated JAVA
application. The thousand separator is used when editing numeric fields, which includes
the thousand separator. For example, if the edit pattern is “@ZZZ.ZZZ,99”, the
getLocalThousandsSep () should specify “.” as the thousand separator.

Arguments

The following table gives a brief description of the arguments.

Name I/O Description

def Input Character containing the default thousands separator.

Return Code

Character containing the localized thousands separator.

Default Behavior

By default, thousand separator passed in is returned.

getLocalDecimalSeparator Method Supplies the decimal point to the generated
JAVA application

public static char getLocalDecimalSeparator(char def)

Purpose

getLocalDecimalSep () supplies the decimal point to the generated JAVA application. The
decimal point is used when editing numeric fields, which includes decimal point. For
example, if the edit pattern is “@ZZZ.ZZZ,99”, the getLocalDecimalSep () should specify
“,” as the decimal point.

Arguments

The following table gives a brief description of the arguments.

Name I/O Description

def Input Character containing the default decimal separator.

WVLocaleExit WebView Locale Exit

692 User Exit Reference Guide

Return Code

Character containing the localized decimal separator.

Default Behavior

By default, decimal separator passed in is returned.

getLocalDateSeparator Method Supplies the date separator character to the
generated JAVA application

public static char getLocalDateSeparator(char def)

Purpose

getLocalDateSep () supplies the date separator character to the generated JAVA
application. The date separator character is used only for date and time fields where the
model does not specify the edit pattern. In these cases, the JAVA runtime uses this
information to build a default edit pattern using the information provided by the
getLocalDateSep(). For example, if the getLocalDateSep() specifies the date separator as
"-" (a dash) and the date order is yymmdd, then the default date edit pattern is
yy-mm-dd.

Arguments

The following table gives a brief description of the arguments.

Name I/O Description

def Input Character containing the default date separator.

Return Code

Character containing the localized date separator.

Default Behavior

By default, date separator passed in is returned.

getLocalTimeSep Method Supplies the time separator character to the
generated JAVA application

public static char getLocalTimeSep(char def)

WVLocaleExit WebView Locale Exit

Chapter 7: Web View User Exits 693

Purpose

getLocalTimeSep () supplies the time separator character to the generated JAVA
application. The time separator character is used only for date and time fields where the
model does not specify the edit pattern. In these cases, the JAVA runtime uses this
information to build a default edit pattern using the information provided by the
getLocalTimeSep (). For example, if the getLocalTimeSep () specifies the date separator
as ":" (a colon) then the default date edit pattern is yy:mm:dd.

Arguments

The following table gives a brief description of the arguments.

Name I/O Description

def Input Character containing the default time separator.

Return Code

Character containing the localized time separator.

Default Behavior

By default, time separator passed in is returned.

getLocalDateOrder Method Supplies the date order definition to the generated
JAVA application

public static char getLocalDateOrder(char def)

Purpose

getLocalDateOrder () supplies the date order definition to the generated JAVA
application. The date order definition is used only for date and time fields where the
model does not specify the edit pattern. In these cases, the JAVA runtime uses this
information to build a default edit pattern using the information provided by the
getLocalDateOrder (). For example, if the date separator is "-" (a dash) and
getLocalDateOrder () specifies the date order as LocaleExit.DATEORDER_YMD or ‘2’,
then the default date edit pattern is yy-mm-dd.

WVLocaleExit WebView Locale Exit

694 User Exit Reference Guide

Arguments

The following table gives a brief description of the arguments.

Name I/O Description

def Input Character containing the default date order.

The following definition or character can be specified.

LocaleExit.DATEORDER_MDY or ‘0’

The date order is “MMDDYY”.

LocaleExit.DATEORDER_DMY or ‘1’

The date order is “DDMMYY”.

LocaleExit.DATEORDER_YDM or ‘2’

The date order is “YYDDMM”.

Return Code

Character containing the localized date order.

Default Behavior

By default, date order passed in is returned.

Rebuilding the Exit

This exit is compiled into a Java class file. The Java development environment J2SE 1.6 or
greater must be installed on your system.

Follow these steps:

1. Launch an MS/DOS Command window.

2. Ensure the CLASSPATH environment variable contains a reference to the CA Gen
CSU jar file, CSUxx.JAR, where xx is the CA Gen release number.

3. Change your current directory to that which contains the java source file.

Typically this will be in the CA Gen install area, within the
CLASSES\COM\CA\GENxx\EXITS\WEBVIEW\EXITS subdirectory, where xx is the
current CA Gen release number.

4. Run JAVAC WVDefaultYearExit.java.

5. Reassemble and redeploy the resulting .class file for use with the appropriate
applications.

WVRetryLimitExit WebView Retry Limit Exit

Chapter 7: Web View User Exits 695

WVRetryLimitExit WebView Retry Limit Exit

Source Code

WVRetryLimitExit.java

Purpose

This exit class provides configuration of the number of times a procedure step can be
retried when the application has requested a “retry transaction”, or when a deadlock
condition on the database has been detected.

getUltimateRetryLimit Method Retrieves the Integer containing absolute upper
limit

public static int getUltimateRetryLimit()

Purpose

This method is called by the Java runtime to get the Integer containing absolute upper
limit to the number of times a procedure step can be retried. This exit provides a
safeguard in case the system attribute "transaction retry limit" is set to an excessive
value by an action diagram. This exit defines the upper bound to the retry limit value
which can never be exceeded.

Arguments

None

Default Behavior

By default, “99” is returned.

getDefaultRetryLimit Method Retrieves the Integer containing default retry
limit

public static int getDefaultRetryLimit()

WVSessionIDExit WebView Session ID Exit

696 User Exit Reference Guide

Purpose

This method is called by the Java runtime to get the Integer containing default retry limit
to the number of times a Procedure step can be retried in the event that the system
attribute "Transaction retry limit" is not set by an action diagram.

Arguments

None

Default Behavior

By default, “10” is returned.

Rebuilding the Exit

This exit is compiled into a Java class file. The Java development environment J2SE 1.6 or
greater must be installed on your system.

Follow these steps:

1. Launch an MS/DOS Command window.

2. Ensure the CLASSPATH environment variable contains a reference to the CA Gen
CSU jar file, CSUxx.JAR, where xx is the CA Gen release number.

3. Change your current directory to that which contains the java source file.

Typically this will be in the CA Gen install area, within the
CLASSES\COM\CA\GENxx\EXITS\WEBVIEW\EXITS subdirectory, where xx is the
current CA Gen release number.

4. Run JAVAC WVDefaultYearExit.java.

5. Reassemble and redeploy the resulting .class file for use with the appropriate
applications.

WVSessionIDExit WebView Session ID Exit

Source Code

WVSessionIDExit.java

Purpose

This exit class is used for CA Gen system attributes.

WVSessionIDExit WebView Session ID Exit

Chapter 7: Web View User Exits 697

getSystemId Method Retrieves the String containing the value for the
LOCAL_SYSTEM_ID attributes

public static String getSystemId()

Purpose

This method is called by the Java runtime to get the String containing the value for the
LOCAL_SYSTEM_ID attributes. LOCAL_SYSTEM_ID can be placed on a window during
window design. The value can be up to 8 characters in length.

Arguments

None

Default Behavior

By default, “WIN32” is returned.

getUserId Method Retrieves the String containing the value for the USER_ID
attributes

public static String getUserId()

Purpose

This method is called by the Java runtime to get the String containing the value for the
USER_ID attributes. USER_ID can be placed on a window during window design, and
referenced by statements in a PrAD. The value can be up to 8 characters in length.

Arguments

None

Default Behavior

By default, “USERID” is returned.

getTerminalId Method Retrieves the String containing the value for the
TERMINAL_ID attributes

public static String getTerminalId()

WVSrvrErrorExit WebView Server Error Exit

698 User Exit Reference Guide

Purpose

This method is called by the Java runtime to get the String containing the value for the
TERMINAL_ID attributes. TERMINAL_ID can be placed on a window during window
design, and referenced by statements in a PrAD. The value can be up to 8 characters in
length.

Arguments

None

Default Behavior

By default, “DOMAIN” is returned.

Rebuilding the Exit

This exit is compiled into a Java class file. The Java development environment J2SE 1.6 or
greater must be installed on your system.

Follow these steps:

1. Launch an MS/DOS Command window.

2. Ensure the CLASSPATH environment variable contains a reference to the CA Gen
CSU jar file, CSUxx.JAR, where xx is the CA Gen release number.

3. Change your current directory to that which contains the java source file.

Typically this will be in the CA Gen install area, within the
CLASSES\COM\CA\GENxx\EXITS\WEBVIEW\EXITS subdirectory, where xx is the
current CA Gen release number.

4. Run JAVAC WVDefaultYearExit.java.

5. Reassemble and redeploy the resulting .class file for use with the appropriate
applications.

WVSrvrErrorExit WebView Server Error Exit

Source Code

WVSrvrErrorExit.java

WVSrvrErrorExit WebView Server Error Exit

Chapter 7: Web View User Exits 699

Purpose

This user exit provides methods that are invoked when an error is detected during the
processing of a client to server flow.

ServerError Method Detects an error during the processing of a synchronous
client to server flow

public static int int ServerError(int failureType, StringBuffer errorList)

Purpose

ServerError() is invoked when an error is detected during the processing of a
synchronous client to server flow. The parameter failureType describes the origin of this
error and the formatted error message is returned in errorList.

Arguments

The following table gives a brief description of the arguments.

Name I/O Description

failureType Input An integer value describing the source of the
failure. It's value can be one of the following:

"CFBUILD" is an error in the construction or
parsing of a client/server flow message or
response.

"XFAL" identifies an error during the server
procedures action block execution.

"XERR" identifies a communications error
occurring somewhere between construction of a
message or response, and the deciphering of
that message by the partner in this flow.

errorList Input/Output An array of characters representing message
strings constructed by and normally displayed
using the ErrorReport dialog to describe the
failure. Each message string is null terminated.
Newline characters for formatting are also
present as required. The complete list is
terminated by more-than-one contiguous null
character. On a "serverFailedDisplay" return,
errorList, as modified in this exit, will be
displayed in the ErrorReport dialog; errorList has
a maximum length of 2048 bytes.

WVSrvrErrorExit WebView Server Error Exit

700 User Exit Reference Guide

Return Code

The following table gives a brief description of each of the return codes.

Return Code Description

FAILEDDISPLAY This return value causes the standard error report
dialog to be displayed, with return to the previous
window.

FAILEDRESTART This return value suppresses the standard error
report and reinvokes the client procedure step that
originated the dialog flow. In the case of a failing
"procedure step usage," the parent procedure step
is returned to at the statement immediately
following the Use. For flows designed to return the
server's exit state to the client, the exit state set
when reinvoking or returning to the client
procedure step will be the last value set by the
client.

FAILEDTERMINATE This return value will suppress the standard error
report dialog, will not attempt to return to the
client procedure step, and will redisplay the client
window.

FAILEDDISPLAYCUSTOM This return value will cause a custom error report
dialog to be displayed with NO FORMATTING. The
dialog returns to the previous window as in
previous releases.

Default Behavior

The default return value of FAILEDDISPLAY causes the standard error report dialog to be
displayed, with return to the previous client window.

Method

public static boolean append(StringBuffer msgOut, int messageNumber, String [] parms,

String dialect)

Purpose

This method formats errors with messages unique to your application instead of utilizing
Gen error message formatting.

WVSrvrErrorExit WebView Server Error Exit

Chapter 7: Web View User Exits 701

Arguments

The following table gives a brief description of the arguments.

Name I/O Description

msgOut Input/Output Output buffer to append.

msgNumber Input/Output The number of the message in
csumessages.properties

Parms Input/Output The array of parameters for substitution into the
message

Dialect Input Specifies the dialect

Return Code

True if appends, false otherwise.

Default Behavior

By default, false is returned.

Method

public static boolean append(StringBuffer msgOut, String message)

Purpose

This method formats errors with messages unique to your application instead of utilizing
CA Gen error message formatting.

Arguments

The following table gives a brief description of the arguments.

Name I/O Description

msgOut Input/Output Output buffer to append.

message Input/Output Message to append.

Return Code

True if appends, false otherwise.

WVUserExit WebView User Exit

702 User Exit Reference Guide

Default Behavior

By default, false is returned.

Rebuilding the Exit

This exit is compiled into a Java class file. The Java development environment J2SE 1.6 or
greater must be installed on your system.

Follow these steps:

1. Launch an MS/DOS Command window.

2. Ensure the CLASSPATH environment variable contains a reference to the CA Gen
CSU jar file, CSUxx.JAR, where xx is the CA Gen release number.

3. Change your current directory to that which contains the java source file.

Typically this will be in the CA Gen install area, within the
CLASSES\COM\CA\GENxx\EXITS\WEBVIEW\EXITS subdirectory, where xx is the
current CA Gen release number.

4. Run JAVAC WVDefaultYearExit.java.

5. Reassemble and redeploy the resulting .class file for use with the appropriate
applications.

WVUserExit WebView User Exit

Source Code

WVUserExit.java

Purpose

UserExit class managing interaction with user customized exits.

Default Behavior

Default Values are:

Name Value

CurrencySign LocaleExit.DEF_CURR

WVUserExit WebView User Exit

Chapter 7: Web View User Exits 703

Name Value

ThousandsSeparator LocaleExit.DEF_THOU

DecimalSeparator LocaleExit.DEF_DECI

DateSeparator LocaleExit.DEF_DATE

TimeSeparator LocaleExit.DEF_TIME

DateOrder LocaleExit.DEF_ORDER

MessageFile Uninitialized

DialectName Uninitialized

startUp Method Instantiates the UserExit class with its properties initialized

startUp (char thousands, char decimal, String message, String dialect)

Purpose

This constructor instantiates the UserExit class with its properties initialized.

Arguments

The following table gives a brief description of the arguments.

Name I/O Description

thousands Input Character that contains the initial thousands
separator.

decimal Input Character that contains the initial decimal point.

message Input Two letter string that contains the initial message file
selection key.

dialect Input The dialect value that matches the value defined in
the model.

Return Code

The UserExit object with the initialized property values based on the given arguments.

WVUserExit WebView User Exit

704 User Exit Reference Guide

Default Behavior

The following values are initialized.

Name Value

CurrencySign Return value of invoking
LocaleExit.getLocalCurrencySymbol() with
the initialized value of “CurrencySign “.

ThousandsSeparator Return value of invoking
LocaleExit.getLocalThousandsSep() with
the specified thousands arguments.

DecimalSeparator Return value of invoking
LocaleExit.getLocalDecimalSep() with the
specified decimal arguments

DateSeparator Return value of invoking

LocaleExit.getLocalDateSep() with the
initialized value of “DateSeparator”.

TimeSeparator Return value of invoking

LocaleExit.getLocalTimeSep() with the
initialized value of “TimeSeparator”.

DateOrder Return value of invoking

LocaleExit.getLocalDateOrder() with the
initialized value of “DateOrder”.

MessageFile The specified message argument.

DialectName The specified Dialect argument with space
padded to 8 characters.

getCurrencySign Method Retrieves the currency sign value for the current
UserExit object

public char getCurrencySign()

Purpose

This method is invoked to get the currency sign value for the current UserExit object.

Default Behavior

The default behavior is returning the value initialized.

WVUserExit WebView User Exit

Chapter 7: Web View User Exits 705

getThousandsSeparator Method Retrieves the Thousand Separator value for the
current UserExit object

public char getThousandsSeparator()

Purpose

This method is invoked to get the Thousand Separator value for the current UserExit
object.

Default Behavior

The default behavior is returning the value initialized.

getDecimalSeparator Method Retrieves the Decimal Separator value for the
current UserExit object

public char getDecimalSeparator()

Purpose

This method is invoked to get the Decimal Separator value for the current UserExit
object.

Default Behavior

The default behavior is returning the value initialized.

getDateSeparator Method Retrieves the Date Separator value for the current
UserExit object

public char getDateSeparator()

Purpose

This method is invoked to get the Date Separator value for the current UserExit object.

Default Behavior

The default behavior is returning the value initialized.

WVUserExit WebView User Exit

706 User Exit Reference Guide

getTimeSeparator Method Retrieves the Time Separator value for the current
UserExit object

public char getTimeSeparator()

Purpose

This method is invoked to get the Time Separator value for the current UserExit object.

Default Behavior

The default behavior is returning the value initialized.

getDateOrder Method Retrieves the Date Order value for the current UserExit
object

public char getDateOrder()

Purpose

This method is invoked to get the Date Order value for the current UserExit object. The
following are the possible values.

Symbol Value Description

LocaleExit.DATEORDER_MDY 0 The date order is “MMDDYY”. This
value is also specified with
LocaleExit.DEF_ORDER.

LocaleExit.DATEORDER_DMY 1 The date order is “DDMMYY”.

LocaleExit.DATEORDER_YDM 2 The date order is “YYDDMM”.

Default Behavior

The default behavior is returning the value initialized.

getMessageFile Method Retrieves the two letter key to select the message file

public string getMessageFile()

WVUserExit WebView User Exit

Chapter 7: Web View User Exits 707

Purpose

This method is invoked to get the two letter key to select the message file. The following
table contains association between key and message file.

Key Message Filename

WR ief_Error.js

AR ief_Error_ar.js

DA ief_Error_da.js

DU ief_Error_du.js

FI ief_Error_fi.js

FR ief_Error_fr.js

GE ief_Error_ge.js

HB ief_Error_hb.js

IT ief_Error_it.js

JA ief_Error_ja.js

KO ief_Error_ko.js

NO ief_Error_no.js

SP ief_Error_sp.js

SW ief_Error_sw.js

<none> ief_Error.js

Default Behavior

The default behavior is returning the value initialized.

getSystemId Method Retrieves the system ID string attribute

static public string getSystemId()

Purpose

This method is invoked to get the system ID string attribute.

WVUserExit WebView User Exit

708 User Exit Reference Guide

Default Behavior

The default behavior is returning the value in the property SessionIdExit.SystemId with
its value padded to 8 characters with space.

getUserId Method Retrieves the user ID string attribute

static public string getUserId()

Purpose

This method is invoked to get the userID string attribute.

Default Behavior

The default behavior is returning the value in the property SessionIdExit.UserId with its
value padded to 8 characters with space.

getTerminalId Method Retrieves the terminal ID string attribute

static public string getTerminalId()

Purpose

This method is invoked to get the terminal ID string attribute.

Default Behavior

The default behavior is returning the value in the property SessionIdExit. TerminalId
with its value is padded to 8 characters with space.

getDialectName Method Retrieves the current dialect name for the load module

static public string getDialectName()

Purpose

This method is invoked to get the current dialect name for the load module.

Default Behavior

The default behavior is returning the value initialized.

WVUserExit WebView User Exit

Chapter 7: Web View User Exits 709

GetDefaultYear Method Implements of a customer-specified algorithm
addressing Year-2000 concerns

public static int GetDefaultYear (int inYear, int currentYear)

Purpose

GetDefaultYear () is invoked when input editing occurs on a date or timestamp field, and
the edit pattern specifies a 2 character year value. The 4-digit current year and the
2-digit input year are passed to GetDefaultYear (). By default, the current hundred year
value is merely added to the 2 character year value and returned. This method allows
the implementation of a customer-specified algorithm addressing Year-2000 concerns.

The default algorithm returns the current hundred years appended with two digit input
year. The private method ImputeCenturies() enables an alternative algorithm,
implementing a sliding range of hundred year values based on the input decade.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

inYear Input Integer containing the 2 or 4 digit year.

currentYear Input Integer containing the current year.

Return Code

Integer containing the 4 digit year.

Default Behavior

By default, this method invokes DefaultYearExit.GetDefaultYear(inYear, currentYear)
with the given argument to this method and the return value is from the invoked
method.

padAndTrim Method Trims and pads the given string with the specified
arguments

private static String padAndTrim (String str, int length, char padChar)

Purpose

This method in used internally to trim and pad the given string with the specified
arguments.

WVUserExit WebView User Exit

710 User Exit Reference Guide

Arguments

The following table gives a brief description of the arguments.

Name I/O Description

str Input String that is passed in

length Input Integer containing the length of the string

padchar Input Char containing the pad character

Return Code

The passed in string is padded and trimmed and returned.

Default Behavior

The passed in string is padded and trimmed and returned.

Rebuilding the Exit

This exit is compiled into a Java class file. The Java development environment J2SE 1.6 or
greater must be installed on your system.

Follow these steps:

1. Launch an MS/DOS Command window.

2. Ensure the CLASSPATH environment variable contains a reference to the CA Gen
CSU jar file, CSUxx.JAR, where xx is the CA Gen release number.

3. Change your current directory to that which contains the java source file.

Typically this will be in the CA Gen install area, within the
CLASSES\COM\CA\GENxx\EXITS\WEBVIEW\EXITS subdirectory, where xx is the
current CA Gen release number.

4. Run JAVAC WVDefaultYearExit.java.

5. Reassemble and redeploy the resulting .class file for use with the appropriate
applications.

Chapter 8: .NET User Exits 711

Chapter 8: .NET User Exits

ASP.NET Web Client User Exits

This section describes the user exits that are located in
<CAGen-root>\.net\exits\src\amrt directory and used by the CA Gen ASP.NET Web
Clients.

com.ca.gen.exits.amrt.DefaultYearExit C# Default Year Exit

Source Code

DefaultYearExit.cs

Purpose

This exit class allows the implementation of a customer-specified algorithm addressing
Year-2000 concerns.

Method

public static int GetDefaultYear(int inYear, int currentYear)

Purpose

GetDefaultYear () is invoked when input editing occurs on a date or timestamp field, and
the edit pattern specifies a 2 character year value. The 4-digit current year and the
2-digit input year are passed to GetDefaultYear (). By default, the current hundred year
value is merely added to the 2 character year value and returned. This method allows
the implementation of a customer-specified algorithm addressing Year-2000 concerns.

The default algorithm returns the current hundred years appended with two digit input
year. The private method ImputeCenturies() enables an alternative algorithm,
implementing a sliding range of hundred year values based on the input decade.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

inYear Input Integer containing the 2 or 4 digit year.

ASP.NET Web Client User Exits

712 User Exit Reference Guide

Name I/O Description

currentYear Input Integer containing the current year.

Return Code

Integer containing the 4 digit year.

Default Behavior

By default, the current hundred-year value is added to the 2-character year value and
returned.

Rebuilding the Exit

This exit is built as part of a common user exit .NET assembly called CA.Gen.exits.dll.
Prerequisites for building the assembly are Microsoft C# compiler and .Net Framework
installed on your system.

Follow these steps:

1. Launch a Command Prompt window. This Command Prompt should be opened with
‘Run as administrator’.

2. Change your current directory to that containing the makeexits.bat file. Typically,
this will be in the CA Gen installed area, .net\exits subdirectory.

3. To build the exit, run makeexits.bat.

Note: See the makeexits.bat file for execution instructions.

4. Redeploy the resulting CA.Gen.exits.dll for use with the appropriate Applications.

com.ca.gen.exits.amrt.LocaleExit C# Locale Exit

Source Code

LocaleExit.cs

Purpose

This exit class provides a set of methods that are called at startup of application to load
customer-specific values for locale editing of data displayed in application. Each method
provided by this exit is called with the default input, derived from the dialect specified
during application design, and should return the appropriate localized value.

Method

public static char getLocalCurrencySymbol(char def)

ASP.NET Web Client User Exits

Chapter 8: .NET User Exits 713

Purpose

getLocalCurrencySymbol() supplies the currency symbol to the generated .NET
application. The currency symbol is used when editing numeric fields, which includes
currency symbol. For example, if the edit pattern is “@ZZZ.ZZZ,99”, the
getLocalCurrencySymbol() should specify “@” as the currency symbol.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

def Input Character containing the default currency symbol.

Return Code

Character containing the localized currency symbol.

Default Behavior

By default, dollar sign ‘$’ is returned.

Method

public static char getLocalThousandsSep(char def)

Purpose

getLocalThousandsSep () supplies the thousand separator to the generated .NET
application. The thousand separator is used when editing numeric fields, which includes
the thousand separator. For example, if the edit pattern is “@ZZZ.ZZZ,99”, the
getLocalThousandsSep () should specify “.” as the thousand separator.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

def Input Character containing the default thousands
separator.

Return Code

Character containing the localized thousands separator.

ASP.NET Web Client User Exits

714 User Exit Reference Guide

Default Behavior

By default, thousand separator passed in is returned.

Method

public static char getLocalDecimalSep(char def)

Purpose

getLocalDecimalSep () supplies the decimal point to the generated .NET application. The
decimal point is used when editing numeric fields, which includes decimal point. For
example, if the edit pattern is “@ZZZ.ZZZ,99”, the getLocalDecimalSep () should specify
“,” as the decimal point.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

def Input Character containing the default decimal separator.

Return Code

Character containing the localized decimal point.

Default Behavior

By default, decimal point passed in is returned.

Method

public static char getLocalDateSep(char def)

Purpose

getLocalDateSep () supplies the date separator character to the generated .NET
application. The date separator character is used only for date and time fields where the
model does not specify the edit pattern. In these cases, the .NET runtime uses this
information to build a default edit pattern using the information provided by the
getLocalDateSep(). For example, if the getLocalDateSep() specifies the date separator as
"-" (a dash) and the date order is yymmdd, then the default date edit pattern is
yy-mm-dd.

ASP.NET Web Client User Exits

Chapter 8: .NET User Exits 715

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

def Input Character containing the default date separator.

Return Code

Character containing the localized date separator.

Default Behavior

By default, date separator passed in is returned.

Method

public static char getLocalTimeSep(char def)

Purpose

getLocalTimeSep () supplies the time separator character to the generated .NET
application. The time separator character is used only for date and time fields where the
model does not specify the edit pattern. In these cases, the .NET runtime uses this
information to build a default edit pattern using the information provided by the
getLocalTimeSep (). For example, if the getLocalTimeSep () specifies the date separator
as ":" (a colon) then the default date edit pattern is yy:mm:dd.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

def Input Character containing the default time separator.

Return Code

Character containing the localized time separator.

Default Behavior

By default, time separator passed in is returned.

ASP.NET Web Client User Exits

716 User Exit Reference Guide

Method

public static char getLocalDateOrder(char def)

Purpose

getLocalDateOrder () supplies the date order definition to the generated .NET
application. The date order definition is used only for date and time fields where the
model does not specify the edit pattern. In these cases, the .NET runtime uses this
information to build a default edit pattern using the information provided by the
getLocalDateOrder (). For example, if the date separator is "-" (a dash) and
getLocalDateOrder () specifies the date order as LocaleExit.DATEORDER_YMD or ‘2’,
then the default date edit pattern is yy-mm-dd.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

def Input Character containing the default date order.

The following definition or character can be
specified.

LocaleExit.DATEORDER_MDY or ‘0’

The date order is “MMDDYY”.

LocaleExit.DATEORDER_DMY or ‘1’

The date order is “DDMMYY”.

LocaleExit.DATEORDER_YDM or ‘2’

The date order is “YYDDMM”.

Return Code

Character containing the localized date order.

Default Behavior

By default, date order passed in is returned.

ASP.NET Web Client User Exits

Chapter 8: .NET User Exits 717

Rebuilding the Exit

This exit is built as part of a common user exit .NET assembly called CA.Gen.exits.dll.
Prerequisites for building the assembly are Microsoft C# compiler and .Net Framework
installed on your system.

Follow these steps:

1. Launch a Command Prompt window. This Command Prompt should be opened with
‘Run as administrator’.

2. Change your current directory to that containing the makeexits.bat file. Typically,
this will be in the CA Gen installed area, .net\exits subdirectory.

3. To build the exit, run makeexits.bat.

Note: See the makeexits.bat file for execution instructions.

4. Redeploy the resulting CA.Gen.exits.dll for use with the appropriate Applications.

com.ca.gen.exits.amrt.RetryLimitExit C# Retry Limit Exit

Source Code

RetryLimitExit.cs

Purpose

This exit class provides configuration of the number of times a procedure step can be
retried when the application has requested a “retry transaction”, or when a deadlock
condition on the database has been detected.

Property

public static int UltimateRetryLimit

Purpose

This property is a Integer containing absolute upper limit to the number of times a
procedure step can be retried. This exit provides a safeguard in case the system
attribute "transaction retry limit" is set to an excessive value by an action diagram. This
exit defines the upper bound to the retry limit value which can never be exceeded.

Default Value

By default, “99” is returned.

ASP.NET Web Client User Exits

718 User Exit Reference Guide

Property

public static int DefaultRetryLimit

Purpose

This property is Integer containing default retry limit to the number of times a
Procedure step can be retried in the event that the system attribute "Transaction retry
limit" is not set by an action diagram.

Default Value

By default, “10” is returned.

Rebuilding the Exit

This exit is built as part of a common user exit .NET assembly called CA.Gen.exits.dll.
Prerequisites for building the assembly are Microsoft C# compiler and .Net Framework
installed on your system.

Follow these steps:

1. Launch a Command Prompt window. This Command Prompt should be opened with
‘Run as administrator’.

2. Change your current directory to that containing the makeexits.bat file. Typically,
this will be in the CA Gen installed area, .net\exits subdirectory.

3. To build the exit, run makeexits.bat.

Note: See the makeexits.bat file for execution instructions.

4. Redeploy the resulting CA.Gen.exits.dll for use with the appropriate Applications.

com.ca.gen.exits.amrt.SessionIdExit C# Session ID Exit

Source Code

SessionIdExit.cs

Purpose

This exit class is used for CA Gen system attributes.

Property

public static string SystemId

ASP.NET Web Client User Exits

Chapter 8: .NET User Exits 719

Purpose

This property is string containing the value for the LOCAL_SYSTEM_ID attributes.
LOCAL_SYSTEM_ID can be placed on a window during window design. The value can be
up to 8 characters in length.

Default Value

By default, “WIN32” is returned.

Property

public static string UserId

Return Code

This property is string containing the value for the USER_ID attributes. USER_ID can be
placed on a window during window design, and referenced by statements in a PrAD. The
value can be up to 8 characters in length.

Default Value

By default, “USERID” is returned.

Property

public static string TerminalId

Purpose

This property is string containing the value for the TERMINAL_ID attributes.
TERMINAL_ID can be placed on a window during window design, and referenced by
statements in a PrAD. The value can be up to 8 characters in length.

Default Value

By default, “DOMAIN” is returned.

ASP.NET Web Client User Exits

720 User Exit Reference Guide

Rebuilding the Exit

This exit is built as part of a common user exit .NET assembly called CA.Gen.exits.dll.
Prerequisites for building the assembly are Microsoft C# compiler and .Net Framework
installed on your system.

Follow these steps:

1. Launch a Command Prompt window. This Command Prompt should be opened with
‘Run as administrator’.

2. Change your current directory to that containing the makeexits.bat file. Typically,
this will be in the CA Gen installed area, .net\exits subdirectory.

3. To build the exit, run makeexits.bat.

Note: See the makeexits.bat file for execution instructions.

4. Redeploy the resulting CA.Gen.exits.dll for use with the appropriate Applications.

com.ca.gen.exits.amrt.SrvrErrorExit C# Server Error Exit

Source Code

SrvrErrorExit.cs

Purpose

This exit class provides methods that are invoked when an error is detected during the
processing of a client to server flow.

Method

public static int ServerError(int failureType,

StringBuilder errorList)

Purpose

ServerError() is invoked when an error is detected during the processing of a
synchronous client to server flow. The parameter failureType describes the origin of this
error and the formatted error message is returned in errorList.

ASP.NET Web Client User Exits

Chapter 8: .NET User Exits 721

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

failureType Input An integer value describing the source of the
failure. It's value can be one of the following:

com.ca.gen.fmrt. ExternalLoader.CFBUILD or ‘0’:

An error in the construction or parsing of a
client/server flow message or response.
com.ca.gen.fmrt. ExternalLoader.XFAL or ‘1’:

An error during the server procedures action block
execution.

com.ca.gen.fmrt. ExternalLoader.XERR or ‘2’:

A communications error occurring somewhere
between construction of a message or response,
and the deciphering of that message by the
partner in this flow.

errorList Input/Output A mutable string, StringBuilder, representing
message strings constructed by and normally
displayed using the ErrorReport dialog to describe
the failure. Each message string is null terminated.
Newline characters for formatting are also present
as required. On a "serverFailedDisplay" return,
errorList, as modified in this exit, will be displayed
in the ErrorReport dialog.

Return Code

The following table gives a brief description of each of the return codes.

Return Code Description

SrvrErrorExit.FAILEDDISPLAY This return value causes the standard error
report dialog to be displayed, with return to
the previous window. The integer value is ‘3’.

ASP.NET Web Client User Exits

722 User Exit Reference Guide

Return Code Description

SrvrErrorExit.FAILEDRESTART This return value suppresses the standard
error report and re-invokes the client
procedure step that originated the dialog
flow. In the case of a failing "procedure step
usage," the parent procedure step is
returned to at the statement immediately
following the Use. In both cases, if
failureCommand is set it is used as the
system command when re-invoking or
returning to the client procedure step. For
flows designed to return the server's exit
state to the client, the exit state set when
re-invoking or returning to the client
procedure step will be the last value set by
the client. The integer value is ‘1’.

SrvrErrorExit.FAILEDTERMINATE This return value will suppress the standard
error report dialog, will not attempt to return
to the client procedure step, and will
redisplay the client window. The integer
value is ‘2’.

SrvrErrorExit.FAILEDDISPLAYCUSTOM This return value will causes a custom error
report dialog to be displayed with NO
FORMATTING. The dialog returns to the
previous window as in previous releases. The
integer value is ‘4’.

Default Behavior

The default return value of SrvrErrorExit.FAILEDDISPLAY causes the standard error
report dialog to be displayed, with return to the previous client window.

Method

public static bool Append(StringBuilder msgOut,

int messageNumber,

string [] parms,

string dialect)

Purpose

This method formats errors with messages unique to your application instead of utilizing
Gen error message formatting.

ASP.NET Web Client User Exits

Chapter 8: .NET User Exits 723

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

msgOut Input/Output Output buffer to append

messageNumber Input/Output The number of the message in csumessages.properties

parms Input/Output The array of parameters for substitution into the message

dialect Input Specifies the dialect

Return Code

True if appends, false otherwise.

Default Behavior

By default, false is returned.

Method

public static bool Append(StringBuilder msgOut, string message)

Purpose

This method formats errors with messages unique to your application instead of utilizing
CA Gen error message formatting.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

msgOut Input/Output Output buffer to append.

message Input/Output Message to append.

Return Code

True if appends, false otherwise.

Default Behavior

By default, false is returned.

ASP.NET Web Client User Exits

724 User Exit Reference Guide

Rebuilding the Exit

This exit is built as part of a common user exit .NET assembly called CA.Gen.exits.dll.
Prerequisites for building the assembly are Microsoft C# compiler and .Net Framework
installed on your system.

Follow these steps:

1. Launch a Command Prompt window. This Command Prompt should be opened with
‘Run as administrator’.

2. Change your current directory to that containing the makeexits.bat file. Typically,
this will be in the CA Gen installed area, .net\exits subdirectory.

3. To build the exit, run makeexits.bat.

Note: See the makeexits.bat file for execution instructions.

4. Redeploy the resulting CA.Gen.exits.dll for use with the appropriate Applications.

com.ca.gen.exits.amrt.UserExit C# User Exit

Source Code

UserExit.cs

Purpose

This class manages interaction with various user customized exits through an
instantiated object.

Constructor

public UserExit()

Purpose

This constructor is invoked as a part of a UserExit class instantiation to initialize
properties to its base default value.

Arguments

None

Return Code

The UserExit object initialized with the default property values.

ASP.NET Web Client User Exits

Chapter 8: .NET User Exits 725

Default Behavior

This constructor initializes the properties as follows.

Property Value

CurrencySign LocaleExit.DEF_CURR

ThousandsSeparator LocaleExit.DEF_THOU

DecimalSeparator LocaleExit.DEF_DECI

DateSeparator LocaleExit.DEF_DATE

TimeSeparator LocaleExit.DEF_TIME

DateOrder LocaleExit.DEF_ORDER

MessageFile Uninitialized

DialectName Uninitialized

Constructor

public UserExit(char thousands,

char decimall,

string message,

string dialect)

Purpose

This constructor instantiates the UserExit class with its properties initialized.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

thousands Input Character that contains the initial thousands
separator.

decimall Input Character that contains the initial decimal point.

message Input Two letter string that contains the initial message
file selection key.

dialect Input The dialect value that matches the value defined
in the model.

ASP.NET Web Client User Exits

726 User Exit Reference Guide

Return Code

The UserExit object with the initialized property values based on the given arguments.

Default Behavior

This constructor initializes the properties as follows.

Property Value

CurrencySign Return value of invoking
LocaleExit.getLocalCurrencySymbol() with
_CurrencySign field that is initialized with UserExit()
constructor.

ThousandsSeparator Return value of invoking
LocaleExit.getLocalThousandsSep() with the specified
thousands arguments.

DecimalSeparator Return value of invoking
LocaleExit.getLocalDecimalSep() with the specified
decimall arguments

DateSeparator Return value of invoking

LocaleExit.getLocalDateSep() with _DateSeparator field
that is initialized with UserExit() constructor.

TimeSeparator Return value of invoking

LocaleExit.getLocalDateSep() with _TimeSeparator field
that is initialized with UserExit() constructor.

DateOrder Return value of invoking

LocaleExit.getLocalDateSep() with _DateOrder field that
is initialized with UserExit() constructor.

MessageFile The specified message argument.

DialectName The specified Dialect argument with space padded to 8
characters.

Property

public char CurrencySign

Purpose

This read-only property contains the currency sign for the current UserExit object.

ASP.NET Web Client User Exits

Chapter 8: .NET User Exits 727

Default Behavior

The default behavior is returning the value initialized in constructor. For more detail,
please see the constructor section above.

Property

public char ThousandsSeparator

Purpose

This read-only property contains the thousands separator for the current UserExit
object.

Default Behavior

The default behavior is returning the value initialized in constructor. For more detail,
please see the constructor section above.

Property

public char DecimalSeparator

Purpose

This read-only property contains the Decimal Point for the current UserExit object.

Default Behavior

The default behavior is returning the value initialized in constructor. For more detail,
please see the constructor section above.

Property

public char DateSeparator

Purpose

This read-only property contains the Date Separator for the current UserExit object.

Default Behavior

The default behavior is returning the value initialized in constructor. For more detail,
please see the constructor section above.

Property

public char TimeSeparator

ASP.NET Web Client User Exits

728 User Exit Reference Guide

Purpose

This read-only property contains the Time Separator for the current UserExit object.

Default Behavior

The default behavior is returning the value initialized in constructor. For more detail,
please see the constructor section above.

Property

public char DateOrder

Purpose

This read-only property contains the Date Order for the current UserExit object. The
following is the possible value for this property.

Symbol Value Description

LocaleExit.DATEORDER_MDY 0 The date order is “MMDDYY”. This
value is also specified with
LocaleExit.DEF_ORDER.

LocaleExit.DATEORDER_DMY 1 The date order is “DDMMYY”.

LocaleExit.DATEORDER_YDM 2 The date order is “YYDDMM”.

Default Behavior

The default behavior is returning the value initialized in constructor. For more detail,
please see the constructor section above.

Property

public string MessageFile

Purpose

This read-only property contains the two letter key to select the message file. The
following table contains association between key and message file.

Key Message Filename

WR ief_Error.js

AR ief_Error_ar.js

ASP.NET Web Client User Exits

Chapter 8: .NET User Exits 729

Key Message Filename

DA ief_Error_da.js

DU ief_Error_du.js

FI ief_Error_fi.js

FR ief_Error_fr.js

GE ief_Error_ge.js

HB ief_Error_hb.js

IT ief_Error_it.js

JA ief_Error_ja.js

KO ief_Error_ko.js

NO ief_Error_no.js

SP ief_Error_sp.js

SW ief_Error_sw.js

<none> ief_Error.js

Default Behavior

The default behavior is returning the value initialized in constructor. For more detail,
please see the constructor section above.

Property

static public string SystemId

Purpose

This read-only property provides the system ID string attribute.

Default Behavior

The default behavior is returning the value in the property SessionIdExit.SystemId with
its value is padded to 8 characters with space.

Property

static public string UserId

Purpose

This read-only property provides the user ID string attribute.

ASP.NET Web Client User Exits

730 User Exit Reference Guide

Default Behavior

The default behavior is returning the value in the property SessionIdExit.UserId with its
value is padded to 8 characters with space.

Property

static public string TerminalId

Purpose

This read-only property provides the terminal ID string attribute.

Default Behavior

The default behavior is returning the value in the property SessionIdExit. TerminalId
with its value is padded to 8 characters with space.

Property

static public string DialectName

Purpose

This read-only property provides the current dialect name for the load module.

Default Behavior

The default behavior is returning the value initialized in constructor. For more detail,
please see the constructor section above.

Method

public static int GetDefaultYear (int inYear, int currentYear)

Purpose

GetDefaultYear () is invoked when input editing occurs on a date or timestamp field, and
the edit pattern specifies a 2 character year value. The 4-digit current year and the
2-digit input year are passed to GetDefaultYear (). By default, the current hundred year
value is merely added to the 2 character year value and returned. This method allows
the implementation of a customer-specified algorithm addressing Year-2000 concerns.

The default algorithm returns the current hundred years appended with two digit input
year. The private method ImputeCenturies() enables an alternative algorithm,
implementing a sliding range of hundred year values based on the input decade.

ASP.NET Web Client User Exits

Chapter 8: .NET User Exits 731

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

inYear Input Integer containing the 2 or 4 digit year.

currentYear Input Integer containing the current year.

Return Code

Integer containing the 4 digit year.

Default Behavior

By default, this method invokes DefaultYearExit.GetDefaultYear(inYear, currentYear)
with the given argument to this method and the return value is from the invoked
method.

Method

private static string padAndTrim (string str, int length, char padChar)

Purpose

This method in used internally to trim and pad the given string with the specified
arguments.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

str Input String that is passed in.

length Input Integer containing the length of the string.

padchar Input Char containing the pad character.

Return Code

The passed in string is padded and trimmed as specified.

Exits in <CAGen-root>\.net\exits\src\Common.cs file Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

732 User Exit Reference Guide

Default Behavior

The passed in string is padded and trimmed as specified.

Rebuilding the Exit

This exit is built as part of a common user exit .NET assembly called CA.Gen.exits.dll.
Prerequisites for building the assembly are Microsoft C# compiler and .Net Framework
installed on your system.

Follow these steps:

1. Launch a Command Prompt window. This Command Prompt should be opened with
‘Run as administrator’.

2. Change your current directory to that containing the makeexits.bat file. Typically,
this will be in the CA Gen installed area, .net\exits subdirectory.

3. To build the exit, run makeexits.bat.

Note: See the makeexits.bat file for execution instructions.

4. Redeploy the resulting CA.Gen.exits.dll for use with the appropriate Applications.

Exits in <CAGen-root>\.net\exits\src\Common.cs file Used by
CA Gen ASP.NET Web Clients and CA Gen .NET Servers

This section describes the exits that are located in the
<CAGen-root>\.net\exits\src\Common.cs file and used by both the CA Gen ASP.NET
Web Clients and CA Gen .NET Servers.

com.ca.gen.exits.common.CompareExit C# Compare Exit

Source Code

Common.cs

Purpose

CompareExit is a runtime class used to compare various classes/types with each other.

Method

public static int CompareTo(decimal parm1, decimal parm2)

Exits in <CAGen-root>\.net\exits\src\Common.cs file Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 733

Purpose

Compares two decimals and returns a negative if the first instance is less than the
second; a positive if the first instance is greater than the second; 0 if the two instances
are equal.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

parm1 Input a decimal to be compared with

parm2 Input a decimal to be compared to

Return Code

A negative, zero, or a positive integer as this object is less than, equal to, or greater than
the specified object.

Default Behavior

Delegate the comparison to parm1.CompareTo() method.

Method

public static int CompareTo(char parm1, char parm2)

Purpose

Compares two chars and returns a negative if the first instance is less than the second; a
positive if the first instance is greater than the second; 0 if the two instances are equal.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

parm1 Input a char to be compared with

parm2 Input a char to be compared to

Exits in <CAGen-root>\.net\exits\src\Common.cs file Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

734 User Exit Reference Guide

Return Code

A negative, zero, or a positive integer as this object is less than, equal to, or greater than
the specified object.

Default Behavior

Delegate the comparison to parm1.CompareTo() method.

Method

public static int CompareTo(double parm1, double parm2)

Purpose

Compares two doubles and returns a negative if the first instance is less than the
second; a positive if the first instance is greater than the second; 0 if the two instances
are equal.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

parm1 Input a double to be compared with

parm2 Input a double to be compared to

Return Code

A negative, zero, or a positive integer as this object is less than, equal to, or greater than
the specified object.

Default Behavior

Delegate the comparison to parm1.CompareTo() method.

Method

public static int CompareTo(float parm1, float parm2)

Purpose

Compares two floats and returns a negative if the first instance is less than the second; a
positive if the first instance is greater than the second; 0 if the two instances are equal.

Exits in <CAGen-root>\.net\exits\src\Common.cs file Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 735

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

parm1 Input a float to be compared with

parm2 Input a float to be compared to

Return Code

A negative, zero, or a positive integer as this object is less than, equal to, or greater than
the specified object.

Default Behavior

Delegate the comparison to parm1.CompareTo() method.

Method

public static int CompareTo(int parm1, int parm2)

Purpose

Compares two ints and returns a negative if the first instance is less than the second; a
positive if the first instance is greater than the second; 0 if the two instances are equal.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

parm1 Input a int to be compared with

parm2 Input a int to be compared to

Return Code

A negative, zero, or a positive integer as this object is less than, equal to, or greater than
the specified object.

Default Behavior

Delegate the comparison to parm1.CompareTo() method.

Exits in <CAGen-root>\.net\exits\src\Common.cs file Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

736 User Exit Reference Guide

Method

public static int CompareTo(long parm1, long parm2)

Purpose

Compares two longs and returns a negative if the first instance is less than the second; a
positive if the first instance is greater than the second; 0 if the two instances are equal.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

parm1 Input a long to be compared with

parm2 Input a long to be compared to

Return Code

A negative, zero, or a positive integer as this object is less than, equal to, or greater than
the specified object.

Default Behavior

Delegate the comparison to parm1.CompareTo() method.

Method

public static int CompareTo(object parm1, object parm2)

Purpose

Compares two objects and returns a negative if the first instance is less than the second;
a positive if the first instance is greater than the second; 0 if the two instances are
equal.

For comparison purposes, nulls are considered equal and a null compared to a non-null
is always less than the non-null value.

Exits in <CAGen-root>\.net\exits\src\Common.cs file Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 737

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

parm1 Input an object to be compared with

parm2 Input an object to be compared to

Return Code

A negative, zero or a positive integer as this object is less than, equal to, or greater than
the specified object.

Also this method may throw the InvalidCastException if the object does not implement
a 'int CompareTo(Object)' interface like the Comparable interface.

Default Behavior

Depending on the type of parameters, this method delegate the comparison to
CompareTo(parm1, parm2) methods defined in this class. If the type of the parameters
does not match any of CompareTo(parm1, parm2) method, the method uses .NET
Reflection mechanism to find the appropriate CompareTo method for the given types.

Method

public static int CompareTo(short parm1, short parm2)

Purpose

Compares two shorts and returns a negative if the first instance is less than the second;
a positive if the first instance is greater than the second; 0 if the two instances are
equal.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

parm1 Input a short to be compared with

parm2 Input a short to be compared to

Exits in <CAGen-root>\.net\exits\src\Common.cs file Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

738 User Exit Reference Guide

Return Code

A negative, zero, or a positive integer as this object is less than, equal to, or greater than
the specified object.

Default Behavior

Delegate the comparison to parm1.CompareTo() method.

Method

public static int CompareTo(string parm1, string parm2)

Purpose

Compares two strings and returns a negative if the first instance is less than the second;
a positive if the first instance is greater than the second; 0 if the two instances are
equal.

The lengths do not have to be identical, they will still compare as long as characters in
the extra length area of the larger string are spaces.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

parm1 Input a string to be compared with

parm2 Input a string to be compared to

Return Code

A negative, zero, or a positive integer as this object is less than, equal to, or greater than
the specified object.

Default Behavior

The default behavior of this method is as follows.

Check null for both parameters.

Trim the space from strings.

Delegate the comparison to parm1.CompareTo() method.

Exits in <CAGen-root>\.net\exits\src\Common.cs file Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 739

Method

public static int CompareTo(string parm1, string parm2 , int length)

Purpose

Compares two strings and returns a negative if the first instance is less than the second;
a positive if the first instance is greater than the second; 0 if the two instances are
equal. Only the characters up to the indicated length are compared. All characters after
that point are ignored.

The lengths do not have to be identical, they will still compare as long as characters in
the extra length area of the larger string are spaces.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

parm1 Input a string to be compared with

parm2 Input a string to be compared to

length Input an int to indicate the length of the strings to
compare

Return Code

A negative, zero, or a positive integer as this object is less than, equal to, or greater than
the specified object.

Default Behavior

The default behavior of this method is as follows.

Check null for both parameters.

Trim the given strings to the specified length.

Delegate the comparison to parm1.CompareTo() method.

Method

public static int CompareTo(DateTime parm1, DateTime parm2)

Exits in <CAGen-root>\.net\exits\src\Common.cs file Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

740 User Exit Reference Guide

Purpose

Compares two DateTime instances and returns a negative if the first instance is less than
the second; a positive if the first instance is greater than the second; 0 if the two
instances are equal.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

parm1 Input a DateTime to be compared with

parm2 Input a DateTime to be compared to

Return Code

A negative, zero, or a positive integer as this object is less than, equal to, or greater than
the specified object.

Default Behavior

Delegate the comparison to parm1.CompareTo() method.

Rebuilding the Exit

This exit is built as part of a common user exit .NET assembly called CA.Gen.exits.dll.
Prerequisites for building the assembly are Microsoft C# compiler and .Net Framework
installed on your system.

Follow these steps:

1. Launch a Command Prompt window. This Command Prompt should be opened with
‘Run as administrator’.

2. Change your current directory to that containing the makeexits.bat file. Typically,
this will be in the CA Gen installed area, .net\exits subdirectory.

3. To build the exit, run makeexits.bat.

Note: See the makeexits.bat file for execution instructions.

4. Redeploy the resulting CA.Gen.exits.dll for use with the appropriate Applications.

Exits in <CAGen-root>\.net\exits\src\Common.cs file Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 741

com.ca.gen.exits.common.LowerCaseExit C# Lower Case Exit

Source Code

Common.cs

Purpose

LowerCaseExit is a runtime class used to lowercase the given string.

Method

public static string LowerCase(string inStr)

Purpose

LowerCase is a used to convert a given string to lowercase, returning a string as well.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

inStr Input a string to be lowercased

Return Code

A string representing the lowercased version of this object.

Default Behavior

By default, the string.toLower() function is used.

A null input parameter will result in a empty string being returned.

Exits in <CAGen-root>\.net\exits\src\Common.cs file Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

742 User Exit Reference Guide

Rebuilding the Exit

This exit is built as part of a common user exit .NET assembly called CA.Gen.exits.dll.
Prerequisites for building the assembly are Microsoft C# compiler and .Net Framework
installed on your system.

Follow these steps:

1. Launch a Command Prompt window. This Command Prompt should be opened with
‘Run as administrator’.

2. Change your current directory to that containing the makeexits.bat file. Typically,
this will be in the CA Gen installed area, .net\exits subdirectory.

3. To build the exit, run makeexits.bat.

Note: See the makeexits.bat file for execution instructions.

4. Redeploy the resulting CA.Gen.exits.dll for use with the appropriate Applications.

com.ca.gen.exits.common.UpperCaseExit C# Upper Case Exit

Source Code

Common.cs

Purpose

UpperCaseExit is a runtime class used to lowercase the given string.

Method

public static string UpperCase(string inStr)

Purpose

UpperCase is a used to convert a given string to uppercase, returning a string as well.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

inStr Input a string to be uppercased

Exits in <CAGen-root>\.net\exits\src\Common.cs file Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 743

Return Code

A string representing the uppercased version of this object.

Default Behavior

By default, the string.toUpper() function is used.

A null input parameter will result in a empty string being returned.

Rebuilding the Exit

This exit is built as part of a common user exit .NET assembly called CA.Gen.exits.dll.
Prerequisites for building the assembly are Microsoft C# compiler and .Net Framework
installed on your system.

Follow these steps:

1. Launch a Command Prompt window. This Command Prompt should be opened with
‘Run as administrator’.

2. Change your current directory to that containing the makeexits.bat file. Typically,
this will be in the CA Gen installed area, .net\exits subdirectory.

3. To build the exit, run makeexits.bat.

Note: See the makeexits.bat file for execution instructions.

4. Redeploy the resulting CA.Gen.exits.dll for use with the appropriate Applications.

com.ca.gen.exits.common.WebServiceMethodCallExit- C # CALL EXTERNAL User
Exit

Source Code

Common.cs

Purpose

This user exit provides one method to modify the URL used to access a web service
method at runtime and another method to modify the default truncation behavior used
for return values during a web service call.

modifyURL Method-Modifies the URL

Public Static Final String modifyURL(String url)

Exits in <CAGen-root>\.net\exits\src\Common.cs file Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

744 User Exit Reference Guide

Purpose

This method allows the URL used to access a web service method to be modified at
runtime.

Arguments

The following table contains the arguments of the method:

Name Output Description

String URL The URL of the web service.

Return Code

The string representation of the URL of the web service.

Default Behavior

This method returns the URL of the web service that was added when the call external
statement was created. The default behavior is to return the URL parameter unchanged.

ABRT_xcall_ws_gentype_truncate_exit CALL EXTERNAL Data Truncation
long ABRT_xcall_ws_gentype_truncate_exit (void)

Purpose

By default, when the size of the web service response is greater than the matched Gen
data type, the response is truncated. The truncation is governed by the table below.

Use this user exit to override the default behavior. The user exit sets the matched Gen
data type flag so that the response is not truncated but an error is raised instead.

ABRT XCall WS Gentype Truncation Table:

The following table depicts the default behavior. The user exit sets the flag represented
in the Overrides the Flag column. The default behavior overrides the flag.

XSD data
type

(from)

Gen data type

(to)

Default truncation behavior Overrides the flag

string Text Data truncated to fit in
destination size.

GENTYPE_TEXT

string BLOB Data truncated to fit in
destination size.

GENTYPE_BLOB

Exits in <CAGen-root>\.net\exits\src\Common.cs file Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 745

XSD data
type

(from)

Gen data type

(to)

Default truncation behavior Overrides the flag

anyURI Text Data truncated to fit in
destination size.

GENTYPE_TEXT

QName Text Data truncated to fit in
destination size.

GENTYPE_TEXT

NOTATION Text Data truncated to fit in
destination size.

GENTYPE_TEXT

duration Text Data truncated to fit in
destination size.

GENTYPE_TEXT

base64Binar
y

Text Data truncated to fit in
destination size.

GENTYPE_TEXT

base64Binar
y

BLOB Data truncated to fit in
destination size.

GENTYPE_BLOB

hexBinary Text Data truncated to fit in
destination size.

GENTYPE_TEXT

hexBinary BLOB Data truncated to fit in
destination size.

GENTYPE_BLOB

float Number (length
<= 15,

decimal points
!=0,

decimal precision
= false)

Data will be truncated at
decimal places.

GENTYPE_NUMERIC_D
OUBLE

double Number (length
<= 15,

decimal points
!=0,

decimal precision
= false)

Data will be truncated at
decimal places.

GENTYPE_NUMERIC_D
OUBLE

decimal Number (length
<=18,

decimal precision
=true)

Data will be truncated at
decimal places

and other truncation results
in Error.

GENTYPE_NUMERIC_P
RECISION

short

unsignedsh
ort

Number (length
<= 4)

Data will be truncated if it is
> SHORT_MAX

GENTYPE_NUMERIC_S
HORT

Exits in <CAGen-root>\.net\exits\src\Common.cs file Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

746 User Exit Reference Guide

XSD data
type

(from)

Gen data type

(to)

Default truncation behavior Overrides the flag

integer

long

int

nonPositiveI
nteger

nonNegativ
eInteger

negativeInt
eger

positiveInte
ger

unsignedLo
ng

unsignedInt

Number (length
<= 9)

Data will be truncated if it is
> LONG_MAX

GENTYPE_NUMERIC_L
ONG

Note: Data map pairs which are not mentioned in the table are not considered for
truncation. The following XSD data types are not truncated:

■ boolean

■ datetime

■ Time

■ Date

■ gYearMonth

■ gYear

■ gMonthDay

■ gDay

■ gMonth

■ Bytes

For example, when the web service response of XSD datetime data type are mapped to
Text, the response is not truncated.

Arguments

None.

Exits in <CAGen-root>\.net\exits\src\msgobj Directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 747

Return Code

A long value that represents one or more flags which specify that the web service
response for the given data types are not truncated but instead an error is raised
instead.

Default Behavior

If the web service response size is greater than the Gen data type, the web service
response is truncated. For more information about the default behavior, see the ABRT
XCall WS Gentype Truncation Table in the Purpose topic.

Rebuilding the Exit

This exit is built as part of a common user exit .NET assembly called CA.Gen.exits.dll.
Prerequisites for building the assembly are Microsoft C# compiler and .Net Framework
installed on your system.

Follow these steps:

1. Launch a Command Prompt window. This Command Prompt should be opened with
‘Run as administrator’.

2. Change your current directory to that containing the makeexits.bat file. Typically,
this will be in the CA Gen installed area, .net\exits subdirectory.

3. To build the exit, run makeexits.bat.

Note: See the makeexits.bat file for execution instructions.

4. Redeploy the resulting CA.Gen.exits.dll for use with the appropriate Applications.

Related User Exits

None.

Exits in <CAGen-root>\.net\exits\src\msgobj Directory Used by
CA Gen ASP.NET Web Clients and CA Gen .NET Servers

This section describes the exits that are located in the
<CAGen-root>\.net\exits\src\msgobj directory and used by both the CA Gen ASP.NET
Web Clients and CA Gen .NET Servers.

Exits in <CAGen-root>\.net\exits\src\msgobj Directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

748 User Exit Reference Guide

com.ca.gen.exits.msgobj.cfb.CFBDynamicMessageDecryptionExit C# CFB
Dynamic Message Decryption

Source Code

CFBDynamicMessageDecryptionExit.cs

Purpose

This class will be called after a CFB message has been received from a server.

Constructor

private CFBDynamicMessageDecryptionExit()

Purpose

The default constructor for this class is private and is only invoked from the
GetInstance() method to provide the default caching mechanism.

Arguments

None

Return Code

This constructor returns The CFBDynamicMessageDecryptionExit object.

Default Behavior

This constructor returns The CFBDynamicMessageDecryptionExit object.

Method

public static CFBDynamicMessageDecryptionExit GetInstance()

Purpose

This method will be invoked after a CFB message has been received from a server. This
method obtains an instance of CFBDynamicMessageDecryptionExit class and initializes it
with the private Init().

Arguments

None

Exits in <CAGen-root>\.net\exits\src\msgobj Directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 749

Return Code

This method returns the initialized CFBDynamicMessageDecryptionExit object.

Default Behavior

The method uses a simple caching mechanism to obtain an instance of
CFBDynamicMessageDecryptionExit class and initializes it with the private method Init()
in the class. Then the method returns the initialized object.

Method

public void FreeInstance()

Purpose

This method will be invoked to de-allocate the object obtained with GetInstance().

Arguments

None

Return Code

None

Default Behavior

The default behavior of the method is simply returning the current instance into free
instance array to be used for next GetInstance() invocation.

Method

public byte [] decryptData(byte [] data, int maxLength)

Purpose

This method is used to allow the user to decrypt the data portion of the message.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

Data Input The byte array to be decrypted.

Exits in <CAGen-root>\.net\exits\src\msgobj Directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

750 User Exit Reference Guide

Name I/O Description

maxLength Input Integer parameter indicates the largest byte
array that can be returned.

Return Code

The return value is the byte array containing the decrypted data.

Default Behavior

By default the byte array passed in is unchanged and no real decryption occurs. The user
should code their own algorithm to decrypt the data.

The byte array passed in can be modified in place and then returned, or if needed a local
byte array can be allocated (larger or smaller if needed), populated and returned.

To indicate an error condition, throw a CSUException. That is, throw new
CSUException("CFBDynamicMessageDecryptionExit:GetInstance","error message")).

Method

private void Init()

Purpose

This private method is invoked internally from the GetInstance () to initialize the current
instance.

Arguments

None

Return Code

None

Default Behavior

The default behavior of the method is nothing.

Property

public byte DecryptionType

Exits in <CAGen-root>\.net\exits\src\msgobj Directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 751

Purpose

This read-only byte property contains the value to specify whether decryption should be
done. The valid values are:

CFBDynamicMessageDecryptionExit.DECRYPTION_NO

CFBDynamicMessageDecryptionExit.DECRYPTION_YES

Default Behavior

The default behavior is returning the value
CFBDynamicMessageDecryptionExit.DECRYPTION_NO.

Rebuilding the Exit

This exit is built as part of a common user exit .NET assembly called CA.Gen.exits.dll.
Prerequisites for building the assembly are Microsoft C# compiler and .Net Framework
installed on your system.

Follow these steps:

1. Launch a Command Prompt window. This Command Prompt should be opened with
‘Run as administrator’.

2. Change your current directory to that containing the makeexits.bat file. Typically,
this will be in the CA Gen installed area, .net\exits subdirectory.

3. To build the exit, run makeexits.bat.

Note: See the makeexits.bat file for execution instructions.

4. Redeploy the resulting CA.Gen.exits.dll for use with the appropriate Applications.

com.ca.gen.exits.msgobj.cfb.CFBDynamicMessageEncodingyExit C# CFB
Dynamic Message Encoding Exit

Source Code

CFBDynamicMessageEncodingExit.cs

Purpose

This class will be called from the CFBDynamicMessage.

Constructor

public CFBDynamicMessageEncodingExit()

Exits in <CAGen-root>\.net\exits\src\msgobj Directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

752 User Exit Reference Guide

Purpose

This is a default constructor.

Arguments

None

Return Code

This constructor returns The CFBDynamicMessageEncodingExit object.

Default Behavior

This constructor returns The CFBDynamicMessageEncodingExit object.

Method

public static int ServerCodePage(String tran)

Purpose

This method will be called to retrieve the message text encoding for the named host
and transaction.

The runtimes will always call ServerCodePage to find the correct encoding for each
transaction on each server before building the common format message to be sent.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

Tran Input Transaction name string associated with this
request.

Return Code

This method returns the default encoding.

Default Behavior

The default behavior returns the default encoding. This behavior may be change to
return any valid encoding number. The tran argument may be used to select different
encodings for each transaction.

Exits in <CAGen-root>\.net\exits\src\msgobj Directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 753

Rebuilding the Exit

This exit is built as part of a common user exit .NET assembly called CA.Gen.exits.dll.
Prerequisites for building the assembly are Microsoft C# compiler and .Net Framework
installed on your system.

Follow these steps:

1. Launch a Command Prompt window. This Command Prompt should be opened with
‘Run as administrator’.

2. Change your current directory to that containing the makeexits.bat file. Typically,
this will be in the CA Gen installed area, .net\exits subdirectory.

3. To build the exit, run makeexits.bat.

Note: See the makeexits.bat file for execution instructions.

4. Redeploy the resulting CA.Gen.exits.dll for use with the appropriate Applications.

com.ca.gen.exits.msgobj.cfb.CFBDynamicMessageEncryptionExit C# CFB
Dynamic Message Encryption Exit

Source Code

CFBDynamicMessageEncryptionExit.cs

Purpose

This class will be called from the CFBDynamicMessage to encrypt message.

Constructor

private CFBDynamicMessageEncryptionExit()

Purpose

The default constructor for this class is private and is only invoked from the
GetInstance() method to provide the default caching mechanism.

Arguments

None

Return Code

This constructor returns The CFBDynamicMessageEncryptionExit object.

Exits in <CAGen-root>\.net\exits\src\msgobj Directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

754 User Exit Reference Guide

Default Behavior

This constructor returns The CFBDynamicMessageEncryptionExit object.

Method

public static CFBDynamicMessageEncryptionExit

GetInstance(string newTranCode,

string newNextLocation,

string newUserid)

Purpose

This method obtains an instance of CFBDynamicMessageEncryptionExit class and
initializes it with the private Init().

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

newTranCode Input String containing the new tranCode

newNextLocation Input String containing the new nextLocation

newUserid Input String containing the new userID

Return Code

This method returns the initialized CFBDynamicMessageEncryptionExit object.

Default Behavior

The method uses a simple caching mechanism to obtain an instance of
CFBDynamicMessageEncryptionExit class and initializes it with the private method Init()
in the class. Then the method returns the initialized object.

Method

public void FreeInstance()

Purpose

This method will be invoked to de-allocate the object obtained with GetInstance().

Exits in <CAGen-root>\.net\exits\src\msgobj Directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 755

Arguments

None

Return Code

None

Default Behavior

The default behavior of the method is simply returning the current instance into free
instance array to be used for next GetInstance() invocation.

Method

public byte [] encryptData(byte [] data, int maxLength)

Purpose

This method is used to allow the user to encrypt the data portion of the message.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

Data Input The byte array to be encrypted.

maxLength Input Integer parameter indicates the largest byte
array that can be returned.

Return Code

The return value is the byte array containing the encrypted data.

Default Behavior

By default the byte array passed in is unchanged and no real encryption occurs. The user
should code their own algorithm to encrypt the data.

The byte array passed in can be modified in place and then returned, or if needed a local
byte array can be allocated (larger or smaller if needed), populated and returned.

To indicate an error condition, throw a CSUException. That is, throw new
CSUException("CFBDynamicMessageEncryptionExit:GetInstance", "error message")).

Exits in <CAGen-root>\.net\exits\src\msgobj Directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

756 User Exit Reference Guide

Method

private void Init(string newTranCode,

string newNextLocation,

string newUserid)

Purpose

This private method is invoked internally from the GetInstance () to initialize the current
instance.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

newTranCode Input String containing the new tranCode

newNextLocation Input String containing the new nextLocation

newUserid Input String containing the new userID

Return Code

None

Default Behavior

The default behavior of the method is assigning the specified argument to instance field.

Property

public byte EncryptionType

Purpose

This read-only byte property contains the value to specify whether encryption should be
done. The valid values are:

CFBDynamicMessageEncryptionExit.ENCRYPTION_NO

CFBDynamicMessageEncryptionExit.ENCRYPTION_YES

Default Behavior

The default behavior is returning the value
CFBDynamicMessageEncryptionExit.ENCRYPTION_NO.

Exits in <CAGen-root>\.net\exits\src\msgobj Directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 757

Rebuilding the Exit

This exit is built as part of a common user exit .NET assembly called CA.Gen.exits.dll.
Prerequisites for building the assembly are Microsoft C# compiler and .Net Framework
installed on your system.

Follow these steps:

1. Launch a Command Prompt window. This Command Prompt should be opened with
‘Run as administrator’.

2. Change your current directory to that containing the makeexits.bat file. Typically,
this will be in the CA Gen installed area, .net\exits subdirectory.

3. To build the exit, run makeexits.bat.

Note: See the makeexits.bat file for execution instructions.

4. Redeploy the resulting CA.Gen.exits.dll for use with the appropriate Applications.

com.ca.gen.exits.msgobj.cfb.CFBDynamicMessageSecurityExit C# CFB Dynamic
Message Security Exit

Source Code

CFBDynamicMessageSecurityExit.cs

Purpose

This class will be called from the CFBDynamicMessage.

Constructor

private CFBDynamicMessageSecurityExit()

Purpose

The default constructor for this class is private and is only invoked from the
GetInstance() method to provide the default caching mechanism.

Arguments

None

Return Code

This constructor returns The CFBDynamicMessageSecurityExit object.

Exits in <CAGen-root>\.net\exits\src\msgobj Directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

758 User Exit Reference Guide

Default Behavior

This constructor returns The CFBDynamicMessageSecurityExit object.

Method

public static CFBDynamicMessageSecurityExit

GetInstance (string newUserid,

string newPassword,

string newTranCode,

string newNextLocation)

Purpose

This method obtains an instance of CFBDynamicMessageSecurityExit class and initializes
it with the private Init().

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

newUserid Input String containing the new userID

newPassword Input String containing the new password

newTranCode Input String containing the new tranCode

newNextLocation Input String containing the new nextLocation

Return Code

This method returns the initialized CFBDynamicMessageSecurityExit object.

Default Behavior

The method uses a simple caching mechanism to obtain an instance of
CFBDynamicMessageSecurityExit class and initializes it with the private method Init() in
the class. Then the method returns the initialized object.

Method

public void FreeInstance()

Purpose

This method will be invoked to de-allocate the object obtained with GetInstance().

Exits in <CAGen-root>\.net\exits\src\msgobj Directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 759

Arguments

None

Return Code

None

Default Behavior

The default behavior of the method is simply returning the current instance into free
instance array to be used for next GetInstance() invocation.

Method

public byte [] getSecurityToken(int maxLength)

Purpose

This method is used to allow the user to pass back a security token to be passed in the
enhanced security mode.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

maxLength Input Integer parameter indicates the largest byte
array that can be returned.

Return Code

The return value is the byte array containing a security token.

Default Behavior

By default a 0 length array is returned.

To indicate an error condition, throw a CSUException. That is, throw new
CSUException("CFBDynamicMessageSecurityExit:GetInstance","error message")).

Exits in <CAGen-root>\.net\exits\src\msgobj Directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

760 User Exit Reference Guide

Method

private void Init(string newUserid,

string newPassword,

string newTranCode,

string newNextLocation)

Purpose

This private method is invoked internally from the GetInstance () to initialize the current
instance.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

newUserid Input String containing the new userID

newPassword Input String containing the new password

newTranCode Input String containing the new tranCode

newNextLocation Input String containing the new nextLocation

Return Code

None

Default Behavior

The default behavior of the method is assigning the specified argument to instance field.

Property

public byte SecurityType

Purpose

This read-only byte property contains the value to specify what type of security should
be used. The valid return values are:

CFBDynamicMessageSecurityExit.SECURITY_NO

CFBDynamicMessageSecurityExit.SECURITY_STANDARD

CFBDynamicMessageSecurityExit.SECURITY_ENHANCED

Exits in <CAGen-root>\.net\exits\src\msgobj Directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 761

Default Behavior

The default behavior is returning the value:

CFBDynamicMessageSecurityExit.SECURITY_NO

Property

public bool useCMSecurity

Purpose

This read-only boolean property contains the value to specify whether the Client
Manager/Comm Bridge to use the userID and password values for enhanced security
validation or the standard Client Manager/Comm Bridge target server security
configuration.

If the property contains true, the Client Manager/Comm Bridge uses the userID and
password values for enhanced security validation.

If the property contains false, the Client Manager/Comm Bridge uses the standard Client
Manager/Comm Bridge target server security configuration.

Default Behavior

The default behavior is returning the false.

Rebuilding the Exit

This exit is built as part of a common user exit .NET assembly called CA.Gen.exits.dll.
Prerequisites for building the assembly are Microsoft C# compiler and .Net Framework
installed on your system.

Follow these steps:

1. Launch a Command Prompt window. This Command Prompt should be opened with
‘Run as administrator’.

2. Change your current directory to that containing the makeexits.bat file. Typically,
this will be in the CA Gen installed area, .net\exits subdirectory.

3. To build the exit, run makeexits.bat.

Note: See the makeexits.bat file for execution instructions.

4. Redeploy the resulting CA.Gen.exits.dll for use with the appropriate Applications.

CA Gen .NET Servers

762 User Exit Reference Guide

CA Gen .NET Servers

This section describes the exits that are located in the <CAGen-root>\.net\exits\src\scrt
directory and used by the CA Gen .NET Servers.

com.ca.gen.exits.scrt.AuthorizationExit C# Server Authorization Exit

Source Code

AuthorizationExit.cs

Purpose

This class provides the methods for the security interface. The methods in the class are
called by the server manager. This module may be customized by the customer to
perform transaction-level security.

Constructor

private AuthorizationExit()

Purpose

The default constructor for this class is private and is only invoked from the
GetInstance() method to provide the default caching mechanism.

Arguments

None

Return Code

This constructor returns The AuthorizationExit object.

Default Behavior

This constructor returns The AuthorizationExit object.

Method

public static AuthorizationExit

GetInstance(string loadModuleName,

string procedureStepName)

CA Gen .NET Servers

Chapter 8: .NET User Exits 763

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

loadModuleName Input string containing the loadModuleName

procedureStepName Input string containing the procedureStepName

Return Code

This method obtains an instance of AuthorizationExit class and initializes it with the
private Init().

Default Behavior

The method uses a simple caching mechanism to obtain an instance of AuthorizationExit
class and initializes it with the private method Init() in the class. Then the method
returns the initialized object.

Method

public void FreeInstance()

Purpose

This method will be invoked to de-allocate the object obtained with GetInstance().

Arguments

None

Return Code

None

Default Behavior

The default behavior of the method is simply returning the current instance into free
instance array to be used for next GetInstance() invocation.

Method

public void Authorize()

CA Gen .NET Servers

764 User Exit Reference Guide

Purpose

This method will be invoked in server procedure to provide authorization.

Arguments

None

Return Code

To indicate an error condition, throw a GenException (i.e. throw new
GenException("error message")).

To indicate an access failure, throw an UnauthorizedAccessException.

Default Behavior

The default behavior of the method is nothing.

Rebuilding the Exit

This exit is built as part of a common user exit .NET assembly called CA.Gen.exits.dll.
Prerequisites for building the assembly are Microsoft C# compiler and .Net Framework
installed on your system.

Follow these steps:

1. Launch a Command Prompt window. This Command Prompt should be opened with
‘Run as administrator’.

2. Change your current directory to that containing the makeexits.bat file. Typically,
this will be in the CA Gen installed area, .net\exits subdirectory.

3. To build the exit, run makeexits.bat.

Note: See the makeexits.bat file for execution instructions.

4. Redeploy the resulting CA.Gen.exits.dll for use with the appropriate Applications.

com.ca.gen.exits.scrt.SecurityValidationExit C# Server Security Validation Exit

Source Code

SecurityValidationExit.cs

Purpose

This class provides the methods to validate client security with the given Client Userid,
Client Password, and SecurityObject parameters.

CA Gen .NET Servers

Chapter 8: .NET User Exits 765

Constructor

private SecurityValidationExit()

Purpose

The default constructor for this class is private and is only invoked from the
GetInstance() method to provide the default caching mechanism.

Arguments

None

Return Code

This constructor returns The SecurityValidationExit object.

Default Behavior

This constructor returns The SecurityValidationExit object.

Method

public static SecurityValidationExit

GetInstance (string clientUserId,

string clientPassword,

object securityObject)

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

clientUserId Input String containing the client user Id

clientPassword Input String containing the client password

securityObject Input Instance of security object

Return Code

This method obtains an instance of SecurityValidationExit class and initializes it with the
private Init().

CA Gen .NET Servers

766 User Exit Reference Guide

Default Behavior

The method uses a simple caching mechanism to obtain an instance of
SecurityValidationExit class and initializes it with the private method Init() in the class.
Then the method returns the initialized object.

Method

public void FreeInstance()

Purpose

This method will be invoked to de-allocate the object obtained with GetInstance().

Arguments

None

Return Code

None

Default Behavior

The default behavior of the method is simply returning the current instance into free
instance array to be used for next GetInstance() invocation.

Method

public void Validate()

Purpose

This method will be invoked in server procedure to provide authorization.

Arguments

None

Return Code

To indicate an error condition, throw a GenException (i.e. throw new
GenException("error message")).

To indicate an access failure, throw an UnauthorizedAccessException.

CA Gen .NET Servers

Chapter 8: .NET User Exits 767

Default Behavior

The default behavior of the method is nothing.

Rebuilding the Exit

This exit is built as part of a common user exit .NET assembly called CA.Gen.exits.dll.
Prerequisites for building the assembly are Microsoft C# compiler and .Net Framework
installed on your system.

Follow these steps:

1. Launch a Command Prompt window. This Command Prompt should be opened with
‘Run as administrator’.

2. Change your current directory to that containing the makeexits.bat file. Typically,
this will be in the CA Gen installed area, .net\exits subdirectory.

3. To build the exit, run makeexits.bat.

Note: See the makeexits.bat file for execution instructions.

4. Redeploy the resulting CA.Gen.exits.dll for use with the appropriate Applications.

com.ca.gen.exits.scrt.LocaleExit C# Server Locale Exit

Source Code

LocaleExit.cs

Purpose

This exit class provides a set of methods that are called at startup of application to load
customer-specific values for locale editing of data displayed in application. Each method
provided by this exit is called with the default input, derived from the dialect specified
during application design, and should return the appropriate localized value.

Method

public static char getLocalCurrencySymbol(char def)

Purpose

getLocalCurrencySymbol() supplies the currency symbol to the generated .NET
application. The currency symbol is used when editing numeric fields, which includes
currency symbol. For example, if the edit pattern is “@ZZZ.ZZZ,99”, the
getLocalCurrencySymbol() should specify “@” as the currency symbol.

CA Gen .NET Servers

768 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

def Input Character containing the default currency
symbol.

Return Code

Character containing the localized currency symbol.

Default Behavior

By default, Dollar sign ‘$’ is returned.

Method

public static char getLocalThousandsSep(char def)

Purpose

getLocalThousandsSep () supplies the thousand separator to the generated .NET
application. The thousand separator is used when editing numeric fields, which includes
the thousand separator. For example, if the edit pattern is “@ZZZ.ZZZ,99”, the
getLocalThousandsSep () should specify “.” as the thousand separator.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

def Input Character containing the default thousands
separator.

Return Code

Character containing the localized thousands separator.

Default Behavior

By default, thousand separator passed in is returned.

CA Gen .NET Servers

Chapter 8: .NET User Exits 769

Method

public static char getLocalDecimalSep(char def)

Purpose

getLocalDecimalSep () supplies the decimal point to the generated .NET application. The
decimal point is used when editing numeric fields, which includes decimal point. For
example, if the edit pattern is “@ZZZ.ZZZ,99”, the getLocalDecimalSep () should specify
“,” as the decimal point.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

def Input Character containing the default decimal
separator.

Return Code

Character containing the localized decimal point.

Default Behavior

By default, decimal point passed in is returned.

Method

public static char getLocalDateSep(char def)

Purpose

getLocalDateSep () supplies the date separator character to the generated .NET
application. The date separator character is used only for date and time fields where the
model does not specify the edit pattern. In these cases, the .NET runtime uses this
information to build a default edit pattern using the information provided by the
getLocalDateSep(). For example, if the getLocalDateSep() specifies the date separator as
"-" (a dash) and the date order is yymmdd, then the default date edit pattern is
yy-mm-dd.

CA Gen .NET Servers

770 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

def Input Character containing the default date
separator.

Return Code

Character containing the localized date separator.

Default Behavior

By default, date separator passed in is returned.

Method

public static char getLocalTimeSep(char def)

Purpose

getLocalTimeSep () supplies the time separator character to the generated .NET
application. The time separator character is used only for date and time fields where the
model does not specify the edit pattern. In these cases, the .NET runtime uses this
information to build a default edit pattern using the information provided by the
getLocalTimeSep (). For example, if the getLocalTimeSep () specifies the date separator
as ":" (a colon) then the default date edit pattern is yy:mm:dd.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

def Input Character containing the default time
separator.

Return Code

Character containing the localized time separator.

Default Behavior

By default, time separator passed in is returned.

CA Gen .NET Servers

Chapter 8: .NET User Exits 771

Rebuilding the Exit

This exit is built as part of a common user exit .NET assembly called CA.Gen.exits.dll.
Prerequisites for building the assembly are Microsoft C# compiler and .Net Framework
installed on your system.

Follow these steps:

1. Launch a Command Prompt window. This Command Prompt should be opened with
‘Run as administrator’.

2. Change your current directory to that containing the makeexits.bat file. Typically,
this will be in the CA Gen installed area, .net\exits subdirectory.

3. To build the exit, run makeexits.bat.

Note: See the makeexits.bat file for execution instructions.

4. Redeploy the resulting CA.Gen.exits.dll for use with the appropriate Applications.

com.ca.gen.exits.scrt.RetryLimitExit C# Server Retry Limit Exit

Source Code

RetryLimitExit.cs

Purpose

This exit class provides configuration of the number of times a procedure step can be
retried when the application has requested a “retry transaction”, or when a deadlock
condition on the database has been detected.

Property

public static int UltimateRetryLimit

Purpose

This property is a Integer containing absolute upper limit to the number of times a
procedure step can be retried. This exit provides a safeguard in case the system
attribute "transaction retry limit" is set to an excessive value by an action diagram. This
exit defines the upper bound to the retry limit value which can never be exceeded.

Default Value

By default, “99” is returned.

CA Gen .NET Servers

772 User Exit Reference Guide

Property

public static int DefaultRetryLimit

Purpose

This property is Integer containing default retry limit to the number of times a
Procedure step can be retried in the event that the system attribute "Transaction retry
limit" is not set by an action diagram.

Default Value

By default, “10” is returned.

Rebuilding the Exit

This exit is built as part of a common user exit .NET assembly called CA.Gen.exits.dll.
Prerequisites for building the assembly are Microsoft C# compiler and .Net Framework
installed on your system.

Follow these steps:

1. Launch a Command Prompt window. This Command Prompt should be opened with
‘Run as administrator’.

2. Change your current directory to that containing the makeexits.bat file. Typically,
this will be in the CA Gen installed area, .net\exits subdirectory.

3. To build the exit, run makeexits.bat.

Note: See the makeexits.bat file for execution instructions.

4. Redeploy the resulting CA.Gen.exits.dll for use with the appropriate Applications.

com.ca.gen.exits.scrt.SrvrErrorExit C# Server Error Exit

Source Code

SrvrErrorExit.cs

Purpose

This exit class provides methods that are invoked when an error is detected during the
processing of a server to server flow.

CA Gen .NET Servers

Chapter 8: .NET User Exits 773

Method

public static int ServerError(string toPstep,

string fromPstep,

string errorList,

int failureType))

Purpose

ServerError() is invoked when an error is detected during the processing of a server to
server flow. The parameter failureType describes the origin of this error.

The exit can influence the default runtime error behavior.

When the NOTPROPAGATE_ERR is returned, the calling procedure step continues the
execution ignoring the fact that error occurs in the called procedure step.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

toPstep Input String contains the target procedure step.

fromPstep Input String contains the calling procedure step.

errorList Input String contains error message.

failureType Input An integer value describing the source of the
failure. It's value can be one of the following:

com.ca.gen.scrt. SrvrErrorExit.CFBUILD or ‘0’:

An error in the construction or parsing of a
client/server flow message or response.
com.ca.gen.scrt. SrvrErrorExit.XFAL or ‘1’:

An error during the server procedures action
block execution.

com.ca.gen.scrt. SrvrErrorExit.XERR or ‘2’:

A communications error occurring somewhere
between construction of a message or
response, and the deciphering of that message
by the partner in this flow.

CA Gen .NET Servers

774 User Exit Reference Guide

Return Code

The following table gives a brief description of each of the return codes.

Return Code Description

com.ca.gen.scrt.SrvrErrorExit.PROPAGATE
_ERR

This return value causes the calling
procedure step stops the execution and
propagates error. The integer value is ‘0’

com.ca.gen.scrt.SrvrErrorExit.NOTPROPAG
ATE_ERR

This return value causes the calling
procedure step continues the execution
and ignoring the fact that error occurs in
the called procedure step. The integer
value is ‘1’

Default Behavior

The default implementation always returns the value
com.ca.gen.scrt.SrvrErrorExit.NOTPROPAGATE_ERR causes the calling procedure step
continues the execution and ignoring the fact that error occurs in the called procedure
step.

Rebuilding the Exit

This exit is built as part of a common user exit .NET assembly called CA.Gen.exits.dll.
Prerequisites for building the assembly are Microsoft C# compiler and .Net Framework
installed on your system.

Follow these steps:

1. Launch a Command Prompt window. This Command Prompt should be opened with
‘Run as administrator’.

2. Change your current directory to that containing the makeexits.bat file. Typically,
this will be in the CA Gen installed area, .net\exits subdirectory.

3. To build the exit, run makeexits.bat.

Note: See the makeexits.bat file for execution instructions.

4. Redeploy the resulting CA.Gen.exits.dll for use with the appropriate Applications.

com.ca.gen.exits.scrt.UserExit C# Server User Exit

Source Code

UserExit.cs

CA Gen .NET Servers

Chapter 8: .NET User Exits 775

Purpose

This class provides the methods to use UserExit object.

Constructor

private UserExit()

Purpose

The default constructor for this class is private and is only invoked from the
GetInstance() method to provide the default caching mechanism.

Arguments

None

Return Code

This constructor returns the UserExit object.

Default Behavior

This constructor returns the UserExit object.

Method

public static UserExit

GetInstance (object userObject)

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

userObject Input Instance of user object

Return Code

This method obtains an instance of UserExit class and initializes it with the private Init().

Default Behavior

The method uses a simple caching mechanism to obtain an instance of UserExit class
and initializes it with the private method Init() in the class. Then the method returns the
initialized object.

CA Gen .NET Servers

776 User Exit Reference Guide

Method

public void FreeInstance()

Purpose

This method will be invoked to de-allocate the object obtained with GetInstance().

Arguments

None

Return Code

None

Default Behavior

The default behavior of the method is simply returning the current instance into free
instance array to be used for next GetInstance() invocation.

Method

public void UseRuntimeObject()

Purpose

This method will be invoked in server procedure to use user object.

Arguments

None

Return Code

None

Default Behavior

The default behavior of the method is nothing.

C# Server Middleware User Exits

Chapter 8: .NET User Exits 777

Rebuilding the Exit

This exit is built as part of a common user exit .NET assembly called CA.Gen.exits.dll.
Prerequisites for building the assembly are Microsoft C# compiler and .Net Framework
installed on your system.

Follow these steps:

1. Launch a Command Prompt window. This Command Prompt should be opened with
‘Run as administrator’.

2. Change your current directory to that containing the makeexits.bat file. Typically,
this will be in the CA Gen installed area, .net\exits subdirectory.

3. To build the exit, run makeexits.bat.

Note: See the makeexits.bat file for execution instructions.

4. Redeploy the resulting CA.Gen.exits.dll for use with the appropriate Applications.

C# Server Middleware User Exits

com.ca.gen.exits.coopflow.net.NETDynamicCoopFlowExit C# NET Dynamic
CoopFlow Exit

Source Code

NETDynamicCoopFlowExit.cs

Purpose

The methods in the class will be called prior to performing a connection from the
NETDynamicCoopFlow. The class will be instantiated with various data and methods will
be called to override that data.

Constructor

private NETDynamicCoopFlowExit()

Purpose

The default constructor for this class is private and is only invoked from the
GetInstance() method to provide the default caching mechanism.

Arguments

None

C# Server Middleware User Exits

778 User Exit Reference Guide

Return Code

This constructor returns The NETDynamicCoopFlowExit object.

Default Behavior

This constructor returns The NETDynamicCoopFlowExit object.

Method

public static NETDynamicCoopFlowExit GetInstance (

string programID,

string tranCode,

string procedureName,

string procedureSourceName,

string modelName,

string modelShortName,

string netApplicationName,

string netNamespace,

string netAssemblyVersion,

string nextLocation,

string hostName,

int port,

char protocolCode)

Purpose

This method is invoked at the beginning of performing a connection from the
NETDynamicCoopFlow. This method obtains an instance of NETDynamicCoopFlowExit
class and initializes it with the specified parameter.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

programID Input string contains Program ID

tranCode Input string contains Transaction Code

procedureName Input string contains procedure name

procedureSourceName Input string contains source file name for procedure

modelName Input string contains Model name

modelShortName Input string contains Model short same

netApplicationName Input string contains Application name

C# Server Middleware User Exits

Chapter 8: .NET User Exits 779

Name I/O Description

netNameSpace Input string contains application name space

netAssemblyVersion Input string contains application assembly version

nextLocation Input string contains next Location

hostname Input string contains Host Name

port Input integer contains Port number

protocolCode Input Character contains Protocol Code. The possible
values are:

B: HTTP with binary encoding. (Default)

S: Soap

T: TCP/IP (will not be supported as of now)

Return Code

This method returns the initialized NETDynamicCoopFlowExit object.

Default Behavior

The method uses a simple caching mechanism to obtain an instance of
NETDynamicCoopFlowExit class and initializes it with the private method Init() in the
class. Then the method returns the initialized object.

Method

public void FreeInstance()

Purpose

At the end of performing a connection from the NETDynamicCoopFlow, This method will
be invoked to de-allocate the object obtained with GetInstance ().

Arguments

None

Return Code

None

Default Behavior

The default behavior of the method is simply returning the current instance into free
instance array to be used for next GetInstance() invocation.

C# Server Middleware User Exits

780 User Exit Reference Guide

Method

public bool ProcessException(int attempts,

Exception e)

Purpose

This method will be invoked whenever the Coopflow fails to either instantiate the
remote object or the server call fails.

Use this exit to indicate whether to retry the operation or to throw an exception.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

attempts Input Integer containing the number of attempts

e Input Exception

Return Code

The method returns true to retry the flow and false to go ahead and process/throw the
exception.

Default Behavior

By default, the method returns false in any case. Also if tracing is enabled, the given
exception object is recorded in the trace.

Method

private void Init(string programID,

string tranCode,

string procedureName,

string procedureSourceName,

string modelName,

string modelShortName,

string netApplicationName,

string netNamespace,

string netAssemblyVersion,

string nextLocation,

string hostName,

int port,

char protocolCode)

C# Server Middleware User Exits

Chapter 8: .NET User Exits 781

Purpose

This private method is invoked internally from the GetInstance () to initialize the current
instance.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

programID Input string contains Program ID

tranCode Input string contains Transaction Code

procedureName Input string contains procedure name

procedureSourceName Input string contains source file name for procedure

modelName Input string contains Model name

modelShortName Input string contains Model short same

netApplicationName Input string contains Application name

netNameSpace Input string contains application name space

netAssemblyVersion Input string contains application assembly version

nextLocation Input string contains next Location

hostname Input string contains Host Name

port Input integer contains Port number

protocolCode Input Character contains Protocol Code. The possible
values are:

B: HTTP with binary encoding. (Default)

S: Soap

T: TCP/IP (will not be supported as of now)

Return Code

None

Default Behavior

The default behavior of the method is simply duplicate the specified parameter to the
corresponding instance property.

C# Server Middleware User Exits

782 User Exit Reference Guide

Property

public virtual string hostName

Purpose

This read-only string property contains the Host Name.

Default Behavior

The default behavior is returning the value initialized in private Init() method.

Property

public int port

Purpose

This read-only integer property contains the port number.

Default Behavior

The default behavior is returning the value initialized in private Init() method.

Property

public char protocolCode

Purpose

This read-only character property contains the code to specify protocol to be used. The
possible values are:

B: HTTP with binary encoding. (Default)

S: Soap

T: TCP/IP (will not be supported as of now)

Default Behavior

The default behavior is returning the value initialized in private Init() method.

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 783

Rebuilding the Exit

This exit is built as part of a common user exit .NET assembly called CA.Gen.exits.dll.
Prerequisites for building the assembly are Microsoft C# compiler and .Net Framework
installed on your system.

Follow these steps:

1. Launch a Command Prompt window. This Command Prompt should be opened with
‘Run as administrator’.

2. Change your current directory to that containing the makeexits.bat file. Typically,
this will be in the CA Gen installed area, .net\exits subdirectory.

3. To build the exit, run makeexits.bat.

Note: See the makeexits.bat file for execution instructions.

4. Redeploy the resulting CA.Gen.exits.dll for use with the appropriate Applications.

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used
by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

This section describes the exits that are located in the
<CAGen-root>\.net\exits\src\coopflow directory and used by both the CA Gen ASP.NET
Web Clients and CA Gen .NET Servers.

com.ca.gen.exits.coopflow.complus.COMPLUSDynamicCoopFlowExit C# COM
PLUS Dynamic Coop Flow Exit

Source Code

COMPLUSDynamicCoopFlowExit.cs

Purpose

The methods in the class will be called prior to performing a COMPLUS connection from
the COMPLUSDynamicCoopFlow. The class will be instantiated with various data and
methods will be called to override that data.

Constructor

private COMPLUSDynamicCoopFlowExit()

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

784 User Exit Reference Guide

Purpose

The default constructor for this class is private and is only invoked from the
GetInstance() method to provide the default caching mechanism.

Arguments

None

Return Code

This constructor returns The COMPLUSDynamicCoopFlowExit object.

Default Behavior

This constructor returns The COMPLUSDynamicCoopFlowExit object.

Method

public static COMPLUSDynamicCoopFlowExit GetInstance (

 string programID,

 string tranCode,

 string procedureName,

 string procedureSourceName,

 string modelName,

 string modelShortName,

 string netApplicationName,

 string netNamespace,

 string netAssemblyVersion,

 string nextLocation)

Purpose

This method is invoked at the beginning of performing a COMPLUS connection from the
COMPLUSDynamicCoopFlow. This method obtains an instance of
COMPLUSDynamicCoopFlowExit class and initializes it with the specified parameter.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

programID Input string contains Program ID

tranCode Input string contains Transaction Code

procedureName Input string contains procedure name

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 785

Name I/O Description

procedureSourceName Input string contains source file name for procedure

modelName Input string contains Model name

modelShortName Input string contains Model short same

netApplicationName Input string contains Application name

netNameSpace Input string contains application name space

netAssemblyVersion Input string contains application assembly version

nextLocation Input string next Location

Return Code

This method returns the initialized COMPLUSDynamicCoopFlowExit object.

Default Behavior

The method uses a simple caching mechanism to obtain a instance of
COMPLUSDynamicCoopFlowExit class and initializes it with the private method Init() in
the class. Then the method returns the initialized object.

Method

public void FreeInstance()

Purpose

At the end of performing a COMPLUS connection from the COMPLUSDynamicCoopFlow,
This method will be invoked to de-allocate the object obtained with GetInstance ().

Arguments

None

Return Code

None

Default Behavior

The default behavior of the method is simply returning the current instance into free
instance array to be used for next GetInstance () invocation.

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

786 User Exit Reference Guide

Method

public bool ProcessException(int attempts,

Exception e)

Purpose

This method will be invoked whenever the COMPLUIS Coopflow fails to either
instantiate the remote object or the server call fails.

Use this exit to indicate whether to retry the operation or to throw an exception.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

attempts Input Integer containing the number of attempts

e Input Exception

Return Code

The method returns true to retry the flow and false to go ahead and process/throw the
exception.

Default Behavior

By default, the method returns false in any case. Also if tracing is enabled, the given
exception object is recorded in the trace.

Method

private void Init(string programID,

string tranCode,

string procedureName,

string procedureSourceName,

string modelName,

string modelShortName,

string netApplicationName,

string netNamespace,

string netAssemblyVersion,

string nextLocation)

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 787

Purpose

This private method is invoked internally from the GetInstance () to initialize the current
instance.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

programID Input string contains Program ID

tranCode Input string contains Transaction Code

procedureName Input string contains procedure name

procedureSourceName Input string contains source file name for procedure

modelName Input string contains Model name

modelShortName Input string contains Model short same

netApplicationName Input string contains Application name

netNameSpace Input string contains application name space

netAssemblyVersion Input string contains application assembly version

nextLocation Input string next Location

Return Code

None

Default Behavior

The default behavior of the method is simply duplicate the specified parameter to the
corresponding instance property.

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

788 User Exit Reference Guide

Rebuilding the Exit

This exit is built as part of a common user exit .NET assembly called CA.Gen.exits.dll.
Prerequisites for building the assembly are Microsoft C# compiler and .Net Framework
installed on your system.

Follow these steps:

1. Launch a Command Prompt window. This Command Prompt should be opened with
‘Run as administrator’.

2. Change your current directory to that containing the makeexits.bat file. Typically,
this will be in the CA Gen installed area, .net\exits subdirectory.

3. To build the exit, run makeexits.bat.

Note: See the makeexits.bat file for execution instructions.

4. Redeploy the resulting CA.Gen.exits.dll for use with the appropriate Applications.

com.ca.gen.exits.coopflow.complus.COMPLUSDynamicCoopFlowSecurityExit C#
COMPLUS Dynamic Coop Flow Security Exit

Source Code

COMPLUSDynamicCoopFlowSecurityExit.cs

Purpose

The methods in the class will be called in the COMPLUSDynamicCoopFlow class to
provide security object when invoking server procedures.

Constructor

private COMPLUSDynamicCoopFlowSecurityExit()

Purpose

The default constructor for this class is private and is only invoked from the
GetInstance() method to provide the default caching mechanism.

Arguments

None

Return Code

This constructor returns The COMPLUSDynamicCoopFlowSecurityExit object.

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 789

Default Behavior

This constructor returns The COMPLUSDynamicCoopFlowSecurityExit object.

Method

public static COMPLUSDynamicCoopFlowSecurityExit GetInstance (string tranCode,

string nextLocation)

Purpose

This method is invoked at the beginning of performing a COMPLUS connection from the
COMPLUSDynamicCoopFlow. This method obtains an instance of
COMPLUSDynamicCoopFlowSecurityExit class and initializes it with the specified
parameter.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

tranCode Input string contains Transaction Code

nextLocation Input string next Location

Return Code

This method returns the initialized COMPLUSDynamicCoopFlowSecurityExit object.

Default Behavior

The method uses a simple caching mechanism to obtain a instance of
COMPLUSDynamicCoopFlowSecurityExit class and initializes it with the private method
Init() in the class. Then the method returns the initialized object.

Method

public void FreeInstance()

Purpose

At the end of performing a COMPLUS connection from the COMPLUSDynamicCoopFlow,
This method will be invoked to de-allocate the object obtained with GetInstance ().

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

790 User Exit Reference Guide

Arguments

None

Return Code

None

Default Behavior

The default behavior of the method is simply returning the current instance into free
instance array to be used for next GetInstance () invocation.

Method

public Object getSecurityObject()

Purpose

This method instantiates and returns an object that is passed to the server as a security
object.

Arguments

None

Return Code

The method returns the object that will be passed to server to as a security object.

Default Behavior

By default, the method returns newly instantiated Object class instance.

Method

private void Init(string tranCode, string nextLocation)

Purpose

This private method is invoked internally from the GetInstance () to initialize the current
instance.

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 791

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

tranCode Input string contains Transaction Code

nextLocation Input string next Location

Return Code

None

Default Behavior

The default behavior of the method is nothing.

Rebuilding the Exit

This exit is built as part of a common user exit .NET assembly called CA.Gen.exits.dll.
Prerequisites for building the assembly are Microsoft C# compiler and .Net Framework
installed on your system.

Follow these steps:

1. Launch a Command Prompt window. This Command Prompt should be opened with
‘Run as administrator’.

2. Change your current directory to that containing the makeexits.bat file. Typically,
this will be in the CA Gen installed area, .net\exits subdirectory.

3. To build the exit, run makeexits.bat.

Note: See the makeexits.bat file for execution instructions.

4. Redeploy the resulting CA.Gen.exits.dll for use with the appropriate Applications.

com.ca.gen.exits.coopflow.mqs.MQSDynamicCoopFlowExit C# MQSeries
Dynamic Coop Flow Exit

Source Code

MQSDynamicCoopFlowExit.cs

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

792 User Exit Reference Guide

Purpose

This class will be called prior to performing an MQSeries connection from the
MQSDynamicCoopFlow. The class will be instantiated with various data and methods
will be called to override that data. In addition, the MQSeries C# client may need to
have some MQEnvironment modifications. These customizations are performed in this
exit.

Constructor

public MQSDynamicCoopFlowExit

Purpose

The default constructor for this class is public and is invoked from the GetInstance()
method to provide the default caching mechanism.

Arguments

None

Return Code

This constructor returns the MQSDynamicCoopFlowExit object.

Default Behavior

This constructor returns the MQSDynamicCoopFlowExit object.

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 793

Method

public static MQSDynamicCoopFlowExit GetInstance(string qMgrName,

 string remoteQMgrName,

 string putQName,

 string replyModelQName,

 string dynamicQName,

 string nextLocation,

 string programID,

 string tranCode,

 string procedureName,

 string

procedureSourceName,

 string modelName,

 string modelShortName,

 string

netApplicationName,

 string netNamespace,

 string

netAssemblyVersion,

 int reportOptions)

Purpose

This method will be invooked to retrieve an instance of the exit class. By default, a new
instance is created for each request if one does not already exist in the free array.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

qMgrName Input string contains queue
manager name

remoteQMgrName Input string contains remote queue
manager name

putQName Input string contains put queue
name

replyModelQName Input string contains reply queue
name

dynamicQName Input string contains dynamic
queue name

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

794 User Exit Reference Guide

Name I/O Description

nextLocation Input string next Location

programID Input string contains Program ID

tranCode Input string contains Transaction
Code

procedureName Input string contains procedure
name

modelName Input string contains Model name

modelShortName Input string contains Model short
same

netApplicationName Input string contains Application
name

netNamespace Input string contains application
name space

netAssemblyVersion Input string contains application
assembly version

reportOptions Input integer contains mask of
MQSeries options

Return Code

This method returns the initialized MQSDynamicCoopFlowExit object.

Default Behavior

The method uses a simple caching mechanism to obtain a instance of
MQSDynamicCoopFlowExit class and initializes it with the private method Init() in the
class. Then the method returns the initialized object.

Method

public void FreeInstance()

Purpose

At the end of performing a MQSeries connection from the MQSDynamicCoopFlowExit,
This method will be invoked to de-allocate the object obtained with GetInstance ().

Arguments

None

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 795

Return Code

None

Default Behavior

The default behavior of the method is simply returning the current instance into free
instance array to be used for next GetInstance () invocation.

Method

public bool ProcessException(int attempts,

Exception e)

Purpose

This method will be invoked whenever the COMPLUIS Coopflow fails to either
instantiate the remote object or the server call fails.

Use this exit to indicate whether to retry the operation or to throw an exception.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

attempts Input Integer containing the
number of attempts

e Input Exception

Return Code

The method returns true to retry the flow and false to go ahead and process/throw the
exception.

Default Behavior

By default, the method returns false in any case. Also if tracing is enabled, the given
exception object is recorded in the trace.

Property

QMgrName

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

796 User Exit Reference Guide

Purpose

This property is used to retrieve the QMgrName to be used for the MQSeries
communications.

Default Behavior

The default value is set by the constructor with the original value the runtime contained.

Property

RemoteQMgrName

Purpose

This property is used to retrieve the PutQName to be used for the MQSeries
communications.

Default Behavior

The default value is set by the constructor with the original value the runtime contained.

Property

PutQName

Purpose

This property is used to retrieve the PutQName to be used for the MQSeries
communications.

Default Behavior

The default value is set by the constructor with the original value the runtime contained.

Property

ReplyModelQName

Purpose

This property is used to retrieve the ReplyModelQName to be used for the MQSeries
communications.

Default Behavior

The default value is set by the constructor with the original value the runtime contained.

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 797

Property

ReplyTimeout

Purpose

This property is used to retrieve the ReplyTimeout to be used for the MQSeries
communications.

Default Behavior

The default value is MQC.MQWI_UNLIMITED (-1).

Property

ClosePutQ

Purpose

This property is used to determine if put queues must be closed after each cooperative
flow.

Default Behavior

The default value is false.

Property

CloseGetQ

Purpose

This property is used to determine if get queues must be closed after each cooperative
flow.

Default Behavior

The default value is false.

Property

DynamicQName

Purpose

This property is used to retrieve the dynamic queue that is created for the MQSeries
communications.

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

798 User Exit Reference Guide

Default Behavior

The default value supplied by the runtime is
"USER_ID.THEAD_HASHCODE.PROCESS_ID.*" This means the MQSeries subsystem will
generate a queue name based on this prefix followed by a series of uniquely generated
numbers.

Note: Four valid characters must be provided prior to the "*" to create a dynamic queue
name. For example: "tmpq*" succeeds but "tmp*" does not. Contact IBM MQSeries
support for further assistance if this proves to be a problem. IBM APAR #IC46539 has
been opened to address this problem.

Property

ReportOptions

Purpose

This property is used to let the user override the report options that have been set by
the Gen runtimes.

Default Behavior

The default is what is passed as input and can be set to any value that is valid in the
environment.

Rebuilding the Exit

This exit is built as part of a common user exit .NET assembly called CA.Gen.exits.dll.
Prerequisites for building the assembly are Microsoft C# compiler and .Net Framework
installed on your system.

Follow these steps:

1. Launch a Command Prompt window. This Command Prompt should be opened with
‘Run as administrator’.

2. Change your current directory to that containing the makeexits.bat file. Typically,
this will be in the CA Gen installed area, .net\exits subdirectory.

3. To build the exit, run makeexits.bat.

Note: See the makeexits.bat file for execution instructions.

4. Redeploy the resulting CA.Gen.exits.dll for use with the appropriate Applications.

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 799

com.ca.gen.exits.coopflow.net.NETDynamicCoopFlowSecurityExit C# NET
Dynamic Coop Flow Security Exit

Source Code

NETDynamicCoopFlowSecurityExit.cs

Purpose

The methods in the class will be called in the NETDynamicCoopFlow class to provide
security object when invoking server procedures.

Constructor

Purpose

The default constructor for this class is private and is only invoked from the
GetInstance() method to provide the default caching mechanism.

Arguments

None

Return Code

This constructor returns The NETDynamicCoopFlowSecurityExit object.

Default Behavior

This constructor returns The NETDynamicCoopFlowSecurityExit object.

Method

public static NETDynamicCoopFlowSecurityExit GetInstance(string tranCode,

string nextLocation,

string hostName,

int port)

Purpose

This method is invoked at the beginning of performing a connection from the
NETDynamicCoopFlow. This method obtains an instance of
NETDynamicCoopFlowSecurityExit class and initializes it with the specified parameter.

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

800 User Exit Reference Guide

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

tranCode Input string contains Transaction Code

nextLocation Input string contains next Location

hostname Input string contains Host Name

port Input integer contains Port number

Return Code

This method returns the initialized NETDynamicCoopFlowSecurityExit object.

Default Behavior

The method uses a simple caching mechanism to obtain a instance of
NETDynamicCoopFlowSecurityExit class and initializes it with the private method Init() in
the class. Then the method returns the initialized object.

Method

public void FreeInstance()

Purpose

At the end of performing a COMPLUS connection from the NETDynamicCoopFlow, This
method will be invoked to de-allocate the object obtained with GetInstance ().

Arguments

None

Return Code

None

Default Behavior

The default behavior of the method is simply returning the current instance into free
instance array to be used for next GetInstance() invocation.

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 801

Method

public Object getSecurityObject()

Purpose

This method instantiates and returns an object that is passed to the server as a security
object.

Arguments

None

Return Code

The method returns the object that will be passed to server to as a security object.

Default Behavior

By default, the method returns newly instantiated Object class instance.

Method

private void Init(string tranCode,

string nextLocation,

string hostName,

int port)

Purpose

This private method is invoked internally from the GetInstance () to initialize the current
instance.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

tranCode Input string contains Transaction Code

nextLocation Input string contains next Location

hostname Input string contains Host Name

port Input integer contains Port number

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

802 User Exit Reference Guide

Return Code

None

Default Behavior

The default behavior of the method is nothing.

Rebuilding the Exit

This exit is built as part of a common user exit .NET assembly called CA.Gen.exits.dll.
Prerequisites for building the assembly are Microsoft C# compiler and .Net Framework
installed on your system.

Follow these steps:

1. Launch a Command Prompt window. This Command Prompt should be opened with
‘Run as administrator’.

2. Change your current directory to that containing the makeexits.bat file. Typically,
this will be in the CA Gen installed area, .net\exits subdirectory.

3. To build the exit, run makeexits.bat.

Note: See the makeexits.bat file for execution instructions.

4. Redeploy the resulting CA.Gen.exits.dll for use with the appropriate Applications.

com.ca.gen.exits.coopflow.tcpip.TCPIPDynamicCoopFlowExit C# TCPIP Dynamic
Coop Flow Exit

Source Code

TCPIPDynamicCoopFlowExit.cs

Purpose

The methods in the class will be called prior to performing a TCPIP connection from the
TCPIPDynamicCoopFlow. The class will be instantiated with various data and methods
will be called to override that data.

Constructor

private TCPIPDynamicCoopFlowExit()

Purpose

The default constructor for this class is private and is only invoked from the
GetInstance() method to provide the default caching mechanism.

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 803

Arguments

None

Return Code

This constructor returns The TCPIPDynamicCoopFlowExit object.

Default Behavior

This constructor returns The TCPIPDynamicCoopFlowExit object.

Method

public static TCPIPDynamicCoopFlowExit GetInstance (

string programID,

string tranCode,

string procedureName,

string procedureSourceName,

string modelName,

string modelShortName,

string netApplicationName,

string netNamespace,

string netAssemblyVersion,

string nextLocation,

string hostName,

int port,

bool clientPersistence)

Purpose

This method is invoked at the beginning of performing a TCPIP connection from the
TCPIPDynamicCoopFlow. This method obtains an instance of
TCPIPDynamicCoopFlowExit class and initializes it with the specified parameter.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

programID Input string contains Program ID

tranCode Input string contains Transaction Code

procedureName Input string contains procedure name

procedureSourceName Input string contains source file name for procedure

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

804 User Exit Reference Guide

Name I/O Description

modelName Input string contains Model name

modelShortName Input string contains Model short same

netApplicationName Input string contains Application name

netNameSpace Input string contains application name space

netAssemblyVersion Input string contains application assembly version

nextLocation Input string contains next Location

hostname Input string contains Host Name

port Input integer contains Port number

clientPersistence Input bool contains clientPersistence

Return Code

This method returns the initialized TCPIPDynamicCoopFlowExit object.

Default Behavior

The method uses a simple caching mechanism to obtain a instance of
TCPIPDynamicCoopFlowExit class and initializes it with the private method Init() in the
class. Then the method returns the initialized object.

Method

public void FreeInstance()

Purpose

At the end of performing a TCPIP connection from the TCPIPDynamicCoopFlow, This
method will be invoked to de-allocate the object obtained with GetInstance().

Arguments

None

Return Code

None

Default Behavior

The default behavior of the method is simply returning the current instance into free
instance array to be used for next GetInstance () invocation.

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 805

Method

public bool ProcessException(int attempts,

GenException e)

Purpose

This method will be invoked whenever the TCPIP Coopflow fails to either instantiate the
remote object or the server call fails.

Use this exit to indicate whether to retry the operation or to throw an exception.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

attempts Input Integer containing the number of attempts

e Input GenException

Return Code

The method returns true to retry the flow and false to go ahead and process/throw the
exception.

Default Behavior

By default, the method returns false in any case. Also if tracing is enabled, the given
exception object is recorded in the trace.

Method

private void Init(string programID,

string tranCode,

string procedureName,

string procedureSourceName,

string modelName,

string modelShortName,

string netApplicationName,

string netNamespace,

string netAssemblyVersion,

string nextLocation,

string hostName,

int port,

bool clientPersistence)

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

806 User Exit Reference Guide

Purpose

This private method is invoked internally from the GetInstance () to initialize the current
instance.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

programID Input string contains Program ID

tranCode Input string contains Transaction Code

procedureName Input string contains procedure name

procedureSourceName Input string contains source file name for procedure

modelName Input string contains Model name

modelShortName Input string contains Model short same

netApplicationName Input string contains Application name

netNameSpace Input string contains application name space

netAssemblyVersion Input string contains application assembly version

nextLocation Input string contains next Location

hostname Input string contains Host Name

port Input integer contains Port number

clientPersistence Input bool contains clientPersistence

Return Code

None

Default Behavior

The default behavior of the method is simply duplicate the specified parameter to the
corresponding instance property.

Property

public string hostName

Purpose

This read-only string property contains the Host Name.

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 807

Default Behavior

The default behavior is returning the value initialized in private Init() method.

Property

public int port

Purpose

This read-only integer property contains the port number.

Default Behavior

The default behavior is returning the value initialized in private Init() method.

Property

public bool clientPersistence

Purpose

This read-only boolean property contains the code to specify protocol to be used. The
value is used to specify the desired persistence of the TCP/IP connection. If a value is
true, the connection will be cached for subsequent reuse. The socket will not be closed
at the completion of the server response. If a value is false, the connection will not be
cached. The socket will be closed and the connection object will be destroyed. A
subsequent flow to the same host/port combination will require a new connection
object and a new socket connection.

Default Behavior

The default behavior is returning the value initialized in private Init() method.

Rebuilding the Exit

This exit is built as part of a common user exit .NET assembly called CA.Gen.exits.dll.
Prerequisites for building the assembly are Microsoft C# compiler and .Net Framework
installed on your system.

Follow these steps:

1. Launch a Command Prompt window. This Command Prompt should be opened with
‘Run as administrator’.

2. Change your current directory to that containing the makeexits.bat file. Typically,
this will be in the CA Gen installed area, .net\exits subdirectory.

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

808 User Exit Reference Guide

3. To build the exit, run makeexits.bat.

Note: See the makeexits.bat file for execution instructions.

4. Redeploy the resulting CA.Gen.exits.dll for use with the appropriate Applications.

com.ca.gen.exits.coopflow.ws.WSDynamicCoopFlowExit C# WS Dynamic Coop
Flow Exit

Source Code

WSDynamicCoopFlowExit.cs

Purpose

This exit is only provided for future use and is not currently used.

The methods in the class will be called from the WSDynamicCoopFlow. The class will be
instantiated with various data and methods will be called to override that data.

Constructor

private WSDynamicCoopFlowExit()

Purpose

The default constructor for this class is private and is only invoked from the
GetInstance() method to provide the default caching mechanism.

Arguments

None

Return Code

This constructor returns The WSDynamicCoopFlowExit object.

Default Behavior

This constructor returns The WSDynamicCoopFlowExit object.

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 809

GetInstance Method

public static WSDynamicCoopFlowExit GetInstance (

string programID,

string tranCode,

string procedureName,

string procedureSourceName,

string modelName,

string modelShortName,

string netApplicationName,

string netNamespace,

string netAssemblyVersion,

string nextLocation,

string baseURL,

string contextType)

Purpose

This method is invoked at the beginning of performing a WS connection from the
WSDynamicCoopFlow. This method obtains an instance of WSDynamicCoopFlowExit
class and initializes it with the specified parameter.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

programID Input string contains Program ID

tranCode Input string contains Transaction Code

procedureName Input string contains procedure name

procedureSourceName Input string contains source file name for procedure

modelName Input string contains Model name

modelShortName Input string contains Model short name

netApplicationName Input string contains Application name

netNameSpace Input string contains application name space

netAssemblyVersion Input string contains application assembly version

nextLocation Input string contains next Location

baseURL Input string contains base URL

contextType Input string contains contextType

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

810 User Exit Reference Guide

Return Code

This method returns the initialized WSDynamicCoopFlowExit object.

Default Behavior

The method uses a simple caching mechanism to obtain an instance of
WSDynamicCoopFlowExit class and initializes it with the private method Init() in the
class. Then the method returns the initialized object.

FreeInstance Method

public void FreeInstance()

Purpose

At the end of performing a WS connection from the WSDynamicCoopFlow, This method
will be invoked to de-allocate the object obtained with GetInstance().

Arguments

None

Return Code

None

Default Behavior

The default behavior of the method is simply returning the current instance into free
instance array to be used for next GetInstance() invocation.

ProcessException Method

public bool ProcessException(int attempts,

Exception e)

Purpose

This method will be invoked whenever the WS Coopflow fails to either instantiate the
remote object or the server call fails.

Use this exit to indicate whether to retry the operation or to throw an exception.

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 811

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

attempts Input Integer containing the number of attempts

e Input GenException

Return Code

The method returns true to retry the flow and false to go ahead and process/throw the
exception.

Default Behavior

By default, the method returns false in any case. Also if tracing is enabled, the given
exception object is recorded in the trace.

Init Method

private void Init(string programID,

string tranCode,

string procedureName,

string procedureSourceName,

string modelName,

string modelShortName,

string netApplicationName,

string netNamespace,

string netAssemblyVersion,

string nextLocation,

string baseURL,

string contextType)

Purpose

This private method is invoked internally from the GetInstance() to initialize the current
instance.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

programID Input string contains Program ID

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

812 User Exit Reference Guide

Name I/O Description

tranCode Input string contains Transaction Code

procedureName Input string contains procedure name

procedureSourceName Input string contains source file name for procedure

modelName Input string contains Model name

modelShortName Input string contains Model short same

netApplicationName Input string contains Application name

netNameSpace Input string contains application name space

netAssemblyVersion Input string contains application assembly version

nextLocation Input string contains next Location

baseURL Input string contains base URL

contextType Input string contains contextType

Return Code

None

Default Behavior

The default behavior of the method simply duplicates the specified parameter to the
corresponding instance property.

BaseURL Property

public string BaseURL

Purpose

This read-only string property contains the base URL.

Default Behavior

The default behavior is returning the value initialized in private Init() method.

ContextType Property

public string ContextType

Purpose

This read-only string property contains the contextType.

Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers

Chapter 8: .NET User Exits 813

Default Behavior

The default behavior is returning the value initialized in private Init() method.

Rebuilding the Exit

This exit is built as part of a common user exit .NET assembly called CA.Gen.exits.dll.
Prerequisites for building the assembly are Microsoft C# compiler and .Net Framework
installed on your system.

Follow these steps:

1. Launch a Command Prompt window. This Command Prompt should be opened with
‘Run as administrator’.

2. Change your current directory to that containing the makeexits.bat file. Typically,
this will be in the CA Gen installed area, .net\exits subdirectory.

3. To build the exit, run makeexits.bat.

Note: See the makeexits.bat file for execution instructions.

4. Redeploy the resulting CA.Gen.exits.dll for use with the appropriate Applications.

Chapter 9: Browser User Exits 815

Chapter 9: Browser User Exits

Customize userOnLoad in ASP.NET Mode

This is the only user exit that executes on the browser. It is invoked when the browser
executes the onLoad handler of the page. That is, userOnLoad is executed after all other
processing on the page has occurred. To add user-specified logic, an HTMLControl must
be added to the page where the user exit is to be used. This is done through the
Navigation Diagram in ASP.NET mode.

Click Add, HTML Control in the Toolset main menu. The HTML Control Properties dialog
opens where you can insert the following JavaScript:

<script>

function userOnLoad()

{

//Insert your code here ***

}

</script>

The preceding code executes the userOnLoad() method for every request (every time
the page with the exit loads). To execute the user exit only the first time the page loads,
modify the code as follows (subsequent requests that result in the same page being
returned will not execute the exit):

<script>

function userOnLoad()

{

if (isNewWindow == true)

{

//Insert your code here ***

}

}

</script>

Customize userOnLoad in HTML Mode for Web View

816 User Exit Reference Guide

Customize userOnLoad in HTML Mode for Web View

This is the only user exit that executes on the browser. It is invoked when the Window
or Dialog Box has completed the loading and initialization process in the browser. That
is, userOnLoad is executed after all other processing on the page has occurred. To add
user-specified logic, an HTMLControl must be added to the page where the user exit is
to be used. This is done through the Navigation Diagram in HTML mode.

Click Add, HTML Control in the Toolset main menu. The HTML Control Properties dialog
opens where you can insert the following JavaScript:

<script>

function userOnLoad(theWindow) {

//Insert your code here ***

}

</script>

theWindow

Specifies the HTML DIV element that contains the contents of the window or dialog
box that is rendered to the browser.

Chapter 10: Action Block Runtime User Exit 817

Chapter 10: Action Block Runtime User Exit

Windows Action Block Runtime User Exits

The following table summarizes the functions available through the action block user
exits for C based applications:

ABRT: Language: C

User Exit Name Source Code Description

ABRT_xcall_ws_url_exit abrtexit.c CALL EXTERNAL Web Service URL
Exit

ABRT_xcall_ws_gentype_truncate_
exit

abrtexit.c CALL EXTERNAL Data Truncation
Exit

ABRT user exits are rebuilt into the DLL ABEXxxN.DLL using the makefile abrtexit.nt in
%GENxx%Gen\VSabc for Visual Studio 32-bit or %GENxx%Gen\VSabc\amd64 for Visual
Studio 64-bit.

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with VS100
for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the current release
of CA Gen. For the current release number, see the Release Notes.

ABRT_xcall_ws_url_exit CALL EXTERNAL Web Service URL Exit

void ABRT_xcall_ws_url_exit (char *url,

size_t urlMaxLen)

Source Code

ABRTEXIT.C

Windows Action Block Runtime User Exits

818 User Exit Reference Guide

Purpose

The action block runtime invokes this user exit to let a user influence the web service
URL associated with a CALL EXTERNAL web service action block statement.

The inputs for this user exit are the URL and the maximum size variables. The URL input
variable is modified as necessary. However, the length of the modified URL must not
exceed the specified urlMaxLen variable.

For more information about the input and output fields of this exit routine, see
Arguments.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*url Input/Output A pointer to a character array
that contains the value of the
web service URL. This user
exit can set this value by
modifying the data area
pointed to by this argument.

urlMaxLen Input A size_t field that contains
the maximum length allowed
for the associated URL
parameter.

Return Code

None

Default Behavior

The CALL EXTERNAL Web Service URL user exit, as delivered with CA Gen, will return
without modifying the URL value.

Windows Action Block Runtime User Exits

Chapter 10: Action Block Runtime User Exit 819

Building on Windows

The CALL EXTERNAL Web Service URL exit is built as part of the dynamic link library
ABEXxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

Install the Microsoft Visual C++ compiler on your system as a prerequisite for building
the DLL.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
ABRTEXIT.NT. The path is %GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit.

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set the Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F ABRTEXIT.NT.

Related User Exits

None.

ABRT_xcall_ws_gentype_truncate_exit CALL EXTERNAL Data Truncation
long ABRT_xcall_ws_gentype_truncate_exit (void)

Source

ABRTEXIT.C

Windows Action Block Runtime User Exits

820 User Exit Reference Guide

Purpose

By default, when the size of the web service response is greater than the matched Gen
data type, the response is truncated. The truncation is governed by the table below.

Use this user exit to override the default behavior. The user exit sets the matched Gen
data type flag so that the response is not truncated but an error is raised instead.

ABRT XCall WS Gentype Truncation Table:

The following table depicts the default behavior. The user exit sets the flag represented
in the Overrides the Flag column. The default behavior overrides the flag.

XSD data
type

(from)

Gen data type

(to)

Default truncation behavior Overrides the flag

string Text Data truncated to fit in
destination size.

GENTYPE_TEXT

string BLOB Data truncated to fit in
destination size.

GENTYPE_BLOB

anyURI Text Data truncated to fit in
destination size.

GENTYPE_TEXT

QName Text Data truncated to fit in
destination size.

GENTYPE_TEXT

NOTATION Text Data truncated to fit in
destination size.

GENTYPE_TEXT

duration Text Data truncated to fit in
destination size.

GENTYPE_TEXT

base64Binar
y

Text Data truncated to fit in
destination size.

GENTYPE_TEXT

base64Binar
y

BLOB Data truncated to fit in
destination size.

GENTYPE_BLOB

hexBinary Text Data truncated to fit in
destination size.

GENTYPE_TEXT

hexBinary BLOB Data truncated to fit in
destination size.

GENTYPE_BLOB

Windows Action Block Runtime User Exits

Chapter 10: Action Block Runtime User Exit 821

XSD data
type

(from)

Gen data type

(to)

Default truncation behavior Overrides the flag

float Number (length
<= 15,

decimal points
!=0,

decimal precision
= false)

Data will be truncated at
decimal places.

GENTYPE_NUMERIC_D
OUBLE

double Number (length
<= 15,

decimal points
!=0,

decimal precision
= false)

Data will be truncated at
decimal places.

GENTYPE_NUMERIC_D
OUBLE

decimal Number (length
<=18,

decimal precision
=true)

Data will be truncated at
decimal places

and other truncation results
in Error.

GENTYPE_NUMERIC_P
RECISION

short

unsignedsh
ort

Number (length
<= 4)

Data will be truncated if it is
> SHORT_MAX

GENTYPE_NUMERIC_S
HORT

integer

long

int

nonPositiveI
nteger

nonNegativ
eInteger

negativeInt
eger

positiveInte
ger

unsignedLo
ng

unsignedInt

Number (length
<= 9)

Data will be truncated if it is
> LONG_MAX

GENTYPE_NUMERIC_L
ONG

Windows Action Block Runtime User Exits

822 User Exit Reference Guide

Note: Data map pairs which are not mentioned in the table are not considered for
truncation. The following XSD data types are not truncated:

■ boolean

■ datetime

■ Time

■ Date

■ gYearMonth

■ gYear

■ gMonthDay

■ gDay

■ gMonth

■ Bytes

For example, when the web service response of XSD datetime data type are mapped to
Text, the response is not truncated.

Arguments

None.

Return Code

A long value that represents one or more flags which specify that the web service
response for the given data types are not truncated but instead an error is raised
instead.

Default Behavior

If the web service response size is greater than the Gen data type, the web service
response is truncated. For more information about the default behavior, see the ABRT
XCall WS Gentype Truncation Table in the Purpose topic.

UNIX and Linux Action Block Runtime User Exits

Chapter 10: Action Block Runtime User Exit 823

Building on Windows

The CALL EXTERNAL Web Service URL exit is built as part of the dynamic link library
ABEXxxN.DLL.

Note: xx refers to the current release of CA Gen. For the current release number, see
the Release Notes. N indicates platform.

Install the Microsoft Visual C++ compiler on your system as a prerequisite for building
the DLL.

Follow these steps:

1. Launch a Command Prompt window.

2. Change your current directory to that directory which contains the makefile
ABRTEXIT.NT. The path is %GENxx%Gen\VSabc for Visual Studio 32-bit or
%GENxx%Gen\VSabc\amd64 for Visual Studio 64-bit.

Note: VSabc refers to the supported version of Visual Studio. Replace VSabc with
VS100 for Visual Studio 2010 and VS110 for Visual Studio 2012. xx refers to the
current release of CA Gen. For the current release number, see the Release Notes.

3. Set the Microsoft Visual Studio compiler environment variables.

4. Run NMAKE /F ABRTEXIT.NT.

Related User Exits

None.

UNIX and Linux Action Block Runtime User Exits

ABRT_xcall_ws_url_exit CALL EXTERNAL Web Service URL Exit

void ABRT_xcall_ws_url_exit (char *url,

size_t urlMaxLen)

Source Code

ABRTEXIT.C

UNIX and Linux Action Block Runtime User Exits

824 User Exit Reference Guide

Purpose

The action block runtime invokes this user exit to let a user influence the web service
URL associated with a CALL EXTERNAL web service action block statement.

The inputs for this user exit are the URL and the maximum size variables. The URL input
variable is modified as necessary. However, the length of the modified URL must not
exceed the specified urlMaxLen variable.

For more information about the input and output fields of this exit routine, see
Arguments.

Arguments

The following table gives a brief description of each of the arguments.

Name I/O Description

*url Input/Output A pointer to a character array
that contains the value of the
web service URL. This user
exit can set this value by
modifying the data area
pointed to by this argument.

urlMaxLen Input A size_t field that contains
the maximum length allowed
for the associated URL
parameter.

Return Code

None

Default Behavior

The CALL EXTERNAL Web Service URL user exit, as delivered with CA Gen, will return
without modifying the URL value.

UNIX and Linux Action Block Runtime User Exits

Chapter 10: Action Block Runtime User Exit 825

Building on UNIX/Linux

This user exit is built as part of the shared library or archive library libae_userexits_c.*,
where * is the shared library suffix or archive library depending on the UNIX system. As
a prerequisite for building the shared library or archive library, you must have correct
C/C++ compiler installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run make /f stuxexit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

Linux: lin

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

None.

ABRT_xcall_ws_gentype_truncate_exit CALL EXTERNAL Data Truncation
long ABRT_xcall_ws_gentype_truncate_exit (void)

Source

ABRTEXIT.C

UNIX and Linux Action Block Runtime User Exits

826 User Exit Reference Guide

Purpose

By default, when the size of the web service response is greater than the matched Gen
data type, the response is truncated. The truncation is governed by the table below.

Use this user exit to override the default behavior. The user exit sets the matched Gen
data type flag so that the response is not truncated but an error is raised instead.

ABRT XCall WS Gentype Truncation Table:

The following table depicts the default behavior. The user exit sets the flag represented
in the Overrides the Flag column. The default behavior overrides the flag.

XSD data
type

(from)

Gen data type

(to)

Default truncation behavior Overrides the flag

string Text Data truncated to fit in
destination size.

GENTYPE_TEXT

string BLOB Data truncated to fit in
destination size.

GENTYPE_BLOB

anyURI Text Data truncated to fit in
destination size.

GENTYPE_TEXT

QName Text Data truncated to fit in
destination size.

GENTYPE_TEXT

NOTATION Text Data truncated to fit in
destination size.

GENTYPE_TEXT

duration Text Data truncated to fit in
destination size.

GENTYPE_TEXT

base64Binar
y

Text Data truncated to fit in
destination size.

GENTYPE_TEXT

base64Binar
y

BLOB Data truncated to fit in
destination size.

GENTYPE_BLOB

hexBinary Text Data truncated to fit in
destination size.

GENTYPE_TEXT

hexBinary BLOB Data truncated to fit in
destination size.

GENTYPE_BLOB

UNIX and Linux Action Block Runtime User Exits

Chapter 10: Action Block Runtime User Exit 827

XSD data
type

(from)

Gen data type

(to)

Default truncation behavior Overrides the flag

float Number (length
<= 15,

decimal points
!=0,

decimal precision
= false)

Data will be truncated at
decimal places.

GENTYPE_NUMERIC_D
OUBLE

double Number (length
<= 15,

decimal points
!=0,

decimal precision
= false)

Data will be truncated at
decimal places.

GENTYPE_NUMERIC_D
OUBLE

decimal Number (length
<=18,

decimal precision
=true)

Data will be truncated at
decimal places

and other truncation results
in Error.

GENTYPE_NUMERIC_P
RECISION

short

unsignedsh
ort

Number (length
<= 4)

Data will be truncated if it is
> SHORT_MAX

GENTYPE_NUMERIC_S
HORT

integer

long

int

nonPositiveI
nteger

nonNegativ
eInteger

negativeInt
eger

positiveInte
ger

unsignedLo
ng

unsignedInt

Number (length
<= 9)

Data will be truncated if it is
> LONG_MAX

GENTYPE_NUMERIC_L
ONG

UNIX and Linux Action Block Runtime User Exits

828 User Exit Reference Guide

Note: Data map pairs which are not mentioned in the table are not considered for
truncation. The following XSD data types are not truncated:

■ boolean

■ datetime

■ Time

■ Date

■ gYearMonth

■ gYear

■ gMonthDay

■ gDay

■ gMonth

■ Bytes

For example, when the web service response of XSD datetime data type are mapped to
Text, the response is not truncated.

Arguments

None.

Return Code

A long value that represents one or more flags which specify that the web service
response for the given data types are not truncated but instead an error is raised
instead.

Default Behavior

If the web service response size is greater than the Gen data type, the web service
response is truncated. For more information about the default behavior, see the ABRT
XCall WS Gentype Truncation Table in the Purpose topic.

Java Action Block Runtime User Exits

Chapter 10: Action Block Runtime User Exit 829

Building on UNIX/Linux

This user exit is built as part of the shared library or archive library libae_userexits_c.*,
where * is the shared library suffix or archive library depending on the UNIX system. As
a prerequisite for building the shared library or archive library, you must have correct
C/C++ compiler installed on your system.

Follow these steps:

1. Launch a terminal window.

2. Change your current directory to that directory which contains the makefiles (by
default, the $IEFH/make directory).

3. Run make /f stuxexit.plat, where plat is the matching platform extension:

AIX: aix

HP Itanium: ia64

Solaris: sol

Linux: lin

The user exit shared library will be built in the $IEFH/lib directory.

Related User Exits

None.

Java Action Block Runtime User Exits

WebServiceMethodCallExit

Source Code

WebServiceMethodCallExit.java

Purpose

This user exit provides one method to modify the URL used to access a web service
method at runtime and another method to modify the default truncation behavior used
for return values during a web service call.

modifyURL Method-Modifies the URL

Public Static Final String modifyURL(String url)

Java Action Block Runtime User Exits

830 User Exit Reference Guide

Purpose

This method allows the URL used to access a web service method to be modified at
runtime.

Arguments

The following table contains the arguments of the method:

Name Output Description

String URL The URL of the web service.

Return Code

The string representation of the URL of the web service.

Default Behavior

This method returns the URL of the web service that was added when the call external
statement was created. The default behavior is to return the URL parameter unchanged.

ABRT_xcall_ws_gentype_truncate_exit CALL EXTERNAL Data Truncation
long ABRT_xcall_ws_gentype_truncate_exit (void)

Purpose

By default, when the size of the web service response is greater than the matched Gen
data type, the response is truncated. The truncation is governed by the table below.

Use this user exit to override the default behavior. The user exit sets the matched Gen
data type flag so that the response is not truncated but an error is raised instead.

ABRT XCall WS Gentype Truncation Table:

The following table depicts the default behavior. The user exit sets the flag represented
in the Overrides the Flag column. The default behavior overrides the flag.

XSD data
type

(from)

Gen data type

(to)

Default truncation behavior Overrides the flag

string Text Data truncated to fit in
destination size.

GENTYPE_TEXT

string BLOB Data truncated to fit in
destination size.

GENTYPE_BLOB

Java Action Block Runtime User Exits

Chapter 10: Action Block Runtime User Exit 831

XSD data
type

(from)

Gen data type

(to)

Default truncation behavior Overrides the flag

anyURI Text Data truncated to fit in
destination size.

GENTYPE_TEXT

QName Text Data truncated to fit in
destination size.

GENTYPE_TEXT

NOTATION Text Data truncated to fit in
destination size.

GENTYPE_TEXT

duration Text Data truncated to fit in
destination size.

GENTYPE_TEXT

base64Binar
y

Text Data truncated to fit in
destination size.

GENTYPE_TEXT

base64Binar
y

BLOB Data truncated to fit in
destination size.

GENTYPE_BLOB

hexBinary Text Data truncated to fit in
destination size.

GENTYPE_TEXT

hexBinary BLOB Data truncated to fit in
destination size.

GENTYPE_BLOB

float Number (length
<= 15,

decimal points
!=0,

decimal precision
= false)

Data will be truncated at
decimal places.

GENTYPE_NUMERIC_D
OUBLE

double Number (length
<= 15,

decimal points
!=0,

decimal precision
= false)

Data will be truncated at
decimal places.

GENTYPE_NUMERIC_D
OUBLE

decimal Number (length
<=18,

decimal precision
=true)

Data will be truncated at
decimal places

and other truncation results
in Error.

GENTYPE_NUMERIC_P
RECISION

short

unsignedsh
ort

Number (length
<= 4)

Data will be truncated if it is
> SHORT_MAX

GENTYPE_NUMERIC_S
HORT

Java Action Block Runtime User Exits

832 User Exit Reference Guide

XSD data
type

(from)

Gen data type

(to)

Default truncation behavior Overrides the flag

integer

long

int

nonPositiveI
nteger

nonNegativ
eInteger

negativeInt
eger

positiveInte
ger

unsignedLo
ng

unsignedInt

Number (length
<= 9)

Data will be truncated if it is
> LONG_MAX

GENTYPE_NUMERIC_L
ONG

Note: Data map pairs which are not mentioned in the table are not considered for
truncation. The following XSD data types are not truncated:

■ boolean

■ datetime

■ Time

■ Date

■ gYearMonth

■ gYear

■ gMonthDay

■ gDay

■ gMonth

■ Bytes

For example, when the web service response of XSD datetime data type are mapped to
Text, the response is not truncated.

Arguments

None.

Java Action Block Runtime User Exits

Chapter 10: Action Block Runtime User Exit 833

Return Code

A long value that represents one or more flags which specify that the web service
response for the given data types are not truncated but instead an error is raised
instead.

Default Behavior

If the web service response size is greater than the Gen data type, the web service
response is truncated. For more information about the default behavior, see the ABRT
XCall WS Gentype Truncation Table in the Purpose topic.

Building on Windows

This exit is compiled into a Java class file. The Java development environment Java
Platform SE 1.6 or higher must be installed on your system.

Follow these steps:

1. Launch an MS/DOS Command window.

2. Ensure that the CLASSPATH environment variable contains a reference to the CA
Gen CSU jar file, CSUxx.JAR.

Note: xx refers to the current release of CA Gen. For the current release number,
see the Release Notes.

3. Change your current directory to that which contains the java source file.

Typically this is in the CA Gen install area, within the
CLASSES\COM\CA\GENxx\EXITS\Common subdirectory.

Note: xx refers to the current release of CA Gen. For the current release number,
see the Release Notes.

4. Run javac WebServiceMethodCallExit.java.

5. Reassemble and redeploy the resulting .class file for use with the appropriate
applications.

Related User Exits

None.

	CA Technologies Product References
	Contact CA Technologies
	Documentation Changes
	Contents
	Chapter 1: Introduction
	Overview
	User Exits
	Visual Studio Support
	64-bit Windows Support
	User Exits Collections
	User Exit General Information

	Chapter 2: Windows C User Exits
	Windows Blockmode User Exits
	DBCOMMIT—Database Commit Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	DBCONNCT—Database Connection User Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	DBDISCNT—Database Disconnect Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	TIRDLCT—Dialect Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	TIRDRTL—Default Retry Limit Exits
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	TIRHELP—Help Interface Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	TIRMTQB—Message Table Exit
	Source Code
	Purpose
	Runtime Error Table
	Runtime Error Handling

	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	TIRSECR—Security Check Interface Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	TIRSYSID—System ID Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	TIRTERMA—User Termination Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	TIRTIAR—Database Error Message Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	TIRUPDB—MBCS Uppercase Translation Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	TIRUPPR—Uppercase Translation Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	TIRURTL—Ultimate Retry Limit Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	TIRUSRID—User ID Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	TIRYYX—Date Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	Windows GUI Client User Exits
	C4COMMIT—Database Commit Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	C4CONNECT—Database Connection Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exit

	C4DISCONNECT—Database Disconnect Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	C4ERRMSG—Database Message Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	C4ROLLBACK—Database Rollback Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	C4SQLLEN—Database SQLCA Length Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exit

	WRASYNCSRVERROR—Asynchronous Flow Server Failure Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Builidng on Windows
	Related User Exits

	WRDEFAULTYEAR—Century Default Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	WRDRTL—Default Retry Limit Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	WRGLB—Globalization Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	WRSECDECRYPT—Client Decryption Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	WRSECENCRYPT—Client Side Encryption Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	WRSECTOKEN—Client Security Token Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	WRSRVRERROR—Server Flow Error Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	WRSTRNCM—String Comparison Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	WRSYSID—System ID Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	WRTERMID—Terminal ID Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	WRUPPR—Uppercase Translation Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	WRURTL—Ultimate Retry Limit Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	WRUSRID—User ID Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	Windows Client Middleware User Exits
	Client Manager - Windows User Exits
	CI_CM_DPC_FLOW_COMPLETE_COMM_ERROR – Client Manager Communications Error Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building the Exit
	Related User Exits

	CI_CM_ID—Client Manager ID Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building the Exit
	Steps to Validate Successful Incorporation of the CMICXnnN.DLL
	Related User Exits

	CIDE_INIT—Conversation Instance Data Initialize Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building the Exit
	Related User Exits

	CIDE_PROC—Conversation Instance Data Process Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building the Exit
	Related User Exits

	DECRYPT—Cooperative Flow Decryption Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building the Exit
	Related User Exits

	IEFDP_CLEANUPDIR—Directory Services Cleanup Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building the Exit
	Related User Exits

	IEFDP_INITDIR—Directory Services Initialize Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building the Exit
	Related User Exits

	IEFDP_SEARCHDIR—Directory Services Search Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Codes
	Default Behavior
	Building the Exit
	Related User Exits

	RSCUSERENTRY—Entry Point for Accessing APIs for User/Application Data Targeting HP NonStop Servers (Windows)
	Source Code
	Purpose
	APIs
	Return Code
	Default Behavior
	Building the Exit
	Related User Exits
	API Functions
	Function Format
	Purpose
	Arguments
	Return Code
	Default Behavior

	Function Format
	Purpose
	Arguments
	Return Code
	Default Behavior

	Function Format
	Purpose
	Arguments
	Return Code
	Default Behavior

	Function Format
	Purpose
	Arguments
	Return Code
	Default Behavior

	Function Format
	Purpose
	Arguments
	Return Code
	Default Behavior

	Communications Bridge - Windows User Exits
	CIDE_INIT—Conversation Instance Data User Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building the Exit
	Related User Exits

	CIDE_PROC—Conversation Instance Data Process Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building the Exit
	Related User Exits

	DECRYPT—Cooperative Flow Decryption Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building the Exit
	Related User Exits

	ECI_CLIENT_EXIT—ECI Communications Interface Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building the Exit
	Related User Exits

	GETTCPHOSTNAME—Host Name Lookup Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building the Exit
	Related User Exits

	RSCUSERENTRY—Client Side RSC/MP Distributed Processing Flow Data Access Exit, Targeting HP NonStop Servers (Windows)
	Source Code
	Purpose
	APIs
	Return Code
	Default Behavior
	Building the Exit
	Related User Exits
	API Functions
	Function Format
	Purpose
	Arguments
	Return Code
	Default Behavior

	Function Format
	Purpose
	Arguments
	Return Code
	Default Behavior

	Function Format
	Purpose
	Arguments
	Return Code
	Default Behavior

	Function Format
	Purpose
	Default Behavior

	Function Format
	Purpose
	Arguments
	Return Code
	Default Behavior

	Common System Utilities - Windows User Exits
	CSUGETLIBRARYVERSIONNAME—Version Name mapping Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	TCP/IP - Windows User Exits
	CI_TCP_DPC_DIRSERV_EXIT—TCPIP DPC Directory Services Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	CI_TCP_DPC_HANDLECOMM_COMPLETE—TCP/IP DPC Handle Comm Complete Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	CI_TCP_DPC_SETUPCOMM_COMPLETE—TCP/IP DPC Setup Comm Complete Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	WebSphere MQ Client Transport - Windows User Exits
	CI_MQS_DPC_EXIT—MQSeries DPC Directory Services Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	CI_MQS_DPC_HANDLECOMM_COMPLETE—Handle Comm Retry Count Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	CI_MQS_DPC_SETREPORTOPTIONS—Override Put Queue Report Options Exit Description
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	CI_MQS_DPC_SETUPCOMM_COMPLETE—Setup Comm Retry Count Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	CI_MQS_DYNAMICQNAME_EXIT—Dynamic Queue Name Override Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	CI_MQS_MQSHUTDOWNTEST—MQSeries Queue Disconnect Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	ECI - Windows User Exits
	CI_ECI_GET_SYSTEM_NAME—Get ECI System Name Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	CI_ECI_GET_TPN—Get ECI Mirror Transaction Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	Tuxedo
	CI_C_SEC_SET—Tuxedo Cooperative Flow Security Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	CI_C_USER_DATA_IN—Tuxedo Inbound Flow Data Access Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	CI_C_USER_DATA_OUT—Tuxedo Outbound Flow Data Access Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	CI_EVENT_HANDLER—Tuxedo Event Handler Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	Web Services - Windows User Exits
	CI_WS_DPC_Exit—Web Services DPC User Exit (Windows)
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	CI_WS_DPC_URL_Exit — Web Services DPC URL User Exit (Windows)
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	Windows Servers User Exits
	SRVRERROR—Server to Server Error Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	TIRDCRYP—Server Decryption Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	TIRELOG—Server Error Logging and Error Token Creation Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	TIRNCRYP—Server Encryption Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	TIRSECV—Security Validation Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	TIRXINFO—Locale Information Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	TIRXLAT—National Language Translation Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	Windows Server Middleware User Exits
	WebSphere MQ Server Transport - Windows User Exits
	CI_MQS_DPC_SETREPORTOPTIONS – Override Put Queue Report Options Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	CI_MQS_DPS_EXIT—MQSeries DPS Directory Services Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	CI_MQS_DYNAMICQNAME_EXIT—Dynamic Queue Name Override Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	Windows C Proxy User Exits
	WRSECTOKEN—Client Security Token Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	WRSECENCRYPT—Client Side Encryption Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	WRSECDECRYPT—Client Decryption Exit (Windows)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	Chapter 3: UNIX and Linux User Exits
	UNIX and Linux Blockmode User Exits
	DBCOMMIT—Database Commit Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	DBCONNCT—Database Connection User Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	DBDISCNT—Database Disconnect Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	TIRDLCT—Dialect Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	TIRDRTL—Default Retry Limit Exits
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	TIRHELP—Help Interface Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	TIRMTQB—Message Table Exit
	Source Code
	Purpose
	Runtime Error Table
	Runtime Error Handling

	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	TIRSECR—Security Check Interface Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	TIRSYSID—System ID Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	TIRTERMA—User Termination Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	TIRTIAR—Database Error Message Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	TIRUPDB—MBCS Uppercase Translation Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	TIRUPPR—Uppercase Translation Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	TIRURTL—Ultimate Retry Limit Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	TIRUSRID—User ID Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	TIRYYX—Date Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	UNIX/Linux Client Middleware User Exits
	Common System Utilities - UNIX and Linux User Exits
	CSUGETLIBRARYVERSIONNAME—Version Name mapping Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	TCP/IP - Windows User Exits
	CI_TCP_DPC_DIRSERV_EXIT—TCPIP DPC Directory Services Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	CI_TCP_DPC_HANDLECOMM_COMPLETE—TCP/IP DPC Handle Comm Complete Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	CI_TCP_DPC_SETUPCOMM_COMPLETE—TCP/IP DPC Setup Comm Complete Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	WebSphere MQ Client Transport - Windows User Exits
	CI_MQS_DPC_EXIT—MQSeries DPC Directory Services Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	CI_MQS_DPC_HANDLECOMM_COMPLETE—Handle Comm Retry Count Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	CI_MQS_DPC_SETREPORTOPTIONS—Override Put Queue Report Options Exit Description
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	CI_MQS_DPC_SETUPCOMM_COMPLETE—Setup Comm Retry Count Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	CI_MQS_DYNAMICQNAME_EXIT—Dynamic Queue Name Override Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	CI_MQS_MQSHUTDOWNTEST—MQSeries Queue Disconnect Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	Tuxedo
	CI_C_SEC_SET—Tuxedo Cooperative Flow Security Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	CI_C_USER_DATA_IN—Tuxedo Inbound Flow Data Access Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	CI_C_USER_DATA_OUT—Tuxedo Outbound Flow Data Access Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	CI_EVENT_HANDLER—Tuxedo Event Handler Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	UNIX and Linux Server User Exits
	SRVRERROR—Server to Server Error Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	TIRDCRYP—Server Decryption Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	TIRELOG—Server Error Logging and Error Token Creation Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	TIRNCRYP—Server Encryption Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	TIRSECV—Security Validation Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	TIRXINFO—Locale Information Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	TIRXLAT—National Language Translation Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	UNIX and Linux Asynchronous Daemon User Exits
	AEFSECEX—Asynchronous Daemon Security Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	UNIX/Linux Server Middleware User Exits
	WebSphere MQ Server Transport - UNIX and Linux User Exits
	CI_MQS_DPC_SETREPORTOPTIONS – Override Put Queue Report Options Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	CI_MQS_DPS_EXIT—MQSeries DPS Directory Services Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	CI_MQS_DYNAMICQNAME_EXIT—Dynamic Queue Name Override Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	Tuxedo - UNIX and Linux User Exits
	CI_S_POST_END—Tuxedo After Transaction Termination Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	CI_S_POST_SVRDONE—Tuxedo After Server Shutdown Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	CI_S_POST_SVRINIT—Tuxedo After Server Initialization Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	CI_S_POST_BEGIN—Tuxedo After Begin Transaction Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	CI_S_PRE_END—Tuxedo Prior to Transaction Termination Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	CI_S_USER_DATA_IN—Tuxedo Inbound Flow Data Access Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	CI_WS_DPC_URL_Exit — Web Services DPC URL User Exit
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	CI_S_USER_DATA_OUT—Tuxedo Outbound Flow Data Access Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	Web Services - UNIX and Linux User Exits
	CI_WS_DPC_URL_Exit—Web Services DPC User Exit
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	UNIX and Linux C Proxy User Exits
	WRSECTOKEN—Client Security Token Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	WRSECENCRYPT—Client Side Encryption Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	WRSECDECRYPT—Client Decryption Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	Chapter 4: z/OS User Exits
	Changes to User Exits
	z/OS Blockmode User Exits—CICS
	TIRCDPTX—Dynamic Plan TSQ Processing Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRCRTRX—Default Retry Limit Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exit

	TIRTIARX—DB2 Message Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Customizing the DB2 Message Exit
	Building on z/OS
	Related User Exits

	TIRCURTX—Ultimate Retry Limit Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRSYSIX—System ID Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRUSRIX—User ID Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRSECRX—Security Interface Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRQCNTX—TSQ Profile Manager Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRDATX—Date and Time Services Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRDEVC—Device Characteristics Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Translate Tables
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRDLCTX—User Dialect Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRUPPRX—Uppercase Translation Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRYYX—Two-Digit Year Input Edit Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRTERMA—Termination Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRHELPX—Help Interface Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRIEX—Enhanced Map Input Edit Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS

	TIRIEXS – Standard Map Input Edit Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS

	z/OS Blockmode User Exits—IMS
	TIRTIARX—DB2 Message Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Customizing the DB2 Message Exit
	Building on z/OS
	Related User Exits

	TIRIRTRX—Default Retry Limit Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRIURTX—Ultimate Retry Limit Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRSYSIX—System ID Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRUSRIX—User ID Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRSECRX—Security Interface Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRDATX—Date and Time Services Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRDEVI—Device Characteristics Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Translate Tables
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRDLCTX—User Dialect Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRUPPRX—Uppercase Translation Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRYYX—Two-Digit Year Input Edit Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRTERMA—Termination Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRMTQB—Runtime Message Table Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRIDTRX—IMS Server Debug LTERM
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRIEX—Enhanced Map Input Edit Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS

	TIRIEXS – Standard Map Input Edit Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS

	z/OS Blockmode User Exits—TSO
	TIRTIARX—DB2 Message Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Customizing the DB2 Message Exit
	Building on z/OS
	Related User Exits

	TIRIRTRX—Default Retry Limit Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRIURTX—Ultimate Retry Limit Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRSYSIX—System ID Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRUSRIX—User ID Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRSECRX—Security Interface Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRDATX—Date and Time Services Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRDEVT—Device Characteristics Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Translate Tables
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRDLCTX—User Dialect Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRUPPRX—Uppercase Translation Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRYYX—Two-Digit Year Input Edit Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRMTQB—Runtime Message Table Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Building on z/OS
	Related User Exits

	TIRTERMA—Termination Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRIEX—Enhanced Map Input Edit Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS

	TIRIEXS – Standard Map Input Edit Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS

	TIRIURTX—Ultimate Retry Limit Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	z/OS Middleware User Exits—CICS TCP/IP Direct Connect Exits
	TIRSLEXT—CICS Sockets Server Listener Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRSLTMX—CICS Sockets Server Listener TIMEOUT Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	z/OS Middleware User Exits—IMS TCP/IP Direct Connect Exits
	TIRxxTD—TCP/IP Destination ID Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRxxTDC—TCP/IP Decryption Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRxxTSC—TCP/IP Security Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	z/OS Middleware User Exits – WebSphere MQ CICS
	WebSphere MQ Transaction Dispatcher for CICS (TDC) Exit
	TIRMQTDX—WebSphere MQ Transaction Dispatcher for CICS Parameter Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	z/OS Server User Exits—CICS
	TIRTIARX—DB2 Message Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Customizing the DB2 Message Exit
	Building on z/OS
	Related User Exits

	TIRCDPTX—Dynamic Plan TSQ Processing Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRSRTRX—Default Retry Limit Exit Processing
	TIRSURTX—Server Ultimate Retry Limit Exit
	Purpose

	TIRSYSIX—System ID Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRUSRIX—User ID Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRSECRX—Security Interface Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRQCNTX—TSQ Profile Manager Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRUPPRX—Uppercase Translation Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRXINFO—National Language Information Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Related User Exits

	TIRSECVX—Server Client Security Validation Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRDCRYX—Server Decryption Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRNCRYX—Server Encryption Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRELOGX—Server Error Logging and Error Token Creation Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRALLOX—Server-to-Server Allocate Conversation Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRPTOKX—Server-to-Server Security Token CA Generation Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRCSGNX—Server TCP/IP Signon Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRPROUX—Server-to-Server Routing Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRSIPEX—CICS Sockets Server Exit
	Source Code
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRMQPX—MQ SERIES Put Function Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	z/OS Server User Exits—IMS
	TIRTIARX—DB2 Message Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Customizing the DB2 Message Exit
	Building on z/OS
	Related User Exits

	TIRALLOX—Server-to-Server Allocate Conversation Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRPROUX—Server-to-Server Routing Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	z/OS Batch User Exits
	TIRTIARX—DB2 Message Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Customizing the DB2 Message Exit
	Building on z/OS
	Related User Exits

	TIRBRTRX—Default Retry Limit Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exit

	TIRBURTX—Ultimate Retry Limit Exit
	Source Code
	Purpose
	Default Processing
	Customizing the Exit
	Building on z/OS

	TIRRETCX—Batch Return Code Override Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	TIRTERBX—Batch Termination Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS
	Related User Exits

	Customizing and Installing z/OS User Exits
	MKUEXITS—Make COBOL Runtimes (User Exits DLLs)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS

	MKCRUN—Make C Runtimes - TIRCRUNC (CICS) and TIRCRUNI (IMS)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS

	MKUECTCP—Make CICS TCP/IP Exits (TIRSLEXT and TIRSLTMX)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS

	MKUEITCP—Make IMS TCP/IP Exits (TIRxxTD, TIRxxTDC, and TIRxxTSC)
	Source Code
	Purpose
	Arguments
	Return Code
	Default Processing
	Customizing the Exit
	Building on z/OS

	Chapter 5: NonStop User Exits
	NonStop Blockmode User Exits
	TIRDLCT—Dialect Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on NonStop
	Related User Exits

	TIRDRTL—Default Retry Limit Exits
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on NonStop
	Related User Exits

	TIRHELP—Help Interface Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on NonStop
	Related User Exits

	TIRMTQB—Message Table Exit
	Source Code
	Purpose
	Runtime Error Table
	Runtime Error Handling

	Arguments
	Return Code
	Default Behavior
	Building on NonStop
	Related User Exits

	TIRSECR—Security Check Interface Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on NonStop
	Related User Exits

	TIRSYSID—System ID Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on NonStop
	Related User Exits

	TIRTERMA—User Termination Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on NonStop
	Related User Exits

	TIRUPDB—MBCS Uppercase Translation Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on NonStop
	Related User Exits

	TIRUPPR—Uppercase Translation Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on NonStop
	Related User Exits

	TIRURTL—Ultimate Retry Limit Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on NonStop
	Related User Exits

	TIRUSRID—User ID Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on NonStop
	Related User Exits

	TIRYYX—Date Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on NonStop
	Related User Exits

	NonStop Server User Exits
	TIRDCRYP—Server Decryption Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on NonStop
	Related User Exits

	TIRELOG—Server Error Logging and Error Token Creation Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on NonStop
	Related User Exits

	TIRNCRYP—Server Encryption Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on NonStop
	Related User Exits

	TIRSECV—Security Validation Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on NonStop
	Related User Exits

	TIRXINFO—Locale Information Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on NonStop
	Related User Exits

	TIRXLAT—National Language Translation Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on NonStop
	Related User Exits

	USEREXIT—NonStop RSC/MP Distributed Processing Flow Data Access Exit
	Source Code
	Purpose
	Arguments
	APIs
	Return Code
	Default Behavior
	Building on NonStop
	Related User Exits
	API Functions
	Function Format
	Purpose
	Arguments
	Return Code
	Default Behavior

	Function Format
	Purpose
	Arguments
	Return Code
	Default Behavior

	Function Format
	Purpose
	Arguments
	Return Code
	Default Behavior

	Function Format
	Purpose
	Arguments
	Return Code
	Default Behavior

	Function Format
	Purpose
	Arguments
	Return Code
	Default Behavior

	Chapter 6: Web Generation User Exits
	CompareExit—Web Generation Compare Exit
	Source Code
	Purpose
	CompareTo Method—Compares Two Decimals
	Purpose
	Arguments
	Return Code
	Default Behavior

	CompareTo Method—Compares Two Characters
	Purpose
	Arguments
	Return Code
	Default Behavior

	CompareTo Method—Compares Two Doubles
	Purpose
	Arguments
	Return Code
	Default Behavior

	CompareTo Method—Compares Two Floats
	Purpose
	Arguments
	Return Code
	Default Behavior

	CompareTo Method—Compares Two Integers
	Purpose
	Arguments
	Return Code
	Default Behavior

	CompareTo Method—Compares Two Longs
	Purpose
	Arguments
	Return Code
	Default Behavior

	CompareTo Method—Compares Two Objects
	Purpose
	Arguments
	Return Code
	Default Behavior

	CompareTo Method—Compares Two Shorts
	Purpose
	Arguments
	Return Code
	Default Behavior

	CompareTo Method—Compares Two Strings
	Purpose
	Arguments
	Return Code
	Default Behavior

	CompareTo Method—Compares two strings(upto the indicated length)
	Purpose
	Arguments
	Return Code
	Default Behavior

	CompareTo Method—Compares Two DateTime instances
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit

	DataConversionExit–Web Generation Data Conversion Exit
	Source Code
	Purpose
	modifyInputString Method—Modifies Input String
	Purpose
	Arguments
	Return Code
	Default Behavior

	modifyOutputString Method—Modifies Output String
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit

	LowerCaseExit– Web Generation Lower Case Exit
	Source Code
	Purpose
	LowerCase Method—Converts String to Lower Case
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit

	UpperCaseExit–Web Generation Upper Case Exit
	Source Code
	Purpose
	UpperCase Method—Converts string to Upper Case
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit

	EJBRMIContextExit–Web Generation EJB RMI Context Exit
	Source Code
	Purpose
	getInstance Method—Retrieves an instance of the exit class
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit

	EJBRMIDynamicCoopFlowExit–Web Generation EJB RMI Dynamic Coop Flow Exit
	Source Code
	Purpose
	getInstance Method—Retrieves an instance of EJBRMIDynamicCoopFlowExit class
	Purpose
	Arguments
	Return Code
	Default Behavior

	FreeInstance Method—De-allocates the object obtained with GetInstance()
	Purpose
	Arguments
	Return Code
	Default Behavior

	ProcessException Method—Indicates whether to retry the operation or to throw an exception
	Purpose
	Arguments
	Return Code
	Default Behavior

	init Method—Initializes the current instance internally from the GetInstance ()
	Purpose
	Arguments
	Return Code
	Default Behavior

	getInitialFactory Method—Retrieve the initial factory classname
	Purpose
	Arguments
	Default Behavior

	getProviderURL Method—Retrieves the providerURL
	Purpose
	Arguments
	Default Behavior

	getUserObject Method—Retrieves a User Object
	Purpose
	Arguments
	Default Behavior

	Rebuilding the Exit

	EJBRMISecurityExit–Web Generation EJB RMI Security Exit
	Source Code
	Purpose
	getInstance Method—Allocates a security object that contains all of the security information
	Purpose
	Arguments
	Default Behavior

	FreeInstance Method—De-allocates the object obtained with GetInstance
	Purpose
	Arguments
	Return Code
	Default Behavior

	validate Method—Verifies the security object is correct
	Purpose
	Arguments
	Default Behavior

	getObject Method—Passess the original security object to a Server
	Purpose
	Arguments
	Default Behavior

	SecurityType Property—Specifies the type of security
	Purpose
	Default Behavior

	Rebuilding the Exit

	TCPIPDynamicCoopFlowExit–Web Generation TCPIP Dynamic CoopFlow Exit
	Source Code
	Purpose
	getInstance Method—Obtains an instance of TCPIPDynamicCoopFlowExit class
	Purpose
	Arguments
	Return Code
	Default Behavior

	FreeInstance Method—De-allocates the object obtained with GetInstance
	Purpose
	Arguments
	Return Code
	Default Behavior

	ProcessException Method—Indicates whether to retry the operation or to throw an exception
	Purpose
	Arguments
	Return Code
	Default Behavior

	init Method—Initializes the current instance internally from the GetInstance
	Purpose
	Arguments
	Return Code
	Default Behavior

	getHostName Method—Retrieves the hostname
	Purpose
	Arguments
	Default Behavior

	getPort Method—Retrieves the port
	Purpose
	Arguments
	Default Behavior

	geClientPersistence Method—Retrieves the client socket connection persistence state
	Purpose
	Arguments
	Default Behavior

	Rebuilding the Exit

	WindowManagerCfgExit–Web Generation Window Manager Configuration
	Source Code
	Purpose
	URL mapURL Method—Maps the passed URL, load module name and procedure step name
	Purpose
	Arguments
	Default Behavior

	Rebuilding the Exit

	ContextLookupExit–Web Generation Context Look Up
	Source Code
	Purpose
	lookup Method—Retrieves an instance of the named context object
	Purpose
	Arguments
	Default Behavior

	Rebuilding the Exit

	CFBDynamicMessageSecurityExit–Web Generation CFB Dynamic Message Security Exit
	Source Code
	Purpose
	CFBDynamicMessageSecurityExit Constructor—Provides the default caching mechanism
	Purpose
	Arguments
	Return Code
	Default Behavior

	GetInstance Method—Obtains an instance of CFBDynamicMessageSecurityExit class
	Purpose
	Arguments
	Return Code
	Default Behavior

	FreeInstance Method—De-allocates the object obtained with GetInstance
	Purpose
	Arguments
	Return Code
	Default Behavior

	getSecurityToken Method—Allows the user to pass back a security token
	Purpose
	Arguments
	Return Code
	Default Behavior

	Init Method—Initializes the current instance internally from the GetInstance
	Purpose
	Arguments
	Return Code
	Default Behavior

	getSecurityType Method—Specifies the type of security
	Purpose
	Default Behavior

	useCMSecurity Method—Specifies whether the Client Manager/Comm Bridge to use the userID and password
	Purpose
	Default Behavior

	Rebuilding the Exit

	CFBDynamicMessageEncodingyExit–Web Generation CFB Dynamic Message Encoding Exit
	Source Code
	Purpose
	serverEncoding Method—Retrieves the message text encoding for the named host and transaction
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit

	CFBDynamicMessageEncryptionExit–Web Generation CFB Dynamic Message Encryption Exit
	Source Code
	Purpose
	CFBDynamicMessageEncryptionExit Constructor—Provides the default caching mechanism
	Purpose
	Arguments
	Return Code
	Default Behavior

	GetInstance Method—Obtains an instance of CFBDynamicMessageEncryptionExit class and initializes it
	Purpose
	Arguments
	Return Code
	Default Behavior

	FreeInstance Method—De-allocates the object obtained with GetInstance
	Purpose
	Arguments
	Return Code
	Default Behavior

	encryptData Method—Allows the user to encrypt the data portion of the message
	Purpose
	Arguments
	Return Code
	Default Behavior

	Init Method—Initializes the current instance internally from the GetInstance
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit

	CFBDynamicMessageDecryptionExit–Web Generation CFB Dynamic Message Decryption
	Source Code
	Purpose
	CFBDynamicMessageDecryptionExit Constructor—Provides the default caching mechanism
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	FreeInstance Method—De-allocates the object obtained with GetInstance
	Purpose
	Arguments
	Return Code
	Default Behavior

	decryptData Method—Decrypts the data portion of the message
	Purpose
	Arguments
	Return Code
	Default Behavior

	Init Method—Initializes the current instance internally from the GetInstance
	Purpose
	Arguments
	Return Code
	Default Behavior

	doDecryption Method—Specifies whether decryption should be done
	Arguments
	Purpose
	Default Behavior

	Rebuilding the Exit

	DefaultYearExit–Web Generation Default Year Exit
	Source Code
	Purpose
	GetDefaultYear Method—Implements a customer-specified algorithm addressing Year-2000 concerns
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit

	LocaleExit–Java Locale Exit
	Source Code
	Purpose
	getLocalCurrencySymbol Method—Supplies the currency symbol to the generated JAVA application
	Purpose
	Arguments
	Return Code
	Default Behavior

	getLocalThousandsSep Method—Supplies the thousand separator to the generated JAVA application
	Purpose
	Arguments
	Return Code
	Default Behavior

	getLocalDecimalSeparator Method—Supplies the decimal point to the generated JAVA application
	Purpose
	Arguments
	Return Code
	Default Behavior

	getLocalDateSeparator Method—Supplies the date separator character to the generated JAVA application
	Purpose
	Arguments
	Return Code
	Default Behavior

	getLocalTimeSep Method—Supplies the time separator character to the generated JAVA application
	Purpose
	Arguments
	Return Code
	Default Behavior

	getLocalDateOrder Method—Supplies the date order definition to the generated JAVA application
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit

	RetryLimitExit–Web Generation Retry Limit Exit
	Source Code
	Purpose
	getUltimateRetryLimit Method—Retrieves the Integer containing absolute upper limit to the number of times a procedure step can be retried
	Purpose
	Arguments
	Default Behavior

	getDefaultRetryLimit Method—Retrieves the Integer containing default retry limit number of times a procedure step can be retried
	Purpose
	Arguments
	Default Behavior

	Rebuilding the Exit

	SessionIDExit–Web Generation Session ID Exit
	Source Code
	Purpose
	getSystemId Method—Retrieves the String containing the value for the LOCAL_SYSTEM_ID attributes
	Purpose
	Arguments
	Default Behavior

	getUserId Method—Retrieves the String containing the value for the USER_ID attributes
	Purpose
	Arguments
	Default Behavior

	getTerminalId Method—Retrieves the String containing the value for the TERMINAL_ID attributes
	Purpose
	Arguments
	Default Behavior

	Rebuilding the Exit

	SrvrErrorExit–Web Generation Server Error Exit
	Source Code
	Purpose
	ServerError Method—Detects an error during the processing of a synchronous client to server flow
	Purpose
	Arguments
	Return Code
	Default Behavior

	append Method—Formats errors with messages unique to your application
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit

	UserExit–Web Generation User Exit
	Source Code
	Purpose
	Default Behavior
	startUp Method—Instantiates the UserExit class with its properties initialized
	Purpose
	Arguments
	Return Code
	Default Behavior

	getCurrencySign Method—Retrieves the currency sign value for the current UserExit object
	Purpose
	Arguments
	Default Behavior

	getThousandsSeparator Method—Retrieves the Thousand Separator value for the current UserExit object
	Purpose
	Default Behavior

	getDecimalSeparator Method—Retrieves the Decimal Separator value for the current UserExit object
	Purpose
	Default Behavior

	getDateSeparator Method—Retrieves the Date Separator value for the current UserExit object
	Purpose
	Default Behavior

	getTimeSeparator Method—Retrieves the Time Separator value for the current UserExit object
	Purpose
	Default Behavior

	getDateOrder Method—Retrieves the Date Order value for the current UserExit object
	Purpose
	Default Behavior

	getMessageFile Method—Retrieves the two letter key to select the message file
	Purpose
	Default Behavior

	getSystemId Method—Retrieves the system ID string attribute
	Purpose
	Default Behavior

	getUserId Method—Retrieves the userID string attribute
	Purpose
	Default Behavior

	getTerminalId Method—Retrieves the terminal ID string attribute
	Purpose
	Default Behavior

	getDialectName Method—Retrieves the current dialect name for the load module
	Purpose
	Default Behavior

	GetDefaultYear Method—Implements a customer-specified algorithm addressing Year-2000 concerns
	Purpose
	Arguments
	Return Code
	Default Behavior

	padAndTrim Method—Trims and pads the given string with the specified arguments
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit

	WSDynamicCoopFlowExit–Web Service Dynamic Coop Flow Exit
	Source Code
	Purpose
	getInstance Method—Retrieves an Instance of WSDynamicCoopFlowExit Class
	Purpose
	Arguments
	Return Code
	Default Behavior

	freeInstance Method—De-allocates the Object Obtained with GetInstance()
	Purpose
	Arguments
	Return Code
	Default Behavior

	processException Method—Indicates Whether to Retry the Operation or to Throw an Exception
	Purpose
	Arguments
	Return Code
	Default Behavior

	init Method—Initializes the Current Instance Internally from the getInstance ()
	Purpose
	Arguments
	Return Code
	Default Behavior

	getBaseURL Method—Retrieves the baseURL
	Purpose
	Arguments
	Default Behavior

	getContextType Method—Retrieves the contextType
	Purpose
	Arguments
	Default Behavior
	Rebuilding the Exit

	Chapter 7: Web View User Exits
	WVDefaultYearExit–WebView Default Year Exit
	Source Code
	Purpose
	Rebuilding the Exit

	WVLocaleExit–WebView Locale Exit
	Source Code
	Purpose
	getLocalCurrencySymbol Method—Supplies the currency symbol to the generated JAVA application
	Purpose
	Arguments
	Return Code
	Default Behavior

	getLocalThousandsSep Method—Supplies the thousand separator to the generated JAVA application
	Purpose
	Arguments
	Return Code
	Default Behavior

	getLocalDecimalSeparator Method—Supplies the decimal point to the generated JAVA application
	Purpose
	Arguments
	Return Code
	Default Behavior

	getLocalDateSeparator Method—Supplies the date separator character to the generated JAVA application
	Purpose
	Arguments
	Return Code
	Default Behavior

	getLocalTimeSep Method—Supplies the time separator character to the generated JAVA application
	Purpose
	Arguments
	Return Code
	Default Behavior

	getLocalDateOrder Method—Supplies the date order definition to the generated JAVA application
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit

	WVRetryLimitExit–WebView Retry Limit Exit
	Source Code
	Purpose
	getUltimateRetryLimit Method—Retrieves the Integer containing absolute upper limit
	Purpose
	Arguments
	Default Behavior

	getDefaultRetryLimit Method—Retrieves the Integer containing default retry limit
	Purpose
	Arguments
	Default Behavior

	Rebuilding the Exit

	WVSessionIDExit–WebView Session ID Exit
	Source Code
	Purpose
	getSystemId Method—Retrieves the String containing the value for the LOCAL_SYSTEM_ID attributes
	Purpose
	Arguments
	Default Behavior

	getUserId Method—Retrieves the String containing the value for the USER_ID attributes
	Purpose
	Arguments
	Default Behavior

	getTerminalId Method—Retrieves the String containing the value for the TERMINAL_ID attributes
	Purpose
	Arguments
	Default Behavior

	Rebuilding the Exit

	WVSrvrErrorExit–WebView Server Error Exit
	Source Code
	Purpose
	ServerError Method—Detects an error during the processing of a synchronous client to server flow
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit

	WVUserExit–WebView User Exit
	Source Code
	Purpose
	Default Behavior
	startUp Method—Instantiates the UserExit class with its properties initialized
	Purpose
	Arguments
	Return Code
	Default Behavior

	getCurrencySign Method—Retrieves the currency sign value for the current UserExit object
	Purpose
	Default Behavior

	getThousandsSeparator Method—Retrieves the Thousand Separator value for the current UserExit object
	Purpose
	Default Behavior

	getDecimalSeparator Method—Retrieves the Decimal Separator value for the current UserExit object
	Purpose
	Default Behavior

	getDateSeparator Method—Retrieves the Date Separator value for the current UserExit object
	Purpose
	Default Behavior

	getTimeSeparator Method—Retrieves the Time Separator value for the current UserExit object
	Purpose
	Default Behavior

	getDateOrder Method—Retrieves the Date Order value for the current UserExit object
	Purpose
	Default Behavior

	getMessageFile Method—Retrieves the two letter key to select the message file
	Purpose
	Default Behavior

	getSystemId Method—Retrieves the system ID string attribute
	Purpose
	Default Behavior

	getUserId Method—Retrieves the user ID string attribute
	Purpose
	Default Behavior

	getTerminalId Method—Retrieves the terminal ID string attribute
	Purpose
	Default Behavior

	getDialectName Method—Retrieves the current dialect name for the load module
	Purpose
	Default Behavior

	GetDefaultYear Method—Implements of a customer-specified algorithm addressing Year-2000 concerns
	Purpose
	Arguments
	Return Code
	Default Behavior

	padAndTrim Method—Trims and pads the given string with the specified arguments
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit

	Chapter 8: .NET User Exits
	ASP.NET Web Client User Exits
	com.ca.gen.exits.amrt.DefaultYearExit–C# Default Year Exit
	Source Code
	Purpose
	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit

	com.ca.gen.exits.amrt.LocaleExit–C# Locale Exit
	Source Code
	Purpose
	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit

	com.ca.gen.exits.amrt.RetryLimitExit–C# Retry Limit Exit
	Source Code
	Purpose
	Property
	Purpose
	Default Value

	Property
	Purpose
	Default Value

	Rebuilding the Exit

	com.ca.gen.exits.amrt.SessionIdExit–C# Session ID Exit
	Source Code
	Purpose
	Property
	Purpose
	Default Value

	Property
	Return Code
	Default Value

	Property
	Purpose
	Default Value

	Rebuilding the Exit

	com.ca.gen.exits.amrt.SrvrErrorExit–C# Server Error Exit
	Source Code
	Purpose
	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit

	com.ca.gen.exits.amrt.UserExit–C# User Exit
	Source Code
	Purpose
	Constructor
	Purpose
	Arguments
	Return Code
	Default Behavior

	Constructor
	Purpose
	Arguments
	Return Code
	Default Behavior

	Property
	Purpose
	Default Behavior

	Property
	Purpose
	Default Behavior

	Property
	Purpose
	Default Behavior

	Property
	Purpose
	Default Behavior

	Property
	Purpose
	Default Behavior

	Property
	Purpose
	Default Behavior

	Property
	Purpose
	Default Behavior

	Property
	Purpose
	Default Behavior

	Property
	Purpose
	Default Behavior

	Property
	Purpose
	Default Behavior

	Property
	Purpose
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit

	Exits in <CAGen-root>\.net\exits\src\Common.cs file Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers
	com.ca.gen.exits.common.CompareExit – C# Compare Exit
	Source Code
	Purpose
	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit

	com.ca.gen.exits.common.LowerCaseExit – C# Lower Case Exit
	Source Code
	Purpose
	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit

	com.ca.gen.exits.common.UpperCaseExit – C# Upper Case Exit
	Source Code
	Purpose
	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit

	com.ca.gen.exits.common.WebServiceMethodCallExit- C # CALL EXTERNAL User Exit
	Source Code
	Purpose
	modifyURL Method-Modifies the URL
	Purpose
	Arguments
	Return Code
	Default Behavior

	ABRT_xcall_ws_gentype_truncate_exit —CALL EXTERNAL Data Truncation
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit
	Related User Exits

	Exits in <CAGen-root>\.net\exits\src\msgobj Directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers
	com.ca.gen.exits.msgobj.cfb.CFBDynamicMessageDecryptionExit – C# CFB Dynamic Message Decryption
	Source Code
	Purpose
	Constructor
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Property
	Purpose
	Default Behavior

	Rebuilding the Exit

	com.ca.gen.exits.msgobj.cfb.CFBDynamicMessageEncodingyExit – C# CFB Dynamic Message Encoding Exit
	Source Code
	Purpose
	Constructor
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit

	com.ca.gen.exits.msgobj.cfb.CFBDynamicMessageEncryptionExit – C# CFB Dynamic Message Encryption Exit
	Source Code
	Purpose
	Constructor
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Property
	Purpose
	Default Behavior

	Rebuilding the Exit

	com.ca.gen.exits.msgobj.cfb.CFBDynamicMessageSecurityExit – C# CFB Dynamic Message Security Exit
	Source Code
	Purpose
	Constructor
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Property
	Purpose
	Default Behavior

	Property
	Purpose
	Default Behavior

	Rebuilding the Exit

	CA Gen .NET Servers
	com.ca.gen.exits.scrt.AuthorizationExit – C# Server Authorization Exit
	Source Code
	Purpose
	Constructor
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit

	com.ca.gen.exits.scrt.SecurityValidationExit – C# Server Security Validation Exit
	Source Code
	Purpose
	Constructor
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit

	com.ca.gen.exits.scrt.LocaleExit – C# Server Locale Exit
	Source Code
	Purpose
	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit

	com.ca.gen.exits.scrt.RetryLimitExit – C# Server Retry Limit Exit
	Source Code
	Purpose
	Property
	Purpose
	Default Value

	Property
	Purpose
	Default Value

	Rebuilding the Exit

	com.ca.gen.exits.scrt.SrvrErrorExit – C# Server Error Exit
	Source Code
	Purpose
	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit

	com.ca.gen.exits.scrt.UserExit – C# Server User Exit
	Source Code
	Purpose
	Constructor
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit

	C# Server Middleware User Exits
	com.ca.gen.exits.coopflow.net.NETDynamicCoopFlowExit–C# NET Dynamic CoopFlow Exit
	Source Code
	Purpose
	Constructor
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Property
	Purpose
	Default Behavior

	Property
	Purpose
	Default Behavior

	Property
	Purpose
	Default Behavior

	Rebuilding the Exit

	Exits in <CAGen-root>\.net\exits\src\coopflow directory Used by CA Gen ASP.NET Web Clients and CA Gen .NET Servers
	com.ca.gen.exits.coopflow.complus.COMPLUSDynamicCoopFlowExit–C# COM PLUS Dynamic Coop Flow Exit
	Source Code
	Purpose
	Constructor
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit

	com.ca.gen.exits.coopflow.complus.COMPLUSDynamicCoopFlowSecurityExit–C# COMPLUS Dynamic Coop Flow Security Exit
	Source Code
	Purpose
	Constructor
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit

	com.ca.gen.exits.coopflow.mqs.MQSDynamicCoopFlowExit–C# MQSeries Dynamic Coop Flow Exit
	Source Code
	Purpose
	Constructor
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Property
	Purpose
	Default Behavior

	Property
	Purpose
	Default Behavior

	Property
	Purpose
	Default Behavior

	Property
	Purpose
	Default Behavior

	Property
	Purpose
	Default Behavior

	Property
	Purpose
	Default Behavior

	Property
	Purpose
	Default Behavior

	Property
	Purpose
	Default Behavior

	Property
	Purpose
	Default Behavior

	Rebuilding the Exit

	com.ca.gen.exits.coopflow.net.NETDynamicCoopFlowSecurityExit–C# NET Dynamic Coop Flow Security Exit
	Source Code
	Purpose
	Constructor
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Rebuilding the Exit

	com.ca.gen.exits.coopflow.tcpip.TCPIPDynamicCoopFlowExit–C# TCPIP Dynamic Coop Flow Exit
	Source Code
	Purpose
	Constructor
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Property
	Purpose
	Default Behavior

	Property
	Purpose
	Default Behavior

	Property
	Purpose
	Default Behavior

	Rebuilding the Exit

	com.ca.gen.exits.coopflow.ws.WSDynamicCoopFlowExit – C# WS Dynamic Coop Flow Exit
	Source Code
	Purpose
	Constructor
	Purpose
	Arguments
	Return Code
	Default Behavior

	GetInstance Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	FreeInstance Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	ProcessException Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	Init Method
	Purpose
	Arguments
	Return Code
	Default Behavior

	BaseURL Property
	Purpose
	Default Behavior

	ContextType Property
	Purpose
	Default Behavior

	Rebuilding the Exit

	Chapter 9: Browser User Exits
	Customize userOnLoad in ASP.NET Mode
	Customize userOnLoad in HTML Mode for Web View

	Chapter 10: Action Block Runtime User Exit
	Windows Action Block Runtime User Exits
	ABRT_xcall_ws_url_exit —CALL EXTERNAL Web Service URL Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	ABRT_xcall_ws_gentype_truncate_exit —CALL EXTERNAL Data Truncation
	Source
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on Windows
	Related User Exits

	UNIX and Linux Action Block Runtime User Exits
	ABRT_xcall_ws_url_exit —CALL EXTERNAL Web Service URL Exit
	Source Code
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	ABRT_xcall_ws_gentype_truncate_exit —CALL EXTERNAL Data Truncation
	Source
	Purpose
	Arguments
	Return Code
	Default Behavior
	Building on UNIX/Linux
	Related User Exits

	Java Action Block Runtime User Exits
	WebServiceMethodCallExit
	Source Code
	Purpose
	modifyURL Method-Modifies the URL
	Purpose
	Arguments
	Return Code
	Default Behavior

	ABRT_xcall_ws_gentype_truncate_exit —CALL EXTERNAL Data Truncation
	Purpose
	Arguments
	Return Code
	Default Behavior

	Building on Windows
	Related User Exits

